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Preface

This volume contains the papers presented at ProvSec 2021 - the 15th International
Conference on Provable and Practical Security, held during November 5–8, 2021. Due
to the global COVID-19 pandemic, this year we organized ProvSec 2021 as a hybrid
conference. Attendees from low-risk areas of mainland China were invited to join the
conference offline at Guangzhou, while other attendees were invited to join the confer-
ence online. The conference was hosted by the College of Mathematics and Informatics,
South China Agricultural University, China.

The first ProvSec conference was held in 2007. Until 2018, ProvSec conferences
focused on “Provable Security”. Since 2019, “Practical Security” has been added into
the theme of the conference to enrich the scope of the conference and to bring together
security researchers and practitioners.

This year we received 67 submissions, which were reviewed in a double-blind man-
ner. Each submission was carefully evaluated by three to five reviewers, and then dis-
cussed among the ProgramCommittee. Finally, 21 papers were accepted for presentation
at the conference. Based on the reviews and votes by Program Committee members, the
following paper was given the Best Paper Award:

“Public Key Based Searchable Encryption with Fine-Grained Sender Permission
Control”, by Zhongming Wang, Biwen Chen, Tao Xiang, Lu Zhou, Hongyang Yan, and
Jin Li.

ProvSec 2021 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank all the 51
Program Committee members from all over the world and the external reviewers for
their substantial work in evaluating the papers. We thank the local organizers for their
tremendous efforts in successfully organizing this event. Last but not least, we would
like to express our gratitude to all invited speakers and all authors who submitted papers
to ProvSec 2021.

November 2021 Qiong Huang
Yu Yu
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Searchable Encryption



Public Key Based Searchable Encryption
with Fine-Grained Sender Permission

Control

Zhongming Wang1, Biwen Chen1, Tao Xiang1(B), Lu Zhou2, Hongyang Yan3,
and Jin Li3

1 College of Computer Science, Chongqing University, Chongqing, China
txiang@cqu.edu.cn

2 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

3 Institute of Artificial Intelligence and Blockchain, Guangzhou University,
Guangzhou, China

Abstract. Public key encryption with keyword searched (PEKS) is a
promising cryptographic primitive that realizes keyword search in the
ciphertext. Since it can provide flexible access to encrypted data, PEKS
has been widely used in various fields, such as Cloud Computing and
Internet of Things. Until now, many PEKS schemes with fine-grained
access control have been proposed to satisfy the requirements of data
sharing. However, most previous work only considered the control of
data receiver and ignored the control of data sender. In practice, the
malicious data sender might correctly generate ciphertexts containing
useless information, which in turn increases the computational burden
and communication load for the data receiver.

To address the above problem, we introduce the concept of PEKS with
fine-grained sender permission control, named SCPEKS. In SCPEKS,
only those ciphertexts containing matching keywords and of which data
sender attributes satisfy the authorized receiver policy will be returned
to the data receiver. Also, we present a detailed construction of SCPEKS
and prove that the instance achieves ciphertext indistinguishability and
unforgeability. Moreover, comparisons with other related schemes suggest
that the proposed scheme achieves flexible bidirectional access control at
the expense of a slightly higher computation and communication cost.

Keywords: Searchable encryption · Access control · Multi-user

1 Introduction

With the development of information technology, more and more digital data
has been stored in cloud servers to facilitate data sharing and flexible access.
However, since the outsourced data may contain sensitive information and the
cloud servers are not completely trusted, data security problem [22] becomes a

c© Springer Nature Switzerland AG 2021
Q. Huang and Y. Yu (Eds.): ProvSec 2021, LNCS 13059, pp. 3–18, 2021.
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problem that urgently to be resolved. As a regular way to preserve data privacy,
methods of encrypting data before uploading are used to solve the problem.

Although traditional encryption schemes (e.g., AES) can be used to ensure
the confidentiality of outsourcing data, they also limit the data utilization such
as search operations frequently performed. To solve this question, Song et al.
[20] introduced the concept of searchable encryption (SE) which allows a user to
search some keywords over ciphertexts without decryption. Later, Boneh et al.
[4] proposed the public key version of searchable encryption, called public key
encryption with keyword search (PEKS). Unlike Song’s scheme which relies on
the shared secret information, PEKS enables the data sender to create a search-
able ciphertext with public information including public parameters and public
key. This difference allows PEKS to avoid key distribution and key management
issues.

Since PEKS was presented, most existing schemes [12,18] model the data
sender as an honest entity and only enforce the data receiver access control. In
practice, however, the data sender may be malicious and send illegal data for spe-
cific reasons such as internal random error or commercial interests. For example,
considering denial of service (DoS) attack in normal encryption, in the absence
of sender permission control, a data sender who knows other users’ public keys
can easily launch the cryptographic version of DoS attack against those users.
What’s worse, attacks from malicious data senders might cause more serious
problems in PEKS than normal encryption. In a PEKS system, the cloud server
will transmit the encrypted data to the data receiver if the ciphertext matches
the trapdoor. Therefore the DoS attack not only consumes the computing power
of the data receiver, but also consumes bandwidth of communication between
the cloud server and the data receiver.

Although there has been some encryption schemes [1,2,5,6] on access con-
trol for both the data sender and the data receiver, the research on PEKS with
bidirectional access control is almost blank. Therefore, our investigation started
from one questions: how to implement a PEKS scheme which supports bidirec-
tional access control, namely fine-grained access control to both the data sender
and the data receiver.

1.1 Contribution

Fortunately, we present a positive answer to the above question by designing a
new PEKS scheme with fine-grained sender permission control (SCPEKS). The
main contributions of this paper are outlined as follows:

– Sender permission control is introduced into PEKS for the first time. Con-
sidering threats from the malicious data sender, we introduce the concept
of sender permission control into PEKS and propose a new variant PEKS
scheme (SCPEKS) that achieves bidirectional access control.

– A concrete construction of SCPEKS is proposed in this paper. By using the
linear secret-sharing scheme and public key tree, we propose an construction
of SCPEKS. The instance achieves hierarchical access control on the data
receiver and attribute-based access control on the data sender.
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– Detailed security and efficiency analysis of SCPEKS is conducted. We for-
mally prove that our construction satisfies ciphertext indistinguishability and
unforgeability. And the functional comparison with other related schemes
presents the flexibility of SCPEKS. Moreover, the functionality and perfor-
mance comparisons with other related schemes presents the flexibility and
practicality of SCPEKS.

1.2 Organization

The rest of the paper is organized as follows. We introduce the related work in the
following section. In Sect. 3, we describe some preliminaries. Then, system model,
formal definition and security model are introduced in Sect. 4. In Sect. 5, we give
the concrete construction of SCPEKS. In Sect. 6, we give the security proof of our
scheme and analysis its performance from functionality and efficiency. Finally,
we conclude the paper in Sect. 7.

2 Related Work

Although the original searchable encryption schemes [4,20] solve the problem of
data retrieval on encrypted data, the requirement of data sharing on the cloud
storage requires that the PEKS schemes can be applied in multi-user environ-
ment. To satisfy the requirement, Yang et al. [24] and Huang et al. [10] proposed
multi-user searchable encryption which enables multiple receivers to search over
ciphertexts sent to a group. Compared to the original schemes, PEKS in multi-
user setting achieves a great improvement in data sharing. However, since data
stored in the cloud is often shared among users with different permissions, PEKS
in multi-user setting requires fine-grained access control.

To support fine-grained access control, Li et al. [12] proposed hierarchical
public key encryption with keyword search (HPEKS). In HPEKS, the public key
of users form a public key tree from high to low which allows the user with higher
access permission to search over ciphertexts sent to users with lower permission.
Meanwhile, attribute-based encryption (ABE) [3,7,19], as an efficient approach
to deploy fine-grained access control on computer system, has been considered
to be combined with searchable encryption. Sun et al. [21] and Zheng et al. [26]
proposed attribute-based searchable encryption (ABSE), respectively. And then,
a series of works on key-policy ABSE [18,25] and ciphertext-policy ABSE [8,23]
have been proposed. Also, some variants of ABSE have been proposed in [14–16].

However, the above works only implement access control for the data receiver,
none of them take into account the threat of malicious data sender. Recently,
Huang et al. [11] proposed public key authenticated encryption with keyword
search (PAEKS) to resist keyword guessing attack from insider adversary. In
their scheme, generating a ciphertext requires the secret key of the data sender,
and thus the malicious data senders cannot send useless ciphertexts to the data
receiver. Subsequently, He et al. [9] proposed certificateless PAEKS which elim-
inated the influence of key management problem. And then, Li et al. [13] intro-
duced PAEKS into identity based encryption setting. Although PAEKS realizes
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access control to the data sender, data can only be transmitted from one sender
to a single receiver, which limits data sharing in cloud storage.

3 Preliminaries

In this section, the notations and building blocks used in the SCPEKS are
described in detail.

3.1 Notations

Let A,B be two strings and A ‖ B denote the concatenation of A and B. For
n ∈ N, we define [n] = 1, 2, . . . , n. Then, we denote the attributes of data sender
as attsnd, the policy of data receiver to data sender as R, the attributes set
of data sender as σ and the number of different attributes as l in this paper.
Moreover, if R(σ) = 1, which denotes that attributes σ satisfies the policy R.
Otherwise, R(σ) �= 1 means that attributes σ does not satisfy the policy R.

3.2 Bilinear Maps

Let G and GT be two cyclic groups of same prime order p and g be a generator
of G. A bilinear map e : G × G → GT has the following properties:

– Bilinearity. For any P,Q ∈ G and a, b ∈ Z
∗
p, the equation e(ga, gb) =

e(g, g)ab holds.
– Non-degeneracy. For any generator g ∈ G, e(g, g) ∈ GT is a generator of

GT .
– Computability. For any P,Q ∈ G, there is an effective polynomial time

algorithm to compute e(P,Q) ∈ GT .

3.3 Hardness Assumption

We prove the security of our construction based on Computational Bilinear
Diffie-Hellman (Computational BDH) assumption and Decisional Bilinear Diffie-
Hellman (Decisional BDH) assumption.

Definition 1 (Computational BDH Assumption). Let e : G×G → GT be
a bilinear map. A Computational BDH assumption is that, for any probabilistic
polynomial time adversary, given (ga, gb, gc) ∈ G, the probability for adversary
to compute e(g, g)abc is negligible.

Definition 2 (Decisional BDH Assumption). Let e : G × G → GT

be a bilinear map and g, h be two different generators of G. A Decisional
BDH assumption is that, for any probabilistic polynomial time adversary, given
g, ga, gb, h, hb, hc ∈ G, the probability for the adversary to distinguish e(g, h)abc

from a random element e(g, h)r ∈ GT is negligible.
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3.4 Linear Secret-Sharing Schemes

Definition 3 (Linear Secret-Sharing Schemes). Let p be a prime and S be
the universe of attributes. A secret-sharing scheme Π with domain of secrets Zp

realizing access structure on S is linear over Zp if

1. The share of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure R on S, there exists a share-generating matrix M ∈

Z
l×n
p , and a function ρ that labels the rows of M with attributes from S. i.e.

ρ : [l] → S, which satisfies the following: During the generation of shares, we
set the column vector −→x = (s, r2, . . . , rn)�, where r2, . . . , rn → Zp. Then the
vector of l shares of the secret s according to Π is equal to M−→x ∈ Z

l×1
p . The

share (M−→x )j “belongs” to attribute ρ(j), where j ∈ [l].

The pair (M, ρ) will be referred as the policy of the access structure R in the
following sections.

3.5 Public Key Tree (PKTree)

In order to achieve hierarchical access control to the data receiver in PEKS
scheme, we take PKTree [12] as the basic build block of SCPEKS. The PKTree
(Fig. 1) enables the data receiver with high access permission to search over
ciphertext sent to data receivers with lower permission. We recall the details of
PKTree below:

– Setup(1λ): Input security parameter λ, the algorithm first selects a bilin-
ear pairing e : G1 × G2 → GT , where the generators of G1, G2 are g, h,
and (G1,G2,GT ) have the same prime order p. Then, it randomly chooses
k ∈ Zp and selects cryptographic hash functions: H∗ : {0, 1}∗ → G2,H1 :
{0, 1}∗ → G2,H2 : {0, 1}∗ → Zp. Finally, it sets public parameter as
PP = {G1,G2,GT , p, g, h, e,MPK,H∗,H1,H2}, where the master secret key
MSK = k and the master public key MPK = gk. We assume that PP will
be the input of following algorithm implicitly.

– BuildTree(msk, IDRt, τ): Input the master secret key msk, the identity
IDRt of root node and a time stamp τ , the algorithm generates the pub-
lic/secret keys of the root node Rt as follows:

• Randomly choose ς ∈ Zp and generate Rt’s public parameter PubRt =
(pkRt = g

H2(skRt)
1 , IDRt = (IDRt, ς)), where skRt = H1(IDRt)

msk
.

• Generate a signature σ0,Rt = Sigmsk(PubRt) = (H∗(PubRt||ς)msk
, ς).

• Set NodeRt = (PubRt, σRt) as root of PKTree and upload Tree =
(NodeRt, P0) to the cloud, where P0 indicating the position of the node.

– AddNode(Tree, ski, IDj , τj): Input the tree Tree, the secret key ski of
Nodei, the identity IDj of Nodej and j-th time stamp τj . The algorithm
sets Nodej as the child node of Nodei and computes the public/secret keys
of Nodej as follows:

• Randomly choose ςj ∈ Zp and generate public parameter Pubj = (pkj =

g
H2(skj)
1 , IDj = (IDj , ςj)), where skj = H1(IDj)

H2(ski).



8 Z. Wang et al.

• Sign IDj with ski and get signature σi,j = Sigski
(Pubj) =

(H∗(Pubj ||ςj)H2(ski), ςj).
• Set child node as Nodej = H∗(Pubj , σi,j)

Fig. 1. Structure of PKTree

4 Definition of SCPEKS

In this section, we present the related definitions of SCPEKS, including the
system model, formal definition and security requirements.

4.1 System Model

The system model of SCPEKS is shown in Fig. 2. It includes four types of entities:
trust authority, data sender, data receiver and cloud server.

Encr
ypte

d Da
ta

Cloud Server

Data Sender Data Receiver

Encrypted Data
Trapdoor

Sender Keys

Trust Authority

Ciph
erte

xt

Rece
iver

 Key
s

Public Channel

Secure Channel

Fig. 2. System model of SCPEKS
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– Trust authority is responsible for system initialization, the key genera-
tion of both data sender and data receiver in the system. After receiving
the attributes from the data sender, the trust authority will generate and dis-
tribute secret keys corresponding to the attributes to the data sender through
secure channel. In addition, the trust authority will generate the root node
of PKTree and distribute to the data receiver through secure channel. We
assume that the trust authority are honest all the time.

– Data sender may be honest or malicious. The secret key of data sender is
corresponding to some attributes and can be verified by the data receiver. In
the system, the data sender first encrypts keywords to generate the searchable
ciphertexts by using its secret key and the public key of the data receiver.
Then, it uploads the searchable ciphertexts to the cloud server along with
encrypted data.

– Data receiver may be honest or malicious. It first generates a legal trapdoor
containing an access control policy for the data sender using its secret key,
and then transmits the trapdoor to the cloud server for keyword search.

– Cloud server is honest but curious. After receiving the trapdoor from the
data receiver, it verifies whether the attributes of data sender satisfy the
access control policy specified by data receiver and tests whether the cipher-
text matches the trapdoor. If both conditions are met, it returns the encrypted
data corresponding to the matching searchable ciphertext to the data receiver.

4.2 Definition of Algorithm

A SCPEKS scheme consists of five algorithms:

– Setup (1λ): The Setup algorithm is run by the trust authority. It takes the
security parameter 1λ as input, and then outputs the master public key mpk
and master secret key msk. We assume that the master public key will be
used as implicit input in all subsequent algorithms.

– SkGen (σ,msk): The SkGen algorithm is run by the trust authority. It takes
the attributes σ of the data sender as input, and then outputs the data
sender’s secrete key ssk corresponding to the attributes.

– RkGen (sk, ID, τ, T ree): The RkGen algorithm is run by the trust authority
or a Nodei belonging to the PKTree. It takes secret key sk belongs to the
Nodei or the trust authority, identity ID of the data receiver or the root
node, a timestamp τ and PKTree Tree as input, and then generates a pair
of public and secret key (rsk, rpk) to the data receiver or the root node.

– Encryption (w, σ, ssk, rpk): The encryption algorithm is run by the data
sender. It takes a keyword w, attributes σ, sender’s secret key ssk and
receiver’s public key rpk as input, and then outputs the ciphertext Ct of w.

– Trapdoor (w,R, rsk): The trapdoor algorithm is run by the data receiver. It
takes a keyword w, policy R and receiver’s secret key rsk as input, and then
outputs the trapdoor T = (R, Tw).
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– Test (Ct, T ): The test algorithm is run by the cloud server. Takes the input
of ciphertext Ct, and the trapdoor T from receiver. It outputs 1 indicating
that Ct contains the same keyword with Tw and satisfies policy R at the same
time. If not, it outputs 0.

4.3 Security Model

A secure SCPEKS needs to satisfy both ciphertext indistinguishability and
unforgeability. We give the formal definitions in follows:

Definition 4. (Ciphertext indistinguishability) A SCPEKS satisfies ciphertext
indistinguishability, if there is no polynomial bounded adversary A has non-
negligible advantage against the challenger C in the following game:

Ciphertext Indistinguishability Game. The ciphertext indistinguishability
game played between the challenger C and an adversary A is described as follows:

– Setup. Takes input of security parameter 1λ, the challenger C generates the
master public key mpk and the master secret key msk. C transmits mpk to
A and keeps msk secretly.

– Query Phase 1. After receiving public parameters, the adversary A makes
queries as follows:

• SkGen Oracle OS : Given sender’s attributes σ, the oracle computes and
returns the corresponding secret key ssk to A.

• RkGen Oracle OR: Given secret key sk, identity ID, a timestamp τ
and PKTree Tree, the oracle computes and returns corresponding secret
key rsk and public key rpk to A.

• Trapdoor Oracle OT : Given a keyword w, the access control policy R

and receiver’s public key rpk, the oracle computes and returns trapdoor
T corresponding to rpk, w and R to A.

• Encryption Oracle OE : Given keyword w, sender’s secret key ssk and
receiver’s public key rpk, the oracle computes and returns corresponding
ciphertexts.

– Challenge. Once A decides that Query Phase 1 is over, it chooses sender’s
attributes σ∗, receiver’s public key rpk∗ and keywords w∗

0 , w
∗
1 ∈ W which has

not appeared in previous query phase and transmits them to C. Then, C ran-
domly chooses b ∈ {0, 1}, computes Ct∗ = Encryption(w∗

b , σ∗, sskσ∗ , rpk∗)
and returns it to A.

– Query Phase 2. The adversary A makes queries to challenger C again. The
only constraint is that the queries to OT can not be (w∗

0 , rpk∗) or (w∗
1 , rpk∗).

– Guess. Finally, the adversary A outputs a guess bit b
′ ∈ {0, 1} and wins the

game if b = b
′
.

We define the advantage of adversary A winning the ciphertext indistinguisha-
bility game as: Adv(A) =

∣
∣Pr

[

GInd
SCPEKS,A = 1

] − 1
2

∣
∣.

Definition 5. (Unforgeability) A SCPEKS scheme satisfies unforgeability, if
there is no polynomial bounded adversary A has non-negligible advantage against
the challenger C in the following game:
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Unforgeability Game. The unforgeability game played between the challenger
C and an adversary A is described as follows:

– Setup. Takes input of security parameter 1λ, the challenger C generates mas-
ter public key mpk and master secret key msk. C transmits mpk to A and
keeps msk by itself.

– Query Phase. After receiving the public parameters, the adversary A makes
queries as follows:

• SkGen Oracle OS : Given attributes σ, the oracle computes and returns
the secret key sskσ of the data sender. The challenger C maintains a list
LS to record all queries about the attributes σ, where the list is empty
at the beginning.

• RkGen Oracle OR: Given secret key sk, identity ID, a timestamp τ
and PKTree Tree, the oracle computes and returns corresponding secret
key rsk and public key rpk to A.

• Encryption Oracle OE : Given keyword w, sender’s secret key ssk and
receiver’s public key rpk, the oracle computes and returns corresponding
ciphertexts. The challenger C maintains a list LE to record all queried
ciphertexts Ct, where the list is empty at the beginning.

• Trapdoor Oracle OT : Given keyword w, policy R and receiver’s public
key rpk, the oracle computes and returns trapdoor T corresponding to
rpk, w and R to A.

– Guess. After determining that Query Phase is over, A sends the ciphertext
Ct∗ and the policy R

∗ to C. If Verify (Ct∗,R∗) = 1, and (Ct∗,R∗) satisfies
the following requirements: 1. ∀σ ∈ LS ,R∗(σ) �= 1. 2. ∀Ct ∈ LE , Verify
(Ct,R∗) �= 1. Then, the game outputs 1, else outputs 0.

We define the advantage of adversary A winning the unforgeability game as:
Adv(A) = Pr

[

GUnf
SCPEKS,A(λ) = 1

]

.

5 Construction of SCPEKS

In this section, we propose a concrete construction of SCPEKS which supports
hierarchical receiver access control and attribute-based sender access control.

Setup (1λ): Takes input of security parameter 1λ, the setup algorithm generates
two cyclic groups G and GT of prime order p > 2λ with two different generators
g, h ← G and a bilinear map e : G × G → GT . Then, it selects multiple crypto-
graphic hash functions, including H1 : attsnd → G, H2 : G → Z

∗
p, H3 : {0, 1}∗ →

G, H4 : {0, 1}∗ → Z
∗
p and H5 : {0, 1}∗ → G. The hash functions H1, H3 will be

modeled as random oracle in the security proof. Finally, the algorithm randomly
chooses α, β ∈ Z

∗
p, generates the master secret key msk = (gα, β) and the master

public key mpk = (G,GT , e, p, g, h, gβ , e(g, g)α,H1,H2,H3,H4,H5).

SkGen (σ,msk): Takes input of attributes of the data sender σ = (σ1, σ2, . . . , σl)
and msk, the algorithm randomly chooses s ← Z

∗
p and computes the data

sender’s secret key as ssk1,i = gαH1(σi)
s and ssk2 = gs, where i = {1, ..., l}.
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RkGen (msk/ski, IDRt/IDrcv, τ, T ree): Depending on whether the algorithm
is the first run or not, the two different running processes of the algorithm are
described as follows:

– When the algorithm is run for the first time. Takes input of the master secret
key msk, identity IDRt of root node Rt and a timestamp τ . The algorithm
runs PKTree.BuildTree (mpk,msk, IDRt, τ) to generate the public key pkRt

and the secret key skRt for the root node.
– Otherwise, takes input of secret key ski of node i in PKTree, identity IDrcv

of the data receiver, a timestamp τ and PKTree Tree. The algorithm runs
PKTree.AddNode (mpk, Tree, ski, IDrcv, τ) to generates the secret key rsk
for IDrcv and sets IDrcv as its child note. The public key of IDrcv is compute
as rpk = gH2(rsk).

Encryption (w, σ, ssk, rpk): Takes input of a keyword w, attributes σ, the data
sender’s secret key ssk and the data receiver’s public key rpk, the algorithm
randomly chooses r1, r2, r3 ← Z

∗
p and computes the corresponding ciphertext as

follows:

– Computes C1 = e(rpkr1·H4(w),H3(IDrcv)), C2 = gr1 , C3 = hr1 .
– Computes C4 = ssk2 · gr2 , C5 = gr3 .
– For each i ∈ [1, l], computes C6,i = ssk1,i ·H1(σi)

r2 ·H5(C1−5)r3 , where C1−5

denotes C1 ‖ C2 ‖ C3 ‖ C4 ‖ C5.

Finally, the encryption algorithm outputs the ciphertext: Ct = (σ,C1, C2, C3, C4,
C5, C6,i).

Trapdoor (w,R, rsk): Takes input of a keyword w to be search, the policy R

specified by receiver and the receiver’s secret key rsk, the algorithm randomly
chooses t1 ← Zp and computes T1 = ht1 · H3(IDrcv)H2(rsk)H4(w) and T2 = gt1 .
Then, the algorithm outputs a trapdoor T = (R, Tw = (T1, T2)) of keyword w.

Test (Ct, T ): Takes input of a ciphertext Ct and the trapdoor T = (R, T1, T2).
The algorithm parses the policy R in T as (M,ρ) format: M ∈ Z

l×n
p and ρ :

[l] → Z
∗
p. Then it randomly chooses −→x = (1, x2, . . . , xn) ← Z

n×1
p and computes−→

λ = (λ1, λ2, . . . , λl)� = M−→x . Subsequently, it computes {wi ∈ Zp}i∈I by
equation

∑

i∈Iwi
−→
M i = (1, 0, . . . , 0), I = {i : ρ(i) ∈ S}. Finally, the algorithm

checks whether the following equation holds.

C1 · e(T2, C3) ·
∏

i∈I

(
e(C6,i, g)

e(H1(σi), C4) · e(H5(C1−5), C5)

)λiwi

= e(g, g)α · e(C2, T1)

If the above equation holds which means the ciphertext matches the trapdoor
and the attribute set of data sender satisfies the access control policy of data
receiver, and the algorithm outputs 1. Otherwise, outputs 0.
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6 Security Proof and Experimental Evaluation

In this section, we prove the security of our construction under decisional BDH
assumption and computational BDH assumption. And then, we compare our
construction with other related schemes in terms of functionality and efficiency.

6.1 Security Proof

Theorem 1. If there exists a probabilistic polynomial time adversary A winning
the ciphertext indistinguishability game in non-negligible advantage ε, then we
can construct a probabilistic polynomial time adversary B that solves Decisional
BDH assumption in non-negligible advantage ε.

Proof. In the beginning, B is given a Decisional BDH instance (G,GT , e, g,
ga, gb, h, hb, hc, R) to distinguish whether R is equal to e(g, h)abc or a random
element from GT . And then, B plays the game GInd

SCPEKS,A with adversary A as
follows:

– Setup phase: B randomly chooses α, β → Z
∗
p and selects hash functions

Hi=1,...,5. Then B sets mpk = (G,GT , e, p, g, h, gβ , e(g, g)α,H1,H2,H3,
H4,H5) and transmits it to A. Note that H3 will be programmed as a random
oracle.

– Query phase 1: B answers adversary A’s queries in the following way:
• Hash Oracle OH : Upon receiving an identity ID, it randomly chooses a

random number rj ∈ Z
∗
p and outputs H3(ID) = (hc)rj .

• SkGen Oracle OS : Upon receiving attributes σi, it runs SCPEKS.
SkGen(σ) to generate ssk to A.

• RkGen Oracle OR: Upon receiving secret key sk, identity ID, a times-
tamp τ and PKTree Tree. It returns the previous results if ID is queried
before. Otherwise, it runs SCPEKS.RkGen(sk, ID, τ, T ree) to generate
corresponding Node and secret key to A.

• Trapdoor Oracle OT : Upon input receiver’s public key rpk, a policy
R and keyword w, it randomly chooses t1 ∈ Zp and returns T =
(Tw = (T1, T2),R).

– Challenge phase: After A decides that Query Phase 1 is over, it chooses
an identity ID∗ and two keywords w∗

0 , w
∗
1 ∈ W which is not appeared in

previous query phase to B. B randomly chooses b ∈ {0, 1} and r2, r3 ← Z
∗
p.

Then, B computes Ct∗ and Node∗ as follows:

Node∗ = ((gα, (hc)rc), Sigski
(Pub∗))

C∗
1 = RrcH4(w

∗
b ), C∗

2 = gb, C∗
3 = hb

C∗
4 = ssk2 · gr2 , C∗

5 = gr3 .

C∗
6,i = ssk1,i · H1(σi)

r2 · H5(C1−5)r3

Note that rc is a random number from the response of OH to ID∗ in query
phase.
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– Query phase 2: A issues queries to B as in Query phase 1, the only constraint
is that A can not query (ID∗, w∗

0) or (ID∗, w∗
1) to the trapdoor oracle OT .

– Guess phase: Finally, the adversary A outputs a guess bit b
′ ∈ (0, 1) and

wins the game if b = b
′
.

When A win the ciphertext indistinguishability game, the adversary B returns
R = e(g, h)abc to the Decisional BDH challenger. Otherwise, B returns R is a
randomly chosen element in GT .

As shown in the construction, the responses of B are identical to that of
the real scheme and there is no abort in the simulation. Thus, B can solve the
decisional BDH assumption in a non-negligible advantage ε, since A can win the
ciphertext indistinguishability game in non-negligible advantage ε.

Theorem 2. If there exists a probabilistic polynomial time adversary A who can
win the unforgeability game in non-negligible advantage ε, then we could con-
struct probabilistic polynomial time adversary B who solves the Computational
BDH assumption in non-negligible probability ε.

Proof. In the beginning, B is given a Computational BDH challenge (G,GT , e, g,
ga, gb, gc) to compute e(g, g)abc. And then, B plays the game GUnf

SCPEKS,A with
adversary A as follows:

– Setup phase: B initializes the game by setting mpk = (G,GT , e, p, gb, h, gβ ,
e(ga, gb),H1,H2,H3,H4,H5). Then, B transmits mpk to A. Note that H1 is
program as a random oracle in the proof. The master secret key gα is set as
g

a
b implicitly in the proof, since e(ga, gb) = e(gb, gb)

a
b .

– Query phase: B answers adversary A’s queries in the following way:
• Hash Oracle OH : Upon input attribute σi, if σi is queried before, it returns

value from LH . Else, it computes return value as follows: For R(σi) = 1,
it choose r = 0, r′ ∈ Zp. For R(σi) �= 1, it choose r, r′ ∈ Zp. Finally, it
returns (gb)rgr′

to A and record {σi, r, r
′} in list LH .

• SkGen Oracle OS : Upon input attributes σi, it randomly choose s ∈ Zp

and compute ssk1i = gbα · H(σi)s = ga · H(σi)s ssk2 = gbs.
• RkGen Oracle OR: Same as in the ciphertext indistinguishability game.
• Trapdoor Oracle OT : Same as in the ciphertext indistinguishability game.

– Guess phase: If A decides that Query Phase is over, it outputs the cipher-
text Ct∗ and one receiver’s policy R

∗ = (M,ρ). After receiving the ciphertext
Ct∗, B picks −→x = (c, x1, . . . , xn)� ← Z

n×1
p and computes

−→
λ = (λ1, λ2, . . . ,

λl)� = M−→x . Then it computes {wi ∈ Zp}i∈I by the equation
∑

i∈Iwi
−→
M i =

(1, 0, . . . , 0), I = {i : ρ(i) ∈ S}. Finally, C computes the following equation.

∏

i∈I

(
e(C6,i, g)

e(H1(σi), C4) · e(H5(C1−5), C5)

)λiwi

= e(g, g)abc

As shown in the construction, the responses of B are identical to that of
the real scheme and there is no abort in simulation. Thus, B can solves the
computational BDH assumption in a non-negligible advantage ε, since A can
win the unforgeability game in non-negligible advantage ε.
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6.2 Performance Analysis

In this subsection, we analyze the functionality and efficiency of our scheme.
From the functionality, we compare features of our scheme with other related
PEKS schemes [11–13,23]. From the efficiency, since no other PEKS schemes
directly support the feature on fine-grained sender permission control, we modify
the dIBAEKS [13] to multi-attributes dIBAEKS (MA-dIBAEKS) by setting
access structure to AND gate only and representing attributes with identities.

Table 1. Features comparison with related schemes

FKS-HPABE [23] HEPKS [12] PAEKS [11] dIBAEKS [13] Ours

Receiver control
√ √ √ √ √

Sender control × × √ √ √

Fine-grained control
√ √ × × √

Table 1 presents the feature comparisons among FKS-HPABE [23], HEPKS
[12], PAEKS [11], dIBAEKS [13] and ours. From the comparison, we can see that
[12,23] implement fine-grained access control to receiver, but do not support
access control to sender. [11,13] and ours implement access control on both
sender and receiver side. However, [11,13] only allow one to one data flow and
do not support fine-grained access control in the multi-user scenario. Compared
with other relevant schemes, our construction not only supports bidirectional
access control, but also supports fine-grained access control in the multi-user
scenario, which makes it more flexible to be use.

Table 2. Computation cost comparison with MA-dIBAEKS

MA-dIBAEKS Ours

SkGen (E + H) × l (l + 1)E + lH

RkGen E + H E

Encryption (3E + H + 2P ) × l (l + 6)E + (l + 3)H + P

Trapdoor (2E + H + P + M) × l 3E + 3H

Test (2E + 2P + M) × l (i + 1)H + (2i + 3)P

Let E denotes the evaluation of exponentiation on G, H denotes the evalu-
ation of hash function and P denotes the evaluation of bilinear pairing. Com-
monly, l denotes the number of attributes and i denotes the size of set I in both
Table 2 and Table 3. Table 2 presents the computation cost of SCPEKS. Since
MA-dIBAEKS doesn’t support fine-grained access control directly, it needs to
generate multiple ciphertexts and trapdoors. The comparison demonstrates that
our construction achieves fine-grained access control while maintaining similar
or even lower computation costs.
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Table 3. Communication cost comparison with MA-dIBAEKS

MA-dIBAEKS Ours

Sender’s key |G| × l (l + 1)|G| + |σ|
Receiver’s key 2|G| 2|G|
Ciphertext (2|G| + |GT |) × l |GT | + (l + 4)|G| + |σ|
Trapdoor 2|G| × l 2|G| + |R|

We denote the size of element in G,GT and sender’s attributes set as |G|, |GT |
and |σ| respectively. Table 3 presents the communication costs of SCPEKS. From
the table, our construction achieves more flexible access control while maintain-
ing similar or even lower communication costs.

(a) Runtime of SCPEKS (l = 5) (b) Runtime of SCPEKS (k = 1)

(c) Storage of SCPEKS (l = 5) (d) Storage of SCPEKS (k = 1)

Fig. 3. Performance of SCPEKS in practice

For experimental analysis, we conduct the simulation of our scheme on PC
with 3.8 GHz Intel(R) Core(TM) i5-1135G7 CPU and 16 GB memory. The
implementation is based on PBC library [17] with Type A curve (q-bits =
512). We denote the number of attributes and keywords as l and k respectively.
The experimental result is present in Fig. 3. Figure 3a and Fig. 3c presents the
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computation and communication costs that vary with the number of keywords
when attribute number is fixed to five. Relatively, Fig. 3b and Fig. 3d presents the
computation and communication cost that vary with the number of attributes
when keyword number is fixed to one.

7 Conclusion

To address the threats from malicious data senders, in this paper, we present
a new PEKS which supports fine-grained access control to data sender. In our
construction, an encrypted data can be successfully returned if and only if when
data receiver’s identities belong to the authentication set and the attribute set
of data sender’s attributes satisfies the policy specified by data receiver. The
security analysis shows that our construction achieves the target security fea-
tures. Moreover, performance analysis suggests that our construction is efficient
in practice.
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Abstract. The motivation of public-key authenticated encryption with
keyword search (PAEKS) was to resist against inside keyword guessing
attacks. Its security model captures both cipher-keyword indistinguisha-
bility (CI-security) and trapdoor indistinguishability (TI-security).
Recently, this security model was extended from one-user settings to
multi-user settings, or from one cipher-keyword indistinguishability to
multiple cipher-keyword indistinguishability, making it more practical.
However, none of previous CI-security model for PAEKS scheme cap-
tures fully chosen keyword to cipher-keyword (CKC) attacks, in which
an attacker may obtain cipher-keywords of any keyword (even a challenge
keyword) of his choice. Due to this, the paper introduces an improved CI-
security model for PAEKS to capture fully CKC attacks in a multi-user
setting, and proves that CI-security against fully CKC attacks implies
multiple cipher-keyword indistinguishability. Then, the paper proves that
some previous PAEKS schemes cannot achieve CI-security under fully
CKC attacks. Next, the paper proposes a new PAEKS scheme and proves
its CI-security in the improved security model. Finally, the paper demon-
strates its comparable security guarantees and computational efficiency
by comparing it with previous PAEKS schemes.

Keywords: Searchable encryption · Keyword guessing attacks ·
Security model

1 Introduction

With the rapid development of cloud computing technology, more and more
organizations and individual have moved their data to cloud server for saving
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local storage and increasing the convenience of data usage. Due to various rea-
sons, however, cloud data may be compromised and leaked to outsiders [24]. As
users’ data contains many sensitive information, e.g., identity number, biomet-
ric information and electronic medical records, information leakage has become
the major obstacle to the popularity of cloud computing. To alleviate the harm
caused by data leakage, the data must be encrypted before sending into the cloud
storage server.

In the last decades, many prominent cryptographic primitives have been pro-
posed for achieving secure and efficient cloud data usage, such as attribute-based
encryption [12], proxy re-encryption [2] and searchable encryption [4,26]. Among
these primitives, searchable encryption is a promising one, that allows a remote
server to search in the encrypted data on behalf of a client without the knowledge
of plaintext data. There are two types of searchable encryption: Symmetric-key
Searchable Encryption (SSE) and Public-key Encryption with Keyword Search
(PEKS). SSE was firstly proposed by Song, Wagner and Perrig [26] in 2000. It
has received extensive attention and research in recent years [10,22,25,30,31].
In SSE, both the keyword ciphertext and trapdoor are computed with the same
(secret) key, so it is primarily used for application scenarios of personal cloud
data storage. In multi-user setting, PEKS [4] is a good candidate as it allows any
user to encrypt keywords for searching by designated searching key holders. How-
ever, PEKS schemes are inherently suffer from keyword guessing attacks (KGA),
as the consistency of PEKS schemes holds [15]. That is, the adversary can gener-
ate a ciphertext of a guessing keyword and then test whether it matches with a
search trapdoor. If the number of possible keywords is bounded by polynomial,
the adversary can find the keyword hidden in the search trapdoor. Indeed, many
PEKS schemes are shown to be insecure against KGAs [5,15,17,20,28,29].

To date, there are many variant of PEKS schemes claimed to be secure
against KGAs, such as [3,6,7,9,11,13,14,16,18,19,23,27]. However, most of
them are later proven to be insecure and only a handful of constructions can resist
against inside keyword guessing attacks. The primitive of Public-key Authen-
ticated Encryption with Keyword Search (PAEKS) was recently proposed by
Huang and Li [14] to capture inside keyword guessing attacks. Its security model
guarantees two security goals: cipher-keyword indistinguishability (CI-security)
and trapdoor indistinguishability (TI-security). Recently, some works found that
this security model is not complete, as two important scenarios are not consid-
ered: one is the multi-user setting and the other is the multi-cipher-keyword
setting. Indeed, Noroozi et al. [18] showed that the PAEKS scheme in [14] is
not secure in the multi-user setting, and Qin et al. [23] showed that it is not
secure in the multi-cipher-keyword setting. Recently, Pan et al. [21] proposed
a security model for both multi-cipher-keyword indistinguishability and multi-
trapdoor indistinguishability in one-user settings. But, their PAEKS scheme has
a serious security flaw [8]. Though these works devoted to making the security
model of PAEKS being more complete, we find that none of their CI-security
models resists against fully chosen keyword attacks, in which an attacker is
allowed to query cipher-keywords of any keyword of his choice. In fact, in previ-
ous CI-security models, the attacker is forbidden to issue a cipher-keyword query
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for any challenge keyword. This may limit the application of PAEKS schemes in
a scenario where multiple files with some common keywords were encrypted.

To solve about issue, this paper proposes an improved CI-security model for
a PAEKS scheme. Specifically, the contributions of this paper are as follows:

– We propose an improved CI-security model for PAKES in multi-user set-
tings. The improved security model achieves cipher-keyword indistinguisha-
bility against fully chosen keyword to cipher-keyword attacks (shorted as fully
CI-security). In a fully CI-security model, an attacker is allowed to request
cipher-keyword of any keyword of his choice. We show that fully CI-security
implies multiple cipher-keyword indistinguishability.

– We find that all previous CI-security models for PAEKS schemes never con-
sidered fully chosen keyword to cipher-keyword attacks. Specifically, some
PAEKS schemes are proven to be insecure in the fully-CI security model,
and given a tuple of cipher-keywords, there exists an efficient algorithm to
determine whether two cipher-keywords encrypt the same keyword.

– We give a new construction of PAEKS scheme in the improved security model.
It satisfies fully CI-security under bilinear Diffie-Hellman assumption, and
TI-security under oracle Diffie-Hellman assumption. We also analyse its per-
formance and demonstrate its comparable efficiency with previous ones.

The rest of this paper is organized as follows. Section 2 reviews some crypto-
graphic tools that will be used in the paper. Section 3 gives the formal definition
of the improved CI-security model for PAEKS. Section 4 anlyzes the security of
previous PAEKS schemes in the improved CI-security model. Section 5 describes
our new PAEKS scheme and its provable security. Section 6 evaluates efficiency
with some related PAEKS schemes. Finally, Sect. 7 concludes the paper.

2 Preliminaries

2.1 Bilinear Map

Let G and GT be two groups with prime order p and e : G × G → GT be
the bilinear map between them. The bilinear map satisfies the following three
properties.

– Bilinear: for any g ∈ G and x, y ∈ Zp, we have e(gx, gy) = e(g, g)xy;
– Non-degenerate: if g is a generator of G, then e(g, g) is a generator of GT .
– Computable: given g, h ∈ G, there is an efficient algorithm to compute e(g, h).

2.2 Complexity Assumptions

In this section, we introduce some computational problems that are believed to
be hard.

BDH: Bilinear Diffie-Hellman Problem. This is the standard computa-
tional Diffie-Hellman problem over a bilinear group. Let G be a bilinear group
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with prime order p, and g be a random generator of G. The Bilinear Diffie-
Hellman (BDH) problem states that, given gx, gy, gz, where x, y and z are
chosen randomly from Zp, to compute e(g, g)xyz. The BDH problem is believed
to be hard over a prime order group. Here is the formal definition.

Definition 1 (BDH assumption). Let G be a bilinear group with prime order
p, let g be a random generator of G, and let A be any PPT adversary. The BDH
assumption states that the following advantage of A is negligible in κ

AdvBDH
A (κ) = Pr[A(gx, gy, gz) = e(g, g)xyz : x, y, z ← Zp].

ODH: Oracle Diffie-Hellman problems. We introduce a new problem,
namely Computational Oracle Diffie-Hellman (CODH) problem. It is the com-
putational version of the Decisional Oracle Diffie-Hellman (DODH) problem,
proposed by Abdalla, Bellare and Rogaway [1]. We first recall the DODH
problem.

Let G be a group with prime order g and g be a random generator of G.
Given gu, gv and an oracle Hv(·), which computes Hv(X) = H(Xv), the DODH
problem aims to distinguish H(guv) from a random k ∈ {0, 1}hLen, where H
is a cryptographic hash function with range {0, 1}hLen. The DODH problem is
believed to be hard, as long as the oracle Hv cannot be queried at gu.

Definition 2 (DODH assumption [1]). Let G be a group with prime order p,
let g be a random generator of G, let H : {0, 1}∗ → {0, 1}hLen be a cryptographic
hash function, and let A be any PPT adversary. The DODH assumption states
that the following advantage of A is negligible in κ

AdvDODH
A (κ) =

∣
∣
∣Pr[AHv(·)(gu, gv,H(guv)) = 1] − Pr[AHv(·)(gu, gv, k) = 1]

∣
∣
∣

where u, v ← Zp, k ← {0, 1}hLen, and Hv(X) = H(Xv). A is not allowed to
issue a query for Hv(gu).

In contrast to distinguish H(guv) from a random value, the CODH problem
aims to find the value H(guv) given gu and gv. In addition to the oracle Hv(X) =
H(Xv), the CODH problem also give the adversary access to the oracle Hu(X) =
H(Y u). As long as the adversary does not issue queries for neither Hu(gv) nor
Hv(gu), we believe the CODH problem is hard.

Definition 3 (CODH assumption [1]). Let G be a group with prime order p,
let g be a random generator of G, let H : {0, 1}∗ → {0, 1}hLen be a cryptographic
hash function, and let A be any PPT adversary. The CODH assumption states
that the following advantage of A is negligible in κ

AdvCODH
A (κ) = Pr[AHu(·),Hv(·)(gu, gv,H) = H(guv)]

where u, v ← Zp, Hu(X) = H(Xu) and Hv(X) = H(Xv). A is not allowed to
issue queries for Hu(gv) and Hv(gu).
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The following theorem shows that the CODH problem is harder to solve than
the DODH problem over bilinear group in the random oracle model. The proof
of the theorem can be found in the full version.

Theorem 1. Let G be a bilinear group with prime order p, let g be a random
generator of G, and let H be randomly chosen hash function. Then

AdvDODH
B (κ) ≥ AdvCODH

A (κ) − 1
2hLen

.

2.3 The Syntax of PAEKS

A public-key authenticated encryption with keyword search (PAEKS) consists of
the following six (probabilistic) polynomial-time algorithms:

– sp ← Setup(1κ): This algorithm is performed by a trusted authority so that
everyone in the system would trust the generated parameters. It takes as
input the security parameter 1κ, and outputs a global system parameter sp.

– (pkS , skS) ← SGen(sp): This algorithm is performed by a data sender. It
takes as input a system parameter sp, and outputs a pair of keys (pkS , skS).

– (pkR, skR) ← RGen(sp): This algorithm is performed by a data receiver. It
takes as input a system parameter sp, and outputs a pair of keys (pkR, skR).

– Cw ← PAEKS(skS , pkR, w): This algorithm is performed by a data sender.
It takes as input his secret key skS , a data receiver’s public key pkR and a
keyword w, and outputs a ciphertext Cw of the keyword w.

– Tw ← Trapdoor(skR, pkS , w): This algorithm is performed by a data receiver.
It takes as input his secret key skR, a data sender’s public key pkS and a
keyword w, and outputs a search trapdoor Tw of the keyword w.

– 0/1 ← Test(pkS , pkR, Tw, Cw′): This algorithm is performed by the cloud
server. It takes as input a data sender’s public key pkS , a data receiver’s
public key pkR, a trapdoor Tw of keyword w and a ciphertext Cw′ of keyword
w′, and outputs 1 if w = w′, and 0 otherwise.

3 Improved CI-Security Model of PAEKS

A semantic security model for PAEKS includes both cipher-keyword indistin-
guishability (CI-security) and trapdoor indistinguishability (TI-security). Our
TI-security model (see Definition 6) is identical to that of [14,18] in multi-user
settings. Below, we mainly discuss the difference of CI-security models between
ours and previous ones.

Suppose that (pkS , skS) and (pkR, skR) are the key pairs of the attacked data
sender and data receiver respectively. In our security models, an adversary may
has the following two abilities to attack a PAEKS scheme.

– Chosen keyword to cipher-keyword (CKC) attacks: In a CKC attack, the
adversary has the ability to obtain cipher-keyword for any keyword, e.g.,
w, of its choice under a receiver’s public key, e.g., pk, specified by the
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adversary. That is, the adversary will obtain the cipher-keyword Cw =
PAEKS(skS , pk, w). Formally, we model CKC attacks by giving the adversary
A access to a cipher-keyword oracle PAEKSskS

(·, ·), viewed as a “black box”;
the adversary can repeatedly submit any keyword w and a (data receiver’s)
public key pk of its choice to this oracle, and is given in return a cipher-
keyword Cw = PAEKS(skS , pk, w).

– Chosen keyword to trapdoor (CKT) attacks: In a CKT attack, the adver-
sary has the ability to obtain trapdoor of any keyword, e.g., w, of its choice
under a sender’s public key, e.g., pk. That is, the adversary will obtain the
trapdoor Tw = Trapdoor(skR, pk, w). Similarly, we model CKT attacks by
giving the adversary A access to a trapdoor oracle TrapdoorskR

(·, ·); the
adversary can repeatedly submit any keyword w and a (data sender’s) pub-
lic key pk of its choice to this oracle, and is given in return a trapdoor
Tw = Trapdoor(skR, pk, w).

Let w∗
0 and w∗

1 be two challenge keywords, chosen by the adversary. The
adversary’s access to the above oracles may be restricted to some trivial queries.
For example, in the CI-security model, the adversary will be given a challenge
cipher-keyword Cw∗

b
of one of the two challenge keywords. Clearly, the adversary

cannot request trapdoors of the challenge keywords. Otherwise, there is no hope
for any PAEKS scheme to satisfy the CI-security. Except the limitation of such
trivial trapdoor queries, previous CI-security models still had some other lim-
itations on the cipher-keyword oracle. Especially, the adversary is not allowed
to query cipher-keyword oracle with challenge keywords. In our improved CI-
security model (see Definition 4), we remove this limitation, and call it fully
chosen keyword to cipher-keyword attacks (fully CKC attacks).

Recently, Qin et al. [23] introduced the security notion of multiple cipher-
keyword indistinguishability (MCI) to capture the case of multiple encryptions in
PAEKS. Specifically, given two tuples of challenge keywords (w0,1, . . . , w0,n) and
(w1,1, . . . , w1,n), the MCI-security requests an adversary to distinguish encryp-
tions of one tuple keywords from the other tuple keywords. But, their MCI-
security model as well as following up work [21] also did not allow the adversary
to query cipher-keyword oracle with any challenge keywords. We will extend our
CI-security model from one encryption to multiple encryptions under the fully
CKC attacks in multi-user settings (see Definition 5). Actually, our CI-security
under fully CKC attacks implies MCI-security as shown Theorem 2.

Table 1 gives an overview of an adversary’s abilities in previous CI-security
models [9,14,18,21,23] as well as ours.

In Huang et al.’s security model, “pk = pkS ∧ w �= w∗
b” means that the

adversary can only obtain encryptions of keywords being distinct from w∗
0 and

w∗
1 under the target data receiver’s public key pkR (using the target data sender’s

secret key skS). “pk = pkR ∧w �= w∗
b” means that the adversary can only obtain

trapdoors of keywords being distinct from w∗
0 and w∗

1 under the target data
sender’s public key pkS (using the target data receiver’s secret key skR). That
is, Huang et al.’s security model only captures the single sender-receiver setting.
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Table 1. Restrictions on an adversary’s queries in CI-security model. In the table,
b ∈ {0, 1} and i ∈ {1, . . . , n}. The symbol “�” stands for any public key or keyword.

Model (M)CI-security

Cipher-keyword oracle Trapdoor oracle

Huang et al. [14] pk = pkR ∧ w �= w∗
b pk = pkS ∧ w �= w∗

b

Noroozi et al. [18] (pk, w) �= (pkR, w∗
b ) (pk, w) �= (pkS , w∗

b )

Chi et al. [9] (pk, w) �= (pkR, w∗
b ) (pk, w) �= (pkS , w∗

b )

Qin et al. [23] pk = pkR ∧ w �= w∗
b,i pk = pkS ∧ w �= w∗

b,i

Pan et al. [21] pk = pkR ∧ w �= w∗
b,i pk = pkS ∧ w �= w∗

b,i

This paper (pk, w) = (�, �) (pk, w) �= (pkS , w∗
b,i)

In Noroozi et al.’s security model, (pk,w) can be any pairs as long as
(pk,w) �= (pkR, w∗

b ) in the cipher-keyword oracle and (pk,w) �= (pkS , w∗
b ) in the

trapdoor oracle. This indicates that the adversary can not only obtain cipher-
keywords and trapdoors between the target data sender and data receiver, but
also obtain cipher-keywords generated by other data senders for the target data
receiver, and trapdoors generated by other data receivers for the target data
sender. This model captures a multi-user setting. Chi et al.’s security model
follows from Noroozi et al.’s CI-security model in multi-user settings.

In above three schemes, they did not consider multiple cipher-keyword indis-
tinguishability. The multiple cipher-keyword indistinguishability was previously
defined in [23] and [21]. But, both of them did not capture multi-user settings.
Our CI-security model not only follows Noroozi et al.’s multi-user security model,
but also captures a fully chosen keyword to cipher-keyword attacks, i.e., an adver-
sary can obtain cipher-keyword for any data receiver and any keyword of his
choice. Specifically, in addition to challenge cipher-keyword(s), the adversary can
still obtain a cipher-keyword of any challenge keyword between the target data
sender and the target data receiver via cipher-keyword oracle PAEKSskS

(·, ·).
But, this is not allowed in all other (M)CI-security models.

In next sections, we give a formal definitions of our fully CI-security model
and extend it to multiple CI-security model, which are defined through a game
played between a challenger and an adversary.

3.1 Fully (M)CI-Security Model

Fully CI-security game: Let A be an adversary and κ be the security
parameter.

– Initialization: The challenger first runs the algorithm Setup(1κ) to generate
the system parameter sp. Then, it runs SGen(sp) and RGen(sp) to generate
the target data sender’s key pairs (pkS , skS) and data receiver’s key pairs
(pkR, skR) respectively. The challenger gives the system parameter sp and
the two public keys pkS and pkR to A.
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– Phase 1: The adversary may repeatedly and adaptively ask polynomially
many queries on the cipher-keyword oracle PAEKSskS

(·, ·) and the trapdoor
oracle TrapdoorskR

(·, ·).
– Challenge: Once A finished Phase 1, it outputs two challenge keywords w∗

0

and w∗
1 with the restriction that (pkS , w∗

0) and (pkS , w∗
1) never be queried on

the trapdoor oracle by A in Phase 1. Now, the challenger flips a random coin
b ∈ {0, 1} and sends the cipher-keyword Cw∗

b
← PAEKS(skS , pkR, w∗

b ) to A.
– Phase 2: In this phase, the adversary can continue to access the oracles as in

phase 1, but cannot access the trapdoor oracle with (pkR, w∗
0) and (pkR, w∗

1).
– Guess: Eventually, A returns a bit b′ ∈ {0, 1} as his guess of b and wins the

game if b′ = b.

The advantage of A in breaking the cipher-keyword indistinguishability of
PAEKS is defined as

AdvCI
A (κ) =

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
.

Definition 4 (Fully CI-security). A PAEKS scheme satisfies cipher-keyword
indistinguishability under a fully chosen keyword to cipher-keyword attack and a
chosen keyword to trapdoor attack, if for all probabilistic polynomial-time adver-
saries A, the advantage AdvCI

A (κ) is negligible in κ.

The definition of MCI-security game is identical to that of CI-security, except
that the adversary submits two tuple of challenge keywords (w∗

0,1, w
∗
0,2, . . . , w

∗
0,n)

and (w∗
1,1, w

∗
1,2, . . . , w

∗
1,n), and the challenger randomly selects one tuple to

encrypt.

Definition 5 (Fully MCI-security). A PAEKS scheme is multiple cipher-
keywords indistinguishability under a fully chosen keyword to cipher-keyword
attack and a chosen keyword to trapdoor attack, if for all probabilistic polynomial-
time adversaries A, the advantage AdvMCI

A (κ) is negligible in κ.

Relations Between Fully CI-Security and Fully MCI-Security. Accord-
ing to the above definitions, if a PAEKS scheme is fully MCI-secure, then it is
clearly fully CI-secure as well. Importantly, the converse also holds; that is, fully
CI-security implies fully MCI-security. We state the following theorem and give
its proof below. The proof of the theorem can be found in the full version.

Theorem 2. If a PAEKS scheme Π is fully CI-secure, then it is also fully
MCI-secure.

3.2 TI-Security Model

Besides cipher-keyword indistinguishability, a PAEKS scheme should satisfy
trapdoor indistinguishability, i.e., a trapdoor of one keyword is indistinguishable
from that of another keyword, under reasonable chosen keyword attacks. Next,
we recall Noroozi et al.’s TI-security model [19], which is defined in multi-user
settings.

TI-Security Game: Let A be an adversary and κ be the security parameter.
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– Initialization: The challenger first runs the algorithm Setup(1κ) to generate
the system parameter sp. Then, it runs SGen(sp) and RGen(sp) to generate
the target data sender’s key pairs (pkS , skS) and data receiver’s key pairs
(pkR, skR) respectively. The challenger gives the system parameter sp and
the two public keys pkS and pkR to A.

– Phase 1: The adversary may repeatedly and adaptively ask polynomially
many queries on the cipher-keyword oracle PAEKSskS

(·, ·) and the trapdoor
oracle TrapdoorskR

(·, ·).
– Challenge: When A finished Phase 1, it outputs two challenge key-

words w∗
0 and w∗

1 with the restriction that PAEKSskS
(pkR, w∗

i ) and
TrapdoorskR

(pkS , w∗
i ) (i = 0, 1) have never been queried by A in Phase 1.

Now, the challenger flips a random coin b ∈ {0, 1} and sends the challenge
trapdoor Tw∗

b
← Trapdoor(skR, pkS , w∗

b ) to A.
– Phase 2: In this phase, the adversary can continue to access the oracles as

in phase 1, but cannot access the cipher-keyword oracle PAEKSskS
(pkR, w∗

i )
and the trapdoor oracle TrapdoorskR

(pkS , w∗
i ) (i = 0, 1).

– Guess: Eventually, A returns a bit b′ ∈ {0, 1} as his guess of b and wins the
game if b′ = b.

The advantage of A in breaking the trapdoor distinguishability of PAEKS is
defined as

AdvTI
A (κ) =

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
.

Definition 6 (Trapdoor indistinguishability). A PAEKS scheme satisfies
trapdoor indistinguishability (TI-security) under a chosen keyword to cipher-
keyword attack and a chosen keyword to trapdoor attack, if for all probabilistic
polynomial-time adversaries A, the advantage AdvTI

A (κ) is negligible in κ.

4 Security Analysis of Previous PAEKS Schemes

In this section, we analyze the security of previous PAEKS schemes in the fully
CI-security model. We first recall Noroozi et al.’s PAEKS scheme [18].

Noroozi et al.’s PAEKS Scheme: It consists of the following algorithms.

– Setup(1κ): Choose two cyclic group G and GT of prime order p. Also, choose
two random generators g, h ∈ G, and a bilinear pairing e : G × G → GT . In
addition, choose a secure cryptographic hash function H : {0, 1}∗ → G. The
system parameter is sp = (G,GT , p, g, h, e,H).

– SGen(sp): Choose a random element x ∈ Zp and set the data sender’s key
pair as (pkS , skS) = (hx, x).

– RGen(sp): Choose a random element y ∈ Zp and set the data receiver’s key
pair as (pkR, skR) = (hy, y).

– PAEKS(skS , pkR, w): Choose a random r ∈ Zp, and compute c1w = H(w)skS ·
gr and c2w = (pkR)r. Set Cw = (c1w, c2w) as the cipher-keyword of keyword w.
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– Trapdoor(skR, pkS , w): Compute Tw = e(H(w)skR , pkS) as the search trap-
door of keyword w.

– 0/1 ← Test(pkS , pkR, Tw, Cw′): For a cipher-keyword Cw′ = (c1w′ , c2w′) of key-

word w′ and a trapdoor Tw of keyword w, verify e(c1w′ , pkR) ?= Tw · e(g, c2w′).
Output 1 if the equation holds, and 0 otherwise.

The above PAEKS scheme is in fact identical to the Huang et al.’s PAEKS
scheme, except that some group element g in Huang et al.’s scheme are replaced
with another random group element h. Thus, if the group element h in the above
scheme is replaced by g, we immediately obtain the PAEKS scheme of [14].

Theorem 3. The PAEKS schemes of [14,18] do not satisfy cipher-keyword
indistinguishability under a fully chosen keyword to cipher-keyword attack.

Proof. We now construct an efficient algorithm A to break the fully CI-security.
It works as follows:

In Phase 1 of the fully CI-security game, A chooses an arbitrary keyword
w0, and queries it to the cipher-keyword oracle PAEKSskS

(pkR, ·) to obtain a
cipher-keyword Cw0 = (c1w0

, c2w0
) of keyword w0.

In the challenge phase, A outputs a pair of challenge keywords (w∗
0 , w

∗
1) =

(w0, w1), where w1 is another keyword chosen by A. When the challenger receives
the keywords, it chooses a random bit b ∈ {0, 1}, and gives the challenge cipher-
text Cw∗

b
= (c1w∗

b
, c2w∗

b
) to A.

In guess phase, A verifies whether the following equation holds

e(c1w0
, pkR)

e(g, c2w0
)

?=
e(c1w∗

b
, pkR)

e(g, c2w∗
b
)

. (1)

If so, it outputs b′ = 0; otherwise b′ = 1.
Next, we discuss A’s success probability in the above attack. Suppose that

the randomness used in cipher-keyword Cw0 is r, then c1w0
= H(w0)skS · gr and

c2w0
= (pkR)r. Also, suppose that the randomness is r∗ in the challenge cipher-

keyword Cw∗
b
, then c1w∗

b
= H(w∗

b )skS · gr∗
and c2w∗

b
= (pkR)r∗

. We have that

e(c1w0
, pkR)

e(g, c2w0
)

=
e(H(w0)skS · gr, hskR)

e(g, (hskR)r)
= e(H(w0), h)skS ·skR

and

e(c1w∗
b
, pkR)

e(g, c2w∗
b
)

=
e(H(w∗

b )skS · gr∗
, hskR)

e(g, (hskR)r∗)
= e(H(w∗

b ), h)skS ·skR .

Obviously, if b = 0, then w∗
b = w0 and the Eq. (1) must hold. If b = 1, then

w∗
b �= w0 and the Eq. (1) does not hold, unless the collision H(w0) = H(w1)

happens. By the collision-resistance of the hash function, A can successfully guess
the random bit b, with overwhelming probability (approximate to 1). Thus, A
breaks the fully CI-security of the NE-PAEKS scheme as well as the HL-PAEKS
scheme with non-negligible advantage (approximate to 1/2). �	
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Theorem 3 indicates that the two PAEKS schemes in [14,18] cannot resist
against fully chosen keyword to cipher-keyword attacks. However, for PAEKS
schemes [9,23], we do not know whether they are secure in the fully CI-security
model. But, their security proofs did not capture the scenario of fully chosen
keyword to cipher-keyword attacks. For Pan et al.’s PAEKS scheme [21], Cheng
and Meng [8] recently showed that it was not MCI-secure.

5 New PAEKS Scheme

In this section, we first propose a new PAEKS scheme and then prove its security.
The scheme includes the below algorithms:

– Setup(1κ): The trusted authority first chooses two cyclic group G and GT

with prime order p, a random generator g of group G and a bilinear pairing
e : G × G → GT . Then, it chooses three hash functions H1 : {0, 1}∗ → G,
H2 : G → {0, 1}log p and H3 : G → {0, 1}hLen, where hLen is the output
length of a cryptographic hash function such as SHA-1. The system parameter
is sp = (G,GT , p, g, e,H1,H2,H3).

– SGen(sp): The data sender chooses two random elements u ∈ Zp and sets the
key pair to be pkS = gu and skS = u.

– RGen(sp): The data receiver chooses two random elements x, v ∈ Zp and sets
the key pair to be pkR = (gx, gv) and skR = (x, v).

– PAEKS(skS , pkR, w): The data sender chooses a random element r ∈ Zp, and
computes A = gr, B = H2(e(hr, gx)), where h = H1(w||pks||pkR||k) and
k = H3(gvu). The cipher-keyword of w is Cw = (A,B).

– Trapdoor(skR, pkS , w): The data receiver computes the trapdoor Tw = hx,
where h = H1(w||pks||pkR||k) and k = H3(guv).

– 0/1 ← Test(pkS , pkR, Tw, Cw′): For a cipher-keyword Cw′ = (A,B) of
keyword w′ and a trapdoor Tw of keyword w, the cloud server tests
H2(e(Tw, A)) ?= B. If so, it outputs 1, and 0 otherwise.

Correctness of above scheme is easy to follow. We mainly prove its security.

Security Proof. The fully CI-security of the above scheme is stated in
Theorem 4.

Theorem 4. Under the BDH assumption, our PAEKS scheme has cipher-
keyword indistinguishability under a fully CKC attack and a CKT attack in ran-
dom oracle model. Specifically, if there is an adversary A that can break the fully
CI-security of our PAEKS scheme with advantage ε, then there is an algorithm B
solving the BDH problem with probability ε′, such that ε′ ≥ ε

e·QH2 ·(1+QT ) , where
e is the base of the natural logarithm, and QH2 and QT are the maximum hash
queries to H2 and the maximum trapdoor queries made by A.

Proof. To prove Theorem 4, we construct an algorithm B that uses A as a
subroutine. Let G be a bilinear group with prime order p and e : G × G → GT

be the bilinear map. B is given an instance (g,X = gx, Y = gy, Z = gz) ∈ G4
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of the BDH problem, and its goal is to compute T = e(g, g)xyz. B simulates the
fully CI-security game for A as follows.

Initialization. B chooses the three hash functions H1, H2 and H3 as in the
scheme and sets the system parameter as sp = (G,GT , p, g, e,H1,H2,H3). Then,
it chooses a random u ∈ Zp by itself, and sets pk∗

S = gu as the data sender’s
public key and sk∗

S = u as the corresponding secret key. Similarly, it chooses a
random v ∈ Zp and sets the data receiver’s public key to be pk∗

R = (X, gv) and
the corresponding secret key to be sk∗

R = (x, v), here x is known to B. It gives
the public keys pk∗

S and pk∗
R, as well as the system parameter sp to A.

Hash Queries. In this proof, H3 is viewed as a standard cryptographic hash
function. Given an input x, A (and B) can compute H3(x) by itself. H1 and H2

are viewed as random oracles, and work as follows.

– H1-queries: B maintains a list of tuples 〈Ii, ai, ci, hi〉, called H1-list, where
Ii = wi||pkS ||pkR||ki. When A makes a query with Ii = wi||pkS ||pkR||ki, B
responds as follows:

• It first checks whether there is a tuple indexed with index Ii in the H1-list.
If so, it returns the corresponding hi to A.

• Otherwise, it picks a random coin ci ∈ {0, 1} such that Pr[ci = 0] = 1
QH1

.
• It also chooses a random ai ∈ Zp. If ci = 0, it sets hi = Y · gai ; if ci = 1,

it sets hi = gai .
• Finally, it returns hi to A as the hash value of H1(Ii), and adds

〈Ii, ai, ci, hi〉 to the H1-list.
– H2-queries: B maintains a list of tuples 〈ti, Vi〉, called H2-list. When A makes

a query with ti ∈ GT , B first checks whether there is a tuple indexed with ti.
If so, B returns the corresponding value Vi. Otherwise, it chooses a random
Vi ∈ {0, 1}log. Finally, B returns Vi to A as the hash value of H2(ti) and adds
〈ti, Vi〉 to the H2-list.

Cipher-Keyword Queries. When A queries the cipher-keyword oracle with
(pkR = (pkR,1, pkR,2), wi) ∈ G2 × {0, 1}∗, algorithm B first computes ki =
H3(pku

R,2). Then, it makes the H1-queries with Ii = wi||pk∗
S ||pkR||ki to obtain

an hi such that H1(Ii) = hi. Next, it chooses a random r ∈ Zp, and computes
A = gr and ti = e(hi, pkR,1)r. B makes the H2-queries with ti to obtain a Vi

such that H2(ti) = Vi. Finally, B sets B = Vi and returns the cipher-keyword
Cwi

= (A,B) to A.

Trapdoor Queries. When A queries the trapdoor oracle with (pkS , wi) ∈ G ×
{0, 1}∗, B first computes ki = H3(pkv

S) and then makes the H1-queries with Ii =
wi||pkS ||pk∗

R||ki to obtain an hi such that H1(Ii) = hi, and the corresponding
tuple 〈Ii, ai, ci, hi〉. If ci = 0, B aborts the game. Otherwise, it has hi = gai

and B can compute Twi
= Xai (= H1(Ii)x). Finally, B returns the trapdoor

Twi
to A.

Challenge. When A submits two challenge keywords w∗
0 and w∗

1 , B first picks
a random coin b ∈ {0, 1}. Then, it computes k∗ = H3(guv) and makes the H1-
queries with I∗ = w∗

b ||pk∗
S ||pk∗

R||k∗ to obtain the value h∗ such that H1(I∗) =
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h∗, and the corresponding tuple 〈I∗, a∗, c∗, h∗〉. If c∗ = 1, B aborts the game.
Otherwise, c = 0 and h∗ = Y · ga∗

. B picks a random V ∗ ∈ {0, 1}log p and
returns the challenge cipher-keyword C∗ = (Z, V ∗) to A. This implicitly defines
H2(t∗) = V ∗ and t∗ = e(H1(I∗),X)z = e(gy · ga∗

, gx)z = e(g, g)xz(y+a∗).

More Queries. A can continue to issue both cipher-keyword queries and trap-
door queries, except for the restriction that A cannot request trapdoors for
(pk∗

S , w∗
0) and (pk∗

S , w∗
1).

Guess. Finally, A outputs a bit b′ as its guess that C∗ is the encryption of key-
word w∗

b′ . Meanwhile, B chooses from H2-list a random tuple 〈t, V 〉 and outputs
t/e(X,Z)a∗

as the guess of e(g, g)xyz.
At this point, we complete the description of algorithm B. Next, we discuss

B’s success probability. First, we explain why B may succeed in above game.
Let I0 = w∗

0 ||pk∗
S ||pk∗

R||k∗ and I1 = w∗
1 ||pk∗

S ||pk∗
R||k∗, where k∗ = H3(guv).

Let F be the event that A issues a query for either H2(e(H1(I0),X)z) or
H2(e(H1(I1),X)z) in the above simulated game. Next, we prove the following
lemma.

Lemma 1. If adversary A has advantage ε in breaking the fully CI-security of
our PAEKS scheme, then Pr[F ] ≥ 2ε/(e · (1 + QT )).

Proof. Let E1 and E2 be the event that B does not abort during the trap-
door queries and the challenge phase respectively. For A’s i-th trapdoor query
(pks, wi), there is a tuple 〈Ii, ai, ci, hi〉 such that Ii = wi||pkS ||pk∗

R||H3(pkv
S).

Since hi has the same distribution regardless of ci = 0 or ci = 1, ci is inde-
pendent of A’s view prior to issuing the query. Therefore, algorithm B aborts
with probability at most 1/(1 + QT ) in this query. Since A makes at most QT

trapdoor queries, we have that Pr[E1] =
(

1 − 1
1+QT

)QT ≥ 1
e .

Similarly, in the challenge phase, c∗ is independent of A’s view, prior to
issuing the challenge cipher-keyword. Therefore, Pr[E2] = Pr[c∗ = 0] = 1

1+QT
.

Since A is forbidden to query the trapdoor oracle with (pk∗
S , w∗

0) and
(pk∗

S , w∗
1), the two events E1 and E2 are independent from each other. Thus,

Pr[E1 ∧ E2] ≥ 1
e·(1+QT ) .

Let E3 be the event that A issues a query for either H2(e(H1(I∗
0 ),X)z) or

H2(e(H1(I∗
1 ),X)z) in the real fully CI-security game. Clearly, if E3 never occurs,

A has no advantage to guess b. Since, Pr[b′ = b] = Pr[b′ = b|E3] ·Pr[E3]+Pr[b′ =
b|E3] · Pr[E3], we have that

Pr[b′ = b|E3] · Pr[E3] ≤ Pr[b′ = b] ≤ Pr[E3] +
1
2

· Pr[E3]

⇒ 1
2

− 1
2

· Pr[E3] ≤ Pr[b′ = b] ≤ 1
2

+
1
2

· Pr[E3]

⇒
∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
≤ 1

2
· Pr[E3].
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So, Pr[E3] ≥ 2 · ε. Note that, if B does not abort, it simulates the real fully
CI-security game perfectly. Therefore,

Pr[F ] = Pr[F |(E1 ∧ E2)] · Pr[E1 ∧ E2] + Pr[F |E1 ∧ E2] · Pr[E1 ∧ E2]

≥ Pr[E3]Pr[E1 ∧ E2] ≥ 2ε

e(1 + QT )
.

This completes the proof of Lemma 1. �	
Note that the occurring of event F implies that the H2-list must include a

tuple 〈t, V 〉 with probability 1/2, such that t = e(H1(Ib),X)z. Since,

t = e(H1(Ib),X)z = e(H1(I∗),X)z = e(Y · ga∗
,X)z,

it follows that e(g, g)xyz = t/e(X,Z)a∗
, as required.

Finally, recall that B chooses the correct tuple 〈t, V 〉 with probability 1/QH2 .
Therefore, B can successfully break the BDH assumption with probability at
least Pr[F ]/(2 · QH2), i.e.,

ε′ ≥ Pr[F ]
2 · QH2

≥ ε

e · QH2 · (1 + QT )
.

This completes the proof of Theorem 4. �	
The TI-security of our scheme is stated in the following theorem.

Theorem 5. Under the CODH assumption, our PAEKS scheme satisfies trap-
door indistinguishability in the random oracle model. Specifically, if there is an
adversary A that can break the TI-security of our PAEKS scheme with advan-
tage ε, then there is a PPT algorithm B solving the oracle DH problem with
probability ε′, such that ε′ ≥ ε

QH1
, where QH1 is the maximum hash queries to

H1 made by A.

Proof. To prove Theorem 5, we show how to construct an algorithm B using A
as a subroutine to solve the CODH problem. Let G be a bilinear group with
prime order p and a bilinear map e : G × G → GT . B is given an instance
(g, U = gu, V = gv,H3) and two oracles Ou(X) = H3(Xu) and Ov(Y ) = H3(Y v)
of the oracle DH problem. It simulates the TI-security game for A as follows.

Initialization. B chooses the two hash functions H1 and H2 as in the scheme
and sets the system parameter as sp = (G,GT , p, g, e,H1,H2,H3). Then, it sets
pk∗

S = U as the data sender’s public key and sk∗
S = u as the corresponding

secret key (though u is known to B. It also chooses a random x ∈ Zp by itself,
and sets pk∗

R = (gx, V ) as the data receiver’s public key and sk∗
R = (x, v) as the

corresponding secret key, here x is known to B. It gives the public keys pk∗
S and

pk∗
R, as well as the system parameter sp to A.

Hash Queries. In this proof, H2 and H3 are viewed as normal cryptographic
hash functions, but H1 is viewed as a random oracle, and works as follows.
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– H1-queries: B maintains a list of tuples 〈Ii, hi〉, called H1-list, where
Ii = wi||pkS ||pkR||ki. When A makes a query with Ii = wi||pkS ||pkR||ki,
B responds by choosing a random hi ∈ G and adds 〈Ii, hi〉 to the H1-list.
B may query the H1 oracle by itself with a special form Ii, in which ki is the
special symbol “�”. It denotes the unknown solution H3(guv) of the oracle
DH problem. In this case, B still picks a random hi ∈ G and sets H(Ii) = hi.

Cipher-Keyword Queries. When A queries the cipher-keyword oracle with
(pkR = (pkR,1, pkR,2), wi) ∈ G2 × {0, 1}∗, if pkR,2 �= V , algorithm B queries
the oracle Ou(pkR,2) to obtain ki = H3(pku

R,2). Otherwise, it sets ki = �. Then,
it makes the H1-queries with Ii = wi||pk∗

S ||pkR||ki to obtain an hi such that
H1(Ii) = hi. Next, it chooses a random r ∈ Zp, and computes A = gr and
B = H2(e(hi, pkR,1)r). Finally, B returns the cipher-keyword Cwi

= (A,B)
to A.

Trapdoor Queries. When A queries the trapdoor oracle with (pkS , wi) ∈ G ×
{0, 1}∗, if pkS �= U , B queries the oracle Ov(pkS) to obtain ki = H3(pkv

S). Oth-
erwise, it sets ki = �. Then, B makes the H1-queries with Ii = wi||pkS ||pk∗

R||ki

to obtain an hi such that H1(Ii) = hi. It computes Twi
= hx

i (= H1(Ii)x) and
returns it to A.

Challenge. When A submits two challenge keywords w∗
0 and w∗

1 , B first picks a
random coin b ∈ {0, 1} and then makes the H1-queries with I∗ = w∗

b ||pk∗
S ||pk∗

R||�
to obtain the value h∗ such that H1(I∗) = h∗. It computes the challenge trapdoor
Tw∗

b
= (h∗)x and returns it to A.

More Queries. A can continue to issue both cipher-keyword queries and trap-
door queries, except for the restriction that A cannot request cipher-keyword for
(pk∗

R, w∗
0) and (pk∗

R, w∗
1), and request trapdoors for (pk∗

S , w∗
0) and (pk∗

S , w∗
1).

Guess. Finally, A outputs a bit b′ as its guess that Tw∗
b

is the trapdoor of
keyword w∗

b′ . At this point, B chooses from the H1-list (excluding those special
queries issued by B) a random tuple 〈I = w||pkS ||pkR||k, h〉 and outputs the
corresponding k as the guess of H3(guv).

This completes the description of simulated TI-security game. Next, we dis-
cuss algorithm B’s success probability in the above game.

Let I0 = w∗
0 ||pk∗

S ||pk∗
R||k∗ and I1 = w∗

1 ||pk∗
S ||pk∗

R||k∗, where k∗ = H3(guv).
Since A cannot issue queries for PAEKSsk∗

S
(pk∗

R, w∗
i ) and Trapdoorsk∗

R
(pk∗

S , w∗
i )

(i = 0, 1), prior to issuing the challenge trapdoor, the hash value H1(Ii) is
independent of A’s view. In addition, no matter I∗ = I0 or I∗ = I1, the corre-
sponding hash values have the same distribution. Thus, if A never issues a query
for neither H1(I0) nor H1(I1), it has no advantage to distinguish the challenge
trapdoor. Let E be the event that A issues a query for either H1(I0) or H1(I1).
We show that if A has non-negligible advantage ε, to distinguish the challenge
trapdoor, the event E must occur with non-negligible. Since,

Pr[b′ = b] = Pr[b′ = b|E] · Pr[E] + Pr[b′ = b|E] · Pr[E]
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we have that

Pr[b′ = b|E] · Pr[E] ≤ Pr[b′ = b] ≤ Pr[E] +
1
2

· Pr[E]

⇒ 1
2

− 1
2

· Pr[E] ≤ Pr[b′ = b] ≤ 1
2

+
1
2

· Pr[E]

⇒
∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
≤ 1

2
· Pr[E].

It follows that Pr[E] ≥ 2ε.
Recall that B chooses the challenge coin b uniformly at random. If the event

E indeed occurs, the hash query Ib = w∗
b ||pk∗

S ||pk∗
R||H3(guv) will be in the

H1-list with probability at least 1/2. By randomly choosing from the H1-list,
B can obtain the correct tuple 〈Ib, h

∗〉 with probability at least 1/QH1 . Taking
all conditions together, B finds the solution of the oracle DH instance with
probability ε′ ≥ ε

QH1
, as required in Theorem 5. �	

6 Efficiency Evaluation

In this section, we evaluate the efficiency of our PAEKS scheme and compare it
with previous PAEKS schemes HL17 [14], NE19 [18], QCH+20 [23], CQZ20 [9]
and PL21 [21].

Table 2. Security comparison

Schemes Fully CI-security TI-security Multi-user setting Assumptions

HL17 [14] ✗ � ✗ mDLIN and DBDH

NE19 [18] ✗ � � mDLIN and DBDH

QCH+20 [23] Unknown � ✗ BDH

CQZ+20 [9] Unknown � � ODH

PL21 [21] ✗ � ✗ BDHI

This paper � � � BDH and CODH

Table 2 summarizes the security guarantees of these PAEKS schemes. In the
table, “Fully CI-security” denotes the notion of cipher-keyword indistinguishabil-
ity against fully chosen keyword to cipher-keyword attacks. “mDLIN”, “DBDH”
and “BDHI” stand for modified Decision Linear (mDLIN) assumption, Deci-
sional Bilinear Diffie-Hellman (DBDH) assumption and Bilinear Diffie-Hellman
Inversion (BDHI) assumption respectively. The other symbols are consistent to
the definitions in previous sections. Table 2 shows that only our scheme achieves
the fully CI-security in the multi-user setting. Though the schemes of NE19 and
CQZ20 both are proven in multi-user setting, none of them was proven to be fully
CI-secure. The scheme of QCH+20 and PL21 revisited multiple cipher-keyword
indistinguishability for PAEKS, but they still did not allow the adversary to
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query cipher-keyword oracle with challenge keywords in their CI-security model.
In addition, their security proof is given in one-user setting rather than multi-
user setting.

Table 3. Efficiency comparison

Schemes Key generation Encryption Trapdoor Test

HL17 [14] EG 3EG + H1 EG + P + H1 2P

NE19 [18] EG 3EG + H1 EG + P + H1 2P

QCH+20 [23] EG 3EG + P + H1 2EG + H1 P

CQZ+20 [9] EG EG + 3F EG + 2F F

PL21 [21] EG 3EG + H1 3EG + P + H1 2P

This paper 2EG 3EG + P + H1 2EG + H1 P

Table 3 demonstrates the number of operations in each algorithm. Suppose
that the bilinear map used in each schemes is e : G × G → GT . Then, we use
“EG” to denote the operation of exponentiation in group G, and use “P” to
denote the pairing operation. “H1” is the special hash function that maps any
string to a group element of G, and “F” is the pseudorandom function. In the
table, we ignore some low-cost operations, such as normal hashing. In theory,
with the exception of [9], the other schemes almost have the same efficiency. For
key generation algorithm, our scheme requires two group exponentiations, while
the others requires only one. As the key generation algorithm runs only once for
each user, it has very little effect on the whole efficiency. For keyword encryption
algorithm, our scheme has almost the same operations as that of QCH+20. The
schemes of HL17, NE19 and PL21 may be slightly faster than that of ours, as
they did not need pairing operations in the keyword encryption algorithm. For
trapdoor generation algorithm, our scheme requires two exponentiations. This
is almost optimal among these PAEKS schemes. For test algorithm, ours and
QCH+20 requires only a half number of pairings compared with HL17 and NE19.
The scheme of CQZ20 is the most efficient one among these five schemes, but it
is not fully CI-secure. Ours is the only one that achieves such security.

7 Conclusion

In this paper, we revisited the security model of public-key authenticated encryp-
tion (PAEKS), and pointed out a weakness in previous model. Specifically,
the cipher-keyword indistinguishability is not fully secure, as it did not allow
adversary to query cipher-keyword of challenge keywords. We solved this issue
by defining an improved security model for cipher-keyword indistinguishability.
The improved security model captures a realistic scenario that multiple cipher-
keywords are still indistinguishable. Finally, we proposed a new construction of
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PAEKS scheme in this improved security model. The scheme still has compara-
ble efficiency with previous ones. A future work is to study whether it is possible
to construct a PAEKS scheme with both fully ciphertext indistinguishability and
fully trapdoor indistinguishability.
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Télécommunications 73(11–12), 769–776 (2018). https://doi.org/10.1007/s12243-
018-0653-4

21. Pan, X., Li, F.: Public-key authenticated encryption with keyword search achieving
both multi-ciphertext and multi-trapdoor indistinguishability. J. Syst. Archit. 115,
102075 (2021). https://doi.org/10.1016/j.sysarc.2021.102075

22. Patel, S., Persiano, G., Yeo, K.: Lower bounds for encrypted multi-maps and
searchable encryption in the leakage cell probe model. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 433–463. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 15

23. Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key authenticated encryp-
tion with keyword search revisited: security model and constructions. Inf. Sci. 516,
515–528 (2020). https://doi.org/10.1016/j.ins.2019.12.063

24. Singh, S., Jeong, Y., Park, J.H.: A survey on cloud computing security: issues,
threats, and solutions. J. Networks Comput. Appl. 75, 200–222 (2016). https://
doi.org/10.1016/j.jnca.2016.09.002

https://doi.org/10.1016/j.ins.2013.03.008
http://doi.acm.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1180405.1180418
https://doi.org/10.1109/TII.2017.2771382
https://doi.org/10.1109/TII.2017.2771382
https://doi.org/10.1016/j.ins.2017.03.038
https://doi.org/10.1016/j.ins.2017.03.038
https://doi.org/10.1016/j.comcom.2008.11.018
https://doi.org/10.1007/978-3-030-31919-9_7
https://doi.org/10.1016/j.ins.2018.12.004
https://doi.org/10.1049/iet-ifs.2018.5315
https://doi.org/10.1049/iet-ifs.2018.5315
https://doi.org/10.1007/s12652-019-01254-w
https://doi.org/10.1007/s12652-019-01254-w
https://doi.org/10.1007/s12243-018-0653-4
https://doi.org/10.1007/s12243-018-0653-4
https://doi.org/10.1016/j.sysarc.2021.102075
https://doi.org/10.1007/978-3-030-56784-2_15
https://doi.org/10.1016/j.ins.2019.12.063
https://doi.org/10.1016/j.jnca.2016.09.002
https://doi.org/10.1016/j.jnca.2016.09.002


38 B. Qin et al.

25. Soleimanian, A., Khazaei, S.: Publicly verifiable searchable symmetric encryption
based on efficient cryptographic components. Des. Codes Cryptography 87(1), 123–
147 (2019). https://doi.org/10.1007/s10623-018-0489-y

26. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55.
IEEE Computer Society (2000). https://doi.org/10.1109/SECPRI.2000.848445

27. Tang, Q., Chen, L.: Public-Key encryption with registered keyword search. In:
Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 163–178.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16441-5 11

28. Yau, W.-C., Heng, S.-H., Goi, B.-M.: Off-Line keyword guessing attacks on recent
public key encryption with keyword search schemes. In: Rong, C., Jaatun, M.G.,
Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 100–105.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69295-9 10

29. Yau, W., Phan, R.C., Heng, S., Goi, B.: Keyword guessing attacks on secure search-
able public key encryption schemes with a designated tester. Int. J. Comput. Math.
90(12), 2581–2587 (2013). https://doi.org/10.1080/00207160.2013.778985

30. Zhang, Z., Wang, J., Wang, Y., Su, Y., Chen, X.: Towards efficient verifiable for-
ward secure searchable symmetric encryption. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 304–321. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29962-0 15

31. Zuo, C., Sun, S.-F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric
encryption with forward and stronger backward privacy. In: Sako, K., Schneider,
S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 283–303. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 14

https://doi.org/10.1007/s10623-018-0489-y
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1007/978-3-642-16441-5_11
https://doi.org/10.1007/978-3-540-69295-9_10
https://doi.org/10.1080/00207160.2013.778985
https://doi.org/10.1007/978-3-030-29962-0_15
https://doi.org/10.1007/978-3-030-29962-0_14


Public Key Encryption with Fuzzy
Matching

Yuanhao Wang1, Qiong Huang1(B), Hongbo Li1, Meiyan Xiao1,
Jianye Huang2, and Guomin Yang2

1 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510642, Guangdong, China

yuanhao.wang@stu.scau.edu.cn, {qhuang,hongbo,maymayxiao}@scau.edu.cn
2 Institute of Cybersecurity and Cryptology, School of Computing and Information

Technology, University of Wollongong, Wollongong 2522, Australia
jianye.huang207@uowmail.edu.au, gyang@uow.edu.au

Abstract. The rise of cloud computing is driving the development in
various fields and becoming one of the hot topics in recent years. To
solve the problem of comparing ciphertexts between different users in
cloud storage, Public Key Encryption with Equality Test (PKEET) was
proposed. In PKEET, a tester can determine whether two ciphertexts
encrypted with different public keys contain the same message without
decrypting the ciphertexts. However, PKEET only supports exact match-
ing, which may not be practical when two messages have misspellings,
formatting differences, or differences in the data itself. Therefore, to sup-
port fuzzy matching, in this paper we propose the concept of Public Key
Encryption with Fuzzy Matching (PKEFM), which allows to determine
whether the edit distance between two encrypted messages is less than
a threshold value. PKEFM can be well applied to support fuzzy data
comparison in encrypted e-mail systems or encrypted gene testing. We
then modify the scheme to provide the decryption function, and support
(encrypted) wildcards in the matching, in order to further improve the
generality of PKEFM at the cost of a small amount of extra computation.

Keywords: Cloud computing · Public key encryption · Fuzzy
matching · Edit distance · Wildcard

1 Introduction

Cloud computing has been pushing the information field towards a more inten-
sive, large-scale and specialized direction. Being convenient and scalable, it links
today’s various technologies and resources and has become the current hot topic
in the information field. Cloud storage, as one of the core services of cloud
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computing, provides data backup, data sharing and other services for businesses
and individuals [18].

Due to the increasing significance of data, protecting the data stored in the
cloud has become an urgent need. Specifically, this includes integrity, confiden-
tiality, and etc. [23]. One way to circumvent these issues while enjoying the con-
venience of cloud services is to encrypt data before it is uploaded. Cloud servers
only store encrypted data and could not decrypted them. Only the trusted or
authorized users can decrypt and access the data.

Searchable encryption is used to search over encrypted data for the presence
of specific keywords. Symmetric Searchable Encryption (SSE) was first proposed
by Song et al. [22]. However, using the same private key for encryption and search
in SSE means that the private key has to be shared among users, in order to share
data. This way, however, is not convenient enough in a cloud environment. Thus,
Boneh et al. proposed Public Key Encryption with Keyword Search (PEKS) [3].
Anyone can share encrypted data to the intended user without the need of
negotiating a private key with him in advance.

Although PEKS can search over the ciphertexts stored in the cloud, there
are still some limitations. Keyword trapdoors in PEKS are generated using the
receiver’s private key, and they are used to search for the ciphertexts encrypted
under this user’s public key. In the encrypted database or the encrypted email
system, data of different users is encrypted by their respective public keys, which
means the search of all users’ ciphertexts cannot be accessed through a single
trapdoor. Furthermore, even if a group of users want the tester to compare their
data analytically for some reason, for instance, to check encrypted data retrieval
or de-duplication, the tester cannot compare the ciphertexts of different users to
determine whether they have the same parts in their ciphertexts.

In order to solve the problem above, Yang et al. proposed Public Key Encryp-
tion with Equality Test (PKEET) [34]. It allows the tester to determine whether
two ciphertexts encrypted with different public keys contain the same mes-
sage without decryption. Subsequently, many researchers have conducted further
research on PKEET in different research directions. For example, in terms of
authorization, Tang noted that Yang et al.’s scheme has no authorization mech-
anism, which means there is a risk that anyone can test on ciphertexts. Thus he
proposed the first PKEET scheme that supports authorization [24]. After that,
Ma et al. proposed a PKEET-FA scheme that supports multiple types of autho-
rization [16]. For functional extension, Xu et al. proposed a PKEET scheme [33]
that can be validated against test results. In terms of security enhancement,
Tang proposed a scheme [25] based on dual-server mechanism to prevent Offline
Message Recovery Attacks (OMRA), and Wu et al. proposed a scheme [32] based
on group mechanism. To address the issues of certificate management, Ma first
proposed an Identity-based Encryption with Equality Test (IBEET) scheme [15].
To support more flexible authorization, Attribute-based Encryption with Equal-
ity Test (ABEET) schemes were proposed by Zhu et al. [36] and Cui et al. [6].

However, the current PKEET schemes only support exact matching. In other
words, even if the messages contained in two users’ ciphertexts are only 1-bit
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different, the test algorithm will output that the messages contained in the two
ciphertexts are different.

The reasons for data discrepancies can be divided into two main categories.
One is subjective, for users may have spelling errors or formatting differences
when entering data. The other is objective and genetic data can serve as a good
example, where two related users may have mutations in individual loci of their
gene fragments that cannot be guaranteed to be fully consistent. Mutations in
individual loci may lead to the uncertainty of ensuring the complete consistency
of two related users’ gene fragments. In early searchable encryption schemes, if
there is any difference between the keyword in the trapdoor and the message
contained in the ciphertext, the search scheme would not be able to return the
message ciphertext. It is not convenient from a practical application perspective,
since the ciphertext returned must contain the exact keyword.

From the perspective of results, schemes that do not support fuzzy matching
have more stringent requirements for user input. But from the perspective of
convenience and utility, users would want the test algorithm to determine the
two messages as “containing similar messages” if the difference between the two
messages is small (e.g., the difference is no more than 1 character).

Fig. 1. System model of PKEFM

Therefore, it is of practical significance to design and implement a fuzzy
matching scheme for public key ciphertexts. As shown in Fig. 1, the system sets
the threshold value as v = 1. The sender encrypts the message wiht the receiver’s
public key and stores it on a cloud server. The receiver generates a trapdoor
and sends it to cloud server. Since the ciphertexts of receiver 1 and receiver 2
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have a high similarity, that is, the edit distance of the messages contained in
their ciphertexts is no more than the threshold value v, the cloud server sends
the fuzzy matching result “1” to represent the “similarity” to two receivers.
Ciphertext of Receiver 3 and Receiver 4 contain messages with an edit distance
greater than the threshold value, so that the cloud server returns “0” for “not
similar” to both receivers.

As shown in Fig. 2, the edit distance can be used for fuzzy matching of
plaintext. Our scheme calculates the edit distance of ciphertext, so as to realize
the fuzzy matching of ciphertext.

Fig. 2. Edit Distance and PKEFM

1.1 Related Work

Public Key Encryption with Equality Test. The concept of Public Key
Encryption with Equality Test (PKEET) was introduced by Yang et al. at CT-
RSA 2010 [34], which extends public-key cryptography by adding an equality
test algorithm to determine whether ciphertexts encrypted under different public
keys contain the same message. PKEET has received wide attentions since its
introduction.

Due to the lack of authorization mechanism in Yang et al.’s scheme [34],
anyone who has access to the ciphertexts can execute an equality test, which
is considered to be risky. Tang proposed an FG-PKEET scheme that supports
fine-grained authorization to address this problem [24]. In this scheme, it is not
until the trapdoor generated jointly by two users is obtained that the sever is
allowed to perform an equality test. Tang then proposed an AoN-PKEET scheme
[26] and an ADG-PKEET scheme [25] to refine the authorization mechanism,
respectively. The former requires the server to hold trapdoors obtained from two
users while the latter is an extended version of FG-PKEET scheme [24], which
resists OMRA through a dual-server mechanism, but requires additional com-
putation and communication costs due to the data interaction between the two
servers. Ma et al. proposed an PKE-DET scheme [17], which delegates equality
test to a third party. In this scheme, only the specified server can perform equal-
ity test on ciphertexts. Huang et al. proposed a PKE-AET scheme [9], which
supports two types of authorization, namely, allowing the tester to compare all
or some specific ciphertexts of a user. Ma et al. designed a PKEET-FA scheme
[16], which supports four types of authorization. Xu et al. proposed a V-PKEET
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scheme [33], which supports two different types of authorization than those in
[16] and allows users to verify the result of an equality test. Zhang et al. proposed
a PKEET scheme [35] under a specific cryptographic assumption in the stan-
dard model. Wang et al. designed a PKAE-DET scheme [30] that resists OMRA
without dual-server mechanism. Ling et al. proposed a G-PKEET scheme [14],
which resist OMRA through a group mechanism.

To simplify the certificate management of PKEET, Ma proposed the concept
of Identity-based Encryption with Equality Test (IBEET) [15], which combines
PKEET and IBE. Wu et al. proposed an IBEET scheme [31] that reduces the
time-consuming HashToPoint function and effectively improves the execution
efficiency of the scheme. Wu et al. designed an IBEET scheme [32] that resists
inside adversaries by introducing a grouping mechanism. Qu et al. proposed a
certificate free IBEET scheme [21], in which part of the private key is generated
by the CA center and the other part is generated by the user locally. Li et al.
[11] proposed an IBEET-FA scheme that supports four types of authorization.

To achieve more flexible authorization, Zhu et al. proposed a Key-policy
Attribute-based Encryption with Equality Test (KP-ABEET) scheme [36]. Wang
et al. designed a Ciphertext Policy Attribute-Based Encryption with Equality
Test (CP-ABEET) scheme [28]. Cui et al. designed an outsourced CP-ABEET
(OCP-ABEET) scheme [6], which outsources the heavy computation to a third-
party. Wang et al. designed and CP-ABEET scheme without random oracles
[29]. These studies further expand the application scenarios for PKEET.

Fuzzy Keyword Search. In searchable encryption, Li et al.’s scheme [12]
transforms the keywords as a collection of fuzzy keywords with wildcards based
on edit distance. Wang et al.’s scheme [27] implements a multi-keyword search
based on a locally sensitive hash function and Bloom filter. Instead of treating
keywords as collections of fuzzy keywords, the scheme treats each keyword as a
bi-gram vector. Fu et al. [7] uses the Porter Stemming Algorithm [20] to ascertain
the root of the word, and uses the uni-gram vector to represent the keyword.
Li et al. [13] utilizes n-grams for fuzzy keyword search, and takes into account
initials and suffixes.

Boneh et al. [4] introduced the notion of Hidden Vector Encryption (HVE).
When the index I contained in a ciphertext match the index I ′ contained in
the token in all the coordinates where I ′ is not the wildcard ∗, the search/query
algorithm will output 1.

Phuong et al. [19] designed a new fuzzy public key cryptography called Edit
Distance Based Encryption (EDE). In this scheme, the sender specifies a message
and a threshold value when encrypting. The receiver specifies another message
to generate the decryption key. The message can only be successfully decrypted
if the edit distance between the two messages is less than the threshold value.

However, we notice that all the schemes above cannot be used to compare
the similarity between ciphertexts of two users. How to fulfill the task is an
interesting and important problem.
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1.2 Our Work

In this paper, we focus on how to implement the fuzzy equality test of cipher-
texts encrypted under different public keys efficiently. Concretely, we make the
following contributions.

– To support fuzzy matching of ciphertexts, we propose the concept of Public
Key Encryption with Fuzzy Matching (PKEFM). A threshold value v is set
when the system is initialized. Two users’ ciphertexts are stored on a cloud
server. When two user-generated trapdoors are obtained, the cloud server can
determine whether the edit distance between the two messages contained in
the ciphertexts is less than the given threshold value.

– We present a concrete construction of PKEFM and prove its security based
on simple mathematical assumptions under the given security models. In
the scheme, the tester converts the ciphertexts to ciphertext vectors after
obtaining the trapdoor and calculates the edit distance of two ciphertext
vectors. During the calculation, the tester gets no further information about
the messages contained in the ciphertexts.

– In order to make PKEFM more applicable, we introduce wildcards into
PKEFM, and propose the notion of PKEFM with Wildcards (PKEFM-W).
We present a concrete construction, in which a user’s message can have wild-
cards. The tester uses an improved edit distance calculation method that
supports the calculation of edit distances for ciphertexts containing wildcards.

– We provide a comparison of the proposed schemes in terms of computa-
tion cost and communication cost. Furthermore, we implement our schemes.
Experiments show that both schemes are efficient.

1.3 Paper Organization

We introduce some preliminaries in Sect. 2. Then we give the definition of
PKEFM and its security model in Sect. 3. The concrete construction of PKEFM
is given in Sect. 4. We present the concrete construction of PKEFM-W is pro-
vided in Sect. 5. In Sect. 6, we implement and compare PKEFM with PKEFM-W.
Some applications of PKEFM are presented in Sect. 7. Finally, we conclude the
paper in Sect. 8.

2 Preliminaries

2.1 Decisional Diffie-Hellman (DDH) Assumption

Let G be a group of prime order p, and g be a group generator of G. Given
{g, ga, gb, gr}, where a, b, r ∈ Zp, an adversary has only a negligible advantage
in distinguishing gr from ga·b [2].
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2.2 Symmetric External Diffie-Hellman (SXDH) Assumption

The DDH problem is hard in both G1 and G2, if there does not exist an efficiently
computable isomorphism ψ : G1 → G2 or ψ′ : G2 → G1 [1].

2.3 Split Function

In this paper, an n-length message D is treated as a message vector
−→
D by the

following split function:

Split(D) =
−→
D = 〈D1,D2, · · · ,Dn〉,

where each Di could be a character of the message.

2.4 Edit Distance

Edit Distance proposed by Levenshtein [10] usually refers to the Levenshtein
Distance, and it can be used to measure the difference between two messages by
counting the minimum number of edit operations that convert one message to
another. An edit operation means: adding, decreasing or transforming a char-
acter. Obviously, there are many ways to convert, but they do not affect the
minimum number of edit operations. Thus, the edit distance between two mes-
sages is an invariable.

The schemes proposed in this paper require to calculate the edit distance of
two ciphertext vectors, which is computed as follows.

Let
−→
X = 〈X1,X2, · · · ,Xn〉, −→

Y = 〈Y1, Y2, · · · , Ym〉 be two vectors.
Edt−→

X,
−→
Y

(i, j) denotes the edit distance between the sub-vectors 〈X1,X2, · · · ,Xi〉
(1 ≤ i ≤ n) and 〈Y1, Y2, · · · , Yj〉 (1 ≤ j ≤ m). The edit distance of

−→
X and

−→
Y is

then Edt−→
X,

−→
Y

(n,m), computed as follows:

Edt−→
X,

−→
Y

(i, j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max(i, j) , min(i, j) = 0

min

⎧
⎪⎪⎨

⎪⎪⎩

Edt−→
X,

−→
Y

(i − 1, j) + 1

Edt−→
X,

−→
Y

(i, j − 1) + 1

Edt−→
X,

−→
Y

(i − 1, j − 1) + S(Xi, Yj)

, min(i, j) �= 0

where if Xi �= Yj , S(Xi, Yj) = 1, and S(Xi, Yj) = 0 otherwise.

2.5 Similarity Function

The similarity of two messages is based on the edit distance. The higher the
similarity is, the more similar the two messages are. Variables n and m are the
lengths of message vectors

−→
X and

−→
Y , respectively, and the similarity between

vectors
−→
X and

−→
Y is computed as:

Sim−→
X,

−→
Y

= 1 −
Edt−→

X,
−→
Y

(n,m)

max(n,m)
.
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3 Public Key Encryption with Fuzzy Matching

3.1 Definition

Below we formalize the notion of Public Key Encryption with Fuzzy Matching
(PKEFM).

Definition 1 (PKEFM). A Public Key Encryption with Fuzzy Matching
scheme consists of the following probabilistic polynomial-time algorithms:

– pp ← Setup(1λ): The setup algorithm takes as input 1λ and outputs the public
parameter pp (including the threshold value v).

– (pk, sk) ← KeyGen(pp): The key generation algorithm takes as input the public
parameter pp and outputs a public/private key pair (pk, sk).

– C ← Enc(pp, pk,D): The encryption algorithm takes as input pp, pk and a
message D, and outputs a ciphertext C.

– Td ← Aut(pp, sk,C,C ′): The authorization algorithm takes as input pp, sk
and two ciphertexts C and C′, and outputs a trapdoor Td.

– result ← FMat(pp,C,C ′, Td, Td′): The fuzzy matching algorithm takes as
input pp, two ciphertexts C and C′, two corresponding trapdoors Td and
Td′, and outputs 1 if the similarity of messages contained in C and C ′ is
greater than the threshold value v, and 0 otherwise.

Definition 2 (Correctness). A PKEFM scheme is correct if for any two
messages D and D′ with similarity greater than the threshold value v, the fuzzy
matching result equals to 1 with a probability no less than 1 − negl(n):

Pr[FMat(pp,C,C ′, Td, Td′) = 1] ≥ 1 − negl(n),

where C,C are the ciphertexts of D and D′, respectively, and Td, Td′ are two
trapdoors corresponding to C and C′

3.2 Security Threats

Regarding the security models for PKEFM, we consider two main types of adver-
saries.

– Outside adversary: It can obtain the private keys and trapdoors of users,
except for the target user. Its goal is to distinguish which of the two messages
is contained in the challenge ciphertext.

– Inside adversary: It may be an honest-but-curious server that can get users’
trapdoors. Since the message space is small and contains only the characters
that make up the message, the adversary who gets the trapdoor correspond-
ing to the challenge ciphertext can traverse the message space and generate
ciphertexts to compare with the challenge ciphertext. As a result, the scheme
cannot achieve indistinguishability or one-wayness. The goal of the adversary
is to determine whether the messages contained in the two given challenge
ciphertexts are the same.

We define two games to formalize the security properties, and present the
security models in Appendix A.
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4 Our PKEFM Scheme

In this part we propose a concrete construction of PKEFM scheme, which makes
use of bilinear maps. It works as follows.

– Setup(1λ): Given a security parameter 1λ, choose a bilinear map ê : G1 ×
G2 → GT , where G1,G2, GT are multiplicative groups of prime order p. Let
g1 be a generator of G1 and g2 be a generator of G2. Choose an element
k ∈ G1. Choose three hash functions: H1 : {0, 1}∗ → G1, H2 : G1 → {0, 1}l1 ,
H3 : {0, 1}∗ → G1, where l1 is the representation length of an element of
group G1. Choose a threshold value v ∈ (0, 1]. Set and output the system
parameter pp = {G1,G2,GT , ê, g1, g2, k, v,H1,H2,H3}.

– KeyGen(pp): Given the system parameter pp, select two random elements x, y
from Zp. Compute and output a public key pk = {pk1, pk2} = {kx, g1

y} and
a secret key sk = {sk1, sk2} = {x, y}.

– Enc(pp, pk,D): Given the system parameter pp, a public key pk and a message
D, create the message vector

−→
D = Split(D) = 〈D1,D2, · · · ,Dn〉. Compute a

ciphertext C as follows:
• Select n + 2 random elements {s, w, r1, · · · , rn} ∈ Z

n+2
p .

• Compute C0 = g1
w, C1 = kw, C2 = g2

s.
• For 1 ≤ i ≤ n, compute:

C3,i = g1
ri ,

C4,i = H1(Di)s · pk1
w ⊕ H2(pk2

ri)
= H1(Di)s · kx·w ⊕ H2(g1y·ri).

• Compute C5 = H3(C0, C1, C2, C3,1, · · · , C3,n, C4,1, · · · , C4,n)s.
• Return C = {C0, C1, C2, C3,1, · · · , C3,n, C4,1, · · · , C4,n, C5}.

– Aut(pp, sk,C,C ′): Given the system parameter pp, a secret key sk and two
ciphertexts C = {C0, C1, C2, C3,1, · · · , C3,n, C4,1, · · · , C4,n, C5} and C ′ =
{C ′

0, C
′
1, C

′
2, C

′
3,1, · · · , C ′

3,m, C ′
4,1, · · · , C ′

4,m, C ′
5}, compute the trapdoor Td =

{Td1, Td2} as follows:

Td1 = ê(C1, C
′
2)

sk1 = ê(kw, g2
s′

)x = ê(k, g2)x·w·s′
,

Td2 = sk2 = y.

– FMat(pp,C, Td,C ′, Td′): Given the system parameter pp, two cipher-
texts C = {C0, C1, C2, C3,1, · · · , C3,n, C4,1, · · · , C4,n, C5} and C ′ =
{C ′

0, C
′
1, C

′
2, C

′
3,1, · · · , C ′

3,m, C ′
4,1, · · · , C ′

4,m, C ′
5}, two corresponding trapdoors

Td = {Td1, Td2} and Td′ = {Td′
1, Td′

2}, compute as follows:
• Return 0 if ê(C5, g2) �= ê(H3(C0, C1, C2, C3,1, · · · , C3,n, C4,1, · · · ,

C4,n), C2) or ê(C ′
5, g2) �= ê(H3(C ′

0, C
′
1, C

′
2, C

′
3,1, · · · , C ′

3,m, C ′
4,1, · · · ,

C ′
4,m), C ′

2).
• For 1 ≤ i ≤ n, compute:

Ti = C4,i ⊕ H2(C3,i
Td2) = H1(Di)s · kx·w,

Li = ê(Ti, C
′
2)/Td1 = ê(H1(Di), g2)s·s′

.
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• Set
−→
L = 〈L1, L2, · · · , Ln〉.

• For 1 ≤ j ≤ m, compute:

T ′
j = C ′

4,j ⊕ H2(C ′
3,j

Td′
2) = H1(D′

j)
s′ · kx′·w′

,

L′
j = ê(T ′

j , C2)/Td′
1 = ê(H1(Dj), g2)s·s′

.

• Set
−→
L′ = 〈L′

1, L
′
2, · · · , L′

m〉.
• Compute d = Edt−→

L ,
−→
L′(n,m).

• If Sim−→
L ,

−→
L′ = 1 − d

max(n,m) ≥ v, return 1, and 0 otherwise, where v is the
threshold value of the similarity.

The threshold value v determines the similarity of two messages. If v is set
to 1, it means that a complete message is required to output 1. The closer v is
set to 0, the greater the difference between the two messages. This value can be
adjusted according to actual needs.

The correctness of the scheme could be verified straight forward, so we omit
the details here.

Security proofs of the scheme are given in Appendix B.

5 Improved Construction Supporting Decryption and
Wildcards

5.1 Decryption Algorithm

Decryption algorithm is not considered in the original scheme of PKEFM,
because the message can be encrypted through the classical public key encryption
scheme. To decrypt a ciphertext in the scheme, consider the following algorithm:

– Dec(pp, sk,C): Given a ciphertext C = {C0, C1, C2, C3,1, · · · , C3,n, C4,1, · · · ,
C4,n, C5}, compute as follows:

• Let M be the character set. For all Mi ∈ M, compute Ni =
ê(H1(Mi), C2) = ê(H1(Mi), g2)s.

• Set N = {N1, · · · , N|M|}, where |M| denotes the size of the character
set.

• For 1 ≤ j ≤ n, compute:

Ej = (C4,j ⊕ H2(C3,j
sk2))/C1

sk1

= (C4,j ⊕ H2(g1rj ·y))/kw·x

= H1(Dj)s,

Fj = ê(Ej , g2) = ê(H1(Dj), g2)s.

For all Ni ∈ N , if Fj is equal to Ni, output Mi; otherwise, output ⊥
indicating decryption failure.

In the premise of this scheme, the plaintext space is limited (and small), thus
the receiver can compute the plaintext in polynomial time.
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5.2 Edit Distance with Encrypted Wildcard

Wildcards can be used to representing character in a message. They mainly
include ′∗′ and ′?′, which represent any number of characters or one character,
respectively. (e.g. scien∗ can be used to represent science or scientist, and
te?t can be used to represent test or text, but not tenet.) The edit distance
mentioned in Sect. 2.4 does not consider wildcards, so it cannot be used to com-
pute the edit distance for two messages with wildcards directly. In order to solve
this problem, edit distance with wildcards is proposed.

However, this method does not support encrypted wildcards, which is essen-
tial in our scenario. Hence, we improve this method and design Edit Distance
with Encrypted Wildcard. The improved method is as follows.

Let
−→
X = 〈X1,X2, · · · ,Xn〉, −→

Y = 〈Y1, Y2, · · · , Ym〉 be two ciphertext vec-
tors. EdtW−→

X,
−→
Y

(i, j, E∗, E?) denotes the edit distance between the vectors 〈X1,

X2, · · · , Xi〉 (1 ≤ i ≤ n) and 〈Y1, Y2, · · · , Yj〉 (1 ≤ j ≤ m), where E∗, E? denotes
the encrypted wildcards ′∗′ and ′?′, respectively. The edit distance of

−→
X and

−→
Y

is then EdtW−→
X,

−→
Y

(n,m,E∗, E?), computed as follows:

EdtW−→
X,

−→
Y
(i, j, E∗, E?) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(i, j) , min(i, j) = 0

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

EdtW−→
X,

−→
Y
(i − 1, j, E∗, E?) + 1

EdtW−→
X,

−→
Y
(i, j − 1, E∗, E?) + 1

EdtW−→
X,

−→
Y
(i − 1, j − 1, E∗, E?) + S(Xi, Yj)

,
min(i, j) �= 0
Xi �= E∗

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

EdtW−→
X,

−→
Y
(i − 1, j, E∗, E?)

EdtW−→
X,

−→
Y
(i, j − 1, E∗, E?)

EdtW−→
X,

−→
Y
(i − 1, j − 1, E∗, E?)

, min(i, j) �= 0
Xi = E∗

where if Xi �= Yj and Xi �= E?, S(Xi, Yj) = 1, otherwise, S(Xi, Yj) = 0.

5.3 An Improved Construction Supporting Wildcards

The construction proposed in Sect. 4 does not support wildcards, and thus may
lead to inconvenience in practice. Therefore, we improve the original construction
to support wildcards. The modified encryption algorithm, decryption algorithm
and fuzzy matching algorithm are defined as follows. Other algorithms remain
the same.

– Enc(pp, pk,D): Given the system parameter pp, a public key pk and a message
D, create the message vector

−→
D = Split(D) = 〈D1,D2, · · · ,Dn〉. Notice that

Di(1 ≤ i ≤ n) can be ′∗′ or ′?′. Compute a ciphertext C as follows:
• Set Dn+1 = ′∗′ and Dn+2 = ′?′.
• Select n + 4 random elements {s, w, r1, · · · , rn+2} ∈ Z

n+4
p .

• Compute C0 = g1
w, C1 = kw, C2 = g2

s.
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• For 1 ≤ i ≤ n + 2, compute:

C3,i = g1
ri ,

C4,i = H1(Di)s · pk1
w ⊕ H2(pk2

ri)
= H1(Di)s · kx·w ⊕ H2(g1y·ri).

• Compute C5 = H3(C0, C1, C2, C3,1, · · · , C3,n+2, C4,1, · · · , C4,n+2)s.
• Set C = {C0, C1, C2, C3,1, · · · , C3,n+2, C4,1, · · · , C4,n+2, C5}.

– Aut(pp, sk,C,C ′): Given the system parameter pp, a secret key sk and
two ciphertexts C = {C0, C1, C2, C3,1, · · · , C3,n+2, C4,1, · · · , C4,n+2, C5} and
C ′ = {C ′

0, C
′
1, C

′
2, C

′
3,1, · · · , C ′

3,m+2, C
′
4,1, · · · , C ′

4,m+2, C
′
5}, compute the trap-

door Td = {Td1, · · · , Td4} as follows:

Td1 = ê(C1, C
′
2)

sk1 = ê(kw, g2
s′

)x = ê(k, g2)x·w·s′
,

Td2 = sk2 = y,

E1 = (C4,n+1 ⊕ H2(C3,n+1
sk2))/C1

sk1

= (C4,n+1 ⊕ H2(g1rn+1·y))/(kw)x = H1(′∗′)s,

E2 = (C4,n+2 ⊕ H2(C3,n+2
sk2))/C1

sk1

= (C4,n+2 ⊕ H2(g1rn+2·y))/(kw)x = H1(′?′)s,

Td3 = ê(E1, C
′
2) = ê(H(′∗′), g2)s·s′

,

Td4 = ê(E2, C
′
2) = ê(H(′?′), g2)s·s′

.

– FMat(pp,C, Td,C ′, Td′): Given the system parameter pp, two cipher-
texts C = {C0, C1, C2, C3,1, · · · , C3,n+2, C4,1, · · · , C4,n+2, C5} and C ′ =
{C ′

0, C
′
1, C

′
2, C ′

3,1, · · · , C ′
3,m+2, C

′
4,1, · · · , C ′

4,m+2, C
′
5}, two corresponding

trapdoors Td = {Td1, · · · , Td4} and Td′ = {Td′
1, · · · , Td′

4}, compute as
follows:

• Return 0 if ê(C5, g2) �= ê(H3(C0, C1, C2, C3,1, · · · , C3,n+2, C4,1, · · · ,
C4,n+2), C2) or ê(C ′

5, g2) �= ê(H3(C ′
0, C

′
1, C

′
2, C

′
3,1, · · · , C ′

3,m+2, C
′
4,1, · · · ,

C ′
4,m+2), C

′
2) or Td3 = Td′

3 or Td4 = Td′
4.

• For 1 ≤ i ≤ n, compute:

Ti = C4,i ⊕ H2(C3,i
Td2) = H1(Di)s · kx·w,

Li = ê(Ti, C
′
2)/Td1 = ê(H1(Di), g2)s·s′

.

• Set
−→
L = 〈L1, L2, · · · , Ln〉.

• For 1 ≤ j ≤ m, compute:

T ′
j = C ′

4,j ⊕ H2(C ′
3,j

Td′
2) = H1(D′

j)
s′ · kx′·w′

,

L′
j = ê(T ′

j , C2)/Td′
1 = ê(H1(Dj), g2)s·s′

.

• Set
−→
L′ = 〈L′

1, L
′
2, · · · , L′

m〉.
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• Compute d = EdtW−→
L ,

−→
L′(n,m, Td3, Td4).

• If Sim−→
L ,

−→
L′ = 1 − d

max(n,m) ≥ v, return 1, and 0 otherwise.

The correctness of the scheme could be verified straight forward, so we omit
the details here.

5.4 Security Discussion

Compared with the original construction in Sect. 4, the ciphertext requires addi-
tional encryption of wildcards ′∗′ and ′?′. In addition, the new part in the trap-
door generated by the receiver is related to these two wildcards. However, wild-
cards ′∗′ and ′?′ can match any character in plaintext space M, so that the
adversary cannot rely on them to distinguish or recover the ciphertext. There-
fore, the security of the improved construction remains unchanged.

6 Performance Evaluation

In this section we analyse the computational cost and communication cost of
PKEFM scheme and PKEFM-W scheme.

Table 1. Comparison of computation cost

PKEFM PKEFM-W

KeyGen 2Exp 2Exp

Enc (3n + 5)Exp (3n + 11)Exp

Dec |M|P + 2nExp + nP (|M| + 2)P + 2nExp + nP

Aut Exp + P 4Exp + 3P

FMat (2n + 2m + 4)P (2n + 2m + 4)P

n, m: length of the message M or M ′; Exp, P : computa-
tion cost of an exponential operation and pairing operation,
respectively; |M|: size of the character set.

Table 1 provides a comparison between the computation costs of the two
schemes. When running the encryption algorithm in both schemes, some of the
elements can be used for multiple times, so the computational cost of these ele-
ments are counted only once. The key generation algorithms of the two schemes
require the same cost. In order to support wildcards, PKEFM-W scheme has a
slightly higher computation cost in the encryption, decryption and authoriza-
tion. But the increased computation cost is constant, regardless of the message
length.

Table 2 shows the comparison of communication costs. After encrypting the
message locally, the sender uploads the ciphertext to the cloud server. PKEFM-
W scheme has a slightly longer ciphertext length than PKEFM scheme, but due
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Table 2. Comparison of communication cost

PKEFM PKEFM-W

|pk| 2|G1| 2|G1|
|sk| 2|Zp| 2|Zp|
|C| (2n + 3)|G1| + |G2| (2n + 7)|G1| + |G2|
|Td| |GT | + |Zp| 3|GT | + |Zp|
n: length of a message M ; |pk|, |sk|, |C|, |Td|:
size of public key, secret key, the ciphertext
and trapdoor, respectively; |G1|, |G2|, |GT |, |Zp|:
bit length of a group element in G1,G2,GT ,Zp,
respectively.

Fig. 3. Comparison of Enc (n = 10) Fig. 4. Comparison of Enc (n = 100)

Fig. 5. Comparison of Dec Fig. 6. Comparison of Aut

Fig. 7. Comparison of FMat (n = 10) Fig. 8. Comparison of FMat (n = 100)



Public Key Encryption with Fuzzy Matching 53

to the fact that the encrypted message M in PKEFM-W scheme is allowed to
contain wildcards, an appropriate increase in passphrase length is acceptable.
Although the PKEFM scheme has a longer trapdoor length than PKEFM-W
scheme, the difference is not significant. The length of the trapdoor is constant,
independent of the message length.

To further evaluate the performance of the schemes, we implemented the
PKEFM scheme and PKEFM-W scheme based on the JPBC library [5] for
comparison. The experiment was run on a host machine with a six-core 2.60
GHz Intel i7-9750H CPU, 8 GB of RAM, Windows 10 operating system.

Figure 3 and Fig. 4 show the computation cost comparison of the encryption
algorithm Enc when the message length n is 10 and 100, respectively. PKEFM-W
scheme is slightly less efficient than PKEFM scheme because it requires addi-
tional encryption of wildcards. However, as the message length n increases, the
encryption algorithm efficiency of PKEFM-W scheme gradually approaches that
of PKEFM scheme because of the falling proportion of wildcards in the whole
ciphertext.

Figure 5 shows the computation cost of the decryption algorithm. The charac-
ter set needs to be pre-processed before decryption, which requires an invariable
time. As the length of the message grows, the percentage of the aforementioned
invariable time in the total time spent on decryption decreases. Therefore, the
decryption algorithm is more practical if the number of characters that make up
the message is small and the message length is long.

Figure 6 shows the computation cost comparison of the two schemes in terms
of the authorization algorithm Aut. The PKEFM scheme is more efficient than
the PKEFM-W scheme in generating a trapdoor, which requires an additional
calculation of two wildcard trapdoors. The time required for trapdoor genera-
tion is independent of the length of a ciphertext. The input is only part of the
ciphertext. It means that even if the length of the ciphertext is long, it will
not increase the time consumption of the authorization algorithm, which works
better in practical applications.

Figure 7 and Fig. 8 show the computation cost comparison of the fuzzy match-
ing algorithm for message length n being 10 and 100, respectively. The efficiency
of PKEFM scheme is close to that of PKEFM-W scheme. The time spent on
fuzzy matching is linearly related to the message length, and the time spent on
fuzzy matching will not increase too fast in the case of long messages.

7 Applications

Encrypted Long Message Fuzzy Matching. When a similarity comparison
between two confidential documents is required, it can be implemented based
on the above scheme. Essentially, there is no need to adjust the scheme. The
input D of the encryption algorithm is a text file. The user runs the encryption
algorithm to split the text file as a text vector

−→
D = 〈D1,D2, · · · ,Dn〉, and Di

as each word in the text file. Then the encryption is performed as described
above. The server runs the fuzzy matching algorithm to calculate the similarity
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between the two files. The edit distance algorithm can be replaced with another
similarity calculation algorithm as needed.

BLAST-Based Encrypted DNA Similarity Comparison. BLAST (Basic
Local Alignment Search Tool) is an analytical tool for biological sequence
databases [8]. It can efficiently perform sequence similarity comparison with
sequences in DNA database or protein database.

The sequence entered in the BLAST system and the sequence in the database
are in the plain text format. Based on the scheme above, encrypted sequence
comparison is feasible. The input D of the encryption algorithm is an DNA
or protein sequence and Di ∈ {A, T,C,G}. The tester calculates

−→
L and

−→
L′

according to the fuzzy matching algorithm, and then inputs
−→
L and

−→
L′ into

BLAST algorithm for similarity comparison.

8 Conclusion

In order to provide fuzzy matching of ciphertexts from different users, we intro-
duced the concept of Public Key Encryption with Fuzzy Matching (PKEFM). A
concrete construction of PKEFM was presented and the security of the scheme
is proved under the given security model based on simple assumptions. Consid-
ering the use of wildcards in fuzzy matching, we extended PKEFM to support
wildcards. It should be noted that in our schemes the tester can know the edit
distance between the messages contained in the two ciphertexts, which leads to
certain information leakage. How to minimize the information leakage is one of
our future works.

A Security Models

To check the security of PKEFM, consider the following two games:

Game-I: Ciphertext Indistinguishability
Let A be an outside adversary. Assume that the index t is the target receiver.

1. Setup: The challenger C runs Setup to generate the public parameter pp and
runs KeyGen to generate n pairs {pki, ski}. It sends pp and all pki’s to A.

2. Phase 1: The adversary A is allowed to issue the following types of oracle
queries in polynomially many times.

– Key Oracle OK(i): Given an index i ∈ [1, n], it returns the corresponding
secret key ski.

– Authorization Oracle OA(i,C,C ′): Given an index i ∈ [1, n] and two
ciphertexts C and C′, it returns the corresponding trapdoor Td.

Specially, t cannot be queried to OK and (t, ·, ·) cannot be queried to OA.
3. Challenge: A selects two equal-length challenge messages D0 and D1

and sends them to C. Then C selects σ
R← {0, 1}, and returns C∗ =

Enc(pp, pkt,Dσ) to A.
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4. Phase 2: The same as that in Phase 1. In addition, (·,C∗, ·) cannot be
queried to OA.

5. Guess: A outputs a guess σ∗. If σ∗ = σ, A wins the game.

We define A’s advantage in Game-I as AdvIND
A (1λ) = |Pr[σ∗ = σ] − 1

2 |.

Definition 3. A PKEFM scheme satisfies Ciphertext Indistinguishability if for
any probabilistic polynomial-time outside adversary A, its advantage AdvIND

A (1λ)
is negligible in the security parameter 1λ.

Game-II: Unlinkability
Let A be an inside adversary. Assume that the indices t and t′ are of the

target receivers.

1. Setup: The challenger C runs Setup to generate the public parameter pp and
runs KeyGen to generate n pairs {pki, ski}. It sends pp and all pki’s to A.

2. Phase 1: The adversary A is allowed to issue the following types of oracle
queries in polynomially many times.

– Key Oracle OK(i): Given an index i ∈ [1, n], it returns the corresponding
secret key ski.

– Authorization Oracle OA(i,C,C ′): Given an index i ∈ [1, n] and two
ciphertexts C and C ′, it returns the corresponding trapdoor Td.

Specially, t and t′ cannot be queried to OK .
3. Challenge: A selects two equal-length challenge messages D0, D1, and sends

them to C. Then C selects σ
R← {0, 1}, and returns C∗ = Enc(pp, pkt,D0),

C∗∗ = Enc(pp, pkt′ ,Dσ) to A.
4. Phase 2: The same as that in Phase 1. In addition, (·,C∗, ·) and (·,C∗∗, ·)

cannot be queried to OA.
5. Guess: A outputs a guess σ∗. If σ∗ = σ, A wins the game.

We define A’s advantage in Game-II as AdvUnlink
A (1λ) = |Pr[σ∗ = σ] − 1

2 |.

Definition 4. A PKEFT scheme satisfies Unlinkability if for any probabilistic
polynomial-time inside adversary A, its advantage AdvUnlink

A (1λ) is negligible in
the security parameter 1λ.

B Security Analysis

In this section, we show that our PKEFM scheme is secure under the security
models defined in Sect. 3.2.
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B.1 Ciphertext Indistinguishability

Theorem 1. If SXDH assumption holds, our PKEFM scheme above satisfies
Ciphertext Indistinguishability against outside adversaries.

Proof. Let A be a PPT adversary who has advantage μ to break Ciphertext
Indistinguishability of our PKEFM scheme. We build a PPT adversary C to
break SXDH assumption. Given an SXDH instance {G1, g1, gα = g1

α, gβ =

g1
β , Z}, where g1 ∈ G1, α, β

R← Zp are unknown, and Z is either g1
α·β (b = 1)

or a random element in G1 (b = 0), C works as follows.

Setup: The challenger C runs Setup and sets the public parameter pp = {G1,G2,
Zp, ê, g1, g2, k, v,H1,H2,H3}, runs KeyGen to generate n pairs {pki, ski} (1 ≤ i ≤
n) and stores them to the list LK〈pk, sk〉. In particular, C selects t

R← {1, · · · , n},
sets pkt = {pkt,1, pkt,2} = {kxt , gα = g1

α}, skt = {skt,1, skt,2} = {xt, α}, where
α is unknown to C. Then C sends pp and all pki’s to A.

Phase 1: A is allowed to issue the following types of oracle queries in polynomi-
ally many times. Assume that all the queries would not violate the restrictions.

– Key Oracle OK(i): It maintains a list LK〈pk, sk〉 which stores all {pki, ski}
(1 ≤ i ≤ n) generated in Setup. Given an index i ∈ [1, n], it returns the
corresponding secret key ski.

– Authorization Oracles OA(i,C,C ′): Given an index i ∈ [1, n] and two cipher-
texts C and C ′, it runs OK to get corresponding ski, and returns the corre-
sponding trapdoor Td = Aut(pp, ski,C,C ′).

Challenge: A selects two equal-length challenging messages D0 and D1 and
sends them to C. Then C selects σ

R← {0, 1}, and computes C∗ as follows:

–
−→
Dσ = Split(Dσ) = 〈Dσ,1, · · · ,Dσ,n〉.

– Select n + 2 random elements {st, wt, θ1, · · · , θn} ∈ Z
n+2
p .

– Compute C∗
0 = g1

wt , C∗
1 = kwt , C∗

2 = g2
st .

– For 1 ≤ i ≤ n, compute:

C∗
3,i = (gβ)θi = g1

β·θi ,

C∗
4,i = H1(Dσ,i)st · pkt,1

wt ⊕ H2(Zθi)

= H1(Dσ,i)st · kxt·wt ⊕ H2(Zθi).

– Compute C∗
5 = H3(C∗

0 , C∗
1 , C∗

2 , C∗
3,1, · · · , C∗

3,n, C∗
4,1, · · · , C∗

4,n)st .
– Return C∗ = {C∗

0 , C∗
1 , C∗

2 , C∗
3,1, · · · , C∗

3,n, C∗
4,1, · · · , C∗

4,n, C∗
5} to A.

Phase 2: The same as that in Phase 1. In addition, (·,C∗, ·) can not be queried
to OA. Assume that all the queries would not violate the restrictions.

Guess: A outputs a guess σ∗. If σ∗ = σ, A wins the game. Then C outputs
Z = g1

α·β (b′ = 1) as the guess of the given SXDH instance; otherwise, C
outputs Z �= g1

α·β (b′ = 0).
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Consider the game above. If Z = g1
α·β (b = 1), C∗ is a real ciphertext of Dσ,

so A can win the game with probability μ + 1
2 . If Z is a random element in G1

(b = 0), then all elements in C∗ are random in the view of A, which means C∗

hides σ completely. Thus, the probability of A outputting σ∗ = σ is 1
2 . So the

probability that C breaks SXDH assumption is

Pr[b′ = b]
= (Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1])

= (
1
2

· 1
2

+
1
2
(μ +

1
2
))

=
μ

2
+

1
2
.

Therefore, if A can win the game with non-negligible advantage μ, C can also
break the SXDH assumption with non-negligible advantage μ

2 . So we have:

AdvIND
A (1λ) = |Pr[σ∗ = σ] − 1

2
| ≤ negl(1λ).

This completes the proof of Theorem 1. �

B.2 Unlinkability

Theorem 2. If SXDH assumption holds, our PKEFM scheme above satisfies
Unlinkability against inside adversaries.

Proof. Let A be a PPT adversary who has advantage μ to break Unlinkability of
our PKEFM scheme. We build a PPT adversary C to break SXDH assumption.
Given an SXDH instance {G1, g1, gα = g1

α, gβ = g1
β , Z}, where g1 ∈ G1, α, β

R←
Zp are unknown, and Z is either g1

α·β (b = 1) or a random element in G1 (b = 0),
C works as follows.

Setup: The challenger C runs Setup to generate the public parameter pp =
{G1,G2,Zp, ê, g1, g2, k = gα = g1

α, v,H1,H2,H3}, runs KeyGen to generate n
pairs {pki, ski} (1 ≤ i ≤ n) and stores them to the list LK〈pk, sk〉. In particular,
C selects t, t′ R← {1, · · · , n}, Then C sends pp and all pki’s to A.

Phase 1: A is allowed to issue the following types of oracle queries in polynomi-
ally many times. Assume that all the queries would not violate the restrictions.

– Key Oracle OK(i): It maintains a list LK〈pk, sk〉 which stores all {pki, ski}
(1 ≤ i ≤ n) generated in Setup. Given an index i ∈ [1, n], it returns the cor-
responding secret key ski. Specially, if i = t or i = t′, it returns ⊥ indicating
query failure.
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– Authorization Oracles OA(i,C,C ′): Given an index i ∈ [1, n] and two cipher-
texts C and C ′, it runs OK to get corresponding ski, and returns the corre-
sponding trapdoor Td = Aut(pp, ski,C,C ′).

Challenge: A selects two equal-length challenging messages D0, D1, and sends
them to C. Then C selects σ

R← {0, 1}, and computes C∗ = Enc(pkt,D0), C∗∗ =
Enc(pkt′ ,Dσ) as follows:

–
−→
D0 = Split(D0) = 〈D0,1, · · · ,D0,n〉, −→

Dσ = Split(Dσ) = 〈Dσ,1, · · · ,Dσ,n〉.
– Get skt and skt′ from LK .
– Select random elements {st, st′ , r1, · · · , r2n, δ} ∈ Zp. Implicitly set C0

∗ =
gβ = g1

β and C0
∗∗ = gβ

δ = g1
β·δ.

– Compute C∗
1 = Z, C∗

2 = g2
st .

– For 1 ≤ i ≤ n, compute:

C∗
3,i = g1

ri ,

C∗
4,i = H1(D0,i)st · Zskt,1 ⊕ H2(pkt,2

ri)

= H1(D0,i)st · Zxt ⊕ H2(g1yt·ri).

– Compute C∗
5 = H3(C∗

0 , C∗
1 , C∗

2 , C∗
3,1, · · · , C∗

3,n, C∗
4,1, · · · , C∗

4,n)st .
– Set C∗ = {C∗

0 , C∗
1 , C∗

2 , C∗
3,1, · · · , C∗

3,n, C∗
4,1, · · · , C∗

4,n, C∗
5}.

– Compute C∗∗
1 = Zδ, C∗∗

2 = g2
st′ .

– For 1 ≤ j ≤ n, compute:

C∗∗
3,j = g1

rn+j ,

C∗∗
4,j = H1(Dσ,i)st′ · Zskt′,1·δ ⊕ H2(pkt′,2

rn+j )

= H1(Dσ,i)st′ · Zxt′ ·δ ⊕ H2(g1yt′ ·rn+j ).

– Compute C∗∗
5 = H3(C∗∗

0 , C∗∗
1 , C∗∗

2 , C∗∗
3,1, · · · , C∗∗

3,n, C∗∗
4,1, · · · , C∗∗

4,n)st′ .
– Set C∗∗ = {C∗∗

0 , C∗∗
1 , C∗∗

2 , C∗∗
3,1, · · · , C∗∗

3,n, C∗∗
4,1, · · · , C∗∗

4,n, C∗∗
5 }.

– Return C∗ and C∗∗ to A.

Phase 2: The same as that in Phase 1. In addition, (·,C∗, ·) and (·,C∗∗, ·)
cannot be queried to OA. Assume that all the queries would not violate the
restrictions.

Guess: A outputs a guess σ∗. If σ∗ = σ, A wins the game. Then C outputs
Z = g1

α·β (b′ = 1) as the guess of the given SXDH instance; otherwise, C
outputs Z �= g1

α·β (b′ = 0).

Consider the game above. The cases that C aborts the game are described as
follows.

– Suppose that A queried Ĉ = {C∗
0

z, C∗
1

z, C∗
2

z, ˆC3,1, · · · , ˆC3,n, ˆC4,1, · · · , ˆC4,n,
C∗

5
z}, where z is an element in Zp (including 1Zp

) selected by A, and C∗
0

z,
C∗

1 , C∗
2 , C∗

5 are parts of C∗. If the equation

H3(C∗
0 , C∗

1 , C∗
2 , C∗

3,1, · · · , C∗
3,n, C∗

4,1, · · · , C∗
4,n)

=H3(C∗
0

z, C∗
1

z, C∗
2

z, ˆC3,1, · · · , ˆC3,n, ˆC4,1, · · · , ˆC4,n)
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holds, which means there exits a hash collision of H3, C aborts the game. We
define this event by Event1. So we have

Pr[Event1] ≤ εCR,

where εCR is the probability that A breaks the collision resistance of H3.
– Suppose that A queried C̃ = {C∗∗

0
z′

, C∗∗
1

z′
, C∗∗

2
z′

, C̃3,1, · · · , C̃3,n, C̃4,1, · · · ,

C̃4,n, C∗∗
5

z′}, where z′ is an element in Zp (including 1Zp
) selected by A, and

C∗∗
0 , C∗∗

1 , C∗∗
2 , C∗∗

5 are parts of C∗∗. If the equation

H3(C∗∗
0 , C∗∗

1 , C∗∗
2 , C∗∗

3,1, · · · , C∗∗
3,n, C∗∗

4,1, · · · , C∗∗
4,n)

=H3(C∗∗
0

z′
, C∗∗

1
z′

, C∗∗
2

z′
, C̃3,1, · · · , C̃3,n, C̃4,1, · · · , C̃4,n)

holds, which means there exits a hash collision of H3, C aborts the game. We
define this event by Event2. So we have

Pr[Event2] ≤ εCR.

Denote by Abort the union of events that C aborts the game. We have:

Pr[Abort] = Pr[Event1 ∨ Event2] ≤ εCR + εCR.

That is
Pr[¬Abort] ≥ (1 − 2 · εCR).

Now consider the case that C does not abort the game. If Z = g1
α·β (b = 1),

C∗ is a real ciphertext of Dσ, so A can win the game with probability μ + 1
2 . If

Z is a random element in G1, then all elements in C∗ are random in the view
of A, which means C∗ hides σ completely. So the probability of A outputting
σ∗ = σ is 1

2 . In sum, the probability that C breaks SXDH assumption is

Pr[b′ = b]
= Pr[b′ = b|Abort] · Pr[Abort] + Pr[b′ = b|¬Abort] · Pr[¬Abort]
=

1
2
(1 − Pr[¬Abort]) + (Pr[b′ = 0|¬Abort ∧ b = 0]

+ Pr[b′ = 1|¬Abort ∧ b = 1]) · Pr[¬Abort]
=

1
2
(1 − Pr[¬Abort]) + (

1
2

· 1
2

+
1
2
(μ +

1
2
)) · Pr[¬Abort]

=
μ

2
· Pr[¬Abort] +

1
2
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Therefore, if A can win the game with non-negligible advantage μ, C can also
break the SXDH assumption with non-negligible advantage μ

2 · (1 − 2 · εCR). So
we have:

AdvUnlink
A (1λ) = |Pr[σ∗ = σ] − 1

2
| ≤ negl(1λ).

This completes the proof of Theorem 2. �
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Abstract. Symmetric searchable encryption (SSE) allows to outsource
encrypted data to an untrusted server and retain searching capabilities.
This is done without impacting the privacy of both the data and the
search/update queries. In this work we put forth a new flavour of sym-
metric searchable encryption (SSE):Partitioned SSE is meant to capture
the cases where the search rights must be partitioned among multiple
individuals. We motivate through compelling examples the practical need
for such a notion and discuss instantiations based on functional encryp-
tion and trapdoor permutations.

– First we leverage the power of functional encryption (FE). Our con-
struction follows the general technique of encrypting the set of key-
words and the presumably larger datafiles separately, a keyword act-
ing as a “pointer” to datafiles it belongs to. To improve on the con-
straint factors (large ciphertext, slow encryption/decryption proce-
dures) that are inherent in FE schemes, the keyword check is done
with the help of a Bloom filter – one per datafile: the crux idea is to
split the filter into buckets, and encrypt each bucket separately under
an FE scheme. Functional keys are given for binary masks checking
if relevant positions are set to 1 inside the underlying bit-vector of
the Bloom filter.

– The second construction we present achieves forward security and
stems from the scheme by Bost in CCS’16. We show that a simple
tweak of the original construction gives rise to a scheme supporting
updates in the partitioned setting. Moreover, the constructions take
into account the possibility that some specific users are malicious
while declaring their search results.

Keywords: SSE · Functional encryption · Partitioned search · Bloom
filter
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1 Introduction

Searchable encryption [20] is a cryptographic protocol thought to enable its
user(s) to perform search queries on encrypted data1. In the protocol a set of
keywords is encrypted and deployed on an untrusted (storage) server. Each key-
word originates in some structured datafile, which is encrypted separately under a
semantic secure symmetric encryption scheme. Ideally, the search operation exe-
cuted by the client shall work without compromising the privacy of the remaining
encrypted data, given that the server has access to the entire history of queries.
Speaking about functionality, a client must store some secret information (key)
that allows to create search tokens corresponding to specific keywords. Tokens are
sent to the storage server together with the operation that needs to be executed:
searches for static schemes, but also updates for dynamic schemes. The server
uses the tokens to retrieve the index(es) of the encrypted datafile(s) matching
the desired keyword(s), but without being able to decrypt the datafile(s) and
without learning those keywords. The initial proposals of SSE were designed
in a static setting where the client cannot perform any update on the deployed
encrypted data. To address this issue Kamara et al. [16] introduced dynamic SSE
which enables both searches and updates over the encrypted database. However,
update may cause leakage during addition of new (keyword, datafile index) pairs
or during the search of a keyword while all the files containing the keyword are
deleted. Security against the first case is called forward privacy – introduced by
Chang and Mitzenmacher [7] and against the second case is referred as backward
privacy – formalized by Bost et al. [5]. One common issue with the earlier pro-
posals was the search time which was linear in the size of the database. It was
until the work of Curtmola et al. [9] who put forth the SSE scheme with sublin-
ear search time, in a static setting. The index-based dynamic SSE with sublinear
search time was introduced by Kamara et al. [15,16]. The current approaches of
searchable encryption [4–6] suggest avoiding constructions following from prim-
itives such as fully-homomorphic encryption [10], multi-party computation [23]
or oblivious RAM [12]. These are considered non-viable, given their poor prac-
tical performance. However, in many settings such techniques can be proven
safe as they leak no information on the encrypted data. Consider the case of
functional encryption (FE) [3]. A naive but straightforward implementation of
searchable encryption consists in issuing functional keys for circuits searching
a specific keywords. In the recent years several schemes of SSE have been pro-
posed [17,19] based on different assumptions and targeting advanced properties.
Our construction addresses a completely different flavour and unlike the existing
schemes has been built using the Bloom filters.

In the existing literature of SSEs, a relevant contribution for our approach
is the paper by Goh [11], who proposes a construction – associating an index to
each document in a collection – based simply on Bloom filters and pseudorandom
functions. Another construction in connection to our results is Σoφoς by Bost [4]

1 For example a doctor wanting to consult all the medical records of patients having
diabetes without having to download the entire database.
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which is a scheme supporting sublinear search time and achieving forward privacy
with improved security guarantees. In essence, the construction avoids the heavy
ORAM model while relying solely on the existence of trapdoor permutations.
The later Diana and Janus schemes [5] are improvements on this approach.

1.1 Our Results

We introduce a new flavour of symmetric searchable encryption- partitioned
searchable encryption. More particularly, we propose two constructions of par-
titioned SSE using the functionalities of a Bloom filter (BF), one from the func-
tional encryption (FE) and one from trapdoor permutations as used in Σoφoς .

Partitioned Symmetric Searchable Encryption (PSSE). Imagine a well
known governmental agency intercepts the conversation between the president
of its country and a foreign leader. Legally, the transcripts of such recordings
must be stored on a secure server and access rights must be given to some inves-
tigative authority, after which the role of the security agency ends. Following the
law, those recordings may only be accessed by some selected committee of the
Senate in its plenitude. That is, no single member of the Senate’s committee may
access the data independently. To address such a problem, the notion of PSSE
may be useful. Such protocol consists of three entities: (1) a trusted authority
that encrypts data and subsequently deploys them to a storage server2; (2) the
server that stores the data; (3) the clients that can gain access to data if and only
if all agree to do so. We also emphasise that in connection to our partitioned
SSE a recent work [1] by Ananth et al. is much more relevant as it presents a
multi-key FHE with one-round decryption. The process of recovering the plain-
text(s), taking place in the final step of their construction, is similar to step (3)
above. The multi-client in [22], which presents a searchable encryption support-
ing Boolean queries, refers to a group of clients satisfying certain attributes, and
not associated to any partition among them. Each client possessing a search-
authorized private key issued by the data owner can individually perform search
where the keyword database is encrypted using a CP-ABE. A related problem
would consider malicious users: that is, users that misbehave either when insert-
ing or searching for documents. Relative to our previous example, any senator,
independent of his/her political opinion must be able to prove that his/her part
of the encrypted database DB and search tokens are correctly generated.

We propose multiple instantiations for such a partitioned searching protocol.
The first one exploits the power of functional encryption. A naive approach
would encrypt the set of keywords, and then issue search tokens for the search
function. However, we introduce a novel and more efficient approach for building
searchable encryption from FE. Our key insight is the following: given a document
D, we store its set of keywords (w) in a Bloom filter, which is built on top of a
bitvector�b. We split�b into buckets and encrypt each bucket independently under
a functional encryption scheme. Then, we issue functional keys for circuits that
2 The governmental agency in our case.
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Fig. 1. Each Bloom Filter BF(i) is associated to a datafile D(i) (not represented) and

consists of a bitvector�b(i) of size Bi. As seen at the lower right,�b(3) is split in 3 buckets of
size 4, which are encrypted independently under a functional encryption scheme. Thus,
the message space supported by the FE scheme consists of 4 bits. Functional keys are
issued to check if the j-th bit is set to 1, in order to simulate the membership testing
in the Bloom filter specification, as seen in the upper part of the picture.

check if the desired set of bits corresponding to a search query is set to 1. This
is illustrated in Fig. 1. The second class of proposed constructions stems from
the Σoφoς scheme introduced by Bost in [4]. Σoφoς uses classical primitives,
such as simple trapdoor permutations. Whenever a new keyword is inserted, the
index of the keyword is masked with a pseudorandom value the client is aware
of. We achieve a PSSE scheme by distributing such a masked value amongst
the participants into the protocol. Concretely, we employ the usage of a Bloom
filter to store the index. Then, we split the Bloom filter into buckets, and each
party will independently mask a bucket of the Bloom filter. Pictorially, this
would correspond to a parallel execution of Bost’s protocol. Finally, during the
combine (Comb) step, the results of the searches are gathered and the question
of a keyword belonging to a document can be settled.
Organization of the Paper. Section 2 introduces the common notations and
the definitions we work with in the following parts. Section 3 defines partitioned
SSE. In Sect. 4 we introduce the main results of this work: by devising simple
PSSE protocols starting from FE and trapdoor permutations, static or supporting
updates. Section 5 concludes the contributions.

2 Preliminaries

Mathematical and Algorithmic Conventions. In this work, λ ∈ N
∗ stands

for the security parameter. We assume λ is implicitly given to all algorithms
in the unary representation 1λ. We consider an algorithm to be equivalent to
a Turing machine, and unless stated, we assume that algorithms are random-
ized. PPT stands for “probabilistic polynomial-time” in the security parameter
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(rather than the total length of its inputs). Given a randomized algorithm A we
denote the action of running A on input(s) (1λ, x1, . . . ) with coins r (sampled
uniformly at random) and assigning the output(s) to (y1, . . . ) by the expression
(y1, . . . )←$ A(1λ, x1, . . . ; r). We write AO for the case that A is given oracle
access to some procedure O. We denote the cardinality of a finite set S by |S|
and the action of sampling a uniformly at random element x from X by x←$ X.
[k] stands for the set {1, . . . , k}. A real-valued function is called negligible if
it belong to O(λ−ω(1)). We denote the set of all negligible functions by Negl.
Throughout the paper ⊥ stands for a special error symbol. We use || to denote
concatenation.

2.1 Searchable Encryption

To structure the discussion, we assume a classical client-server model, with a
client wishing to deploy its data on some untrusted third party; at the same time,
the client wants to retain its ability of searching over the encrypted, deployed
data. In the first part—the Setup phase—the client proceeds as follows with its
datafiles

{
D(1), . . . ,D(d)

}
: (1) extracts all the keywords for each D(i) (let this set

of keywords be written in a structure denoted DB); (2) encrypts each D(i) to
ED(i), using a semantic-secure symmetric encryption scheme; (3) encrypts the
keywords under a scheme that supports searches (let this resulting database of
encrypted keywords be denoted as EDB); (4)uploads EDB and the encrypted
datafiles on some untrusted storage cloud server.

In the Search phase, whenever looking for a datafile corresponding to a spe-
cific keyword w the client should have the ability to identify the datafile(s) D(i)

containing w. Then, it will retrieve the encrypted file ED(i) corresponding to D(i)

and decrypt it. Our protocols do not explicitly mention the last phase consist-
ing of simply downloading and decrypting the datafiles identified as containing
the keywords. A rigorous formulation capturing the aforementioned intuition is
given below.

Definition 1 (Multi-Keyword SSE). Let Di ⊆ {0, 1}∗ denote a datafile,
for any i ∈ [d]. Let DB :=

{
(i,w(i))

}
i∈[d]

denote the set of pairs containing

a datafile index i and a set of keywords w(i). A static searchable encryption
scheme Σ =

(
Σ.Setup, Σ.Search

)
consists of a PPT algorithm Σ.Setup and a

protocol Σ.Search between a client and server, such that:

– (EDB,K , σ)←$ Setup(DB): takes as input the DB, encrypts it to obtain EDB,
and deploys the resulting ciphertext to a server. It returns the key K and a
state σ to the client.

– i ← Search(EDB, σ,K ,w, I): is a protocol between the client and the server.
The client inputs its key K , its state σ, a search query w which can consist
of a single or multiple keywords and an index set I, consisting of file indices
that should be searched through. In case I is absent, we consider it as I = {1}
meaning the system stores only a single datafile. The server’s input is EDB.
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It then returns the index(es) in I that correspond to datafile(s) containing the
queried keyword(s).

In addition, we call a symmetric searchable encryption scheme dynamic if there
exists a third algorithm:

– EDB′ ← Update(EDB, σ,K ,w, I, op): the client encrypts a keyword w and
sends an update query for a specific index set I of datafiles. In case I is absent,
we consider it as I = {1} meaning the system stores only a single datafile.
The operation op can either be a delete or insert request. Update then returns
the updated encrypted database.

We require an SSE scheme to satisfy correctness, meaning that the search protocol
must return correct results for every query, except with negligible probability.

Security of SSE. Security of an SSE scheme corresponds to the amount of
information a server can gather about the database (file) and the keywords
queried. More concretely, it is parametrized by the stateful leakage functions
incorporating the leakage of the Setup,Search,Update algorithms. We denote this
by a leakage function L =

(LSetup,LSearch,LUpdate
)
3. Security requires that the

adversary should not learn more than the outputs of the corresponding leakage
function L after triggering the Setup, Search or Update operations. Of particular
interest is the notion of forward privacy [21], which ensures that an update query
does not leak information on the updated keyword, the server being unable to
tell if a particular document leaks the updated keywords.
Forward Privacy: informally, it states that newly updated documents do not
leak information about newly added files that match the query. Alternatively,
the Update queries do not leak the keyword/file being updated.

Definition 2 (Forward Privacy for SSE). We say an L-adaptive-secure
multi-keyword SSE is forward private if the update leakage function is defined
as LUpdate(op, in) := L′Update(op, (f ′,w′)), for operation op with input in where
L′ is stateless and the set (f ′,w′) denotes all updated documents for which the
keyword w′ is modified in file f ′.

Security requires that the adversary does not learn more than the outputs of
the corresponding leakage function L after triggering the Setup,Search or Update
operations. The corresponding security game is described in Fig. 2.

Definition 3 (Adaptive Security for SSE). We say a multi-keyword SSE
scheme achieves L-adaptive-security if the advantage of any PPT adversary
A in winning the FS − SSE experiment defined in Fig. 2 is negligible. i.e.:
|Pr[FS − SSEA

SSE(λ) = 1] − 1
2 | ∈ Negl(λ).

Definition 4 (Functional Encryption - Public Key Setting). A func-
tional encryption scheme FE in the public-key setting consists of a quadruple of
PPT algorithms (FE.Setup, FE.KDer, FE.Enc, FE.Dec) such that:
3 For a static scheme LUpdate := ∅.
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Fig. 2. The FS − SSE-security defined for a symmetric searchable encryption scheme
(left). Simulation-security for a PSSE scheme.

– (msk,mpk)←$FE.Setup(1λ) : given the unary representation of the security
parameter λ, the setup procedure outputs a pair of master secret/public keys.

– skf←$FE.KDer(msk, f): given the master secret key msk and a function f , the
(potentially randomized) key-derivation procedure generates a corresponding
functional key skf .

– C←$FE.Enc(mpk,M ): the randomized encryption procedure encrypts, using
the master public key mpk, the plaintext M into a ciphertext C .

– FE.Dec(C , skf ): decrypts the ciphertext C using the functional key skf in
order to either learn a valid message f(M ) or, in case the decryption procedure
fails, a special error symbol ⊥.

We say a scheme FE achieves correctness if ∀f ∈ Fλ, for any M ∈ M, the
following quantity is negligibly close to 1:

Pr

[

y = f(M)

∣
∣
∣
∣
∣

(msk,mpk)←$FE.Setup(1λ) ∧ skf←$FE.KDer(msk, f)∧
C←$FE.Enc(mpk,M ) ∧ y ← FE.Dec(C , skf )

]
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2.2 Bloom Filters

Bloom filters (BF), introduced in [2] are probabilistic abstract data structures
allowing for constant time searches, insertions and deletions. Thus, they improve
over both running time and memory space over the existing approaches using
hash-tables or different flavours of tree-based structures. The core idea behind
Bloom filters is to store a representation of a keyword w instead of storing w
itself. To do so, one can imagine an underlying data structure consisting of a
bitvector �b of B bits, that is populated by hashing the inserted strings w ∈ W
as depicted in Fig. 3:

– given w, compute i ← Hash(w), where Hash : {0, 1}∗ → {0, . . . , B − 1}
denotes a hash function.

– for each hash function outputting an index i, set �bi ← 1.

False positives are possible, since bi can be set to 1 by multiple strings. Still,
by controlling the number of hash functions to be used, one can bound the
probability of false positives when inserting n elements through γ hash functions:

Pr

[

∃w 
∈ W ∧ |W| ≥ 1 ∧ BF.Search(�b,w) = 1

]

≈
(

1 −
(
1 − 1

B

)γ·n
)γ

.

Therefore, the optimal number of hash functions is simply: γ ≈ ln(2) · B
n . More-

over, a technique to reduce the false positive rate in a Bloom filter is discussed
in [8] specially with the view of its use in searchable encryption.

Fig. 3. A depiction of a Bloom filter BF storing elements a, b. Deciding if w belongs
to BF implies a check over the corresponding positions. In this example w is in the set
{a, b}.

Data Representation. Let D(1), . . . ,D(d) be d datafiles, represented in binary.
For each D(i) we instantiate the vector w(i) = (w(i)

1 , . . .w(i)
ni ) , as the vector of

keywords, where w(i)
t denotes the tth keyword belonging to the ith document

D(i). For each D(i), we instantiate a Bloom filter BF(i), whose bit-vector �b(i) can
be split into l(i) buckets of equal size Bi

l(i)
, where Bi denotes the length of �b(i).
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3 Partitioned Symmetric Searchable Encryption

Partitioned symmetric searchable encryption (PSSE) extends the standard def-
inition of SSE in a natural way: the Search algorithm must be post-processed
jointly by a group of N users instead of a single one, in order to identify the
document(s) with the corresponding keyword(s) by confirming whether a (set
of) keyword(s) belongs to some document or not, with sufficient probability4.
The protocol works by pre-sharing public parameters between the users and then
combining the outcome of their results in a similar way to a distributed PRF [18].
As motivated in Sect. 1, certain scenarios benefit from such a setting.

In its simplest setting, a partitioned protocol requires all users to be honest
while declaring their outcome, which jointly validates if a keyword belongs or not
to some document. We emphasize that a cheater in the group that deliberately
changes the result of his/her finding is tantamount to changing the truthfulness
of the global outcome. We proceed with a definition and a security notion for
the honest model. Our definition encompasses both static and dynamic SSE
schemes.

Definition 5 (Partitioned SSE - Honest Setting). Let N stand for the
number of users. Let Di ⊆ {0, 1}∗ denote a datafile, for any i ∈ [d]. Let
DB =

{
(i,w(i))

}
i∈[d]

denote the set of pairs containing a datafile index i and

a set of keywords w(i). An N -party PSSE consists of a tuple of algorithms(
PSSE.Setup,PSSE.ClientSetup,PSSE.Search,PSSE.Comb

)
such that:

– (pp,DB1, . . . ,DBN )←$PSSE.Setup(1λ,DB, N): is a PPT algorithm that takes
as input a database of keywords DB and a number N of users; it extracts
the keywords based on which it generates N individual databases denoted DBj

and sends then database DBj to user j; further auxiliary information may be
computed and added to pp (taken as input by all other algorithms).

– (skj , pkj)←$PSSE.ClientSetup(DBj , j): party j samples a private/public key
pair (skj , pkj). When omitted, the public key is set to ∅. At this stage, party
j encrypts DBj under pkj, obtains EDBj and sends it to the server.

– bj ← PSSE.Search(EDB, skj ,w, I): is a protocol between client j with input its
secret key skj, and the server with input EDB := ∪N

�=1EDB�. Using skj, party
j can query for a keyword w in the datafiles with index in I. A search query
can support one or multiple (conjunctions of) keywords. The Server returns
to client j a bit bj indicating if the partial search found w in any datafile with
index in I or not.

– b ← Comb(b1, . . . , bN ): after running the Search procedure, the parties com-
bine their individual outcomes locally without interaction with the server and
generate the final outcome of the search query.

In addition, we say a partitionable symmetric searchable encryption scheme is
dynamic if there exists a fifth algorithm:
4 Some of the constructions we propose admit false positives, and therefore we require

that correctness holds with a good enough probability, rather than having over-
whelming/perfect correctness.
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– (EDB′
j , σ

′) ← Update(EDBj , σ, skj , I,w, op): client j encrypts a keyword w
and sends an update query for a specific datafile index set I. The operation op
can be either a delete or insert.

We require any PSSE scheme to satisfy correctness, in the sense that for any
w ∈ {w(1), . . . ,w(d)}, the following quantity is negligibly close to 1:

Pr

⎡

⎣b ← Comb({bj})

∣
∣
∣
∣
∣

pp←$PSSE.Setup(1λ,DB, N)∧
{(skj , pkj)←$PSSE.ClientSetup(DBj , j)}j∈[N ]∧
{bj ← PSSE.Search(EDB, skj ,w, I)}j∈[N ]

⎤

⎦

A PSSE scheme is adaptive secure if the advantage of any PPT adversary in
winning the game in Fig. 2 is negligibly close to 1/2.

We emphasise that a secret sharing scheme would be an option for combining
the individual shares of the parties but it does not allow searching over the
encrypted database for which a SSE is required. PSSE naturally combines both
functionalities.

3.1 Dealing with Malicious Users

Real scenarios are more complex to describe, and often contain entities that are
able to actively cheat, in the sense that they may want to change the outcome of
a search result. To deal with malicious users we modify Definition 5 by giving the
server the possibility to access some verification methods. For example, in our
PSSE using FE, the server checks the ciphertexts, and the keys. Let this methods
be denoted by VerCT,VerKey, and we assume they are globally accessible. In
such a setting, we enforce ClientSetup to return a public key pkj for each user.
Formally, correctness can then be described by requiring the following quantity
to be negligibly close to 1:

Pr

⎡

⎢
⎢
⎣1 ← Comb({bj})

∣
∣
∣
∣
∣
∣
∣
∣

pp←$PSSE.Setup(1λ,DB, N)∧
{(skj , pkj)←$PSSE.ClientSetup(pp, j)}j∈[N ]∧
{bj ← PSSE.Search(pp,EDB,K , j,w)}j∈[N ]∧
VerCT(pkj ,EDBj) = 1 ∧ VerKey(pkj ,K ) = 1

⎤

⎥
⎥
⎦

4 PSSE Instantiations from FE and Trapdoor
Permutation Using BF

In this section we present our PSSE constructions from FE and trapdoor permu-
tation using the functionality of Bloom filters.

4.1 A PSSE Scheme from FE

This part introduces a PSSE protocol based on FE and Bloom filters. The scheme
discussed stems from the one by Goh [11]. It differs significantly from the new
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generation of SSE schemes in the sense that a data structure indexed by datafiles
is used, as opposed to recent works that use structures indexed by keywords [4,5].
This is somehow natural, in the sense that Bloom filters are meant to store
massive datafiles associated to particular documents. It works in two phases: an
offline setup phase is responsible for generating the required parameters for each
Bloom filter and for inserting all document/keyword sets; and an online search
protocol partitioned between N clients allowing them to recover the indices of
the searched elements and to get, through a combine step (Comb), the final
result.

The SSE.Setup algorithm instantiates a symmetric encryption scheme SE
with key KSE to be used to encrypt the (structured) datafiles. A sufficiently
large set of hash functions are also sampled at this stage in order to instan-
tiate the Bloom filters to be used. The Setup, given the database of keywords
DB =

{
(i,w(i))

}
i∈[d]

and the number of users N , proceeds as follows: (1) a set

of Bloom filters BF(i), each consisting in a bit-vector �b(i), is instantiated. For
simplicity, we assume the length of each Bloom filter to be B; (2) each key-
word w(i)

j ∈ DB is inserted into BF(i). Next, the clients proceed as follows:
(3) for each Bloom filter BF(i), the underlying bit-vector �b(i) is split into l

buckets. For simplicity we assume5 that l = N ; (4) each bucket j in BF(i) is
encrypted independently using the mpkj of some party j. Again, for simplicity
we assume a canonical association: bucket j corresponds to party j. During the
SSE.ClientSetup phase, each user independently samples a public-key functional
encryption scheme supporting inner products: (msk,mpk)←$FE.Setup. We note
that for the purpose of searching, a linear functional encryption scheme suffices.
However, more convoluted constructions [13] may support re-encryption queries
and thus they may allow insertions. Each user stores its own secret mskj and
publishes its mpkj . As the scheme is static, each party encrypts its associated
chunk of the Bloom filters and sends the resulting ciphertext to the server, which
stores them.

On the client side, the Search protocol is given a set of query keywords W.
For every queried keyword w ∈ W, the client j proceeds as follows: first, it
determines the places in some bitvector b that must be set to 1 by the hash
functions. Then, each client looks into its allocated chunk: say user j is allocated
chunk j. Finally, the client j derives a functional key for the circuit Cf that
checks if all required corresponding bits to W are set to 1 in chunk j. This
is done by the functionality CircuitCheckBitsAreOne: for each bucket in some
Bloom filter, if some bits are set to 1, then a single circuit-value checker is built.
The output of this circuit consists of a single bit. The server is expected to
run FE.Dec under these circuits (i.e. apply the functional key) for each bucket:
FE.Dec(skf j ,C

(i)
j ) = 1 .

On the server side, the Search protocol will simply evaluate the circuit com-
puting f on the encrypted buckets corresponding to each datafile D(i) and returns
D(i) if all decryptions succeed in returning 1 for the buckets corresponding to

5 One can also consider l as a multiple of the number of participants N .
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BF(i). As discussed in Sect. 2.2, false positives are possible hence the identi-
fication of datafile(s) corresponding to specific keyword(s) is considered with
a reasonable probability. Also, if even a single bit in any chunk is not 1 at
the desired place then the queried keyword does not correspond to the datafile
searched, hence false negative is not possible. Intuitively, the semantic security
of FE should guarantee that nothing is leaked on the message apart from f(M ).

Our PSSE Construction from FE

Definition 6 (Basic Construction). Assuming the existence of sub-
exponentially semantic-secure FE scheme in the public-key setting, the construc-
tion in Fig. 4 is a PSSE scheme for multiple keywords.

Fig. 4. A PSSE scheme using a functional encryption schemes as an underlying primi-
tive.

Correctness. Assuming a query set W is to be checked, for each index i (corre-
sponding to the datafile D(i)), the client computes the positions of 1s as pointed
by some pseudorandom function6. Each position will be part of some bucket.
The client builds the appropriate circuits to check if the required bits in bucket
x are set to 1.

The server uses the functional decryption procedure7 for each bucket and
then for each document. If the FE decryption returns 1 for all positions pointed
by the hash functions, then D(i) contains the searched key with high probability.

6 In some sense we want to preserve the idea behind the Bloom filter construction,
and work with hash functions having pseudorandom outputs.

7 Note however that this step is highly parallelizable.
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Lemma 1. If the static PSSE in Fig. 4 is built on a semantic secure functional
encryption scheme FE supporting a bounded number of functional keys, then it
is PSSEA

PSSE-secure (Fig. 2).

Proof (Lemma 1). We construct the simulator SPSSE described in Definition 5
using the simulator of the underlying FE scheme. Namely, during the PSSE.Setup
procedure, the pp are computed, consisting of the hash functions used to instan-
tiate the Bloom filters, which are then handed to SPSSE, which outputs them.
For the ClientSetup case, N SFE simulators are instantiated, and SPSSE simply
returns as EDB the ciphertexts it receives from the N simulators. During the
Search procedure, the leakage function obtained from the functional keys (and
the ciphertexts) that are exchanged between the clients and the server, consists
only in the FE.Dec(skf ,C ), which is also leaked by the real experiment. Thus,
the two settings are indistinguishable. ��

We observe that an inner-product FE scheme is sufficient for our purpose.
For instance, if a bucket in some bitvector contains m positions set to 1, we
issue a functional key for exactly the same bucket and check if its output is m
(assuming m is small).

4.2 PSSE from Trapdoor Permutation: PSSE from Σoφoς

This section proposes a forward secure SSE scheme supporting a partitioned
search amongst N honest users.
Σoφoς . The starting point of our proposal is Σoφoς [4]. The construction is

keyword-indexed and easy to follow. It uses a master secret key, denoted as KS

to derive a keyword key Kw for each keyword w of interest using a PRF:

Kw ← PRF(KS ,w),

where Kw is used in conjunction with some randomly sampled search token ST0

from the space of admissible tokens M in order to attain the first insertion of w in
the encrypted database corresponding to some document with index in�I. Then,
additional queries will generate new search tokens STc. Concretely, the server
maintains a table T with lines corresponding to users and rows corresponding to
hash value Hash1(Kw||STc) containing the hidden value (Hash2(Kw||STc) ⊕�I),
while the client maintains a table T(j) saving the relation between search tokens
STc and w. To insert w in any new document with index ic, a new search token
STc is derived from ST0. This happens by the means of a trapdoor permutation
Πc:

STc ← Π−1
c (ST0)

obtained through the repeated application of a pseudorandom permutation PRP.
On the server side, things are remarkably simple. Once the client sends

Kw and some search token STc, the server recomputes the hash values
Hash1(Kw||STc), Hash2(Kw||STc) and obtains the index. If more than one index
has been inserted per keyword w, then all search tokens can be recovered, simply
by taking:
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ST0 ← Πc(STc)

and the previous step is applied. Intuitively, Σoφoς enjoys forward security for
the following reason: whenever a new (keyword, index) pair is inserted via the
hash function, the server is not able to derive the search token that is used. Thus
it can’t say which keyword has been inserted, or to which document it belongs
to.

A Forward Secure Partitioned SSE Scheme. We aim at having a scheme
handling update queries while reaching forward security. The gist of the modifi-
cations we make on Σoφoς is to replace the index that identifies the document,
with a more convenient data structure – a Bloom filter. Then, we allocate to each
party a chunk over the bitvector associated to BF. That is, whenever a keyword
is to be inserted at some location, a new Bloom filter is instantiated. Party j
will compute independently its search tokens and will XOR the jth chunk of BF.
The server will store all these chunks in a 2-dimensional array with rows corre-
sponding to the N possible parties and columns to hashes. Whenever queried
by a client for some keyword w, it will identify and return the value of the BF
chunk. In the Comb protocol, the parties would be able to recreate the entire
BF and check if the words are included or not. For technical reasons, we employ
the usage of several hash functions (impersonating random oracles) in order to
obtain a joint computation corresponding to the value during the insert and the
search phases. An algorithmic description of our scheme can be found in Fig. 5.

Fig. 5. A construction of forward-private PSSE based on trapdoor permutations.

Forward Security of PSSE. We show the partitioned Σoφoς achieves forward
security. To this end, we mainly adapt the proof given by Bost in his paper to
our partitioned version in Fig. 5.
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Lemma 2 (Forward Security). Let SS denote the simulator used in the
forward-security of [4]. The partitioned SSE scheme in Fig. 5 achieves parti-
tioned forward security against any PPT adversary A, as defined in Definition
2 under the advantage AdvFW

Σ,R(λ) ≤ N · AdvFW
Σoφoς,A(λ).

Proof (Proof Sketch). Observe that scheme Σ in Fig. 5 can be viewed as N
parallel executions of Σoφoς . A key difference consists in the indices that are
passed by each of the users whenever a keyword is inserted. Naturally, we would
like to re-use the already proven forward security in order to attain the same
property for our partitioned scheme. In doing so, we proceed using a hybrid
argument. A new hybrid game corresponds to simulating the output of the ith

client using the simulator put forward by Bost in [4].
Game0: corresponds to the real experiment in the security game PSSEA

PSSE.
Gamei: we use the simulator in [4] to generate the transcript. The distance

to the previous game is bounded by the forward security of the scheme in [4].
GameN : is identical to the simulated experiment in Defintion 6. ��

Fig. 6. A candidate construction of forward-private PSSE based on trapdoor permu-
tations and verifiable random functions (VRFs) for handling malicious users.
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4.3 Dealing with Malicious Users

Far more challenging is the scenario that deals with malicious users. A gener-
alization of the preceding scheme may also deal with this additional problem
by replacing pseudorandom functions in Fig. 5 by verifiable random functions
(VRF). A VRF consists of a setup phase – generating the public parameters, an
evaluation algorithm – returning an evaluation and a proof for a given input, and
a verification algorithm – validating the outcome of the evaluation process. We
refer to [14] for the formal definition of VRFs. The verifiability property allows
the server to check if a keyword key Kw has been correctly generated by the
client and to abort the search otherwise. We present a candidate construction of
forward-private PSSE based on trapdoor permutations in Fig. 6.

5 Conclusion

In this work, we proposed a new variant of searchable encryption schemes (SSE).
We call it partitioned SSE (PSSE) where datafiles can only be found whenever
all search parties give a collective search request. This combines the best parts of
searchable encryption and secret sharing. We accompany this new variant with
two pragmatic schemes, one based on functional encryption and one on Σoφoς.
Additionally, we showed how the latter scheme can be used in the presence of
malicious users.
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Abstract. With the development of the Internet and computer science,
the demand for collaboration over the Internet is constantly increasing.
The group key agreement (GKA) protocol has been a desirable candidate
for this demand. However, the possibility that some parties in the GKA
protocol may be tampered with by the adversary leads to the stronger
requirement for the GKA protocol. Thus, in this paper, the key exposure
resistant property for the GKA protocol is considered, which is essen-
tial for collaborative applications such as smart homes. In particular,
the secret sharing scheme is utilized to achieve the key exposure resis-
tant property. Also, in the proposed protocol, the rushing attack can be
prevented. Moreover, the group key agreement can be finished in three
rounds, which is efficient, specifically for the resource-constrained nodes
in smart homes. The security and performance analyses demonstrate the
practicality and efficiency of the proposed protocol.

Keywords: Group key agreement protocol · Key exposure · Rushing
attack · Secret sharing

1 Introduction

With the development of the Internet and computer science, wireless communi-
cation technologies [14] have been improved and perfected. Currently, all kinds
of Internet of Things devices [21,23] are connected with the wireless networks,
which consists of smart homes [15], smart grids [27] and smart healthcare [16]
etc. The above systems integrate advanced technologies in computer networks,
electronic engineering and industrial fields to provide a great convenience for
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people’s lives. In particular, these systems integrate devices by the wireless net-
works to aggregate, process and generate data. In most cases, devices need to
adopt a collaborative approach. For one thing, consisting a system means that
devices need to interact with each other. For another thing, it is efficient to
process data in a collaborative way.

Note that the wireless networks is vulnerable to the passive and active
attacks. The attackers can eavesdrop, modify, intercept and replay message in
this opening network environment [24]. Thus, the cryptographic means should
be deployed in the wireless networks to offer security guarantees. The group
key agreement (GKA) protocol has been a well candidate for this demand. The
generated session key can ensure the privacy and authenticity the following com-
munication among the group.

However, the possibility that some parties in the GKA protocol may be
tampered with by adversary leads to the stronger requirement for the GKA
protocol [25]. Also, some secure issues may derived in the GKA protocol if some
parties are malicious. Thus, effective solutions are urgently needed to solve the
security problems in the GKA protocol. In addition, the efficiency should be
taken into consideration due to the fact that the great majority of devices in the
wireless networks is resource constrained. To solve the above mentioned problem,
the GKA protocol with key exposure resistant property is proposed. Moreover,
in order to adapt to the resource-constrained environment, a basic protocol and
an enhanced protocol are designed.

1.1 Our Contributions

– Key exposure resistant for the GKA protocol. In this paper, the key exposure
resistant property of the GKA protocol is supported. In particular, the secret
sharing scheme is adopted, which guarantee the security of the session key
even though some parties’ private keys or sensitive information are exposed.

– Rushing attack resistant for the GKA protocol. In this paper, the rushing
attack resistant property of the GKA protocol is defined and the enhanced
protocol is designed to resist the rushing attack [2]. The rushing attack is
launched by some inside malicious parties who try to choose their contribu-
tions after the witness of the other parties’ contributions. In this way, the
malicious parties can decide the final session key previously while the other
parties would not be aware of this malicious actions. It is obvious that this
action destroys the fairness of the GKA protocol. Thus, by taking advantage
of the homomorphic encryption and the delicate design of the enhanced GKA
protocol, the rushing attack can be prevented from.

– Fault tolerance property for group key agreement protocol. In the wireless
networks, the fault tolerance property should be taken into consideration as
the devices and the communication channel are vulnerable. the fault tolerance
property ensures the common run of the GKA protocol when some devices are
offline or under the deny of service attack. In order to support the fault toler-
ance property, the fault tolerance mechanism is designed. Note that the fault
tolerance mechanism can not only support the fault tolerance property but
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also can decrease the communicational and computational overheads during
the key agreement phase.

– Efficient and adaptive property for the GKA protocol. The efficiency is the
important evaluation indicators for the GKA protocol especially for the
resource-constrained wireless networks. Therefore, in this paper a basic GKA
protocol with entity authentication is proposed. Furthermore, in order to
resist the rushing attack and the key exposure attack, an enhanced GKA
protocol is proposed. It is worth noting that two rounds are required in the
basic GKA protocol while three rounds are required in the enhanced GKA
protocol. In this way, the mode of the key agreement can be selected according
to the requirements for safety and efficiency from various applications.

1.2 Organization

The reminder of this paper is organized as follows. In Sect. 2, the related works
about the GKA protocol are presented. In Sect. 3, the cryptographical prelimi-
naries are introduced. In Sect. 4, the basic GKA protocol and the enhanced GKA
protocol are designed. Section 5 performs the security and the performance anal-
yses. Section 6 draws the conclusion of this paper.

2 Related Works

As an important cryptographic primitive, a large number of key agreement pro-
tocols have been proposed. These focus on the security [20] and efficiency [6,17]
issues of the key agreement protocol together with various properties ranging
from dynamic [28] to collision-resistant [13].

Secret sharing scheme [8,9,19] is the algorithm that distributes a secret to
multiparty and reconstructs the secret with the cooperation of some parties.
According to the definition and property of the secret sharing scheme, construct-
ing the key distribution scheme seems an intuitive extension of the secret sharing
scheme. For example, Chandramowliswaran et al. [5] presented an authenticated
group key distribution protocol by employing the Chinese reminder theory [12].
Hu et al. [10] proposed the key distribution scheme for secure cloud storage by
using the (2, 3) secret sharing scheme. However, the existing key establishment
protocols based on the secret sharing scheme can only achieve the key distribu-
tion, which implies that the session key is generated by a trusted party and then
distributed to the group parties. Also, in these protocols the distribution of the
shares should be performed over a secure channel and an honest third party is
required to reconstruct the secret.

In [24], Wu et al. a privacy-preserving mutual authentication protocol was
proposed. By leveraging the Paillier homomorphic encryption [26] and zero-
knowledge proofs [3], the key protection is achieved. Whereas, the key agreement
protocol for multiparty with the key exposure resistant property was seldom
considered. What is more, the rushing attack in the GKA protocol has been
underestimated for a long time.
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Algorithm 1. ElGamal encryption algorithm
Input: input the plaintext (M, Enc) or the ciphertext (C, Dec)
Output: output the ciphertext C or the M

Detailed algorithm:

1: Initialization:
2: input security parameter l
3: output the cyclic group G and a generator g ∈ G

4: KeyGen:
5: input (g,G)
6: randomly select an element x in Z∗

q and calculate y = gx

7: output the public parameters (g,G, y) and keep the corresponding private key x
private

8: Encryption:
9: input a message M (M ∈ G)

10: randomly select an element r in Z∗
q and calculate C1 = gr and C2 = Y rM

11: output the ciphertext C = (C1, C2)
12: Decryption:
13: input the ciphertext C = (C1, C2)
14: decrypt the ciphertext with the private key x, calculate M = C2/(C1

x)
15: output the plaintext M

3 Preliminaries

In this section, the cryptographic preliminaries that are employed in the proposed
GKA protocol are presented.

3.1 Homomorphic Encryption

ElGamal Encryption Scheme. Given cyclic multipliative group Z∗
q with order

q − 1. The ElGamal encryption algorithm [18] is presented as Algorithm 1.
We note that in the proposed GKA protocol, the homomorphic property of

the ElGamal encryption algorithm is employed to achieve efficient group key
agreement. In particular, the homomorphic property of the ElGamal encryption
algorithm is shown as follows.

Given the ElGamal encryption of two messages Mi and Mj , based on the
homomorphic property the following Eq. 1 holds.

Dec(Enc(Mi) · Enc(Mj)) = Dec(Enc(Mi · Mj)) (1)

The security of the ElGamal encryption scheme is ensured suppose that the
decisional Diffie-Hellman (DDH) assumption [4] holds, which is formally defined
in Definition 1.

Definition 1. The ElGamal encryption scheme is secure against the chosen-
plaintext attacks (IND-CPA), if the advantage AdvCPA

A (K) of the adversary A
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Algorithm 2. Secret sharing algorithm
Input: input the secret s, the number of parties n and the threshold t
Output: output n shares to n parties

Detailed algorithm:

1: Polynomial construction:
2: to share the secret s to n parties with threshold t, the dealer selects t−1 coefficient

a1,a2,a3,......,at−1 at random and constructs the polynomial as

f(x) = s + a1x + a2x
2 + ... + at−1x

t−1

3: Shares generation:
4: to generate the share to party i, the dealer randomly selects xi and calculates

yi = f(xi).
5: Shares distribution:
6: the dealer distribute the share (xi, yi) to party i in a secure channel or in an

encrypted form such that only party i can decrypt.

is negligible. In particular, the advantage AdvCPA
A (K) of the adversary A can be

defined as Eq. 2

AdvCPA
A (K) =

∣
∣
∣
∣
Pr

[

ExpCPA∏
,A (K) = 1

]

− 1
2

∣
∣
∣
∣

(2)

Here, the IND-CPA game can be formally defined as follows. In the IND-CPA
game, the ElGamal encryption scheme is the triplet

∏
= (KeyGen,Enc,Dec).

At the end of the game, if b = b′ returns 1, else returns 0.

ExpCPA∏
,A (K) :

(pk, sk) ← KeyGen(K);
(M0,M1) ← AEncpk(·)(pk);
b ← {0, 1}, C∗ = Encpk(Mb);
b′ ← A(pk,C∗).

3.2 Secret Sharing Scheme

Secret Sharing Scheme. In the secret sharing scheme [9,22], the dealer selects
a secret s and distributes a share to each party in a secure channel. After all
parties have received each shares, the collaboration of the group parties can
reconstruct the secret. In particular, in order to share the secret to n parties
such that the collaboration of at least t parties can reconstruct the secret, the
dealer can run Algorithm 1.

After the Algorithm 2, each party obtains his share. According to the def-
inition of the secret sharing scheme, the collaboration of at least t parties can
reconstruct the secret s. In particular, these parties together can reconstruct the
secret s based on Lagrange interpolation shown in Eq. 3.
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L(x) =
t−1∑

j=0

yj · lj(x) (3)

In Eq. 3, lj(x) =
t∑

i=0,i �=j

x−xi

xj−xi
.

Note that during the reconstruction phase, an honest third party is required
to reconstruct the secret. The security property of the secret sharing scheme
guarantees that any collaboration from less t parties can not reconstruct the
secret.

3.3 The Group Key Agreement Protocol

The group key agreement protocol can be defined as Definition 2.

Definition 2. The group key agreement protocol can be defined as
∏

KA =
{l, N, Init, ConGen,KeyGen}. Where, l is the system security parameter and
N is the number of the group.

– Init. The Init algorithm inputs the system security parameter l and the num-
ber of the group N . Then, the Init algorithm outputs the well-defined group
G for the initialized system with the generator g and each party’s public and
private key pair (pki, ski).

– ConGen. The ConGen algorithm inputs the system public parameters and
the private key ski of each party i. Then, the ConGen algorithm outputs the
contribution generated by each party.

– KeyGen. The KeyGen algorithm inputs the contribution generated by each
party and the private key ski of each party i. Then, the KeyGen algorithm
outputs the session key of the group.

Generally speaking, for the well-designed GKA protocol, the following prop-
erties are satisfactory: 1) entity authentication [1]; 2) key privacy [11]; 3) key
confirmation [7].

3.4 Notations

The notations used in this paper are shown in Table 1.

4 The Proposed Protocol

In this section, the GKA protocol is proposed. In order to satisfy the efficient and
the adaptive requirement of the wireless networks, a basic GKA protocol with
authentication is proposed. After that an enhanced GKA protocol is proposed,
which maintains both the key exposure resistant property and the rushing attack
resistant property.
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Table 1. Notations.

G The multiplicative cyclic group

g The generator of G

Z∗
q The integer set (1, 2, ..., q − 1)

(ski, pki) The signing and verification key pair of party i

(xi, yi) The private and public key pair of party i

Ci,j The message sent from i to j in round 1

σi,j The signature on the message sent in round 1

SID The session identifier

Ti,j , Tc The time stamps

C1, C2, Cj The aggregated contributions

K The session key

sk ∈ Z∗
q The secret of the trusted third party (TTP)

a1, a2, a3, ...., at−1 ∈ Z∗
q Random coefficients selected by TTP

f(x) The polynomial constructed by TTP

H The cryptographic one-way hash function

4.1 The Basic Protocol

In the basic GKA protocol, the authenticated and efficient GKA protocol is pre-
sented based on the ElGamal encryption. The details of the basic GKA protocol
is as follows.

– Initialization: Select two large primes p and q, such that q|(p−1). Generate
a multiplicative cyclic group G of order q − 1 and a generator g ∈ G. Choose
a cryptographic hash function H and set the session identifier SID.

– Key generation: Each party selects an element xi in Z∗
q at random and

calculates yi = gxi . The private and public pair of party is (xi, yi).
– Registration: Each party i registers at a trust authority and obtains his

signing and verification key pair (ski, vki).
– Round 1: In the first round of key agreement, each party i randomly selects

his contribution for the session key as Xi ∈ G. After that for j = 1...n, (j �= i),
party i select a random element ki,j in Z∗

q and calculates C1
i,j = gki,j and

C2
i,j = yj

ki,j · Xi. Then, party i signs the Ci,j = (C1
i,j , C

2
i,j), the session

identifier SID and the current time stamp Ti,j with the signing key σi,j =
Sigski

(Ci,j , SID, Ti,j). Here, the signature scheme is UMF-unforgeable secure
scheme, which consists of three algorithms

∏
= (KeyGen, Sig, V er). After

that, party i sends the message M1
i,j = (Ci,j , σi,j , SID, Ti,j) to each party j,

(j = 1...n, j �= i). Figure 1 illustrates the process in round 1.
– Round 2: In the second round of the key agreement, each party j are

expected to receive n − 1 messages M1
i,j from the other n − 1 parties. Here,

i = 1...n, i �= j. When received the message M1
i,j , party j first checks the time
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Fig. 1. Multicast in round 1.

stamp Ti,j . If Ti,j − Tc > δ, then party j rejects the message. If Ti,j − Tc < δ,
party j verifies the message by checking that V erpki

(σi,j , Ci,j , SID, Ti,j) = 1.
If the message sent by party i is verified, party j calculates the following
equations.

C1 =
n,i �=j∏

i=1

C1
i,j =

n,i �=j∏

i=1

gki,j

C2 =
n,i �=j∏

i=1

C2
i,j =

n,i �=j∏

i=1

yj
ki,j · Xi =

n,i �=j∏

i=1

gxj ki,j · Xi

Figure 2 illustrates the process in round 2.

Fig. 2. Aggregation in round 2.

– Contributions aggregation: In the session contributions aggregation
phase, each party j in the group can calculate the aggregated contributions
with his private key xj and his own contribution Xj . In particular, party j
derives the aggregated contributions by calculating the following equation.

Cj = Xj · C2

C1
xj

– Session key generation and confirmation: In order to confirm the aggre-
gated contributions Cj , each party j in the group calculates V 1

j = H(Cj ||SID),
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V 2
j = Signskj

(V 1
j ||SID) and broadcasts (V 1

j , V 2
j ) Finally, if all the V 1

j

(j = 1...n) are the same, the session key K for party j is computed as
K = H(Cj).

4.2 The Enhanced Protocol

Algorithm 3. Rushing attack on the basic GKA protocol
Input: input the messages sent in round 1 of the basic GKA protocol and the specific

selected value X∗ from party m
Output: output the session key of the group as K = H(X∗)

Detailed algorithm:

Initialization:
party m performs the Initialization, the Key generation and the Registration phases
as that defined in the GKA protocol.
Decision delay :
in order to perform the rushing attack, the malicious party m will not decide his
contribution until all the others have selected and distributed their contributions.
In fact, after the observation of all the other parties’ contributions, the malicious
party m can compute the following equation.

C1 =
n,i�=m∏

i=1

C1
i,m =

n,i�=m∏

i=1

gki,m

C2 =
n,i�=m∏

i=1

C2
i,m =

n,i�=m∏

i=1

ym
ki,m · Xi =

n,i�=m∏

i=1

gxmki,m · Xi

Furthermore, the malicious party m can aggregate all the contributions from all
parties except for himself. To do so, he computes

Cpar
m =

C2

C1
xm

Malicious contribution generation:
Following by the decision delay phase, the malicious party m generates his contri-
bution Xm as

Xm =
X∗

Cpar
m

and distributes it to other parties according to the round 1 defined in the basic
GKA protocol.
Biased session generation:
After the distribution of the malicious contribution from party m, all parties per-
form the Roud 2, the Contributions aggregation and the Session key generation and
confirmation phases as defined in the basic GKA protocol.
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Motivation. In the basic GKA protocol, both the entity authentication and
the key agreement are achieve. Also, the generated session key is fresh and the
security of this key is based on the IND-CPA secure encryption scheme and
the cryptographic one-way hash function. We stress that, in the scenario that
all parties behave honest, the basic GKA protocol is secure. For example, in the
smart home, all devices are local. These devices are being controlled by the trust
authority (i.e. users) and safeguarded by the gateway.

Whereas, the basic GKA protocol still suffers from the rushing attack when
some insiders are malicious. Moreover, the private key of the honest parties may
be exposed by the adversary. For example, when the devices in smart homes
are connected with smart grids, smart healthcare and intelligent transportation
systems, some devices are not physically local. As a result, the rushing attack
could be launched and the key could be exposed.

The key exposure is intuitive, which means that the private key of the party
being exposed owing to careless storage or the control of devices. Whereas, we
stress that due to the key exposure is physical, the corresponding countermeasure
in cryptography requires delicate design. The method to resist the key exposure
is presented in the enhanced GKA protocol. In the following, we demonstrate
how to perform the rushing attack on the basic GKA protocol. Algorithm 3
demonstrates the rushing attack, which is performed by party i. In particular,
by performing Algorithm 3, party m can independently decide the session key
as K = H(X∗) previously.

By performing Algorithm 3, it can be observed that the final session key K
is decided by the malicious party m previously. In fact, the final session key
K = H(X∗) no matter what contributions are selected by the honest parties in
the group. To perform this attack successfully, what the malicious party need to
do is only waiting until all others parties distributes their contributions.

The Key Exposure Resistant GKA Protocol. In the key exposure resis-
tant GKA protocol, the secret sharing scheme is employed to resist the rushing
attack with the key exposure resistant property. The details of the key exposure
resistant GKA protocol is presented as follows.

– Initialization: Select two large primes p and q, such that q|(p−1). Generate
a multiplicative cyclic group G of order q − 1 and a generator g ∈ G. Choose
a cryptographic hash function H and set the session identifier SID.

– Secret sharing: In order to resist the key exposure attack, a trusted third
party (TTP) is introduced. The public and private key pair of TTP is
(PK,SK), in which SK is secure in our system. For a group of n parties
who want to agree on a session key with key exposure resistant property,
TTP selects a secret sk ∈ Z∗

q and a threshold t. Then, TTP selects t − 1
coefficient a1, a2, a3, ...., at−1 ∈ Z∗

q at random. After that, TTP constructs
the polynomial f(x) as

f(x) = sk + a1x + a2x
2 + ... + at−1x

t−1.
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– Key generation: Each party selects an element xi in Z∗
q at random and

calculates yi = gxi . The private and public pair of party is (xi, yi).
– Registration: Each party i registers at TTP. TTP generates a secret share

ski for party i based on the polynomial f(x). Then, TTP sends the share to
party i in a secure channel.

– Round 1: In the first round of key agreement, each party i randomly selects
its contribution as Xi ∈ G. After that, for j = 1...n, (j �= i), party i select a
random element ki,j in Z∗

q and calculates C1
i,j = gki,j and C2

i,j = yj
ki,j · Xi.

Then, party i generates Ci,j = (C1
i,j , C

2
i,j) to party j, (j = 1...n, j �= i). After

that, party i aggregates all the Ci,j in a vector as

Vi = {Ci,1, Ci,2, Ci,3, ......, Ci,i−1, Ci,i+1, ......, Ci,n}.

Finally, party i encrypts (Vi, ski) and sends the encrypted message to TTP.

– Round 2: In the second round of the key agreement, TTP first decrypts
all the received message to obtain (Vi, ski). With the secret shares, TTP
recovers the secret sk′ by the Lagrange interpolation. Then, TTP checks if the
recovered sk′ equal to sk. If sk′ = sk holds, TTP aggregates the contributory
based on the received vector Vi. Figure 3 illustrates the aggregating process.
With vector V1, V2, V3, ......, Vn, TTP generates C1, C2, C3, ......, Cn for party 1
to party n. Here, for party j, Cj = {Cj

1, Cj
2, } is calculated as follows.

Cj
1 =

n,i �=j∏

i=1

C1
i,j =

n,i �=j∏

i=1

gki,j

Cj
2 =

n,i �=j∏

i=1

C2
i,j =

n,i �=j∏

i=1

yj
ki,j · Xi =

n,i �=j∏

i=1

gxj ki,j · Xi

Fig. 3. Aggregation at TTP.

– Round 3: In round 3, TPA sends the aggregated contributions to the corre-
sponding party. Then, each party j in the group can calculate the aggregated
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contributions with his private key xj and his own contribution Xj . In partic-
ular, party j derives the aggregated contributions by calculating the following
equation.

Conj = Xj · Cj
2

(Cj
1)

xj

– Session key generation and confirmation: In order to confirm the
aggregated contributions Cj , each party j in the group calculates V erj =
H(Conj ||SID) and broadcasts V erj Finally, if all the V erj , j = 1...n are the
same, the session key K for party j is computed as K = H(Conj).

5 Security and Performance Analyses

In this section, the security and performance of the proposed GKA protocols are
analyzed.

5.1 Security Analysis

– Session key security. The privacy of the session key can be ensured if
the ElGamal encryption is IND-CPA secure under the DDH assumption. In
particular, under the DDH assumption, the ElGamal encryption is IND-CPA
secure. Thus, the security of the contributions is preserved. Moreover, the
aggregated contributions is secure due to the homomorphic property of the
ElGamal encryption.

– Rushing attack resistant. By performing the enhanced GKA protocol,
each party can generate the session key unbiased. That is because the contri-
butions generated by each party are encrypted and sent to TTP. Without the
private key of TTP, no party can learn the other parties’ contributions. In
this way, the malicious party can not decide the final session key by observing
the other parties’ contributions.

– Key exposure resistant. In the enhanced GKA protocol, if and only if
the recovered secret sk′ is equal to the secret sk stored in TTP, the session
key can be derived. That is because all the contributions are encrypted by
the TTP’s public key. Only TTP can derive the aggregated contributions for
each party. The exposure of some partys’ private keys can not reveal any
contribution of the other parties. Moreover, the exposure with at most t − 1
secret shares can not recover the secret sk due to the security of the secret
sharing scheme. Also note that, by introducing the secret sharing scheme,
the proposed protocol can support fault tolerance property. That is, if some
parties’ secret shares are damaged or lost, the group session key can also be
derived.

5.2 Performance Analysis

Properties Comparison. The features of the proposed basic GKA protocol
and the enhanced GKA protocol are compared with that of in protocol [24].
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Table 2 shows the comparison results, which indicates that the enhanced protocol
can support multiparty with various properties such as rushing attack resistant
and fault tolerance over the other two protocols. In Table 2, the basic GKA
protocol and the enhanced GKA protocol are represented as GKA1 and GKA2,
respectively.

Table 2. Properties comparison.

Features GKA1 GKA2 Protocol [24]

Entity authentication � � �

Key confirmation � � �

Key exposure resistant × � �

The number of parties n n 2

Rushing attack resistant × � ×
Honest third party × × ×
Fault tolerance × � ×
Adaptive × � ×
Communicational rounds 2 3 4

6 Conclusion

In this paper, we focus on the security properties of the GKA protocol. By intro-
ducing a TTP and employing the secret sharing scheme, the rushing attack in
the GKA protocol can be resisted. Moreover, the key exposure attack is resisted
due to the security of the secret sharing scheme. It is worth noting that the
employment of the homomorphic encryption protects the privacy of contribu-
tions and also reduces the computational overhead of parties. Thus making the
proposed GKA protocol practical in resource-constrained environment.
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Abstract. A multi-party non-interactive key-exchange (NIKE) scheme
enables N users to securely exchange a secret key K in a non-interactive
manner. It is well-known that NIKE schemes can be obtained assuming
the existence of indistinguishability obfuscation (iO).

In this work, we revisit the original, iO-based, provably-secure NIKE
construction by Boneh and Zhandry, aiming to simplify it. The core
idea behind our protocol is to replace the functionality of the obfuscator
with the one of an affine determinant program (ADP). Although ADPs
have been designed with the purpose of attaining indistinguishability
obfuscation, such implication is left open for general circuits.

The ingredients enabling to prove the security of our scheme stem into
a more careful analysis of the branching programs needed to build ADPs.
In particular, we show:
1. An intuitive indistinguishability notion defined for ADPs of punc-

turable pseudorandom functions (PRFs) is sufficient to prove security
for NIKE.

2. A set of simple conditions based on ADP’s branching program topol-
ogy that are sufficient for proving indistinguishability of ADPs. We
leave open the question of finding ADPs satisfying them.

Keywords: NIKE · Branching programs · ADP

1 Introduction

Key-exchange [8] is arguably the simplest public-key cryptographic protocol, and
probably one of the most used in real world applications. Intriguingly, since its
introduction for the case of two parties, and the advances in exchanging keys
between three parties [14], few progress has been achieved in obtaining provable,
non-interactive key-exchange protocols between multiple parties (at least four
for the problem at hand).

In the last decade, it has been shown that the existence of secure advanced
cryptographic primitives, such as multilinear maps [9] or indistinguishability
obfuscation (iO) [1] would imply the existence of such non-interactive key-
exchange protocols [5]. Until recently, the security of the former cryptographic
primitives was less understood, and the problem of building NIKE schemes
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remained open. A stream of recent works [3,11,12] culminated with the break-
through result that iO can be obtained from well-understood assumptions [13].
Such results posit the problem of obtaining NIKE in the realizable landscape.

In our work, we propose a new instantiation of the NIKE scheme put forth by
Boneh and Zhandry [5], while replacing the circuit to be iO-obfuscated with an
affine determinant program [3]. To this end, we proceed with a brief description
of the scheme we use, followed by the techniques that allow to plug in the ADP.

1.1 Prior Work on NIKE

NIKE from iO. Boneh and Zhandry [5] put forth a simple NIKE protocol,
which can be described as follows: assume that N participants into the protocol
have access to a public set of parameters pp. Each participant computes and
publishes terms that are designated to the remaining N -1 entities. Finally, each
party u, by knowing its own secret key sk(u) as well as the N -1 terms published
by other parties, is able to compute the exchanged key.

Concretely, imagine the exchanged key is retrieved as the output of a specific
circuit C applied over the input domain {0, 1}N×h′

where h′ denotes the length
of each sk(u). Essentially, C does two things: (1) performs a check that someone
using the circuit is authorized to evaluate the key exchange function; (2) com-
putes the result of a (puncturable) PRF over the joint inputs, then outputs K
as an exchanged key (see Fig. 1).

Fig. 1. Each party u knows its own private key sk(u) and releases sk(u) ← PRG
(
sk(u)

)
.

On input u, sk(u), and the released values
{
sk(v)

}
v∈[N ]

, the circuit checks whether

PRG
(
sk(u)

)
= sk(u), in which case a PRF value is returned.

The verification subroutine of the circuit C requires to know the pre-image
of some PRG value: user u is required to provide sk(u) in order to be checked
against the already published sk(u), where sk(u) ← PRG(sk(u)). If the check
passes, evaluate pPRF over all published values and learn

K ← pPRF.Eval
(
pPRF.k, sk(1)|| . . . ||sk(N)

)
.

For the proof, the authors require the PRG to stretch the inputs over a larger
output domain, emphasizing that a length-doubling PRG suffices for this task.
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The correctness of the scheme follows as all parties evaluate the pPRF in the
same point and under the same key. Intuitively, security stems from the necessity
to provide a preimage for PRG in order to be able to evaluate pPRF.

1.2 Our Result and Techniques

Our main result is a new instantiation of the multi-partite NIKE protocol pro-
posed in [5]. Our key ingredients are affine determinant programs for puncturable
functionalities reaching a natural indistinguishability notion.

Theorem 1 (Informal). Assuming the existence of secure length-doubling
pseudorandom generators, secure puncturable pseudorandom functions in NC1,
and indistinguishably-secure affine determinant programs, there exists a secure
NIKE scheme for N parties.

As our NIKE construction is close to the one in [5], we begin with the intuition
for affine determinant programs (introduced in [3]) for PRFs and then present
an overview of our techniques.

Affine Determinant Programs - Setup. The idea behind ADPs is to use
branching programs in conjunction with decomposability. Consider a PRF keyed1

by k and its ith bit restriction PRFi as a function from {0, 1}k+n to {0, 1}.
Assume the circuit representation of PRFi is C i and that it belongs to NC1

(this is the class we are interested in). We can infer that its branching pro-
gram has polynomial size [6]. For each C i, let Gi

k||input denote the adjacency
matrix2 of its branching program BPi. Following known techniques [10], we
slightly post-process this adjacency matrix of BPi, by removing its first col-
umn and last row, in order to obtain G

i

k||input. Then, we left/right multiply it
with random binary invertible matrices Li,Ri. The resulting matrix Ti

k||input
satisfies: det

(
Li · Gi

k||input · Ri
)

︸ ︷︷ ︸
Ti

k||input

= BPi(k||input) = C i
k (input), where “det”

denotes the determinant over F2. The crux idea is to decompose each entry
(u, v) of Li · Gi

k||input · Ri into sums of inputj-dependent monomials:

Ti
u,v,k||input ← Ti

u,v,k + Ti
u,v,input1

+ . . . + Ti
u,v,inputn

, (1)

where each Ti
u,v,�0j

,Ti
u,v,�1j

is a sum of degree-three monomials of the form: lα ·
gβ · rγ . Oversimplified, to enable the simulation of Ti

u,v,k||input in Eq. (1), we
reveal all pairs {Ti

u,v,�0j
,Ti

u,v,�1j
}, as depicted in Fig. 2.

1 The length of the key is k.
2 The structure of adjacency matrix is settled by both k and input, a fact reflected in

the notation Gi
k||input.
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k: 1 2 · · · |k|-1 |k|
1 0 · · · 1 0

M : 1 2 · · · |input|
0 0 · · · 0 0

1 1 · · · 1 1

Fig. 2. An element Ti
u,v,k is provided for the bits of the key k, while ele-

ments Ti
u,v,inputj

correspond to the bits in the binary decomposition of the mes-

sage. We assume input = (0, 1, . . . , 0, 0), meaning that the coloured encodings
{Ti

u,v,�01
,Ti

u,v,�12
, . . . ,Ti

u,v,�0|input|−1
,Ti

u,v,�0|input|
} are selected and added to Ti

u,v,k.

The setup of the ADP proceeds by generating the branching programs of
each boolean function PRFi and the corresponding adjacency matrices. Then, it
samples the invertible matrices Li,Ri to obtain the set:

{
Ti

u,v,k,T
i
u,v,input1

, . . . ,Ti
u,v,inputn

}

These values are published, for all i and for all entries (u, v) and constitute the
affine determinant program corresponding to the keyed function PRF.
Affine Determinant Programs - Evaluation. Running the ADP.Eval is
straightforward. Given the input message input := (input1, . . . , inputn), a first
step reconstructs Ti

u,v,k||input ← Ti
u,v,k +Ti

u,v,input1
+ . . . +Ti

u,v,inputn
, by simply

selecting the terms corresponding to input1, . . . , inputn. In this way, we recover
a value Ti

u,v,k||input corresponding to some position (u, v).
Repeating this reconstruction for every entry (u, v), we recover the desired

matrix Ti
k||input. Then, ADP.Eval computes the determinant of Ti

k||input and recov-
ers one bit in the output of C . This step is repeated for every output bit i of
C . We stress that Ti

k||input ← Li · Gi

k||input · Ri, and its determinant is in fact

C i
k (input) (C ’s ith output bit) where G

i

k||input is “close to” the adjacency matrix
of BP.
Affine Determinant Programs - Reducing the Size of the Program.
The size of ADPs can be improved in the following way: instead of releasing
both values Ti

u,v,�0j
and Ti

u,v,�1j
, we add to Ti

u,v,k the sum corresponding to the

all-zero message: Ti
u,v,k +

∑n
j=1 Ti

u,v,�0j
. To ensure correctness, we release the

difference terms corresponding to each:

Ti
Δu,v,j

← Ti
u,v,�1j

− Ti
u,v,�0j

, (2)

which can be used to reconstruct the sum in Eq. (1). We stress that a user could
always recover the difference of monomial-sums depending on 1 and 0 in posi-
tion (u, v) if it was given both Ti

u,v,�0j
and Ti

u,v,�1j
. Informally, by providing the

difference, we also reduce the amount of information provided to the adversary.
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NIKE from IND-Secure ADPs. We observe that ADPs corresponding to
puncturable PRFs that enjoy a natural indistinguishability property, suffice for
our proof. By indistinguishability, we mean that given two different punctured
keys3 for two different points, which are embedded in two equivalent circuits4, the
ADPs of such circuits are indistinguishable. We are able to prove NIKE security
under indistinguishable ADPs only for circuits which have identical structure but
embed different keys. This latter fact constrains us to use a punctured key in
our real NIKE protocol in order to make the proof of Theorem 1 work, as usually
pPRF.Eval(·) and pPRF.PuncEval(·) have different circuit representations, and
ADP indistinguishability will not be achievable.

More interesting than the NIKE proof is the ADP indistinguishability. In the
full version we provide a thorough analysis of ADPs’ security. To this end, we
rewrite ADPs into a form that isolates the differing variables occurring in the
BP’s adjacency matrices. The lack of standard complexity assumption to work
with forces us to investigate the perfect security. Finally, we show that ADPs
admitting BP representations having the first line set to (0, . . . , 0, 1) and where
the input dependent nodes occur “after” the sensitive nodes admit perfectly
secure ADPs. We leave open the problem of obtaining such BP representation.

Paper Organization. In Sect. 2, we introduce the standard notations to be
adopted throughout the paper, followed by the definitions of the primitives that
we use as building blocks. Section 3 reviews the construction of randomized
encodings from branching programs and introduces the novel concept of aug-
mented branching programs In Sect. 4, we describe our NIKE scheme. Section 5
describes our conditions on circuits and BPs to admit indistinguishably-secure
ADPs, while in the full version we provide a detail look into ADPs and prove
they achieve indistinguishability.

2 Background

Notations. We denote the security parameter by λ ∈ N
∗ and we assume it

is implicitly given to all algorithms in the unary representation 1λ. An algo-
rithm is equivalent to a Turing machine. Algorithms are assumed to be ran-
domized unless stated otherwise; ppt stands for “probabilistic polynomial-time”
in the security parameter (rather than the total length of its inputs). Given
a randomized algorithm A we denote the action of running A on input(s)
(1λ, x1, . . . ) with uniform random coins r and assigning the output(s) to (y1, . . . )
by (y1, . . . )←$ A(1λ, x1, . . . ; r). When A is given oracle access to some proce-
dure O, we write AO. For a finite set S, we denote its cardinality by |S| and
the action of sampling a uniformly at random element x from X by x←$ X. We
let bold variables such as �w represent column vectors. Similarly, bold capitals
usually stand for matrices (e.g. A). A subscript Ai,j indicates an entry in the

3 This is a significant difference to [5].
4 The circuits are equivalent by preventing the evaluation of the pPRF at the punctured

points through simple sanity checks.



NIKE from Affine Determinant Programs 103

matrix. We abuse notation and write α(u) to denote that variable α is associ-
ated to some entity u. For any variable k ∈ N

∗, we define [k] := {1, . . . , k}. A
real-valued function Negl(λ) is negligible if Negl(λ) ∈ O(λ−ω(1)). We denote
the set of all negligible functions by Negl. Throughout the paper ⊥ stands for
a special error symbol. We use || to denote concatenation. For completeness, we
recall standard algorithmic and cryptographic primitives to be used. We consider
circuits as the prime model of computation for representing (abstract) functions.
Unless stated otherwise, we use n to denote the input length of the circuit, s for
its size and d for its depth.

2.1 Randomized Encodings

Definition 1 (Randomized Encoding Scheme). A randomized encoding
scheme RE for a function f : {0, 1}n → Y consists of a randomness distribution
R, an encoding function Encode : {0, 1}n ×R → {0, 1}	, and a decoding function
Decode : {0, 1}	 → Y. A randomized encoding scheme RE := (R,Encode,Decode)
should satisfy:

– Correctness. For any input M ∈ {0, 1}n,

Pr
R←R

[Decode(Encode(M ;R)) = C (M )] = 1.

– Security. For all M ,M ′ ∈ {0, 1}n with C (M ) = C (M ′), the distribution of
Encode(M ;R) is identical to the distribution of Encode(M ′;R) when sampling
R ←$ R.

The definition of security can be relaxed, just requiring that Encode(M ;R) and
Encode(M ′;R) cannot be effectively distinguished by small circuits. Formally:

– (s, δ)-Security. For all M ,M ′ ∈ {0, 1}n such that C (M ) = C (M ′), for any
circuit C : {0, 1}	 → {0, 1} of size at most s,

Pr
R ←$ R

[C (Encode(M ;R)) = 1] − Pr
R ←$ R

[C (Encode(M ′;R)) = 1] ≤ δ.

2.2 Multi-party Non-interactive Key-Exchange

Non-interactive key-exchange (multi-partite) is a beautiful problem in cryptog-
raphy. All known, provably-secure constructions rely on either multilinear maps
or iO constructions. NIKE definition follows.

Definition 2. A non-interactive key-exchange (NIKE) scheme consists in a
triple of polynomial-time algorithms (Setup,Publish,KeyGen) behaving as follows:

– pars←$ Setup(1λ, N): given the security parameter λ in unary and the number
of participant parties N , the algorithm generates the public parameters pars.

– (pk(u), sk(u))←$ Publish(pars, u): each party u of N taking part into the pro-
tocol derives its own secret and public keys. While sk(u) is kept secret, pk(u)

is publicly disclosed.
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– K ←$ KeyGen(pars, u, sk(u), pk(u), pk(v∈S)): the key-generation procedure cor-
responding to party u ∈ [N ] uses its secret key sk(u) together with the public
keys of all participants v ∈ [N ] to derive the common key K .

The correctness requirement states that any two parties u and v must derive
the same key K : ∀(u, v) ∈ [N ] × [N ] :

Pr

[
Ku = Kv

∣∣∣∣∣
Ku ←$ KeyGen(pars, u, sk(u), pk(v∈[N ])) ∧
Kv ←$ KeyGen(pars, v, sk(v), pk(u∈[N ]))

]
∈ 1 − Negl(λ).

Security: The security experiment we present corresponds to the static version
of the one presented in [5]. Namely, the advantage of any ppt-bounded adversary
in winning the game defined in Fig. 3 (left) is bounded:

AdvIND−NIKE
A,NIKE (λ) :=

∣∣∣∣Pr
[
1←$ IND − NIKEA

NIKE(λ)
]

− 1
2

∣∣∣∣ ∈ Negl(λ).

Fig. 3. Games defining the security of pseudorandom functions (right), NIKE (left).

2.3 Affine Determinant Programs

Section 1 provides the intuition behind Affine Determinant Programs. Below, we
formalize the notion, as introduced in [3], but postpone the formal construction
from randomized encodings of branching programs to Sect. 3.3.

Definition 3 (Affine Determinant Programs). An affine determinant pro-
gram consists of two ppt algorithms:
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– Prog←$ ADP.Setup(1λ,C ): the Setup is a randomized algorithm such that
given a circuit description C of some function C : {0, 1}n → {0, 1}, output
a program Prog consisting of n + 1 square matrices Ti over some algebraic
structure S and having dimensions poly(n). The matrices correspond to C .

– b ← ADP.Eval(Prog,M ): given the program Prog and some input M , return a
value b. b is computed as the determinant of the subset sum: T0 +

∑n
i=1 TMi

i .

Correctness: For all M ∈ {0, 1}n, it holds that

Pr
[
C (M ) = ADP.Eval(Prog,M )

∣∣Prog←$ ADP.Setup(1λ,C )
]

= 1.

Security: We say that a ADP scheme is IND − ADP secure with respect to a class
of circuits Cλ, if ∀(C1,C2) ∈ Cλ × Cλ such that ∀M ∈ {0, 1}λ,C1(M ) = C2(M )
it holds that

∣
∣
∣
∣
Pr

[
b ←$ A(1λ,Prog)

∣
∣ b ←$ {0, 1} ∧ Prog←$ ADP.Setup(1λ,Cb)

] − 1

2

∣
∣
∣
∣
∈ Negl(λ).

The security definition above makes clear the link between the security of an
iO obfuscator [1] and indistinguishability for ADPs. Trivially, a secure IND − ADP
affine determinant program gives rise to an indistinguishability obfuscator for
the specific class of circuits.

3 Warm-Up: ADP from Randomized Encodings

3.1 Randomized Encodings via Branching Programs

A branching programs corresponds to a sequential evaluation of a function.
Depending on each input bit, a specific branch of a circuit computing the func-
tion is followed until a terminal node – 0 or 1 – is reached (we assume we
only work with single bit output functions). We highlight that any function
C : {0, 1}n → {0, 1} in NC1 admits a polynomial size branching program rep-
resentation. As a consequence of this fact, any function C ′ : {0, 1}n → {0, 1}n′

can be thought of as a concatenation of n′ branching programs, each outputting
a single bit. In an acclaimed result, Barrington [2] shows that the shorter the
depth of the circuit representation of C , the shorter the length of the branching
program. In independent results, Ben-Or and Cleve [7] show a matrix-based ver-
sion of Barrington’s proof, where the length of the branching program is constant
for constant depth circuits.

In this work, we consider GM to be the adjacency matrix corresponding
to the branching program of some C : {0, 1}|M | → {0, 1}. Let, for technical
reasons, the main diagonal be 1s and let each row have at most one extra 1
apart from the 1 appearing on the main diagonal. Let GM stand for the matrix
obtained by removing the first column and the last row of GM . As shown in
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[10], C (M ) = det(GM ). Furthermore, two matrices Rl and Rr (sampled from
a designated distribution) exist, such that the following relation holds:

Rl · GM · Rr =
(

0 C (M )
I 0

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 C (M )
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

= GC (M ) ∈ GF(2)m×m

Such a representation of C (M ), as a product of fixed matrices Rl and Rr

plays a role in the simulation security of the randomized encoding. Concretely,
the value C (M ) is given to the simulator, which, in turn, is able to simulate a
product of either full-ranked matrices or of rank m− 1, as enforced by the value
of C (M ). Therefore, this representation confers an innate randomized encoding.
The decoder in the randomized encoding has to compute the determinant of
Rl · GM · Rr and recover the value of C (M ), given that Rl,Rr are full ranked
matrices. For clarity, Rr ∈ GF(2)m×m and Rl ∈ GF(2)m×m have the following
forms:

Rr =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 $
0 1 0 . . . 0 $
...

...
...

...
...

0 0 0 . . . 1 $
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

, Rl =

⎛
⎜⎜⎜⎜⎜⎝

1 $ $ . . . $ $
0 1 $ . . . $ $
...

...
...

...
...

0 0 0 . . . 1 $
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

A generalization of the previous observation would use different distributions
for Rl,Rr. To this end, let L and R be two matrices sampled uniformly at
random from the set of invertible matrices over GF(2)m×m (i.e., Rl and Rr are
full rank). One can express L ← L′ · Rl and R ← Rr · R′ . Note that:

L · GM · R = (L′ · Rl) · GM · (Rr · R) = L′ · (Rl · GM · Rr) · R
= L′ · GC (M ) · R′ (3)

Since L′ and R′ are full-rank matrices, det
(
L · GM · R)

= det
(
GM

)
= C (M ).

On a different note, we can observe that each of the m×m entries of the result-
ing matrix TM ← L · GM · R, can be expressed as a sum of monomials of
degree three. As noted in [10], while “splitting” each entry Ti,j into monomials,
no monomial depends on more than one input bit of M . Also, each monomial
includes one component from each of L and R. Put differently, each monomial
contains at most one entry from GM , which is M -dependent. We return to such
a representation while reaching the proof of our construction.

3.2 Augmenting NC1 Branching Programs for Keyed Functions

This part will be used exclusively in the proof provided in the full version and
readers may skip it for the moment and return to it later. In short, we introduce
a method to augment a branching program with a set of intermediate nodes
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without changing the behaviour of the program, having the purpose of isolating
“sensitive” variables. We use the terminology introduced in Sect. 3.1. To this
end, consider the branching program BP corresponding to some keyed function
represented by C (k||M ); its graph representation consists of two complementary
sets of nodes: one containing the nodes depending on the secret (k), and the
other ones depending on the input (the message M 5). Assume the secret key k
is fixed (embedded in the circuit), a fact that settles the nodes depending on k
in BP.

What we mean through an augmented branching program is an extra set of
nodes that is to be added to the graph of BP. Let v denote a vertex depending
on k and let u be any other vertex such that there is an arc v → u in the digraph
representation of BP. We introduce an auxiliary node α between v and u. Now,
v is no longer directly connected to u, but rather the link becomes v → α → u.
We present this pictorially in Fig. 4.

Fig. 4. Left: original branching program. Right: augmented branching program corre-
sponding to C . The auxiliary nodes (4–7) are depicted in blue while red nodes (2,3,11)
correspond to nodes settled by the bits of the secret key of the permutation. (Color
figure online)

Definition 4 (Augmented Branching Programs for NC1). Let BP be the
branching program corresponding to some circuit Ck ∈ NC1 that embeds k. Let V
denote the set of vertices settled by k. For any vertex v ∈ V let u be a vertex such
that there exists an arc from v to u. Define the augmented branching program
ABP by extending the BP graph and introducing an intermediate vertex α on the
path between any node v depending on k and any child vertex u.

We show that augmenting a branching program preserves the behaviour (cor-
rectness) of the original branching program. It is easy to observe that while
working over F2, computing the determinant is equivalent to computing the
permanent [15] of a matrix. To deduce correctness of the output, think at the

5 We assume that any other node (if any) that is input-independent is included in the
first set.
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determinant as the sum of m! permutations. If there exists a path from the start
node to the node that represents 1, then this path, in conjunction with the 1s
on the second diagonal will make one of the sums occurring in the development
of the permanent be 1.

The size of the augmented branching program ABP is upper-bounded by
3 × |BP|. Assuming the original branching program has |BP| nodes, each key-
dependent node will add two other nodes. Hence the very loose bound of 3×|BP|.

The main advantage conferred by ABPs is a decoupling of the rows (or
columns) in R (or L) that depend on the sensitive input (k) from the rest of the
nodes. More explicitly, when the dependency graph G is multiplied with R, the
lines in R that are triggered by the nodes depending on k are separated from
the lines in R that are triggered by the message. Similarly, the columns in L
can be split in three independent sets, depending on either k, the message or the
auxiliary variables (note the asymmetry to R, where we only split the rows in
twain).

3.3 ADPs for Keyed Functions from RE

We turn to the usage of randomized encodings for branching programs described
in Sect. 3.1, preserving the goal of instantiating ADPs for keyed functions6. We
treat each Ti

k||input independently, as the product of three matrices. Explicitly,
this is:

Ti
k||input ← Li ·

(
G

i

k||input · Ri
)

, ∀i ∈ [|input|] (4)

Remark 1. We remind that for the NIKE scheme, the length of input is N · h,
and we treat each bit i ∈ μ of the exchanged key K independently.

ADP.Setup: Using the intuition provided in Sect. 1, we provide an explicit form
for:

Ti
k||�0 ← Li · Gi

k||�0 · Ri (5)

The program Progi will consist of Ti
k||�0 as well as the additional set:

{
Ti

Δj
← Li ·

(
G

i

k||�1j − G
i

k||�0j
)

· Ri

)}

j∈[N ·h]
(6)

for each output bit i.
ADP.Eval : to run Progi and recover the output of C i

k (input) proceed as follows:

C i
k (input) = det

⎛
⎝Ti

k +
N ·h∑
j=1

inputj · Ti
Δj

⎞
⎠ (7)

6 Note that we are mainly interested in ADPs for puncturable PRFs.
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4 Multi-party NIKE via ADP

Our NIKE scheme follows from the one in [5]. The main significant difference
consists in implementing a puncturable PRFs through affine determinant pro-
grams, instead of using the full power of an indistinguishability obfuscator for
P/poly7. The security analysis follows in Sect. 4.2.

4.1 Our NIKE Scheme

We remind below some useful notations to be used: μ stands for the length of
the key to be exchanged, sk(u) denotes the secret key corresponding to party u

having length h, and sk(u) denotes the public key.

Definition 5 (NIKE Scheme for N parties). Let PRG : {0, 1}h → {0, 1}2h

denote a secure pseudorandom generator, and let pPRF : {0, 1}(N ·2h)+1 →
{0, 1}μ denote a secure puncturable pseudorandom function. Let ADP :
{0, 1}N ·2h → {0, 1} denote an affine determinant program reaching indistin-
guishability. Define a NIKE scheme as follows.

– NIKE.Setup(1λ, N, h, μ): the Setup is given a number of parties N , the length
μ of the exchanged key and the length h of each party’s secret keys. For each
i ∈ [μ], initiate the public parameters pp ← ∅. For each i ∈ [μ], repeat the
following steps:
(1) Sample a pPRF key and puncture it at point 0N ·2h+1:

ki ← pPRF.Puncture(pPRF.KeyGen(1λ),0N ·2h+1).

(2) Consider the following circuit C i:
(3) Instantiate an ADP from this circuit: Progi ← ADP.Setup(1λ,C i

pPRF.ki
).

(4) Add to pp the program Progi: pp ← pp∪Progi. Publish the public param-
eters pp.

– NIKE.Publish(pp, u):
(1) u samples {sk(u)i }i∈[μ] ←$ {0, 1}h.

(2) u publishes the following value as her public key: sk
(u)
i ← PRG

(
sk

(u)
i

)
.

These steps are repeated for all i ∈ [μ].

– NIKE.KeyGen(pp, u, {sk(u)i }i∈[μ], {Progi}i∈[μ], {sk(v)i }i∈[μ],v∈[N ]):

(1) Provide to Progi the input u, sk
(u)
i , {sk(v)i }v∈[N ] and set

Ki ← ADPi.Eval
(
Progi,

(
u, sk

(u)
i , {sk(v)i }v∈[N ]

))
.

Repeat these steps for all i ∈ [μ] (Fig. 5).

7 An astute reader may notice that, in fact, an iO for NC1 would suffice here, as we
assume the existence of pPRFs in NC1.
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Fig. 5. Note that the pPRF can only be evaluated on half of its input space, as 1 is
concatenated to every input. This is a noticeable difference to [5].

Proposition 1. The construction in Definition 5 is correct.

Proof (Proposition 1). See full paper.

4.2 Security from IND-Secure ADP

The proof is structured similarly to the one in [5], up to the variation in the
usage of ADP. A second notable difference concerns the usage of a punctured
PRF key in the real construction: mind the fact that our circuit evaluates the
pPRF exclusively in inputs having the first bit set to 1, while the punctured
key is punctured under a point having the first bit set to 0. Hence, the pPRF
evaluation is always possible. The reason behind embedding a punctured key
in the real construction is that we can only prove indistinguishability for ADPs
under identically structured branching programs. Put differently, it is usually
the case that the normal and punctured evaluation procedures differ for existing
pPRFs in NC1, while we want a unique pPRF.Eval procedure (e.g., [4]).

We also stress that we consider only the static security notion (Definition 5).

Theorem 2. Let NIKE be the scheme described in Sect. 4.1. Let PRG be a secure
pseudorandom generator and pPRF denote a secure puncturable pseudorandom
function. Then, the NIKE scheme in Sect. 4.1 is secure according to Definition 5.

Proof (Theorem 2). The proof follows through a hybrid argument.

Game0: this is the real game, where the adversary is provided either the real
exchanged key K or some value sampled uniformly at random.

Game1.0: is identical to Game0.
Game1.u: in this game, we change the distribution of the published parameters

pp; instead of issuing sk(u), as the output of the PRG(sk(u)), party u samples
sk(u) over {0, 1}2h. The distance to the previous game is bounded by the
security of the PRG. Most importantly, the newly sampled point is not in the
co-domain of the PRG with overwhelming probability, due to the PRG stretch.
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Game1.N : all public parameters sk(u) are sampled uniformly.
Game2: in this game, the original puncturable PRF key is replaced with a new

one, which is punctured in the point 1||sk(1)|| . . . sk(N). Mind the fact that
originally, the key has been punctured in the all-0 point, while the pPRF
has been evaluated in an input that always began with 1 (i.e. the evaluation
happened for all inputs); for the second case, we note that the PRF will not
evaluate over (sk(1)|| . . . ||sk(N)) as these points have no pre-image in the PRG
domain. This happens thanks to the stretch of the PRG. Therefore, the two
circuits are equivalent. The advantage of any adversary in noticing this game
hope is negligible, down to the IND − ADP security of our ADP,

In Game2, we can bound the advantage of an adversary in retrieving a bit in
the K by the advantage of an adversary in guessing the output of the pPRF
in the challenge (punctured) point. Concretely, the pPRF game provides the
reduction with a key punctured in the challenge point. This punctured key will
be embedded into the circuit. The adversary is also provided with the challenge
value the pPRF game provides, which corresponds to either the real NIKE key
K (i.e. the real pPRF evaluation) or a uniform value. If the adversary correctly
guesses, then it wins the pPRF game. We apply the union bound, and conclude
that the advantage of any ppt bounded adversary in winning the IND − NIKE
game is upper bounded by:

AdvIND−NIKE
A,NIKE (λ) ≤ μ ·N ·Advprg

A1,PRG(λ)+μ ·AdvIND−ADP
A2,ADP (λ)+μ ·Advpuncture

A3,pPRF (λ) (8)

where the right hand side is negligible. ��

5 Sufficiency Conditions for IND-Secure ADP

Section 1 provides the intuition behind Affine Determinant Programs. The secu-
rity definition of ADPs makes clear the link between the security of an iO obfus-
cator [1] and indistinguishability for ADPs. Trivially, a secure IND − ADP affine
determinant program gives rise to an indistinguishability obfuscator for our spe-
cific class of circuits.

Furthermore, we can strengthen the security definition in the following sense:
for specific classes of functions, it can be the case that ADP.Setup(1λ,C0;R0) =
ADP.Setup(1λ,C1;R1). That is, for two equivalent functions, we obtain the same
implementation under two different sets of randomness coins, namely R and R′.

Definition 6 (Colliding-Secure ADPs). We say that two different circuits
C0 and C1 admit ADP implementations that are colliding-secure if for any R0,
there exists a unique R1 such that:

ADP.Setup(1λ,C0;R0) = ADP.Setup(1λ,C1;R1).
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5.1 Admissible Classes of Functions for Matrix-Based ADPs

A relevant theory should link affine determinant programs to existing problems
in cryptographic landscape. Such problems are, for instance, multi-party non-
interactive key-exchange schemes or indistinguishability obfuscation. The two
primitives can be obtained if there exist obfuscation for puncturable pseudoran-
dom functions, as shown by Boneh and Zhandry for the case of NIKE, and by
Pass et al. for the case of iO (via XiO).

What We Require for Matrix-Based ADPs. Given these observation, our
main goal would be to achieve IND − ADP (in fact PS−ADP) branching program-
based ADPs for relevant puncturable functions. We state informally the require-
ments we have over the admissible classes. The requirements are enforced either
by the envisioned applications or by the envisioned proof technique.

Requirement 1: The first requirement concerns the depth of circuits. We need
circuits to admit branching programs. Thus we need circuits in NC1.

Requirement 1. Let Cd,k+n denote a class of circuits of depth d and input
length k + n. A necessary condition for Cd,k+n to admit a matrix-based ADP
implementation is

d ∈ O(log(k + n)).

Requirement 2: Considering that our envisioned applications are built over
pseudorandom functions, we are interested in ADPs for keyed functions. Thus
we can think at their inputs as concatenation of “k||input”. Our function that
is modeled by some circuit can be described as:

f : {0, 1}k+n → {0, 1}.

Requirement 2. Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit an PS−ADP-secure imple-
mentation is that every C ∈ Cd,k+n models a two input function C : {0, 1}k+n →
{0, 1}.
Requirement 3: We only consider functions that are non-constant under differ-

ent keys. This requirement is motivated by the need to use invertible matrices
in our proof8. Formally, the condition becomes:

Requirement 3. Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit a PS − ADP-secure imple-
mentation is that: for every C ∈ Cd,k+n modelling some f , there exists a ppt
algorithm R such that:

Pr
[
f(k, input) = 1| (k, input) ← R(1λ, f)

]
>

1
poly(λ = k + n)

.

8 We want the function to be puncturable: under two different keys to obtain the same
result under multiple points. Ideally, the punctured point will be excluded from the
input space.



NIKE from Affine Determinant Programs 113

The condition should be read as: there exists a ppt procedure able to find
some key and some input such that f(k, input) = 1. We stress that R is not
required to sample uniformly at random the input point, nor the key k.

Requirement 4: In words, we would like to have an efficient procedure R
capable of generating two keys (k, k′) such that f(k,X) = f(k′,X). Formally:

Requirement 4. Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit a PS − ADP-secure imple-
mentation is that: for every C ∈ Cd,k+n modelling some f , there exists a ppt
algorithm R such that ∀ input ∈ X ,

Pr[k = k′ ∧ f(k, input) = f(k′, input)|(k, k′) ← R(1λ,C )] >
1

poly(k + n)
.

Remark 2. R is not required to sample the keys uniformly at random.

Requirement 5: Another requirement enforced by our security proof in the
full version is that the first line in matrix Gk||�0 has the form

(0, 0, 0, ∗, ∗, . . . , ∗)

From a high-level point of view, we can translate this into:

f(k, 0|| ∗ ∗ ∗ ∗) = 1.

An astute reader may observe that for a f fulfilling the constraint above,
some branching program can be found such that the first line is not
(0, 0, 0, ∗, ∗, . . . , ∗). However, without loss of generality, we assume this is not
the case.

Requirement 5. Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit a PS − ADP-secure imple-
mentation is that: for every C ∈ Cd,k+n modelling some f , there exists an effi-
ciently computable key k such that:

f(k, b||input′) :=

{
1, if b = 0.

f(k, b||input]), if b = 1 and ∀input′ ∈ {0, 1}n−1

Requirement 6: Finally, we are left with the ordering of variables. It is nec-
essary that BP nodes depending on inputs have greater order numbers com-
pared to the nodes depending on k. In layman’s terms, the nodes depending
on input in a branching program are “below” the ones depending on k.

Requirement 6. Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit an PS−ADP-secure imple-
mentation is that any index of a node depending on input is greater than any
index of a node depending on k.

Definition 7. (Admissible Class for ADPs via Branching Programs).
Let Cλ,d,|k|+n denote a class of circuits, such that d ∈ log(n). We call this class
admissible if the requirements (1), (2), (3), (4), (5) and (6) stated above hold.
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5.2 Our Claim

We state below our claim in terms of the function belonging to the class Cd,k+n

mentioned above. The proof is provided in the full version.

Theorem 3. (IND − ADP programs for ADP admissible functions). Let
Cd,k+n denote a class of circuits of depth d and input length n which is admissible
according to Definition 7. Then, there exists an ADP that reaches PS − ADP-
security with respect to every single C in the admissible class Cd,k+n. Let pPRF
denote a puncturable PRF admitting circuits in NC1. Let C i denote the circuit
described in Sect. 4.1. Let k and k′ be two pPRF keys punctured respectively in
point 0||0|| . . . ||0 and in some random point 1||$|| . . . ||$. Then, the distributions
of ADPi(C i

k ) and ADPi(C i
k′) are identical.
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Abstract. Tightening the security reduction of a cryptosystem involves
reducing the advantage of an adversary breaking the cryptosystem to a
security assumption as closely as possible. Tighter security on a cryp-
tosystem shows a clearer picture of its security, allowing for a more
optimal security parameter at a certain level. In this work, we propose
techniques to tighten the security of identity-based identification (IBI)
schemes and demonstrate promising new results compared to existing
reduction bounds. We show two distinct transformations for tighten-
ing security against concurrent attackers via the OR-proof technique of
Fujioka et al. to lower security reduction loss. Our proposed techniques
produce tighter security guarantees for as low as only a one-bit loss bound,
hence the name: OrBit.

Keywords: Identity-based cryptography · Identification protocol ·
OR-proof · Security reduction · Tight security

1 Identity-Based Identification

Identity-based identification (IBI) is a cryptographic primitive for entity authen-
tication. It operates using an interactive zero-knowledge proof of knowledge on a
user’s secret key related to an implicitly certified yet meaningful public identity
string. For example, in many cases, the social security number or an email address
can be used as the public identity string. In contrast to standard identification,
where the public key is a random-looking string that requires explicit certification
techniques such as X.509 standard certificates, IBI does not require such elaborate
and costly implementations. Since the inception of ID-based cryptography, there
has been a long line of research on IBI schemes [5,9,11,12,14,16,19,21,22,26,27].
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Motivation.An IBI scheme is an attractive alternative in scenarios where mainte-
nance of digital certificates (e.g., X.509 standard) is costly. For instance, in a wire-
less sensor network (WSN) where entity authentication is required, IBI is a suit-
able alternative to conventional digital signatures because it may be prohibitively
expensive to issue a digital certificate to every sensor in large networks.More recent
works have even proposed identity-based cryptography as a suitable primitive for
landscapes such as internet-of-things (IoT) networks and WSNs [2,15].

In recent literature, there has been an increased focus on having “tight” secu-
rity for cryptographic schemes [18,24,28]. A scheme can have “tight” security
when the reduction loss is a small constant. Reduction loss causes a noticeable
efficiency drop in cryptographic schemes. It was observed by Bader et al. [3]
that: RSA-based signatures require a 2432-bit RSA modulus when the scheme
is tightly secure to achieve a security level of 100-bit. Practically, the actual
RSA modulus used must be at least 4000-bit due to a reduction loss of N · qs,
where N and qs denote the number of users and the number of signing queries,
respectively. Bellare and Dai also observed this fact in identification schemes,
where the loss occurred due to rewinding [4]. For an IBI scheme with a 128-
bit desired security level ε = 2−128, rewinding forces the security level to drop
by half εibi =

√
ε = 2−128/2 = 2−64. In other words, the key and parameter

sizes must be at least doubled to account for reduction loss. Given the recent
advancements in tight reductions on standard signatures due to Ng et al. [25]
and identification schemes [4], these techniques are also applied to IBI schemes
to show tight security reductions.

Our Contribution. In this work, we introduce OrBit, a framework that focuses
on minimizing security reduction loss through two transformation techniques. We
show improved results to the dual-identity approach of OR-proof techniques by
Fujioka et al. [17] using the following 2 different techniques:

1. OB1 - IMP-CA IBI from OR-proof and trapdoor sampleable relations for
“security assumption hardening”: We prove that the OR-proof technique can
achieve tighter security based on the relationship itself instead of the under-
lying IBI under passive security when it is used with trapdoor sampleable
relations.

2. OB2 - IMP-CA IBI from OR-proof and 1–2 oblivious transfers (OT) for tight
security: We prove that the resulting IBI protocol can achieve tighter security
with only 1-bit loss when the OR-proof technique is used with a generic 1–2
OT protocol along with an interactive “multi-base” assumption such as the
recently introduced multi-base discrete logarithm (MBDL) assumption. The
reduction loss of this method is roughly a factor of 2.

The term “security assumption hardening” is used in OB1 because our result
shows that concurrent secure (i.e., IMP-CA) schemes can be proven secure based
on a harder problem (i.e., trapdoor sampleable relations) as opposed to the
passive security (i.e., IMP-PA) of the IBI schemes. This is desirable because the
use of the Reset Lemma [6] on the OR-proof technique causes a square root loss
when performing the reduction of IMP-CA to IMP-PA. Subsequently, another
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round of square root loss occurs when the security of IMP-PA is reduced to the
underlying hard assumption. Our method “bypasses” the square root loss on
the IMP-CA to IMP-PA reduction by directly reducing to the underlying hard
assumption. OB2 requires interactive “multi-base” security assumptions; Each
“base” caters to a different user. While the MBDL assumption is less desirable
than the more well-known static ones (i.e., discrete logarithm assumption), we
demonstrate that it can eliminate the square root loss problem in IBI schemes. In
other words, we extend Bellare and Dai’s result in identification schemes under
passive attacks [4] to the domain of IBI schemes under concurrent attacks.

2 Intuitive View of IBI IMP-CA Security Reduction

It is shown by independently by Kurosawa-Heng and Bellare et al. [5,21] that
IBI can be constructed from digital signature schemes, where the user key is the
signature of its identity string by the trust authority. Therefore, it makes sense
to consider reducing an IBI impersonator to a digital signature forger for an
intuitive understanding. For IMP-PA, the process is simple because the protocol
is honest-verifier zero-knowledge, which means it is simulatable. Thus, the forger
could create transcripts without knowing any signature. For IMP-CA, the pro-
cess is complicated by the impersonation queries where the impersonator plays
the role of a cheating verifier. The forger is unable to answer challenges from the
impersonator without a valid signature. It is traditionally solved through the use
of interactive oracles [5,21,29], which are used to respond to challenges even with-
out a signature. Another method is to perform OR-proofing: The forger queries
the forgery oracle for 1 of the 2 signatures, then uses it to answer impersonation
queries. Because OR-proof is witness indistinguishable [17], the impersonator
does not know which of the 2 signatures is being used. At the end of the reduc-
tion, the forger would then extract the “other” signature from the impersonator
and use it as its forgery. Note that if the impersonator used the same signature as
the forger (which occurs at probability 1/2), the reduction would fail1. OR-proof
is an elegant way to achieve IMP-CA security but is subjected to 2 rounds of
square-root losses. To overcome this, we can combine the techniques of Ng et al.
[25] together with OR-proof to improve its security because the bit-partitioning
technique fits well into how the “1 of the 2” signature approach that OR-proof
relies on.

Nevertheless, most IBI schemes still suffer from 1 round of square-root loss
due to rewinding of the impersonator to extract the signature. In 2020, Bellare
and Dai [4] introduced a new security assumption that removes the need for
rewinding on the Schnorr identification scheme. However, both results are only
applicable for security under passive attacks. To extend the results into IBI with
IMP-CA security, we consider the use of OR-proof. The primary problem in
this is the challenge string: The verifier fully controls the challenge but in OR-
proof, the verifier sets a “constraint” c, and the prover get to choose 1 of the 2
1 The signature was already queried to the forgery oracle, thus cannot be used as a

forgery.
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challenges c0 or c1 such that c0 + c1 = c. Even though the prover has no control
over the challenge it did not choose, neither does the verifier.

To overcome this, we use 1–2 OT to reveal 1 of the 2 challenges before
the commit message is sent, allowing the prover to craft the transcript for the
signature that it does not have. The real challenge is then “revealed” after the
prover has locked in its commit message. Finally, the verifier reveals its OT
secret and allows the prover to decrypt the real challenge to prevent any possible
distinguishing attack. The OT scheme is used like a commitment scheme, where
we commit encrypted challenges and reveal the secret later to permit decryption.
This way, the verifier can control the challenges, and the prover can choose 1
of the challenges before sending its commit message, all without revealing the
choice of the prover.

3 Preliminaries

In this work, a ← b refers to assigning value of b to a, while a
$←− S refers to

uniformly sampling an element a from set S. We borrow most of our notations
from the seminal work of Bellare et al. [5]: the notation S[b] ← a means I ←
I ∪ {b};S ← S ∪ {ab}b∈I where I is an index set for S. For an indexed set S,
when we write b ∈ S we actually mean b ∈ I where I is the index set for S. If
A is an algorithm, A(a1, ..., an : O1, ..., Om) indicates A is run with input values
a1, ..., an and can access to algorithms (or oracles) O1, ..., Om while the algorithm
is running. If P and V are interactive algorithms, then (dec, tr) ← P (.) ↔ V (.)
indicates that P and V interact with their respective given inputs and oracles
and results in a decision (dec) from V as well as the transcript of the interaction
(tr). An interactive algorithm (Mout, sti+1) ← P (sti,Min) is a stateful algorithm
which takes in current state information sti and an input message Min and
produces an output message Mout along with an updated state sti+1. We view
protocols as alternating successive calls to the interactive algorithms P and V
respectively.

Definition 1. An identity-based identification (IBI) scheme is formed by 4 poly-
nomial time algorithms: Master Key Generation MKGen, User Key Generation
UKGen, Prove P and Verify V. P and V are interactive algorithms run by a
prover P and a verifier V , respectively. We define the algorithms as follows:

1. MKGen: Master Key Generation takes in the security parameter 1k and
outputs the master secret key msk and master public key mpk.

2. UKGen: User Key Generation takes in the master secret key (msk), the
master public key (mpk) and an arbitrary string ID ∈ {0, 1}∗. It then outputs
a user key uk corresponding to ID.

3. P: Prove is an interactive algorithm. Prove takes in public information mpk,
the arbitrary string ID and the user key uk and executes a protocol with a
party V which runs the Verify algorithm.
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4. V: Verify is an interactive algorithm. Verify takes in public information mpk
and the arbitrary string ID and executes a protocol with a party P which runs
the Prove algorithm. At the end of the protocol run, outputs 1 if P successfully
proves its possession of a uk corresponding to mpk and ID, 0 otherwise.

We write (dec, tr) ← P (mpk, ID, uk) ↔ V (mpk, ID) to denote a protocol
execution between prover P and verifier V running the interactive algorithm
P and V, respectively. The decision (dec) of V and the transcript (tr) are the
results of the interaction and we say tr is valid if dec = 1. We call an interactive
proof system (P, V) canonical if the transcript follows a three-move structure
in which P initiates with a uniformly distributed commit message (cm) over the
commit message set CM followed by a uniformly distributed challenge message
(ch) over the challenge message set CH from V and finally a response (rs)
from P corresponding to cm and ch. A canonical (P, V) is non-trivial if the
function 2−m(k) is negligible in k, where m(k) is the commit message length if
|CM | ≥ 2m(k).

3.1 Security Model

We adopt the security model of impersonation under concurrent attacks (IMP-
CA) when considering the security of IBI schemes. The difference between con-
current and active security is that A can use clones of itself to simultaneously
run PROV queries against a challenger C. On the other hand, passive secu-
rity prevents A from playing the role of the cheating verifier and only allows
for transcript querying, which is known to be secure if the protocol is honest
verifier zero-knowledge [21]. The adversary is also allowed to obtain user keys
through the CORR oracle. It is obvious that concurrent attackers are the most
advanced, and hence IMP-CA is the strongest security model. We adopt the
definition of the security of an IBI by Bellare et al. [5] using an experiment
ExpIMP-CA

IBI,A between an adversary A and C shown in Fig. 1.

Definition 2. Bellare et al. [5], let IBI = (MKGen, UKGen, P, V) be an IBI
scheme. For any adversary A = (CP,CV ) consisting of a cheating verifier CV
and a cheating prover CP , the advantage εibi of A running at most in time tibi
of attacking the IBI under the security model IMP-CA is:

εibi = Pr[ExpIMP-CA
IBI,A (1k) = 1]

An IBI scheme is (qc, qh, qp)-IMP-CA secure if εibi is negligible for every
polynomial-time tibi A, where qc, qh, qp is the number of corrupt, hash and prove
queries respectively.
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Fig. 1. Oracles and subroutines of the IMP-CA experiment. LU - legal users, CU - cor-
rupted users, AU - attacked (targeted) user, RU - running user identification processes

3.2 Security Assumptions

We first state the definition of what it means for an advantage ε to be “negligible”.

Definition 3. A function negl(k) is negligible if negl(k) = f−1(k) and the func-
tion f(k) cannot be bounded by any polynomial in k. We write “ε is negligible”
to imply that ε = negl(k) is negligible in the security parameter k.

The problems described in this section are assumed to be computationally
intractable and will be used in proving the security of the schemes derived in
this work.

Definition 4. RSA assumption. Let (N, e,X) be an RSA problem instance of
length 1k such that N is composite of 2 large primes p, q and X = xe mod N such
that x

$←− Z
∗
N and ed = 1 mod ϕ(N) where ϕ(N) = (p−1)(q −1). The advantage

εrsa of an adversary A running in time trsa of breaking the RSA assumption is:

Pr[Xd mod N = x ← A(N, e,X)] = εrsa

The RSA assumption is hard (secure) in ϕ(N) if εrsa is negligible for every
polynomial-time trsa A.

Definition 5. Co-computational Diffie-Hellman assumption. Let G1 and G2 be
multiplicative cyclic groups of prime order q generated from a group genera-
tor with security parameter 1k as input. (g1, g2, ga1 , gb1, g

a
2 ) is a problem instance

such that a, b
$←− Zq and g1, g2 are generators in G1 and G2, respectively. The
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advantage εco−cdh of an adversary A running in time tco−cdh of breaking the
co-computational Diffie-Hellman assumption is:

Pr[gab1 ← A(g1, g2, ga1 , gb1, g
a
2 )] = εco−cdh

The co-computational Diffie-Hellman assumption is hard (secure) in G1 and G2

if εco−cdh is negligible for every polynomial-time tco−cdh A.

To prove the tight security of a scheme, we utilize the new cryptographic
assumption known as the multi-base discrete logarithm, which is an interactive
assumption due to Bellare and Dai [4]. We adopt the definition of Bellare and
Dai for the multi-base discrete logarithm assumption:

Definition 6. Multi-base discrete logarithm. Suppose G is a cyclic group of
prime order q with generator g. Let (g, gy, gx1 , ...gxn) be a problem instance

of length 1k such that y, x1, ..., xn
$←− Zq and dlog(i,W ) be a one-time oracle

for every i = 1, ..., n that returns w such that W = gxiw upon invocation. The
advantage of εn−mbdl of an adversary A running in time tn−mbdl of breaking the
multi-base discrete logarithm assumption is:

Pr[y ← A(gy, gx1 , ...gxn : dlog)] = εn−mbdl

The multi-base discrete logarithm assumption is hard (secure) in G if εn−mbdl is
negligible for every polynomial-time tn−mbdl A.

The MBDL assumption is parametrized by the number of additional bases sup-
plied on the problem instance n. The weakest form is the 1-MBDL assumption:
Given (g, gy, gx) with a one-time use dlog oracle on base gx, compute the dlog
of gy. Likewise, a n-MBDL assumption has n additional bases supplied (i.e.,
gx1 , ..., gxn), where the dlog oracle similarly can only be used once on each base.

3.3 Homomorphic Trapdoor Sampleable Relations, Honest Verifier
Zero Knowledge and 1–2 Oblivious Transfer Protocols

Our definition of homomorphic trapdoor sampleable relations (HTSR) roughly
follows Bellare et al. [5], except we include the homomorphic property as a
requirement. We also present a brief definition on Honest Verifier Zero Knowledge
with Special Soundness (HVZK-SS) and 1–2 oblivious transfer (OT) protocols:

Definition 7. A relation is a finite set of ordered pairs. The range of a relation
R, set of images x and the set of inverses of y are defined respectively, as:

RNG(R) = {y : ∃ x s.t. (x, y) ∈ R}
R(x) = {y : (x, y) ∈ R}

R−1(y) = {x : (x, y) ∈ R}
A family of homomorphic trapdoor sampleable relation is a triplet of polynomial-
time algorithms (i.e., TDG, SMP, INV) such that the following properties are
true:
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1. Efficiency: The algorithm TDG takes in 1k where k ∈ N is the security param-
eter and outputs the description 〈R〉 of a relation R with trapdoor information
td.

2. Sampleability: The output of the SMP algorithm on input 〈R〉 is uniformly
distributed over R.

3. Invertibility: The algorithm INV takes in 〈R〉, td and an element y ∈
RNG(R) and outputs a random element of R−1(y).

4. One-wayness: For every R in the family, the probability to correctly invert an
element y ∈ RNG(R) without the trapdoor information td is negligible.

5. Homomorphism: R−1(x · y) = R−1(x) · Y where R−1(y) = Y .

A family of relations is defined as: {R : ∃k, td s.t. (〈R〉, td) ∈ TDG(1k)}. A
family of trapdoor sampleable relations arises naturally from a family of trap-
door one-way permutations. Every member f in the family of trapdoor one-way
permutations corresponds the relation R consisting of the set of pairs (x, f (x))
for x in the domain of function f.

Definition 8. A HVZK-SS for {R : ∃k, td s.t. (〈R〉, td) ∈ TDG(1k)} is a non-
trivial canonical proof system for (P, V) which satisfies:

1. Completeness. If P knows x s.t. (x, y) ∈ R, then probability of V accepting
is 1.

2. Special Soundness. There exists a polynomial time extractor E to extract x
s.t. (x, y) ∈ R given two valid transcripts ( cm, ch1, rs1), ( cm, ch2, rs2) for
ch1 �= ch2.

3. Honest Verifier Zero Knowledge. There exist a polynomial time simulator
S for valid transcripts with only inputs (〈R〉, y), such that the transcript is
computationally indistinguishable from the distribution of a real conversation
honest prover P (y, x) and honest verifier V (y) where (x, y) ∈ R.

Definition 9. Let OT = (Obliv-Send,Obliv-Recv) be a 1 out of 2 oblivious
transfer protocol with security 1k, a sender A with 2 messages m0 and m1 and
a receiver B with a choice bit b ∈ {0, 1}. At the end of the protocol, B which
runs Obliv-Recv obtains mb ← Obliv-Send(m0,m1) ↔ Obliv-Recv(b) from A
which runs Obliv-Send. An OT protocol has 2 basic properties which must be
fulfilled:

1. Sender security: B cannot compute the other message mb̄ after the interaction
except with negligible probability. “B is oblivious to the other message of A”.

2. Receiver privacy: A cannot distinguish the choice of B, namely the bit b with
probability greater than 1/2. “A is oblivious to the choice bit of B”.

4 OB1: IMP-CA IBI Schemes from OR-Proof and HTSR

In this section, we present our framework to improve tightness of IBI security
against active and concurrent attackers using techniques from Ng et al. [25] and
Fujioka et al. [17]. The transform requires a HTSR and a HVZK-SS for the
relation. Figure 2 shows our transform.
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Fig. 2. A framework for enhancing OR-proof on IMP-CA IBI schemes with HTSR.
Σcom, Σcha and Σvrf are algorithms from the HVZK-SS protocol for the HTSR which
generates the commit, challenge and response messages, respectively. Σsim is the algo-
rithm for honest verifier simulation for the protocol.

Theorem 1. An IBI scheme resulting from the transform shown in Fig. 2
is (tibi, qc, qh, qp, εibi)-IMP-CA secure if the underlying one-way HTSR has a
HVZK-SS protocol and is (towtd, εowtd)-secure such that

εibi ≤√
2εowtd +

1
nc

where nc is the number of possible challenges in which the challenge string c ←
Σcha(mpk) is uniformly distributed.

Proof. Suppose there is an adversary A which (tibi, qc, qh, qp, εibi)-breaks IMP-
CA of an IBI scheme resulting from the framework shown in Fig. 2 in time tibi
with at most qc CORR queries, qh HASH queries and qp PROV queries. We
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construct a simulator S which can use A to break the one-wayness of the under-
lying HTSR in time towtd and with advantage εowtd. S first receives (〈R〉,X)
and security parameter k and must output R−1(X) = x without knowing the
trapdoor td. S sets mpk ← (〈R〉,X,H, k) with H modelled as the random ora-
cle and starts A as a cheating verifier CV (mpk : CORR,PROV ). S initializes
the sets LU,CU,RU,AU ← ∅ representing legal users, corrupted users, running
users and attacked users, respectively. S answers the queries by CV following
the instructions in Fig. 3.

Fig. 3. HASH, CORR and PROV are oracles for IMP-CA experiment

The simulations for CORR and PROV are perfect because the user-key
u from H(ID) is the expected user-key for ID due to the random oracle
R−1(H(ID)) ·xb = R−1(U ·X−b) ·xb = R−1(U) = u. Thus, qc, qh and qp do not
affect εibi. When CV outputs a target identity to impersonate along with state
information (ID∗, stCP ) ← CV (mpk : CORR,PROV ), S checks if ID∗ ∈ LU
and runs H(ID∗) otherwise. S then sets AU ← {ID∗} and runs A as the cheating
prover CP (mpk, ID∗, stCP : CORR,PROV ). S interacts with CP and obtains
2 valid transcripts T = ((Y0, Y1), c, (c0, z0, z1)) and T ′ = ((Y0, Y1), c′, (c′

0, z
′
0, z

′
1))

where c �= c′ and (c0, z0, z1) �= (c′
0, z

′
0, z

′
1). Following the special soundness prop-

erty of the protocol, the user secret u∗ can be extracted from the 2 transcript T
and T ′. From then on, S can break the one-wayness of the underlying HTSR if
b∗ �= b. S would simply return (u∗/u) if b∗ > b and (u∗/u)−1 if b > b∗.

u∗

u
=

R−1(H(ID∗) · Xb∗
)

R−1(U)
=

R−1(U · X−b · Xb∗
)

R−1(U)

= R−1(X)(b
∗−b) = x(b∗−b)
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Let event E1 be the event that S extracts u∗ successfully from A and let E2 be
the event in which b∗ �= b. By the Reset Lemma [6], we have Pr[E1] ≤ (εibi− 1

nc
)2.

Pr[E2] = 1/2+negl(k) given that bit b is sampled uniformly and hidden from CV
due to the OR-proof. Therefore, the probability of S successfully breaking the
one-wayness of the underlying trapdoor assumption is εowtd ≥ Pr[E1]×Pr[E2] =
(εibi − 1

nc
)2 × 1/2 as required. ��

4.1 Application of the Framework

We show the application of our framework to GQ-IBI and BLS-IBI, each rep-
resenting an instance of pairing-free RSA and pairing-based elliptic curve con-
struction.

Improving the Security of GQ-IBI

Theorem 2. The modified GQ-IBI scheme shown in Fig. 4 is (tibi, qc, qh, qp, εibi)-
IMP-CA secure if the RSA assumption is (trsa, εrsa)-secure such that

εmgq−ibi ≤√
2εrsa + 2−l(k)

Proof. By Theorem 1, the modified GQ-IBI scheme manifested from the frame-
work is secure under the trapdoor one-wayness of its SMP property, which
is exactly the RSA problem: given (〈R〉,X) �→ ((N, e),X), find x such that
X = R(x) �→ X = xe mod N . ��

4.2 Improving the Security of BLS-IBI

The Boneh-Lynn-Shacham (BLS) IBI scheme was first introduced by Kurosawa
and Heng [21] built using the pairing-based BLS signature [8]. We adopt the co-
CDH assumption version proposed by Lacharité [23] using Type-3 pairings2. Our
result is similar to a scheme3 proposed by Chia and Chin in 2020 [9]. Again, our
version is IMP-CA secure and avoids the interactive One-More CDH assumption
[7]. Figure 5 shows the HTSR for BLS as well as the modified BLS-IBI scheme.

Theorem 3. The modified BLS-IBI scheme shown in Fig. 5 is (tibi, qc, qh, qp,
εibi)-IMP-CA secure if the co-CDH assumption is (tco−cdh, εco−cdh)-secure such
that

εmbls−ibi ≤√
2εco−cdh + q−1

2 BLS signatures was originally designed with Type-1 pairings but its security was
compromised by advancements in solving discrete logarithms due to Menezes [1]
and Granger [20].

3 The exposure of user-bit b to the active adversary enables it to always output a bit
b∗ = b causing the security reduction of [9] to fail. The use of OR-proof fixes the
problem and we achieve the same security bound and assumption as theirs.
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Fig. 4. The HTSR for RSA-FDH and the modified GQ-IBI scheme. The scheme is
parametrized with prime exponent RSA key generator KGrsa and a super logarith-
mic challenge length l : N → N such that 2l(k) < e for all (N, e, d) ∈ [KGrsa(1

k)].
Arithmetic operations are performed in group Zn.

Proof. By Theorem 1, the modified BLS-IBI scheme manifested from the frame-
work is secure under the trapdoor one-wayness of its SMP property, which is
exactly the co-CDH problem: given (〈R〉,X) �→ ((G1,G2, q, g1, g2, g

w
1 , gw2 ),X =

gx1 ), find V such that V = R(x) �→ V = gwx
1 . ��
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Fig. 5. The HTSR for BLS and the modified BLS-IBI scheme. KG(1k) is a pairing
generator, where the generated groups G1 and G2 are of prime-order q with generators
g1, g2, respectively. e is a non-degenerate, efficiently computable bilinear map e : G1 ×
G2 → GT where GT is also a group of prime order q.

4.3 Comparison with Existing IBI Frameworks for IMP-CA
Security

In 2008, Yang et al. introduced a framework for designing IMP-CA secure IBI
schemes. Their transformation requires trapdoor strong one-more relations and
a witness dualism proof with special soundness (WD-SS) to achieve security on
IMP-CA [29]. Subsequently, in 2012, Fujioka et al. proposed the use of OR-proof
in the IBI setting to provide security against IMP-CA attacks. Their results
show that the resulting IBI from the OR-proof application has IMP-CA security
based on IMP-PA security with a square root reduction loss due to the Reset
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Lemma [17]. Table 1 shows the difference between this work and existing IBI
frameworks for IMP-CA security, where the security of our work is based on a
well studied one-wayness assumption of HTSR with minimal overhead (i.e., an
additional bit on uk size and an extra image element of the trapdoor relation on
mpk size). Note, in relation to OR-proof, we saved 1 round of square root loss
by directly reducing it to the hard problem.

Table 1. Comparison of existing IMP-CA IBI frameworks.

Property Yang et al. [29] Fujioka et al. [17] OB1 (this work)

Security assumption One-wayness of trapdoor
strong one-more relation,
εowtdsom

IMP-PA security,
εimp−pa

One-wayness of HTSR,
εowtd

Security bound
√

2εowtdsom + 2−nc
√

2εimp−pa + 2−nc
√

2εowtd + 2−nc

uk size |x| |ukibi| |x|+1bit

mpk size |〈R〉| |mpkibi| |〈R〉| + |y|
Protocol bandwidth 2|y| + 2|cm| + 2|ch| + 2|rs| 2|cm| + 2|ch| + 2|rs| 2|cm| + 2|ch| + 2|rs|

5 OB2: Tight IMP-CA IBI Scheme from OR-Proof
and 1–2 OT

In this section, we show a further tightening of Schnorr-IBI security bounds
under IMP-CA using the MBDL assumption. This process is not trivial because
MBDL is only shown to provide tight reduction under passive attacks for the
Schnorr Identification scheme. In contrast, we are trying to show security under
concurrent attacks. Figure 6 presents an enhanced construction of Schnorr-IBI
using a generic 1–2 OT protocol. There are very efficient 1–2 OT protocol con-
structions which fit our needs such as one by Chou and Orlandi [13], which is
based on the Diffie-Hellman key exchange.

Theorem 4. TheOB2Schnorr-IBI scheme shown inFig. 6 is (tibi, qc, qh, qp, εibi)-
IMP-CA secure if the 1–2 OT protocol has the properties of Sender security and
Receiver privacy and the n-MBDL assumption is (tn−mbdl, εn−mbdl)-secure such
that

εibi ≤ 2 · εn−mbdl + q−1

where n is the number of identities queried by the adversary.

Proof. Suppose there exists an adversary A which breaks the OB2 Schnorr-IBI
with advantage greater than εibi, then a simulator S can use A to break the
assumption with advantage greater than εn−mbdl. S first receives the challenge
(G, g, q), Z, U1, ... Un and has access to the discrete logarithm oracle at most
once per base Ui for i = 1, ..., n. S generates the msk by randomly sampling
x

$←− Zq and computing X ← gx. S then sets mpk ← ((G, g, q), X, H, k) with
H modelled as a random oracle. S initializes the sets LU,CU,RU,AU,HL ←
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Fig. 6. The OB2 Schnorr-IBI scheme using OR-proof and a 1–2 OT protocol.

∅ representing legal users, corrupted users, running users, attacked users and
hash lists, respectively. A counter is initialized i ← 1 and the goal of S is to
output z such that Z = gz mod q. S runs A as the cheating verifier CV (mpk :
CORR,PROV ) and answers queries by CV following the instructions in Fig. 7.

S trivially simulates the queries perfectly because it has the msk, it can
generate at least a valid user key for an ID. The OR-proof hides which of the key
S is proving from the view of CV ; The interactive proofs of W0 and W1 appear
equally legitimate. Once CV is ready for impersonation, S obtains ID∗, stCP ←
CV (mpk : CORR,PROV ) and checks if ID∗ ∈ LU , otherwise runs INIT(ID∗).
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Fig. 7. CORR and PROV are simulated oracles for the IMP-CA game on the OB2
Schnorr-IBI. The INIT subroutine is only available to S.

S runs A as the cheating prover CP (mpk, ID∗, stCP : CORR,PROV ) and
interacts with A as an honest verifier following Fig. 8. It is apparent that S can
successfully extract z such that gz mod q = Z if and only if the challenge used
by CP for Yb̄ is c∗. This event occurs at probability 1/2, if c′ = cb was chosen
by CP during the OT protocol, it will then have to decrypt the encrypted
challenge eb̄ for zb̄ after receiving tv (See Eq. 1). S has so far only made 1 dlog
query on base Ui; S has succeeded in breaking the assumption. Let εn−mbdl =
Psim × Paccept × Puseful be the probability of S outputting z such that z is the
discrete log of the target base Z to the multi-base discrete log problem, Psim

be the probability of a successful simulation, Paccept be the probability that
both response z0 and z1 are valid responses for impersonation and Puseful be
the probability that the response obtained from the A is useful in solving the
assumption. Clearly, Puseful = Pr[c′ = cb] only occurs if the 1–2 OT protocol
hides the choice of S when A issues PROV(ID = ID∗) queries4 while running
as CV , which equals to 1/2 given that b is the result of a random coin toss.
We claim Psim = 1 because S possesses the msk and can simulate PROV and
CORR perfectly. The output of H is indistinguishable from the real attack
because vb, vb̄ and v are uniformly sampled from Zq. Given that the IBI protocol
is HVZK-SS, we have Paccept ≥ εibi−q−1. Thus, we have εn−mbdl ≥ 1/2(εibi−q−1)
as required. ��

4 This is also the reason why R was stored for each user. If R was randomly generated
for different PROV queries, CV would be able to distinguish b by running PROV
query on the same ID twice and checking W0 and W1.
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cb̄ = eb̄ − H((TpT
−b̄
v )tv ) = eb̄ − (eb̄ − c∗) = c∗ (1)

5.1 Comparison with Existing Schnorr-Based IBI Schemes

Schnorr-based IBI schemes with IMP-PA can be easily obtained either using
the Kurosawa-Heng [21] transform or by Bellare et al.’s transform [5]. IMP-CA
security can then be achieved using OR-proof on a IMP-PA Schnorr-based IBI
scheme, or through a Schnorr-based signature scheme with strong existential
unforgeability (sEUF-CMA) as shown by Yang et al. [29]. However, the instan-
tiations from the existing frameworks are not tight due to the rewinding of
CP , and thus being subjected to the square-root loss. Table 2 tabulates exist-
ing Schnorr-based IBI schemes along with their security properties and overhead
requirements, which clearly shows a tight reduction compared to existing results.

Fig. 8. Extracting the discrete log of Z using the cheating prover.
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Table 2. Comparison of existing IBI frameworks on security assumption, reduction
loss and overhead requirements.

Scheme Sec. Reduction bound |uk| |mpk| Prot. BW

KH-PA [21] PA
√

εss−euf−cma + q−1 2Zq G 2G + 2Zq

KH-CA [21] CA
√

εss−wh + q−1 2Zq G k(2G + Zq + 1)

BNN-IBI [5] CA
√

εomdl +
√

εss−euf−cma + 2q−1
G + Zq G 3G + 2Zq

KW [29] CA
√

2εkw−seuf−cma + q−1 2Zq 3G 8G + 4Zq

Tan-IBI [26] CA εddh + 2(qc + 1)q−1 2Zq 3G 3G + 2Zq

OR-proof (on
KH-PA) [17]

CA
√

2
√

εss−euf−cma + q−1 + q−1 2Zq G 4G + 4Zq

Twin [11] CA
√

εdlog + q−1 + q−1 3Zq 2G 2G + 3Zq

TNC-IBI [10] CA εdsdh + (qc + 1)q−1 2Zq 3G 3G + 2Zq

OB2 (this
work, using
OT from [13])

CA 2εn−mbdl + q−1
G + 2Zq + 1 G 6G + 5Zq

Sec. is short for security, |uk| total user key size, |mpk| total master public key size,
Prot. BW for protocol bandwidth (measured per session). PA implies scheme has pas-
sive security while CA implies scheme has concurrent security. mpk calculation excludes
information for group G, a generator g and order q which are common to all com-
pared schemes. k is the security parameter. Security assumptions are shorthanded as:
εss−euf−cma EUF-CMA Schnorr Signatures, εss−wh Schnorr Signatures with witness
hiding, εomdl One-More discrete logarithm assumption, εkw−euf−cma EUF-CMA Katz-
Wang Signatures, εddh Decisional Diffie-Hellman assumption, εdsdh Decisional Square
Diffie-Hellman assumption, εdlog Discrete logarithm assumption.

6 Conclusion

In this work, we introduced OrBit, a new way of achieving tight security reduc-
tion results in the construction of IMP-CA-secure IBI schemes using the OR-
proof in two different flavors. In OB1, our first technique, we showed that by
using the OR-proof technique combined with trapdoor sampleable relations,
security for the IBI scheme could be reduced directly to the one-wayness trapdoor
sampleable relations instead of IMP-PA security [17]. In the second technique,
OB2, we explored the possibility of achieving tightness with only a 1-bit loss for
a Schnorr-based IBI scheme using the MBDL assumption introduced by Bellare
and Dai [4]. While MBDL was initially used for passive-secure proofs, we showed
that with a generic 1–2 OT scheme, it is possible to achieve active/concurrent
security with tight security.
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Abstract. Zero-Knowledge Proof (ZKP) is a cryptographic technique
that enables a prover to convince a verifier that a given statement is
true without revealing any information other than its truth. It is known
that ZKP can be realized by physical objects such as a deck of cards;
recently, many such “card-based” ZKP protocols for pencil puzzles (such
as Sudoku and Numberlink) have been devised. In this paper, we shift
our attention to graph theory problems from pencil puzzles: We pro-
pose card-based ZKP protocols for the graph 3-coloring problem and the
graph isomorphism problem. Similar to most of the existing card-based
ZKP protocols, our two protocols have no soundness error. The proposed
protocols can be implemented without any technical knowledge, and the
principle of zero-knowledge proof is easy to understand. In particular, our
protocol for the graph isomorphism problem requires only three shuffles
regardless of the sizes of a pair of given graphs. In addition, to deal
with our proposed protocols more rigorously, we present a formal frame-
work for card-based ZKP protocols which are non-interactive and have
no soundness error.

Keywords: Physical zero-knowledge proof · Card-based
cryptography · Graph 3-coloring problem · Graph isomorphism problem

1 Introduction

Suppose that there are two parties, the prover, Peggy, and the verifier, Victor.
The prover Peggy has a witness w guaranteeing that a statement x is true,
while the verifier Victor does not have it. In this case, a Zero-Knowledge Proof
(ZKP) protocol, whose concept was devised by Goldwasser et al. in 1989 [9],
enables Peggy to convince Victor that the statement x is true without leaking
any information about the witness w. Such a ZKP protocol must satisfy the
following three conditions.

Completeness. If x is true, then Victor accepts.
Soundness. If x is false, then no matter how Peggy behaves, Victor rejects with

an overwhelming probability.
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Zero-knowledge. No information about w other than the fact that x is true is
leaked to Victor.

The probability that Victor accepts even though x is false is called a sound-
ness error probability, denoted by δ. If a ZKP protocol having such a probability
δ is executed � times, Victor rejects with a probability of 1 − δ�. Thus, we can
satisfy the soundness condition by repeatedly running such a protocol sufficient
times.

Normally, ZKP protocols are implemented on computers and network sys-
tems, based on cryptographic primitives, such as public-key cryptography. By
contrast, there are physical ZKP protocols that do not rely on computers; for
example, Gradwolh et al. [10] in 2009 invented the first physical ZKP protocol for
Sudoku using a deck of physical cards. This protocol directly verifies a solution
of a Sudoku puzzle without reducing it to other NP-complete problems, such as
3SAT. Therefore, a physical ZKP protocol is suitable for visual understanding
of the concept of ZKP, as it can be performed with human hands.

It should be noted that because any Boolean circuit can be securely evalu-
ated by card-based cryptography (e.g., [4,14,15,19,21,30]), we can construct a
physical ZKP protocol for any 3SAT instance [20].

1.1 Existing Physical ZKP Protocols

Many physical ZKP protocols using a deck of cards have been constructed for
Nikoli’s pencil puzzles, such as Sudoku [10,24,29], Makaro [3], Slitherlink [16],
and Numberlink [26]. These protocols are fun, and their proofs can be easily
understood because they were presented using pictures of a deck of cards (as
will be seen in Sect. 2).

Going back to history, Goldreich et al. [8] in 1991 proved that, for all lan-
guages in NP, there exist ZKP protocols based on cryptographic primitives. In
their paper, they also presented a physical ZKP protocol for the 3-coloring prob-
lem using boxes having locks to clarify the presentation of their concept. This
physical ZKP protocol has a soundness error as will be seen in Sect. 2.3, meaning
that the protocol needs to be repeated many times.

1.2 Contribution

In this paper, we shift our attention to graph theory problems from pencil puz-
zles. We propose card-based ZKP protocols for two famous graph problems: the
3-coloring problem and the graph isomorphism problem. Similar to most of the
existing card-based ZKP protocols, our two protocols have no soundness error.
The proposed protocols can be implemented without any technical knowledge,
and the principle of ZKP is easy to understand. In particular, our protocol for
the graph isomorphism problem requires only three shuffles regardless of how
large a pair of given graphs is.

In addition to constructing the two protocols, we present a formal framework
for card-based ZKP protocols which are non-interactive and have no soundness
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error. Using this proposed framework, we can describe such card-based ZKP
protocols in a rigorous way.

We emphasize that this paper is an attempt to connect physical ZKP proto-
cols (in cryptology) and graph theory. Hence, we believe that our work explores
new directions of physical ZKP protocols toward graph problems. Constructing
efficient ZKP protocols for other famous graph problems is an interesting prob-
lem, including the ones in Karp’s 21 NP-complete problems [13], as a physical
ZKP protocol for the Hamiltonian cycle problem has recently been designed [28].

2 Preliminaries

In this section, we introduce notations of a deck of cards and a shuffling action
used in our proposed protocols later. We then introduce the 3-coloring problem
and the graph isomorphism problem. We also describe an existing protocol for
the 3-coloring problem [8].

2.1 A Deck of Cards

Both of our proposed protocols use a two-colored deck of cards, such as black ♣
and red ♥ cards. In addition, our protocol for the graph isomorphism problem
(presented in Sect. 4) uses numbered cards, such as 1 2 3 · · · . The backs of
all these cards, denoted by ? , are indistinguishable.

2.2 Pile-Scramble Shuffle

In our construction, we will use a shuffling action called the pile-scramble shuffle.
This action uniformly shuffles multiple piles of face-down cards at random. More
precisely, for some natural number n (≥2), let (pile1, pile2, . . . , pilen) denote a
sequence of n piles of cards where each pile consists of the same number of
cards. Applying a pile-scramble shuffle to such a sequence of piles (denoted by
[·| . . . |·]) results in:

⎡
⎢⎢⎢⎢⎢⎢⎣

?

?
...
?︸︷︷︸

pile1

∣∣∣∣∣∣∣∣∣∣∣∣

?

?
...
?︸︷︷︸

pile2

∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣

?

?
...
?︸︷︷︸

pilen

⎤
⎥⎥⎥⎥⎥⎥⎦

→

? ? · · · ?

? ? · · · ?
...

... · · · ...
?︸︷︷︸

pileπ−1(1)

?︸︷︷︸
pileπ−1(2)

· · · ?︸︷︷︸
pileπ−1(n)

,

where π ∈ Sn is a random permutation uniformly chosen from the symmetric
group of degree n, denoted by Sn. In this case, we regard cards in the same
“column” as a pile; thus, the resulting order of cards in each pile does not
change. We also consider applying a pile-scramble shuffle “vertically,” i.e., cards
in the same row are regarded as a pile and all the piles are shuffled.

A pile-scramble shuffle was first used by Ishikawa et al. [12] in 2015. It can be
easily implemented by using rubber bands or envelopes to fix each pile of cards
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and scrambles the piles to randomize the order of them. We assume that, as in
the case of usual card games, even if only one player performs a pile-scramble
shuffle, nobody (including the executor) can know the resulting order of piles.
If some players are skeptical, they may repeat the shuffling action in turn until
they are satisfied.

2.3 Known Physical Protocol for 3-Coloring Problem [8]

The 3-coloring problem is a decision problem to determine whether vertices of
a given undirected graph G = (V,E) can be colored with three colors such
that every two adjacent vertices are assigned different colors. More precisely, the
problem is to determine whether there exists a mapping φ : V → {1, 2, 3} such
that any edge (u, v) ∈ E satisfies φ(u) �= φ(v). This problem is known to be
NP-complete [6].

Goldreich et al. [8] in 1991 presented a physical ZKP protocol for the
3-coloring problem. It uses boxes each having a lock with a corresponding key,
such as safety boxes. Assuming that Peggy knows a correct coloring φ but Victor
does not, the protocol proceeds as follows.

1. Let n be the number of vertices in a given graph G. Peggy prepares n boxes
and assigns a box to each vertex.

2. Peggy assigns three random colors to {1, 2, 3} and puts the corresponding
color for each vertex into the box without Victor’s seeing it. More precisely,
Peggy chooses a random permutation π ∈ S3, and for every u ∈ V , Peggy
puts π(φ(u)) into the box corresponding to u.

3. Victor randomly chooses one edge (u, v) ∈ E and tells it to Peggy.
4. Peggy sends Victor the keys to the two boxes corresponding to u and v.
5. Victor opens the two boxes using the keys received. If they contain different

colors, then Victor continues to the next iteration; otherwise, Victor rejects.

This protocol satisfies the three conditions required for a ZKP protocol. If
Peggy has a correct mapping φ, then Peggy can always convince Victor because
the two boxes corresponding to the two adjacent vertices chosen by Victor never
contain the same color, i.e., π(φ(u)) �= π(φ(v)). If Peggy does not have φ, then
Victor rejects with a probability of at least 1/m, where m is the number of edges
in the given graph G, i.e., this protocol has a soundness error. By repeating this
protocol � times, Victor can detect such a malicious prover Peggy with a proba-
bility of 1−(1− 1

m )�. Since Peggy discloses to Victor only the randomly assigned
colors of the two adjacent vertices, Victor cannot obtain more information than
the fact that the two vertices are colored with different colors.

2.4 Graph Isomorphism Problem

The graph isomorphism problem is a decision problem to determine whether two
given undirected graphs are isomorphic. More specifically, given two graphs G1 =
(V1, E1) and G2 = (V2, E2), the problem is to determine whether there exists a
permutation π : V1 → V2 such that (u, v) ∈ E1 if and only if (π(u), π(v)) ∈ E2.
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It has been believed that the graph isomorphism problem is neither in P
nor NP-complete. A quasi-polynomial time algorithm has been reported by
Babai [1,11].

3 Card-Based ZKP for 3-Coloring Problem

In this section, we construct a physical ZKP protocol for the 3-coloring problem
with no soundness error. As in the existing protocol [8] introduced in Sect. 2.3,
our proposed protocol enables the prover, Peggy, to convince the verifier, Victor,
that, for a given undirected graph G = (V,E), Peggy has a mapping φ : V →
{1, 2, 3} such that any edge (u, v) ∈ E satisfies φ(u) �= φ(v) without revealing
any information about φ.

In our protocol, Peggy first places sequences of cards representing φ that
she has, and then Peggy and Victor publicly manipulate the sequences for the
verification. Thus, after Peggy places the sequences as input, either Peggy or
Victor (or even a third party) may manipulate the cards.

The idea behind our proposed protocol is to verify that every pair of adjacent
vertices is colored with different colors one by one. Our protocol proceeds as
follows.

1. Let V = {1, 2, . . . , n}. For every vertex i ∈ {1, 2, . . . , n}, Peggy prepares
a sequence of face-down cards representing φ(i) according to the following
encoding rule (with one red card and two black cards):1

♥ ♣ ♣ = 1, ♣ ♥ ♣ = 2, ♣ ♣ ♥ = 3. (1)

Place such n sequences vertically one by one as follows:

? ? ? = φ(1)

? ? ? = φ(2)
...

...
...

? ? ? = φ(n)

.

2. For every edge (i, j) ∈ E, perform the following steps. If Victor does not
reject for any edge, then Victor accepts.
(a) Regarding cards in the same column as a pile, apply a pile-scramble shuffle

(horizontally) to the n sequences as follows:

⎡
⎢⎢⎢⎣

?

?
...
?

∣∣∣∣∣∣∣∣∣

?

?
...
?

∣∣∣∣∣∣∣∣∣

?

?
...
?

⎤
⎥⎥⎥⎦ →

? ? ?

? ? ?
...

...
...

? ? ?

.

1 An encoding rule representing a positive integer in this manner was first considered
by Shinagawa et al. in 2015 [31].
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Let us emphasize that anyone cannot know the resulting order after per-
forming a pile-scramble shuffle.2

(b) Reveal all the cards of the i-th and j-th sequences. If the two sequences
represent different colors, i.e., the two red cards are revealed to be at
different positions, it means that φ(i) �= φ(j), and hence, continue the
protocol after turning over the revealed cards; otherwise, Victor rejects.
Note that information about the values of φ(i) and φ(j) does not leak
because a pile-scramble shuffle has been applied to the sequences in the
previous step.

Let m be the number of edges in the given graph G. The number of required
cards and shuffles for this protocol is 3n and m, respectively.

We present a security proof of this protocol in Sect. 6.1. This proof is based
on our computational model formalized in Sect. 5.

4 Card-Based ZKP for Graph Isomorphism Problem

In this section, we construct a card-based ZKP protocol for the graph isomor-
phism problem with no soundness error. Our proposed protocol enables Peggy
to convince Victor that for two given undirected graphs G1 = (V1, E1) and
G2 = (V2, E2), Peggy has a permutation π : V1 → V2 (as a witness) such that
(u, v) ∈ E1 if and only if (π(u), π(v)) ∈ E2.

4.1 Idea

Assume that Peggy has a correct permutation π ∈ Sn where n denotes the
number of vertices in the two given graphs G1 and G2. Let A(G1) and A(G2)
denote their adjacency matrices, respectively. Then, the following equation holds
for the permutation matrix Pπ corresponding to π [7]:

A(G2) = PT
π A(G1)Pπ,

where for a row vector ei in which the i-th element is 1 and the remaining ones
are 0, 1 ≤ i ≤ n, the permutation matrix Pπ is

Pπ =

⎡
⎢⎣
eπ(1)

...
eπ(n)

⎤
⎥⎦ ,

and PT
π is the transpose. From this equation, it suffices that Peggy and Victor

place sequences of face-down cards representing A(G1), and Peggy having π rear-
ranges the sequences according to the permutation matrix Pπ so that the result-
ing sequences represent A(G2) (without revealing any information about π).
2 One might think that the resulting order could be easily known because there are

only six possibilities. One possible implementation is to put piles of cards into a box
or ball whose inside is invisible from outside and then throw it up to randomize the
order of them (cf. [32]).
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4.2 Description

In our proposed protocol, Peggy first prepares a sequence of face-down cards
representing π, and then Peggy and Victor publicly manipulate the sequences
for the verification. Our protocol proceeds as follows.

1. Peggy prepares a sequence of face-down numbered cards from 1 to n rep-
resenting the inverse permutation π−1 ∈ Sn (that she knows as a witness)
according to the following encoding:

?︸︷︷︸
π(1)

?︸︷︷︸
π(2)

· · · ?︸︷︷︸
π(n)

[π−1].

This sequence is called the sequence [π−1] where the parentheses indicate that
all cards in the sequence are face-down.

2. Let ♣ represent 0 and ♥ represent 1. According to this encoding, place
sequences of face-down cards representing the n × n adjacency matrix of
G1, namely A(G1). For example, the following 4 × 4 adjacency matrix is
represented using sequences of cards as follows:

⎛
⎜⎜⎝

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

⎞
⎟⎟⎠ →

♣ ♥ ♥ ♣
♥ ♣ ♥ ♥
♥ ♥ ♣ ♣
♣ ♥ ♣ ♣

.

Then, place the sequence of [π−1] that Peggy prepared and a sequence of the
identity permutation [id] consisting of 1 2 · · · n (in this order) on the left
side of the matrix [A(G1)] vertically, as follows:

? ? ? · · · ?
? ? ? · · · ?
...

...
...

. . .
...

? ? ? · · · ?
[id]

[
π−1

]
[A(G1)]

.

Note that the sequence [id] represents the position of each card in the sequence
[π−1].

3. Regarding the cards in the same row as a pile, apply a pile-scramble shuffle
to the piles as follows:

? ? ? · · · ?
...

...
...

. . .
...

? ? ? · · · ?

[id]
[
π−1

]
[A(G1)]

→
? ? ? · · · ?
...

...
...

. . .
...

? ? ? · · · ?
[r]

[
rπ−1

] [
PT

r A(G1)
]

,

where r ∈ Sn is a random permutation generated by applying a pile-scramble
shuffle.
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4. Reveal the sequence [rπ−1] to obtain the information about rπ−1. Transform
the matrix [PT

r A(G1)] to [PT
π A(G1)] by sorting the rows of the matrix in

ascending order according to rπ−1:

? ? ? · · · ?
...

...
...

. . .
...

? ? ? · · · ?
[r]

[
rπ−1

] [
PT

r A(G1)
]

→
? · · · ?
...

. . .
...

? · · · ?[
PT

π A(G1)
]

.

5. Turn over the sequence revealed in the previous step. Then, regarding cards
in the same row as a pile, apply a pile-scramble shuffle to the sequences [r]
and [rπ−1] as follows:

? ?
...

...

? ?

[r]
[
rπ−1

]

→
? ?
...

...
? ?

[r′r]
[
r′rπ−1

]
,

where r′ ∈ Sn is a random permutation generated by applying a pile-scramble
shuffle.

6. Reveal the sequence [r′r]. Sort the sequence [r′rπ−1] in ascending order
according to r′r. This sorting applies the inverse permutation (r′r)−1 to
the sequence [r′rπ−1], and hence, the sequence [r′rπ−1] becomes a sequence
[π−1]:

? ?
...

...
? ?

[r′r]
[
r′rπ−1

]
→

?
...
?[

π−1
]

.

7. Horizontally place the sequence [π−1] above the matrix [PT
π A(G1)] as follows:

? · · · ?
[
π−1

]

? · · · ?
...

. . .
...

[
PT

π A(G1)
]

? · · · ?

.

8. Regarding the cards in the same column as a pile, apply a pile-scramble shuffle
to the piles:

⎡
⎢⎢⎢⎣

? . . . ?
? · · · ?
...

. . .
...

? · · · ?

⎤
⎥⎥⎥⎦

[
π−1

]

[
PT

π A(G1)
] →

? · · · ?
[
r′′π−1

]

? · · · ?
...

. . .
...

[
PT

π A(G1)Pr′′
]

? · · · ?

,
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where r′′ ∈ Sn is a random permutation generated by applying a pile-scramble
shuffle.

9. Reveal the sequence [r′′π−1]. Sort the columns of the matrix [PT
π A(G1)Pr′′ ] in

ascending order according to r′′π−1 to transform the matrix to [PT
π A(G1)Pπ]:

? · · · ?
[
r′′π−1

]

? · · · ?
...

. . .
...

[
PT

π A(G1)Pr′′
]

? · · · ?

→
? · · · ?
...

. . .
...

[
PT

π A(G1)Pπ

]
? · · · ?

.

10. Reveal all the cards of the matrix [PT
π A(G1)Pπ]. If they represent the adja-

cency matrix of G2, then Victor accepts; otherwise, Victor rejects.

Let m be the number of edges in the given graphs. The total number of
required cards is n2 + 2n, because 2m ♥ s and (n2 − 2m) ♣ s are used for
representing the adjacency matrix of G1, and 2n numbered cards are used for
the sequences of [π−1] and [id]. The number of required shuffles is three, which
is constant regardless of the size of a pair of given graphs.

We present a security proof of this protocol in Sect. 6.2.

5 Basic Formalization of Card-Based ZKP Protocols

In this section, we give a formalization of card-based ZKP protocols to deal with
our proposed protocols more rigorously.

Remember that our two protocols presented in Sects. 3 and 4 are non-
interactive: After the prover, Peggy, places a hidden sequence of face-down cards
at the beginning of each of the protocols according to a witness (that only Peggy
knows), the protocol can be executed by anyone publicly; for example, it suffices
that Peggy does every action while the verifier, Victor, watches all behaviors of
Peggy. Note that most of the existing ZKP protocols for pencil puzzles (e.g.
[3,17,22,26,27,29]) are also non-interactive.

Thus, this section begins with clarifying the relationship between a witness
and a hidden sequence of cards.

5.1 Witness Subsequence

Let L ⊆ Σ∗ be a language that captures a decision problem (such as the
3-coloring problem and graph isomorphism problem), where Σ is an alphabet. In
our setting, Peggy and Victor are given a problem instance x ∈ L such that only
Peggy knows a witness w of the instance x; w being a witness of x means that,
given a pair (x,w), everyone (including Peggy and Victor) can easily confirm
that x ∈ L (say, it can be computed in polynomial time).

For example, given an instance of the graph isomorphism problem, a per-
mutation π which transforms one graph into the other graph serves a witness.
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As seen in Sect. 4, Peggy who knows the permutation π is supposed to privately
arrange a sequence of face-down cards encoding π:

?︸︷︷︸
π(1)

?︸︷︷︸
π(2)

· · · ?︸︷︷︸
π(n)

[π−1].

Therefore, in general, Peggy and Victor must agree upon a correspondence
between a witness and a sequence of cards; we call such a sequence of cards
a witness subsequence.

Fixing a language L, for an instance x ∈ L, we denote by Wx the set of all
witnesses of x. If Peggy knows a witness w ∈ Wx and she is honest, she should
place a witness subsequence correctly (with all cards’ faces down); we call it a
correct witness subsequence. If Peggy does not know any witness, she may place a
‘wrong’ sequence of cards that follows the ‘format’ at least; we say a sequence of
cards is a legal witness subsequence if there exist an instance y ∈ L and a witness
w′ ∈ Wy such that the sequence corresponds to w′. If Peggy is malicious, she
may place a random sequence of cards; we call any witness sequence which is
not legal an illegal witness subsequence.

Let us consider the case where x /∈ L. If an instance x is clearly outside of L
(say, the numbers of edges of G1 and G2 are different), Victor would not agree
with executing any protocol; therefore, for such an instance, we do not have to
construct a protocol. On the other hand, there are instances x /∈ L for which we
have to construct protocols; define L̆ ⊆ Σ∗ − L as

L̆ = {x /∈ L | Victor cannot determine if x ∈ L}.

If Peggy is malicious, she may present an instance x ∈ L̆ to Victor, and place
some subsequence to run a protocol (although there is no witness). We call such
a subsequence an illegal witness subsequence as well.

Consequently, we are supposed to construct a protocol for every instance in
L ∪ L̆.

5.2 Input to Protocol

As seen above, at the beginning of a protocol, Peggy is supposed to prepare
a witness subsequence. In addition to the witness subsequence, we need some
helping cards; for example, our protocol for the graph isomorphism (presented
in Sect. 4) uses n2 black ♣ or red ♥ cards as well as n numbered cards. These
helping cards are placed with their faces up at the beginning of the protocol.

As mentioned, if Peggy is malicious, she may place an illegal witness subse-
quence. To this end, she may prepare some number of cards stealthily and use
them to arrange such an illegal subsequence. Therefore, we have to take into
account such stealthy cards (owned by Peggy). Therefore, in addition to the
witness subsequence and helping cards, we consider stealthy cards: That is, we
assume that every input to a protocol consists of these three parts, and that a
deck D to consider accommodates all these cards.
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5.3 Abstract Protocol for ZKP

A card-based protocol itself has been well formalized already [18]. We will slightly
adjust the model of protocols by mainly adding a couple of two states, as follows.

First, we review some terms. Let D be a deck containing all cards as men-
tioned above. We call any element c ∈ D an atomic card, ?

c a face-down card,
and c

? a face-up card. Define top(u
v ) = u, call

top(Γ ) = (top(α1), top(α2), · · · , top(α|D|))

a visible sequence of a sequence Γ = (α1, α2, . . . , α|D|), and let VisD be the set
of all visible sequences from the deck D.

Next, we consider the input to a protocol. As mentioned before, the input
consists of three parts: the witness subsequence, helping cards, and stealthy
cards. Considering all possible input sequences, we use U to denote the set of all
such sequences.

We now consider a state of a protocol. Contrary to the conventional card-
based model, we introduce two additional states qaccept and qreject. That is, Q
is the set of states including the initial state q0, the accepting state qaccept, and
the rejecting state qreject. When a protocol terminates with qaccept, it means that
Victor accepts an input sequence Γ ; when it terminates with qreject, it means
that Victor rejects.

Based on these definitions and terms, a protocol is defined as follows.

Definition 1. A card-based protocol P is a 4-tuple P = (D,U,Q,A) that
satisfies:

– D is a deck.
– U is an input set.
– Q is a set of states containing q0, qaccept, and qreject.
– A : (Q\{qaccept, qreject}) × VisD → Q × Action is an action function. Here,

Action is a set of all actions consisting of the followings.
• Turning over (turn, T ): This action is to turn over cards in the positions

specified by T ⊆ {1, 2, · · · , |D|}. Thus, this transforms a sequence Γ =
(α1, α2, · · · , α|D|) as follows:

turnT (Γ ) := (β1, β2, · · · , β|D|),

such that for swap(u
v ) := v

u ,

βi =

{
swap(αi) if i ∈ T,

αi otherwise.

• Permuting (perm, π): This action is applying a permutation π ∈ S|D| to
a sequence of cards and transforms Γ = (α1, α2, . . . , α|D|) as follows:

permπ(Γ ) :=
(
απ−1(1), απ−1(2), · · · , απ−1(|D|)

)
.
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• Shuffling (shuf,Π,F): This action is applying a permutation chosen from
a permutation set Π ⊆ S|D| according to a probability distribution F on
Π. This action transforms Γ = (α1, α2, · · · , α|D|) as follows:

shufΠ,F (Γ ) := permπ(Γ ),

where π ∈ Π is drawn according to F .

A protocol P = (D,U,Q,A) runs as an abstract machine: Staring from the
initial state q0 with some input Γ0 ∈ U , the state and the current sequence change
according to the output of the action function. When its state becomes qaccept
or qreject, the protocol terminates. Considering an execution of the protocol, the
tuple of all sequences (Γ0, Γ1, · · · , Γt) appeared from the initial state q0 to the
final is called a sequence trace. Similarly, (top(Γ0), top(Γ1), · · · , top(Γt)) is called
a visible sequence trace.

5.4 Properties of ZKP

Based on the formalization thus far, we formally define a card-based ZKP pro-
tocol (collection) that is non-interactive and has no soundness error, as follows.

Definition 2. Let L be a language, and let x ∈ L ∪ L̆. We say that a protocol
Px = (D,U,Q,A) is compatible with the instance x if its input set U contains
every possible sequence whose prefix is a witness subsequence (corresponding to
a witness w ∈ Wx).3

Definition 3. Let L be a language. Assume that, for every instance x ∈ L ∪ L̆,
we have a protocol Px compatible with x. We call the set of all these protocols a
ZKP protocol collection for L if the following three conditions are met:

Completeness. If x ∈ L and an initial sequence Γ0 ∈ U for the protocol Px

contains a correct witness subsequence (corresponding to a witness w ∈ Wx),
the protocol starting with Γ0 always terminates with the accepting state qaccept.

Soundness. If x ∈ L and an initial sequence Γ0 for Px does not contain any
correct witness subsequence, the protocol starting with Γ0 always terminates
with the rejecting state qreject. If x ∈ L̆, Px always terminates with qreject.

Zero-knowledge. Let x ∈ L, and consider any distribution on input set U of
the protocol Px. For any run of the protocol, the distribution of input and that
of the visible sequence trace are stochastically independent.

6 Proof of ZKP Properties for Our Protocols

In this section, we prove the completeness, soundness, and zero-knowledge of our
proposed protocols based on the formalization presented in Sect. 5.

3 All other sequences in U start with illegal witness subsequences.
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6.1 3-Coloring Problem

We prove that our ZKP protocol for the 3-coloring problem presented in Sect. 3
satisfies the three conditions.

Theorem 1 (Completeness). If the input sequence Γ0 corresponding to φ
contains a correct witness subsequence, the protocol always terminates with the
accepting state qaccept.

Proof. In Step 2(a), we apply a pile-scramble shuffle horizontally to the three
piles. Let π ∈ S3 be a random permutation generated by this pile-scramble
shuffle. Two sequences that represented φ(i) and φ(j) before applying the pile-
scramble shuffle become to represent πφ(i) and πφ(j), i.e., the positions of the red
cards in the two sequences are πφ(i)-th and πφ(j)-th, respectively. By revealing
the two sequences, we can know whether πφ(i) = πφ(j) (i.e., φ(i) = φ(j)) or
not. Therefore, the protocol always terminates with the accept state qaccept. ��
Theorem 2 (Soundness). If the input sequence Γ0 corresponding to φ does
not contain any correct witness subsequence, the protocol always terminates with
the rejecting state qreject.

Proof. We consider the case where a sequence placed in Step 1 does not contain a
correct witness subsequence. In Step 2(a), we make vertical piles by pile-scramble
shuffle. That is, the sequence is placed in such a way that ψ(u) = ψ(v) satisfied
in Step 1. When the turn operation (turn, T ) is performed in Step 2(b), it is
found that ♥ is in the same column, resulting in the rejecting state. ��
Theorem 3 (Zero-knowledge). For any run of the protocol, the distribution
of input and that of the visible sequence trace are stochastically independent.

Proof. In Step 2(b), the sequence to be turned over by the operation (turn, T )
is randomly selected from the following six patterns:

1©
♥ ♣ ♣
♣ ♥ ♣

2©
♥ ♣ ♣
♣ ♣ ♥

3©
♣ ♥ ♣
♥ ♣ ♣

4©
♣ ♥ ♣
♣ ♣ ♥

5©
♣ ♣ ♥
♥ ♣ ♣

6©
♣ ♣ ♥
♣ ♥ ♣

Let r ∈ S3 be a uniformly randomly generated permutation. This sequence
is transformed by (perm, r). Thus, the visible sequence trace of the protocol
is uniformly distributed. Therefore, the distribution of input and the visible
sequence trace are stochastically independent. ��
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6.2 Graph Isomorphism Problem

We prove that our ZKP protocol for the graph isomorphism problem presented
in Sect. 4 satisfies the three conditions.

Theorem 4 (Completeness). If the input sequence Γ0 corresponding to π
contains a correct witness subsequence, the protocol always terminates with the
accepting state qaccept.

Proof. As shown in Sect. 4.1, there exists a permutation matrix Pπ for the adja-
cency matrices A(G1) and A(G2) of two isomorphic graphs G1 and G2 as follows:

A(G2) = PT
π A(G1)Pπ.

In Step 4, (perm, (rπ−1)−1) is equal to computing PT
π A(G1), and in Step 9,

(perm, (r′′π−1)−1) is equal to computing (PT
π A(G1))Pπ.

Therefore, the protocol always terminates with qaccept in Step 10. ��
Theorem 5 (Soundness). If the input sequence Γ0 corresponding to φ does not
contains any correct witness subsequence, the protocol always terminates with the
rejecting state qreject.

Proof. Consider the case where a witness subsequence placed in Step 1 is not
correct but legal. Let π′ be a permutation corresponding to that witness subse-
quence. The card sequences in Steps 3, 4, 8, and 9 is transformed by (perm, π′).
As shown in Sect. 4.1, if the permutation matrix Pπ′ corresponding to π is used,
it is transformed into a sequence corresponding to the graph G′

2 instead of the
graph G2 such that

A(G′
2) = PT

π′A(G1)Pπ′ .

Thus, when (turn, T ) is performed in Step 10, the sequence is different from that
of the adjacency matrix in G2, resulting in the rejecting state. Next, consider
the case where a sequence corresponding to an illegal witness subsequence is
placed. In this case, when (turn, T ) is performed in Step 10, it is found that the
sequence does not follow the format of the sequence, resulting in the rejecting
state as well. ��
Theorem 6 (Zero-knowledge). For any run of the protocol, the distribution
of input and that of the visible sequence trace are stochastically independent.

Proof. As seen in Sect. 2.2, pile-scramble shuffles are applied so that random per-
mutations r, r′, r′′ are generated. The sequence in Steps 3, 5, and 8 is transformed
by (perm,r), (perm,r’), and (perm,r”), respectively. Thus, the visible sequence
trace of the protocol is uniformly distributed. Therefore, the distribution of input
and the visible sequence trace are stochastically independent. ��



150 D. Miyahara et al.

7 Conclusion

In this paper, we proposed physical ZKP protocols using a deck of cards for
the two major graph problems. Our protocols have no soundness error and they
are easy to implement. In particular, it is interesting to note that our ZKP
protocol for the graph isomorphism problem requires only three shuffles. Similar
to the proposed protocol, we believe that we can propose a card-based ZKP
with no soundness error for other graph problems. In addition, we constructed
a rigorous definition of a card-based ZKP protocol that is non-interactive and
with no soundness error.

As future work, we are interested in the subgraph isomorphism problem4 and
in analyzing computation classes in more details. Furthermore, formalizing inter-
active card-based ZKP protocols (e.g., [2,5,16,23]) is an important future task.
In addition, investigating the relationship between our model and the standard
definitions of ZKP in details will be expected.
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Abstract. Quantum computing capability outperforms that of the clas-
sic computers overwhelmingly, which seriously threatens modern public-
key cryptography. For this reason, the National Institute of Standards
and Technology (NIST) and several other standards organizations are
progressing the standardization for post-quantum cryptography (PQC).
There are two contenders among those candidates, CRYSTALS-KYBER
and SABER, lattice-based encryption algorithms in the third round final-
ists of NIST’s PQC standardization project. At the current phase, it is
important to evaluate their security, which is based on the hardness
of the variants of Ring Learning With Errors (Ring-LWE) problem.
In ProvSec 2020, Wang et al. introduced a notion of “meta-PK” for
Ring-LWE crypto mechanism. They further proposed randomness reuse
attacks on NewHope and LAC cryptosystems which meet the meta-PKE
model. In their attacks, the encryptor Bob’s partial (or even all) random-
ness can be recovered if it is reused. In this paper, we propose attacks
against CRYSTALS-KYBER and SABER crypto schemes by adapting
the meta-PKE model and improving Wang et al.’s methods. Then, we
show that our proposed attacks cost at most 4, 3, and 4 queries to recover
Bob’s randomness for any security levels of I (AES-128), III (AES-192),
and V (AES-256), respectively in CRYSTALS-KYBER. Simultaneously,
no more than 6, 6, and 4 queries are required to recover Bob’s secret for
security levels I, III, and V in SABER.

Keywords: PQC · Randomness reuse attack · Meta-PKE ·
CRYSTALS-KYBER · SABER

1 Introduction

The security of current public-key crypto algorithms is commonly based on the
difficulty of the large number factorization problem or the discrete logarithm
problem. However, it is possible to break these cryptosystems in polynomial time
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by quantum computers in the near future, due to Shor’s quantum algorithm [19]
and the rapid development of quantum computing technique. Therefore, it is
urgent to develop the quantum-safe crypto algorithms, or academically named
by post-quantum cryptography (PQC) in general, to protect against the threat
of quantum computers. Several years ago, some international standards organi-
zations such as NIST, ISO, and IETF already started the PQC standardization
projects. Among the several categories, lattice-based cryptography is considered
as one of the most promising contenders for its reliable security strength, com-
parative light communication cost, fast performance and excellent adaptation
capabilities [1]. Indeed, three of four encryption/KEM algorithms and two of
three digital signature schemes are lattice-based candidates in the third round
finalists selected and announced by NIST in 2020.

CRYSTALS-KYBER [6] and SABER [7] are two of lattice-based encryp-
tion/KEM candidates that progressed to the third round of NIST’s PQC stan-
dardization project. Specifically, the security of CRYSTALS-KYBER is based
on the difficulty of the underlying Ring-LWE problem in the module lattice (i.e.
Module-LWE problem) [2]. Similarly, SABER’s security depends on the difficulty
of the Module-LWR problem, which chooses deterministic errors and consumes
less computational resources. Generally, owing to the ring structure, the key size
in the Ring-LWE based crypto schemes is smaller than that of the typical LWE
based ones. At the current stage, it is crucial to analyze their security carefully
to resist malicious attacks.

Recently, it has been common to reuse keys or randomness in network com-
munications in order to improve the performance of the protocols. For instance,
TLS 1.3 [18] adopts the pre-shared key (PSK) mode, where the server is allowed
to reuse the same secret key (randomness) and public key in intermittent commu-
nication with the clients to reduce the procedure of handshakes. Such key reuse
mode has the risk of leaking information about a secret key when an adversary
has enough chances to send queries to the honest server and get correct responses
from it. There are kinds of key reuse attacks on Ring-LWE based crypto schemes.
In this paper, we consider the case that the client Bob reuses his randomness,
which is used for the encryption process. This attack works as follows: an adver-
sary sends chosen public keys to the server and recovers Bob’s partial or entire
randomness by observing the returned public key and ciphertext. For example,
it is dangerous when the client Bob communicates with an honest server after
accessing a malicious one and reusing the same randomness. That is because his
ciphertext is easily decrypted by misusing his leaked randomness.

In [21], Wang et al. introduce a meta-PKE construction and show that both
NewHope and LAC follow this construction. Then, they observe that the meta-
PKE is vulnerable against the randomness reuse attack, and they propose attacks
on NewHope [2] and LAC [13], respectively. However, this attack for CRYSTALS-
KYBER or SABER has not been proposed so far.



Recovery Attack on Bob’s Reused Randomness 157

1.1 Our Contributions

The randomness reuse attacks on LAC and NewHope proposed in [21] are not
adaptable to CRYSTALS-KYBER and SABER because the encryption processes
of the crypto schemes are different. In this paper, we first discuss necessary con-
ditions for the success of attacks against CRYSTALS-KYBER and SABER and
present attack methods when the conditions are satisfied. Then, we also propose
attack methods for crypto schemes that do not meet that condition. Furthermore,
we shows that in CRYSTALS-KYBER, our proposed attack costs at most 4, 3,
and 4 queries to recover Bob’s randomness for security levels of I (AES-128), III
(AES-196), and V (AES-256), respectively. Meanwhile, in SABER, at most 6, 6,
and 4 queries are needed for security levels of I, III, and V. Indeed, our proposed
algorithms can recover Bob’s randomness with 100% success rate. Furthermore,
we experimentally verified our proposed attacks. Considering the success rate
and the number of queries, the reuse of the randomness is very dangerous and
should be strictly avoided. It is notable that CRYSTALS-KYBER and SABER
are two of the leading contenders in NIST PQC standardization project, namely,
one of them may be applied in some randomness reuse scenarios such as TLS
communications in the near future.

Due to the vulnerability of randomness reuse, once the attacker recovered
the client’s (Bob’s) randomness, there is potential risk that the attacker can
obtain other parties’ symmetric keys issued by the server. Consequently, this
work may call attention to relevant countermeasures for such attacks in real-
world applications.

1.2 Related Works

There have been a number of key recovery attacks on Ring-LWE [14] based cryp-
tosystems under a key reuse scenario. In general, they are divided into two types:
the signal leakage attacks taking advantage of the signal function [5,8,10,12], and
key reuse attacks focusing on the final shared key or the ciphertext. Concerning
the latter, in ACISP 2018, Ding et al. [9] proposed a general key mismatch attack
model for Ring-LWE based key exchange protocol. Subsequently, there are sev-
eral key mismatch attacks on specific lattice-based cryptographic schemes. For
example, attacks on NewHope are proposed in [4,15,16,20]. In 2019, Qin et al.
[17] proposed attacks on CRYSTALS-KYBER, and Greuret et al. [11] proposed
attacks on LAC in 2020. Furthermore, there is also a key mismatch attack using
quantum algorithms proposed by Băetu et al. [3] in 2019. Besides the key mis-
match attack on Alice’s secrets, there is also a key reuse attack on Bob’s random-
ness by observing his ciphertext. In 2020, Wang et al. [21] proposed such attacks
on NewHope and LAC, which are both the ring-LWE based cryptosystems with
compressing technique. In this paper, we improve the attacks in [21] and apply
them to the Module-LWE based CRYSTALS-KYBER with compressing tech-
nique, and the Module-LWR based SABER with bitwise shift operation.
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1.3 Roadmap

We recall some preliminaries, including mathematical notations, CRYSTALS-
KYBER, SABER, and Wang et al.’s proposition in Sect. 2. Then, we apply Wang
et al.’s theorem and propose our key reuse attacks on CRYSTALS-KYBER and
SABER in Sect. 3. Finally, we give our experimental results and show how our
proposed attack works well in Sect. 4. Finally, we make a conclusion and present
some countermeasures against our proposed attack in Sect. 5.

2 Preliminary

In this section, we introduce the algebraic definitions and notations used in this
paper. Next, we show each protocol’s outline, including several core functions
in CRYSTALS-KYBER [6] and SABER [7]. Finally, we explain an important
theorem advocated by Wang et al. [21].

2.1 Mathematical Notations

Set Zq the integer residue ring modulo q, and Zq[x] represents a polynomial ring
whose coefficients are sampled from Zq. Rq is the quotient ring Zq[x]/ (xn + 1).
In this paper, bold upper-case letters such as A represent matrices, and bold
lower-case letters such as b represent vectors. The transpose of matrix A ∈ Rk×k

q

is denoted by AT ∈ Rk×k
q . Similarly, the transpose of vector b ∈ Rk×1

q is denoted

by bT ∈ R1×k
q . For a ∈ Rq, a[i] represents ith coefficient of a

(
a =

∑n−1
i=0 a[i]xi

)
.

For b ∈ Rk
q , bi means ith component of b (0 ≤ i ≤ k −1). The operation �x� on

real number x represents the largest integer no larger than x; and �x� = �x+ 1
2�.

For a probability distribution χ, x ← χ denotes that polynomial x’s coeffi-
cients are randomly sampled from χ; and x ← χk×1 denotes sampling polyno-
mial vector x with all coefficients sampled from χ. Given a set S, the notation
x ← U(S) means selecting x from S uniformly at random.

2.2 CRYSTALS-KYBER [6]

We show the outline of the CRYSTALS-KYBER public key encryption proto-
col in Fig. 1. Note that the public polynomial matrix A is shared in advance.
Bη is a centered binomial distribution, and its element is sampled by calcu-
lating

∑η
i=1 (bi − b′

i) (bi and b′
i are sampled from {0, 1} uniformly at random).

CRYSTALS-KYBER consists of the below three steps.

1. Alice first selects a secret key sA and an error eA from Bk×1
η . Then, she

calculates the public key PA = AsA + eA using the previously shared A(∈
Rk×k

q ), and sends PA to Bob. From the public key PA and the previously
shared polynomial A, it is difficult to obtain information about the secret key
sA due to the hardness of Module-LWE problem.
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pre-shared key A ∈ Rk×k
q

Alice Bob
sA, eA←Bk×1

η

PA = AsA + eA
PA−−−→ sB, eB←Bk×1

η

eB←Bη

PB = AT sB + eB

m←U256({0, 1})
vB = PT

AsB + eB + Decompressq(m, 1)
c1 = Compressq(PB , dPB )

uA = Decompressq(c1, dPB )
c=(c1,c2)←−−−−−− c2 = Compressq(vB , dvB )

vA = Decompressq(c2, dvB )
m = Compressq vA − sT

AuA, 1

Fig. 1. A sketch of CRYSTALS-KYBER public key encryption scheme

Table 1. Parameter choices in CRTSTALS-KYBER [6]

n k q dPB dvB Security level

Kyber-512 256 2 3329 10 3 I (AES-128)

Kyber-768 256 3 3329 10 4 III (AES-192)

Kyber-1024 256 4 3329 11 5 V (AES-256)

2. After receiving PA, Bob samples polynomial vectors sB , eB and polynomial
e′
B from Bk×1

η and Bη, respectively. Then, he computes the public key PB =
AT sB + eB . Subsequently, he generates m from U256({0, 1}) and computes
vB = PT

AsB + e′
B + Decompressq(m, 1). Finally, he compresses PB , vB to c1,

c2 and sends them to Alice.
3. When Alice receives (c1, c2) from Bob, she decompresses them and get uA

and vA. In order to obtain m′, she calculates vA − sT
AuA using her secret key

sA and compresses it.

Here, Compressq(a, d) and Decompressq(a, d) are defined as follows.

Definition 1. The compression function Zq → Z2d :

Compress(a, d)q =
⌊

2d

q
· a

⌉ (
mod2d

)

Definition 2. The decompression function Z2d → Zq:

Decompress(a, d)q =
⌊ q

2d
· a

⌉

When these two functions are used with x ∈ Rq or x ∈ Rk×1
q , the procedure

is applied to each coefficient of them.
We list three parameter sets for KYBER: KYBER-512, KYBER-768, and

KYBER-1024 in Table 1.
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pre-shared key A ∈ Rk×k
q

Alice Bob
sA, eA←βk×1

μ

PA = ((AsA + h) mod q) ( q − p)
PA−−−→ sB←βk×1

μ

PB = ((AsB + h) mod q) ( q − p)
m←U256({0, 1})
vB = ((PT

AsB) mod p)

vA = ((PT
BsA) mod p)

(PB ,c)←−−−− c = vB + h1 − 2 p−1m mod p ( p − T )
m = ((vA − 2 p− T c + h2) mod p) ( p − 1)

Fig. 2. A sketch of SABER public key encryption scheme

2.3 SABER [7]

Figure 2 shows the outline of SABER crypto scheme. The polynomial matrix A
is shared in advance. βμ is a centered distribution with probability mass function
P [x | x ← βμ] = μ!

(μ/2+x)!(μ/2−x)!2
−μ. Thus, the integer sampled from βμ is in

the range [−μ/2, μ/2]. Different from CRYSTALS-KYBER, SABER uses three
constants instead of selecting error polynomials: a constant polynomial h1 ∈ Rq

with all coefficients being 2εq−εp−1, a constant vector h ∈ Rk×1
q whose polynomi-

als are equal to h1 and a constant polynomial h2 ∈ Rq with all coefficients set to
be

(
2εp−2 − 2εp−εT −1 + 2εq−εp−1

)
. The bitwise shift operations 	 and 
 have

the usual meaning when applied to an integer and are extended to polynomials
and matrices by applying them coefficient-wise. We list the parameter sets with
respect to security levels in Table 2, and review the main procedure of SABER
below.

Table 2. Parameter choices in SABER [7]

n k q p T μ Security

LightSaber 256 2 213 210 23 10 I (AES-128)

Saber 256 3 213 210 24 8 III (AES-192)

FireSaber 256 4 213 210 26 6 V (AES-256)

1. Alice first selects a secret key sA from βk×1
μ . Then, she calculates the public

key PA = ((AsA + h) mod q) 
 (εq − εp) using the previously shared A(∈
Rk×k

q ), and sends PA to Bob. It is difficult to recover sA from PA due to the
hardness of Module-LWR problem.

2. After receiving PA, Bob samples sB from βk×1
μ . Then, he computes the public

key PB = ((AsB + h) mod q) 
 (εq − εp). After that, he generates m from
U256({0, 1}) and computes vB = ((PT

AsB) mod p). Finally, he calculates c and
sends PB and c to Alice.

3. When Alice receives (PB, c), she calculates vA = ((PT
BsA) mod p), and

obtains m′ = ((vA − 2εp−εT c + h2) mod p) 
 (εp − 1) using vA.
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2.4 Wang et al.’s Proposition

Wang et al. propose the so-called “meta-PKE” construction and show both
NewHope and LAC follow this construction. Next, they observe that the cipher-
text may reveal the encryptor’s randomness information using the feature of
meta-PKE if the public key satisfies certain conditions.

In the encryption algorithm adopting meta-PKE construction, there is a key
step of

V = t × B + f + Y.

B is the public key sent by Alice, V is the ciphertext encoded by Bob, and Y is the
plaintext. t and f are randomnesses which are usually sampled from a centered
binomial distribution. There Wang et al. proposed the following theorem.

Lemma 1. [21] t, f, Y ∈ Rq, and the coefficients t[i], f [i] are in {−D, . . . ,
D},D 	 q, Yi ∈ {

0, q
2

}
, i = 1, . . . , n. B ∈ Zq and V = B × t + f + Y mod q. If

2D + 1 ≤ B < q/(4D) − 1, then V will reveal the values of t, f, Y completely.

Proof. We refer the readers to [21] for a proof of this lemma.

3 Our Proposed Attack

We observe that CRYSTALS-KYBER and SABER also follow meta-PKE con-
struction. Therefore, Lemma 1 can be adapted to these two protocol schemes.
However, when an adversary tries to recover Bob’s randomness, he can only
access the compressed ciphertext (V ). Thus, we take this fact into consideration
and propose the following Theorem 1 for CRYSTALS-KYBER and Theorem 2
for SABER.

Theorem 1. t, f, Y ∈ Rq, and the coefficients t[i], f [i] are in {−D, . . . , D},D 	
q, Yi ∈ {

0, q
2

}
, i = 1, . . . , n. B ∈ Zq and V = B × t + f + Y mod q. Let

compress function be Compress : Zq → Zp(q > p) and Compress(x) =
⌈

p
q x

⌋
.

If
⌊

p(B−2D)
q

⌋
= 1, p( q

2 −2DB−2D)

q ≥ 1, and 4D + 2 ≤ p, then Compress(V ) will
reveal t and Y completely in attacking CRYSTALS-KYBER schemes.

Proof. Since f is small and has little effect on Compress(V ) and B is constant,
V can be regarded as a bivariate function V (t, Y ). When Compress ◦ V is injec-
tive, t and Y can be completely recovered from Compress(V (t, Y )). Then in the
remain of the proof, we just need to show the above three conditions guarantee
Compress ◦ V injective. We consider two V s:

V1 = B1 × t1 + f1 + Y1 mod q (1)
V2 = B2 × t2 + f2 + Y2 mod q. (2)

When t1 and t2 are different from each other, the minimum difference between
V1 and V2 is B − 2D. Thus, when the condition

⌊
p(B−2D)

q

⌋
= 1 holds,



162 S. Okada and Y. Wang

Fig. 3. The minimum difference between V1 and V2 when Y1 = 0 and Y2 = q
2
.

Compress(V1) = Compress(V2) and
Compress(V1) − Compress(V2) = 1. Furthermore, when Y1 = 0 and Y2 = q

2 , the
minimum difference between V1 and V2 is q

2 − 2DB − 2D (Fig. 3).

Hence, if p( q
2 −2DB−2D)

q ≥ 1, Compress(V1) = Compress(V2). Additionally, the
size of the image of Compress◦V must be smaller than that of Zp, i.e. 4D+2 ≤ p.

In summary, under the three conditions of 1©
⌊

p(B−2D)
q

⌋
= 1, 2© p( q

2 −2DB−2D)

q ≥
1, 3© 4D + 2 ≤ p, Compress ◦ V is injective and reveals t and Y .

Theorem 2. t, f, Y ∈ Rp, and the coefficients t[i] are in {−D, . . . ,D}, D 	
p, f [i] = h, h < p Yi ∈ {

0, p
2

}
, i = 1, . . . , n. B ∈ Zp, p = 2εp , T = 2εT , and

V = B × t + f + Y mod q. If B 
 (εp − εT ) = 1, (p
2 − 2DB) 
 (εp − εT ) ≥ 1,

and 4D + 2 ≤ p, then V 
 (εp − εT ) will reveal t and Y completely in attacking
SABER schemes.

Proof. For convenience, we set Compress as εp − εT bit shift to the right (i.e.

 (εp − εT )). In this proof, we also show the above three conditions guarantee
Compress ◦ V injective. We consider two V s such as (1) and (2). Different from
Theorem 1, f [i] is constant. Therefore, when t1 and t2 are different from each
other, the minimum difference between V1 and V2 is B. So if the condition
B 
 (εp − εT ) = 1 holds, Compress(V1) = Compress(V2) and

Compress(V1) − Compress(V2) = 1. Furthermore, when Y1 = 0 and Y2 = p
2 ,

the minimum difference between V1 and V2 is p
2 −2DB. Due to this, the condition

(p
2 − 2DB) 
 (εp − εT ) ≥ 1 realizes Compress(V1) = Compress(V2). Finally, the

size of the image of Compress◦V must be smaller than that of Zp, i.e. 4D+2 ≤ p.

3.1 General Attack Model

In the key reuse attack model, we assume that Bob reuses the same randomness
and honestly responds to a number of queries. Namely, an adversary sends freely
chosen public keys to Bob and can get the corresponding ciphertexts several
times. For convenience, to simulate the behavior of Bob, we build an oracle
Ok (Algorithm 1) and Os (Algorithm 4) for CRYSTALS-KYBER and SABER,
respectively. Each time the adversary can choose a public key arbitrarily and put
it into the oracle. He can get information about sB by observing the responses.
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3.2 Key Reuse Attack on CRYSTALS-KYBER

We build an oracle Ok in Algorithm 1 for the key reuse attack on CRYSTALS-
KYBER. This oracle takes public key PA as an input and returns c2.

Algorithm 1: KYBER Oracle(PA)

Input: PA ∈ Rk×1
q

Output: c2 ∈ R
2
dvB

1 m←U256({0, 1})
2 e′

B←Bη

3 vB = PT
AsB + e′

B + Decompress(m, 1)
4 c2 = Compress(vB , dvB )
5 Return c2

Attack on Kyber-768 and Kyber-1024. Kyber-768 and Kyber-1024 satisfy
Lemma 1 and Theorem 1 when appropriate B is chosen. For example, in Kyber-
1024, D = 2, q = 3329, p = 32. If we set B = 109, the following formulas hold:

2D + 1(= 5) ≤ B(= 109) ≤ q/4D − 1(� 416),⌊
p

q
(B − 2D)

⌋
=

⌊
32

3329
· 105

⌋
= 1,

p

q
(
q

2
− 2DB − 2D) =

32
3329

· 1224.5 � 11.7 > 1, and

4D + 2 = 10 ≤ 32.

Therefore, an adversary can recover one polynomial of sB per query. We show
the details of the attack in Algorithm 2.

In this attack, when an adversary wants to recover polynomial sBi (0 ≤ i ≤
k), he sets public key PA = [0, · · · , 0, B, 0, · · · 0] i.e. PAi = B. Then he sends
PA to the oracle and obtain ciphertext c2. We show how the coefficient c2[j]
changes according to the coefficient of sBi and m in Table 3 for Kyber-768 and
Table 4 for Kyber-1024, respectively.

By using these tables, an adversary can recover sBi (and m simultaneously)
completely by observing c2[j] corresponding to sBi[j] and m[j]. Because he can
recover one element of sB per query, the total cost of this attack is k queries.

Table 3. The behavior of c2[j] corresponding to (sBi[j], m[j]) when B = 213 in Kyber-
768

m[j]

c2[j] sBi[j]
-2 -1 0 1 2

0 14 15 0 1 2
1 6 7 8 9 10
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Table 4. The behavior of c2[j] corresponding to (sBi[j],m[j]) when B = 105 in Kyber-
1024

m[j]

c2[j] sBi[j]
-2 -1 0 1 2

0 30 31 0 1 2
1 14 15 16 17 18

Algorithm 2: KYBER 768 1024 Attack()

Output: s′
B ∈ Rk×1

q

1 B = � q

2
dvB

� + 4

2 for i ← 0 to k do
3 PA = []
4 for j ← 0 to k do � Set optimized PA

5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c2 = Ok(PA)
9 for l ← 0 to n do � Recover the randomness based on Table 3 or 4

10 if 2dvB
−1 − η ≤ c2[l] ≤ 2dvB

−1 + η then

11 s′
Bi[l] = c2[l] − 2dvB

−1

12 else if c2[l] ≤ η then
13 s′

Bi[l] = c2[l]

14 else

s′
Bi[l] = c2[l] − 2dvB

15 Return s′
B

Attack on Kyber-512. In contrast, Kyber-512 does not satisfy Theorem 1
(∵ 4D + 2 = 10 > 23). Actually, when the adversary sets B = 421, which
satisfies

⌊
p(B−2D)

q

⌋
= 1, the relationship between ciphertext c2 and (sB ,m) is

shown in Table 5.
In this case, when an adversary get c2[j] = 6 or c2[j] = 2, he can not judge

whether sBi[j] = 2 or −2. As a countermeasure, we set one more B = 631 and
observe how c2[j] changes in Table 5. It shows that an adversary can recover
sBi[j] = 2,−2 from c2[j]. Consequently, the attack on Kyber-512 works and we
show its details in Algorithm 3. In this attack. the adversary can recover all the
coefficients of sB completely by at most 2k(=4) queries.
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Table 5. The behavior of c2[j] corresponding to (sBi[j], m[j]) when B = 421, 631 in
Kyber-512

B 421 631

m[j]

c2[j] sBi[j]
-2 -1 0 1 2 -2 -1 0 1 2

0 6 7 0 1 2 5 6 0 2 3
1 2 3 4 5 6 1 2 4 6 7

Algorithm 3: KYBER 512 Attack()

Output: s′
B ∈ Rk×1

q

1 B = 421

2 for i ← 0 to k do

3 PA = []

4 for j ← 0 to k do

5 if j == i then

6 PA.append(B)

else

7 PA.append(0)

8 c2 = Ok(PA)

9 for l ← 0 to n do

10 if c2[l] == 2 or c2[l] == 6 then

11 continue

12 else if 3 ≤ c2[l] ≤ 5 then

13 s′
Bi[l] = c2[l] − p/2

14 else if c2[l] == 0 or c2[l] == 1 then

15 s′
Bi[l] = c2[l]

16 else

17 s′
Bi[l] = c2[l] − p

18 B = 631

19 for i ← 0 to k do

20 PA = []

21 for j ← 0 to k do

22 if j == i then

23 PA.append(B)

else

24 PA.append(0)

25 c2 = Ok(PA)

26 for l ← 0 to n do

27 if c2[l] == 1 or c2[l] == 5 then

28 s′
Bi[l] = −2

29 if c2[l] == 3 or c2[l] == 7 then

30 s′
Bi[l] = 2

31 Return s′
B

3.3 Key Reuse Attack on SABER

In the key reuse attack on SABER, we build oracle Os (Algorithm 4). Given
PA, this oracle outputs c.

Algorithm 4: SABER Oracle(PA)

Input: PA ∈ Rk×1
q

Output: c ∈ RT

1 m←U256({0, 1})

2 vB = ((PT
AsB) mod p)

3 c =
(
vB + h1 − 2εp−1m mod p

) � (εp − εT )
4 Return c

Attack on FireSaber. FireSaber, whose security level is V, satisfies Theorem 2
when B = 16. Therefore, the attack method is almost the same as that for
Kyber-768 and Kyber-1024. In this case, the relationship between ciphertext c
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Algorithm 5: FireSaber Attack()

Output: s′
B ∈ Rk×1

q

1 B = 2εp−εT

2 for i ← 0 to k do
3 PA = []
4 for j ← 0 to k do
5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c = Os(PA)
9 for l ← 0 to n do

10 if T
2

− η ≤ c[l] ≤ T
2

+ η then
11 s′

Bi[l] = c[l] − T
2

12 else if c[l] ≤ η then
13 s′

Bi[l] = c[l]

14 else
s′

Bi[l] = c[l] − T

15 Return s′
B

and (sB ,m) is shown in Table 6. From Table 6, we can see that c[j] corresponds
to sBi[j] one-to-one. Thus, an adversary can recover sB with k queries. The
detail of this attack is described in Algorithm 5.

Table 6. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 16 in
FireSaber

m[j]

c[j] sBi[j]
-3 -2 -1 0 1 2 3

0 61 62 63 0 1 2 3
1 29 30 31 32 33 34 35

Attack on Saber. Meanwhile, Saber, whose security level is III, does not sat-
isfy Theorem 2. Here we take the similar discussion to that for Kyber-512 in
Sect. 3.2. First, we show how c[j] changes according to m[j] and sBi[j] in Table 7
when B = 64. If c[j] = 12 or c[j] = 4, an adversary can not judge whether
sBi[j] = 4 or sBi[j] = −4 only from c[j]. Then, we set B = 96 and show the
relationship between c[j] and (sBi,m) in Table 7. It shows that an adversary can
judge sBi[j] = −4 when c[j] = 10, 2 and judge sBi[j] = 4 when c[j] = 6, 14 if he
knows all the coefficients of sBi in [−3, 3]. Namely, an adversary first recovers
the coefficients [−3, 3] by sending a query with B = 64 to the oracle, and next
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Table 7. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 64, 96 in
Saber

B 64 96

m[j]

c[j] sBi[j]
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

0 12 13 14 15 0 1 2 3 4 10 11 13 14 0 1 3 4 6
1 4 5 6 7 8 9 10 11 12 2 3 5 6 8 9 11 12 14

Algorithm 6: Saber Attack()

Output: s′
B ∈ Rk×1

q

1 B = 64
2 for i ← 0 to k do
3 PA = []

4 for j ← 0 to k do
5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c = Os(PA)

9 for l ← 0 to n do
10 if c[l] == 4 or c[l] == 12 then

11 continue

12 else if 5 ≤ c[l] ≤ 11 then

13 s′
Bi[l] = c[l] − T/2

14 else if 0 ≤ c[l] ≤ 3 then

15 s′
Bi[l] = c2[l]

16 else
17 s′

Bi[l] = c2[l] − T

18 B = 96

19 for i ← 0 to k do
20 PA = []
21 for j ← 0 to k do

22 if j == i then
23 PA.append(B)

else
24 PA.append(0)

25 c = Os(PA)
26 for l ← 0 to n do

27 if c[l] == 2 or c[l] == 10 then
28 s′

Bi[l] = −4

29 if c[l] == 6 or c[l] == 14 then
30 s′

Bi[l] = 4

31 Return s′
B

recovers the coefficients in {−4, 4} by a query with B = 96. As a result, all the
coefficients of sBi in Saber can be recovered by at most 2k(=4) queries. The
details of this attack are described in Algorithm 6.

Attack on LightSaber. LightSaber, which has the lowest security level I (AES-
128) in SABER, does not satisfy Theorem 2 neither. Actually, when an adversary
set B = 128 so that B 
 (εp − εT ) = 1, the behavior of c[j] is shown in Table 8.
There is no pair of (c[j],m[j]) which corresponds to sBi[j]. In other words, from
Table 8, an adversary can not obtain any information about sBi[j]. Thus, we
consider the case B = 16 (Table 9). In this case, when c[j] = 7 or c[j] = 3, sBi[j]
is judged to be negative and when c[j] = 0 or c[j] = 4, sBi[j] is non-negative.
After he knows whether sBi[j] is negative or non-negative, he can distinguishthe
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Table 8. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 128 in
LightSaber

m[j]

c[j] sBi[j]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0 3 4 5 6 7 0 1 2 3 4 5
1 7 0 1 2 3 4 5 6 7 0 1

Table 9. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 16, 128, 192
in LightSaber

B 16 128 192

m[j]

c[j] sBi[j]
-5 -4 -3 -2 -1 0 1 2 3 4 5 Refer to

Table 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 7 7 7 7 7 0 0 0 0 0 0 0 2 3 5 6 0 1 3 4 6 7
1 3 3 3 3 3 4 4 4 4 4 4 4 6 7 1 2 4 5 7 0 2 3

coefficients in [−4,−2] and those in {2, 3} from Table 8. Further, to identify
the coefficients in {−5,−1} or in {0, 1, 4, 5}, the adversary again set B = 192
(Table 9). We summarize the attack on LightSaber by the following three steps.

1. An adversary first sends a query with B = 16 and tell whether sBi[j] is
negative or non-negative.

2. He sends a query with B = 128 and recover the coefficients in [−4,−2]∪{2, 3}.
3. Finally, he recover the coefficients in {−5,−1} or {0, 1, 4, 5} by a query with

B = 192.

The details of this attack are shown in Algorithm 7.

4 Experiments

We implement and verify the attack algorithms from Algorithm 1 to 7 by
Python3. The experimental results are shown in Table 10. From this table, it is
clear that the number of queries necessary for each attack is remarkably small.
Furthermore, we plot the relationship between the number of queries and the
rate of coefficients recovered in Bob’s randomness for each crypto scheme in
Appendix A. It is notable that the final success rate of each attack is 100%.

Table 10. The results in each parameter sets of CRYSRALS-KYBER and SABER

Crypto scheme CRYSTALS-KYBER SABER

Parameter set Kyber-512 Kyber-768 Kyber-1024 LightSaber Saber FireSaber

Number of queries ≤4 3 4 ≤6 ≤6 4
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Algorithm 7: LightSaber Attack()

Output: s′
B ∈ Rk×1

q

1 B = 16
2 negative list = []
3 for i ← 0 to k do
4 PA = []
5 for j ← 0 to k do
6 if j == i then
7 PA.append(B)

else
8 PA.append(0)

9 c = Os(PA)
10 for l ← 0 to n do
11 if c[j] == 7 or c[j] == 3 then
12 negative list.append(true)

else
13 negative list.append(false)

14 B = 128
15 for i ← 0 to k do
16 PA = []
17 for j ← 0 to k do
18 if j == i then
19 PA.append(B)

else
20 PA.append(0)

21 c = Os(PA)
22 for l ← 0 to n do
23 if negative list[l] then
24 if 4 ≤ c[l] ≤ 6 then
25 s′

B [l] = c[j] − 8

26 else if 0 ≤ c[l] ≤ 2 then
27 s′

B [l] = c[j] − 4

28 else
29 continue

else
30 if 2 ≤ c[l] ≤ 3 then
31 s′

B [l] = c[j]

32 else if 6 ≤ c[l] ≤ 7 then
33 s′

B [l] = c[j] − 4

34 else
35 continue

36 B = 192
37 for i ← 0 to k do
38 PA = []
39 for j ← 0 to k do
40 if j == i then
41 PA.append(B)

else
42 PA.append(0)

43 c = Os(PA)
44 for l ← 0 to n do
45 if negative list[l] then
46 if c[l] == 0, 4 then
47 s′

B [l] = −5

48 else if c[l] == 2, 6 then
49 s′

B [l] = −1

50 else
51 continue

else
52 if c[l] == 0, 4 then
53 s′

B [l] = 0

54 else if c[l] == 1, 5 then
55 s′

B [l] = 1

56 else if c[l] == 2, 6 then
57 s′

B [l] = 4

58 else if c[l] == 3, 7 then
59 s′

B [l] = 5

60 else
61 continue

62 Return s′
B
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5 Conclusion and Discussion

In this paper, we extended Wang et al.’s idea and proposed new theorems and
practical attacks on CRYSTALS-KYBER and SABER. The attacks are designed
to be optimized for each crypto scheme and each security category. Furthermore,
we actually implemented the crypto schemes and attacks and confirmed that
our proposed method can recover Bob’s randomness completely. We also count
the number of queries necessary for each attack. Taking into consideration the
success rate and the number of queries, the reuse of randomness is very dangerous
and should be strictly avoided.

There is potential risk that the attacker may obtain other parties’ symmetric
keys issued by the client (Bob) if his randomness variants are leaked in the com-
munication. Consequently, for a more robust real-world applications, we suggest
two feasible countermeasures against our attacks as follows: 1. Rejecting any
freely chosen queries, 2. Refreshing randomness every time public key are sent.
About the first countermeasure, it is easy to check whether sent queries match
the forms of those proposed in our attack. However, adversaries can develop
our attacks and change the forms of queries. Thus, such signature detection is
not suitable. From above discussion, anomaly detection may be better, but one
should also consider the problem about false positive and false negative is com-
mon with it. The second one is fundamental and more effective to our attack
than the first one. However, it should also be considered that the disadvantage
of this countermeasure is that there will be an additional load on the server.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
JP20K23322 and JP21K11751, Japan.

Appendix A
Plots of Experimental Results

We show the relationships between the number of queries and the rate of recov-
ered Bob’s randomness from Fig. 4, 5, 6, 7, 8, 9. Figure 4 shows that the whole
randomness can be recovered with at most 4 queries (at least 2 queries) in the
attack on KYBER-512, and Fig. 5 and 6 show it requires 3 and 4 queries in the
attacks on KYBER-768 and KYBER-1024, respectively. Simultaneously, Fig. 7
and 8 show it requires at most 6 queries (at least 4 and 3 queries) to recover the
whole randomness in LightSaber and Saber, while just 4 queries is needed in the
key recovery attack on FireSaber (Fig. 9).
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Fig. 4. KYBER-512. Fig. 5. KYBER-768.

Fig. 6. KYBER-1024. Fig. 7. LightSaber.

Fig. 8. Saber Fig. 9. FireSaber
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Abstract. We present m-SubBKZ reduction algorithm that outputs a
reduced lattice basis, containing a vector shorter than the original BKZ.
The work is based on the properties of sublattices and the Gaussian
Heuristic of the full lattice and sublattices. By theoretical analysis and
simulation, we suggest a BKZ call on the sublattice is possible to produce
a short vector close to the shortest vector in the full lattice. The key idea
of our algorithm is to extract multiple sublattices from the preprocessed
lattice, restricting the context in which a lattice reduction solver is called.
The full basis is then updated with vectors from the reduced basis of each
sublattice. The new algorithm improves on the efficiency of the original
BKZ algorithm and the BKZ 2.0 variant. We show the experimental
results on random lattices to compare the length of vectors produced
by our algorithm and original BKZ and BKZ 2.0. On the 180-dimension
basis, the m-SubBKZ reaches 47% of the output of BKZ and 46% of BKZ
2.0. The ratio drops with the dimension increasing. The effect is more
oblivious with smaller blocks. The results show that the new algorithm
is able to produce a shorter vector at a relatively low cost compared
with previous algorithms, and the improvements are especially explicit
for lattices of high dimensions.

Keywords: Lattice reduction · Shortest vector problem · BKZ
algorithm · Sublattice

1 Introduction

1.1 Background

Lattice reduction algorithms serve as an essential part in the analysis of lattice-
based cryptography, which may update the standard of public key cryptogra-
phy, considering that quantum computing is making rapid progress and about
to impose a real threat to the current public key schemes at any time. Among
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the many hard lattice problems, the Shortest Vector Problem (SVP) has been
a key stone of the theory. To solve this NP-hard problem, much work has been
done to study the cost of lattice reduction algorithms and other algorithms in
the hope to solve the SVP. Among them, BKZ [1] and its variants are the most
commonly used algorithms for lattice reduction and solving approximate SVP.
The BKZ algorithm calls an SVP oracle on blocks. Two implementations of the
SVP oracle are lattice enumeration and lattice sieving. In most publicly available
implementions of BKZ, enumeration is used as the SVP solver. For lattices of
large dimension, enumeration is not the fastest algorithm, as the sieving algo-
rithm [2] has been proved to be of lower time complexity than enumeration
asymptotically [3], and the optimized sieving implementation [4] by Lucas et
al. has outperformed enumeration-based algorithms in solving the SVP. How-
ever, the memory cost of sieving algorithm grows exponentially with the lattice
dimension and the cost grows out of our affordability when considering dimen-
sions suggested by lattice-based schemes. On the other hand, BKZ and other
enumeration-based algorithms have a memory cost that grows moderately with
the dimension. Even if BKZ runs with relatively low efficiency on large lat-
tices and blocks, it still remains a popular tool for preprocessing and for solving
approximate SVP.

1.2 Related Work

The first practical lattice reduction algorithm, LLL, was first proposed in 1982 [5]
and it is still in use today. In polynomial time the algorithm is able to produce a
reasonably short lattice vector, but usually far from the shortest in high dimen-
sions. In 1994, Schnorr and Euchner proposed BKZ, which can be considered
as a generalization of LLL, combined with blockwize HKZ reduction [1]. The
algorithm has a time complexity of ββ/(2e), but outputs a better lattice basis.
While BKZ is the main-stream algorithm for lattice reduction, its behaviour and
efficiency are relatively hard to analyze. It is noted in practice that the algorithm
usually performs better than the estimation in theory, making it tricky to give
an accurate estimation of its output quality.

Most of the studies and improvements on lattice reduction algorithms are
concentrated on the running time and the optimization of strategies and param-
eters [6]. The work of Chen and Nguyen analyzed the behaviour of blockwise
reduction by the simulator and showed that the last several tours only have
a small impact on the output basis. In their work, a new variant of blockwise
reduction algorithm, BKZ 2.0, was proposed [7]. The algorithm employed an
early-abort technique, along with other fixes. This variant performs well in prac-
tice, and the algorithm has been the most recognized variant of lattice reduction
algorithm. In 2016, a version of progressive reduction [8] was proposed, sug-
gesting that reduction algorithm may achieve a better output when the block
size is properly updated during iteration. A new enumeration-based reduction
algorithm was proposed in 2020 by Albrecht et al., achieving a small Hermite
factor with a lower-dimension SVP solver. They suggest a new aspect that the
context in which a reduction solver is called may be separated from the block,
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where the SVP solver is called [9]. Slide reduction is another blockwize reduc-
tion algorithm initiated in 2008 by Gamma et al., and recently reviewed in 2020
[6,14]. The algorithm is based on the Mordell’s inequality, reaching a rather
small approximation factor. But in many practical senarios, BKZ and the BKZ
2.0 are still taken as reduction algorithms.

1.3 Our Contribution

This work is based on analysis of properties of sublattice and improvements
on lattice reduction algorithms. As the main contribution, we present a lat-
tice reduction algorithm that outputs a BKZ-reduced basis, containing a vector
shorter than the original algorithm, with the same block size.

(1) We focuses on the reduction of sublattice, which denotes a lattice generated
by some of the basis vectors of the full lattice. We first analyze the prop-
erties of the sublattice, then analyze the behaviour and efficiency of BKZ
on sublattice basis compared with on the full basis. The running time of
BKZ increases sharply with block size increasing, but the output vectors do
not gain an obviously better quality. By the Gaussian Heuristic and exper-
iments on SVP challenge lattices we show that the shortest vector length
λ1(L1) in a sublattice of dimension n′ = n/2 can be as long as 1.41λ1(L) for
dimension n ≤ 130. Thus, when a sublattice is well reduced, a list of short
vectors can be returned. The properties of sublattice suggest the possibility
to reach a similar outcome with lower cost by modifying the context, where
a BKZ tour runs.

(2) We present the m-SubBKZ algorithm to exploit the properties of sublat-
tice we have found, where m denotes the number of reduction tours. Our
method restricts the context of reduction subprocedure to a list of sublat-
tices and employs a progressive technique to accelerate the reduction in
the full basis. The algorithm achieves improved efficiency by running SVP
reduction on randomly generated sublattices recursively. As the reduction
context is restricted to the sublattice, each round has a lower time complex-
ity compared to BKZ.

(3) Finally, we give an experimental illustration of the efficiency of our algo-
rithm. We illustrate the effectiveness of our algorithm by trying to recover a
short vector from the basis with the same block size for BKZ, BKZ 2.0 and
single round SubBKZ. The block size is 30 for smaller lattices and 60 larger
ones. We show the vectors output by different algorithms and the time cost
to find the vectors, compared with BKZ and BKZ 2.0. By results, we spec-
ify a reasonable improvement achieved by the new algorithm. For the 180
dimension basis, the progressive method reaches 47% of the output of BKZ
and 46% of BKZ 2.0. The ratio drops with the dimension increasing. We
also compared m-SubBKZ with progressive BKZ, with block size increas-
ing together up to 60. Our algorithm still has the advantage in output and
time cost. The results show that the new algorithm is able to produce a
shorter vector at a relatively low cost compared with previous algorithms
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and the improvements are especially useful in reducing lattice basis of higher
dimension.

1.4 Outline

Section 2 will recall the basic definitions about lattice and basis reduction. Details
of the sublattice and sublattice and its properties are introduced in Sect. 3. We
then present our main work, the SubBKZ algorithm, in Sect. 4. In Sect. 5, we
show the efficiency of the new algorithm by experiments to find short vectors and
the time cost, with our implementation in python. Finally, we give our conclusion
in Sect. 6.

2 Preliminaries

2.1 Lattice

In this part we introduce the basic notions and definitions concerned in the
following sections. The definitions about lattice are mostly from literature [4,9].
For more details on lattice, it is recommended to refer to [10].

Definition 1. Let b1, b2, . . . , bn ∈ R
n be a list of linearly independent vectors,

we define the basis B = [b1, b2, . . . , bn] and the lattice generated by B as L(B) =
{∑n

i=1 xibi : xi ∈ Z}.
The determinant of L is defined as the volume of the fundamental area detL =

detB. For a given basis B of lattice L we define πi as the projections orthogonal
to the span of b1, b2, . . . , bi and the Gram-Schmidt orthogonalisation as B∗ =
[b∗

1, b
∗
2, . . . , b

∗
n ], where b∗

i = πi(bi). The projected lattice L[l:r], where 0 ≤ l <
r ≤ n is defined as the lattice with basis B[l:r] = (πl(bl), . . . , πl(br)).

Definition 2. (Sublattice) A sublattice L1 is a sebset of L, with basis B1 =
[bi1 , bi2 , . . . , bim ], where ij ∈ {1, 2, . . . , n},m < n.

We refer to L as the full lattice compared with the sublattice generated by the
submatrix of full basis B.

Most lattice hard problems can be reduced to the shortest vector problem
(SVP). SVP is one of the most important problems of lattice-based cryptography.
The problem demands to find a non-zero lattice vector of minimal length.

Definition 3. (Shortest Vector Problem, SVP) Given a basis B of a lattice L,
find a non-zero lattice vector v ∈ L of minimal length λ1 (L) = min0 �=w∈L ‖w‖.

In practice, most cryptography schemes only depend on approximate versions
of SVP, where we aim to find a vector longer than the shortest vector by a
polynomial factor. The problem of finding a non-zero lattice vector of length
≤ γ · det (L)1/n is called Hermite-SVP with parameter γ (γ-HSVP).

To analyze lattice reduction algorithms, heuristic assumptions [11] are needed
to estimate the determinant (or volume) of a lattice. We will rely on the following
Gaussian Heuristic to explain our analysis in the following sections of the work.
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Heuristic 1. Let K ⊂ R
n be a measurable body, then |K ∩ L| ≈ V ol(K)/det (L).

When applying the heuristic to an n-dimension ball of volume det (L) we obtain

that λ1 (L) ≈ Γ(n
2 +1)

1
n det (L)

1
n√

π
≈ √

n
2πe det (L)1/n. We denote the length as

gh (L) or GH(L) in short.

2.2 Lattice Reduction Algorithms

LLL. Given the basis of a lattice L, LLL outputs a basis {B = b1, b2, . . . , bn}
with the following statements hold:

(1) ∀1 ≤ i ≤ n, j < i, |μi,j | ≤ 1/2.
(2) ∀1 ≤ i < n, ‖δb∗

i ‖2 ≤ ‖μi+1,ib
∗
i + b∗

i+1‖2.

We refer to the first statement as size-reduced. LLL is mostly used for reduc-
ing lattices of small dimensions. The LLL algorithm has a polynomial time com-
plexity but the quality of output basis is limited.

A lattice basis B is HKZ-reduced when b∗
i = λ1(πi(L[i:n])), where i =

1, . . . , n−1 and if it is size-reduced. While HKZ algorithm will output the shortest
vector in theory, the algorithm calls enumeration without prunning recursively
and requires a strongly reduced basis as preprocessed input, making it inefficient
in practice. As a relaxation of the condition, the BKZ algorithm reaches a better
quality-cost trade-off.

BKZ. BKZ algorithm is commonly used to get a basis better than LLL and with
less cost than HKZ. A BKZ-reduced lattice basis B for block size β ≥ 2 satisfies
b∗
i = λ1(πi(L[i:min (i+β,n)])), i = 1, . . . , n − 1. BKZ is based on a relaxation of

HKZ reduction and with lower time complexity, although some algorithms such
as slide reduction allow better analyses in theory. The BKZ algorithm takes the
lattice basis B and block size β as input. In the process BKZ calls an SVP oracle
on every projected block of dimension β. The BKZ also calls LLL on the local
block L[i:min (i+β,n)] after the SVP call. The procedure terminates when certain
termination condition is fulfilled or the b∗

i don’t drop fast enough. When taking
an n-dimensional lattice as input, the algorithm outputs a short vector of length
≈ (

β1/2β
)n · det (L)1/n in time ββ/(2e). The BKZ algorithm achieves a good

balance between the quality of reduced basis and running-time, and is the most
commonly used lattice reduction algorithm to analyze the lattice.

Geometric Series Assumption (GSA). To analyze the behaviour of BKZ
algorithm and predict the length of the shortest vector in the lattice, the Geo-
metric Series Asumption (GSA) is introduced to describe the quality of a reduced
lattice basis.

Heuristic 2. Geometric Series Assumption for a BKZ-reduced basis of lattice L,
‖b∗

i ‖/‖b∗
i+1‖ ≈ r, i = 1, . . . , n − 1, where 3

4 ≤ r−2 < 1.
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3 Sublattice Reduction

3.1 Determinant of Sublattice

To improve the performance of BKZ-reduction and produce a short vector with
lower cost, we reduce the dimension of the context, where the reduction is called.
We look into the matter and propose an algorithm that reaches the same Her-
mite factor with BKZ but requires smaller block size. This can be done by
running a BKZ call not on the full lattice, but on a sublattice, generated by
b1, b2, . . . , b[n/2]. By experimental results we show that for a BKZ-reduced basis,
the determinant of a sublattice is about half of the bit length of that of the full
lattice. We intend to find a short vector in the sublattice with norm close to the
norm of the shortest vector in the full lattice. And the BKZ-reduced basis of
the sublattice usually contains a vector close to or shorter than the second or
third vector produced by simple BKZ. On each of the sublattices, we run a BKZ
oracle to recover a list of short vectors, and use the list to update the basis of
the full basis. We analyze the efficiency of the algorithm with experiment data.

To estimate the length of a possible shortest lattice vector, the Gaussian
Heuristic is necessary to define the approximate shortest vector problem. As
shown by the definition λ1 (L) ≈ √

n
2πe det (L)1/n, the Gaussian Heuristic

depends on both the size and the determinant of the lattice. Suppose a sub-
lattice generated by the submatrix B1 of the given lattice basis, it has a lower
dimension by definition, and hopefully will have a smaller determinant. Sup-
pose a lattice L generated by basis B = [b1, b2, . . . , bn], and sublattices L1, L2

generated by B1 = [b1, b2, . . . , b�n/2	 ] and B2 =
[
b�n/2	+1, b�n/2	+2, . . . , bn

]
. It

follows that B = [B1 B2],

∣
∣BT B

∣
∣ =

∣
∣
∣
∣
BT

1 B1 BT
1 B2

BT
2 B1 BT

2 B2

∣
∣
∣
∣ . (1)

For a random lattice basis B, it is relatively hard to specify a relationship
between B1 and B2, especially for determinants. Thus, we move on to discuss
the situation where B is a reduced basis. To give an estimation to a sublattice we
suppose the basis vectors follow the Geometric Series Assumption (GSA) [12].

Theorem 1. (Under GSA). For the sublattice L1 of basis B1 =
[b1, b2, . . . , bn/2], det (L1) = rn2/8 det L1/2.

Proof. If all vectors of the basis follow the Geometric Series Assumption,
then det (L) =

∑n
i=1 ‖b∗

i ‖ = ‖b∗
1‖n/r

n(n−1)
2 . For a BKZ-reduced sublattice

L1, ‖b∗
1‖ = r‖b∗

2‖ = r2‖b∗
3‖ = . . . = r�n/2	−1‖b∗

�n
2 	‖. So we have the for-

mular det (L1) =
∑�n/2	

i=1 ‖b∗
i ‖ = ‖b∗

1‖k/r1+2+...+(k−1) = ‖b∗
1‖k/r

k(k−1)
2 , where

k = 
n/2�. To simplify the analysis of our analysis, we suppose the n to be even,
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so k = n/2. consider

det (L1) /det (L)1/2 = ‖b∗
1‖k−n

2 /r
k(k−1)

2 −n(n−1)
4

= 1/r
n(n−2)−2n(n−1)

8

= 1/r−n2/8

= rn2/8.

(2)

Therefore, under the Geometric Series Assumption, we can get det (L1) =
rn2/8 det L1/2. �

In fact, comparing the lower bound of det (L1) with detL1/2, we have

det (L1) /det (L)1/2 = rn2/8 > 1. (3)

So det (L1) > det L1/2.
However, for an actual BKZ-reduced basis, the Geometric Series Assumption

may not apply to all the basis vectors, but only the first few vectors instead.
To obtain a smaller sublattice, we hope that the determinant of L1 falls around
L1/2. To illustrate this assumption, we verify it with lattices from the SVP
challenge site. At least for a smaller basis that is BKZ-reduced, we assume that
the determinant of sublattice is around the square root of the full lattice.

Fig. 1. Determinant of sublattices to the full lattice
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Heuristic 3. For a lattice L of dimension n(n < 200) and its sublattice L1 of
dimension n/2, log det(L1) = 1

2 log det(L) + α, α < 1.
Recall that the Gaussian Heuristic has a more accurate form

GH(L) =
Γ

(
n
2 + 1

) 1
n det(L)

1
n

√
π

, (4)

so the shortest vector in L1 is estimated to have length GH1 =
Γ(n

4 +1)
2
n det(L1)

2
n√

π

and is close to the shortest length of the full L From the discussion above, we have
the approximation det (L1) ≈ √

det (L). With the Gamma function and approx-

imation Γ (x) ∼ √
2πe−xxx− 1

2 , we get Γ
(

n
2 + 1

) ≈ √
2πe−(n

2 +1) (
n
2 + 1

)n
2 + 1

2 ,

Γ
(

n
4 + 1

) ≈ √
2πe−(n

4 +1) (
n
4 + 1

)n
4 + 1

2 . Therefore Γ
(

n
2 + 1

) 1
n ≈√

2πe−( 1
2+

1
n ) (

n
2 + 1

) 1
2+

1
2n , Γ

(
n
4 + 1

) 2
n ≈ √

2πe−( 1
2+

2
n ) (

n
4 + 1

) 1
2+

1
n . Then we

have the relation

Γ
(

n
2 + 1

) 1
n

Γ
(

n
4 + 1

) 2
n

≈ e
1
n

[
2(n + 2)
n + 4

] 1
2+

1
n

·
(n

2
+ 1

) 1
2+

1
n

. (5)

As a result, the estimated shortest length of sublattice gh1 is about
√

2 times of
gh.

GH1

GH
≈

√
2 · det(L1)

1
n

√
det(L)

1
n

=
√

2. (6)

The actual property of the basis is also affected by how much the basis is
reduced. Note that not all vectors follow the Geometric Series Assumption and
the actual GH may differ from estimation. To look into the fact, we compare
the GH of lattice and the sublattice, with the lattice LLL or BKZ preprocessed.
Figure 2 shows a comparison between LLL-reduced basis and BKZ-reduced basis.
Note that by BKZ-β we denote BKZ reduction with block size β. Compared
with the LLL-reduced sublattice basis, the Gaussian Heuristic of a BKZ-reduced
sublattice is apparently of smaller value, refrained around the GH of the full
lattice, while the GH of LLL-reduced sublattice is relatively hard to predict.
By further experiments, it is shown that with a larger block size, the Gaussian
Heuristic of the sublattice gets smaller, approaching the original GH of the full
lattice.

3.2 Basis Reduction on Sublattice

In this part we try to exploit the findings about properties of the sublattice. We
follow the analysis of previous sections, where the dimension of the sublattice is
set to be half of the full lattice. From Fig. 2, we note that for a BKZ-reduced basis
(dimension ≤ 130), the Gaussian Heuristic for sublattice L1 satisfies λ1(L1) ≤
1.41λ1(L), while the BKZ-reduced basis can provide a vector about 1.15 times
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Fig. 2. Gaussian Heuristic of sublattices after reduction

longer than that of L up to dimension 100. Therefore, we expect to find a vector
not too longer than λ1(L) in a sublattice.

BKZ and other enumeration-based reduction algorithms are commonly
applied to recover a short vector. And it is observed that the efficiency of the
reduction is generally affected by the size of lattice [13]. In most cases the algo-
rithm will cost less time to produce a reduced basis. With the same block size,
BKZ will recover a vector with smaller approximate factor than applied to a
larger lattice. Thus, we intend to search for the possibility that such a reduction
call can return a vector shorter than the vector recovered from the full lattice.
To exploit the finding further, it is also possible to use the sublattice vector to
update the reduced basis. For example, when a recovered sublattice vector is
shorter than one of the first few minima then we can insert the vector into the
full basis to change the arrangement of the basis vectors. By this we add some
disturbance to the basis and hope to obtain an even better reduced basis by
calling BKZ recursively.

4 m-SubBKZ Reduction

4.1 Basic Algorithm

In this section we present our new algorithm of sublattice BKZ reduction. We
refer to one BKZ tour and a sublattice SVP call as a round. Suppose a n dimen-
sion basis B is given, referred to as full basis. We select the first n/2 vectors
to form a sublattice basis B1. The aim of this section is to provide a practical



A Lattice Reduction Algorithm Based on Sublattice BKZ 183

reduction algorithm for large basis. We will test the performance using FPYLLL
library.

Algorithm 1: SubBKZ
Input: Basis B, sublattice block b1, full lattice block b
Output: Reduced basis B
Set list l = {};
BKZ-reduce B;
generate sublattice L′;
call BKZ-b1 reduction over L′;
add reduced L′ basis vectors to l;
insert list to B;
call BKZ-b reduction on B;

A sublattice L′ is generated in the process of the above algorithm. The basis
of L′ is chosen from the first n/2 basis vector of the full lattice L.

To analyze the algorithm, we assume a sublattice L1 of dimension n/2. Let
SubBKZ and BKZ share a same block size β, then a BKZ call and a sublattice
reduction has the same time complexity ββ/(2e). Compared with BKZ, which out-
puts a vector of length ≈ (

β1/2β
)n · det (L)1/n, a SubBKZ round on a sublattice

will give a vector of norm ≈ (
β1/2β

)n
2 · det (L1)

2/n ≈ (
β1/2β

)n
2 · √det (L1)

2/n
=

(
β1/2β

)n
2 · det (L)1/n. Therefore, a shorter vector is produced by SubBKZ with

the same time complexity. However, the BKZ result in practice may differ from
the theory. We will show the experimental results in Sect. 5.

4.2 A Practical SubBKZ Variant

Recursive Short Vector Searching. Recall the estimated determinant of
sublattice L1,

det (L1) =
�n/2	∑

i=1

‖b∗
i ‖ ≈ ‖b∗

1‖
n
2 /r

n(n−1)
4 . (7)

With BKZ running on the full basis, the value r will see an increase, asymp-
totically to 1. It is interesting to find that while r is increasing, det (L) drops with

it. it follows that the Gaussian Heuristic GH1 =
Γ(n

4 +1)
2
n det(L1)

2
n√

π
gets smaller

with det (L1) decreasing. Thus, for every round of SubBKZ, it is possible to find
a shorter vector in the sublattice. In theory, the recursive sublattice reduction
will lead to a much shorter vector when r increases fast enough in every round.

Optimized Algorithm Variant. We exploit the idea by building sublattices
for several rounds. In this way, the sublattice short vector search is executed
recursively in order to obtain a strongly reduced basis B and a shorter lattice
vector. In practice, we set the number of rounds to run and allow the block size
on sublattices to increase progressively by each round.
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Instead of only one sublattice, it is possible to build two or more sublattices
with different basis vectors. The structure of the sublattice reduction suggests
the possibility to implement a parallel algorithm. In fact, a list of random sublat-
tices can be generated and reduced to accelerate the reduction. Simply running
the parallel BKZ processes will serve our purpose. Here we describe the m-
SubBKZ algorithm, where the m denotes the number of tours. In each tour, new
sublattices are generated and reduced.

Algorithm 2: m-SubBKZ
Input: Basis B, block list P = {b1, b2, . . . , bm}, full lattice block b
Output: Reduced basis B
BKZ-reduce B;
foreach bi ∈ P do

Round Start:
generate sublattice L′;
call BKZ-bi reduction over L′;
foreach v in basis of L′ do

if v /∈ B then
insert v to B

end
end
LLL and remove linear dependencies in B;
BKZ-bi reduce B;
Round End:

end
call BKZ-b reduction on B;

Note that the parameter m denotes the number of “rounds” in the procedure.
We refer to the algorithm with parameter m as “m round algorithm”. Further,
b1, b2, . . . , bm implies that the blocks for every round can be different, allowing
β to increase progressively.

5 Implementation and Experiment

5.1 Implementation Details

In the previous section we give the new lattice reduction algorithm. While we
analyze in Sect. 3 that a short vector of length ≈ √

2λ1(L) can be found in
theory, in this section we show the details of the implementation of m-SubBKZ
and its performance compared with other algorithms (BKZ and BKZ 2.0).

5.2 Experimental Results

In addition to the disscusion in Sect. 3, we illustrate the efficiency of the new
algorithms of this work mainly by experiment data on random lattices. In the
experiment, we compare the m-SubBKZ with the original BKZ and BKZ 2.0 to
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(a) First vector length output by algorithms

(b) Running time of algorithms

Fig. 3. Experimental results of algorithms
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test the performance of the algorithms. Note that we will show the two versions
of our algorithm separatively. For the multi-round version of m-SubBKZ, we
set the number of rounds m increasing from 1 to 8, in the hope to reach an
acceptable time-length tradeoff. The block sizes of BKZ and BKZ 2.0 are 30 for
smaller basis (n ≤ 140) and 60 for larger basis (n > 140). The block size for
m-SubBKZ increases from 30 to 60 progressively.

We implement the m-SubBKZ algorithm and present the experiment data
of the new algorithm compared to BKZ with different parameters. The data is
displayed as follows and we plot our results in comparision with BKZ with the
same block size. The block size is relatively small, due to limited hardware.

Output Vector Length. We show that for a small block, our algorithm will
produce a shorter vector in most cases with apparently smaller time cost. The
performance of the algorithm is illustrated by experiment. Note that we do exper-
iment just for smaller block size . First, for a larger block, BKZ-like algorithms
usually run in low efficiency and will not serve as a practical SVP solver. Second,
to run an instance on PC is too costly when the block size is over the bound. We
use the FPYLLL BKZ 2.0 implementation, which uses the Autoabort technique.
On everage, the tour number is greater than 6.

For dimensions from 100 to 190, our algorithm is able to achieve a shorter
vector than BKZ 2.0. By Table 1 as well as Fig. 3(a), we show that our approach
will output a shorter vector than BKZ (and BKZ 2.0) on large-dimension basis.
In fact, the simple one-round version of SubBKZ meets the crossing point around
160, while the progressive version outputs a shorter vector after dimension 120.

Intuitively, the algorithm is able to find a shorter vector with larger m. How-
ever, by the discussion in Sect. 4.2, the r is required to drop fast enough in every
round, which may not always happen. In our implementation, when m = 4, the
algorithm already outputs a reasonably short vector. However, with m > 4, the
efficiency of the reduction tends to drop, without big improvements on the out-
put basis. For example, given m = 8, the output quality doesn’t explicitly gain
an improvement, but the time cost is twice as long as 4-SubBKZ. Thus, for the-
block size in this paper, the appropriate sterategy is to set m = 4. The detailed
experimental results are listed in Table 1. The running time of the instances
can be found in Table 2. More detailed description of time cost can be found in
following paragraphs.

For dimension 100, our approach reaches a length only 93% of what BKZ 2.0
will give. When the size mounts to dimension 180, we have a vector with length
53% shorter than the BKZ 2.0 output and 54% shorter than the BKZ output. By
the result, we argue intuitively that the new algorithm reaches a better output
on a lattice basis of higher dimension.

We also compare SubBKZ with progressive BKZ in lattices of dimension 140,
160 and 180. After 15 tours with b increasing by 2 every tour starting from 30
(140-dimension) or from 40 (160 and 180-dimension), progressive BKZ reaches
norm 5171.9, 5987.9 and 8066.7 respectively. The results are similar to the output
of 4-SubBKZ, but takes more tours.
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Table 1. First vector length output by algorithms

Dimension m-SubBKZ BKZ BKZ 2.0

m = 1 m = 4 m = 8 ≥ 6 tours ≥ 6 tours

100 3592.0 3323.1 3179.5 2980.6 3566.1

120 4582.8 3728.3 3566.3 3594.1 4298.4

140 5767.9 3868.3 3984.3 4561.8 6046.5

160 7270.8 4304.5 4247.9 7780.8 7624.7

180 9266.0 4676.9 4610.5 9926.2 10038.5

190 11081.8 4903.2 4704.1 10869.7 10568.0

Running Time. By the time cost we illustrate the efficiency of the new algo-
rithm. Table 2 lists the running time of experiments whose output norms are listed
in Table 1. When comparing the time cost, we include the whole procedure and
the preprocessing cost as well. As shown in Fig. 3(b), with the same block size
b, while our algorithm is able to reach a shorter vector than BKZ with the same
block size, the running time of one round of new reduction algorithm is still close
to that of BKZ in most cases. Further, the progressive-rounds version of the algo-
rithm reaches a vector far shorter than BKZ within twice of the running time of
BKZ and BKZ 2.0. This is a acceptable time cost. Especially, the 4-SubBKZ has a
lower time cost than BKZ and BKZ 2.0 in dimensions greater than 160. This sug-
gests that at least for smaller blocks, the m-SubBKZ can output a shorter vector
with lower cost with appropriate parameters and strategy.

We try to give a empirical explanation about the behaviour of m-SubBKZ.
On the one hand our algorithm runs several rounds of sublattice reduction,
thus calling BKZ recursively. And the reduction on a smaller scale reduces the
computation resources needed. On the other hand, with the sublattice reduction
and preprocessing, each BKZ call is cheaper and returns a reduced basis in less
time. Therefore, the actual performance is determined by the tradeoff between
the scale of sublattices and the number of rounds. Specifically, the running time
of 4-rounds version is about 52% of BKZ. This illustrates the efficiency of our
algorithm. Interestingly, when m is greater than 4, the algorithm consumes even
longer time than BKZ 2.0. Recalling that the running 8 rounds will only slightly
improve the output quality, we can conclude that for the current parameters,
setting m to 4 is enough to reach a reasonably short vector with lower while
requiring less computation resourses than BKZ and BKZ 2.0, especially in higher
dimensions.

We observe that the experimental results of different algorithms on lattices
of smaller dimensions (n ≤ 100) are similar. In fact, a smaller basis makes it eas-
ier to find the shortest vector with smaller block size, while larger lattices need
stronger algorithms and more tours to reach a relatively short vector. To illus-
trate the efficiency of various algorithms, we show the more obvious difference
where higher dimensions are concerned.
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Table 2. Running time of algorithms

Dimension m-SubBKZ BKZ BKZ 2.0

m = 1 m = 4 m = 8 ≥ 6 tours ≥ 6 tours

100 26.5 s 57.8 s 100.4 s 28.5 s 21.3 s

120 47.0 s 86.5 s 174.0 s 55.5 s 53.8 s

140 84.1 s 139.1 s 409.7 s 281.5 s 111.6 s

160 134.7 s 209.4 s 654.0 s 364.8 s 196.3 s

180 272.4 s 355.3 s 596.2 s 702.2 s 421.4 s

190 394.2 s 658.1 s 836.7 s 844.3 s 776.37 s

When comparing progressive BKZ with SubBKZ, we still choose dimension
140, 160 and 180. The time cost of progressive BKZ are 133 s, 276 s and 368 s
respectively, similar to SubBKZ. Considering the shorter output by SubBKZ,
the result illustrates the improved efficiency of our algorithm.

6 Conclusion

In this work, we propose a lattice reduction algorithm based on BKZ. We ana-
lyze the fact that a sublattice BKZ call is possible to produce a list of short
vectors with lower cost, compared with reduction on the full lattice. Based on
analysis, we propose the SubBKZ in the simple form and the progressive form
(m-SubBKZ), with different strategies and parameters. The simple algorithm
calls a BKZ reduction on a sublattice before running reduction on the full basis.
The progressive version of the new algorithm recursively runs a lattice reduction
solver on a sublattice basis to ensure a well reduced sublattice, thus improving
the quality of the full lattice basis.

The efficiency of the new algorithm is illustrated with experiment results on
random lattices, with dimension from 100 to 190. Especially on higher dimen-
sions, the new algorithm is able to produce a vector of 47% the length of BKZ 2.0
output, with running time 85% of BKZ 2.0, illustrating our improved efficiency.
Since the sublattice reduction technique proved useful in improving BKZ, it is
interesting to investigate how it will perform when combined with sieving and
other algorithms.
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Abstract. In AsiaCrypt 2019, Genise, Gentry, Halevi, Li and Miccian-
cio put forth two novel and intriguing computational hardness hypothe-
ses: The inhomogeneous NTRU (iNTRU) assumption and its matrix ver-
sion MiNTRU. In this work, we break the integer case of the iNTRU
assumption through elementary lattice reduction, and we describe how
the attack might be generalized to polynomial rings and to the low dimen-
sional MiNTRU assumption with small noise.

Keywords: iNTRU · MiNTRU · Cryptanalysis · Lattice reduction

1 Introduction

Security reductions form the core of modern cryptography. Appraised by the-
orists, but largely ignored by programmers, reductions guarantee that specific
attacks captured by some security experiment are infeasible. A reduction has two
main components: some construction that needs to be proven secure and some
problem that is assumed to be hard – usually denoted by the term assumption.

The last cryptographic epoch was synonymous with the raise of post-quantum
cryptographic assumptions. Among these, lattice assumptions occupy a central
role and today most of the provably secure lattice schemes rely on the Learning-
with-Errors (LWE) problem, as described in the seminal paper of Regev [16]. A
second group of assumptions is based on the NTRU problem, as postulated in
[9]. While the former group is reducible to standard average-case assumptions,
the latter is not. However, often the latter group offers superior practical perfor-
mance, and results in this area are preferred for implementations. Besides the
traditional definitions, there are a wide set of versions used in different sub-areas
of cryptography, not all of them being deeply studied.

In this work, we consider two novel versions of the NTRU assumption from
[6]. We show a practical attack against the one-dimensional version and gener-
alize it to the multidimensional version with small dimension or small noise. In
particular, our attacks show that both problems can directly be reduced to the
shortest vector problem.
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1.1 Contribution 1: Breaking the Integer iNTRU Assumption

The inhomogeneous NTRU (decision) problem (iNTRU) introduced in [6] consists
in distinguishing between a random and a synthetically constructed (�+1)-tuple.
The synthetically constructed tuple follows the so-called iNTRU distribution that
is obtained in two steps: First, a secret invertible ring element s ∈ R/qR is ran-
domly sampled and small error values ei stemming from a specific error distri-
bution are determined. Second, the tuple is defined by setting a0 := e0/s mod q
and the remaining � entries are fixed by ai := (2i−1 − ei)/s mod q.

We analyse the integer iNTRU problem (i.e., R = Z) and develop two ele-
mentary lattice based distinguisher. Our key idea consists in replacing ai by
bi := 2ai − ai+1 = (−2ei + ei+1)/s mod q, making so the entries independent
of the blow up term 2i. This change guarantees the existence of an extremely
small vector (smaller than the expected heuristic value) inside well constructed
lattices. A vector of this magnitude will not be contained in those lattices if the
initial tuple was randomly sampled. Finally, simple lattice reduction spots the
difference and even reveals the secret s.

1.2 Contribution 2: Generalizing the One-Dimensional Attack to
the MiNTRU Assumption

After introducing the one dimensional version of the inhomogeneous NTRU
problem, the authors of [6] generalize it to matrices. The matrix inhomoge-
neous NTRU (decision) problem (MiNTRU) consists in distinguishing between
a randomly sampled and a synthetically constructed matrix. The synthetically
constructed matrix is again obtained in two steps: First, a random invertible
matrix S ∈ Z

n×n
q is sampled and an error matrix E ∈ Z

n×(n(�+1))
q stemming

from a specific error distribution is determined. Second, the challenge matrix is
defined as A := S−1×(G−E) mod q where G = [0|I|2I|...|2�−1I] is an extended
gadget matrix.

We generalize our previous iNTRU distinguisher to the multidimensional case.
Again, the method relies on first eliminating the blow up factor 2i−1 (hidden in
the gadget matrix), but this time even the secret matrix S will be canceled out,
leading to a system of low norm matrices only. From there on, a well constructed
lattice reveals again an extremely short vector, which can not be found in case
of a random initial matrix. As the involved lattice dimensions are increasing, the
output may deviate from the shortest vector, and so the secret will no longer
be recovered. Nonetheless, this method has a relatively good success rate if the
dimension n is small or if the error distribution for E is too narrow.

1.3 Disclaimer 1

We highlight that our attacks differ from the one in [12] based on [10].
Our iNTRU attack and its generalization follow standard lattice techniques

and do not require advanced sub-lattice constructions. Although the latter may



192 J. Barthel et al.

be used to simplify the construction, it is not needed. In particular, we will not
get back to the highly useful methods from [10].

We note that besides using a different construction, we also work in a different
context than [12]. Indeed, whereas they started from secret Bernoulli matrices
(−1, 0, 1 entries), we work in a more general context where the secret matrix
is sampled completely at random. In addition, our methods allow bypassing
far larger entropic noise than their sub-lattice attack, but our approach is still
somewhat dependent on the overstretched regime of the iNTRU instantiation.

Unfortunately, compared to their attack, our attacks are less powerful. More
precisely, they managed to recover efficiently the secret matrix, thereby breaking
the search version of the assumptions. We will be content with attacking the
decision version without guarantee of recovering the secret.

Finally, we note that [6] has been updated to bypass the attack from [12]
(which was in fact based on a toy example from [6]). In particular, the secret
matrix is not a Bernoulli matrix anymore, implying that the size estimate used
in [12] does no longer hold, and the final recovering step cannot be applied. We
are not aware on how to use their attack on a completely random secret matrix.

1.4 Disclaimer 2

We remark that our attacks are devised for the integer case (R = Z) only, and
that their efficiency for general rings is limited. Albeit they reflect a potential the-
oretical threat, our constructions are not strong enough to impact the security of
recent cryptographic constructions such as [7] or [6] that either use iNTRU with
rings of large degree or the MiNTRU with matrices of large dimension. Thereby,
our contribution can only be seen as a first indication that the iNTRU (respec-
tively the MiNTRU) assumption is not as hard as other well-known assump-
tions (like LWE). Further security analyses may be required to develop practical
attacks against iNTRU (respectively MiNTRU) based cryptographic protocols.

1.5 Paper Organization

We start with setting the notations in Sect. 2 and continue this section with
a reminder about lattices. In Sect. 3, we redefine the iNTRU assumption, and
we quickly review its recent use. In Sect. 4 and Sect. 5, we develop two comple-
mentary lattice attacks against the one-dimensional integer iNTRU assumption.
The first one will only be applicable if a specific invertibility condition is sat-
isfied, and the second attack may be used in the opposite case. We complete
our analysis in Sect. 6 with a short description on how to generalize our attacks
to the polynomial ring iNTRU assumption and to the low dimensional MiNTRU
assumption with low entropic noise. The full version of our paper including a
more precise analysis of the MiNTRU assumption, a short comparison of the
studied assumptions with the Learning-with-Errors assumption, and fully com-
mented SageMath source codes corresponding to our attacks may be found at
http://hdl.handle.net/10993/47990.

http://hdl.handle.net/10993/47990
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2 Preliminaries

2.1 Notations

For a finite set S, we denote its cardinality by |S| and the action of sampling
an element x uniformly at random from S is denoted by x←$ S. When another,
non-uniform distribution χ over the support set S is used, we abuse the notation
and write x ← χ(S) or simply x ← χ if the support set is clear from context. We
denote by ‖ · ‖ := ‖ · ‖2 the real Euclidean norm and by log := log2 the base 2
logarithm. For an integer q ≥ 2, we denote by Z/qZ the ring of integers modulo q
and we represent it using the 0-centered representation Z/qZ = (−q/2, q/2] ∩Z.
We denote an ordered list of n elements by (a1, . . . , an). Lowercase variables in
bold font, such as a, usually denote (row) vectors and bold uppercase letters,
such as A, usually denote matrices.

2.2 Lattice Preliminaries

Lattices. Let v1, . . . ,vn ∈ Z
m be linearly independent row vectors. The row

lattice generated by the basis v1, . . . ,vn is the linear span

Λ = L(v1, . . . ,vn) =

{
n∑

i=1

xivi | x1, . . . , xn ∈ Z

}
.

We call a matrix B a basis matrix of Λ if Λ is generated by the rows of B. It is
well known that two bases B,B′ generate the same lattice if and only if there
is an unimodular matrix U ∈ GL(Z, n) such that B = UB′. The determinant
of a lattice Λ is defined by det(Λ) =

√
det(BBT ) where B denotes any basis of

Λ. Naturally, this determinant is independent of the chosen basis. The rank (or
dimension) of a lattice is the dimension as a vector space of the lattice, and a
lattice is full rank if it has maximal rank.

Successive Minima. For i ∈ {1, . . . , n}, we define the ith successive minimum
of Λ as the smallest r > 0 such that Λ contains at least i linearly independent
vectors of length bounded by r, λi(Λ) = inf{r ∈ R>0 : dim(span(Λ∩B(0, r))) ≥
i} where B(0, r) = {x ∈ R

m : ‖x‖ ≤ r} is the closed ball of radius r around 0.
The successive minima are achieved (thus, one may use the minimum instead
of the infimum in its definition) and lattice points of norm λi(Λ) are called i-th
shortest vectors, but may not be unique. Minkowski’s Second Theorem states

that for each 1 ≤ i ≤ n the product
(∏i

j=1 λj(Λ)
)1/i

≤ √
n

2πe det(Λ)1/n.

LLL Reduction. Given 1/4 < δ < 1, a lattice basis v1, . . . ,vn of Λ is LLL
reduced with factor δ if the following holds

1. Size reduced:
∣∣∣ 〈vi,v

∗
j 〉

〈v∗
j ,v∗

j 〉
∣∣∣ ≤ 1

2 for all 1 ≤ j < i < n;
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2. Lovász condition: ‖v∗
j ‖2 ≥

(
δ −

∣∣∣ 〈vj ,v∗
j−1〉

〈v∗
j−1,v∗

j−1〉
∣∣∣2) ‖v∗

j−1‖2 for each 2 ≤ j ≤ n;

where v∗
1, . . . ,v

∗
n denote the Gram-Schmidt orthogonalization of the basis vec-

tors. Traditionally δ = 3/4, but in practice δ = 0.99 is chosen. LLL reduced bases
are not unique, but they have many desired properties. Indeed, let α = 1

δ− 1
4
,

then

1. ‖vj‖ ≤ α
n−1
2 λi(Λ) for all 1 ≤ j ≤ i ≤ n;

2. det(Λ) =
∏n

i=1 ‖v∗
i ‖ ≤ ∏n

i=1 ‖vi‖ ≤ α
n(n−1)

2 det(Λ).

The LLL algorithm [13] outputs a LLL reduced basis of a rank n lattice in Z
m

in time O(n5m log(K)3) from basis vectors of norm less than K.1

Heuristics. The Gaussian Heuristic (see [2] and [5]) yields that for a “random”
rank n lattice of “large” dimension, we expect the shortest vector to be of norm
λ1(Λ) � √

n
2πe det(Λ)1/n. Furthermore, in this case, all the lattice minima can

be expected to be of approximately the same size.

Q-ary lattices. If qZm ⊆ Λ ⊆ Z
m for some q ∈ Z≥2, then Λ is called a

q-ary lattice. We remark first that, by definition, every q-ary lattice has full
rank n = m. Secondly, we observe that the lattice minima of a q-ary lattice
are upper bounded by λi(Λ) ≤ q for all i ∈ {1, . . . , m}. Given any matrix A ∈
(Z/qZ)k×m, we define the two special q-ary lattices Λq(A) = {y ∈ Z

m|y = ATx
mod (q) for some x ∈ Z

k} and Λ⊥
q (A) = {y ∈ Z

m|Ay = 0 mod (q)}. As a
matter of fact, any q-ary lattice may be expressed as one of those lattices for
some matrix A ∈ (Z/qZ)k×m and det(Λq(A)) ≥ qm−k with equality if A is non-
singular. Due to their special structure, q-ary lattices can not be seen as random
(as required for the Gaussian heuristic). Nonetheless, [3] states that the Gaussian
heuristic appears to hold exceedingly well for such lattices. A bit more precisely,
[17, Lemma 2.18] proves that for fixed prime q and m ≥ k, and for a randomly
sampled matrix A ∈ (Z/qZ)k×m, the first lattice minimum is lower bounded
by min

{
q,

√
m
8πeq

m−k
m

}
with probability greater than 1 − 2−m. We note that√

m
8πeq

m−k
m corresponds to half the Gaussian heuristic if A is non-singular.

Our Lattices. Hereinafter, we will use particular q-ary lattices where A ∈
(Z/qZ)1×m with a fixed entry equal to 1 and where q is not necessarily a prime.
Although, none of the above results perfectly match our setup, we assume that,
with noticeable probability, the first lattice minimum satisfies

λ1(Λ) ≥ min
{

q,

√
m

8πe
q

m−1
m

}
. (H)

1 Hereinafter, we will only use the LLL algorithm for lattice reduction. Better results
may be achieved using recent results on the BKZ algorithm (see [14]). However, the
LLL algorithm suffices for our elementary analysis.



On the (M)iNTRU Assumption in the Integer Case 195

3 The iNTRU Assumption

In this section, we (re-)define the inhomogeneous NTRU (iNTRU) assumption,
we describe some variants and outline its use.

3.1 The iNTRU Assumption

The iNTRU problem has initially been introduced in [6, Sect. 4.1] formula (3).

Definition 1 (iNTRU Distribution). Let R be a ring, q any modulus,
� = 
log(q)� and χ be a symmetric error distribution over R producing with
overwhelming probability elements with norm � q. Define the iNTRU distribu-
tion with these parameters to be obtained by the following sampling process

iNTRU =

⎧⎪⎪⎨
⎪⎪⎩

s←$ R/qR
ei ← χ ∀i ∈ {0, ..., �}
a0 := e0/s mod q
ai := (2i−1 − ei)/s mod q ∀i ∈ {1, ..., �}

⎫⎪⎪⎬
⎪⎪⎭ (1)

and denote any such tuple (a0, . . . , a�) by iNTRU tuple.

Definition 2 (iNTRU Search Problem.). Given an iNTRU tuple (a0, . . . , a�)
and a modulus q, the iNTRU search problem consists in finding the hidden secret
s. The iNTRU search assumption predicts that s can only be determined with
negligible probability.

Definition 3 (iNTRU Decision Problem). Given a tuple (x0, . . . , x�) and
a modulus q, the iNTRU decision problem consists in distinguishing whether the
tuple has been sampled using the iNTRU distribution or the uniform distribution
over R/qR. The iNTRU decision assumption predicts that such a distinction can
only be made with negligible probability.

We highlight that in [6] only the decision variant has been defined. However, in
practice, the search variant may be used.

3.2 Further Remarks

Hereinafter, we will point out some particular points of the definitions:

1. The iNTRU definition gives no limitation for the modulus q. Indeed, theoret-
ically R/qR might only be a ring and does not need to be a field.

2. If R = Z, then the underlying error distribution χ may be considered to be
the discrete Gaussian distribution with variance σχ = O(

√
q) (following a

suggestion of [6]).
3. One can define shortened iNTRU tuples by removing the first entries of an

iNTRU tuple. Especially, the first entry a0 is sometimes removed.
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3.3 Applications

Currently, the iNTRU assumption has only been used in [7] to develop two ring
based short integer solution lattice trapdoors. The pseudorandomness of those
trapdoors stems directly from the iNTRU assumption. We will fast revise their
construction.

Trapdoors. Intuitively, a trapdoor is some information that allows to invert a
function [4]. For instance, if fa(x) := a · xT , where a,x are elements over some
polynomial quotient ring (R/qR)m, then a trapdoor would allow recovering x.

Short Integer Solutions. The Short Integer Solution (SIS) problem (see [1]
for the original integer case, [15] for the ring based definition, and [11] for the
module version) is a standard cryptographic problem which, in the ring version,
asks to find, for a given vector a ∈ (R/qR)m and a bound value β ∈ R>0, a
vector x ∈ (R/qR)m such that fa(x) = a · xT = 0 and ‖x‖ρ < β for a suitable
metric ‖ · ‖ρ.

Usually, this problem is tackled by an elementary trapdoor mechanism. More
precisely, assume that it is easy to solve the short integer solution problem for fg
where g is a known vector called the gadget. Assume further to know a low norm
matrix R, called a g-trapdoor, such that a ·R = g. Then, it is easy to solve the
initial short integer solution problem. Indeed, one first samples at random any
x such that fg(x) = 0 and ‖x‖ρ < β (which is supposedly easy to find). Next,
one computes x′ := R · x and finally hopes that it still fulfills ‖x′‖ρ < β, which,
due to the low norm entries of R, generally holds. The preimage construction
(i.e., finding x) is commonly based on a discrete Gaussian sampling procedure
(see [8] for a broad overview).

Despite their utility, such trapdoors may incorporate a security threat.
Indeed, as outlined above, anyone knowing the trapdoor may solve the initial
problem. Thereby, a necessary security feature required by such a trapdoor is
that it is difficult to be guessed or put another way, it should be pseudorandom.
[7] constructs two such trapdoors as follows.

Their Idea. The main idea behind their trapdoors is to use the inherent
trapdoor potential of the iNTRU distribution. Concretely, a shortened iNTRU
tuple a = (a1, . . . , a�) can be represented as a = s−1(g + e) where g =
(1, 2, 22, . . . , 2�−1) is the gadget vector, e = (e1, . . . , e�)←$ χ� and s ∈ (R/qR)×

(they even choose s ← χ). Since sa = g + e ≈ g, the secret s is almost a
g-trapdoor for a, falling only short of the corresponding error vector e.

Their Trapdoor Generation. Unfortunately, such a direct construction might
leak some information on the trapdoor (we omit the details here). To bypass this
leakage, the authors suggest replacing the gadget g by an approximate gadget
f = (2j , . . . , 2�−1) for some j ∈ N>1 (often j = 
log(q)/2�) and to proceed in the
usual way, i.e., a = s−1(f + e). The f -trapdoor will then consist in (s, e).
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The main difference of their constructions are the preimage sampling pro-
cesses. These rely on different choices of perturbations and provoke a change in
the discrete Gaussian sampling step. We omit the technical details about the
procedures, as they will not be affected by what follows.

Pseudorandomness. In the described construction, trapdoor pseudorandom-
ness stems directly from the pseudorandomness of iNTRU tuples. Indeed, if, for
given a (and implicitly the approximate gadget f), one could retrieve the secret
s, then one can also find the error tuple e and so the desired trapdoor.

3.4 Our Contribution

We are going to prove that neither the decision, nor the search variant of the
iNTRU assumption are safe in the integer case R = Z and so the iNTRU distri-
bution is not pseudorandom. Independent of the chosen modulus and the exact
error distribution, our lattice attacks will distinguish with noticeable probability
between random tuples and synthetically constructed ones, and they will retrieve
the hidden secret in the latter case.

Our first attack is the natural choice when facing a challenge tuple. It will
slightly modify the challenge entries and then construct a lattice. In the presence
of a random challenge tuple, the shortest vector of this lattice will follow a specific
heuristic (close to the Gaussian heuristic) whereas for a synthetically constructed
one, the shortest vector will be far smaller and can be used to retrieve the secret.
Unfortunately, the involved transformations include a modular inversion which
may not be feasible in some cases, and one may bypass the attack by a suitable
construction.

Our second attack can be used in case the first attack does not apply. It
follows a similar transformation chain, but does not involve a modular inversion.
The basic idea of the attack is the same, but this time the second-shortest vector
will be compared to the heuristic. Due to this non-standard approach and an
increased complexity, the first attack is preferable in most cases.

Although our attacks are conceived for the integer case, one may generalize
them for polynomial rings. Such a generalization however needs to be carried
out carefully, as the lattice dimension will increase and limits the applicability
of the attack. Thereby, the attack is predicted to work for low degree polynomial
rings only.

4 Attacking the iNTRU Assumption - First Approach

In this section, we describe our first lattice attack against the search and decision
variant of the iNTRU assumption. We develop the attack for R = Z only, but we
emphasise that it can be generalized to low degree polynomial rings. Our attack
first outlines whether a given tuple stems from the iNTRU distribution and if
so it will find the underlying secret s. The development is based on full length
challenge tuples but can, through small changes, also be applied to shortened
tuples.
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4.1 Our First Lattice and Its Properties

Let (x0, . . . , x�) be a challenge tuple corresponding either to the uniform or the
iNTRU distribution.

Lattice Construction. First, we slightly modify our challenge tuple and set

y0 := x0 mod q and yi = 2xi − xi+1 mod q ∀i ∈ {1, . . . , � − 1}. (2)

Let t ∈ {0, . . . , � − 1} be an index such that gcd(yt, q) = 1. If no such index
exists, the subsequent development will not work and our second iNTRU attack
needs to be used (c.f. Sect. 5)2. We set

zi := y−1
t yi mod q ∀i ∈ {0, . . . , � − 1} (3)

where zt = 1. Then, we define the � × � q-ary row lattice:

Λ = L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0 . . . zt−1 1 zt+1 . . . z�−1

q . . . 0 0 0 . . . 0
...

. . .
...

...
...

...
0 . . . q 0 0 . . . 0
0 . . . 0 0 q . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

4.2 Case of a Random Tuple

Assume that our initial challenge tuple (x0, . . . , x�) was sampled uniformly at
random. Then, our constructed variables yi as well as zi (except zt = 1) will still
follow the uniform distribution as they involve only the addition and multipli-
cation of random variables. Thereby, the shortest lattice vector can be expected
to follow heuristic H and to satisfy

λ1(Λ) ≥ min

{
q,

√
�

8πe
q

�−1
�

}
. (5)

4.3 Case of a Synthetic Tuple

Assume next that the initial tuple (x0, . . . , x�) has been synthetically constructed
following the iNTRU distribution. We will show that in this case the lattice
contains a non-trivial short vector being magnitudes smaller than the expected
heuristic.
2 For R = Z and random x0, . . . , x�, the probability that our first attack cannot be

used is only
(
1 − φ(q)

q

)�

where φ denotes the Euler totient function. In particular,

if q is prime our first attack should always work.
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First Observation. We recall that a synthetically constructed tuple
(a0, . . . , a�) following the iNTRU distribution satisfies

a0 =
e0
s

mod q and ai =
2i−1 − ei

s
mod q ∀i ∈ {1, . . . , �} (6)

where e0, . . . , e� denote random errors sampled from the symmetric error distri-
bution χ producing with overwhelming probability small elements. Thereby,

y0 =
e0
s

mod q and yi =
−2ei + ei+1

s
mod q ∀i ∈ {1, . . . , � − 1} (7)

where the numerators are still quite small. More precisely, the numerators follow
the distribution χ′ where:

1. The mean μχ′ of χ′ is given by

μχ′ = −2μχ + μχ = 0

where the first equality stems from the distribution properties of sums of ran-
dom variables as well as the fact that ai and ai+1 follow the same distribution
χ, and the second equality comes from the fact that the mean μχ = 0 since
χ is a symmetric distribution (i.e., −χ = χ).

2. The variance σχ′ of χ′ is given by

σ2
χ′ = 3σ2

χ

since all three variables follow the distribution χ.

In particular, we conclude that since χ produces with overwhelming probability
elements with absolute value � q, so does χ′. Thereby, the numerators are
expected to be quite small when compared to the modulus q.

Second Observation. Continuing to outline the effect of our variable changes
leads to the conclusion that

zi =
−2ei + ei+1

e′
t

mod q ∀i ∈ {0, . . . , � − 1} (8)

where e′
t = e0 if t = 0 and e′

t = −2et + et+1 if t ∈ {1, . . . , � − 1}. Thus, each zi

is the quotient of two small error elements.

The Shortest Lattice Vector. Interestingly, our two observations imply that
our lattice contains the vector

v = (e0, (−2e1 + e2), . . . , (−2e�−1 + e�)) (9)

obtained by multiplying the first row by e′
t and applying the “modulo q reduc-

tion”, corresponding to an addition of the respective rows, as often as needed.



200 J. Barthel et al.

We are going to show that this vector will be almost surely smaller than the
expected heuristic and the canonically short vectors with a single entry q. To
do so, first assume that the error entries are upper bounded by some constant
K > 0. i.e.,

max{|e0|, | − 2e1 + e2|, . . . , | − 2e�−1 + e�|} ≤ K. (10)

Then, the size of v may be upper bounded by

‖v‖2 ≤
√

�K2 ≤
√

� K. (11)

Proposition 1. If max{|e0|, | − 2e1 + e2|, . . . , | − 2e�−1 + e�|} ≤ min
{

q√
�
,

1√
8πe

q(�−1)/�
}
, then the target vector v is shorter than min

{
q,

√
�

8πeq
�−1

�

}
.

Proof. Replace K in Eq. (11) with the predicted values and compare. ��
As in practice the error terms are O(

√
q), the size condition is almost always

satisfied. For comparison, the probability that a completely randomly sampled

�-tuple would be of this size is lower than
(

2
√

�K+1
q

)�

, which is rapidly decreasing
for small K.

Lattice Reduction. We need to make sure that our target vector v can also
be determined. We will show that upon slightly decreasing the upper bound K,
we are guaranteed that ordinary LLL reduction returns a vector that is smaller
than the expected heuristic. In general, the first LLL reduced vector with factor
δ will not be a smallest lattice vector, but only a good approximation of it. More
precisely, the first LLL reduced vector w1 satisfies theoretically ‖w1‖ ≤ α

�−1
2 λ1

where λ1 denotes the length of a shortest lattice vector and α = 1
δ− 1

4
. However,

in practice, this artificial blowup is barely observed. We note that for increasing
δ, the blow-up factor α decreases. For the sake of explicit results, we consider
δ = 63

64 < 0.99 resulting in α = 64
47 <

√
2. By Eq. (11), we know that λ1 ≤ ‖v‖2 ≤√

�K. This implies that

‖w1‖2 ≤ α
�−1
2

√
�K ≤ 2

�−1
4

√
�K ≤ 2

log(q)
4

√
�K ≤ q

1
4
√

�K. (12)

Proposition 2. If max{|e0|, | − 2e1 + e2|, . . . , | − 2e�−1 + e�|} ≤ min
{

q3/4
√

�
,

1√
8πe

q
3�−4
4�

}
, then ‖w1‖2 is smaller than min

{
q,

√
�

8πeq
�−1

�

}
.

Proof. Replace K in Eq. (12) by the predicted values and compare. ��
As usually K = O(

√
q), we can expect the condition of Proposition 2 to hold

in practice. We highlight also that finding another vector of this magnitude is
rather improbable, and we can even expect w1 = ±v.
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4.4 Conclusion

We conclude that:

1. In case of a random tuple, the first LLL reduced vector can be expected with

noticeable probability to be lower bounded by min
{

q,
√

�
8πeq

�−1
�

}
.

2. In case of a synthetic tuple, the first LLL reduced vector is with high proba-

bility smaller than the predicted value min
{

q,
√

�
8πeq

�−1
�

}
and we can even

expect it to be equal to ±v where v = (e0, (−2e1 + e2), . . . , (−2e�−1 + e�)) is
our target vector.

Hence, we can distinguish with noticeable probability between a randomly
sampled tuple and a synthetically constructed one by simply comparing the

length of the first LLL reduced vector with min
{

q,
√

�
8πeq

�−1
�

}
. Furthermore,

in case of a synthetically constructed tuple, the first LLL reduced vector is
expected to reveal the modified error terms. Choosing the error term in the t-th
position e′

t, and computing e′
t

yt
mod q = ±s reveals then the hidden secret s.

The corresponding SAGEMATH source codes for our first distinguisher (distin-
guisher1) can be found in the full version of our article.

Optional Bootstrapping. We note that in the whole development, we never
assumed to know the precise error distribution. Indeed, multiple passages could
have been formalized and simplified when the error distribution was known (e.g.,
Discrete Gaussian). Besides retrieving the secret s, our method even allows to
retrieve the underlying error distribution. Indeed, upon reception of the secret s,
one easily reveals the original error values e0, . . . , e�. Once the errors have been
determined, any bootstrapping method may simulate the whole error distribu-
tion.

5 Attacking the iNTRU Assumption - Second Approach

In this section, we describe our second attack against the integer iNTRU assump-
tion. Whereas our first attack is foremost suitable for prime moduli q, it may
not be used under unfortunate circumstances, namely if none of the yi is invert-
ible. This can be easily determined and in the improbable case this happens,
one needs to opt for our second attack. Although slightly more challenging and
bound on a more restricted success probability, our second attack will work for
any initial challenge input. However, due to its increased complexity and unusual
approach, the first method should be used if possible.

5.1 Our Second Lattice and Its Properties

Let (x0, . . . , x�) be an iNTRU challenge tuple corresponding either to the uniform
or the iNTRU distribution.
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Lattice Construction. Similar than in our first attack, we modify our chal-
lenge tuple by setting

y0 := x0 mod q and yi = 2xi − xi+1 mod q ∀i ∈ {1, . . . , � − 1}. (13)

But contrary to the first attack, we stop our modifications and directly construct
the (� + 1) × (� + 1) q2-ary row lattice:

Λ = L

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y0q y1q y2q . . . y�−1q 1
q2 0 0 . . . 0 0
0 q2 0 . . . 0 0
0 0 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . q2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Predicted Value. Assuming the first row of Λ random, heuristic H yields that

λ1(Λ) ≥ min

{
q2,

√
� + 1
8πe

q
2�

�+1

}
. (15)

However, here our heuristic needs to be considered with precaution as it only
applies to random initial matrices A and prime moduli. Especially for our lattice
Λ, where both of those conditions are not satisfied, we must pay attention and
indeed, our lattice contains a shorter vector. More precisely, our lattice contains
the vector (0, . . . , 0, q) obtained by multiplying the first row by q and then for
each i ∈ {0, . . . , � − 1} subtracting yi times row i + 1 from it. Thus, λ1 ≤ q.
Nonetheless, our heuristic is a good indication for the size of the other succes-
sive minima and in particular for λ2 (not to say that it is the only applicable
estimation).

5.2 Case of a Random Tuple

Let the initial tuple (x0, ..., x�) be randomly sampled at uniform from (Z/qZ)�+1.
Then, also the corresponding yi will follow the uniform distribution and so
the first row of our lattice behaves, up to the common factor q and the last
entry, almost randomly. We will prove that apart from our trivially short vec-
tor (0, . . . , 0, q), its suitable multiples, and the canonical vectors with a single
entry q2 (if applicable), it is improbable to find another vector smaller than the
expected heuristic value.

Lemma 1. Let B ≤ q
2 be an integer and S ⊆ Z be fixed. Choose randomly

r ∈ Z/q2Z and for each i ∈ {0, . . . � − 1}, let also yi ∈ Z/qZ be random. Set

y = (y0q, y1q, . . . , y�−1q, 1).
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Then, the probability that r ∈ S and the norm of the vector ry mod q2 is at
most Bq is upper bounded by

P

(( ∥∥[ry mod q2]
∥∥
2

≤ Bq
)

∩ (r ∈ S)
)

≤
Bq∑

β�=−Bq
β�∈S

�(2�B/ gcd(β�, q)� + 1)

q2

(
gcd(β�, q)

q

)�

.

We note that the computation of
∥∥[ry mod q2]

∥∥
2

takes place sequentially
and component-wise. More precisely, first ry is computed, then each component
is reduced modulo q2 to its centrally symmetric representative (i.e., the smallest
representative in absolute value), and finally the Euclidean norm is taken on the
resulting vector as seen over the integers. The proof of Lemma 1 can be found
in Appendix A.

To put the previous lemma into context, we point out that if S = {kq | k ∈
Z}, then the probability is smaller than 1√

q and if S = (Z/q2Z)× is the set of

units, then the probability is smaller than �
q�−1 . Although our lattice contains

the trivial short vector (0, . . . , 0, q) and its multiples, the probability of finding
a short vector with nonzero entries on the first �−1 entries is rapidly decreasing
with increasing q. For small bounds B, we expect with a high probability that
such a vector will not even exist. In this case, the best possible guess for the size

of the second-shortest vector will be min
{

q2,
√

�+1
8πe q

2�
�+1

}
.

5.3 Case of a Synthetic Tuple

Assume next that the initial tuple (x0, . . . , x�) has been synthetically constructed
following the iNTRU distribution. Then, we will prove that apart from our triv-
ially short vector (0, . . . , 0, q), its multiples and the canonical vectors with a
single entry q2, our lattice contains at least one more linearly independent short
vector.

Preliminary Observation. Similar than in our first attack, we note that a
tuple (a0, . . . , a�) following the iNTRU distribution satisfies

a0 =
e0
s

mod q and ai =
2i−1 − ei

s
mod q ∀i ∈ {1, . . . , �} (16)

where e0, . . . , e� denote random errors sampled from the symmetric error distri-
bution χ producing with overwhelming probability small elements and that

y0 =
e0
s

mod q and yi =
−2ei + ei+1

s
mod q ∀i ∈ {1, . . . , � − 1} (17)

where the numerators follow the symmetric distribution χ′ with μχ′ = 0 and
σχ′ =

√
3σχ and are thus still quite small.
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Another Short Vector. Our lattice contains the vector

v = (e0q, (−2e1 + e2)q, . . . , (−2e�−1 + e�)q, s) (18)

obtained by multiplying the first row by s and applying the “modulo q2 reduc-
tion”, corresponding to an addition of the respective rows, as often as needed.
We are going to show that this vector will be almost surely smaller than the
expected heuristic. To do so, we first assume that the error entries are upper
bounded by some constant K > 0. i.e.,

max{|e0|, | − 2e1 + e2|, . . . , | − 2e�−1 + e�|} ≤ K. (19)

Then, the size of v may be upper bounded by

‖v‖2 ≤
√

�K2q2 + s2 ≤
√

�K2q2 + q2 ≤ √
� + 1 qK. (20)

Whenever K is small enough, this upper bound is smaller than the expected
heuristic. That this smallness condition is in general no limitation is shown by
the following proposition.

Proposition 3. If max{|e0|, | − 2e1 + e2|, . . . , | − 2e�−1 + e�|} ≤ min
{

q√
�+1

,

1√
8πe

q
�−1
�+1

}
, then the target vector v is shorter than min

{
q2,

√
�+1
8πe q

2�
�+1

}
.

Proof. Replace K by the upper bound for max in Eq. (20). ��
As usually the error terms are O(

√
q), our target vector v will almost surely be

smaller than the expected heuristic.

Lattice Reduction. Finally, it is time to check whether our target vector v
can even be determined using ordinary lattice reduction. Hereinafter, we will
only consider LLL reduction. An LLL reduced basis (w1, . . . ,w�+1) satisfies
theoretically ‖wi‖2 ≤ α

�
2 λi where λi denotes the i-th successive minimum of

the lattice and α = 1
δ− 1

4
. For the sake of explicit results, we again consider

δ = 63
64 < 0.99 resulting in α = 64

47 <
√

2.
Let us concentrate on the first LLL output, namely w1. We recall that our

shortest vector will probably be v0 = (0, ..., 0, q).3 Thus, we assume λ1 ≤ q. This
implies that

‖w1‖2 ≤ α
�
2 q ≤ 2

�
4 q ≤ 2

log(q)+1
4 q ≤ (2q)

1
4 q.

Lemma 1 yields that such a short vector can only be found at random with
extremely low probability Thus, it seems improbable that apart from v0 and its

3 The only possibility for which this would not be the case takes place when g =
gcd(y0, . . . , y�−1, q) > 1 as then (0, . . . , 0, q

g
) will be the shortest lattice vector, but

this scenario is rather improbable.
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multiples, another vector of this magnitude exists, and we expect w1 to be (a
multiple of) v0.4

Next, we consider the second LLL output, namely w2. Assuming that w1 is
a multiple of v0, the second LLL output w2 needs to contain non-zero entries
on the first � entries (otherwise it would not be linearly independent from w1).
By Eq. (20), we know that ‖v‖2 ≤ √

� + 1 qK where K denotes the maximal
error term and by Proposition 3 we know that our target vector is almost surely

smaller than min
{

q2,
√

�
8πeq

2�
�+1

}
. If we slightly reduce the upper bound K, we

obtain a similar result for w2.

Proposition 4. If max{|e0|, |−2e1 + e2|, . . . , |−2e�−1 + e�|} ≤ min
{

q3/4

21/4
√

�+1
,

1
23/4

√
πe

q
3�−5

4(�+1)

}
, then ‖w2‖2 is smaller than min

{
q2,

√
�

8πeq
2�

�+1

}
.

Proof. Let max{|e0|, | − 2e1 + e2|, . . . , | − 2e�−1 + e�|} ≤ K. Then we know that
‖w2‖2 ≤ α

�
2 λ2 ≤ α

�
2v. Using again the fact that α ≤ √

2 implies α
�
2 ≤ (2q)

1
4

and with Eq. (20), we conclude

‖w2‖2 ≤ (2q)
1
4
√

� + 1 qK.

Replacing K by the claimed upper bounds concludes the proposition. ��
The upper bound for K in Proposition 4 is O(q

3
4 ) and as usually K = O(

√
q),

we can expect the condition to hold in practice. In comparison, using Lemma
1, we conclude that such a short vector will only be found at random with low
probability. Thereby, we can even expect w2 = ±v.

5.4 Conclusion

Our cautious lattice analysis gives rise to multiple conclusions:

1. In case of a random tuple as well as in the case of a synthetically constructed
one, the first LLL reduced vector will with overwhelming probability be a
multiple of (0, . . . , 0, q).

2. In case of a random tuple, the second LLL reduced vector can be expected

to be lower bounded by min
{

q2,
√

�
8πeq

2�
�+1

}
.

3. In case of a synthetic tuple, the second LLL reduced vector is with a high

probability smaller than min
{

q2,
√

�
8πeq

2�
�+1

}
. Furthermore, we can expect

it to be equal to ±v where v = (e0q, (−2e1 + e2)q, . . . , (−2e�−1 + e�)q, s) is
our target vector.

4 This conclusion also holds in the case of a random tuple.
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Hence, we finally conclude that we can distinguish with noticeable prob-
ability between a randomly sampled tuple and a synthetically constructed
one by simply comparing the length of the second LLL reduced vector with

min
{

q,
√

�
8πeq

2�
�+1

}
. Furthermore, in case of a synthetically constructed tuple,

the last entry of this vector should reveal the secret value s or its negative
−s. Especially if the initial errors are comparably small with respect to q (e.g.,
O(

√
q)), there is a high chance of revealing the secret. The corresponding SAGE-

MATH source codes for our second distinguisher (distinguisher2) can be found
in the full version of our article.

Optional Bootstrapping. As in the first attack, we never assumed to know
the precise error distribution. Similar to the first attack, after retrieving the
secret s, one can extract the original error values e0, . . . , e� and use a suitable
bootstrapping method to simulate the whole error distribution.

6 Generalizing Our Attacks

Our two lattice attacks against the iNTRU assumption have been conceived for
the integer case (R = Z) only. However, it is not difficult to generalize them.

6.1 iNTRU - The General Case

In, order to generalize our attacks to polynomial rings, one may simply replace
the xi’s by the corresponding polynomial values and carry on with the construc-
tions. The corresponding lattices will then contain the corresponding polynomial
coefficients. The arising difficulty is that in the presence of degree d polynomi-
als, the lattice dimension will increase by a factor of d as well. This blow-up
heavily impacts the detectable error limits in Proposition 2 and Proposition 4
up to the point where only Bernoulli errors would be detectable (i.e. −1, 0, 1).
To be precise, degree d polynomials would only lead to the theoretical bound
‖w1‖2 ≤ q

d
4 K for the first LLL reduced vector in Eq. (12) which, for large d,

is not short enough to grant the required upper bound ‖w1‖2 ≤ q. Likewise,
for our second distinguisher, the theoretical bound ‖w2‖2 ≤ q2 will not be ful-
filled for large d. As in general LLL performs better in practice than in theory,
slightly larger degrees might be achievable, but only the use of stronger reduction
algorithms such as BKZ (see [14]) will lead to well-functioning distinguishers.

6.2 MiNTRU

Our attacks can also be generalized to the second assumption introduced in [6],
the so called matrix inhomogeneous NTRU (MiNTRU) assumption. The MiNTRU
assumption essentially replaces polynomial elements in the iNTRU assumption
by integer modular matrices. To be precise, let q be any modulus, � = 
log(q)�,
m = n(� + 1), G = [0|I|2I|...|2�−1I] ∈ Z

n×m an extended gadget matrix, and χ
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a symmetric error distribution over Z producing with overwhelming probability
elements with norm � q. Then, the MiNTRU distribution with these parameters
is obtained by the following sampling process

MiNTRU =

⎧⎨
⎩
S ← (

Z
n×n
q

)
invertible

E ← χn×m

A := S−1 × (G − E) mod q

⎫⎬
⎭

and the MiNTRU decision problem requires to distinguish this distribution from
the random distribution over Z

n×m
q . By decomposing the matrix A into (� + 1)

individual n × n matrices A0, . . .A� such that A = [A0| . . . |A�], then setting
Y0 := A0 mod q and Yi = 2Ai − Ai+1 mod q ∀i ∈ {1, . . . , � − 1} and
finally computing Zi := Y−1

t Yi mod q ∀i ∈ {0, . . . , � − 1} for some invertible
matrix Yt, removes completely the dependence of the gadget matrix G and
ends up in matrices with entries of quotients of small norm error elements only.
Thereby, the same strategy as in the iNTRU attack may be mounted against
the underlying decision problem. However, once again, the success chance of our
attack is strongly affected by the matrix dimensions. Concretely, the generalized
attacks will only work for low dimensional matrices or matrices with low entropic
noise. A more detailed analysis may be found in the full version of our article.

7 Conclusion

Our simple lattice based distinguishers break with noticeable probability the
integer case of the iNTRU assumption. Additionally, their construction yields a
theoretical thread for the general iNTRU and the MiNTRU assumption. Nonethe-
less, this threat is not reflected in practice as the distinguishers don’t cope
with large dimensions of polynomial rings (iNTRU) or with large matrix dimen-
sions (MiNTRU) as used in recent cryptographic constructions. This work should
mainly raise awareness that new hardness hypotheses should be used with cau-
tion and questions whether the two studied assumptions can compete with the
long-standing Learning-with-Errors (LWE) assumption [16] which does not suf-
fer from the described vulnerability. We emphasize that, if possible, well-known
hardness assumptions should be used.

Acknowledgement. Jim Barthel was supported in part by the Luxembourg National
Research Fund through grant PRIDE15/10621687/SPsquared. Răzvan Roşie was sup-
ported in part by ERC grant CLOUDMAP 787390.

A Proof of Lemma 1

We observe that by the properties of the Euclidean and the infinity norm, we
have

P
((∥∥[ry mod q2]

∥∥
2

≤ Bq
) ∩ (r ∈ S)

) ≤ P
((
max

{ ∣∣[ry mod q2]
∣∣ } ≤ Bq

) ∩ (r ∈ S)
)
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where the maximum is taken over all the modulo reduced entries of ry. The
right expression is equal to

P

⎛
⎜⎝

⎛
⎜⎝

�−1⋂
i=0

( ∣∣[ryiq mod q2]
∣∣ ≤ Bq

)
︸ ︷︷ ︸

:=Ci

⎞
⎟⎠ ∩ ( ∣∣[r mod q2]

∣∣ ≤ Bq
)

︸ ︷︷ ︸
:=C�

∩(r ∈ S)

⎞
⎟⎠ .

Each event C0, . . . , C�−1 in the probability statement can be written as a union
of events Ci =

⋃Bq
βi=−Bq([ryiq mod q2] = βi). As this event can only take place

whenever βi is a multiple of q (otherwise, the equality cannot be satisfied), we
need only to consider the restricted union of events

⋃B
βi=−B([ryiq mod q2] =

βiq) =
⋃B

βi=−B([ryi mod q] = βi). Furthermore, C� =
⋃Bq

β�=−Bq([r mod q2] =
β�) =

⋃Bq
β�=−Bq(r = β�) which is restricted to β� ∈ S by the last condition. Thus,

our overall probability is equal to

P

⎛
⎜⎜⎝

⎛
⎝

�−1⋂
i=0

B⋃
βi=−B

([ryi mod q] = βi)

⎞
⎠ ∩

⎛
⎜⎜⎝

Bq⋃
β�=−Bq

β�∈S

(r = β�)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

Reordering the events gives

P

⎛
⎜⎜⎝

B⋃
β0=−B

· · ·
B⋃

β�−1=−B

Bq⋃
β�=−Bq

β�∈S

(
�−1⋂
i=0

([ryi mod q] = βi) ∩ (r = β�)

)
⎞
⎟⎟⎠ .

As the events are mutually exclusive, this probability is equal to

B∑
β0=−B

· · ·
B∑

β�−1=−B

Bq∑
β�=−Bq

β�∈S

P

(
�−1⋂
i=0

([ryi mod q] = βi) ∩ (r = β�)

)
.

Using Bayes’ conditional probability rule followed by Euler’s rule of interchang-
ing finite sums, this quantity can be rewritten as:

B∑
β0=−B

· · ·
B∑

β�−1=−B

Bq∑
β�=−Bq

β�∈S

P (r = β�)P

(
�−1⋂
i=0

([ryi mod q] = βi)
∣∣∣ (r = β�)

)

=

Bq∑
β�=−Bq

β�∈S

P (r = β�)
B∑

β0=−B

· · ·
B∑

β�−1=−B

P

(
�−1⋂
i=0

([ryi mod q] = βi)
∣∣∣ (r = β�)

)

Naturally P (r = β�) = 1
q2 for any β�. It remains to investigate the value of the

rightmost probability. To do so, we rewrite β� = g�β
′
� where g� = gcd(β�, q).

Then, for fixed β0, . . . , β�−1, β�:
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P

(
�−1⋂
i=0

([ryi mod q] = βi)
∣∣∣ (r = β�)

)

=P

(
�−1⋂
i=0

([β�yi mod q] = βi)

)

=P

(
�−1⋂
i=0

([g�β
′
�yi mod q] = βi)

)

The events in this probability will only be satisfiable if βi is a multiple of g�, say
βi = β′

ig�. Thus, our cumulative probability rewrites as

Bq∑
β�=−Bq

β�∈S

1

q2

�B/g��∑
β′
0=−�B/g��

· · ·
�B/g��∑

β′
�−1=−�B/g��

P

(
�−1⋂
i=0

([g�β
′
�yi mod q] = β′

ig�)

)

=

Bq∑
β�=−Bq

β�∈S

1

q2

�B/g��∑
β′
0=−�B/g��

· · ·
�B/g��∑

β′
�−1=−�B/g��

P

(
�−1⋂
i=0

([β′
�yi mod

q

g�
] = β′

i)

)

=

Bq∑
β�=−Bq

β�∈S

1

q2

�B/g��∑
β′
0=−�B/g��

· · ·
�B/g��∑

β′
�−1=−�B/g��

P

(
�−1⋂
i=0

([yi mod
q

g�
] = [β′

iβ
′−1
� mod

q

g�
])

)

where we used the fact that g� = gcd(β�, q) which implies that β′
� is invertible

modulo q
g�

. It is now clear that the remaining events are independent as they
only depend on yi. Thus

P

(
�−1⋂
i=0

([yi mod
q

g�
] = [β′

iβ
′−1
� mod

q

g�
])

)

=

�−1∏
i=0

P

(
[yi mod

q

g�
] = [β′

iβ
′−1
� mod

q

g�
]

)

=

(
1
q
g�

)�

=

(
g�

q

)�

.

Thereby, the cumulative probability is given by

Bq∑
β�=−Bq

β�∈S

�(2�B/g�� + 1)

q2

(
g�

q

)�

.

��
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Abstract. Most functional encryption schemes implicitly assume that
inputs to decryption algorithms, i.e., secret keys and ciphertexts, are gen-
erated honestly. However, they may be tampered by malicious adver-
saries. Thus, verifiable functional encryption (VFE) was proposed by
Badrinarayanan et al. in ASIACRYPT 2016 where anyone can pub-
licly check the validity of secret keys and ciphertexts. They employed
indistinguishability-based (IND-based) security due to an impossibility
result of simulation-based (SIM-based) VFE even though SIM-based secu-
rity is more desirable. In this paper, we propose a SIM-based VFE scheme.
To bypass the impossibility result, we introduce a trusted setup assump-
tion. Although it appears to be a strong assumption, we demonstrate that
it is reasonable in a hardware-based construction, e.g., Fisch et al. in ACM
CCS 2017. Our construction is based on a verifiable public-key encryption
scheme (Nieto et al. in SCN 2012), a signature scheme, and a secure hard-
ware scheme, which we refer to as VFE-HW. Finally, we discuss an imple-
mentation ofVFE-HW using Intel Software Guard Extensions (Intel SGX).

Keywords: Functional encryption · Intel SGX · Verifiability ·
Simulation security

1 Introduction

Functional Encryption: Cloud computing has gained increasing attention since
it supports several functionalities, e.g., data analysis. However, sensitive user data
must be secured, and protected. Thus, since Public-Key Encryption (PKE) only
provides all-or-nothing decryption capabilities, functional encryption [14] has been
proposed. Functional encryption allows clients to flexibly access sensitive data
toward usual “all or nothing” decryption procedure. Briefly, a Trusted Authority
(TA) first generates a master public key mpk and a master secret key msk. A client
sends the information of function P to the TA. Generally, P can enforce sophisti-
cated functions, e.g., access control etc. The TA generates a secret key skP using
the msk, and gives it to the client. A plaintext msg is encrypted by the mpk, where
CT is the ciphertext. Finally, the client obtainsP(msg) by decryptingCT using skP.
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The security of functional encryption is defined by indistinguishability-
based (IND-based) or simulation-based (SIM-based) notions. IND-based security
guarantees that no adversary can distinguish which plaintext was encrypted.
IND-based functional encryption schemes have been proposed for the class of
all (polynomial-sized) functionalities under inefficient assumptions, e.g., multi-
linear maps, or indistinguishability obfuscation [15,26,27,38]. Consequently,
Abdalla et al. [2] proposed an IND-based functional encryption scheme that sup-
ports inner products under simple assumptions, and several works followed this
direction [3,4,19,22,23,37]. However, Boneh et al. [14] and O’Neil [34] demon-
strated that IND-based functional encryption yields insufficient security. For
example, an adversary is allowed to obtain secret keys for a function P selected
by the adversary with the restriction P(msg∗

0) = P(msg∗
1) where msg∗

0 and msg∗
1

are challenge plaintexts with the condition msg∗
0 �= msg∗

1 . Thus, the class of P
remains restricted, e.g., we cannot specify a cryptographic hash function as P
due to collision resistance. Thus, SIM-based security is more desirable. Several
SIM-based functional encryption schemes [6–8,14,18,34] have been proposed
recently. However, several works [6,7,14,18] have shown that achieving SIM-
based functional encryption that supports all (polynomial-sized) functionalities
is impossible.

Functional Encryption Using Intel SGX: To overcome this impossibil-
ity result, Fisch et al. [24] proposed IRON, a SIM-based functional encryption
scheme that uses Intel SGX [9,30–32]. Intel SGX is a hardware protection set
that protects sensitive data (e.g. medical data) from malicious adversaries by
storing them in enclaves generated as isolated spaces in an application. They
employed a secure hardware scheme (HW) which modeled Intel SGX.

Briefly, IRON is described as follows. The TA generates a public key pk and
a decryption key dk for a PKE scheme, as well as a verification key vk and a
signing key sk for a signature scheme (SIG). Then, the TA generates a secret key
skP, where P is a function for the client. The TA generates a signature of P as
a secret key skP using sk in a Key Manager Enclave (KME), and sends it to the
client. Let CT be the ciphertext of a plaintext msg under pk. In the decryption
procedure, if skP is a valid signature using vk, CT is decrypted inside an enclave,
and P(msg) is output.

Verifiable Functional Encryption: Most functional encryption schemes
implicitly assume that inputs to decryption algorithm, i.e., skP and CT, are
generated honestly according to the algorithmic procedures. However, they may
be tampered by malicious adversaries. Badrinarayanan et al. [10] proposed Ver-
ifiable Functional Encryption (VFE). With VFE, anyone can publicly check the
validity of skP and CT. If verification of skP and CT passes, the decryption algo-
rithm of VFE correctly outputs P(msg). Badrinarayanan et al. insisted that VFE
are useful for some applications, e.g., storing encrypted images [14] and audits
[29]. As a drawback, they demonstrated that SIM-based VFE implies the exis-
tence of one message zero-knowledge proof systems for NP in the plain model.
This implication contradicts the impossibility result shown by Goldreich et al.
[28]. We emphasize that IRON does not help us to bypass this impossibility
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Table 1. Comparison of Verifiable Functional Encryption

Security Functionality Verifiability Secure HW Trusted setup

Fisch et al. [24]
(Functional
Encryption)

SIM-based Any Not considered Yes Yesa

Badrinarayanan
et al. [10]

IND-based Limited Normal No No

Soroush et al. [36] IND-based Limited Normal No No

Our VFE scheme SIM-based Any Weak Yes Yes
aThe HW.Setup algorithm in the pre-processing phase is required to be honestly run by the
TA.

result. As a result, they employed IND-based security as shown in Table 1. A
VFE proposed by Soroush et al. [36], which supports inner products, employs
the same IND-based security definition. Thus, no SIM-based VFE has been pro-
posed so far.

Our Contribution: We propose a SIM-based VFE scheme that supports any
(polynomial-sized) functionality. To support such functionality, we employ the
hardware-based construction given in IRON [24], and, to achieve SIM-based
security, we relax the verifiability of the definition given by Badrinarayanan et
al. without losing the practicability. Intuitively, we assume that mpk and msk
are generated honestly whereas those can be arbitrary values in the definition
given by Badrinarayanan et al. Due to this trusted setup assumption, mpk can be
considered a common reference string (CRS) in the one message zero-knowledge
context [13]. One may think that this trusted setup assumption is unreasonable
and too strong in practice. However, this is not the case in the hardware-based
construction. We will explain it in detail in Sect. 4.

In addition to provide a security definition that bypasses the impossibility
result, we also give a SIM-based VFE construction. The original IRON has sup-
ported public verifiability of secret keys (because these are signatures), thus we
focus on how to support public verifiability for ciphertexts. Therefore, we employ
(publicly) Verifiable PKE (VPKE) [33] proposed by Nieto et al. in addition to
the ingredients of IRON (PKE, SIG, and HW). We employ HW as in IRON,
thus we refer to proposed system as VFE-HW. Note that publicly executable
computations should be run outside of memory-constrained enclaves as much as
possible. Simultaneously, as in IRON, ciphertexts input to enclaves require to be
non-malleable, and thus the underlying (V)PKE scheme needs to be CCA-secure.
Consequently, we modify the definition of VPKE (Sect. 2).

Finally, we give our implementation of the proposed VFE-HW scheme for a
cryptographic hash function H as the function P, i.e., the decryption algorithm
for a ciphertext of msg outputs H(msg). Due to the nonlinearity of the hash
function, the functionality seems hard to be supported by functional encryption
with linear computations, e.g., inner products. Moreover, the IND-based VFE
scheme does not support the function due to the key generation query restriction.
In addition to these theoretical perspectives, it seems meaningful to support
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this functionality in practice, e.g., a password PW is encrypted and H(PW)
can be computed without revealing PW. Here, we employ the Pairing-Based
Cryptography (PBC) library [1] to implement the VPKE scheme proposed by
Nieto et al. Briefly, the encryption algorithm runs in 0.11845 s, the verification
algorithm for ciphertexts runs in 0.12329 s, the verification algorithm for secret
keys runs in 0.00057 s, and the decryption algorithm runs in 0.06164 s.

2 Preliminaries

Here, we define PKE, VPKE, SIG, and HW. When x is selected uniformly from
set S, we denote this as x

$←− S, and y ← A(x) represents that y is the output
of an algorithm A with an input x.

First, we define PKE as follows. Here, let Mpke be a plaintext space of
PKE. The setup algorithm PKE.KeyGen(1λ) generates (pkpke, dkpke), the encryp-
tion algorithm PKE.Enc(pkpke, msg) outputs CT, and the decryption algorithm
PKE.Dec(dkpke, CT) outputs msg or ⊥. We require that the PKE provides the
indistinguishability against chosen ciphertext attack (IND-CCA) security.

Next, we define SIG as follows. Here, let Msig be a message space.
The key generation algorithm SIG.KeyGen(1λ) generates (sksign, vksign), the
signing algorithm SIG.Sign(sksign,msg) outputs σ, the verification algorithm
SIG.Verify(vksign,msg, σ) outputs 0 or 1. We require that the SIG provides the
existential unforgeability against chosen message attack (EUF-CMA) security.

Next, we introduce VPKE as defined by Nieto et al. [33]. VPKE provides public
verifiability, where anyone can check the validity of ciphertexts without using any
secret value. They defined the decryption algorithm VPKE.Dec using two algo-
rithms, i.e., the verification algorithm VPKE.Ver and the decryption algorithm
for converted ciphertext VPKE.Dec′. VPKE.Ver verifies ciphertext CT and con-
verts CT to CT′ if CT is valid. VPKE.Dec′ decrypts CT′, and outputs msg. In this
paper, we further decompose VPKE.Ver into two algorithms, i.e., VPKE.Ver and
VPKE.Conv, which will be explained later. The verification algorithm VPKE.Ver
verifies CT and the conversion algorithm VPKE.Conv converts CT into CT′.

Next, we define VPKE. Here, let Mvpke be a plaintext space of VPKE.

Definition 1 (Syntax of VPKE).

VPKE.PGen(1λ): This public parameter generation algorithm takes the security param-
eter λ ∈ N as input, and returns a public parameter pars.

VPKE.KeyGen(pars): This key generation algorithm takes pars as input, and returns a
public key pkvpke and a secret key dkvpke.

VPKE.Enc(pars, pkvpke,msg): This encryption algorithm takes pars, pkvpke and a plaintext
msg ∈ Mvpke as input, and returns a ciphertext CT.

VPKE.Dec(pars, pkvpke, dkvpke,CT): This decryption algorithm takes pars, pkvpke, dkvpke
and CT as input, and returns a plaintext msg or reject symbol ⊥. Internally the
algorithm runs VPKE.Ver, VPKE.Conv, and VPKE.Dec′, which are defined as fol-
lows.

VPKE.Ver(pars, pkvpke,CT): This verification algorithm takes pars, pkvpke and CT as
input, and returns 1 or 0.
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VPKE.Conv(pars, pkvpke,CT): This conversion algorithm takes pars, pkvpke and CT as
input, and returns a ciphertext CT′.

VPKE.Dec′(pars, pkvpke, dkvpke,CT
′): This decryption algorithm takes pars, pkvpke, dkvpke

and CT′ as input, and returns a plaintext msg.

Correctness is defined as follows: For all pars ←VPKE.PGen(1λ), all (pkvpke,
dkvpke) ← VPKE.KeyGen(pars), all msg ∈ Mvpke,VPKE.Dec′(pars, pkvpke, dkvpke
and VPKE.Conv(pars, pkvpke,CT)) = msg holds, where CT ← VPKE.
Enc(pars, pkvpke,msg) and VPKE.Ver(pars, pkvpke,CT) = 1.

Next, we define strictly non-trivial public verification. Condition 1 requires
that the decryption of a ciphertext CT succeeds if and only if its verification
outputs 1, and Condition 2 excludes CCA-secure schemes where the decryption
algorithm does not output ⊥.

Definition 2 (Strictly Non-Trivial Public Verification). For any PPT adver-
sary A and the security parameter λ ∈ N, let pars ← VPKE.PGen(1λ). We
define the VPKE.Ver algorithm is strictly non-trivial public verifiable if (1)
(pkvpke, dkvpke) ← VPKE.KeyGen(pars), and VPKE.Ver(pars, pkvpke,CT) = 0 ⇐⇒
VPKE.Dec(pars, pkvpke, dkvpke,CT) = ⊥ for all CT, and (2) there exists a cipher-
text CT for which VPKE.Dec(pars, pkvpke, dkvpke,CT) = ⊥ are provided.

Next, we define IND-CCA [33] as follows.

Definition 3 (IND-CCA). For any PPT adversary A and the security param-
eter λ ∈ N, we define the experiment ExpIND-CCA

VPKE,A (λ) as follows. Here, state is
state information that an adversary A can preserve any information, and state
is used for transferring state information to the other stage.

ExpIND-CCA
VPKE,A (λ):

pars ← VPKE.PGen(1λ); (pkvpke, dkvpke) ← VPKE.KeyGen(pars)

(msg∗
0 ,msg∗

1 , state) ← AVPKE.DEC(find, pars, pkvpke)
msg∗

0 ,msg∗
1 ∈ Mvpke; |msg∗

0 | = |msg∗
1 |

μ
$←− {0, 1}; CT∗ ← VPKE.Enc(pars, pkvpke,msg∗

μ)

μ′ ← AVPKE.DEC(guess,CT∗, state)
If μ = μ′ then output 1, and 0 otherwise

– VPKE.DEC: This decryption oracle takes a ciphertext CT �= CT∗ as
input. If VPKE.Ver(pars, pkvpke,CT) = 0, output ⊥. Otherwise, compute
CT′ ← VPKE.Conv(pars, pkvpke,CT), and return msg by running the
VPKE.Dec′(pars, pkvpke, dkvpke,CT

′) algorithm.

We say that VPKE is IND-CCA secure if the advantage AdvIND-CCA
VPKE,A (λ) :=

| Pr[ExpIND-CCA
VPKE,A (λ) = 1] − 1/2 | is negligible for any PPT adversary A.
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For the sake of clarity, we give the Nieto et al. VPKE scheme employed in our
implementation in the Appendix A.

Next, we define the secure hardware scheme (HW scheme) [24]. In this paper,
the hardware instance HW denotes an oracle that provides the functionalities
given in Definition 4. Furthermore, the hardware oracle HW(·) denotes an inter-
action with other local secure hardware in addition to HW, and the Key Man-
ager oracle KM(·) denotes an interaction with a remote secure hardware over an
untrusted channel.

Definition 4 (Syntax of HW Scheme). A HW scheme for a set of probabilis-
tic programs Q comprises the following seven algorithms. HW has variables
HW.skreport, HW.skquote, and a table T. Here, HW.skreport and HW.skquote are
leveraged to store keys, and the table T is leveraged to manage the internal state
of loaded enclave programs.

– HW.Setup(1λ): This hardware setup algorithm takes the security parameter λ ∈ N

as input, and returns a public parameters params. This algorithm also generates the
secret keys skreport and skquote, and stores these keys in the HW.skreport and HW.skquote
valuables respectively.

– HW.Load(params, Q): This loading program algorithm takes params and a program
Q ∈ Q as input, and returns a handle hdl. Intuitively, this algorithm loads the state-
ful program into the enclave to be launched. Here, hdl is leveraged to identify the
enclave running Q.

– HW.Run(hdl, in): This running program algorithm takes hdl and a symbol in as
input, and returns out corresponding to an enclave running a designated program
Q. Intuitively, this algorithm runs Q at state T[hdl] with in, and records out.

– HW.Run&Reportskreport(hdl, in): This running program and generating report algo-
rithm, which can be verified by an enclave program on the same hardware plat-
form for a local attestation, takes hdl and in as input, and returns a report
report := (mdhdl, tagQ, in, out,mac), where mdhdl is a metadata relative enclave, tagQ
is a program tag that identifies the program running inside an enclave, and mac is
a message authentication code produced using skreport for (mdhdl, tagQ, in, out).

– HW.Run&Quoteskquote(hdl, in): This running program and generating quote algorithm,
which can be publicly verified different hardware platform for a remote attestation,
takes hdl and in as input, and returns a quote quote := (mdhdl, tagQ, in, out, σ), where
mdhdl is a metadata relative enclave, tagQ is a program tag that identifies the pro-
gram running inside an enclave, and σ is a signature produced using skquote for
(mdhdl, tagQ,in,out).

– HW.ReportVerifyskreport(hdl, report): This report verification algorithm takes hdl and
report as input, and uses skreport to verify mac. If mac is valid, then the algorithm
outputs 1 and adds a tuple (1, report) to T[hdl]. Otherwise, the algorithm outputs 0
and adds tuple (0, report) to T[hdl].

– HW.QuoteVerify(params, quote): This quote verification algorithm, takes params and
quote as input. This algorithm verifies σ. If the verification of σ succeeds, then the
algorithm outputs 1. Otherwise, 0 is output.

Correctness is defined as follows: HW is correct if the following things hold.
For all Q ∈ Q, in in the input domain of Q and all handles hdl
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– Correctness of Run: out = Q(in) if Q is deterministic. More generally, ∃ ran-
dom coins r (sampled in time and used by Q) such that out = Q(in).

– Correctness of Report and ReportVerify: Pr[HW.Report-Verifyskreport
(hdl,

report) = 0] = negl(λ)
– Correctness of Quote and QuoteVerify: Pr[HW.Quote-Verify(params, quote) =
0] = negl(λ).

Next, we define local attestation unforgeability (LOC-ATT-UNF) of HW as
follows. This security guarantees that no adversary that does not have skreport
can produce a valid report.

Definition 5 (LOC-ATT-UNF). For any PPT adversary A and the security
parameter λ ∈ N, we define the experiment ExpLOC-ATT-UNF

HW,A (λ) as follows.

ExpLOC-ATT-UNF
HW,A (λ) :

(params, skreport, skquote, state) ← HW.Setup(1λ)

QUERY := ∅ ; (hdl∗, report∗) ← AHW,HW(·)(params)
If HW.ReportVerifyskreport(hdl

∗, report∗) = 1 where

report∗ = (md∗
hdl, tag

∗
Q, in∗, out∗,mac∗) and

(md∗
hdl, tag

∗
Q, in∗, out∗) /∈ QUERY

then output 1, and 0 otherwise

– HW: A can access the instance as follows.
– HW.LOAD: A queries the instance as input params and Q, and the

instance returns the handle hdl by running the HW.Load(params, Q) algo-
rithm.

– HW.REPORTVERIFY: A queries the instance as input hdl and report, and
the instance returns the result by running the HW.ReportVerifyskreport(hdl,
report) algorithm.

– HW(·): A can access the oracle as follows.
– HW.RUN&REPORT : A queries the oracle as input hdl and in, and

the oracle returns report := (mdhdl, tagQ, in, out,mac) by running the
HW.Run&Reportskreport (hdl, in) algorithm. Finally, the oracle stores
(mdhdl, tagQ, in, out) in QUERY.

We say that HW is LOC-ATT-UNF secure if the advantage

AdvLOC-ATT-UNF
HW,A (λ) := Pr[ExpLOC-ATT-UNF

HW,A (λ) = 1]

is negligible for any PPT adversary A.

Next, we define remote attestation unforgeability (REM-ATT-UNF) of HW
as follows. This security guarantees that no adversary that does not have skquote
can produce a valid quote.
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Definition 6 (REM-ATT-UNF). For any PPT adcersary A and the security
parameter λ ∈ N, we define the experiment ExpREM-ATT-UNF

HW,A (λ) as follows.

ExpREM-ATT-UNF
HW,A (λ) :

(params, skreport, skquote, state) ← HW.Setup(1λ)

QUERY := ∅ ; quote∗ ← AHW,KM(·)(params)
If HW.QuoteVerify(params, quote) = 1 where
quote∗ = (md∗

hdl, tag
∗
Q, in∗, out∗, σ) and

(md∗
hdl, tag

∗
Q, in∗, out∗) /∈ QUERY

then output 1, and 0 otherwise

– HW: A can access the instance as follows.
– HW.LOAD: A queries the instance as input params and Q, and the

instance returns the handle hdl by running the HW.Load(params,Q) algo-
rithm.

– KM(·): A can access the oracle as follows.
– HW.RUN&QUOTE: A queries the oracle as input hdl and in,

and the oracle returns quote := (mdhdl, tagQ, in, out, σ) by running the
HW.Run&Quoteskquote (hdl, in) algorithm. Finally, the oracle stores
(mdhdl, tagQ, in, out) in QUERY.

We say that HW is REM-ATT-UNF secure if the advantage

AdvREM-ATT-UNF
HW,A (λ) := Pr[ExpREM-ATT-UNF

HW,A (λ) = 1]

is negligible for any PPT adversary A.

3 Impossibility Result of VFE

In this section, we recall the impossibility result of VFE shown by Badrinarayanan
et al. [10]. We remark that this impossibility is caused by the verifiability of VFE.
Thus, they have mentioned that even if the impossibility of SIM-based security
given by Agrawal et al. [6] is bypassed, still the impossibility of VFE remains.

Since their VFE syntax is differ from our VFE-HW, first we introduce their
syntax as follows. The setup algorithm VFE.Setup(1λ) generates (mpk, msk), the
key-generation algorithm VFE.KeyGen(mpk, msk, P) outputs skP, the encryp-
tion algorithm VFE.Enc(mpk, msg) outputs CT, and the decryption algorithm
VFE.Dec(mpk, P, skP, CT) outputs P(msg) or ⊥. In addition to these algorithms,
VFE supports two verification algorithms. The ciphertext verification algorithm
VFE.VerifyCT(mpk, CT) outputs 0 or 1, and the secret key verification algorithm
VFE.VerifyK(mpk, P, skP) outputs 0 or 1.

Next, we introduce verifiability defined by them as follows. The verifiability
guarantees that if ciphertexts and secret keys are verified by the respective algo-
rithms then each ciphertext should be associated with a unique message msg,
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and the decryption result is P(msg). We remark that it holds even under possibly
maliciously generated mpk. Let PVFE and MVFE be a family of function for VFE
and a plaintext space of VFE respectively.

Definition 7 (Verifiability). For all security parameter λ ∈ N, mpk ∈ {0, 1}∗,
and all CT ∈ {0, 1}∗, there exists msg ∈ MVFE such that for all P ∈ PVFE and
skP ∈ {0, 1}∗, if VFE.VerifyCT(mpk,CT) = 1 and VFE.VerifyK(mpk,P, skP) =
1, then Pr[VFE.Dec(mpk,P, skP,CT) = P(msg)] = 1 holds.

We further remark that the probability that the VFE.Dec algorithm outputs
P(msg) is exactly 1 if CT and skP are valid. Thus, Badrinarayanan et al. assumed
that perfect correctness holds (otherwise, a non-uniform malicious authority can
sample ciphertexts/keys from the space where it fails to be correct). We note
that the probability is exactly 1 yields perfect soundness for all adversaries when
a proof system is constructed from VFE.

Next, we describe the impossibility result as follows.

Theorem 1 ([10], Theorem 3). There exists a family of functions, each of
which can be represented as a polynomial sized circuit, for which there does not
exist any simulation secure verifiable functional encryption scheme.

To prove the theorem, Badrinarayanan et al. showed that SIM-based VFE
implies the existence of one message zero-knowledge proof system for NP in
the plain model which is known to be impossible. More concretely, let L be a
NP complete language and R be the relation of L which takes as input a string
x and a polynomial sized (in the length of x) witness ω. R(x, ω) outputs 1 if
and only if x ∈ L and ω is its witness. We denote R(x, ·) for all x ∈ {0, 1}λ.
A one message zero-knowledge proof system (P,V) for the language L with
relation R is constructed from VFE as follows. For (x, ω), the prover P runs
(mpk, msk) ← VFE.Setup(1λ) where λ = |x|, computes CT ← VFE.Enc(mpk,
ω) and skR(x, ·) ← VFE.KeyGen(mpk, msk, R(x, ·)), and outputs a proof π =
(mpk, CT, skR(x, ·)). The verifier V accepts π if VFE.Dec(mpk, R(x, ·), skR(x, ·),
CT) = 1. Obviously, the proof system is perfectly complete if the underlying
VFE scheme is perfectly correct. Moreover, due to the verifiability property, the
system is perfectly sound. Furthermore, since the verifiability holds even for
maliciously generated mpk, CT, and sk, no trusted setup is assumed. Due to
the SIM-based security, i.e., the existence of the simulator that can produce a
ciphertext only from R(x, ω) without knowing ω (here, 1 = R(x, ω) in this case),
the system provides computational zero knowledge.

To bypass the impossibility result, we introduce the trusted setup where
(mpk, msk) is generated honestly, and mpk is considered as a CRS.1 One may
1 We note that we also relax the condition that the verifiability holds where the prob-

ability that the decryption algorithm outputs P(msg) is not exactly 1 (concretely
1-negl(λ)) in our definition. Because the underlying local or remote attestations
require non-perfect correctness, this relaxation is reasonable. This relaxation pro-
vides the converted proof system to be an argument, i.e., soundness holds only for
computationally bounded adversaries.
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think that this trusted setup assumption is unreasonable and too strong in prac-
tice. However, this is not the case in the hardware-based construction. In our
system, mpk and msk are generated by running a setup program, and it is implic-
itly assumed that the setup program is executed correctly (Q in our scheme).
That is, anyone can verify the description of the function. Moreover, we assume
that the program is hardcoded as the static data, and is assumed to be not tam-
pered. The remaining is to trust the computer that correctly runs the program,
and is widely assumed when cryptographic protocols are implemented. Thus, we
claim that the trusted assumption is reasonable, and leave how to remove the
assumption without losing the SIM-based security as a future work of this paper.

We remark that even if one message zero-knowledge proof system in the
CRS model can be constructed from SIM-based VFE, this does not bypass the
impossibility result since the proof system in the plain model implies a proof
system in the CRS model. We emphasize that the setup algorithm that generates
(mpk, msk) must be run first since other algorithms take mpk or msk as input.
Due to this situation, we can bypass the impossibility result of Badrinarayanan et
al. since any VFE-based one message zero -knowledge proof system or argument
need to run the Setup algorithm first, and then mpk can be seen as a CRS.
As mentioned by Barak and Pass [11], one message zero-knowledge proofs and
arguments can be constructed in the CRS model (without certain relaxations).

Regarding the CRS model, Badrinarayanan et al. have mentioned that
VFE seems to be constructed from a functional encryption scheme with Non-
Interactive Zero-Knowledge (NIZK) proof systems. However, the CRS may be
maliciously generated and then soundness does not hold. Thus, they gave up
for employing NIZK proof systems and employed non-interactive witness indis-
tinguishable proof (NIWI) systems as the ingredients. Since we introduce the
trusted setup assumption, we may be able to construct VFE from this direction
without employing a HW scheme. However, even then, another impossibility
arises [6]. For bypassing the impossibility, we employ a HW scheme.

Random oracles may be employed to avoid introducing the trusted setup
assumption. However, as mentioned by Agrawal, Koppula, and Waters [7], there
is an impossibility result of SIM-based security in the random oracle model.
Thus, we do not further consider the random oracle model in this paper.

4 Definitions of VFE-HW

In this section, we define VFE-HW. Here, let HW be a hardware instance that
takes a handle hdl that identifies an enclave. If an algorithm is allowed to access
HW, then the algorithm can use the secure hardware functionality given in Def-
inition 4. Let HW(·) (resp. KM(·)) be a hardware (resp. a key manager) oracle
that takes hdl and an authentication information (Report (resp. Quote) in our
construction), interacts with other local enclave specified by hdl, and runs the
function contained in the authentication information. Let PVFE-HW and MVFE-HW

be a family of functions for VFE-HW and a plaintext space of VFE-HW respec-
tively.
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Definition 8 (Syntax of VFE-HW). A VFE-HW scheme comprises the following
seven algorithms:

VFE-HW.SetupHW(1λ): This setup algorithm takes the security parameter λ ∈ N as
input, and returns a master public key mpk and a master secret key msk.

VFE-HW.KeyGenHW(msk,P): This key generation algorithm takes msk and a function
P ∈ PVFE-HW as input, and returns a secret key skP for P.

VFE-HW.Enc(mpk,msg): This encryption algorithm takes mpk and a plaintext msg ∈
MVFE-HW as input, and returns a ciphertext CT.

VFE − HW.DecSetupHW,KM(·)(mpk): This decryption node setup algorithm takes mpk as
input, and returns a handle hdl.

VFE-HW.VerifyCT(mpk,CT): This ciphertext verification algorithm takes mpk and CT
as input, and returns 1 or 0.

VFE-HW.VerifyK(mpk,P, skP): This secret key verification algorithm takes mpk,P, and
skP as input, and returns 1 or 0.

VFE-HW.DecHW(·)(mpk, hdl,P, skP,CT): This decryption algorithm takes mpk, hdl, skP,

and CT as input, and returns a value P(msg) or a reject symbol ⊥.

Correctness is defined as follows: For all P ∈ PVFE-HW, all (mpk,msk) ← VFE-HW.
SetupHW(1λ), all skP ← VFE-HW.KeyGenHW(msk,P), all hdl ← VFE-HW.Dec-
SetupHW,KM(·)(mpk), and all msg ∈ MVFE-HW, let CT ← VFE-HW.Enc(mpk,msg),
then Pr[VFE-HW.DecHW(·)(mpk, hdl, skP,CT) = P(msg)] = 1 − negl(λ) holds.

Next we define weak verifiability. We somewhat relax the original verifiability
definition, i.e., we employ the trusted setup and the probability of verifiability is
not exactly 1 due to the correctness of HW scheme. Thus, we call our definition
weak verifiability. Weak verifiability guarantees that if ciphertexts and secret
keys are verified by the respective algorithms, then each ciphertext should be
associated with a unique message msg, and the decryption result is P(msg). Note
that this holds only when mpk is generated honestly and hdl is non-⊥.

Definition 9 (Weak Verifiability). For all security parameters λ ∈ N,
(mpk,msk) ← VFE-HW.SetupHW(1λ), and hdl ← VFE-HW.DecSetupHW,KM(·)

(mpk) where hdl �= ⊥, and all CT ∈ {0, 1}∗, there exists msg ∈ MVFE-HW such
that for all P ∈ PVFE-HW and skP ∈{0, 1}∗, if VFE-HW.VerifyCT(mpk,CT) =
1 and VFE-HW.VerifyK(mpk,P, skP) = 1, then Pr[VFE-HW.DecHW(·)

(mpk, hdl,P, skP,CT) = P(msg)] = 1 − negl(λ) holds.

Next, we define the simulation security of VFE-HW as follows. This security
guarantees that no adversary can distinguish REAL and IDEAL, where REAL rep-
resents the actual environment. Note that msk and the challenge plaintext msg∗

are not explicitly used in IDEAL. Although Semi-adaptive SIM-based functional
encryption scheme have been proposed [5,40] where an adversary declares the
challenge after obtaining mpk but before issuing secret key queries, our definition
does not have such a restriction.
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Definition 10 (Simulation security). For a stateful PPT adversary A, a state-
ful PPT simulator S and the security parameter λ ∈ N, we define the real exper-
iment ExpREAL

VFE-HW(λ) and the ideal experiment ExpIDEAL
VFE-HW(λ) as follows. Here,

let Umsg(·) denote a universal oracle where Umsg(P) = P(msg).

ExpREAL
VFE-HW(λ):

(mpk,msk) ← VFE-HW.SetupHW(1λ); msg∗ ← AVFE-HW.KeyGenHW(msk,·)(mpk)

CT∗ ← VFE-HW.Enc(mpk,msg∗); α ← AVFE-HW.KeyGenHW(msk,·),HW(·),KM(·)(mpk,CT∗)

Output (msg∗, α)

– HW: A can access the instance as follows.
– HW.LOAD: A queries the instance as input params and Q, and the

instance returns hdl by running the HW.Load(params,Q) algorithm.
– HW.RUN: A queries the instance as input hdl and in, and the instance

returns out by running the HW.Run(hdl, in) algorithm.
– VFE-HW.KeyGenHW: A queries this key generation oracle as input msk and P.

The oracle accesses HW.RUN as input hdl = msk and in = P, and the oracle
returns skP as out by running the HW.Run(hdl, in) algorithm.

– HW(·): A can access HW.RUN&REPORT in addition to HW as input hdl and
in, and the oracle returns report by running the HW.Run&Reportskreport

(hdl,
in) algorithm.

– KM(·): A can access HW.RUN&QUOTE as input hdl and in, and the oracle
returns quote by running the HW.Run&Quoteskquote (hdl, in) algorithm.

ExpIDEAL
VFE-HW(λ):

mpk ← S(1λ); msg∗ ← AS(·)
(mpk)

CT∗ ← SUmsg(·)(1λ, 1|msg∗|); α ← ASUmsg(·)(·)(mpk,CT∗)
Output (msg∗, α)

– S(·): S simulates the HW, VFE-HW.KeyGenHW, HW(·) and KM(·) oracles.
– SUmsg(·)(·): S simulates the HW, the VFE-HW.KeyGenHW, the HW(·) and the

KM(·) oracles. Here, if A queries this oracle as input CT∗ and skP, S out-
puts P(msg) using the universal oracle Umsg(·) that inputs P queried in the
VFE-HW.KeyGenHW oracle.

If there exists a stateful simulator S and ExpREALVFE-HW(λ) and ExpIDEAL
VFE-HW(λ)

are computationally indistinguishable, then we say that the VFE-HW scheme is
simulation secure against a stateful PPT adversary.

Remark: Damg̊ard et al. [21] showed a construction of multi-designated verifier
signatures from VFE. As the security of underlying VFE (for achieving verifier-
identity-based signing), they also introduced a trusted setup where key gen-
erations are assumed to be honestly run, and defined ciphertext verifiability.
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Although both their ciphertext verifiability and our weak verifiability capture a
malicious encryptor, as a difference, their definition is for VFE and our verifiabil-
ity definition is for VFE-HW where hdl is also assumed to be honestly generated.
Moreover, they considered IND-based security only whereas we consider SIM-
based security that spreads the class of functionalities as mentioned before.

5 Proposed Scheme

In this section, we describe the proposed VFE-HW scheme. The proposed scheme
is constructed from IND-CCA secure and strictly non-trivial public verifiable
VPKE, IND-CCA secure PKE, EUF-CMA secure SIG and REM-ATT-UNF, and
LOC-ATT-UNF secure HW.

High-Level Description: Essentially, we follow the construction of IRON.
IRON has supported public verifiability of secret keys (since these are signa-
tures), we focus on supporting the public verifiability of ciphertexts. Therefore,
we replace a PKE scheme in IRON with a VPKE scheme.

In ourVFE-HW scheme, the (function) enclave securely executes computations
that require secret values, however, its computational power and memory are con-
strained. Thus, the verification part should be run outside of the enclave, and we
employ the public verifiability of VFE. However, the ciphertext is converted if the
original VPKE.Ver algorithm is employed. Thus, the converted ciphertext CT′ is
decrypted via VPKE.Dec′ in the enclave. Although at least IND-CPA security is
guaranteed if VPKE.Dec is replaced with VPKE.Dec′ [33], the underlying VPKE
scheme is required to be CCA-secure. Thus, we decompose VPKE.Ver toVPKE.Ver
and VPKE.Conv, and run VPKE.Conv inside of the enclave.

We consider the following assumptions in the construction of the VFE-HW.
These assumptions are the same as those of IRON (but the last one is implicitly
assumed).

– Pre-Processing: The TA and a client need to complete the pre-processing
phase before using VFE-HW scheme. In our construction, we consider that a
manufacturer setups and initializes the secure hardware. A public parameter
is generated by this phase independent of the VFE-HW algorithms, and this
parameter is implicitly given to all algorithms.

– Non-Interaction: In VFE-HW, a plaintext is encrypted using a public key
of a VPKE scheme, and thus the decryption of the ciphertext requires the
corresponding decryption key, which differs from a secret key skP. To obtain
the decryption key from the KME, we require a one-time hardware setup
operation. The VFE-HW.DecSetupHW,KM(·) algorithm interacts with the KME
via the KM(·), and the VFE-HW.DecHW(·) algorithm is non-interactive.

– Trusted Setup: VFE-HW.SetupHW and VFE-HW.DecSetupHW,KM(·) are exe-
cuted honestly. In short, mpk, msk and hdl are generated honestly.

The proposed scheme is given as follows. First, we describe the programs
QKME (for the KME), QDE (for a Decryption Enclave DE) and QFE (for a Function
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Enclave FE). QFE is parameterized by a function P, and thus we denote QFE(P).
Let T be an internal state valuable, tagQDE

be a measurement of QDE hardcoded
in the static data of QKME, and tagQFE

(P) be a measurement of QFE(P).
QKME :

– On input (“init”, 1λ):
1. Run pars ← VPKE.PGen(1λ).
2. Run (pkvpke, dkvpke)← VPKE.KeyGen(pars) and (sksign, vksign) ← SIG.KeyGen(1λ).
3. Update T to (dkvpke, sksign, vksign) and output (pars, pkvpke, vksign).

– On input (“provision”, quote, params):
1. Parse quote = (mdhdlDE , tagQDE

, in, out, σ). If tagQDE
is not matched to tag hard-

coded as static data, then output ⊥.
2. Parse in = (“init setup”, vksign) and check if vksign matches with one in T.
3. Parse out = (sid, pkra) and run b ← HW.QuoteVerify(params, quote). If b = 0

output ⊥.
4. Retrieve dkvpke from T and compute ctdk = PKE.Enc(pkra, dkvpke) and σdk =

SIG.Sign(sksign, (sid, ctdk)), and output (sid, ctdk, σdk).
– On input (“sign”, msg): Compute sig ← SIG.Sign(sksign,msg) and output sig.

QDE :

– On input (“init setup”, vksign):
1. Run (pkra, dkra) ← PKE.KeyGen(1λ).
2. Generate a session ID, sid ← {0, 1}λ.
3. Update T to (sid, dkra, vksign) and output (sid, pkra).

– On input (“complete setup”, pkra, sid, ctdk,σdk
):

1. Look up T to obtain the entry (sid, dkra, vksign). If no entry exists for sid, output
⊥.

2. If SIG.Verify(vksign, (sid, ctdk), σdk) = 0, output ⊥. Otherwise, run dkvpke ←
PKE.Dec(dkra, ctdk).

3. Add the tuple (dkvpke, vksign) to T.
– On input (“provision”, report, sig):

1. Check to see that the setup has been completed, i.e. T contains the tuple
(dkvpke, vksign). If not, output ⊥.

2. Check to see that the report has been verified, i.e. T contains the tuple
(1, report). If not, output ⊥.

3. Parse report = (mdhdlP , tagQFE
(P), in, out,mac) and parse out = (sid, pkla).

4. If SIG.Verify(vksign, tagQFE(P)
, sig) = 0, then output ⊥. Otherwise, output

(sid, ctkey = PKE.Enc(pkla, dkvpke)).

QFE(P) :

– On input (“init”, sig):
1. Run (pkla, dkla) ← PKE.KeyGen(1λ).
2. Generate a session ID, sid ← {0, 1}λ.
3. Update T to (sid, dkla) and output (sid, pkla).

– On input (“run”, pars, params,mpk, pkla, reportdk,CT):
1. Parse mpk = (pkvpke, vksign).
2. Check to see that the report has been verified, i.e. T contains the tuple

(1, reportdk). If not, output ⊥.
3. Parse reportdk = (mdhdlDE , tagQDE

, in, out,mac). Parse out = (sid, ctkey).
4. Look up T to obtain the entry (sid, dkla, skP). If no entry exists for sid, output ⊥.
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5. Compute dkvpke ← PKE.Dec(dkla, ctkey).
6. Compute CT′ ← VPKE.Conv(pars, pkvpke,CT).

7. Compute msg ← VPKE.Dec′(pars, pkvpke, dkvpke,CT
′).

8. Evaluate P on msg using skP and record the output out := P(msg). Output out.

Next, we describe the proposed scheme as follows. Here, without loss of gener-
ality, prior to running VFE-HW.Dec, we assume that a ciphertext CT is verified by
VFE-HW.VerifyCT, and a secret key skP is verified by VFE-HW.VerifyK. Then, CT and
skP are input to VFE-HW.Dec only when these are valid, and VFE-HW.Dec does not
check their validity. This assumption is natural because we consider public verifiability
for both CT and skP.

Proposed Scheme:

Pre-Processing phase : The trusted authority platform and decryption node run respec-
tively.
1. Call params ← HW.Setup(1λ), and output params.

VFE-HW.SetupHW(1λ):
1. Call hdlKME ← HW.Load(params,QKME).
2. Call (pars, pkvpke, vksign) ← HW.Run(hdlKME, (“init”, 1λ)).
3. Output mpk = (pars, pkvpke, vksign),msk = hdlKME.

VFE-HW.KeygenHW(msk,P):
1. Parse msk = hdlKME.
2. Compute tagP by using a function P.
3. Call sig ← HW.Run(hdlKME, (“sign”, tagP)).
4. Output skP = sig.

VFE-HW.Enc(mpk,msg):
1. Parse mpk = (pars, pkvpke, vksign).
2. Compute CT ← VPKE.Enc(pars, pkvpke,msg).

VFE-HW.DecSetupHW,KM(·)(mpk):
1. Call hdlDE ← HW.Load(params,QDE).
2. Parse mpk = (pars, pkvpke, vksign).
3. Call quote ← HW.Run&Quoteskquote(hdlDE, (“init setup”, vksign)).
4. Call KM(quote) which internally run (sid, ctdk, σdk) ← HW.Run(hdlKME, (“pro-

vision”, quote, params)).
5. Call HW.Run(hdlDE, (“complete setup”, pkra, sid, ctdk, σdk)).

VFE-HW.VerifyCT(mpk,CT):
1. Parse mpk = (pars, pkvpke, vksign).
2. If VPKE.Ver(pars, pkvpke,CT) = ⊥, then output 0. Otherwise, output 1.

VFE-HW.VerifyK(mpk,P, skP):
1. Parse mpk = (pars, pkvpke, vksign), and skP = sig.
2. If SIG.Verify(vksign, skP,P) = 0, then output 0. Otherwise, output 1.

VFE-HW.DecHW(·)(mpk, hdl,P, skP,CT):
1. Parse mpk =(pars, pkvpke, vksign), hdl = hdlDE, skP = sig.
2. Call hdlFE(P) ← HW.Load(params,QFE(P)).
3. Call report ← HW.Run&Reportskreport(hdlFE(P), (“init”, sig)).
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Fig. 1. Protocol flow. Steps (1) and (2) specify VFE-HW.Setup, step (3) specifies
VFE-HW.DecSetup, steps (4), (5), (6), (7) and (8) specify VFE-HW.KeyGen, step
(9) specifies VFE-HW.Enc, steps (10) and (11) specify VFE-HW.VerifyK and VFE-
HW.VerifyCT, and steps (12), (13), (14), (15) and (16) specify VFE-HW.Dec.

4. If HW.ReportVerifyskreport(hdlDE, report) = 0, then output ⊥. Otherwise, call
reportdk ← HW.Run&Reportskreport(hdlDE, (“provision”, report, sig)).

5. If HW.ReportVerifyskreport(hdlFE(P), reportdk) = 0, then output ⊥. Otherwise, call
out ← HW.Run(hdlP, (“run”, pars, params, mpk, pkla, reportdk,CT)), and output
out.

Obviously, correctness holds if VPKE, PKE, SIG, and HW are correct.
For clarity, we describe the protocol flow of VFE-HW using Fig. 1, where the gray

areas represent the untrusted space of each platform, orange areas represent the trusted
space of each platform, and the procedures inside dashed boxes are run within enclaves.
For example, the TA manages a Trusted Authority Platform TAP, and setups the KME
in the TAP. A client manages a Decryption Node Platform (DNP), and setups a DE
in the DNP. The TA generates a public key pkvpke and a secret key dkvpke, as well as
a signing key sksign and a verification key vksign as step (1) within KME. Here, mpk
generated by the VFE-HW.SetupHW algorithm consists of pars, pkvpke and vksign as step
(2). Furthermore, msk generated by the VFE-HW.SetupHW algorithm is a handle hdlKME

used to confirm the KME. Next, the client preserves dkvpke into the DE via a remote
attestation as step (3). Next, the client gets the secret key skP of the VFE-HW.KeyGenHW

algorithm which KME issues as a signature on a function P via a secure channel as step
(4) to (8). Here, let CT be a ciphertext of a plaintext msg under pk using the VFE-
HW.Enc algorithm as step (9). If an external encryptor generates CT, it is sent to the
client. Note that we omit this procedure in Fig. 1. In the decryption procedure, the
client setups a FE parameterized P in the DNP. Then, the client checks the validity of
skP and CT using the VFE-HW.VerifyK and VFE-HW.VerifyCT algorithms respectively
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as step (10). If skP and CT are valid, the client inputs CT, P and skP into the FE
via hardware invocation as step (11). If the DNP is managed remotely by the client,
then a remote attestation is employed in this case. Next, the FE transfers skP to the
DE via a local attestation as step (12). The validity of skP is confirmed by using the
SIG.Verify algorithm as step (13). If skP is valid, the DE transfers dkvpke to FE via a
local attestation as step (14). The FE decrypts CT as step (15) using the aVPKE.Conv
and VPKE.Dec′ algorithms. Finally, the client obtains P(msg) as step (16).

6 Security Analysis

We provide two proofs to demonstrate that the proposed scheme provides weak verifi-
ability and simulation security.

6.1 Weak Verifiability

In this section, we prove the weak verifiability of VFE-HW. Essencially, we employ the
strictly non-trivial public verifiability of VPKE. To do so, we need to guarantee that
dkvpke used in the VPKE.Dec algorithm is generated correctly by the VPKE.KeyGen
algorithm. We guarantee this using the correctness of HW. Formally, the following
theorem holds.

Theorem 2. VFE-HW is weak verifiable if VPKE is strictly non-trivial public verifi-
able, and HW is correct.

Proof. According to our trusted setup assumption, VFE-HW.SetupHW and
VFE-HW.DecSetupHW,KM(·) algorithms were honestly run which means that
dkvpke was correctly generated, and sent from the KME to a DE. Moreover,
VFE-HW.VerifyCT(mpk,CT) = 1 and VFE-HW.VerifyK(mpk,P, skP) = 1 hold. Now,
we need to guarantee that dkvpke is correctly sent from the DE to a FE in the
VFE-HW.DecHW(·) algorithm. This holds with probability 1 − negl(λ) due to the
correctness of HW. Next, by using this dkvpke, VPKE.Ver(pars, pkvpke,CT) = 1 ⇒
VPKE.Dec(pars, pkvpke, dkvpke,CT) �= ⊥ holds due to the strictly non-trivial public veri-
fiability of VPKE. Thus, decryption result of CT is determined to be unique since the
VPKE.Dec algorithm is deterministic algorithm. Let the decryption result denote msg.
Then, the VFE-HW.Dec algorithm outputs P(msg) from P and msg.

6.2 Simulation Security

Here, we prove the simulation security of the VFE-HW scheme. We replace the PKE
scheme of IRON with a VPKE scheme. In this case, we primarily consider whether the
SIM-based security is preserved after the replacement. In other words, an adversary A
can check the validity of ciphertexts and it may use for distinguishing REAL and IDEAL.
For example, if the challenge ciphertext is changed as a random number (typically
employed to provide key privacy/anonymity in the PKE/IBE context), then the public
verifiability helps A to distinguish REAL and IDEAL, and the proof fails. Fortunately,
the security proof of IRON does not employ the step, and hence we can replace the
PKE scheme with the VPKE scheme. We describe the security proof as follows.

Theorem 3. VFE-HW is simulation secure if VPKE is IND-CCA secure, PKE is IND-
CCA secure, SIG is EUF-CMA secure, and HW is a secure hardware scheme.
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Proof. We construct a simulator S. First, S needs to simulate the Pre-Processing phase
as REAL. S runs HW.Setup(1λ) and records (skreport, skquote). S measures the designated
program QDE, and stores the program tag tagQDE

. Finally, S creates seven empty lists
LK , LR, LD, LKM , LDE , LDE2, and LFE .

We use sequences of games Game0, ... , Game7 to prove that adversary A cannot
computationally distinguish between REAL and IDEAL as follows.

Game0 S runs REAL.

Game1 S runs as Game0 with the following exceptions

– HW.LOAD(params,QDE): If A queries this oracle as input params and QDE, S
responds hdlDE by running the HW.Load(params, QDE) algorithm, and storing it
in LD.

– HW.LOAD(params,QFE(P)): If A queries this oracle as input params and QFE(P),
S responds hdlP by running the HW.Load(params, QFE(P)) algorithm, and storing
it in LK . If tagQFE

(P) /∈ LK , then S stores (0, tagQFE
(P), hdlFE(P)) in LK .

– HW.RUN(hdl, in): If A queries this oracle as input hdl and in, S responds out by
running the HW.Run(hdl, in) algorithm. If vksign, which is queried by A as the
HW.Run(hdlDE, in = (“init setup”, vksign)) algorithm, is not the same as that of
mpk, S removes hdlDE from LD.

– VFE-HW.KeyGenHW(msk,P): If A queries to this oracle as input P, S responds
skP by running the HW.Run(hdl, in) algorithm as follows. Parse msk = hdlKME. S
computes tagQFE(P)

, calls sig ← HW.Run(hdlKME, (“sign”, tagQFE(P)
)), and outputs

skP := sig. If tagQFE(P)
already has an entry in LK , S creates the first entry 1 (we call

“honest-bit” for the first entry in LK); otherwise, S adds the tuple (1, tagQFE(P)
, {})

to LK .
– VFE-HW.Enc(mpk, msg): If A queries this encryption algorithm as input msg, S

responds CT by running the VPKE.Enc(pars, pkvpke,msg) algorithm. If msg is a
challenge plaintext msg∗, S responds CT∗ by running the algorithm, and stores it
in LR.

Game2 S runs as Game1 with the following exceptions.

HW.RUN&REPORT(hdl, in): If A queries this oracle as input hdl = hdlDE

and in = (“provision”, report, sig), then S responds reportdk by running the
HW.Run&Reportskreport(hdlDE, (“provision”, report, sig)) algorithm. If tagQFE(P)

in
report is not contained as a component of an honest-bit tuple in LK , S outputs ⊥.

Here, we consider a case where the HW.RUN&REPORT(hdlDE, (“provision”, report, sig))
algorithm outputs non ⊥ even if tagQFE(P)

is not contained as an honest-bit tuple in
LK . If A can make a query while ensuring this case, we can break the existentially
unforgeability for SIG with non-negligible probability. The following Lemma is the
same as Lemma C.1 of IRON.

Lemma 1. If the signature scheme SIG is EUF-CMA secure, then Game2 is indistin-
guishable from Game1.

Game3.0 S runs as Game2 with the following exceptions.

1. HW.RUN&QUOTE(hdl, in): If A queries this oracle as input hdl = hdlDE and in =
(“init setup”, vksign), S responds quote by running the HW.Run&Quoteskquote(hdlDE,
(“init setup”, vksign)) algorithm, and stores out = (sid, pkra) as a component of
quote in LDE2.
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2. HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlKME and in = (“pro-
vision”, quote, params), S responds (sid, ctdk, σdk) by running the HW.Run(hdlKME,
(“provision”, quote, params)) algorithm. If (sid, pkra) /∈ LDE2, then S outputs ⊥.

Here, we consider a case where the HW.RUN(hdlKME, (“provision”, quote, params)) algo-
rithm outputs non ⊥ even if (sid, pkra) /∈ LDE2. Here, if A can make a query while
ensuring this case, then we can break the remote attestation unforgeability for HW
with non-negligible probability. The following Lemma is the same as Lemma C.4 of
IRON.

Lemma 2. If the secure hardware scheme HW is REM-ATT-UNF secure, then
Game3.0 is indistinguishable from Game2.

Game3.1 S runs as Game3.0 with the following exceptions.

1. HW.RUN&REPORT(hdl, in): If A queries this oracle as input hdl = hdlFE(P) and in
= “init”, then S responds report by running the HW.Run&Reportskreport (hdlFE(P),
“init”) algorithm, and storing out = (sid, pkla) as a component of report in LFE .

2. HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlDE and in = (“provi-
sion”, report, sig), S responds reportdk by running the HW.Run(hdlDE, (“provision”,
report, sig)) algorithm. If (sid, pkla) /∈ LFE , S outputs ⊥.

Here, we consider a case where the HW.RUN&REPORT(hdlDE, (“provision”, report, sig))
algorithm outputs non ⊥ even if (sid, pkla) /∈ LFE . If A can make a query while ensuring
this case, we can break the local attestation unforgeability for HW with non-negligible
probability. The following Lemma is the same as Lemma C.5 of IRON.

Lemma 3. If the secure hardware scheme HW is LOC-ATT-UNF secure, Game3.1 is
indistinguishable from Game3.0.

Game4.0 S runs as Game3.1 with the following exceptions.

HW.RUN(hdl, in):
1. If A queries this oracle as input hdl = hdlKME and in = (“provision”,

quote, params), S responds (sid, ctdk) by running the HW.Run(hdlKME, (“pro-
vision”, quote, params)) algorithm, and storing it in LKM .

2. If A queries this oracle as input hdl = hdlDE and in = (“complete setup”,
sid, ctdk, σdk), S runs the HW.Run(hdlDE, (“complete setup”, sid, ctdk)) algo-
rithm. If (sid, ctdk) /∈ LKM , then S outputs ⊥.

Here, we consider a case that the HW.RUN(hdlDE, (“complete setup”, sid, ctdk,σdk
))

algorithm outputs non ⊥ even if (sid, ctdk) /∈ LKM . If A can make a query while
ensuring this case, we can break the existentially unforgeability for SIG with non-
negligible probability. The following Lemma is the same as Lemma C.2 of IRON.

Lemma 4. If the signature scheme SIG is EUF-CMA secure, Game4.0 is indistinguish-
able from Game3.1.

Game4.1 S runs as Game4.0 with the following exceptions.



234 T. Suzuki et al.

1. HW.RUN&REPORT(hdl, in): If A queries this oracle as input hdl = hdlDE and
in = (“provision”, report, sig), S responds reportdk by running the HW.Run&
Reportskreport(hdlDE, (“provision”, report, sig)) algorithm, and storing out = (sid,
ctkey) as a component of reportdk in LDE .

2. HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlFE(P) and in
= (“run”, params,mpk, pkla, reportdk, CT), S responds P(msg) by running the
HW.Run(hdlFE(P), (“run”, params,mpk, pkla, reportdk,CT)) algorithm. If (sid, ctkey)
/∈ LDE , S outputs ⊥.

Here, we consider a case where the HW.RUN(hdlP, (“run”, params,mpk, pkla,
reportdk,CT)) algorithm outputs non ⊥ even if (sid, ctkey) /∈ LDE . If A can make a
query while ensuring this case, we can break the local attestation unforgeability for
HW with non-negligible probability. The following Lemma is the same as Lemma C.3
of IRON.

Lemma 5. If the secure hardware scheme HW is LOC-ATT-UNF secure, Game4.1 is
indistinguishable from Game4.0.

Game5 S runs as Game4.1 with the following exceptions.

HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlFE(P) and in = (“run”,
params,mpk, pkla, reportdk,CT), S evaluates CT as follows.

– If CT /∈ LR, S retrieves dkvpke from ctkey, and computes msg ← VPKE.
Dec(pars, pkvpke, dkvpke, CT ). Finally, S evaluates P on msg, and outputs
out := P(msg)

– If CT ∈ LR, S uses the U∗
msg(P) oracle, and responds with P(msg∗).

Game6 S runs as Game5 with the following exceptions.

KM(quote): If A queries this oracle as input quote = (mdhdlDE , tagQDE
, in =

(“run”, vksign), out = (sid, pkra), σ), S runs the HW.Run(hdlKME, (“provision”,
quote, params)) algorithm, which internally runs ctdk ← PKE.Enc(pkra, 0

|dkvpke|), and
outputs (sid, ctdk,σdk

).

The following Lemma is the same as Lemma C.6 of IRON.

Lemma 6. If the public key encryption scheme PKE is IND-CCA secure, Game6 is
indistinguishable from Game5.

Game7 S runs as Game6 with the following exceptions.

VFE-HW.Enc(mpk, 0|msg∗|): If A queries this algorithm as input msg, S responds CT
by running VPKE.Enc(pars, pkvpke, 0

|msg|). If msg is a challenge plaintext msg∗, S
responds CT∗ by running the algorithm, and storing it in LR.

Here, no step replaces a valid ciphertext with an invalid ciphertext, e.g., a random
number; therefore, the public verifiability does not affect the security proof.

Lemma 7. If the verifiable public key encryption scheme VPKE is IND-CCA secure,
Game7 is indistinguishable from Game6.
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Proof. Let A be an adversary who distinguishes between Game6 and Game7,
and letC be the challenger of IND-CCA security. We construct an algorithm B
that breaks IND-CCA as follows. First, C runs pars ← VPKE.PGen(1λ), then
(pkvpke, dkvpke) ← VPKE.KeyGen(pars), and gives pars and pkvpke to B. B runs

(sksign, vksign) ← SIG.KeyGen(1λ) and params ← HW.Setup(1λ), and gives params and
mpk = (pars, pkvpke, vksign) to A.

For key generation query P, B derives tagQFE(P)
from P, and calls sig ←

HW.Run(hdlKME, (“sign”, tagQFE(P)
)). Then, B sends skP := sig to A, and stores tagQFE(P)

in LK .
For run query (hdlFE(P), (“run”, params,mpk, pkla, reportdk,CT)) where reportdk is

valid and hdlFE(P) ∈ LK with honest-bit, B forwards CT to C as a decryption query. C
returns msg by running the VPKE.Dec(pars, pkvpke, dkvpke,CT) algorithm to B. If msg =
⊥, B outputs ⊥; otherwise, B runs P on msg, and sends P(msg) to A.

In the challenge phase, A sends (msg∗, 0|msg∗|) to B. B sets msg∗ = M∗
0 and

0|msg∗| = M∗
1 , and sends (M∗

0 ,M
∗
1 ) to C. C computes challenge ciphertext CT∗ =

VPKE.Enc(pars, pkvpke,M
∗
μ) where μ ∈ {0, 1}, and sends CT∗ to B. B sends CT∗ to

A, and stores CT∗ in LR.
For key generation query P , B derives tagQFE(P)

from P, and calls sig ←
HW.Run(hdlKME, (“sign”, tagQFE(P)

)). B sends skP := sig to A, and stores tagQFE(P)

in LK .
For run query (hdlFE(P), (“run”, params,mpk, pkla, reportdk,CT)) where reportdk is

valid and hdlP ∈ LK with honest-bit:

– CT ∈ LR: B uses the universal oracle U∗
msg(P), and sends P(msg∗) to A.

– CT /∈ LR: B forwards CT to C as a decryption query. C returns msg by running
the VPKE.Dec(pars, pkvpke, dkvpke,CT) algorithm to B. If msg = ⊥, B outputs ⊥;
otherwise, B runs P on msg, and sends P(msg) to A.

Finally, A outputs μ′ ∈ {0, 1}. B outputs μ′, and breaks IND-CCA security.

7 Implementation

In this section, we give an implementation result when we employ a cryptographic hash
function H as a function P, i.e., the decryption algorithm outputs H(msg). As mentioned
before, theoretically the function is not realized in the IND-based VFE scheme [10] due
to the collision-resistance of H, and practically the function seems attractive when we
compute a hashed value for a sensitive data such as a password. This system can be
achieved by IRON, however no verifiability is guaranteed. On the other hand, in our
scheme the server can verify the ciphertext, and can delegate the verification to another
server as an option.

We measured the average times and standard deviations of the VFE-HW.Enc, VFE-
HW.VerifyCT, VFE-HW.VerifyK and VFE-HW.Dec algorithms because we estimate the
runtime of the algorithms related to msg for the proposed scheme. Here, except for the
VFE-HW.Dec algorithm, all algorithms were run outside enclaves. In the VFE-HW.Dec
algorithm, the FE runs the VPKE.Conv and VPKE.Dec′ algorithms, and evaluates H on
msg. We employ the VPKE scheme [33], ECDSA as SIG, and SHA-256 as H.

The VPKE.Ver algorithm checks whether (part of) the ciphertext is a DDH tuple,
we employed symmetric pairings even though asymmetric pairings are desirable for effi-
cient implementation [25]. We used the PBC library [1], which supports the symmetric
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pairings. We generated parameters for a Type-A curve with 128-bit security, defined
over the field Fp with a 256-bit prime p, where the order is a 1536-bit prime, using
a function called pbc param init a gen. For running the PBC library in enclaves, we
employed the PBC for SGX given by Contiu et al. [20]. In our implementation, we set
the input-output of enclaves is as an array of unsigned char values regarding a valuable
of PBC. We transformed the binary data into an element of elliptic curves using the
element from bytes function supported by PBC within enclaves.

Our implementation environment includes the CPU: Intel(R) Core(TM) i3-7100U
(2.40 GHz), and the libraries openssl 1.0.2g, Intel SGX 1.5 Linux Driver, Intel SGX
SDK, Intel SGX PSW, GMP, PBC, and PBC for SGX [20].

Table 2. Implementation results of VFE-HW scheme

Running time (sec) Average Standard deviation

VFE-HW.Enc 0.12436 0.00250

VFE-HW.VerifyCT 0.12828 0.00259

VFE-HW.VerifyK 0.00034 0.00005

VFE-HW.Dec 0.06499 0.00163

Table 3. Implementation results of VFE-HW scheme (Invalid ciphertext/secret key)

Running time (sec) Average Standard deviation

VFE-HW.VerifyCT (DDH) 0.11828 0.00228

VFE-HW.VerifyCT (OTS) 0.12329 0.00252

VFE-HW.VerifyK (Signature) 0.00034 0.00006

We give our implementation result in Table 2. Compared to the running time of the
VFE-HW.Dec algorithm, which was run inside the enclave, those of the VFE-HW.Enc
and VFE-HW.VerifyCT algorithms were relatively slow. The reason seems to employ
symmetric bilinear groups in our implementation, i.e., the size of the group G is
much larger than that of the case of asymmetric bilinear groups. Thus, proposing
a VPKE scheme secure in asymmetric bilinear groups (or without pairings) and re-
implementing our VFE-HW scheme seems an interesting future work. Since we focus
on verifiability of ciphertexts and secret keys, we also evaluate when VFE-HW.VerifyCT
and VFE-HW.VerifyK algorithms output 0 in Table 3. In our implementation, the VFE-
HW.VerifyCT algorithm outputs 0 either the DDH test or a verification of One-Time
Signature (OTS) [39] fails. The VFE-HW.VerifyK algorithm outputs 0 when a verifi-
cation of signature fails. Even if the verification process fails when invalid ciphertexts
or secret keys are used, the running times are similar to those of valid ciphertexts or
secret keys.

8 Conclusion

In this paper, we proposed a SIM-based VFE that supports any functionality. To sup-
port any functionality, we employed a hardware-based construction. In addition, we
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gave a SIM-based VFE construction that employs VPKE, PKE, SIG, and HW. Finally,
we give our implementation of proposed VFE-HW scheme for H. Recently, Bhatotia
et al. [12] considered a composable security when Trusted Execution Environments
(TEEs) including Intel SGX are employed. Considering such a composability in the
VFE-HW context is left as a future work. Although we have claimed that the trusted
assumption is reasonable in the HW setting, we leave how to remove this assumption
without losing the SIM-based security as a future work. In addition, we leave how to
construct SIM-based secure VFE without using secure hardware as a future work.

Acknowledgement. This work was supported by the JSPS KAKENHI Grant Num-
bers JP20K11811, JP20J22324, and JP21K11897. We thank Dr. Rafael Pires for helpful
discussion.

A The Nieto et al. VPKE Scheme

In this appendix, we introduce the Nieto et al. VPKE scheme [[33], Fig. 4] as follows.
For the underlying One-Time Signature (OTS) scheme, we employ the discrete-log-
based Wee OTS scheme [39], and for the DDH test, we employ symmetric pairings
whether e(g, π) is the same as e(c1, utv) or not.

VPKE.PGen(1λ): Choose (p, e, g, G, GT ) where G and GT are groups of λ-bit prime
order p, g ∈ G is a generator, and e : G × G → GT is a bilinear map. Let
H : G → {0, 1}poly(λ), HOTS : {0, 1}∗ → {0, 1}poly(λ), and TCR : G×{0, 1} → Zp be
collision or target collision resistant hash functions where poly(λ) is a polynomial
in λ. Output pars = (p, e, g, G, GT , H, HOTS , TCR).

VPKE.KeyGen(pars): Parse pars = (p, e, g, G, GT , H, HOTS , TCR). Choose x1
$←− Z

∗
p

and v
$←− G and compute u = gx1 . Output pk = (u, v) and dk = x1.

VPKE.Enc(pars, pk, msg): Parse pars = (p, e, g, G, GT , H, HOTS , TCR) and pk =

(u, v). Choose s0, s1, x2, r, n
$←− Z

∗
p and compute u0 = gs0 , u1 = gs1 , c′ = gx2 ,

c1 = gr, t ← TCR(c1, (u0, u1, c
′)), K ← H(ur) and π ← (utv)r. Set c2 ← msg⊕K

and c = (c1, c2, π). Compute w ← x2 + ns0 + s1(HOTS(c) + n). Output CT ←
(c, (n, w), (u0, u1, c

′)).
VPKE.Ver(pars, pk, CT): Parse pars = (p, e, g, G, GT , H, HOTS , TCR), pk = (u, v),

CT = (c, (n, w), (u0, u1, c
′)) and c = (c1, c2, π). Compute t ← TCR(c1, (u0, u1, c

′))
and π ← (utv)r. If e(g, π) �= e(c1, u

tv) or gw �= c′un
0 · u

HOTS(c)+n
1 , then output 0.

Otherwise, output 1.
VPKE.Conv: Parse pars = (p, e, g, G, GT , H, HOTS , TCR), pk = (u, v), CT =

(c, (n, w), (u0, u1, c
′)) and c = (c1, c2, π). Output CT′ = (c1, c2).

VPKE.Dec′(pars, pk, dk, CT ′): Parse pars = (p, e, g, G, GT , H, HOTS , TCR), pk =
(u, v), dk = x1 and CT′ = (c1, c2). Compute K ← H(cx1

1 ) and set msg ← c2 ⊕ K.
Output msg.
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Abstract. Inner product encryption (IPE) generates a secret key for a
predicate vector and encrypts a message under an attribute vector such
that recovery of the message from a ciphertext requires the vectors to
satisfy a linear relation. In the case of zero IPE (ZIPE), the relation holds
if the inner product between the predicate and attribute vectors is zero.
Over the years, several ZIPE schemes have been proposed with numer-
ous applications. However, most of the schemes compute inner products
for bounded length vectors in the sense that a pre-specified bound on
the length of predicate/attribute vectors must be fixed while producing
the system parameters. On the other hand, an unbounded ZIPE (UZIPE)
provides freedom to select the length of vectors at the time of generating
keys or producing ciphertexts. The feature of unboundedness expands the
applicability of ZIPE in the scenario where the length of vectors varies
or is not known in advance. Achieving UZIPE with short secret keys and
ciphertexts is the main goal of this paper. More specifically, we present
an efficient UZIPE scheme based on symmetric external Diffie-Hellman
assumption (SXDH) in the standard model. Our UZIPE enjoys short
secret keys and ciphertexts which reduce storage and communication
costs. Moreover, we prove security in the adaptively fully attribute-hiding
model meaning that the ciphertexts of our UZIPE hide the payload along
with the attribute vector. On the technical side, our work takes inspira-
tion from the unbounded inner product functional encryption (UIPFE) of
Tomida and Takashima (ASIACRYPT’18) and modifies their framework
to UZIPE with efficiency improvements regarding the sizes of ciphertexts
and keys. As UIPFE does not generically imply UZIPE, our scheme goes
through several technical modifications in the construction and security
analysis over the UIPFE.

Keywords: Inner product encryption · Attribute-hiding · Bilinear
maps

1 Introduction

Functional encryption (FE) [3,5,8] is an advanced cryptographic paradigm that
is a generalization of plain public-key encryption (PKE). The beauty of FE lies in
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the fact that it unifies almost all modern day cryptographic encryption mecha-
nisms such as identity-based encryption (IBE) [2,6,14], attribute-based encryption
(ABE) [1,5,10,13] and predicate encryption (PE) [4,7]. FE produces sophisticated
secret-keys skf for arbitrary functions f which can be used to decrypt a cipher-
text ctm corresponding to a message m and recover f(m) in contrast to the orig-
inal message m as in normal PKE. Sahai and Waters [14] formally introduced the
notion of ABE which is a specific class of FE that generates secret-keys only for
boolean functions. Subsequently, a variety of ABEs has emerged over the years
with practical applications. In ABE, a secret-key is associated with a predicate
y and a ciphertext corresponds to an attribute x and a message M such that
decryption returns M whenever a relation between x and y holds.

Katz, Sahai and Waters [4] initiated the study of inner product encryption
(IPE) which is a specific class of ABE. In IPE, a ciphertext ctx encrypts a message
M with respect to an attribute vector x and decrypting the ciphertext requires
a legitimate secret key sky corresponding to a predicate vector y such that a
linear relation between x and y holds. In this paper, we consider zero inner
product encryption (ZIPE) which enables a successful decryption if the inner
product 〈x ,y〉 is zero. From the security perspective of ZIPE, payload-hiding
is a basic requirement where the ciphertext hides only the message M . Katz,
Sahai and Waters [4] first introduced a more robust security notion namely
attribute-hiding (AH) where the ciphertext apart from hiding M does not reveal
any information about the attribute x. In weakly attribute-hiding (WAH), the
adversary is restricted to query secret keys sky for vectors y such that 〈x,y〉 �= 0.
Therefore, WAH does not allow the adversary to get a functional key that can
decrypt the challenge ciphertext. On the other hand, fully attribute-hiding (FAH)
provides security against more powerful adversaries which can ask polynomially
many secret keys sky that decrypt the challenge ciphertext.

Unbounded ZIPE. Most of the ZIPEs in the literature suffer from the fact
that the size of system parameters depends on the length of attribute/predicate
vectors. This is particularly unsuitable in the scenario where the length n of
vectors is not known in advance or varies with the application scenarios. A
trivial solution for overcoming this problem is to fix a large value of n during
the setup and generate the parameters accordingly. But this is not a wise choice
as the size of parameters grows at least linearly with n and eventually, the
ciphertext size also depends on n although the length of the underlying attribute
vector is much smaller than n. Another solution is to construct ZIPE schemes
where system parameters do not depend on n and we can choose n according to
our requirements during generating keys or encrypting messages. In this paper,
our goal is to construct such an unbounded ZIPE (UZIPE) scheme with short
ciphertexts and secret keys. It is well known that ZIPE schemes can efficiently
achieve FE schemes that capture many practical predicates such as polynomial
evaluations, disjunction/conjunctions of equality tests, membership tests [3,4].
All these primitives become more applicable and storage efficient when we replace
ZIPE with UZIPE. Okamoto and Takashima [10] first proposed a construction
of UZIPE in standard model based on decisional linear (DLIN) assumption with
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FAH security. However, the ciphertexts and secret keys of the UZIPE [10] are not
short and one has to bear a significant efficiency loss when using their UZIPE in
the above-mentioned applications.

Our Contribution. In this paper, we propose a construction of the UZIPE
scheme with short ciphertexts and secret keys based on the SXDH assumption.
Our scheme achieves adaptively FAH security in the standard model. Note that
in the adaptive security model, an adversary is allowed to query secret keys
at any point of the security experiment. More specifically, our UZIPE acquires
more than 50% efficiency gain over the only known UZIPE of [10]. We construct
UZIPE in a most natural permissive setting described as follows. Let us consider
two vectors x = (xi)i∈Ix and y = (yi)i∈Iy where Ix , Iy are two index sets
corresponding to x , y respectively. In permissive setting, the generalized inner
product of y over x is defined by

∑
i∈Iy

xiyi if Iy ⊆ Ix .
We use bracket notation to express any group element, i.e., for κ ∈ {1, 2, T},

[[x]]κ represents gx
κ where gκ is a generator of group Gκ. Here G1 and G2 are the

source groups and GT is the target group for a bilinear map e : G1 × G2 → GT .
The starting point of our construction is the recently proposed unbounded IPFE
scheme by Tomida and Takashima [15]. It is known that IPFE does not directly
imply ZIPE in the public-key setting. Therefore, we carefully modify their scheme
[15] as well as the security analysis to achieve a UZIPE with short ciphertexts
and keys in FAH security model. In particular, we utilize the dual pairing vector
space framework [12] to make the system parameters independent of the vec-
tor length. During setup, we consider two dual orthonormal bases B and B∗

from Z
6×6
p where p is a prime number. Our idea is to perform component wise

encryptions of the attribute vector x and bind the components with a common
randomness z in such a way that a successful decryption using a secret key cor-
responding to a predicate vector y requires 〈x,y〉 to be zero. To encrypt an
attribute vector x = (xi)i∈Ix ∈ Z

|Ix | along with a message M , encryption algo-
rithm computes [[ci]]1 = [[(πi(1, i), xi, z, 0, 0)B]]1 with uniformly chosen random
elements πi, z from Zp for all i ∈ Ix and c = M · [[z]]T . For a predicate vector
y = (yi)i∈Iy , the trusted authority generates [[k i]]2 = [[(ρi(−i, 1), yi, ri, 0, 0)B∗]]2
where ρi and ri are random elements of Zp such that

∑
i∈Iy

ri = 1. If 〈x,y〉 = 0
then the recipient is able to recover [[z]]T by performing pairing operations with
[[ci]]1 and [[k i]]2. However, for security analysis, we need to introduce additional
randomness in the original scheme. For more details, we refer to Sect. 3 (scheme)
and Sect. 3.1 (security analysis). While comparing with the UZIPE of [10], our
UZIPE is more efficient in key size and ciphertext length as we demonstrate in
Table 1. For example, the ciphertext of [10] requires 15n + 6 group elements
whereas our ciphertext consists of 6n + 1 group elements. The secret key sky
of our UZIPE contains 6n′ group elements whereas [10] has 15n′ + 5 group ele-
ments. In terms of computational cost, our scheme is more efficient than [10].
Our UZIPE scheme requires only 6n numbers of pairing operations whereas [10]
needs 15n + 1 numbers of pairing operations during decryption.

Related Work. Katz, Sahai and Waters [4] first built an attribute-hiding ZIPE
scheme secure against selective adversaries in the standard model based on
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Table 1. Comparison with existing attribute-hiding ZIPE.

Scheme |mpk| |msk| |sk| |ct| Assump. Vector length Security

[4] O(n)|G| O(n2) |G| (2n + 1)|G| (2n + 1)|G| + |GT | GSD Bounded Sel. FAH

[5] O(n2)|G| O(n2) |Zp| (2n + 1)|G| (2n + 3)|G| + |GT | eDDH Bounded Adp. WAH

[8] O(n2)|G| O(n2) |G| (3n + 2)|G| (3n + 2)|G| + |GT | DLIN Bounded Adp. WAH

[9] O(n2)|G| O(n2) |Zp| (4n + 2)|G| (4n + 2)|G| + |GT | DLIN Bounded Adp. FAH

O(n)|G| O(n)|G| 11|G| (5n + 1)|G| + |GT | DLIN Bounded Adp. FAH

[10] 105|G1| 105|Zp| (15n′ + 5)|G| (15n + 5)|G1| + |GT | DLIN Unbounded Adp. FAH

Our work 24|G1| 24|Zp| 6n′|G2| 6n|G1| + |GT | SXDH Unbounded Adp. FAH

n, n′: length of attribute vectors, predicate vectors respectively and for existing bounded ZIPE scheme

n = n′; |mpk|, |msk|, |sk|, |ct|: size of master public key, size of master secret key, size of secret key, size

of ciphertext respectively; Sel. FAH, Adp. WAH, Adp. FAH: selective fully attribute-hiding, adaptive

weak attribute-hiding, adaptive fully attribute-hiding respectively; GSD, eDDH, DLIN, SXDH: general

subgroup decisional problem, extended decisional Diffie-Hellman problem, decisional linear assumption

and symmetric external Diffie-Hellman respectively; |Gi|: size of an element of Gi for i ∈ {1, 2, T} and

|G| denotes size of an element of G.

general subgroup decisional assumption. A selective adversary is weaker than
an adaptive one in the sense that a selective adversary has to commit to the
challenge messages before seeing the public parameters. Lewko et al. [5] pro-
posed the first adaptively secure ZIPE with WAH security based on extended
decisional Diffie-Hellman (eDDH) assumption. Okamoto et al. [9] improved this
security notion to achieve the first adaptive FAH security for ZIPE based on the
DLIN assumption. However, all these constructions of [4,5,8,9,11] can handle
only bounded length of vectors until Okamoto and Takashima [10] gave a con-
struction of UZIPE with adaptively FAH security based on the decisional linear
(DLIN) assumption in the standard model. Our work describes a more efficient
UZIPE which significantly improves storage and communication cost.

2 Preliminaries

Notations: Let λ be the security parameter, 1λ be its unary encoding and
poly(λ) be the set of all polynomial functions. For a prime p, let Zp denotes the

field Z/pZ. For a set S, s
U←− S indicates that s is uniformly chosen from S.

If n is a natural number, then [n] defines the set {1, 2, . . . , n}. We use a bold
upper-case letter e.g., A to denote a matrix, and a bold lower-case version of
the same e.g., a i letter with subscript i to represent the i-th row of this matrix.
Let gκ be a generator of a cyclic group Gκ. For a matrix A = (aij) ∈ GLn(Fp),
we define [[A]]κ as

[[A]]κ =

⎡

⎢
⎢
⎢
⎣

ga11
κ ga12

κ · · · ga1n
κ

ga21
κ ga22

κ · · · ga2n
κ

... · · · · · · ...
gan1

κ gan2
κ · · · gann

κ

⎤

⎥
⎥
⎥
⎦

If a = (a1, a2, . . . , an) is an n-tuple vector then [[a ]]κ = (ga1
κ , ga2

κ , . . . , gan
κ ). For a

field Fp, set GLn(Fp) stands for all n×n invertible matrices whose elements are in
Fp. Let Im denotes m×m an identity matrix. For a matrix B, let BT signifies the
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transpose of the matrix B and B∗ = (B−1)T is orthonormal dual corresponding
the matrix B. For vectors x = (x1, x2, . . . , xn) ∈ Z

n and y = (yi)i∈S ∈ Z
|S|,

the inner product of x and y is defined as 〈x ,y〉 =
∑

i∈S xiyi if S ⊆ [n].
Let V be a vector space and bi ∈ V, i ∈ [n]. Then span{b1, b2 . . . , bn} ⊆ V

denotes the subspace generated by b1, b2, . . . , bn. For bases B = (b1, b2 . . . , bN ),
B∗ = (b∗

1, b2 . . . , b∗
N ) then (x1, x2, . . . , xN )B is defined as

∑N
i=1 xibi and

(y1, y2, . . . , yN )B∗ is defined as
∑N

i=1 yib
∗
i . A function negl : N → R is said

to be a negligible function if negl(λ) = λ−ω(1). An algorithm A is said to be
probabilistic polynomial time (PPT) algorithm if it is modelled as a probabilis-
tic Turing machine that runs in time poly(λ).

2.1 Basic Notions

We discuss the definitions of bilinear group and dual pairing vector space in full
version due to page limitation.

Definition 1 (Symmetric external Diffie–Hellman (SXDH) assumption) [15]:
For κ ∈ {1, 2} we define the distribution (D, [tβ ]κ) on a bilinear group BG =
(p,G1, G2, GT , g1, g2, e) ← GBG.Gen(1λ) as

D = (BG, [[a]]κ = ga
κ, [[u]]κ = gu

κ) for a, u
U←− Zp

[[tβ ]]κ = [[au + βf ]]κ = gau+βf
κ for β ∈ {0, 1} and f

U←− Zp.

We say that the SXDH assumption holds if for any PPT adversary A, κ ∈ {1, 2},
AdvSXDH

A (λ) =
∣
∣
∣Pr[A(D, [[t0]]κ) → 1] − Pr[A(D, [[t1]]κ) → 1]

∣
∣
∣ ≤ negl(λ)

Definition 2 (Unbounded zero inner product encryption (UZIPE)): Unbounded
zero inner product encryption UZIPE = (Setup,KeyGen,Enc,Dec) consists of four
PPT algorithms satisfying the following requirements:

• Setup(1λ) → (msk,mpk): A trusted authority takes a security parameter λ as
input and generates a master public key mpk and a master security key msk.
The master public key mpk is made public while the master secret key msk is
kept secret to the trusted authority.

• KeyGen(mpk,msk,y, Iy) → sky: On the input master public key mpk, master
secret key msk, a vector y = (yi)i∈Iy ∈ Z

|Iy|, Iy ⊆ [s], s = s(λ) being a poly-
nomial, the trusted authority generates secret key sky corresponding to the
vector y. Here Iy is the index set of y.

• Enc(mpk,x,M) → ctx: The algorithm is run by an encryptor on input a mes-
sage M , a master public key mpk and a vector x = (xi)i∈Ix ∈ Z

|Ix|, Ix ⊆ [m]
where m = m(λ) is a polynomial. It outputs a ciphertext ctx. Here Ix is the
index set of x.
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• Dec(mpk, sky, ctx) → α or ⊥: The decryptor uses his secret key sky to decrypt
the ciphertext ctx and outputs a decrypted value α ∈ Z or a special symbol ⊥
indicating failure.

Correctness: An UZIPE = (Setup,KeyGen,Enc,Dec) scheme is said to be cor-
rect if for all (msk,mpk) ← UZIPE.Setup(1λ), all vectors y ∈ Z

|Iy|, all decryption
keys sky ← UZIPE.KeyGen(mpk,msk,y, Iy) all messages M , all vectors x ∈ Z

|Ix|,
all the ciphertexts ctx ← UZIPE.Enc(mpk, x,M) with Iy ⊆ Ix it holds that
M = UZIPE.Dec(mpk, sky, ctx) with overwhelming probability if 〈x,y〉 = 0.

Definition 3. (Adaptively fully attribute-hiding security against chosen plain-
text attack) [10]: The model for adaptively fully attribute-hiding (FAH) security
of UZIPE = (Setup,KeyGen,Enc,Dec) against adversary A under chosen plain-
text attack is described below as a game played between a challenger and A.

Setup: The challenger generates (mpk,msk) ← UZIPE.Setup(1λ) and sends the
master public key mpk to the adversary A.

Key Query Phase I: The adversary A may adaptively make a polynomial
number of key queries for vectors y = (yi)i∈Iy to the challenger. The challenger
in turn computes the corresponding key sky ← UZIPE.KeyGen(mpk,msk,y, Iy)
and returns it to A.

Challenge Query: The adversary A submits challenge messages M (0),M (1),
challenge vectors x(0) = (x(0)

i )i∈I
x(0)

,x(1) = (x(1))i∈I
x(1)

with the same index set
Ix(0) = Ix(1) and subject to the following restrictions:

– The j-th key query associated to the vector y(j) = (y(j)
i )i∈I

y(j) in the key query

phase must satisfy 〈y(j),x(0)〉 �= 0 and 〈y(j),x(1)〉 �= 0 for all j.
– If the challenge messages are equal i.e., M (0) = M (1), then any j-th key

query associated to the vector y(j) = (y(j)
i )i∈I

y(j) must satisfy 〈y(j),x(0)〉 =

〈y(j),x(1)〉 = 0 for all j.

The challenger chooses uniformly a bit b
U←− {0, 1} and sends the ciphertext

ctx(b) ← UZIPE.Enc (mpk,x(b),M (b)) to A.

Key Query Phase II: Key query phase I is repeated with the same aforemen-
tioned restrictions for the key query vector y, challenge messages M (0),M (1) and
challenge vectors (x(0),x(1)).

Guess: The adversary A outputs a bit b′ and wins if b = b′.
The variable ι is defined as ι = 0 if M (0) �= M (1) for challenge messages M (0)

and M (1) and ι = 1 otherwise. The advantage of A in this game is defined as

AdvUZIPEA,FAH(λ) =
∣
∣
∣
∣Pr[b = b′] − 1

2

∣
∣
∣
∣

where λ is the security parameter. We say that an UZIPE scheme is adaptively
fully attribute-hiding against chosen plaintext attack if all probabilistic polyno-
mial time adversaries A have at most negligible advantage in the above game.
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3 Our UZIPE

Our UZIPE = (Setup, KeyGen, Enc, Dec) scheme describe below.

• Setup(1λ) → (msk,mpk): A trusted authority takes a security parameter λ as
input and executes the algorithm as follows:

– Generates a bilinear group BG = (p,G1, G2, GT , g1, g2, e) ← GBG.Gen(1λ)
where G1, G2 and GT are the multiplicative groups such that |G1| =
|G2| = |GT | = p (prime), g1, g2 are the generators of the groups G1 and
G2 respectively, e : G1 × G2 → GT is a bilinear map and gT = e(g1, g2).

– Generates paramsV = (p, V, V ∗, GT , A1, A2, E) ← GDPVS.Gen(6, BG) where
A1 = (ge1

1 , ge2
1 , . . . , ge6

1 ) and A2 = (ge1
2 , ge2

2 , . . . , ge6
2 ) are the canonical

bases of the vector spaces V = G6
1, V ∗ = G6

2 respectively with e i =

(
i−1

︷ ︸︸ ︷
0, . . . , 0, 1,

6−i
︷ ︸︸ ︷
0, . . . , 0) and the mapping E : V × V ∗ → GT is an extension

of the bilinear pairing. Sets pp = (p, g1, g2, gT , V, V ∗, E).
– Chooses uniformly a matrix B U←− GL6(Zp) and computes the master

public key mpk and master secret key msk as

mpk =
(
pp, [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1

)
, msk = (b∗

1, b
∗
2, b

∗
3, b

∗
4).

where bi is the i-th row of B, b∗
i is i-th row of B∗ = (B−1)T and [[bi]]1

represents all components of bi raise the exponent power of g1 i.e., if
bi = (bi,1, bi,2, . . . , bi,6) then [[bi]]1 = (gbi,1

1 , g
bi,2
1 , . . . , g

bi,6
1 ).

– Publishes the master public key mpk = (pp, [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1) and
keeps the master secret key msk secret to itself.

• KeyGen(mpk,msk,y , Iy ) → sky : The trusted authority takes as input
the master secret key msk = (b∗

1, b
∗
2, b

∗
3, b

∗
4), master public key mpk =

(pp, [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1) with pp = (p, g1, g2, gT , V, V ∗, E) and input
vector y = (yi)i∈Iy ∈ Z

|Iy | with a non-empty index set Iy ⊆ [s] where s = s(λ)
is any polynomial. This algorithm performs as follows:

– Selects ω
U←− Zp, chooses uniformly ρi, ri

U←− Zp with
∑

i∈Iy
ri = 1 for all

i ∈ Iy and defines

ki = (ρi(−i, 1), ωyi, ri, 0, 0)B∗ ∈ Z
6
p

where B∗ ∈ GL6(Zp) has b∗
i as its i-th row.

– Outputs secret key corresponding to the vector y as sky = (y , Iy ,
([[ki]]2)i∈Iy ).

• Enc(mpk,x ,M) → ctx : The algorithm is run by an encryptor with input
the master public key mpk = (pp, [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1) with pp =
(p, g1, g2, gT , V, V ∗, E) and a vector x = (xi)i∈Ix ∈ Z

|Ix | with a non-empty
index set Ix ⊆ [m] where m = m(λ) is any polynomial and a message
M ∈ GT . It executes the following steps:
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– Chooses δ, z
U←− Zp, πi

U←− Zp for all i ∈ Ix and computes

[[ci]]1 = [[(πi(1, i), δxi, z, 0, 0)B]]1

where B ∈ GL6(Zp) has bi as its i-th row. Observe that [[b1]]1, [[b2]]1,
[[b3]]1, [[b4]]1 are sufficient to compute [[ci]]1 as [[(πi(1, i), δxi, z, 0, 0)B]]1 =
[[πi · b1]]1 + [[iπi · b2]]1 + [[δxi · b3]]1 + [[z · b4]]1 and [[μ · bi]]1 =(
(gbi,1

1 )μ, (gbi,2,

1 )μ, . . . , (gbi,6
1 )μ

)
using [[bi]]1 for i = 1, 2, 3, 4.

– Computes c = (gT )z · M .
– Outputs the ciphertext as ctx = (x , ([[ci]]1)i∈Ix , c = (gT )z · M).

• Dec(mpk, sky , ctx ) → α or ⊥: The decryptor takes as input the master public
key mpk, a ciphertext ctx for the associated vector x with a non-empty index
set Ix ⊆ [m] over Z and a secret key sky corresponding to the vector y with
index set Iy ⊆ [s]. If 〈x ,y〉 = 0 with Iy ⊆ Ix then decryption proceeds by

returning α = c/h where h =
∏

i∈Iy
E

(
[[ci]]1, [[ki]]2

)
. Otherwise, the decryptor

returns ⊥.

Correctness: For our above UZIPE = (Setup,KeyGen,Enc,Dec) scheme, let the
master public key, the master secret key pair be (mpk,msk) ← UZIPE.Setup(1λ),
the ciphertext be ctx = (x , ([[ci]]1)i∈Ix , c = (gT )z · M) ← UZIPE.Enc(mpk,x ,M)
for a vector x = (xi)i∈[Ix ] ∈ Z

|Ix | encrypting the message M and the secret key
be sky = (y , Iy , ([[ki]]2)i∈Iy ) ← UZIPE.KeyGen(mpk, msk,y , Iy ) corresponding to
a vector y = (yi)i∈Iy ∈ Z

|Iy |. Then decryption succeeds if Iy ⊆ Ix , 〈x ,y〉 = 0 as

h =
∏

i∈Iy

E
(
[[ci]]1, [[ki]]2

)
= e(g1, g2)

ωδ
∑

i∈Iy
xiyi+zri = e(g1, g2)ωδ〈x ,y〉+z = (gT )z

Then compute c/h = (gT )z · M/(gT )z = M.

3.1 Security

Theorem 1. Assuming the hardness of the SXDH problem, our proposed
unbounded zero inner product encryption scheme UZIPE = (Setup,KeyGen,Enc,
Dec) is adaptively fully attribute-hiding (FAH) under chosen plaintext attack as
per the security model described in Definition 3. More precisely, if there exists a
PPT adversary A that breaks the adaptively FAH security of our proposed UZIPE
then we can construct a probabilistic machine B against the SXDH problem such
that for any security parameter λ, the advantage

AdvUZIPEA,FAH(λ) ≤ (5ν + 3) · AdvSXDH
B (λ) + (2ν + 3) · 1

p
+ 2−Ω(λ)

where ν is the maximum number of secret key queries.
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Proof. Suppose A be a PPT adversary against the adaptively FAH security of our
UZIPE scheme. We construct an algorithm B for breaking the SXDH assumption
that uses A as subroutine. The proof begins with the real Game 0 and ends with
the game where the adversary has advantage zero. Let Ti be the event that A
wins in Game i.

Game 0: In this game, B plays the role of a challenger for the adaptively FAH
security game defined in Definition 3.

– Setup: In the first stage, B generates a master public key, master secret key
pair where mpk = (pp = (p, g1, g2, gT , V, V ∗, E), [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1),
msk = (b∗

1, b
∗
2, b

∗
3, b

∗
4) and sends mpk to A.

– Key query phase I: The adversary A makes a polynomial number of key
queries for vectors y = (yi)i∈Iy . The challenger B in turn computes the cor-
responding secret key sky = (y , Iy , ([[ki]]2)i∈Iy ) where

ki = (ρi(−i, 1), ωyi, ri, 0, 0)B∗ ∀i ∈ Iy

with ρi, ω, ri
U←− Zp and

∑
i∈Iy

ri = 1. It returns sky to A.
– Challenge query: The adversary A submits challenge messages M (0),M (1)

and challenge vectors x (0) = (x(0)
i )i∈I

x(0)
, x (1) = (x(1)

i )i∈I
x(1)

with Ix (0) =
Ix (1) = Ix (say) to B with the following restrictions:

• The j-th key query associated to the vector y (j) = (y(j)
i )i∈I

y(j) in the key

query phase must satisfy 〈y (j),x (0)〉 �= 0 and 〈y (j),x (1)〉 �= 0 ∀j.
• If M (0) = M (1) then the j-th key query associated with the vector y(j)

must satisfy 〈y(j),x(0)〉 = 〈y(j),x(1)〉 = 0.
Then B chooses a random bit b

U←− {0, 1} and computes the challenge cipher-
text ctx(b) =

(
x (b), ([[ci]]1)i∈Ix , c

) ← UZIPE.Enc(mpk,x (b),M (b)) where

[[ci]]1 = [[(πi(1, i), δx(b)
i , z, 0, 0)B]]1 ∀i ∈ Ix , c = (gT )z · M (b)

with z, δ
U←− Zp and πi

U←− Zp for all i ∈ Ix .
– Key query phase II: Key query phase I is repeated with the aforementioned

restrictions stated in the challenge query phase.
– Guess: Finally, A outputs a guess bit b′. If b = b′, B outputs β = 1. A

variable ι is defined as ι = 0 if M (0) �= M (1) for challenge messages M (0) and
M (1) and ι = 1 otherwise.

Game 0′: Game 0′ is the same as Game 0 except that B chooses a bit t
U←− {0, 1}

before the setup and the Game 0′ will abort in the challenge query if t �= ι. The
adversary A will win with probability 1

2 when the game is aborted and so the
advantage of A in Game 0′ is

∣
∣Pr[T0′ ] − 1

2

∣
∣. Therefore, A’s advantage in Game

0′ is half that of Game 0, i.e.,

AdvUZIPEA,Game 0′(λ) =
1
2

· AdvUZIPEA,Game 0(λ) =
1
2

· AdvUZIPEA,FAH(λ)
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Moreover, Pr[t = 0] = 1
2 = Pr[t = 1] as t is uniformly and independently

generated

Pr[T0′ ] =
1
2

· (
Pr[T0′ |t = 0] + Pr[T0′ |t = 1]

)

So, AdvUZIPEA,FAH(λ) = 2
∣
∣
∣
∣Pr[T0′ ] − 1

2

∣
∣
∣
∣ ≤

∣
∣
∣
∣Pr[T0′ |t = 0] − 1

2

∣
∣
∣
∣ +

∣
∣
∣
∣Pr[T0′ |t = 1] − 1

2

∣
∣
∣
∣

The result follows by combining the Lemma 1 and Lemma 2 respectively.

Lemma 1. Let T0′ be the event that a PPT adversary A wins in Game 0′ and
t

U←− {0, 1} be the pre-selected random bit chosen by the challenger B in Game
0′. Then

∣
∣
∣
∣Pr[T0′ |t = 0] − 1

2

∣
∣
∣
∣ ≤ (2ν + 2) · AdvSXDH

B (λ) +
1
p

+ 2−Ω(λ)

where ν is the maximum number of secret key queries.

Proof. To prove Lemma 1, we consider (2ν + 4) many games for t = 0 and use
notation G̃ame i to denote the i-th game which we describe G̃ame 0′ the same as
Game 0′ in the proof of the Theorem 3.1 where a part framed by a box indicates
coefficient which were changed in an experiment from the previous game.

G̃ame 0′: The game is the same as Game 0 except that a coin t
U←− {0, 1}

is flipped before the setup and the game is aborted in challenge query if t �= ι.
To prove this Lemma, we consider t = 0. The challenge ciphertext for the chal-
lenge plaintext messages M (0),M (1) with the vector x (0) = (x(0)

i )i∈Ix ,x (1) =

(x(1)
i )i∈Ix is set by B as ctx(b) =

(
x (b), ([[ci]]1)i∈Ix , c

)
where b

U←− {0, 1},
Ix = Ix(0) = Ix(1) and

[[ci]]1 = [[(πi(1, i), δx(b)
i , z, 0, 0)B]]1 ∀i ∈ Ix , c = (gT )z · M (b)

with z, δ, πi
U←− Zp. This ciphertext is called a normal ciphertext. In response to

the �-th secret key query associated to the vector y (�) = (y(�)
i )i∈I

y (�) by A, the

challenger B sends sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I
y (�) ) where

[[ki]]2 = [[(ρi(−i, 1), ωy
(�)
i , r

(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy (�)

with ρi, ω, r
(�)
i

U←− Zp and
∑

i∈I
y (�)

r
(�)
i = 1. This is called a normal key.

G̃ame 1: Same as G̃ame 0′ except that the challenge ciphertext is

[[ci]]1 = [[(πi(1, i), δx(b)
i , z, τx

(b)
i , 0)B]]1 ∀i ∈ Ix , c = (gT )z · M (b)
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where b
U←− {0, 1}, τ

U←− Zp. All other variables are generated as in G̃ame 0′.

G̃ame (2-�-1): For � ∈ [ν], G̃ame (2-�-1) is identical as G̃ame (2-(� − 1)-2) (see
the subsequent game) except that the reply of B to the �-th secret key query for
the vector y (�) = (y(�)

i )i∈I
y (�) is sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I

y (�) ) where

[[ki]]2 = [[(ρi(−i, 1), ωy
(�)
i , r

(�)
i , ξy

(�)
i , 0)B∗]]2 ∀i ∈ Iy (�)

and ξ
U←− Zp. All the other variables ρi, ω, r

(�)
i are generated by B as in G̃ame (2-

(�−1)-2). Note that as mentioned earlier G̃ame (2-0-2) is defined to be G̃ame 1.

G̃ame (2-�-2): For � ∈ [ν], G̃ame (2-�-2) is the same as G̃ame (2-�-1) (defined
above) except that reply to B the �-th secret key query for the associated vector
y (�) = (y(�)

i )i∈I
y (�) is sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I

y (�) ) where

[[ki]]2 = [[(ρi(−i, 1), ωy
(�)
i , r̂

(�)
i , r′

i , 0)B∗]]2 ∀i ∈ Iy (�)

r̂
(�)
i , r′

i
U←− Zp ∀i ∈ Iy (�) . Other variables ρi, ω are generated as in G̃ame(2-�-1).

G̃ame 3: Same as G̃ame (2-ν-2) except that the challenge ciphertext is

[[ci]]1 = [[(πi(1, i), δx(b)
i , z′ , μi , 0)B]]1 ∀i ∈ Ix and c = (gT )z · M (b)

where b
U←− {0, 1}, z′ U←− Zp and μi

U←− Zp for all i ∈ Ix . Other variables are gener-
ated as in G̃ame (2-ν-2). This ciphertext is called a semi randomized ciphertext.

G̃ame 4: This game is exactly the same as G̃ame 3 except that the challenge
ciphertext set by B is ctx(b) =

(
x (b), ([[ci]]1)i∈Ix , c

)
where

[[ci]]1 = [[(πi(1, i), 0 , z′, μi, 0)B]]1 ∀i ∈ Ix and c = (gT )z · M (b)

where all the other variables are generated as in G̃ame 3. This ciphertext is
independent from the bit b. This is called a randomized ciphertext.

Let Si be the event that A wins in G̃ame i given t = 0. Then AdvUZIPEA,G̃ame i
(λ) =

∣
∣Pr[Si] − 1

2

∣
∣. We get AdvUZIPEA,G̃ame 4

(λ) = 0 which implies Pr[S4] = 1
2 as the value

of b is independent from A’s view in G̃ame 4. Note that,
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∣
∣
∣
∣Pr[T0′ |t = 0] − 1

2

∣
∣
∣
∣ = Adv

UZIPE

A,G̃ame 0′(λ) =
∣
∣
∣
∣Pr[S0′ ] − 1

2

∣
∣
∣
∣ = |Pr[S0′ ] − Pr[S4]|

≤
∣
∣
∣
∣
AdvUZIPEA,G̃ame 0′ (λ)−AdvUZIPEA,G̃ame 1

(λ)

∣
∣
∣
∣
+

ν∑

�=1

∣
∣
∣
∣
AdvUZIPEA,G̃ame (2-(�−1)-2)

(λ)−AdvUZIPEA,G̃ame (2-�-1)
(λ)

∣
∣
∣
∣

+
ν∑

�=1

∣
∣
∣
∣
AdvUZIPEA,G̃ame (2-�-1)

(λ)− AdvUZIPEA,G̃ame (2-�-2)
(λ)

∣
∣
∣
∣
+

∣
∣
∣
∣
AdvUZIPEA,G̃ame (2-ν-2)

(λ)− AdvUZIPEA,G̃ame 3
(λ)

∣
∣
∣
∣

+

∣
∣
∣
∣
AdvUZIPEA,G̃ame 3

(λ) − AdvUZIPEA,G̃ame 4
(λ)

∣
∣
∣
∣
+ AdvUZIPEA,G̃ame 4

(λ)

Then the result follows from the claim 1 to 5. �
Claim 1:

∣
∣
∣AdvUZIPEA,G̃ame 0′(λ) − AdvUZIPEA,G̃ame 1

(λ)
∣
∣
∣ ≤ AdvSXDH

B (λ) + 2−Ω(λ)

Proof of Claim 1. We will show the challenger B can solve the SXDH
problem using A as a subroutine. Let B obtains an instance (BG =
(p,G1, G2, GT , g1, g2, e), [[a]]1 = ga

1 , [[u]]1 = gu
1 , [[tβ ]]1 = [[au + βf ]]1 = gau+βf

1 )

of SXDH problem for κ = 1 where a, u, f
U←− Zp, β

U←− {0, 1} and sets
pp = (p, g1, g2, gT , V, V ∗, E) as in Game 0 in the proof of Theorem 3.1. Now
we will show how B uses this instances to interpolates between G̃ame 0′ and
G̃ame 1. The algorithm B implicitly defines random orthonormal dual (B,B∗)
by choosing D U←− GL6(Zp) and implicitly sets

B =

⎡

⎢
⎢
⎢
⎢
⎣

I2
a 0 1
0 1 0
1 0 0

1

⎤

⎥
⎥
⎥
⎥
⎦
D, B∗ =

⎡

⎢
⎢
⎢
⎢
⎣

I2
0 0 1
0 1 0
1 0 −a

1

⎤

⎥
⎥
⎥
⎥
⎦
D∗

where D∗ = (D−1)T and a is implicitly provided through the SXDH instance.
Note that [[a]]1 = ga

1 and the algorithm B can compute [[B]]1 using the given
SXDH instances and the first four rows of [[B∗]]2. Then B chooses η

U←− Zp. To
simulates the �-th secret key query for y(�) = (y(�)

i )i∈I
y (�) it responds with the

secret key sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I
y (�) ) where

[[ki]]2 = [[(ρi(−i, 1), 0, r
(�)
i , 0, 0)B∗ + y

(�)
i (0, 0, 0, 0, η, 0)D∗]]2

= [[(ρi(−i, 1), ηy
(�)
i , r

(�)
i , 0, 0)B∗]]2 for all i ∈ Iy (�)

and ρi, r
(�)
i

U←− Zp. Note that, first four rows of [[B∗]]2 are utilized by B to
compute [[ki]]2 apart from D∗. The challenge ciphertext generated by B is ctx(b) =(
x (b), ([[ci]]1)i∈Ix , c

)
where

[[ci]]1 = [[(πi(1, i), δ′x(b)
i , z, 0, 0)B + x

(b)
i (0, 0, tβ , 0, u, 0)D]]1

= [[(πi(1, i), (δ′ + u)x(b)
i , z, βfx

(b)
i , 0)B]]1 for all i ∈ Ix
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where b
U←− {0, 1},x(b) = (x(b)

i )i∈I
x (b) , Ix(0) = Ix(1) = Ix and δ′, z U←− Zp, πi

U←− Zp

for all i ∈ Ix . Here the knowledge of [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1 is sufficient to
compute [[(πi(1, i), δ′x(b)

i , z, 0, 0)B]]1 = [[πi·b1]]1+[[iπi·b2]]1+[[δ′x(b)
i ·b3]]1+[[z·b4]]1.

Note that, there is no information about [[a]]2. Hence, B cannot compute [[b∗
5]]2

where b∗
5 is the fifth row of B∗ as b∗

5 contains the unknown a. However, the above
simulation does not require any knowledge of [[a]]2 = ga

2 as the fifth component
of ki is set as 0 in both G̃ame 0′ and G̃ame 1. Let us implicitly set τ = βf, δ =
δ′ + u, ω = η. Then A’s view simulated by B is the same as in G̃ame 0′ if β = 0
since the fifth component of [[ci]]1 is 0 and the challenge ciphertext has the same
distribution as in G̃ame 0′. On the other hand, A’s view simulated by B is
identical as in G̃ame 1 if β = 1 since the fifth components of ci is βfx

(b)
i = τx

(b)
i

unless f = 0 and the distribution of challenge ciphertext in G̃ame 0′ is identical
with the distribution of G̃ame 1. Thus, B interpolates between G̃ame 0′ and
G̃ame 1. Thus the claim follows. �
Claim 2:

∣
∣
∣AdvUZIPEA,G̃ame (2-(�−1)-2)

(λ) − AdvUZIPEA,G̃ame (2-�-1)
(λ)

∣
∣
∣ ≤ AdvSXDH

B (λ) +

2−Ω(λ)

Proof of Claim 2. Let B obtains an instance (BG = (p,G1, G2, GT , g1,

g2, e), [[a]]2 = ga
2 , [[u]]2 = gu

2 , [[tβ ]]2 = [[au + βf ]]2 = gau+βf
2 ) of SXDH problem

for κ = 2 where a, u, f
U←− Zp, β

U←− {0, 1} and sets pp = (p, g1, g2, gT , V, V ∗, E)
as in the proof of Theorem 3.1. We will show the challenger B can utilize the
instance to interpolates between G̃ame (2-(�−1)-2) and G̃ame (2-�-1) the SXDH
assumption using A as a subroutine. The algorithm B implicitly defines random
orthonormal dual (B,B∗) by choosing D U←− GL6(Zp) and implicitly setting

B =

⎡

⎢
⎢
⎢
⎢
⎣

I2
0 0 1
0 1 0
1 0 −a

1

⎤

⎥
⎥
⎥
⎥
⎦
D, B∗ =

⎡

⎢
⎢
⎢
⎢
⎣

I2
a 0 1
0 1 0
1 0 0

1

⎤

⎥
⎥
⎥
⎥
⎦
D∗

where D∗ = (D−1)T and a is implicitly provided through the SXDH instance.
Note that [[a]]2 = ga

2 and the algorithm B can compute the first four rows
[[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1 of [[B]]1 and [[B∗]]2 using the given SXDH instances.
Now, the algorithm B simulates the �-th secret key query for y(�) = (y(�)

i )i∈I
y (�)

by responding with the secret key sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I
y (�) ) where

[[ki]]2 = [[(ρi(−i, 1), ω′y(�)
i , r

(�)
i , ξy

(�)
i , 0)B∗ + y

(�)
i (0, 0, tβ , 0, u, 0)D∗]]2

= [[(ρi(−i, 1), (ω′ + u)y(�)
i , r

(�)
i , ξy

(�)
i + βfy

(�)
i , 0)B∗]]2 for all i ∈ Iy (�)

with ξ, ω′, U←− Zp, ρi, r
(�)
i

U←− Zp for all i ∈ Iy (�) such that
∑

i∈I
y (�)

r
(�)
i =

1 and [[b∗
1]]2, [[b

∗
2]]2, [[b

∗
3]]2, [[b

∗
4]]2 are utilized to compute [[(ρi(−i, 1), ω′y(�)

i , r
(�)
i ,
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ξy
(�)
i , 0)B∗]]2 =[[−iρi ·b∗

1]]2+[[ρi ·b∗
2]]2+[[ω′y(�)

i ·b∗
3]]2+[[r(�)i ·b∗

4]]2+[[ξy(�)
i ·b∗

5]]. Then

B chooses η′, ζ U←− Zp. The challenge ciphertext ctx(b) =
(
x (b), ([[ci]]1)i∈Ix , c

)
is

generated by B by setting

[[ci]]1 = [[(πi(1, i), 0, z, 0, 0)B + x
(b)
i (0, 0, ζ, 0, η′, 0)D]]1

= [[(πi(1, i), (aζ + η′)x(b)
i , z, ζx

(b)
i , 0)B]]1 for all i ∈ Ix

where b
U←− {0, 1},x(b) = (x(b)

i )i∈I
x (b) , Ix(0) = Ix(1) = Ix and δ

U←− Zp, πi
U←− Zp

for all i ∈ Ix . Here [[b1]]1, [[b2]]1, [[b4]]1 are sufficient to compute [[(πi(1, i), 0, z, 0, 0)
B]]1 = [[πi · b1]]1 + [[iπi · b2]]1 + [[z · b4]]1. Note that, there is no information about
[[a]]1. Hence, B can not compute [[b5]]1 where b5 is the fifth row of B as b5 contains
the unknown a. However the above without any knowledge of [[a]]1 = ga

1 . Let us
implicitly set ω = ω′ + u, δ = aζ + η′, τ = ζ, r̂

(�)
i = r

(�)
i and r′

i = ξy
(�)
i + fy

(�)
i

unless f = 0. Then A’s view simulated by B is same as in G̃ame (2-(� − 1)-2)
if β = 0 since the fourth, fifth component of ki are r

(�)
i and zero respectively

and the secret key has same distribution as in G̃ame (2-(�− 1)-2). On the other
hand, A’s view simulated by B is identical as in G̃ame (2-�-1) if β = 1 since
the forth, fifth component of ki are r̂i = r

(�)
i and r′

i = ξy
(�)
i + fy

(�)
i respectively

and the distribution of the secret key in G̃ame (2-(� − 1)-2) is identical with the
distribution of G̃ame (2-�-1). Thus B interpolates between the G̃ame (2-(�−1)-2)
and G̃ame (2-�-1). Thus the claim follows. �
Claim 3:

∣
∣
∣AdvUZIPEA,G̃ame (2-�-1)

(λ) − AdvUZIPEA,G̃ame (2-�-2)
(λ)

∣
∣
∣ ≤ AdvSXDH

B (λ)

Proof of Claim 3. We will show how the challenger B utilizes the SXDH instance
using A as a subroutine to interpolates between G̃ame (2-�-1) and G̃ame (2-�-2).
Given an SXDH instance (BG = (p,G1, G2, GT , g1, g2, e), [[a]]2 = ga

2 , [[u]]2 =
gu
2 , [[tβ ]]2 = [[au + βf ]]2 = gau+βf

2 ) of a SXDH problem for κ = 2 where

a, u, f
U←− Zp, β

U←− {0, 1} and sets pp = (p, g1, g2, gT , V, V ∗, E) as in proof of The-
orem 3.1. The algorithm B implicitly defines random orthonormal dual (B,B∗)
by choosing D U←− GL6(Zp) and implicitly setting

B =

⎡

⎢
⎢
⎣

I3
1 0
a −1

1

⎤

⎥
⎥
⎦D, B∗ =

⎡

⎢
⎢
⎣

I3
1 a
0 −1

1

⎤

⎥
⎥
⎦D∗

where D∗ = (D−1)T and a is implicitly provided through the SXDH instance.
Note that [[a]]2 = ga

2 and the algorithm B can compute [[B∗]]2 using the given
SXDH instances and rows of [[B]]1 except fifth row. The algorithm B the �-
th secret key query for y(�) = (y(�)

i )i∈I
y (�) by responding with the secret key

sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I
y (�) ) where
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[[ki]]2 = [[(ρi(−i, 1), ωy
(�)
i , r

(�)
i , ξy

(�)
i , 0)B∗ + r̃i(0, 0, 0, u, tβ , 0)D∗]]2

= [[(ρi(−i, 1), ωy
(�)
i , r

(�)
i + ur̃i, ξy

(�)
i − βfr̃i, 0)B∗]]2 for all i ∈ Iy (�)

with ρi, r
(�)
i , r̃i

U←− Zp for all i ∈ Iy (�) and ω, ξ
U←− Zp. Choose δ′, τ U←− Zp. The

challenge ciphertext ctx(b) =
(
x (b), ([[ci]]1)i∈Ix , c

)
is generated by B by setting

[[ci]]1 = [[(πi(1, i), 0, z, 0, 0)B + x
(b)
i (0, 0, δ′, 0, τ, 0)D]]1

= [[(πi(1, i), δ′x(b)
i , z,−τx

(b)
i , 0)B]]1 for all i ∈ Ix

where b
U←− {0, 1},x(b) = (x(b)

i )i∈I
x (b) , Ix(0) = Ix(1) = Ix . Note that B does

not have the fifth row [[b5]]1 of [[B]]1 and compute [[(πi(1, i), 0, z, 0, 0)B]]1 =
[[πi ·b1]]1 +[[iπi ·b2]]1 +[[z ·b4]]1 without [[b5]]1. Let us implicitly set r̂i = r

(�)
i +ur̃i,

r′
i = ξy

(�)
i −βfr̃i, δ = δ′. Then A’s view simulated by B is the same as in G̃ame (2-

�-1) if β = 0 since the fifth components of ki is ξy
(�)
i and the ciphertext has the

same distribution as in G̃ame (2-�-2). On the other hand, A’s view simulated by
B is identical as in G̃ame (2-�-2) if β = 1 unless f = 0, since the fourth, fifth
components of [ki]2 are r

(�)
i + ur̃i = r̂i, ξy

(�)
i − βfr̃i = r′

i and the distribution of
the ciphertext in G̃ame (2-�-1) is identical with that in of G̃ame (2-�-2). Thus,
B interpolates between the G̃ame (2-�-1) and G̃ame (2-�-2). Thus the claim
follows. �
Claim 4:

∣
∣
∣AdvUZIPEA,G̃ame (2-ν-2)

(λ) − AdvUZIPEA,G̃ame 3
(λ)

∣
∣
∣ ≤ 1

p

Proof of Claim 4. To prove this, we show that the distribution of pp =
(p, g1, g2, gT , V, V ∗, E), queried keys sky(ν) = (y (ν), Iy (ν) , {[[ki]]2}i∈I

y (ν) ) and

challenge ciphertext ctx(b) = (x (b), ([[ci]]1)i∈Ix , c) are equivalent in G̃ame (2-ν-2)
and G̃ame 3. For this, we define new orthonormal dual basis (D,D∗) of V and
V ∗ as follows:
generate χ

U←− Zp\{0}, η
U←− Zp, set d4 = χb4 + ηb5,d

∗
5 = χb∗

5 − ηb∗
4 and define

D = (b1, b2, b3,d4, χ
−1b5, b6), D∗ = (b∗

1, b
∗
2, b

∗
3, χ

−1b∗
4,d

∗
5, b

∗
6)

where bi and b∗
i are the i-th rows of B and B∗ respectively used in G̃ame (2-

ν-2) and G̃ame 3. We can easily check that D and D∗ are dual orthonormal
and similarly distributed same as B and B∗. The secret keys component [[ki]]2
of sky(ν) and the challenge ciphertext component [[ci]]1 of ctx(b) in G̃ame (2-ν-2)
are expressed over the bases (B,B∗) and (D,D∗) as

[[ki]]2 = [[(ρi(−i, 1), ωy
(ν)
i , r̂i, r̃i, 0)B

∗]]2
= [[−iρi · b∗

1 + ρi · b∗
2 + ωy

(ν)
i · b∗

3 + (χr̂i + ηr̃i) · (χ−1b∗
4) + r̃iχ

−1 · d∗
5]]2

= [[(ρi(−i, 1), ωy
(ν)
i , (χr̂i + ηr̃i), r̃iχ

−1, 0)D∗]]2
and [[ci]]1 = [[(πi(1, i), δx

(b)
i , z, τx

(b)
i , 0)B]]1
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= [[πi · b1 + iπi · b2 + δx
(b)
i · b3 + χ−1z · d4 + (τx

(b)
i χ − zη) · χ−1b5]]1

= [[(πi(1, i), δx
(b)
i , χ−1z, (τx

(b)
i χ − zη), 0)D]]1

Let z′ = χ−1z and μi = τx
(b)
i χ− zη. So the A’s view, both (B,B∗) and (D,D∗)

are consistent with master public key mpk as χ, τ, η
U←− Zq are uniformly, inde-

pendently distributed except the probability 1
p for the case z = 0. Therefore, the

distribution of ciphertext, secret keys can be expressed as in G̃ame (2-ν-2) over
the basis (B,B∗) and in G̃ame 3 over the bases (D,D∗). So, G̃ame (2-ν-2) can
be conceptually changed in G̃ame 3. This establishes the claim. �
Claim 5:

∣
∣
∣AdvUZIPEA,G̃ame 3

(λ) − AdvUZIPEA,G̃ame 4
(λ)

∣
∣
∣ ≤ AdvSXDH

B (λ)

Proof of Claim 5. Given an SXDH instance (BG = (p,G1, G2, GT ,

g1, g2, e), [[a]]1 = ga
1 , [[u]]1 = gu

1 , [[tβ ]]1 = [[au + βf ]]1 = gau+βf
1 ) for κ = 1 where

a, u, f
U←− Zp, β

U←− {0, 1}, the challenger uses A as a subroutine interpolates the
G̃ame 3 and G̃ame 4. Sets pp = (p, g1, g2, gT , V, V ∗, E) as in the proof of Theo-
rem 3.1. The algorithm B implicitly defines random orthonormal dual (B,B∗)
by choosing D U←− GL6(Zp) and

B =

⎡

⎢
⎢
⎢
⎢
⎣

I2
0 0 1

−1 1 a
1 0 −a

1

⎤

⎥
⎥
⎥
⎥
⎦
D, B∗ =

⎡

⎢
⎢
⎢
⎢
⎣

I2
a 0 1
0 1 0
1 1 0

1

⎤

⎥
⎥
⎥
⎥
⎦
D∗

where D∗ = (D−1)T and a is implicitly provided through the SXDH instance.
Note that [[a]]1 = ga

1 The algorithm B can compute [[B]]1 using the given SXDH
instances all rows of [[B∗]]2 except the third row. Choose ζ, γ

U←− Zp. The algo-
rithm simulates �-th secret key query to y (�) = (yi)i∈I

y (�) by responding with

the secret key sky(�) = (y (�), Iy (�) , {[[ki]]2}i∈I
y (�) ) where

[[ki]]2 = [[(ρi(−i, 1), 0, r
(�)
i , 0, 0)B∗ + y

(�)
i (0, 0, 0, γ, ζ, 0)D∗]]2

= [[(ρi(−i, 1), ζy
(�)
i , (γ − aζ)y(�)

i + r
(�)
i ,−aζy

(�)
i , 0)B∗]]2 for all i ∈ Iy (�)

with ρi, r
(�)
i ,

U←− Zp for all i ∈ Iy (�) and ω
U←− Zp. Observe that, b∗

1, b
∗
2, b

∗
4 are

sufficient to compute [[(ρi(−i, 1), 0, r
(�)
i , 0, 0)B∗]]2 as [[ρi(−i, 1), 0, r

(�)
i , 0, 0)B∗]]2 =

[[−iρi · b∗
1]]2 + [[ρi · b∗

2]]2 + [[r(�)i · b∗
4]]2. To generate challenge ciphertext ctx(b) =(

x (b), ([[ci]]1)i∈Ix , c
)
, sets the second component as

[[ci]]1 = [[(πi(1, i), 0, z′, 0, 0)B + x
(b)
i (0, 0, u, 0,−tβ , 0)D]]1

= [[(πi(1, i),−βfx
(b)
i , z′, ux

(b)
i , 0)B]]1
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where b
U←− {0, 1},x(b) = (x(b)

i )i∈I
x (b) , Ix(0) = Ix(1) = Ix and z′, πi

U←−
Zp for all i ∈ Ix . Here [[b1]]1, [[b2]]1, [[b3]]1, [[b4]]1 are sufficient to compute
[[(πi(1, i), 0, z′, 0, 0) B]]1 = [[πi·b1]]1+[[iπi·b2]]1+[[z′·b4]]1 As there is no information
about [[a]]2, B cannot compute [[b∗

3]]2, b
∗
3 being the third row of [[B∗]]2 that con-

tains the unknown a. However, the above simulation is done without any knowl-
edge of [[a]]2. Let us implicitly set δ = −βf, μi = ux

(b)
i , r̂

(�)
i = (γ − aζ)y(�)

i + r
(�)
i

and r′
i = −aζy

(�)
i . Then A’s view simulated by B is the same as in G̃ame 3 if

β = 1 since the third component of [[ci]]1 is non-zero in G̃ame 3 unless f = 0 and
the challenge ciphertext has the same distribution as in G̃ame 3. On the other
hand, A’s view simulated by B is identical as in G̃ame 4 if β = 0 since the third
component of [[ci]]1 is zero and the distribution of secret key in G̃ame 3 is iden-
tical with that in G̃ame 4. Thus B interpolates between G̃ame 3 and G̃ame 4.
and the result follows. �
Lemma 2. Let T0′ be the event that a PPT adversary A wins in Game 0′ and
t

U←− {0, 1} be the pre-selected random bit chosen by the challenger B in Game
0′. Then

∣
∣
∣
∣Pr[T0′ |t = 1] − 1

2

∣
∣
∣
∣ ≤ (3ν + 1) · AdvSXDH

B (λ) + (2ν + 2) · 1
p

+ 2−Ω(λ)

where ν is the maximum number of secret key queries.

We discuss the detailed proof of Lemma 2 in the full version.

4 Conclusion

In this paper, we propose a construction of UZIPE based on the SXDH assump-
tion with adaptively FAH security. Mainly, we improve the efficiency in terms of
computation, communication cost of UZIPE over the previous work of [10]. In
particular, our ciphertext and secret key consist of 6n+1 and 6n′ group elements
respectively. In future, it will be interesting to investigate constructions of ABE
or FE for more expressive functionalities with unbounded attributes or messages.
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Abstract. Inner-product encryption scheme is an important branch of
functional encryption schemes, which has wide applications in modern
society. There have existed many inner-product encryption schemes, but
as far as we know, no code-based inner-product functional encryption
scheme has been proposed. As one of the most popular post-quantum
cryptographic techniques, why code-based cryptosystems are seldom
applied in these areas raises our concern. In this paper, we build an inner
product encryption scheme from random linear codes and prove its secu-
rity. Unfortunately, our scheme still suffers from the so large parameter
size, which indicates that how to build a practical code-based functional
encryption scheme remains a challenging problem.

Keywords: Inner-product · Functional encryption · Code-based
cryptosystem · Post-quantum cryptosystem

1 Introduction

With the rapid development of information technique, people nowadays pay
more and more attention to the protection of personal privacy, especially private
data. The traditional encryption schemes can avoid privacy leakage, but how
to calculate this encrypted information has become a new problem. Aimed at
solving this kind of problems, functional encryption (FE) was first proposed
by Sahai and Waters [23] in 2005 and was formalized six years later by Boneh
et al. [7]. In a nutshell, the decryption key in an FE scheme allows a user to
learn a function of the privacy information but not the whole information. More
specifically, an FE scheme for functionality F : K × X → Σ is defined over
key space K, plaintext space X and output space Σ. The owner of the master
secret key msk associated with master public key mpk can generate a secret
key skk for every key k ∈ K. This skk allows the computation of F (k, x) from
a ciphertext of x computed under the master public key mpk. In another word,
c© Springer Nature Switzerland AG 2021
Q. Huang and Y. Yu (Eds.): ProvSec 2021, LNCS 13059, pp. 259–276, 2021.
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everyone can encrypt x ∈ X into a ciphertext Ct via the public key mpk, and
F (k, x) is returned by decrypt Ct using secret key skk.

The inner-product functionality is one of the most widely studied function-
ality in FE researches. Imagine that in an interview, different departments may
have different requirements. For example, department A prefers employees who
are good at mathematics, while department B prefers employees who are good
at writing. Then, how to protect the privacy of candidates’ course grades and
keep the outcome of the interview fair and convincing at the same time? One
functional encryption scheme for inner-product may solve it. In order to pro-
tect the personal privacy of candidates and ensure that the results are open and
transparent, we can apply the inner-product encryption scheme in the following
way. Each candidate encrypts his/her course grade x = (x1, x2, . . . , xl) into a
ciphertext Ct and send it to the HR department. Each department inputs the
weight y = (y1, y2, . . . , yl) set by itself to extract the secret key sky, which can
be used to decrypt the weighted mean 〈x,y〉 =

∑l
i=0 xiyi.

The early inner-product encryption schemes focused on predicate encryp-
tion supporting inner-product predicate [2,11,19,20]. These schemes are differ-
ent from the FE schemes where they output a message if and only if the inner-
product equals 0. The first functional encryption for inner-product was presented
by Abdalls et al. [1]. Their schemes are based on DDH assumption or LWE
assumption. Later, Some works [6,12] discussed how to generate function-hiding
inner-product encryption under the symmetric external Diffie-Hellman assump-
tion. Recently, Katsumata et al. [10] proposed an adaptively secure inner-product
encryption from LWE assumption, but their scheme only supports inner-product
predicate as well.

Nowadays, with the fast development of quantum computing, cryptosystems
whose security relies on traditional hard problems may face efficient attacks.
Hence post-quantum cryptosystem which can resist attacks from quantum com-
puting arises public concern. But as we have seen, except for the lattice-based
cryptography, or more precisely, LWE assumptions from lattice-based cryptog-
raphy, other post-quantum cryptography techniques have not been applied into
constructing inner-product encryption schemes. As one of the principal avail-
able post-quantum cryptographic techniques, code-based cryptosystems present
many advantages: it is very fast for both encryption and decryption and the best-
known attacks are exponential in the length of the code. However, it requires a
large key size to reach a good security level, which makes it hard to be applied
in practice. Moreover, compared with lattice-based cryptosystems, code-based
cryptosystems seldom be used in constructing cryptographic applications. As
far as we are concerned, the difficulty that makes code-based cryptosystem hard
to be applied is that they do not have good homomorphic properties. [1] shows a
generic construction from public key encryption system with specific structural
and homomorphic properties to inner product encryption schemes with s-IND-
CPA secure. However, to the best of our knowledge, no such code-based public
key encryption system has been proposed.
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Our Contributions: In this paper, we propose a code-based inner product
functional encryption system. As far as we know, this is the first inner prod-
uct encryption scheme based on coding theory. Our idea is inspired by the LWE
based inner product encryption system [1]. However, we do not follow the generic
construction from it because our scheme does not transform from an existed
public key encryption system. Moreover, it is difficult to construct a code-based
encryption system to satisfy the structural and homomorphic properties men-
tioned in [1]. Unlike the lattice-based cryptosystems which add an error with
a small norm, code-based cryptosystems usually introduce errors with a small
weight. Since the non-zero positions of the error vector are randomly chosen,
the weight of the errors will be accumulated in the operation on ciphertexts.
This proposition also makes code-based public key encryption systems hard to
be applied in modern applications such as homomorphic encryption.

In this work, we try to construct a code-based inner product encryption
scheme with IND-secure. The master public key and master secret key are indeed
the message and ciphertext in a McEliece encryption system. The first part of
the ciphertext ct0 can be viewed as the ciphertext of a random vector r in
the Niederreiter encryption system [17]. This is also a commitment of r. Then
this vector r together with the i-th public key mpki are used to cover the i-th
coordinate of x. The secret key of vector y is extracted as the sum of yimski.
When it comes to the decryption algorithm, here comes a problem that the noise
error can not be totally eliminated. We analyse the distribution of the noise in
detail, and find that the decryption failure rate can be reduced by repeating
enough times. However, the cost is a very large parameter size.

Organization: The remainder of this paper is organized as follows. In Sect. 2,
we recall some preliminaries on coding theory and code-based cryptosystems.
In Sect. 3, the definition and security properties of functional encryption are
reviewed. In Sect. 4, we present our basic idea of constructing the inner-product
encryption scheme and prove its security based on syndrome decoding problem.
In Sect. 5, the full scheme which has tolerable decryption failure rate (DFR) is
presented and the DFR is analysed in detail to prove the correctness. Lastly,
Sect. 6 concludes the paper.

2 Preliminaries

In this section, we present the notions of coding theory that are prerequisite for
the following sections as well as basic knowledge about code-based cryptography.

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set
of n-bit strings, and {0, 1}∗ is the set of all bit strings. We use Fq denote the
finite field of q elements, and then F

n
q denotes the set of vectors with length n

over Fq, Fm×n
q denotes the set of m × n matrices over Fq. The Hamming weight

of a vector v is denoted as wt(v) and all the vectors of length n with Hamming



262 Z. Zhang et al.

weight w is denoted as Sw
n . If S is a set, we use x ←$ S to denote the assignment

to x of an element chosen uniformly at random from S. If A is an algorithm,
then y ← A(x) denotes the assignment to y of the input x.

2.2 Linear Codes

We now recall some basic definitions for linear codes.
An [n, k]q linear error-correcting code C is a linear subspace of a vector space

F
n
q , where Fq denotes the finite field of q elements, and k denotes the dimension

of the subspace. The generator matrix G for a linear code is a k ×n matrix with
rank k which defines a linear mapping from F

k
q (called the message space) to F

n
q .

Namely, the code C is
C = C(G) = {xG | x ∈ F

k
q}.

If C is the kernel of a matrix H ∈ F
(n−k)×k
q , we call H a parity check matrix of

C, i.e.
C = C⊥(H) = Ker(H) = {y ∈ F

n
q |Hy = 0}.

We call a vector in C a codeword.
Given a codeword c = (c1, c2, . . . , cn) ∈ F

n
q , its Hamming weight wt(c) is

defined to be the number of non-zero coordinates, i.e. wt(c) = |{i | ci �= 0, 1 ≤
i ≤ n}|. The distance of two codewords c1, c2, denoted by d(c1, c2) counts the
number of coordinates in which they differ.

If c is a codeword and c + e is the received word, then we call e the error
vector and {i|ei �= 0} the set of error positions, wt(e) is the number of errors of
the received word. If r = c + e is the received word and the distance from r to
the code C is t′, then there exists a codeword c′ and an error vector e′ such that
r = c′ + e′ and wt(e′) = t′. If the number of errors is at most (d − 1)/2, then
it is sure that c = c′ and e = e′. In other words, the nearest codeword to r is
unique when r has distance at most (d − 1)/2 to C.

2.3 Hard Problems in Coding Theory

There are many hard problems in coding theory, one of the well-known problems
is general decoding problem. Syndrome decoding (SD) problem is a dual variant
of general decoding problem, and both of them have been proved to be NP-hard
for general linear codes in [5]. Nowadays, most of the code-based cryptosystems
are constructed on SD problem or its variant such as rank-SD problem. An
instance of computation SD problem is as follows:

Instance 1 (Computation SD Problem). Given an (n−k)×n parity check
matrix H of code C, a syndrome s, the Computation SD Problem CSD(n, k, w)
asks for a vector x, whose weight wt(x) = w, such that Hx = s.

An SD distribution is defined as follows: For positive integers n, k and w, the
SD(n, k, w) distribution chooses H ←$ F

(n−k)×n
q and x ←$ F

n
q such that wt(x) =

w, and outputs (H, s = HxT ). The security of our inner-product encryption
scheme relies on the Decision SD problem. An instance is as follows:
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Instance 2 (Decision SD Problem). Given an (n − k) × n matrix H and
a vector y with length n − k, the Decision SD Problem DSD(n, k, w) asks to
decide with non-negligible advantage whether (H,y) comes from the SD(n, k, w)
distribution or the uniform distribution over F

(n−k)×n
q × F

n−k
q .

3 Functional Encryption

Following Boneh et al. [7], we begin by recalling the syntactic definition of func-
tionality. The functionality F describes the functions of a plaintext that can be
learned from the ciphertext. Formally, the functionality is defined as follows.

Definition 1 (Functionality [7]). A functionality F defined over (K,X) is a
function F : K × X → Σ ∪ {⊥} described as a (deterministic) Turing Machine.
The set K is called the key space, the set X is called the plaintext space, the set
Σ is the output space and ⊥ is a special string not contained in Σ.

A functional encryption scheme for the functionality F enables one to evalu-
ate F (k, x) given the encryption of x and a secret key skk for k. The algorithm
for evaluation F (k, x) using skk is called decrypt. More precisely, a functional
encryption scheme is defined as follows.

Definition 2 (Functional Encryption Scheme [7]). A functional encryption
scheme FE for functionality F is a tuple FE = (Setup,KeyDer,Encrypt,Decrypt)
of four algorithms:

1. Setup(1λ) generates a public and master secret key pair (mpk,msk) for a
given security parameter λ.

2. KeyDer(msk, k) on input a master secret key msk and key k ∈ K outputs
secret key skk.

3. Encrypt(mpk, x) on input a master public key mpk and message x ∈ X outputs
the ciphertext Ct.

4. Decrypt(mpk,Ct, skk) outputs y ∈ Σ ∪ {⊥}.

Correctness. The correctness requirement: for all (mpk,msk) ← Setup(1λ), all
k ∈ K and x ∈ X, for skk ← KeyDer(msk, k) and Ct ← Encrypt(mpk, x), we
have that Decrypt(mpk,Ct, skk) = F (k,m) whenever F (k,m) �=⊥, except with
negligible probability.

Indistinguishability-Based Security. Our security definition is defined by the
game-playing notions. In such games, there exist procedures for initialization
and finalization and procedures to respond to adversary oracle queries. A game
G is executed with an adversary A as follows. First, Initialize executes and its
outputs are the inputs to A. Then A executes, its oracle queries being answered
by the corresponding procedures of G. When A terminates, its output becomes
the input to the Finalize procedure. The output of the latter, denoted by G(A),
is called the output of the game, and G(A) = y denotes the event that the out-
put takes a value y. Boolean flags are assumed initialized to false. Here is the
formal definition about indistinguishability-based security.
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Definition 3 (IND-FE-CPA secure [1]). For any functional encryption
scheme FE = (Setup,KeyDer,Encrypt,Decrypt) for functionality F defined
over (K,X), the security against chosen-plaintext attacks game is defined in
Fig. 1. We say that FE is secure against chosen-plaintext attacks (IND-FE-CPA
secure) if

|Pr[Expind−fe−cpa−0
FE,λ (A) = 1] − Pr[Expind−fe−cpa−1

FE,λ (A) = 1]| = negl(λ).

Moreover, we say FE is selective secure against chosen-plaintext attacks (s-IND-
FE-CPA secure) when the challenge messages m∗

0 and m∗
1 have been chosen

before hand.

Game Expind−fe−cpa−b
FE,λ (A) Game Exps−ind−fe−cpa−b

FE,λ (A)

Initialize(λ)
(mpk,msk) ←$ Setup(1λ)
V ← ∅
Return mpk

KeyDer(k)
V ← V ∪ {k}
skk ←$ KeyDer(msk, k)
Return skk

LR(m∗
0,m

∗
1)

Ct∗ ←$ Encrypt(mpk,m∗
b)

Return Ct∗

Finalize(b′)
if ∃k ∈ V such that

F (k,m∗
0) �= F (k,m∗

1)
then return flase

Return (b′ = b)

Initialize(λ,m∗
0,m

∗
1)

(mpk,msk) R← Setup(1λ)
V ← ∅
Return mpk

LR()
Ct∗ ←$ Encrypt(mpk,m∗

b)
Return Ct∗

Fig. 1. Games Expind−fe−cpa−b
FE,λ (A) and Exps−ind−fe−cpa−b

FE,λ (A) [1]

4 The Basic Idea of Constructing Inner-Product
Encryption Scheme

In this section, we describe our inner product encryption scheme by showing the
basic idea firstly. Then we prove our basic idea to be IND-FE-CPA secure. In
the next section, we will show the full scheme.

4.1 Basic-IPFEc Scheme

Our basic idea is inspired from [1] and we describe it as follows.

– Setup(1λ, l, B): First generate the public parameter param = (q, n, k, l,
w1, w2). Then generate independent vectors (mi)l

i=1 ←$ F
k
q , and (ei)l

i=1 ←$

Sw1
n . As a result, the master keys are set as msk = (mi)l

i=1 and mpk =
(miG + ei)l

i=1.
– KeyDer(msk,y): On input master secret key msk = (mi)l

i=1 and vector
y = (y1, . . . , yl) ∈ Z

l
p, this algorithm outputs sky =

∑l
i=1 yimi.
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– IPEncrypt(mpk,x): On input master public key mpk and message x =
(x1, . . . , xl) ∈ Z

l
p, choose a random vector r ∈ Sw2

n , and compute ct0 = Gr.
For each i ∈ 1, 2, . . . , l, compute cti = 〈mpki, r〉 + xi. Then the algorithm
returns the ciphertext Ct = (ct0, (cti)i∈[l]).

– IPDecrypt(mpk,Ct, sky): On input master public key mpk, ciphertext Ct =
(ct0, (cti)l

i=1) and secret key sky for vector y, compute

R =
l∑

i=1

yicti − 〈sky, ct0〉

=
l∑

i=1

yi〈mpki, r〉 +
l∑

i=1

yixi −
l∑

i=1

〈yimi,Gr〉

= 〈x,y〉 +
l∑

i=1

yi〈e, r〉 (1)

Note. In the above scheme, we set e and r are both random vectors with small
weight, such that the corresponding CSD(n, k, w1) problem and CSD(n, n −
k,w2) problem are hard. The probability of

∑
yi〈e, r〉 = 0 will be analysed in

the following part. In a nutshell, the probability above is not large enough to
support the correctness of the scheme. Thus to ensure the correctness of the
scheme, we have to make a transformation inspired by Fiat-Shamir [9]. The full
scheme will be present in Sect. 5.1.

4.2 Security Analysis

Now we provide the security results for the basic scheme.

Theorem 1. If there exists an adversary A can break the IND-FE-CPA of the
Basic-IPFEc scheme with non-negligible probability, then there exists an algo-
rithm B can solve the Decision SD problem with non-negligible probability.

Proof. Suppose there exists an adversary A who can break the IND-FE-CPA of
the Basic-IPFEc scheme, then we can build an algorithm B to solve a Decision
SD problem.

When given a DSD(n, k, w) problem with a parity check matrix H∗ and a
vector s∗, B will simulate the oracles Sinit and SLR for the Initialize and LR
step in the IND-FE-CPA game respectively, and then builds a sequence of games
as follows:

– Game0: This is the real IND-FE-CPA challenge game which B encrypts the
message x0, and we describe it as follows.

• Initialize: Input the security parameter 1λ, output the public parameters
param = {q, n, k, l, w1, w2} and a matrix G which can be viewed as a
generator matrix of a random linear [n, k] code. The Setup step also
generates the master public key and master secret key as follows:
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msk = (m1,m2, . . . ,ml);
mpk = (m1G + e1,m2G + e2, . . . ,mlG + el).

This step returns the master public key mpk.
• KeyDer: Input a vector y given by the adversary A, output the secret

key sky = y1m1 + y2m2 + · · · + ylml

• Enc: Input two challenge messages x0 and x1, the challenger first checks
whether 〈x0,y〉 = 〈x1,y〉 holds for all queried y in the KeyDer queries.
If not, return false. Else it encrypts x∗ = x1 into Ct∗ as follows:

ct∗0 = Gr;
ct∗i = 〈mpki, r〉 + x∗

i , i ∈ {1, 2, . . . , l};
Ct∗ =

(
ct0, (cti)l

i=1

)
.

• Finalize: The adversary A guesses which message xb′ is encrypted, and
output b′.

We denote by Pr[Gi] the probability that A wins the game i. Then we have
Pr[G0] = Pr[A output 0] = p.

– Game1: In this game, B simulates the Initialize step to answer the mpk
queries from A, and other steps remain the same. This simulator uses a list
Λ(mpk) to store the master key pairs (msk,mpk). We describe the simulator
Sinit in Fig. 2.

Fig. 2. Simulators Sinit and SLR

In the real Setup algorithm, the matrix G is sampled uniformly from the
full rank k × n matrix over Fq, and the only difference in Sinit is that in
the t1-th query, the matrix is given by a determinant full rank matrix H∗.
We emphasis here that this parity check matrix has noting to do with the
generator matrix mentioned before. Namely, if this parity check matrix H∗

is a (n̂ − k̂) × n̂ matrix, then the challenger will set the public parameters
as param = {n̂, n̂ − k̂, q, w1, w2}. From the view of A, there is no difference
between Game1 and Game0. Thus we have Pr[S1] = Pr[S0].
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– Game2: In this game, the challenger modifies the winning condition. This
game is conditioned by the adversary making the final distinguish on the t1-
th query to mpk, where t1 ←$ {1, 2, . . . , qinit}. In another word, the challenge
ciphertext Ct∗ is encrypted by the key H∗. Hence we have Pr[S2] = 1

qinit
Pr[S1].

– Game3: In this game, B encrypts the message x0 by the simulator SLR shows
in Fig. 2.
Here r′

i ← D(〈e, r〉) denotes the distribution of 〈e, r〉. This distribution is
analysed in Sect. 5.2.
On one hand, if (H, s∗) comes from an SD(n, k, w2) distribution, the challenge
ciphertext is a well-distributed ciphertext of the message xb. In more detail,
there will exist a vector r∗ ∈ Sw

n such that s∗ = H∗r∗. As a result, we have

ct0 = s∗ = H∗r∗

and

cti = ai + xi + r′
i = 〈mi, s∗〉 + xi + r′

i

= 〈mi,H
∗r∗〉 + xi + r′

i = 〈miH
∗, r∗〉 + xi + r′

i

= 〈mpki − ei, r∗〉 + xi + r′
i = 〈mpki, r∗〉 + xi − 〈ei, r∗〉 + r′

i

= 〈mpki, r∗〉 + xi

On the other hand, if (H∗, s∗) does not come from an SD(n, k, w2) distribution,
A will get the ciphertext Ct∗ = (ct0, (ct)l

i=1) and the secret key sky for vector
y. Then he can run the Decrypt algorithm and get

Decrypt(mpk,Ct, sky) =
l∑

i=1

yicti − 〈sky, ct0〉

=
l∑

i=1

yiai +
l∑

i=1

yir
′
i +

l∑

i=1

xiyi − 〈
l∑

i=1

yimi, s
∗〉

=

l∑

i=1

xiyi +

l∑

i=1

yi〈mi, s
∗〉 +

l∑

i=1

yi · r′
i −

l∑

i=1

yi〈mi, s
∗〉

=
l∑

i=1

xiyi +
l∑

i=1

yi · r′
i.

Since r′ is sampled from the same distribution as the real inner production of
small weight vectors e and r, the real ciphertext and the output of simulator
have the same distribution.
If A can distinguish Game3 from Game2, then B can build an algorithm
D invoke A by outputting “Syndrome” or “Uniform” if A outputs “Game
2” or “Game 3” respectively. Since DSD(n, k, w2) is a hard problem, i.e.
Pr[D wins] = negl(λ), we have |Pr[S3] − Pr[S2]| = negl(λ).

– Game4: This game is the same as Game3 except for the encrypted message is
x1. Since msk = (mi)l

i=1 and each mi is sampled uniformly from F
k
q , we have

ai = 〈mi, s
∗〉 is uniformly distribute over Fq. Thus xi in cti = ai + xi + r′

i is
well hid by ai. As a result, Game4 is indistinguishable from Game3, and we
have Pr[S4] = Pr[S3].
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– Game5: This game is the same as Game2 except for the encrypted message
is x1. The indistinguishability between Game4 and Game5 is similar as that
between Game3 and Game2. Thus we have |Pr[S5] − Pr[S4]| = negl(λ).

– Game6: This game is the same as Game1 except for the encrypted message
is x1. The indistinguishability between Game5 and Game6 is similar as that
between Game2 and Game1. Thus we have Pr[S6] = 1

qinit
Pr[S5].

– Game7: This game is the same as Game0 except for the encrypted message
is x1, i.e. the real IND-FE-CPA challenge game which encrypts the message
x1. The indistinguishability between Game6 and Game7 is similar as that
between Game1 and Game0. Thus we have Pr[S7] = Pr[S6].

To sum up, we have

Succind−fc−cpa−b
IPFEc,λ = Pr[S7] − Pr[S0] = Pr[S6] − Pr[S1]

=
1

qinit
Pr[S5] − 1

qinit
Pr[S2]

= (Pr[S4] + negl(λ)) − (Pr[S3] + negl(λ))
= negl(λ).

��

Note 1. The public key of our basic scheme is actually a ciphertext of the
McEliece public key encryption system with the secret key as the corresponding
plaintext. Since we choose G as a generator matrix of a random linear code
C, there exists no decoding algorithm to C which is more efficient than the
information set decoding (ISD) algorithm. Thus, the most efficient way to break
the onewayness from the master public key to the master secret key is the ISD
attack. The effect of the ISD attack will be analysed in Sect. 5.3.

Note 2. If an adversary asked y vectors sufficient times such that they form a
basis for F

l
q, then the adversary can recover x from the ciphertext and wins the

security game. Moreover, leakage of the master secret key will happen if there
is no limitation to the number of KeyDer Oracle queries. As is said in [1], this
has nothing to do with the specific implementation of the functionality, it is
something inherent to the functionality itself. Since our basic idea follows the
generic construction in [1], this problem does not matter and can be avoided by
setting a limitation on the query times.

5 The Full Scheme

In the FE schemes, correctness means that the decryption step will always out-
put the correct result 〈x,y〉 except for a negligible probability. However, as men-
tioned before, our scheme may return a value with some noise at the decryption
step with some probability. A simple idea to solve this problem is to repeat
the encryption and decryption step until one value is returned twice. However,
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in an interactive protocol, online immediate communication may have a high
cost. This problem can be solved by using Fiat-Shamir transformation. In more
detail, the basic scheme is repeated c times, and the decryption algorithm will
return the most frequent occurrence value. In this section, we will present the
full scheme at first. Then an analysis of the correctness will be given in detail.
The security of the full scheme is discussed at last.

5.1 The Presentation of the Full Scheme

Add c into the parameter list, then our scheme can be described as the following
four algorithms.

– Setup (1λ, l):
1. Load the public parameters param = (q, n, k, 1, w1, w2, c);
2. G ←$ F

n×k
q ;

3. for j = 1 to c do
4. for i = 1 to l do
5. mskj [i] = mi ←$ F

k
q ;

6. ei ←$ Sw1
n ⊂ F

n
q ;

7. mpkj [i] = miG + ei;
8. msk = (mskj)c

j=1;
9. mpk = (mpkj)c

j=1;
10. Return (msk,mpk,G);

– KeyDer (msk,y):
1. Load the public parameters param = (q, n, k, l, w1, w2, c);
2. for j = 1 to c do
3. sky,j = 0;
4. for i = 1 to l do
5. sky,j = sky,j + yimskj,i;
6. sky = (sky,j)c

j=1;
7. Return sky;

– IPEncrypt (mpk,x = (x1, x2, . . . , xl)):
1. Load the public parameters param = (q, n, k, l, w1, w2, c);
2. for j = 1 to c do
3. r ←$ Sw2

n ⊂ F
n
q ;

4. ct0 = Gr;
5. for i = 1 to l do
6. cti = 〈mpkj [i], r〉 + xi;
7. Ctj =

(
ct0, (cti)l

i=1

)
;

8. Return Ctci=1;

– IPDecrypt (Ctci=1, sky,y):
1. Load the public parameters param = (q, n, k, l, w1, w2, c);
2. for i = 1 to c do
3. Ri =

∑l
j=1 yjCti,j − 〈sky,j ,Ctj,0〉;

4. a = 0 ∈ Z
q;

5. for i = 1 to c do
6. a[Ri] = a[Ri] + 1;
7. Return index(max(a));
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5.2 Correctness

The correctness of the scheme ensures that the decryption step will return the
correct value of the inner product of x and y. As we have seen in the basic
idea, the probability of 〈e, r〉 = 0 is not large enough. In this subsection, we will
first calculating the distribution of 〈e, r〉, i.e. Pr[〈e, r〉 = 0], then analysing the
correctness of the full scheme.

Suppose wt(e) = wt(r) = w we have

Pr [〈e, r〉 = 0|wt(e) = wt(r) = w] := 1 − p1 − p2 − · · · − pw

= 1 − Pr[∃ only one position i s.t. eiri �= 0]

−Pr[∃ only two positions i1, i2 s.t. eij rij �= 0 ∧
∑

j

eij rij �= 0 for j ∈ {1, 2}] − · · ·

−Pr[∃ only w positions ij s.t. eij rij �= 0 ∧
∑

j

eij rij �= 0 for j ∈ {1, . . . , w}]

and

p1 =
(

w

1

)
w

n

w−1∏

j=1

n − w − (j − 1)
n − j

;

p2 =
q − 1

q

(
w

2

)
w(w − 1)
n(n − 1)

w−1∏

j=2

n − w − (j − 1)
n − j

;

· · ·

pw =
q − 1

q

(
w

w

) w−1∏

j=w

w − j

n − j
.

As a result, we have

Pr[〈e, r〉 = 0] = 1 −
w∑

i=1

pi := p̂

In order to guarantee that wt(e) = wt(r) = w can be selected, we have to set
n = 2k. Hence the n × k matrix which is denoted as G in our scheme can be
viewed as a generator matrix of a random [n, k] code as well as a parity check
matrix of another random [n, k] code. Thus, we have to choose parameters such
that CSD(n = 2k, k, w) is hard.

Lemma 1. Let z1, z2, . . . , zn be independent identically distributed random vari-
ables with Pr[zi = 0] = p and Pr[zi = a �= 0] = (1 − p)/(q − 1) for a ∈ [1, q − 1].

If Zn =
∑n

i=1 zi, we have Pr[Zn = 0] = 1
q + q−1

q

(
qp−1
q−1

)n

.
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Proof.

Pr[Z1 = 0] = Pr[z1 = 0] = p.

Pr[Zn = 0] = Pr[
n∑

i=1

zi = 0] =
q−1∑

an=0

Pr[
n−1∑

i=1

zi = an|zn = −an]Pr[zn = −an]

= Pr[
n−1∑

i=1

zi = 0|zn = 0]Pr[zn = 0]

+
q−1∑

an=1

Pr[
n−1∑

i=1

zi = an|zn = −an]Pr[zn = −an]

= pPr[
n−1∑

i=1

zi = 0] +
1 − p

q − 1

q−1∑

an=1

Pr[
n−1∑

i=1

zi = an]

= pPr[Zn−1 = 0] +
1 − p

q − 1
(1 − Pr[Zn−1 = 0])

=
1 − p

q − 1
+

(

p − 1 − p

q − 1

)

Pr[Zn−1 = 0]

=
1 − p

q − 1
+

qp − 1
q − 1

Pr[Zn−1 = 0]. (2)

Similarly, for Pr[Zn−1 = 0] we have

Pr[Zn−1 = 0] = Pr[
n−2∑

i=1

zi = 0|zn−1 = 0]Pr[zn−1 = 0]

+
q−1∑

an=1

Pr[
n−2∑

i=1

zi = an|zn−1 = −an]Pr[zn−1 = −an]

=
1 − p

q − 1
+

qp − 1
q − 1

Pr[Zn−2 = 0]. (3)

Denoting C = 1−p∗

q−1 and Q = qp∗−1
q−1 , then from Eq. (2) and Eq. (3) we have

Pr[Zn = 0] = C + QPr[Zn−1 = 0].

Then we have

Pr[Zn = 0] +
C

Q − 1
= Q(Pr[Zn−1 = 0] +

C

Q − 1
).

And hence

Pr[Zn = 0] +
C

Q − 1
= Qn−1

(

Pr[Z1 = 0] +
C

Q − 1

)

= Qn−1

(

p +
C

Q − 1

)

,

Pr[Zn = 0] = Qn−1

(

p +
C

Q − 1

)

− C

Q − 1
. (4)
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Finally, from Eq. (4) we have

Pr[Zn = 0] = Qn−1

(

p +
C

Q − 1

)

− C

Q − 1

=
(

qp − 1
q − 1

)n−1 (

p − 1
q

)

+
1
q

=
1
q

+
q − 1

q

(
qp − 1
q − 1

)n

.

��
The following corollary shows the DFR of the simple idea.

Corollary 1. If ei, r ∈ Sw
n , and yi is uniformly distributed over [0, q − 1], we

have Pr[
∑l

i=1 yi〈ei, r〉 = 0] = 1
q + q−1

q

(
qp̂−1
q−1

)l

:= p̄.

In the full scheme, we repeat the basic idea c times, and choose the most
frequency occurred value in the decryption algorithm as the final output. The
probability of a correct value occurs most frequency can be calculate precisely
as follows.

Denote Ti as the number of i duplicate values occurs and T0 as the number
of 0 occurs, and T0+

∑
i iTi = a. For example, if s = (0, 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6),

then we have T0 = 2 and T1, T2, T3 = 3, 2, 1, T0 +
∑

i iTi = 12. Given a sequence
s ∈ F

c
q with length c, each coordinate is independent identical distributed with

Pr[si = 0] = p̄ and Pr[si = a ∈ F
∗
q ] = 1−p̄

q−1 , we have

Pr[0 occurs t times] =
(

c

t

)

p̄t(1 − p̄)c−t.

Note that our aim is to evaluate the DFR of the full scheme. Obviously,
if t > �c/2�, the decryption will return the correct value, and hence we only
consider when t < �c/2�. If for all i ≥ t, we have Ti = 0, i.e. T0 +

∑
i<t iTi = c,

then the decryption will also success. As a result, the DFR can be calculated as
follows:

Pr[Decryption fails] = Pr[T0 = t ∧ T0 +
∑

i

iTi = c ∧ (∃i > t, Ti > 0)]

= 1 − Pr[T0 = t ∧ t > �c/2�] − Pr[T0 = t ∧ T0 +
∑

i<t

iTi = c]

= 1 −
c∑

t=�c/2�

(
c

t

)

p̄t(1 − p̄)c−t − Pr[T0 = t ∧ T0 +
∑

i<t

iTi = c]. (5)
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For Pr[T0 = t ∧ T0 +
∑

i<t iTi = c], we have

Pr[T0 = t ∧ T0 +
∑

i<t

iTi = c] =
	c/2
∑

t=2

Pr[T0 = t ∧ T0 +
∑

i<t

iTi = c]

=
(

t

2

)

p2(
1 − p

q − 1
)c−2 (q − 1)!

(q − 1 − (c − 2))!
+

(
t

3

)

p3(
1 − p

q − 1
)c−2

·
∑

T1

∑

T2

(
c − 3
T1

)
(q − 1)!

(q − 1 − T1)!

T2∏

i=0

(
c − 3 − T1 − 2i

2

)
(q − 1 − T1)!

(q − 1 − T1 − T2)!

+ · · ·

=
	c/2
∑

t=2

(
c

t

)
pt(1 − p)c−t(q − 1)!

(q − 1)c−t(q − 1 − (c − t))!

∑

Tt,...,T2

2∏

j=t

Tj∏

i=0

(
c − t − ∑j+1

k=t Tk

i

)

:= p. (6)

Take p in Eq. (6) into Eq. (5), we have

DFR = 1 −
c∑

t=�c/2�

(
c

t

)

p̄t(1 − p̄)c−t − p. (7)

However, this Eq. (7) is hard to evaluate because the computational complexity
is approximately O(cc). Here we use another method to roughly estimate the
DFR. We take q much larger than c to ensure that the possibility of a random
non-zero value occurs more than 3 times in the decryption algorithm is less
enough to omit. Thus we only have to make sure that the 0 occurs more than 4
times in the total c repetitions. Hence we take the DFR as

∑3
i=0 p̄i(1 − p̄)c−i.

5.3 Security

The security of the full scheme is very similar to the basic idea, except for
that in the full scheme, one basic scheme is repeated many times. As we have
proved before in Theorem 1, any PPT adversary can only break the basic scheme
in negligible probability. Since the full scheme only repeat the basic scheme
limited times, this does not effect on the security property of the inner product
encryption scheme. As a result, we give the following theorem.

Theorem 2. If there exists an adversary A can break the IND-FE-CPA of our
IPFEc scheme with non-negligible probability, then there exists an algorithm B
can solve the Decision SD problem with non-negligible probability.

For known attacks, given a security parameter λ, we need take two factors
into account. The first one is that in the Setup algorithm, it is difficult to recover
the master secret key msk given a public key mpk. In fact, this procedure is an
encryption in McEliece encryption system [16]. The second one is that in the
IPFEncrypt algorithm, it is difficult to recover the random vector r given
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the ciphertext ct0. And in fact, this procedure is an encryption in Niederreiter
encryption system [17]. The security of both cryptosystems are based on the
hardness of decoding problem which is known to be hard when the weight of
error vector is small or large enough. In a nutshell, for a given parity check
matrix H ∈ F

(n−k)×n
q or a correspond generator matrix G ∈ F

k×n
q , the decoding

problem is hard [8] if we seek a word e of relative weight w/n < w−
easy = q−1

q
r
n

or w/n > w+
easy = 1 − 1

q
r
n . Considering the decrypt failure rate, we choose small

weight as our parameters in the IPFEc scheme (Fig. 3).

Fig. 3. Asymptotic hardness of decoding

Nowadays, the most effect attack toward these code-based encryption sys-
tems is the information set decoding attack. Information set decoding is an
approach introduced by Prange [22]. The idea is to find a set of coordinates of
a garbled vector which are error-free and such that the restriction of the codes
generator matrix to these positions is invertible. Then, the original message can
be computed by multiplying the encrypted vector by the inverse of the subma-
trix. Peters [21] generalised the ISD algorithm over F2 to Fq, afterwards Niebuhr
et al. [18] optimized it and show a lower bound for their ISD algorithm in Fq.
[4,14,15] improves the ISD algorithm over Fq by using the technique of nearest
neighbour approach, but there are many limitations in the scope of application
of these works. With big q as the size of the finite field, [18] still can be viewed
as the most effective ISD attack.

Let n be the length of the code C over Fq, k be the dimension and r = n − k
be the co-dimension. To correct t errors, the lower bound for the expected cost
in the binary operation of the algorithm is

ISD(n, k, t, q) = minp
1√

q − 1
· 2lmin

((
n
t

)
(q − 1)t, qr

)

λq

(
r−l
t−p

)(
k+l
p

)
(q − 1)t

·
√(

k + l

p

)

(q − 1)p (8)

with l = logq

(
Kqλq

√(
k
p

)
(q − 1)p−1 · ln(q)/2

)
and λq = 1 − exp(−1) ≈ 0.63.

In order to resist the ISD attack, we have to take parameters n, k, t, q for
security parameter 2λ such that

ISD(n, k, w, q) > 2λ.

Performance. For example, to support inner-product encryption of vector with
length l = 5 and to reach 280 security, we have to choose (q, n, k, w, c) =
(32771, 8000, 4000, 78, 800), which causes a public key size as 50.07 MB and
ciphertext size as 5.01 MB. Since we do not need any decode operation, our
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encryption and decryption algorithms runs fast. With the above parameters, we
simulate our full scheme on MAGMA [13]. It shows that the Setup and Key-
Der step can be done within 167 s, the IPEncrypt algorithm takes 256 s, and
the IPDecrypt algorithm takes 1.79 s.

6 Conclusion

In this work, we construct a code based inner product encryption scheme. As far
as we know, this is the first code-based FE scheme. The security of our scheme
can be reduced to the syndrome decoding problem for random linear codes. Since
the basic scheme suffers from an intolerant decrypt fail rate, we use Fiat-Shamir
transformation to get the full scheme with correctness property. This costs a
very large parameter size but our scheme performs well in the running time.
Although our scheme needs a very large parameter size, it is a pioneering trial
to construct cryptographic applications from coding theory. For future, how to
design more efficient code-based inner product FE schemes and other FE schemes
are worthwhile to work on.
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Abstract. Group signatures allow users to anonymously sign messages
on behalf of a group. In this paper, we construct a group signature with
verifiable controllable linkability in a generic way, where a linking author-
ity (LA) can link two signatures to determine whether they are gener-
ated by the same unknown signer or not. Our core building block is a
structure-preserving public key encryption with equality test, where pub-
lic keys, plaintexts, and ciphertexts are all group elements, encryption,
decryption, and test algorithms only consist of group and pairing oper-
ations. Due to its structure-preserving property, our scheme is easy to
combine with non-interactive zero-knowledge proofs on bilinear groups
and hence make this combination more efficient than the most CCA-full-
anonymous GSS-VCL constructions in the standard model.

Keywords: Group signature · Verifiable controllable linkability ·
CCA-full-anonymity · Standard model · Structure-preserving public
key encryption with equality test

1 Introduction

By providing real-time information about current traffic conditions, collision
avoidance assistance, automatic emergency notification or visual enhancement
systems, Vehicle Safety Communication (VSC) technology will help drivers make
more coordinated and smarter decisions, which improves the national highway
system overall safety and efficiency. However, the VSC technology broadcasts
information about the current location, speed and heading of the vehicle, which
causes malicious entities to track individuals, collect information, and then use
the collected information to blackmail them. What is more serious is that this
may even threaten the user’s personal safety. So the notification message from
the vehicle in vehicle adhoc network (VANET) should be anonymous. However,
unconditional anonymity may be abused, such as sending false messages, Sybil
attacks, and spam. As one of the most common anonymous primitives, people
have done a lot of research on group signature schemes (GSS). Compared with
the traditional digital signature schemes where signers can be publicly identified,
c© Springer Nature Switzerland AG 2021
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group signature schemes, proposed by Chaum and van Heyst [1], allow users to
anonymously sign messages on behalf of a group. The verifiers can determine if
a signature has been actually generated by a member in the group, while they
cannot determine the specific identity of the signer. The group manager (GM)
can open a signature to determine the specific identity of the signer if necessary.

At the same time, considering that a signer may wish to provide a specific
verifier with linking capability, his signature is still unlinked to other verifiers.
In the traditional GSS [2], the verifier can have this linkability in a very limited
way by querying two signatures to the Opener to compare their signer identities.
This online linking operation not only puts a serious burden on the Opener, but
the whole process is very slow. In order to make a group signature suitable for
those real-time applications such as VANET, we construct a group signature
with verifiable controllable linkability (GSS-VCL) in the standard model, where
a linking authority (LA) can link two signatures to determine whether they are
generated by the same unknown signer. This verifiable controllable linkability
(VCL) will significantly reduce the burden of the Opener by distributing linking
tasks to local verifiers.

Bellare et al. [2] define CCA-full-anonymity, which requires that an adversary
can’t determine whether a signature is generated by a user in question, even if
the adversary has the secret keys of all users. It allows the adversary to query the
opening oracle. Boneh et al. [4] relax the requirement of CCA-full-anonymity and
define CPA-full-anonymity, where the adversary cannot query the opening oracle.
Moreover, some group signature schemes [5] only achieve selfless anonymity,
which is a weaker notion than CPA-full-anonymity. It can only resist adversaries
who do not have the users’ signing keys. If a user’s secret key is exposed, the
anonymity of the signature associated with the secret key will not be guaranteed.

In some cases, it may be desirable to link different signatures of the same
anonymous signer, such as anonymous credentials, electronic voting, and so on.
To solve this problem, Blazy et al. [6] propose a generic framework of GSS-VCL.
The main idea of this primitive is similar to the group signatures with con-
trollable linkability (GSS-CL) [7,8], where a dedicated linking authority (LA)
can link two signatures to determine whether they are produced by the same
signer without learning the actual identity of the signer, in other words, the
signer is still anonymous. Compared with GSS-CL, GSS-VCL takes untrusted
LAs into account, i.e., a LA needs to provide verifiable evidence to prove that
its decision is correct. However, the above schemes [7,8] are constructed in the
random oracle, and [7] can only achieve CPA-full-anonymity. As we know, it’s
limited to make a heuristic argument in terms of security in the random ora-
cle and it may be required to achieve CCA-full-anonymity in some applica-
tions. Though [6,8]can achieve CCA-full-anonymity using the twin encryption
paradigm [9] or Cramer-Shoup encryption [10] that makes their scheme can
only use generic zero-knowledge proof technology to prove knowledge of the
respective values, which makes their scheme inefficient. Those motivate our work
for a new efficient GSS-VCL scheme which can achieve CCA-full-anonymity in
the standard model. The core of our VCL technique is a tool to extend an
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IND-CPA/IND-CCA secure public key encryption scheme so that the scheme
has a feature that allows a designated party to determine whether two mes-
sages contained in two ciphertexts are the same value without decrypting the
ciphertexts.

1.1 Our Contributions

The contributions of this paper are as follows.

– We construct a group signature with verifiable controllable linkability (GSS-
VCL) in the standard model, where a linking authority (LA) can link two
signatures to determine whether they are generated by the same unknown
signer. Compared with the existing group signature with verifiable control-
lable linkability [6], since the core building block of our scheme is structure-
preserving that makes our scheme easy to combine with non-interactive zero-
knowledge proofs for bilinear groups, which may make our GSS-VCL more
efficient than [6] when implementing CCA-full-anonymity in the standard
model.

– As a core building block of our GSS-VCL, we introduce structure-preserving
into public key encryption with equality test scheme and propose structure-
preserving public key encryption with equality test (SP-PKEET). A public
key encryption with equality test scheme is structure-preserving if the public
keys, plaintexts, and ciphertexts are all group elements, and the encryption,
decryption, and test algorithms consist of only group and pairing operations.

– We prove the security of SP-PKEET in the standard model. It can achieve S-
PRIV1-CCA security against the Type-I adversary who has the trapdoors and
IND-CCA security against the Type-II adversary without trapdoors under the
DLIN assumption [4].

1.2 Related Work

PKEET. The main idea of the VCL is related to the concept of public-key
encryption with equality tests (PKEET) [8,11,12], where a party can determine
whether the two ciphertexts contain the same plaintext without decryption. [8]
makes use of cryptographic hash functions to achieve security against chosen-
ciphertext attacks, these hash functions prevent one from efficiently proving rela-
tions between the input and output of the encryption procedure. It is worth men-
tioning that the above schemes are constructed in the random oracle, which is
limited to make a heuristic argument in terms of security. Though [11,12] are con-
structed in the standard model, they involve encrypting hashes of the messages.

Group Signatures with Opening. In standard group signatures [2,4], given
two signatures, the group manager (GM) with the opening key can open them
and recover the identities of the signers to determine whether the two signatures
are signed by the same signer, but at high costs for privacy: the full identity of
the signer will be recovered for each linking request.
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Group Signatures Supporting Public Linking. Link-but-not-trace group
signatures, first proposed by Nakanishi et al. [13], typically tag the double signer
in a way so that signatures from the same signer can be linked easily in the future.
In the tracing-by-linking (TbL) group signatures [14], the signer’s anonymity
cannot be revoked by any combination of authorities. But if a group member
signs twice (per event), then its identity can be traced by any member of the
public without needing any trapdoor. Subsequently, some group signatures [15]
based on basename or pseudonym to achieve linkability are proposed. Since the
linking in these schemes are public operations, they cannot achieve CL, let alone
VCL.

Convertably Linkable Group Signatures. The convertably linkable group
signatures (CL-GSS), first proposed by Garms et al. [16], allow for flexible and
selective linkability. All group signatures are associated with pseudonyms, which
are unlinkable by default. A converter converts the received pseudonyms into a
consistent representation when needed, which means that all pseudonyms from
the same user will be converted to the same value. However, this method requires
a computational cost that is linearly related to the number of group members to
perform the link operation. Besides, this scheme needs to create a new default
unlinkable pseudonym for each newly joined member.

Traceable Signatures. Traceable signatures introduced by Kiayias et al. [17]
allow tracers to link all group signatures related to a given tracing trapdoor. How-
ever, the group signatures generated by other group members are still unlinkable
unless the group manager also sends their tracing trapdoors to the tracers. The
method requires computational costs linearly related to the number of group
members to perform the link operations, which will become impractical for larger
groups. In addition, whenever a new member joins a group, the group manager
needs to communicate the tracing trapdoors of new members in time.

Group Signatures with Verifier-Local Revocation. Group signatures with
verifier-local revocation (GSS-VLR) introduced by Boneh et al. [5] allow the
verifiers to determine whether a signature was signed by a member who has
been revoked. However, the verifiers must update the revocation list (RL) on
every revocation, and the signatures of the revoked members are linkable for all
verifiers. Besides that, GSS-VLR [5] can only achieve selfless anonymity.

Group Signatures with Controllable Linkability. Group signatures with
controllable linkability (GSS-CL) [7,8] allow a dedicated linking authority (LA)
to determine whether the two signatures have been signed by the same signer
without learning the actual identity of the signer, in other words, its anonymity
remains. However, they can only achieve CPA-full-anonymity in the random
oracle, and they do not take untrusted LAs into account.

1.3 Comparison

As shown in Table 1, we give the features comparison of proposed group schemes
from implementation of CL or VCL, CCA-full-anonymity, and other functional-
ities. It can be learnt from the Table 1 that our GSS-VCL is a dynamic group
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signature in the standard model, which can achieve CCA-full-anonymity, while
most existing works can only achieve CPA-full-anonymity [7,8,13,14,16] or self-
less anonymity [5] in the random oracle model. The LA in our scheme can effi-
ciently perform the linking operation in a constant time. Since the LA has a
single trapdoor, our scheme does not require additional memory requirements
to store trapdoors as schemes [5,13,14,16,17], and there is no need for the LA
to communicate new users’ trapdoors with the group manager when new users
join the group.

2 Preliminaries

2.1 Mathematical Preliminaries

Bilinear Map. Let G,GT denote two groups of prime order p. A bilinear map
e : G × G → GT satisfies the following properties:

1. Bilinear: For any U, V ∈ G and a, b ∈ Z
∗
p, e

(
Ua, V b

)
= e (U, V )ab;

2. Non-degenerate: If g is a generator of G, then e(g, g) is the generator of GT ;
3. Computable: There exists an efficient algorithm to compute e(U, V ) for any

U, V ∈ G.

Table 1. Comparison of concepts regarding their applicability for VCL

Mechanism CLa VCLb U-Joinc Dy-Gd SMe CCA-FAf Linkg Memoryh

TbL [14] × × √ √ × × O (N) O (N)

Link-but-not-trace [13] × × × √ × × O (N) O (N)

GSS-UCL [15] × × √ √ × × O (N) O (N)

Traceable signatures [17]
√ × √ √ × √ O (N) O (N)

GSS-VLR [5]
√ × √ × × × O (N) O (N)

CL-GSS [16]
√ × √ √ × × O (N) O (N)

GSS-CL [7,8]
√ × × √ × × O (1) O (1)

Ours
√ √ × √ √ √ O (1) O (1)

aCL denotes implementation of CL.
bVCL denotes implementation of VCL.
cU-Join denotes the communication overhead (communication of the trapdoors to the LA) each

time a new user joins the group or a member leaves a group.
dDy-G denotes dynamic group.
eSM denotes standard model.
fCCA-FA denotes CCA-full-anonymity.
gLink denotes the additional computational overhead for linking.
hMemory denotes the additional memory overhead for linking.

Decisional Linear Assumption (DLIN) [4]. Let G be a group of prime
order p. For randomly chosen g1, g2, g3 ← G and r, s, t ← Zq, the following two
distributions are computationally indistinguishable:

(
G, g1, g2, g3, g

r
1, g

s
2, g

t
3

) ≈ (
G, g1, g2, g3, g

r
1, g

s
2, g

r+s
3

)
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2.2 Sign-Encrypt-Proof Paradigm and Efficient Non-interactive
Proofs for Bilinear Groups

Signature-encryption-proof (SEP) paradigm [3] is a typical framework
of group signatures, which includes a secure signature scheme DS =
(KeyGens, Sign, V erify), a public key encryption scheme (at least IND-CPA
security) AE = (KeyGene, Enc, Dec), and a non-interactive zero-knowledge
proof system, which is used to prove that the respective values are well-formed.

Groth and Sahai [18] propose efficient non-interactive witness-
indistinguishable (NIWI) proofs and non-interactive zero-knowledge (NIZK)
proofs for languages on bilinear groups, which can be described as a series of sat-
isfiable equations, i.e., pairing product equations (PPEs), multi-exponentiation
equations, and quadratic equations.

3 Group Signatures with Verifiable Controllable
Linkability

A GSS-VCL scheme is specified as a tuple GS = (GkGen,UkGen, Join,
Issue,GSig,GV f,Open, Judge, Link, JudgeLink) of polynomial-time algo-
rithms (following [6]).

– GkGen
(
1λ

)
: It takes security parameter 1λ as input, and outputs a tuple

(gpk,mik,mok,mlk). The master issue key mik is provided to the IA for
issuing certificates, the master opening key mok is provided to the OA for
opening signatures, the master linking key mlk is provided to the LA to link
two different signatures. gpk represents the group public key.

– UkGen
(
1λ

)
: When a useri wants to join a group, the useri should run UkGen

algorithm to compute a pair of keys (upki, uski), representing a personal
public key and a private key separately.

– Join/Issue(useri : upki, uski; issuer : gpk,mik, upki): This is an interactive
protocol between a useri and the issuer. On input (upki, uski), the useri

interacts with the issuer and stores some corresponding secret signing key
information in gski. On input gpk,mik, upki, the issuer interacts with the
useri and registers the uski’s public key upki in reg[i].

– GSig (gpk,m, gski, upki): It takes the group public key gpk, the master issu-
ing key gski, a message m and the personal public key upki as input, and it
outputs a signature σ.

– GV f (gpk,m, σ): It takes the group public key gpk, a signature σ, a message m
and the personal public key upki as input, it verifies whether the signature σ is
valid concerning the message m and the gpk, and outputs 1 if the verification
succeeds and 0 otherwise.

– Open (gpk, reg[i],m, σ,mok): It takes the group public key gpk, the registra-
tion table reg[i], the valid signature σ, the message m and the master opening
key mok as input, and it returns the signer i and a publicly verifiable proof
τ for the corresponding claim. Otherwise, it claims that no group member
generates τ .
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– Judge (gpk,m, σ, i, upki, τ): On input the group public key gpk, the signature
σ of the message m, the claimed i of the corresponding signer of σ, and the
corresponding public key upki, the proof τ that the claimed i is indeed the
signer of σ. If the proof τ is valid, it outputs 1 and 0 otherwise.

– Link (gpk,m, σ,m′, σ′,mlk): It takes the group public key gpk, the master
linking key mlk, a signature m with σ, and a signature m′ with σ′ as input.
It verifies whether the two signatures are valid for m and m′ by asking the
GV f algorithm. If all the signatures are valid for the corresponding messages,
it uses the mlk to determine whether σ and σ′ are produced by the same
unknown signer, and outputs b ∈ {1, 0} and a publicly verifiable proof ρ to
prove the validity of the result.

– JudgeLink (gpk,m, σ,m′, σ′, b, ρ): It takes the group public key gpk, a signa-
ture m with σ, a signature m′ with σ′, b and the corresponding ρ as input. If
the proof ρ is valid for b, it outputs 1 and 0 otherwise.

A GSS-VCL must satisfy the following security properties. Note that in addi-
tion to the correctness, anonymity, non-frameability, and traceability properties
defined in the BSZ model, Hwang et al. [7] also define LO-Linkability (Link-Only
Linkability), JP-Unforgeability (Judge-Proof Unforgeability), and E-Linkability
(Enforced Linkability) to satisfy verifiable controllable linkability (VCL), and
then Blazy et al. [6] also add the definition of open soundness and Linking
Soundness.

4 Structure Preserving Public Key Encryption with
Equality Test

We define the notion of structure-preserving encryption with equality test. The
term “structure preserving” is borrowed from a structure preserving digital sig-
nature [19]. A signature scheme is structure-preserving if its verification keys,
messages, and signatures are group elements and the verification predicate is a
conjunction of pairing product equations. In 2011, Camenisch et al. [20] proposed
a structure preserving CCA secure encryption scheme. A public key encryption
scheme is said to be structure-preserving if (1) its public keys, messages, and
ciphertexts consist entirely of elements of a bilinear group, (2) its encryption
and decryption algorithms perform only group and bilinear map operations, and
(3) it is provably secure against chosen-ciphertext attacks. In the paper, we pro-
pose a structure preserving encryption with equality test (SP-PKEET), which
can be used as a main building block of the GSS-VCL in the standard model.
Compared with [20], we add an authorization algorithm and a test algorithm
to realize the equality test function in our SP-PKEET, in which the autho-
rization algorithm and the test algorithm perform only group and bilinear map
operations.
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4.1 Definition

A structure-preserving public key encryption with equality test (SP-
PKEET) cryptosystem consists of the following algorithms (KeyGen,Enc,Dec,
Aut, Test) :

– KeyGen
(
1λ

)
: It takes the security parameter 1λ as input and outputs the

public key pk and the private key sk.
– Enc(pk, L,m): It takes the public key pk, a message m with a label L as

input and outputs a ciphertext C.
– Dec(sk, L,C): It takes the private key sk, a label L and ciphertext C as input.

If C is a valid ciphertext, it outputs the message m, Otherwise, it outputs ⊥.
– Aut(sk): It takes the private key sk as input and outputs a trapdoor td.
– Test(Ci, Cj , tdi, tdj): It takes two ciphertexts Ci, Cj , tdi, tdj for useri, userj

as input and outputs 1 if messages associated with Ci, Cj are equal. Otherwise
it outputs 0.

4.2 Security Models for SP-PKEET

We consider the following two types of adversaries to define the security model
for SP-PKEET.

1. Type-I adversary: The adversary can request to issue a trapdoor for the tar-
get user and thus can perform equality tests on the challenge ciphertext Ct.
This type of adversary aims to decide Ct is the encryption of which message
between two candidates.

2. Type-II adversary: The adversary cannot request to issue a trapdoor for the
target user and thus cannot perform equality tests on the challenge ciphertext
Ct. This type of adversary aims to decide Ct is the encryption of which
message between two candidates.

Lu et al. [21] propose the security notion of S-PRIV1-CCA. Below we recall
S-PRIV1-CCA security against Type-I adversary A1 = (Am,Ag) in SP-PKEET.
Am and Ag share neither coins nor state. Assume that the target receiver has
index t (1 ≤ t ≤ n). The game between A1 and the challenger is as follows:

(1) Setup: The challenger takes a security parameter 1λ and runs the KeyGen
algorithm to generate public/secret key pair (pki, ski) for 1 ≤ i ≤ N . Then,
it gives the pki to Am and Ag.

(2) Phase 1: Am is allowed to issue key retrieve queries, decryption queries, and
authorization queries for polynomially many times. The constraint is that
〈t〉 does not appear in key retrieve queries.
• Key retrieve queries 〈i〉: The challenger sends ski to Am.
• Decryption queries 〈i, Ci〉: The challenger runs Dec algorithm on input

〈Ci, ski〉 to decrypt Ci using ski, and sends the output to Am.
• Authorization queries 〈i〉: The challenger runs Aut algorithm on input 〈i〉

to compute tdi and sends tdi to Am.
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(3) Challenge: The challenger Am randomly chooses massage (m0, x0), (m1, x1)
and sends them to the challenger. Then the challenger randomly chooses
b ∈ {0, 1} and runs the Enc algorithm to encrypt mb to get the challenge
ciphertext Ct, and it sends the challenge ciphertext Ct to Ag.

(4) Phase 2: Ag issues queries as in Phase 1. The constraints are that
• 〈t〉 cannot be queried to the key retrieve queries.
• 〈t, Ct〉 does not appear in the decryption queries.

(5) Guess: Ag outputs h. If h = x1, then b
′
= 1 else b

′
= 0.

The advantage of A1 is defined as

AdvS-PRIV 1-CCA
SP -PKEET,A1

(λ) =
∣
∣
∣
∣Pr

[
b

′
= b

]
− 1

2

∣
∣
∣
∣ .

Definition 1. For any PPT adversary A1, if its advantage
AdvS-PRIV 1-CCA

SP -PKEET,A1
(λ) is negligible in the security parameter 1λ, we say that

SP-PKEET is S-PRIV1-CCA secure.

We define IND-CCA security against Type-II adversary A2 in SP-PKEET.
Assume that the target receiver has index t (1 ≤ t ≤ n). The game between A2

and the challenger is as follows.

(1) Setup: The challenger takes a security parameter 1λ and runs the KeyGen
algorithm to generate public/secret key pair (pki, ski) for 1 ≤ i ≤ N . Then,
it gives the pki to A2.

(2) Phase 1: A2 is allowed to issue decryption queries for polynomially many
times. The constraints are that 〈t〉 does not appear in key retrieve queries
as well as authorization queries.
• Key retrieve queries 〈i〉: The challenger sends ski to A2.
• Decryption queries 〈i, Ci〉: The challenger runs Dec algorithm on input

〈Ci, ski〉 to decrypt Ci using ski to get m, and sends m to A2.
• Authorization queries 〈i〉: The challenger runs Aut algorithm on input 〈i〉

to compute tdi and sends tdi to A2.
(3) Challenge: The adversary A2 randomly chooses massage m0,m1 ∈ M

and sends them to the challenger. Then the challenger randomly chooses
b ∈ {0, 1} and runs the Enc algorithm to encrypt mb to get the challenge
ciphertext Ct, and it sends the challenge ciphertext Ct to A2.

(4) Phase 2: A2 issues queries as in Phase 1. The constraints are that 〈t〉 does
not appear in key retrieve queries as well as authorization queries, 〈t, Ct〉
does not appear in the decryption queries.

(5) Guess: A2 outputs b
′
and wins if b

′
= b.

The advantage of A2 is defined as

AdvIND-CCA
SP -PKEET,A2

(λ) =
∣
∣
∣
∣Pr

[
b

′
= b

]
− 1

2

∣
∣
∣
∣ .

Definition 2. For any PPT adversary A2, if its advantage
AdvIND-CCA

SP -PKEET,A2
(λ) is negligible in the security parameter 1λ, we say that SP-

PKEET is IND-CCA secure.
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4.3 Construction

We construct an SP-PKEET scheme in a bilinear group based on the DLIN
assumption, which is described as follows.

– KeyGen
(
1λ

)
: Choose random group generators g, g′, g1, g2, g3 ∈ G. For

randomly chosen α ← Z
3
q, set h1 = gα1

1 gα3
3 , h2 = gα2

2 gα3
3 . Then, select

β0, . . . , β5 ← Z
3
q, and compute fi,1 = g

βi,1
1 g

βi,3
3 , fi,2 = g

βi,2
2 g

βi,3
3 , for i =

0, . . . , 5. Output pk = (g, g′, g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0) and sk = ({α} ,

{βi}5i=0).
– Enc(pk, L,m): To encrypt a message m with a label L, choose random

r, s ← Zq and set u1 = gr
1, u2 = gs

2, u3 = gr+s
3 , c = m · hr

1h
s
2, v =∏3

i=0 ê
(
fr

i,1f
s
i,2, ui

) · ê
(
fr
4,1f

s
4,2, c

) · ê
(
fr
5,1f

s
5,2, L

)
, where u0 = g. Output

C = (u1, u2, u3, c, v).
– Dec(sk, L,C): Parse C as (u1, u2, u3, c, v). Then check whether

v
?=

3∏

i=0

ê
(
u

βi,1
1 u

βi,2
2 u

βi,3
3 , ui

)
· ê

(
u

β4,1
1 u

β4,2
2 u

β4,3
3 , c

)
· ê

(
u

β5,1
1 u

β5,2
2 u

β5,3
3 , L

)
,

where u0 = g. If the latter is unsuccessful, reject the ciphertext as invalid.
Otherwise, output m = c · (uα1

1 uα2
2 uα3

3 )−1
.

– Aut(sk): This algorithm outputs td = (g′α1 , g′α2 , g′α3) .
– Test(Ci, Cj , tdi, tdj): This algorithm outputs 1 if

e

(
ci

cj
, g′

)
=

e (ui,1, tdi,1) e (ui,2, tdi,2) e (ui,3, tdi,3)
e (uj,1, tdj,1) e (uj,2, tdj,2) e (uj,3, tdj,3)

,

otherwise return 0.

The ciphertext C ∈ G
4 × GT . With the pairing randomization technique

in [22], v ∈ GT can be replaced with six group elements v0, . . . , v5 ∈ G for
which the equation holds: v =

∏3
i=0 ê (vi, ui) · ê (v4, c) · ê (v5, L) . Therefore, the

ciphertext only consists of the elements in G.

Theorem 1. If DLIN holds, the above SP-PKEET scheme is S-PRIV1-CCA
secure against type-I adversary in the standard model.

Proof. Let A1 be a PPT adversary who can break the S-PRIV1-CCA security
of SP-PKEET. We start with the original S-PRIV1-CCA game and end up with
a game where the challenge ciphertext is an encryption of a random message
from the message space. Let Xi be the event that the adversary A1 outputs
b′ = b in Game i.

Game 0. This is the standard S-PRIV1-CCA game.

Pr [X0] = AdvS-PRIV 1-CCA
SP -PKEET,A1

(λ) +
1
2
.
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Game 1. For the tuple ((m0, x0), (m1, x1), L) chosen by the adversary
Am, the challenger computes the challenge ciphertext using the “decryption
procedure” as follows: u1 = gr

1, u2 = gs
2, u3 = gr+s

3 , c = m · uα1
1 uα2

2 uα3
3 , v =

∏3
i=0 ê(uβi,1

1 u
βi,2
2 u

βi,3
3 , ui) · ê(uβ4,1

1 u
β4,2
2 u

β4,3
3 , c) · ê(uβ5,1

1 u
β5,2
2 u

β5,3
3 , L). Since the

change is only syntactical, Game 1 is identical to Game 0. We have Pr [X1] =
Pr [X0] .

Game 2. The first three parts of the challenge ciphertext are computed
as follows: u1 = gr

1, u2 = gs
2, u3 = gt

3 where r, s, t ← Zq and r + s 
= t,
Game 1 and Game 2 are indistinguishable by DLIN assumption. We have
|Pr [X2] − Pr [X1]| = negl(λ).

Game 3. Note that in all the games, any decryption queries with correct
ciphertext, i.e., a decryption query with random vector DLIN tuple, will pro-
duce a unique plaintext. In other words, regardless of the concrete choice of
sk matching the pk seen by the adversary, this type of queries will not reveal
any information about the sk.

In this game, the decryption queries with “malformed” ciphertext will be
rejected. We consider the following two cases into account.

– (u′
1, u

′
2, u

′
3, c

′, L′) = (u1, u2, u3, c, L). Decryption queries like this will be
rejected whether v is equal to v′ or not, because the former is the challenge
ciphertext and the latter fails in verification predicate trivially.

– (u′
1, u

′
2, u

′
3, c

′, L′) 
= (u1, u2, u3, c, L). Decryption queries like this will be
rejected with overwhelming probability. Denote this by Lemma 2.

Since the number of decrypted queries is polynomial, We have
|Pr [X3] − Pr [X2]| = negl(λ).

Game 4. The challenge ciphertext is an encryption of a random message
from the message space. By Lemma 1, Game 4 is identical to Game 3.
Pr [X4] = Pr [X3] .

Due to the challenger’s choice b is independent from the ciphertext in Game
4, We have Pr [X4] = 1

2 . Then, by the indistinguishability of the sequence
games, AdvS-PRIV 1-CCA

SP -PKEET,A1
(λ) = negl(λ).

Lemma 1 shows that when computing the challenge ciphertext in Game 4,
the one-time pad of the message can be replaced by a random message from
the message space. Lemma 2 shows that any decryption query with incorrect
ciphertext will be rejected except with negligible probability.

For the proof of the Lemma 1 and Lemma 2, let g, g′, g1, g2, g3 ∈ G and
u1 = gr

1, u2 = gs
2, u3 = gt

3 where r, s, t ← Zq and r + s 
= t. For convenience, let
g1 = gz1 , g2 = gz2 , g3 = gz3 , g′ = gz4 , z1, z2, z3, z4 ∈ Zq.

Lemma 1. For randomly chosen α1, α2, α3 ← Z
3
q, let h1 = gα1

1 gα3
3 , h2 =

gα2
2 gα3

3 , π = uα1
1 uα2

2 uα3
3 , td = (td1, td2, td3) = (g′α1 , g′α2 , g′α3). Then, it is true

that the following distributions are equivalent for a randomly chosen φ ← G:

(h1, h2, π, td) ≡ (h1, h2, φ, td).
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Proof. Due to h1 = gz1α1+z3α3 , h2 = gz2α2+z3α3 , π = grz1α1+sz2α1+tz3α3 , td =
(td1, td2, td3) = (gz4α1 , gz4α2 , gz4α3), so for the tuple (h1, h2, π, td) we have

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1 0 z3
0 z2 z3

z1r z2s z3t
z4 0 0
0 z4 0
0 0 z4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
⎛

⎝
α1

α2

α3

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

dlogg (h1)
dlogg (h2)
dlogg (π)

dlogg (td1)
dlogg (td2)
dlogg (td3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We denote the coefficient matrix by M and the corresponding augmented matrix
by M̄ . The relationship between the rank of matrix M and the rank of M̄ is
r(M) = r(M̄) = 3. Therefore, for any π ← G, and fixed h1, h2, td, there exists a
unique solution x which yields the tuple (h1, h2, π, td).

Lemma 2. Let (u′
1, u

′
2, u

′
3) be any tuple where u′

1 = gr′
1 , u′

2 = gs′
2 , u′

3 = gt′
3 and

r′ + s′ 
= t′. For randomly chosen β0, . . . , β5 ← Z
3
q, let fi,1 = g

βi,1
1 g

βi,3
3 , fi,2 =

g
βi,2
2 g

βi,3
3 , for i = 0, . . . , 5. Let

v =
5∏

i=0

ê
(
u

βi,1
1 u

βi,2
2 u

βi,3
3 ,mi

)
, v′ =

5∏

i=0

e
(
u

βi,1
1 u

βi,2
2 u

βi,3
3 ,m′

i

)
,

where mi,m
′
i ∈ G

5 and m0 = m′
0 = g. Then, it is true that the following dis-

tributions are equivalent for any mi and m′
i, mi 
= m′

i :
(
{fi,1, fi,2}5i=0 , v, v′

)
≡

(
{fi,1, fi,2}5i=0 , v, ϕ

)
, where ϕ ← G is randomly chosen.

Proof. For convenience, let mi = gwi ,m′
i = gw′

i . Then, for the tuple
({fi,1, fi,2}5i=0 , v, v′) we have a coefficient matrix of (β0

�, . . . , β�
5 )� :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1 0 z3 · · · − − −
0 z2 z3 · · · − − −
− − − · · · − − −
− − − · · · − − −
...

...
...

. . .
...

...
...

− − − · · · 0 z2 z3
r′z1 s′z2 t′z3 · · · w′

5r
′z1 w′

5s
′z2 w′

5t
′z3

rz1 sz2 tz3 . . . w5rz1 w5sz2 w5tz3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Since there exists i(i ≥ 1), such that m′
i 
= mi, if we choose the sub-matrix

consisting of the intersection of the last two rows and rows 1, 2, 2i + 1, 2i + 2
with columns 1, 2, 3, 3i + 1, 3i + 2, 3i + 3, we can get:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1 0 z3 − − −
0 z2 z3 − − −
− − − z1 0 z3
− − − 0 z2 z3

r′z1 s′z2 t′z3 w′
ir

′z1 w′
is

′z2 w′
it

′z3
rz1 sz2 tz3 wirz1 wisz2 witz3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the absolute value of its determination is ±z21z
2
2z

2
3 (w′

i − wi) (t′−r′−s′)(t−
r − s) 
= 0. Therefore, the rows of matrix of the corresponding coefficients are
linearly independent.

Theorem 2. If DLIN holds, the above SP-PKEET scheme is IND-CCA secure
against type-II adversary in the standard model.

We omit the proof of Theorem 2 here and show the proof in the full version.

5 A CCA-Full-Anonymous Group Signature with
Verifiable Controllable Linkability

5.1 Adding the VCL Property

Group signatures that are Groth-Sahai proofs of knowledge in a symmetric bilin-
ear group based on the SEP paradigm can be generic transformed to support
VCL [6]. This transformation replaces the public key encryption scheme used for
the identity escrow within a group signature scheme with our SP-PKEET.

5.2 Making Use of SP-PKEET

The core building block of our GSS with verifiable controllable linkability scheme
is SP-PKEET. In order to achieve verifiable controllable linkability, the trapdoor
td generated by the Aut algorithm is given to the linking authority (LA) as the
master linking key mlk. Given two message-signature pairs (m,σ) and (m′, σ′),
the LA runs the Link algorithm to determine whether the two signatures are
generated by the same unknown signer and output a proof related to the result.
The secret key sk generated by the Enc algorithm is given to OA as the master
opening key mok.

5.3 Our Concrete Instantiation

We will use the group signature scheme on which we base our construction as
a black box and simply add SP-PKEET and a proof of consistency to make it
a VCL scheme. We require that the group signature is a Groth-Sahai proof of
knowledge [18] in a symmetric bilinear group (p,G,GT , e, g1) and that useri’s
verification key contains a component gxi

1 , where xi is useri’s signing key. Sup-
pose the verification key of the group signature scheme v is of the form v = gx

1 ,
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where x is the signing key of the group signature scheme that is used as mik in
our constrction.

In the setup phase of scheme (when the common reference string for Groth-
Sahai proofs is created), we creat pksp = (g, g′, g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0),
sksp = ({αi}3i=1 , {βi}5i=0) for our SP-PKEET and add pksp to the public param-
eters. The useri’s (holding secret key xi) membership certificate is defined as

Ai = g
1

x+xi
1 .

When creating a group signature, the useri must additionally encrypt his
certificate Ai and prove that it is well-formed. The certificate is of the form

Ai = g
1

x+xi
1 , so we need to prove that xi is the same as in the useri verification

key element w := gxi
1 . The SP-PKEET encryption of Ai is as follows.

u1 = gr
1, u2 = gs

2, u3 = gr+s
3 , c = Ai · hr

1h
s
2,

v =
3∏

i=0

ê
(
fr

i,1f
s
i,2, ui

) · ê
(
fr
4,1f

s
4,2, c

) · ê
(
fr
5,1f

s
5,2, L

)
.

C = (u1, u2, u3, c, v). To prove well-formedness, we introduce some auxiliary
variables θ1 = gs

3, θ2 = gs
1, θ3 = (gx

1 )r = gx·r
1 , θ4 = (gxi

1 )r = gxi·r
1 , θ5 = (gx

1 )s =
gx·s
1 , θ6 = (gxi

1 )s = gxi·s
1 , of which we also prove knowledge in the group signature.

Groth-Sahai proofs allow us to prove knowledge of group elements that satisfy
pairing-product equations (PPEs). Then the following PPEs assert that w =
gxi
1 (the group elements of which we prove knowledge are underlined):

e(g1, θ3) = e(u1, g
x
1 ), e(g1, θ4) = e(u1, w), e(g2, θ5) = e(u2, g

x
1 ),

e(g2, θ6) = e(u2, w), e(g1, u3) = e(u1, g3)e(g1, θ1), e(g2, θ1) = e(u2, g3),
e(fr

i,1f
s
i,2, g1) = e(fi,1, u1)e(fi,2, θ2), e(θ2, g2) = e(g1, u2),

e(c, w) = e(Ai, w)e(h1, θ3)e(h1, θ4)e(h2, θ5)e(h2, θ6).

In addition to C, we include in the group signature Groth-Sahai proofs for
bilinear groups that the above equations are satisfied.

When opening a group signature, OA must decrypt C to get Ai and prove

that it is well-formed. The certificate is of the form Ai = g
1

x+xi
1 , so we need to

prove that xi is the same as in the useri verification key element gxi
1 . Similar to

the process above, the following a PPE assert that w = gxi
1 (the group element

of which we prove knowledge is underlined): e(Ai, g
x
1 ·w) = e(g1, g1). We include

in the group signature a Groth-Sahai proof for the bilinear group that the above
equation is satisfied.

When linking two group signatures, LA’s decision must be proven to be cor-
rect. we introduce some auxiliary variables θ8 = g′α1 , θ9 = g′α2 , θ10 = g′α3 ,
of which we also prove knowledge in the group signature. The following equa-
tions should be satisfied (the group elements of which we prove knowledge are
underlined):

e(h1, g
′) = e(g1, θ8)e(g3, θ10), e(h2, g

′) = e(g2, θ9)e(g3, θ10),

e
(
c · c′−1, g′) = e

(
u1u

′−1
1 , θ8

)
e
(
u2u

′−1
2 , θ9

)
e
(
u3u

′−1
3 , θ10

)
.
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We include in the group signature Groth-Sahai proofs for the bilinear group that
the above equations are satisfied.

5.4 Security Analysis

This transformation will not affect traceability, non-frameability, opening sound-
ness and linking soundness defined in [6,7]. The following theorems show the
security properties of our GSS-VCL related to verifiable controllable linkability,
the proofs of which are omitted here for brevity.

Theorem 3. The GSS-VCL has CCA-full-anonymity assume that SP-PKEET
has IND-CCA security.

Theorem 4. The GSS-VCL has LO-Linkability assume that SP-PKEET has
IND-CCA security.

Theorem 5. The GSS-VCL has JP-Unforgeability assume that SP-PKEET has
S-PRIV1-CCA security.

Theorem 6. The GSS-VCL is E-Linkability based on the correctness of SP-
PKEET.

6 Conclusion

In this paper, we construct a group signature with verifiable controllable linkabil-
ity, where a linking authority (LA) can link two signatures to determine whether
they are generated by the same unknown signer, which can achieve CCA-full-
anonymity in the standard model. As a core building block of it, we propose a
new structure-preserving public key encryption with equality test (SP-PKEET)
scheme and prove its security in the standard model, which is independent of
interest.
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Abstract. Over the last two decades, the field of multivariate public key
cryptography (MPKC) has seen tremendous growth and a rich influx of
novel ideas. Gradually, MPKC has emerged as a top candidate for the
construction of new generation of algorithms that provides resistance to
attacks by quantum algorithms. In 2020, Duong et al. [8] put forth a
new multivariate-based signature scheme LRainbow. It utilizes the idea
of field lifting put forward by Beullens et al. at INDOCRYPT 2017. The
essence of the construction is to produce the key pair of Rainbow over
a small field and then lift it to the bigger field. Herein, we present the
design and analysis of the proposed subfield differential attack (SDA)
on LRainbow. We theoretically show that LRainbow does not meet the
stipulated security target. In the end, we come up with a possible mod-
ification to bypass the threat possessed by SDA on LRainbow. We call
this modified version of LRainbow as Prime LRainbow.

Keywords: LRainbow · Post-quantum cryptography · Multivariate
public key cryptography · Subfield differential attack ·
Differential-cryptanalysis

1 Introduction

In 1994, Shor [17] came up with an algorithm that makes it feasible to defeat
classical cryptographic schemes like RSA. The security of these classical prim-
itives relies on the traditional and long-established number theoretic hardness
assumptions such as prime factorization and discrete logarithm. With the help of
Shor’s algorithm, almost all of the currently used classical cryptographic designs
can be broken in polynomial time. It possesses a grave threat to the security
of modern information system. In addition, it rings an alarming bell for the
confidentiality and integrity of modern digital communication networks. Recent
research has shown that within a few decades large scale quantum computers will
become a reality. Even if the exact time of the arrival of big quantum computers
can not determined, there is a need of cryptographic building blocks that can
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provide resistance against this completely new breed of attacks. This emerging
threat has led the researchers all around the world to develop the next gen-
eration of cryptographic designs and systems that offers resistance against the
attack by quantum computers. This new direction of research is also known as
post-quantum cryptography.

Although there are several contenders that present themselves as a post-
quantum cryptographic candidate, but multivariate public key cryptography
(MPKC) still leads the race among the others. It is largely due to the fact that
MPKC schemes in general are very fast, robust and needs only minimal comput-
ing resources to put-in-use. They are efficient and only mathematical operations
they require are modular field multiplications and additions. The theoretical
security of MPKC hinge upon the hardness of MQ problem. MQ problem is
NP -hard [11], even for small field GF (2).

The work on multivariate-based cryptographic schemes began around the
1980s. Matsumoto and Imai proposed the first scheme [13] that used multivariate
polynomials as a public key. Subsequently, a lot of MPKC schemes were devel-
oped. This new direction of research has seen a rich and tremendous improvement
over the last two decades. The first major breakthrough came when Patarin [16]
proposed the so called Unbalanced Oil and Vinegar (UOV) scheme. Even after
more than two decades of rigorous cryptanalysis, UOV is still unbroken and
secure given a choice of parameters. To fill the loopholes and shortcomings of
UOV, Ding et al. [6] presented a new signature scheme called Rainbow which
derives its motivation from the UOV. Very recently, Beullens et al. [3] put for-
ward a new kind of construction known as LUOV. LUOV can be thought of as a
modified version of UOV. They first generated the UOV scheme over a small field
and later lifted it to the bigger field. The authors of [8] later extended this novel
idea of field lifting to the Rainbow signature scheme. Ding et al. [5] introduced
a novel attack strategy called subfield differential attack (SDA) to completely
break the LUOV signature scheme. The attack proposed in [5] does not depend
upon the internal machinery of the LUOV signature scheme. It simply uses the
lifted structure of LUOV.

1.1 Our Contribution

In this paper, we present the design, analysis, and complexity of the subfield
differential attack (SDA) [5] on LRainbow. The proposed attack does not depend
upon the scheme’s internal workflow, and only utilizes the structure of field
extension. It makes use of the fact that coefficients of the key pair of LRainbow
is contained in a fixed subfield of the bigger field. The idea of SDA attack is
very uncomplicated and straightforward, yet it is very powerful and efficient in
practice. Given a public polynomial X , we demonstrate the existence of small
subfields L2 = F2d such that for any fixed w′ ∈ F

n
2r and z ∈ F

m
2r , there is a

w ∈ Ln
2 with X (w′ + w) = z. By viewing the bigger field F2r as the quotient of

polynomial ring L2[x] over a small subfield L2, we reduce the complexity of solv-
ing the underdetermined system of quadratic equations. We utilize the approach
of Thomae and Wolf [18] to convert the resulting system into a determined one.
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In the end, we use direct attack techniques to solve the obtained determined
system. To illustrate the method of SDA, we pick a explicit set of parameters
LRainbow(23, 16, 18) and carry out the attack. We theoretically show via rigorous
complexity analysis that LRainbow does not meet the required security target.
In response to the proposed attack, we pitch possible modifications to LRainbow.
We call our proposed scheme Prime LRainbow, and argue why it is immune from
SDA.

2 Preliminaries

In this section, we revisit some of the basic facts about MPKC. The basic objects
of multivariate public-key cryptosystem are system of multivariate quadratic
polynomial equations over a finite field Fq.

Let Fq denote the finite field of order q. A multivariate quadratic polynomial
in n variables z1, . . . zn is of the form

f(z) =
∑

i,j

aijzizj +
∑

i

bizi + c

with n-tuple (z1, . . . , zn) denoted by z. aij , bi and c belongs to the finite field Fq.
The underlying idea and concept behind the design of MPKC is to select

a system W : F
n
q → F

m
q of m multivariate polynomials of degree two in n

variables. We stipulate that this map W, also known as central map, is easily
inverted in the sense that finding preimage of y under W is easy. To obfuscate
the structure of W, we pick two affine invertible transformations C1 : Fm

q → F
m
q

and C2 : Fn
q → F

n
q . To find the public key of the cryptosystem, we move on by

taking the composed map X = C1 ◦ W ◦ C2 : Fn
q → F

m
q . The secret key of the

MPKC is a three tuple (C1,W, C2).

2.1 Multivariate Signature Scheme

A multivariate signature scheme consists of following algorithms:

(PK,SK) ← Gen(η): Given a security parameter η, Gen outputs the pair of
public key and private key (X , {C1,W, C2}).

σ ← Sign(msg, SK): To generate the signature for a given message msg ∈ F
m
q ,

signer executes recursively α = C−1
1 (msg), β = W−1(α) and σ = C−1

2 (β) to
get the signature σ ∈ F

n
q

0/1 ← Verify(σ, PK): Given a signature σ ∈ F
n
q , verifier computes msg′ = X (σ).

If msg = msg′, verifier accepts the signature and outputs 1, otherwise outputs
0 and the signature is rejected.

2.2 Hardness Assumption

The theoretical security of a multivariate scheme relies on MQ problem - a
NP hard problem from the field of algebraic geometry. It is mathematically
formulated as
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Definition 1. Given a system Q = (q(1)(φ1, . . . , φn), . . . , q(m)(φ1, . . . , φn)) of
m quadratic equations in variables (φ1, . . . , φn), find a n tuple (φ̄1, . . . , φ̄n) such
that

q(1)(φ̄1, . . . , φ̄n) = · · · = q(m)(φ̄1, . . . , φ̄n) = 0.

All the variables along with coefficients belong to Fq.

2.3 Rainbow Signature Scheme [6]

Rainbow signature scheme, put forwarded by Ding et al. [6], is one of the most
stable multivariate signature scheme, and has successfully withstood the crypt-
analysis for the last 15 years. The scheme takes its motivation from the Oil-
Vinegar signature scheme developed by Patarin. It can also be thought of as a
multi-layered version of UOV. Rainbow was also among the three NIST Post-
quantum signature finalists, thus proving its mettle as a robust signature scheme.
The design of Rainbow is explained below:

Let K = Fq and v1 < v2 < . . . < vλ < vλ+1 = n be a sequence of natural
numbers. Set m = n − v1, where m and n are natural numbers. Oi = {vi +
1, . . . , vi+1} is used to index oil variables and Vi = {1, . . . , vi} is utilized to
enumerate vinegar variables with i ranging from i = 1 . . . , λ.

– Key Generation: The central map W(x) = (h(v1+1)(x), . . . , h(n)(x)) : Kn →
Km consists of m = n − v1 quadratic polynomial h(l)(x) (l = v1 + 1, . . . , n)
of the form

h(l)(x) =
∑

i,j∈Vk

α
(l)
ij · xi · xj +

∑

i∈Vk,j∈Ok

β
(l)
ij · xi · xj +

∑

i∈Vk∪Ok

γ
(l)
i · xi + δ(l),

where x = (x1, . . . , xn). The coefficients of the polynomials are randomly
chosen from the field K. Here, k ∈ {1, . . . , λ} is the only integer such that
l ∈ Ok. To obfuscate the underlying structure of W, it is composed with two
invertible affine transformations C1 : Km → Km and C2 : Kn → Kn to give
the final public key X = C1 ◦ W ◦ C2 : Kn → Km.

– Signature Generation: Given a message w ∈ Km, we generate the signature
by successively computing y = C−1

1 (w) ∈ Km, x = W−1(y) ∈ Kn and
z = C−1

2 (x) ∈ Kn. Here, W−1(y) denote the pre-images of y under the central
map W. We can compute the required pre-image by successively inverting
each single UOV layer. The procedure is formulated below:
1: The first layer vinegar variables x1, . . . , xv1 are assigned random values

from K and then substituted into the multivariate quadratic polynomi-
als h(l) (l = v1 + 1, . . . , n) to obtain a reduced system of multivariate
polynomial equations.

2: Set k = 1.
3: If k ≤ λ, then we will perform the following steps.
4: Use Gaussian elimination on the polynomials h(l) (l ∈ Ok) to obtain the

values of the variables xl (l ∈ Ok).



300 V. Srivastava and S. K. Debnath

5: Replace the values of xl (l ∈ Ok) obtained in the previous step into the
polynomials h(l) (l ∈ {vk + 1, . . . , n}).

6: Increase the value of k by 1 and go to step 3.
If the system of linear equation in step 4 is not consistent, we need to choose
another set of values for x1, . . . , xv1 and start from the step 1 again. Finally
we publish z ∈ Kn as the signature for the message.

– Signature Verification: To investigate whether a signature z ∈ Kn is authen-
tic, one may simply verify w ?= X (z) ∈ Km. If the equality holds true, signa-
ture is accepted otherwise rejected.

2.4 LRainbow: Lifting the Field for Rainbow [8]

The authors of [8] employed the idea of field lifting proposed by [3] to Rainbow
signature scheme. The fundamental and key difference between Rainbow and
LRainbow is as follows. In the Rainbow scheme, there is practically no restriction
on the coefficients of key pair. However, in the LRainbow, all the coefficients are
from a fixed subfield L1 = F2t .

Herein, we describe briefly the construction of LRainbow. Let L = F2r be a
field of order 2r. Let L1 = F2t denote the subfield of L where (with 1 ≤ t ≤ r).
We generate the Rainbow key pair over L1, that is all the coefficients of C1,W, C2

and thus of X are chosen from L1. In the next step, we lift it L and consider the
new scheme as a Rainbow scheme over L = F2r . More precisely, the coefficients
of the public polynomial X belongs to the small subfield, but we now view it
as an element of L = F2r . Thus, message, and signature generation takes place
over the extension field. This scheme is known as LRainbow.

3 Proposed Attack on LRainbow

3.1 General Idea of the Attack: A High Level Overview

The beauty of subfield differential attack (SDA) [5] lies in the fact that it does
not depend upon the internal machinery of the LRainbow signature scheme. The
crucial idea on which SDA builds its foundation is the structure of finite field
extension. Let L = F2r and L2 = F2d , where L2 is a subfield of L. We denote by
X the public polynomial of LRainbow with coefficients of X taken from a fixed
subfield L1 = F2t of L. Recall:

Theorem 1 [12]. Let d, r be two positive integers such that d divides r. Let
L = F2r be a finite field. Then we may represent L as a quotient ring

L = F2r � F2d [x]/〈b(x)〉 = L2[x]/〈b(x)〉

where b(x) is an irreducible polynomial of degree l that satisfies r = ld.
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Let us see how the above stated theorem is helpful to us. Suppose X : Ln →
Lm be the public polynomial of the LRainbow scheme having coefficients from a
fixed subfield L1 = F2t of L. Let z ∈ Lm be an arbitrary element. We define the
differential as w′ + w, where w′ is an arbitrary element chosen from Ln and w
is an indeterminate element in Ln

2 . If we compute the public polynomial X at
the differential and set it equal to z, the final expression would have terms like
w′

iw
′
j , w

′
iwj , wiwj . The values of w′

i are known and the values of wi are unknown.
We know that L � L2[x]/〈b(x)〉 so every element of L can be described by a
polynomial expression in variable x. We apply this on both sides of the equation
and compare the coefficients of power of x to obtain almost linear equation. A
natural question comes to mind now. Given a message z = (z1, . . . , zm) ∈ Lm

and an arbitrary element w′ chosen from Ln, can we find a small natural number
d such that we have a w ∈ Ln

2 = F
n
2d ⊂ Ln with X (w′ + w) = z.

In the next section, we prove that such a small integer d exists.

3.2 Existence of Small Subfields L2

We fix w′ ∈ Ln and define a new polynomial map by X : Ln
2 → Lm given by

X (w) = X (w′ + w).

We assume that X acts as a random map from Ln
2 → Lm. We now prove the

desired result.

Theorem 2 [7]. Given X : Ln
2 → Lm, the probability that X −1

(z) �= ∅ is given
by 1 − e−2rm−dn

.

Proof. Fix w′ ∈ Ln and consider the function X : Ln
2 → Lm given by X (w) =

X (w′ + w). We arbitrarily chose an element z ∈ Lm and estimate the probability
that there does not exist w ∈ Ln

2 such that X (w) = z. Since |Ln
2 | = 2dn and

|Lm| = 2rm, we find that for any w ∈ Ln
2 , the probability that X (w) �= z is

1− 1
2dn

. Since the output of X is random and independent, the needed probability
is

(1 − 1
2dn

)
2rm

= ((1 − 1
2dn

)2
dn

)2
rm−dn

≈ e−2rm−dn

3.3 Method of Finding w and Forging the Signature

In the previous section, we saw the existence of a small subfield L2 such
that w ∈ Ln

2 ⊂ Ln, with X (w′ + w) = z. We already know that L =
F2r � F2d [x]/〈b(x)〉 = L2[x]/〈b(x)〉 where b(x) is an irreducible polynomial
of degree l with l = r/d. Let w = (w1, . . . , wn) ∈ Ln

2 be an indeterminate
point and w′ = (w′

1, . . . , w
′
n) ∈ Ln be a randomly chosen fixed point. Define

X (w) = X (w + w′). kth component of X (w) is given by

X (k)
(w) =

n∑

i=1

n∑

j=1

αi,j,k(wi + w′
i)(wj + w′

j) +
n∑

i=1

βi,k(wi + w′
i) + γk
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Expanding, we get

X (k)
(w) =

n∑

i=1

n∑

j=1

αi,j,k(w
′
iwi + w′

jwj + w′
iw

′
j) +

n∑

i=1

βi,k(wi + w′
i) +

n∑

i=1

αi,j,kwiwj + γk

Recall that αi,j,k ∈ L1 which in turn implies that coefficients of quadratic
term wiwj belongs to a fixed subfield L1 of L. Second thing to note is that w′

i ∈ L
are arbitrarily chosen. Thus, the coefficients of the linear wi term consists of all
the powers of x upto l − 1. Therefore, grouping the various powers of x, helps
us to rewrite

X (w) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X (1)
(w) = Q1(w) +

l−1∑
i=1

Li,1(w)xi

X (2)
(w) = Q2(w) +

l−1∑
i=1

Li,2(w)xi

...

X (m)
(w) = Qm(w) +

l−1∑
i=1

Li,m(w)xi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Forging: Given a message/document z ∈ Lm, we describe the method of cre-
ating a forged signature. In the first step we express z in powers of x. We can
write z = (z1, . . . , zm). Here zk =

∑l−1
i=0 zi,kxi with each zi,k ∈ L2. In the next

step, we try to obtain the solution set Sol for the system of linear equations

Δ = {Li,k(w) = zi,k : 1 ≤ i ≤ l − 1, 1 ≤ k ≤ m}.

Δ is nothing but a random system of linear equations therefore it has a very
high probability of being a full rank system. To state it in other words, with
high probability we can say that the rank of the system is (l − 1)m (or n if
(l − 1)m ≥ n). Thus, dimension of the solution space is given by

dimSol = maximum{n − (l − 1)m, 0}.

In the following, we attempt to extract a solution of the system of m quadratic
polynomials over the Sol

B = {Qk(Sol) = z0,k : 1 ≤ k ≤ m}.

So our problem reduces to solving B over Sol. The solution w to B gives X (w) = z
which implies that X (w + w′) = z. In this way, we get our desired signature
w + w′.

4 Complexity of the Attack

The bulk of the complexity lies in finding a solution to the system of m quadratic
equations in n− (l − 1)m number of variables. Therefore, to gauge the efficiency
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and to see how efficacious our proposed attack on LRainbow is, we try to find
the complexity of solving the aforementioned system of polynomial equations.
We will mathematically express the complexity in terms of number of field mul-
tiplication required to successfully carry out the attack. We already know that
for a signature scheme we require number of variables to be greater than or
equal to number of equations. This is to ensure that X −1(z) has a pre-image.
Thus, public polynomial X of a signature scheme is essentially a underdeter-
mined system. So our problem reduces to solving a underdetermined system of
quadratic polynomials. There are various methods to solve such a system but
the most powerful approach is the one proposed by Thomae and Wolf [18]. The
underlying idea is the following: In the first step we convert the given under-
determined system (using a linear change of variable) to a determined system.
This newly constructed determined system has less equations than the previous
underdetermined system. We then employ the direct attack techniques to solve
the determined system.

4.1 Preliminaries: Approach by Thomae and Wolf [18]

Theorem 3 (Thomae and Wolf). It is possible to modify an underdetermined
system of m quadratic equations in n variables with n = γm to determined sys-
tem of 1+m−�γ� quadratic equations by a linear change of variable. Moreover,
if �γ� divides m then the complexity overhead may be additionally brought down
to finding a solution to determined system having m − �γ� equations.

We apply the method of Thomae and Wolf and calculate the size of deter-
mined system produced. We summarize the result in Table 1. The notation used
in the table to represent the system of quadratic equation is the following: num-
ber of variables × number of equations. After this step, the complexity of our
proposed attack on LRainbow only depends upon the direct attack techniques to
solve the obtained determined system.

Table 1. Determined systems to solve after Thomae and Wolf

Security level Scheme (v1, o1, o2) Finite field Original system New system

100 LRainbow (23, 16, 18) GF(256) 57 × 34 33 × 33

128 LRainbow (28, 21, 23) GF(256) 72 × 44 43 × 43

192 LRainbow (44, 32, 36) GF(256) 112 × 68 67 × 67

256 LRainbow (61, 46, 48) GF(256) 155 × 94 93 × 93

4.2 Solving the Determined Systems

One of the best methods available to solve the determined system is so called
the hybrid approach [1,2]. In this approach, we first fix the values of some of
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the variables. As a result of this, we get a new system of quadratic polynomial
which is overdetermined in nature. At the end, we preform a direct attack on
this newly obtained system. It may be possible that no solution is found after
executing these steps. In that case, we repeat the procedure until we obtain a
solution of the system.

Number of variables, whose value is fixed, depend on two things: (i) firstly
it depends upon the underlying algorithm used (ii) secondly, it relies upon the
cardinality of the finite field. For example, if the order of the field is small then
more variables needs to be guessed.

There are many algorithms that utilize the hybrid approach to solve a deter-
mined system. Out of these, two algorithms are generally considered to be the
most effective. First one is family of XL algorithm [4]. It was put forwarded by
Courtois et al. and the second one is F4/F5 algorithm [9,10] which was devel-
oped by Faugère. There are some other algorithms as well which are based on
these two. In our case, we will be going with Wiedemann XL algorithm following
the works of [19]. It belongs to the family of XL algorithms.

Let us denote by κ the amount of variables that we are guessing beforehand.
Let Deg

(κ)
0 be the estimated degree after fixing the values for those variables.

We state below a result in the form of theorem which will help in determining
the complexity of our proposed attack.

Theorem 4 [4]. Let q denote the size of the finite field. Given a determined
system of quadratic polynomials having m equations, complexity of executing the
XL algorithm in terms of field multiplications can be estimated by:

ComplexityXL = min
κ

{
qκ × 3 ×

(
m − κ + Deg

(κ)
0

Deg
(κ)
0

)
×

(
m − κ

2

)}
.

Let us explain in brief why we picked the Wiedemann XL out of the family
of XL algorithms. It provides parallel compatibility. In addition, it has low and
cheaper memory cost and offers efficient computation time. These reasons made
us pick out Wiedemann XL out of the other variants of XL [14,15].

4.3 Calculating the Complexity

To illustrate the workflow, we explicitly compute the complexity of our proposed
attack on LRainbow. We take L = F256,L2 = F4, n = 57, and m = 34. The
chosen parameter set offers security level of 100 bits. We will be taking the help
of Wiedemann XL to carry out the attack. As we saw in the previous subsection,
system of quadratic polynomial over the small subfield L2 has m = 34 equations
in 57. variables. Using the approach of Thomae and Wolf, we can transform it
into a determined system with 33 equations. Recall that κ denote the amount of
variables that we are guessing beforehand. Let us take κ = 16. We find out that
degree of regularity Deg

(κ)
0 by using the below mentioned definition. Deg(κ)0 is
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defined as the first power of x with a non-positive coefficient in the Taylor series
expansion of

(1 − xq)m(1 − x2)m

(1 − x)m−κ+1(1 − x2q)m
.

In our case, q = 4, κ = 16,m = 33. Therefore, we have:

(1 − xq)m(1 − x2)m

(1 − x)m−κ+1(1 − x2q)m
= 1 + 18x + 138x2 + 546x3 + 853x4 − 2088x5 + O(x6)

Since the first power of x with a non-positive coefficient is x5. Thus, Deg(κ)0 =
5. Now we have all the data available to compute the complexity. We know that
complexity of XL in terms of field multiplications is given by

ComplexityXL = min
κ

{
qκ × 3 ×

(
m − k + Deg

(κ)
0

Deg
(κ)
0

)
×

(
m − k

2

)}
.

In our case,

ComplexityXL =
{

416 × 3 ×
(

33 − 16 + 5
5

)
×

(
33 − 16

2

)}

= 46146296859328512 ≈ 256 < 2100

Therefore, we note that LRainbow fails to meet the required security level. We
will now show that other security levels are also vulnerable to SDA.

• LRainbow (28, 21, 23)

We proceed with L = F256,L2 = F4, n = 72, and m = 44. The parameter set
offers security level of 128 bits. Using the approach of Thomae and Wolf, we
obtain an equivalent determined system of 43 equations. With κ = 21,m =
43, q = 4, the degree of regularity can be calculated as:

(1− xq)m(1− x2)m

(1− x)m−κ+1(1− x2q)m
= 1+23x+233x2+1311x3+3942x4+1610x5−39242x6+O(x7)

Thus, Deg(κ)0 = 6. Complexity of XL in terms of field multiplications is given
by

ComplexityXL =
{

416 × 3 ×
(

43 − 21 + 6
6

)
×

(
43 − 21

2

)}

= 1148245589517171425280 ≈ 270 < 2128.

• LRainbow (44, 32, 36)
We now calculate the attack complexity for parameter set offering security
level of 192 bits. We have L = F256,L2 = F4, n = 112, and m = 68. We reduce
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it to an equivalent determined system of 67 equations using the approach of
Thomae and Wolf. The degree of regularity can be computed as:

(1 − xq)m(1 − x2)m

(1 − x)m−κ+1(1 − x2q)m
= 1 + 35x + 563x2 + 5425x3 + 33749x4 + 130207x5

+ 200079x6 − 954459x7 + O(x8)

where κ was taken to be 33. Thus, Deg(κ)0 = 7. Complexity of XL can be
estimated using

ComplexityXL =
{

416 × 3 ×
(

67 − 33 + 7
7

)
×

(
67 − 33

2

)}

= 2791885571176043701886810849280 ≈ 2102 < 2192.

• LRainbow (61, 46, 48)
We will now compute the attack complexity for parameter set L = F256,L2 =
F4, n = 155, and m = 94 offering a security level of 256 bits. Using the
approach of Thomae and Wolf, we obtain an equivalent determined system
of 93 equations. With κ = 46,m = 93, q = 4, the degree of regularity can be
calculated as:

(1 − xq)m(1 − x2)m

(1 − x)m−κ+1(1 − x2q)m
= 1 + 48x + 1083x2 + 15136x3 + 144717x4 + 977040x5

+ 4517233x6 + 11609664x7 − 11555130x8 + O(x9)

Thus, Deg(κ)0 = 8. Complexity of the attack is given by

ComplexityXL =

{
416 × 3 ×

(
93 − 46 + 5

8

)
×

(
93 − 46

2

)}

= 19552360081185998307771217042570267852800 ≈ 2134 < 2256.

5 Response to Attack: Prime LRainbow

To circumvent the proposed SDA, we suggest some modifications in the LRainbow
scheme. We call the modified version of LRainbow as Prime LRainbow. We will
see how our newly proposed scheme is immune from SDA. Let p be a prime
number. We denote by Fp the finite field with cardinality p. We consider the
field extension of the form Fpr where r is a prime number. This constraint
ensures that no intermediate field extension exists. In Prime LRainbow scheme
coefficients of public key-secret key pair (X , {C1,W, C2}) are picked from Fp

and later lifted to the bigger field Fpr . Since there are no intermediate field
extensions, Prime LRainbow is immune from SDA. We propose a new parameter
set to safeguard the LRainbow from SDA. We point out that these new parameter
set for LRainbow should withstand normal attacks on LRainbow (Table 2).
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Table 2. Proposed parameter set for LRainbow

Security level Scheme (v1, o1, o2) r p

100 LRainbow (23, 16, 18) 7 2

128 LRainbow (28, 21, 23) 7 2

6 Conclusion

In this work, we put forward the cryptanalysis of LRainbow through SDA. The
SDA only utilizes the structure of field extension. Although the proposed attack
works on a very straightforward idea, yet it is very robust when implemented.
Through complexity analysis, we theoretically demonstrate that LRainbow does
not meet the required security target. In response to the proposed attack, we
pitch a possible modification to LRainbow and name the modified version as
Prime LRainbow. It makes use of the prime extensions and thus avoids the threat
presented by SDA.
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Abstract. Identity-based cryptography (IBC) introduced by Adi Shamir
[17] has paved the way for authenticating the public key of a user without
the use of certificates. In addition to identity-based encryption (IBE), a
full-fledged identity-based system would require identity-based authenti-
cation, which is where ID-based identification (IBID) and identity-based
signature (IBS) comes into picture. Thus the advent of IBID and IBS
renews interest in IBE. Since the discovery of IBC, a number of IBID
and IBS were proposed in the literature. The overwhelming majority of
them, however, substantially rely on discrete logarithm problem and are
thus vulnerable to quantum attacks. As a result, developing a quantum-
resistant IBID and IBS is the dire need of the hour.

In this work, we examine the limitations of Peng et al.’s [16] recently
proposed IBS from isogenies. We have identified significant flaws in their
major building block, which caused their proposed IBS scheme to fall
short of the claimed unforgeability against chosen identity and chosen
message attacks (UF-IBS-CMA) security. On a more positive note, we
have proposed a viable fix for their scheme by adopting a framework dif-
ferent from theirs. This prompted us to construct the first IBID scheme
from isogenies. Furthermore, we provide a formal proof for the imper-
sonation under passive attacks (ID-IMP-PA) security of our IBID scheme
using rewinding techniques of Multi-Instance Reset lemma [10]. In this
work, we have additionally proposed the first construction of forward-
secure identity-based signature (FSIBS) from isogenies.

Keywords: Isogenies · Post-quantum cryptography · ID-based
identification · Identity-based signature · Forward-secrecy

1 Introduction

Identity-based cryptography has brought a revolutionary breakthrough to pub-
lic key cryptography. Identity-based cryptography offers a significant benefit
over traditional certificate-based cryptography by eliminating the onerous cer-
tificate management mechanism involved in certificate-based cryptography. ID-
based identification (IBID) is a basic component of identity-based cryptography
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that was first proposed in 2004 independently by Bellare et al. [3] and Kurosawa
et al. [11]. In an IBID scheme, each user sets its identity (e.g. email address) as its
public key. The key generator center (KGC) derives the secret key corresponding
to user identity employing its master secret key. The user, playing the role of a
prover can then identify itself to a verifier holding the associated public key. The
notion of identity-based signature (IBS) scheme is similar except that instead of
identifying itself, the user signs message and the verifier checks the validity of
the signature.

With the rapid growth of networks, user authentication is turning out to be
progressively significant. In numerous applications, for instance, in wireless sen-
sor network and mobile social network, the battery life of devices is so limited
that sophisticated authentication procedures are unacceptably inefficient. This
necessitates improving the performance of authentication. Since a digital signa-
ture is a key component of authentication, reducing its complexity is apparently
the obvious way to address this concern. One way of reducing the complexity of
signatures is to use identity-based signatures instead of traditional signatures.
Thus, in most of the real-life applications identity-based signatures are more
preferred than traditional signature schemes.

Research on identity-based cryptography has been very active in recent years,
culminating in a flurry of works on IBID and IBS schemes. These include the
Fiat-Shamir IBID and IBS schemes [7], the Guillou-Quisquater IBID and IBS
schemes [9], the IBS scheme in Shamir’s paper [17] introducing identity-based
cryptography, and many more [8,14]. Since then, several excellent proposals for
IBS based on pairings appeared [15,23]. These IBS proposals are very efficient for
practical applications, however, they all rely heavily on the discrete logarithm
problem that is facile for quantum computers. In light of the recent advancement
of quantum computer, seeking quantum-resistant IBS seems alarming. This lead
to a line of new research on identity-based signature over lattice assumptions [19,
22] and many more.

Contributions. Peng et al. [16] were the first to propose an IBS scheme based
on the hardness assumption of isogenies. They defined a family of trapdoor sam-
plable relation R and exploit it to derive a convertible identification scheme
cID. The generic framework underlying their IBS scheme comprises of sequen-
tial composition of a set of transforms fs-1-2-S and cSS-2-IBS on cID as shown in
Fig. 1(a). The authors of [16] claim that their proposed IBS scheme is unforgeabil-
ity against chosen identity and chosen message attacks (UF-IBS-CMA) secure.
In this work we have identified several shortcomings in their IBS scheme which
are summarized as follows:

– The family of trapdoor samplable relation R which lies at the heart of their
IBS scheme is incorrect and it fails to meet the fundamental definition.

– Their IBS scheme does not adhere to the generic framework discussed in
Fig. 1(a). Moreover, their work is devoid of concrete security proof supporting
their claim. As their IBS scheme deviates from the generic framework, we
believe that their security argument is jeopardized.
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– Their IBS scheme can be viewed as the identity-based version of SeaSign
signature [6]. Thus, the Sign and Verify algorithm of their IBS involve rejection
sampling which makes their signing and verification time expensive.

We address each of the aforementioned concern in our work. To overcome
these barriers, we adopt a different framework than those of [16] depicted in
Fig. 1(b). We exploit the identification scheme underlying the signature scheme
CSI-FiSh [5] to derive an IBID scheme from isogenies. We provide a comprehensive
security analysis using a variant of Reset Lemma given in [10] to prove that
our proposed IBID scheme is impersonation under passive attacks (ID-IMP-PA)
secure. We further construct an isogeny-based IBS from our IBID following the
Fiat-Shamir transform paradigm [7]. Our IBS scheme does not involve method
of rejection sampling which brings a major improvement to the signing and
verification time.

Fig. 1. (a) Framework for Peng et al.’s IBS scheme. (b) Framework for our IBS scheme.

The main highlight of this work can be summed up as follows:

– Firstly, we revisit the IBS scheme of Peng et al. and reveal the flaws in their
IBS scheme as well as in their trapdoor samplable relation which is the main
building block of their scheme (Sect. 5).

– Secondly, we sketch ways to fill the gaps in their IBS scheme by adopting a
framework different from theirs. Thus, our IBS scheme turns out to be the
first IBS from isogenies achieving UF-IBS-CMA security (see Sect. 6.3).

– As a bi-product, we have also offered the first construction of IBID from
isogenies. We have provided an elaborate security argument showing our IBID
is ID-IMP-PA secure (see Sect. 6.2).

– Finally, we have shown how we can incorporate the forward secrecy property
to our IBS by suitably combining our IBS with CSI-FiSh signature and a
pseudorandom generator (Sect. 7).

2 Preliminaries

Notation. Let λ ∈ N denotes the security parameter. A function ν(·) is neg-
ligible if for every integer c, there exists an integer k such that for all λ > k,
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|ν(λ)| < 1/λc. By s1||s2 we mean concatenation of strings s1 and s2. We denote
by [0, I]n the collection of n-tuple integer vectors with co-ordinates {0, 1, . . . , I}.

Elliptic Curves, Isogenies and Endomorphsim Ring [18]. Let K be a finite
field and K be its algebraic closure. An elliptic curve E over K is a non-singular,
projective, cubic curve having genus one with a special point O, called the point
at infinity. The set of K-rational points of the elliptic curve E form an additive
abelian group with O as the identity element. A Montgomery elliptic curve E is
of the form E : By2 = x3 + Ax2 + x where B(A2 − 4) �= 0 for some A,B ∈ K.
Let E1 and E2 be two elliptic curves over a field K. An isogeny from E1 to E2 is
a non-constant morphism φ : E1 −→ E2 over K preserving the point at infinity
O. The degree of the isogeny φ, denoted by deg(φ) is its degree as a rational
map. A non-zero isogeny φ is called separable if and only if deg(φ) = #ker(φ)
where ker(φ) = φ−1(OE2). The set of all isogenies from E to itself defined over
K forms a ring under pointwise addition and composition. This ring is called
the endomorphism ring of the elliptic curve E and is denoted by End(E). By
EndK(E), we mean the set of all isogenies from E to itself defined over K. If
End(E) is isomorphic to an order in a quaternion algebra, the curve E is said to
be supersingular. On the other hand, if End(E) is isomorphic to an order in an
imaginary quadratic field, we say the curve E is ordinary.

Theorem 1 [21]. Let E1 be a curve and G be its finite subgroup. Then there is a
unique elliptic curve E2 and a separable isogeny φ : E1 −→ E2 with ker(φ) = G
such that E2

∼= E1/G which can be computed using Vélu’s formulae [20].

Ideal Class Group [13]. Let F be a number field, and O be an order in F . A
fractional ideal a of O is a finitely generated O-submodule of F . Let I(O) be a
set of invertible fractional ideals of O. Then I(O) is an abelian group derived
from the multiplication of ideals with the identity O. Let P(O) be a subgroup of
I(O) defined by P(O) = {a|a = αO for some α ∈ F \ {0} }. The abelian group
Cl(O) defined by I(O)/P(O) is called the ideal class group of O. An element of
Cl(O) denoted by [a] is an equivalence class of a.

The Class Group Action. Let Ellp(O) denote the set of Fp-isomorphic classes
of supersingular curves E, whose Fp-endomorphism ring EndFp

(E) ∼= O =
Z[

√−p]. The ideal class group Cl(O) acts freely and transitively on Ellp(O).
For the curve E ∈ Ellp(O), the action ∗ of [a] ∈ Cl(O) on E is defined as follows:

– Consider all the endomorphisms α in a.
– Compute the subgroup E[a] =

⋂
α∈a ker(α).

– Compute the elliptic curve E/E[a] and an isogeny φa : E −→ E/E[a] using
Velu’s formula. (see Theorem 1) and returns the elliptic curve E/E[a].

Henceforth, we shall use the notation [a]E instead of [a] ∗ E to denote the
curve E/E[a] obtained by the action of [a] ∈ Cl(O) on the curve E ∈ Ellp(O).
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Theorem 2.01 [21]. Let O be an order of an imaginary quadratic field Q(
√−p)

and E be a curve defined over Fp. If Ellp(O) contains the Fp-isomorphism class
of supersingular curves, then the action of Cl(O) on Ellp(O), defined by

Cl(O) × Ellp(O) −→ Ellp(O)
([a], E) −→ E/E[a]

is free and transitive where a is an integral ideal of O.

The structure of the class group Cl(O) where O = Z[
√−p] is computed by

Beullens et al. [5] where p is a prime p of the form p = 4 l1l2 . . . ln − 1, where
li’s are small distinct odd primes with n = 74, l1 = 3, l73 = 373, and l74 = 587.
They have shown that Cl(O) is a cyclic group with generator g = <3, π − 1>
and computer the class number of ideal class group which we denote by N . Thus
for simplicity we can consider class group Cl(O) to be ZN .

We shall use the following notations for the sake of simplicity.

• [a]E will be replaced by [a]E for any element [a] ∈ Cl(O) which can be written
as [ga] for some a ∈ ZN .

• [a][b]E will be replaced by [a + b]E where [a], [b] ∈ Cl(O) and [a]E = [ga]E,
[b]E = [gb]E for some a, b ∈ ZN .

3 Identity-Based Signature

An identity-based signature scheme is a tuple IBS = (Setup, Extract, Sign, Verify)
of four polynomial-time algorithms detailed below:

Setup(1λ) → (ppibs,msk): This algorithm is run by a KGC that on input 1λ

and returns a public parameter ppibs and master secret key msk.
Extract(ppibs,msk, id) → uskid: The KGC runs this key extract algorithm on

input the public parameter ppibs, the master secret key msk and user identity
id and returns the user secret key uskid for the given identity id.

Sign(ppibs, uskid,m) → σ: Taking input the public parameter ppibs, user secret
key uskid and a message m, the signer executes this randomized algorithm
and outputs a signature σ on the message m.

Verify(ppibs, id,m, σ) → Valid/Invalid: The verifier runs this deterministic algo-
rithm to verify the validity of signature σ.

Correctness. For all (ppibs, msk) ← Setup(1λ), all uskid ← Extract(ppibs,
msk, id), all m and all id, we must have Verify(ppibs, id,m,Sign(ppibs, uskid,
m)) = 1.

Definition 3.01 (UF-IBS-CMA). An IBS scheme is said to be secure against
unforgeability against chosen identity and chosen message attacks (UF-IBS-CMA)
if for all PPT adversaries A, there exists a negligible function ε such that
AdvUF-IBS-CMA

IBS, A (λ) = Pr[A wins inExpUF-IBS-CMA
IBS, A (λ)] < ε, where the experiment

ExpUF-IBS-CMA
IBS, A (λ) described in Fig. 2 formalizes the unforgeability game.
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Fig. 2. Experiment ExpUF-IBS-CMA
IBS, A (λ): unforgeability against chosen-message attacks.

4 Peng et al.’s Framework for Achieving IBS from
Trapdoor Samplable Relations

Definition 4.01 (Trapdoor Samplable Relations). A family of trapdoor
samplable relations F = (TDG, Smp, Inv) is a tuple of PPT algorithms satis-
fying:

TDG(1λ) → (〈R〉, td): On input 1λ, the trusted party outputs the description
〈R〉 of a relation R along with its trapdoor information td.

Smp(〈R〉) → (x, y): On input the description 〈R〉 of the relation R, any public
entity can run this algorithm and return a uniformly random pair (x, y) ∈ R.

Inv(〈R〉, td, y) → x: Taking input the description 〈R〉 of a relation R with
domain Dom(R) and range Rng(R), the corresponding trapdoor td and an
element y ∈ Rng(R), the trusted party runs this randomized algorithm
and returns a random element x ∈ R−1(y) ⊆ Dom(R) where Rng(R) =
{y : ∃x ∈ Dom(R) such that (x, y) ∈ R} and R−1(y) = {x : (x, y) ∈ R}.

For every relation R in the family, ∃ h such that |R−1(y)| = h ∀ y ∈ Rng(R).

Definition 4.02 (Convertible identification scheme cID). A canonical
identification scheme ID = (KGen,Prove = (Prove1,Prove2),Verify) with chal-
lenge set ChSet is said to be convertible if the algorithm KGen is supported
by a family of trapdoor samplable relations F = (TDG, Smp, Inv) in a man-
ner that the key pair (pk, sk) output by KGen(1λ) is generated as follows:
(〈R〉, td) ← TDG(1λ), (x, y) ← Smp(〈R〉), pk = (〈R〉, y), sk = (〈R〉, x).

One can employ the well-known Fiat-Shamir transform fs-1-2-S [12] to turn
a canonical convertible identification scheme cID into a convertible signature
scheme cSS = fs-1-2-S(cID). The cSS-2-IBS transform turns the convertible sig-
nature scheme cSS into an identity-based signature scheme IBS = cSS-2-IBS(fs-
1-2-S(cID)) = (Setup, Extract, Sign, Verify). The four polynomial-time algorithms
are explicitly detailed in Fig. 3 where the hash function G : {0, 1}∗ → Rng(R)
and H : {0, 1}∗ → ChSet are modelled as random oracles and Dec is a determin-
istic function of the public parameter and transcript returning 0 or 1.

Theorem 4.03 [3]. Let cID be a canonical convertible identification scheme and
IBS = cSS-2-IBS(fs-1-2-S(cID)) be an IBS scheme as defined in Fig. 3. If cID is
IMP-PA secure, then IBS is UF-IBS-CMA secure.
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Fig. 3. IBS derived from fs-1-2-S and cSS-2-IBS transform.

5 Flaws in Peng et al.’s Work [16]

Flaws in Trapdoor Samplable Relation. Despite intuitively appealing app-
roach of Peng et al. towards construction of IBS scheme CsiIBS through a family
of trapdoor samplable relation, we identify some limitations in their trapdoor
samplable relation. (We refer the reader to [16] to recall Peng et al.’s scheme.)

• Their work claims that the relation R is a trapdoor samplable relation. We
identity that their claim is false as their algorithm Smp makes use of the
trapdoor td = {si}S0

i=1 and thus is not a public algorithm. This should not be
the case as a sampling algorithm takes the description 〈R〉 of the relation R
as input and not the trapdoor td. Their algorithm Smp and Inv is precisely
the same.

• They have incorporated the user identity id in Smp algorithm, which is not a
part of input. Furthermore, their inverse algorithm Inv is deterministic. These
leads to their proposed relation R violate the basic requirements of a trapdoor
samplable relation given in Definition 4.01.

• No explanation is given in support of the fact that for every relation R in the
family, there is an integer h such that |R−1(y)| = h for all y ∈ Rng(R). The
trapdoor samplable relation is the main building block for their IBS scheme.
The incorrect construction of trapdoor samplable relation eventually makes
their identity-based signature scheme incorrect.

Flaws in IBS Scheme. The scheme CsiIBS = (Setup, Extract, Sign, Verify)
of [16] employs the trapdoor samplable relation F = (TDG, Smp, Inv). We iden-
tify some limitations of Peng et al.’s IBS scheme below.
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• It is noteworthy that even though the sampling algorithm F .Smp is not
exploited in CsiIBS of [16], the security proof in their adapted framework
gets affected by the incorrect Smp algorithm. As their proposed Smp algo-
rithm makes use of the trapdoor it is no longer a public algorithm. Thus, the
real environment cannot be simulated by an entity without the trapdoor.

• The underlying framework behind IBS scheme of [16] is IBS = cSS-2-IBS(fs-1-
2-S(cID)) explicitly described in Fig. 3. The Extract algorithm of Fig. 3 involves
inversion of the element y ∈ Rng(R) which is associated with the user identity
id determined as y = G(id) where G is a hash function modelled as random
oracle. In contrast, the Extract algorithm of IBS scheme of [16] involves inver-
sion of any random element y = (id, {ri,j}T1,S1

i=1,j=1) ∈ Rng(R) where ri,j ’s are
generated randomly from [−(I0 + I1), (I0 + I1)]n. This deviated from the gen-
eral framework for IBS obtained from sequential composition of fs-1-2-S and
cSS-2-IBS transform.

• The work of [16] claims that their proposed scheme CsiIBS is UF-IBS-CMA
secure following Theorem 4.03 of Bellare et al. [3] stated in Sect. 4. However,
as pointed out above, their scheme does not fit well in the general framework
and thus Theorem 4.03 cannot be employed to conclude the security of their
scheme. We believe an independent security proof is necessary to claim the
security of their scheme which is missing in their paper.

6 Framework for Our Construction

6.1 ID-Based Identification Scheme

Definition 6.11. An ID-based identification scheme IBID = (Setup,Extract,
Identification protocol) consists of polynomial-time algorithms Setup and Extract
and an interactive protocol between a prover P and verifier V detailed below:

Setup(1λ) → (pp, msk): On input the security parameter 1λ, the KGC outputs
the public parameter pp and master secret key msk. While pp is made publicly
available, msk will be known to the KGC only.

Extract(pp, msk, id) → uskid: The KGC executes this randomized algorithm tak-
ing input the public parameter pp, its master secret key msk and a user
identity id and returns the user secret key uskid.

Identification protocol: The prover P on input (pp, uskid) and the verifier V on
input (pp, id) involves in an interactive session with their respective inputs.
On completion of an interactive execution of this protocol, V outputs a bit b
with b = 1 signifying “accept” and b = 0 signifying “reject”.
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Definition 6.12 (ID-IMP-PA). An ID-based identification scheme IBID is
(t, qI , ε)-secure against impersonation under passive attacks (ID-IMP-PA) if for
any passive impersonator I who runs in time t and makes at most qI key extract
queries, there exists a negligible function ε such that for any security parame-
ter λ,AdvID-IMP-PA

IBID, I (λ) = Pr[I can impersonate inExpID-IMP-PA
IBID, I (λ)] < ε where the

experiment ExpID-IMP-PA
IBID, I (λ) in described in Fig. 4.

Fig. 4. Experiment ExpID-IMP-PA
IBID, A (λ): impersonation under passive attack.

6.2 Canonical ID-Based Identification Scheme from Isogenies

The algorithms Setup and Extract are executed by the KGC and are presented in
Algorithm 1 and Algorithm 2 respectively. The Identification protocol described
in Fig. 5 is an interactive session between the prover P with input (pp, uskid)
and the verifier V with input (pp, id).

Algorithm 1: Setup(1λ) → (pp,msk)

1 Choose a prime p of the form p = 4 l1l2 . . . ln − 1 where li’s are small distinct odd
primes with n = 74, l1 = 3, l73 = 373 and l74 = 587.

2 Select the base elliptic curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[
√−p].

3 Set the generator of the ideal class group G = Cl(O) to be g = < 3, π − 1 > with class
number N .

4 Select the integers T1, T2, S0 = 2η0 − 1 and S1 = 2η1 − 1 where η0, η1 are integers and
T1 < S0, T2 < S1.

5 Sample a cryptographic hash function H : {0, 1}∗ → [0, S0]
T1S1 .

6 for i = 1 toS0 do

7 si
$←− ZN

8 Ei = [si]E0

9 end for

10 Return pp = {p, E0, g, N, T1, T2, S0, S1, H, {Ei}S0
i=1} and msk = {si}S0

i=1
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Algorithm 2: Extract(pp,msk, id) → uskid

1 s0 ← 0
2 for i = 1 toT1 do
3 for j = 1 toS1 do

4 ri,j
$←− ZN

5 Ri,j = [ri,j ]E0

6 end for

7 end for

8 u ← H(id || {Ri,j}T1,S1
i=1,j=1)

9 Parse u as {ui ∈ [0, S0]}T1S1
i=1

10 for i = 1 toT1 do
11 for j = 1 toS1 do
12 xi,j = ri,j − sui

(mod N)

13 end for

14 end for

15 Return uskid = (u = {ui}T1S1
i=1 ,x = {xi,j}T1,S1

i=1,j=1)

Correctness. To prove the correctness of our IBID we show that Ki,j = K ′
i,j

for all i = 1, . . . , T1 and j = 1, . . . T2. For the case when vi,j �= 0, we have K ′
i,j =

[zi,j ]Xi,vi,j
= [ki,j −xi,vi,j

+xi,vi,j
]Eui

= Ki,j On the other hand, when vi,j = 0,
then zi,j = ki,j as xi,0 is set to 0. Thus, K ′

i,j = [zi,j ]Eui
= [ki,j ]Eui

= Ki,j .

Theorem 6.21. The above ID-based identification scheme IBID is (t, qI , ε)-
secure against impersonation under passive attack as per Definition 6.12 if H
is a collision-resistant hash function and the signature scheme CSI-FiSh [5] is
(t′, qS , ε′)-secure against existential unforgeability under adaptive chosen mes-
sage attack where

t′ ≈ 2Dt, qI = qS , ε ≤ 1 − (1 −
√

ε′)
1
D +

1
(S1 + 1)T1T2

.

Here D is the number of parallel execution of reset instances.

Proof. Let I be an impersonator who (t, qI , ε)-breaks the isogeny based IBID
scheme. We will use the impersonator I in the experiment ExpID-IMP-PA

IBID, I (λ)
described in Definition 6.12 as a subroutine to construct a forger F that breaks
the UF-CMA security of CSI-FiSh. The forger F will interact with I playing the
role of the challenger in the experiment ExpID-IMP-PA

IBID, I (λ).
In the experiment ExpUF-CMA

CSI-FiSh, F (λ) described in [5], the challenger generates
ppsgn = (p, g, E0, N,H : {0, 1}∗ → [0, S0]T1S1 , S0, T1, S1) ← CSI-FiSh.Setup(1λ).
It then generates the signing key sk = {si}S0

i=1 and verification key vk =
{Ei}S0

i=1 where Ei = [si]E0 by executing the algorithm CSI-FiSh.KeyGen and
sends ppsgn, vk to the forger F . The forger F is also allowed to access oracles
OCSI-FiSh.Sign(sk, ·) where sk = {si}S0

i=1.

Setup: In the setup phase, F samples integer T2, sets the public parameter
pp = {p, g, E0, N, S0, S1, T1, T2,H, {Ei}S0

i=1} and sends it to I.
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Fig. 5. Identification protocol between the prover P and verifier V .

Phase 1: In this phase the impersonator I makes polynomial many adaptive
key extract and transcript queries.
Extract queries: On receiving an extraction query on a user identity

id ∈ {0, 1}∗, F issues a query on id to its own signature oracle
OCSI-FiSh.Sign(sk, ·) where sk = {si}S0

i=1. The forger F returns the signa-
ture (u,x = {xi,j}T1,S1

i=1,j=1) obtained from its own signature oracle to I as
the user secret key uskid corresponding to the identity id. Thus, we have
qI = qS .

Transcript queries: If the impersonator I issues a transcript query on id,
the forger F performs the following steps:

– Sample xi,j
$←− ZN for i = 1, . . . , T1, j = 1, . . . , S1.

– Set xi,0 ← 0 for i = 1, . . . , T1.

– Sample u = {ui}T1S1
i=1

$←− [0, S0]T1S1 .
– Compute the curves Xi,j = [xi,j ]Eui

for i = 1, . . . , T1, j = 1, . . . , S1.

– Sample a response zi,j
$←− ZN for i = 1, . . . T1, j = 1, . . . , T2.

– Sample a challenge string v = {vi,j}T1,T2
i=1,j=1

$←− [0, S1]T1T2

– For i = 1, . . . T1, j = 1, . . . , T2 compute the curves

Ki,j =

{
[zi,j ]Xi,vi,j

if vi,j �= 0
[zi,j ]Eui

ifvi,j = 0

– Return the transcript which comprises of the commitment
({Xi,j}T1,S1

i=1,j=1, {Ki,j}T1,T2
i=1,j=1), challenge v = {vi,j}T1,T2

i=1,j=1 and
response z = {zi,j}T1,T2

i=1,j=1 corresponding to the identity id.
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Phase 2: Eventually after the completion of Phase 1, the impersonator out-
puts a challenge identity id∗ different from id queried to the extract oracle.
The impersonator I can still make key extract as well as transcript queries
subject to the restriction that queries on challenge identity id∗ is forbidden.
The impersonator I takes on the role of cheating prover attempting to con-
vince the verifier that it is the owner of public identity id∗. The forger
F takes over the role of the verifier now. Just after complete execu-
tion of the first run, F resets the prover I to the step where I has
transmitted the commitment Com = ({Xi,j}T1,S1

i=1,j=1, {Ki,j}T1,T2
i=1,j=1) and

runs the protocol again. By this, the forger F obtains two transcripts
(Com = ({Xi,j}T1,S1

i=1,j=1, {Ki,j}T1,T2
i=1,j=1),Ch = v = {vi,j}T1,T2

i=1,j=1,Rsp =
z = {zi,j}T1,T2

i=1,j=1) and (Com = ({Xi,j}T1,S1
i=1,j=1, {Ki,j}T1,T2

i=1,j=1),Ch
′ = v′ =

{v′
i,j}

T1,T2
i=1,j=1,Rsp

′ = z′ = {z′
i,j}

T1,T2
i=1,j=1) in the first and second run of

the protocol respectively. Based on the Reset Lemma [4], we have zi,j =
ki,j − xi,vi,j

(mod N) and z′
i,j = ki,j − xi,v′

i,j
(mod N) with probability more

than (ε − 1
(S1+1)T1T2 )2. Thus, xi,v′

i,j
− xi,vi,j

= zi,j − z′
i,j mod N will leak

information of {xi,j}T1,S1
i=1,j=1. Following Multi-Instance Reset Lemma [10], we

rewind D parallel instances of Reset Lemma which reveals enough infor-
mation to extract {xi,j}T1,S1

i=1,j=1 with probability more than (1 − (1 − ε +
1

(S1+1)T1T2 )D)2. Thus ε′ ≥ (1 − (1 − ε + 1
(S1+1)T1T2 )D)2, which in turn implies

ε ≤ 1−(1−
√

ε′)
1
D + 1

(S1+1)T1T2 . Furthermore, it also extracts u by computing

H(id∗ || {Xi,j}T1,S1
i=1,j=1).

Finally, the forger F submits the message-signature pair (id∗, (u =
{ui}T1S1

i=1 ,x = {xi,j}T1,S1
i=1,j=1)) as its forgery to its own challenger. Note that as

the challenged identity id∗ has never been queried by I to the extract oracle,
id∗ has never been queried to the sign oracle as well. The validity of the sig-
nature follows immediately from the validity of the transcripts. The running
time t′ of F is that of Reset algorithm, which thereby implies t′ ≈ 2Dt. ��

6.3 Identity-Based Signature Scheme from Isogenies

In this section, we apply the well-known strategy Fiat Shamir with aborts [12]
to our IBID = (Setup, Extract, Identification protocol) described in Sect. 6.2 to
obtain our identity-based signature scheme IBS = (Setup, Extract, Sign, Verify).

Setup(1λ) → (ppibs,msk): This algorithm is the same as Setup algorithm of our
IBID scheme. Additionally, the KGC samples H ′ : {0, 1}∗ → [0, S1]T1T2 and
sets ppibs = {p,E0, g, N, T1, T2, S0, S1,H,H ′, {Ei}S0

i=1} and msk = {si}S0
i=1.

Extract(ppibs,msk, id) → uskid: This algorithm is identical to Extract algorithm
of our IBID scheme.



Identification Scheme and Forward-Secure Signature 321

Algorithm 3:
Sign(ppibs, uskid, m) → σ

1 for i = 1 to T1 do

2 Set xi,0 ← 0

3 end for

4 for i = 1 to T1 do

5 for j = 1 to S1 do

6 Xi,j = [xi,j ]Eui

7 end for

8 end for

9 for i = 1 to T1 do

10 for j = 1 to T2 do

11 ki,j
$←− ZN

12 Ki,j = [ki,j ]Eui

13 end for

14 end for

15 v ← H′(m || {Ki,j}T1,T2
i=1,j=1)

16 Parse v as {vi,j ∈ [0, S1]}T1,T2
i=1,j=1

17 for i = 1 to T1 do

18 for j = 1 to T2 do

19 zi,j = ki,j − xi,vi,j
(mod N)

20 end for

21 end for

22 σ ← ({zi,j}T1,T2
i=1,j=1, {Xi,j}T1,S1

i=1,j=1, v)

23 Return σ

Algorithm 4:
Verify(ppibs, id, m, σ) → Valid/Invalid

1 Retrieve u = H(id || {Xi,j}T1,S1
i=1,j=1)

2 Parse v as {vi,j}T1,T2
i=1,j=1

3 for i = 1 to T1 do

4 for j = 1 to T2 do

5 if vi,j = 0 then

6 K′
i,j = [zi,j ]Eui

7 else

8 K′
i,j = [zi,j ]Xi,vi,j

9 end if

10 end for

11 end for

12 v ← H′(m || {K′
i,j}T1,T2

i=1,j=1)

13 if v′ �= v then

14 Invalid

15 end if

16 Return Valid

Correctness. The correctness of our IBS follows immediately from the correct-
ness of our canonical ID-based identification scheme IBID from isogenies.

From Theorem 6.21 and Lemma 3.5 of [1] we arrive at the following theorem:

Theorem 6.31. Let IBID be the ID-based identification scheme from isogenies
described in Sect. 6.2 and IBS be an identity-based signature from isogenies pre-
sented in Sect. 6.3. Let A be an adversary that breaks the UF-IBS-CMA security
of IBS, then we can construct an impersonator I breaking the IMP-PA security
of IBID.

7 Our Construction of Forward-Secure Identity-Based
Signature

In this section we describe our construction of forward-secure identity-based
signature FSIBS using the IBS scheme presented in Sect. 6.3.

Setup(1λ) → (ppfs,msk): The KGC runs the algorithm IBS.Setup on input
1λ to generate ppibs = {p,E0, g, N, T1, T2, S0, S1,H,H ′, {Ei}S0

i=1} and msk =
{si}S0

i=1.

– Sample a hash function H̃ : {0, 1}∗ → [0, S0]T1 .
– Sample a forward-secure pseudo-random generator FSPRG G : {0, 1}d →

{0, 1}e where d < e with eL + eR = e, integer eL > 0 and integer eR > 0
and a pseudo-random function f : {0, 1}eL → Z

S0
N .
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– Run IBS.Setup to generate ppibs = {p,E0, g, N, T1, T2, S0, S1,H,H ′,
{Ei}S0

i=1}.
– Return ppfs = {ppibs, H̃, G, f,} and msk = {si}S0

i=1.
Extract(ppfs,msk, id) → uskid: On input the public parameter ppfs, the mas-
ter secret key msk = {si}S0

i=1 and the identity id = ID || TID where ID is the
user’s identifier information and TID is the pre-specified number of time peri-
ods over which the signing key is generated, the KGC runs this algorithm and
outputs the secret key uskid for the given identity id in the following manner:

– Set s0 ← 0.
– Sample integer vectors ri,j

$←− ZN and compute the curves Ri,j = [ri,j ]E0

for i = 1, . . . , T1, j = 1, . . . , S1

– Compute u = (u1, . . . , uT1S1) = H(id || {Ri,j}T1,S1
i=1,j=1)

– Compute xi,j = ri,j − sui
(mod N) for i = 1, . . . , T1, j = 1, . . . , S1.

– Return uskid = (u, {xi,j}T1,S1
i=1,j=1).

Initialize(ppfs, id, uskid) → (SKid, 0, auxid): The signer on input ppfs, user iden-
tity id = ID || TID and its secret key uskid = (u, {xi,j}T1,S1

i=1,j=1) generates its
initial signing key SKid, 0 and some auxiliary information auxid in the following
manner:

– Select a random seed β0 ∈ {0, 1}d for the pseudo-random generator G.
– for l = 1, . . . , TID do

• Compute (αl, βl) ← G(βl−1).
• Compute f(αl) = (a(l)

1 , . . . , a
(l)
S0

).
• Run CSI-FiSh.KeyGen algorithm of CSI-FiSh with the public parame-

ter ppsgn = (p, g, N,E0, H̃, S0, T1) extracted from ppfs to generate
signing-verification key pair (skl, vkl).

* Compute the curves A
(l)
i = [a(l)

i ]E0 for i = 1, . . . , S0.

* Set the signing key skl = {a
(l)
i }S0

i=1 and verification key vkl =
{A

(l)
i }S0

i=1.
• Run IBS.Sign algorithm (see Algorithm 3) on input the public parame-

ter ppibs = {p,E0, g, N, T1, T2, S0, S1,H,H ′, {Ei}S0
i=1}, user secret key

uskid = (u, {xi,j}T1,S1
i=1,j=1) to generate a signature σl on id || l || vkl.

* Set xi,0 ← 0 for i = 1, . . . , T1.
* Compute the curves Xi,j = [xi,j ]Eui

for i = 1, . . . , T1, j =
1, . . . , S1 where u = (u1, . . . , uT1S1) is extracted from uskid.

* Sample the integer vector k
(l)
i,j

$←− ZN and compute the curves

K
(l)
i,j = [ki,j ]Eui

for i = 1, . . . , T1, j = 1, . . . , T2.

* Compute v(l) = (v(l)
1,1, . . . , v

(l)
T1,T2

) = H ′(id || l || {A(l)
i }S0

i=1 ||
{K

(l)
i,j }T1,T2

i=1,j=1).

* Compute z
(l)
i,j = k

(l)
i,j − x

i,v
(l)
i,j

mod N for i = 1, . . . , T1, j =
1, . . . , T2.

* Set σl = ({z
(l)
i,j}

T1,T2
i=1,j=1, {Xi,j}T1,S1

i=1,j=1,v
(l)).

• Set the auxiliary information auxid, l = (id, l, vkl, σl).
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– Save auxid = ({auxid, l}TID
l=1 ) not necessarily in a secure storage..

– Erase uskid, skl, αl, βl for l = 1, . . . , TID.
– Set SKid, 0 = β0 and keep it secret.

Update(ppfs, id, t, auxid,SKid, t−1) → SKid, t: The signer executes this algo-
rithm on input the public parameter ppfs, user identity id = ID || TID, an
index of the current time period t < TID, the auxiliary information auxid and
the signing key SKid, t−1 corresponding to previous time period and generates
signing key SKid, t for the current time period t by following the steps detailed
below:

– If t = 1, parse SKid, t−1 into βt−1. Otherwise, parse SKid, t−1 into
(skt−1, βt−1).

– Compute (αt, βt) ← G(βt−1).
– Compute f(αl) = (a(l)

1 , . . . , a
(l)
S0

) and retrieve the curves A
(t)
i = [a(t)

i ]E0

for i = 1, . . . , S0.

– Set the signing key skt = {a
(t)
i }S0

i=1 and verification key vkt = {A
(t)
i }S0

i=1.
– Retrieve auxid, t from auxid and parse it to (M1,M2,M3,M4). Check if

M1 = id, M2 = t and M3 = vkt. If any of these test fails, abort. If
the checks succeed, run the IBS.Verify algorithm to check the validity
of the signature M4 = ({z

(t)
i,j }T1,T2

i=1,j=1, {Xi,j}T1,S1
i=1,j=1,v

(t)) on the message
id || t || vkt.

• Retrieve u = H(id || {Xi,j}T1,S1
i=1,j=1).

• Extract v(t) from M4 and parse it as {v
(t)
i,j }T1,T2

i=1,j=1.

• for i = 1, . . . , T1, j = 1, . . . , T2, if v
(t)
i,j = 0 then compute K̄

(t)
i,j =

[z(t)i,j ]Eui
else compute K̄

(t)
i,j = [z(t)i,j ]X

i,v
(t)
i,j

.

• Compute v̄(t) = H ′(id || t || vkt || {K̄(t)
i,j }T1,T2

i=1,j=1).
• If v̄(t) �= v(t) return Invalid else return Valid.

– Abort if the verification fails and continue otherwise.
– Set SKid, t = (skt, βt). Save SKid, t in a secure storage and erase SKid, t−1.

Sign(ppfs, t, id, auxid,SKid, t,m) → γ: Taking input the public parameter ppfs,
an index of time period t, user identity id, the auxiliary information auxid, the
signing key SKid, t = (skt, βt) associated with time period t and a message,
the signer runs this algorithm to generate a signature γ on m associated with
id and t. It executes the following steps:

– Retrieve the current values of auxid, t from auxid and SKid, t.
– Parse SKid, t into (skt, βt).
– Compute the CSI-FiSh signature ρt on input the public parameter ppsgn =

(p, g, N,E0, H̃, S0, T1), the message m and the signing key skt = {a
(t)
i }S0

i=1.
• Sets a

(t)
0 ← 0.

• Samples b
(t)
i

$←− ZN and compute B
(t)
i = [b(t)i ]E0 for i = 1, . . . , T1.

• Computes the challenge bits c(t) = (c(t)1 , . . . , c
(t)
T1

) = H̃(m ||
{B

(t)
i }S0

i=1).
• Computes the response y

(t)
i = b

(t)
i - a

(t)

c
(t)
i

(mod N) for i = 1, . . . , T1.
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• Sets the signature ρt = ({c
(t)
i }T1

i=1, {y
(t)
i }T1

i=1).
– Sets the signature γ = (auxid, t, ρt)

Verify(ppfs, id, t,m, γ) → Valid/Invalid: On input the public parameter ppfs,
user identity id, an index of current time period t, a message and a signature
γ = (auxid, t, ρt), the verifier runs this algorithm in the following manner:

– Parse auxid, t to (M1,M2,M3,M4).
– Check if M1 = id and M2 = t.
– Run the IBS.Verify algorithm (see Algorithm 4) with input the public

parameter ppibs = {p,E0, g, N, T1, T2, S0, S1,H,H ′, {Ei}S0
i=1}, user iden-

tity id, the message id || t ||M3 and the signature M4 to verify the signa-
ture.

– Run the algorithm CSI-FiSH.Verify to verify the validity of the signature
ρt on the message m under the verification key M3.

• Parse ρt = ({c
(t)
i }T1

i=1, {y
(t)
i }T1

i=1).
• Compute the elliptic curves B

(t)
i = [y(t)

i ]A
c
(t)
i

for i = 1, . . . , T1.

• Compute c̄(t) = (c̄ (t)
1 , . . . , c̄

(t)
T1

) = H̃(m || {B(t)
i }S0

i=1)
• If c(t) = c̄(t) then returns Valid, else returns Invalid.

– If all the above tests succeed, return Valid, else return Invalid.

Correctness. The correctness of our FSIBS scheme follows immediately from
the correctness of CSI-FiSh signature and correctness of our IBS scheme.

Theorem 7.01. If the underlying signature scheme CSI-FiSh, identity-based sig-
nature IBS and forward-secure pseudorandom generator G are UF-CMA, UF-IBS-
CMA and ROR secure respectively, then our scheme FSIBS is UF-FSIBS-CMA
secure following the security model of [2].
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Abstract. Linearly homomorphic signatures provide authenticity ser-
vices for a series of scenarios such as network coding routing mech-
anisms and verifiable computation mechanisms. However, most of the
present constructions are publicly combinable and verifiable. Motivated
by the problem proposed by Rivest, we introduce the concept of desig-
nated combiner into linearly homomorphic signatures. In the new notion,
the verification procedure remains public, nevertheless, the homomorphic
operation is infeasible for other entities except the one designated by the
signer (we call it the designated combiner). In addition, we present a
specific construction with provable security in the random oracle model.

Keywords: Linearly homomorphic signatures · Designated combiner ·
Publicly verifiable · Random oracle model

1 Introduction

The aim of digital signatures [16] is to provide authenticity, integrity and non-
repudiation of the signed message. Among these properties, authenticity is used
to guarantee the source and the content of the signed message; integrity is in order
to prevent an adversary from modifying the signed message, or from injecting a
malicious message unsigned by the signer; non-repudiation means that the signer
cannot deny the message signed by she previously. Informally, a digital signa-
ture scheme consists of three algorithms (KeyGen, Sign, Verify). The signer who
wishes to send somemessages in an authenticatedwaybegins by generating her pri-
vate/public key pair (sk, pk) using the KeyGen algorithm. When she wants to send
a message m to others, she runs the Sign algorithm that takes as input a message
m and private key sk, and outputs a signature σ. Upon receiving the pair (m,σ),
any entity with the signer’s public key pk can check whether σ is a valid signature
on message m or not. This is completed by running the Verify algorithm.
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Although digital signatures are widely used, some extra properties should
be added to satisfy the requirements in specific scenarios. As a class of special
digital signatures, homomorphic signatures [20] have an additional algorithm
called Combine, which allows any entity with the signer’s public key to compute
on the signed message in a honest and homomorphic way.

Both digital signatures [16] and homomorphic signatures [20] require exis-
tential unforgeability under adaptively chosen-message attacks. The difference
lies in the type of the unforgeability they require: the former requires that the
adversary must be unable to produce even one signature on a message unsigned
by the signer, while the latter captures the ability to combine the signed data
by any entity, i.e., a derived signature obtained in honest and homomorphic
way is not a forgery. More precisely, a signer has a dataset {mi}n

i=1 and pro-
duce corresponding signature σi for each message mi. Any entity, without the
knowledge of the signer’s private key, can compute m = f(m1, . . . ,mn) together
with a valid signature σ on it. There are two key features in the above primi-
tive: first, the homomorphic operation over authenticated data is feasible for any
entity, even though they don’t have the signer’s private key; second, any entity
can verify the validity of σ, and this procedure does not need original messages
{mi}n

i=1. Because of these attractive properties, much attention has been paid to
homomorphic signatures, and there are various types of homomorphic signatures
according to different computations they support. These include linearly homo-
morphic signatures [9], homomorphic signatures for polynomial functions [7],
fully homomorphic signatures [10], transitive signatures [6], redactable signa-
tures [20] and so on.

As a special type of homomorphic signatures, linearly homomorphic signa-
tures (LHS) [9,26] allow any entity to homomorphically evaluate linear func-
tions over the signed data (usually a vector group). In a LHS scheme LHS =
(KeyGen, Sign, Combine, Verify), more specifically, the message space usually is
a vector subspace, and Combine allows for public computation for linear func-
tions over the signed data (we call this property public combinability). Verify,
run by any entity with the signer’s public key, can tell whether a message is
valid or not (we call this property public verifiability). Note that a message
is valid if it came directly from the signer or was linearly derived from the
signer’s original dataset. LHS were originally used to prevent pollution attacks
in the network coding routing mechanisms [9], and enjoy desirable applications
in proofs of storage [3] and cloud computing area [21] such as verifiable compu-
tation mechanisms [1,5]. Besides, LHS can improve the robustness for lager-scale
system [9,19].

In the verifiable computation mechanisms [1], the signer who has a set of
data m1,m2, . . . ,mn ∈ Fp wants to delegate computations over this dataset to
a cloud server. However, there always exist some servers who would not perform
computation honestly. In this scenario, we can use LHS to establish verifiable
computation mechanisms. First of all, the signer extends each data mk to the
vector (mk | ek) ∈ F

n+1
p , and then computes signatures on each vector (mk | ek).

Next, all (mk, k) and the corresponding signature σk are transmitted to the
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server by the signer. Then, the server can carry any linear computation f over
the original dataset and accordingly derive a signature σ for the computation
result m = f(m1,m2, . . . ,mn). The signature σ can assure the recipient that the
value m is indeed equal to f(m1,m2, . . . ,mn).

However, there exist two problems in the above framework if the signer wants
the server to be the only entity who can combine the signatures: first, the signer
needs a reliable channel for transmitting the data/signature pair (mk, σk) to the
server. Otherwise, any entity who intercepts these pairs can also serve as the
combiner because existing LHS schemes are publicly combinable; second, any
verifier who receives the pairs (m,σ) derived by the server can simply calculate
a signature on any linear function over m.

Recently, Lin et al. [22] defined a framework for linearly homomorphic sig-
natures with designated entities (LHSDE): only the designated combiner can
produce signatures on linearly-combined signed vectors, and only the designated
verifier would be convinced about the validity of those signatures. The motiva-
tion of [22] is raised by Rivest in [24], namely, how to design a transitive signature
scheme such that only one entity called the designated combiner is able to derive
the edge signature σ(A,C) from the edge signatures σ(A,B) and σ(B,C). Both
transitive signatures and linearly homomorphic signatures are special cases of
homomorphic signatures, so Lin et al. study a similar problem in the setting of
the latter. Although the works of Lin et al. [22] can solve the above two prob-
lems, linearly homomorphic signatures with designated combiner (LHSDC) with
public verifiability have not yet appeared in the literature, and the reason why
[22] does not achieve public verifiability would be detailed in the Sect. 1.1.

There are two reasons for making the syntax of LHSDC publicly verifiable.
The first issue of introducing the designated verifier is the loss of non-repudiation
property which is indispensable in many scenarios. Second, LHSDC is more
efficient than LHSDE in aspects like public key distribution, management, and
revocation, etc. So it is worth spending a bit more time on this research line.

1.1 Contributions

Our Results. A major concern in this work is to prevent the non-authorized
entities from combining the certified data. To do so, we first introduce a
new notion called linearly homomorphic signatures with designated combiner
(LHSDC). Both of LHSDC and LHS are publicly verifiable, but the main dif-
ference lies in that the combiner in the former is designated by the signer and
only he/she can perform the Combine algorithm, while the latter are publicly
combinable. Then, we present the formal definition of LHSDC as well as its secu-
rity requirements including two types of unforgeability. Finally, we use the idea
of IBS (Identity-Based Signatures) to design a concrete LHSDC scheme satisfy-
ing two types of unforgeability in the random oracle model, assuming that the
co-CDH and the CDH problems are hard, respectively.
Overview of Techniques. Our starting point is a LHS scheme such as [9]
and a message is a vector v ∈ F

N
p . Recall that, in a LHS scheme, the signer
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has a dataset {vi}n
i=1 and uses private key to generate signature σi for each

message vi. Any entity who knows the public key that acts as both verification
and combination key can perform two tasks: verify signatures sent by the signer
or derived by upstream combiners; carry any linear function f over the received
messages {xi}k

i=1 (either the origin messages issued by the signer or the evaluated
messages output by the upstream combiner) and derive a new signature σ on
the result f(x1, . . . ,xk).

We now focus on the reason of introducing the concept of the designated
verifier in [22], and show that making linearly homomorphic signatures with
designated combiner (LHSDC) publicly verifiable is not trivial. As discussed
earlier, the goal of [22] is to design a homomorphic signature scheme such that
only one entity, called the designated combiner, can combine the signatures.

To this end, the signer multiplies each σi by a hash hi and denotes the product
by the designated signature σ̂i. Note that issuing σi without multiplying it by
hi would completely result in public combinability, and so the function of hi

is somehow to mask the value of σi. Only the entity designated by the signer
can unmask the designated signature σ̂i, and obtain exact value σi. Then, the
combiner can run nearly the same Combine algorithm as in LHS, and derive a
value σv on a linear function result v.

Unfortunately, it is insecure to directly consider the value σv as the signature
on message v. Since linearly homomorphic signatures enjoy public combinability
and there is no masking on the derived value σv, any entity who receives the pair
(v, σv) can simply apply a linear function f(x1, . . . ,xk) = kx1 over the message
v, and derive a valid signature σkv on message kv, resulting that the role of the
designated combiner is replaced by an non-authorized entity.

The solution in [22] is to apply the notion of designated verifier put forward
by Steinfeld et al. [25] into LHS. The general idea behind this notion is that the
signer uses verifier’s public key to transform standard signatures into a new signa-
ture (usually a pairing of standard signature and verifier’s public key) designated
to verifier. Similarly, the combiner in LHS uses verifier’s public key to transform
evaluated signatures into a new signature designated to verifier. Accordingly, only
the designated verifier can be convinced about the validity of signature σ.

Our approach for removing the designated verifier from LHSDE is to use the
idea of IBS. In the IBS, TA (Trust Authority) uses both her private key and
the user identity to generate the user’s private key. Analogously, the signer in
the LHSDC uses both her private key and the combiner’s public key to generate
the signatures on the vector subspace V . Then, the signatures can be seen as
a witness of the combiner, which is used to generate a convincing proof of the
statement that the combiner has a valid signature on the linearly-derived vector.

1.2 Related Work

The concept of homomorphic signatures dates back to Desmedt [15] while the
formal definition was gave by Johnson et al. [20]. Since then, various types of
homomorphic signatures with different homomorphic operations have been pro-
posed (please refer to the work of Traverso, Demirel, and Buchmann [26]).
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Linearly homomorphic signatures, an important part of homomorphic sig-
natures, allow any entity (without the signer’s secret key) to linearly combine
the signed messages and derive a valid signature on the combined-message. In
particular, the derived signature is indistinguishable with the corresponding sig-
nature signed by the signer. The initial motivation is to establish the authen-
tication mechanism in network coding and to prevent pollution attacks [9,13].
In the following study, linearly homomorphic signatures have also be used as an
important building block for proofs of storage [2,3] and verifiable computation
mechanisms [1], because they allow for linear computations on the signed data.
The work of Boneh et al. [9], providing a practical framework and capturing the
security model for such schemes, can be seen as the milestone of linearly homo-
morphic signatures. In fact, the messages are viewed as a linear vector subspace
over a prime field, and message encoding can be seen as a linear computation
over the authentication vectors with some integer coefficients in [9]. Since then,
many different LHS schemes have been proposed, and we divide them into two
groups: security proof relies on random oracle model or standard model.

Random Oracle Model. Gennaro et al. [17] proposed the first LHS scheme
based on the RSA assumption. In their scheme, modulo a large integer N = pq
(p, q are two safe primes) directly yields both the homomorphic properties and
the ability to work with small coefficients, which improves the computation of the
combiners and reduces the communication overhead for moderate-size networks.
The scheme [8] proposed by Boneh and Freeman is the first such construction
authenticating vectors over binary fields F2, and its security relies on a variant
version of the SIS problem called k-SIS. Further improvement was given by the
same authors [7]; that led to a new proposed lattice-based LHS scheme whose
vector defined over a finite field Fp with small prime p, and its security relies on
a standard problem SIS. Wang et al. [27] improve the efficiency and the security
of the scheme proposed in [8].

Standard Model. Attrapadung and Libert [4] put forth the first LHS scheme
with provable security in the standard model. Their scheme works over the bilin-
ear group of the composite order, and each signature includes three 1024-bit
group elements. Subsequently, Attrapadung, Libert, and Peters [5] use e(g, g)α

instead of gα as one part of the public key to improve the efficiency of the above
scheme. In order to further improve the efficiency of LHS in the standard model,
Catalano, Fiore, and Warinschi [12] present two new such schemes, and the
security relies on q-SDH assumption and S-RSA assumption, respectively. Chen,
Lei, and Qi [14] design the first lattice-based LHS scheme in the standard model.
Catalano, Fiore, and Nizzardo [11] introduce a private version of programmable
hash functions (called asymmetric programmable hash functions) to construct
the first LHS scheme whose public key is sub-linear in both the vector dimension
and the dataset size.

Organization of the Paper. We begin in Sect. 2 with some background mate-
rial on LHSDC including the definition and the security. Section 3.1 introduces
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the complexity assumption needed in our scheme. In Sect. 3.2, we construct a
concrete LHSDC scheme. The last section concludes the paper.

2 Definitions and Preliminaries

We assume that every document is associated with an identifier id chosen by the
signer. Every entity uses identifiers to recognise packets of the same document.

2.1 The Properly Augmented Basis Vectors

Let p be a large prime. In a LHS scheme [9], a document is viewed as an ordered
sequence of n-dimensional vectors v1, . . ., vm ∈ F

n
p . In order to allow the down-

stream entities to derive the linear combination coefficients from a combined-
vector, the signer creates the properly augmented basis vectors v1, . . . ,vm, where

vi = (−vi−,

m
︷ ︸︸ ︷

0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ F
N
p for each i ∈ {1, . . . ,m}, and N = n + m.

In fact, the augmented vector vi is the concatenation of vector vi and the i’th
m-dimensional unit vector. Upon receiving vector v, any entity can easily derive
the coefficients, which are the posterior m coordinates of the vector v.

2.2 Syntax of LHSDC

Here, we keep the designated combiner exactly the same as [22], but introduce
two key modifications in the definition itself:

1. We now consider that every entity can verify the message combined by the
combiner, whereas in [22] this is not publicly known and the designated ver-
ifier was introduced.

2. Because LHSDC satisfy public verifiability, so the Simulation algorithm
introduced in [22] is no longer needed.

Definition 1. A linearly homomorphic signature scheme with designated com-
biner is a tuple of the following probabilistic polynomial-time (PPT) algorithms
LHSDC = (Setup, KeyGen, Sign, DVerify, Combine, Verify).

– cp ← Setup(1k, N) is the Setup algorithm which, takes as input a security
parameter k and a positive integer N (the dimension of a vector being signed),
outputs the common parameter cp.

– (pk, sk) ← KeyGen(cp) is the KeyGen algorithm. The signer (the combiner
designated by the signer) runs it to generate a public key PKA (PKB) and
the corresponding private key SKA (SKB).

– σ̂ ← Sign(SKA, PKB , id,m,v) is the Sign algorithm which, takes as input
a private key SKA (of the signer), a public key PKB (of the combiner), an
identifier id randomly chosen from the set I = {0, 1}k, a positive integer
m < N (the dimension of vector subspace), and a vector v ∈ F

N
p , outputs a

designated signature σ̂ on the vector v.
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– 1 or 0 ← DVerify(PKA, SKB , id, m, v, σ̂) is the DVerify algorithm which,
takes as input a public key PKA, a private key SKB , an identifier id, a
positive integer m < N , a vector v ∈ F

N
p , and a designated signature σ̂,

outputs 1 (accept) or 0 (reject).
– (v, σ) ← Combine(PKA, SKB , id, {(vk, σ̂k)}l

k=1) is the Combine algorithm
which, takes as input a public key PKA, a private key SKB , an identifier id,
and l pairs of {(vk, σ̂k)}l

k=1, outputs a vector/signature pair (v, σ).
– 1 or 0 ← Verify(PKA, id,m,v, σ) is the Verify algorithm which, takes as

input a public key PKA, an identifier id, a positive integer m < N , a vector
v ∈ F

N
p , and a signature σ, outputs 1 (accept) or 0 (reject).

Except for the above six algorithms, the following obvious properties should be
satisfied in any LHSDC scheme.

– Correctness of the Sign algorithm. ∀ id ∈ I and ∀ v ∈ F
N
p , if σ̂ ←

Sign(SKA, PKB , id,m,v), then

DVerify(PKA, SKB , id,m,v, σ̂) = 1.

– Correctness of the Combine algorithm. ∀ id ∈ I and any set of pairs
{(vk, σ̂k)}l

k=1, if DVerify(PKA, SKB, id, m, vk, σ̂k) = 1 for all k ∈ {1, . . . , l},
then

Verify(PKA, id,m,v, σ) = 1,

where (v, σ) ← Combine(PKA, SKB , id, {(vk, σ̂k)}l
k=1).

2.3 Security

A successful attack means that an adversary can achieve one of the following two
targets. First, he either creates a valid signature on a non-zero vector belonged
to a new vector subspace (unsigned by the signer previously), or injects a mali-
cious vector (can not be expressed as a linear combination of the bases of the
corresponding vector subspace) into an existing vector subspace (has been signed
by signer). Second, he is capable of combining the designated signatures signed
by the signer, which means that the role of the designated combiner has been
replaced by the adversary. From the above we have the impression of what is con-
sidered a “break” of the LHSDC schemes, and below two types of unforgeability
will be introduced.

UF1: Type 1 Unforgeability. UF1 requires that no efficient adversary have the
ability to forge a signature on a non-zero vector belonged to a new vector sub-
space or on a malicious vector. It is intuitive that no entity has more knowledge
than the designated combiner. Therefore, we only need to define UF1 against the
malicious designated combiner, and the formal definition will be characterized
by the following game between an adversary A and a challenger C.

Definition 2 (UF1). We say that a LHSDC scheme satisfies UF1 if no PPT
adversary A has non-negligible success probability with respect to the security
parameter k in the following game:
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– Setup1. Given a positive integer N , C runs Setup(1k, N) to obtain the com-
mon parameter cp, and then generates the signer’s key pair (SKA, PKA)
using the algorithm KeyGen(cp). The pair (cp, PKA) is sent to A. As response,
A sends the designated combiner’s public key PKB to C.

– Query1. Proceeding adaptively, A specifies a sequence of vector subspaces
Vi ⊂ F

N
p . For each i, C.

1. Chooses an identifier idi ∈ I uniformly at random and then generates a
designated signature σ̂i on Vi.

2. Sends the pair (idi, σ̂i) to A.
– Output1. Finally, A outputs an identifier id∗, a non-zero vector v∗ ∈ F

N
p , and

a signature σ∗.

The adversary A wins if Verify(PKA, id∗, m, v∗, σ∗) = 1, and either id∗ �= idi

for any i (Type 1.1 forgery, which means that A succeeds in creating a valid
signature on a non-zero vector belonged to a new vector space) or id∗ = idi for
some i but v∗ /∈ Vi (Type 1.2 forgery, which means that A has injected some
malicious vectors into an existing vector subspace). The success probability of
A is defined as SuccUF1

A,S .

UF2: Type 2 Unforgeability. UF2 requires that no entity except the signer is
able to pretend to be the designated combiner, namely, the operation of combin-
ing the designated signatures is infeasible for other entities except the signer or
the designated combiner. Next, we use the following game between an adversary
A and a challenger C to define Type 2 Unforgeability.

Definition 3 (UF2). We say that a LHSDC scheme satisfies UF2 if no PPT
adversary A has non-negligible success probability with respect to the security
parameter k in the following game:

– Setup2. Given a positive integer N , C runs Setup(1k, N) to obtain the com-
mon parameter cp, and then generates the signer’s key pair (SKA, PKA)
and the designated combiner’s key pair (SKB , PKB) using the algorithm
KeyGen(cp) two times. The tuple (cp, PKA, PKB) is sent to A.

– Sign Query2. Proceeding adaptively, A specifies a sequence of vector sub-
spaces Vi ⊂ F

N
p . For each i, C.

1. Uses the properly augmented basis vectors vi1, . . . ,vim ∈ F
N
p to describe

Vi;
2. Chooses an identifier idi ∈ I uniformly at random;
3. For all j ∈ {1, . . . , m}, runs Sign(SKA, PKB , idi,m,vij) to generate the

designated signature σ̂ij on the vector vij , and sets σ̂i = (σ̂i1, . . . , σ̂im)
as the designated signature on the vector subspace Vi;

4. Sends the pair (idi, σ̂i) to A.
– Combine Query2. Proceeding adaptively, C is given (idi, {(vik, σ̂ik, βk)}l

k=1)
which is specified by A, and runs Combine(PKA, SKB , idi, {(vik, σ̂ik)}l

k=1)
to generate a vector/signature pair (v, σ), where v =

∑l
k=1 βkvik.

– Output2. The adversary A outputs an identifier id∗, a vector v∗ ∈ F
N
p , and a

signature σ∗.
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The adversary wins if Verify(PKA, id∗, m, v∗, σ∗) = 1, where id∗ = idi for
some i and 0 �= v∗ ∈ Vi (Type 2 forgery, which means that A successfully
pretends to be the designated combiner). Clearly, v∗ should not be a vector
that have been queried to the combine oracles. Besides, we define the success
probability of A as SuccUF2

A,S .

Definition 4. We say that a LHSDC scheme is unforgeable against adaptively
chosen-message attacks if, for any PPT adversary A, both SuccUF1

A,S and SuccUF2
A,S

are negligible with the security parameter k.

The next lemma shows the forking lemma [23], which is used to obtain two
valid signatures on the same message from an adversary that queries the same
random oracle.

Lemma 1 [23]. Let S be a signature scheme, k be a security parameter, and
A be a probabilistic polynomial-time adversary who makes at most q queries of
random oracle. If within the time bound tA the adversary A outputs a valid
signature (r, h, σ) on message m with probability SuccUF

A,S ≥ 7q/2k, then within
the time bound tB ≤ 16qtA/SuccUF

A,S he, with probability ε ≥ 1/9, will outputs
two valid signatures (r, h, σ) and (r, h′, σ′) on the same message m such that
h �= h′.

3 Our Design of LHSDC

Based on the network coding signature scheme proposed by Boneh et al. [9] and
the idea of the IBS [18], we construct a concrete and secure LHSDC scheme whose
two types of unforgeability rely on co-CDH and CDH assumptions, respectively.

3.1 Bilinear Groups and Complexity Assumptions

Definition 5. Let p be a large prime, G1, G2 and GT be three cyclically multi-
plicative groups of the same order p, and e : G1 × G2 → GT be a bilinear map.
A tuple of (G1,G2,GT , e, ϕ) is defined as a bilinear group tuple which has the
following properties:

1. Computability: ∀ g ∈ G1 and ∀ h ∈ G2, e(g, h) can be efficiently calculated.
2. Bilinearity: ∀ a, b ∈ Zp, ∀ g ∈ G1, and ∀ h ∈ G2, we have e(ga, hb) =

e(g, h)ab = e(gb, ha).
3. Non-degeneracy: Assuming g and h are the generators of group G1 and G2,

respectively, then e(g, h) is a generator of group GT , i.e., e(g, h) �= 1GT
.

4. ϕ : G2 → G1 is an efficient, computable isomorphism.

Definition 6 (co-CDH Problem). Given three randomly chosen elements
g1 ∈ G1 and g2, g

a
2 ∈ G2 for some unknown a ∈ Zp, calculate ga

1 ∈ G1.

Let Advco−CDH
A,(G1,G2)

= Pr[ga
1 ← A(g1, g2, ga

2 )] be the probability of a PPT adversary
solving the co-CDH problem. We say that the co-CDH problem is hard in (G1,
G2) if no PPT adversary has non-negligible probability Advco−CDH

A,(G1,G2)
.
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Definition 7 (CDH Problem). Given three randomly chosen elements g1, ga
1 ,

gb
1 ∈ G1 for some unknown a, b ∈ Zp, calculate gab

1 .

Let AdvCDH
A,(G1,G2)

= Pr[gab
1 ← A(g1, ga

1 , gb
1)] be the probability of a PPT adversary

solving the CDH problem. We say that the CDH problem is hard in (G1,G2) if
no PPT adversary has non-negligible probability AdvCDH

A,(G1,G2)
.

3.2 Our LHSDC Scheme

This subsection describes our signature scheme that enjoys two characteristics:
(1) the combination operation can only be implemented by the entities desig-
nated by the signer; (2) the message-signature pairs output by the combiner are
publicly verifiable.

– Setup(1k, N). Take as input a security parameter k and an integer N > 0:
1. Let G = (G1,G2,GT , e, ϕ) be a bilinear group as in Definition 5.
2. Choose generators g1, g2, . . . , gN

R←− G1 \ {1}, and h
R←− G2 \ {1}.

3. Choose four hash functions H1 : {0, 1}∗ → G1, H2 : F
N
p → G1, H3 :

GT → G1, and H : FN
p × GT → Fp.

4. Output the common parameter cp = (G, p, {Hj}3j=1,H, h, {gi}N
i=1).

– KeyGen(cp). The signer (combiner) chooses αA
R←− Fp (αB

R←− Fp), and then
calculates uA = hαA (uB = hαB ). The signer’s (combiner’s) public key is
PKA = uA (PKB = uB) and private key is SKA = αA (SKB = αB).

– Sign(SKA, PKB , id,m,v). Take as input a private key SKA (of the signer),
a public key PKB (of the combiner), an identifier id

R←− {0, 1}k, a positive
integer m < N , and a vector v ∈ F

N
p . Output a designated signature

σ̂ =
( m

∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j

)αA

H3(e(H2(v), uB)αA).

– DVerify(PKA, SKB , id,m, σ̂,v). Take as input a public key PKA (of the
signer), a private key SKB (of the combiner), an identifier id, a positive
integer m < N , a designated signature σ̂ and a vector v:

1. Define γ1(PKA, σ̂) def= e (σ̂, h) and

γ2(SKB , PKA,id,m,v) def=

e(
m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j , uA)e(H3(e(H2(v), uA)αB ), h).

2. Output 1 (accept) if γ1(PKA, σ̂) = γ2(SKB , PKA, id, m, v); otherwise,
output 0 (reject).

– Combine(PKA, SKB , id, {(vk, σ̂k)}l
k=1). Take as input a public key PKA

(of the signer), a private key SKB (of the combiner), an identifier id, and l
pairs of {(vk, σ̂k)}l

k=1, where vk = (vk,1, . . . , vk,N ):
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1. Calculate v =
∑l

k=1 βkvk = (v1, . . . , vN ) (β1, . . . , βl ∈ Fp are chosen by
the combiner) and then further calculate

σv =
l

∏

k=1

(σ̂k · [H3(e(H2(vk), uA)αB )]−1)βk .

2. Choose c
R←− Fp and compute R = e(g, h)c, S = H(v, R), and T = σS

v ·gc.
3. Output a vector v and a signature σ = (S, T ).

– Verify(PKA, id,m,v, σ). Take as input a public key PKA (of the signer),
an identifier id, a positive integer m < N , a vector v ∈ F

N
p , and a

signature σ. Then, calculate σ′
v =

∏m
k=1 H1(id, i)vn+i

∏n
j=1 g

vj

j and R′ =
e(T, h)e(σ′

v, (hαA)−1)S . Output 1 if S = H(v, R′); otherwise, output 0.

– Correctness of the Sign algorithm. ∀ id and ∀ v ∈ F
N
p , if σ̂ ← Sign(SKA,

PKB, id,m,v) then

γ1(PKA, σ̂) = e(σ̂, h)

= e

(( m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j

)αA

H3 (e(H2(v), uB)αA) , h

)

= γ2(SKB , PKA, id,m,v).

– Correctness of the Combine algorithm. ∀ id and ∀ {(vk, σ̂k)}l
k=1, if

it holds that DVerify(PKA, SKB , id,m, σ̂k,vk) = 1 for all k, and if v =
∑l

k=1 βkvk and σ = (S, T ) are output by the Combine algorithm. Then we
have

H(v, R′) = H(v, e(T, h)e(σ′
v, (hαA)−1)S)

= H(v, e(σS
v · gc, h)e(σ′

v, (hαA)−1)S)

= H(v, e(σS
v , h)e(gc, h)e(σ−S

v , h))
= H(v, e(g, h)c) = S.

Efficiency. If G is a group, we denote the length of one element in the group G
by ‖G‖. The computational cost of one exponent operation, pairing operation,
map-to-point operation, inverse operation, and multiply operation are denoted
by TE , TP , TH , TI and TM , respectively. The formal analysis please see the
Table 1. In Table 2, we give a rough comparison of the existing LHS schemes.
For simplicity, the dimension of the signed vector that has not been augmented
(the augmented vector) is set to be n. We omit hash functions in the public key.

3.3 Security Proof

Given an adversary that breaks the signature scheme, in UF1, we construct a
challenger that simulates the signature scheme, the hash functions, and solves
the co-CDH problem in (G1,G2). Similarly, we show a challenger can solve a
complexity problem in UF2 if there exists a successful adversary, except that the
CDH problem is used instead of the co-CDH problem.
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Table 1. Efficiency analysis

Algorithm Signature Length Computational Cost

Sign 1‖G‖ (n + 2)TE + 1TP + 3TH + (n + 1)TM

DVerify �
��

(n + 1)TE + 3TP + 3TH + (n + 1)TM

Combine 1‖Zp‖ + 1‖G‖ (m + 3)TE + 1TP + 1TH + mTI + 2mTM

Verify �
��

(N + 1)TE + 2TP + (m + 1)TH + 1TI + NTM

Table 2. Comparison to the existing linearly homomorphic signatures

Schemes Public key Signature Model Ass. DC DV

[9] (n+ 2)‖G‖ 1‖G‖ ROM co-CDH No

[17] n‖QRN′‖ 1‖Z∗
N′‖ ROM RSA

[8] 1‖Zn×h
2q ‖ Short vector ROM k-SIS

[7] 1‖Z‖ + 1‖Zn×h
q ‖ Short vector ROM SIS

[4] (N + 4)‖G‖ + 1‖GT ‖ 3‖G‖ Standard DHP

[5] (N + 3)‖G‖ 2‖G‖ Standard DHP

[12] (N + 4)‖G‖ 1‖G‖ + 1‖Zp‖ Standard S-RSA, q-SDH

[14] 1‖Z‖ + (k +
1)‖Zn×h

q ‖ +m‖Zh
p‖

Short vector Standard SIS

[11] 2(
√
n+

√
m+ 1)‖G‖ 4‖G‖ Standard DHP

[22] (n+ 2)‖G‖ 1‖G‖ (in Sig),
1‖GT ‖ (in Com)

ROM co-BDH, GBDH Yes

Our (n+ 2)‖G‖ 1‖G‖ (in Sig),
1‖Zp‖ + 1‖G‖ (in
Com)

ROM co-CDH, CDH Yes No

Theorem 1. Let S be the LHSDC scheme described above. Then S satisfies UF1

in the random oracle model assuming that the co-CDH problem is infeasible.
In particular, let A be a ppt adversary as in Definition 2, and qs, qh1 be the

number of signature queries, hash H1 queries made by A, respectively. Then there
exists a ppt algorithm B that solves co-CDH problem, such that Advco−CDH

B,(G1,G2)
≥

SuccUF1
A,S − qs(qs+qh1 )+1

2k
.

The proof is in Appendix 5.

Theorem 2. Let S be the LHSDC scheme described above. Then S satisfies
UF2 in the random oracle model assuming that the CDH problem is infeasible.

In particular, suppose that A is a ppt adversary as in Definition 3, and he/she
makes at most q queries of hash H and combine oracle. If A breaks UF2, within
the time bound tA, with success probability SuccUF2

A,S ≥ 14q2

2k
. Then, there exists a

ppt algorithm B that, with probability AdvCDH
B,(G1,G2)

≥ 1
9 − 1

p , solves CDH problem,
in expected time tB ≤ 16qtA

Succ
UF2
A,S

.
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The proof is in Appendix 6.

4 Conclusion

This paper introduces the notion of the designated combiner into linearly homo-
morphic signatures and formally depicts the framework of LHSDC and its secu-
rity model including two types of unforgeability. In the new framework, the
operation of the Combine algorithm is no longer public, but open to the entities
designated by the signer, while every entity can verify the validity of the sig-
natures output by the designated combiner. Starting from formal definition, we
construct a concrete and secure LHSDC design, whose two types of unforgeabil-
ity rely on the co-CDH assumption and CDH assumption, respectively, showing
that our design is feasible.

Acknowledgements. This work was supported by National Natural Science Founda-
tion of China (Grant Number 61772514, 61822202, 62172096), and Beijing Municipal
Science & Technology Commission (Project Number: Z191100007119006).

5 Proof of Theorem 1

Proof (Adapted from [9]). As mentioned above, we assume that A is an adver-
sary that breaks the UF1 with success probability SuccUF1

A,S , and our goal is to
construct an algorithm B that solves co-CDH problem in (G1,G2): given a bilin-
ear group tuple G = (G1,G2,GT , e, ϕ), and g ∈ G1, h, u ∈ G2 with u = hαA for
an unknown integer αA ∈ F

∗
p, output an element ω ∈ G1 such that ω = gαA .

In the first place, two lists H1-List and H2-List were maintained by B to
record H1 queries and H2 queries. H1-List consists of tuples (id, i,H1(id, i)),
and H2-List consists of pairs (v,H2(v)). While the other hash functions H3,H
are viewed as two ordinary hash functions in this proof.

Setup. B chooses a positive integer N , then

1. Chooses sj , tj
R←− Fp, and sets gj = gsjϕ(h)tj for j ∈ [N ]. Chooses a

R←− F
∗
p

and calculates uA = ua. Let PKA = uA, and cp = (G, p, H3, H, h, {gj}N
j=1).

2. Sends the pair (cp, PKA) to A.

As response, A sends the designated combiner’s public key PKB = uB to B.

H1 Queries. When A requests the value of H1(id, i), B:

1. If there exists a tuple (id, i,H1(id, i)) in the H1-List, returns H1(id, i).
2. Otherwise, randomly chooses ςi, τi

R←− Fp and sets H1(id, i) = gςiϕ(h)τi . The
new tuple (id, i,H1(id, i)) is added into the H1-List. B returns H1(id, i) to A.

H2 Queries. When A requests the value of H2(v), B:

1. If there exists a tuple (v,H2(v)) in the H2-List, returns H2(v).
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2. Otherwise, randomly chooses k
R←− Fp and sets H2(v) = ϕ(h)k. The new pair

(v,H2(v)) is added into the H2-List and H2(v) is sent to A.

Sign Queries. When A requests the designated signature on the vector subspace
V ⊂ F

N
p represented by the augmented vectors v1, . . . ,vm ∈ F

N
p , B:

1. Chooses an identifier id
R←− {0, 1}k. If there exists a tuple (id, ·, ·) in the

H1-List, then this simulation is aborted.
2. For any i ∈ [m], calculates ςi = −∑n

j=1 sjvij , and sets s = (s1, . . ., sn, ς1,
. . ., ςm). B chooses τ1, . . . , τm ∈ Fp, and sets t = (t1, . . ., tn, τ1, . . ., τm).

3. For any i ∈ [m], calculates H1(id, i) = gςiϕ(h)τi and H2(vi) is calculated as
in the H2 queries.

4. Calculates σ̂i = ϕ(uA)vi·t · H3(e(ϕ(uA), uB)ki) for every i ∈ {1, . . . , m}.
5. Returns id and the designated signature σ̂ = (σ̂1, . . . , σ̂m).

Output. If B does not abort, and a successful adversary A outputs an identifier
id∗, a signature σ∗, and a nonzero vector v∗, B:

1. If there is no tuple (id∗, ·, ·) appeared on the signature queries, calculates the
value of H1(id∗, i) for all i ∈ {1, . . . , m} as in H1 queries, and sets s = (s1,
. . ., sn, ς1, . . ., ςm) and t = (t1, . . . , tn, τ1, . . . , τm).

2. If there exists a tuple (id∗, ·, ·) appeared on the signature queries, we obtain
directly the two vectors s and t from the corresponding signature query.

3. Calculates ω = (
( T
gc )

1
S

ϕ(uA)(t·v∗) )
1

a(s·v∗) , and outputs ω finally.

The random oracles H1, H2, and the Setup algorithm have been correctly sim-
ulated by B, because all of the hash values and {gj}N

j=1 are uniformly random
in the group G1. Next, we show that if the simulator does not abort, B will
correctly simulate the Sign algorithm. In fact, setting the public key PKA and
hash queries as above, we have

(

m
∏

i=1

H1(id, i)vi,n+i

n
∏

j=1

g
vij

j

)αAa
H3(e(H2(vi), uB)αAa)

=
(

m
∏

i=1

(gςiϕ(h)τi)vi,n+i

n
∏

j=1

(gsjϕ(h)tj )vij
)αAa

H3(e(ϕ(h)αAa, uB)ki)

= ϕ(uA)vi·tH3(e(ϕ(uA), uB)ki)

(1)

for i = 1, . . . ,m. From the construction of s in signature queries, we have s·vi = 0
for any i (i.e., s ∈ V ⊥), which follows that the last two formulas in (1) are equal.
Thus, the Sign algorithm has been correctly simulated by B.

Right now, we show the probability that B aborts the simulation is negligible.
Such abort situation includes the following two aspects:

– B chooses the same identifier id in two different signature queries. This prob-
ability is at most qs·qs

2k
.
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– B chooses an identifier in a signature query while there exists a tuple (id, ·, ·)
already in the H1 queries. This probability is at most qs·qh1

2k
.

Assume that the simulator does not abort and the adversary A finally outputs a
signature σ∗, an identifier id∗, and a nonzero vector v∗ such that Verify(PKA,
id∗,m, v∗, σ∗) = 1, where σ∗ = (S, T ), S = H(v∗, R), and R = e(g, h)c for an
integer c ∈ Fp chosen by A, we have

R′ = e(T, h)e(σ′
v∗ , (uA)−1)S

= e(σS
v∗ · gc, h)e

(

(

m
∏

i=1

H1(id, i)v∗
n+i

n
∏

j=1

g
v∗
j

j

)−aαA
, h

)S

= e(g, h)ce(σv∗ , h)Se

(

(

m
∏

i=1

(gςiϕ(h)τi)v∗
n+i

n
∏

j=1

(gsjϕ(h)tj )v∗
j
)−aαA

, h

)S

= e(g, h)ce(σv∗ , h)Se(g−aαA(s·v∗)ϕ(uA)−(t·v∗), h)S

= e(g, h)c = R,

which means that σv∗ = ( T
gc )

1
S = gaαA(s·v∗)ϕ(uA)(t·v

∗).

Therefore, ω = (
( T
gc )

1
S

ϕ(uA)(t·v∗) )
1

a(s·v∗) = gαA if s · v∗ �= 0. The probability of
s · v∗ = 0 is showed in the following:

1. There is no tuple (id∗, ·, ·) in the signature queries which means that (id∗, σ∗,
v∗) is a type 1.1 forgery. The knowledge about ςi for this id∗ can be acquired
by A is only the value of H1(id∗, i) (i.e., the functions of ςi). We also have all
coordinates of the vector s are uniform in Fp and leak no information to A,
and have the fact that v∗ is a nonzero vector, then s · v∗ is uniform in Fp,
implying that the probability of s · v∗ = 0 is 1

p and hence is at most 1
2k

.
2. There exists a tuple (id∗, ·, ·) in the signature queries, and v∗ /∈ V (assuming

id∗ is the identifier of the vector subspace V ) which means that (id∗, σ∗,v∗) is
a type 1.2 forgery. Just like above case, s1, . . . , sN are uniformly distributed in
Fp and leak no information to A, which follows that the vector s is uniformly
distributed in V ⊥. Assuming that (y1, . . . ,yn) is a basis of space V ⊥, and let
s =

∑n
i=1 xiyi. Based on the fact that s is uniformly distributed in V ⊥, we

have all xi are uniformly distributed in Fp. Because v∗ /∈ V , so there must
be some j ∈ {1, . . . , n} such that v∗ · yj �= 0, which follows that s · v∗ =
∑n

i=1 xi(yi · v∗) is uniform in Fp, i.e., the probability of s · v∗ = 0 also is 1
p

and hence is at most 1
2k

.

In conclusion, B can output ω = gαA with success probability

Advco−CDH
B,(G1,G2)

≥ SuccUF1
A,S − qs(qs+qh1 )+1

2k
.

This completes the proof of Theorem 1. ��
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6 Proof of Theorem 2

Proof (Adapted from [18]). We assume that A is an adversary that breaks the
UF2 with success probability SuccUF2

A,S , and our goal is to construct an algo-
rithm B that solves CDH problem in (G1,G2): given a bilinear group tuple
G = (G1,G2,GT , e, ϕ), and a tuple of (ϕ(h), ϕ(u), g), where ϕ(h), ϕ(u), g ∈ G1,
and h, u ∈ G2 with u = hαA , outputs an element ω ∈ G1 such that ω = gαA .
Note that H2,H3 are viewed as an ordinary hash function in this proof.

Setup. B chooses a positive integer N , then

1. Chooses kj
R←− Fp, and sets gj = ϕ(h)kj for j ∈ [N ], cp = (G, p, H2, H3, h,

{gj}N
j=1) and sets the signer’s public key as PKA = uA.

2. Chooses αB
R←− F

∗
p and calculates uB = hαB , and then sets the designated

secret/public key pair as (αB , uB). B sends cp, PKA, and PKB to A.

H1 Queries. When A requests the value of H1(id, i), B:

1. If (id, i) has already been defined, directly returns H1(id, i) to A.
2. Otherwise, sets H1(id, i) = ϕ(h)τli where τl = (τl1, . . . , τlN ) ∈ F

N
p and τ =

(τl)l=1,2,... constitutes a random tape. B returns the tuple (id, i,H1(id, i)).

Sign Queries. When A requests the designated signature on the vector subspace
Vl ⊂ F

N
p represented by the augmented vectors v1, . . ., vm ∈ F

N
p , B:

1. Chooses a random identifier idl.
2. For any i ∈ [m], calculates H1(idl, i) as in the H1 queries, and then sets

sli = (k1, . . . , kn,

m
︷ ︸︸ ︷

0, . . . , 0, τli
︸ ︷︷ ︸

i

, 0, . . . , 0).

3. For any basis vector vi = (vi1, . . ., viN ) and i ∈ [m], calculates σ̂li =
ϕ(uA)sli·vi · H3(e(H2(vi), uA)αB ).

4. Returns idl, and the designated signature σ̂l = (σl1, . . . , σlm).

H Queries. When A requests the value of H(v, R), B:

1. If (v, R) has already been defined, returns H(v, R) to A.
2. Otherwise, takes a random Sj ∈ F

∗
p successively from a random tape ς =

(Sj)j=1,2,..., and sets H(v, R) = Sj .

Combine Queries. When A submits (id, {(vk, σ̂k, βk)}l
k=1) to the combine ora-

cle. B checks whether the identifier id already appears in the sign queries, and
if so, further checks whether σ̂k is the valid signature on the vector vk for all
k = 1, . . . , l. If both of the above two conditions are met, B:

1. Calculates v =
∑l

k=1 βkvk = (v1, . . . , vN ) and σvk
= σ̂k · (H3(e(H2(vk),

uA)αB ))−1 for all k ∈ [l].
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2. Calculates σv =
∏l

k=1 σβk
vk

.
3. Chooses a random T ∈ G

∗
1, and a random integer S ∈ F

∗
p which are succes-

sively taken from the random tapes η and ς, respectively.
4. Computes R = e(T,h)

e(σv,h)S
. We remark that the procedure fails if H(v, R) has

already been defined. Because R is random, the probability of failure during
the q2 hash H and combine queries is at most 2q22/2k.

Since A can break UF2 with success probability SuccUF2
A,S within time tA, and

the failure probability of this simulation is at most 2q22/2k, A, within time tA,
can output a valid signature (R,S, T ) on vector v with probability at least

SuccUF2
A,S − 2q2/2k ≥ Succ

UF2
A,S

2 ≥ 7q
2k

in the simulation.
We assume that the vector v belongs to the vector subspace Vβ labeled as an

identifier idβ . Then, we replay the attack with the same η, ς, and τ = (τ)l=1,2,...

unchange for l < β and randomly chosen for l > β. For l = β and all i ∈ [m] (m
is the dimension of the vector subspace Vβ), we randomly choose λi ∈ F

∗
p and

set H1(idβ , i) = gλi . Note that A now can not query the combine oracle for the
identifier idβ , because B is unable to answer.

Using the forking lemma technique of [23] to control the values of the
hashs H1 and H, we obtain, with probability at least 1/9, two valid signa-
tures (R,S1, T1) and (R,S2, T2) on the vector v ∈ Vβ after at most 2/SuccUF2

A,S +
14q/SuccUF2

A,S ≤ 16q/SuccUF2
A,S repetitions of the above attack.

We now observe that H1(idβ , i) = gλ1i �= gλ2i = H ′
1(idβ , i) for all i = 1, . . .,

m. We set k = (k1, . . ., kn), λt = (λt1, . . ., λtm) for t = 1, 2, v1 = (v1, . . .,
vn), and v2 = (vn+1, . . ., vn+m) such that v = (v1 ‖ v2), and then compute
ρ1 =

∏m
i=1 H1(idβ , i)vn+i

∏n
j=1 g

vj

j = gλ1·v2ϕ(h)k·v1 and ρ2 =
∏m

i=1 H ′
1(idβ ,

i)vn+i
∏n

j=1 g
vj

j = gλ2·v2ϕ(h)k·v1 .
Let σ1 = (S1, T1), and σ2 = (S2, T2). From Verify(PKA, idβ ,m,v, σt) = 1

for t = 1, 2, we have

e(T1, h) = e(ρ1, uA)S1R, (2)

and
e(T2, h) = e(ρ2, uA)S2R. (3)

By dividing the Eq. 2 from the Eq. 3, we obtain the equation

e

(

T1

T2
, h

)

= e

(

ρ1
ρ2

, uA

)S1−S2

= e
(

gλ1·v2−λ2·v2 , hαA
)S1−S2

= e
(

g(λ1−λ2)·v2αA(S1−S2), h
)

.

(4)

Since the value of (λ1−λ2) ·v2(S1−S2) is random in Fp, the probability of (λ1−
λ2) · v2(S1 − S2) = 0 is at most 1/p. Hence gαA = (T1/T2)((S1−S2)(λ1−λ2)·v2)

−1

so that B solves the CDH problem in time tB ≤ 16qtA

Succ
UF2
A,S

with probability

AdvCDH
B,(G1,G2)

≥ 1
9 − 1

p . This completes the proof of Theorem 2. ��
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Abstract. By using attribute based signature (ABS), users can sign
messages and prove that their attributes conform to the ones published
by the designated attribute authority through certain verification poli-
cies. In the verification process, the identity and attributes of the signer
will not be disclosed, which makes ABS scheme a convenient tool for
applications requiring privacy preserving authentication and other role-
based security applications.

However, previous ABSs suffer from efficiency issues related to the
monotone or more expressive predicates. In this work, we propose a gen-
eral construction to reduce the size of the signature, and give an instan-
tiation based on SDH assumption in random oracle model. To achieve it,
we apply a new approach to implement the monotonic access structure
control so that we can reduce the cost of the signatures to be close to
the number of attributes used by the signer instead of the number of
attributes involved in the signature.

Keywords: Attribute-based signatures · Monotone · Efficiency

1 Introduction

Attribute-based signatures (ABS), introduced in the seminal work of Maji
et al. [22], provides a privacy-preserving mechanism for authenticating messages.
In ABS each user is granted from the authority a personal signature key, which
represents the user’s attributes. If the attributes satisfy a specified predicate pol-
icy, the corresponding user can use the signature key to sign messages under the
predicate. Thus, ABS can be seen as a generalization of group and ring signa-
tures, in which case identities are viewed as attributes and policies are designed
by containing the disjunction over the corresponding attributes. The basic secu-
rity requirements of ABS are anonymity and unforgeability. Informally, a user
is anonymous if the user’s signature does not reveal his/her identity and the
attributes used in the signature. Unforgeability requires that no user can forge
any attribute that he/she does not own to sign messages under a predicate whose
attribute is not satisfied. In the centralized setting, there would be a single cen-
tral authority issuing and managing attributes. In order to be more flexible, Maji
also proposed the setting of multiple attribute authorities, which allows users to
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obtain attributes from different attribute authorities that may not trust each
other.

Related Work. ABS is different from ring signature and group signature
because it supports expressive predicates. In general, signing polices can have
various levels of flexibilities which can be demonstrated by threshold policies
[8,14,17], monotone boolean predicates [10,15,21], non monotone access struc-
ture [24,26,27] and generalized circuits [9,11,28–30]. It has been shown that
more restrictive policies allow for more efficient constructions. Except for the
threshold policies, the cost of all the other schemes need to be at least in the
linear relationship with the number of predicate attributes. For example, for
monotone predicates ABSs, they mainly rely on the monotone span programs
[18], which is defined as a matrix to achieve the requirements of predicates. In
other words, only when the signer proves that he (by obtaining the private key)
has a vector authenticated by the attribute authority, the product of which to
the predicate matrix is a special vector (generally this vector has one 1 and
the rest is 0). However, the predicate matrix size defined by the monotone span
programs is linearly related to the number of properties involved in the predi-
cates (see Sect. 2.6). In order to achieve anonymity, a signer has to generate a
proof for all the attributes in the prediction matrix regardless of whether or not
he possesses. This indicates that there exists a lower bound in the size of the
signature and our main contribution is to make an improvement over the issue.

[21,22,24] proposed ABS schemes supporting multiple attribute authorities
(MA-ABS). However, although there is no centralized authority, the central
authority is required for implementing trusted setup in these multi-authority
schemes. Thus, Okamoto and Takashima proposed in [23] the first fully decentral-
ized structure that does not require trusted setup, which they called decentral-
ized multi-authority attribute-based signature (DMA-ABS). Then the scheme
was further improved in [27].

Traceability is added to the standard ABS scheme by Escala et al. [12]. Their
scheme is in the single attribute authority setting and provably secure in ran-
dom oracle model (ROM). Then El Kaafarani et al. [10] proposed decentralized
traceable attribute-based signatures (DTABS) and its security model, which is
enhanced by Ghadafi [15].

Our Contribution. In this paper, we address the efficiency of the MA-ABS
with monotone predicates. Although full security of non-monotonic predicates
can be achieved by using the dual pairing vector spaces [24,25] technology, they
are complicated and difficult to be used for further adjusting. Thus we focus
on monotonic predicate, which has also been widely applied in many applica-
tions. A novel approach is proposed to achieve access control, which help us
to improve the overall efficiency. From a high level, we divide the monotonic
access structure into multiple OR relation attribute sets, and then do member-
ship proof for the AND relation attribute sets in all access structures. In this
way, we are no longer limited by the order of magnitude of the access structure
matrix, so that we can achieve the O(P̄ ) signature size. Here, O(P̄ ) indicates
the maximum number of the AND relation attributes, and is far less then the



348 J. Zhang et al.

Table 1. Comparison

Scheme Signature size Number of
attribute
authority

Predicate Security model

[24] O(|P |) One Non-Monotone Standard

[21] O(|P |) Many Monotone Generic group

[16] O(|P |) One Monotone Standard

[23] O(|P |) Many Non-Monotone Random oracle

Ours O(|P̄ |) Many Monotone Random oracle

number of attributes in predicate |P | in non-extreme cases. In the worst case
scenario, they are equivalent to each other. In order to use efficient ZK proof, we
give a general construction and an instantiation in the RO model. Table 1 shows
the comparison with other related works regarding the signature size, number
of attribute authorities, predicate and security models. Except for [23], none of
listed previous schemes work in DMA setting.

Organization. In the second Section, we define some basic assumptions and
building block. We introduce our definition and security model in Sect. 3. In
Sect. 4 and 5, we introduce our generic structure and prove its security, and a
corresponding instantiation is given in Sect. 6. We conclude our result in Sect. 7.

2 Preliminaries

In this section, we give definitions of mathematical assumptions, and introduce
cryptographic tools which are applied in our scheme. Denote r

R← R be an
element r picked uniformly at random from a set R. A function f : Z≥1 → R

is negligible if for all c ∈ R>0 there exists n0 ∈ Z≥1 such that for all integers
n ≥ n0, we have |f(n)| < 1/nc. We say PPT to be the probabilistic polynomial
time.

2.1 Mathematical Assumptions

Bilinear Pairings. Let G and GT be two cyclic groups of prime order p, and
g be a generator of G. A function e : G × G → GT is a bilinear maps if the
following properties hold:

– Bilinearity: e(Ax, By) = e(A,B)xy for all A,B ∈ G and x, y ∈ Zp.
– Non-degeneracy: e(g, g) �= 1, where 1 is the identity of GT .
– Efficient computability: there exists an algorithm that can efficiently compute

e(A,B) for all A,B ∈ G.

The q-Strong Diffie-Hellman (SDH) assumption [5]. Let g
R← G and γ

R←
Z

∗
p. The q-SDH holds in G if given (g, gγ , gγ2

, ..., gγq

), all PPT algorithms can
find a pair (g1/(γ+e), e) ∈ G × Zp with at most negligible advantage.
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2.2 Digital Signature Schemes

A digital signature for a message space M is a tuple of polynomial-time algo-
rithms DS := (KeyGen,Sign,Verify) defined as follows:

– KeyGen(λ) takes as input the security parameter λ and outputs a pair of
verification/signing keys (vk, sk).

– Sign(sk,M) takes as input a signing key sk and a message M ∈ M, and
outputs a signature σ.

– Verify(vk,M, σ) takes as input a verification key vk, a message M ∈ M and
a signature σ, and outputs 1 if σ is a valid signature on M , otherwise 0.

Definition 1 (Correctness). A signature scheme DS is correct if for all λ ∈ N,

Pr

⎡
⎣

(vk, sk) ← KeyGen(λ);
M

R← M; : Verfy(vk,M, σ) = 1
σ ← Sign(sk,M)

⎤
⎦ = 1.

Definition 2 (Existential Unforgeability). A signature scheme DS is Exis-
tentially Unforgeable against adaptive Chosen Message Attack (EUF-CMA) if
for all λ ∈ N for all PPT adversaries D,

Pr
[
(vk, sk) ← GenKey(λ);
(σ∗,M∗) ← DSign(sk,·) :

M∗ /∈ QSign∧
Verfy(vk,M∗, σ∗) = 1

]
≤neg(λ),

where QSign is the set of messages queried to Sign.

2.3 Signature of Knowledge

Signature of Knowledge [7] (SoK) generalize digital signatures by replacing the
verification key with an instance in a language in NP. If one has an instance
of a witness, he can sign a message, otherwise not. The signature of knowledge
is closely related to the simulated-extractable Non-interactive zero-knowledge
(NIZK) parameters. A large number of previous literatures have used the con-
nection between SoKs and NIZK proofs.

A SoK protocol for relation R over message space M comprises of a triple
of polynomial-time algorithms (Gen,Sign,Verify) with the following syntax:

– Gen(R) takes as input a relation R and outputs public parameters pp.
– Sign(pp, x, w,M) takes as input the public parameters pp, a pair (x,w) ∈ R

and a message M ∈ M, and outputs a signature σ.
– Verify(pp, x,M, σ) takes as input the public parameters pp, a statement x, a

message M and a signature σ, and outputs 1 if σ is a valid SoK, otherwise 0.

Definition 3 (SimExt Security of SoK). A SoK protocol (Gen,Sign,Verify)
for a relation R has SimExt Security if for all λ ∈ N if it satisfies the correct,
simulatable and extractable properties:
Correctness: For all pair (x,w) ∈ R and all message M ∈ M, it holds that
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Pr
[

pp ← Gen(R);
σ ← Sign(pp, x, w,M) : Verify(pp, x,M, σ) = 1

]
= 1.

Simulatability: There exists a polynomial-time simulator Sim = (SimGen,
SimSign), such that for any PPT adversary D, it holds that

∣∣Pr
[
(pp0, τ) ← SimGen(R); b ← DSimSign(pp,·,τ,·) : b = 1

]

−Pr
[
pp1 ← Gen(R); b ← DSign(pp,·,·,·) : b = 1

] ∣∣ ≤ neg(λ),

where τ is the trapdoor information used by Sim to simulate a signature of Sign
without using the witness w.

Extraction: If Sim exists, there also exists a polynomial-time extractor Ext,
such that for any PPT adversary D, it holds that

Pr

⎡
⎣
(pp, τ) ← SimGen(R);
(x,M, σ) ← DSimSign(pp,·,τ,·);
w ← Ext(pp, τ,M, x, σ)

:
(x,w) /∈ R∧
(x,M) /∈ Q∧

Verify(pp, x,M, σ)

⎤
⎦≤neg(λ),

where Q is the set of all queries (x,M) to SimSign.

The concept of SoK imitates a digital signature with unforgeability; even if
one sees many signatures on any message in any instance, one cannot create a
new signature without knowing the witness of the instance.

2.4 Commitment Schemes Without Hiding

We need a homomorphic commitment scheme in our protocol. A cryptographic
commitment scheme should satisfy hiding, i.e. the commitment does not tell
any information about the committed value, and should be binding, i.e. the
commitment can only be opened as the value when it is committed. A commit-
ment scheme is a pair of polynomial-time algorithms (Com.Gen,Com) which are
defined as follows:

– Com.Gen(λ) takes as input the security parameter λ and outputs a commit-
ment key ck, which specify a message space M, a randomness space R and
a commitment space C.

– Comck(m; r) takes as input a commitment key ck, a message m ∈ M and a
randomness r ∈ R, and outputs a commitment c ∈ C.

Informally, a commitment scheme Comck is homomorphic if for a com-
mitment key ck, messages a, b, and random coins r, s, it holds that
Comck(a; r)Comck(b; s) = Comck(a + b; r + s). We also require that it can com-
mit to n elements in Zp at the same time; in other words, given n elements
(a1, ..., an) ∈ Z

n
p , we can compute a single commitment c = Comck(a1, ..., an; r) ∈

G. In our scheme, we focus on the extent Pedersen commitment scheme. Specifi-
cally, (g, g1, ..., gn) R← Com.Gen(λ,N), Comck(a1, ..., an; r) = grga1

1 ...gan
n . In addi-

tion, we only rely on the binding property but not the hiding property, so the
randomizer r and the parameter g will thus be removed.



Efficient Attribute-Based Signature for Monotone Predicates 351

2.5 Accumulators with One-Way Domain

The accumulator [4] accumulates multiple values into a single value, and for
each accumulated value, there is a witness to prove that it has been indeed
accumulated.

An accumulator is a tuple of four PPT algorithms (Gen, Eval, Wit, Verf)
defined as follows:

– Gen(λ) takes as input the security parameter λ and outputs a description
desc, which possibly includes some auxiliary information.

– Eval(desc,X) takes as input the description desc and a source set X ⊆ Xλ,
and outputs an accumulated value v.

– Wit(desc,X, x) takes as input the description desc and a source set X and
an element x ∈ X, and outputs a witness w for the element x being in X.

– Verf(desc, v, x, w) takes as input the description desc, an accumulated value
v, an element x and a witness w, outputs 1 if x is an element accumulated in
v, otherwise 0.

Definition 4. An accumulator is called accumulator with one-way domain [2,
31], if for any security parameter λ ∈ N, it holds that:
Quasi-Commutativity: For all description desc ← Gen(λ), it holds that

Eval(desc, (x1, x2)) = Eval(desc, (x2, x1)).

Collision-Resistance: For any PPT adversary D, it holds that

Pr

⎡
⎣
desc ← Gen(λ);
(x,X,w) ← D(desc);
v ← Eval(desc,X)

:
X ⊂ Xλ∧
x ∈ Xλ\X∧
Verf(desc, v, x, w)

⎤
⎦≤neg(λ).

One-Way Domain: Let {Yλ}, Rλ be two sequences of families of sets asso-
ciated with Xλ, such that Rλ is an efficiently verifiable, samplable relation over
Yλ × Xλ, for any PPT adversary D, it holds that

Pr [(y, x) ← Sample(λ); y′ ← D(x) : (y′, x) ∈ Rλ] ≤ neg(λ),

where Sample is the efficient sampling algorithm over Rλ.

2.6 Monotone Span Program and Linear Secret Sharing Scheme

The main purpose of this section is to introduce the size of Monotone Span
Program (MSP) predicate matrix and the computational cost of its use. Karch-
mer and Wigderson introduced the equivalence of MSP and linear secret sharing
scheme (LSSS). The construction and use of LSSS matrix is similar to that of
MSP matrix.

Both LSSS matrix and MSP matrix are rarely described in detail in non-
special research papers. And special research articles may be expensive for read-
ers who only want to know the relevant content. We recommend that readers
refer to appendix G of the full version [20] of Lewko and Waters’ article published
in EUROCRYPT 2011 [19] or Section 3.1 of [3].
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3 Syntax and Security

Let P (A) = 1 denote the attribute set A satisfying the predicate P . A monotonic
predicate can be divided into multiple OR relations of attribute sets of AND
relations, such as “A∧ (B ∨C ∨D) = (A∧B)∨ (A∧C)∨ (A∧D)”. We define the
maximum length of the AND relation in the predicate P as nP and the size of
the (OR-connected) AND relation set as nA, so in the previous example, nP = 2
and nA = 3.

To express clearly, we use the syntax of [10,15] and make a little adjustment.
We do not use additional ID for each attribute authority to distinguish them
but use attributes as subscripts to directly index the public and private keys of
attribute authorities. It should be noted that attribute public and private keys
with different subscripts can be the same key as long as these attributes belong
to the same attribute authority.

An Attribute-Based Signature in multi-authority setting (MA-ABS) scheme
consists of the following five algorithms.

– GSetup(λ,N): this algorithm takes as inputs a security parameter λ ∈ N and
a maximum length of the AND relation in all predicates N ∈ poly(λ) and
N ≥ nP , and outputs the global public parameter pp. For simplicity, all the
following algorithms take as implicit input the public parameters pp.

– ASetup(): when a peer wants to be an attribute authority or an attribute
authority wants to add its attributes, it runs the algorithm with pp as input
to produce its own public and secret key pair, APK, ASK for granting its
own attributes.

– GetAtt(ASKa, id, a): a signer with identity id obtains secret key skid,a for
attribute a from attribute authorities through this algorithm. The algorithm
takes as input attribute secret key ASKa, id and an attribute a ∈ A, outputs
skid,a.

– Sign({APKa}a∈P , {skid,a}a∈A, P,M): given attribute public keys
{APKa}a∈P , secret keys {ski,a}a∈A with a predicate P such that P (A) = 1
and a message M , this algorithm outputs a signature σ.

– Verify({APKa}a∈P , σ, P,M): given attribute public keys {APKa}a∈P , a sig-
nature σ, a predicate P and a message M , this algorithm outputs either 0 or
1.

Definition 5 (Correctness). A MA-ABS scheme is correct if for any secu-
rity parameter λ ∈ N, pp ← GSetup(λ), purported (APK,ASK), attribute
set A ⊂ A, purported identity id, secret key skid,a ← GetAtt(ASKa, id, a)
for any a ∈ A, message M , claim-predicates P such that P (A) = 1 and
any σ ← Sign({APKa}a∈P , {skid,a}a∈A, P,M), we have Verify({APKa}a∈P ,
σ, P,M) = 1.

Similar to most of the schemes in the multi-authority setting, we assume
that all attributes are prefixed with attribute authority, such as “University
XXX||Professor”, to avoid the problem of attribute duplication between different
attribute authorities. We also assume that there is a collision resistant hash
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function that can map attributes to the appropriate fields. This will not be
reflected in the following description.

3.1 Security

The security properties required by a MA-ABS scheme are: anonymity, unforge-
ability. In the following we define the oracles required by the security experiment.
The following global lists are maintained by environment: HUL is the honest user
list; BUL is the list of compromised users whose secret keys are revealed to the
adversary; HAL is the list of honest attribute authorities; CAL is the list of cor-
rupted attribute authorities whose key is chosen by the adversary; BAL is the
list of compromised attribute authority whose secret key is learned by the adver-
sary; SL is the list of signatures from Sign oracle; CL is the list of the challenge
signatures from Ch oracle.

The details of the following oracles are given in Fig. 1.

– AddU(id, a) adds an honest user id with an attribute a.
– RevU(id, a) reveals secret keys of an honest user id with an attribute a.
– AddA(a) adds an honest attribute authority with an attribute a ∈ A.
– CrptA(a) adds a corrupted attribute authority with attribute a ∈ A. The

adversary can generate the attribute key {APKa, ASKa} dishonestly.
– RevA(a) reveals an honest attribute authority with attribute a ∈ A. The

adversary learns the secret keys ASKa.
– Sign(id,M,A, P ) returns a signature σ on M using attributes A belonging to

user id where P (A) = 1.
– Ch(b, (id0, A0), (id1, A1), M , P ) is a challenge oracle for anonymity. It takes

two user and secret key pairs (id0,A0), (id1,A1) such that P (A0) = P (A1) =
1, and returns a signature on M using Ab for a bit b.

We require MA-ABS to be anonymous and unforgeable. The security require-
ments are defined by the security games in Fig. 2.

In the following game, unless otherwise specified, adversaries are given the
ability to add attributes to users, learn user attribute secrets, add authority
attributes, learn authority attribute secrets and query a signature. The details
of the security requirements are as follows:

(Full) Anonymity. This security property requires that a signature does not
reveal any information about the identity of the user nor the set of attributes
used in the signature even if the adversary knows the signer’s secret keys.

In this game, querying for a signature is not necessary because adversaries
are allowed to represent all users. In the challenge phase, adversary selects a
message M , a predicate P as well as two pairs ((id0,A0), (id1,A1)) consisting of
a user and attributes used to sign, and P (Ab) = 1 for b ∈ {0, 1}.

Formally, a MA-ABS is fully anonymous if all PPT adversaries D have neg-
ligible advantage in

Advanon(D) := |Pr[Expanon
D (λ) = b] − 1/2| .
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AddU(id, a)

– If (id, a) ∈ HUL then return ⊥.
– if a /∈ HAL then return ⊥.
– (skid,a) ← GetAtt(ASKa, id, a).
– HUL ← HUL ∪ {(id, a)}.
RevU(id, a)

– If (id, a) /∈ HUL \ BUL then return ⊥.
– BUL ← BUL ∪ {(id, a)}.
– return skid,a.

Sign(id, M, A, P )

– If ∃a ∈ A s.t. (id, a) /∈ HUL then return
⊥.

– If P (A) = 0 return ⊥.
– σ ←

Sign({APKa}a∈P , {skid,a}a∈A, P, M).
– SL ← SL ∪ {σ, M, P}.
– return σ.

AddA(a)

– If a ∈ HAL ∪ CAL then return ⊥.
– (APKa, ASKa) ← ASetup().
– HAL ← HAL ∪ {a}.
CrptA(a)

– If a ∈ HAL ∪ CAL then return ⊥.
– CAL ← CAL ∪ {a}.
RevA(a)

– If a /∈ HAL \ BAL then return ⊥.
– BAL ← BAL ∪ {a}.
– return (APKa, ASKa).

Ch(b, (id0, A0), (id1, A1), M, P )

– If for any b ∈ {0, 1}, P (Ab) = 0 or
∃a ∈ Ab s.t. (idb, a) /∈ HUL then return
⊥.

– σb ←
Sign({APKa}a∈P , {skidb,a}a∈Ab , P, M).

– CL ← CL ∪ (M, σb, P ).
– return σb.

Fig. 1. Oracles used in the security games for MA-ABS

Experiment Expanon
D (λ)

– pp ← GSetup(λ).
– HUL, BUL, HAL, BAL, CAL, CL := ∅.
– b

R← {0, 1}.
– b ← D(play :AddU(·), RevU(·), AddA(·),

CrptA(·), RevA(·), Ch(b, (·, ·), (·, ·), ·, ·)).
– return b .

Experiment Expunfo
D (λ)

– pp ← GSetup(λ).
– HUL, BUL, HAL, BAL, CAL, SL := ∅.
– (σ∗, M∗, P ∗) ← D(play : AddU(·),

RevU(·), AddA(·), CrptA(·), RevA(·),
Sign(·, ·, ·, ·).

– If Verify({APKa}a∈P , σ, P, M) = 0 then
return 0.

– If ∃A∗ s.t. {id∗, a}a∈A ⊂ BUL and
∃A ⊂ BAL ∪ CAL satisfying
P ∗(A∗ ∪ A) = 1 then return 0.

– If (·, M∗, P ∗) ∈ SL return 0, otherwise
return 1.

Fig. 2. Security experiments for MA-ABS
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Unforgeability. This security states that no valid signature can be generated
without secret keys required by the predicate.

In this game, the collusion attacks is considered. Users cannot combine their
secret keys to complete a signature with attributes required by the signature
predicate that are not owned by them respectively. In the end, to win the game,
the adversary needs to output a valid signature σ∗ on M∗ with predicate P ∗

such that (M∗, P ∗) is never queried to Sign oracle and the attributes controlled
by the adversary don’t satisfy the predicate.

Formally, a MA-ABS is unforgeable if all PPT adversaries D have negligible
advantage in

Advunfo(D) :=
∣∣∣Pr[Expunfo

D (λ) = 1]
∣∣∣ .

4 Construction

In this section, we present a MA-ABS protocol under our new framework. Specif-
ically, our scenario is based on an EUF-CMA digital signature DS, a signature
of knowledge SoK, a homomorphic commitment scheme Com and accumulator
with one-way domain ACC.

Before presenting the details, we first give an intuition of our protocol. When
a signer wants to prove her attributes satisfying a predicate P , she first parses
predicate as multiple OR relations of attribute sets of AND relations, again (A∧
B)∨(A∧C)∨(A∧D). Thanks to the commitment scheme, we can commit every
attribute set of AND relation (recall nP = 2) to an element with binding. Using
the accumulator ACC, the Signer accumulates every commitment element and
gets a witness for one of elements she want to prove. We define the accumulation
as ACC.Eval(desc,Com(P )), which will be used in the following construction.
Then she can sign a message by using SoK with the knowledge of attributes.
Thus, the witness of SoK is linearly dependent on the maximum size of the
attribute sets of AND relations in P .

For the worst case, such as P = (X1 ∨ Y1) ∧ · · · ∧ (Xn ∨ Yn), we have np = n
so O(P̄ ) and O(P ) are the same.

4.1 Protocol Description

The GSetup algorithm generates a public parameter pps for the SoK, a com-
mitment key ck for the homomorphic commitment scheme and a description
desc for accumulator with one-way domain, and outputs global public parame-
ter pp = (λ, pps, ck, desc).

When a new attribute authority joins the system, it runs the ASetup algo-
rithm by running DS.KeyGen to generate public/private key pair for granting its
own attributes.

When a member user id wants to get a new attribute a, she informs her ID
to the corresponding attribute authority. The attribute authority runs DS.Sign
algorithm for id with the attribute a, and returns a signature σid,a to id.
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GSetup(λ, N):

– pps ← SoK.Gen(R), ck ← Com.Gen(λ, N), desc ← ACC.Gen(λ).
– pp := (λ, pps, ck, desc), return pp.

ASetup():

– (APK, ASK) ← DS.KeyGen(λ), return (APK, ASK).

GetAtt(ASKa, id, a):

– σid,a ← DS.Sign(ASKa, (id, a)), return σid,a.

Sign({APKa}a∈P , {σid,a}a∈A, P, M):

– v ← ACC.Eval(desc,Comck(P )),
wA ← ACC.Wit(desc,Comck(P ),Comck(A)).

– x := (P, {APKa}a∈P , v), w := (A, wA, {σid,a}a∈A, id).
– σ ← SoK.Sign(pp, x, w, M), return σ.

Verify({APKa}a∈P , σ, P, M):

– v ← ACC.Eval(desc,Comck(P )).
– x := (P, {APKa}a∈P , v).
– output SoK.Verify(pp, x, M, σ).

Fig. 3. Construction

To sign a message M w.r.t. a signing policy P , the user id computes an
accumulation value v for attributes in P as previously mentioned in the intuition.
For the convenience of expression, we use Comck(P ) to represent the commitment
set of AND connected attributes in the disjunctive paradigm of P . Note that
this step can be achieved by anyone and same result can be achieved. She also
generates a witness wA, where A is a committed element i.e. P (A) = 1. With the
knowledge of a ∈ A granted by attribute authorities, she signs M by SoK.Sign
and outputs the signature as the MA-ABS signature.

To verify the signature, one verifies σ with message M and predicate P .
The construction is in Fig. 3, whereas the relation associated with the SoK

is as follows: If x := (P, {APKa}a∈P , v), w := (A, wA, {σid,a}a∈A, id), Let

R(x,w) ⇔ ACC.Verf(desc, v,Comck(A), wA) = 1
and {DS.Verify(APKa, (id, a), σid,a) = 1}a∈A
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5 Proof of Theorems

5.1 Proof of Anonymity

Theorem 1. The construction in Fig. 3 is anonymous if SoK is a SimExt-secure
signature of knowledge.

The advantage of any anonymity adversary is at most

Advanon(D) ≤ AdvSim
B (λ).

Proof. The proof is straightforward. Due to the SimExt security of SoK, there
exist a Sim can sign any signature without using any witness. Thus, the signa-
tures signed by Sim don’t include any information. Formally, if there exists an
adversary D breaking anonymity, we can construct adversaries: B against the
simulatability of the SoK. First, in GSetup, SoK.SimGen is replaced SoK.Gen.
Then with the trapdoor td, B can respond all signing queries without using
any attribute key. Last, if D wins her game, B outputs 1. So B has the same
advantage of D.

5.2 Proof of Unforgeability

Theorem 2. The construction in Fig. 3 is unforgeable if DS is EUF-CMA, SoK
is a SimExt-secure signature of knowledge, Com is binding and ACC is an accu-
mulator with one-way domain.

The advantage of any unforgeability adversary is at most

Advunfo(D) ≤AdvExt
B1

(λ) + AdvEUF
B2

(λ) + AdvBinding
B3

(λ) + AdvCR
B4

(λ).

Proof. We show that if there exists an adversary D breaking unforgeability, we
can construct adversaries: B1 against the SimExt security of SoK, B2 against
the EUF-CMA of the digital signature DS, B3 against the binding property
of the commitment scheme Com and B4 against the collision-resistance of the
accumulator ACC. We start by replacing the SoK.Gen setting with SoK.SimGen,
which ensures that the adversary cannot achieve misidentification attacks by
faking proofs for false statements. Otherwise, there is an adversary B1 who
can break the SimExt security of SoK. Depending on the Ext, we can extract
(A∗, w∗

A, {σ∗
id,a}a∈A, id∗) from the adversary’s output (σ∗,M∗, P ∗), then we dis-

tinguish the following cases:

Case 1: There exist an attribute certificate σ∗
id,a∗ in {σ∗

id,a}a∈A that is never
signed by its attribute authority and the attribute authority is honest. If this
happens, there is an adversary B2 breaking the EUF-CMA security of DS. B2

gets APK∗ from his game and sets up remaining himself and he set APK∗ as
an honest attribute authority public key. He runs D like real challenger of D,
expect for RevA oracle and AddU oracle. For RevA oracle, if D queries APK∗,
B2 aborts. For responding AddU oracle for attribute a belong to APK∗, B2 sign
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(id, a) by querying his sign oracle of his attack game. Finally, D outputs its
forgery. B2 uses Ext to get a forgery σ∗

id,a∗ , which is never queried through AddU
oracle and a belongs to an honest organization, otherwise it would not be the
case. If a∗ /∈ APK∗, B2 aborts, otherwise return (id, a∗, σ∗

id,a∗) directly. The loss
probability is 1

k(λ) , where k(λ) is a polynomial in λ representing an upper bound

on the number of honest attribute. We have Pr[Case 1] ≤ AdvEUF−CMA
DS,B2

(λ).

Case 2: The adversary D finds an unbound instance for Comck(A∗) = Comck(A).
If this happens, there is an adversary B3 breaking the binding property of com-
mitment scheme. B3 gets ck from his game and sets up remaining himself. He runs
D like real challenger of D, because he can generate all secret keys. Finally, D
outputs its forgery. B3 uses Ext to get a forgery (A∗, {σ∗

id,a}a∈A), where A∗ �= A.
Then B3 returns (A,A∗). We have Pr[Case 2] ≤ Advbinding

com,B3
(λ).

Case 3: The adversary D finds a collision instance for ACC.Verf(desc, v∗,
A∗, w∗

A) = ACC.Verf(desc, v∗,A, w∗
A) = 1, where v∗ = ACC.Eval(desc,

Com(P ∗)). If this happens, there is an adversary B4 breaking the collision-
resistance property of accumulator scheme. B4 gets desc from his game and sets
up remaining himself. He runs D like real challenger of D. Finally, D outputs
its forgery. B4 uses Ext to get a forgery (A∗, w∗

A, {σ∗
id,a}a∈A), where P ∗(A∗) = 1

and P ∗(A) = 0. Then B4 returns (Comck(A),Comck(P ∗), w∗
A). Then we have

Pr[Case 3] ≤ AdvCR,B4(λ).
This all cases concludes the proof.

6 An Instantiation

Our instantiation of homomorphic commitment scheme is constructed based
on the de-random extent Pedersen commitment Com with ck = (g1, ..., gN ). If
nA < np, we set the rest of attribute as 0. The EUF-CMA digital signature uses
a variant BBS group signature [1] for signing two message in Zp. We give an
instantiation of DS, SoK and ACC as follows.

Digital Signature. As shown in [1], the algorithms of which are described as
follows:

– DS.KeyGen(λ): Randomly chooses γ ∈ Zp and outputs pk = gγ , sk = γ.
– DS.Sign(sk,M1,M2): On input (M1,M2) ∈ Z

2
p, chooses random numbers e

and s in Zp. Computes A = (ĝ1ĝM1
1 ĝM2

2 ĝs
3)

1
e+γ , and outputs (A, e, s).

– DS.Verify(pk,M1,M2, σ): check if e(A, pkge) = e(ĝ1ĝM1
1 ĝM2

2 ĝs
3, g).

Accumulator with one-way domain. We use the accumulator for DDH groups
[2], the algorithms of which are described as follows:

– ACC.Gen(λ): generates cyclic groups G1 = 〈g0〉 and G2 of prime order q, a
bilinear pairing e0 : G1 × G1 → G2. The domain of accumulatable elements
is G = 〈g〉, which is a cyclic group of prime order p such that G ⊂ Z

∗
q . The

auxiliary information α is randomly chosen from Z
∗
q Output the description

desc = (G1,G2,G, e0, g0, g
α
0 , ..., gαn

0 ).
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– ACC.Eval(desc,X): computes the accumulated value v for X by evaluating∏n
i=0(g

αi

0 )ui with public information gαi

0 , where ui is the coefficient of the
polynomial

∏
x∈X(x + α).

– ACC.Wit(desc, xs,X): for xs ∈ X, it computes the witness as ws =∏n−1
i=0 (gαi

0 )ui , where ui is the coefficient of the polynomial
∏n

i=0,i �=s(x + α).
– ACC.Verf(desc, v, xs, ws): verifies e0(ws, g

xs
0 gα

0 ) = e(v, g0).

The one-way relation for our ACC is defined as Rp = {(y, x) ∈ Zp × G : x =
hy}.

Remark 1. Due to the property of the accumulator, we will need the trusted
setup, which can be partially relieved by using MPC technique. In addition, for
some application, this is reasonable and can be accepted.

As to the SoK associated with our protocol, it can be obtained from a gen-
eralized interactive zero-knowledge protocol by using the Fiat-Shamir paradigm
[13]. In the following, we present more details on the zero-knowledge protocol.
Let g0, h0 be generators of G1 and g, h, g1, ..., gN be generators of G and G ∈ Z

∗
q .

An interactive zero-knowledge protocol is described as follows:

PoK :
{(A, wA, {σid,a = (Aa, ea, sa)}a∈A, id)

)
: e0(wA, g

Comck(A)
0 gα

0 ) = e((v, g0))

∧Comck(A) = {ga
i }i∈[np],a∈A∪{0} ∧ {e(Aa, kagea ) = e(ĝ1ĝid

1 ĝa
2 ĝsa

3 , g)}a∈A
}

To instantiate this protocol, we further treat it as the composition of the
following sub-protocols:

PoK1 :
{(

d, r
)

: C = gd
0h

r
0

}

PoK2 :
{(

Comck(A), r, id
)

: C = g
Comck(A)
0 hr

0∧
{e(Aa, kagea) = e(ĝ1ĝid

1 ĝa
2 ĝsa

3 , g)}a∈A
}

PoK3 :
{(

d, r, wA
)

: C = gd
0h

r
0 ∧ e0(wA, g

Comck(A)
0 gα

0 ) = e((v, g0))
}

The instantiation of PoK1 is a standard DL problem. For the instantiation of
PoK2, it makes use of the zero-knowledge proof-of-knowledge of double discrete
logarithms [6] and proof of knowledge of the signature [1]. Regarding the instan-
tiation of PoK3, by using the similar technique in [2], a prover with knowledge of
(d, r, wA) can compute this protocol by first computing quantities w1 = gf1

0 hf2
0 ,

w2 = wAhf1
0 for some random f1, f2 ∈ Zq , and then perform the following

proof-of-knowledge protocol:

PoK ′
3 :

{(
f1, f2, d, r, t1, t2

)
: C = gd

0h
r
0 ∧ w1 = gf1

0 hf2
0 ∧ wd

1 = gt1
0 ht2

0 ∧
e0(w2,gα

0 )
e0(v,g0)

= e0(w2, g0)−de0(h0, g0)t1e0(h0, g
α
0 )f1

}

Our instantiation is secure based on SDH assumption in the RO model, the
signature consist of (λ + 5)|G1| + 1|G2| +((nP + 3)λ + 6)|Zp| + (nP + 2)λ|Zq|,
where nP is the maximum length of the AND relation and λ is the length of
element in Zp.
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7 Conclusion

We propose a general and efficient construction of MA-ABS. In order to avoid
the linear increasing of the signature size caused by the access control matrix, we
develop a new method to implement monotone access structure control. We also
give an instantiation based on the SDH assumption. Although our results require
the trusted setup, we point out that this is all due to the use of accumulators,
and other components can be replaced with non-trusted installations. There-
fore, our scheme directly benefits from the development of membership proof
and accumulator, which have been widely studied recently. This also makes our
framework more advantageous than the traditional frameworks.
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14. Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-
attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36334-4 19

15. Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based
signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 21

16. Gu, K., Jia, W., Wang, G., Wen, S.: Efficient and secure attribute-based signature
for monotone predicates. Acta Informatica 54(5), 521–541 (2016). https://doi.org/
10.1007/s00236-016-0270-5

17. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signa-
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Abstract. Most existing steganalytic networks are designed empirically,
which probably limits their performances. Neural architecture search
(NAS) is a technology that can automatically find the optimal network
architecture in the search space without excessive manual intervention.
In this paper, we introduce a gradient-based NAS method called PC-
DARTS in steganalysis. We firstly define the overall network architec-
ture, and the search spaces of the corresponding cells in the network.
We then use softmax over all candidate operations to construct an over-
parameterized network. By updating the parameters of such a network
based on gradient descent, the optimal operations, i.e., the high-pass fil-
ters in pre-processing module and operations in feature extraction mod-
ule, can be obtained. Experimental results show that the resulting ste-
ganalytic network via NAS can achieve competitive performance with
some advanced well-designed steganalytic networks, while the searching
time is relatively short.

Keywords: Steganalysis · Deep learning · Neural architecture search

1 Introduction

Steganalysis is a technology used to detect the presence of the secret information
embedded by steganography, which can effectively monitor the use of steganogra-
phy. The existing steganalytic methods can be divided into two types, i.e. conven-
tional methods based on handcrafted features and deep learning-based methods.
The representative of conventional methods is SRM (Spatial Rich Model) [7],
which firstly uses different high-pass filters to get image residuals, and achieves
steganalytic statistics of the residuals. Several adaptive steganalytic methods
such as [19] and maxSRM [4] can further improve the detection performances
by using the embedding property of steganography. The deep learning-based
method was first proposed in 2014 by Tan et al. [18]. In 2017, Ye et al. [22]
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proposed a convolutional neural network called YeNet which initializes the first
convolutional layer with 30 spam high-pass filters used in SRM and applies a new
truncated linear unit. The detection performance of YeNet firstly exceeds SRM.
In 2019, Boroumand et al. [3] proposed a deep residual network called SRNet
which achieves satisfactory performance in both spatial and JPEG domains.

Though the modern steganalytic methods based on deep learning have
achieved greater performances than conventional methods, they are usually con-
structed empirically after lots of trials. For instance, the operations and hyper-
parameters in each layer, the layer numbers used in network. It is quite time-
consuming or impossible to try all candidates to achieve the best one. Recently,
a technique called Neural Architecture Search (NAS) is proposed to automati-
cally search for the optimal network architecture in a predefined search space.
According to the search strategy [6], the existing NAS methods can be divided
into 5 types, namely, based on random search [12], Bayesian optimization [16],
evolutionary algorithm [17], reinforcement learning [23], and gradient [20]. In
[21], Yang et al. first introduce NAS based on reinforcement learning in JPEG
steganalysis, and show that it outperforms some advanced networks in JPEG
domain. However, this method [21] is quite time-consuming. Even the image is
as small as 128 × 128, it takes 15 days to search for the optimal network on a
server with 3 NVIDIA TITAN Xp 1080 GPUs.

Among the 5 types of search strategies in NAS, the first 4 types treat archi-
tecture search as a black-box optimization problem in a discrete space, which
usually require huge computing resources for evaluation [15]. In contrast, the
gradient-based search strategy relaxes the discrete search space into continu-
ous space, and uses gradient descent for optimization, which is more efficient.
Thus we first introduce a novel gradient-based method called PC-DARTS [20]
in spatial steganalysis. In our method, a pre-processing cell is firstly employed
to search an optimal set of high-pass filters to enhance the signal of stegano-
graphic artifacts. And then several cells to be searched are stacked manually
for feature extraction. The classification part is fixed to output the probability
of classification. By using a softmax function, all possible high-pass filters and
cell architectures are combined together to get an over-parameterized network.
Finally, we optimize this network by gradient descent, and get the corresponding
optimal network architecture. The experimental results show that the proposed
method is very promising in spatial steganalysis.

The rest of the paper is organized as follows. Section 2 describes the proposed
method. Section 3 shows the experimental results and discussions. Finally, the
concluding remarks of this paper and future works are given in Sect. 4.

2 Proposed Method

Like most related steganalytic works, the proposed network architecture includes
three modules, that is, pre-processing, feature extraction and the classification,
as shown in Fig. 1. The classification module here is fixed, which consists of a
global covariance pooling layer [13,14], a fully-connected layer and a softmax
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Fig. 1. The architecture of the search network.

function. In the following two subsections, we will define the search spaces of
cells in pre-processing and feature extraction modules separately. Finally, we
will describe the search process to determine the cells.

2.1 Search Space in Pre-processing Module

To enhance the signal-to-noise ratio of the input image, most steganalytic net-
works such as [5,22] usually employ 30 linear high-pass filters proposed in SRM
[7] to get image residuals in pre-processing module. However, some selected fil-
ters are probably redundant. In our method, we use 30 SRM filters like most
steganalytic networks as the search space F , and aim to search an optimal
subset in the pre-processing module. To this end, we define the pre-processing
cell in Fig. 2(a). As shown in Fig. 2(a), the input node is an image, the output
node represents image feature maps, each dashed line denotes a candidate filter
fi ∈ F, i = 1, 2, . . . , 30, which is followed by a TLU (Truncated Linear Unit)
[22]. The threshold of the TLU is set as 5, which has a better performance than
other settings like 1, 3 or no threshold according to our experiments. The result
of each dashed line (denoted as ri) is defined as follows:

ri(input) =
exp(αfi)

∑
f ′
i∈F exp(αf ′

i )
· TLU(fi(input)), (1)

where αfi is the weight of the filter fi, which is randomly initialized, and then
would be updated according to the loss on training set by using gradient descent
during search process.
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(a) Pre-processing cell (b) Normal/reduction cell

Fig. 2. The architecture of cells to be searched.

Finally, the output of the pre-processing cell is the concatenation of all ri, i =
1, 2, . . . , 30. We have conducted a series of experiments to determine the number
of filters to be reserved and found that keeping 16 filters has the improvement
of 0.3% to 1% compared to keeping 8 or all of them. Therefore, when the search
process is finished, the 16 filters with the largest αfi will be reserved.

2.2 Search Space in Feature Extraction Module

As shown in Fig. 1, feature extraction module is composed of a normal cell
followed by two reduction cells. The architecture of normal/reduction cell is
shown in Fig. 2(b), which can be regarded as a directed acyclic graph with three
nodes. Node x0 and x1 denote the feature maps, which are the outputs of previous
cells; node x2 is output of the cell; the dashed lines represent the candidate
operations. Note that the architecture and the search space of two types of cells
are the same, except that the stride of operations is 1 for normal cell, while it
becomes 2 for reduction cell. In addition, the cells of the same type share the
same architecture parameters. The channel number of normal cell is 64, while
the channel numbers of two reduction cells are 128 and 256 respectively.

The candidate operation set O employed in the proposed feature extraction
module includes 7 elements, i.e., O = {3×3 convolution, 5×5 convolution, 3×3
separable convolution, 3×3 max-pooling, 3×3 average-pooling, skip-connection,
no operation}. In DARTS [15], they relax the selection of a specific operation to
a softmax calculation over all candidate operations in search space O as follows:

y(xj) =
∑

oi∈O

exp(αoi
j )

∑
o′
i∈O exp(αo′

i
j )

· oi(xj), (2)

where y(xj) denotes the result of xj , j = 0, 1 after passing all candidate oper-
ations in dashed lines connected to it; αoi

j is the weight of the operation oi in
dashed line connected to xj .

However, it requires huge memory to store the corresponding outputs of 7
candidate operations in each node during the training stage. To overcome this,
we employ PC-DARTS [20] to select partial channels instead of all channels of
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each input node for operation mixture (i.e. Eq. 2) while the unselected channels
are directly copied to the output, that is,

yPC(xj) =
∑

oi∈O

exp(αoi
j )

∑
o′
i∈O exp(αo′

i
j )

· oi(Sj × xj) + (1 − Sj) × xj , (3)

where yPC(xj) is the result of xj , j = 0, 1 after passing all candidate operations
in dashed lines connected to it with partial channel connections; Sj is a vector of
the same length as the channels number of xj called channel sampling mask on
input xj , j = 0, 1. The element of Sj is set as 1 when the channel is selected, and
set as 0 when the channel is unselected. In our method, the first half elements
of the Sj are set as 1 while the remaining are 0. Moreover, in order to mitigate
the fluctuation caused by partial channel connections, an edge normalization is
adopted as follows,

xPC
2 =

1∑

j=0

exp(βj)
∑j′=1

j′=0 exp(βj′)
· yPC(xj), (4)

where βj is the weight on the lines connected to node xj . It means that the
output of the cell i.e., x2 with partial channel connections, i.e., xPC

2 , is the
weighted sum of two input node after passing candidate operations.

During the search process, both parameters αoi
j and βj are randomly initial-

ized, and then updated according to the loss function using gradient descent.
When the search process is finished, the operation oi with the largest αoi

j value
among dashed lines connected to xj is preserved to be the optimal operation to
construct the cells, which means that only one line with the largest αoi

j connected
to each input node will be preserved in the normal/reduction cells.

2.3 Search Process

After defining the overall network architecture, the basic cell architecture, and
the search space of each cell, we can obtain an over-parameterized network
Netop, which covers all candidate filters and operations. Searching the opti-
mal steganalytic network from Netop is then converted to determine the filters
and operations in cells via training Netop. According to the search space of
each cell, the total number of networks that can be searched is 349,159,842,675
(= C16

30 ×7×7×7×7, in which, C16
30 represents the number of choices of selecting

16 filters from 30 filters in pre-processing module, and two 7 × 7 represent the
number of choices of two kinds of cells, namely the normal cell and reduction
cell). The search algorithm is illustrated in Algorithm 1.

Firstly, we create an over-parameterized network Netop according to the
network architecture in Fig. 1, two cell architectures in Fig. 2. Then in the first
B epochs, we first update the network parameters w like weights of convolutional
kernels according to the cross entropy loss on a half of training set i.e. Ltrain1,
while the architecture parameters like α (including αoi and αfi) and β are fixed.
After B epochs, the architecture parameters and the network parameters will be
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Algorithm 1. Search Process Based on Gradient Descent
Input: Search space O and F , Training epochs T , Begin epoch B
Output: Optimal architectures of cells

Create an over-parameterized network Netop

for t = 1, 2, ..., T do
if t ≥ B then

Update architecture parameters α, β by descending ∇α,βLtrain2

end if
Update network parameters w by descending ∇wLtrain1

end for
Obtain optimal architecture of cells according to α

updated in turns according to the cross entropy loss on another half of training
set i.e. Ltrain2 and Ltrain1, respectively. After T epochs, we can obtain the
optimal architecture of cells i.e. pre-processing cell, normal/reduction cell by
preserving the candidate operations with largest α.

3 Experimental Results

We conduct experiments on the datasets BOSSBase [1] and BOWS2 [2]. Each
dataset contains 10,000 grayscale images of size 512 × 512. The images are
first resized to 256 × 256 by “imresize” with default setting in MATLAB. As
data partitioning in existing works, such as YeNet [22], SRNet [3], and method
[21], the training set includes 4,000 images from BOSSBase and 10,000 images
from BOWS2. The validation set contains 1,000 images from BOSSBase. The
remaining 5,000 images from BOSSBase are used for test.

In the search stage, we set T = 70, B = 35. We use SGD optimizer with
momentum of 0.9 and weight decay of 3 × 10−5 to optimize the network param-
eters. The initial learning rate is 0.5 and decays following cosine schedule. The
Adam [10] optimizer with a fixed learning rate of 6 × 10−3 is used to opti-
mize the architecture parameters. The momentum and weight decay of Adam
are (0.5, 0.999) and 10−3 respectively. The batch size is 16 (i.e., 8 cover-stego
pairs). After the search stage, we determine the 16 high-pass filters used in the
pre-processing cell and the operations in normal/reduction cells based on the
architecture parameters that perform best on the train2. Then the obtained
optimal network will be trained from scratch. In this training stage, the whole
training set is used. The batch size is 32 (i.e., 16 cover-stego pairs). And we
use SGD optimizer with the momentum of 0.9 and weight decay of 3 × 10−5.
The initial learning rate is 0.2 and is divided by 10 at epoch 80, 140, 180. Note
that we have provided the source code of the proposed method online1, so that
readers can repeat our results easily.

1 Codes available at: https://github.com/DXQer/Spatial-Steganalysis-Based-on-
Gradient-Based-Neural-Architecture-Search.

https://github.com/DXQer/Spatial-Steganalysis-Based-on-Gradient-Based-Neural-Architecture-Search
https://github.com/DXQer/Spatial-Steganalysis-Based-on-Gradient-Based-Neural-Architecture-Search
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3.1 Analysis on the Resulting Steganalytic Network

In our experiments, the search process is performed on S-UNIWARD at payload
0.4 bpp. Totally, it takes only 15 h to train the over-parameterized network on a
server with 4 GeForce RTX 2080 Ti GPUs. Thus, the proposed method is much
more efficient than the steganalytic method [21] based on NAS via reinforcement
learning2. Table 1 shows the 16 resulting high-pass filters in the pre-processing
cell, and Fig. 3 shows the operations in the normal and reduction cells. Note
that the reduction cell can be regarded as a residual cell, since it contains a skip
connection. Finally, the resulting steganalytic network is illustrated in Fig. 4.
From Fig. 4, we observe that this network contains 8 parameter layers, including
a 1 × 1 convolutional layers inside each cell for input pre-processing.

Table 1. The 16 selected linear high-pass filters.

1st Order Original version and its 90◦, 180◦, 225◦, 270◦ and 315◦

rotation versions

2nd Order Original version and its 45◦ rotation version

3rd Order Original version and its 90◦ and 180◦ rotation versions

EDGE 3 × 3 Original version and its 90◦ and 270◦ rotation versions

SQUARE 3 × 3 Original version

SQUARE 5 × 5 Original version

(a)The resulting normal cell (b) The resulting reduction cell

Fig. 3. The operations used in the normal and reduction cells.

We make a comparison of the parameters employed in YeNet, SRNet and
the resulting network with our method. We observe that among three networks,
YeNet has the least amount of parameters with the number is 0.1 M. Although
the number of parameter layers of our network is the least among three models,
the number of channels in each layer is large, such as 64, 128, 256 while the
maximum number of channels in YeNet is only 32. Therefore, the number of

2 Note that the image database is exactly the same for both methods. Our method
employ bigger images of size 256 × 256, while the method use smaller images of size
128 × 128.
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Fig. 4. The resulting steganalytic network.

parameters of the obtained network is 2.4 M which is much larger than that of
YeNet. SRNet has the largest amount of parameters of 4.8 M, which is about
twice as large as our network. As for the training time, YeNet needs around 36 h
to train and SRNet requires more than 72 h, while the resulting network only
takes around 15 h according to our experiments.

3.2 Comparison on Detection Accuracy

Three typical steganographic methods, including S-UNIWARD [9], HILL [11]
and WOW [8], at payloads 0.2 bpp and 0.4 bpp are evaluated separately. We
compare the resulting network architecture searched on S-UNIWARD 0.4 bpp
with two advanced steganalytic networks i.e. YeNet [22] and SRNet [3]. To get
convincing results, we repeat the experiments twice on different dataset partition,
and show the average results in the following. And for a fair comparison, all
networks are evaluated under the same condition.

The comparative results are shown in Table 2. From Table 2, we observe that
our detection accuracies are higher than YeNet in all cases. When compared
with SRNet, the detection accuracy of the proposed network is competitive. For
example, when detecting WOW for payload of 0.4 bpp, the detection accuracy
of the proposed network achieves 91.40% which is 0.74% higher than SRNet. In
other cases, the detection performance of the proposed network is slightly worse
than SRNet, but the distance between SRNet and our network is less than 0.57%.
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Table 2. Comparison on detection accuracies (%).

Steganalytic network S-UNIWARD HILL WOW

0.2 0.4 0.2 0.4 0.2 0.4

YeNet 77.84 87.47 74.63 83.63 82.46 89.95

SRNet 79.64 89.74 75.67 85.33 83.75 90.66

Proposed 79.52 89.57 75.44 84.76 83.66 91.40

Note that another related NAS steganalytic method via reinforcement learning
[21] is for JPEG domain while the proposed method is for spatial domain, the
corresponding detection accuracy comparison is not given in this paper.

4 Conclusion

In this paper, we first introduce the gradient-based neural architecture search
(NAS) in spatial steganalysis, and provide experimental results to show that the
resulting network is competitive with the advanced manually designed networks,
while our searching time (around 15 h) is significantly shorter than the related
NAS steganalytic method via reinforcement learning [21] (around 15 d for smaller
images).

This is our preliminary attempt to get steganalytic network via gradient-
based network architecture search. Limited by our computing resources, the
proposed network architecture in Fig. 1 and the cell architectures in Fig. 2 are
relatively simple. The search spaces of filters and operations are small too. Thus
there is great room for improvement. In addition, there are still some artificially
designed parts in our method, such as the way of cells stacking, and the number
of nodes in cells, which would limit the scope of architecture search. Therefore,
how to make the search stage more automatically is worth further considering.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61972430, in part by the Natural Science Foun-
dation of Guangdong under Grant 2019A1515011549.
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Abstract. We introduce the concept of turn-based communication
channel between two mutually distrustful parties with communication
consistency, i.e. both parties have the same message history, and happens
in sets of exchanged messages across a limited number of turns. Our con-
struction leverages on timed primitives. Namely, we consider a Δ-delay
hash function definition and use it to establish turns in the channel. Con-
cretely, we introduce the one-way turn-based communication scheme and
the two-way turn-based communication protocol and provide a concrete
instantiation that achieves communication consistency.

Keywords: Time puzzle · Delay · Hash function · Consistency

1 Introduction

Communication channels are the core mediums allowing different parties to build
dialogues. They can either be physical or abstract, e.g. electromagnetic wave
propagation or a key exchange protocol that allows to establish a secure com-
munication channel. Either the case, channels achieve different properties which
can be related to the medium, e.g. reliability, energy efficiency, bandwidth, or
based on the “content”, e.g. confidentiality, privacy or other.

A fundamental and highly desirable property of a channel is consistency, i.e.
different parties exchange messages which cannot be modified or repudiated in
the future once the communication is over. In other words, whenever a mes-
sage is shared, it is permanently fixed in the transcription. An example of a
protocol that allows such a property is the public bulletin board which allows
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any party to publish any information on the “board”, while receiving a “proof”
that guarantees the integrity that the information is indeed published. Recently,
blockchains, or public ledgers [4,15], have emerged as complex protocols that
allow the instantiation of a public bulletin board, without relying on a cen-
tral authority. Their security relies on a specially purposed consensus protocol,
which often requires assumptions of game-theoretic nature, e.g. the proof-of-
work consensus protocol implies that an adversary does not have more than
51% of the available computing power at its disposal. Bulletin boards based on
consensus protocols, albeit practical, suffer from significant delays when per-
sisting entries. Notably, blockchain-based systems, typically suffer from scalabil-
ity issues without a clear solution yet. Consequently, for time critical systems,
blockchain-based bulletin boards may not be a useful alternative. An emerging
technology, autonomous driving, illustrates the challenge between time-critical
systems and blockchains. Autonomous driving in a real-world environment is
a notoriously hard task because of the high number of variables that must be
taken into account. Moreover, in such systems, communication between cars is
a viable design approach. Different systems must communicate and coherently
agree on their action plans. Let us consider a simplified example where a car is
overtaking another one. The one taking the action and surrounding cars must
securely execute their algorithms while communicating to each other. All the
communication between the cars should be timely available and guaranteed to
be correct, i.e. could not be changed a posteriori, for audit purposes. The tran-
script of the whole communication could be used later, or even in court, for legal
issues. A straightforward approach is to let vehicles be equipped with crypto-
graphic primitives, such as digital signatures. Despite its feasibility, the aid of
public key cryptography may not be an option for some devices, in particular,
resource restricted ones. Besides, it may require the use of Public Key Infras-
tructure (PKI) which may be, again, prohibitive for some systems. One of the
most basic building blocks in cryptographic literature are hash functions. They
are used to guarantee data integrity and are widely employed in the computer
science discipline in numerous applications. A natural question is whether such a
building block would allow the construction of a pair-wise communication chan-
nel, avoiding the somewhat heavier cryptographic primitives earlier cited. An
application relying only on hash functions could be significantly “easier”, since
it would not be aided by public key cryptography schemes with PKI, typically
more “complex” than their private key cryptography counterpart. Furthermore,
it could also sidestep the early mentioned limitations of blockchain based pro-
tocols, yet providing a consistent and timely communication channel between
two users. More succinctly, we investigate the question: is it possible to design a
consistent channel between two parties without using blockchain’s assumptions
nor public key infrastructure?

Concept’s Overview. All the communication is held over time which allows
to order events during communication, e.g. message exchange. Commonly, our
daily interaction is held over continuous communication channels in which
the communicating parties can communicate at any point in time. Our main
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idea relies on providing a turn-based communication channel (TBCC) that
forces the two parties to communicate in a limited amount of distinct turns
separated by a Δ time interval. The parties’ interaction is slowed down by the
necessity of waiting for the next turn, contrary to the almost-instantaneous reply
ability of continuous channels. To do so, we assume the existence of functions
that “computationally” create time delays and are used to extend the hash func-
tion definition and introduce the Δ-delay hash function, which paves the way to
the construction of time-lock puzzles in the spirit of Mahmoody et al. [17],
i.e. a primitive that allows Alice PA to generate a puzzle-solution pair (y, π),
send the puzzle y to Bob PB that spends a time Δ to compute the solution π.
Concretely, Δ is the turn interval in our TBCC construction. The novel feature
provided by TBCC is that PA knows the solution π in advance and can use it
to “commit” to a message m. By releasing m and the puzzle y, PB must invest
Δ amount of time in computing π before being able to verify the validity of m.
The early described timed-commitment is the stepping stone of our first con-
struction for a one-way turn-based scheme that allows the communication
of blocks of messages in turns in a single direction, e.g. from PA to PB . We show
that if the one-way turn-based scheme is correct and tamper resistant, i.e. the
adversary is unable to modify the past communication and/or the correctness
of the exchanged messages, intuitively this yields to communication consis-
tency, i.e. both parties have the same view of the exchanged messages even
if the adversary delays/tampers any message. We define the two-way TBCC
protocol as a “two one-way scheme” which allows a simpler extension of the
properties to the protocol, i.e. correctness, tamper resistance, sequentiality and
consistency. Additionally, we introduce the concept of turn synchronisation,
i.e. the two communicating parties must always agree in which shared turn they
are communicating. The protocol provides a recovery procedure that allows
the communicating parties to fix the last-turn messages in case of a communi-
cation error or an adversarial tamper.

Related Work. Blockchains and Bulletin Boards. The blockchain is commonly
used in a distributed environment, where cryptographic primitives and game
theoretical assumptions create a distributed database, where consistency comes
for the orderly generation of blocks added to the structure. There are many
examples of either using blockchains as a building block with new primitives,
e.g. public verifiable proofs [20], or applying existing cryptographic primitives
into blockchains and achieve new functionalities [7,14], or the theoretical aspects
related to the consensus mechanism or the blockchains’ theoretical model [10].

Time and Cryptographic Primitives. Cryptography and timing are long time
distinct aspects that are commonly not considered together. Rivest et al. [19]
described the possibility of using time to create a cryptographic time-capsule, i.e.
a ciphertext that will be possible to decrypt after a specified amount of time.
Their work defines the concept of time-lock puzzles, where timing is achieved by
cleverly tweaking the security parameters of some secure cryptographic primi-
tives. Boneh et al. [8] presented the concept of timed commitments, i.e. a com-
mitment scheme in which at any point, by investing an amount of effort, it is
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possible to correctly decommit into the original message. The main conceptual
difference with respect to previous works is that, in this work, timing properties
are achieved by forcing the algorithm to compute a naturally sequential math-
ematical problem. From a different perspective, Mahmoody et al. [17] defined
time-lock puzzles by just assuming the existence of timed primitives. In the
last years, many community efforts have been devoted to introduce verifiable
delay functions (VDFs), i.e. to compute a timed function and be able to verify
the correct computation of it. There are multiple instantiations of this primi-
tive in the literature, e.g. Lenstra et al.’s random zoo [16], a construction using
randomized encoding by Bitansky et al. [5] or Alwen-Tackmann’s theoretical
consideration regarding moderately hard functions [1]. The VDF’s formal defini-
tion is given by Boneh et al. [6], subsequent papers provide additional properties
for these time related primitives such as Malavolta-Thyagarajan’s homomorphic
time-puzzles [18] or the down-to-earth VDF instantiation by Wesolowski [21].

Timing Model. Perhaps the closest set of works to our study deals with the Tim-
ing Model as introduced by Dwork et al. [9], and used by Kalai et al. [11]. While
they do present similarities to our work, e.g. the idea of “individual clock”, they
also present significant differences. For instance, while in [9,11] every party in
the real execution is equipped with a “clock tape”, extending the Interactive Tur-
ing Machine (ITM) with clocks, in our model the parties are regular ITMs, that
perform computations in order to realize a “single clock”. Additionally, our work
also shares similarities with Azar et al. [2] work on ordered MPC, which studies
delays and ordered messages in the context of MPC. Our framework is positioned
between both models as it focuses on turns equipped with a message validating
mechanism, which is a different approach. Recently, a concurrent work by Baum
et al. [3] formalizes the security of time-lock puzzles in the UC framework. They
introduce the UC with Relative Time (RUC), which allows modelling relative
delays in communication and sequential computation without requiring parties
to keep track of a clock, in contrast to Katz et al.’s [13] approach which models
a “central clock” that all parties have access. The main contribution introduces
a semi-synchronous message transmission functionality in which the adversary
is aware of a delay Δ used to schedule the message exchanges, while the honest
parties are not aware. In their work, composable time-puzzle realizes such novel
functionality, and yields UC secure fair coin flips and two party computation
achieving the notion of output independent abort. They focused on composable
primitives and rely on a constrained environment, i.e. it has to signal the adver-
sary and activate every party at least once. Another theoretical difference is the
focus of the order and turns but not in relative delays as in [3]. Baum et al. state
as future work a possible extension to their transmission model in which all the
parties have a local clock that would allow to always terminate any protocol.

2 Preliminaries

We denote vectors with bold font, e.g. v, and Pr [E ] the probability of the event
E. Let {0, 1}∗ be the binary strings space of arbitrary length, N the natural
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numbers, R the real numbers and R+ the positive ones. Let [a, b] ⊆ N denote
intervals between a and b and x←$X the random uniform sampling in the set
X. Let negl(λ) denote a negligible function in λ, i.e. negl(λ) = O(λ−c) for every
constant c > 0. We omit λ whenever obvious by the context.

Definition 1 (One-Way Hash Function [12]). Let n ∈ N. The function H :
{0, 1}∗ → {0, 1}n is a one-way hash function if it satisfies the properties:

– Preimage resistance: for any x←${0, 1}∗ and y := H(x), for any PPT
adversary A that, on input y, outputs x′, it holds that Pr [H(x′) = y ] < negl;

– 2nd Preimage resistance: for any x←${0, 1}∗, y := H(x), for any PPT
adversary A that, on input x, outputs x′ �= x, it holds Pr [H(x′) = y ] < negl;

Complexity and Time. Let time be modelled as the positive real numbers R+.
At the core of our construction, we must assume the existence of a measure μ (·)
that plays the role of a “bridge” between complexity and timing. In a nutshell,
we want to provide an axioms model that allows to consider algorithms with
same computation time whenever executed by different devices. Formally,

Assumption 1. Given a model of computation M, there exists a measure μ (·)
that takes as input an M-computable function f with input x and outputs the
amount of time μ (f, x) ∈ R+ necessary to compute f(x) in the model M. If f∗(x)
is a probabilistic function with input x and internal randomness r, then there
exists f(x; r) deterministic function that executes f∗(x) with fixed randomness r.

Another required assumption is the existence of a function family F whose
functions always output the results after the same amount of time. Formally,

Assumption 2. Given a model of computation M and associated μ (·), there
exists a function family F such that for any function f ∈ F , for any inputs x, x′,
f is input-independent with computing time μ (f), i.e. μ (f) = μ (f, x) = μ (f, x′).

Through the remaining of this work, we consider timing as the output of μ (·)
applied on input-independent functions. Whenever not specified, a hard problem
is a problem of which solution, computed via f, has large computation time μ (f).

The timed one-way hash function extends the hash’s properties of
Definition 1.

Definition 2. Let n ∈ N. The function ΔH : {0, 1}∗ → {0, 1}n is a Δ-delay
one-way hash function if it is input-independent as described in Assumption 2
and, in addition to the properties of Definition 1, the following property also holds:

– Δ-Delay: for any PPT adversary A that takes an input x and outputs y
which runs in time μ (A, x) <Δ = μ (ΔH), it holds that Pr [y = ΔH(x) ] <negl.

Observe that, in order for the Δ-delay’s property to make sense, the length of
x might be limited, e.g. the size of x must be polynomial. We omit such detail
and always consider delay hash functions with the appropriate input space size.
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Define the time-lock puzzle (TLP) as a generate-solve algorithm pair in
which time plays a design/security aspect. Our definition is inspired by Azar
et al. [2] and, more specifically, we consider the construction presented by
Mahmoody et al.’s [17] in the random oracle (RO) model. The provided TLP
generates m+1 sequential puzzles, i.e. a list of partial puzzle yi of which par-
tial solution πi is necessary in order to solve the next partial puzzle yi+1.

Definition 3. Let m ∈ N, security parameter λ and Δ ∈ R+ be the desired time
delay. Let ΔH : {0, 1}∗ → {0, 1}n be a Δ-delay hash function for some n ∈ N.
Let (GenPuz,SolPuz) define a (mΔ) time-lock puzzle (mΔ-TLP) as:

– GenPuz(λ, (m,Δ)) → (y,π): the generation algorithm randomly samples m+
1 bit-strings xi ∈ {0, 1}n and it computes the hash ΔH(xi) for i ∈ [0,m]. The
algorithm outputs the list of partial puzzles and partial solutions:

(y,π) :=
((

x0, ΔH(x0) ⊕ x1, . . . , ΔH(xm−1) ⊕ xm

)
, (x0, x1, . . . , xm)

)
;

– SolPuz(y, k, (π0, . . . , πk−1)) → πk: the algorithm parses the puzzle y into
(y0, y1, · · · , ym), k ∈ [1,m] and the known partial solutions (π0, . . . , πk−1).
It then outputs the partial solution πk := yk ⊕ ΔH(πk−1) where π0 := y0.

The following three properties must hold:

– Correctness: for every delay Δ, security parameter λ and m,n ∈ N, for
every puzzle (y,π) � GenPuz(λ, (m,Δ)), for every k ∈ [1,m], it holds that
Pr [SolPuz(y, k, (π0, . . . , πk−1))=πk ] = 1;

– Timing: for every delay Δ, security parameter λ and values m,n ∈ N,
for every puzzle (y,π) � GenPuz(λ, (m,Δ)), for every k ∈ [1,m] it holds
that μ (SolPuz) = Δ and generating the puzzle is faster than solving it, i.e.
μ (GenPuz) ≤ m · μ (SolPuz);

– Locking: for every delay Δ, security parameter λ and values m,n ∈ N, for
every puzzle (y,π) � GenPuz(λ, (m,Δ)), for every k ∈ [1,m] and adversary
A that solves the k-th partial puzzle, i.e. A(y, k, (π0, . . . , πk−1)) = πk, it holds
that μ (A) < Δ with only negligible probability.

The (mΔ)-TLP describes a sequence of sequential puzzles that must be solved
one at a time. The timing property guarantees that the SolPuz algorithm requires
a specific Δ amount of time to be executed and that generating the whole puzzle
takes less time than solving all the m puzzles. The locking property guarantees
that any adversary A is unable to solve the partial puzzle in less time than Δ
which implies, intuitively, that SolPuz is the most optimised algorithm for solving
the partial puzzle yi. If a better solving algorithm SolPuz′ exists with solving
time Δ′ < Δ, then (GenPuz,SolPuz′) is a (mΔ′)-TLP while (GenPuz,SolPuz)
cannot satisfy the locking property.
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3 Instantiating the Turn Based Communication Channel

In this section, we discuss the core concepts of timed disclosure, turns block
and communication consistency, later used to fully instantiate one and two-
way TBCC, from a time-lock puzzle based on a Δ-delay hash function.

Timed Disclosure and Message Block. Consider a Δ-delay hash function
and the related time-lock puzzle (y, π) as defined in Definition 3. Alice generates
and publishes the puzzle y. On receiving y, Bob starts solving it. Within the
amount of time Δ, only Alice knows the solution π, which allows her to produce
an efficient digest ξ = H(m, π) for any message m that she wants to communicate
with Bob. At this stage, Bob is unable to compute the same digest because he
does not know π. The “timed disclosure” is achieved whenever Bob finds the
solution π which enables him to accept or reject the previously received message
by verifying the correctness of the digest ξ. Timing is key for the security of the
disclosure: Alice must use the knowledge before it is disclosed and, on the other
hand, Bob should reject anything that uses such secret after the disclosure.
Differently, only after Δ time, Bob can check which are the correct messages
that are binded to the specific solution π and can collect them into a turn block.
Whenever we consider that Alice can publish a sequential time-lock puzzle in
which one partial solution πi is the starting point for the next partial puzzle yi+1,
Bob must filter and accept the received messages into a block every Δ amount of
time therefore creating the concept of turns and relative message blocks. This
turn point-of-view is possible because of the sequential timed disclosure that
can be seen as a “clock that ticks” every Δ amount of time. This means that
the communication is one-way, from Alice to Bob. Alice does not see the turn
because all the partial solutions are known to her and therefore she is able to
generate any possible message-digest pair at any time, see Fig. 1.

Time

Alice

Bob

Bob’s Vision Δ Δ

Fig. 1. One-way channel scheme representation. Alice shares a time-lock puzzle with
Bob and then sends messages of which some are correctly binded with the next puzzle’s
partial solution. With that solution, Bob is able to filter out the correct messages. Since
this is done every Δ time, in Bob’s eyes is as if he is receiving messages in turns.
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Block of Messages and Communication Consistency. The next step is
to create a two-way communication between Alice and Bob by allowing them to
instantiate two independent one-way TBCC channels between each other, i.e. by
exchanging time-lock puzzles and communicating message-digest pairs that are
accepted and personally saved in blocks. These blocks are not stored in a trusted
third party service but Alice and Bob have their own local copy of the exchanged
message history and this means that it is required to provide a procedure to
guarantee consistency between the copies. Consider our communicating Alice
and Bob to be in the i-th turn, i.e. at the end of the turn they will create the i-th
block. Naively, to achieve consistency of all blocks, every message, of the current
block, should be bound to the previous and future block. For the previous block,
they include a digest hi−1 of the previous block in every message they share in
order to correctly verify that both have the same previous block vision. When
the i-th turn ends, they separately create their own block-vision which could
be different. When they enter the (i+1)-th turn, they will have to share the
previous block digest hi and they will see that the values are different. They will
therefore start a recovery phase by publishing the content of the i-th block.
At this point in time, the message’s digest ξi can be tampered by anyone since
the partial solution πi is publicly known. For this reason, for every message we
define a second digest σi that binds such message with the next turn/future block
solution πi+1. This procedure allows every party to understand “who is cheating”
or “where the errors are”. In this way it is possible to abort the communication at
any point in time, whenever a malicious party hijacks the channel. All the parties
are thus forced to honestly participate if they want to maintain the channel up.

Timing Simplification and Further Development. For the sake of sim-
plicity, we consider the underlying Δ-delay hash function ΔH to have an exact
computation timing, i.e. every device computing ΔH takes exactly μ (ΔH) = Δ
time. A realistic assumption consider that devices (PA, PB) has similar/compa-
rable computation times

(
μ (ΔH)PA

, μ (ΔH)PB

)
which means that the difference∣∣μ (ΔH)PA

− μ (ΔH)PB

∣∣ must be less (or equal) a designed value ε. In this realis-
tic context, the turn-timing provided by the puzzle y is uncertain, i.e. the turn
length is a value contained in the interval Δ − ε < μ (ΔH)PA

< Δ + ε.
Our simplification allows to develop the general TBCC framework and we

leave as open questions the technique necessary for achieving a more realistic
timing assumption and a more profound security analysis that handles active
adversaries and protocol’s composition weaknesses.

3.1 One-Way TBCC Definition

In this section, we define the turn-based one-way channel from Alice to Bob.
A “channel” is any collection of parameters that allows to participate into the
communication, e.g. whenever a list of parameters is published, anyone can use
them to correctly parse future messages shared using them.

Definition 4. The one-way channel scheme is defined with the PPT algo-
rithms (setup, send, ext, turntoken, valid-ver, tamper-ver) as:
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– setup(λ,Δ, n) → (C, Cpriv): to setup the communication channel, PA parses
the security parameter λ, the delay Δ and the number of turns n The setup
algorithm outputs the public and private channels (C, Cpriv);

– send(Cpriv,m, v, t) → (ξ, aux): the send-message algorithm takes in input the
private channel information Cpriv, a message m with validity v ∈{0,1} and
the turn t < n. The algorithm outputs the message correctness proof ξ and
the channel auxiliary information aux.

– turntoken(C, t, {x0, . . . , xt−1}) → xt: this algorithm is executed at the begin-
ning of turn t. The algorithm parses the channel C, the current turn t and
the set of previously computed turn tokens {x0, . . . , xt−1}, after Δ amount of
time, the algorithm outputs the turn token xt.

– valid-ver(C, t,m, ξ, xt) → {0, 1}: at the end of the t-th turn, the validity ver-
ification takes as input a message m and its proof ξ and the turn token xt.
The algorithm outputs the validity v for the sent message m with proof ξ;

– tamper-ver(C, t,Mt−1,m, aux, ξ) → {0, 1}: during the t-th turn, the tamper-
verification algorithm takes in input the public channel C, the current turn t,
the ordered block of messages Mt−1 which is the list of valid messages for the
turn t−1, a sent message m with proof ξ and auxiliary information aux. The
algorithm verifies if the sent message m correctly relates to the previously sent
messages contained in the block Mt−1, thus outputting 1 when this is achieved,
otherwise 0.

– ext(C, Cpriv, t) → xt: the extraction algorithm takes as input the public channel
C, the private channel Cpriv and a turn t ≤ n and outputs the turn token xt,
without investing any multiple of Δ time;

– backward-ver(C, t,Mt−1, l) → {0, 1}: the recovery algorithm takes as input the
public channel C, the current turn t, the previous ordered block Mt−1 of bt−1 =
|Mt−1| valid messages mi and an index l ∈ [1, bt−1]. The algorithm outputs if
the l-th message m∗ in the block Mt−1 is a correct message for the block Mt−1

at the end of turn t.

Let us explain how to generate a communication channel from Alice PA to
Bob PB . First, PA executes setup for an agreed delay Δ and amount of turns
n, and obtains the channels (C, Cpriv), e.g. the public channel C can consist of
PA’s public key and public parameters while the private channel Cpriv contains
PA’s private key. The knowledge of Cpriv allows PA to quickly compute each turn
token xt directly as ext(C, Cpriv, t) while PB must sequentially compute them as
turntoken(C, t, {x0, . . . , xt−1}) and obtain them every Δ amount of time, similarly
to a periodic scheduling process. Whenever PA sends the message m in a turn
t, she executes send for a valid message in the t turn and sends to PB the tuple
(m, ξ, aux). PB can execute valid-ver(C, t,m, ξ, xt) and verify the message validity
only whenever PB obtains the turn token xt, computable only after t·Δ amount
of time. This allows PA to communicate several messages of which PB cannot
immediately verify the validity of m but it has to wait for turntoken to output
the specific turn token xt thus creating the view of turns of the channel.

Message Validity. The sender’s inputs are the validity value v, a bit which
indicates if the message is considered valid or not, along with the message m
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itself and the choice of turn t. Only when the turn t ends, the receiver can verify
the validity of the message via the valid-ver algorithm and the turn token xt.

Definition 5 (Channel Correctness/Message Validity). Assume a turn
t ≤ n in a n-turn channel generated by the algorithms of Definition 4, then for
all message/validity pairs m and v, the channel is said to be correct if

Pr

⎡
⎣valid-ver(C, t,m, ξ, xt) �= v

∣∣∣∣∣∣
setup(λ,Δ, n) → (C, Cpriv);
send(Cpriv,m, v, t) → (ξ, aux);
ext(C, Cpriv, t) → xt;

⎤
⎦ ≤ negl(λ) ,

with probability computed over the random coins of setup, send, ext and valid-ver.

Sequentiality and Turn Definition. The turns of the channel rely on the time
necessary to compute the token values xt via turntoken, defined in the channel
C during the general setup. Each computed turn-tokens xt, allows the receiver
to verify the validity and consistency of all received messages during the turn t,
crucially, only at the end of the turn after the expected delay time Δ.

Definition 6 (Sequentiality). The channel is Δ-sequential if for any turn t,
for any PPT adversary A running in time μ (A) < Δ, the adversary wins the
game GameA,Δ

seq (λ, t, n) of Algorithm 1, with negligible advantage, namely,
∣∣∣∣Pr[GameA,Δ

seq (λ, t, n) = 1] − 1
2

∣∣∣∣ ≤ negl(λ) .

Algorithm 1. Sequentiality Game GameA,Δ
seq (λ, t, n) for the adversary A

1: Execute setup(λ, Δ, n) → (C, Cpriv);
2: Choose a random message m and validity v ← {0, 1}.
3: Execute ext(C, Cpriv, i) → xi for i ∈ [1, t − 1] and send(Cpriv, m, v, t) → (ξ, aux)
4: v∗ ← A(C, t, m, ξ, aux, {xi}t−1

i=1

)

5: Execute ext(C, Cpriv, t) → xt

6: If valid-ver(C, t, m, ξ, xt) = v∗, output 1. Otherwise, 0

Last Turn Tamper Resistance. Given any t ≤ n of a TBCC with public
setup information C, define the block Mt−1 as the set of all jt−1 messages in the
turn t−1 with respective auxiliary information aux1, . . . , auxjt−1 and sent proof
ξ1, . . . , ξjt−1 . The algorithm tamper-ver(C, t,Mt−1,m, aux, ξ) checks, for any cor-
rectly computed message (m, aux, ξ) ∈ Mt, if it correctly relates to the previous
turn block Mt−1 by spotting whenever this connection is tampered.

Definition 7 (Last Turn Tamper Resistance). During the turn t ≤ n of
a channel C between two honest parties with correct message blocks Mi for each
turn 1 ≤ i < t, C is tamper resistant, if for any PPT adversary A, it holds

Pr

[
tamper-ver(C, t,M∗

t−1,m
∗, aux∗, ξ∗) = 1|

(M∗
t−1,m

∗, aux∗, ξ∗) ← A(C, t,M1, . . . ,Mt−1)

]
≤ negl(λ)



386 C. Brunetta et al.

such that M∗
t−1 �= Mt−1 and tamper-ver(C, t,Mt−1,m

∗, aux∗, ξ∗) = 1. The prob-
ability is computed over the random coins of A and algorithm tamper-ver.

Communication Consistency. For any turn t ≤ n of a one-way channel C, the
channel is consistent until turn t−1 whenever the valid messages view between
the parties is the same during the turn t, i.e. an adversary must not be able to
force a wrong message history, regardless if it is the sender or the receiver.

Definition 8 (Consistency). During turn t ≤ n of a one-way TBCC channel
C between two parties with correct message blocks Mi for each turn 1 ≤ i < t, the
channel is consistent until turn t−1, if for any PPT adversary A, it holds

Pr [tamper-ver(C, t,M∗
t−1,m

∗, aux∗, ξ∗) = 1|
(M∗

t−1,m
∗, aux∗, ξ∗) ← A(C, t,M1, . . . ,Mt−1)

] ≤ negl(λ)

such that M∗
t−1 �= Mt−1, tamper-ver(C, t,Mt−1,m

∗, aux∗, ξ∗) = 1 and for all the
messages of the tampered block, along with auxiliary information and proof, i.e.
(m∗

ji , aux∗
ji , ξ

∗
ji) ∈ M∗

t−1, it holds valid-ver(C, t − 1,m∗
ji , ξ

∗
ji , xt−1) = 1 The

probability is computed over the random coins of A, tamper-ver and valid-ver.

One-Way Channel Instantiation. Let Δ ∈ R+ be a time-delay and n ∈ N

a maximal turn number, both chosen by Alice, denoted with PA. Let H and ΔH
be respectively regular and Δ-delay hash functions. Let (GenPuz,SolPuz) be the
(nΔ)-TLP of Definition 3 based on ΔH.

Construction 1. Let λ be the security parameter, n ∈ N number of turns, a
sender PA and a receiver PB. Instantiate the one-way channel scheme with the
PPT algorithms (setup, send, ext, turntoken, valid-ver, tamper-ver) defined as:

– setup(λ,Δ, n) → (C, Cpriv): to setup the communication channel, PA parses
the security parameter λ, the delay Δ and the number of turns n and executes
GenPuz(λ, (n,Δ)) as defined in Definition 3 and obtains the n turn puzzle with
solution (y,π). Output (C, Cpriv) as (y,π);

– send(Cpriv,m, v, t) → (ξ, aux): to send a message m with validity v in the turn
t < n, PA parses the private channel information Cpriv = π, and compute
ht−1 := H(Mt−1,m, πt−1), ξ := H(m, πt) and σ := H(m, ξ, πt+1) where Mt−1

is the ordered list of valid messages in the turn (t − 1), together with validity
proof and auxiliary information. The sending algorithm outputs, if v = 1,
the message correctness proof ξ and the channel auxiliary information aux =
(ht−1, σ), otherwise random values (ξ, aux) different from the correct ones.

– turntoken(C, t, {x0, . . . , xt−1}) → xt: this algorithm is executed by the receiver
PB at the beginning of turn t. It parses the channel C = y and continually
executes SolPuz(y) by considering that every πi := xi for the t partial solution.
After Δ amount of time, the output of the algorithm is xt := πt.
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– valid-ver(C, t,m, ξ, xt) → {0, 1}: at the end of the t-th turn, the validity verifi-
cation takes as input a message m and its proof ξ and the turn token xt = πt.
Output 1 if the equality H(m, πt)

?= ξ holds. Otherwise, 0;
– tamper-ver(C, t,Mt−1,m, aux, ξ) → {0, 1}: during the t-th turn, the receiver

PB verify the correctness of the ordered (t − 1)-th block Mt−1 which contains
the previously valid ordered messages {mi}jt−1

i=1 for some jt−1 ∈ N, by parsing
the auxiliary information as aux = (ht−1, σ) and outputs the result of the
equality verification H(Mt−1,m, πt−1)

?= ht−1.
– ext(C, Cpriv, t) → xt: the extraction algorithm takes as input the public channel

C, the private channel Cpriv = π and a turn t ≤ n and outputs xt = πt;
– backward-ver(C, t,Mt−1, l) → {0, 1}: the algorithm takes as input the public

channel C, the current turn t, the previous ordered block Mt−1, of accepted
message mi for i ∈ [1, jt−1], and an index l such that m∗ is the l-th mes-
sage in the block m∗ = ml ∈ Mt−1 with auxiliary information aux∗ =
auxl = (ht−2

∗, σ∗). backward-ver computes ξ∗ = H(m∗, πt−1) and outputs if
H(m∗, ξ∗, πt)

?= σ∗. The backward-ver algorithm verifies at the end of turn t
if the message m∗ is a correct message for the block Mt−1.

Proposition 1. The proposed one-way channel instantiation of Construction 1
achieves channel correctness as stated in Definition 5, sequentiality as stated in
Definition 6 and last turn tamper resistance as stated in Definition 7. Further-
more, it holds that consistency ⇔ last turn tamper resistant and correctness.

Two-Way TBCC Protocol Instantiation. We instantiate a two-way TBCC
and explain how to correctly realise the recovery procedure, i.e. a procedure exe-
cuted between the parties that allows them to force the communication’s correct-
ness and coherence. Consider the parties PA and PB and let both independently
setup the consistent one-way channel of Construction 1 which casts them both as
receiver and sender into two independent channels each. Both parties can send a
message to the other one in the channel they created. Concurrently, each party
tracks its local turn, receive and check messages by (1) continuously executing
turntoken and (2) keeping of the previously generated turn tokens xi for i ≤ t

Protocol 1 (The Two-Way TBCC Protocol). Given two parties PA and PB,
an integer value n and real non-zero value Δ, define the (Two-Way) TBCC across
n turns with delay Δ with the procedures:

– Setup: on input the security parameter λ, PA (respectively PB) exe-
cutes setup(λ,Δ, n), obtains (CA, CA,priv), and sends CA to PB, which
replies with CB. PA outputs the two-way TBCC channel information
(CA, CB), along with its respective private information Cpriv and PA performs
turntoken(CB , 1, xB,0);

– Local Turn (analogously for PB): on receiving a call to this procedure,
PA returns the current local turn t corresponding to the last computed xPB ,t;
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– Send Message (analogously for PB): on a given local turn t, when PA

receives the input (m, v), it executes send(CA,priv,m, v, t) → (ξ, aux) where the
previous block digest is computed as ht−1 := H(Mt−1,m, πPA

t−1, π
PB
t−1), and sends

(m, ξ, aux) to PB;
– Reveal Validity (analogously for PA): at the end of the local turn

t, i.e. when the algorithm turntoken(CA, t, {xA,0, . . . , xA,t−1}) outputs the
token xA,t, PB executes valid-ver(CA, t,mi, ξi, xA,t) → vi, and outputs the
block of both the parties valid messages Mt={(mi, ξi, auxi)}i along with
the turn token t whenever vi=1. Furthermore, for all the messages mi,
tamper-ver(CA, t,Mt−1,mi, auxi, ξi) is executed and if any result is 0, abort
the communication. If t + 1 > n, then output close and stop. Otherwise,
execute turntoken(CA, t + 1, {xA,0, . . . , xA,t}).

The TBCC protocol naturally extends the one-way properties of correctness
and tamper resistance to the two-way channel.

Turn Synchronization and Consistency. When considering the two-way
protocol by instantiating two one-way turn based schemes, an additional problem
that naturally arises is turn synchronization between the parties. Consider the
parties PA and PB communicating using Protocol 1 which depends on the specific
one-way channels CA and CB . The specific channel turn is identified by the input
of the algorithm turntoken which are, almost surely, never synchronized, i.e.
the outputs are disclosed in different moments. This timing difference creates a
problem in which a message m might be seen in turn t by PA and in turn (t+1)
by PB . We capture this idea by formalizing the turn synchronization property.

Definition 9 (Turn Synchronization). Let PA and PB be parties communi-
cating over the two-way TBCC. The TBCC channel (CA, CB) is turn-consistent
if both players have a unique and equal way to decide in which turn the mes-
sage m belongs even then the local turns of the two parties are different.

The TBCC without turn synchronization cannot achieve communication con-
sistency since the parties might disagree in which block M the message m belongs,
making it unlikely to create an unique communication history. We prove that if
we have a sequential one-way scheme, then there exists a natural way to achieve
turn-consistency by cleverly letting the parties avoid communicating.

Proposition 2. Let PA and PB be parties communicating via the two-way
TBCC protocol, constructed from a sequential one-way scheme as in Definition 6.
The strategy of (i) dropping communicated messages during de-synchronization,
i.e. the local turn between the parties is different; and (ii) globally advance the
turn whenever both parties have the same local turn; allows turn-consistency as
in Definition 9.

Recovery Procedure. We consider the existence of a recovery procedure that
should be executed whenever a party spots a possible communication tamper
and, instead of directly aborting the protocol, the two parties try to find a
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common correct message block. In other words, the algorithm tamper-ver from
Construction 1 takes as input the last block views MPA

and MPB
that the two

parties have and either outputs a commonly agreeable block M or aborts.

Definition 10 (Recovery). Define the recovery procedure for Protocol 1 as
the procedure executed during turn t ≤ n by PA (resp. PB) whenever the tamper
verification tamper-ver(C, t,Mt−1,m, aux, ξ) is equal 0 and defined as:

– Recovery: PA sends its view MA
t−1 to PB from whom it receives the view MB

t−1

which is a ordered list of messages {mi}jt−1
i=1 and, additionally, for every mes-

sage the received auxiliary information σ. After identifying the set of indexes
I where the views differ, for each index l ∈ I, if the message ml is a mes-
sage from PB, then PA executes backward-ver(CB , t,MB

t−1, l), otherwise PB

will compute backward-ver(CA, t,MA
t−1, l). Either the case, if the result is 1,

both parties are forced to use the message ml resolving the discrepancy and
saving the result into the same resolved block Mt−1. Otherwise, if there exists
an index for which the result is 0, the communication is aborted.

The spirit of the TBCC is “if anything seems wrong, abort!”. This forces the
parties to behave honestly otherwise nothing can be achieved, meaning there can
never exist two different correct views. During the recovery procedure, the com-
munication is paused and completely verified and fixed before continuing and, if
necessary, aborted because it is unrecoverable. The receiver must promptly alert
the sender if hi−1 is wrong and, if it is the case, only the receiver can force the
sender to adopt a specific message mi by exhibiting the received proof σi, only
computable by the sender. Formally, suppose PA and PB are correctly communi-
cating until the i-th turn, i.e. all the blocks until Mi−1 are consistent. PA sends(
hAi−1,m

A
i , ξAi , σA

i

)
and PB does the same with the message mB

i . Let us suppose
that the values {ξAi , ξBi } are correct otherwise the messages will be discarded
by valid-ver. Thus the correct next block is Mi = {mA

i ,mB
i }. Whenever the turn

(i + 1) starts, PB and PA must share the block digests hAi and hBi and suppose
they are not equal. The recovery procedure is executed and PB will publish the
block-view {mA

i ,mB
i }, respectively PA must do the same, and there must be at

least a different message pair, w.l.o.g. suppose it is message mA
i and mA∗. Since

this is the message that Alice sent, in the recovery, we will just consider Bob’s
view mA∗ with received auxiliary information σA∗ which Bob cannot correctly
forge by assumption, i.e. he cannot produce a correct valid pair. Therefore PB

can only publish what PA sent or abort the communication. Regardless of PB ’s
maliciousness, he is unable to modify PA’s messages and therefore the procedure
continues only if σA∗ is correctly computed by PA. In the case that PB’s message
mB

i is different, PA’s vision is considered. If PB is honest, the previous discussion
applies for Alice. Otherwise, PB might try to force the acceptance of a different
pair (mB∗

, σB∗). Since his vision during recovery is not considered, he must have
sent the tampered values (mB∗

, σB∗) before but if this is the case, either Alice
is presenting the tampered pair (mB∗

, σB∗), which makes the pair not longer
a tamper, since it is correctly received by Alice and not later modified, or by
sending an incorrect pair that will lead to aborting the communication.
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4 Collectively Flipping Coins over the TBCC

In this section, we sketch a protocol that allows two parties to collectively flip
a coin The provided coin-flip solution is simplistic and it has the main goal of
showing the TBCC’s expressiveness/potentiality. The underlying idea is that two
parties, communicating over a TBCC’s instance, are able to jointly flip a coin
by both time-committing to some randomness which is later revealed and used
to compute the coin result. By repeatedly flipping coins, the results produce
a random string which is guaranteed to be consistent since communicated over
TBCC. Let us formalise of the protocol between Alice PA and Bob PB , defined by
a set of choices Σ and a set of rules that uniquely determine the result between
any two choices, denoted with the function φ(·, ·). The protocol is defined as:

1. PA and PB set up the two-way TBCC protocol of Protocol 1 and obtain the
public channel C = (CPA

, CPB
);

2. In the current turn, PA selects its choice a ∈ Σ and sends on C as a valid mes-
sage, i.e. PA execute the sending procedure with the message (a, 1). For each
other choice a∗ ∈ Σ, PA sends the non-valid message (a∗, 0). Respectively,
PB sends his valid and invalid messages;

3. At the end of the turn, PA computes the validity of PB’s received messages
and obtains b. Respectively for PB ;

4. Both the parties compute φ(a, b) and, if necessary, repeat the game. If the
channel loses consistency, i.e. one of the party tries to tamper the results, the
communication is aborted;

5. The random string is obtained by concatenating several consecutive results
of the consistent channel.

The “commit-decommit” phase created by the turn token is key to allow a fair-
play since, for example, if PA knows PB ’s choice b in advance, she can select a
winning choice a∗. Furthermore, φ must be defined even in the case of one party
not participating in the round or it tries to cheat by proposing multiple choices.
We are now left to define the choice’s set Σ and the rule’s map φ(·, ·). Σ con-
tains the choices head and tail, respectively 1 and 0 and, additionally, a special
element x that represents any non-correct choice, i.e. a party does not correctly
participate in the game. Define the map φ as φ(a, b) = a⊕b, i.e. the xor between
the inputs where the special element is mapped as φ(x, a) = φ(a, x) = a for each
a ∈ Σ and we consider a special state X used to denote that both player wrongly
participated in the flipping, i.e. φ(x, x) = X. In a nutshell, φ(a, b) computes the
xor of both the parties inputs whenever they are correctly participating in the
coin-flip. Complementary, if both the parties wrongly flip the coin, φ(x, x) returns
that the coin is in a “draw position” with “no winner”. Whenever a party, e.g.
PA, wrongly participates in the protocol, φ(x, b) awards the other party PB for
correctly behaving and let PB ’s choice be the final result. This forces the parties
to correctly behave to avoid the other party highly influence the coin-flip. For
example, suppose that PA selects 1 as her first choice and sends to PB the TBCC
messages (1, 1) and (0, 0) during the current turn. By the sequentiality property,
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PB is unable to discover “which message is the valid one” and therefore has no
advantage and must therefore provide his own choice, w.l.o.g. let PB choose 0. At
the end of the turn, the valid messages are maintained thus the block will contain
PA’s message 1 and PB’s one 0. Both the parties can now compute φ(1, 0) = 1
and acknowledge that the coin flip is 1. The TBCC protocol guarantees commu-
nication coherence which implies that, whenever repeating the game, both the
parties must accept the previous communication transcription. In other words,
while communicating over C, PA and PB cannot modify the output of the dif-
ferent rounds played. This means that if the result is 1, in the next round PB

cannot pretend a different outcome and must accept it if he wants to participate
in the next round. The game output’s transcript can be seen as a random string
between PA and PB which cannot be tampered with by a malicious adversary.
Additionally, every time the adversary is caught tampering or deny the commu-
nication, the whole protocol is terminated making it impossible for the adversary
to gain any relevant advantage.

Observe that our protocol does not approximate a public coin flip protocol
since, in our protocol the parties actively collaborate to sample a random string.
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