®

Check for
updates

Software Redocumentation Using Distributed
Data Processing Technique to Support Program
Understanding for Legacy System:

A Proposed Approach

Sugumaran Nallusamy!® @, Hoo Meei Hao! 0
and Farizuwana Akma Zulkifle? ™0

! Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long,
Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
{sugumaran, hoomh}@utar.edu.my
2 Universiti Teknologi MARA, Kuala Pilah Campus, 72000 Shah Alam,
Negeri Sembilan, Malaysia
farizuwana@uitm.edu.my

Abstract. Source code is the most updated source among all the available soft-
ware artifacts. The majority of existing software redocumentation approaches
relied on source code to extract the necessary information for program compre-
hension in order to support software maintenance tasks. However, performing
Extract, Transform and Load (ETL) using a parser from the source code becom-
ing a challenging task. The traditional approach is no longer able to handle the
ETL efficiently due to the effect of the analysis efficiency, especially for large
source code. This paper proposed to use distributed data processing technique to
extract legacy source code components to generate detailed designed or technical
software documentation at source code level to support program understanding.
The objective of this paper is to apply the distributed data processing technique to
the parser by using Hadoop Distributed File System and Apache Spark. Legacy
java source code used as a case study to apply our proposed approach to extract
the source code components and generate the technical software documentation.

Keywords: Software redocumentation - HDFS - Spark - Legacy system -
Program understanding - Software maintenance

1 Introduction

Industry practitioners perceived legacy systems as business critical and reliable system
operated for more than ten to twenty years, but inflexible to adapt to new changes [1]. In
respect of legacy system modernization, lacking of knowledge [2] and high maintenance
cost [3] are the main drivers [1]. Similarly, it is a challenge for software developers to
maintain and support the legacy systems due to lacking the latest documentation and
increasing complexity of source codes as times are passing. Thus, software redocu-
mentation is essential to rebuild the documentation of existing resources in order to

© Springer Nature Switzerland AG 2021
H. Badioze Zaman et al. (Eds.): IVIC 2021, LNCS 13051, pp. 239-252, 2021.
https://doi.org/10.1007/978-3-030-90235-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90235-3_21&domain=pdf
http://orcid.org/0000-0003-2332-4326
http://orcid.org/0000-0001-6507-0681
http://orcid.org/0000-0002-4746-7375
https://doi.org/10.1007/978-3-030-90235-3_21

240 S. Nallusamy et al.

give a better understanding of the system for the purpose to generate documentation
for the modified programs, update the system changes, and creating alternative views.
The redocumentation process can be carried out at several stages of the software design
process, such as source code, design, or requirement. However, according to a survey
conducted by Souza et al. [4], source code level documentation is more relevant docu-
mentation or technical that may be classified as technical documentation or functional
documentation to aid in program comprehension and maintenance tasks. As specified
by Geet et al. [5], the technical document contains features such as a summary of the
source code, source code metrics, forms, and method dependencies that are derived from
current redocumentation tools [6].

The redocumentation process is comprised of five major components: source code,
parser, system knowledge base, view composer, and software documentation [7]. We
concentrated on the parser in this study because it is critical for extracting the necessary
information to build the documentation. The present limitation of the existing parser is its
inability to extract the pieces required for technical documentation from huge amounts of
old source code. Existing parsers are embedded into software tools that place a premium
on traditional extraction methods, which reduces the effectiveness of extracting pertinent
information due to the enormous source code size. Additionally, retrieval should be
performed in a timely manner in order to comprehend the program and assist with
software maintenance tasks. The limitations of the parser in the redocumentation tool in
terms of handling huge source code, the explosion of big data, and the evolution of data
processing technologies all encourage the investigation of the proposed approach in the
process of software redocumentation.

Analysing software systems and extracting source code components requires pro-
cessing of source code and rebuild the structure of information. There are many existing
studies related to different techniques used in extracting the data [8, 9]. Nevertheless,
those approaches used Extract, Transform, Load (ETL) based on relational query app-
roach unable to handle streaming or near real-time data and stimulating environment
which demands high availability, low latency and scalability features [10]. Although the
traditional ETL may prove to be effective in managing structured, batch-oriented data
which, up to date and within scope for corporate insights and decision making [10, 11],
it is not suitable for source code that consists of semi structured or unstructured data
[12].

Thus, we proposed an approach to use Hadoop Distributed File System (HDFS) and
Spark which provide a cluster computing model for distributed computing platforms
intended to run the process of redocumentation. The proposed approach would assist
software developers maintain the source code efficiently and effectively solving the
problems of processing, analyzing and redocument the massive source codes.

This paper is organized as follows: The first section is a background of software
redocumentation and related works that gives an overview of some studies and research
carried out involved big data processing. In the methodology section, we describe the
proposed approach of distributed data processing in software redocumentation. The Case
Study section presents the initial work following the proposed approach. We end with a
conclusion and give some future works to complete the process of redocumentation.

Software Redocumentation Using Distributed Data Processing Technique 241

2 Background and Related Work

As defined in the IEEE Standard for Software Maintenance (IEEE 14764-2006-
ISO/IEC), after development and delivery, software maintenance undergoes a similar
process as in software development to modify the software product to correct faults,
improve performance, or to adapt the product to the modified environment. Software
maintenance aims to preserve the software product over time. Christa et al. [13] indicated
that the legacy system is a contributor to maintenance cost, effort, and productivity. A
significant challenge for software developers is taking over development work if the
source code is the only source of understanding the written codes and system documen-
tation is out-of-date, lacking, or incomplete. The software developer spent more time
with existing code than creating new software. These are emphasized by [13].

Nallusamy et al. [7, 14] mentioned that software redocumentation is a software
documentation update created within the same abstraction and in line with the latest
developments of the code. Additionally, it includes analyzing a static representation
of a software system to give a different perspective. Earlier studies examined software
redocumentation to support software evolution and software maintenance. Essentially,
re-documentation is intended to help developers comprehend programs [15, 16]. The
results of a four-year long case study [17] demonstrate a significant decrease in mainte-
nance costs and effort due to redocumentation effort. Methods and approaches to solve
program understanding have attracted the software engineering community. Such devel-
opment in this area can be seen from the studies on the category of redocumentation
approaches comprise of XML based approach, incremental redocumentation, model-
oriented redocumentation, island grammar, doclike modularized graph, ontology-based
approach [7], and reverse engineering to transform the source code to UML diagrams
such as [18-20].

Most evaluation studies of format, granularity, and efficiency showed that all
approaches were of low quality when it came to granularity and efficiency [14]. Compar-
ison of two approaches of incremental and model-oriented had shown different usage
and purposes [21]. This approach works if outdated or missing documentation is an
issue. Rebuild the documentation incrementally, while using a model-oriented approach
will produce models from existing systems and generate documentation based on the
models. As a result, model-oriented approach is best for redocumenting a legacy system
from source code. In other words, effective and efficient software maintenance is nec-
essary. Moreover, code analysis keeps evolving in terms of technique and application
development.

As software becomes more complex over time, the number of lines of source code
increases, particularly for huge legacy systems. The team has spent several years writing
and maintaining these program codes. When new programmer takes over the mainte-
nance job including change request, new programmer required an efficient tool to extract
the software components from the source code which handle by the parser in the software
redocumentation process. Current parsers in re-documentation tools may be incapable
of handling this massive volume of data, as they were not designed for high-volume data
processing [22].

As a result, the endeavor to leverage contemporary technology in the management
of big legacy systems continues to evolve, as indicated by Wolfart et al. [23]. On the

242 S. Nallusamy et al.

other hand, the work of Ruchir Puri et al. [24] emphasized the necessity of artificial
intelligence in acquiring information from huge amounts of source code in order to
assist software maintainers in performing maintenance activities. Verena Geist et al.
[22] used machine learning to analyze source code comments. These studies focus the
strategies used to circumvent the current difficulties connected with digesting large
volumes of source code in order to comprehend and conduct software maintenance
activities on time. Additionally, several of these investigations used cutting-edge data
processing methods to redocument the source code. As a result of these investigations,
we have begun to investigate data processing using distributed computing frameworks
based on commodity cluster designs, such as Hadoop and Apache Spark. This approach
is widely utilized in a variety of fields for the processing of large amounts of data and is
constantly evolving [25]. Recent examples include processing and analyzing YouTube
big data to determine the success of films and items in comparison to competitors [26]
and analyzing airline delays using Spark [27].

Apache Spark is distributed computing system designed to run in a cluster, it is also
fast and general purpose. Spark extends the MapReduce model of Hadoop to efficiently
support more types of computations, including interactive queries and stream processing
[28]. One of the main features Spark offers for speed is the ability to run computations in
memory, but the system is also more efficient than MapReduce for complex applications
running on disk. The core data units in Spark are called Resilient Distributed Datasets
(RDDs). They are only read only collections which partitioned to multiple machines
and can be rebuilt if the partitions are lost. RDDs are collections of elements that are
distributed, immutable, and fault-tolerant. They can be produced by performing a series
of actions on either stable storage data or other RDDs. RDDs can be stored in memory, on
disk, or in a combination of the two storage media types. Furthermore, RDD is adopting
the Lazy Evaluation approach in order to complete the action task. This is done in order
to ensure that compute and memory are used as less as possible. As RDDs are not
cached in RAM by default, a persist method is required when data is reused to avoid re-
computation [27]. One of the advantages of the Spark environment is provide Application
Programming Interface in Scala, Phyton and Java. Furthermore, Spark provides Spark
Context as a master node and distributed to worker node through cluster manager. Spark
allows to configure properties such as the number of executors, the number of cores per
executor, and the amount of memory per executor for each application [29].

Hadoop Distributed File System (HDFS) a reliable and has scalable storage and
processing system for a large volume of distributed unstructured data. On the other hand,
Apache spark used to speed the processing power which is 100 times faster in memory
and 10 times faster by running on disk. Thus, HDFS is an ideal technique to develop a
highly scalable application that able to process massive data as compared to a traditional
method such as database management systems [25]. As far as our knowledge goes until
this paper is written, none of the study that using distributed data processing techniques
in the field of software maintenance. This paper shows the approach of using HDFS and
Spark environment to generate documentation to assist in software maintenance.

Software Redocumentation Using Distributed Data Processing Technique 243

3 Proposed Approach

Our main contribution to the suggested solution is the development of a parser that
is utilized to extract the source code component using HDFS and Apache Spark via
a distributed data processing technique. As a result, the parser processes raw source
code using a distribution strategy to accelerate the process of extracting source code
components within the constraints of limited run times.

Query
DataFrame

>

>

Knowledge

Base

(CSV File)

I : |
Load Datalin HDFS
Source Code B e 3
View
Parser Composer

|

Software
Documentation
(Output)

Spark Processing - Scala

Fig. 1. Software redocumentation using distribution data technique

Figure 1 illustrates the system architecture for locating and generating source code
components via the HDFS and Spark environments. Each component is thoroughly
explained as follows:

3.1 Legacy Source Code (LSC)

A software work product or artefact consists of source code, configuration files, built
scripts, and auxiliary artifacts [7, 30]. However, this study looked at only LSC dur-
ing the redocumentation process [4]. SWPs were excluded for two main reasons. First,
the most up-to-date or reliable source is the source code. SWPs contain greater pre-
cision when compared to other data sets. Second, SWPs are poorly maintained when
compared to the source code [31]. Legacy systems undergo numerous changes. Addi-
tionally, these changes include numerous software maintainers, who must spend almost
half of their time understanding the program’s functionality versus their total time spent
on maintenance. This problem affects the software maintenance efficiency.

3.2 Parser

The parser is used to extract necessary information from the SWP and store it in the
repository. The proposed approach utilized HDFES for storing, processing, and analyzing

244 S. Nallusamy et al.

the LSC across multiple nodes of commodity hardware. There will be a master node
(Name Node) and a slave node (Data Node) [27]. A Name node distributes the works
to data node at load time and blocks from the same file are all on different machines.
When a data node is failed, it is replicated across multiple data nodes. Yarn acts as a
distributed container for the master node’s resources. Figure 2 shows how the source
code is distributed across the network through the data nodes. Distributed computing has
multiple advantages. It’s scalable and makes it easier to share resources. It also speeds
up computation tasks.

Block 1
Block 2

Source Code P
Datasen [[_BlockL_}

Fig. 2. Block replication of the source code dataset in Hadoop cluster

o
Block 1
Block 2

——4 Namenode

Block 3

Block 2
—

In our proposed context, Spark plays an important role as a parser [29], performing
ETL from source code and providing source code components. Yarn is a distributed
container manager, like Mesos for example, whereas Spark is a data processing tool.
Spark can run on Yarn. We used Scala as the programming language and the Databricks
Community Cloud (DCC) platform [32] to execute the Scala code, which includes a
notebook (workspace) and a spark session. Figure 3 illustrates the Spark data processing
flow in DCC:

Dataset Preparation E— Dataset Transformation E— Load Dataset to DataFrame

Fig. 3. Spark data processing flow

3.3 Knowledge Based

A repository component is used in the software redocumentation knowledge based on the
data process and produce documentation as defined by Nallusamy et al. [7]. It provides
appropriate semi-structured data on source code for building documentation content as
well as allowing browsing and searching for relevant content in the documentation [33].
In the redocumentation, some current repositories used conventional models like flat
archives, databases, or knowledge bases [34]. These repositories must be used to locate
and create different views or documents that software maintainers have requested. These

Software Redocumentation Using Distributed Data Processing Technique 245

capabilities save software maintainers time and effort in learning about the application
domain. As a result, in our proposal, we used a Command Separated Values (CSV)
file to store the flat file in the repository and convert it to a data frame during doc-
ument generation. Data frames enable the query for specific data to be used in the
documentation.

3.4 View Composer

View Composer is a user interface that is used to interact with a knowledge-based
system in order to retrieve specific components [7]. In addition to a list of modules, the
interface needed to be able to see the dependencies between them. Understanding the
dependencies between the components is a crucial problem during software maintenance
tasks. Software maintainers must be aware of the change impact of making improvements
to a specific piece of source code. Therefore, it’s critical to use the search and browsing
functions to locate the relevant item.

3.5 Technical Documentation

According to a survey conducted by Souza et al. [4], the most important documents
for software maintenance are the source code and comments. However, the problem
with outdated comments in the source code can lead to the wrong interpretation of the
meanings of the code. Moreover, experts are not available and new software maintainers
may find it difficult to understand the current system for carrying out the maintenance
tasks. In this perspective, Van Geet et al. [5S] emphasized a redocumentation technique to
generate a detailed design document. This document is related to the technical documents
containing the structure with all the functions, database tables, screens, batch jobs,
dependencies among the components and the slices of the program [35].

Table 1. Software technical documentation schema

Technical documentation section | Components

Source code metrics * Finding out the number of method in a class
* Total lines of code

¢ Total number of imported libraries

* Total number of class in a class

* Total word counts

Total number of public function

Total number of the private method

Total number of a protected method

Object and descriptions Find out what are the available packages in the application
List the classes, interfaces, abstract classes in the packages

List the functions that are in the classes

(continued)

246 S. Nallusamy et al.

Table 1. (continued)

Technical documentation section | Components

Dependency diagram * Dependency analysis
— Package level analysis
— Class level analysis

— Function level analysis

In the proposed approach, as shown in Table 1, the documentation generated is the
technical document that consists of certain elements, such as the source code summary,
source code metrics, classes, packages and functional dependencies. The functionalities
and elements in this technical documentation are defined to retrieve only relevant parts
of the source code using the HTML based documentation, as suggested by Van Geet
etal. [5].

4 Case Study

The implementation of this approach is still in the initial stage. In this stage, we have
created a simple prototype and have implemented each process specified in Fig. 1. The
detailed process of implementation is described in the following sections.

4.1 Legacy Source Code

We used Restaurant Management System legacy source code for this proposed model.
This software, which was built ten years ago in Java, provides restaurant management for
customers. This end-to-end restaurant management system manages orders, inventory,
and employee management. All orders and employee data will be stored in a database.
The application has 14905 lines of code. These java files include the backend database
code until the front-end GUI interfaces.

4.2 Parser

Once the LSC identified, the first step is to load LSC into HDFS environment. As
specified earlier, we used Scala as a programming language and DCC as a cloud platform.
We have created the cluster and notebook space to execute the Scala commands. During
data preparation, we have identified and grouped java files on Restaurant Management
system as specified in the previous section loaded in the data directory of the cloud
platform. Next step, we load the source code into RDD which is the fundamental storage
unit of Spark in order to extract some information from the source code to do analysis.
Spark automatically and transparently divides the data in RDDs into partitions which
are distributed across worker nodes in the cluster and parallelize the data performed on
these partitions as specified in Fig. 2. Figure 4 shows the command to load the source
code into RDD for each 14 java file. After loading all the files into their respective RDD,

Software Redocumentation Using Distributed Data Processing Technique

247

1 val
2 val
3 val
4 val
5 val
& val
7 val
8 val
9 val
10 val
11 val
12 val
13 val
14 val

filel
file2
file3
filed
files
file6
file7
file8
filed
filele
filell
filel2
filel3
fileld

SC.
SC
sC.
SC.
sC.
sC.
sC
sC
sC.

sC
sC
sC

m

m

.textFile("/FileStore/tables/src/Controller_GUI.java")
textFile("/
textFile("/

m

textFile
textFile

{
m
ll
\

.textFile

textFile("
.textFile("
.textFile("/

textFile("/FileStore/tables/src/Controller.java

/FileStore/tables/src/Employee.java")
/FileStore/tables/src/Manager.java")
.textFile("/
.textFile("/
textFile("/
.textFile("

m

"
/

"

FileStore/tables/src/Database.java")
FileStore/tables/src/DatabaseException.java")

TRY

FileStore/tables/src/Menultem.java")
FileStore/tables/src/Order.java")
FileStore/tables/src/OrderDetail.java")
/FileStore/tables/src/RMS.java")
/FileStore/tables/src/RMS_GUI.java")
/FileStore/tables/src/Staff.java")
/FileStore/tables/src/UserInterface.java")
FileStore/tables/src/UserInterface_GUI.java")

Fig. 4. Load source code into RDD

we created a list to store all the RDD so that created RDD it is easy to use later by using

loop structure instead of typing a command that works for each RDD repeatedly.

In data transformation, the process of classification done through the process of
filtration in the data loaded in RDD using Action and Transformation operation. The
main classification that needs to be done in this source code is based on the documen-
tation section specified in Table 1. RDD transformation commands such as filter, map,
flatMap used in our proposed approach to filter the source code by extracting java pack-
ages, classes, interfaces and abstract class in java packages. On the other hand, RDD

[, T O FCR NC.

© o — o

1
12
13

//read class files

val readClassFile = sc.textFile("/FileStore/tables/src/Classes/*")

//get all libraries name used in class
val findLibrariesInClasses = readClassFile.filter(lines => lines.contains("import") & lines != "").map(x =>

x.replace(";","")).map(x => x.replace("import", "")).map(x => x.trim).distinct
//transform into dataframe

import spark.implicits._

/] for implicit conversions from Spark RDD to Dataframe

val librariesInClassDf = findLibrariesInClasses.toDF("Libraries")

librariesInClassDf.show
//save the dataframe into csv

/] librariesInClassDf.repartition(1).write.format("com.databricks.spark.csv").option("header",
"true").save("dbfs:/FileStore/tables/librariesInClass.csv"

Fig. 5. Partial Scala code to extract component

248 S. Nallusamy et al.

Actions such as count and aggregate used to perform aggregation functions to provide the
source code metrics such as finding the total line of codes, imported libraries, classes,
packages and other relevant components. Figure 5 shows the partial Scala command
use RDD Transformation and Action used to extract source code components in Spark
environment.

On the other hand, one more important component that needs to be extracted is
the dependency which in our implementation emphasize Package, class and func-
tion dependency analysis. Figure 6 shows partial Scala code to extract the functional
dependency.

dbutils.fs.rm("/FileStore/tables/ClassDependency",true)

def trimming(item:String) :(String) = {
val pos = item.index0f(";")
item.substring(@,pos)

12 find all class name to act as filepath later

13 val allClass = sc.textFile("/FileStore/tables/Classes/*")

14 val findClass = allClass.filter(x => (x.contains("public class") || x.contains("public enum"))).map(line => line.split(" "))
15 val extractClass = findClass.map(x => x(2))

Fig. 6. Extract the dependency code

The next process is to load dataset to dataframe. Source code components are
extracted and dependencies loaded into a DataFrame. We performed column transfor-
mation, and query the DataFrame to get useful information such as code metrics, source
code component list and component dependencies to save into CSV file.

4.3 Knowledge Based

The extracted source code components stored in few CSV files based on documentation
elements namely source code metrics, and list the components and dependencies among
the components.

4.4 View Composer

View Composer or in our context called web-based user interface provides related func-
tion to extract the components and present them as HTML documentation. The user
interface will use the data from CSV and loaded it into dataframe.

4.5 Technical Documentation

As specified in Sect. 4.2, once data loaded into dataframe, SPARK SQL used to query
and retrieve relevant source code components and classified according to documentation

Software Redocumentation Using Distributed Data Processing Technique

249

Total number of lines of Total Number of |Total Number of
Class code of of of class |Total of words counts |public method |private method
Controller.java 35 1887 318 3 1 35004 4 31
Controller_GULljava 37 633 104, 2 1 13025 36 1
Database.java 42 835 148 4 3 17565 38! 4
DatabaseException.java 2 10 0| 0 1 154 2 0
Employee.java 4 26 0 0 1 465 4 0
Manager.java 4 29 0 0 1 488 4 0|
Menultem.java 12 85 0 0 1 1209 12 0
Order.java 12 112 8 1 1 1664 12 0|
OrderDetail java 7 47 3 0| 1 841 7 0
RMS.java 1 11 1 0 1 161 1 0
RMS_GUl.java 1 11 0 0 1 175 1 0
Staff.java 21 176 4 2 1 3588 16! 0
Userlinterface.java 33 500 42 2 1 12773 30! 3
Userinterface_GUl.java 84 2219 518 8 13 50921 50 34
Total 295 6581 1146 22 28 138033 217 73
d d fi name d dent fi i class
Iterator<OrderDetail> it = orderDetailList.iterator(); addltem iterator Order
while(it.hasNext() && !found) additem hasNext Order
re = it.next(); additem next Order
if(rNewMenultem.getID() == re.getitemID()) additem getIiD Order
re.addQuantity(quantity); additem addQuantity Order
orderDetailList.add(detail); additem add Order
orderDetailList.remove(index); deleteltem remove Order
//System.out.printin(e.toString() +":" + e.getMessage()); deleteltem printin Order
Iterator<OrderDetail> it = orderDetailList.iterator(); calculateTotal iterator Order
while (it.hasNext()) { calculateTotal hasNext Order
re = it.next(); calculateTotal next Order
total += re.getTotalPrice(); calculateTotal getTotalPrice Order

Fig. 7. Generate software technical documentation

section as shown in Table 1. The sample technical documentation generated can be

referred to Fig. 7.

On other hand, the functional dependencies also shown in Fig. 8 below generated

from the Scala code in Fig. 6.

main :Field getFontStyle :_constuct ngetType getProperties :getOptions
ssetFontStyle usetProperties | | :isetOptions ssetType ssetText

sgetText

Fig. 8. A function call graph

5 Conclusions and Future Work

In this paper, we have presented our proposed approach for software redocumentation
that employs the distribution data technique. As an initial effort, we present the system
architecture for locating and generating the source code component through HDFS and
Spark environments. Our experiments focus on the parser used to extract the source

250 S. Nallusamy et al.

code components from the SWP and store it in the repository. As a result, Sparks plays
an important role as a parser to perform ETL on legacy java source code. The signifi-
cance of the experiment shows the process of a raw source code by using a distribution
technique. This technique helps to speed up the extraction process of the source code
component within limited run times. For future work, we plan to use the same approach
in different languages and other large legacy systems with precise evaluation to improve
the efficiency of our proposed approach.

References

1. Khadka, R., Batlajery, B.V., Saeidi, A.M., Jansen, S., Hage, J.: How do professionals perceive
legacy systems and software modernization? In: Proc. Int. Conf. Softw. Eng., pp. 3647
(2014). https://doi.org/10.1145/2568225.2568318

2. Matthiesen, S., Bjgrn, P.: Why replacing legacy systems is so hard in global software develop-
ment: an information infrastructure perspective. In: Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing, pp. 876-890 (2015)

3. Crotty, J., Horrocks, I.: Managing legacy system costs: a case study of a meta-assessment
model to identify solutions in a large financial services company. Appl. Comput. Inform. 13,
175-183 (2017)

4. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: Which documentation for software
maintenance? J. Braz. Comput. Soc. 12(3), 31-44 (2007). https://doi.org/10.1007/BF0319
4494

5. Van Geet, J., Ebraert, P., Demeyer, S.: Redocumentation of a legacy banking system: an
experience report. In: Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution IWPSE), pp. 33-41
(2010)

6. Tadonki, C.: Universal Report: a generic reverse engineering tool. In: 12th IEEE International
Workshop on Program Comprehension (IWPC 2004), pp. 266267 (2004)

7. Nallusamy, S., Ibrahim, S., Mahrin, M.N.: A software redocumentation process using
ontology based approach in software maintenance. Int. J. Inf. Electron. Eng. 1, 133 (2011)

8. Dorninger, B., Moser, M., Pichler, J.: Multi-language re-documentation to support a COBOL
to Java migration project. In: SANER 2017 — 24th IEEE Int. Conf. Softw. Anal. Evol.
Reengineering, pp. 536-540 (2017). https://doi.org/10.1109/SANER.2017.7884669

9. Kienle, H.M., Miiller, H.A.: Rigi — an environment for software reverse engineering, explo-
ration, visualization, and redocumentation. Sci. Comput. Program. 75, 247-263 (2010).
https://doi.org/10.1016/j.scico.2009.10.007

10. Sabtu, A., et al.: The challenges of Extract, Transform and Loading (ETL) system implemen-
tation for near real-time environment. In: Int. Conf. Res. Innov. Inf. Syst. ICRIIS, pp. 3-7
(2017). https://doi.org/10.1109/ICRIIS.2017.8002467

11. Garcfa, S., Ramirez-Gallego, S., Luengo, J., Benitez,].M., Herrera, F.: Big data preprocessing:
methods and prospects. Big Data Anal. 1, 1-23 (2016). https://doi.org/10.1186/s41044-016-
0014-0

12. Ragab, M., Tommasini, R., Awaysheh, F.M., Ramos, J.C.: An In-depth Investigation of Large-
Scale RDF Relational Schema Optimizations Using Spark-SQL (2021)

13. Christa, S., Madhusudhan, V., Suma, V., Rao, J.J.: Software maintenance: from the perspec-
tive of effort and cost requirement. In: Proceedings of the International Conference on Data
Engineering and Communication Technology, pp. 759-768. Springer (2017)

https://doi.org/10.1145/2568225.2568318
https://doi.org/10.1007/BF03194494
https://doi.org/10.1109/SANER.2017.7884669
https://doi.org/10.1016/j.scico.2009.10.007
https://doi.org/10.1109/ICRIIS.2017.8002467
https://doi.org/10.1186/s41044-016-0014-0

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Software Redocumentation Using Distributed Data Processing Technique 251

. Sugumaran, N., Ibrahim, S.: An evaluation on software redocumentation approaches and

tools in software maintenance. In: Commun. IBIMA, pp. 1-10 (2011). https://doi.org/10.
5171/2011.875759

Kaur, U., Singh, G.: A review on software maintenance issues and how to reduce maintenance
efforts. Int. J. Comput. Appl. 118, 6-11 (2015). https://doi.org/10.5120/20707-3021

Kaur, P.: The study of software re-engineering. WWJMRD 4, 381-383 (2018)

Rostkowycz, A.J., Rajlich, V., Marcus, A.: A case study on the long-term effects of software
redocumentation. In: IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 92-101 (2004). https://
doi.org/10.1109/ICSM.2004.1357794

Nanthaamornphong, A., Leatongkam, A.: Extended ForUML for automatic generation of
UML sequence diagrams from object-oriented Fortran. Sci. Program. (2019). https://doi.org/
10.1155/2019/2542686

Singh, K.: Transformation of source code into UML diagrams through visualization tool. Int.
J. Adv. Sci. Technol. 29(8), 4861-1114 (2020)

Sheer, A., Tahrawi, A., Jeesh, J., Al Ibrahim, Y.: A Framework for software re-documentation
by using reverse engineering approach. Int. J. Comput. Appl. 118, 1-21 (2016)

Pathania, Y., Bathla, G.: A review on re-documentation approaches and their comparative
study. Int. J. Comput. Sci. Trends Technol. 2, 48-51 (2014)

Geist, V., Moser, M., Pichler, J., Beyer, S., Pinzger, M.: Leveraging machine learning for
software redocumentation. In: SANER 2020 — Proc. 2020 IEEE 27th Int. Conf. Softw. Anal.
Evol. Reengineering, pp. 622—-626 (2020). https://doi.org/10.1109/SANER48275.2020.905
4838

Wolfart, D., et al.: Modernizing legacy systems with microservices: a roadmap. In: Eval-
uation and Assessment in Software Engineering, pp. 149-159. Association for Computing
Machinery (2021)

Puri, R., et al.: Project CodeNet: A Large-Scale Al for Code Dataset for Learning a Diversity
of Coding Tasks. https://arxiv.org/abs/2105.12655 (2021)

Casado, R., Younas, M.: Emerging trends and technologies in big data processing. Concurr.
Comput. 27, 2078-2091 (2015). https://doi.org/10.1002/cpe.3398

Shaikh, F., Pawaskar, D., Siddiqui, A., Khan, U.: YouTube data analysis using MapReduce
on Hadoop. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics,
Information and Communication Technology, RTEICT 2018 — Proceedings, pp. 2037-2041
(2018). https://doi.org/10.1109/RTEICT42901.2018.9012635

Nibareke, T., Laassiri, J.: Using Big Data-machine learning models for diabetes prediction
and flight delays analytics. J. Big Data 7(1), 1-18 (2020). https://doi.org/10.1186/s40537-
020-00355-0

Jonnalagadda, V.S., Srikanth, P., Thumati, K., Nallamala, S.H., Dist, K.: A review study of
apache spark in big data processing. Int. J. Comput. Sci. Trends Technol. 4, 93-98 (2016)
Han, Z., Zhang, Y.: Spark: a big data processing platform based on memory computing. In:
Proc. — Int. Symp. Parallel Archit. Algorithms Program, PAAP, pp. 172-176 (2016). https://
doi.org/10.1109/PAAP.2015.41

Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE
Softw. 7, 13—-17 (1990)

Miiller, H.A., Kienle, H.M.: A Small Primer on Software Reverse Engineering (2009)
Databricks Community Edition. https://community.cloud.databricks.com. Accessed 10
November 2020

https://doi.org/10.5171/2011.875759
https://doi.org/10.5120/20707-3021
https://doi.org/10.1109/ICSM.2004.1357794
https://doi.org/10.1155/2019/2542686
https://doi.org/10.1109/SANER48275.2020.9054838
https://arxiv.org/abs/2105.12655
https://doi.org/10.1002/cpe.3398
https://doi.org/10.1109/RTEICT42901.2018.9012635
https://doi.org/10.1186/s40537-020-00355-0
https://doi.org/10.1109/PAAP.2015.41
https://community.cloud.databricks.com

252 S. Nallusamy et al.

33. Van Deursen, A., Moonen, L.: Documenting software systems using types. Sci. Comput.
Program. 60, 205-220 (2006)

34. Canfora, G., Di Penta, M., Cerulo, L.: Achievements and challenges in software reverse
engineering. Commun. ACM 54, 142-151 (2011)

35. Freeman, R.M., Munro, M.: Redocumentation for the Maintenance of Software. In:
Proceedings of the 30th Annual Southeast Regional Conference, pp. 413-416 (1992)

	Software Redocumentation Using Distributed Data Processing Technique to Support Program Understanding for Legacy System: A Proposed Approach
	1 Introduction
	2 Background and Related Work
	3 Proposed Approach
	3.1 Legacy Source Code (LSC)
	3.2 Parser
	3.3 Knowledge Based
	3.4 View Composer
	3.5 Technical Documentation

	4 Case Study
	4.1 Legacy Source Code
	4.2 Parser
	4.3 Knowledge Based
	4.4 View Composer
	4.5 Technical Documentation

	5 Conclusions and Future Work
	References

