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Abstract

Marine-associated microbiome is known as a hub for novel chemistry and
biology by producing interesting pharmacophores. Thus, in the area of natural
product drug discovery, contribution and attention toward marine natural product
investigation is a growing trend. The rapid swift in exploring the sea for harvest
untapped plethora of marine resources to investigate associated microorganisms
such as bacteria, fungi, and cyanobacteria are facilitated by technological
advances. This chapter discusses the importance of chemical diversity of the
marine microbiome in the natural product drug discovery pipeline giving specific
reported examples of promising marine-derived bioactive candidates, as well as
intriguing strategies to ramp up the discovery of pharmacologically inspiring
secondary metabolites out of the marine microbial biosynthesis process.
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17.1 Introduction

Natural Products (NPs) continue to be one of the most inspiring sources for the
development of new drugs due to their impressive chemical diversity and potent and
selective biological activity. The structure of more than 450,000 NPs is available
from a variety of different databases such as PubChem, REAXYS, ChEMBL, ZINC,
NaprAlert, Natural Product Atlas, and SuperNatural II (Pereira 2019). The higher
success rate of marine natural compounds (MNPs) (1 in 3500 MNPs against the
industry-based average for synthetic compounds of (1 in 5–10,000 compounds) has
led to the rejuvenation of interest in NP-like scaffolds for drug discovery campaigns.
New approaches are required to combat the perceived disadvantages of NPs com-
pared to synthetic drugs, such as the difficulty of access and supply, the complexity
of NP chemistry and structure elucidation, and the slowness of working with NPs
(Pereira and Aires-de-Sousa 2018).

MNP research is developing continuously with more new compounds added
every year (Fig. 17.1). This rapid development in MNP discovery is associated
with various technological advances (e.g., iChip, co-culture, OSMAC, and epige-
netic manipulations) that have facilitated the exploration of this huge mine of
chemical entities. To date, the global pharmaceutical pipeline from marine sources
consists of thirteen approved drugs, ten of which are anticancer drugs (Table 17.1).
Currently, there are about 23 marine natural products or antibody–drug conjugates in
Phase I to Phase III clinical trials mainly in the area of cancer therapy (Jaspars et al.
2016; https://www.midwestern.edu/departments/marinepharmacology/clinical-pipe
line.xml). There are four marine natural products currently in Phase III clinical trials

Fig. 17.1 Marine natural products discoveries till 2018 extracted from Marine Natural Products
periodic reviews—Natural Product Reports—Royal Society of Chemistry
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Table 17.1 Approved drugs from MNPs and derivatives (https://www.midwestern.edu/
departments/marinepharmacology/clinical-pipeline.xml)

Compound
name

Marine
organism

Chemical
class

Molecular
target Disease associated

Lurbinectedin Tunicate Alkaloid RNA
Polymerase
II

Cancer: metastatic small
cell lung cancer

Belantamab
Mafodotin-
blmf

Mollusk/
cyanobacterium

ADC
(MMAE)

BCMA Relapsed/refractory
multiple myeloma

Enfortumab
vedotin

Mollusk/
cyanobacterium

ADC
(MMAE)

Nectin-4 Cancer: metastatic
urothelial cancer

Polatuzumab
vedotin

Mollusk/
cyanobacterium

ADC
(MMAE)

CD76b &
microtubules

Cancer: non-Hodgkin
lymphoma, chronic
lymphocytic leukemia,
lymphoma, B-cell
lymphoma

Plitidepsin Tunicate Depsipeptide eEF1A2 Cancer: multiple
myeloma, leukemia,
lymphoma

Trabectedin
(ET-743)

Tunicate Alkaloid Minor
groove of
DNA

Cancer: soft tissue
sarcoma and ovarian
cancer

Brentuximab
vedotin

Mollusk/
cyanobacterium

ADC
(MMAE)

CD30 &
microtubules

Cancer: anaplastic large
T-cell systemic malignant
lymphoma, Hodgkin’s
disease

Eribulin
mesylate
(E7389)

Sponge Macrolide Microtubules Cancer: metastatic breast
cancer

Omega-3-
acid ethyl
ester

Fish Omega-3-
fatty acids

Triglyceride-
synthesizing
enzymes
(TSE)

Hypertriglyceridemia

Eicosapenta
enoic acid
ethyl ester

Fish Omega-3-
fatty acids

TSE Hypertriglyceridemia

Omega-3-
carboxylic
acid

Fish Omega-3-
fatty acids

TSE Hypertriglyceridemia

Ziconotide Cone snail Peptide N-Type Ca
channel

Pain: severe chronic pain

Vidarabine
(Ara-A)

Sponge Nucleoside Viral DNA
polymerase

Antiviral: Herpes simplex
virus

Cytarabine
(Ara-C)

Sponge Nucleoside DNA
polymerase

Cancer: Leukemia
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which include three anticancer compounds (plinabulin, lurbinectedin, and
salinosporamide A) and one analgesic (tetrodotoxin). In phase II there are
12 MNPs and derivatives, from those three are small molecules: one anticancer
(plocabulin) and two against Alzheimer’s disease (bryostatin and DMXBA). All the
remaining nine MNPs and their derivatives in the clinical trials (phase I) are
recognized as anticancer antibody–drug conjugates.

It is worth noting that the availability of funding has had a great influence on the
biological activity space of MNP, e.g., 10 out of the 13 approved MNPs drugs and
19 out of the 23 MNPs and derivatives in all clinical trial phases have anticancer
activity. This is correlated with the National Institutes of Health (NIH)/National
Cancer Institute (NCI) being the leading funding agency in the USA for MNP
research over many years (Newman and Cragg 2016).

In this chapter, the importance of marine natural products from different sources
with examples of potential bioactive molecules as well as advances in discovery
strategies will be discussed.

17.2 The Current Status of Marine Microbe-Derived Drug
Discovery

17.2.1 Marine Bacteria

Like other marine microorganisms, marine bacteria have evolved unique metabolic
pathways that enable them to survive in harsh environments and to biosynthesize
their own specialized metabolites that terrestrial bacteria may lack. The number of
new metabolites originating from marine bacteria increased exponentially after the

Fig. 17.2 Numbers of new marine bacteria-derived natural products from 2000 to 2018
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year 2000 (Fig. 17.2) (Blunt et al. 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018; Carroll et al. 2019, 2020). Until
the end of the year 2018, the continued interest in discovering novel bioactive
compounds from marine bacteria led to the isolation of around 4500 metabolites,
many of which showed promising broad-spectrum bioactivities, particularly antican-
cer and antimicrobial properties.

Marine actinomycetes are considered to be the major source of new chemical
entities, notably Streptomyces that have accounted for about 38% of newly discov-
ered marine bacteria-derived natural products. Marine bacteria are often isolated
from marine sediments and from marine macro-organisms (e.g., sponges, corals, or
algae) but also from extreme habitats such as the deep-sea and hypersaline lakes
(Jones et al. 2019).

17.2.1.1 Early Discoveries of Marine Bacterial Natural Products
Isatin (1) was one of the earliest reported antimicrobial and anticancer metabolites.
This compound is produced by several bacterial strains that colonize the surface of
embryos of the shrimp Palaemon macrodactylus, which protects these embryos
against the pathogenic fungus Lagenidium callinectes (Gil-Turnes et al. 1989).
The Alteromonas luteoviolaceus-derived metabolite possesses broad-spectrum anti-
microbial activity and its biosynthetic pathway has been fully elucidated (Laatsch
2017). The research interest in marine actinomycetes started to expand from the
beginning of the 1990s when the unusual bicyclic depsipeptides salinamide A and B
(2 and 3) were reported from a Streptomyces sp. that was isolated from the jellyfish
Cassiopeia xamachana. Both depsipeptides exhibited moderate antibiotic activity
but they had potent in vivo anti-inflammatory potential (Moore et al. 1999;
Trischman et al. 1994). In 1994, the highly brominated pyrrole antibiotic
pentabromopseudiline (4) was among the first reported marine bacteria-derived
metabolites. The growing interest in marine actinomycetes as producers of bioactive
compounds continued into this century and only in the period 2000–2002 nearly
250 new compounds have been reported from this group of microorganisms. During
the same period, the number of reported new metabolites produced by terrestrial
actinomycetes did not exceed 150 (Laatsch 2017). Although the exploration of
marine actinomycetes as a source for new bioactive metabolites was at an early
stage, numerous interesting compounds have been isolated during the period of
2000–2005. For example, the novel polycyclic polyketide antibiotic abyssomicin C
(5) was reported from a marine Verrucosispora (Riedlinger et al. 2004). This
unusual compound interferes with the biosynthesis of p-aminobenzoic acid and
inhibits the biosynthesis of folic acid at an earlier stage than do the traditional
sulfa drugs (Bister et al. 2004). As a result, abyssomicin C and its analogs showed
antibacterial activity toward a broad spectrum of pathogenic bacteria including those
that are multiple antibiotic resistant (Rath et al. 2005). Diazepinomicin (6) is another
example of a unique farnesylated dibenzodiazepinone isolated from a marine-
derived Micromonospora (Charan et al. 2004). This compound exhibits a wide
spectrum of biological activities ranging from antibacterial to anticancer. In 2006,
diazepinomicin (aka ECO-4601) has been submitted for clinical trials as an
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anticancer agent for many types of tumors and has successfully completed phase
1 trials (https://go.drugbank.com). Furthermore, a novel β-lactone-γ-lactam metabo-
lite, salinosporamide A (NPI-0052, 7), was reported from a new obligate marine
actinomycete, Salinispora tropica (Feling et al. 2003). This halogenated metabolite
is an orally active proteasome inhibitor and can induce apoptosis in multiple
myeloma cancer cells with a unique mode of action (Chauhan et al. 2005). In
2007, NPI-0052 (7) was submitted for clinical trials as an anticancer agent for
multiple myeloma and its evolution through phase 2 clinical trials is ongoing
at the time of writing of this chapter (https://clinicaltrials.gov/ct2/show/NCT004
61045).

17.2.1.2 Recently Discovered Marine Bacterial Natural Products
With the advances in structural biology and fermentation processes marine bacteria
have gained much attention in the fields of bioremediation and biotechnology
(Andryukov et al. 2019). Moreover, extensive investigation of the biosynthetic
pathways of marine-derived bacteria revealed that more than 70% of the secondary
metabolites they produced were non-ribosomal peptides (NRPs), polyketides (PKs),
and mixed PKS-NRPS (Pinu et al. 2017; Wang and Lei 2018). Most of these classes
of metabolites have antimicrobial and anticancer potential. Terrestrial actinomycete-
derived metabolites also produced a large number of NRPs and PKs but marine
bacteria produce a greater chemical diversity of these molecules. Hence, the focus on
exploring metabolic pathways of NRPs and PKs in marine bacteria, particularly in
actinomycetes, has dramatically increased in recent years (Andryukov et al. 2019).

Over the last decade, lipopeptides were amongst the most frequently reported
marine bacteria-derived metabolites with promising antimicrobial potential.
Halobacillin (8) and methylhalobacillin (9) are examples of two cyclic lipopeptides
obtained from bacteria isolated from deep-sea sediments (Zhou and Guo 2012). Both
metabolites showed high efficacy against the growth of human colon tumor cells
(IC50 0.98 μg/mL) (Mondol et al. 2013). Polyketides are another large class of
microbial natural products that have provided many successful pharmaceutical
products. Marine bacteria have further extended the chemical space of polyketides
with several novel compounds (Tareq et al. 2012). The antibiotics ieodoglucomides
A and B (10 and 11) show broad-spectrum antibacterial activity (MIC ~8 μg/mL)
and selective cytotoxicity against human lung cancer cells (IC50 17 and 25 μg/mL,
respectively). Both polyketides were recovered from the marine sediment-derived
Bacillus licheniformis (Tareq et al. 2012). The antibiotic TP-1161 (12) is another
thiopeptide-polyketide that was isolated from the marine actinomycete Nocardiopsis
sp. (Engelhardt et al. 2010). This unusual metabolite shows in vitro antibacterial
activity against a panel of Gram-positive bacteria (with MICs varying from 0.25 to
4 μg/mL). Additionally, TP-1161 is able to inhibit the growth of vancomycin-
resistant bacterial strains, including Enterococcus faecalis and Enterococcus
faecium at MIC ¼ 1 μg/mL (Engelhardt et al. 2010).
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17.2.2 Marine Fungi

Fungi form part of marine microbiological communities and are present as
saprotrophs, parasites, or symbionts in all ecosystems. There is considerable interest
in marine fungi due to the structural diversity of their natural products. Despite the
discovery of several interesting bioactive compounds from marine fungi, the number
of these products that were isolated has increased only slowly over a long period of
time. To date, only ~1100 species of fungi have been described from marine
environments, although estimates of the total number of fungal species range from
1.5 to 5 million (Jones et al. 2019). Researchers discovered that the same marine
fungal species obtained from distant geographical locations produce different
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metabolites. Until 2002, only 270 natural products were reported from marine fungi.
Thereafter, this number increased and reached 1120 by the end of 2010 (Rateb and
Ebel 2011). The discovery of more new marine fungal bioactive compounds
continued to increase and in the year 2018 alone 760 new compounds reported
(Fig. 17.3). This data indicates that by the end of 2018 the total number of newly
discovered natural marine fungal products reached approximately 4400.

The broad-spectrum antibiotic cephalosporin C (13) has been known since 1955
and has been obtained from the fungus Acremonium chrysogenum that was isolated
from seawater sampled near a sewage outfall of the Sardinian coast (Abraham 1979).
The tubulin depolymerizing agent diketopiperazine halimide (14) was isolated from
the fungus Aspergillus sp. (Fenical et al. 1998). This molecule was later used for the
development of the closely related synthetic analog plinabulin (NPI-2358) (15)
which is currently in the clinical trial phase. Plinabulin is the lead asset of
BeyondSpring Pharmaceuticals and is currently in the late stage III clinical phase
and its intended use will be to avoid chemotherapy-induced neutropenia in non-
small-cell lung- and brain tumors (https://clinicaltrials.gov/ct2/results?
term¼plinabulin&pg¼1).

The small contribution that marine fungi have made up-to-date to the discovery of
new drug leads may be attributed to the fact that the chemical investigation of these
microorganisms for the production of promising bioactive metabolites has been
virtually neglected between 1980 and 1992. By the end of the 1980s, only 15 sec-
ondary metabolites had been reported as being derived from marine fungi (Bugni
and Ireland 2004).

Fig. 17.3 Secondary metabolites discovered from marine fungi
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17.2.2.1 Anti-infective Marine Fungal Natural Products
Neoechinulin B (16), an indole prenylated diketopiperazine isolated from the marine
fungus Eurotium rubrum, exhibits a strong inhibitory effect against the H1N1 virus
in infected cells of the MDCK cell line and inhibited clinical isolates of amantadine-,
oseltamivir-, and ribavirin-resistant influenza. The limited toxicity of
Neoechinulin B, its wide-spectrum activity against drug-resistant clinical viral
isolates, and decreased drug resistance induction made it a strong candidate for its
possible use for the treatment of clinically resistant viral isolates (Chen et al. 2015).
Chemical investigation of the gorgonian coral-derived fungus Aspergillus terreus
SCSGAF0162 led to the isolation of the cyclic tetrapeptide asperterrestide A (17)
that inhibits the replication of M2-resistant influenza strain A/WSN/33 H1N1 in
MDCK cells (He et al. 2013). Screening of the Stachybotrys chartarum MXH-X73
marine sponge-associated fungus led to the isolation of phenylspirodrimane
stachybotrin D (18), which inhibits HIV-1 replication by inhibiting reverse tran-
scriptase without being toxic for humans. In addition, evaluation of
phenylspirodrimane stachybotrin D revealed similar inhibitory effects on the repli-
cation of wild and multiple non-nucleoside reverse transcriptase inhibitor (NNRTI)-
resistant HIV-1 strains to HIV-1 (Ma et al. 2013).

Chemical analysis of the marine-derived fungus Stagonosporopsis
cucurbitacearum resulted in the isolation of the pyridone alkaloid didymellamide
A (19), which showed promising antifungal activity against the azole-resistant and
sensitive Candida albicans, C. glabrata, and C. neoformans (Haga et al. 2013).
Sesquiterpene penicibilaene B (20), isolated from Penicillium bilaiae MA-267
recovered from mangrove rhizospheric soil, exhibited selective action against the
plant pathogenic fungus Colletotrichum gloeosporioides (Meng et al. 2014).

Chemical analysis of the sponge-derived fungus Penicillium adametzioides
AS-53 resulted in the discovery of the peniciadametizine A derivative of
dithiodiketopiperazine (21), which exhibited selective antifungal activity against
plant pathogenic fungus Alternaria brassicae (Liu et al. 2015). The alkaloid
varioxepine A (22) was isolated from the marine alga-derived endophytic fungus
Paecilomyces variotii and showed a potent inhibitory effect against the plant patho-
gen Fusarium graminearum (Zhang et al. 2014).

The chemical characterization of Penicillium brocae MA-231 isolated from a
mangrove plant resulted in the isolation of pyranonigrin A (23) with a clear antimi-
crobial activity against several Gram-positive and -negative pathogenic bacteria
(Meng et al. 2015). The bisthiodiketopiperazine derivative adametizine A (24)
isolated from Penicillium adametzioides AS-53, a marine sponge-derived fungus,
showed strong inhibitory activity against Staphylococcus aureus, Aeromonas
hydrophila, Vibrio spp. V. harveyi, and V. parahaemolyticus (Liu et al. 2015).
Aspergillusene A (25), a sesquiterpene isolated from the sponge-associated
fungus Aspergillus sydowii ZSDS1-F6 displayed promising antimicrobial activity
against Klebsiella pneumoniae and Aeromonas hydrophila (Wang et al. 2014).
The isocoumarin derivative penicisimpin A (26) isolated from the mangrove
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plant-derived fungus Penicillium simplicissimum MA-332 exhibited strong activity
against Escherichia coli, Pseudomonas aeruginosa, V. parahaemolyticus, and
V. harveyi (Xu et al. 2016). Diaporthalasin (27), a pentacyclic cytochalasin isolated
from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4 displayed strong
antibacterial activity against both S. aureus and methicillin-resistant S. aureus
(Khamthong et al. 2014). The aminolipopeptide trichoderin A (28) isolated from
the marine sponge-derived Trichoderma sp. exhibited potent anti-mycobacterial
activity against Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis
H37Rv (Pruksakorn et al. 2010).

17.2.2.2 Anticancer Marine Fungal Natural Products
Diaporthalasin (27), a pentacyclic cytochalasin isolated from Diaporthaceae sp., a
marine fungus (SP-SP2/4 PSU) demonstrated substantial antibacterial activity
against both S. aureus and methicillin resistant S. aureus (Khamthong et al. 2014).
Trichoderin A (28) aminolipopeptide was isolated from a marine sponge-derived
Trichoderma sp. and showed potent anti-mycobacterial activity against
M. smegmatis, M. bovis BCG, and M. tuberculosis H37Rv (Pruksakorn et al.
2010). Chemical investigation of the sponge-derived fungus Stachylidium
sp. resulted in the isolation of a phthalimidine derivative mariline A1 (30) with
potent inhibitory activity against the human leukocyte elastase (Almeida et al. 2012).
Chloropreussomerin A (31) was the first chlorinated metabolite in the preussomerin
family and was obtained from the fungus Lasiodiplodia theobromae ZJ-HQ1, an
endophyte isolated from a mangrove plant. Chloropreussomerin A showed a potent
in vitro cytotoxicity against several human cancer cell lines (Chen et al. 2016a).
Chemical screening of the marine fungus Aspergillus ochraceus Jcma1F17 resulted
in the isolation of a member of an unusual class of nitrobenzoyl sesquiterpenoid:
6β,9α-dihydroxy-14-p-nitrobenzoylcinnamolide (32), which exhibited strong cyto-
toxicity against 10 cancer cell lines (Fang et al. 2014). The discovery of 20, structur-
ally diverse, complex indole-diterpene compounds resulted from genome mining of
the fungus Mucor irregularis QEN-189, which was isolated from mangrove plants.
Among them, rhizovarin B (33) showed good activity against the human A-549 and
HL-60 cancer cell lines (Gao et al. 2016). A mangrove-derived endophytic fungus
Pestalotiopsis microspora led to the isolation of the macrolides pestalotioprolides E
(34) and F (35), which show strong cytotoxicity against the murine lymphoma cell
line L5178Y while in addition, pestalotioprolide F shows potent activity against the
human ovarian cancer cell line A2780 (Liu et al. 2016). Chaunolidone A (36), a
pyridinone derivative isolated from the marine fungus Chaunopycnis
sp. (CMB-MF028) showed selective and potent inhibition of human non-small-
cell lung carcinoma cells (NCI-H460) (Shang et al. 2015).
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17.2.3 Marine Cyanobacteria

Cyanobacteria are an ancient group of oxygenic phototrophs equipped with a wide
range of cellular strategies, physiological capacities, as well as other adaptations that
allow their global colonization of a wide range of habitats. They thrive under diverse
and often extreme range of environmental conditions (e.g., in marine environments,
hypersaline lakes, terrestrial environments, freshwater lakes, and thermal springs)
(Kurmayer et al. 2016; Mazard et al. 2016; Whitton and Potts 2012). More than
90 genera of cyanobacteria produce compounds with potential bioactivities, most of
which belong to the orders Oscillatoriales, Nostocales, Chroococcales, and
Synechococcales. In terms of their molecular diversity and relative bioactivity, the
majority of the cyanobacterial orders remain poorly explored. The metabolites of
cyanobacteria with potential bioactivity belong to about 10 different chemical
classes (Demay et al. 2019).

In the marine environment, cyanobacteria occur as free-living organisms but also
live associated with a variety of hosts (e.g., fungi, ascidians, corals, and protists). Up
to the end of 2019, about 550 secondary metabolites were reported from diverse
genera of marine cyanobacteria such as Lyngbya, Moorea, Symploca, and
Oscillatoria. The biosynthetic pathways of cyanobacteria show unusual mechanistic
and enzymatic features that result in the production of bioactive compounds with a
variety of chemical structures (Tan and Phyo 2020). Several pharmacological trends
have been observed amongst the various marine cyanobacterial secondary
metabolites. An important number of molecules possess either potent cytotoxic,
neuromodulating, or anti-infective properties (Aráoz et al. 2010; Costa et al. 2012;
Niedermeyer 2015; Rivas and Rojas 2019). These compounds show potency and
selectivity against human drug targets, including cancer, inflammation, and neuro-
degenerative disorders. As such, these cyanobacterial secondary metabolites are
considered prolific drug leads for drug discovery and development. For instance,
cyanobacteria-derived compounds and their synthetic analogs have been reported as
Antibody–Drug Conjugates (ADCs) and include dolastatin 10, auristatin E, and
OKI-179. These ADCs have undergone or are currently undergoing clinical trials
for the treatment of cancer diseases (Newman and Cragg 2014, 2017). Here we will
discuss some of the mechanisms of the actions of ADCs.

Largazole (37), a cyclic depsipeptide, is a highly potent inhibitor of histone
deacetylase (HDAC) class I, originally discovered as a secondary metabolite of the
marine cyanobacterium Symploca sp. from Key Largo, USA. Largazole possesses a
variety of unusual structural features, including the attachment of a
4-methylthiazoline unit to a thiazole and a 3-hydroxy-7-mercaptohept-4-enoic acid
unit. In comparison with paclitaxel, actinomycin D and doxorubicin exhibited potent
inhibition of growth of transformed human mammary epithelial cells (MDA-MB-
231) with a GI50 of 7.7 nM and exhibited exquisite antiproliferative activity against
transformed fibroblastic osteosarcoma U2OS (GI50 55 nM) over non-transformed
fibroblasts NIH3T3 (GI50 480 nM) (Taori et al. 2008). Carmaphycins A (38) and B
(39) are potent novel proteasome inhibitors isolated in low yield from organic
extracts of Symploca sp. from Carmabi beach, Curaçao. They were evaluated against
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Saccharomyces cerevisiae 20S proteasome and have comparable IC50 of ~2.5 nM.
Such inhibitory effect is similar to that of epoxomicin and salinosporamide A
(Pereira 2012).

The largamide D derivative (41) is generated by intramolecular largamide D
condensation (40). This molecule, compared to largamide D, demonstrated an 11-
and 33-fold decrease in activity against chymotrypsin and elastase, respectively. For
serine protease inhibition, the Ahp moiety is necessary and any structural or confor-
mational changes to this unit will influence the activity (Luo et al. 2016).
Gallinamide A (42) is one of the most potent and selective marine cyanobacterial
antimalarial compounds reported to date, with an EC50 of 74 nM when tested against
Plasmodium falciparum strain 3D7. Plasmodium falciparum-infected red blood
cells treated with nanomolar concentrations of (42) have a swollen food vacuole
phenotype. Using fluorescent probes based on rhodamine fluorophore-tagged
molecules, it was discovered that (42) is a specific inhibitor of plasmodial cysteine
proteases, falcipains 2, 20, and 3. Moreover, for antimalarial activity, the
methoxypyrrolinone unit in gallinamide A is critical (Stolze et al. 2012).

Grassystatins A (43) and B (44) displayed potent inhibitory activity against
aspartyl proteases cathepsins D and E with an average IC50 of 16.9 nM and
0.62 nM, respectively. Moreover, tasiamide B (45) is a statin-containing linear
depsipeptide that displayed a potent activity against cathepsins D and E, with IC50

of 50 nM and 9.0 nM, respectively (Al-Awadhi et al. 2017; Kwan et al. 2009; Tan
et al. 2013; Turk 2006). One of the earliest examples of potent microtubule inhibitors
reported from marine cyanobacteria is the dolastatin class of molecules, especially
dolastatin 10 (46) (Poncet 1999). The apratoxins are a novel class of potent cytotoxic
cyclodepsipeptides reported from several Lyngbya spp. When tested against a panel
of cancer cell lines, including HT29, HeLa, and U2OS, nanomolar concentrations of
apratoxins had a major anticancer effect. A total of nine compounds associated with
apratoxin A has been identified to date with apratoxin A (47) being the most
cytotoxic. Further research on apratoxin has shown that this molecule has a strong
antiangiogenic activity by inhibiting the activation of retinal endothelial cells and
pericytes by mediating multiple angiogenic pathways (Chen et al. 2011). Coibamide
A (48) is a structurally novel cyclic depsipeptide with potent antiproliferative
properties reported from a marine cyanobacterium of Panama. Coibamide A showed
strong cytotoxicity against NCI-H460 lung cancer cells and mouse neuro-2a cells,
with an LC50 less than 23 nM. The compound was tested in the NCI 60-cell line and
it exhibited activities against MDA-MB-231, LOX IMVI, HL-60(TB), and SNB-75
with IC50 of 2.8 nM, 7.4 nM, 7.4 nM, and 7.6 nM, respectively. Coibamide A
specifically targets the trimeric Sec61 translocon’s Sec61 alpha subunit. Binding of
coibamide A to Sec61 resulted in the inhibition of substrate-non-selective ER protein
import and conferred strong cytotoxicity against particular cancer cell lines (Hau
et al. 2013; Serrill et al. 2016; Tranter et al. 2020; Wan 2018).

17 The Hidden Treasure: Marine Microbiome as Repository of Bioactive Compounds 705



706 B. Thissera et al.



17.3 Emerging Strategies for the Exploration of Marine
Bioactive Compounds

17.3.1 In-Situ Isolation Technology

Thousands of microbial species remain un- or underexplored for their capacity to
produce bioactive secondary metabolites as they cannot be grown in synthetic media
(Nichols et al. 2010). The remarkable gap between the microbial richness in the
biosphere and their often estimated as less than 1% culturability under laboratory
conditions has been coined as ‘The Great Plate Count Anomaly’ (Staley and
Konopka 1985). Accessing this missing microbial diversity almost certainly would
lead to the discovery of a hitherto untapped mine of novel bioactive compounds
(Epstein 2013). Recently, there has been an increase in efforts to isolate
extremophiles with the use of cutting-edge equipment aiming to enhance the
culturability of rare microbes. Uncovering marine rare actinomycetes has been
attempted by focusing on deep-sea sediments sampled by using specialized remotely
operated underwater vehicles (Bredholdt et al. 2007; Fenical et al. 1999; Pathom-
Aree et al. 2006). Despite these efforts to obtain sediments and other materials,
laboratory studies are still challenging as the current strategies of altering the
nutritional composition and other physicochemical factors mimicking the natural
habitat are painstakingly slow, emphasizing the need for radically new strategies
(Berdy et al. 2017).

Kaeberlein et al. (2002) introduced the idea of moving the culturing into the
natural habitat which led to the development of the in situ iChip. The use of a
diffusion chamber (Fig. 17.4, 1) allowed naturally occurring growth factors to
diffuse into the synthetic growth medium improving culturability (Berdy et al.
2017; Kaeberlein et al. 2002). Diffusion chambers are equipped on both sides with
a membrane with 20–30 nm pore size. Using the in-situ diffusion chamber tech-
nique, marine microbes from intertidal sediment were serially diluted, mixed with
warm agar made with sea salt, and the inoculated agar was placed in the diffusion
chamber leaving a thin layer of air between agar and the top membrane of the
diffusion chamber. Finally, the incubated diffusion chambers were transferred to an
aquarium in which the natural environment was simulated by filling it with
sediments collected from tidal flat and placing the diffusion chamber on the surface
of the sediment and filling thin layer of air with seawater (Kaeberlein et al. 2002).
The semipermeable membrane allows the exchange of nutrients and other chemicals
between cells and the environment but retains the cells in their confined space. This
resulted in a 300-fold improved recovery of microorganisms compared to conven-
tional Petri dishes (Berdy et al. 2017; Kaeberlein et al. 2002). Subsequent studies
have demonstrated that one to several incubations in a diffusion chamber leads to an
increase in the number and diversity of environmental isolates and the ability to grow
them in vitro (Bollmann et al. 2007).

A miniaturized in situ diffusion chamber has been developed by Ben-Dov et al.
(2009) using a double encapsulation method for in situ culturing of microorganisms
(Fig. 17.4, 2). This method cultures microorganisms in droplets of agar which are
subsequently encapsulated by a polysulfonic polymeric membrane (PPM) forming a
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bilayer surrounding the capsule containing the microorganism. These capsules are
then incubated under simulated or in natural environments such as the mucous
surface of fungia coral or sediment. After incubation until a few generations of
growth of the microorganism they acquired the ability to grow in conventional
laboratory setups, presumably as a result of gradual adaptation to the growth
conditions (Ben-Dov et al. 2009).

The hollow fiber membrane system is another invention that facilitates in situ
isolation of microorganisms from simulated or natural environments (Aoi et al.
2009). The system consists of 48–96 hollow fiber chambers into which diluted
environmental samples can be fed using syringes. One chamber unit consists of a
porous hollow fiber polyvinylidene fluoride membrane (0.1 mm mean pore size,
67–70% porosity, 30 cm length, 1.2 mm outside diameter, 0.76 mm inside diameter)
allowing an exchange of chemicals between microbes and the environment and also
to exchange toxic by-products (Fig. 17.4, 3). The favorable feature of this system is
the supply of various low concentration substrates, facilitating interspecies as well as
intraspecies interactions through quorum sensing and other signaling pathways that
are vital for many microorganisms for growth and survival (Aoi et al. 2009).

The above-mentioned diffusion chamber techniques for in situ isolation suffer
from low throughput mainly because of the laborious isolation procedures needed
for a single species. The diffusion chambers allow colonies containing different
species to grow together, which limits their use for drug discovery (Berdy et al.
2017; Nichols et al. 2010). In order to improve the diffusion chamber technique,
Nichols et al. (2010) invented the isolation chip or iChip (Fig. 17.4, 4). The iChip
contains hundreds of miniature diffusion chambers each of which can accommodate
a single microbial cell. During in situ incubation under simulated conditions or in a
natural habitat, each miniature diffusion chamber allows the culturing of a single
species in one step (Nichols et al. 2010). The iChip is a versatile concept that allows
it to be applied in a variety of different situations such as in soil, in aquatic habitats,
as well as for the human (and other) microbiomes (Berdy et al. 2017). Despite the
high throughput nature of the modern in situ iChip concept, it still suffers from a few
limitations which may require further modifications. Indeed, the isolation in one go
of single colonies from environmental samples provides a non-laborious method for
the isolation and identification of novel species. However, growing in isolation is not
always ideal or even possible for some species as they may depend on symbiotic
relationships or other types of association with other organisms. While the iChip
seems to be an ideal device for an aquatic environment it works less well in a dry
environment because the gel plaques in the micropores with microbes require
moisture from its environment to prevent them from drying. Further modification
may be possible when the microchambers are continuously supplied with water from
the environment. Finally, long-term iChips fixed in position in an aquatic environ-
ment may run into anoxia. The thin layer of oxygen between sediment and the
bottom surface of the iChip may represent an unnatural environment for the targeted
microbes. It is therefore imperative to continuously aerate the water covering the
sediment (Berdy et al. 2017).

Sylvain et al. (2018) developed the initial concept of the iChip of (Nichols et al.
2010) into an automated real time in situ microbial monitoring system called the Eco
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iChip (Fig. 17.4, 5) allowing the real-time measurement of growth conditions at the
different growth phases of the life cycle eliminating the drawbacks associated with
traditional non-automated iChips. This will be an important approach to allow these
previously uncultured microorganisms to be domesticated in the laboratory by the
continuous supply of their natural environmental factors.

The first successful application of the iChip in microbial drug research was the
discovery of the new antibiotic teixobactin (49) (Hunter 2015). Teixobactin was
isolated from an extract of a new species of β-proteobacteria provisionally named
Eleftheria terrae. Another novel bacterium Gallaecimonas mangrovi HK-28,
isolated from mangrove sediments using an in situ iChip, revealed antibacterial
activity against the marine pathogen Vibrio harveyi. Gallaecimonas mangrovi
HK-28 produces three new diketopiperazines gallaecimonamides A�C (50–53)
(Ding et al. 2020; Zhang et al. 2018). A novel antibacterial N-acyltyrosine (54)
was found in a new species of Alteromonas sp. RKMC-009 following application of
an in situ iChip in the marine sponge Xestospongia muta (Macintyre et al. 2019).

17.3.2 Microbial Co-culture

Culturing of two or more microbes as a strategy for the induction of new bioactive
molecules has been applied since the first report of the serendipitous discovery of
penicillin G (Fleming 1929). Growing two microbial species together has been
repeatedly proven successful as a strategy of triggering silent secondary metabolite
gene clusters (Rateb et al. 2013; Thissera et al. 2020). There are several theories that
explain silent genetic perturbation by microbial co-culture in a synthetic environ-
ment (Seyedsayamdost et al. 2012). Co-existence in the natural environment comes
with natural stresses such as competition for food and space or natural antagonism or
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mutualism which may affect gene silencing (Fig. 17.5) (Akone et al. 2019; Reen
et al. 2015; Shin et al. 2018). Triggers relieving gene silencing included tight
physical intimacy of the microorganisms (Cueto et al. 2001; Schroeckh et al.
2009; Wakefield et al. 2017), exchange of signaling molecules (Shi et al. 2020), or
horizontal gene transfer (Kurosawa et al. 2010). The latter is especially the case
when a pathogenic species is co-cultured with a non-pathogenic organism. In this
section, we will discuss the most recent developments in the use of co-culture
strategies to make the drug discovery pipeline more efficient for marine natural
products.

17.3.2.1 Marine Fungal-Bacterial Co-culture
The antibiotic agent pestalone (55) was reported as the first new secondary metabo-
lite produced by a marine fungus Pestalotia sp., isolated from the surface of the
brown alga Rosenvingea sp. that was collected in the Bahamas Islands and while
being co-cultured with an unidentified marine bacterium (Cueto et al. 2001).
Co-culturing of the marine sponge-derived actinomycete S. rochei MB037 with

Fig. 17.5 Natural simulation of co-culture environment over the axenic environment (figure was
produced by using licensed biorender.com software)
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the coral reef-derived fungus Rhinocladiella similis 35 induced two new
antibacterial fatty acids with a rare nitrile group: borrelidins J (56) and K (57)
(Yu et al. 2019). The importance of the co-culture strategy to obtain structural
diversification of bioactive compounds was illustrated by the isolation of ten novel
prenylated 2,5 diketopiperazines 12b-hydroxy-13a-ethoxyverruculogen TR (58),
12b-hydroxy-13a-butoxyethoxyverruculogen TR-2 (59), hydrocycloprostatin A
9 (60), hydrocycloprostatin B (61), 25-hydroxyfumitremorgin B (62),
12b-hydroxy-13a-butoxyethoxyfumitremorgin B (63), 12b-hydroxy-13a-
methoxyverruculogen (64), 26a-hydroxyfumitremorgin A (65),
25-hydroxyfumitremorgin A (66), and diprostatin A (67) with potent BRD4 inhibi-
tory action. These structurally diverse metabolites were produced following
co-culturing of the marine fungus Penicillium sp. DT-F29 and the marine bacterium
Bacillus sp. B31 (Yu et al. 2017).

17.3.2.2 Co-culturing of Marine Bacteria
A new depsipeptide dentigerumycin E (68) with moderate anticancer and
antimetastatic activity was produced in a co-culture of two marine bacteria, Strepto-
myces sp. and Bacillus sp., both isolated from an intertidal mud flat in Wando,
Republic of Korea (Shin et al. 2018). The interspecies bacterial interactions of a set
of marine invertebrates associated Micromonosporaceae were studied using an
innovative co-culture platform. While these bacteria exuded secondary metabolites,
they did not as axenic cultures (Adnani et al. 2015). This co-culture platform was
high throughput compared to conventional Petri dish approaches and it revealed that
12 species out of 65 Micromonosporaceae excreted different secondary metabolites
in different combinations of species. The co-culturing of a Rhodococcus sp. and a
Micromonospora sp. is another noteworthy case in which silent genes were induced.
This led to a new antibacterial bis-nitroglycosylated anthracycline: keyicin (69), that
possesses selective antibacterial activity against Gram-positive bacteria including
Rhodococcus sp. as well as Mycobacterium sp.

17.3.2.3 Co-culturing of Marine Fungi
Oppong-Danquah et al. (2020) used a systematic approach based on comparative
metabolomics and bioactivity to select the best pair of fungi for co-culturing.
Monoculture extracts of the marine fungi Plenodomus influorescens, Penicillium
bialowiezense, Sarocladium strictum, Helotiales sp., two strains of Pyrenochaeta
sp., and two strains of Lentithecium sp. were screened against a series of
phytopathogens followed by ranking them through their antiphytopathogenic
activities. Subsequently, species were paired as weak-weak, weak-strong, strong-
strong on solid agar plates as the best visualizing modes for macro-interactions
(Bertrand et al. 2013). All co-culture extracts were analyzed and compared with their
monoculture extracts using metabolomics and screening for antiphytopathogenic
activity in order to ascertain the deteriorated chemical profiles and enhanced
bioactivities. P. influorescens (strong partner) with Pyrenochaeta nobilis (weak
partner) was selected for a large-scale analysis. This resulted in the isolation of
five polyketides of which dendrodolide N (70) and 8α-hydroxy-spiciferinone (71)
were new (Oppong-Danquah et al. 2020). A co-culture of two fungi of the genus
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Aspergillus (BM-05 and BM-05ML), isolated from a brown alga belonging to the
genus Sargassum collected off the North Sea island Helgoland, produced a new
cyclopeptide psychrophilin E (72), which has an antiproliferative effect against
various cancer cell lines (Ebada et al. 2014). Two strains of Aspergillus sp., isolated
from rotten fruit of the mangrove species Avicennia marina, produced a new
antibacterial alkaloid aspergicin (73) during mixed fermentation (Zhu et al. 2011).
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17.3.3 The OSMAC (One Strain Many Compounds) Approach

In terms of the production of bioactive compounds, the genomes of many promising
marine microorganisms reveal a much larger number of biosynthetic gene clusters
than are expressed under normal culture conditions, hence genetic manipulation may
be required in order to have them expressed (Romano et al. 2018). Approaches such
as gene knock-out (Wang et al. 2006), heterologous or homologous expression,
pathway-specific activation of regulatory or promotor genes, require a full and
precise knowledge of the specific functions of the genes (transcriptional/regulatory
functions). In addition, much biological information about the targeted organisms is
needed, requiring advanced analytical equipment and study of the data that is
generated. Bioinformatics allows the prediction of tentative structures of specialized
metabolites produced by silent genes although it sometimes leads to wrong
conclusions (Kim et al. 2017; Rutledge and Challis 2015). An example of an
incorrect prediction is that for the gene cluster responsible for the biosynthesis of
the pyrrolamides, a family of secondary metabolites known as DNA minor groove
binders. This gene cluster was earlier reported as the gene cluster responsible for
producing congocidine (netropsin) in Streptomyces ambofaciens. However, later
studies demonstrated that there are two distinct pyrrolamide-like gene clusters in
Streptomyces netropsis DSM40486 working reciprocally to produce three
pyrrolamides: distamycin, congocidine, and a hybridized congocidine-distamycin
called disgocidine (Vingadassalon et al. 2015). Without the second study, pathway-
specific activation of only the pyrrolamide gene cluster would not have revealed the
production of the other two pyrrolamides, distamycin and disgocidine as they are
coded in other pyrrolamide-like gene clusters (Vingadassalon et al. 2015). Such
pitfalls can be avoided by the global alteration of microbial physiology (Romano
et al. 2018).

Global alteration of microbial physiology which aims at the whole biosynthetic
network without targeting a specific one or two biosynthetic pathways to trigger
different chemical profiles from single species is termed OSMAC (One Strain Many
Compounds) by Zeeck and co-workers (Bode et al. 2002). However, similar
experiments in which the culture conditions were varied date back to 1975 (Okazaki
et al. 1975). In OSMAC, systematical alteration of culture conditions such as media
composition, aeration, salinity, culture vessels, and temperature result in altered
chemical profiles leading to the discovery of new secondary metabolites. The altered
chemical profile that is obtained as a result of culturing under different conditions is
assumed to originate from the provision of different environmental simulations
causing activation of different biosynthetic pathways without the need for genetic
manipulation (Bode et al. 2002; Romano et al. 2018). Changing environmental
factors influence the biosynthesis of secondary metabolites at different levels such
as at the transcriptome and proteome level (Fig. 17.6).

17.3.3.1 OSMAC with Alteration of Food Source
The earliest example was reported by Okazaki et al. (1975) who used different
nutrient conditions in order to trigger the production of the antibiotic SS-228 Y (74)
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by the marine bacterium Chainia purperogena that was isolated from shallow sea
mud. After a series of optimizations using different media components, only the
medium containing Kobu-Cha (powdered Laminaria seaweed) produced the new
antibiotic SS-228-Y. The marine fungus Spicaria elegans KLA03 produced a new
polyketide eleganketal A (75), possessing a rare and highly oxygenated spiro
[isobenzofuran-1,30-isochroman] ring, when cultured in a modified mannitol-based
medium (NH4Cl as nitrogen source) (Luan et al. 2014). Growing the marine fungus
Scedosporium apiospermum F41�1 in GPY medium boosted alkaloid production.
Growth in GPY medium supplemented with L-tryptophan, L-phenylalanine, L-threo-
nine, and L-methionine resulted in distinct chemical profiles and led to the isolation
of 22 alkaloids, including 18 quinazoline-containing indole alkaloids, three
formamides, and one isocyanide, as well as 14 new scedapins A�G (76-82) and
scequinadolines A�G (83-87). Scedapin C (88) and scequinadolin D (89) have
potential antiviral effects against hepatitis C (Huang et al. 2017).

Fig. 17.6 Different levels of influences by OSMAC in the biosynthesis of secondary metabolites
(figure was produced using licensed biorender.com software)

17 The Hidden Treasure: Marine Microbiome as Repository of Bioactive Compounds 715



17.3.3.2 OSMAC with Solid and Liquid Media
It has been shown that solidified media give rise to different metabolite profiles than
their liquid version. Imanaka et al. (2010) showed that the use of a solid substrate for
the fungus Aspergillus oryzae IAM 2706 led to a more diverse chemical profile than
liquid shaking cultures with the same medium. Contrary to this work, Doran (2013)
argued that the mobility of the nutrients, signaling molecules, oxygen, and foraging,
are less well simulated in a solid medium compared to its liquid counterpart.
However, the improved chemical profile may be understood as the lack of environ-
mental stimulation that otherwise would produce these specialized metabolites in
order to withstand environmental stresses. Another classical example of a possible
chemical profile disparity and induction of new interesting metabolites when cultur-
ing was switched from liquid to solid medium is the marine Penicillium sp. F23-2.
This fungus displayed an altered chemical profile when it was grown on a rice
medium rather than in a liquid potato-based medium. Under these conditions
Penicillium sp. F23-2 produced five new ambuic acid analogs: penicyclones A�E
(90-94), with potential antibacterial activity against Staphylococcus aureus (Guo
et al. 2015).

17.3.3.3 OSMAC with Changes in Physical Factors
Alteration of aeration, temperature, and pH have a strong effect on the production of
microbial secondary metabolites. Aeration increases the metabolic rates and the
conversion of the substrate(s) in the growth medium. This is usually achieved by
shaking culture flasks or by bubbling air (Romano et al. 2018). The hypoxia-driven
decrease in the production of the antibiotic napyradiomycin in the marine strepto-
mycete strain CNQ-525 results in a spike of the intermediate 8-amino-flavioli. The
conversion of 8-amino-flavioli into napyradiomycin is a redox reaction and a
constant aeration is therefore important for the production and the yield of this
antibiotic (Gallagher et al. 2018).

Considering the secondary metabolism of marine microbes, osmotic pressure,
salinity, and pH are among the most relevant physical factors. For instance, habitats
such as the deep sea, intertidal areas, shallow sea sediments, or mangroves all differ
in osmotic pressure, salinity, and dissolved gases, and their microbiomes are adapted
to that. Saha et al. (2005) showed the importance of mimicking the natural sea
salinity conditions for the production of an antibacterial lipid from a marine-derived
actinobacterium. Overy et al. (2017) published a comprehensive systematic study
that confirmed the effect of osmotic pressure and salinity on the growth and
production of secondary metabolites in fungi.

Hitherto, most studies involved tedious, laborious, and low throughput OSMAC
applications in which one factor at time was optimized. Mathematical models are
now used in order to avoid arduous and complicated optimization techniques during
fermentation and improve the reproducibility of methods (Singh et al. 2017).
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17.3.4 Chemical Elicitation

Additions to culture media were made in order to divert existing or induce new
biochemical pathways in microorganisms. Alginate added to a culture of
bifidobacteria (Akiyama et al. 1992) and chitosan to a culture of Fusarium
oxysporum (El Ghaouth et al. 1994) enhanced growth and caused morphological
and structural changes in the microorganisms. These studies indicated that small
molecules reported as elicitors mainly served as signaling molecules (Eberhard et al.
1981; Nealson et al. 1970) or as epigenetic modulators (Shwab et al. 2007).

17.3.4.1 Quorum Sensing Elicitors
The chemical signaling network in Gram-negative bacteria is mainly mediated by
AHLs (Acylated Homoserine Lactones) the release of which exhibits a population
density-dependent regulation. The first report of an AHL involved in cell signaling
was from the symbiotic marine bacterium Vibrio fischeri in which it induced
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luciferase synthesis (Eberhard et al. 1981). Four out of 43 marine snow-derived
bacteria including α-Proteobacteria and Roseobacter spp. produced AHLs that
induced phenotypic traits such as biofilm formation, co-enzyme synthesis, and
antibiotic production (Gram et al. 2002). The use of quorum sensing
(QS) molecules produced by distantly related species to introduce antagonism by
disrupting the native QS system by altering the gene transcription is an intriguing
strategy for the induction of QS-controlled antagonistic secondary metabolites. In
Gram-negative bacteria, native AHL receptors are activated by native AHL as well
as non-native AHL molecules that possess slightly changed structures. Thus, the
exogeneous addition of non-native AHLs might initiate new biosynthetic pathways
by interfering with native QS networks. This phenomenon is demonstrated by the
inhibition of bioluminescence of the marine bacterium Vibrio harveyi by two
phenethylamine metabolites produced by the marine bacterium Halobacillus salinus
by competing with 3-oxo-hexanoyl-homoserine lactone (OHHL) which accounts for
bioluminescence in Vibrio harveyi (Teasdale et al. 2009). N-acetyl-D-glucosamine
(GlcNAc), a component of peptidoglycan in the bacterial cell wall and of chitin in
fungal cell wall, was released into the environment during cell repairing and may
play a role as a signaling molecule (Dashti et al. 2017; Konopka 2012).
Incorporation of GlcNAc in the culture media of the sponge-derived actinobacteria
Rhodococcus sp. RV157 and Actinokineospora sp. EG49 demonstrated the chemical
elicitation of new secondary metabolites. These include the induction of the new
siderophore bacillibactin (95) and the surfactin antibiotic (96) from Rhodococcus
sp. RV157, and the amplification of the new metabolites actinosporins E�H
(97–100) from Actinokineospora sp. EG49 (Dashti et al. 2017).

17.3.4.2 Epigenetic Elicitation
Epigenetic elicitation or genetics-free manipulation allows upregulation of second-
ary metabolite pathways (Ganesan et al. 2019). Achieving epigenetic elicitation by
means of small-molecule epigenetic modifiers is an efficient alternative for invasive
genetic manipulations such as gene knockout, heterologous expression, homologous
expression, and ribosome engineering. Epigenetics is the study of heritable
phenotypes including secondary metabolites without the need to make changes to
the DNA (Pfannenstiel and Keller 2019). In some instances, the biosynthetic gene
cluster is not transcribed (so called “gene silencing”) in eukaryotes, including fungi,
because of the compact arrangement of the DNA strands around histones that form
tightly packed nucleosomes. This is a reversible enzymatic process. The three main
regulatory enzymes taking part in this process are histone acetyltransferases (HAT),
histone deacetylases (HDAC), and DNA methyltransferase (DMT). These enzymes
alter the nature of the packaging of DNA around histones by adding –CH3 or –C
(¼O)–CH3 (Ac) into DNA or histone tails. Incorporation of acyl moieties into
histone tails driven by HAT, forming loosely packed chromatin (so called euchro-
matin regions), makes the conserved biosynthetic gene clusters (BGCs) available for
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transcription. While the incorporation of –CH3 into DNA or histone tails driven by
respectively DNMT and HDAC does the opposite action of acyl moieties making the
chromatin packaging denser and tighter, forming so-called heterochromatins leaving
them more conserved and transcriptionally inactive (Ganesan et al. 2019; Jin et al.
2011; Pfannenstiel and Keller 2019) (Fig. 17.7). The reverse action of HAT is driven
by HDAC re-producing heterochomatins showing the importance of HDAC
inhibitors (HDACi) thereby triggering cryptic gene activation. The use of DNMT
inhibitors (DNMTi) discourages the formation of heterochromatin (Mao et al. 2018;
Pfannenstiel and Keller 2019; Ramadan et al. 2015).

HDACi are small molecules and beneficial for use in oncology as promising
cancer therapies. Their ability to revert abnormal epigenetic features associated with
many types of cancers made them popular as anticancer medication (Hull et al. 2016;
Sanaei and Kavoosi 2019). In eukaryotes, HDACi are known to regulate gene
expression at different levels such as transcription factor activity, miRNA expres-
sion, and signal transduction pathways (Alao 2004; Fournel et al. 2008; Hull et al.
2016; Romano et al. 2018). These findings encouraged researchers to use HDACi for
the induction of cryptic pathways in fungi to discover the hidden genome and hence
the discovery of new secondary metabolites. The first application of HDACi was an
induction of new metabolites from Alternaria alternata and Penicillium expansum
with HDACi and the antifungal antibiotic trichostatin A (Shwab et al. 2007). This
introduced the use of HDACi inhibitors into microbial natural product chemistry.
The main mechanism of cryptic induction by HDACi is by inhibiting the histone
deacetylases leaving the euchromatins accessible for gene transcription and initiating
new cryptic biosynthetic pathways (Janssens et al. 2019; Pfannenstiel and Keller
2019). The marine microbiome has been reported to be a profound resource for
producing HDAC inhibitors which are currently being used as promising anticancer
therapies such as chromopeptide A (101), a depsipeptide isolated from the marine

Fig. 17.7 Cryptic gene induction by epigenetic elicitors (figure was produced using licensed
biorender.com software)
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sediment-derived bacterium Chromobacterium sp. (Sun et al. 2017). Varghese et al.
(2015) demonstrated the importance of marine actinomycetes for the production of
HDACi. A study involving a variety of fungi, including several marine species, was
conducted in order to assess the broad-spectrum elicitation effect on their chemical
profiles by both HDACi and DNMTi (Williams et al. 2008). This demonstrated the
importance of these molecules for cryptic induction. The study of Williams et al.
(2008) showed that the marine fungus Cladosporium cladosporioides, treated with
HDACi suberoylanilide hydroxamic acid, produced a complex series of
perylenequinones, including the new metabolites cladochromes F (102) and G
(103) along with four known cladochromes.

Basically, the mode of cryptic induction by DNMTi is by reversing the action of
DNMT, which catalyzes the amalgamation of methyl groups from S-adenyl methio-
nine to the fifth carbon of a cytosine residue to form 5-methylcytosine. Methylated
DNA strands enhance the attractive forces with histones wrapping tightly around
them making DNA transcriptionally quiescent (Moore et al. 2013). The marine
fungus Cochliobolus lunatus treated with well-known DNMTi 5-azacytidine
induced two new biologically active α-pyrones: cochliobopyrones A (104) and B
(105) (Wu et al. 2019). In another study with the same species (strain TA26–46), the
organism was cultured with exogenously incorporated 5-azacytidine. This study
exemplifies the potential cryptic induction by producing seven new diethylene
glycol phthalate esters: cochphthesters A �G (106–111) (Chen et al. 2016b).

The application of epigenetic elicitors in the cryptic induction of bacterial species
was not encouraging due to the absence of highly organized DNA and histone
complexes forming nucleosomes. This explains the failure of the epigenetic elicita-
tion by HDACi and DNMTi. However, several studies have reported the possible
epigenetic elicitation in bacterial cells by HDACi and DNMTi (Moore et al. 2012;
Okada and Seyedsayamdost 2017). The identification of natural and synthetic
elicitors at the microscale level, for instance, the ground-breaking invention of
high throughput elicitor screening, (HiTES) (Seyedsayamdost 2014) and its recent
advancement HiTES-IMS (Seyedsayamdost 2019) will be intriguing for future
applications in the area of chemical elicitation.
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