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Abstract. The paper describes a system to track the body movement of a person
from a video source while augmenting the labelled skeleton joints onto the body
of the person. This work has endless applications in the real world especially in
the physical-demanding working environment as well as in the sports industry by
implementing deep learning, the techniques can recognize the joints on a person’s
body. An algorithm namelyMediapipe Blazepose has been applied using PoseNet
dataset to detect and estimate curated movements specifically designed for body
injury during heavy workload. The propose method has been compared to IMU
basedmotion capture and the difference accuracy iswithin 10% since IMUcapture
real data of the sensors while the deep learning method using 2D image analysis.
The expected outcome from this project is aworking system that is able to correctly
identify and label the skeleton joints on a person’s body as well as perform various
calculation such as movement velocity and the angle of joints which could be
crucial for determining whether certain body movements could result in injuries
either in the short- or long-term period.
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1 Introduction

In the current augmented reality field, there exists numerous marker-based motion cap-
tured software which uses markers which are attached to a suit that has to be worn by
the subject. These markers act as sensors which will give input to the motion capture
software which will then calculate the subject’s location and thus displaying the subject
to the display screen [1]. This model of motion capture is costly as it requires designated
tools such as the markers as well as specialized camera. Although the marker-based
system cost is high, the accuracy is very satisfactory [2, 3].

There are many applications such as Microsoft Kinect which uses Time-of-Flight
(ToF) and other sensors which uses Dynamic Time Warp (DTW) that measures the
distance of IR sensors and the time it takes to return to the sensor due to its reflections
[4, 5]. However, the data captured consists of heavy noise as the data captured everything
seen from the IR sensor and camera [6]. Other technology such as InertiaMeasuringUnit
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(IMU) has the advantageous of capturing only the needed movements of the sensors;
gyroscopes and accelerometer, in real time however, due to its hardware dependent
system, a dedicated connection is needed, and sensors can be influenced by wireless
reception and earth gravity giving some noise or error in detection. IMU is very useful
as the system not required visual field to tracking a motion [7] (see Table 1).

Table 1. Comparisons of marker-less motion capture.

Software Strength Weakness

Microsoft Kinect [15] Users are more free to explore
the functionalities and can
create their own variation of
product

No support from Microsoft.
User needs to tweak software on
their own

Kinetisense [16] The screen can be customized
from a wide selection of 75
assessment which could prove
beneficial for a more
comprehensive workflow

Offers assessment for
performance and sport but
nothing beyond it. The focus of
the application is just the
analysis of motion

Human trak [17] Real-time display of important
data overlayed on the user.
Among the data that could be
displayed are the joint range of
motion and balance metrics

For the top-tier hardware and
performance, users are looking
at an expensive yearly
subscription when compared
with other options in the market

Inertia measuring unit [7] Uses real-time sensors
capturing from gyroscope and
accelerometer

Need dedicated network
connection and prone to earth
gravity noise

Therefore, the aim of this work is to explore a marker less motion capture method
that is able to perform skeleton joint detection using 2D images that are more accessible
to the general public. This would reduce the cost of motion capture as tools that are
readily available [8].

2 Related Works

The existing system in themarket also has a hard time detecting limbs that are performing
fast pacedmovement or even subjects that are equippedwith loose clothing. Furthermore,
if the subject is placed far away from the camera, this will also result in poor tracking of
their joints [9]. Another problem that existing systems have is detecting torso bending
which is due to the systems unable to perform depth estimation correctly from the images
obtained from the front part of the body and the inability to sense the back part of the
body [10, 14].

Apart from that, the current existing system in the market does not provide an indica-
tion when a risk-prone injury movement is being performed by a subject. The risk-prone
movement needs to be identified by the user of the system by further analysis using
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the data obtained from the system. The use of deep learning able to eliminate the com-
plication of the hardware and by using the 2D digital image, features can be extracted
and accurately in recognizing the human structure while using a suitable human pose
dataset [11, 12]. The sparse Inertial Measurement Unit will paired with the Deep Learn-
ingmodel earlier gives a better estimation for the system for a more accurate detection of
the joints. However, IMU [13] sensors need to be placed on subjects’ bodywhich irritates
the process and constant recalibration needed due to its prone to magnetic interference.

The aim of the study is to propose a method that leads to marker-less motion capture
with deep learning implementation to correctly recognized human body pose and move-
ments. The threefold objectives that leads to the aim of the study are mainly focusing
on integrating deep learning model for correctly estimating the movement of the body
joints, to measure the distance between one joint to another creating the skeleton frames
with each joint record individual velocity and angle at every successive frames, and to
compare the accuracy between the proposed marker-less method and the marker-based
motion capture.

3 Methodology

This proposed method aims to automatically give an indication during a risk-prone
movement is being perform by a subject. Apart from that, existing motion capture that
is in the market has a hard time capturing the motion of limbs accurately especially
when subject is equipped with loose clothing or during subject performing motions that
are fast paced. Furthermore, if the subject is placed far away from the camera, this will
also result in poor tracking of their joints. In addition, movement such as torso bending
makes the existing system ofmotion capture have a hard time detecting thesemovements
accurately.

3.1 Application Architecture

The architecture of the proposed method is shown in Fig. 1 below, where the system is
divided into 2 major subsections which are the front-end and the back-end. The front-
end of the system involves in getting user input as well as displaying the necessary
information to the user. The back-end of the system is responsible in processing the
input provided by the user to produce an understandable output to be used by the user for
further analysis. The underlying modules contained within the application architecture
will be explained in the same order from the user of the system launches the program
until the user exits the program.
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Fig. 1. System architecture diagram

3.2 Video Processing

The main focus of the method is the Video Processing module. The input video will
be processed frame-by-frame, meaning that each frame of image of the video will be
processed independently. The system will first take the first frame of the video and
employs the holistic functionality of Mediapipe BlazePose. This package is a pretrained
model package which was developed by Google. The difference between this model as
compared to other models in the market is that mediapipe is able to accurately track
human body pose almost in real-time. Mediapipe also offers more key points (33 key
points) as compared to other body pose detection model which generally are built based
on Common Objects in Context (COCO) topology (17 key points). Figure 2 below
illustrates the pose detected by BlazePose model. The COCO topology is colored in
green whereas the blue key points are the included key points offered by BlazePose
model [12].

The difference in the number of key points is among the factors that allowsMediapipe
to process the image input almost in real-time. For the sake of our system, we will only
display 12 different key points which have been determined to be the most vital key
points for analysis of body angle. Body parts such as feet, hand and face which are also
detected by Mediapipe BlazePose are ignored by the calculation modules since they are
not related to angle calculation.

Mediapipe’s BlazePose algorithm works by utilizing two-step-detector-tracker
Machine Learning pipeline. The pipeline will first locate the person’s region-of-interest
(ROI) within the frame. Once the ROI is determined, the tracker will predict the pose
landmarks within the ROI. In the system’s case, the detector will be invoked only in the
first frame. For subsequent frames, the pipeline will derive the ROI of the new frame
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Fig. 2. COCO model in green, BlazePose model is inclusion of blue key points (Color figure
online)

from the previous frame’s pose landmarks. This is also one of many reasons that allows
Mediapipe BlazePose to compute the landmark poses in almost real-time. The Pose
Detection model of Mediapipe BlazePose is trained from an image dataset containing
around 85,000 images including 30,000 of the images obtained from consented images
of people using a mobile AR application captured with smartphone cameras in various
“in-the-wild” conditions.

The model is used for predicting the human body center (middle of hip). Once the
body center is determined, Mediapipe will use the body center to determine the pose
landmarks located within the radius from the body center. Once the pose landmarks have
successfully detected by Mediapipe BlazePose, the results will be stored in variables to
denote the x and y coordinates of the respective pose landmark. Each pose landmark of
a body part will be stored in different variable which will be used later for angle and
velocity calculation.

Once the x and y coordinates have been obtained from the joint detection module,
the values of the x and y coordinates will be passed to the angle and velocity calculation
module. This module will perform mathematical computation based on the coordinates
of the joint-of-interest and its 2 respective adjacent body parts connected to the joint-of-
interest. This calculation is performed based on the mathematical principle called “The
Law of Cosines” as shown in Eq. (1).

a2 = b2 + c2 − 2bc cosA (1)

We can see that the formula (1) is used to calculate the length of side a given that
the information of side b and c as well as angle A is known. For the case of our system,
we need to rearrange the equation to a different form since we are interested in finding
the angle A given that we have the values for side a, b and c. Rearranging the equation
above for our system’s will yield us the equation below in Eqs. (2–4).

2bc cosA = b2 + c2 − a2 (2)

cosA = b2 + c2 − a2

2bc
(3)
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A = cos−1
(
b2 + c2 − a2

2bc

)
(4)

Now that the equation to compute the angle has been determined, we just have to
pass the necessary arguments to the calculation module function.

To understand the approached used in the module, we will assume that we are
interested in the angle of the right elbow labelled “13” in Fig. 2. The adjacent connected
body parts of the right elbow are the right wrist labelled “15” and the right shoulder
labelled “11”. We can see visually that these 3 points make up a triangle which is why
this particular principle can be used to calculate the angle of joint-of-interest. Since the
joint-of-interest is the right elbow, we would need to find the distance between point
“15” of the right wrist and point “11” of the right shoulder and denote it as a for the
rearranged equation from The Law of Cosines.

The variable b of the equation will be taken from the distance between point “11” of
the right shoulder and point “13” of the right elbow. Consequently, the c of the equation
will be taken from the distance between point “13” of the right elbow and point “15”
of the right wrist. The value of b and c can be interchanged since it does not affect the
value of the angle. However, the value of a in the equation needs to be the value of the
distance between the two adjacent connected body parts since it is the joint-of-interest.
The distance between the two points can be calculated using the mathematical concept
of the Distance Formula as shown in Eq. 5.

d =
√
(x2 − x1)2 + (y2 − y1)2 (5)

Since we had acquired the x and y coordinates of each joint from the joint detection
module above, we can use these values to compute the distance between them. The
distance value computed will be stored in a separate variable to be used by the angle
calculationmodule above. For instance, wewould need to pass the x and y coordinates of
point “11” of the right shoulder and point “15” of the right wrist to the distance formula
to get the distance between them. Once all the necessary distance variables have been
calculated, we then pass the values to compute the angle of the joint-of-interest. For the
velocity calculation, we employ the formula as Eq. 6.

v = d

t
(6)

where, v = speed, d = distance travelled and t is time taken.
From the equation above, we can see that in order to determine the velocity of a

joint, we would need to determine the distance travelled in a given second. To do this,
we can apply the same equation for distance above. For instance, if we were to compute
the velocity of the right wrist labelled number “15” in a particular second, we would
need to know the distance that the joint has travelled in a second. Since we already know
the location of the particular joint in 0th second and 1st second, we can use the distance
formula to calculate the distance travelled by that particular joint in one second.However,
the distance computed is the distance in terms of pixel. Thus, we need a reference of
an object that we know the real-life length. The purpose of the real-life reference is for
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us to obtain a ratio between the pixel distance to the real-life distance. This is done by
measuring beforehand the real-life distance between the right shoulder and the right hip
of a participant. Once this length has been determined, we can set a variable of this
constant. The next step is to measure the pixel distance between the right shoulder and
the right hip of the participant which could be done by finding the distance between
these two points that we have obtained in the joint detection module earlier. These two
points will then be divided to obtain a ratio which will be used to multiply with the
pixel distance travelled by a joint to obtain the real-life distance value travelled by that
particular joint. This process is done on 4 different joints which are the left wrist, right
wrist, left ankle and the right ankle. These 4 joints are chosen for the velocity calculation
due to the nature that these joints are the joints identified to move at a higher speed and
are more prone to injury due to speed.

3.3 Output Processing

After the angles and velocities of the joints has been calculated, these values will then be
displayed on the respective image that was processed. Simultaneously, while the system
is processing the frames in a video until it reaches the end, the calculated angles and
velocities will be stored in an array. Once the frame processed reaches the end, this array
will then be stored using 2 arrays, the angles array and the velocity array as input.

Since the reliability of the method will be based on the “gold standard” of the
Inertial Measuring Unit (IMU), the calibration of the sensors are calibrated for offsets,
scale factors and alignment errors in x,y and z-axes which can be formalized as:

w
′ = CwSww

′ + bw (7)

a
′ = CaSaa

′ + ba (8)

where, w’, a’ are the true angular velocity and acceleration, bw, bc are the biases,
Cw,Ca are the rotation matrices representing the misalignment between the actual and
nominal sensitivity axes of the sensors, and Sw, Sa are the diagonal matrices containing
the scale factors of the three axes of each sensor [18]. The calibration needs manual
adjustment until the IMU sensors are aligned to the markers preset by the system. A
controlled movements are needed so offsets measurement can be done by aligning the
2D plots of the proposed method with the 3D plots of the IMU (without the Z-axis).

4 Results

Comparisons were made between the proposed method and Rokoko Smartsuit (using
IMU). Since Rokoko Smartsuit comes with real-time sensor reading of gyroscope and
accelerometer which is the basis of IMU components, the data generated by the Rokoko
smartsuit is used as the gold standard (Fig. 3).

The capture data are then compared frame-by-frame and evaluated based on its veloc-
ity, angles and x-y coordinates. The data that will be used for comparison is determined
to be compared by each second. This means that for each second that passes by from
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Fig. 3. The figure shows the comparisons between the proposed method and IMU where (a) is
the initial pose with both hands raised up. The lower left is showing the IMU representation. (b) is
the squatting position with both hands raised straight towards the camera. The camera is capturing
simultaneously with IMU to get accurate readings.

the input video, an average value of a particular joint will be computed in order to be
compared from the two sets of data. This is done because the output data that Rokoko
provides comes at 100 frames per second whereas our system takes the video recording
from a camera that is able to record only at 60 frames per second. To get an accurate
representation for the comparison, an average value within one second will be taken.
Table 2 shows the mean difference (%) between the data generated from the proposed
method.

Table 2. Mean differences (%) between the proposed method and IMU.

Joint Mean difference (%)

Right elbow 8.06

Left elbow 7.72

Right knee 10.99

Left knee 6.30

Right hip 0.19

Left hip 0.52

Right shoulder 23.67

Left shoulder 24.57

The table shown above exhibits the mean difference of approximately mean differ-
ence of 10% overall with the shoulder having the worst mean differences (Right: 23.67%
and Left: 24.57%). The differences at the shoulders exist when each shoulder and arm
are at the same angle which confuses the algorithm to estimate the joints’ location.
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5 Conclusion and Future Work

Based on the findings and interpretation of the results from the analysis performed on
the developed system, it is apparent that proposed method has meet the functional and
non-functional requirement that has been determined beforehand. The algorithms and
implementation used has been selected properly and accurately for marker-less motion
capture analysis.

In the future, improvements could be made to measure at two different perspectives
and videos to be processed simultaneously and could provide a better output data for a
more accurate representation for the angles and velocity calculations. Another improve-
ment that could be adopted is to auto clean wrong joint detection made due to noise of
the image or occlusion of one arm to the other side.
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