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Abstract Thiswork puts forward a framework that guidesmodel designers about the
formulation and notation of mathematical models to solve replenishment, produc-
tion and delivery plans. Having characterised plans, this framework generates the
set of decision variables, input data and objectives to formulate the defined plan-
ning problem. It also identifies the most proper algorithms to solve the previously
formulated planning models. The application of algorithms helps to solve large-
scale industrial planning problems with a limited computation capacity and extends
capabilities beyond solving mathematical programming models.
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1 Introduction

The field of study of quantitative methods offers a solution to those problems that
emerge in industrial organisation and supply chain management by designing effi-
cient mathematical models and algorithms to deal with decision-making procedures.

Research into planning areas has exponentially evolved since the 1950s, which
was when operations research gave the first results promoted by computational
complexity improvement and algorithms development to solve large-sized problems
[1].

In this context, mathematical models described the problem and provided a closed
series of solutions to obtain an optimal or approximate solution bymeans of which an
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approximation that moved closer to the true solution was accomplished. However,
mathematical models’ nature makes modelling realistic highly complex systems
difficult [2]. The continuous improvement of computational mathematical program-
ming capabilities has facilitated their solution. Nevertheless, the running times and
computational costs to obtain the solutions of very large problems involving many
thousands of decision variables and restrictive constraints are still inefficient, and
only limited-sized models have been solved to date. In this context, defining and
applying heuristics and metaheuristics have improved solving large-scale planning
problemswith limited computation capacity and extended capabilities beyondmerely
solving mathematical programming models. Nowadays, the operations management
research area offers the proposal of matheuristic as an interoperation of metaheuris-
tics andmathematical programming techniques [3]. The innovative traits of designing
matheuristic require of modellers more expertise. Model designers also have to deal
with highly complex modelling and must solve planning problems in supply chains,
which are characterised by a vast amount of input data and variables, and also by
conflicting constraints and objectives appearing among supply chain partners [4].
All in all, through their solution by algorithms, mathematical models help decision-
making by generating optimal, or near-optimal, solutions according to an established
objective.

In order to confer the design ofmathematical models and algorithms a higher level
of familiarity, this paper proposes a framework to guide: (i) the formulation and nota-
tion of the models used to solve supply chain planning problems, including source,
make and delivery, by employing the plans defined by [5, 6]; (ii) the identification of
algorithms so they are more properly used to solve the previously formulated plan-
ning model. In any case, if users are interested in building models and algorithms,
they have to define the type of plan to be solved and the horizon. Having characterised
the plan, the framework herein proposed allows the generation of a set of decision
variables, input data and objectives to formulate the defined planning problem.

This paper is arranged as follows: Sect. 2 offers a literature reviewof themathemat-
ical modelling approach and works formerly proposed to facilitate model designers’
task of formulating mathematical models to support decision-making in the planning
context. Section 3 contains the main contribution: a conceptual framework to formu-
late planning models and to identify solver algorithms. Section 4 presents the case
study by applying the proposed conceptual framework to formulate a mathematical
model by employing a real planning problem from a second-tier automotive supplier.
Finally, Sect. 5 includes the conclusions.

2 Literature Review

According to Christou [1], planning processes are a focal point of enterprises and SC
operations, and one of the most significant activities in industrial organisation. The
operations management research area provides techniques and methods to model
planning processes. This makes operations research a discipline that can deal with
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the application of advanced analytical and mathematical methods, theories and tech-
niques to support the decision-making process in supply chains. Some examples of
such are business analytics, computer science, decision analysis, forecasting, game
theory, graph theory, industrial engineering, logistics,mathematicalmodelling,math-
ematical optimisation, probability and statistics, simulation, stochastic processes and
supply chain management.

In the supply chain and industrial management area, operations research deals
with determining the extreme values of planning processes objectives, e.g. maximi-
sation or minimisation. When a researcher or an industrial expert formulates plan-
ning models, (s)he cannot always be able to exactly depict the organisation’s reality.
Instead the person in charge of modelling, the problem should have to simplify it to
make it solvable after selecting the solver algorithm.

According to Pidd [7], “a model is an explicit and external representation of
part of the reality as it is seen by people who want to use the model in order to
understand, change, manage and control that part of reality”. Models represent part
of reality. However, reality is always more complex than any model, regardless of
how sophisticated it might be. The model designer has to determine which aspects
are relevant, and which are not, depending on the objective intended to be fulfilled.
Experience shows that the main benefit from generating a model is to understand
what the modeller acquires from reality’s behaviour. Quite often when developing a
model, the designer becomes aware of information that (s)he has never paid attention
to. Moreover, it is quite usual that, when a modeller formulates the model, real and
contradictory data appear between different elements of reality. In his book “Quanti-
tative Methods in Supply Chain Management: Models and Algorithms”, Christou[1]
provides an example of what would occur when modelling a job-shop scheduling
planning problem: “… almost all of the hard constraints we shall encounter in job-
shop scheduling and due-date management, in reality are not that “hard” but are
soft constraints in that often, violating one of them by a small slack does not violate
any physical laws nor does it hurt company profitability in the long run”.

Bearing all this in mind, the reviewed literature clearly shows the complexity
of formulating a model from scratch. Some authors have proposed methodologies
and tools that efficiently deal with modelling planning processes or have provided
a realistic formulation with knowledge-based tools that help non-expert users to
build mathematical models in different planning areas. For this purpose, different
papers in the literature have been identified. Hackman and Leachman[8] intro-
duce a general framework that guides the management scientist’s formulation of
deterministic models of production processes. The work of Krishnan [9] proposes
a knowledge-based tool for building the algebraic schema of appropriate linear
programming (LP) models for production, distribution and inventory (PDI) planning
problems. Krishnan [10] studies the application of knowledge-based techniques to
support various modelling process phases by integrating artificial intelligence (AI)
techniques into decision support systems (DSS).

Shapiro[11] classifies models according to the effect their result has at the norma-
tive or descriptive level. Mathematical models are normative (in turn they can be
classified as optimisation models and resolution models by heuristics). Descriptive
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models cover all the modelling techniques that do not involve defining mathematical
structures that, in turn, define a desirable solution to be implemented. Before going
further into the use and formulation ofmathematicalmodels, it isworth clarifying that
the literature addresses the task of modelling planning problems from a perspective
that is not only normative, but is also descriptive and conceptual. Indeed Hernández
et al., [12] state that the conceptual model is helpful for gaining a better under-
standing of the system and, consequently, of detecting irregularities and suggesting
improvements. Accordingly, Hernandez et al. [13] propose a conceptual model for
the production and transport planning process in the automobile sector.

Although the authors of the present paper are aware of the relevance of other
modelling approaches, the work herein conducted focuses on planning process
modelling from a normative perspective. In an attempt to facilitate the represen-
tation of planning problems, Hashimoto and Kubo [14] collect a set of fundamental
mathematical optimisation models (mixed integer linear programming, MILP), such
as logistics network design, inventory, scheduling, lot-sizing, and vehicle routing
models, to provide modellers with knowledge about basic mathematical formula-
tions in the enterprise planning context. Therefore, the work of Hashimoto and Kubo
[14] gives modellers a clue about the indices, input data, objectives, variables and
output data that are widely used to formulate planning problems.

According to Mula et al., [15] the most widespread approach to model planning
problems isMILP. Yet some characteristics are identified as limitations when solving
planning problems throughMILP, especiallywhen considering enterprises’ real reso-
lution environments. Themainweaknesses are related to: (i) the combinatorial nature
of real-world problems, in which the amount of decision variables exponentially
increases when the number of plants, products or time periods increases; (ii) the
large volume of data. Both cases generate an extensive use of computer memory,
which results in an increased need for solution time [16]. It is here when solver algo-
rithms and heuristics come into play to employ them as complementary techniques to
solve mathematical programming models, mainly integer linear programming (LP).
In line with this, Prasad et al.[16] propose a collection of algorithms to support
solving mathematical models, formulated to support planning decision-making.

The literature review clearly indicates that a lot of progress has been made in
proposing algorithms to support solvingmathematicallymodelled planning problems
(MILP). Nevertheless, the papers analysed in this section focus only on proposing
approaches that support LP model formulation, and do not consider the solver mech-
anisms that solve them. To the best of our knowledge, the works that develop mech-
anisms to help to formulate mathematical models do not address the identification
of appropriate solver algorithms.

In light of this, the present paper proposes a theoretical framework to support:
(i) the formulation of mathematical models in the replenishment, production and
delivery planning contexts; (ii) the identification of best fitting algorithms that solve
real-world planning problems, regardless of the vast amount of data required for the
problem to be solved in a real enterprise or supply chain. These algorithms enable
an efficient computationally solution process during which a vast amount of data is
used.
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3 Conceptual Framework to Formulate Planning Models
and to Identify Solver Algorithms

When addressing planning processes, it is necessary to develop optimisation and
decision support tools that help to explore and analyse alternatives that can optimise
economic performance and service levels [17]. The quantitative methods area studies
ways to improve the quality, understanding and consequences of the decision-making
process.Mathematical programming plays a very important role in this research area.

Planning models imply high complexity levels, especially if models are applied
to an enterprise’s full-sized planning or a supply chain network. The combinatorial
nature of real-world problems makes models exponentially complex in terms of
input data, objectives, constraints and decision variables. Consequently, modellers
must possess sufficient knowledge and background about the plans to be represented
and solved. They must also have enough expertise to mathematically formulate the
planning process by considering the soft and hard constraints, as well as a set of
input data, required to meet the proposed objective.

So despite making efforts to simplify the planning problem, computationally
solving mathematical models is still complex and time-consuming. Although signif-
icant progress has been made in the general solving mathematical programming
area, current optimisation algorithms are still unsatisfactory for efficiently solving
all general medium-sized integer linear programmes in reasonable times. Both
complexity and inefficiency increase when solving full-sized planning problems,
and this involves large datasets. Although adequate computational techniques have
been developed for special problems, it is still necessary to propose algorithms to
effectively solve the large-scale planning problems that appear in real-world enter-
prises to ensure that the optimal or near-optimal solutions are robust when different
variables interact.

In order to bridge the gaps in the literature, a framework is proposed for dealing
with the formulation of replenishment, production and delivery plans, and for
proposing solution algorithms to efficiently deal with such complexity. This frame-
work is used to: (i) identify the type of planning problem to be represented by the
modeller, and the associated objective function; (ii) generate a range of input data
to be potentially used for modelling the desired plan by considering the defined
objective function; (iii) provide a MILP skeleton that consists in an open mathemat-
ical modelling language. This skeleton is characterised by being versatile enough to
be applied to any studied plan object based on modellers’ requirements; (iv) select
the algorithm that is most likely to solve MILP; (v) build a standard structure and
implement the previously selected algorithm.
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3.1 Methodology to Formulate Mathematical Models

Mathematical programming models spend extremely long computing times and,
therefore, it is in modellers’ interest to build quickly formulated models. The
proposed methodology follows a set of steps (Table 1) to formulate mathematical
programming models, which are to be potentially applied to develop any planning
model regardless of its nature. The objectives, input data [21] and output data are
classified per plan type S [22], M [19], D [23], SM [22], MD [23], SMD [19] (see
Table 2).

Table 1 Methodology steps to formulate a mathematical model in the planning context

Step 1 plan type Determine the type of plan to be modelled [5, 18]: (i) Source
(S), replenishment plans; (ii) Make (M), production plans; (iii)
Deliver (D), transport plans. It is also interesting for modellers
to solve a combined type of plans, in which a collaborative
perspective of the planning problem is addressed [19] (i)
Source and Make (SM); (ii) Make and Deliver (MD); (iii)
Source Make and Deliver (SMD)

Step 2 plan subtype and horizon Identify the plan subtype to be modelled. When defining a
plan, we may think that the plan subtype implicitly concerns
the planning horizon. Sometimes this situation happens, e.g.
when the planning problem to be modelled is a scheduling
plan, the horizon covers only a few weeks; or the horizon in
aggregate production plans is set at 1 year. In this step, apart
from indicating the plan subtype, the model designer has to
identify the time horizon and the periods into which the
horizon is divided. Periods allow the identification of dynamic
changes, i.e. demand variation, which occur in the planning
horizon. Plan types and plan subtypes are defined by Andres
and Poler [20], and a summary of them is presented below:
• Source: Inventory planning; Procurement planning;
Material requirements planning; Replenishment planning

• Make: Finished good inventory planning; Production
planning; Production Scheduling; Production sequencing

• Deliver: Demand Planning; Distribution planning;
Order-Promising; Transport planning

• Source and Make: Materials requirement planning &
Production Planning; Inventory planning & Production
planning

• Make and Deliver: Production planning & Distribution
planning, Production planning & Transport planning

• Source Make and Deliver: Inventory planning &
Production planning & Distribution planning;
Replenishment planning & Production planning &
Distribution planning

(continued)
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Table 1 (continued)

Step 3 objectives Select the objectives to be optimised according to the object
plan type and plan subtype to be modelled. The objective
function is the result of mathematically representing a
planning goal to be used in decision analyses, operations
research or optimisation studies. The commonest objective
functions aim to minimise the expected benefit or the
utilisation ratio. However, the objective functions proposed in
the framework are not only limited to these two objective
types, but other objective functions could become relevant in
some planning problems; e.g. (i) maximise profit; (ii)
minimise costs; (iii) maximise total production in units; (iv)
minimise production time; (v) maximise the market share for
all or some products; (vi) maximise total sales in units or
monetary units; (vii) minimise production pattern changes;
(viii) minimise the use of a limited material components or
products; (ix) minimise number of employees; (x) maximise
customer satisfaction. To minimise costs, it is important to set
appropriate restrictions because sometimes minimising costs
means doing nothing. We must also properly distinguish fixed
costs and variable costs. To maximise profits, modellers must
bear in mind that they can be made over time. Incorporating
the time concept into the evaluation of profit can be done in
many ways, among which the Net Present Value stands out

Step 4 input data According to the selected objectives, a set of representative
input data is proposed by the framework. The modeller has to
select the input data existing in the enterprise, for which the
selected plan is modelled. The input data comprises the
parameters of the mathematical programming model.
Parameters are beyond the control of the decision-maker and
are imposed by the external environment. The parameters
represent those factors that affect the decision but are not
controllable directly (such as prices, costs, demand, and so
forth). In deterministic mathematical programming models,
all the parameters are assumed to take fixed, known values,
where estimates are provided via point forecasts. The impact
of this assumption can be tested by means of sensitivity
analysis. Examples of some of the parameters associated with
a production planning problem are: product demands, finished
product prices and costs, productivity of the manufacturing
process, and manpower availability [17]. Knowing the types of
data available allows establishing the sets and, with them, the
indexes. The representation of data sets, using symbols with
subscripts, will allow the conceptualisation of the problem

(continued)
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Table 1 (continued)

Step 5 restrictions Considering inputs, a set of standard restrictions is selected.
Mathematical programming restrictions express relations
between variables and take the formulation of a linear
combination of variables limited by a certain value.
Restrictions can be classified according to: (i) capacity
restrictions; the production of a set of products is limited
because some of the resources used in their manufacturing are
limited (machines, labour, schedule); (ii) raw material
availability; production of a set of products is limited
according to the amount of raw material available; (iii)
limitations in market demand; the production of a product is
limited based on the estimated sale; (iv) continuity restrictions
or material balance; during multiperiod programming, the
products that remain at the end of one period are those that
exist at the beginning of the next one; (v) quality stipulations;
when mixing products, restrictions can be set based on the
quality characteristics of the mixture and raw materials; (vi)
logical-type relations

Step 6 output data Given the selected objectives and the identified input data, a
list of output data is proposed in the framework. Modellers
must select the output data, which is interesting for the
enterprise. The output data consist of the set of decision
variables to be solved in the mathematical programming
model. The decision variables are those factors under the
decision maker’s control, and result in the answers that
decision makers seek. From Step 3, the variables that
configure the objective function are defined. Here the
intention is to define values for these variables so that the best
assessment of the objective function is made, while all the
restrictions are met. Some examples when modelling
production planning models are: (i) the amount to be
manufactured of each product during each time period; (ii) the
amount of inventory that accumulates during each time period;
(iii) regular hours and overtime labour during each time period

Step 7 model skeleton The framework proposes a mathematical model MILP
skeleton of the planning problem to be modelled. The
proposed model skeleton provides a compact realistic model
in which different variables implicitly appear. The skeleton
uses acronyms to designate variables and constraints so that
the results can then be interpreted more easily. Although less
compact models, such as those proposed by this framework,
require a longer resolution time, this time is compensated by
the length of time to be invested in interpretating the solution

Step 8 modellers’ adjustment Modellers or enterprise planners tune the proposed
mathematical model MILP skeleton by considering the
enterprise’s specific characteristics. This analysis is already
leading to a better understanding of the problem. The
adjustment and validation process are repeated until the model
sufficiently and accurately represents reality. This step is very
useful for understanding the modelled reality itself
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Table 2 Objectives, input data [21] and output data classified per plan type S [22], M [19], D [23],
SM [22], MD [23], SMD [19]

Plan type Nomenclature

Objectives S Inventory cost minimisation, Profit maximisation, Idle time
minimisation, Backorder’s minimisation

M Production cost minimisation, Profit maximisation, Setup minimisation

D Transport cost minimisation, Sales maximisation, Inventory
minimisation, Backorder’s minimisation, Service level maximisation

SM Inventory cost minimisation, Profit maximisation, Idle time
minimisation, Backorder’s minimisation, Production cost minimisation,
Transport cost minimisation

MD Transport cost minimisation, Sales maximisation, Inventory
minimisation, Backorder’s minimisation, Service level maximisation

SMD Production cost minimisation, Profit maximisation, Setup
minimisation, Transport/distribution cost minimisation

Input data S Demand, Inventory, Capacity, Production Time, Setup, Bill of
Materials (BOM), Supply Lead time, Supplier prices

M Demand, Inventory, Capacity, Production Time, Set-up and BOM

D Demand, Inventory, Capacity, Production Time, Transport/Distribution
Cost, Backorders, Supply Lead time, Supplier Prices

SM Demand, Inventory, Capacity, Production Time, Setup, BOM, Supply
Lead time, Supplier Prices

MD Demand, Inventory, Capacity, Production Time, Transport/Distribution
Cost, Backorders, Supply Lead time, Supplier Prices

SMD Demand, Inventory, Capacity, Production Time, Setup, BOM,
Transport batch minimum Transport Capacity

Output data S Components to purchase, Backorder’s, Inventory, Delivery time

M Products to produce, Backorder’s, Machine assignation and Overtime

D Transport cost, Backorder’s, Inventory, Delivery time, Total cost,
Product to transport

SM Components to purchase, Backorder’s, Inventory, Delivery time,
Products to produce

MD Transport cost, Backorder’s, Inventory, Delivery time, Total cost,
Product to transport

SMD Products to produce, Backorder’s, Machine assignation, Overtime, Raw
material to purchase, Product quantity to transport

3.2 Identifying Solver Algorithms

The computational cost for solving large-scale industrial problems is still excessive
today. Some general solution procedures are available, can be purchased on the
market and are capable of solving increasingly complicated problems in appropriate
times. In practice, however, it may be more cost-effective to design the solution
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procedure. Therefore,methods for designing problem-solving procedures are already
modelled and are addressed in this section of the paper.

Although modellers can programme algorithms to solve mathematical planning
problems, it is worth noting that occasionally using commercial software is more
efficient than any individual implementation, such asCPLEXandGurobi. Apart from
optimisation software, it is necessary to have interface software to not only access
and collect data, and to also structure and introduce a problem into a model-shaped
package. Indeed, different packages provide high-level languages for mathematical
programming, e.g. MPL modelling language from the Maximal Software, JUMP
(Julia) or Pyomo (Python).

An exact algorithm ensures obtaining the best possible solution, the optimal one,
by exploring the entire solution space. Nevertheless, the methods commonly used
to solve problems are of a heuristic or metaheuristic type. Heuristics, metaheuristic
and matheuristic algorithms are capable of generating approximate solutions for the
problem and come as close as possible to the optimum one but may fail while making
attempts. Being able to design a good heuristic, metaheuristic or matheuristic algo-
rithm requires knowledge of the problem, which can lead to other improvements.
This section of the proposed framework helps modellers to identify the most appro-
priate solver algorithm according to the identified plan type and plan subtype (steps
1 and 2 in the methodology). The algorithms proposed by the framework consists in
a procedure that allows a solution for the selected specific planning problem to be
found (see Table 3).

3.3 Identifying Appropriate Algorithms

Algorithms consist of a systematic procedure that moves from one decision point
to another to solve a category of problems. The Simplex algorithm is, for example,
used to solve LP problems. The algorithms proposed in this part of the framework
always meet one of three conditions: (i) there is no feasible solution; (ii) there is
an optimal solution; (iii) the objective function is not limited to the feasible region.
Moreover, the algorithms need: (i) procedure initialisation; (ii) a stopping criterion
to denote when a solution is reached; (iii) an improvement method to move from
an area of solution where there is no solution (relative minimum or maximum) to
a better area to achieve the optimal or near-optimal solution. Algorithms can be
classified according to the proximity to the optimum and the calculation mechanism
[20]: (i) optimiser (AO), an algorithm that follows a systematic procedure that ensures
achieving the optimum solution. Nevertheless, for some classes of problems, the time
required to find the optimal solution is unacceptable. Algorithms that enable good
solutions to be found are needed, including: (ii) heuristic (AH), an algorithm that
employs an ad hoc procedure, but does not guarantee reaching the optimal solution,
rather a near-optimal or sufficient one for immediate objectives; (iii) metaheuristic
(AM), which is a higher-level procedure followed to select a heuristic (partial search
algorithm) to obtain a sufficiently good solution. AM includes random searches that
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Table 3 Solver algorithms used per plan type S [22], M [19], D [23], SM [22], MD [23], SMD
[19]

Algorithm type S M D SM MD SMD

AMT/ Collaborative Agents X X

AH/ Campbell–Dudek Algorithm X

AH/ Local improvement procedure X

AH/ Multi-Objective Master Planning Algorithm X

AH/ Primal–Dual-Based Heuristic X X

AH/ Variable Neighbourhood Search

AH/ Decomposition & Aggregation X

AH/ Greedy X X

AH/ Greedy X

AH/ Lagrangian X X

AM/ Genetic Algorithm X X X X

AM/ Iterated Local Search X

AM/ Simulated Annealing X

AM/ Tabu Search X

AM/ Tabu Search Grabowski and Wodecki X

AO/ Decomposition strategy X

AO/ Fuzzy Programming X

AO/ Lomnicki X

AO/ Solution procedure of model P* X

AO/ Strategic-operational optimisation solution algorithm X X

AO/ Branch and Bound X X

AO/ Branch and Bound X X

AO/ Dynamic Programming X X X

AO/ Lompen Algorithm X

AO/ Simplex X X X X X X

facilitate achieving several solutions (without ensuring the optimum) and needs a
termination rule; (iv) matheuristic (AMT), which is a procedure that consists in
the interoperation of metaheuristic and optimisation techniques [3]. Matheuristic
can find near-optimal solutions (or sufficiently good ones) more quickly than some
optimisation procedures. The reviewed papers indicate the use of each algorithm
according to the plan type (Table 3).
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4 Case Study

The case study is generated for a particular planning problem at the operational
decision-making level, namely the scheduling plan of the second-tier supplier in
the automotive supply chain as part of the “Zero-Defect Manufacturing Platform”
(ZDMP) H2020 Project. The framework herein proposed is applied by the authors
using realistic data. The plan type is determined by theMake classification of SCOR.
The scheduling plan deals with the start and due dates of individual products, and
alsowithmachine assignments. It involves allocating finite resources tomeet demand
requirements by contemplating constraints like capacity, precedence and start and
due dates, and identifying the quantity of products to be produced during a certain
period [19].

In order to obtain a representative amount of parameters and variables to create the
scheduling plan’s skeleton, a literature review is done in the scheduling context [21,
24–28]. The review process allowed us to identify a set of objectives, input data and
output data, which are classified according to their nature (see Table 4): (i) capacity:
referring to the amount of resources the enterprise owns for planning, e.g. number
of workers, time, space, machines, monetary units, etc.; (ii) inventory: concerning
the properties of the products in the warehouse; (iii) product: applied to the features
related to raw materials and finished products; (iv) production: characterises the
processes and methods used to transform raw materials, semifinished goods and
subassemblies; (v) resources: seen as the productive factor required to perform an
activity to obtain final products; (vi) sequence: contemplates the dependence and
precedence of materials, products or resources; (vii) time: related to the unit of
measurement used to categorise length of time; (viii) transport: considers the aspects
related tomoving products from one place to another. Themain indices applied in the
reviewed works are: set of products (finished goods, raw materials); set of finished
goods; set of periods.

The proposed framework also provides a set of common constrains that charac-
terise the scheduling plan, including: (i) inventory balance equations for finished
goods and raw materials; (ii) inventory capacity limitation; (iii) production capacity
limits; (iv) production sequence determination; (v) the product for which themachine
is setup; (vi) only one product can be setup at the end of each period; (vii) elimina-
tion of subtours when more than one product is produced during a single period. The
same product cannot be produced as both first and last during a period; finally (viii)
the binary and non-negativity properties for the decision variables are to be included.

The framework shows the model designer all the objectives, input data, output
data and constraints to select the parameters, variables and restrictions that apply to
the enterprise’s scheduling plan. According to the selected elements, the framework
generates the mathematical model skeleton (MILP). Finally, the modeller reviews
the proposed MILP and makes final adjustments.

The framework identifies the most appropriate solver algorithm to solve the end
version of MILP. The application of a solver algorithm such as a heuristic algorithm
allows large-sized problems to be solved, which involves a vast amount of data, and
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Table 4 Scheduling plan: objectives, input data and output data

Objetive Inventory Cost (or units) below safety stock minimisation; Inventory cost
minimisation

Product Backorder minimisation (quantity or cost); Value of products
maximisation; Raw Material cost minimisation; Utilities cost
minimisation

Production Production cost minimisation; Profit maximisation; Overtime
minimisation

Sequence Sequencing cost minimisation; Setup cost/time minimisation

Time Makespan minimisation

Input data Capacity Maximum Inventory; Minimum inventory; Utility capacity;
Production capacity

Inventory Inventory cost; Safety stock shortage cost; In factory products
Inventory; In Factory raw materials inventory; Set of units suitable for
temporarily storing; Inventory capacity; Scheduled receptions

Product Production batch minimum; Bill of materials; Demand; Items to be
produced; Backorder’s cost; Material cost; Product sequence;
Sequencing rules for option o; Product sequence permutation;
Production batch target; Production cost; Infeasible set of operations
sequencing; Delivery priority

Resource Cost of order processing jobs; Job Profit; Number of jobs; Normal
machine capacity; Tasks required in machines; Set of processing tasks
that can be performed on a machine; Assigning tasks to machines;
Machine tools number; Normal machine cost; Utility cost

Sequence Setup cost; Setup times dependent on sequencing

Time Backorders maximum delay allowed; Due date; Horizon; Lower and
upper bound on the allowable end time of an outage product; Period;
Slots; Processing time; Production time; Overtime cost

Output data Inventory Inventory level of the product at the end of the period

Product Product quantity to produce; Production batch; Production time of the
product; Product produced during a period; Product produced first in
the period; Products produced last in the period

Resource Allocating tasks to a machine at the beginning at time; Assigning a
machine

Sequence Orders sequence; Remaining elements to be sequenced; Setup from
product i to product j during a period; Variables to eliminate subtours

Time Delivery times; Due date; Product lateness; Overtime

the complete enterprise scheduling problem is considered. This means scheduling
all the products manufactured by the enterprise using each involved resource and a
real time horizon.
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5 Conclusions

This paper identifies the gap identified in the literature about the automatic formu-
lation of mathematical models and solver algorithms to solve large-sized planning
problems. As far as we know, the papers that propose guidelines and tools to math-
ematically formulate planning problems are limited to model formulation, and do
not take into account enterprises’ real needs, e.g. formulating models applicable to
solve large-sized enterprise plans. The main contribution of this paper led to the
proposal of a complete framework, which allows planning processes to be modelled
by considering not only an intra-enterprise perspective that involves replenishment,
production and delivery plans, but also collaborative scenarios in which supply chain
plans are jointly solved. The framework also focuses on identifying solver algorithms,
which can manage large amounts of data and allow planning models to be solved in
a computationally efficient manner.

The advantages of using mathematical models derive from the clear conceptuali-
sation of the industrial planning process to be modelled. However, the modeller must
know that there are times when the mathematical formulation is limited by having to
generate artificial constraints to model restrictions that can be easily modelled with
a heuristic algorithm. Moreover if the problem’s behaviour is nonlinear, applying a
LP model can only model an approximation to reality, and more artificial restric-
tions should be created. The identified limitations enabled the authors to identify
future research lines that lead to the framework being extended so as to not force
users having to face developing a mathematical model. In this way, the modeller
can directly generate a heuristic or metaheuristic to model the planning problem and
solve it. A second future research line is about examining in more depth the part of
the framework employed to identify and formulate solver algorithms. Here the first
action is to focus on generating the solver algorithm. The second action goes further
and permits the authors to propose general simple metaheuristic procedures to solve
large-sized planning problems in short times with fewer computational resources.
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