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Abstract. Diabetes Mellitus (DM) patients with acute respiratory failure in the
IntensiveCareUnit (ICU) are susceptible to hyperglycaemiawith adverse outcome
ofmortality.Clinically, Partial Pressure ofOxygenover aFraction of InspiredOxy-
gen (P/F) scores is use as an indicator for acute respiratory failure and studies have
shown that Insulin Sensitivity (SI ) can be used as the glycaemic control biomarker
for DM patients. Since the elevation of blood glucose in ICU patients is linked to
the progression of the acute respiratory system, this preliminary study initiates the
combination of SI , P/F, and DM status as the main predictors for machine learn-
ingclassification.This assessmentwasdone to identifywhichclassificationmodels
andpredictors between insulin sensitivity (SI ), (P/F) scores, anddiabetic statuswill
give higher accuracy onBloodGlucose (BG) performancewith 7 types of classifier
models. In total, 5684 total inputs from 3 predictors extracted from76 ICUpatients
were split into 80:20 ratio for training and test sets with five-fold cross-validations.
BG performances using three predictors from training vs. test data show that the k-
NearestNeighborandNeuralNetworkclassifiersshowedthat thehighestaccuracies
achieved were 54.1% and 54.5%, respectively. The sensitivity and specificity eval-
uated for both model’s robustness demonstrated the possibility of using k-Nearest
Neighbor andNeural Network for future BGperformance prediction. Based on the
model’s robustness increment result, 8% vs. 12% and 10% vs. 4% shows a possi-
bility that SI , P/F scores, and DM can be utilized together as an input to classify
glycemic level using both classifier models with a larger dataset from respiratory
failures patients.

Keywords: Classification models · Machine learning · Diabetes mellitus ·
Insulin Sensitivity · Respiratory score · Blood glucose performance

1 Introduction

Critical care patients with or without history of diabetes are commonly linked to hyper-
glycemia (Blood Glucose (BG) > 11.1 mmol/L) [1, 2] during their stay at the Intensive
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Care Unit (ICU). This condition may occur when the cortisol and counterregulatory hor-
mones increased with insulin resistance [3]. These patients, especially the diabetics, are
additionally vulnerable tomultiple organ failures, sepsis, or infection, andworst, a higher
rate of mortality and morbidity [4]. The pandemic of Coronavirus Disease (COVID-19)
cases raised concerns as 42.5% of critically ill patient’s mortality had Diabetes Mellitus
(DM) [5]. Lim et al. [5] showed that 9.8% of COVID-19 patients have a comorbidity of
DM and from the study, 1.2%mortality rate was reported. To date, From The Desk of the
DirectorGeneral ofHealthMalaysia report as of 27 July 2021, 1,044,071Malaysian have
been detected positive with COVID-19 and the numbers of mortality are 8,201 (0.78%)
in cumulative [6]. This report [7] illustrated that out of 125 mortality cases, 52% had
DM. Moreover, COVID-19 also had similar symptoms as a Severe Acute Respiratory
Syndrome (SARS) [8]. Additionally, according to the Malaysian Registry of Intensive
Care quarterly report, 35.8% of the ICU admitted patients suffer from multiple organ
failures in the first 24 h of admission. Respiratory failures represented one-third of the
single organ failure by patient, with 21.9%. In the first 24 h of admissions, 15.7% patients
were reported to have Acute Respiratory Distress Syndrome (ARDS) [9]. Few studies
have also demonstrated that respiratory failures are relatively high in acute patients
with diabetes [10–12]. From these studies, an interrelationship and correlation were
observed between respiratory failure and diabetes. Logette et al., [13] showed evidence
that linked elevated BG to COVID-19 patients. When the glycemic level of diabetic
patients is uncontrolled, these patients are susceptible to various adverse outcomes such
asmultiple organ failures. Thus, if the early prediction of BG level in critically ill diabetic
patients can be known using daily medical data available from the ICU charts to ease
glycaemic control, the occurrence of respiratory failure might be improved in critically
ill patients.

Respiratory failure can be assessed with P/F scores of oxygenation index based on
the Partial Pressure of Oxygen (PaO2) and Fraction of Inspired Oxygen (FiO2) [14]. One
of the standard procedures in diagnosing diabetes is to measure insulin resistance and
through euglycaemic clamp [15], but this method can be time-consuming for ICU use
[16]. Therefore, Insulin Sensitivity (SI ) estimation is used to replace insulin resistance
for glycemic control as SI reflects the inversed parameter of insulin resistance.Moreover,
SI has been suggested as biomarker in several various glycemic control studies [17–19].
In achieving the targeted BG performances, SI was used in stochastic targeted studies
[20–23] for glycaemic control, predicting the BG within 5 to 95%. Since SI has been
used for glycaemic control, we hypothesized that it can predict the BG performance by
exploiting medical data available in the ICU charts. Additionally, P/F scores can give an
early prediction for glycaemic control by stratifying the BG in time of the target bands
using classification technique.

A study [24] has shown that there might be an association between insulin resistance
and lung dysfunction. Therefore, there is a need to examine if respiratory P/F score and
SI information can be used together as strong factors in predicting ICU glycemic control,
especially for diabetic patients. Thus, this paper’s objective is to assess classification of
ICU patients’ BG performance by classifying three different BG bands using P/F score,
SI , and diabetes mellitus (DM) status as predictors. In order to identify which model has
the best performance accuracy, seven different classifiers are compared:DecisionTree, k-
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Nearest Neighbor (kNN), Support Vector Machine (SVM), Naïve Bayes, Discriminant,
Ensemble andNeuralNetworkmodel. This preliminary studywas done to identifywhich
classifier models are more feasible towards glycaemic level prediction if P/F scores and
DM status are included in model-based glycaemic control.

2 Materials and Method

2.1 Study Population

Retrospective patients’ data for the case study in totalwere 76 (47DMand 29NDM)with
10704 h of length of stay and collected fromUniversityMalayaMedicalCentre (UMMC)
in 2018. These patients’ dataset has examined the following factors: P/F score (in k/Pa),
SI (continuous in L/mU.min), diabetes mellitus (DM) status (binary, with 1 for DM and
0 for Non-DM), and the BG performance (three discrete classes). Instead of using a daily
worst representative P/F score as usually done for Sequential Organ Failure Assessment
(SOFA) score to decide on respiratory failure, P/F scores were extracted directly from
the clinical chart whenever they were available. FiO2 data were assumed similar to the
previous value whenever the value of PO2 and BG are available. On average, patients
have three recorded P/F scores daily. Using BG measurements, provided nutrition and
insulin, hourly SI (L/mU.min) were fitted first with Intensive Care Insulin Nutrition
Glucose (ICING) model [25] through integral fitting process method [26]. Instead of
using a constant value to represent individual insulin resistance, SI was estimated from
the fitting process method to represent the patient’s hourly varying metabolism.

Patients demographics are shown in Table 1. Patients’ age and Acute Physiology and
Chronic Health Evaluation (APACHE II) scores, SI and P/F scores are presented in the
average and standard deviation (±SD). Rank sum p-value test was used to determine the
differences in age demographics (years old), the total of ICU stay (hours) distribution,
SI and P/F score. A P-value less than 0.05 is considered significantly different. The
distribution of age and the total hours of ICU stay show no significant difference. Patients
with diabetes status were presented by 11 and 7 female patients in the training and test
datasets, respectively. In total, 1902 rows of input variables were divided randomly into
training and testing data, with a ratio of 80:20. Three of the attribute variables, that is,
SI , DM, and P/F scores, were used as the predictors also known as features, and BG
performance with three different classes was selected as the desired output to represent
BG in time of the target bands. The data were divided into two partitions, where 4269
data points (1423 rows × 3 input variables) of the data were used for training and 1437
(479 rows × 3 input variables) for testing. Five-fold k cross-validation was used in
training data to validate the accuracy of the model during the learning process.

2.2 Classification Learners

The seven classifiers model used in the study were supervised machine learning tech-
niques [27]. The seven classifiers model used in training the dataset were Decision Tree
(Model 1), Discriminant (Model 2), Naïve Bayes (Model 3), Support Vector Machine
(Model 4), k-Nearest Neighbor (Model 5), Ensemble (Model 6) and lastly Neural Net-
work (Model 7). Classification is often being used as the prediction formedical diagnosis
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Table 1. Patients demographic for train and test data.

Demographics Total Train data Test data P-value

Number of patients (%) 76 (100%) 61 (80.2%) 15 (19.8%) –

Total ICU stay (hours) 10704 8016 2688 Not significant

Mean (±SD) of age (years old) 59 (±14) 58 (±15) 61 (±9.7) Not significant

Gender (%)
• Male
• Female

56 (73.7%)
20 (26.3%)

47 (77%)
14 (23%)

9 (60%)
6 (40%)

–

Ethnicity
• Malay
• Chinese
• Indian
• Foreigner

26 (34.2%)
30 (39.4%)
19 (25%)
1 (1.4%)

22 (35.4%)
24 (39.3%)
14 (22.9%)
1 (2.4%)

4 (26.7%)
6 (40%)
5 (33.3%)
–

–

Diabetes status (%) 47 (61.8%) 38 (62.2%) 9 (40%) –

Respiratory failures (%) 16 (21%) 15 (24.5%) 1 (6.6%) –

Mean (±SD) of APACHE II Scores 18 (±7) 17 (±7) 20 (±7) 0.293

Mean (±SD) of PaO2/FiO2 Scores 299 (±130) 299 (±132) 300 (±132) 0.8879

Mean (±SD) of SI 3.9e−4

(±5.7e−4)
3.6e−4

(±4.7e−4)
4.9e−4

(±8.4e−4)
0.8879

Number of data input (rows) 5684 (1902) 4247 (1423) 1437 (479) –

[28], and showed efficiency in using small data for decision-making, [29]. Haque et al.
showed an observation between 8 different machine learning algorithm performance for
diabetes neuropathy diagnosis and Random Forest had outperformed among all those
classifiers techniques [30]. Meanwhile, Singh et al. [28] showed that out of 8 classifiers
used, the SVM classifier had the best accuracy to detect the relationship between dia-
betes and hypertension. From the previous studies, there are various types of classifiers
that had classified patients with diabetes status. However, our focus of classification in
this study is to observe BG performance with 7 types of classifiers using SI , P/F, and
DM as input predictors within diabetic ICU patients. P/F was included as one of the
features to represent the respiratory score of the patients with 7 types of classifiers. BG
performances as the desired output were classified into three BG level target ranges:

• Class 1: BG ≤ 7.7 mmol/L
• Class 2: BG = 7.8 to 11.1 mmol/L
• Class 3: BG ≥ 11.2 mmol/L

Figure 1 shows the framework for the usage of difference classifiers usingMATLAB
version 2021a.

Model accuracy results was demonstrated in Eq. 1. The confusionmatrix represented
will be used to illustrate the model with the highest performance. From the confusion
matrix, the cohort train and test data results of True Positive (TP), True Negative (TN),
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Fig. 1. Framework for classification learner

False Positive (FP), and False Negative (FN) were classified. To further test the classifier
model robustness, sensitivity and specificity are calculated as represented in Eqs. 2 and
3, respectively. The nearer the value of sensitivity to 1, the more robust the classifier.

Accuracy = TP + TN

TP + TN + FP + FN
× 100% (1)

Sensitivity = TP

TP + FN
× 100% (2)

Specificity = TN

TN + FP
× 100% (3)

3 Results and Discussion

The accuracies of seven classifiers based on the 3 input predictors for train data are
shown in Table 2. The test data accuracy was examined only with the three predictors
as it is important to find out how all the three predictors especially P/F can influence
the BG performance for critically ill DM patients. We hypothesized that P/F score, DM,
and SI could be used in classifying BG performances. When the three predictors of
SI -P/F-DM were used, the training Model 3, 4 and 7 showed the highest accuracy with
results of 55.4%, 53.5% and 54.1% respectively. Meanwhile, when only two predictors
of SI -P/F were used, the training model results of 3 and 7 accuracies were observed and
had decreased by 1.4%, and 0.6% respectively. The result for SI -DM predictors shows
that Models 5 and 7 had increased accuracy from 53.0% to 55% and 54.1% to 55.3%
respectively.

At first, amongst all classifiers, the Kernel Naive Bayes (Model 3), Fine Gaussian
SVM (Model 4), and Narrow Neural Network (Model 7) classifiers give the highest
performances compared to other model functions during the training. However, after the
trained classifierswere tested, the accuracy shows thatModels 2, 5 and7hadbetter results
using three predictors with 53.2%, 54.1%, and 54.5%, respectively. Despite having low
prediction performance result during training, using all the three predictors indicate that
P/F is feasible to be included in giving early prediction BG performance for patients
with DM.

Figure 2 shows the tabulation of sensitivity and specificity of BG performance results
for both data in k-NearestNeighbour (Model 5) andNeuralNetwork (Model 7) classifiers
to compare model robustness with three predictors. These two classifiers were presented
and further tested for model robustness as the results were the top two highest. For both
training and test data, Model 5 had sensitivity of 0.62 and 0.54, respectively. Meanwhile,
specificity for Model 5 shows 0.66 and 0.76 based on the test set, respectively. Then,
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Table 2. Models accuracies.

Model Train (Accuracy %) Test (Accuracy %)

SI-P/F-DM SI-P/F SI-DM P/F-DM

Model 1 52.4 52.1 54.1 50.7 51.5

Model 2 52.8 51.5 51.6 51.2 53.2

Model 3 55.4 54.0 54.8 51.2 52.6

Model 4 53.5 53.5 54.8 50.5 49.6

Model 5 53.0 51.1 55.0 50.8 54.1

Model 6 52.9 53.0 54.6 51.4 52.8

Model 7 54.1 53.5 55.3 50.9 54.5

Mean (±SD) 53.4 (±0.9) 52.6 (±1.0) 54.3 (±1.1) 50.9 (±0.2) 52.6 (±1.5)

Model 7 shows the sensitivity of 0.65 and 0.53 for train and test data. The specificity for
Model 7 of train and test data are 0.63 and 0.67, respectively. Model 5 has better ability
to stratify BG performance while Model 7 is more sensitive and robust classifying the
predictor.

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sensi�vity (Train) Sensi�vity (Test) Specificity (Train) Specificity (Test)

Sensi�vity and Specificity Test

Model 5 Model 7

Fig. 2. Sensitivity and specificity for training and test data of k-Nearest Neighbour (Model 5) and
Neural Network (Model 7).

Figure 3 shows that BG bands in Class 1,2 and 3 positively predicted in training data
for Model 5 are 24, 680 and 50 respectively. Meanwhile, in test results for Model 5 are
33, 208 and 18. As for Model 7, 80, 582 and 108 of the predicted Class 1, 2 and 3 are
true in train data. The test results that classified true for Class 1, 2 and 3 are 44, 192,
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and 25. Our findings show that k-Nearest Neighbor (k-NN) had better classification for
larger data such as Class 2. In comparison to k-NN, Neural Network classifier had higher
accuracy in classifying Class 1 and 3 meaning that Neural Network is more feasible for
data with small volumes. From the specificity values, there are increment of 10% and
4% for Model 5 than Model 7.

M
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 7
 

3(a) 3(b)

Fig. 3. Confusion matrix of the (a) training data (b) test data

Based on the classification results, TP predictions for both data partitions need to
be calculated by two stages, one for model accuracy and followed by model sensitivity
for robustness. This is because there are more than two classes to be classified. From
the overall mean of classifier models, there is an increment of 4% from train to test
data showing that the combination of SI , P/F and DM status shows positive potential for
classifying the BG within the time band. Moreover, sensitivity and specificity showed
the highest test data accuracies for Model 5 andModel 7. This indicates an improvement
in classifier robustness whereby the results are increased by 8% vs 12% and 10% vs 4%
from train to test data. There are several possibilities that contribute to low prediction.
First, a study byRazak et al. [31] suggested increasing the value of SI to a physiologically
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relevant one that represented the human biomarker. Our study showed that the value of
SI used most of the time had 0 value which is not acceptable. Thus, improving SI to a
physiologically relevant value range of 1e−3 to 1e−5 may also help improve the classifiers
features. Second, the PaO2 and FiO2 data collected from ICU charts whenever both data
are available. Thus, in this study, we assumed the data of FiO2 to complete the PO2
data. However, since SI represented the hourly varying parameter of ICING model, the
data collected for P/F score can be interpolated to hourly as well for future study to
complement all the features used.

In summary, this study was done to classify the BG performance bands using SI ,
P/F, and DM. P/F scores can be used to predict the classes of BG, this input predictor
can be used as a non-invasive and time-consuming method to predict glycemic levels.
In the future, if these attributes were selected for further research, P/F predictors can
be partitioned earlier based on the different ranges of SOFA score or partitioning the
SI based on days of stays. Additionally, data collected for this study was before the
occurrence of the pandemic and only 16 out 76 patients had pneumonia cause respiratory
failures. In the future, it is interesting to study on how P/F can influence sample size that
involved COVID-19 patients as well, as COVID-19 are categorized in the severe acute
respiratory system.

4 Conclusion

This preliminary work showed that k-Nearest Neighbor and Neural Network models are
feasible to classify BG performance. Although the model’s accuracy is only 54.1% and
54.5%, P/F scores can be used to make an early prediction of glycemic level through
classification. Based on the test result using SI -P/F-DM as predictors, the accuracy
was increased for both models. Similarly, model robustness test using sensitivity, and
specificity demonstrated a total increase of 20%and14%for bothmodels. This increment
shows that there is a likely possible relationship between P/F scores and diabetes status
and may influenced BG performances. In future, if we have data set from COVID-19
patients, we can make early prediction for BG performance with the train model for
those two classifiers.
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