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Abstract. There is little doubt about both the importance and at the
same time difficulty of teaching recursion as part of any sophisticated
programming curriculum. In this paper, we outline an approach that
has its focus on introducing the concept in very small steps, integrating
recursion into a K-12 programming class. The main paradigm is to be
as constructive as possible in that everything that is introduced is also
implemented right away from the first lesson on.
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1 Introduction

Many computational problems have elegant solutions that utilize recursion, such
as the famous Towers of Hanoi [16]. As a result, recursion should be part of infor-
matics K-12 education as a rather natural application of problem decomposition
(in particular, divide-and-conquer), which in turn is a cornerstone of computa-
tional thinking [9,15]. However, the topic is not only important but also rather
challenging for novice programmers [4], and therefore a careful introduction is
necessary.

In this paper, we propose a concrete roadmap, assuming a setting where
students have prior knowledge about imperative programming.

There is a wealth of literature about examples that describe how to teach
recursion – or how to “think recursively” – in a high school context, some of
which dates back decades by now; see Rinderknecht [13] for a survey. Many
of these approaches focus on the idea of introducing divide-and-conquer as a
first motivation, practicing this technique of decomposing a given problem into
subproblems “unplugged,” and after that possibly using a computer to put the
ideas into code, see, for instance, Hauswirth [5], Anderle et al. [1], or Sysło and
Kwiatkowska [17].

Without criticizing these approaches, in this paper we would like to offer an
alternative strategy, which – although we are speaking about a top-down concept
– somewhat follows a bottom-up approach. In a nutshell, we would like to be as
“hands-on” as possible in that we put programming in the center, and only move
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to more complex algorithms once terms like base case are understood and have
been successfully implemented. Thus, we start with very simple programs that
very carefully introduce core concepts one after the other, and have the students
put everything they learned into code as soon as possible. In particular, the
concept of divide-and-conquer is only introduced at the very end, at a point
where the students are able to actually implement the ideas described on a high
level.

The individual ingredients used in this paper are well known; our main con-
tribution is a detailed recipe that puts them into context. We give step-by-step
instructions on how all concepts involved can be taught in a constructive fashion.
The result is an exemplary lesson plan with examples and exercises that enable
the students to master basic recursion in small steps.

Didactically, our approach is in parts inspired by the PRIMM [14] principle,
although we do not always include all of its steps. The students are given code
(that can be executed as it is presented), reason about it, modify single parts
of it to understand what it does, and only after that write their own (similar)
programs.

The following points are crucial to our approach.

– Introduce one concept after the other in small steps.
– Apply new concepts as soon as possible.
– Use complete examples that can be executed as they are presented.
– Consequently build on the students’ preknowledge.
– Build bridges to known concepts.

2 Road Map

In the main part of the paper, we describe a road map that consists of seven
steps. Within these steps, the single aspects that make up recursive programming
are described. Whenever a new aspect is introduced, it is immediately applied
by the students by writing (Python) code, which is why we call our approach
“constructive.” We indeed follow many of Papert’s constructionist ideas including
programming the Turtle in the first steps of our lesson plan [11,12].

The lesson plan can be subdivided into seven steps, with a zeroth that is
prepended in the first 15min. A single lesson takes 45min.

0. Give a quick outlook on what is going to happen (Lesson 1).
1. Introduce recursion using an example (Lesson 1).
2. Link recursion to something known (Lesson 2).
3. Point out the importance of a base case (Lesson 3).
4. Combine recursion with return values (Lesson 4).
5. Allow multiple calls per function body (Lesson 5–6).
6. Implement known algorithms recursively (Lesson 7).
7. Introduce divide-and-conquer (Lessons 8 and on).
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Two non-trivial aspects of recursive programming are (1) having a function
return a value and processing it recursively, and (2) having more than one recur-
sive call in a single function body. We introduce both of them carefully, and even
avoid them completely in the first steps. Only in step 4 values are computed and
returned to the caller, and only in step 5 the programs actually branch. In step
7, both concepts are combined for the first time.

In the following subsections, we give a quick overview over the students’
programming experience that is assumed, and then describe the seven steps in
more detail.

2.1 Preknowledge

Our lesson plan is designed for grades 11 or 12 on the premise that the students
already have some experience with programming in Python. In particular, they
can define simple functions that include conditionals and loops, use variables,
and implement some standard algorithms such as Binary Search and Bubblesort.
We have been paying special attention to the introduction of variables. First, we
have introduced parameters as a kind of “read-only”-variables and only after
that considered variables changing their value during execution. The reason is
that many misconceptions arise in particular when transferring the concept of
variables from mathematics to informatics [7].

Additionally, the students are familiar with Turtle graphics, in particular the
gturtle library, which is part of the TigerJython environment [18,19], which
the students have used for two to three years by the time this lesson plan should
be applied.

We would like to remark that functional programming is not part of this
curriculum, and that recursion is therefore introduced after the students gained
experience with imperative programming. Dynamic data structures, which may
have a recursive nature, have also not been discussed. The students use Python
lists utilizing both random access and dynamic aspects, but without having
discussed any details of the implementation.

The idea of computational complexity was covered informally by, for instance,
reasoning about the number of elements that Binary Search inspects given a
sorted Python list of n elements. Big-O notation and other formal tools have
not been introduced.

2.2 Give a Quick Outlook on What Is Going to Happen

Before any concepts are introduced formally, we excite the students’ curiosity
by giving them an idea of what is covered within the following weeks. However,
it is not our goal to dive into recursive algorithms right away, but only to build
up some tension about an interesting and powerful tool that will be introduced
and used. We therefore show them pictures of fractals and point out their self-
similar structure. It is obvious that these pictures are hard to design with the
programming concepts the students know at this point. But lo and behold! Not
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Fig. 1. Introducing recursion using two simple programs

only will the new tool allow for drawing such pictures with rather little code,
but also for solving many interesting problems in a clever and elegant way.

However, before the students can use this exciting tool, they have to under-
stand the way it works, which is what the following seven steps (subsections)
are devoted to. For now, there will not be more motivation, but we will soon get
back to the things recursion brings to the table.

2.3 Introduce Recursion Using an Example

We start by asking the students what they think happens if a function “calls
itself” by introducing a very short toy example of a recursive function without
parameters as shown in Listing 1 (Fig. 1). Note that it may be necessary to
adjust some of the metaphors we have used so far. Defining a function may have
been thought of as “teaching the computer a new word,” but this analogy makes
somewhat less sense if the definition of a word again contains this word.

Studying Listing 1, we discuss with the students what will happen when exe-
cuting such a program by expanding it using the blackboard, and then running
it on a computer. There are two insights: (1) the program will theoretically run
forever, but also (2) this does not seem to be prohibited; so far, there is no obvi-
ous reason to write code this way, but also nothing seems to prevent us. The
students do, however, know that algorithms are supposed to work in finite time,
and thus such behavior is at least somewhat undesired. (Conversely, they are
not familiar with the concept of a call stack at this point, and we also do not
address the finiteness of the computer’s memory.)

So we ask the students what to do about having such a program “run forever,”
and they already know the answer, namely to use a parameter with a value that
is changed with every call. We show them Listing 2 (Fig. 1), asking them to
study the code and reason what it does, then to manually execute the program
by hand, and finally using the computer in order to see whether they were right.

2.4 Link Recursion to Something Known

The second step aims at demystifying recursion by building a bridge to known
concepts. First, we use the Turtle in order to draw simple shapes. The reason is
that the Turtle gives us a tangible notional machine [3,6,8] that can be observed
while executing the code. Ideally, the students are familiar with the Turtle since
primary school where another programming language, for instance, Logo, was
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Fig. 2. Drawing a spiral recursively and with a loop

used instead of Python. The Turtle is navigated using the self-explanatory com-
mands forward(), backward(), left(), and right(). Using the gturtle
library, no object-orientation is needed; the command makeTurtle() creates
a canvas with the Turtle in its center, which then executes the commands step-
by-step.

The students are now presented Listing 3 (Fig. 2) while being asked to figure
out what it draws. The task is again to execute the algorithm by hand and then
use the computer afterwards. Executing the code leads to the Turtle drawing
an infinite spiral. Applying what was learned in Sect. 2.3, the students are now
asked to set the maximum side-length of the spiral to 300 pixels, which can
be easily done by inserting an if-statement in line 2 of Listing 3, resulting in
Listing 4 (Fig. 2). This is the same strategy as used in Listing 2, which avoids
explicitly defining a base case (although it would not hurt).

Second, we compare Listing 4 to Listing 5 (Fig. 2), which draws the same
spiral, but uses no recursion but a loop, pointing out that the main difference is
that the variable d is now increased in line 5 instead of passing its increased value
to an according recursive function call. Further exercises practice converting
simple recursive code to non-recursive code and vice versa; an example is drawing
a number of steps as shown in Listings 6 and 7 (Fig. 3).

Of course, we have to be careful at this point, as the equivalency to loops is
not that easily established in general, but only works smoothly for such simple
tail recursions.

2.5 Point Out the Importance of a Base Case

So far, we have not used the term base case and at the same time avoided
Python’s return-statement – although the latter is known to the students. How-
ever, novices struggle a lot with the difference between return and print().
Before actually returning values in the context of recursion, we therefore make
an intermediate step and use return in order to end function calls. The rea-
son is to very explicitly study what is actually ended, namely only the current
function call, not all calls to this function, and not the whole program.

As an example, consider Listing 7, which was created in the preceding step.
We show the students that this code can be rewritten in a way that makes the
non-recursive case, the base case, more explicit; see Listing 8 (Fig. 3). Here we use
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Fig. 3. Drawing stairs with a loop and recursively

return to simply end the function call, which again can be linked to something
known, namely using Python’s break command within a “while True”-loop.

Also here, tasks are given to the students afterwards to consolidate what they
have just learned. However, the students also already know that return does
not simply end a function call but that there is usually an expression appended,
which is first evaluated and then returned. (As a matter of fact, return returns
None in Python, which is not discussed in class at this point.)

2.6 Combine Recursion with Return Values

Now the students understand that functions can call themselves, and by making
sure that there is a non-recursive base case that is guaranteed to be called at
some point, an infinite execution can be prevented. For the next step, we leave
the Turtle for a short time and present the code displayed in Listing 9 (Fig. 4),
which is the standard example of recursively computing the factorial of a natural
number n. (Note that we have deliberately not defined the factorial of zero, and
the else-statement in line 4 is not necessary.)

However, instead of starting with this function, we only present it after hav-
ing discussed thoroughly what happens when functions call themselves. In this
step, the first task for the students is to again reason about what the program
does without actually executing it. The results are discussed in class, and the
algorithm is executed by hand for small values of n. Together with the students,
we sketch how the functions are called, and how the computed values are passed

Fig. 4. Recursive implementations of the factorial and sum
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Fig. 5. Three binary trees with increasing depths

to the caller; we do still not formally speak about the concept of a call stack
here. After that, we let the students investigate single components of Listing 9,
asking them, for instance, what they think happens if we change “return 1” to
“return 2” in line 3, etc.

Only after that, the students write their own code, which involves returning
values, but sticks with one recursive call per function body. A sample task is to
compute the sum of the first n natural numbers recursively, which is of course
quite similar to computing the factorial of n; see Listings 9 and 10 (Fig. 4).

2.7 Allow Multiple Calls per Function Body

In this step, we return to the Turtle and use it to draw fractals, redeeming our
promise from Sect. 2.2. In our approach, the students do not have to learn any
new tool or advanced programming techniques besides recursion itself; every-
thing can be done using the very basic movement commands of the Turtle intro-
duced earlier.

Drawing fractals now for the first time adds concrete value to the new tech-
nique. Indeed, it is quite obvious that the factorial of some number can also be
computed with a loop instead – the similarities between both concepts were even
discussed explicitly in step 2 (for such simple cases). As for computing the sum,
there is even a closed formula, which may be known by some of the students.
However, drawing self-similar shapes using loops is not straightforward at all,
but quite elegant using recursion.

We again proceed in small “sub-steps.” The first task is to draw the simple
structure in Fig. 5a using a simple function with a single parameter d, making
sure the Turtle starts and ends at the left. Then, using this function, the second
task is to draw the shape in Fig. 5b, and the third task to use this function to
draw the shape in Fig. 5c.

Of course, no recursion is needed to draw any of these shapes, but our goal
is to have the students identify a pattern. The next task therefore asks them to
compare the three solutions in Listings 11 to 13 (Fig. 6), study where they differ
and what they have in common, before finally trying to use this insight to define
a recursive function. More specifically, we ask them to design a Python function
tree() with two parameters d and n, the first of which denoting the length of
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Fig. 6. Drawing the three trees from Figs. 5a to 5c, respectively

the first line (the “trunk” of the tree), and the second one the depth of recursion;
see Listing 14 (Fig. 7).

This is the first time that the students are confronted with the concept of
branching, that is, they now design functions with more than one recursive func-
tion call that is executed within a function body. Understanding what is happen-
ing here is crucial to master recursion. Therefore, the subsequent task asks the
students to trace the calls when executing a concrete call to their new function,
for instance, tree(135, 2). The insight is that this also results in a binary
tree (see Fig. 7a), whereas computing the factorial leads to a sequence of calls
that could be arranged in a linear structure.

The floor is now open to draw further fractals such as, for instance, the Koch
curve [10]. Note that we did not start with this example as the first line is only
drawn in this example after a sequence of recursive calls, while Listing 14 draws

Fig. 7. Drawing binary trees recursively
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Fig. 8. Known algorithms and their recursive counterparts

something in any function call. This makes it a lot easier for the students to
watch the Turtle execute their code. There is rich literature about other fractals
and how to design creative pictures using recursion [10,16].

2.8 Implement Known Algorithms Recursively

The students have now gained some experience with recursive programming, and
with fractals also encountered an example where this technique offers an obvious
advantage over programming using iteration. For the last two steps, we move to
algorithm design with the goal to use recursion to implement divide-and-conquer
strategies in step 7 (Sect. 2.9).

Before we get there, however, we again build a bridge to something known in
this step. As mentioned earlier, the students know about basic algorithms that
have been implemented using loops so far. As an example, consider Euclid’s
algorithm to compute the greatest common divisor of two numbers a and b. We
studied a very simple version without the modulo operator, as shown in Listing
15 (Fig. 8). We compare this known variant of the algorithm to the recursive
implementation in Listing 16 (Fig. 8). Together with the students, we identify
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Listing 19: Merging two sorted lists

1 def merge(leftlist, rightlist):
2 result = []
3 i_left = 0
4 i_right = 0
5 while i_left < len(leftlist) and i_right < len(rightlist):
6 if leftlist[i_left] < rightlist[i_right]:
7 result.append(leftlist[i_left])
8 i_left += 1
9 else:

10 result.append(rightlist[i_right])
11 i_right += 1
12 return result + leftlist[i_left:] + rightlist[i_right:]

a pattern that is similar to what we discovered when studying Listings 4 and 5
namely that the functions have in essence a very similar structure, but instead
of explicitly decreasing the values of the variables a and b in lines 4 and 6
(Listing 15), respectively, these exact values are passed when calling the function
recursively in lines 6 and 8 (Listing 16), respectively.

The next task revisits the Binary Search algorithm as presented in Listing
17 (Fig. 8). As this algorithm is, although somewhat easy to describe on a high
level, very hard to implement [2], the single steps are recalled before asking the
students to implement a recursive version as shown in Listing 18 (Fig. 8). The
solution again follows the same structure as the original implementation, but
instead of decreasing r in line 9 or l in line 11 (Listing 17), the values are
accordingly passed in lines 7 and 9 (Listing 18), respectively.

2.9 Introduce Divide-and-Conquer

Only now we consider the students ready to have a close look at the divide-and-
conquer strategy – this is our last step, not the first. In order to demonstrate the
power of this technique, we start with the well known Mergesort algorithm. As
mentioned in Sect. 2.1, the students already have some basic knowledge about
sorting a Python list of n numbers in increasing order using, for instance, the
Bubblesort algorithm. Depending on the level of the class, some simple observa-
tions about the number of swapping operations may have been made, exhibiting
a quadratic complexity.

So we now return to the topic of sorting n numbers and present the obser-
vation to the students that “merging” two sorted lists to a single sorted list can
be implemented in a straightforward fashion with two pointers, comparing their
smallest elements, and inserting the smaller of the two at the end of an initially
empty list. After thoroughly discussing this strategy, we ask the students to
implement it in Python, resulting in a function as shown in Listing 19.
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Listing 20: Mergesort recursively

1 def mergesort(data)
2 if len(data) <= 1:
3 return data
4 mid = len(data) // 2
5 leftlist = mergesort(data[:mid])
6 rightlist = mergesort(data[mid:])
7 result = []
8 i_left = 0
9 i_right = 0

10 while i_left < len(leftlist) and i_right < len(rightlist):
11 if leftlist[i_left] < rightlist[i_right]:
12 result.append(leftlist[i_left])
13 i_left += 1
14 else:
15 result.append(rightlist[i_right])
16 i_right += 1
17 return result + leftlist[i_left:] + rightlist[i_right:]

With this, the center piece of Mergesort is built, and we discuss in class how
the merging can be applied recursively in order to sort a given list. This is done
on the blackboard in an unplugged fashion, but as soon as it is understood, the
students can use their new tool to transfer the ideas into code. The result is shown
in Listing 20. Essentially, all that needs to be done is to rename the function from
Listing 19, slightly alter it to take only a single list as parameter (line 1), take
care of the base case (empty lists and lists with one element can be considered
sorted, lines 2 and 3), then split the given list in half using Python’s known
slicing notation, and apply the algorithm to the two resulting lists recursively
(lines 4 to 6).

The complexity of this algorithm can be discussed on a high level, without
introducing mathematical recursive functions, but arguing about the size of the
tree representing the calls. Note that Listing 20 can be implemented in an even
less cumbersome manner using Python’s pop() function to take the smaller
of the two elements out of the respective list instead of using the two pointers
i_left and i_right. However, since pop(0) has linear time complexity, this
would reduce studying Mergesort to absurdity.

At this point, all concepts have been introduced to write recursive code,
and in this step, all have been combined in order to implement a fast sorting
algorithm. Now the students are ready to investigate other examples of recursive
implementations of the divide-and-conquer strategy or study other problems
with natural recursive solutions such as listing all words of a fixed length over
some fixed alphabet or the initially mentioned Towers of Hanoi.

Acknowledgement. The author thanks Tobias Kohn for many interesting discussions
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