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Abstract. A solution to Laplace’s equation referred to as harmonic potential
fields is commonly employed in robot pathfinding as an indication for robot nav-
igation in an identifiable environment. The simulations computation of these har-
monic functions frequently requires a high-performance computer. In the quest to
address the pathfinding problem, the article presents a technique calledBlockTwo-
Parameter Over-Relaxation, otherwise known as Explicit Group Two-Parameter
Over-Relaxation (EGTOR). The simulations of robot pathfinding were executed
in a static known enclosed environment to validate the competency of EGTOR.
Multiple tests are provided to assess the effectiveness of the suggested technique.
Different departure and goal positions, in particular, are used to assess the paths
generated by the simulations. The outcomes demonstrate the advantages of the pro-
posed technique. In the context of iteration number, EGTOR improves by around
4.4% when compared to EGAOR and 17.1% in comparison with EGSOR. While
as to computational timing, EGTOR outperforms EGAOR and EGSOR by 6.3%
and 14.5%, respectively. The study concludes that the suggested method in com-
puting harmonic functions is appealing and attainable for solving path planning
problems.
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1 Introduction

Developing intelligent autonomousmotion planning is among of themost complex tasks
in robotics practices. Presently, intelligent self-directed robots are in high demand in a
variety of areas including space [1], industrial [2], manufacturing [3], transportation [4],
military and security [5]. A successful autonomous mobile robot should be efficient and
dependable in designing a path from any launch point to a finish point without colliding
with obstructions. Path-planning with artificial potential fields [6] proposes an excellent
approach for a navigational path selection through the formation of an artificial potential
function which “draws” the robot towards the destination and “repulse” the robot from
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the obstacles.However, as discussed in [7], a potential fieldwithout residual localminima
is extremely difficult to establish, which might mistakenly lead the robot passing over
the field’s negative gradient, eventually become stranded in the inaccurate position.
Koren [8] has addressed additional well-known challenges, such as oscillations over
the obstacle borders, escaping the entrance of extremely small tunnels, and oscillations
while moving across tapering channels.

The notion of analytically addressing the Laplace equation for path planning pur-
poses was led by Connolly [9]. He illustrated how numerical solutions may be used to
search pathways in two and three-dimensional configuration spaces for certain simple
and motionless environments. His approach has been executed utilizing the technology
available at the time, which resulted in unacceptable time frames nowadays, with the
computation of simple environments taking within 23 to 188 s. He projected that with
adequately powerful computers, path formation consuming this technique would be an
attainable choice.

Later, Sasaki [10] proposed by exploiting the elliptic PDE to tackle heat conduc-
tion issues in order to generate a potential field with no local minima. He successfully
designed a potential field which ensures a route from start to the goal (assuming it
exists) that free of local minima by viewing the start as a hot point, the goal as a cold,
and the obstacles as an unknown adiabatic object. Sasaki’s approach is, however, solely
appropriate for motionless and thoroughly recognized environments. The starting point
was given a high temperature and was designated as a local maximum. Since the study
was completed in 1998, computer restrictions/limitations at the time prevent or at least
discourage its usage for higher-dimensional problems or in difficult environments.

This article introduces the problem of mobile robot pathfinding expressed as a heat
transfer analogy. The heat transmission is illustrated by Laplace’s equation. One of the
most essential features of heat transfer is its ability to exceed the difficulty of local
minima, which makes it particularly promising for robot navigation control. The solu-
tions to Laplace’s equation a.k.a harmonic function, symbolize the temperature values
in the environment of the path formation model. Several methods were applied for the
achievement of harmonic functions, but the most general approach is through numerical
techniques owing to the obtainability of rapid processingmachines and their elegance and
competence in addressing the problem [11–13]. Three experiments i.e. Explicit Group
Successive Over-Relaxation (EGSOR), Explicit Group Accelerated Over-Relaxation
(EGAOR), and Explicit Group Two-Parameter Over-Relaxation (EGTOR), were exe-
cuted in this article to assess the proficiency of the accelerated iterative approach
employed in constructing routes of a portable robot for various size of environments.
This article is divided into four different sections. The next section mainly will address
thematerials and techniques that will be used in this study, including the formulation and
algorithms that describe the entire pathfinding process. Whereas Sect. 3 describes the
results and discussion, alongwith some figures and tables reflecting the study’s outcome.
Finally, in Sect. 4, the conclusion will be explained.
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2 Materials and Methods

Rather than employing a genuine robot mobile, we recreate the idea of an autonomous
mobile robot depicted by a roaming nodal point in a known motionless confined envi-
ronment. The predicament of identifying the robot’s course is classified as a problem of
steady-state heat transfer. The goal should be regarded, in the resemblance of heat trans-
mission, as a sink drawing heat in. The environment’s obstacles/barriers and boundary
walls are referred to as heat sources, and they are preserved at consistent temperatures.
The temperature dispersion expands along the heat diffusion course, and the contour of
heat flux spreading toward the sink that floods in the environment. Such condition may
be considered as a means of communication among the goal, barriers, and the points
functioning as robots. The temperature distribution inside the environment is then uti-
lized as a controller to lead the robot to travel from the departure location to the target
spot by directing the heat flow beginning at the highest to the lowest temperature point
in the given environment. The temperature distribution in the environment is calculated
by practicing the harmonic function to describe the setup space.

The domain � (denoted by ∂�) in subject to generate the path planning consists of
several components such as the walls, borders, obstacles/hindrances/barriers, multiple
start locations, and goal point. A harmonic function in a domain � ⊂ Rn is a function
that satisfies Laplace’s equation, as follow

∇2U =
n∑

i=1

∂2U

∂x2i
= 0 (1)

with xi indicates the i-th coordinates of Cartesian and the dimension be represented as n.
Owing to the benefits of harmonic functions that satisfy the minimum-maximum condi-
tion, the formation of local minima in the domain can be prevented. As a result, harmonic
functions are highly useful in robot pathfinding because they give exact path algorithms
that allow smooth and efficient autonomous robot navigation [14]. It is widely known
in the literature that Laplace’s equation can be efficiently solved numerically through
conventional techniques [15] for instance Jacobi, Gauss-Seidel (GS), and Successive
Over-Relaxation (SOR). In pursuit to speed up the computation, this article aims to
define Eq. (1) using an accelerated iterative approach called EGTOR.

In the pathfinding problem, the potential field is computed globally. Solving the
Laplace expression, as indicated in Eq. (1), yielded the harmonic function. It is used to
determine a route that progressively advances the point robot upon the starting location
to the destination position while never colliding with any obstacles. The hindrances
are always quantified as new sources, while the target is defined as the sink with the
lowermost potential value. This all adds up to the application of Dirichlet boundary
conditions, U |∂� = c, c = constant. Later, by executing a Gradient Descent Search-
Distance Transform (GDS-DT) on the potential field, a sequence of potential points with
lower values will lead to the lowermost value, which is the goal point, to be discovered.

This study applied the above-mentioned framework for the path planning problem
to aid in expressing the results of Laplace expression Eq. (1). The objective is to use
the notion of how temperature and heat stream function in generating potential value
and path lines for robot navigation. The experiment is carried out in a 2D domain
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with several types of obstacles. The proposed iterative scheme, EGTOR is employed to
compute Laplace’s equation as well as to obtain the values of temperature at each node.
Comparisons with the EGSOR and EGAOR iterative techniques were used to evaluate
its performance.

As mentioned before, a nodal point in the grid-form structure (see Fig. 1) portrayed
the robot in this simulation. Meanwhile, Fig. 2 illustrates a part of a computational
molecule for a five-point approximation from the configuration space, at which h indi-
cates the length among nodal points at each direction. The numerical approach then cal-
culates the function values for every node iteratively so as to meet Eq. (1). The departure
location is assigned with the uppermost temperature, while the target spot is appointed
as the lowest, and varying departure temperature values are allocated to the boundaries
wall and barriers/obstacles. After obtaining the potential values in the configuration area,
a smooth trajectory can be established by tracing the temperature dissemination through
the steepest descent approach, in which the algorithm tracks the negative gradient at
the lowermost temperature goal point from the start to lower temperature consecutive
points.

Fig. 1. Grid-form structure of nodes. Fig. 2. Five-point approximation
computational molecule.

2.1 Explicit Group Two-Parameter Over-Relaxation Iterative Technique

The conventional GS [9] and SOR [16] from robotics writings were employed as reme-
dies for the problem (1). In this investigation, the solution to Laplace’s equation is
found by employing a quicker numerical approach, the Explicit Group Two-parameter
Over-Relaxation (EGTOR) iterative technique. In reality, the TOR method is an exten-
sion of the AOR method (which has two parameters, r and ω). The AOR method, on
the other hand, is an extension of the SOR method (that has one parameter, ω). SOR,
AOR and TOR techniques are all within over-relaxation family scheme. Former work
on block iterative techniques [17–20] uses various points of Explicit Group (EG) tech-
niques to demonstrate that block iterative approaches outperform the conventional point
techniques.
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Let the two-dimensional Laplace’s equation given in (1), be viewed as

∇2U = ∂2U

∂x2
+ ∂2U

∂y2
= 0. (2)

Equation (2) approximation, as frequently represented in the following equation,
allows to reduced using 5-point second-order finite difference formula,

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = 0. (3)

The TOR method comprising three distinct optimal relaxation parameters denoted
by r, r′, andω. From Eq. (3), the iterative scheme for conventional TOR iterative method
is given as

U (k+1)
i,j = r

4U
(k+1)
i,j−1 + r′

4U
(k+1)
i−1,j + ω

4

(
U (k)
i,j+1 + U (k)

i+1,j

)

+(
ω−r
4

)
U (k)
i,j−1 +

(
ω−r′
4

)
U (k)
i−1,j + (1 − ω)U (k)

i,j

. (4)

By considering the approximation in Eqs. (3) and (4), the general iterative scheme
for EGTOR may be expressed as

⎡

⎢⎢⎣

Ui,j

Ui+1,j

Ui,j+1

Ui+1,j+1

⎤

⎥⎥⎦

(k+1)

= 1

24

⎡

⎢⎢⎣

6S1 + Sa
6S2 + Sb
6S3 + Sb
6S4 + Sa

⎤

⎥⎥⎦ + (1 − ω)

⎡

⎢⎢⎣

Ui,j

Ui+1,j

Ui,j+1

Ui+1,j+1

⎤

⎥⎥⎦

(k)

(5)

where

S1 = r
(
U (k+1)
i−1,j − U (k)

i−1,j

)
+ r′

(
U (k+1)
i,j−1 − U (k)

i,j−1

)
+ ω

(
U (k)
i−1,j + U (k)

i,j−1

)
,

S2 = r′
(
U (k+1)
i+1,j−1 − U (k)

i+1,j−1

)
+ ω

(
U (k)
i+1,j−1 + U (k)

i+2,j

)
,

S3 = r
(
U (k+1)
i−1,j+1 − U (k)

i−1,j+1

)
+ ω

(
U (k)
i−1,j+1 + U (k)

i,j+2

)
,

S4 = ω
(
U (k)
i+2,j+1 + U (k)

i+1,j+2

)
,

Sa = 2(S2 + S3) + S1 + S4,
Sb = 2(S1 + S4) + S2 + S3.

The ambiguous optimal values of all parameters imposed no constraints on obtaining
the smallest iterations number. According toHadjidimos [21], the amounts of r and r′ are
generally chosen to lie as close as the value of related SORω, withω = [1, 2). As a result,
sensitivity analysis was performed in this study to determine the best values of optimal
relaxation parameters usingω = [1, 2) as a benchmark and following Hadjidimos’s [21]
motion. The implementation of EGTOR to solve problem (2) is described in Algorithm
1.
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Algorithm 1: EGTOR technique

i Setup the configuration space with specified start and goal position

ii Initializing starting point U , ε ← 10−15, iteration ← 0

iii Set the variables

S1 ← r
(
U (k+1)
i−1, j − U (k)

i−1, j

)
+ r′

(
U (k+1)
i, j−1 − U (k)

i, j−1

)
+ ω

(
U (k)
i−1, j + U (k)

i, j−1

)
,

S2 ← r′
(
U (k+1)
i+1, j−1 − U (k)

i+1, j−1

)
+ ω

(
U (k)
i+1, j−1 + U (k)

i+2, j

)
,

S3 ← r
(
U (k+1)
i−1, j+1 − U (k)

i−1, j+1

)
+ ω

(
U (k)
i−1, j+1 + U (k)

i, j+2

)
,

S4 ← ω
(
U (k)
i+2, j+1 + U (k)

i+1, j+2

)
.

Sa ← 2(S2 + S3) + S1 + S4

Sb ← 2(S1 + S4) + S2 + S3

iv For all non-occupied node points of type • using Eq. (5), calculate

U (k+1)
i, j ← 1

24 [6S1 + Sa] + (1 − ω)U (k)
i, j ,

U (k+1)
i+1, j ← 1

24

[
6S2 + Sb

] + (1 − ω)U (k)
i+1, j,

U (k+1)
i, j+1 ← 1

24

[
6S3 + Sb

] + (1 − ω)U (k)
i, j+1,

U (k+1)
i+1, j+1 ← 1

24 [6S4 + Sa] + (1 − ω)U (k)
i+1, j+1.

v Compute the remaining group of points (with one or two points) near to the boundary
via direct method by using equation

U (k+1)
i, j ← 1

4

[
U (k+1)
i−1, j + U (k)

i+1, j + U (k+1)
i, j−1 + U (k)

i, j+1

]

vi Check the convergence test for ε ← 10−15. If yes, proceed to step (vii). Else, back to
step (iii)

vii Execute GDS-DT to create path from departure to target location

3 Results and Discussion

The simulation environments employed were 300×300, 600×600, 900×900, 1200×
1200, 1500 × 1500, and 1800 × 1800. In the configuration space, various numbers of
hindrances of various forms have been established. All the obstacles and the walls were
initially set to high temperatures. Meanwhile, the target point has been set to a very low
temperature, but the departure point has no initial value. All other points were set to
a zero temperature. The experiments were done out on a personal computer executing
at 2.50 GHz speed with 8GB of RAM using Robot 2D Simulator [22]. The looping
progression proceeded to calculate the temperature values at each point while waiting
for the stopping criterion to be fulfilled. Specifically, when there has no change in the
temperature value from one iteration process to the next or when it has converged at a
predetermined value 1.0−10. Such a configuration is required to avoid flat areas, which
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result in failure to generate a path to the goal location. Tables 1 and 2 respectively showed
the iteration counts and time taken (in seconds) needed by each iterative algorithm based
on these simulations. These result tables are separated into three different methods
executed in four different environments, namely Event 1 to Event 4. In terms of iteration
count, it is shown that the EGTOR produced the best results compared to the EGAOR
(approximately by 4.4%) and EGSOR (approximately by 17.1%). Whereas in terms of
CPU time, the EGTOR reduces roughly 6.3% over EGAOR and 14.5% over EGSOR.
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Fig. 3. (a) Overall performances concerning the iteration counts. (b) Overall performances
concerning the time taken

The performance graph of the suggested methods relating to iteration counts (see
Fig. 3a) and time taken (see Fig. 3b) are also illustrated. In reference to Fig. 3, EGTOR
exhibited the least computing time with the fewest number of iterations needed in com-
parison with other existing methods. Clearly, it proved to be the fastest of all. This
is because three distinct optimal parameters for this approach have been added. The
EGAOR and EGSOR, on the other hand, required two and one parameters, respectively.
These optimal parameters have a positive effect on the acceleration of computation.
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Table 1. The implementation of the projected methods based on iteration counts.

Methods N

300 600 900 1200 1500 1800

Event 1 EGSOR 1258 5899 12844 22227 34055 48446

EGAOR 1042 4994 10928 19107 29306 41775

EGTOR 997 4812 10581 18549 28445 40524

Event 2 EGSOR 1729 6782 14874 26007 39968 56858

EGAOR 1610 6368 13953 24429 32926 46923

EGTOR 1489 5957 13062 22905 31552 45197

Event 3 EGSOR 2666 11076 24519 42897 65977 100842

EGAOR 2480 10389 22995 40322 62423 89182

EGTOR 2371 9977 22111 38917 59912 85272

Event 4 EGSOR 1629 6487 14194 24913 38195 54508

EGAOR 1392 5648 12367 21724 33518 48120

EGTOR 1328 5428 11907 20963 34842 49772

Table 2. The implementation of the projected methods based on time taken (in seconds).

Methods N

300 600 900 1200 1500 1800

Event 1 EGSOR 6.88 163.72 871.66 2694.80 6286.69 12675.73

EGAOR 6.05 137.87 751.78 2442.66 5551.02 10459.68

EGTOR 5.05 133.00 720.29 2394.62 5404.33 10316.42

Event 2 EGSOR 7.67 199.59 1009.48 2827.46 6925.80 14336.95

EGAOR 8.25 185.36 926.49 3003.98 5909.85 12802.89

EGTOR 7.64 169.39 867.20 2787.69 5700.19 12312.08

Event 3 EGSOR 13.24 315.87 1602.81 5591.93 12331.17 26171.60

EGAOR 13.83 301.27 1633.35 5261.60 11975.63 23616.21

EGTOR 11.66 296.46 1883.36 5094.93 10921.11 22338.11

Event 4 EGSOR 7.80 187.33 990.20 2979.14 6919.25 13843.15

EGAOR 7.56 167.65 891.51 2609.11 6139.29 12833.82

EGTOR 7.10 163.21 850.26 2573.12 6494.66 13381.51

When the configuration space potential values are obtained, the trail is generated by
employing the steepest descent search from any departure location to the given target
spot. The algorithm monitors the negative gradient and repeatedly selects the lowest
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temperature around the neighborhood points up until the constructed path reaches its
goal point. Figure 4 illustrates the successful development of a path from numerical
computation in a known stationary environment. All of the starting points (green/square)
manage to end at the specific target point (red/circle) while escaping multiple obstacles
in the given environment.
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Fig. 4. The pathways created of four environments from various initial and target positions.

4 Conclusion

To summarize, the investigations in this article highlights that harmonic functions give
a promising and feasible way of generating routes in a point robot environment due to
advanced finding numerical techniques, together with the new sophisticated computing
technologies. The simulation results confirmed that the EGTOR iterative scheme is
faster than the conventional method (families of SOR and AOR). While the number of
obstacles has risen, the effectiveness of the suggested technique is not affected. In reality,
the computation becomes quicker as the obstacle zones are omitted along the calculation
process. It is worth emphasizing once more that EGTOR results surpass the EGAOR
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(by approximately 4.4%) and EGSOR (by approximately 17.1%) as to iteration count.
While in terms of computational time, the EGTOR saves around 6.3% over EGAOR and
14.5% over EGSOR. Furthermore, the originality/novelty of this study is the use of the
TOR scheme families in robot pathfinding and on Algorithm 1.
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