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Abstract. On-demand transportation services have been developing in an irre-
sistible trend since their first launch in public. These services not only transform the
urban mobility landscape, but also profoundly change individuals’ travel behavior
and demand for cars. In this paper, we propose an integratedmodel structurewhich
integrates empirical analysis into a discrete choice based analytical framework to
investigate a heterogenous population’s choices on transportation mode and car
ownership with the presence of ride-hailing. Distinguished from traditional dis-
crete choice models where individuals’ choices are only affected by exogenous
variables and are independent of other individuals’ choices, our model extends to
capture the endogeneity of supply demand imbalance between ride-hailing service
providers and users. Through equilibrium searching and counterfactual analysis,
we further quantify the magnitude of impacts of platform operations and govern-
ment policies on car demand, usage and traffic conditions. The structure of the
model and managerial insights are explained in detail.

Keywords: Ride-hailing · Peer-to-peer sharing · On-demand platforms ·
Mobility as a service

1 Introduction

In the past decade,with the ubiquity of connectivity and proliferation of smart phones,we
have witnessed the emergence of peer-to-peer ride-hailing platforms such as Uber, Grab
and Go-Jek [1]. While this new form of peer-to-peer service has disruptively changed
the on-demandmobility sector, discussions about its impacts on our society and environ-
ment have been inconclusive. On the one hand, this new form of peer-to-peer sharing has
brought improvement on social welfare, in terms of creating more employment oppor-
tunities, enabling individuals to earn additional income [2, 3], encouraging shared rides,
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eliminating wasteful driving, and thus reducing traffic and vehicle emissions [4–6]. On
the other hand, criticism has also arisen for these platforms’ quest for profits and market
shares by diverting non-driving trips to driving mode [7], which leads to unnecessary
driving demand and excess supply. For example, a survey inUS shows that in the absence
of ride-hailing, about 49% to 61% of ride-hailing trips would not have taken place at
all or would have been made by other modes such as walking and public transportation
[8]. Moreover, we find that the impacts of peer-to-peer ride-hailing platforms on car
ownership are also two-fold. On the one hand, ride-hailing may have a cannibalization
effect on demand for cars [9], reducing individuals’ incentive to own a car. On the other
hand, ride-hailing may lead to a value enhancement effect on car ownership [9], adding
more valuations with purchasing a car [10, 11]. For example, a study on new vehicle reg-
istrations in China shows that Uber entry is significantly associated with an 8% increase
in car ownership [12].

A key feature leading to the above unresolved debates is that, different from tradi-
tional taxi service, in the peer-to-peer ride-hailing sector the drivers are flexible indi-
viduals. As a result, ride-hailing platform could not fully control the capacity of their
service supply. Moreover, since individuals could switch between the supply side and
demand side (i.e., being a driver or a rider) [13], the interaction adds more challenges for
the platforms to balance supply and demand, not to mention to optimize the utilization
of the capacity. Hence, to study the impacts of ride-hailing, it is critical to understand
how individuals’ decisions on being a driver or a rider for the platforms are affected,
and these decisions are also coupled with other decisions on travel model as well as car
ownership and usage. Although there are a few attempts in investigating the mechanism
of peer-to-peer markets, most of them focus on product sharing (e.g., car renting) and
adopt an analytical framework (e.g., [9, 14] and [15]). As these analytical studies are
usually formatted as an equilibrium searching problem through analytical calculation
or simulation, they may be challenged by its simplifications and lack of validation by
empirical data in practice.

To the best of our knowledge, empirical studies focusing on peer-to-peer on-demand
service platforms are relatively limited. To enrich this research stream, this paper intro-
duces an integrated model structure which connects theoretical models with empirical
analysis to investigate a heterogenous population’s choices on car ownership, usage and
transportation mode with the presence of ride-hailing. Specifically, we first develop a
discrete choice framework which captures heterogenous individuals’ choices among dif-
ferent strategies facing ride-hailing. They decidewhether to purchase a personal car, how
to use the car if s/he owns one (either serve for the platform or solely use for personal
need), and whether to use the platform service or not when needed. These strategies are
affected by various factors such as wages, working hours, price sensitivity, perception
of traveling in a private car compared to public transportation, and benefits and costs
of owning a personal car, etc., which are all included in our model. Moreover, noticing
that in the two-sided on-demand platform context, each individual’s choice depends on
the dynamics between supply and demand, which is a collective result of the whole
population’s decision. We also incorporate such endogeneity of the supply and demand
imbalance and connect the two sides through a matching function, which is also embed-
ded into the choice functions. We then empirically calibrate our model using publicly
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disclosed data in the Singapore ride-hailing marketplace. Based on our model, we fur-
ther conduct counterfactual analysis to quantify the magnitude of impacts of platform
operations and government policies on ownership and traffic, which yields empirical
assessment of the peer-to-peer transportation service platform.

The principal contributions of our paper are summarized as follow.

a. We introduce an integratedmodel structure which integrates empirical analysis into a
discrete choice-based equilibrium framework. As in the two-sided on-demand plat-
form context, each individual’s choice depends on the dynamics between supply
and demand, which is a collective result of the whole population’s decision, endo-
geneity of the supply and demand balancing rises as a challenge (for example, more
platform drivers lead to higher chance and shorter waiting time for riders to grab
a car, and thus higher the utility for riders). Commonly used choice models are
limited to capture such endogeneity as they consider the variables affecting indi-
viduals’ choices as exogenous and the population’s choices are independent of each
other’s. Distinguished from the traditional choice models, our framework overcomes
this chal1lenge by incorporating the endogeneity of supply and demand imbalance
through a matching function and formalizing individuals’ choices as a game equilib-
riumas a function of others’ choices.Moreover, althoughourmodel is developedwith
a focus of peer-to-peer ride-hailing, it can easily be generalized to other peer-to-peer
markets including both product sharing and on-demand service platform.

b. Our integrated model demonstrates flexibility with data scarcity. A common chal-
lenge for empirical studies is the lack of access to data. For example, to develop
a discrete choice model, large volume of individual-level choice data are usually
required, which are commonly collected through large scale interview or discrete
choice experiment survey. The data collection could be costly and time-consuming,
and may also incur privacy issues (as the survey involves questions about individu-
als’ demographic information such as wage, traveling needs and mode preference).
Conversely, our model demonstrates the flexibility of parameters being estimated
with sparse aggregate-level data. We use publicly disclosed data on distribution of
car ownership and usage in the Singapore ride-hailing marketplace to calibrate our
model parameters. Our approach sheds lights on applying scarce data on empirical
settings.

c. Our analyses inform the debate on how ride-hailing may affect ownership, usage and
traffic with the sophisticated consideration of supply demand matching propensity.
The main findings suggest that ride-hailing may demonstrate both cannibalization
effect and value enhancement effect on car ownership depending on different condi-
tions. The cannibalization effect of ride-hailing on own car ownership is mainly due
to its lower price compared to conventional taxis. In terms of individuals’ decision of
whether and how to participate in the peer-to-peer ride-hailing service, their choices
are affected not only by ride-hailing price or driving cost but also the dynamics
between supply and demand imbalance. For example, we observe that although the
increase of service price increases platform drivers’ earnings, it in fact leads to fewer
platform drivers due to a diminishing user base, which lowers demand and matching
propensity. We further investigate the relationship between platform revenue and
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ride-hailing payment. Our analysis suggests that due to the supply demand dynam-
ics, the platform’s revenue does not increase monotonically with service charges;
there exits an optimal price level which allows the platform to maximize its revenue.

The remainder of this paper is organized as follows. Section 2 reviews related liter-
ature in peer-to-peer sharing. In Sect. 3 we introduce the framework of our integrated
model in detail. Section 4 specifies the data we used for our empirical setting and the cal-
ibration process of our model parameters. In Sect. 5 we present the equilibrium analysis
under various counterfactual scenarios. Section 6 concludes the work with a discussion
of the findings and future research directions.

2 Literature Review

Peer-to-peer sharing has attracted growing research interest in recent years. Studies
related with peer-to-peer sharing can be broadly classified into two categories with
respect to their study focuses. The first category focuses on peer-to-peer resource/product
sharing, which allows owners to rent out their products/assets to non-owners for a short
term (e.g., Airbnb for accommodation sharing and Zipcar for car renting). Most of the
papers in this group study the impacts of product sharing on individuals’ decisions
on product ownership from different perspectives such as product manufacturer (e.g.,
[9, 16] and [14]) or the platform owner (e.g., [15]). The second category focuses on
peer-to-peer on-demand service, which connects users requiring a time-sensitive service
with independent service providers (e.g., Uber for transportation service and Deliveroo
for food delivery service). Most papers in this category investigate how the interactions
between the supply and demand in the two-sidedmarket are affected by different factors,
such as [17] by the factor of dynamic pricing, [18] by customers’ sensitivity to delay
and service providers’ independence, [19] by payout ratio (i.e., the ratio of wage paid
to service providers over price charged from consumers) and [20] by service providers’
self-scheduling. In addition, a few other studies investigate the effectiveness of different
contract designs for stakeholders of the on-demand service platform such as [21] and
[22]. Some other studies adopt a game theoretic framework to examine the organization
of the on-demand service such as [23] and [24]. The early works in peer-to-peer sharing
are dominated by theoretical arguments that construct analytical framework to explain
and investigate the mechanism of and agents’ interactions in the innovative marketplace.

Although previous analytical studies provide the first insights about individuals’
choices with the presence of sharing economy, the majority of them has focused on sys-
tem equilibrium and/or welfare of service providers and customers, which are obtained
through analytical calculation or simulation and are not validated by empirical data
in practice [25]. The empirical studies on on-demand platforms are relatively limited,
mostly focusing on using statistical regression models to study the impact of sharing
economy on ownership or traffic congestion. For example, [7, 12] and [3] use longitu-
dinal data and difference-in-difference models to investigate the influence of the entry
of Uber on traffic congestion, new vehicle ownership and rates of entrepreneurial activi-
ties respectively. [26] structure a before-and-after assessment and employ a fixed-effects
panel data regression model to analyze the impact of ride-hailing on traffic congestion
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in a major city. [25] use a probit regression estimated by a modified Heckman two-
stage method to study the impact of financial incentive on platform drivers’ decision of
whether to work and corresponding number of work hours. However, a key shortcoming
of regression methods such as difference-in-difference is that their statistical results do
not always imply an unbiased estimate of the causal effect as mentioned in [27].

It is worth noting that despite the growing abundance of literature in sharing econ-
omy, many controversial questions still remain and need to be answered. Given the fact
that analytical work would be challenged by the simplifications and that existing empir-
ical studies fail to effectively explain the causation and have limited prediction power,
there are calls for research integrating analytical methodologies with empirical method-
ologies. Such action could improve the validity as well as the explanatory power and
prediction capability of the model, which could provide in-depth managerial insights. So
far, we have noticed one paper [28] attempting this integrated methodology. The authors
first introduce a dynamic model and then use empirical data to calibrate the model.
However, their focus is the peer-to-peer durable goods sharing market; and they do not
consider the matching rates as a dynamic result of supply and demand but exogenously
specified. As far as we know, no studies have yet attempted to analyze on-demand service
platforms, in particular the ride-hailing platform, by using such integrated methodology.
Motivated by the lack of relevant research, in this paper we propose a model struc-
ture that integrates empirical analysis into analytical framework with the consideration
of endogenous supply demand matching to study the peer-to-peer on-demand service
platform.

3 The Model

3.1 Agents’ Strategies and Payoffs

Our study objects (agents) are a working age population consisting of individuals who
are eligible for driving, below retirement age, and most importantly, have a regular
travel need. To satisfy their travel needs, individuals may choose to own a personal car
to satisfy the travel need. Once with a private car, with the presence of ride-hailing, the
individual also has an opportunity to choose to work for the platform as a driver (either
full-time or part-time). In contrast, without a personal car, the individual could decide
between using the ride-hailing service or other transportation service such as public
transportation. Accordingly, we construct a set of five strategies Σ = {N, P, F, U, A} for
the individuals to choose from.

• [N] Non-platform driver: An individual who owns a personal car but only uses the
car to satisfy her own travel needs.

• [P] Part-time platform driver: An individual who owns a personal car and has a regular
full-time job. She drives for the platform during after-work time to earn extra income.

• [F] Full-time platform driver: An individual who owns a personal car and forgoes the
regular job with wage w to work full-time on the platform.

• [U] User: An individual who does not own a personal car but prefers to satisfy her
travel needs by using the ride-hailing service.
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• [A] Abstinent: An individual who does not own a personal car and whenever she needs
a ride, she chooses public transportation.

Each individual chooses its strategy based on its expected long term payoffs, which
are characterized as the average utility associated with each strategy per period. The
individuals’ travel needs is denoted by Mi per period. Due to the comfort and conve-
nience, traveling in private cars generates positive payoffs compared with taking public
transportation. We normalize the utility of taking public transportation to zero, and use
γi to indicate individual i’s relative utility gain of traveling in private cars per kilometer.
Correspondingly, strategiesN, P, F, U enjoy a utility gain of γiMi compared with strategy
A. For strategiesN, P, F, a fixed car ownership cost1k and a variable cost c (such as petrol
and toll) will incur. Considering the convenience to access the car, strategies N, P, F also
enjoy a convenience benefit of bN , bP and bF respectively. Furthermore, for simplicity,
we assume that all part-time and full-time platform drivers work the same amount of
time tP and tF respectively to provide the ride-hailing service. More, all individuals but
the full-time platform drivers (strategy F) are assumed to own a regular full-time job
with wage wi per period. Each individual is further characterized by its price sensitivity
θi ≥ 0.

Before introducing the payoff functions, some characteristics of the ride-hailing
market areworthmentioning. In the two-sided ride-hailingmarket, thematching between
the drivers and riders could not be perfect due to spatial and temporal constraints. As a
result, a platform driver could only be matched with a rider with a proportion of α ∈ (0,
1) out of the driver’s total working time, while a platform user’s request could only be
successfully fulfilled with probability β ∈ (0, 1). With the chance of 1 − β, the platform
user must resort to public transportation, which is assumed to be always available.

Next we specify the payoff functions for each strategy of individual i. The subscript
i in the equations indicates that the corresponding variables are individual specific, vari-
ableswith strategy subscript (such as bN ) are assumed to be homogeneous for individuals
in the same strategy group (“N”), and variables without subscript are common across
the whole population.

• [N] A non-platform driver has a regular job with wage w per period. She possesses a
personal car and uses it to satisfy her own travel needs Mi and thus gain a payoff of
γiM i from traveling in a private car. She also pays for the fixed ownership cost k and
variable cost c per kilometer. Price sensitivity θi converts monetary value to utility.
She also earns a convenience benefit bN from owning a car. In this case the payoff is

VN ,i = θiwi + γiM i − θi(cMi + k) + bN .

• [P] A part-time platform driver possesses a car and has a regular job as a non-platform
driver. However, she uses the car not only to satisfy her own travel need Mi but
also provide ride-hailing service on the platform after this regular job. The term

1 In order to participate in ride-hailing, platform drivers are required to possess a private car. They
could either purchase a personal car or rent a car from the platform. In ourmodel formulationwe
do not distinguish between these two ways as essentially they both represent a fixed ownership
cost k.
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θitPs(αρ − c) − tPl represents the additional benefit from the part-time ride-hailing
service. tP is the time she works as a part-time ride-hailing driver while s is the average
driving speed. The product of tP and s converts the working hours to total kilometers
supplied on the platform. Due to market friction and supply-demand imbalance, out
of the tPs kilometers she supplies for the platform, only α fraction is effectively used
by serving a passenger, generating an earning of tPsαρ, where ρ is the per kilometer
earnings from providing the service. We assume that while providing the service, the
driver is always driving around with or without a traveler in her car as she may be
driving towards higher demand areas to search for new customers. Therefore, she
always incurs a variable driving cost c during time period tP . As a result, the net profit
from part-time ride-hailing service is tPs(αρ − c). Again, θi converts monetary profit
to utility. Also, as the part-time platform driver works overtime with consideration of
her regular job, she incurs a loss of leisure time utility l per time unit during her work-
ing time tP on the platform. The above modeling assumptions imply the following
payoff:

VP,i = θiwi + γiM i − θi(cMi + k) + bP + θitPs(αρ − c) − tPl.

• [F] A full-time platform driver gives up her regular job and takes providing ride-
hailing service as her full-time job. Therefore, she forgoes the wage w from her
previous regular job (hence θiwi × 0). Similar to a part-time platform driver, the
net income from being a full-time platform driver is expressed by tF s(αρ − c). The
average working time of the full-time platform driver’s previous regular job is denoted
by λ. The full-time platform driver may choose to work overtime on the platform. The
term (tF − λ)+ is an indicator of whether the full-time platform driver incurs a utility
loss of leisure time. If total working time on the platform tF is larger than λ, it suggests
that the full-time driver works overtime and incurs a leisure loss l per unit time. Hence,
the payoff of a full-time platform driver is given by

VF,i = θiwi × 0 + γiM i − θi(cMi + k) + bF + θitF s(αρ − c) − (tF − λ)+l.

• [U] A user is by definition an individual that uses ride-hailing service to satisfy her
transportation needs. She pays r dollars per kilometer for hailing a car. However, due
to market frictions, only β percentage of times a user can be successfully matched
with a car. If she fails to find a private-hire car, then with probability 1 − βthe user
opts for public transport. Thus, the corresponding payoff is given by

VU ,i = θiwi + β
(
γiM i − θirM i

)
.

• [A] An abstinent individual chooses not to buy a car nor use ride-hailing service.
Whenever she has a travel need, she opts for the outside option such as public transport
or walking. We normalize the utility of the outside option to zero and the cost of the
outside option is assumed to be negligible. Thus the payoff function of the abstinent
only consists a term of her regular job wage. Therefore, the payoff of an abstinent is

VA,i = θiwi.
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3.2 Choice Model and Population Share

Among all the five agent types listed in Sect. 3.2, some individuals may be constrained
by exogenous reasons to be of a certain type. For example, some may not have driving
license or are not physically fit for driving. Therefore, we consider the population divided
into two segments S1, S2. The first segment is eligible for driving and hence has access
to all five strategies N, P, F, U, A. The other segment cannot act as a driver (at least in
the short term where the decision model is defined) and hence has access to either the
strategy of U or A, i.e., user or abstinent. We use discrete choice model to study the
choices of the heterogeneous population.

Discrete choice models based on multinomial logit have been used extensively in
the field of transportation research [29]. According to random utility theory (RUT) [30],
in additional to the systematic part of the utility Vij as specified in the payoff functions,
there is a random part εij which captures the unobservable factors. We assume εij are
independently and identically distributed type-I extreme random variables. Therefore,
for the five strategies listed in Sect. 3.2, the probability Pij of individual i choosing
strategy j ∈ {N, P, F, U, A} in the two population segments can be expressed as

S1 : Pij = eVij

eVi,N +eVi,P+eVi,F +eVi,U +eVi,A
, j = N ,P,F,U ,A,

S2 : Pik = eVik

eVi,U +eVi,A
, k = U ,A.

As the heterogeneity of the population is characterized by individual-specific vari-
ables (θi, γi,wi,M i), the integral of above equations over the joint distribution of
f (θ, γ,w,M ) produces the choice shares of the five strategies within each segment.
Specifically,

S1 : Sj,S1 = ∫ eVij

eVi,N + eVi,P + eVi,F + eVi,U + eVi,A
f (θ, γ,w,M )dθdγ dwdM ,

j = N ,P,F,U ,A,

S2 : Sk,S1 =
∫

eVik

eVi,U + eVi,A
f (θ, γ,w,M )dθdγ dwdM , k = U ,A.

Let us further assume that a fraction of the population belongs to S1 and 1 − a
fraction belongs to S2, then the population shares of strategies N, P, F are

Sj = a
∫

eVij

eVi,N + eVi,P + eVi,F + eVi,U + eVi,A
f (θ, γ,w,M )dθdγ dwdM , j = N ,P,F,

(1)

and the population shares of strategies U and A are

Sk = a ∫ eVij

eVi,N + eVi,P + eVi,F + eVi,U + eVi,A
f (θ, γ,w,M )dθdγ dwdM

+ (1 − a) ∫ eVik

eVi,U + eVi,A
f (θ, γ,w,M )dθdγ dwdM , k = U ,A. (2)
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It is worth noting that Eqs. (1) and (2) have no closed form solution. However, we
can approximate the integral through simulation. Specifically, we first draw R samples
(θ r, γ r,wr,Mr) from the joint distribution f (θ, γ,w,M ), then use this as an empirical
distribution to compute the average of the probability Pij over individuals of the popu-
lation instead of the integral. This average is the simulated population share of the five
strategies:

Ŝj = a

(
1
R

∑R
r=1

e
Vr
j

eV
r
N +eV

r
P+eV

r
F +eV

r
U +eV

r
A

)
, j = N ,P,F,

Ŝk = a

(
1
R

∑R
r=1

eV
r
k

eV
r
N +eV

r
P+eV

r
F +eV

r
U +eV

r
A

)
+ (1 − a)

(
1
R

∑R
r=1

eV
r
k

eV
r
U +eV

r
A

)
, j = U ,A.

(3)

A challenge in estimating above population shares is the endogeneity of ride-hailing
matching probabilities α and β, which are functions of the supply (population shares of
platform drivers) and demand (population share of users). More precisely, controlling
other factors, if α increases, a platform driver has higher chance to serve a customer
and thus obtain higher income. Therefore, strategies P and F become more tempting
and corresponding population shares SP and SF , i.e., the supply of service will increase.
However, as the supply of the service increases, the matching rate α will conversely
tend to decrease. User’s matching probability β acts in a similar vein. This observation
implies that there is a circular dependence between supply and demand and the matching
ratesα and β. To characterize this dependence, we incorporate belowmatching functions
based on the work of [15] into our model:2

α = t · D

D + S
, β = t · S

D + S
. (4)

Under our model specification, the supply and demand can be further expressed as
the mileage supplied and requested:

Supply = (SPtP + SF tF )S,Demand = SUE(M ). (5)

In (4), the parameter t ∈ (1,min{Demand+Supply
Demand ,

Demand+Supply
Supply }) characterizes the

level of matching friction in the two-sided market: the higher t is, the lower the matching
friction, hence the higher the matching propensity.

4 Data

Our empirical context will be the Singapore ride-hailing marketplace, which acts as
an ideal research subject for the following reasons. Firstly, as an island country, the
transportation system of Singapore is relatively closedwith few foreign vehicles entering

2 According to [15], Eq. (4) is derived based on deterministic fluid approximation of a multi-
server loss queuing system with arrival rate D and total service rate S, in which, α corresponds
to the system utilization and β corresponds to the probability at which a job request could find
an idle server upon arrival.
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from outside, which guarantees that supply of the peer-to-peer ride-hailing service is
provided within the region. Given the fact that the Singapore government records the
private hire/ride-hailing car population over time, this unique feature makes the number
of platform drivers easily trackable, which is not the case in other cities. For example,
in San Francisco, previous study finds that about 80% of the Uber drivers actually live
outside of the city and bring their cars into the city every morning to provide for peer-to-
peer service [5]. As the supply is from both internal and external, such an open system
brings difficulty in modeling the dynamics between supply and demand. Secondly, due
to the strict regulations of the Singapore government, the level of car ownership is being
monitored over time. In order to own and use a vehicle (no matter for personal use or for
ride-hailing service), car owners are required to obtain a quota licence called “Certificate
of Entitlement (COE)” through bidding. Since the number of cars are strictly controlled
by the government, the supply of private car is relatively stable over the years and the
COE quotas made available for each year is limited. In view of the fact that the price of
the car itself (determined by its open market value) is relatively stable, the bidding price
of COE can be viewed as a proxy for demand of cars as the total number of cars allowed
is relatively constant.

In the following sections, we elaborate on how we calibrate our model based on the
Singapore ride-hailing marketplace. We focus on the population with age between 20
and 64 for those who are eligible to drive and below retirement age. Specifically, we use
publicly disclosed data in year 2017 to calibrate our model and data in year 2016, 2018
and 2019 to conduct robustness check and validity test. Values of our model parameters
are determined through two ways. First, some parameters such as travel demand and
wage distribution do not depend on our model specification and can be estimated from
available data directly. However, other parameters such as price sensitivity, perception
of traveling in private cars, convenience benefit of car ownership and utility loss of
working overtime cannot be obtained through the data directly. Therefore, we calibrate
these parameters by searching for the values that make our model captures the reality
i.e., generates the calibrated population shares as close as the actual ones.

4.1 Estimated Parameters

Table 1 summarizes the values of the parameters estimated directly from data for year
2017. The travel demand is estimated by fitting a lognormal distribution based on average
monthlymileage of private cars and distribution of taxi trip distance (including both street
hailing and requests from ride-hailing platforms). Wage distribution of the population is
obtained by fitting a lognormal distribution to the household income data. As mentioned
previously, the ownership cost of a private car consists of car retail price and the cost
of COE. Therefore, we approximate the ownership cost as the sum of both car price
and COE cost. Usually, ride-hailing platforms take a commission fee from drivers for
each trip. They also provide various incentive schemes to attract more supply. Thus
platform drivers’ earning ρ is estimated as the sum of after-commission trip fare and
incentive rewarded.3 The value of matching friction level t is determined by setting the

3 See example of a major ride-hailing company’s incentive scheme on 2019: https://www.gojek.
com/sg/blog/sg-driver-incentives-gojek-singapore/.

https://www.gojek.com/sg/blog/sg-driver-incentives-gojek-singapore/
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Table 1. Estimated parameter values for year 2017

Parameter Symbol Estimate

Travel demand M lognormal (3.75, 0.382) km/day

Regular job wage w lognormal (7.89, 0.862) $/mth

Ownership cost of car k 60 $/day

Driving cost c 0.13 $/km

Average driving speed s 40 km/hr

Regular working hours λ 45 h/week

Part-time platform driver working hours tP 7 h/week

Full-time platform driver working hours tF 49 h/week

User payment for ride-hailing r 0.99 $/km

Driver earning from ride-hailing ρ 1.00 $/km

Market friction level t 1.3

matching rates α and β reflecting the Singapore ride-haling market. As suggested by
the taxi occupancy data (fraction of driving time a taxi is occupied with a passenger),
the representative matching rate for platform drivers is around 0.5, hence we estimate t
= 1.3 which leads to α = 0.505 and β = 0.895. More details of the estimation refer to
online Appendix.4

4.2 Calibrated Parameters

The remaining model parameters (sensitivity of money θ, convenience benefit of pos-
sessing a car bN , bP and bF , utility difference between traveling in a private car and
public transport γ , and loss of leisure utility l) cannot directly be estimated from the
data.We assume that θ and γ independently follow a lognormal distribution with param-
eters (θμ, θ2σ ) and (γμ, γ 2

σ ) respectively. We calibrate (θμ, θ2σ ,γμ, γ 2
σ ,bN , bP , bF , l) by

minimizing the sum of squared percentage differences between the calibrated and actual
population shares by solving below optimization problem:

min
∑

j

(
Ŝj−Sj
Sj

)2

, j = N ,P,F,U ,A,

s.t. bN , bP, bF , l ≥ 0

(6)

where S
∧

j are the calibrated population shares as in Eq. (3) and Sj are the actual population
shares. The objective function value of our calibration is 9.98×10−7,which suggests that
the model matches the actual population shares very well. The values of the calibrated
parameters are listed on online Appendix.

4 Online Appendix available at: https://drive.google.com/file/d/1DQkbJSBWFoFIMmAEMxkf
eo7qjJrT2CRI/view?usp=sharing.

https://drive.google.com/file/d/1DQkbJSBWFoFIMmAEMxkfeo7qjJrT2CRI/view%3Fusp%3Dsharing
https://drive.google.com/file/d/1DQkbJSBWFoFIMmAEMxkfeo7qjJrT2CRI/view%3Fusp%3Dsharing
https://drive.google.com/file/d/1DQkbJSBWFoFIMmAEMxkfeo7qjJrT2CRI/view%3Fusp%3Dsharing
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4.3 Model Validation

We validate our calibrated model by testing its prediction power. Recall that we use
only the 2017 data to calibrate the values of parameters (θμ, θ2σ , γ μ, γ 2

σ , bN , bP, bF, l),
thus we could apply the model to different years 2016, 2018 and 2019 to compare the
predicted and actual population shares. Table 2 lists the prediction results. We can see
that the predicted population shares are fairly close to the actual ones and capture the
trend of its variation.

Table 2. Predicted vs. actual population shares

Non-platform driver (SN ) Platform drivers (SP + SF )

2016 2017 2018 2019 2016 2017 2018 2019

Predicted population
share

18.80% 19.17% 20.70% 21.70% 2.91% 3.10% 2.97% 3.20%

Actual population
share

19.32% 19.16% 19.37% 19.57% 2.81% 3.11% 2.90% 3.17%

5 Counterfactual Analysis

In this section, we use the calibratedmodel to conduct numerical experiments to examine
how choice shares of the five strategies might change with new policies. In particular,
we focus on the variations of driving cost and ride-hailing payment as they are the most
commonly used means of market intervention and platform operations.

Asmentioned in Sect. 4, due to the government’s regulation, the population of private
cars can be considered as a constant number. Explicitly, the number of non-platform
drivers, part-time platform drivers and full-time platform drivers sums up to this constant
number; and demand for cars (including both non-platform drivers and platform drivers)
is captured by the bidding price of COE which is a component of car ownership cost
k. Therefore, we have two equilibrium loops in our numerical experiments, one for car
ownership constraint (total number of cars fixed) and the other for ride-hailing service
supply-demand balancing (through dynamics between matching rates α and β). Below
we present the main results of the counterfactual analyses.

5.1 Model Equilibria from Varying Driving Cost

Figure 1 illustrates the variation of population shares of platform drivers and users
with respect to driving cost per kilometer at equilibria. As driving cost increases, the
number of platform driver decreases whereas the population of users increases even
with lower matching propensity. This may be because with rising driving cost, for those
who prefer traveling in a private car, self-driving becomes too expensive and they would
rather switch to ride-hailing services. The equilibrium results further show that the
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increase of driving cost would lead to slight decrease in car demand and VKT, which
suggests that actions affecting driving cost such as controlling road tax and fuel tax may
help to mitigate traffic but with limited effectiveness. Therefore, other measures such
as improving accessibility public transportation may worth considering (More results
available on online Appendix).
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9.0%

10.0%

2.50%

2.75%

3.00%

3.25%

3.50%

0.11 0.12 0.13 0.14 0.15 0.16
Driving cost ($/km)

Platform driver (left) User (right)

Fig. 1. Population share change w.r.t driving cost

5.2 Model Equilibria from Varying Ride-Hailing Payment

Figure 2 illustrates the variation of population shares of platform drivers and users
w.r.t. ride-hailing payment. As expected, the proportion of ride-hailing users slashes
with higher ride-hailing payment. Such a phenomenon brings a two-fold impact on
platform drivers. On the one hand, the higher payment promises higher earnings for
drivers as their income is proportionate of user charges. On the other hand, as there are
fewer users, hence less demand, the matching rate for drivers decreases. In our analysis,
the effect of the former is dominated by the latter. As ride-hailing payment increases,
although the earnings frombusy period increases for platformdrivers, their total effective
income instead decreases more significantly due to the lower matching propensity. Thus,
we observe the diminishing population shares of both part-time and full-time platform
drivers.
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Fig. 2. Population share change w.r.t
ride-hailing payment
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Fig. 3. Platform revenue w.r.t ride-hailing
payment

The equilibrium results further show that, unexpectedly, the increment in riding
price would lead to a slight increment in car demand. Since the total number of cars
is a constant number, with the population of platform drivers dropping, non-platform

https://drive.google.com/file/d/1DQkbJSBWFoFIMmAEMxkfeo7qjJrT2CRI/view%3Fusp%3Dsharing
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drivers increase. However, more non-platform drivers do not necessary lead to higher
COE price. This observation suggests that as ride-hailing becomes more expensive, non-
car owners who prefer to travel in a private car are more likely to buy a personal car
rather than turning to public transportation. Moreover, as shown in Fig. 3, the platform’s
revenue does not increase monotonically with ride-hailing payment but peaks around
1.05 dollars per kilometer and then starts to diminish. This observation suggests that
although higher charges bring higher commission fees for the platform, the enlarging
loss of users counteracts such an incremental effect. Thus, increasing service charges to
attain higher revenue is not sustainable and there exits an optimal payment level which
allows the platform tomaximize its revenue (More results available on onlineAppendix).

6 Conclusions

In this paper we introduce an integrated model structure that integrates empirical analy-
sis into an analytical framework to assess the impact of on-demand platform on mobility
choice, ownership and traffic congestion. By introducing matching functions, we further
incorporate the endogeneity of supply demand imbalance of the two-sided on-demand
service market into the model. Our analyses provide several managerial insights: to
control traffic and curb VKT growth, measures through regulating driving cost such as
increasing road tax and gasoline tax may have limited effectiveness. Other procedures
such as improving accessibility public transportation may worth considering. For plat-
form revenue management, our results suggest that there exits an optimal payment level
which allows the platform tomaximize its revenue. Although raising user charges within
a certain rangewould increase the platform’s profit, it is not sustainable as higher charges
leads to enlarging loss of users, which brings a counteracting effect.
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