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Abstract. Carbonmonoxide (CO) is one of the dangerous air pollutants due to its
negative impact on human health. Therefore, accurate forecasting of CO concen-
tration is essential to control air pollution. This study aims to forecast the concen-
tration of CO using sequences to sequence models namely convolutional neural
network and long short-term memory (CNN-LSTM) and sequence to sequence
LSTM (seq2seq LSTM). The proposed forecasting models are validated using
hourly air quality datasets from six monitoring stations in Selangor to forecast
CO concentration at 1 h to 6 h ahead of the time horizon. The performances
of proposed models are evaluated in terms of statistical equations namely root
mean square error (RMSE), mean square error (MAE) and mean percentage error
(MAPE). CNN-LSTM and seq2seq LSTM model excellently forecast air pollu-
tant concentration for 6 h ahead with RMSE of 0.2899 and 0.2215, respectively.
Additionally, it is found that seq2seq LSTM has slightly improved CNN-LSTM
indicates the effectiveness of the architecture in the forecasting.However, both pro-
posed architectures illustrate promising results and are reliable in the forecasting
of CO concentration.

Keywords: Air quality · Forecasting · Long short-term memory · Deep
learning · Artificial intelligence

1 Introduction

In recent years, air pollution has become a vital issue in most developing countries and
gained worldwide attention due to its negative effects on health, economic and envi-
ronmental sustainability [1, 2]. Rapid development in industrialization, infrastructure,
and urbanization has caused serious air quality deterioration, especially in urban areas
[3]. One of the most dangerous air pollutants namely carbon monoxide (CO) can cause
negative impacts on human health such as respiratory infections, lung cancer, and heart
diseases that may lead to mortality [4]. CO is a colourless, tasteless and odourless gas
that is commonly emitted from the combustion of fossil fuel and coal [5]. Concentration
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levels of CO are generally higher in urban areas as compared to the rural areas where
the industrial, commercial and busy traffic particularly focus on the area [6]. Therefore,
reliable forecasting of air pollutant concentration is essential and beneficial to provide
accurate information on the air quality in the affected area and support environmental
management [4].

Forecasting of time series air pollutants based on intelligent modelling strategies
has been proven in illustrating higher accuracy as compared to statistical modelling
such as Auto Regressive Integrated Moving Average (ARIMA) [7]. Deep learning is a
subset of machine learning based on the neural network that also has been successfully
implemented to solve problems in speech recognition and image classification [8]. On
the other hand, deep learning strategies such as convolutional neural network (CNN) and
recurrent neural network (RNN) has gained popularity in numerous studies of air quality
forecasting due to their advantages over traditional machine learning models such as
artificial neural network (ANN) and support vector machine (SVM) [3, 4, 9]. However,
RNN is known to have a drawback during the learning process called the vanishing
gradient problem [10]. Considering the limitation in RNN, an improved method namely
long short-termmemory (LSTM) that used memory block for recurrent learning process
is introduced and have been widely applied in air quality forecasting [11, 12].

Besides that, hybrid architectures of multiple deep learning methods such as CNN-
LSTM [13, 14] and sequence to sequence (seq2seq) model [15, 16] are able to improve
the individual models in air quality forecasting. For instance, Wang et al. [17] devel-
oped a hybrid seq2seq model based on Bidirectional LSTM and gated recurrent unit
(GRU) and Jia et al. [18] used stacked GRU layer to forecast hourly ozone concentra-
tion. Besides that, Sharma et al. [19] and Du et al. [20] developed hybrid CNN-LSTM in
the forecasting of particulate matter. From the literature study, it is found that proposed
hybrid architectures outperform individual deep learning models and yield the highest
forecasting accuracy. However, the studies do not compare the forecasting performance
between CNN-LSTM and seq2seq LSTMhybrid architectures. The comparison analysis
between different hybrid models may provide new insight into the effectiveness and effi-
ciency of hybrid architectures in air quality forecasting. Although sequence to sequence
deep learning models have been previously developed for air quality forecasting, the
model’s evaluation in multistep forecasting of CO concentration is still limited.

The objective of this study is to establish two multistep hybrid deep learning models
namely CNN-LSTM and seq2seq LSTM in hourly forecasting of CO concentration in
Selangor, Malaysia. It involves hourly air quality datasets at six air quality monitoring
stations for 1 to 6 h ahead forecasting of CO concentration, development and comparison
of the proposed deep learning architectures. The comparison study was conducted in
order to highlight the performances of different architectures and evaluate the impact of
each architecture network on forecasting accuracy. The performances of the forecasting
models were evaluated based on statistical evaluation such as root mean square error
(RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE).
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2 Data and Methods

2.1 Study Area and Data

Study Area and Data Collection. Hourly historical air quality data consist of six air
pollutants namely PM2.5, PM10, SO2, NO2, O3 and CO were obtained from the Depart-
ment of Environment Malaysia from 1 January 2019 to 31 December 2019. The datasets
were collected at six air quality monitoring stations in Selangor. Figure 1 shows the
location of monitoring stations considered in this study. The hourly dataset contains
8760 records for each station. The mean hourly air pollutants concentration for the six
monitoring stations are calculated and summarized in Table 1.

Fig. 1. Location of air quality monitoring stations

Table 1. Statistics of the parameters for Selangor

Variable PM2.5 (μg/m
3) PM10 (μg/m3) SO2 (ppm) NO2 (ppm) O3 (ppm) CO

(ppm)

Minimum 229.715 206.199 0.014 0.048 0.075 3.902

Maximum 7.533 3.792 0.000 0.002 0.000 0.282

Mean 41.170 31.489 0.001 0.017 0.016 0.983

Standard
deviation

24.886 22.304 0.001 0.006 0.015 0.375

Total
number

8760 8760 8760 8760 8760 8760
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Data Preprocessing. The datasets collected contains missing values that may be due
to instrumental error, invalid values and regular maintenance. In this study, mean value
of the particular attribute is used to substitute the missing data. Then, mean hourly air
pollutants of multiple monitoring stations were computed to represent the air quality
for Selangor. The dataset was split into two sets namely training and testing. Training
set is set for 80% of total records, while testing set was set to 20%. The dataset values
were normalized in the range of [0, 1] to avoid the negative impacts on model’s learning
process due to nonuniform value ranges. The equation for data normalization is defined
in Eq. 1.

z = x − min(x)

max(x) − min(x)
(1)

where x is the actual value and z is the normalized value.

2.2 Long Short-Term Memory

LSTM is an updated version of RNN that is capable to learn long-term dependencies and
solve vanishing gradient problems in RNN by performing self-loop memory blocks [4].
An LSTM unit consists of a memory block that includes three different gates namely
forget gate, input gate and output gate as illustrated in Fig. 2. All three gates having
functions of writing information from the input, forget the information, and determining
the final outputs. The gate unit aims to control the information flow from one LSTM
unit to another and allow the network to learn over many times steps [9].

Fig. 2. LSTM unit architecture

LSTM takes current information xt , previous output from hidden layer ht-1 and
previous cell state, Ct-1 as input. However, gate structures help LSTM to learn the long-
term dependencies in sequential series and allow the information to pass through LSTM
network. Therefore, LSTM is an effective model for learning sequential data. The forget
gate, input gate, output gate and memory cell in the structure can be defined based on
the following equations:

ft = σ
(
Wf xt + Uf ht−1 + bf

)
(2)

it = σ(Wixt + Uiht−1 + bi) (3)
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ot = σ(Woxt + Uoht−1 + bo) (4)

C̃t = ReLU (WCxt + UCht−1 + bC) (5)

whereUf ,Ui,Uo andUC are the weight matrices connecting the preceding output to the
gate units and memory cell. bf , bi, bo and bC are the bias vectors.Wf ,Wi, Wo andWC

are the weight matrices mapping the hidden layer input to the gate units and a memory
cell. σ denotes sigmoid function as defined in Eq. 6 and ReLU activation function is
defined in Eq. 7. Then, the cell output and the layer output can be implemented using
Eq. 8 and Eq. 9, respectively.

σ(x) = 1

1 + e−x
(6)

R(z) = max(0, z) (7)

Ct = ft ◦ Ct−1 + it ◦ ReLU (UCht−1 + WCxt + bC) (8)

ht = ot ◦ ReLU (Ct) (9)

2.3 Convolutional Neural Network

CNN is a biologically inspired network that has been successfully implemented in image
recognition, object detection and text processing [21]. CNN is also able to work on
multiple arrays of data where 1D is for signals and sequences data as well as text, 2D
is for images and 3D is for images taken across time and videos [22]. General CNN
network architecture consists of different layers namely convolutional, max pooling,
dropout and fully connected layer as illustrated in Fig. 3. In CNN, a convolutional layer
is important to extract the features of input variables using the convolutional kernel [8].
The pooling layer is introduced after the convolutional layer to speed up the filtering
and reduce the number of operations. Pooling layers simplifies and downsamples the
output received from convolutional layers to avoid overfitting [10]. After convolutional
and pooling layers, the output was flattened into 1D array for successive forecasting.

Fig. 3. CNN architecture
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Considering the ability of 1D CNN in solving time series data, the application has
gained worldwide attention in various fields. The equations for 1D CNN are as follows
[20]:

clj =
∑

i
xl−1
i ∗ ωl

ij + blj (10)

xlj = ReLU
(
clj

)
(11)

xlj = Flatten
(
xlj

)
(12)

xl+1
k = FC(ωl+1

kj xlj + bl+1
k (13)

The convolutional layer learning process is modelled based on Eq. 10 and Eq. 11,
where ∗ denotes a convolution operator, ωl

ij is filter, b
l
j is bias and l is the involved layer.

ReLU activation function was used within the layer. xl−1
i and clj represent input and

output vector to a convolution layer.

2.4 Experimental Design

This study aims to evaluate the performances of two hybrid LSTM based models for CO
concentration forecasting at 1 to 6 h ahead of time horizon incorporating historical air
quality datasets at six air qualitymonitoring stations. Besides that, a comparative analysis
was conducted in order to highlight the effectiveness of different hybrid architectures in
forecasting 1 to 6 h ahead of CO concentration in terms of error assessments.

Seq2Seq LSTM model consists of two LSTM layers with 128 units and 64 units,
respectively for both encoder and decoder processing layers. A manual search is per-
formed to find the optimum hyperparameters of the models. The activation function
used in the network is rectified linear unit (ReLU) which has the advantage of reducing
the vanishing gradient and has better convergence performance. Besides that, adaptive
moment estimation (ADAM) is used as an optimizer within the network where the opti-
mizer can successfully work in online and stationary settings. The exponential decay rate
for first moment estimates and second-moment estimates are 0.9 and 0.999, respectively.
The learning rate is set to 0.001. Then, the forecasting models are fitted with a batch size
of 128 and mean square error (MSE) is used as the loss function. Early stopping criteria
is implemented for learning epoch in the model. The description of hyperparameters
used in this study is summarized in Table 2.

CNN-LSTM model consists of a 1D convolution layer with a filter number of 32
and kernel size of 3. The hyperparameters of LSTM in CNN-LSTM architecture is set
equal to the seq2seq LSTMmodel. The architecture of seq2seq LSTM and CNN-LSTM
model proposed in this study are illustrated in Fig. 4 and Fig. 5, respectively.
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Table 2. Hyperparameters of proposed models

Model Hyperparameters

Seq2seq LSTM Encoder and decoder: LSTM layer = 2, num. of nodes = {128, 64},
activation function = ReLU, learning rate = 0.001, optimizer = Adam,
dropout = 0.1, batch size = 32, epoch = early stopping

CNN-LSTM CNN: 1D convolutional layer, kernel size = 3, num. of filter = 32,
activation function = ReLU
LSTM: num. of layer = 2, num. of nodes = {128,64}, dropout = 0.1
Optimizer = Adam, learning rate = 0.001, batch size = 32, epoch = early
stopping

Fig. 4. Sequence to sequence LSTM architecture

Fig. 5. CNN-LSTM architecture

2.5 Performance Evaluation

Proposed forecastingmodelswere evaluated using statistical equations namely rootmean
square error (RMSE), mean absolute error (MAE) and mean absolute percentage error
(MAPE). The RMSE represent the difference between the observed and forecasted value
at a different time interval. The MAE shows the absolute difference between observed
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and forecasted values on overall data points. The MAPE presents the average absolute
error of forecasts in terms of percentages that measure the model’s forecasting accuracy.
The smaller value of RMSE, MAE andMAPE indicate better forecasting performances.

The equations of performances criteria are defined as follows:

RMSE =
√
1

n

∑n

i=1

(
yi − y

∧

i

)2 (14)

MAE = 1

n

∑n

i=1

∣∣yi − y
∧

i

∣∣ (15)

MAPE = 1

n

∑n

i=1

∣∣
∣∣
yi − y

∧

i

yi

∣∣
∣∣ × 100 (16)

where n is the number of data points; yi and y
∧

i are the observed and forecasted values,
respectively.

3 Results and Discussion

The performances of CNN-LSTM and seq2seq LSTM model in the forecasting CO
concentration at 1 h to 6 h ahead in terms of RMSE, MAE and MAPE are demonstrated
in Fig. 6, Fig. 7 and Fig. 8, respectively. From the graphs, the error values gradually
increase as the forecasting time horizon increase. It can be perceived that both forecasting
models show the same trend of evaluation scores which indicate forecasting accuracy
is lower for a larger forecasting time horizon [3]. Therefore, it is important to decide
on the high and low resolution for optimum forecasting accuracy and reduce bias in the
dataset.

The forecasting performances of proposed architectures were compared to high-
light their effectiveness and impact in air quality forecasting. Both forecasting models
were developed to extract input data features using the first processing layer and forecast
future CO concentration using the second processing layer. In this case, encoder-decoder
frameworks were proposed with different architectural designs. Seq2seq LSTM archi-
tecture yields RMSE of 0.1623, 0.1823, 0.1980, 0.2082, 0.2153 and 0.2215 for 1 h to
6 h ahead forecasting, respectively which are lower as compared to CNN-LSTMmodel.
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Fig. 6. RMSE of proposed models
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Fig. 7. MAE of proposed models
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Fig. 8. MAPE of proposed models

Similar to MAE and MAPE, the error values of seg2seq LSTM are lower than CNN-
LSTM. Therefore, seq2seq LSTM model outperforms CNN-LSTM in terms of RMSE,
MAE and MAPE at multi-hour step ahead forecasting.

Seq2seq LSTM reduces the RMSE, MAE and MAPE of CNN-LSTM by 23.6%,
24.2%and 28.0%, respectively at 6 h ahead forecasting. Table 3 summarizes the error val-
ues of both proposed forecasting architectures. Higher performances of seq2seq LSTM
indicates the architecture successfully extracted important features and captured tem-
poral distribution in time series air quality dataset to successfully forecast multi-hour
ahead of CO concentration [15]. Therefore, the architectural design of a forecasting
model affects the performances in terms of the learning process and future forecasting.
However, the architecture depicts slight improvements from CNN-LSTM illustrates that
CNN-LSTM may still be consistent in multi-hour CO concentration forecasting.

Overall, both CNN-LSTM and seq2seq LSTM models yield promising forecasting
performances where the models are able to forecast CO concentration near the observed
values. It is indicated that proposed hybridmodels have the ability to extract the important
features in multiple input variables and successfully forecast future CO concentration.
The comparison of observed and forecasted CO concentration at 6 h ahead forecasting
is presented in Fig. 9. It can be concluded that both forecasting models are reliable to
forecast multistep ahead of air pollutant concentration. Different designs of architec-
tural networks and hyperparameter combinations can be further explored to enhance
forecasting performances.
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Table 3. RMSE, MAE and MAPE of proposed architectures at 6 h forecasting

Model RMSE MAE MAPE

CNN-LSTM 0.2899 0.2195 24.51%

Seq2Seq LSTM 0.2215 0.1663 17.66%
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Fig. 9. Forecasted value and observed value of CO concentration

4 Conclusion

In this study, two hybrid architectures based on LSTMwere proposed to forecast hourly
CO concentration using air quality datasets from multiple monitoring stations in Selan-
gor. CNN-LSTM consists of a 1D convolutional layer and two layers of LSTM. Mean-
while, seq2seqLSTMcontains twoLSTM layers in both decoder and decoder processing
layers. Both models are designed to extract the features in multiple input variables using
the first processing layer and forecast future CO concentration using the second process-
ing layer. Seq2seq LSTM model illustrates slightly higher forecasting performances as
compared to CNN-LSTM at 1 h to 6 h ahead of forecasting. However, both hybrid
architectures depict superior forecasting performance and yield forecasted CO concen-
tration near the observed values. Overall, the design of optimum hybrid architecture
may depend on variational input parameters and forecasting requirements. There are
many ways in which the study can be extended. First, considering other parameters such
as weather and traffic data may enhance the forecasting performances which is exclu-
sively considered in this study due to data source limitation. Second, the study can be
extended by including spatiotemporal analysis among multiple air quality monitoring
stations. Lastly, the hybrid architectures of deep learning approaches can be extended
using more sophisticated methods such as bidirectional LSTM to handle larger datasets
and optimization techniques to find optimum deep learning hyperparameters.
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