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Abstract

Marine microbes play fundamental roles in nutrient cycling and climate regula-
tion at a planetary scale. The field of marine microbial ecology has experienced
major breakthroughs following the application of high-throughput sequencing
and culture-independent methodologies that have pushed the exploration of the
marine microbiome to an unprecedented scale. This chapter overviews how the
advances in gene- and genome-centric approaches as well as in culturing and
single cell physiological methodologies in conjunction with global oceano-
graphic circumnavigation expeditions and long-term time series are fueling our
understanding of the biogeography, temporal dynamics, functional diversity, and
evolutionary processes of microbial populations. We discuss how the joint effort
of all those integrative approaches will help to boost our knowledge of the marine
microbiome to reach a predictive understanding of how it is going to evolve in
future scenarios.
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8.1 Marine Microbial Ecology: Opening the Black Box

8.1.1 Major Breakthroughs before the -Omics Revolution

As Sydney Brenner, Nobel Prize in Physiology or Medicine 2002 said, “Progress in
science depends on new techniques, new discoveries and new ideas, probably in that
order.” The field of marine microbial ecology has been no exception to this quote as
it has seen major breakthroughs in the last 60 years following the application of new
technologies. For example, the use of epifluorescence microscopy for the estimation
of bacterial abundance unveiled that traditional plate counting methods were
underestimating the real values by several orders of magnitude (Jannasch and
Jones 1959) because most bacterial species do not form colonies on solid media
(what was later coined as the “Great Plate Count Anomaly”, Staley and Konopka
1985). Likewise, epifluorescence microscopy was also crucial to uncover the pres-
ence of abundant and ubiquitous unicellular cyanobacteria in the surface ocean
(Johnson and Sieburth 1979). Initial studies using radioisotopes to estimate respira-
tion and primary production also revealed that much of the respiration, dissolved
organic matter (DOM) processing, and primary production were carried out by
picoplanktonic organisms (Li et al. 1983; Williams 1970, 1981). The application
of techniques commonly used in the biomedical field like flow cytometry also
constituted a tipping point in our understanding of marine microbial ecology. For
example, it allowed the discovery of Prochlorococcus, the most abundant primary
producer in the ocean (Chisholm et al. 1988), and enabled the delineation of two
populations of heterotrophic bacteria based on their nucleic acid content (Li et al.
1995; Robertson and Button 1989). This separation in the DNA content was initially
attributed to a difference in the physiological state with the high nucleic acid (HNA)
cells representing the active fraction of the community (Lebaron et al. 2001; Servais
et al. 2003). However, this view was later challenged when it was shown that low
nucleic acid (LNA) cells were also important contributors to bacterial metabolism in
the sea (Longnecker et al. 2005; Sherr et al. 2006), and that the nucleic acid content
may partially reflect the genome size of the cells (Vila-Costa et al. 2012). The
addition of flow cytometry to the microbial ecologist’s set of tools fueled a series
of studies combining different stains probing cellular activity or growth (see Del
Giorgio and Gasol 2008 for a review on this topic). These studies were crucial to
open the black box of microbial communities unveiling the large heterogeneity in the
physiological status of cells in the environment, which has an impact on their
contribution to ecosystem function as we will expand on below.

The application of molecular tools like the 16S rRNA gene PCR amplification
and sequencing from environmental DNA enabled access to the diversity of the
“uncultured majority” (Amann et al. 1995; Rappé and Giovannoni 2003), which
profoundly revolutionized the field of marine microbial ecology. These techniques
opened a new venue to understand and classify marine microbial diversity and
resulted in, among others, the discovery of the most abundant bacteria in the
ocean, the SAR11 clade (Giovannoni et al. 1990), elusive for culturing using
traditional methods. The rRNA approach also fueled the implementation of

358 S. G. Acinas et al.



fluorescent in situ hybridization (FISH) methods to visualize and enumerate specific
phylogenetic groups in natural samples. The combination of FISH with radioisotopic
methods such as microautoradiography (MAR) was pivotal in unraveling niche
partitioning in regard to the use of organic substrates between the different
components of bacterial communities (Alonso-Sáez et al. 2012a; Cottrell and
Kirchman 2000). Likewise, the estimation of the net growth rates of microorganisms
belonging to various phylogenetic groups by using FISH has provided evidence for
the important role that numerically unremarkable microbes can play in ecosystem
functioning (Kirchman 2016). The advent of high-throughput sequencing
approaches represented another revolution in microbial ecology that shed light on
the composition of marine microbial communities, the relative abundance of their
components, and the discovery of the “rare biosphere” (Sogin et al. 2006). The latter
comprises low abundant taxa that act as reservoir for most phylogenetic and func-
tional diversity (Pedrós-Alió 2012).

8.1.2 It Is Not Always Black and White: The Discovery
of Photoheterotrophs

One of the most important findings in microbial oceanography in the last decades
was the discovery of photoheterotrophs as an important component of the
bacterioplankton. This discovery challenged the classic portrayal of
bacterioplankton composed of photoautotrophic microorganisms as primary
producers and of chemoheterotrophic microorganisms as consumers. Early genomic
analyses of natural occurring marine bacterioplankton reported that an uncultured
bacterium harbored a gene coding for proteorhodopsin (PR), a light-dependent
proton pump, unveiling a new type of phototrophy in the ocean (Béjà et al. 2000).
That same year, using infrared fluorometry Kolber et al. (2000) detected high signals
of bacteriochlorophyll a (BChla) in the surface oligotrophic ocean suggesting that
aerobic anoxygenic phototrophic (AAP) bacteria are a substantial component of the
marine microbiome. These two reports represented the beginning of a change of
paradigm in the field of marine microbial ecology that demanded to consider the
direct effects of light on heterotrophic processes and, consequently, to rethink the
models of organic carbon fluxes in the ocean.

Metagenomics and other molecular approaches have revealed an unsuspected
large diversity among PR and AAP-containing bacteria and have shown that the
genes responsible for photoheterotrophy are widespread among the most abundant
microbial taxa in the surface ocean (DeLong and Béjà 2010; Koblížek 2015).
Proton-pumping rhodopsins are found in marine Proteobacteria (including the
SAR11 clade), Bacteroidetes, and Euryarchaeota (Pinhassi et al. 2016). These
rhodopsins consist of only one opsin protein with a covalently bound pigment
(retinal) and this simple structure has favored their lateral gene transfer and spread-
ing among distant taxa, even across the domains Bacteria and Archaea (Frigaard
et al. 2006). Contrarily, the machinery for light harvesting and energy synthesis in
AAP bacteria consists of several pigments and proteins. Thus, even though the genes
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involved in aerobic anoxygenic photosynthesis have also been laterally transferred
in marine bacteria, these events of gene transfer has been constrained to the
Proteobacteria, mostly to the Alpha- and Gammaproteobacteria. Besides the size
of coding operons, rhodopsins and bacteriochlorophyll systems display differences
in the cost of biosynthesis and benefits of phototrophy (Kirchman and Hanson
2013). While the broad occurrence of marine photoheterotrophs has been well
described, less is known about their physiology and ecology. Some axenic cultures
of AAP and PR-containing bacteria have shown that they can use light to grow more
efficiently (i.e., Gómez-Consarnau et al. 2007; Hauruseu and Koblížek 2012) and
this has also been confirmed for natural populations of AAPs (Ferrera et al. 2017). In
contrast, other PR-containing isolates do not grow better with light (González et al.
2008), and it has been reported that proteorhodopsins can also promote survival
during starvation (Gómez-Consarnau et al. 2010). In addition to proton-pumping
rhodopsins, other types of rhodopsins have been discovered in marine bacteria and
archaea including chloride- and sodium-pumping rhodopsins (see Pinhassi et al.
2016), xanthorhodopsins (proton pumps associated with a particular carotenoid
molecule named salinixanthin, Balashov et al. 2005), or sensory rhodopsins such
as the newly discovered heliorhodopsins (Pushkarev et al. 2018). Further,
rhodopsins, including heliorhodopsins, have been reported in marine viruses and
single-celled eukaryotes (Needham et al. 2019). In short, following the discovery of
photoheterotrophs it seems now clear that, in the marine environment,
photoheterotrophy is not just an exception but probably the rule. In fact, there is
growing evidence that bacteriochlorophyll- and rhodopsin-based dual phototrophy
may have evolved in nature and is awaiting discovery (Zeng et al. 2020).

8.1.3 Are all Microorganisms Equally Active in the Ocean?

When single cell approaches started to be used in the late 70s (e.g., Hoppe 1976) it
became evident that the activity of marine microbes is not homogeneous but on the
contrary is tremendously heterogeneous. Within a given microbial community cells
can be dead, injured, dormant (i.e., in a non-growth state), active but constrained by
the availability of a certain resource, slow- or fast growing. Any of these physiologi-
cal states will have strong implications for the role that such cells play in the
environment. Yet, one of the major challenges that microbiologists face is how to
define the physiological state of a microorganism.

A variety of methods has been developed in order to differentiate active- from
non-active cells, probing cellular division, membrane integrity, respiratory activity,
substrate uptake, or protein synthesis (see Del Giorgio and Gasol 2008; Sebastián
and Gasol 2019; Singer et al. 2017 for reviews on this topic). These methods target
different processes and differ in resolution, and thus the delineation of active cells is
not always consistent (see Del Giorgio and Gasol 2008 for a comparison of
methods). Therefore, the categorization within the various physiological states is
purely operational. For example, using the tetrazolium salt 5-cyano-2,3-ditolyl
tetrazolium chloride (CTC) as an indicator of activity Del Giorgio and Scarborough
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(1995) found that the percentage of active cells represented only 5% of the cells in
the oligotrophic ocean, which is consistent with the microautoradiography (MAR)
values that were obtained using 3H-thymidine as substrate (Longnecker et al. 2010).
However, when these authors used 33P-phosphate instead of thymidine the percent-
age of active cells increased up to 50%. This indicates that the categorization of
active cells using substrate uptake methods like MAR strongly relies on the substrate
of choice. Despite the variability found in the proportion of active cells, these single
cell techniques have been highly informative, particularly when coupled with other
approaches that allow taxonomic characterization such as fluorescence in situ
hybridization (MAR-FISH). These techniques have shown that some members of
the community are more active than others and that there is heterogeneity in the
levels of activity even within a given population (e.g., Alonso-Sáez et al. 2007,
2012a; Cottrell and Kirchman 2000).

The delineation of dormant cells is also important because it has been
hypothesized that these cells constitute a seed bank of taxonomic and functional
diversity that guarantees the persistence and long-term maintenance of the diversity
and function of the community (Lennon and Jones 2011). Yet, we still lack a method
to assess whether or not a cell is dormant. Some attempts have been made to
characterize the active and inactive members of bacterial and archaeal communities
through the joint analysis of ribosomal RNA and DNA of individual taxa,
using RNA:DNA ratios below 1 as a threshold to delineate “inactivity” or dormancy
(Bowsher et al. 2019; Campbell et al. 2011; Jones and Lennon 2010; Kearns et al.
2016). However, the delineation of the inactive members of a community is some-
times problematic (Steven et al. 2017) because some taxa accumulate ribosomes
during dormancy in order to be able to respond swiftly to favorable conditions (see
Blazewicz et al. 2013 for a review on this topic). Despite these caveats, the
sequencing of ribosomal RNA has provided valuable information about marine
taxa that have or lack the potential for protein synthesis and how this changes over
space or time (Campbell and Kirchman 2013; Campbell et al. 2009, 2011; Ghiglione
et al. 2009; Hugoni et al. 2013; Hunt et al. 2013; Zhang et al. 2014).

Labeling with the thymidine substitute 5-bromo-20-deoxyuridine (BrdU) has also
been used to define the active members of the community (Galand et al. 2013;
Pernthaler et al. 2002). This and other approaches that link activity and identity, such
as stable isotope probing, have been utilized to identify the major players in a certain
biogeochemical process or follow the uptake of specific compounds (Bryson et al.
2017; Mou et al. 2008; Nelson and Carlson 2012; Orsi et al. 2016; Taubert et al.
2017). Other methods that are used in marine microbial studies but are still in their
infancy include Bioorthogonal non-canonical amino acid tagging (BONCAT)
(Couradeau et al. 2019; Hatzenpichler et al. 2016; Leizeaga et al. 2017; Samo
et al. 2014) and Raman micro-spectroscopy (Berry et al. 2015; Huang et al. 2007;
Lorenz et al. 2017). These methods could have a tremendous potential to address the
physiological status of individual cells as will be expanded on below.

Altogether these studies have shed light on microbial processes in the ocean and
identified the major players driving them. Yet, accurate knowledge is lacking of how
many cells are active, how dynamic is the transition between activity and inactivity
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of individual cells, and what are the factors driving these transitions. Furthermore,
most studies are temporally and geographically restricted and are particularly
focused on the sunlit ocean. When inexpensive techniques like BONCAT will be
broadly applied by the research community these gaps of knowledge may be filled.
This is crucial to understand microbial function and to predict how it is going to
evolve in future scenarios.

8.2 The Marine Microbiome over Space and Time

8.2.1 The Beginning of the Global Exploration of the Marine
Microbiome

Microbial biogeography relies on the description of how microbial communities are
distributed in space, in the vertical as well as in the horizontal dimension. While
multiple studies that were restricted to particular biogeographical areas provided
hints on the spatial distribution of marine microorganisms (e.g., Agogué et al. 2011;
DeLong et al. 2006; Pham et al. 2008; Pommier et al. 2010) it was not until the
global oceanographic circumnavigations took place (Fig. 8.1) when the exploration
of the worldwide distribution of marine microorganisms became feasible. The
pioneering large-scale survey was the Global Ocean Sampling Expedition (GOS)
that was launched in 2003 in the Sargasso Sea. This survey continued as a several
years expedition across the globe although most of the data were generated between
2004 and 2006 from a transect running from the North Atlantic to the South Pacific
through the Panama Canal. The GOS expedition indeed represents the first approxi-
mation to the microbial diversity of the global surface ocean (Rusch et al. 2007;
Venter et al. 2004). The GOS unveiled ~1300 different 16S rRNA gene sequences in
surface seawater samples from the Sargasso Sea (Venter et al. 2004) and thousands of
gene families in the surface ocean (Rusch et al. 2007). Contemporary to the GOS, the
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International Census of Marine Microbes (2005)
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Malaspina Expedition (2010-2011)

BioGEOTRACES (2010-2011)

Bio-GO-SHIP (2011-2018)

Ocean Sampling Day (2014-2020)

Fig. 8.1 The most important global marine circumnavigations for the exploration of marine
microbiomes and when they took place. Figure courtesy of Dr. Marta Royo-Llonch from
SHOOK Studio
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International Census of Marine Microbes (ICoMM) was launched in 2005 aiming at
using standardized sampling and data analysis procedures to study microbial diver-
sity in a multitude of marine habitats including pelagic and benthic systems using
454-pyrosequencing of the 16S rRNA gene (Amaral-Zettler et al. 2010). At that
time, the ICoMM represented the most comprehensive diversity picture of global
ocean bacterial and archaeal communities and reported remarkable horizontal and
vertical large-scale segregation showing contrasting patterns for the different
explored habitats (pelagic, benthic, and anoxic ecosystems, or vents, Zinger et al.
2011). This study showed that alike yet remote habitats can harbor similar
communities in the pelagic realm supporting the Baas-Becking and Beijerinck
hypothesis that “everything is everywhere, but the environment selects” (Baas
Becking 1934; Beijerinck 1913). Hence, marine planktonic bacteria display an
unlimited potential for dispersal while abiotic environmental filtering is responsible
for their different distributions in the global ocean. Furthermore, it was the ICoMM
initiative that allowed the discovery of the abovementioned “rare biosphere”
(Pedrós-Alió 2012; Sogin et al. 2006).

After the GOS and the ICoMM initiatives the main surveys with focus on the
worldwide exploration of the marine microbiome have been the Tara Oceans
Expedition (2009–2013) (Karsenti et al. 2011), the Malaspina 2010 Expedition
(Duarte 2015), the Ocean Sampling Day, which is a simultaneous sampling cam-
paign of the world’s coasts on the summer solstice that has been carried out since
2014 (Kopf et al. 2015; Tragin and Vaulot 2018), the BioGEOTRACES (Biller et al.
2018), the Bio-GO-SHIP programs (Larkin et al. 2021) (Fig. 8.1), and other
initiatives that are in the planning phase. Between 2009 and 2013, the Tara Oceans
Expedition sampled the global ocean from surface waters to the mesopelagic layer. It
used standardized sampling procedures to obtain seven size fractions of planktonic
diversity, from viruses to small metazoans, and comprised a large sequencing effort
(>30 Gb/sample) (Pesant et al. 2015). One of the main legacies of this expedition
was the generation of the Ocean Microbial Reference Gene Catalog (OMR-GC)
containing a total of >40 million-non-redundant genes of the global marine
microbiome of which over 80% of the sequences were new (Sunagawa et al.
2015). This catalog was updated with the OMR-GCv2 integrating the metagenomes
of the Arctic region and the metatranscriptomes of the global ocean (Salazar et al.
2019). The multidisciplinary and extensive effort of the Tara Oceans consortium has
resulted in many important outcomes (see Sunagawa et al. 2020 for a review) such as
the genetic repertoire of bacteria and archaea (Sunagawa et al. 2015) including more
than 500 bacterial and archaeal metagenome assembled genomes (MAGs) from the
polar Arctic Ocean (Royo-Llonch et al. 2021) and eukaryotes (Carradec et al. 2018)
in the sunlit and mesopelagic global ocean, the diversity of eukaryotic plankton
(De Vargas et al. 2015) and viruses (Brum et al. 2015; Gregory et al. 2019), and the
planktonic interactions occurring in the photic ocean (Lima-Mendez et al. 2015).
Other relevant achievements from the Tara Oceans Expedition were studies on the
potential contribution of unexpected components such as bacteria, archaea, and
viruses to carbon export in the nutrient-depleted oligotrophic ocean (Guidi et al.
2016), the potential impact of ocean warming on community composition and gene
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expression (Salazar et al. 2019), or the discovery of latitudinal gradients of diversity
for most planktonic groups (Ibarbalz et al. 2019). Furthermore, data from the Tara
Oceans Expedition confirmed that the geographic distance only plays a subordinate
role in determining the taxonomic and functional microbial community composition
in the photic open ocean whereas environmental selection seems to be an important
driver of microbial biogeography (Sunagawa et al. 2015).

Between 2010 and 2011, the Malaspina 2010 Circumnavigation Expedition
(Duarte 2015) sampled the marine microbiome in the tropical and subtropical oceans
from the surface down to bathypelagic waters (~4000 m depth). This expedition
showed that shifts towards communities enriched in rare taxa in the sunlit ocean
reflect environmental transitions (Ruiz-González et al. 2019) and it explored the role
of dispersion on planktonic and micro-nektonic organisms (Villarino et al. 2018).
The Malaspina Expedition also contributed with an assessment of the diversity and
biogeography of deep-sea pelagic bacteria and archaea (Salazar et al. 2016) as well
as provided an account of the diversity of heterotrophic protists in the deep ocean,
particularly unveiling the special relevance of fungal taxa (Pernice et al. 2015). This
expedition also unraveled that the particle-association lifestyle is a phylogenetically
conserved trait in bathypelagic microorganisms (Salazar et al. 2015), and provided a
metabolic characterization of the deep ocean microbiome based on Metagenome
Assembled Genomes (Acinas et al. 2021). Nonetheless, the Malaspina -omics
datasets have not yet been fully exploited and new inputs are expected in the coming
years, such as those derived from ongoing detailed analyses of vertical profiles and
of specific water masses or insights in the microbiome associated with the deep
scattering layer in the ocean.

The datasets of the BioGEOTRACES and Bio-GO-SHIP programs have
recently been made available (Biller et al. 2018; Larkin et al. 2021) and these will
surely push further our knowledge of the marine microbiome. The
BioGEOTRACES initiative spans 610 metagenomes collected from diverse regions
of the Pacific and Atlantic oceans (Biller et al. 2018). It also adds a temporal
dimension to the marine microbiome by providing metagenomes collected every
month during two years at the stations HOT (North Pacific) and BATS (North
Atlantic), which are part of long-term time series programs (Karl and Church
2014; Steinberg et al. 2001) and for which a suite of physicochemical and biological
data are available. The Bio-GO-SHIP program aims at providing high-resolution
spatiotemporal sampling of the marine microbiome in order to link microbial traits
with ecosystem function and biochemical fluxes. This program has released
720 globally distributed surface ocean metagenomes from samples collected every
4–6 h representing a median distance between sampling stations of only 26 km
(Larkin et al. 2021) and thus providing a much higher spatial resolution than other
global expeditions such as Tara Oceans (~700 km) or bioGEOTRACES (~200 km).

Overall, these global expeditions together with other local and regional studies
have unveiled some general microbial patterns across horizontal and vertical scales
in the ocean. These general trends include among others: (i) the key concept that
microbial communities are formed by a few abundant taxa and a long tail of low
abundant taxa (the rare biosphere) (Sogin et al. 2006), (ii) that temperature is one of
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the main drivers to predict the taxonomic and functional gene composition of
microbial communities in epipelagic waters of the open ocean (Sunagawa et al.
2015), (iii) that phosphorus exerts a strong selective pressure in the surface ocean
(Coleman and Chisholm 2010; Grote et al. 2012), (iv) that the latitudinal gradient of
diversity observed in macroorganisms, meaning that species richness increases in
latitudes closer to the equator and mid-latitudes, also applies to most marine plank-
tonic microorganisms (Amend et al. 2013; Ibarbalz et al. 2019; Sul et al. 2013),
(v) that the microbial community composition of contrasting polar zones, even
though being distant from each other, is more similar than that of microbial
communities of temperate or tropical latitudes (Cao et al. 2020; Ghiglione et al.
2012; Royo-Llonch et al. 2021; Sul et al. 2013), (vi) a vertical segregation between
photic and aphotic microbial communities (Amaral-Zettler et al. 2010; DeLong et al.
2006; Sunagawa et al. 2015), and (vii) the existence of a vertical connectivity
between surface and deep ocean communities (Cram et al. 2015; Mestre et al.
2018; Parada and Fuhrman 2017; Ruiz-González et al. 2020).

Despite the relevant information generated by all these studies, the myriad of
microbial processes ocurring in the ocean are far from understood. For instance,
there is an increasing recognition of the role of sub-mesoscale hydrographic features
in key processes such as the carbon pump (Boyd et al. 2019; Resplandy et al. 2019)
or the dispersion of marine microbes, pollutants, and microplastics, but studies on
the changes of the marine microbiome at fine spatial scales are still missing. Current
initiatives looking at this heterogeneity like the EXPORTS program (https://
oceanexports.org/about.html) and further implementation of genomic sensors
(Scholin et al. 2017) will help to address this issue. Similarly, the aim of the recently
launched AtlantECO EU project (https://www.atlanteco.eu) is a better understanding
and integration of the marine microbiome in the context of ocean circulation and the
presence of pollutants, e.g. plastics. AtlantECO also pursues to assess the role of the
marine microbiome in driving the dynamics of the Atlantic ecosystem at basin and
regional scales. The joint effort of all those initiatives will help to boost our
knowledge of the marine microbiome.

8.2.2 Seasonality and Temporal Dynamics of Marine Microbial
Communities

Besides studies aiming at understanding how microbial communities vary across
space, increasing efforts are being invested towards exploring how they change over
time. The establishment of microbial observatories across the globe has allowed the
monitoring of microbial communities over time from short- to long-term scales (see
reviews by Bunse and Pinhassi 2017; Buttigieg et al. 2018). Defining seasonality is
essential to understand how microbes react to changes in environmental conditions
or perturbations. Time series of marine microbiomes also allow addressing funda-
mental ecological questions such as which patterns of biodiversity are present in an
ecosystem, how are these patterns governed, how stable and predictable are micro-
bial communities, how do species interact or what is the ecological niche of a given
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taxon. Seasonality had been observed in phytoplankton blooms but it was only after
the molecular revolution that it could be investigated in bacterioplankton
communities. The pioneer application of fingerprinting methods and clone libraries
to samples collected from marine microbial observatories over 1–2 year periods
elucidated community shifts over seasons and demonstrated the existence of tempo-
ral niches for specific organisms (Alonso-Sáez et al. 2007; Brown et al. 2005;
Ghiglione et al. 2005). Nevertheless, time series of many consecutive years are
required to test the robustness of seasonal patterns. Such long-term time series with
large sampling efforts have been undertaken in oceanic and coastal monitoring
stations; the San Pedro Ocean Time Series (SPOT) and the Hawaii Ocean Time
Series (HOT) in the Pacific Ocean, the Bermuda Atlantic Time Series (BATS) in the
Atlantic Ocean, the Western Channel Observatory in the English Channel, or the
Service d’Observation du Laboratoire Arago (SOLA Station; Banyuls-sur-Mer,
France) and the Blanes Bay Microbial Observatory (BBMO) in the Mediterranean
Sea are some examples of such long-term programs (for a detailed list, see Bunse and
Pinhassi 2017; Buttigieg et al. 2018).

Over a decade ago the application of high-resolution molecular fingerprinting
methods over monthly samples from SPOT revealed remarkably repeatable and
predictable seasonal patterns in the distribution and abundance of microbial taxa
(Fuhrman et al. 2006). High-throughput sequencing of bacterioplankton
communities confirmed this observation at higher resolution in different locations
(Cram et al. 2015; Eiler et al. 2011; Fuhrman et al. 2015; Gilbert et al. 2012; Lambert
et al. 2019) and unveiled that also the rare members of the bacterioplankton showed
seasonality (Alonso-Sáez et al. 2015). Moreover, long-term time series captured the
occasional blooming of some rare members of the community which became
dominant when the conditions were favorable (Gilbert et al. 2012). Likewise,
microbial eukaryotes showed recurrent seasonal patterns (Giner et al. 2019; Lambert
et al. 2019). In addition, changes in community composition were accompanied by
repeatable shifts in alphadiversity (Gilbert et al. 2012; Giner et al. 2019). Besides,
the seasonal patterns of relevant phylogenetic groups (Díez-Vives et al. 2019; Salter
et al. 2015; Vergin et al. 2013) or of certain functional groups (AAPs, Auladell et al.
2019) have been studied, revealing remarkably similar patterns to those of the whole
communities (Fig. 8.2).

Current methodologies allow to investigate the dynamics of individual taxa,
unveiling that closely related populations can represent distinct ecotypes that tem-
porally occupy different niches (Auladell et al. 2019, 2021; Chafee et al. 2018).
Further, analysis of finely resolved taxonomic units in combination with high
frequency sampling over multiple years has shown that regardless of interannual
variation in phytoplankton blooms recurrent modules of co-varying microbes exist
(Chafee et al. 2018). Beyond long-term studies, high frequency sampling over a
phytoplankton bloom has shown that biological interactions among bacteria,
archaea, and eukaryotic microorganisms may play critical roles in controlling
plankton diversity and dynamics (Needham and Fuhrman 2016), contradicting the
traditional view that blooms are mainly controlled by physical- and chemical
processes. Daily sampling over periods of several months has also revealed that
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microbial plankton is organized in clearly defined but ephemeral communities
whose turnover is rapid, mirroring environmental variability (Martin-Platero et al.
2018). On shorter time scales, metatranscriptomics has shown evidence of diel
transcriptional oscillations of both phototrophic and chemotrophic microorganisms
(Ottesen et al. 2013, 2014) as well as of viruses (Aylward et al. 2017; Kolody et al.
2019).

Altogether, long time series have provided evidence for seasonal and interannual
recurrence of some microbial taxa, highly resolved time series have demonstrated
that communities fluctuate on a daily and monthly scale along with changes in
environmental conditions, and sampling on an hourly scale has unveiled diel peri-
odicity of gene transcription. These studies demonstrate that the temporal scale of
sampling is directly linked to the scale of temporal variability that we are able to
capture. Highly resolved sampling over long periods will be eased by the develop-
ment of automated samplers. This, in combination with the decreasing analytical and
computing costs, will provide further insights into the stability and reproducibility of
the short-term changes over longer periods of time. Moreover, increasing efforts on
obtaining data from high and low latitudes will help defining a more global picture of
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Fig. 8.2 Time-decay plot showing the recurrence of aerobic anoxygenic phototrophic
communities in the Blanes BayMicrobial Observatory (NWMediterranean). Bray–Curtis similarity
between samples is plotted against the time lag between each comparison. Blue dots represent mean
values for each time lag and gray vertical bars the standard error (background gray dots show each
comparison). A linear regression with 95% confidence intervals is shown (modified from Auladell
et al. 2019)
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the temporal dynamics of marine microorganisms. All these data will be useful to
feed model-based analyses aimed at better predicting the temporal dynamics of
marine microbial communities in future scenarios.

8.3 Approaches to Link Taxonomy and Function of Marine
Bacteria and Archaea

8.3.1 The Genome-Centric Approaches: Single Amplified Genomes
(SAGs) and Metagenome Assembled Genomes (MAGs)

Whereas direct analysis of metagenomes can provide a community overview, other
strategies have been developed to either access individual environmental genomes
without the need for cultivation (Single Amplified Genomes, SAGs) or group the
community’s metagenomic information into meaningful genomic units reflective of
a population of close taxa as in Metagenome Assembled Genomes (MAGs). More-
over, properly assigning function to taxonomy, which has been an essential goal in
the microbial ecology of uncultured microorganisms, requires the genetic informa-
tion to be considered in a genomic context.

8.3.1.1 Single-Amplified Genomes (SAGs)
SAGs are generated from the direct amplification of DNA from previously sorted
individual cells, its sequencing and assembly (Fig. 8.3). SAGs may represent

Cell lysis

Sequencing and assembly

Single Cell Genomics

80% 65% 50% 20% 95%

FACSFACS

Sampling

Cell sorting

Fig. 8.3 Simplified workflow for SAGs generation from seawater samples. After sample collection
cells are sorted in a flow cytometer. Individual cells are then lyzed and nucleic acids undergo
Multiple Displacement Amplification (MDA). After that, genomes are sequenced and assembled
resulting in SAGs of variable quality, from low to high coverage. Figure courtesy of Dr. Marta
Royo-Llonch from SHOOK Studio (https://www.instagram.com/shookstudio/?hl¼en)
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environmental genomes sequenced from the most fundamental units of life (Blainey
2013; Stepanauskas 2012; Sieracki 2007; Woyke et al. 2009). Individual cells are
selected from a sample by fluorescence-activated cell sorting (FACS) or
microfluidics. Subsequently, the cells undergo lysis and whole genome amplification
through various methodologies: degenerate oligonucleotide-primed PCR, multiple
displacement amplification (MDA), or WGA-X, an MDA method that utilizes a
thermostable mutant of the phi29 polymerase (Stepanauskas et al. 2017). This is
followed by sequencing and genome assembly. SAGs retrieves all the DNA
molecules of a cell, unveiling microbial intimate interactions in their natural envi-
ronment otherwise overlooked like infections, symbioses, and predation (Castillo
et al. 2019; Labonté et al. 2015; Martinez-Garcia et al. 2014; Roux et al. 2014; Yoon
et al. 2011). Because SAGs circumvents the taxonomic binning used in metagenome
assembly, it improves the understanding of microevolutionary processes in the
environment (Kashtan et al. 2014), providing as well unique reference genome
datasets from uncultured microbes. Indeed, the analysis of 2715 partial SAGs from
the tropical and subtropical euphotic ocean enabled the functional and taxonomic
annotation of about 80% of metagenomic reads from diverse oceanographic cruises
and marine stations (Pachiadaki et al. 2019).

Some of the valuable lessons learnt from SAGs studies include: (i) genome
streamlining is a prevalent feature in the oligotrophic surface ocean (Swan et al.
2013), (ii) the extensive microdiversity and co-existence of hundreds of genomes
within Prochlorococcus populations (Kashtan et al. 2014), (iii) the reconstruction of
novel uncultured bacterial species (Royo-Llonch et al. 2020), (iv) the ubiquity of
light harvesting and secondary metabolite biosynthetic pathways across microbial
lineages (Pachiadaki et al. 2019), (v) the impact of chemolithoautotrophic
microorganisms such as the SAR324 clade and the Gammaproteobacteria
ARCTIC96BD-19 (Swan et al. 2011), (vi) the overlooked role of the nitrite-
oxidizing bacteria (Pachiadaki et al. 2017), or (vii) the adaptation to anoxic niches
such as Oxygen Minimum Zones (OMZ) of unique SAR11 lineages with capacity
for nitrate respiration (Tsementzi et al. 2016).

8.3.1.2 Metagenome Assembled Genomes (MAGs)
Metagenomic reads can be assembled into contigs and later binned into the so-called
Metagenome Assembled Genomes (Fig. 8.4). MAGs are composite genomes of
closely related populations from natural communities. The first attempts to recon-
struct genomes from metagenomic DNA sequences of environmental communities
started in the early 2000s (Martín et al. 2006; Tyson et al. 2004) but more reliable
methods and larger-scale results emerged during the last decade (Albertsen et al.
2013; Alneberg et al. 2014; Parks et al. 2017; Sharon and Banfield 2013; Wrighton
et al. 2012). Nowadays, thousands of genomes have been reconstructed from marine
metagenomes both from discrete sampling events and from global
circumnavigations (Acinas et al. 2021; Delmont and Eren 2018; Delmont et al.
2018; Royo-Llonch et al. 2021; Tully et al. 2017). Just recently, a large-scale
study used 10,450 metagenomes sampled from a variety of habitats, including
marine environments, and recovered 52,515 medium- and high-quality MAGs,
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which constitute the Genomes from Earth’s Microbiomes (GEM) catalog, of which
8578 represent marine microbial MAGs (Nayfach et al. 2021).

There has been an increase in the development of tools for estimating genome
completion and contamination (Eren et al. 2015; Parks et al. 2015) improving the
approaches to retrieve completed (circularized curated, no gaps) Metagenome
Assembled Genomes (CMAGs) (Chen et al. 2020) and guidelines on genome quality
standards and complementary analyses for the correct deposition in public databases
(Bowers et al. 2017; Konstantinidis et al. 2017). However, a community consensus
on the pipeline for MAG reconstruction is missing since different strategies in each
step of the process (e.g., assemblies, binning, or annotation) are still used.

The reconstruction of bacterial and archaeal MAGs has provided insights into the
ecology and evolution of marine microbial taxa unveiling, among other things:
(i) the prevalence of diazotrophs in the surface ocean belonging to the Proteobacteria
and Planctomycetes (Delmont et al. 2018), (ii) the potential for primary productivity
in a globally distributed AAP bacterium (Graham et al. 2018), (iii) the metabolic
diversity within Marine Group II Euryarchaea (Tully 2019), (iv) the biogeography
and evolutionary processes within the SAR11 clade (Delmont et al. 2019), (v) the
widespread potential for mixotrophy found in the genomes of uncultured bacteria
and archaea in the bathypelagic ocean (Acinas et al. 2021) or (vi) transcriptional
patters of unique bacteria and archaea polar Arctic MAGs (Royo-Llonch et al. 2021).

Both SAGs and MAGs have been successfully combined to derive conclusions
from organisms and their ecosystems and to improve the binning quality of single
cell assemblies or metagenomes. Finally, the emergence of new pipelines for
analysing bacterial and archaeal individual genomes, metagenome assembled

Metagenome Assembly Genomes
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Fig. 8.4 Simplified workflow for MAGs generation from seawater samples. Community DNA is
extracted from seawater samples and undergoes high-throughput sequencing, which yields large
amounts of metagenomic reads. Reads are then assembled into contigs which are later binned to
form Metagenome Assembled Genomes (MAGs) of varying coverage levels. Figure courtesy of
Dr. Marta Royo-Llonch from SHOOK Studio (https://www.instagram.com/shookstudio/?hl¼en)
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genomes, and single-amplified genomes such as MetaSanity (Neely et al. 2020) will
facilitate genome quality evaluation, phylogenetic and functional annotation through
a variety of integrated programs. It is clear that these two genome-centric approaches
will enhance the understanding of functional and evolutionary processes of the
prevalently uncultured marine microbes and will as well serve as a starting point
for future experimental validation processes of their potential metabolisms, for in
situ taxonomic quantification using CARD-FISH, or for providing essential infor-
mation in order to design strategies for isolation of key microorganisms into culture.

8.3.2 The Relevance of Culturing Marine Bacteria in the -Omics Era

Despite the fact that gene- and genome-centric approaches have allowed the descrip-
tion of marine microbial diversity from diverse habitats at an unprecedented scale, as
overviewed in this chapter, isolates are still a necessary and complementary resource
of knowledge. Isolating bacteria and archaea in the laboratory is a fundamental
requirement to investigate their physiology under different scenarios, to test ecolog-
ical hypotheses raised from metagenomics and genome-centric studies, to have
access to their complete genomes, to assess the function of novel genes (Muller
et al. 2013), to interpret multi-species interactions in co-culture experiments (Stomp
et al. 2004, 2008), or to investigate evolutionary principles and population dynamics
in long-term monitoring efforts (Good et al. 2017; Rosenzweig et al. 1994). At the
same time, genomes from isolates are important to update and improve the existing
databases that are needed for the correct annotation of sequencing data (Giovannoni
and Stingl 2007; Gutleben et al. 2017). Moreover, isolation is still the only current
option for the official procedures for classification and characterization of novel
prokaryotic species (Parker et al. 2019) although new efforts to create guidelines for
nomenclature of uncultured microorganisms are being developed (Murray et al.
2020). Finally, the short generation times and the nearly 4 billion years of evolution
of marine microorganisms have resulted in an enormous biodiversity and a plethora
of metabolic pathways and thus, having access to pure cultures, represents an
excellent opportunity for biotechnology research (Luna 2015), including bioremedi-
ation of polluted ecosystems.

There is little overlap between taxa retrieved by molecular techniques and those
retrieved by isolation (Crespo et al. 2016; Lekunberri et al. 2014). This is mainly due
to the fact that molecular techniques usually recover the abundant bacteria present in
a given environment, while cultures often retrieve those taxa that belong to the rare
biosphere (Pedrós-Alió 2012; Sogin et al. 2006). Isolation is thus still essential to
decipher the full spectra of diversity of the marine ecosystem (Sanz-Sáez et al. 2020).
New culture-dependent techniques have been developed to expand the range of
bacteria that can be cultured like microfluidics (Boitard et al. 2015; Ma et al. 2014),
culturing chips (Gao et al. 2013; Hesselman et al. 2012; Ingham et al. 2007),
manipulation of single cells (Ben-Dov et al. 2009; Park et al. 2011), high-throughput
culturing techniques termed “culturomics” (Giovannoni and Stingl 2007; Lagier
et al. 2012), or culturing following large-scale dilution to extinction (Henson et al.
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2020). A common feature of all these new techniques is that they are based on the
same principles of recreating the nutrient conditions of natural environments and
overcoming the tendency of rapidly growing cells to outcompete species that
reproduce more slowly. The use of these methodologies allowed the isolation of
previously uncultured groups such as the alphaproteobacterium Candidatus
Pelagibacter ubique within the SAR11 clade (Morris et al. 2002; Rappé et al.
2002), or the chemolithotrophic ammonia-oxidizing archaeon Nitrosopumilus
maritimus (Könneke et al. 2005). The existence of these and other cultures has
been essential to test hypotheses derived from genomic data and confirm the role of
some proteins in the cell’s physiology. For example, experiments with isolates have
unveiled light-stimulated growth in some bacteria harboring proteorhodopsin
(Gómez-Consarnau et al. 2007), whereas in other bacteria this protein is involved
in cell survival (Gómez-Consarnau et al. 2010) or in improving cell fitness
(González et al. 2008; Steindler et al. 2011). Likewise, experiments with Candidatus
Pelagibacter ubique have made possible to understand the growth requirements of
bacteria with a limited genetic repertoire (Carini et al. 2013; Tripp 2013; Tripp et al.
2008). Altogether, these culturing depending approaches are fundamental to micro-
bial ecologists to fully understand the ecology, function, and biotechnological
potential of microorganisms in marine ecosystems.

8.3.3 Shedding Light on the Active Microbiome

Genome-centric approaches such as SAGs and MAGs have increased our under-
standing of the metabolic capabilities of uncultured bacteria and archaea and cultur-
ing efforts are increasing the array of model organisms to be used for carrying out
physiological studies. However, the ultimate goal of microbial ecologists is to
understand the activity and function of the different microbes in situ and how they
are affected by changes in environmental conditions. Only then we will be able to
have a predictive understanding of microbial processes in the ocean.

Different approaches have been used to unravel the role of key taxa driving
microbial processes (Berry et al. 2015; Hall et al. 2011; Musat et al. 2012; Singer
et al. 2017). Microautoradiography (MAR) coupled with fluorescence in situ
hybridization (FISH) has been undoubtedly the most widely used technique to assess
the groups of bacteria or archaea that are taking part in the uptake of a given substrate
(Alonso-Sáez et al. 2012a; Cottrell and Kirchman 2000; Sintes and Herndl 2006),
but it suffers from the poor taxonomic resolution of FISH. Stable isotope probing
(SIP), which involves the incubation with a stable isotope-labeled substrate and the
downstream analysis of heavy-isotope enriched cellular components such as DNA,
RNA, or proteins has also been widely used (see Dumont and Murrell 2005; Musat
et al. 2012 for reviews on this technique). Nano-scale secondary ion mass spectrom-
etry (nanoSIMS) is a SIP-based technique that enables the quantification of stable
isotopes with high spatial resolution. NanoSIMS has been crucial for unveiling the
interactions between individual microbial cells and biochemical processes (see
Mayali 2020 and references therein) and particularly relevant for the study of
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metabolic fluxes between symbionts and their hosts (Foster et al. 2011; Thompson
et al. 2012). However, NanoSIMS is usually coupled with FISH and it is therefore
also limited by its phylogenetic resolution. An alternative approach is applying
nanoSIMS to an isotope-labeled whole community RNA hybridized to a phyloge-
netic microarray. This method is called Chip-SIP and it increases the taxonomic
resolution to the level of individual taxa (Mayali et al. 2012; Bryson et al. 2017).

Given the short half live of mRNA, metatranscriptomics provides information
about the gene expression profiling in near-real time conditions (Moran et al. 2013).
This approach has been pivotal to elucidate daily transcriptional oscillations in
heterotrophic bacterioplankton (Ottesen et al. 2014) and in viral genes in host cell
assemblages (Aylward et al. 2017; Kolody et al. 2019). Besides, degradation
pathways may be identified based on shifts in the proportion of certain transcripts
upon substrate additions (Li et al. 2014; McCarren et al. 2010; Mou et al. 2011; Vila-
Costa et al. 2010), and the fluctuations of transcripts in the mRNA pool are highly
informative for how cells sense shifts in environmental conditions and the machinery
involved in the response to these shifts (Moran et al. 2013). Nevertheless, high
sequencing depth is required to detect transcripts of functional genes that are not
involved in core metabolic pathways or transcripts of rare microbes. Metaproteomics
is an emergent field in ocean studies (see Saito et al. 2019 for a review), and it has
been useful to shed light on transport functions and microbial nutrient utilization
(Morris et al. 2010; Sowell et al. 2009), nutrient stresses (Saito et al. 2014) as well as
on changes on substrate utilization by microbial communities in the water column
(Bergauer et al. 2018). However, metaproteomics is limited to well described
proteins produced by the abundant fraction of microbial communities (Saito et al.
2019). Targeted meta-omics with SIP (Chen and Murrell 2010; Coyotzi et al. 2016;
Grob et al. 2015) or targeted Single Cell Genomics with fluorescently labeled
substrates (Doud et al. 2020; Martinez-Garcia et al. 2012) is a powerful alternative
to circumvent the limitation of metatranscriptomics and metaproteomics to only the
abundant fraction of the community. They allow the detection of rare taxa
participating in a given biochemical process and facilitate the identification of the
different enzymes involved. Similarly, other approaches like Bioorthogonal
non-canonical amino acid tagging (BONCAT) or Raman micro-spectroscopy (see
Hatzenpichler et al. 2020 and references therein) present great prospect for targeted
meta-omics. BONCAT is a sensitive technique that uses a synthetic amino acid that
upon incorporation can be fluorescently detected via copper-catalyzed alkyne–azide
click chemistry (Dieterich et al. 2006). It has been applied to environmental samples
to identify protein-synthesizing cells and the taxonomic identification of these cells
has been performed by FISH (Hatzenpichler et al. 2014; Sebastián et al. 2019) or by
16S rRNA tagging after fluorescence-activated cell sorting (Couradeau et al. 2019;
Hatzenpichler et al. 2016; Reichart et al. 2020). BONCAT has also the potential to
study short-term proteomic responses of bacteria (Bagert et al. 2016) and opens new
avenues of research to study the proteins involved in relevant biochemical processes.
Likewise, Raman activated cell sorting after incubation with heavy water or other
isotope-labeled substrates (Berry et al. 2015; Lee et al. 2019; Wang et al. 2013;
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Zhang et al. 2015) can be used for subsequent single cell genomics or mini-
metagenomics of selected populations (Yu et al. 2017).

Although single cell RNA-Seq has not made its way yet into environmental
studies it has the potential to unravel transcriptional heterogeneity of individual
bacterial cells (Imdahl et al. 2020) or to discern different stages of viral–host
interactions among a single population and monitor how the host metabolism is
rewired during viral infection (Ku et al. 2020). All these emerging techniques will
surely contribute to a better understanding of microbial processes in the ocean and
the key organisms involved, which is central to assess how changes in diversity in
the future will impact global biogeochemical cycles.

8.4 What Have we Learnt from the Exploration of the Marine
Microbiome?

8.4.1 The Unknown Marine Microbial Diversity

Current predictions indicate that the ocean may be home to ~1010 microbial species
of which only �104 have been cultured (Locey and Lennon 2016). Moreover, the
few cultured microbial species often represent rare members of microbial
communities while the most abundant taxa remain largely elusive and begun only
to be elucidated after the development of culturing-independent methodologies
(Rappé and Giovannoni 2003). Certainly, although the “Great Plate Count Anom-
aly” was known at the time (Staley and Konopka 1985), the pioneer studies that
investigated bacterioplankton diversity in the 90s led among others to the discovery
of SAR11 and were groundbreaking because they brought to light that the most
abundant organisms in the ocean were in fact unknown (Fuhrman et al. 1993;
Giovannoni et al. 1990). Ever since, sequencing DNA from the ocean has continu-
ously unveiled hitherto unknown microorganisms, which has expanded the tree of
life to a great extent. Only a negligible fraction of the diversity detected in molecular
surveys has been eventually cultured such as the SAR11 (Candidatus Pelagibacter
ubique) (Rappé et al. 2002), while most of the observed diversity remains uncultured
and therefore largely unknown (the so-called “microbial dark matter”). Indeed, most
microbial isolates belong to only a few phyla (Hug et al. 2016) and most phyla do not
have a cultured representative. Yet, metagenomics and single cell genomics have
provided genetic information of many uncultured lineages including those
represented by many of the first clones reported in the 90s. This has helped to get
insights on the potential functional and ecological roles of these uncultured lineages
(Parks et al. 2017; Rinke et al. 2013). For example, the SAR86, an abundant marine
clade belonging to the Gammaproteobacteria and detected for the first time in clone
libraries constructed almost 30 years ago (Britschgi and Giovannoni 1991) and for
which no isolate exists, shares traits with SAR11 such as the presence of
proteorhodopsin (Béjà et al. 2000) and metabolic streamlining, but also displays
distinct carbon compound specialization that might possibly avoid competition with
SAR11 (Dupont et al. 2012). Moreover, analyses of the SAR86 pangenome indicate
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that the clade is composed of different ecotypes with unique geographic distributions
(Hoarfrost et al. 2020). The SAR406 clade, first reported by Gordon and Giovannoni
(1996) and now referred to as the “candidate” phylum Marinimicrobia, represents a
deeply branching lineage of bacteria that is abundant in the aphotic zone.
Marinimicrobia possesses the potential to degrade complex carbohydrate
compounds as well as performing nitrate reduction, dissimilatory nitrite reduction
to ammonia, and sulfur reduction (Thrash et al. 2017; Wright et al. 2014). The
SAR202, also common in the aphotic zone, appears to metabolize multiple
organosulfur compounds, oxidize sulfite, and oxidize recalcitrant organic
compounds and thus are predicted to play major roles in the sulfur and carbon cycles
in the aphotic water column (Landry et al. 2017; Mehrshad et al. 2018; Saw et al.
2020).

In addition, SAGs and MAGs have unveiled the existence of many new “candi-
date” phyla (Rinke et al. 2013; Parks et al. 2017). These “candidate” phyla are often
detected in marine environments other than seawater, for example, in hydrothermal
vents, blue holes, marine sediments, or associated with marine animals (Dudek et al.
2017; He et al. 2020; Parks et al. 2017; Rinke et al. 2013). However, analyses of the
Tara Oceans metagenomes have revealed the presence of diverse members of
“candidate” archaeal and bacterial lineages in the pelagic realm (Delmont et al.
2018; Lannes et al. 2019; Parks et al. 2017; Royo-Llonch et al. 2021; Tully et al.
2018). Moreover, many unknown clades within the “known” phyla are constantly
being discovered in the marine water column (Parks et al. 2017; Yilmaz et al. 2016)
and the publication of the genomic catalog of Earth’s microbiomes has disclosed a
breadth of phylogenetic diversity from multiple biomes including the marine aquatic
biome (Nayfach et al. 2021), highlighting the ocean as a reservoir of hidden
diversity.

8.4.2 Insights into New Metabolic Capacities of Uncultured
Microorganisms

Although the wealth of genomic data of the “uncultured majority” in the ocean is
exponentially increasing, there is still a long way to go to be able to interpret these
data (Ferrera et al. 2015). Approximately 50% of the predicted genes detected in the
ocean have an unknown function (Sunagawa et al. 2015) and the other half has an
assigned putative function based on sequence homology to a gene from a distantly
related cultured isolate for which the function has been experimentally
demonstrated. Indeed, experiments with isolates have demonstrated that homolo-
gous genes yield different phenotypes in distinct microbes as is the case with
proteorhodopsins mentioned earlier in this chapter. Despite this, homology searches
in global metagenomic datasets have been pivotal to explore the potential relevance
of different processes once the genes involved in a particular process are identified.

Like the discovery of proteorhodopsin changed the concept of phototrophy in the
ocean, the discovery of ammonia oxidation genes in a genomic fragment belonging
to Thaumarchaeota in the marine metagenome from the Sargasso Sea (Venter et al.

8 Towards a Global Perspective of the Marine Microbiome 375



2004) changed our understanding of the global nitrogen cycle. Until then, nitrifica-
tion was thought to be performed by a few low abundant bacterial genera. The
abundant Thaumarchaeota were recognized as the organisms that exerted the pri-
mary control on ammonia oxidation in oligotrophic waters (Martens-Habbena et al.
2009; Wuchter et al. 2006). Genomic data of the “uncultured majority” was also
fundamental to unveil other aspects of the nitrogen cycle such as that cyanate and
urea may serve as potential substrates for nitrification (Alonso-Sáez et al. 2012b;
Pachiadaki et al. 2017; Shi et al. 2011; Yakimov et al. 2011), which was subse-
quently tested by using cultures or single cell culture-independent approaches
(Kitzinger et al. 2019, 2020; Palatinszky et al. 2015).

Likewise, our perspective of the life of microorganisms in the aphotic ocean has
changed with the increase in genomic data from the deep-sea realm. In addition to
heterotrophic and chemolithotrophic microorganisms, the deep ocean contains also
mixotrophs that may play an important role in the carbon cycle (Acinas et al. 2021;
Anantharaman et al. 2013; Pachiadaki et al. 2017; Sheik et al. 2014; Swan et al.
2011; Tang et al. 2016). These mixotrophic microorganisms may obtain energy from
the oxidation of a plethora of compounds including ammonia, nitrite, CO, sulfur,
hydrogen, and recalcitrant DOM (Acinas et al. 2021; Anantharaman et al. 2013;
Landry et al. 2017; Martin-Cuadrado et al. 2009; Mehrshad et al. 2018; Pachiadaki
et al. 2017; Sheik et al. 2014; Swan et al. 2011). Besides Thaumarchaeota
(Reinthaler et al. 2010), other key players participating in carbon fixation in the
dark ocean have been identified such as the ubiquitous SAR324 (Swan et al. 2011),
the Thiomicrospirales (SUP05 cluster, Mattes et al. 2013), and Nitrospina
(Pachiadaki et al. 2017). Moreover, a novel pathway for carbon fixation, the
reductive glycine pathway, has just been described (Sánchez-Andrea et al. 2020),
and the wealth of genomic data available allows the assessment of the distribution
and potential relevance of this pathway in the ocean (Fig. 8.5).

After the discovery that the cosmopolitan SAR11 clade produces methane in
phosphorus deficient waters as a by-product of the decomposition of
methylphosphonate (Carini et al. 2014), the role of the vast oligotrophic gyres as a
source of methane to the atmosphere became clear. The genes coding for the
enzymes of this pathway of methanogenesis is widespread in marine bacterial
genomes (Villarreal-Chiu et al. 2012) and in marine metagenomes (Sosa et al.
2019). Similarly, a relevant strategy to cope with phosphorus stress was unveiled
after the identification of a phospholipase C responsible for lipid remodeling in a soil
bacterium (Zavaleta-Pastor et al. 2010). This led to the discovery that lipid substitu-
tion is a widespread strategy to decrease the phosphorus demand of heterotrophic
bacteria in the vast phosphorus depleted waters of the ocean (Carini et al. 2015;
Sebastián et al. 2016) similarly to what had been previously observed in phytoplank-
ton (Van Mooy et al. 2009). The discovery of the strategy of lipid substitution to
overcome phosphorus depletion shows the need to implement the flexible stoichi-
ometry of planktonic cells in biogeochemical budgets in which a fixed stoichiometry
is assumed to be the rule.

Strategies to deal with the vast number of genes with unknown function are
constantly being developed. Some approaches involve the functional screening of
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metagenomic libraries (e.g., Colin et al. 2015; Pushkarev et al. 2018) while others
rely on computational workflows that narrow down the potential role of genes based
on the clustering of their coding sequence spaces and their contextualization with
genomic and environmental information (Vanni et al. 2020). A large fraction of the
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Fig. 8.5 Approaches to unveil new functions in uncultured microorganisms. (a) Novel genes are
identified and functionally characterized in experiments with isolates from diverse environments
(e.g., ocean, soil, gut). Search for these genes in global environmental -omics datasets provides
information about the relevance and biogeography of the novel genes, their taxonomic distribution,
and the conditions under which these genes are expressed. (b) Genes with unknown function can
also be identified through functional metagenomics in which environmental DNA fragments are
cloned into a plasmid and expressed in a surrogate host. Then, the phenotype can be screened (e.g.,
enzymatic activity assays, development of color in rhodopsin containing cells). After the function is
identified its biogeography and global relevance can be assessed in the global -omics databases.
Some items have been created with BioRender.com
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unknown genes is phylogenetically conserved and may be relevant for niche adap-
tation (Vanni et al. 2020). Thus, identifying these unknown genes is crucial to gain a
deeper insight of microbial processes in the ocean. Given that sequencing effort has
been directedly linked to the increase in the rate of gene discovery (Duarte et al.
2020), it is expected that many new genes will be uncovered in the near future. This
calls for ways to unveil the function of these “unknown” genes.

8.4.3 Delineation of Ecological Meaningful Units of Uncultured
Microorganisms

Bacterial and archaeal populations, and by extension species, are fundamental units
of ecology and evolution (VanInsberghe et al. 2020). Identifying genetically and
ecologically congruent units remains a great challenge in microbial ecology because
bacteria and archaea reproduce asexually. Their genomes are subjected to homolo-
gous recombination events (Fraser et al. 2007; Papke et al. 2007) and lateral gene
transfer between similar or distant relatives frequently occurs (Doolittle and Papke
2006; Fernández-Gómez et al. 2012). Furthermore, even within delineated species,
there is no homogeneity in the genetic content or in the total nucleotide composition
of bacteria and archaea. This variability is known as microdiversity (Acinas et al.
2004; Fuhrman and Campbell 1998) and it can be seen as “bushy tips” of distinct
sequence clusters in phylogenetic reconstructions (Cohan 2001; Giovannoni 2004),
by clusters of gene orthologous groups from genomes (Thompson et al. 2019), or by
the identification of gene-flow discontinuities derived from recent genetic exchanges
(Arevalo et al. 2019). Microdiversity may persist thanks to forces like periodic
selection (Cohan 2001) and homologous recombination (Fraser et al. 2007;
Konstantinidis and DeLong 2008; Shapiro et al. 2012; Whitaker et al. 2005) in
which gene gain and losses are often involved and may promote divergence between
populations favoring the delineation of ecotypes (Cordero et al. 2012). The “ecotype
concept” describes a collection of strains that show some ecological distinctiveness
within its species. Ecotypes preserve nearly the full phenotypic and ecological
potential of the species with slight changes in their genetic repertoire that enables
them to exploit a slightly different ecological niche. However, microbial speciation
occurs in a continuous spectrum in which microbial populations are in constant
evolutionary tradeoffs between gene flow and natural selection (Shapiro and Polz
2015; Shapiro et al. 2012) and therefore the delineation of ecological meaningful
microbial populations or units remains challenging.

Despite the “species concept” still remains highly controversial, a widely
accepted view of microbial species is the “pangenome concept” that classifies the
genetic repertoire of a species into the core genome and the flexible genome. The
former includes the shared genes between all individuals categorized as the same
species and the latter includes the gene pool that is partially shared or strain-specific
(Mira et al. 2010; Tettelin et al. 2005). Thus, the genomes of multiple representatives
of a species are needed to accurately define the genetic potential and size of the
pangenome. Even though the core genome contains the essence of the species and is
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indispensable, it is the flexible genome that can confer selective advantages like
niche adaptation, new host colonization, or antibiotic resistance, and contributes to
the species diversity (Tettelin et al. 2005, 2008). The size of the pangenome is
dynamic and pangenomes can be more open or close depending on the multitude of
niches in which the species is able to live (Medini et al. 2005) (Fig. 8.6).

In marine ecosystems, the pangenome exploration was first performed with
genomes from bacterial isolates including Prochlorococcus marinus (Kettler et al.
2007), Synechococcus (Dufresne et al. 2008), Shewanella (Konstantinidis et al.
2009), Alteromonas macleodii (López-Pérez and Rodriguez-Valera 2016), and Vib-
rio alginolyticus (Chibani et al. 2020) but generally using a limited number of
genomes. A large-scale analysis of pangenomes using ~7000 high-quality cultured
genomes from 155 phylogenetically diverse species belonging to ten phyla revealed
the important role of environmental preferences and phylogeny in explaining the
majority of variation of pangenome features across different species (Maistrenko
et al. 2020). The advent of Single Cell Genomics, however, has enabled the study of
the pangenome concept in uncultured microbial taxa (Fig. 8.6). Some pioneer studies
have explored the pangenomes of uncultured Prochlorococcus (Kashtan et al. 2014;
Thompson et al. 2019), SAR11 lineages (Grote et al. 2012; Haro-Moreno et al. 2020;
Thrash et al. 2014; Tsementzi et al. 2016), or uncultured Bacteroidetes relatives of
Kordia sp. (Royo-Llonch et al. 2020).

Further, the combination of pangenomes and fragment recruitment analyses on
marine metagenomes has led to the “metapangenomes concept” that uses the
delineation of single amino acid variants to explore the biogeography of distinct
populations. This has been successfully applied on single cell genomes of
Prochlorococcus (Delmont and Eren 2018) and the SAR11 clade (Delmont et al.
2019) (Fig. 8.6). Similarly, the “genomospecies concept” represents a species that
can be differentiated from others based on the average nucleotide identity (ANI)
value by comparative genomics, phylogenomic and fragment recruitment analyses
(Haro-Moreno et al. 2020). Alternatively, the reverse ecology approach (Arevalo

Close pangenomePangenome of prokaryotes

Open pangenomes

Core genome: 

48-56% SAR11 clade (Grote et al., 2012)

40-67% Prochlorococcus (Kettler et al., 2007; Delmont & Eren 2018)

54% Shewanella (Konstantinidis et al., 2009)

30% Alteromonas macleodii (

Core genome:  
57%. Natural clones of Kordia spp. (Royo-Llonch et al., 2020)

core genome

Fig. 8.6 Visual representation of the pangenome concept for genomes of bacteria and archaea. The
pangenome classifies de genetic repertoire of a species into the core genome, that includes all genes
shared between all individuals categorized as the same species, and the flexible genome, which
includes the gene pool that is partially shared or strain-specific. Depending on the genome size and
genetic diversity of each species, the pangenome can be open or close (some examples from the
literature are shown). Figure courtesy of Dr. Marta Royo-Llonch from SHOOK Studio (https://
www.instagram.com/shookstudio/?hl¼en)
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et al. 2019; Shapiro and Polz 2015) used on isolate’s genomes or single cell genomes
relies on the identification of microbial populations as gene-flow units using network
analyses. This approach enables the delineation of ecologically relevant populations
and the identification of genes that have been under recent positive selection
(Arevalo et al. 2019; Shapiro et al. 2012). All these alternatives will become more
powerful when applied at large scale using uncultured genomes from different
oceanic regions spanning a wider array of phylogenetic taxa, which will altogether
enhance our knowledge on the evolution processes driving microbial speciation.

8.5 Future Perspectives

Despite last years’ integrative research has boosted the knowledge of the marine
microbiome to an unprecedented scale, as overviewed in this chapter, it is still
insufficient for understanding the functioning of the microbiome and how it will
respond to climate change-driven alterations. Here, we discuss some of the issues
that in our opinion will become increasingly important in marine microbiome
research.

• Large-scale sequencing and inputs from new technologies. Analyses of marine
microbial communities from global circumnavigations have pointed out that only
the “tip of the iceberg” has been unraveled and that even larger sequencing efforts
are necessary to cover the immense genetic diversity of marine microbiomes. The
generation of high-quality genomic references (using long read sequencing such
as Nanopore) should be a priority to enhance the genome completeness and
quality of SAGs and MAGs.

• Large-scale single cell genomics studies. Extending the analyses of SAGs at large
scale from a wide array of phylogenetic taxa combined with cutting-edge analyses
of population genomics will enhance our knowledge of the evolutionary pro-
cesses driving microbial speciation.

• Increasing efforts in high-throughput culturomics. Large marine microbial cul-
ture collections will improve the microbial reference gene catalogs and will also
be a fundamental tool to investigate the physiology of marine bacteria and
archaea and to test physiological traits inferred from -omics data.

• The scale matters. Choosing the right spatial and temporal scales is essential to
fully comprehend microbial processes in the ocean and to understand the triggers
driving changes in community composition and ecosystem function. Despite the
increasing effort to move from local to global scales, analyses at the fine scale are
still lacking, such as how sub-mesoscale oceanographic features drive changes in
the composition and function of the marine microbiome. Other unique features
like the deep scattering layer, which is a hotspot for microbial activity, deserves
further investigation. Likewise, at the temporal scale, highly resolved sampling
over long periods must be carried out to be able to investigate the stability and
repeatability of short-term changes.
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• Expand environmental genomic datasets, particularly on the temporal dimen-
sion. Global expeditions have an incalculable value. Yet, they provide a snapshot
of the marine microbiome at the moment of sampling. Repeated global
expeditions at different times of the year in combination with time series from
different latitudes will be necessary to have a complete view of the marine
microbiome.

• Beyond DNA sequencing. DNA-based approaches have been highly informative
on the diversity, potential metabolic capabilities, and evolution of the uncultured
majority, but more effort should be invested towards understanding how this
genetic information translates into function. The extended use of other -omics
approaches, such as metatranscriptomics, metaproteomics, and metabolomics,
will help to identify which metabolic processes are actually occurring in the
environment and their magnitude. Likewise, the application of next generation
physiological approaches such as BONCAT and Raman will be pivotal to
experimentally validate information inferred from -omics data. A multifaceted
approach in microbiome research is needed to grasp the relevance that the
observed diversity has for ecosystem functioning.
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