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Preface

The good of Hamilton is not in what he has done but in the work (not nearly half done)
which he makes other people do. But to understand him you should look him up, and go
through all kinds of sciences, then you go back to him, and he tells you a wrinkle.

James Clerk Maxwell

In 1808, when he was 2 years old, William Rowan Hamilton was sent to live with
an aunt and uncle, Elizabeth and James Hamilton, in Trim, County Meath. James
Hamilton was a classics scholar and graduate of Trinity College Dublin, and was
headmaster of a diocesan school for boys. He soon recognized that his nephew
showed extraordinary promise, and gave him intensive training in languages and
the classics.

While he prepared for entrance to Trinity College, Hamilton became interested
in mathematics, particularly analytic geometry. At the age of 17, he was reading
Théorie des Fonctions Analytiques and Mecanique Analytique by Lagrange in
addition to the books prescribed for the undergraduate science course at Trinity.

At Trinity College, Hamilton pursued a dual course in science and the classics—
although he found it increasingly difficult to maintain his interest in the latter—and
also began independent research on geometric optics as a natural extension of his
interest in analytic geometry. His work led to a paper, “Theory of Systems of Rays”
[37], which he presented to the Royal Irish Academy in April 1827. Primarily on
the basis of his original research in optics, he was elected to the position of Andrews
Professor of Astronomy at Trinity College in June 1827.

Hamilton’s theory of ray optics was a variational theory. It was based on the
principle, due to Fermat, that a light ray traveling between two points will follow
the path that requires the least time. In the course of his work on optics, he also began
to consider the possibility of developing an analogous theory for the dynamics of
systems of particles. This resulted, in 1834–1835, in two papers, “On a General
Method in Dynamics” [38] and “Second Essay on a General Method in Dynamics”
[39]. In the second paper, he presented the result that is known today as Hamilton’s
principle.

v



vi Preface

Hamilton’s general and elegant work on dynamics was widely quoted but not
extensively applied during the remainder of the nineteenth century. However, when
quantum mechanics was developed, it was realized that Hamilton’s work was the
most natural setting for its formulation. In fact, in retrospect, Hamilton’s formal
analogy between optics and classical mechanics was seen as a precursor of wave
mechanics.

A similar historical development has occurred in the field of continuum mechan-
ics. Although formulations of Hamilton’s principle for continua began to appear as
early as 1839, with the exception of applications to structural analysis, variational
methods in continuum mechanics were regarded as academic, because the same
results could be obtained using more direct methods. Some modern treatises on
continuum mechanics do not mention variational methods. In recent years, however,
interest in variational methods has increased markedly. They have been used
to obtain approximate solutions, as in the finite element method, and to study
the stability of solutions to problems in fluid and solid mechanics. Variational
formulations have also been used to develop generalizations of the classical theories
of fluid and solid mechanics.

The objective of this monograph is to give a comprehensive account of the use of
Hamilton’s principle to derive the equations that govern the mechanical behavior of
continuous media. The classical theories of fluid and solid mechanics are discussed
as well as two generalizations of those theories for which Hamilton’s principle is
particularly suited—materials with microstructure and mixtures.

These topics are brought together for the first time to acquaint readers who are
new to this subject with an interesting and powerful alternative approach to the
formulation of continuum theories. Persons interested in fluid and solid mechanics
will gain a broadened perspective on those subjects as well as learn the fundamental
background required to read the large literature on variational methods in continuum
mechanics. For readers who are familiar with these methods, a number of recent
results are presented on applications of Hamilton’s principle to generalized continua
and materials containing singular surfaces. These results are presented in a setting
that could encourage generalizations and extensions.

Hamilton’s principle was originally expressed in terms of the classical mechanics
of systems of particles. The concepts and the terminology involved in applying
Hamilton’s principle to continuum mechanics are quite similar, and some familiarity
with the applications to systems of particles is very helpful in understanding the
extension to the case of a continuum. The application of Hamilton’s principle to
systems of particles is therefore briefly discussed in Chap. 1. This subject provides
a simple context in which to introduce the variational ideas underlying Hamilton’s
principle as well as the method of Lagrange multipliers and the concept of virtual
work.

Chapter 2 provides a brief survey of the mathematics and elements of continuum
mechanics that are required in the subsequent chapters. Most of this chapter can
be skipped by persons familiar with modern continuum mechanics; however, even
those who are acquainted with variational methods in continuum mechanics should
briefly examine Sect. 2.3 before proceeding to the following chapters.
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Applications of Hamilton’s principle to a continuous medium are described in
Chap. 3. Ideal fluids and elastic solids are treated in Sects. 3.1.1 and 3.1.2. The
general case of a continuum that does not exhibit microstructural effects is presented
in Sect. 3.1.3. Section 3.2 presents applications of Hamilton’s principle to two
particular theories of materials with microstructure. These applications illustrate the
use of Hamilton’s principle to generalize the ordinary theories of fluid and solid
mechanics. Persons who are new to this subject may choose to omit this section and
the following chapter in a first reading.

As another example of the use of Hamilton’s principle to develop generalized
continuum theories, applications to mixtures are described in Chap. 4. The fact
that the sum of the volume fractions of the constituents of a mixture must equal
one at each point can be introduced into Hamilton’s principle using the method of
Lagrange multipliers. As a result of “wrinkles” such as this, Hamilton’s principle
provides a simple and elegant way to derive continuum theories of mixtures. A
mixture of ideal fluids is discussed in Sect. 4.2. The case of a liquid containing
a distribution of gas bubbles is treated as an example, including the microkinetic
energy associated with bubble oscillations. In Sect. 4.3, a mixture of an ideal fluid
and an elastic material is considered, and it is shown that the equations obtained
through Hamilton’s principle are equivalent to the Biot equations. A theory of
mixtures of materials with microstructure in which the constituents need not be
ideal or elastic is presented in Sect. 4.4.

In Chap. 5 a discussion is given of the application of Hamilton’s principle to a
continuous medium containing a surface across which the fields that characterize the
medium, or their derivatives, suffer jump discontinuities. The fundamental results
required to include a singular surface in a statement of Hamilton’s principle are
presented in Sect. 5.1. An elastic fluid is treated as an example in Sect. 5.2, and it
is shown that Hamilton’s principle yields the jump conditions of momentum and
energy across the surface.

The results presented in this monograph are expressed in a modern framework.
Persons wishing to gain an impression of Hamilton’s research in its original form
should consult his collected works [40,41]. The definitive references on Hamilton’s
life are Graves [32] and Hankins [42]. In Chaps. 1–3, the sources that have been
used are cited, but no attempt is made to give complete or original references except
for results that are relatively recent. In Chaps. 2 and 3, particular reference is made to
works by M. E. Gurtin. The responsibility for errors or misinterpretations of course
rests with the author. Chapters 4 and 5 are based in large part on work done by
the author in collaboration with D. S. Drumheller and G. Batra. One motivation
for writing this monograph was to present these results in their classical context,
together with a complete discussion of the foundations.

Hamilton’s research anticipated modern trends in mechanics in two respects. He
approached problems primarily from the perspective of a mathematician, and he
consistently sought the greatest possible generality in his results. It is a measure of
his success that, 150 years after the publication of his two great works on mechanics,
his results continue to find new and fruitful applications.
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Nomenclature

Definitions of frequently used symbols. The pages on which they first appear are
shown in parentheses.

a Acceleration of a material point (22)
CN Indicates a function has N continuous derivatives (1)
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DIV Divergence (19)
e Internal energy (35)
E Linear strain tensor (25)
F Deformation gradient (22)
grad Gradient (23)
GRAD Gradient (19)
J Jacobian (22)
L Lagrangian (7)
L Velocity gradient (23)
qk Generalized coordinate (5)
S First Piola–Kirchoff stress tensor (42)
T Kinetic energy (5)
T Cauchy stress tensor (43)
U Potential energy (5)
v Velocity of a material point (22)
x Real variable (1)
x Current position of a material point (21)
X Reference position of a material point (21)
χ Motion of a continuous medium (21)
δ(·) Variation of (·) (8)
δkm Kronecker delta (16)
δW Virtual work (11)

xiii



xiv Nomenclature

ε Scalar parameter (2)
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Chapter 1
Mechanics of Systems of Particles

1.1 The First Problem of the Calculus of Variations

Before Hamilton’s principle is introduced, some preliminary comments on the
calculus of variations are necessary. Hamilton’s principle is closely related to what
is called the first problem of the calculus of variations, which can be introduced by
a simple example.

Let x be a real variable, and let the closed interval x1 ≤ x ≤ x2 be denoted
by [x1, x2]. A function y(x) is said to be CN on [x1, x2] if the N th derivative of
y(x) exists and is continuous on [x1, x2]. The value of a derivative at an endpoint is
defined to be the limit of the derivative as the endpoint is approached from within
the interval.

Let x1, y1 and x2, y2 be two fixed points in the x-y plane, with x1 < x2, and let
y(x) be a C1 function on [x1, x2] such that y(x1) = y1 and y(x2) = y2. Thus y(x)

describes a smooth curve that joins the two points, as shown in Fig. 1.1.
The length of the curve joining the two points is

L =
∫ x2

x1

√
1 + (y′)2 dx, (1.1)

where y′ = dy/dx. Consider the following question: Can a smooth curve joining
the two points be found such that its length is a minimum in comparison with other
such curves? That is, among functions y(x) that are C1 on [x1, x2] and satisfy the
conditions y(x1) = y1 and y(x2) = y2, can one be found for which the value of the
integral (1.1) is a minimum?

The first problem of the calculus of variations is a generalization of this simple
problem. Consider the integral

I =
∫ x2

x1

f
(
x, y, y′) dx, (1.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Mechanics of Systems of Particles

Fig. 1.1 A smooth curve
joining two points in the x-y
plane

where f is a given function of the arguments x, y and y′, and the values y(x1) = y1
and y(x2) = y2 are prescribed. The value of the integral (1.2) depends on the
function y(x). A scalar-valued function such as this whose argument is itself a
function is called a functional. As in the previous example, the question is whether
a function y(x) can be found such that the value of the integral is a minimum.

Certain restrictions are imposed on the functions y(x) and f by the statement of
the problem, the procedures that will be used in seeking its solution, and often by
the physical nature of a specific application. Here consideration will be limited to
functions y(x) that satisfy the prescribed values at x1 and x2 and are C2 on [x1, x2].
Functions y(x) having these properties will be called admissible. It will also be
assumed that the second partial derivatives of the function f exist are continuous
on a suitable open domain of the arguments of f . The reasons for these smoothness
assumptions will become apparent.

In order to seek an admissible function y(x) for which the value of the
integral (1.2) is a minimum, let an admissible comparison function be defined by

y∗(x, ε) = y(x) + εη(x), (1.3)

where ε is a parameter and η(x) is an arbitrary C2 function on [x1, x2] subject to
the requirements that η(x1) = 0 and η(x2) = 0 (see Fig. 1.2). If the comparison
function (1.3) is substituted into the integral (1.2) in place of the function y(x), the
integral becomes

I ∗(ε) =
∫ x2

x1

f
(
x, y∗, y∗′)

dx, (1.4)

where it is indicated that the value of the integral is a function of the parameter ε.
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Fig. 1.2 The function y(x)

and the comparison function
y∗(x, ε)

Now let it be assumed that the value of the integral (1.4) is a minimum when
the comparison function y∗(x, ε) = y(x). That is, the function I ∗(ε) is a minimum
when the parameter ε = 0, which implies the necessary condition

[
dI ∗(ε)

dε

]
ε=0

= 0. (1.5)

The derivative of (1.4) with respect to ε is

dI ∗(ε)
dε

=
∫ x2

x1

(
∂f ∗

∂y∗
∂y∗

∂ε
+ ∂f ∗

∂y∗′
∂y∗′

∂ε

)
dx

=
∫ x2

x1

(
∂f ∗

∂y∗ η + ∂f ∗

∂y∗′ η
′
)

dx (1.6)

where f ∗ = f
(
x, y∗, y∗′) and η′ = dη/dx. Therefore the condition (1.5) states

that

∫ x2

x1

(
∂f

∂y
η + ∂f

∂y′ η
′
)

dx = 0. (1.7)

The second term in this expression can be integrated by parts to obtain

∫ x2

x1

∂f

∂y′ η
′ dx =

[
∂f

∂y′ η
]x2

x1

−
∫ x2

x1

d

dx

(
∂f

∂y′

)
η dx. (1.8)
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Using this result and recalling that η(x) vanishes at x1 and x2, (1.7) can be written

∫ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx = 0. (1.9)

Because the function η(x) is arbitrary subject to the conditions that it be C2 on
[x1, x2] and that it vanish at x1 and x2, the expression that multiplies η(x) in the
integrand of (1.9) must vanish on [x1, x2]. If this were not the case, a function η(x)

could be chosen so that (1.9) would be violated.
The formal statement of this result is called the fundamental lemma of the

calculus of variations (see e.g. Bolza [12], p. 20):

Suppose that a function ψ(x) is C0 on [x1, x2]. If the equation

∫ x2

x1

ψ(x)η(x) dx = 0 (1.10)

holds for every C∞ function η(x) on [x1, x2] that satisfies the conditions η(x1) = 0 and
η(x2) = 0, then ψ(x) must vanish on [x1, x2].1

Observe that in order to apply this lemma to (1.9), the functions y(x) and f must
be smooth enough so that the expression multiplying η(x) is continuous on [x1, x2].
This is the reason for the differentiability requirements that were imposed on these
functions. Note that

d

dx

(
∂f

∂y′

)
= ∂2f

∂x∂y′ + ∂2f

∂y∂y′ y
′ + ∂2f

∂y′∂y′ y
′′, (1.11)

where y′′ = d2y/dx2. Therefore the second derivative of y(x) and the second partial
derivatives of f must exist and be continuous on [x1, x2].

On the basis of the fundamental lemma, (1.9) implies that

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 on [x1, x2] . (1.12)

This is called the Euler-Lagrange equation. It provides a differential equation with
which to determine the function y(x). In the case of the simple example (1.1), (1.12)
yields the equation

y′ = constant, (1.13)

which does describe the curve joining the two points that is of minimum length.

1 A proof of a more general form of this lemma is presented in Sect. 2.4.
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The condition (1.5) is obviously only a necessary condition, not a sufficient
condition, for the value of the integral (1.4) to be a minimum when ε = 0. This
condition is also satisfied if the value of the integral is a maximum or has an
inflection point of zero slope at ε = 0. Thus the condition (1.5) and the determined
solution y(x) are necessary conditions given that the value of the integral is
stationary in comparison with neighboring admissible functions.

The open domain on which the second partial derivatives of the function f

must be assumed to exist and be continuous can be defined in retrospect. It must
encompass the values of the arguments of f associated with the solution y(x) and
with comparison functions (1.3) in a neighborhood of the solution.2

Recommended references on the calculus of variations include Akhiezer [1],
Bliss [11], Bolza [12], Courant and Hilbert [15], Finlayson [28], Gelfand and
Fomin [29], Pars [61], Washizu [73], and Weinstock [74].

1.2 Conservative Systems

1.2.1 Hamilton’s Principle

Consider a system of particles whose position, or configuration, can be described
by a set of independent generalized coordinates qk , k = 1, 2, . . . , K . Let t1 and t2
be fixed times, with t1 < t2, and suppose that the configurations of the system at
times t1 and t2 are prescribed. An admissible motion of the system will be defined
to be a set of functions qk(t), k = 1, 2, . . . , K , which satisfy the prescribed values
at t1 and t2 and are C2 on [t1, t2].

Let it be assumed that the kinetic energy of the system, T , can be expressed as a
function of the generalized coordinates and their time derivatives, T = T (qk, q̇k).
This expression indicates that T may be a function of qk and q̇k for each value of k

from 1 to K . It will also be assumed that the system is subject only to conservative
forces and that the potential energy of the system, U , can be expressed as a function
of the generalized coordinates, U = U (qk). Each of the second partial derivatives
of T and each of the first partial derivatives of U will be assumed to exist and to be
continuous.3

2 Henceforth, when a function is said to be continuous with no additional provisos, it will be
understood to be continuous on a suitable open domain of its arguments.
3 In the simplest example, the “system” is a single particle. If there are no geometric constraints on
its motion, the generalized coordinates are the three position coordinates of the particle relative to
a suitable reference frame. The kinetic energy is T = 1

2 mv · v, where m is the mass of the particle
and v is its velocity vector. The potential energy U is defined such that dU = −F · v dt , where F
is the force vector acting on the particle. If such a function U exists, F is said to be conservative.
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What will be called the first form of Hamilton’s principle for a conservative
system of particles states:

Among admissible motions, the actual motion of a conservative system is such that the
value of the integral

I =
∫ t2

t1

(T − U) dt (1.14)

is stationary in comparison with neighboring admissible motions.

Suppose that the functions qk(t) describe the actual motion of the system. In
analogy with (1.3), an admissible of the system will be defined by

qk
∗(t, ε) = qk(t) + εηk(t), (1.15)

k = 1, 2, . . . , K, where the ηk(t) are arbitrary C2 functions on [t1, t2] subject to the
requirements that ηk(t1) = 0 and ηk(t2) = 0. Upon substituting (1.15) into (1.14) in
place of the functions qk(t), one obtains the integral

I ∗(ε) =
∫ t2

t1

(T ∗ − U∗) dt, (1.16)

where T ∗ = T
(
q∗
k , q̇∗

k

)
and U∗ = U

(
q∗
k

)
. Hamilton’s principle states that the value

of this integral is stationary when q∗
k (t, ε) = qk(t), which implies that

[
dI ∗(ε)

dε

]
ε=0

= 0. (1.17)

The derivative of (1.16) with respect to ε is

dI ∗(ε)
dε

=
∫ t2

t1

(
∂T ∗

∂q∗
k

∂q∗
k

∂ε
+ ∂T ∗

∂q̇∗
k

∂q̇∗
k

∂ε
− ∂U∗

∂q∗
k

∂q∗
k

∂ε

)
dt

=
∫ t2

t1

(
∂T ∗

∂q∗
k

ηk + ∂T ∗

∂q̇∗
k

η̇k − ∂U∗

∂q∗
k

ηk

)
dt. (1.18)

In this equation, use is made of the summation convention: Whenever an index
appears twice in a single expression, the expression is assumed to be summed over
the range of the index. For example,

∂T ∗

∂q∗
k

∂q∗
k

∂ε
= ∂T ∗

∂q∗
1

∂q∗
1

∂ε
+ ∂T ∗

∂q∗
2

∂q∗
2

∂ε
+ · · · + ∂T ∗

∂q∗
K

∂q∗
K

∂ε
. (1.19)

This useful convention will be used throughout this work.
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From (1.18), the condition (1.17) is

∫ t2

t1

(
∂T

∂qk

ηk + ∂T

∂q̇k

η̇k − ∂U

∂qk

ηk

)
dt = 0. (1.20)

When the second term is integrated by parts, this equation can be written

∫ t2

t1

[
∂L

∂qk

− d

dt

(
∂L

∂q̇k

)]
ηk dt = 0, (1.21)

where L = T − U is the Lagrangian of the system. Because the functions ηk(t)

are arbitrary subject to the requirements stated above, they can be assumed to be
nonzero on [t1, t2] for k = 1 only. Equation (1.21) is then of the form (1.10), and
the fundamental lemma applies. Repeating this process for each value of k results
in the differential equations

∂L

∂qk

− d

dt

(
∂L

∂q̇k

)
= 0 on [t1, t2] (1.22)

for each value of k from 1 to K . These are Lagrange’s equations of motion for the
system of particles (see e.g. Goldstein, et al. [30], Chapter 2).

Hamilton’s principle is a postulate regarding the motion of the system. It
embodies the physics of the problem. The mathematical task is to deduce the
equations of motion, which are obtained as necessary conditions implied by the
postulate. The number of equations of motion is equal to the number of independent
generalized coordinates.

As an illustration, consider the motion of a single particle in the x-y plane.
Suppose that the particle is subject only to its own weight and let the y axis be
directed upward. The kinetic energy is

T = 1
2m
(
ẋ2 + ẏ2

)
, (1.23)

where m is the mass of the particle, and the potential energy is

U = mgy, (1.24)

where g is the acceleration due to gravity (assumed constant). Equation (1.22) yields
the equations of motion

ẍ = 0,

ÿ = −g.
(1.25)

Expressions that depend on the parameter ε have been denoted by an asterisk. In
applications of variational methods, derivatives of such expressions with respect
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to ε, evaluated at ε = 0, appear frequently. This can be seen, for example, in
obtaining (1.20) from (1.16) and (1.17). It is therefore convenient to introduce the
notation4

δ(·) ≡
[

∂

∂ε
(·)∗

]
ε=0

. (1.26)

The symbol δ(·) is called the variation of the expression (·). Observe from (1.15)
that

δqk = ηk. (1.27)

Also, From (1.16), the necessary condition (1.17) can be written

∫ t2

t1

δ(T − U) dt = 0. (1.28)

Stating that this equation holds for admissible comparison functions (1.15) is clearly
equivalent to the first form of Hamilton’s principle for a conservative system of
particles. Therefore, what will be called the second form of Hamilton’s principle for
such a system states:

Among admissible motions, the actual motion of a conservative system is such that (1.28)
holds.

This is the form in which the principle was stated in Hamilton’s original work [39].

1.2.2 Constraints

Thus far it has been assumed that the generalized coordinates qk are independent.
Suppose instead that they are required to satisfy prescribed equations

αp (qk) = 0, (1.29)

where p = 1, 2, . . . , P , P < K . The first partial derivatives of the functions αp

with respect to each of the qk will be assumed to exist and be continuous.
Hamilton’s principle can be stated so that it embodies the constraints (1.29) by

using the method of Lagrange multipliers (see e.g. Pars [61], Chapter VIII). Let

4 This notation, which is very common in the literature on variational methods, has acquired a
bad reputation in some circles due to a history of vague definitions and a tendency to use it in
performing complicated operations that are bewildering to the uninitiated. After initial attempts to
write this monograph without using it, the author decided that it is too useful to discard. Throughout
this work, this notation should be interpreted only as a symbol representing the operation (1.26).
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πp(t), p = 1, 2, ..., P , denote a set of functions of time, the Lagrange multipliers,
that are assumed to be C0 on [t1, t2], and define

C = πpαp. (1.30)

Then the first form of Hamilton’s principle states:

Among admissible motions, the actual motion of a conservative system subject to the
constraints (1.29) is such that the value of the integral

I =
∫ t2

t1

(T − U + C) dt (1.31)

is stationary in comparison with neighboring admissible motions.

In determining the equations of motion, the generalized coordinates qk can be
treated as if they are independent; the constraints (1.29) are accounted for by
introducing them into (1.31) together with the Lagrange multipliers.

Substituting the comparison motions (1.15) into (1.31) in place of the functions
qk(t) yields the integral

I ∗(ε) =
∫ t2

t1

(T ∗ − U∗ + C∗) dt, (1.32)

where C∗ = πp(t)αp(q∗
k ). In this case the condition (1.17) is

∫ t2

t1

[
∂L

∂qk

− d

dt

(
∂L

∂q̇k

)
+ πp

∂αp

∂qk

]
ηk dt = 0, (1.33)

and the same argument used to obtain (1.22) results in the differential equations of
motion

∂L

∂qk

− d

dt

(
∂L

∂q̇k

)
+ πp

∂αp

∂qk

= 0 on [t1, t2] (1.34)

for each value of k from 1 to K . Equations (1.29) and (1.34) provide K + P

equations with which to determine the generalized coordinates qk(t) and the
Lagrange multipliers πp(t).

Returning to the example of the motion of a single particle subject to its own
weight, suppose that the particle slides without friction along a wire that constrains
its motion to the path y = x2. Then there is a single constraint equation

α(x, y) = y − x2 = 0, (1.35)

and the equations of motion obtained from (1.34) are

mẍ = −2xπ,

mÿ = π − mg.
(1.36)
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Lagrange multipliers introduced into Hamilton’s principle can be interpreted as
generalized forces that cause the corresponding constraints to be satisfied. In this
example, it is easy to see from the second equation of motion that the Lagrange
multiplier π is the vertical component of the force exerted on the particle by the
wire.

By substituting (1.32) into the condition (1.17), the second form of Hamilton’s
principle for a conservative system of particles with constraints is obtained:

Among admissible motions, the actual motion of a conservative system subject to the
constraints (1.29) is such that

∫ t2

t1

[δ(T − U) + δC] dt = 0. (1.37)

1.3 Nonconservative Systems

It is a common misconception that variational methods such as Hamilton’s principle
are only applicable to conservative systems. Because so many interesting problems,
including many problems involving continuous media, involve nonconservative
forces, this would make the range of applications of Hamilton’s principle very
limited indeed. One objective of this monograph is to help dispel this myth.

Let the generalized forces Qk be defined by

Qk = − ∂U

∂qk

. (1.38)

Noting that

∂U∗

∂ε
= ∂U∗

∂qk

∂qk

∂ε
= ∂U∗

∂qk

ηk (1.39)

and using (1.26), (1.27), and (1.38), one obtains

δU = −Qkδqk. (1.40)

Using this expression, (1.28) assumes the form

∫ t2

t1

(δT + Qkδqk) dt = 0. (1.41)

Of course, the system being dealt with is still a conservative one. The only thing that
has been done is to introduce the notation (1.38). However, if Hamilton’s principle
is postulated in terms of (1.41), it is not necessary to assume that the generalized
forces Qk are conservative. Thus the form of (1.41) is suggested by Hamilton’s
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principle for a conservative system, but a new postulate is introduced in the case of
a nonconservative system. The term

δW = Qkδqk (1.42)

is called the virtual work.5 Hamilton’s principle for a nonconservative, uncon-
strained system of particles states:

Among admissible motions, the actual motion of a system is such that

∫ t2

t1

(δT + δW) dt = 0. (1.43)

Clearly, if the system is conservative this postulate is identical to the statement of
the second form of Hamilton’s principle on page 8. In that case, the generalized
forces are derivable from the potential energy through (1.38). If the system is not
conservative, the generalized forces must be prescribed. Two cases occur frequently:

1. The generalized forces are prescribed explicitly as functions of time.
2. The generalized forces are prescribed implicitly through constitutive equations

in terms of the generalized coordinates and their derivatives.
Both of these cases will arise in applications of Hamilton’s principle to continu-
ous media.

A system may be subjected to both conservative and nonconservative forces,
and it is often convenient to introduce the potential energy associated with the
conservative forces. In that case, (1.43) is written

∫ t2

t1

[δ(T − U) + δW ] dt = 0. (1.44)

By using the definition (1.26), it is easy to show that

δT = ∂T

∂qk

δqk + ∂T

∂q̇k

δq̇k, δU = ∂U

∂qk

δqk, (1.45)

so that (1.44) can be written

∫ t2

t1

(
∂T

∂qk

δqk + ∂T

∂q̇k

δq̇k − ∂U

∂qk

δqk + Qkδqk

)
dt = 0. (1.46)

5 This notation for the virtual work is entrenched in the literature, although it violates our promise
that the symbol δ would only denote the operation (1.26). This inconsistency can be avoided by
regarding the notation δW as a single symbol denoting the virtual work.
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Integrating the second term by parts and using the fundamental lemma yields the
differential equations of motion

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

= Qk on [t1, t2] (1.47)

for each value of k from 1 to K . These are Lagrange’s equations of motion
for a system that involves both conservative and nonconservative forces (see e.g.
Goldstein, et al. [30], Chapter 2).

The problems addressed in this monograph will involve both nonconservative
forces and constraints, and some of them will involve conservative forces as well.
This chapter will close with a statement of Hamilton’s principle for a system of
particles that exhibits each of these characteristics:

Among admissible motions, the actual motion of a system is such that

∫ t2

t1

[δ(T − U) + δW + δC] dt = 0. (1.48)

The application of Hamilton’s principle to systems of particles and rigid bodies
is discussed by Goldstein, et al. [30], Hamilton [39,41], Lanczos [50], Torby [68],
Weinstock [74], and Whittaker [76].



Chapter 2
Foundations of Continuum Mechanics

2.1 Mathematical Preliminaries

2.1.1 Inner Product Spaces

Many of the variables used in continuum mechanics are assumed to obey the axioms
of a finite-dimensional linear vector space with an inner product, which is simply
called an inner product space (IPS). A result that is stated in terms of an arbitrary
IPS can be applied in many contexts, achieving both generality and economy of
presentation. The axioms are usually familiar to persons with technical backgrounds
because they arise in the study of ordinary vector analysis. The following statement
of them is paraphrased from Halmos ([36], pp. 3–14, 118–122). For the purposes of
this work, scalars can be assumed to be real numbers.

A linear vector space W is a set of elements called vectors. An operation called
addition is defined that associates with each pair of vectors x and y in W a vector
x + y in W such that1

x + y = y + x, (2.1)

and for any three vectors x, y, z in W ,

x + (y + z) = (x + y) + z. (2.2)

There is a unique vector o in W such that, for each vector x in W ,

x + o = x. (2.3)

1 Linear vector spaces will be denoted by script capital letters. Vectors will be denoted by bold-face
letters, usually lower case, although there will be exceptions that will be defined individually.
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For each vector x in W , there is a unique vector −x such that

x + (−x) = o. (2.4)

An operation called scalar multiplication is defined which associates with each
scalar α and each vector x in W a vector αx in W such that, for any scalars α, β and
vectors x, y in W ,

α(βx) = (αβ)x, (2.5)

1x = x, (2.6)

α(x + y) = αx + αy, (2.7)

(α + β)x = αx + βx. (2.8)

A finite set of vectors {xk} = x1, x2, . . . , xN in W is called linearly independent
if the equation

α1x1 + α2x2 + · · · + αNxN = αkxk = o (2.9)

holds only when αk = 0 for each value of k from 1 to N . If such a set of vectors
exists for which each vector x in W can be written in the form

x = βkxk, (2.10)

then W is said to be of dimension N , and {xk} is called a basis for W .
The axioms and definitions stated thus far characterize a finite-dimensional linear

vector space. An inner product space is obtained by appending an operation called
the inner product that associates with each pair of vectors x and y in W a scalar
denoted by x · y such that, for any scalars α, β and vectors x, y, z in W ,

x · y = y · x, (2.11)

x · x ≥ 0, (2.12)

where x · x = 0 if and only if x = o, and

(αx + βy) · z = α(x · z) + β(y · z). (2.13)

The magnitude, or norm, of a vector x in an IPS is defined to be the scalar

|x| = √
x · x. (2.14)

The real numbers are an IPS if the inner product is defined to be the usual product
of two numbers. It is one dimensional, and any number other than zero is a basis.
As a second example, the three-dimensional vectors of ordinary vector analysis
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constitute an IPS, with the usual definition of the inner (dot) product. The symbol V
will be reserved for this particular IPS. A third example of an IPS that is particularly
important in continuum mechanics is the set of linear transformations of V into V ,
which will be discussed in the next subsection.

2.1.2 Linear Transformations

Let U and W be inner product spaces. A linear transformation2 of U into W ,
denoted by L : U → W , associates with each vector u in U a vector Lu in W
such that, for any scalars α, β and vectors u, v in U ,

L(αu + βv) = αLu + βLv. (2.15)

The sum of two linear transformations and the product of a scalar and a linear
transformation are defined such that, for each scalar α and vector u in U ,

(L1 + L2)u = L1u + L2u, (2.16)

(αL)u = L(αu). (2.17)

Recall that V denotes the IPS of ordinary three-dimensional vector analysis, and
consider linear transformations of V into itself. The rest of this subsection will be
concerned with linear transformations of this kind, which are called second-order
tensors.Three simple examples are the zero tensor 0, the identity tensor 1, and the
tensor product u ⊗ v, which are defined such that, for any vectors u, v,w in V ,

0v = o, (2.18)

1v = v, (2.19)

(u ⊗ v)w = u(v · w). (2.20)

Let {ek} = e1, e2, e3 be an orthonormal basis for V . Then each vector v in V can
be written as the linear combination

v = vkek, (2.21)

where the coefficients vk are called the components of v with respect to {ek}. If T is
a linear tranformation, the equation

Tu = v (2.22)

2 Linear transformations will be denoted by bold capital letters, with exceptions that will be defined
individually.
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can be written

Tukek = vkek. (2.23)

Taking the inner product of this equation with em results in the equation

Tmkuk = vm, (2.24)

where the scalars

Tmk = (T)mk = em · Tek (2.25)

are called the components of T with respect to {ek}. For example, the components
of the linear transformations u⊗ v and 1 with respect to {ek} are easily shown to be

(u ⊗ v)mk = umvk, (1)mk = δmk, (2.26)

where the Kronecker delta δmk is defined by

δmk =
{

1 if m = k,

0 if m �= k.
(2.27)

The transpose of a linear transformation T is defined to be the linear transforma-
tion Tt such that, for any vectors u, v in V ,

u · Tv = Ttu · v. (2.28)

The components of Tt are

T t
km = Tmk. (2.29)

The product of two linear transformations S and T, denoted by ST, is defined to
be the linear transformation

STv = S(Tv). (2.30)

The components of ST are easily shown to be

(ST)km = SkjTjm. (2.31)

The determinant of a linear transformation T, denoted by detT, is defined such
that

detT = det [Tkm] , (2.32)
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where [Tkm] denotes the matrix of the components of T. Two results concerning
determinants that will be useful are

∂(detT)

∂Tkm

= cof Tkm, δkm detT = Tkj cof Tmj , (2.33)

where cof Tkm is the cofactor of the element Tkm of [Tkm].
The inverse of a linear transformation T is the linear transformation T−1 such

that

TT−1 = T−1T = 1. (2.34)

The components of T−1 are

T −1
km = cof Tmk/ detT. (2.35)

The trace of a linear transformation T is defined by3

tr T = Tkk, (2.36)

and the inner product of two linear transformations T and S is defined by

S · T = tr
(
StT

) = SkmTkm. (2.37)

It can be shown that the set of all linear transformations T : V → V with the
inner product (2.37) is an inner product space.

2.1.3 Functions, Continuity, and Differentiability

Let U and W be inner product spaces, and let U be a subset of U . A function f :
U → W associates with each vector u in U a vector f(u) in W . The concept of
the magnitude of a vector in an IPS, defined by (2.14), makes it possible to define
the limit, continuity, and differentiability of the function f(u) in a manner entirely
analogous to ordinary calculus.

A vector w in W is said to be the limit of f(u) at a vector u0 in U if, for any
positive scalar α, there is a positive scalar β such that |f(u) − w| < α for each
vector u in U that satisfies the relation 0 < |u − u0| < β. The function f(u) is said
to be continuous at a vector u0 in U if the limit w exists and f(u0) = w, and it is
said to be continuous in U if it is continuous at each vector in U .

3 The determinant and trace of a linear transformation can be defined in a way that is independent
of any basis (see e.g. Bowen and Wang [14], Section 40). The definitions given here are adequate
for the purposes of this monograph.
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The set U is called an open subset of U if, for each vector u0 in U , there is a
positive scalar α such that the vector u0 + u is in U for each vector u in U that
satisfies the relation |u| < α.

Let U be an open subset of U . A function f : U → W is said to be differentiable
at a vector u0 in U if there is a linear transformation, denoted by df/du : U → W
such that

f(u0) − f(u) = df
du

(u0 − u) + o (|u0 − u|) . (2.38)

The notation o(α) means that |o(α)/α| → 0 as α → 0. The linear transformation
df/du is called the derivative4 of f(u) at u0. The function f(u) is said to be
differentiable in U if it is differentiable at each vector in U and df/du is continuous
in U .

2.1.4 Fields and the Divergence Theorem

In continuum mechanics the properties of materials are described in terms of
piecewise continuous functions called fields. Hamilton’s principle for a continuous
medium will be stated in terms of a prescribed volume of material. Definitions and
terminology associated with fields and volumes are introduced in this subsection.

Let a reference point O and an orthonormal basis {ek} define an inertial reference
frame in three-dimensional Euclidean space E , and let the vector X in V denote the
position vector of a point in E relative to O. Consider a closed surface ∂B in E .
Let B be the interior of the surface ∂B, and let the interior together with its surface
(called the closure) be denoted by B̄.

It will be assumed that B is a bounded regular region, and that the surface ∂B

may consist of complementary regular subsurfaces ∂B1 and ∂B2. Precise definitions
of bounded regular regions and regular subsurfaces (which insure, for example, that
the divergence theorem can be applied) are given by Gurtin ( [34], pp. 12–14). A
volume that is bounded by a single closed surface consisting of a finite number of
smooth subsurfaces, each of which is bounded by a piecewise smooth curve, is a
bounded regular region. If the surface of such a volume is divided into two parts by
a single piecewise smooth closed curve, the resulting complementary subsurfaces
are regular subsurfaces.

Let W be an inner product space. A field f : B → W is a function that associates
with each point in B (identified with its position vector X) a vector f(X) in W . In
the cases in which the elements of W are scalars, vectors, or second-order tensors,
f(X) is called a scalar, vector, or tensor field.

4 A variety of notations are used for this linear transformation, including �f and Df(u). The
notation used here was chosen so that it would look familiar to persons used to ordinary derivatives,
and also because it makes expressions in which the chain rule is used more intelligible.
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As an example, consider a scalar field φ(X), and let Z be any vector in V . If φ(X)

is differentiable at a point X in B, then

dφ

dX
Z = GRAD φ · Z, (2.39)

where GRAD φ is the familiar gradient

GRAD φ = ∂φ

∂Xk

ek. (2.40)

In the case of a vector field v(X) that is differentiable at a point X in B, the
derivative dv/dX is called the gradient of the vector field. In terms of components,

(
dv
dX

)
km

= ∂vk

∂Xm

. (2.41)

Note that the divergence of the vector field v(X) is

DIV v = tr
dv
dX

= ∂vk

∂Xk

. (2.42)

The divergence of a tensor field T(X) that is differentiable at a point X in B is
defined to be the vector DIV T with the property that, for each vector Z in V ,

(DIV T) · Z = DIV
(
TtZ

)
. (2.43)

The components of DIV T are

(DIV T)k = ∂Tkm

∂Xm

. (2.44)

Let f(X) be a field that is continuous in B, and let X0 be a point of the surface
∂B. If the limit of f(X) as X → X0 exists at each point of ∂B and is continuous on
∂B, then the field f(X) is said to have a continuous extension to the closure B̄ if its
value at each point X0 of ∂B is defined to be the value of its limit at that point.

The fields considered in this work will usually be functions of both position and
time. A time-dependent field f : B × (t1, t2) → W is a function that associates with
each point in B and each time in the open interval t1 < t < t2 a vector f(X, t) in W .

A vector w in W is said to be the limit of f(X, t) at the position and time X0, t0
in B × (t1, t2) if, for any positive scalar α, there is a positive scalar β such that

|f(X, t) − w| < α (2.45)
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for each X, t in B × (t1, t2) that satisfy the relation

0 <

√
|X − X0|2 + (t − t0)2 < β. (2.46)

The field f(X, t) is said to be continuous at X0, t0 if the limit w exists and f(X0, t0) =
w, and it is said to be continuous in B × (t1, t2) if it is continuous at each X0, t0 in
B × (t1, t2).

Let ∂nf/∂Xn denote the nth derivative of f(X, t) holding t fixed. Then f(X, t) is
said to be CN in B × (t1, t2) if it is continuous in B × (t1, t2) and the derivatives

∂m

∂tm

(
∂nf
∂Xn

)
, 0 ≤ m ≤ N, 0 ≤ n ≤ N, m + n ≤ N (2.47)

exist and are continuous in B × (t1, t2). Such a field is then said to be CN on B̄ ×
(t1, t2) if these derivatives have continuous extensions to B̄ × (t1, t2).

Let ∂Bα be a complementary regular subsurface of B, and let the vector function
N(X) defined on ∂Bα be the outward-directed unit vector normal to ∂Bα at each
point X of ∂Bα . A point X at which N(X) is continuous is called a regular point of
∂Bα .

A function f(X) defined on ∂Bα is called piecewise regular if it is piecewise
continuous on ∂Bα and is continuous at each regular point of ∂Bα . A time-dependent
function f(X, t) defined on ∂Bα×(t1, t2) is called piecewise regular if it is piecewise
continuous on ∂Bα × (t1, t2) and f(X, t0) is piecewise regular on ∂Bα for each fixed
time t0 in [t1, t2]. A function f(X, t) defined on ∂Bα×(t1, t2) is said to be continuous
in time if, for each fixed point X of ∂Bα , it is a continuous function of time in [t1, t2].

Two functions f1(X, t) and f2(X, t) defined on ∂Bα × (t1, t2) are defined to be
equal if, for each time t in [t1, t2], they are equal at each regular point of ∂Bα .

The divergence theorem will be used frequently in applying Hamilton’s principle
to continuous media. The following statement is paraphrased from Gurtin ( [34], p.
16): Let φ(X), v(X), and T(X) be scalar, vector, and tensor fields that are continuous
on B̄ and differentiable in B. Then

∫
∂B

φN dS =
∫

B

GRAD φ dV , (2.48)

∫
∂B

v · N dS =
∫

B

DIV v dV , (2.49)

∫
∂B

TN dS =
∫

B

DIV T dV (2.50)

when the integrands on the right are piecewise continuous on B̄. Recall that N is the
outward-directed unit vector that is normal to ∂B.
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Suggested references on the mathematical foundations of continuum mechanics
include Bowen and Wang [14], Ericksen [25], Gurtin [35], Halmos [36], Leigh
[52], Truesdell and Noll [70], and Truesdell and Toupin [71].

2.2 Motion and Deformation

A motion of a material that is modeled as a continuous medium is described by a
time-dependent vector field

x = χ(X, t), (2.51)

where x is the position vector at time t of the material point identified with its
position vector X in a reference state, or reference configuration. As a simple
example, consider a quantity of some malleable material, such as dough, which
is at rest. This rest state can be used as the reference configuration. Imagine that a
point on the surface or within the material is marked with a pen. Let its position
vector be X0. Then if the material is picked up and deformed, and (2.51) describes
its motion, the trajectory in space of the marked point is given by

x = χ(X0, t). (2.52)

Thus (2.51) describes the motion of each point of the material.
In general, it is not necessary that the reference configuration be one which the

material has actually assumed at any time. However, this distinction is not needed
for any of the applications to be considered in this monograph. The reference
configuration will be assumed to be the configuration of the material at time t1.
That is,

X = χ(X, t1). (2.53)

Suppose that in its reference configuration, the material occupies a bounded
regular region B with surface ∂B. The motion (2.51) maps the material onto a
volume Bt with surface ∂Bt at time t (Fig. 2.1). In keeping with the interpretation
of (2.51) as the motion of a material, the mapping of the material points from B̄ to
B̄t will be assumed to be one-one. That is, if X1 and X2 are distinct points of B̄,
then x1 = χ(X1, t) and x2 = χ(X2, t) are distinct points of B̄t , and for each point x
of B̄t , there is a point X of B̄ such that x = χ(X, t). This requirement insures that
the inverse motion

X = χ−1(x, t), (2.54)

which maps the material points from B̄t onto B̄ at time t , exists and is one-one.
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Fig. 2.1 Motion of a material

Suppose that the field (2.51) is CN on B̄ × [t1, t2] , N ≥ 1. The deformation
gradient F is the tensor field5

F = ∂χ

∂X
, Fkm = ∂χk

∂Xm

. (2.55)

The Jacobian of the motion is defined by

J = detF. (2.56)

A necessary condition for (2.51) to describe the motion of a material is that J ≥ 0
in B. It will be seen that this condition insures that the volume of every element
of the material remains positive. Given that it is satisfied, it can be shown (see e.g.
Gurtin [35], pp. 60, 65–66) that the inverse motion (2.54) is CN on B̄t × [t1, t2].

The interpretation of the motion (2.51) as describing the trajectory of a material
point in space motivates the definitions of the velocity

v = ∂

∂t
χ(X, t) (2.57)

and the acceleration

a = ∂2

∂t2 χ(X, t). (2.58)

5 Some expressions will be presented both in direct notation and in terms of components for the
sake of clarity.
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The inverse motion (2.54) can be used to express the velocity and acceleration
as functions of x, t . When the functional dependence of a field is not obvious from
the context, a caret (·̂) will be used to indicate that it is expressed in terms of X, t .
The caret will not be used when the functional dependence is shown explicitly. For
example,

v(X, t) = v̂(χ−1(x, t), t) = v(x, t), (2.59)

a = ∂

∂t
v̂ = ∂

∂t
v + Lv, (2.60)

where the linear transformation L is the velocity gradient

L = ∂v
∂x

, Lkm = ∂vk

∂xm

. (2.61)

The material derivative of a field f(X, t) is defined by

ḟ = ∂

∂t
f̂. (2.62)

Thus, the material derivative is the time rate of change of a field holding the material
point fixed. For example, notice that the acceleration a = v̇. In the case of a scalar
field φ(X, t),

φ̇ = ∂

∂t
φ̂ = ∂

∂t
φ + v · grad φ, (2.63)

where grad φ = (∂φ/∂xk)ek .
The motion (2.51) maps a volume element dV of B onto a volume element dVt

of Bt at time t . It can be shown (see e.g. Truesdell and Toupin [71], pp. 247–249)
that

dVt = J dV. (2.64)

The density ρ is a scalar field defined such that the mass of each volume element
dVt of Bt is ρ dVt . Let the value of ρ at time t1 be denoted by ρR . That is, ρR

is the density of the reference configuration. Then one form of the equation of
conservation of mass is

ρ dVt = ρR dV. (2.65)

Using (2.64), this equation can be expressed in the form

J = ρR

ρ
. (2.66)
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The material derivative of the Jacobian is

J̇ = ∂(det F)

∂Fkm

∂F̂km

∂t
. (2.67)

From (2.55),

∂F̂km

∂t
= ∂2χk

∂t∂Xm

= ∂vk

∂xp

∂xp

∂Xm

= LkpFpm. (2.68)

Substituting this result into (2.67) and using (2.33) yields the relation

J̇ = J tr L = J div v, (2.69)

where div v = ∂vk/xk . Taking the material derivative of (2.66) and using (2.69)
results in the equation of conservation of mass in its more familiar form

ρ̇ + ρ div v = 0. (2.70)

The motion (2.51) maps a surface element dS of ∂B onto a surface element dSt

of ∂Bt at time t . Let the function n(x, t) defined on ∂Bt denote the outward-directed
unit vector that is normal to ∂Bt , and let N(X) = n̂(X, t1). That is, N is the outward-
directed unit vector normal to ∂B. It can be shown (see e.g. Truesdell and Toupin
[71], pp. 247–249) that

n dSt = J F−tN dS, (2.71)

where F−t = (
F−1

)t
.

By means of the relations (2.65) and (2.71), integrals on B and ∂B can be
expressed as integrals on Bt and ∂Bt , and vice versa. If a field f(X, t) is continuous
on B̄ × [t1, t2], then6

∫
Bt

f dVt =
∫

B

fJ dV . (2.72)

Similarly, if a scalar function φ(X, t) defined on ∂B is piecewise regular, then

∫
∂Bt

φn dSt =
∫

∂B

φJ F−tN dS. (2.73)

6 In (2.72) the functional dependence of the field f is indicated by the context. It must be expressed
in terms of x, t in the left integral and in terms of X, t in the right integral.
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Consider two neighboring material points in B having position vectors X and
X + dX. The square of the distance separating them is

dS2 = dX · dX. (2.74)

At time t , the same two material points are separated by the vector

dx = χk (Xm + dXm, t) ek − χk (Xm, t) ek

= ∂χk

∂Xm

dXmek

= F dX, (2.75)

so that the square of the distance separating the points at time t is

ds2 = dx · dx = dX · FtF dX. (2.76)

Therefore

ds2 − dS2 = dX · (C − 1) dX, (2.77)

where

C = FtF (2.78)

is called the right Cauchy–Green strain tensor. Because (2.77) determines the
change in the distance between any two neighboring points at time t , the defor-
mation gradient F, or deformation measures that are expressed in terms of F such as
the Cauchy–Green strain tensor, determines the deformation of the material in the
neighborhood of a material point.

The displacement is the vector field

u = χ(X, t) − X. (2.79)

It is the displacement vector of a material point relative to its position in the
reference configuration. The displacement gradient is the tensor field

∂u
∂X

= F − 1,
∂uk

∂Xm

= Fkm − δkm. (2.80)

In terms of the displacement gradient, the Cauchy–Green strain tensor is

C = 1 + 2E +
(

∂u
∂X

)t
∂u
∂X

, (2.81)
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where E is the linear strain tensor

E = 1

2

[
∂u
∂X

+
(

∂u
∂X

)t
]

, Ekm = 1

2

(
∂uk

∂Xm

+ ∂um

∂Xk

)
. (2.82)

Recommended references on the motion and deformation of a continuous
medium include Eringen [27], Gurtin [35], Leigh [52], Truesdell and Noll [70],
and Truesdell and Toupin [71].

2.3 The Comparison Motion

In applying Hamilton’s principle to a system of particles, the equations of motion
were obtained by introducing a comparison motion (1.15). An identical approach is
taken in applying variational methods to a continuous medium.

A motion (2.51) from the reference configuration at time t1 to a specified
configuration at time t2 will be called admissible if it is C2 on B̄ × [t1, t2] and
satisfies prescribed boundary conditions on ∂B. An admissible comparison motion
will be defined by

x∗ = χ(X, t) + εη(X, t). (2.83)

Here ε is a parameter and η(X, t) is an arbitrary C2 vector field on B̄×[t1, t2] subject
to the requirements that η(X, t1) = o and η(X, t2) = o. The vector field η is also
subject to the requirement that the comparison motion must satisfy the prescribed
boundary conditions on ∂B.

The comparison motion maps the material from B onto a volume B∗
t with surface

∂B∗
t at time t (see Fig. 2.2). From (2.83), the velocity, gradient, and Jacobian of the

comparison motion are

v∗ = v + εη̇, (2.84)

F∗ = F + ε
∂ η̂

∂X
, F ∗

km = Fkm + ε
∂η̂k

∂Xm

, (2.85)

J ∗ = det F∗. (2.86)

The derivative of J ∗ with respect to ε is

∂J ∗

∂ε
= ∂(det F∗)

∂F ∗
km

∂F ∗
km

∂ε
= ∂(det F∗)

∂F ∗
km

∂η̂k

∂Xm

. (2.87)
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Fig. 2.2 The reference configuration, the configuration at time t , and the configuration resulting
from the comparison motion at time t

Recalling the notation

δ(·) ≡
[

∂

∂ε
(·)∗

]
ε=0

, (2.88)

(2.33) and (2.87) can be used to obtain the result (see e.g. [28])

δJ =
(

∂J ∗

∂ε

)
ε=0

= J div η. (2.89)

Therefore, J ∗ can be written

J ∗ = J (1 + ε div η) + O(ε2), (2.90)

where the notation O(ε2) means that |O(ε2)/ε| → 0 as ε → 0.
The density of the comparison motion can be determined from the equation of

conservation of mass (2.66):

ρ∗ = ρR

J ∗ . (2.91)

Substituting (2.90) into this equation results in the expression

ρ∗ = ρ(1 − ε div η) + O(ε2). (2.92)

In applications of Hamilton’s principle to a continuous medium, it is often conve-
nient to introduce a comparison field for the density in the form

ρ∗ = ρ(X, t) + εr(X, t). (2.93)
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The preceding two equations show that, as a consequence of the equation of
conservation of mass, the scalar field

r = −ρ div η + O(ε).

However, the fields η and r can be regarded as independent if the equation of
conservation of mass is introduced into Hamilton’s principle as a constraint (see
the discussion of constraints in Sect. 1.2.2). In such cases, it will be assumed that
r(X, t) is an arbitrary C1 scalar field on B̄ × [t1, t2] such that r(X, t1) = 0 and
r(X, t2) = 0.

The comparison motion maps a volume element dV of B onto a volume element
dV ∗

t of B∗
t at time t . Similarly, it maps a surface element dS of ∂B onto a surface

element dS∗
t of ∂B∗

t at time t . The relations between these volume and surface
elements can be obtained from (2.64) and (2.71):

dV ∗
t = J ∗ dV, (2.94)

n∗dS∗
t = J ∗ (F∗)−t N dS. (2.95)

Here n∗ is the outward directed unit vector that is normal to ∂B∗
t .

As described in Chapter 1, Hamilton’s principle is a postulate concerning the
mechanical behavior of a system. The equations of motion are derived from the
postulate as necessary conditions. Two examples of the types of analysis involved
in obtaining equations of motion from statements of Hamilton’s principle for a
continuous medium will be presented in the remainder of this section. The methods
used are quite similar to those that were used in the case of a system of particles.

In analogy with the kinetic energy of a particle, the kinetic energy of the material
in an element of volume dVt of Bt is 1

2ρv · v dVt . Therefore the total kinetic energy
of the material occupying the volume Bt is

T =
∫

Bt

1
2ρv · v dVt =

∫
B

1
2ρRv · v dV . (2.96)

Consider the integral of T with respect to time from t1 to t2:

I =
∫ t2

t1

T dt =
∫ t2

t1

∫
B

1
2ρRv · v dV dt. (2.97)

When it is expressed in terms of the comparison motion (2.83), this integral becomes

I ∗(ε) =
∫ t2

t1

∫
B

1
2ρRv∗ · v∗ dV dt. (2.98)

Taking the derivative of this equation with respect to ε,

dI ∗(ε)
dε

=
∫ t2

t1

∫
B

ρRv∗ · η̇ dV dt, (2.99)
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and setting ε = 0 yields

[
dI ∗(ε)

dε

]
ε=0

=
∫ t2

t1

∫
B

ρRv · η̇ dV dt. (2.100)

Integrating the expression on the right by parts with respect to time gives

∫ t2

t1

ρRv · η̇ dt =
[
ρRv · η

]t2

t1

−
∫ t2

t1

ρRa · η dt. (2.101)

Using this result and recalling that η vanishes at t1 and t2, (2.100) becomes

[
dI ∗(ε)

dε

]
ε=0

= −
∫ t2

t1

∫
B

ρRa · η dV dt = −
∫ t2

t1

∫
Bt

ρa · η dVt dt, (2.102)

so that

δT = −
∫

B

ρRa · δx dV = −
∫

Bt

ρa · δx dVt , (2.103)

where

δx = η. (2.104)

Note from (2.83) that this definition of δx is consistent with the notation (2.88).
As a second example, consider the integral

C =
∫

B

π

(
J − ρR

ρ

)
dV =

∫
Bt

π

(
1 − ρR

ρJ

)
dVt . (2.105)

This expression is the form in which the equation of conservation of mass will be
introduced as a constraint in Hamilton’s principle for a continuous medium. The
scalar field π(X, t), which is assumed to be C1 on B̄ × [t1, t2], is a Lagrange
multiplier. Expressed in terms of the comparison motion (2.83) and the comparison
field (2.93), this integral becomes

C∗(ε) =
∫

B

π

(
J ∗ − ρR

ρ∗

)
dV . (2.106)

Taking the derivative of this equation with respect to ε, setting ε = 0, and
using (2.89) to evaluate the derivative of the Jacobian yields

δC =
∫

B

πJ

(
div η + r

ρ

)
dV . (2.107)
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By using the divergence theorem, this result can be written

δC =
∫

∂Bt

πn · δx dSt +
∫

Bt

(
−grad π · δx + π

ρ
δρ

)
dVt , (2.108)

where δρ = r .

2.4 Fundamental Lemmas

The fundamental lemma of the calculus of variations (see Sect. 1.1) is the result
required to obtain differential equations that apply locally (that is, at a point) from
a global (that is, expressed in terms of an integral over a volume) variational
statement. In this section, extensions of the fundamental lemma are presented that
are appropriate for applications of Hamilton’s principle to a continuous medium (see
Gurtin [34], pp. 20, 244).

Lemma 1 Let W be an inner product space, and consider a C0 field f : B̄ × [t1, t2] → W .
If the equation

∫ t2

t1

∫
B

f · w dV dt = 0 (2.109)

holds for every C∞ field w : B̄ × [t1, t2] → W that vanishes at time t1, at time t2, and on
∂B, then f = o on B̄ × [t1, t2].

Lemma 2 Suppose that ∂B consists of complementary regular subsurfaces ∂B1 and ∂B2.
Let W be an inner product space, and consider a function f : ∂B2 × [t1, t2] → W that is
piecewise regular and continuous in time. If the equation

∫ t2

t1

∫
∂B2

f · w dS dt = 0 (2.110)

holds for every C∞ field w : B̄ × [t1, t2] → W that vanishes at time t1, at time t2, and on
∂B1, then f = o on ∂B2 × [t1, t2].

These lemmas are important not only because they are used in obtaining the local
forms of the equations of motion from Hamilton’s principle, but also because they
impose smoothness requirements on the fields describing the material. Both of these
aspects were illustrated in the case of a system of particles in Chapter 1.

Because these lemmas are so important, a proof of Lemma 1 given by Gurtin
( [34], p. 224) will be presented. The proof proceeds by assuming that the field f
does not vanish at some point X0, t0 in B × (t1, t2), and then constructing a suitable
field w such that (2.109) is violated.

Let {ek} be an orthonormal basis for W , so that f can be written f = fkek . Assume
that fk(X0, t0) > 0 for some value of k and some point X0, t0 in B × (t1, t2). Let α

be a positive scalar. Denote the open interval of time (t0 − α, t0 + α) by Tα , and
denote the open region of space |X0 − X| < α by �α . Because of the continuity of
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f, there is a value of α such that fk(X, t) > 0 in �α × Tα . Define β(t) to be a scalar
function on [t1, t2] that is C∞ and has the property that β(t) > 0 if t is in Tα and
β(t) = 0 otherwise. Define γ (X) to be a scalar field on B̄ that is C∞ and has the
property that γ (X) > 0 if X is in �α and γ (X) = 0 otherwise.7 Then define

w = β(t)γ (X)ek. (2.111)

The vector field w is C∞ on B̄ × [t1, t2] and vanishes at time t1, at time t2, and
on ∂B. It has been constructed so that

∫ t2

t1

∫
B

f · w dV dt =
∫

Tα

∫
�α

fkβ(t)γ (X) dV dt > 0, (2.112)

which violates (2.109). Therefore f must vanish in B × (t1, t2). Because the field f
is continuous on B̄ × [t1, t2], it must vanish on B̄ × [t1, t2].

Two slight variations of Lemmas 1 and 2 will also be used:

Lemma 3 Let the motion (2.51) be C2 on B̄ × [t1, t2]. Let W be an IPS, and consider a
C0 field f : B̄ × [t1, t2] → W . If the equation

∫ t2

t1

∫
Bt

f · w dVt dt = 0 (2.113)

holds for every C∞ field w : B̄ × [t1, t2] → W that vanishes at time t1, at time t2, and on
∂B, then f(x, t) = o on B̄ × [t1, t2].

To prove this result, (2.113) can be written

∫ t2

t1

∫
B

J f · w dV dt = 0. (2.114)

Because J f is continuous on B̄ × [t1, t2], Lemma 1 requires that J f = o on B̄ ×
[t1, t2]. Because J > 0, the function f(X, t) = o on B̄ × [t1, t2], so f(x, t) = o on
B̄ × [t1, t2].

Lemma 4 The complementary regular subsurfaces ∂B1 and ∂B2 will be mapped onto
surfaces ∂Bt1 and ∂Bt2 by the motion (2.51). Let the motion (2.51) be C2 on B̄ × [t1, t2].
Let φ(X, t) be a scalar function defined on ∂B2 × [t1, t2] that is piecewise regular and
continuous in time. If the equation

∫ t2

t1

∫
∂Bt2

φn · w dSt dt = 0 (2.115)

holds for every vector field w that is C∞ on B̄ × [t1, t2] and vanishes at time t1, at time t2,
and on ∂B1, then φ = 0 on ∂Bt2 × [t1, t2].

7 The existence of functions β(t) and γ (X) having these properties can be demonstrated (Gurtin
[34], p. 19).
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The proof is similar to that of Lemma 3. Equation (2.115) can be written

∫ t2

t1

∫
∂B2

φJF−tN · w dS dt = 0. (2.116)

Because φJF−t is continuous on B̄ × [t1, t2], φJF−tN is piecewise regular and
continuous in time on ∂B2×[t1, t2]. Therefore, Lemma 2 requires that φJF−tN = o
on ∂B2 × [t1, t2]. From (2.71), this implies that φ = 0 on ∂B2 × [t1, t2].



Chapter 3
Mechanics of Continuous Media

Applications of Hamilton’s principle to deformable continuous media are discussed
in this chapter. Statements of the principle for continuous media are formally very
similar to those for systems of particles, and certainly were motivated by them.
However, it should be emphasized that the statements for continuous media stand
as independent postulates; they are not derived from Hamilton’s principle for a
system of particles. It will be shown that the local forms of the equations of motion
for continuous media and their associated boundary conditions are obtained as
necessary conditions implied by Hamilton’s principle. The classical theories of fluid
and solid mechanics will be described, and also two recent theories of materials
with microstructure. It will be shown that postulates of Hamilton’s principle that
have been introduced to obtain more general theories are natural and well motivated
extensions of the classical theories.

Problems in the mechanics of continuous media usually involve nonconservative
forces, and it is frequently convenient to include constraints in statements of
Hamilton’s principle. Therefore, the postulates that will be introduced in this work
will be expressed in the same form as the second form of Hamilton’s principle for
a system of particles stated on page 12. They will be developed by the heuristic
approach of identifying terms associated with the mechanics of continuous media
that are analogous to the terms that appear in (1.48). In one example that does not
involve nonconservative forces, Hamilton’s principle will be expressed in the first
form stated on page 6.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Bedford, Hamilton’s Principle in Continuum Mechanics,
https://doi.org/10.1007/978-3-030-90306-0_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90306-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-90306-0_3


34 3 Mechanics of Continuous Media

3.1 The Classical Theories

In this section theories are discussed in which the mechanical behavior of a material
is completely described by its motion

x = χ(X, t). (3.1)

Hamilton’s principle will be postulated for a finite amount of material that occupies
a bounded regular region B in a prescribed reference configuration at time t1. As
the material undergoes a motion (3.1), it will occupy a volume Bt at each time t .
Therefore Bt is called a material volume; it contains the same material at each time t .

Throughout this section an admissible motion will refer to a motion (3.1) of
the material, from the prescribed reference configuration at time t1 to a prescribed
configuration at time t2, that is C2 on B̄ × [t1, t2] and satisfies prescribed boundary
conditions on ∂B. A comparison motion will refer to an admissible motion

x∗ = χ(X, t) + εη(X, t), (3.2)

where η(X, t) is an arbitrary C2 vector field on B̄ × [t1, t2] subject to the
requirements that η(X, t1) = o and η(X, t2) = o.

3.1.1 Ideal Fluids

The terms ideal or inviscid fluid refer to a model of fluid behavior in which the
effects of viscosity are neglected. This is the simplest model for a continuous
medium. Two cases, compressible and incompressible fluids, will be treated.

Consider how one might postulate Hamilton’s principle for an ideal fluid in a
form analogous to the first form for a system of particles stated on page 12. An
admissible motion and comparison motion of the fluid are given by (3.1) and (3.2).
It will be assumed that there is no geometrical constraint on the motion of the fluid
on ∂B.

The density ρ(X, t) of the fluid will be assumed to be a C1 scalar field on B̄ ×
[t1, t2]. In Sect. 2.3, an admissible comparison density field was defined by

ρ∗ = ρ(X, t) + εr(X, t), (3.3)

where r(X, t) is an arbitrary C1 scalar field on B̄×[t1, t2] subject to the requirements
that r(X, t1) = 0 and r(X, t2) = 0.

Consider the individual terms in (1.48):

• The potential energy U If the fluid is compressible, it can store potential energy
in the form of energy of deformation (in the same way energy is stored in a
deformed spring). The deformation of a fluid is expressed in terms of its change
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in density from a reference state. Therefore, let it be assumed that there is a
scalar function of the density e(ρ), the internal energy, that is defined such
that the potential energy of each element dVt of the fluid contained in Bt is
ρe(ρ) dVt . It will be assumed that the second derivative of the function e(ρ)

exists and is continuous. In modern terminology, the assumption that the internal
energy depends only on the density of the fluid is a constitutive assumption that
characterizes an elastic fluid. The total potential energy of the fluid contained
in Bt is

U =
∫

Bt

ρe(ρ) dVt . (3.4)

• The virtual work δW External forces acting on the fluid will be introduced by
means of virtual work terms. Let there be a prescribed vector field b(X, t), the
body force, that is C0 on B̄ × [t1, t2] and defined such that the external force
exerted on a volume element dVt of the fluid contained in Bt is ρb dVt . This
field represents any external forces that are distributed over the volume of the
fluid, such as its weight. The virtual work done by this force will be expressed in
the form ρb dVt · δx, which is clearly analogous to (1.42). The virtual work done
on the fluid contained in Bt is

∫
Bt

ρb · δx dVt . (3.5)

It will also be assumed that there is a prescribed scalar field p0(X, t), the external
pressure, that is continuous in time and piecewise regular on ∂B × [t1, t2] and
defined such that the external force exerted on an area element dSt of ∂Bt is
−p0n dSt . The resulting virtual work will be written −p0n dSt ·δx, so the virtual
work on the fluid contained in Bt is

−
∫

∂Bt

p0n · δx dSt . (3.6)

Therefore, the virtual work done on the fluid by external forces is postulated to
be of the form

δW =
∫

Bt

ρb · δx dVt −
∫

∂Bt

p0n · δx dSt . (3.7)

• The constraint C The motion of the fluid and its density field are related
through the equation of conservation of mass. The comparison motion (3.2)
and the comparison density field (3.3) can be regarded as independent if the



36 3 Mechanics of Continuous Media

equation of conservation of mass (2.66) is introduced into Hamilton’s principle
as a constraint. The constraint will be written in the form

C =
∫

Bt

π

(
1 − ρR

ρJ

)
dVt , (3.8)

where the unknown field π(X, t), which is assumed to be C1 on B̄ × [t1, t2], is a
Lagrange multiplier.

• The kinetic energy T The kinetic energy of the fluid is

T =
∫

Bt

1
2ρv · v dVt . (3.9)

Using these definitions, we can state Hamilton’s principle for an ideal fluid:

Among comparison motions (3.2) and comparison density fields (3.3), the actual motion
and field are such that

∫ t2

t1

[δ(T − U) + δW + δC] dt = 0. (3.10)

It was shown in Sect. 2.3 [Eqs. (2.103) and (2.108)] that the terms δT and δC can
be written

δT = −
∫

Bt

ρa · δx dVt , (3.11)

δC =
∫

∂Bt

πn · δx dSt +
∫

Bt

(
−grad π · δx + π

ρ
δρ

)
dVt . (3.12)

The potential energy is

U =
∫

Bt

ρe(ρ) dVt =
∫

B

ρRe(ρ) dV . (3.13)

In terms of the comparison density field (3.3), this is

U∗ =
∫

B

ρRe∗ dV , (3.14)

where e∗ = e(ρ∗). The derivative of this expression with respect to ε is

dU∗

dε
=
∫

B

ρR

de∗

dρ∗
∂ρ∗

∂ε
dV =

∫
B

ρR

de∗

dρ∗ r dV , (3.15)
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so that the variation of the potential energy is

δU =
∫

B

ρR

de

dρ
δρ dV =

∫
Bt

ρ
de

dρ
δρ dVt . (3.16)

Upon substituting (3.7), (3.11), (3.12), and (3.16) into Eq. (3.10), it can be written

∫ t2

t1

[∫
Bt

(−ρa − grad π + ρb) · δx dVt +
∫

Bt

(
π

ρ
− ρ

de

dρ

)
δρ dVt

+
∫

∂Bt

(π − p0)n · δx dSt

]
dt = 0.

(3.17)

The equation of motion and boundary condition for the fluid can be deduced from
this equation by applying Lemmas 3 and 4 of Sect. 2.4. Because the fields η = δx
and r = δρ are arbitrary, it can be assumed that δρ = 0 on B̄ × [t1, t2] and that
δx = o on ∂B × [t1, t2]. As a result, the second and third integrals in (3.17) vanish.
Then applying Lemma 3 to the remaining integral yields the equation

ρa = −grad π + ρb on B̄t × [t1, t2] . (3.18)

This is called the equation of balance of linear momentum. Next, assuming that
δx = o on B̄ × [t1, t2] and applying Lemma 3 to (3.17) yields the equation

π = ρ2 de

dρ
on B̄t × [t1, t2] . (3.19)

This equation determines the Lagrange multiplier π as a function of the density of
the fluid. Finally, applying Lemma 4 to (3.17) provides the boundary condition

π = p0 on ∂Bt × [t1, t2] . (3.20)

A physical interpretation of the Lagrange multiplier π can be gained by
writing (3.17) in terms of a material volume of fluid B ′

t that is contained within
Bt (Fig. 3.1):

∫ t2

t1

[ ∫
B ′

t

(−ρa − grad π + ρb) · δx dVt +
∫

B ′
t

(
π

ρ
− ρ

de

dρ

)
δρ dVt

+
∫

∂B ′
t

(π − p)n · δx dSt

]
dt = 0.

(3.21)

Here the term −pn is the normal traction exerted on the fluid within B ′
t by the

fluid exterior to B ′
t ; that is, p is the pressure of the fluid. The function p is not

prescribed, but is a constitutive function that is assumed to be C1 on B̄ × [t1, t2]. By
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Fig. 3.1 A volume of fluid B ′ that is contained within B and the corresponding volume B ′
t that is

contained within Bt at time t

the same procedure that was applied to (3.17), (3.21) implies Eqs. (3.18) and (3.19)
on B̄ ′

t × [t1, t2] and the boundary condition

π = p on ∂B ′
t × [t1, t2] . (3.22)

Thus the Lagrange multiplier π is the pressure of the fluid. Furthermore, observe
from (3.19) that Hamilton’s principle yields the constitutive equation for the
pressure of the fluid in terms of the internal energy.

At this point, the usual method of determining the equation of motion for an ideal
fluid will be sketched for the purpose of comparison with Hamilton’s principle. The
approach used is to write a postulate for an arbitrary material volume of the fluid
that is analogous to Newton’s second law for a system of particles (see e.g. Gurtin
[35], pp. 105–110).

Let B ′
t be an arbitrary volume contained within Bt (Fig. 3.1). The linear

momentum of an element dVt of B ′
t is the product of its mass and velocity, ρv dVt .

It is postulated that, at an arbitrary instant in time, the rate of change of the total
linear momentum of the fluid contained within B ′

t is equal to the total external force
exerted on the fluid:

d

dt

∫
B ′

t

ρv dVt =
∫

B ′
t

ρb dVt −
∫

∂B ′
t

pn dSt . (3.23)

As a consequence of the equation of conservation of mass and Reynolds’ transport
theorem (see e.g. Gurtin [35], pp. 78–79),

d

dt

∫
B ′

t

ρv dVt =
∫

B ′
t

ρa dVt . (3.24)

Using this result and the divergence theorem, (3.23) can be written

∫
B ′

t

(ρa + grad p − ρb)dVt = 0. (3.25)
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Because the volume B ′
t is arbitrary, this equation implies that

ρa = −grad p + ρb on B̄ × [t1, t2] . (3.26)

It is clear from this derivation why this equation is referred to as the balance of
linear momentum.

This direct method of obtaining the equation of balance of linear momentum
is simpler than Hamilton’s principle, although if the derivation of Reynolds’
transport theorem is regarded as an integral part of the process, the difference
is not so pronounced. Nevertheless, their relative complexity is a criticism that
has been made of variational methods in continuum mechanics. Note, however,
that the direct method does not yield (3.19). Other advantages of Hamilton’s
principle, particularly in connection with its ability to incorporate constraints, will
be illustrated in subsequent examples. The author regards direct and variational
methods as complementary, not competitive. In some cases one method is more
advantageous and in some the other, and often both methods lend insight to a given
problem.

If the constitutive relation for the internal energy as a function of the density
is known, (2.70), (3.18), and (3.19) provide a system of equations with which to
determine the density field ρ, velocity field v, and pressure field π = p. Although
this is a simple theory, it is used in the study of aerodynamics to analyze high-speed
flows except in regions (such as boundary layers and wakes) where the effects of
viscosity cannot be neglected. In this application, (3.19) is usually assumed to be
the isentropic relation

p

ργ
= constant, (3.27)

where γ , the ratio of specific heats, is assumed to be constant. When it is linearized
in terms of small perturbations, this theory is also used in the study of the
propagation of acoustic waves. Let

v = ṽ, (3.28)

ρ = ρR + ρ̃, (3.29)

where ṽ and ρ̃ are small perturbations and the reference density ρR is assumed to
be homogeneous. Using (3.27), (2.70) and (3.18) can be written (in the absence of
the body force)

∂ρ̃

∂t
+ ρR div ṽ = 0, (3.30)

ρR

∂ ṽ
∂t

+ γpR

ρR

grad ρ̃ = 0. (3.31)
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Eliminating ṽ from these two equations yields the linear wave equation

∂2ρ̃

∂t2 = α2 �2 ρ̃, (3.32)

where α = √
γpR/ρR is the sound speed.

Thus far, the theory of a compressible ideal fluid has been discussed. If the fluid
is assumed to be incompressible, ρ = ρR = constant. In this case, there is no
energy of deformation, so the potential energy U = 0. The equation of conservation
of mass (2.66) becomes J = 1, so the constraint (3.8) reduces to

C =
∫

Bt

π

(
1 − 1

J

)
dVt . (3.33)

The other terms in (3.10) are unchanged. By using the same procedure as in the case
of a compressible fluid, (3.10) leads to the equation of balance of linear momentum

ρa = −grad π + ρb on B̄t × [t1, t2] (3.34)

and the boundary condition

π = p0 on ∂Bt × [t1, t2] . (3.35)

This equation of balance of linear momentum and boundary condition are identical
to those obtained in the case of a compressible fluid, but there is no equivalent
to (3.19). The pressure π is not a constitutive function of the density. For an
incompressible fluid, the equation of conservation of mass (2.70) reduces to

div v = 0. (3.36)

Equations (3.34) and (3.36) provide two equations with which to determine the
velocity field v and pressure field π . The theory of incompressible ideal fluids is
used in the study of hydraulics and in aerodynamics for the analysis of low-speed
flows in regions where viscosity is not important.

Applications of Hamilton’s principle to ideal fluids are discussed by Eckart [24],
Herivel [43], Lanczos [50], Leech [51], Serrin [65], and Taub [67].

3.1.2 Elastic Solids

An elastic solid can be characterized by the assumption that the internal energy is a
function of the deformation gradient F, so that the potential energy of the material
contained in Bt is

U =
∫

Bt

ρe(F) dVt =
∫

B

ρRe(F) dV . (3.37)
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It will be assumed that the function e(F) is differentiable on a suitable open domain
of its argument and that DIV (∂e/∂F) is continuous on B̄ × [t1, t2].

Suppose that the surface ∂B consists of complementary regular subsurfaces ∂B1
and ∂B2, and that the motion of the material is prescribed on ∂B1. Let there be no
constraint on the motion of the material on ∂B2.

Let there be a prescribed vector field t0(x, t), the external traction, that is defined
on ∂Bt2 × [t1, t2] such that the external force exerted on an element dSt of ∂Bt2 is
t0 dSt . Then define a vector field s0(X, t) by s0 dS = t0 dSt , and let s0 be assumed
to be continuous in time and piecewise regular on ∂B2 × [t1, t2]. The virtual work
done by the external traction is t0 dSt · δx = s0 dS · δx, and the total virtual work
done by external forces on the material contained in Bt is

δW =
∫

B

ρRb · δx dV +
∫

∂B2

s0 · δx dS, (3.38)

where the body force b is defined as in the preceding subsection. Note that δx must
vanish on ∂B1 because the comparison motion (3.2) must satisfy the prescribed
boundary conditions on ∂B.

The kinetic energy of the material contained in Bt is

T =
∫

B

1
2ρRv · v dV . (3.39)

Hamilton’s principle for an elastic material states:

Among admissible comparison motions (3.2), the actual motion of the material is such that

∫ t2

t1

[δ(T − U) + δW ] dt = 0. (3.40)

To determine the variation of the internal energy, it is first expressed in terms of the
comparison motion:

U∗ =
∫

B

ρRe(F∗) dV . (3.41)

The derivative of this expression with respect to ε is

∂U∗

∂ε
=
∫

B

ρR

de∗

dF∗ · ∂F∗

∂ε
dV =

∫
B

ρR

de∗

dF∗ · ∂η

∂X
dV , (3.42)

where e∗ = e(F∗). In terms of components, this equation is

∂U∗

∂ε
=
∫

B

ρR

∂e∗

∂F ∗
km

∂F ∗
km

∂ε
dV =

∫
B

ρR

∂e∗

∂F ∗
km

∂ηk

∂Xm

dV . (3.43)
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Therefore, the variation of the potential energy is

δU =
[
∂U∗

∂ε

]
ε=0

=
∫

B

S · ∂η

∂X
dV , (3.44)

where

S = ρR

de

dF
, Skm = ρR

∂e

∂Fkm

. (3.45)

The linear transformation S is called the first Piola–Kirchoff stress. By means of the
divergence theorem, (3.44) can be written

δU =
∫

∂B2

SN · δx dS −
∫

B

DIV S · δx dV . (3.46)

Substituting this expression, (2.103), and (3.38) into Eq. (3.40), it assumes the form

∫ t2

t1

[∫
B

(−ρRa + DIV S + ρRb) · δx dV

+
∫

∂B2

(s0 − SN) · δx dS

]
dt = 0.

(3.47)

Invoking Lemmas 1 and 2 of Sect. 2.4, this equation yields the equation of balance
of linear momentum

ρRa = DIV S + ρRb on B̄ × [t1, t2] (3.48)

and the boundary condition

SN = s0 on ∂B2 × [t1, t2] . (3.49)

When the constitutive relation e(F) is specified, (3.45) and (3.48) can be used to
determine the displacement field u and the Piola–Kirchhoff stress S. The constitutive
relations for elastic materials are discussed by Gurtin ( [34], Chapter C, [35],
Chapters IX and X), Truesdell and Noll ([70], Chapters C and D), and Truesdell and
Toupin ( [71], pp. 723–727). The linear theory of elasticity is obtained by assuming
that e is a quadratic form in the linear strain tensor E,

ρRe = 1
2AijkmEijEkm, (3.50)

where the coefficients Aijkm are constants. If the material is isotropic, it can be
shown that

Aijkm = λδij δkm + μ(δikδjm + δimδjk), (3.51)
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where λ and μ are the Lamé constants. In that case the constitutive equation for the
Piola–Kirchhoff stress is

S = λ(tr E)1 + 2μE, Skm = λEjj δkm + 2μEkm. (3.52)

By expressing the variation of the potential energy (3.44) as an integral over Bt ,
it can be written

δU =
∫

Bt

T · ∂η

∂x
dVt , (3.53)

where the Cauchy stress T is defined by

T = 1

J
SFt, Tkm = 1

J
Skj

∂χm

∂Xj

. (3.54)

By using the expression (3.53) for δU , (3.47) can be written

∫ t2

t1

[∫
Bt

(−ρa + div T + ρb) · δx dVt

+
∫

∂Bt2

(t0 − Tn) · δx dSt

]
dt = 0,

(3.55)

which yields the equation of balance of linear momentum

ρa = div T + ρb on B̄t × [t1, t2] (3.56)

and the boundary condition

Tn = t0 on ∂Bt2 × [t1, t2] . (3.57)

There are some elastic materials, of which rubber is the best known example,
for which the assumption that the material is incompressible can be a useful
approximation. The equations governing an incompressible elastic material can be
obtained by introducing the constraint (3.33) into Hamilton’s principle. When the
variation of (3.33) is included in (3.55), the resulting equation of balance of linear
momentum is

ρa = div (−π1 + T) + ρb on B̄t × [t1, t2] (3.58)

and the boundary condition is

(−π1 + T)n = t0 on ∂Bt2 × [t1, t2] . (3.59)
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In this case there is an additional governing equation, the constraint

J = 1, (3.60)

and an additional unknown field, the pressure π .
If the external forces acting on an elastic material are conservative, Hamilton’s

principle can be stated in a manner analogous to the first form for a system of
particles on page 6 (see e.g. Washizu [73]). Suppose that there exist scalar fields
ψb(x, t) and ψb(x, t) such that

b = −grad ψb, s0 = −grad ψs. (3.61)

Then Hamilton’s principle for an elastic material can be stated:

Among admissible motions, the actual motion of the material is such that the integral

I =
∫ t2

t1

(T − U − Ue) dt (3.62)

is stationary in comparison with neighboring admissible motions.

The term Ue is defined by

Ue =
∫

B

ρRψb dV +
∫

∂B

ψs dS. (3.63)

In terms of the comparison motion, the integral (3.62) is

I ∗(ε) =
∫ t2

t1

(T ∗ − U∗ − U∗
e ) dt, (3.64)

where

U∗
e =

∫
B

ρRψ∗
b dV +

∫
∂B

ψ∗
s dS, (3.65)

ψ∗
b = ψb(x∗, t), and ψ∗

s = ψs(x∗, t). The derivative of this expression with respect
to ε is

∂U∗
e

∂ε
=
∫

B

ρR

∂ψ∗
b

∂x∗ · ∂x∗

∂ε
dV +

∫
∂B

∂ψ∗
s

∂x∗ · ∂x∗

∂ε
dS

=
∫

B

ρR

∂ψ∗
b

∂x∗ · η dV +
∫

∂B2

∂ψ∗
s

∂x∗ · η dS,

(3.66)
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and, using (3.61), the value of this derivative when ε = 0 is

[
∂U∗

e

∂ε

]
ε=0

= −
∫

B

ρRb · η dV −
∫

∂B2

s0 · η dS. (3.67)

Therefore the first form of Hamilton’s principle for an elastic material implies that

[
dI ∗(ε)

dε

]
ε=0

=
∫ t2

t1

[
−
∫

B

ρRa · η dV +
∫

B

DIV S · η dV

−
∫

∂B2

SN · η dS +
∫

B

ρRb · η dV

+
∫

∂B2

s0 · η dS

]
dt = 0,

(3.68)

which is identical to (3.47).
The application of Hamilton’s principle to elastic materials is discussed by Gurtin

( [34], pp. 223–226), Love ( [53], Chapter VII), Washizu [73], and Weinstock [74].

3.1.3 Inelastic Materials

The theories discussed in the preceding two subsections are very special due to
the assumptions that were made concerning the functional form of the internal
energy. Those assumptions restrict the application of the resulting equations, a
priori, to elastic materials. For dissipative media, such as viscous fluids, viscoelastic
materials, or thermoelastic materials, a more general approach is necessary.

Hamilton’s principle can be stated for an arbitrary continuous medium, restricted
only by the assumption that it does not exhibit microstructural effects. In place of
the variation of the internal energy, a virtual work term of the form

−
∫

B

S · δF dV (3.69)

is introduced, where the linear tranformation S is a constitutive variable subject only
to the requirement that S and DIV S be continuous on B̄ × [t1, t2]. No assumption is
made concerning the dependence of S on the motion or deformation of the material.
It is only assumed that work is done when the deformation gradient of the material
changes, and S is the associated generalized force. An understanding of this point is
essential to an appreciation of the applicability of Hamilton’s principle to continuum
mechanics.
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Let the virtual work done on the material contained in Bt be written

δW = −
∫

B

S · δF dV +
∫

B

ρRb · δx dV +
∫

∂B

s0 · δx dS, (3.70)

where the fields b and s0 are defined as in the preceding two subsections. It will
be assumed that there are no geometric constraints on the motion of the material
on ∂Bt .

The kinetic energy of the material contained in Bt is

T =
∫

B

1
2ρRv · v dV . (3.71)

Hamilton’s principle for an arbitrary continuous medium that does not exhibit
microstructural effects states:

Among comparison motions (3.2), the actual motion of the material is such that

∫ t2

t1

(δT + δW) dt = 0. (3.72)

In terms of the comparison motion (3.2), the deformation gradient is

F∗ = F + ε
∂η

∂X
, (3.73)

so the variation of F is

δF =
[
∂F∗

∂ε

]
ε=0

= ∂η

∂X
. (3.74)

Using this expression and the divergence theorem, the virtual work (3.69) can be
written

−
∫

B

S · δF dV = −
∫

∂B

SN · δx dS +
∫

B

DIV S · δx dV . (3.75)

Therefore, using the expressions (3.70), (3.71), and (3.75), Eq. (3.72) can be written
in the form

∫ t2

t1

[∫
B

(−ρRa + DIV S + ρRb) · δx dV

+
∫

∂B

(s0 − SN) · δx dS

]
dt = 0.

(3.76)
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This equation is identical to Eq. (3.47) for an elastic solid. It therefore leads to the
same equation of balance of linear momentum

ρRa = DIV S + ρRb on B̄ × [t1, t2] (3.77)

and boundary condition

SN = s0 on ∂B × [t1, t2] . (3.78)

Alternatively, by using the definition of the Cauchy stress (3.54), (3.72) can be
written

∫ t2

t1

[∫
Bt

(−ρa + div T + ρb) · δx dVt

+
∫

∂Bt

(t0 − Tn) · δx dSt

]
dt = 0,

(3.79)

which is identical to Eq. (3.55) for an elastic solid and leads to the same equation of
balance of linear momentum

ρa = div T + ρb on B̄t × [t1, t2] (3.80)

and boundary condition

Tn = t0 on ∂Bt × [t1, t2] . (3.81)

Although this statement of Hamilton’s principle leads to equations of balance of
linear momentum and boundary conditions that are formally identical to those that
were obtained in the case of an elastic solid, the crucial difference is that in this
case the linear transformations S and T are constitutive variables. Equations (3.77)–
(3.81) apply to an arbitrary continuous medium, subject only to the restriction that
the work done by internal forces as the result of a motion of the material is of the
form (3.69).1 However, S and T are no longer derivable from a potential energy, but
must be prescribed through constitutive relations.2

Consider an arbitrary volume of material B ′ contained within B (Fig. 3.1). Let
the heat flux q be a constitutive vector field that is C1 on B̄ × [t1, t2] and defined
such that the rate at which heat is lost from the material within B ′

t by conduction is

∫
∂B ′

t

q · n dSt . (3.82)

1 Theories in which this restriction is relaxed will be described in the next section.
2 Notice that, because S and DIV S must be continuous, the form of the constitutive equation for S
or T may impose a more stringent smoothness requirement on the motion of the material.
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Let the external heat supply s be a prescribed scalar field that is C0 on B̄ × [t1, t2]
and defined such that the rate at which heat is added to the material within B ′

t by
external sources (such as radiation) is

∫
B ′

t

ρs dVt . (3.83)

The postulate of balance of energy for the material contained within B ′
t can be

written in the form (see e.g. Leigh [52])

d

dt

∫
B ′

t

ρe dVt =
∫

B ′
t

T · L dVt −
∫

∂B ′
t

q · n dSt +
∫

B ′
t

ρs dVt , (3.84)

where e is the internal energy and L = ∂v/∂x is the velocity gradient. Because the
volume B ′

t is arbitrary, this equation implies the differential equation

ρė = T · L − div q + ρs on ∂B × [t1, t2] , (3.85)

which is called the equation of balance of energy.
It is easy to show that

∫
B ′

t

T · L dVt =
∫

B ′
S · Ḟ dV. (3.86)

This term of the energy balance postulate is called the mechanical working term.
Observe the correspondence between the form of this term and that of the virtual
work (3.69). It will be shown that this correspondence can be used to motivate
postulates of balance of energy when Hamilton’s principle is used to derive more
general theories of continua. Briefly, the mechanical working terms in the balance
of energy postulates are deduced from the forms of the virtual work terms in
Hamilton’s principle.3 This approach insures that the forms of the equations of
balance of linear momentum and balance of energy are mutually consistent.

Thermoelasticity is an example of a theory in which the equation of balance of
energy (3.85) is required (see e.g. Nowinski [55]). Let the absolute temperature
θ(X, t) be defined to be a non-negative scalar field that is C2 on B̄ × [t1, t2].
A thermoelastic material can be characterized by the constitutive relations ( [55],
Chapter 4)

T = T(F, θ, grad θ),

e = e(F, θ, grad θ),

q = q(F, θ, grad θ).

(3.87)

3 See Drumheller and Bedford [22]. Similar procedures have been suggested by Ericksen [26] and
Serrin ( [65], p. 148).
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These constitutive relations together with (2.70), (3.80), and (3.85) provide a system
of equations with which to determine the density ρ, displacement u, temperature θ ,
Cauchy stress T, internal energy e, and heat flux q.

3.2 Theories with Microstructure

In the classical theories of fluid and solid mechanics, the mechanical behavior of
a material is completely described by its motion (3.1). In a continuum theory with
microstructure, new fields are introduced that are independent of the motion and
describe mechanical properties of the material that the classical theories are unable
to express. Hamilton’s principle is a useful technique for obtaining the equations
that govern the new fields. In this work, two examples of theories of this type will
be described, a theory of granular materials developed by Goodman and Cowin [31]
and a general theory of elastic materials with microstructure due to Mindlin [54].

When postulates of Hamilton’s principle were first formulated for the classical
theories of fluid and solid mechanics, the results being sought were well known.
The two examples presented in this section, and the material on mixtures in the
following chapter, show how natural extensions of those original postulates can be
used to obtain new theories.

3.2.1 Granular Materials

The work of Goodman and Cowin provides an interesting and informative example
of the use of Hamilton’s principle to derive a relatively simple model of a material
with microstructure. Although they did not use Hamilton’s principle in developing
their theory, it provides a natural and advantageous approach to theories of this type.

They proposed a continuum theory for application to materials consisting of solid
grains with interstitial voids. They introduced a field φ(X, t), the volume fraction of
the material, that is a measure of the volume occupied by the grains per unit volume
of the material. The volume fraction can vary independently of the motion (3.1)
as a result of deformations and reorientations of the grains. Let it be assumed that
the motion (3.1) and comparison motion (3.2) are C3 and that the volume fraction
φ(X, t) is C2 on B̄ × [t1, t2]. A comparison volume fraction will be defined by

φ∗ = φ(X, t) + εf (X, t), (3.88)

where f (X, t) is an arbitrary C2 scalar field on B̄ × [t1, t2] that satisfies the
conditions f (X, t1) = 0 and f (X, t2) = 0.
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The virtual work done on the material by internal forces is postulated to be

∫
B

[−S · δF + ρRg δφ − c · δ(GRAD φ)] dV . (3.89)

Comparing this expression to (3.69), the virtual work associated with an ordinary
continuous medium is supplemented by two new terms which state that work is
done when change occurs in the volume fraction and in the gradient of the volume
fraction of the material. It will be assumed that the Piola–Kirchhoff stress S and
DIV S are continuous on B̄ × [t1, t2]. The scalar field g is a constitutive function
that is assumed to be C0 on B̄ × [t1, t2] and is called the intrinsic equilibrated body
force. The vector field c is also a constitutive function and is assumed to be C1 on
B̄ × [t1, t2].

The virtual work done by external forces that are distributed over the volume Bt

is assumed to be of the form
∫

Bt

(ρb · δx + ρl δφ) dVt . (3.90)

The prescribed body force b and the scalar field l are assumed to be continuous on
B̄ × [t1, t2]. The field l is a prescribed function called the external equilibrated body
force.

Suppose that the surface ∂B consists of complementary regular subsurfaces ∂B1
and ∂B2, and that the motion of the material and the volume fraction are prescribed
on the surface ∂B1. (See Sect. 2.4.) The virtual work done by forces distributed on
∂B2 is postulated in the form

∫
∂Bt2

(t0 · δx + H0δφ) dS. (3.91)

The prescribed external traction t0 and the prescribed scalar function H0 are
assumed to be continuous in time and piecewise regular on ∂Bt2 × [t1, t2].

The total virtual work done on the material contained in Bt is therefore

δW =
∫

B

[−S · δF + ρRg δφ − c · δ(GRAD φ)] dV

+
∫

Bt

(ρb · δx + ρl δφ) dVt +
∫

∂Bt2

(t0 · δx + H0δφ) dS.

(3.92)

The kinetic energy of the material is written in the form

T =
∫

Bt

(
1
2ρv · v + 1

2ρkφ̇2
)

dVt . (3.93)

In comparison to an ordinary continuous medium, an additional kinetic energy
expression is introduced which contains the square of the material derivative of
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the new independent field, the volume fraction. This term is the kinetic energy
associated with the local expansion and contraction of the grains, which can occur
independently of the motion (3.1). In general, the coefficient k must be treated as a
constitutive function.4 For simplicity in this discussion, k will be assumed to be a
constant.

Observe that the virtual work and kinetic energy expressions that have been
defined follow in a natural and systematic way once the new independent field, the
volume fraction, was introduced. In addition to the usual kinetic energy due to the
translational motion of the material, a new kinetic energy expressed in terms of the
rate of change of the volume fraction was included. Similarly, it was assumed that
work is done when the volume fraction and its gradient undergo changes.

Hamilton’s principle for a Goodman-Cowin material states:

Among comparison motions (3.1) and comparison volume fraction fields (3.88), the actual
motion and volume fraction are such that

∫ t2

t1

(δT + δW) dt = 0. (3.94)

Notice from (3.88) that

GRAD φ∗ = ∂φ

∂X
+ ε

∂f

∂X
, (3.95)

so that

δ(GRAD φ) = ∂f

∂X
. (3.96)

Therefore the third term in the first integral of the virtual work expression (3.92) can
be written

∫
B

c · δ(GRAD φ) dV =
∫

B

c · ∂f

∂X
dV =

∫
Bt

h · ∂F

∂x
dVt , (3.97)

where the vector field

h = 1

J
Fc (3.98)

is called the equilibrated stress vector. By applying the divergence theorem, (3.97)
can be expressed as

∫
B

c · δ(GRAD φ) dV =
∫

∂B2

h · n δφ dS −
∫

Bt

divh δφ dVt , (3.99)

where δφ = f .

4 See the related discussion in Sect. 4.4.
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The integral with respect to time of the second term in the kinetic energy
expression (3.93) is

T2 =
∫ t2

t1

∫
Bt

1
2ρkφ̇2 dVt dt =

∫ t2

t1

∫
B

1
2ρRkφ̇2 dV dt. (3.100)

In terms of the comparison volume fraction field (3.88), this is

T ∗
2 =

∫ t2

t1

∫
B

1
2ρRk(φ̇∗)2 dV dt. (3.101)

The derivative of this expression with respect to ε is

dT ∗
2

dε
=
∫ t2

t1

∫
B

ρRkφ̇∗ ∂φ̇∗

∂ε
dV dt =

∫ t2

t1

∫
B

ρRkφ̇∗ḟ dV dt. (3.102)

Integrating this equation by parts with respect to time and evaluating the result when
ε = 0 yields

δT2 = −
∫ t2

t1

∫
B

ρRkφ̈ δφ dV dt = −
∫ t2

t1

∫
Bt

ρkφ̈ δφ dVt dt. (3.103)

Using (3.99) and (3.103), and expressing the Piola–Kirchhoff stress S in terms
of the Cauchy stress T through (3.54), (3.94) can be written

∫ t2

t1

{∫
Bt

[
(−ρa + div T + ρb) · δx

+(−ρkφ̈ + div h + ρl + ρg)δφ
]
dVt

+
∫

∂Bt2

[
(t0 − Tn) · δx + (H0 − h · n)δφ

]
dSt

}
dt = 0.

(3.104)

Due to the independence of the fields δx and δφ, Lemmas 3 and 4 of Sect. 2.4 can
be applied to (3.104) to obtain the differential equations

ρa = div T + ρb

ρkφ̈ = div h + ρl + ρg

}
on B̄t × [t1, t2] (3.105)

and the boundary conditions

Tn = t0

h · n = H0

}
on ∂Bt2 × [t1, t2] . (3.106)
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When constitutive relations are specified for the Cauchy stress T, the equilibrated
stress vector h, and the intrinsic equilibrated body force g, (2.70) and (3.105) can
be used to determine the density ρ, velocity v, and volume fraction φ.

Equations (3.105) are identical, with minor changes in notation, to the equations
obtained by Goodman and Cowin ([31], Equations (4.7) and (4.10)). Although they
did not use Hamilton’s principle to obtain these equations, they did use a variational
analysis of the static case [17] to motivate them.

This theory has been used to analyze flows of granular materials by Cowin [16],
Nunziato et al. [57], and Passman et al. [63], and has been applied to the propagation
of waves in granular materials by Cowin and Nunziato [18] and Nunziato and Walsh
[58].

Two general observations are illustrated by this example. First, Hamilton’s
principle yields an equation for each independent field required to describe the
mechanical state of a material. The independent fields in this example are the
motion and the volume fraction. This characteristic of Hamilton’s principle makes it
particularly advantageous for application to materials with microstructure. Second,
the generalized forces that are introduced into Hamilton’s principle as virtual work
terms must either be prescribed or must be specified through constitutive relations.
In this example, b, l, t, and H0 are prescribed, while T, g, and h are constitutive
variables.

The approach described at the end of Sect. 3.1.3 can be used to postulate
the equation of balance of energy for a Goodman-Cowin material. Recall the
correspondence between the virtual work (3.69) containing the Piola–Kirchhoff
stress and the mechanical working term (3.86) that appears in the balance of energy
postulate for an ordinary continuous medium. The virtual work done by internal
forces in this example is (3.89). The corresponding mechanical working term for an
arbitrary volume B ′ of Goodman-Cowin material is

∫
B ′

(
S · Ḟ − ρRg φ̇ + c · GRAD φ̇

)
dV. (3.107)

Equating this expression to the rate of change of the internal energy e of the material
within B ′ and introducing the heat conduction terms (3.82) and (3.83), a postulate
of balance of energy for a Goodman-Cowin material is

d

dt

∫
B ′

ρRe dV =
∫

B ′
S · Ḟ dV −

∫
B ′

t

ρgφ̇ dVt

+
∫

B ′
c · GRAD φ̇ dV −

∫
∂B ′

q · n dSt

+
∫

B ′
t

ρs dVt .

(3.108)
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The resulting local form of the equation of balance of energy is

ρė = T · L − ρgφ̇ + h · grad φ̇ − div q + ρs. (3.109)

This result is identical to the equation obtained by Goodman and Cowin ( [31],
Equation (4.11)).

3.2.2 Elastic Materials with Microstructure

In the theory described in the previous subsection, a new independent scalar field,
the volume fraction, was introduced which provides limited information on the
local state of deformation and orientation of the grains in a granular medium.
Mindlin [54] used Hamilton’s principle to obtain a theory of linear elastic materials
with microstructure that contains more extensive information concerning the local
state of deformation and orientation of the material. His theory provides a clear
illustration of the potential of Hamilton’s principle for generating new theories of
continuous media.

Mindlin associates with each point of the material a microelement. In the case
of a granular medium, a microelement could represent a typical grain of the
material. The position vector X of a material point in the reference configuration is
assumed to be the position of the center of mass of a microelement in the reference
configuration. As the result of a motion (3.1) of the material, the position of the
center of mass of the microelement at time t is x. Let the position vector of a
material point of the microelement relative to its center of mass in the reference
configuration be �. The position vector of this material point relative to the center
of mass at time t is denoted by ξ (Fig. 3.2). The microdisplacement of the material
point of the microelement is defined by

ū = ξ − �. (3.110)

It is then assumed that for each material point of the microelement,

ū = ψ tξ , (3.111)

where the linear transformation ψ(X, t) is called the microdeformation. The
microdeformation is the new independent field of the theory. It describes the state of
strain of the microelement associated with each material point. Let ψ(X, t) be C2

on B̄ × [t1, t2], and define the microdeformation comparison field by

ψ∗ = ψ(X, t) + εR(X, t), (3.112)

where the linear transformation R is an arbitrary C2 field on B̄ × [t1, t2] subject to
the conditions that R(X, t1) = 0 and R(X, t2) = 0.
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Fig. 3.2 A microelement in the reference configuration and at time t

The strain measures of the theory are the usual linear strain E, the relative
deformation

γ =
(

∂u
∂X

)t

− ψ, γkm = ∂um

∂Xk

− ψkm, (3.113)

where u is the usual displacement, and the microdeformation gradient

κ = ∂ψ

∂X
, κkmn = ∂ψkm

∂Xn

. (3.114)

Mindlin developed a theory for an elastic material with microstructure by
introducing an internal energy e that is a function of the strain measures E, γ , and κ .
The total potential energy of the material contained in Bt is written

U =
∫

B

ρRe(E, γ , κ) dV . (3.115)

It will be assumed that the terms

τ = ρR

∂e

∂E
, τkm = ρR

∂e

∂Ekm

,

σ = ρR

∂e

∂γ
, σkm = ρR

∂e

∂γkm

,

μ = ρR

∂e

∂κ
, μkmn = ρR

∂e

∂κkmn

,

(3.116)
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exist and are continuous on suitable open domains of their arguments, and that the
fields DIV τ , DIV σ , and DIV μ, where

(DIV μ)km = ∂μkmn

∂Xn

, (3.117)

are continuous on B̄ × [t1, t2].
It will be assumed that on the surface ∂B there are no geometrical constraints on

the motion of the material or on the value of the microdeformation ψ . The virtual
work done by external forces is postulated in the form

δW =
∫

B

ρR(b · δx + D · δψ) dV +
∫

∂B

(s0 · δx + M0 · δψ) dS. (3.118)

The body force b and the linear transformation D are assumed to be prescribed and
continuous on B̄ × [t1, t2]. The field D is called the double force per unit mass.
The surface traction s0 and the linear transformation M0 are also prescribed and
are assumed to be continuous in time and piecewise regular on ∂B × [t1, t2]. The
field M0 is called the double force per unit area. Compare (3.118) to the virtual
work expressions (3.89) and (3.91) used in the theory of granular materials due to
Goodman and Cowin. In the latter theory, the supplementary independent field was
a scalar, the volume fraction. In the present theory, the supplementary independent
field is a linear transformation, the microdeformation. Thus the present theory
contains much more information about the local motion and deformation of the
microelements.

The kinetic energy of the material is postulated in the form

T =
∫

B

( 1
2ρRv · v + 1

6ρ′
Rψ̇ · Qψ̇) dV , (3.119)

where

ψ̇ · Qψ̇ = Qijkmψ̇ij ψ̇km. (3.120)

The scalar ρ′
R and linear transformation Q are constants which are determined by

the distribution of mass within the microelement in the reference configuration. The
second term in (3.119) is the kinetic energy associated with the rotation and rate of
deformation of the microelement. Compare (3.119) with the expression (3.93) for a
Goodman-Cowin material, in which the additional kinetic energy term was due to
the dilatational motion of the microelement.

Hamilton’s principle for a Mindlin material states:

Among comparison motions (3.2) and microdeformation comparison fields (3.112), the
actual fields are such that

∫ t2

t1

[δ(T − U) + δW ] dt = 0. (3.121)
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In terms of the comparison motion and the comparison microdeformation field, the
potential energy (3.115) is

U =
∫

B

ρRe(E∗, γ ∗, κ∗) dV . (3.122)

The derivative of this expression with respect to ε is

∂U∗

∂ε
=
∫

B

(
τ ∗ · ∂E∗

∂ε
+ σ ∗ · ∂γ ∗

∂ε
+ μ∗ · ∂κ∗

∂ε

)
dV , (3.123)

where

μ∗ · ∂κ∗

∂ε
= μ∗

kmn

∂κ∗
kmn

∂ε
. (3.124)

The second term in (3.123) can be written

∫
B

σ ∗ · ∂γ ∗

∂ε
dV =

∫
B

[
(σ t)∗ · ∂η

∂X
− σ ∗ · R

]
dV

=
∫

∂B

(σ t)∗N · η dS −
∫

B

DIV (σ t)∗ · η dV

−
∫

B

σ ∗ · R dV .

(3.125)

By performing similar manipulations on the other terms in (3.123), the variation of
the potential energy can be expressed as

δU =
∫

∂B

τn · δx dS −
∫

B

DIV τ · δx dV

+
∫

∂B

σ tN · δx dS −
∫

B

DIV σ t · δx dV

−
∫

B

σ · δψ dV +
∫

∂B

μN · δψ dS

−
∫

B

DIV μ · δψ dV ,

(3.126)

where δψ = R and

(μN)km = μkmnNn. (3.127)
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The integral from t1 to t2 of the second term in the kinetic energy (3.119) is

I =
∫ t2

t1

∫
B

1
6ρ′

Rψ̇ · Qψ̇ dV dt. (3.128)

Expressing this equation in terms of the comparison microdeformation field and
taking the derivative with respect to ε yields

dI ∗

dε
=
∫ t2

t1

∫
B

1
3ρ′

RQψ̇
∗ · Ṙ dV dt. (3.129)

This equation can be integrated by parts to obtain

δI = −
∫ t2

t1

∫
B

1
3ρ′

RQψ̈ · R dV dt. (3.130)

Using this equation together with the expressions (3.118) and (3.126), (3.121) can
be written

∫ t2

t1

{∫
B

[−ρRa + DIV(τ + σ t) + ρRb] · δx dV

+
∫

B

(− 1
3ρ′

RQψ̈ + σ + DIV μ + ρRD) · δψ dV

+
∫

∂B

[s0 − (τ + σ t)N] · δx dS

+
∫

∂B

(M0 + μN) · δψ dS

}
dt = 0.

(3.131)

Due to the independence of the fields δx and δψ , this equation yields the differential
equations

ρRa = DIV(τ + σ t) + ρRb

1
3ρ′

RQψ̈ = σ + DIV μ + ρRD

}
on B̄ × [t1, t2] , (3.132)

and the boundary conditions

(τ + σ t)N = s0

μN = M0

}
on ∂B × [t1, t2] . (3.133)

Thus, in addition to the equation of balance of linear momentum, Hamilton’s
principle leads to an equation of motion for the microdeformation ψ . Notice that the
two equations of motion are coupled through the term σ . The fact that this coupling
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is derived explicitly is one of the strengths of Hamilton’s principle. It would be
difficult to simply postulate Eqs. (3.132).

When the constitutive equation for the internal energy e is specified, (3.116)
and (3.132) can be used to determine the fields τ , σ , and μ, the displacement
field u, and the microdeformation field ψ . Mindlin [54] obtained a linear theory
by expressing the internal energy as a second order expansion in it arguments and
used the theory to analyze the propagation of harmonic waves.



Chapter 4
Mechanics of Mixtures

Blood is a mixture of a liquid, called the plasma, and particles, primarily ery-
throcytes, or red cells. In an erythrocyte sedimentation test, a vertical tube of
anticoagulated blood is allowed to stand at rest. The cells, being slightly denser than
the plasma, settle to the bottom of the tube. The rate at which the upper cell boundary
falls is a standard clinical test for disease. When a leak occurs in the cooling system
of a nuclear reactor (known as a loss of coolant accident), vapor bubbles appear in
the suddenly depressurized coolant fluid, and the bubbly liquid flows rapidly toward
the leak. It was the study of these two very disparate phenomena that resulted in the
applications of Hamilton’s principle to the continuum theory of mixtures described
in this chapter.

When the volume fraction of one constituent of a binary mixture (i.e. the volume
occupied by that constituent per unit volume of the mixture) changes, the volume
fraction of the other constituent must adjust accordingly. This volume fraction
constraint can be introduced into a postulate of Hamilton’s principle for the mixture
by the method of Lagrange multipliers. When a bubble of gas in a liquid expands or
contracts, it induces a radial motion in the surrounding fluid. The inertia associated
with this radial motion can be introduced into Hamilton’s principle by including, in
addition to the kinetic energy of translational motion of the constituents, a kinetic
energy expressed in terms of the rate of change of the density of the gas. These ideas
suggested that Hamilton’s principle could be a useful method for deriving theories
of mixtures.
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4.1 Motions and Comparison Motions of a Mixture

4.1.1 Motions

Consider a mixture of two constituents (a binary mixture), such as a fluid containing
a distribution of particles or bubbles, or a porous solid saturated by a fluid. In
general, the two constituents of the mixture can flow relative to one another.
Their individual motions can be described by modeling the constituents as two
superimposed continuous media. Let the symbol Cξ denote the ξ th constituent. A
motion of Cξ is the vector field

x = χ ξ (Xξ , t), (4.1)

where x is the position vector at time t of the material point of Cξ whose position
vector is Xξ in a prescribed reference configuration.1 The inverse motion of Cξ is

Xξ = χ−1
ξ (x, t). (4.2)

Consider a finite amount of the mixture that occupies a bounded regular region B

in a prescribed reference configuration at time t1. In general, the individual motions
(4.1) would cause the constituents to occupy different regions at time t . To prevent
the constituents from moving apart during the time interval [t1, t2], it will be
assumed that the displacement of each constituent vanishes on ∂B, or, in the case
of an ideal fluid constituent, it will be assumed that the normal component of the
velocity vanishes on ∂B. This is equivalent to assuming that the mixture is bounded
by a rigid wall.2 As a result, both constituents occupy a single volume Bt = B

with a single surface ∂Bt = ∂B at each time t . This assumption is not merely
a theoretical convenience. At a free surface of the mixture, the constituents could
actually separate as shown in Fig. 4.1. Then two types of surface result, a free surface
of a single constituent, and a surface that is a boundary of one constituent but not
of the other. A systematic study of boundary conditions at the latter type of surface
would be possible using the methods to be described in Chap. 5.

Throughout this chapter the motions (4.1) will be assumed to be C3 on B̄ ×
[t1, t2]. The description of the kinematics and deformation of Cξ in terms of its
motion is identical to that for a single continuous medium presented in Sect. 2.2.

1 See the discussion of the motion of a continuous medium in Sect. 2.2.
2 An alternative approach would be to express Hamilton’s principle in terms of a fixed spatial
volume through which the constituents are allowed to diffuse. However, Leech [51] observes that
“Many investigators. . . have tried to derive by application of Hamilton’s principle the momentum
equation using the so-called Eulerian coordinate system. They have applied the principle using a
fixed (control) volume. This is not Hamilton’s principle, which for a continuum must be associated
with a fixed aggregate or control mass.”
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Fig. 4.1 Two constituents
diffusing relative to one
another at the boundaries

The velocity, acceleration, deformation gradient, Jacobian, displacement, and linear
strain of Cξ are defined by

vξ = ∂

∂t
χ ξ (Xξ , t),

aξ = ∂2

∂t2 χ ξ (Xξ , t),

Fξ = ∂

∂Xξ

χ ξ (Xξ , t),

Jξ = det Fξ ,

uξ = χ ξ (Xξ , t) − Xξ ,

Eξ = 1

2

[
∂uξ

∂Xξ

+
(

∂uξ

∂Xξ

)t]
.

(4.3)

The material derivative of a field fξ (Xξ , t) is defined by

ḟξ = ∂

∂t
fξ (Xξ , t) = ∂

∂t
f̂ξ . (4.4)

The inverse motion (4.2) maps an element dVt of Bt at time t onto an
element dVξ in the reference configuration. These volume elements are related by
(see (2.64))

dVt = JξdVξ . (4.5)
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Let the part of dVt occupied by the constituent Cξ be dVξt , and let the mass of Cξ

contained in dVξt be dmξ . The partial density of Cξ is defined by ρξ = dmξ/dVt .
The material density of Cξ is defined by ρ̄ξ = dmξ/dVξt , and the volume fraction
of Cξ is defined by φξ = dVξt/dVt . Therefore

ρξ = φξ ρ̄ξ . (4.6)

The partial density ρξ is the mass of Cξ per unit volume of the mixture at time t . The
material density ρ̄ξ is the mass of Cξ per unit volume of Cξ at time t , and the volume
fraction φξ is the volume of Cξ per unit volume of the mixture at time t . The fields
ρξ (Xξ , t), ρ̄ξ (Xξ , t), and φξ (Xξ , t) will be assumed to be C2 on B̄ × [t1, t2].

One form of the equation of conservation of mass for Cξ is

Jξ = ρξR

ρξ

= φξRρ̄ξR

φξ ρ̄ξ

, (4.7)

where ρξR = ρξ (Xξ , t1), φξR = φξ (Xξ , t1), and ρ̄ξR = ρ̄ξ (Xξ , t1) are the
values of the partial density, volume fraction, and material density in the reference
configuration. The equation of conservation of mass for Cξ can also be expressed in
the form

ρ̇ξ + ρξ div vξ = 0. (4.8)

In this work, consideration will be limited to mixtures for which

∑
ξ

φξ (x, t) = 1, (4.9)

where the notation
∑
ξ

denotes summation over the constituents of the mixture.

That is, it will be assumed that the constituents of the mixture occupy all of the
volume Bt at each time t ; there are no voids. Equation (4.9) is called the volume
fraction constraint. It plays a central role in the theories to be discussed in this
chapter.

4.1.2 Comparison Fields

A motion (4.1) of Cξ will be called admissible if it is C3 on B̄×[t1, t2] and it satisfies
the prescribed boundary condition on ∂B. An admissible of Cξ is defined in analogy
with (2.83),

x∗
ξ = χ ξ (Xξ , t) + εηξ (Xξ , t)

= Kξ (Xξ , t, ε),
(4.10)
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where ε is a parameter and ηξ (Xξ , t) is an arbitrary C3 vector field on B̄ × [t1, t2]
subject to the conditions that ηξ (Xξ , t1) = o, ηξ (Xξ , t2) = o, and (4.10) satisfies
the prescribed boundary condition on ∂B. The inverse of the comparison motion is

Xξ = K−1
ξ (x∗

ξ , t, ε). (4.11)

The inverse motion gives the position vector in the reference configuration of the
material point of Cξ whose position is x∗

ξ at time t .
In addition to the comparison motion, comparison material density and compar-

ison volume fraction fields are defined by

ρ̄∗
ξ = ρ̄ξ (Xξ , t) + εr̄ξ (Xξ , t),

φ∗
ξ = φξ (Xξ , t) + εfξ (Xξ , t),

(4.12)

where r̄ξ (Xξ , t) and fξ (Xξ , t) are arbitrary fields subject to the conditions that they
are C2 on B̄ × [t1, t2] and vanish at times t1 and t2.

Let the volume fraction of Cξ be expressed as a function of Xξ , t :

φξ = φ̂ξ (Xξ , t). (4.13)

Using this expression and the inverse motion (4.2), the volume fraction con-
straint (4.9) can be written

∑
ξ

φ̂ξ (χ
−1
ξ (x, t), t) = 1. (4.14)

This equation can be written in terms of the inverse of the comparison motion (4.11)
and the comparison volume fraction field (4.12)1 to obtain the relation

∑
ξ

φ̂∗
ξ (K−1

ξ (x, t, ε), t, ε) = 1. (4.15)

The derivative of this equation with respect to ε is

∑
ξ

(
∂φ̂∗

ξ

∂K−1
ξ

· ∂K−1
ξ

∂ε
+ ∂φ̂∗

ξ

∂ε

)
= 0. (4.16)

To evaluate the partial derivative of K−1
ξ with respect to ε that appears in this

expression, the differential of (4.11) can be taken while holding Xξ and t fixed
to obtain

o = ∂K−1
ξ

∂x∗
ξ

dx∗
ξ + ∂K−1

ξ

∂ε
dε. (4.17)
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Therefore

∂K−1
ξ

∂ε
= −∂K−1

ξ

∂x∗
ξ

[
dx∗

ξ

dε

]

Xξ ,t

= −∂K−1
ξ

∂x∗
ξ

ηξ . (4.18)

Substituting this result into (4.16) and evaluating the resulting equation when ε = 0,
one obtains [5]

∑
ξ

(grad φξ · δxξ − δφξ ) = 0, (4.19)

where δxξ = ηξ and δφξ = fξ . Eq. (4.19) is a constraint imposed on the variations
δxξ and δφξ by the volume fraction constraint. It will be introduced into statements
of Hamilton’s principle for mixtures in the form

∫
Bt

λ
∑
ξ

(grad φξ · δxξ − δφξ ) dVt = 0, (4.20)

where the scalar field λ(x, t) is a Lagrange multiplier that is assumed to be C1 on
B̄t × [t1, t2].

The equations of conservation of mass of the constituents (4.7) will also be
introduced as constraints into statements of Hamilton’s principle for mixtures, in
the same form as in the case of a single continuous medium (see (2.105)):

∑
ξ

∫
Bt

πξ

(
1 − φξRρ̄ξR

φξ ρ̄ξ Jξ

)
dVt

=
∑
ξ

∫
B

πξ

(
Jξ − φξRρ̄ξR

φξ ρ̄ξ

)
dV ,

(4.21)

where the scalar fields πξ (Xξ , t) are Lagrange multipliers that are assumed to be
C1 on B̄ × [t1, t2]. To determine the variation of this expression, it can be written in
terms of the comparison motion (4.10) and the comparison fields (4.12):

∑
ξ

∫
B

πξ

(
J ∗

ξ − φξRρ̄ξR

φ∗
ξ ρ̄∗

ξ

)
dV . (4.22)

Taking the derivative with respect to ε and setting ε = 0 yields

∑
ξ

∫
B

πξJξ

(
div ηξ + fξ

φξ

+ r̄ξ

ρ̄ξ

)
dV

=
∑
ξ

∫
Bt

[
−grad πξ · δxξ + πξ

(
δφξ

φξ

+ δρ̄ξ

ρ̄ξ

)]
dVt

(4.23)

where δρ̄ξ = r̄ξ .
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The postulates of Hamilton’s principle for mixtures that will be introduced in
the following sections are closely analogous to those for a single material described
in Chap. 3. The volume fraction constraint is a new element, and new degrees of
freedom will be seen to arise in comparison with the theories of single materials
without microstructure. The formulations for mixtures have some elements in
common with the theory for granular materials discussed in Sect. 3.2.

4.2 Mixtures of Ideal Fluids

4.2.1 Compressible Fluids

It will be assumed that each constituent Cξ has an internal energy per unit mass
eξ (ρ̄ξ ) that is a function only of the material density of that constituent.3 The second
derivatives of these functions are assumed to be continuous. The total potential
energy of the mixture contained in Bt is assumed to be the sum of the potential
energies of the constituents:

U =
∑
ξ

∫
Bt

ρξ eξ (ρ̄ξ ) dVt . (4.24)

The virtual work done on the mixture by external forces is postulated in the form

δW =
∑
ξ

∫
Bt

(ρξbξ + dξ ) · δx dVt . (4.25)

In this expression the external force on each constituent is decomposed into two
parts. The body force bξ is the force per unit mass exerted on Cξ by external
agencies, such as gravity. It is assumed to be prescribed. The interaction force, or
drag dξ is the force per unit volume exerted on Cξ by the other constituent of the
mixture.4 The vector fields bξ (Xξ , t) and dξ (Xξ , t) will be assumed to be C0 on
B̄ × [t1, t2]. Recall that the mixture is assumed to be bounded by a rigid wall. As a
result, no virtual work is done by external forces at the surface ∂Bt .

3 This assumption, like the assumptions made in Sect. 3.1 that led to theories of elastic fluids and
elastic solids, will obviously result in a very special theory.
4 Although the constituents are here being treated as inviscid with regard to their macroscopic
behavior, it is nevertheless assumed that they may exert drag forces on one another. This is a
common assumption in mixture theories for processes in which macroscopic viscous effects may
be neglected (see e.g. Bowen [13]).
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The comparison fields (4.10) and (4.12) are subject to the constraints (4.20)
and (4.23) arising from the volume fraction constraint and the equations of
conservation of mass. Therefore, the constraint term

δC =
∑
ξ

∫
Bt

λ(grad φξ · δxξ − δφξ ) dVt

+
∑
ξ

∫
Bt

[
−grad πξ · δxξ + πξ

(
δφξ

φξ

+ δρ̄ξ

ρ̄ξ

)]
dVt

(4.26)

will be included in Hamilton’s principle.
The total kinetic energy of the mixture in Bt will be assumed to be the sum of

the kinetic energies due to the translational motions of the constituents:

T =
∑
ξ

∫
Bt

1
2ρξvξ · vξ dVt . (4.27)

Based on the expressions (4.24)–(4.27), a postulate of Hamilton’s principle for a
mixture of elastic ideal fluids states [5]:

Among comparison motions (4.10) and comparison fields (4.12), the actual fields are such
that ∫ t2

t1

[δ(T − U) + δC + δW ] dt = 0. (4.28)

Substituting (4.24)–(4.27), this equation can be written

∑
ξ

∫ t2

t1

∫
Bt

[
(−ρξaξ + ρξbξ + dξ − grad πξ + λ grad φξ ) · δx

+
(

−ρξ

deξ

dρ̄ξ

+ πξ

ρ̄ξ

)
δρ̄ξ +

(
πξ

φξ

− λ

)
δφξ

]
dVt dt = 0.

(4.29)

Because of the independence of the fields δxξ , δρ̄ξ , and δφξ for each constituent,
Lemma 3 of Sect. 2.4 can be applied to (4.29) to obtain the equations

ρξaξ = ρξbξ + dξ − grad πξ + λ grad φξ ,

πξ = φξ ρ̄
2
ξ

deξ

dρ̄ξ

,

πξ = φξλ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

on B̄t × [t1, t2] . (4.30)

When constitutive relations are specified for the internal energies eξ (ρ̄ξ ) and the
drag terms dξ , the three Eqs. (4.30) together with (4.6), (4.8), and (4.9) can be used
to determine the fields ρξ , ρ̄ξ , φξ , λ, vξ , and πξ .
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Notice from (3.19) and the discussion following it that the term ρ̄2
ξ deξ /dρ̄ξ is the

pressure of the constituent Cξ . From (4.30),

λ = ρ̄2
ξ

deξ

dρ̄ξ

. (4.31)

Thus a consequence of this postulate of Hamilton’s principle for a mixture is that
the pressures of the constituents are equal. This condition is often introduced as an
assumption in theoretical studies of multiphase flow. Models for mixtures in which
this condition does not hold will be discussed later in this section. Also, observe
that (4.30)1 can be written

ρξaξ = ρξbξ + dξ − φξ grad λ. (4.32)

The form of the last term in this equation has been a subject of some controversy
among those interested in theoretical models for mixtures. The form that appears
here is a consequence of including the volume fraction constraint in Hamilton’s
principle.5

4.2.2 Incompressible Fluids

If both constituents of a binary mixture are incompressible (ρ̄ξ = ρ̄ξR =
constant), (4.28) assumes the form

∫ t2

t1

(δT + δC + δW) dt = 0. (4.33)

Equations (4.25) and (4.27) for δW and T are unchanged. The only change in
Eq. (4.26) for δC is that δρ̄ξ = 0. The equations resulting from Hamilton’s principle
are

ρξaξ = ρξbξ + dξ − grad πξ + λ grad φξ ,

πξ = φξλ

}
on B̄t × [t1, t2] . (4.34)

Eliminating the Lagrange multipliers πξ yields the equations of balance of linear
momentum

ρξaξ = ρξbξ + dξ − φξ grad λ. (4.35)

5 The comments in this paragraph have been discussed at length by Bedford and Drumheller [7].
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For incompressible constituents, the equations of conservation of mass (4.8) can be
written

φ̇ξ + φξ div vξ = 0. (4.36)

If constitutive relations are specified for the drag terms dξ , Eqs. (4.9), (4.35),
and (4.36) can be used to determine the fields λ, vξ , and φξ . The Lagrange multiplier
λ is the pressure of the constituents.

The statement of Hamilton’s principle for a granular solid described in Sect. 3.2.1
contained a virtual work term expressed in terms of the variation of the volume
fraction of the material. Would the physics of the problem justify the inclusion of
such terms in a theory for a mixture of ideal fluids? Suppose that the theory is used
to model a fluid containing a distribution of particles. If the particles are sufficiently
small, they will undergo mutual impacts as a result of their Brownian motions. This
diffusive effect of particle impacts is analogous to the ordinary pressure which arises
in a fluid due to impacts on the molecular scale. The particles can also exert forces
on one another through hydrodynamic interactions when the mixture is in motion.
Either of these phenomena will result in work being done when the volume fraction
of the particles changes.

The postulates of Hamilton’s principle that have been stated for a mixture of
ideal fluids can be extended to the case of a mixture of ideal fluids with diffusivity
by adding to (4.25) a virtual work term of the form [47]6

−
∑
ξ

∫
Bt

Pξ

δφξ

φξ

dVt . (4.37)

In the case of incompressible constituents, the equations resulting from Hamilton’s
principle are

ρξaξ = ρξbξ + dξ − grad πξ + λ grad φξ ,

πξ = φξλ + Pξ

}
on B̄t × [t1, t2] . (4.38)

Eliminating the Lagrange multipliers λ results in the equations of balance of linear
momentum

ρξaξ = ρξbξ + dξ − φξ grad λ − grad Pξ . (4.39)

In addition to the gradient of the pressure λ appearing in the equations of motion,
the gradients of the diffusive pressures Pξ also appear.

6 The generalized force in this expression is written in the form Pξ /φξ because it results in simpler
equations. This does not imply an a priori assumption of the functional form of the diffusive force,
because the terms Pξ are assumed to be constitutive functions of the volume fractions.
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To apply this theory to the sedimentation of a distribution of rigid particles in an
incompressible fluid, Hill et al. [47] postulated the constitutive relations

dξ = dξ (φξ , vξ − vγ ),

Pξ = Pξ (φξ , vξ − vγ ),
(4.40)

where ξ �= γ . Notice that because the volume fractions are related through the
volume fraction constraint, it is not necessary to assume that the constitutive
relations are functions of both volume fractions. Hill et al. further assumed that
these constitutive relations are isotropic and linear in the relative velocity, which
implies that they must be of the forms

dξ = αξ (vξ − vγ ),

Pξ = βξ ,
(4.41)

where αξ and βξ are scalar functions of φξ .
For purposes of comparison with this derivation, equivalent theories have been

derived by two other approaches. Craine [19] used postulated equations of motion
and introduced the volume fraction constraint into the second law of thermodynam-
ics (the Clausius–Duhem inequality) for the mixture. Drew [20] used an averaging
approach.

Equations (4.9), (4.36), (4.39), and (4.41) have been applied to the erythrocyte
sedimentation test described in the introduction to this chapter by Hill and Bedford
[46] and Hill et al. [47]. Figures 4.2 and 4.3 compare their numerical solutions to
experimental measurements made using anticoagulated human whole blood by
Whelan et al. [75]. In Fig. 4.2, the predicted distribution of the cell volume fraction
as a function of height in the vertical tube is compared to measurements made at
several times. An empirical expression for the “drag coefficient” αξ was used, and
the constitutive coefficients were chosen to obtain the best agreement with the data
at 2 h. The coefficients were then held fixed while the computations were extended
to 4 h and 8.5 h. In Fig. 4.3, the predicted position of the upper cell boundary as a
function of time, which is used as a clinical indicator of disease, is compared to the
observed position.

This theory has also been used to study the stability of steady sedimentation of a
uniform distribution of particles in a fluid by Hill [44] and Hill and Bedford [45].

4.2.3 Fluids with Microinertia

Suppose that there is a spherical bubble of gas in an unbounded incompressible
liquid. Let the radius of the bubble be R, and let the densities of the gas and the liquid
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Fig. 4.2 Comparison of the mixture theory with cell concentration profiles measured in blood
sedimentation

be ρ̄g and ρ̄f . If the bubble expands or contracts, it will induce a radial velocity
distribution in the liquid. The velocity of the liquid at a distance r from the center
of the bubble is

vf = R2

r2 Ṙ, (4.42)

where the dot denotes the derivative with respect to time. The resulting kinetic
energy of the liquid surrounding the bubble is

∫ ∞

R

1
2 ρ̄f 4πr2v2

f dr. (4.43)

Substituting the velocity distribution (4.42), this integral can be evaluated to obtain

2πρ̄f R3Ṙ2. (4.44)
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Fig. 4.3 Comparison of the mixture theory with the upper cell interface measured in blood
sedimentation

Because the mass of the gas within the bubble, (4/3)πR3ρ̄g , is constant, the kinetic
energy (4.44) can be expressed in terms of the rate of change of the gas density:

⎛
⎝2πρ̄f ρ̄

5/3
gR R5

R

9ρ̄
11/3
g

⎞
⎠ ˙̄ρ 2

g , (4.45)

where ρ̄gR and RR are reference values.
Now consider a liquid containing a dilute distribution of bubbles, and suppose

that in a prescribed reference configuration the bubbles are uniformly distributed
and each has radius RR and density ρ̄gR . In a motion of this bubble liquid, the
bubbles will undergo volumetric oscillations and induce local radial motions of the
liquid. If it is assumed that the kinetic energy of the liquid surrounding each bubble
can be approximated by the expression (4.45), the kinetic energy per unit volume
of the mixture due to radial motions of the bubbles can be obtained by multiplying
(4.45) by the number of bubbles per unit volume. The number of bubbles per unit
volume is φg/(4/3)πR3, where φg is the volume fraction of the gas. The product of
this expression with (4.45) can be written

ρg

⎛
⎝ ρ̄f ρ̄

2/3
gR R2

R

6ρ̄
11/3
g

⎞
⎠ ˙̄ρ2

g. (4.46)
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This microkinetic energy due to bubble oscillations can have a dominant effect
on the dynamic behavior of bubbly liquids (see van Wijngaarden [72]). The
equations governing the motion of a bubbly liquid can be obtained by introducing
the microkinetic energy into Hamilton’s principle [21].

For simplicity in this presentation, the relative motion between the bubbles and
the liquid will be neglected. This is an acceptable assumption in many applications
because of the relatively small mass of the bubbles. Thus the mixture will be
assumed to have a single motion (3.1). The microkinetic energy of the mixture
contained in Bt will be expressed in the form

Tm =
∫

Bt

1
2ρgIg(ρ̄γ ) ˙̄ρ2

g dVt =
∫

B

1
2ρgRIg(ρ̄γ ) ˙̄ρ2

g dV (4.47)

The term Ig(ρ̄γ ) is a constitutive function that depends on each of the constituent
densities. This expression for the microkinetic energy is motivated by (4.46) and
includes it as a special case. The integral of (4.47) with respect to time from t1 to t2
is

I =
∫ t2

t1

Tm dt =
∫ t2

t1

∫
B

1
2ρgRIg(ρ̄γ ) ˙̄ρ2

g dV dt. (4.48)

Proceeding in the now familiar way to determine the variation, this equation is
written in terms of the comparison material density field (4.12)1 to obtain

I ∗(ε) =
∫ t2

t1

∫
B

1
2ρgRIg(ρ̄

∗
γ )( ˙̄ρ∗

g)2 dV dt. (4.49)

The derivative of this equation with respect to ε is

dI ∗(ε)
dε

=
∫ t2

t1

∫
B

⎡
⎣ρgRI ∗

g
˙̄ρ∗
g
˙̄rg + 1

2ρgR

⎛
⎝∑

γ

∂I ∗
g

∂ρ̄∗
γ

r̄γ

⎞
⎠ ( ˙̄ρ∗

g)2

⎤
⎦ dV dt, (4.50)

where I ∗
g = Ig(ρ̄

∗
γ ). Integrating the first term by parts with respect to time and

setting ε = 0 yields the variation

δTm =
∫

Bt

⎡
⎣−ρg

˙
Ig

˙̄ρgδρ̄g + 1
2ρg

⎛
⎝∑

γ

∂Ig

∂ρ̄γ

δρ̄γ

⎞
⎠ ˙̄ρ2

g

⎤
⎦ dVt . (4.51)

The total kinetic energy of the mixture contained in Bt is

T =
∫

Bt

[
1
2ρv · v + 1

2ρgIg(ρ̄γ ) ˙̄ρ2
g

]
dVt , (4.52)

where ρ = ρf + ρg is the density of the mixture.
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The potential energy of the mixture is postulated to be the total internal energy
for a mixture of two compressible ideal fluids:

U =
∑
ξ

∫
Bt

ρξ eξ (ρ̄ξ ) dVt . (4.53)

Because there is not relative motion between the constituents, no work is done
by drag forces and the only virtual word done is that due to the external body force:

δW =
∫

Bt

ρb · δx dVt . (4.54)

The constraint arising from the equations of balance of mass and the volume
fraction constraint, (4.26), is altered only by the fact that there is a single motion:

δC =
∑
ξ

∫
Bt

λ(grad φξ · δx − δφξ ) dVt

+
∑
ξ

∫
Bt

[
−grad πξ · δx + πξ

(
δφξ

φξ

+ δρ̄ξ

ρ̄ξ

)]
dVt .

(4.55)

Based on (4.52)–(4.55), a statement of Hamilton’s principle for an ideal com-
pressible liquid containing a distribution of bubbles of an ideal gas is [23]:

Among comparison motions (3.2) and comparison fields (4.12), the actual fields are such
that ∫ t2

t1

[δ(T − U) + δC + δW ] dt = 0. (4.56)

Substituting (4.52)–(4.55) and using the result (4.51), (4.56) can be written

∫ t2

t1

∫
Bt

{
[−ρa + ρb − grad (πf + πg)] · δx

+
(

−ρg
˙

Ig
˙̄ρg + 1

2ρg

∂Ig

∂ρ̄g

˙̄ρ2
g − ρg

deg

dρ̄g

+ πg

ρ̄g

)
δρ̄g

+
(

1
2ρg

∂Ig

∂ρ̄f

˙̄ρ2
g − ρf

def

dρ̄f

+ πf

ρ̄f

)
δρ̄f

+
(

πg

φg

− λ

)
δφg +

(
πf

φf

− λ

)
δφf

}
dVt dt = 0,

(4.57)
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which yields the equations

ρa = ρb − grad (πf + πg),

ρg
˙

Ig
˙̄ρg − 1

2ρg

∂Ig

∂ρ̄g

˙̄ρ2
g = −ρg

deg

dρ̄g

+ πg

ρ̄g

,

− 1
2ρg

∂Ig

∂ρ̄f

˙̄ρ2
g = −ρf

def

dρ̄f

+ πf

ρ̄f

,

πg = φgλ,

πf = φf λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on B̄ × [t1, t2] . (4.58)

The last two equations can be used to eliminate the Lagrange multipliers πf and πg ,
resulting in the three equations

ρa = ρb − grad λ,

ρ̄2
g

˙
Ig

˙̄ρg − 1
2 ρ̄g

(
ρ̄g

∂Ig

∂ρ̄g

− φg

φf

ρ̄f

∂Ig

∂ρ̄f

)
˙̄ρ2
g = pf − pg,

λ = pf − 1
2 ρ̄g

φf

φf

ρ̄f

∂Ig

∂ρ̄f

˙̄ρ2
g,

(4.59)

where the constituent pressures pξ are

pξ = ρ̄2
ξ

deξ

dρ̄ξ

. (4.60)

When constitutive relations are specified for the internal energies eξ and the
coefficient Ig , the equations of conservation of mass

ρ̇ξ + ρξ div v = 0 (4.61)

together with (4.6), (4.9), (4.59), and (4.60) provide a system of equations with
which to determine the fields φξ , λ, v, ρ̄ξ , ρξ , and pξ .

Observe from (4.59)2 that the pressures of the liquid and gas are not generally
equal, which is a consequence of introducing the microkinetic energy. It is the
difference in the liquid and gas pressures that drives the bubble oscillations. The
pressures are equal when the mixture is in a state of equilibrium. Also, notice
from (4.59)3 that the term λ, whose gradient appears in the equation of balance
of linear momentum (4.59)1, is not in general equal to the pressure of the liquid.

These equations have been compared to experimental data on wave propagation
in bubbly liquids by Bedford and Stern [8] and Drumheller et al. [23]. To do so, it
was necessary to account for the effects of heat transfer between the gas and liquid in
determining the constitutive equation for the pressure of the gas (see e.g. Drumheller
and Bedford [21]). The coefficient Ig was evaluated using the expression (4.46).
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Fig. 4.4 Phase velocity of acoustic waves in water containing air bubbles

This seems contradictory since the liquid is here being assumed to be compressible
whereas (4.46) was derived under the assumption that it is incompressible. In using
this procedure, it is being assumed that the spatial variation of the density of the
liquid is small in the neighborhood of a bubble. That is, wavelengths must be large
in comparison to the bubble diameter.

In Figs. 4.4 and 4.5, the predicted phase velocity and attenuation of plane acoustic
waves are compared to measurements made by Silberman [66] for air bubbles in
water. The gas volume fraction was φgR = 3.77(10−4) and the bubble radius was
1.01 mm. The peak in the attenuation occured at the resonance frequency for bubble
oscillations.

In Fig. 4.6, a numerical solution of the gas pressure pg resulting from an
impulsively applied pressure is compared to data obtained using a shock tube by
Kuznetsov et al. [49]. The mixture consisted of carbon dioxide bubbles in a water-
glycerine solution. The gas volume fraction was φgR = 0.01 and the bubble radius
was 0.5 mm. The “ringing” observed in the pressure history results from bubble
oscillations.



78 4 Mechanics of Mixtures

Fig. 4.5 Attenuation of acoustic waves in water containing air bubbles

If the liquid is assumed to be incompressible, the coefficient Ig is evaluated
using (4.46), and (4.59)2 is expressed in terms of the bubble radius R instead of
ρ̄g , Eqs. (4.59) become

ρa = ρb − grad λ,

RR̈ + 3
2

(
1 − φg

φf

)
Ṙ2 = pg − pf

ρ̄f

,

λ = pf − 3
2

φg

φf

ρ̄f Ṙ2.

(4.62)

In the limit φg → 0, these equations reduce to

ρa = ρb − grad pf ,

RR̈ + 3
2 Ṙ2 = pg − pf

ρ̄f

.
(4.63)

Equation (4.63)2 is the Rayleigh-Plesset equation for the dilatational motion of
a single bubble in an unbounded incompressible liquid. It was pointed out by
Drumheller et al. [23] and independently by Passman et al. [64] that this equation
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Fig. 4.6 Transient pressure history in a bubbly liquid compared with shock tube data

arises from a mixture theory of this type. The approach that has traditionally been
used to model the dynamics of bubbly liquids is to adopt (4.63)1, which is simply
the equation of balance of linear momentum for an ideal fluid, and to assume
that (4.63)2 applies (see e.g. van Wijngaarden [72]). Thus this model is recovered
from the equations obtained from Hamilton’s principle in the limit as the bubble
volume fraction approaches zero.

Hamilton’s principle has been used to obtain the governing equations for a
bubbly liquid in which there is relative motion between the liquid and bubbles by
Drumheller and Bedford [21].

4.3 Mixture of an Ideal Fluid and an Elastic Solid

The application of Hamilton’s principle to a binary mixture of an elastic ideal
fluid and an elastic solid is discussed in this section. Although this case requires
only a minor extension of the formulation for mixtures of ideal fluids, it provides
an introduction to the more general solution that is discussed in the next section.
Another reason this case deserves attention is that it leads to Biot’s theory for a
fluid saturated porous elastic material, which is one of the most widely accepted
and applied theories of mixtures.
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Let the fluid and solid constituents be denoted by subscripts f and s respectively.
The potential energy of the mixture contained in Bt will be expressed in the form

U =
∫

Bt

[ρf ef (ρ̄f ) + ρses(ρ̄s,Es)] dVt , (4.64)

where Es is the linear strain of the elastic material. The material density ρ̄s of
a porous material can vary independently of Es , and is therefore included as
an argument in the internal energy of the material. The derivatives def /dρ̄f ,
des/dρ̄s , and ∂es/∂Es will be assumed to exist and be continuous, and the
fields grad (def /dρ̄f ), grad (des/dρ̄s), and grad (∂es/∂Es) will be assumed to be
continuous on B̄ × [t1, t2].

To determine the variation of the potential energy, (4.64) must be expressed in
terms of the comparison motion (4.10) and the comparison material density (4.12)1.
Upon taking the derivative of the result with respect to ε and setting ε = 0, the
variation is

δU =
∫

Bt

[
ρf

def

dρ̄f

δρ̄f + ρs

∂es

∂ρ̄s

δρ̄s − div

(
ρs

∂es

∂Es

Ft
)

· δxs

]
dVt . (4.65)

Using this expression together with the same expressions used in the case of a
mixture of compressible fluids for the virtual work δW (4.25), the constraint term
δC (4.26), and the kinetic energy T (4.27), Hamilton’s principle for a mixture of an
elastic ideal fluid and an elastic solid states [6]:

Among comparison motions (4.10) and comparison fields (4.12), the actual fields are such
that ∫ t2

t1

[δ(T − U) + δW + δC] dt = 0. (4.66)

In the present case this equation results in an expression that is identical to (4.29)
except for the replacement of the expression for the variation of the potential energy
by (4.65). It is therefore easy to show that the equations resulting from Hamilton’s
principle in this case are

ρsas = ρsbs + ds − grad πs + λ grad φs + div

(
ρs

∂es

∂Es

Ft
)

,

ρf af = ρf bf + df − grad πf + λ grad φf ,

πs = φsρ̄
2
s

∂es

∂ρ̄s

,

πf = φf ρ̄2
f

∂ef

∂ρ̄f

,

πs = φsλ,

πf = φf λ

(4.67)
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on B̄ × [t1, t2]. Upon using the last two equations to eliminate πs and πf , the
remaining equations can be written

ρsas = ρsbs + ds − φs grad λ + div

(
ρs

∂es

∂Es

Ft
)

,

ρf af = ρf bf + df − φf grad λ,

λ = ρ̄2
s

∂es

∂ρ̄s

= ρ̄2
f

∂ef

∂ρ̄f

.

(4.68)

Let the material densities and volume fractions be expressed as sums of their
reference values and small perturbations:

ρ̄ξ = ρ̄ξR + ˜̄ρξ ,

φξ = φξR + φ̃ξ .
(4.69)

The resulting linearized forms of the equations of conservation of mass (4.7) are

φ̃ξ

φξR

+ ˜̄ρξ

ρ̄ξR

+ tr Eξ = 0, (4.70)

and the linearized form of the volume fraction constraint (4.9) is

∑
ξ

φ̃ξ = 0. (4.71)

The two volume fractions can be eliminated from the three Eqs. (4.70) and (4.71) to
obtain the single equation

φsR

( ˜̄ρs

ρ̄sR

+ tr Es

)
+ φf R

( ˜̄ρf

ρ̄f R

+ tr Ef

)
= 0. (4.72)

Now let the internal energies of the constituents be expressed as isotropic second-
order expansions in their arguments:

ρses = 1
2 c̄ (tr Es)

2 + d̄ Es · Es + f̄ ˜̄ρs tr Es + 1
2 ḡ ˜̄ρ2

s ,

ρf ef = 1
2 h̄ ˜̄ρ2

f ,
(4.73)
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where c̄, d̄, f̄ , ḡ, and h̄ are constitutive constants. Using these expressions, the
linearized forms of (4.68) can be written (with external body forces neglected)

ρsRüs = ds − φsR grad λ + (c̄ + 2d̄) grad div us

−d̄ curl curl us + f̄ grad ˜̄ρs,

ρf sRüf = df − φf R grad λ,

λ = ρ̄sR

φsR

(f̄ tr Es + ḡ ˜̄ρs),

λ = ρ̄f R

φf R

h̄ ˜̄ρf .

(4.74)

If linear constitutive relations are specified for the drag terms dξ , (4.72) and (4.74)
provide a system of linear equations with which to determine the fields us , uf , ˜̄ρs ,
˜̄ρf , and λ.

Equation (4.72) and the last two of Eqs. (4.74) can be solved for the variables ˜̄ρs ,
˜̄ρf , and λ in terms of tr Es and tr Ef . When the resulting expressions are substituted
into the first two of Eqs. (4.74), they can be written

ρsRüs = ds + (P̄ + 2N̄) grad div us

−N̄ curl curl us + Q̄ grad div uf ,

ρf Rüf = df + Q̄ grad div us + R̄ grad div uf ,

(4.75)

where P̄ , Q̄, R̄, and N̄ are constants. These two linear equations for the displace-
ment fields us and uf are the Biot equations [10].

The application of Hamilton’s principle to a mixture of an elastic ideal fluid and
an elastic solid described in this section has been extended to include microkinetic
energy of the constituents by Bedford and Drumheller [6]. This approach has been
used to develop a theory of a porous elastic material containing a bubbly liquid
by Bedford and Stern [8], and it has been used to obtain a theory of a saturated
porous medium with microstructure and nonlinear material behavior by Berryman
and Thigpen [9].

4.4 A Theory of Mixtures with Microstructure

The theories discussed in Sects. 4.2 and 4.3 are very special for the same reason
that the theories of elastic ideal fluids and elastic solids described in Sects. 3.1.1
and 3.1.2 were special: Internal energies were introduced which were assumed to
depend only on the states of deformation of the constituents. This restriction can
be removed in the case of a mixture by using the same approach that was used in



4.4 A Theory of Mixtures with Microstructure 83

Sect. 3.1.3 for a single material. That is, internal forces can be expressed through
virtual work terms rather than by internal energies. In this section, an illustration
will be given of the use of Hamilton’s principle to derive a quite general theory of
mixtures with microkinetic energy in which the constituents are not constrained to
be ideal or elastic [22]. The theory will include the results of the preceding two
sections as special cases.

Microkinetic Energy Consider a homogeneous sphere of radius R and density ρ̄. If
the sphere expands homogeneously, its kinetic energy relative to the center of the
sphere is

2
5πρ̄R3Ṙ2, (4.76)

where the dot denotes the time derivative. Because the radius of the sphere and the
density of the homogeneous material are related by ρ̄R3 = constant, the kinetic
energy can be expressed in terms of the density as

2πρ̄
5/3
R R5

R

45ρ̄ 8/3
˙̄ρ2, (4.77)

where ρ̄R and RR are reference values.
Suppose that a constituent of a mixture consists of a distribution of such spheres,

and let φ be the volume fraction of the constituent. Multiplying (4.77) by the number
of spheres per unit volume φ/(4/3)πR3, the kinetic energy per unit volume due to
expansion or contraction of the spheres is

1
2ρ

(
ρ̄

2/3
R R2

R

15ρ̄ 8/3

)
˙̄ρ2, (4.78)

which is of the same functional form as (4.46). Therefore, two examples of
microkinetic energy, the energy of the liquid surrounding a distribution of oscillating
bubbles, discussed in Sect. 4.2.3, and the energy due to the homogeneous expansion
and contraction of a distribution of particles, can be included in the present model if
it is assumed that each constituent Cξ has a microkinetic energy per unit volume of
the form

1
2ρξ Iξ (ρ̄γ ) ˙̄ρ2

ξ . (4.79)

The terms Iξ (ρ̄γ ) are constitutive functions that are assumed to depend on the
material density of each constituent. Their second partial derivatives will be
assumed to exist and be continuous. Therefore, the total kinetic energy of the
mixture contained in Bt will be expressed in the form

T =
∑
ξ

∫
Bt

1
2ρξ (vξ · vξ + Iξ

˙̄ρ2
ξ ) dVt . (4.80)
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Virtual Work The virtual work done on the mixture contained in Bt by internal
forces will be assumed to have the form

−
∑
ξ

∫
B

Sξ · δFξ dV −
∑
ξ

∫
Bt

φξ

ρ̄ξ

pξ δρ̄ξ dVt . (4.81)

That is, it is assumed that work is done on Cξ when its deformation gradient
changes and when its material density changes. These two variables can change
independently of one another if a constituent consists of, for example, a porous
medium or a distribution of particles. The form of (4.81) is motivated by the form
of the virtual work done by internal forces in a single elastic material (3.69) and by
the independent variables which appear in the internal energy for a mixture of an
ideal fluid and an elastic solid (4.64). The generalized forces, which are the tensor
fields Sξ and the scalar fields pξ , are constitutive variables. It will be assumed that
Sξ , DIV Sξ , pξ , and GRAD pξ are continuous on B̄ × [t1, t2]. Adding to (4.81) the
virtual work done by external forces in the form (4.25), the total virtual work on the
mixture contained in Bt is

δW = −
∑
ξ

∫
B

Sξ · δFξ dV −
∑
ξ

∫
Bt

φξ

ρ̄ξ

pξ δρ̄ξ dVt

+
∑
ξ

∫
Bt

(ρξbξ + dξ ) · δxξ dVt .

(4.82)

Constraints The motions, volume fractions, and material densities of the con-
stituents are subject to the constraints (4.20) and (4.23) arising from the volume
fraction constraint and the equations of conservation of mass respectively. There-
fore, the constraint term (4.26),

δC =
∑
ξ

∫
Bt

λ(grad φξ · δxξ − δφξ ) dVt

+
∑
ξ

∫
Bt

[
−grad πξ · δxξ + πξ

(
δφξ

φξ

+ δρ̄ξ

ρ̄ξ

)]
dVt ,

(4.83)

will be included in Hamilton’s principle.

Hamilton’s Principle Based on the expressions (4.80), (4.82), and (4.83), Hamil-
ton’s principle for a mixture of materials with microkinetic energy states:

Among comparison motions (4.10) and comparison fields (4.12), the actual fields are such
that ∫ t2

t1

(δT + δW + δC) dt = 0. (4.84)
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Substituting (4.80), (4.82), and (4.83), and through the use of steps that are familiar
from previous sections, (4.84) can be written

∑
ξ

∫ t2

t1

∫
Bt

[
(−ρξaξ + div Tξ − grad πξ

+λ grad φξ + ρξbξ + dξ ) · δxξ

+
(

− ρξ
˙

Iξ
˙̄ρξ +

∑
γ

1
2ργ

∂Iγ

∂ρ̄ξ

˙̄ρ2
γ + πξ

ρ̄ξ

− φξ

pξ

ρ̄ξ

)
δρ̄ξ

+
(

πξ

φξ

− λ

)
δφξ

]
dVt dt = 0,

(4.85)

where

Tξ = 1

Jξ

SξFt
ξ (4.86)

is the Cauchy stress of Cξ . Applying the fundamental lemmas to (4.85), the resulting
equations are

ρξaξ = div Tξ − grad πξ + λ grad φξ

+ρξbξ + dξ ,

ρξ
˙

Iξ
˙̄ρξ −

∑
γ

1
2ργ

∂Iγ

∂ρ̄ξ

˙̄ρ2
γ = πξ

ρ̄ξ

− φξ

pξ

ρ̄ξ

,

πξ = φξλ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on B̄ × [t1, t2] . (4.87)

Using the last equation to eliminate πξ , these equations reduce to

ρξaξ = div Tξ − φξ grad λ + ρξbξ + dξ ,

ρ̄2
ξ

˙
Iξ

˙̄ρξ −
∑
γ

1
2ργ

ρ̄ξ

φξ

∂Iγ

∂ρ̄ξ

˙̄ρ2
γ = λ − pξ .

(4.88)

To obtain a complete mechanical theory, constitutive relations must be postulated for
the generalized forces Tξ , dξ , and pξ and for the microkinetic energy coefficients
Iξ . Then (4.6), (4.8), (4.9), and (4.88) provide a system of equations with which to
determine the fields ρξ , ρ̄ξ , φξ , λ, and vξ .

Balance of Energy A postulate of the equations of balance of energy for the
mixture can be motivated using the method described in Sect. 3.1.3. Consider an
arbitrary volume B ′

t contained within Bt (Fig. 3.1). The part of Cξ that is contained
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in B ′
t at time t occupies a volume B ′

ξ in the reference configuration. Recall the
correspondence between the form of the virtual work term (3.69) and that of the
mechanical working term (3.86) that appears in the global form of the equation of
balance of energy for an ordinary continuous medium. In the case of the mixture
under consideration, the corresponding virtual work term is (4.81). From the form
of this term, it can be deduced that the mechanical working term for the part of Cξ

contained in B ′
t is

∫
B ′

t

Sξ · Ḟξ dVξ +
∫

B ′
t

φξ

ρ̄ξ

pξ
˙̄ρξ dVt . (4.89)

Equating this expression to the rate of change of the internal energy of Cξ within B ′
t

and introducing heat conduction terms analogous to (3.82) and (3.83), the balance
of energy postulate for Cξ is

d

dt

∫
B ′

t

ρξ eξ dVt =
∫

B ′
t

Tξ · Lξ dVt +
∫

B ′
t

φξ

ρ̄ξ

pξ
˙̄ρξ dVt

−
∫

∂B ′
t

qξ · n dSt +
∫

B ′
t

ρξ sξ dVt ,

(4.90)

where (3.86) has been used. The heat flux qξ is assumed to be C1 and the heat
supply sξ is assumed to be C0 on B̄ × [t1, t2]. Here the heat supply sξ is defined to
be the rate at which heat is added to Cξ both by external sources and by the other
constituent of the mixture. The local form of the equation of balance of energy for
Cξ obtained from the postulate (4.90) is

ρξ ėξ = Tξ · Lξ + φξ

ρ̄ξ

pξ
˙̄ρξ − div qξ + ρξ sξ . (4.91)

Let the field θξ (Xξ , t) denote the absolute temperature of Cξ . Then if constitutive
relations are postulated for Tξ , dξ , pξ , Iξ , eξ , qξ , and sξ , Eqs. (4.6), (4.8), (4.9),
(4.88), and (4.91) can be used to determine the fields ρξ , ρ̄ξ , φξ , λ, vξ , and θξ ,
yielding a thermomechanical theory of mixtures with microkinetic energy.

Nunziato et al. [59,62,64] have developed a theory of mixtures with microstruc-
ture that shares many elements with this one. Their theory was motivated by
the theory of granular solids due to Goodman and Cowin that is described in
Sect. 3.2.1. They adopted (3.105) and (3.109) for each constituent of the mixture,
then introduced appropriate terms to account for the interchanges of momentum
and energy between constituents.



Chapter 5
Discontinuous Fields

5.1 Singular Surfaces

The objective is to apply Hamilton’s principle to a continuous medium containing a
surface of discontinuity, such as a boundary or wave front. How can such a surface
be described? Assume that the motion of a continuous medium

x = χ(X, t) (5.1)

is one-one and C0 on B̄ × [t1, t2].1 Let Σ denote a fixed, plane, open surface in E ,
and define a function

z = ζ (W, t) (5.2)

that maps Σ onto a surface Σt that intersects B̄t at time t (Fig. 5.1). The vector W
denotes the position vector of a point of Σ (a surface point). The vector z is the
position vector of the surface point W at time t . The mapping (5.2) will be assumed
to be C2 on Σ × [t1, t2].

Let the intersection of Σt with B̄t be denoted by St . The surface Σ does not
necessarily represent a physical surface, but simply provides a means to describe
the motion of the surface St . The surface St may represent a wave front or other
surface of interest in the material at time t . The surface St divides Bt into two parts
that will be called B+

t and B−
t . Let the field n(x, t) defined on St be the unit vector

normal to St that points into B+
t (Fig. 5.2).

Because the motion of the material is assumed to be one-one and continuous on
B̄ × [t1, t2], a unique material point is located at a given point z of St at time t . The

1 See the discussion of the motion in Sect. 2.2.
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Fig. 5.1 The surfaces Σ , Σt , and St

position of this material point in the reference configuration, denoted by Z, is given
by the inverse motion:

Z = χ−1(z, t). (5.3)

This function maps the surface St onto a surface S in the reference configuration
(Fig. 5.2). The surface S is called the image surface; it is the locus in the reference
configuration of the material points that coincide with the surface St at time t . The
image surface divides the reference configuration into two parts B+ and B−. The
function N(X, t) defined on S will denote the unit vector normal to S that points
into B+.

Let ∂B+ be the outer surface of B+, and let B̄+ denote the closure of B+; that
is, B+ together with its surface ∂B+ + S . The notations ∂B− and B̄− are defined
correspondingly. The motion (5.1) will be assumed to be C2 on B̄+ × [t1, t2] and on
B̄− × [t1, t2]. Thus the motion of the material is assumed to be C2 on each part of
B, but is merely assumed to be continuous across the surface S .
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Fig. 5.2 The surface St and the image surface S

Consider a field f(X, t), and define f+ by

f+ = lim
X→Z

f(X, t), (5.4)

where the limit is taken as X approaches Z along a smooth path within B+. The
notation f− is defined correspondingly. With some exceptions that will be obvious
from their contexts, the superscripts + and − will refer to these limits. The jump of
f(X, t) across S is defined by

[[f]] = f+ − f−. (5.5)

In terms of the mapping (5.2), the velocity of the surface point W is

ż = ∂

∂t
ζ (W, t). (5.6)

The normal component ż · n is the speed of the surface St . It is called the speed of
displacement ( [71], p. 499). From (5.3), the velocity of the surface point W relative
to the reference configuration is

Ż = ∂

∂t
χ−1(ζ (W, t), t)

=
(

∂χ−1

∂x

)+
∂ζ

∂t
+
(

∂χ−1

∂t

)+

=
(

∂χ−1

∂x

)−
∂ζ

∂t
+
(

∂χ−1

∂t

)−
.

(5.7)
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Notice that

dX = ∂χ−1

∂x
dx + ∂χ−1

∂t
dt, (5.8)

so the partial derivative of the inverse motion with respect to time holding X fixed
can be written in terms of the inverse of the deformation gradient and the velocity
of the material:

∂χ−1

∂t
= −∂χ−1

∂x

[
dx
dt

]
X

= −F−1v. (5.9)

Substituting this result into (5.7) yields a relation between the velocity of the
material point W and the velocity of its image in the reference configuration:

Ż = (F−1)+(ż − v+)

= (F−1)−(ż − v−).
(5.10)

The normal component Ż · N is the speed of the image surface S relative to
the reference configuration. It is called the speed of propagation ( [71], p. 508).
Equation (5.10) yields the result

[[F−1(ż − v)]] = o. (5.11)

This equation results from the assumed continuity of the motion (5.1) across S .
Taking the inner product of (5.11) with N and using (2.66) and (2.71) yields the
Stokes-Christoffel condition ( [71], p. 522)

[[ρ(ż − v) · n]] = 0. (5.12)

This jump condition insures conservation of mass of the material across St .
To apply Hamilton’s principle, a comparison motion of the material is defined

by2

x∗ = χ(X, t) + εη(X, t)

= K(X, t, ε).
(5.13)

The vector field η(X, t) is arbitrary subject to the conditions that it be C2 on B̄+ ×
[t1, t2] and on B̄− × [t1, t2], that η(X, t1) = o and η(X, t2) = o, and that (5.13)
satisfy prescribed boundary conditions on ∂B.3 The field η(X, t) is not assumed to
be continuous across S .

2 See the discussion of the comparison motion in Sect. 2.3.
3 Because the example to be presented is an ideal fluid, and there will be no concern with boundary
conditions, it will be assumed henceforth that η · n = 0 on ∂Bt .
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A comparison density field is defined by

ρ∗ = ρ(X, t) + εr(X, t), (5.14)

where r(X, t) is an arbitrary scalar field subject to the conditions that it be C1 on
B̄+ × [t1, t2] and on B̄− × [t1, t2] and that r(X, t1) = 0 and r(X, t2) = 0. The field
r(X, t) is not assumed to be continuous across S .

In analogy with (5.13), a comparison motion of the surface St is defined by [67]

z∗ = ζ (W, t) + εμ(W, t), (5.15)

where μ(W, t) is an arbitrary C2 function on Σ × [t1, t2] such that μ(W, t1) = o
and μ(W, t2) = o.

As a result of the comparison motions (5.13) and (5.15), the position in the
reference configuration of the material point that is located at z∗ at time t is (Fig. 5.3)

Z∗ = K−1(z∗, t, ε). (5.16)

Expanding this expression with respect to ε yields

Z∗ = Z +
[(

∂K−1

∂z∗

)+
∂z∗

∂ε
+
(

∂K−1

∂ε

)+]

ε=0

ε + O(ε2)

= Z + (F−1)+(μ − η+)ε + O(ε2),

(5.17)

where the result (4.18) has been used. This equation also holds when the +
superscripts are replaced by −. Introducing the notation (2.88), (5.17) yields the

Fig. 5.3 The points Z∗ and z∗
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result

δZ = (F−1)+(δz − δx+)

= (F−1)−(δz − δx−),

(5.18)

where δz = μ. Therefore,

[[F−1(δz − δx)]] = o. (5.19)

This equation is a constraint imposed on the comparison motions (5.13) and (5.15)
by the continuity of the motion of the material at the surface S . Compare Eqs. (5.18)
and (5.19) to Eqs. (5.10) and (5.11).

Let f(X, t) be a field that is continuous on B̄+ × [t1, t2] and on B̄− × [t1, t2], and
let f∗(X, t, ε) be its associated comparison field. Consider the integral

I =
∫

B±
t

ρf dVt =
∫

B±
ρRf dV , (5.20)

where the notation B±
t means the sum of the integrals over B+

t and B−
t . The value

of this integral when it is expressed in terms of the comparison field f∗(X, t, ε) and
the comparison motions (5.13) and (5.15) is (see Fig. 5.3)

I ∗(ε) =
∫

B±
ρRf∗ dV −

∫
S

[[ρRf[(Z∗ − Z) · N] ]] dS + O(ε2). (5.21)

The second integral in this expression is due to the displacement of the surface S .
Taking the derivative of (5.21) with respect to ε and equating ε to zero, the variation
of the integral is

δI =
∫

B±
ρR δf dV −

∫
S

[[ρRf(δZ · N)]] dS. (5.22)

By using the results (2.66), (2.71), and (5.18), this variation can be expressed in
terms of integrals over Bt and St :

δI =
∫

B±
t

ρ δf dVt −
∫
St

[[ρf(δz − δx) · n]] dSt . (5.23)

As an example of the application of these results, consider the kinetic energy of
the material contained in Bt

4

T =
∫

B±
t

1
2ρv · v dVt =

∫
B±

1
2ρRv · v dV . (5.24)

4 See the treatment of this example in Sect. 2.3.
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The integral of the kinetic energy with respect to time from t1 to t2 is

I =
∫ t2

t1

T dt =
∫ t2

t1

∫
B±

1
2ρRv · v dV dt. (5.25)

From (5.22), the variation of this integral is

δI =
∫ t2

t1

[∫
B±

ρRv · η̇ dV −
∫
S

[[ 1
2ρR(v · v)(δZ · N)]] dS

]
dt, (5.26)

where η = δx. To integrate the first term in this expression by parts, the motion of
the image surface S must be accounted for. This can be done by first evaluating the
derivative

d

dt

∫
B±

ρRv · η dV =
∫

B±
ρRa · η dV +

∫
B±

ρRv · η̇ dV

−
∫
S

[[ρR(v · η)(Ż · N)]] dS.

(5.27)

Integrating this equation with respect to time from t1 to t2 and noting that η vanishes
at t1 and t2 yields the desired integration by parts:

∫ t2

t1

∫
B±

ρRv · η̇ dV dt =
∫ t2

t1

[
−
∫

B±
ρRa · η dV

+
∫
S

[[ρR(v · η)(Ż · N)]] dS

]
dt.

(5.28)

Using this result, the variation of the kinetic energy is

δT = −
∫

B±
ρRa · δx dV +

∫
S

[[(ρRv ⊗ Ż)N · δx]] dS

−
∫
S

[[ 1
2ρR(v · v)N · δZ]] dS

= −
∫

B±
t

ρa · δx dVt +
∫
St

[[[ρv ⊗ (ż − v)]n · δx]] dSt

−
∫
St

[[ 1
2ρ(v · v)n · (δz − δx)]] dSt ,

(5.29)

where the relations (2.71), (5.10), and (5.18) have been used.
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As a second example, consider the constraint term associated with the equation
of conservation of mass5

C =
∫

B±
π

(
J − ρR

ρ

)
dV =

∫
B±

t

π

(
1 − ρR

ρJ

)
dVt . (5.30)

From (5.22), the variation is

δC =
∫

B±
πJ

(
div η + r

ρ

)
dV =

∫
B±

t

π

(
div η + r

ρ

)
dVt , (5.31)

where r = δρ. To apply the divergence theorem to the first terms in the integrands,
the presence of the singular surface must be taken into account. When this is done,
the variation can be written

δC =
∫

B±
t

π

(
−grad π · δx + π

ρ
δρ

)
dVt −

∫
St

[[πn · δx]] dSt . (5.32)

The results discussed in this section are quite general and could be applied to any
of the examples in Chap. 3. In the next section their use will be illustrated using the
specific case of an elastic ideal fluid.

5.2 An Ideal Fluid Containing a Singular Surface

Consider an elastic fluid that occupies a bounded regular region B at time t1.6 Let
it be assumed that during the time interval [t1, t2] the volume Bt is divided into two
parts B+

t and B−
t by a singular surface St . Hamilton’s principle states:

Among comparison motions (5.13), comparison density fields (5.14), and comparison
motions (5.15) of the singular surface, the actual fields are such that∫ t2

t1

[δ(T − U) + δW + δC] dt = 0, (5.33)

where

T =
∫

B±
t

1
2ρv · v dVt ,

U =
∫

B±
t

ρe(ρ) dVt ,

δW =
∫

B±
t

ρb · δx dVt , (5.34)

5 See the treatment of this example in Sect. 2.3.
6 See the discussion of ideal fluids in Sect. 3.1.1.
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δC =
∫

B±
t

(
−grad π · δx + π

ρ
δρ

)
dVt −

∫
St

[[πn · δx]] dSt

+
∫
St

ν[[ρ(δz − δx) · n]] dSt +
∫
St

κ[[δρ(ż − v) · n]] dSt .

Here the constraint term δC contains both the constraint (5.32) arising from the
conservation of mass and the constraint (5.19) imposed by the continuity of the
motion at St . The scalar fields ν(z, t) and κ(z, t) are Lagrange multipliers that are
assumed to be continuous on St × [t1, t2].

By using the result (5.22) and the expression (5.29), (5.33) can be written

∫ t2

t1

{
−
∫

B±
t

ρa · δx dVt +
∫
St

[[[ρv ⊗ (ż − v)]n · δx]] dSt

−
∫
St

[[ 1
2ρ(v · v)n · (δz − δx)]] dSt

−
∫

B±
t

ρ
de

dρ
δρ dVt +

∫
St

[[ρe(δz − δx) · n]] dSt

+
∫

B±
t

ρb · δx dVt +
∫

B±
t

(
−grad π · δx + π

ρ
δρ

)
dVt

−
∫
St

[[πn · δx]] dSt +
∫
St

ν[[ρ(δz − δx) · n]] dSt

+
∫
St

κ[[δρ(ż − v) · n]] dSt

}
dt = 0.

(5.35)

If it is assumed that δz = o and that the variations δx± and δρ vanish on St , (5.35)
reduces to the case considered in Sect. 3.1.1 and yields the equation of balance of
linear momentum (3.18) on B̄+ × [t1, t2] and on B̄− × [t1, t2]. As a consequence,
only the terms involving integrals over St remain in (5.35). Assuming that the other
variations vanish and that δρ is arbitrary on St merely leads to the conclusion that
the Lagrange multiplier κ = 0. Next, let δx± = o in (5.35) while δz is permitted to
be arbitrary on St . This results in the jump condition

[[− 1
2ρ(v · v)n + ρen + νρn]] = o on St × [t1, t2] . (5.36)

Finally, permitting the variations δx+ and δx− to be arbitrary in (5.35) yields the
two equations

{[ρv ⊗ (ż − v)]n + 1
2ρ(v · v)n − ρen − πn − νρn}± = o. (5.37)

Subtracting the − equation from the + equation and adding the result to (5.36)
results in the jump condition
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[[[ρv ⊗ (ż − v)]n − πn]] = o on St × [t1, t2] . (5.38)

This is the momentum jump condition. It insures conservation of linear momentum
of the material across St (see e.g. [27], pp. 104–106).

Taking the dot product of the + Eq. (5.37) with v+, the dot product of the −
equation with v−, subtracting the − equation from the + equation, and using the
definition of the tensor product results in the jump condition

[[ρ(v · v)(ż − v) · n + [ 1
2ρ(v · v) − ρe − π − ρν](v · n)]] = o. (5.39)

Taking the dot product of (5.36) with ż gives the jump condition

[[[− 1
2ρ(v · v) + ρe + νρ](ż · n)]] = o. (5.40)

Summing (5.39) and (5.40) and using (5.12) results in the usual form of the energy
jump condition

[[ρ(e + 1
2v · v)[(ż − v) · n] − π(v · n)]] = 0 on St × [t1, t2] . (5.41)

This equation insures conservation of energy of the material across St (see e.g. [27],
pp. 121–123). This derivation of the energy jump condition did not include terms
associated with heat conduction.

Thus Hamilton’s principle yields both the linear momentum and energy jump
conditions for the fluid. This procedure has been extended to mixtures of fluids and
elastic materials by Batra [3] and Batra, et al. [4]. It could potentially be extended
to other generalized theories of continuous media.
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material volume of, 34
motion of, 21
reference configuration of, 21
velocity gradient of, 23
velocity of, 22

Continuum mechanics, 13, 18
Cowin, S.C., 49, 54

D
Deformation gradient, 22, 25, 40

variation of, 46
Delta notation, 8
Density, 23

comparison field for, 27
Determinant, 16
Dimension, 14
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Displacement, 25
Displacement gradient, 25
Divergence

of a tensor field, 19
of a vector field, 19

Divergence theorem, 20
Drumheller, D.S., 48, 75

E
Elastic fluid, 35
Elastic material

Lamé constants, 43
Elastic solid, 40

balance of linear momentum, 43
isotropic material, 42
linear theory of, 42
with microstructure, 55

Ericksen, J.L., 48
Euler-Lagrange equation, 4

F
Field, 18

continuous, 20
material derivative of, 23
time-dependent, 19

Finlayson, B.A., 27
Functional, 2

G
Generalized coordinates, 5
Generalized forces, 10, 11
Goldstein, H., 7, 12
Goodman, M.A., 49, 54
Gradient

of a scalar field, 19
of a vector field, 19

Gurtin, M.E., 18, 20, 22, 30, 31, 38, 42

H
Halmos, P.R., 13
Hamilton’s principle, 6, 7

for a bubbly liquid, 75
with constraints, 9, 10
continuous medium, 46
delta notation, 8
for an elastic material, 41
first form of, 6
for an ideal fluid, 36
inelastic material, 46
with Lagrange multipliers, 8

for a mixture, 68, 80
nonconservative systems, 11
second form of, 8, 10

Heat flux, 47
Hill, C.D., 70, 71

I
Ideal fluid, 34

boundary condition, 38
Hamilton’s principle for, 36
incompressible, 40
kinetic energy, 36
potential energy of, 34
pressure of, 38
with a singular surface, 94

Identity tensor, 15
Image surface, 88
Incompressible fluid, 40
Inelastic materials, 45
Inner product, 17

of vectors, 14
Inner product space (IPS), 13

addition of vectors in, 13
basis for, 14
continuous function, 17
differentiable function, 18
dimension of, 14
examples, 14
function, 17
linear independence, 14
magnitude of a vector, 14
scalar multiplication in, 14
zero vector in, 13

Inverse motion, 21
Inviscid fluid See ideal fluid, 34

J
Jacobian, 22

material derivative of, 24
variation of, 27

Jump condition
energy, 96
mass, 90
momentum, 96

Jump of a function, 89

K
Kinetic energy

of a continuous medium, 28, 46
of a system of particles, 5
variation of, 29
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Kronecker delta, 16
Kuznetsov, V.V., 77

L
Lagrange’s equations, 7
Lagrange multipliers, 8, 10
Lagrangian, 7
Lamé constants, 43
Leech, C.M., 62
Leigh, D.C., 48
Linear transformations

determinant of, 16
inner product of, 17
inverse of, 17
product of, 16
trace of, 17
transpose of, 16

M
Material density, 64
Material derivative, 23
Material volume, 34
Material with microstructure, 54

Hamilton’s principle, 56
kinetic energy of, 56
strain measures of, 55

Microdeformation, 54
Microdeformation gradient, 55
Microelement, 54
Microkinetic energy, 74, 83
Microstructure, 54, 82
Mindlin, R.D., 49
Mixture

comparison fields, 64
conservation of mass, 64
inverse motion of, 62
material density density, 64
with microstructure, 82
motion of, 62
partial density, 64
volume fraction, 64

Motion
of a continuous medium, 21
of a mixture, 62

N
Nakoryakov, V.E., 77
Noll, W., 42
Nonconservative systems, 10
Nowinski, J.L., 48, 86

O
Open domain, 5

P
Pars, L.A., 8
Partial density, 64
Particles, system of, 5

admissible motion of, 5
configuration of, 5
generalized coordinates of, 5
Hamilton’s principle for, 6, 8
kinetic energy, 5
Lagrange’s equations for, 7
potential energy of, 5

Passman, S.L., 86
Pokusaev, B.G., 77
Potential energy, 5

R
Reference configuration, 21

S
Scalar field, 18
Schreiber, I.R., 77
Second-order tensors, 15

components of, 16
Serrin, J., 48
Singular surface, 87

comparison motion of, 91
speed of propagation, 90
velocity of, 89

Smoothness condition, 1
Sound speed, 40
Speed of displacement, 89
Speed of propagation, 90
Stokes-Christoffel condition, 90
Strain tensor

Cauchy–Green, 25
linear, 26

Stress
Cauchy, 43
Piola–Kirchoff, 42, 43

Subsurface, 18
Summation convention, 6
Surface point

position vector of, 87
velocity of, 89

T
Tensor field, 18

divergence of, 19
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Tensor product, 15
Thermoelasticity, 48
Toupin, R. A., 23, 24, 42
Trace, 17
Transpose, 16
Truesdell, C., 23, 24, 42

V
Variation, 8

of deformation gradient, 46
delta notation, 8
of Jacobian, 27
of kinetic energy, 29

Vector field, 18
divergence of, 19
gradient of, 19

Velocity, 22
Velocity gradient, 23
Virtual work, 11

continuous medium, 45
Volume fraction, 49, 64
Volume fraction constraint, 61, 64

W
Walsh, E.K., 86
Wang, C.-C., 17
Washizu, K., 44
Wave front, 87

Z
Zero tensor, 15
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