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Abstract. Visual inspection of electrical utility assets is crucial in
ensuring the continuous operation of a system or plant. With the advent
of digital imagery using mobile devices, it has become easy to collect a
vast amount of asset pictures from sites. To further enhance inspection
efficiency, we propose RetinaNet, a deep learning-based object detection
model that can be trained to automatically detect specific objects and
features from images of outdoor industrial structures. The model is capa-
ble of detecting features such as intrusions, tree or bushes in the vicinity
of the lattice towers. We also introduce a model training framework for
use with very small datasets which consists of rigorous data augmenta-
tion, image pre-sizing, focal loss function, progressive resizing, learning
rate finder, and the Ranger optimizer. Experiment results show that the
proposed model used in conjunction with the aforementioned training
framework results in the lowest validation loss and highest mean average
precision of 31.36

Keywords: Object detection · Deep learning · Convolutional neural
network · RetinaNet · Small dataset · Industrial inspection

1 Introduction

Monitoring the condition of electrical utility assets is essential for a stable elec-
tricity network. Mobile smart devices with built in cameras have enabled the
collection of a vast amount of on-site asset imagery. It is desired to create a
system that can extract meaningful information from these images to further
enhance the inspection efficiency in terms of accuracy and speed.

Recent advances in the area of deep learning has allowed computers to match
or even surpass the accuracy of human experts on visual inspection tasks [1,2].
Given the rapid development pace of deep learning, there are a plethora of deep
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learning-based object detector models that can be used depending on the nature
of the task and data the availability of labeled dataset. In most modern deep
learning object detectors, the models are usually composed of three components:
backbone, neck and head. These three components are stacked atop one another
to form the overall model. The backbone functions acts as a feature extractor,
whereas the head is trained to predict the bounding boxes and object classes.
Meanwhile the neck is an intermediate component that facilitates the head to
better process the features extracted from the backbone [3]. Advances in deep
learning object detectors are being made in all three components. To date, most
prominent works on the backbone structure are residual networks (ResNet) [4],
VGG16 [5], EfficientNet [6], SpineNet [7], CSPResNeXt50 and CSPDarknet53
[8]. Recent works on the neck includes feature pyramid network (FPN) [9], bi-
directional feature pyramid network (BiFPN) [10] and path aggregation network
(PAN) [11]. For the head, the two most common form is the one-stage and two-
stage detection heads, each with its own pros and cons. In each form there are
also anchor-based and anchor free approaches. One-stage detection heads are
known to be faster and less accurate compared to its counterpart. Notable works
include region proposal networks (RPN) [12], You Only Look Once (YOLO)
[13], Single-shot multibox detector (SSD) [14] and RetinaNet [15]. Anchor free
one-stage detectors include CornerNet CenterNet and Fully convolutional one-
stage (FCOS) object detectors [16]. Two-stage detection heads are known to be
more accurate at the expense of heavier computation. Anchor based versions
include Faster Region Based Convolutional Neural Networks (Faster-RCNN)
[17], Mask RCNN [18], and R-FCN [19]. An example anchor free version is Point
Set Representation (RepPoint) [20]. Figure 1 succinctly illustrates the related
works on components of a deep learning object detector.

In this study we propose a deep learning model training framework based on
RetinaNet to assist in the detection of activities or features in outdoor industrial
images. The main contributions of this paper are as follows:

i. We propose the RetinaNet model to detect specific activities or features in
outdoor industrial images.

ii. We introduce a model training framework that enables the proposed model
to be trained with a limited number of labeled images.

iii. We evaluate the performance of the proposed framework against several mod-
ern object detection models such as RetinaNet, Faster-RCNN and FCOS.

2 Proposed Framework

A new training framework is introduced to enable training of the RetinaNet
model using a small dataset. The framework consists of augmentation and pre-
sizing of the dataset images. The training optimization uses the focal loss func-
tion and progressive resizing. To select the learning rate, α hyperparameter, we
used the learning rate finder and Ranger optimizer.
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Fig. 1. Components of a modern deep learning object detectors and prominent archi-
tectures.

2.1 Dataset

In this work, we utilized proprietary images from the Malaysian national elec-
tricity utility. The images were sampled by employees as part of their routine to
perform periodic inspections on transmission towers. The raw images are man-
ually annotated and curated into three separate sets namely train, validation,
and test dataset. The number of samples forming each dataset are 66, 31, and
15 images respectively. Images were resized to a 512 × 512 pixels image reso-
lution. Figure 2 illustrates a few sample images from the train dataset. Due to
the limited number of images, a data augmentation pipeline was used to artifi-
cially increase the number of samples for training. The images from the training
dataset was subjected to the random combination of the following augmentation
techniques:

i. Rotation - Image is subjected to a random rotation of 15◦ clockwise or
counter-clockwise.

ii. Brightness - Image is subjected to a random change in brightness.
iii. Horizontal Flip - Image is subjected to a random chance of horizontal flip.
iv. Translation - Image is subjected to a random translation in the x and/or

y-axis.

To boost the performance of the proposed model, a technique known as pre-
sizing was used in the augmentation pipeline. Pre-sizing is a technique used
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in [21] whereby images were resized to a larger size than the original image
and augmented before feeding them into the model. This reduces the number of
lossy operations and computations so that they can be more efficiently processed
on the graphical processing unit (GPU). A more in-depth explanation on pre-
sizing is detailed in [22]. In this work, all images were presized to a resolution of
640 × 640 pixels.

Fig. 2. Sample images and ground truth bounding boxes from the training dataset,
augmented with (a) horizontal flip, (b) brightness increase, (c) rotation with reduced
brightness, (d) rotation, (e) translation, and (f) translation with brightness increase.

2.2 Model

The proposed model is the RetinaNet architecture, first introduced in [15] con-
sisting of a backbone, neck and head as shown in Fig. 3. The backbone uses
ResNet, an artificial neural network first introduced in [4] that has become a
standard backbone for many object detection models.

The proposed model utilizes feature pyramids as the neck which allows the
model to robustly detect objects at varying scales. The various types of feature
pyramids is illustrated in Fig. 4. In Fig. 4(a) is a feature pyramid mostly used
for hand-engineered features such as HOG and SIFT. Figure 4(b) is commonly
found in one-stage detectors such as YOLO. Figure 4(c) is commonly used in
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one-stage detectors such as the SSD. Figure 4(d) was proposed by [15] to be
used in RetinaNet and is also known as a feature pyramid network (FPN).

Additionally, the proposed model also includes the use of a specific loss func-
tion known as the Focal Loss (FL) instead of the conventionally used Cross-
Entropy (CE) loss. The FL is designed to alleviate the class imbalance problem
for one-stage object detectors and has shown to improve the effectiveness of the
model. FL and CE loss is given in Eqs. 1 and 2.

CE(p, y) = − log(pt) (1)

FL = −αt(1 − pt)γ log(pt) (2)

The term (1 − pt)γ in known as the modulating factor and is a key addition
to the original CE loss that improved the performance of RetinaNet over other
one-stage object detectors. αt is the weighting factor. The notation pt is defined
as

pt =

{
p if y = 1
1 − p otherwise

(3)

where y ∈ {±1} is the ground truth class, and p ∈ [0, 1] is the model’s estimated
probability of the class.

Fig. 3. Illustration of the model architecture [15]. (a) Backbone of the model, (b) Neck
of the model, (c) and (d) Head of the model.

2.3 Training

To train the proposed model, we utilized a technique known as progressive resiz-
ing, introduced in [21]. In this technique, an initial model was trained using a
small image size of 64 × 64 pixels as input. Next we used the trained weights as
a starting point and re-train the model again with a larger image resolution of
128 × 128 pixels. With each successive training the input resolution of the images
were increased until the desired resolution (512× 512 pixels). In this study the
image resolution was increased in the order: 64 × 64 > 128 × 128 > 256 × 256 >
384× 384 > 512× 512 pixels. The benefit of progressive resizing is that it allows
the model to be trained quickly, and also generalizes better by mitigating the
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Fig. 4. Different feature pyramid architectures [9].

overfitting tendency due to data scarcity [23]. For consistency, all models used
in this study utilized backbones pretrained on the ImageNet dataset.

Learning rate, is arguably one of the most important hyperparameter that
significantly influences model performance [24]. Instead of empirically choosing
the learning rate, the proposed model was trained using a learning rate finder
as a guide. The learning rate finder was first introduced in [25]. In combination
with the Ranger optimizer [26], this allowed the proposed model to be trained
quickly with less overfit on the training dataset. Figure 5 illustrates the learning
rate finder plot showing the optimal learning rate range of values. According to
[25] optimal learning rate values lie within the minimum and valley point in the
plot where the loss descents most rapidly. The proposed model was trained on
a learning rate, α = 2e − 4.

All models in this study were trained of a Ubuntu 20.04 LTS with Intel core
Intel Core i7-4790K CPU at 4.00GHz, 32GB RAM and a single Nvidia RTX3090
GPU. We utilized the open source PyTorch 1.8.0 [27], IceVision 0.8.0 [28] and
Fastai 2.4.1 [21].

3 Results and Discussions

3.1 Performance Metrics

In this section we present the performance of the proposed model against other
models (RetinaNet and Faster-RCNN) with different pretrained ResNet back-
bones. The RetinaNet and Faster-RCNN model is based on the implementation
from [15] and [17] respectively. The ResNet architecture is based on the imple-
mentation from [4]. The numbers following the model name indicate the num-
ber of layers in the ResNet model and the length of pretrained epoch on the
ImageNet dataset. For example, ResNet50 2x indicates a 50-layer deep residual
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Fig. 5. Learning rate finder algorithm estimates the optimal range of values that results
in the rapid decrease in loss function. Show in this figures are four suggested learning
rate values: minimum, steep, valley and slide.eps

network trained for 24 epochs (twice the normal training epoch of 12) on the
ImageNet dataset.

Table 1 shows cross-model comparison on mAP metric performance on the
train, validation and test dataset. We observe that for all models, the mAP on
the training dataset surpasses the mAP for the validation and test dataset signif-
icantly. The difference in performance could indicate overfitting on the training
dataset which is expected given the small amount of available training images.
The performance of all models on the validation dataset is close to the test
dataset indicating the validation data is representative of the test dataset. The
proposed model achieves a mAP of 31.36% on the test dataset, outperforming
others.

We observe that ResNet101 backbones tend to perform poorer than ResNet50
backbones. This is also consistent with a plausible overfitting of the training
data since ResNet101 twice the number of layers compared to ResNet50 and
hence contains significantly more parameters. As for the ResNet pretraining
duration, we observe no significant trend in performance on the test dataset.
The proposed model outperformed all other models in the mAP metric for the
test dataset. Despite similar model architecture, the performance of the proposed
model is slightly better compared to RetinaNet-ResNet50 2x on the test dataset.
We attribute the performance increase to the training method of the proposed
model.

The proposed model was trained with a more recent Ranger optimizer in
combination with pre-sizing and progressive resizing while all other models were
trained on the Adam optimizer with no pre-sizing and progressive resizing. The
combination of Ranger optimizer, pre-sizing and progressive resizing seems to
slightly mitigate the overfitting issue encountered across all models. This can
also be observed in the validation loss graph of the proposed model as show in
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Fig. 6(a). Compared to all other models, the validation loss of the proposed model
dived below all the others approximately halfway through training. Note also
that the validation loss of all models tend to increase with prolonged duration
of training. This shows that increasing training duration contributes to more
overfitting. However, the validation loss curve of the proposed model is not only
lower than the others, but it does not progress in an upward trend resulting in
better performance as shown in Fig. 6(b). For all other models, the validation
mAP generally stops improving about halfway through training. However, for
the proposed model the validation mAP continue to increase until the end of the
training.

Table 1. Mean average precision performance metric on the train, validation and test
dataset across all models and backbones.

Model Type Backbone mAP (%)

Train Valid. Test

RetinaNet(Proposed) ResNet50 2x 52.75 30.01 31.36

RetinaNet ResNet50 1x 49.63 31.01 29.82

RetinaNet ResNet50 2x 56.30 29.10 30.27

RetinaNet ResNet101 1x 53.12 31.24 27.39

RetinaNet ResNet101 2x 54.27 27.80 28.11

Faster RCNN ResNet50 1x 48.35 27.42 30.74

Faster RCNN ResNet50 2x 48.71 27.45 30.37

Faster RCNN ResNet101 1x 44.82 24.10 24.81

Faster RCNN ResNet101 2x 47.56 24.85 27.11

FCOS ResNet50 1x 47.22 22.82 23.16

FCOS ResNet101 1x 54.65 24.55 24.08

3.2 Inference

We ran the images from the test dataset to visualize the inference bounding boxes
in comparison to the ground truth boxes. In Fig. 8, the inference output on a
portion of the test dataset images. The top row shows the ground truth images
and bounding boxes, while the bottom row shows the inference output from the
proposed model. Observe that in Fig. 8(a) and (d) interestingly, the model was
able to correctly detect objects that were not labeled in the ground truth image.
For example, Fig. 8(d), the model detects “tree” and “intrusion” near the bottom
left corner which were absent in the ground truth image. Comparing Fig. 8(b) and
(e), the ground truth image was incompletely labeled where the labels for tree
and tower were mistakenly left out. However, the bounding boxes on the output
image clearly shows that the model was able to detect objects that were not
labeled as ground truth. This shows that the model has sufficiently learned good
representations of the objects from the training dataset. Comparing to Fig. 8(c)
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(a) (b)

Fig. 6. Validation loss and mean average precision of all models on the validation set
during training.

(a) Evaluation on the training dataset. (b) Evaluation on the test dataset.

Fig. 7. Confusion matrix plot of the proposed model on the train and test dataset.

and (f), the model mistakenly detected the fencing around the transmission
tower as an intrusion with low confidence level but correctly identified a patch
of bushes not labeled in the ground truth. Figure 7 shows the confusion matrix
on the training and test dataset. In both datasets “intrusion” and “tower” were
the most frequently mis-detected classes.
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Fig. 8. Ground truth with manual annotations (top row) and automatic inference
bounding boxes performed by the proposed model (bottom row).

4 Conclusion

In this study we proposed the use of a RetinaNet deep learning-based object
detection model for automatic detection of activities and features in outdoor
industrial images. We also introduced a model training framework for use with
very small datasets. This new model training framework was benchmarked with
various deep learning based object detectors using the available dataset. The
comparison showed that the introduced training framework resulted in a lower
validation loss and a higher mAP metric, even with scarce data availability. Our
model achieves the highest mAP of 31.36% on the test dataset, outperforming
others.
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