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8092 Zürich, Switzerland

{jacqueline.staub,zaheer.chothia}@inf.ethz.ch,
{larissas,pwacker}@student.ethz.ch

Abstract. Programming is being widely adopted as a classroom activity
to promote computational literacy across the full spectrum of ages. As
of now, however, there is a gap between curriculum designers and the
teachers that work directly alongside pupils. Educators build their lessons
around predefined curricula and programming environments with limited
scope for customization. As a result, their involvement is limited to using
teaching resources as black boxes and creating tasks that live external to
the programming environment. This work presents a small extension to
the XLogoOnline programming environment and demonstrates how non-
technical users are empowered to define, share and evaluate their own
programming tasks. Our proposed tool is targeted at navigation tasks
on a two-dimensional grid. Different categories of tasks can be easily
assembled in graphical form and submitted solutions are automatically
verified. We report from practical experience over a time span of 18
months and give highlights from a collection of 1331 programming tasks.
The tool offers value by allowing teachers to design handouts and exams
and also encourages teamwork by allowing pupils to challenge their fellow
classmates. Beyond their use in the classroom, the idea of collecting task
sets is a useful foundation for self-guided learning, exams and even large-
scale competitions – which we intend to pursue in future work.
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1 Programming Has Entered Compulsory Schooling

Computer science is currently being established as a new school subject in many
countries around the world, making programming an activity that hundreds of
thousands of children and adolescents are now learning as part of their compul-
sory education. The details of how and when programming is first taught varies
from country to country [17]. To take one example, the UK’s National Curricu-
lum contains a dedicated subject termed “Computing” that comprises activities
such as programming that have deep-rooted origins in computer science. British
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children are exposed to those concepts from the very beginning of their schooling
career [1]. In contrast, the Swiss Lehrplan 21, which is being implemented by
all 21 German-speaking cantons in the country, does not contain a dedicated
subject for these activities prior to fifth grade. The curriculum does, however,
require that teachers foster algorithmic thinking in an interdisciplinary way from
kindergarten on.

Teacher Participation is Key to Enacting Change

The success of introducing a new teaching reform stands and falls with the
participation of teachers. Only when teachers actively help and support the
ideas of a reform can new ideas take root in the school system. Historically, it
is well-known that the implementation of a reform depends largely on whether
and how teachers take responsibility for the implementation of new ideas [8].

At the same time, however, there is evidence that teachers often have a
sketchy understanding of content when developing their own learning materi-
als and that targeted support is quite useful [5]. With regard to the current
introduction of computer science as a new school subject, this is hardly differ-
ent – teachers are the pillars of this reform and, without their active assistance,
meaningful change is not possible.

We argue that most current programming environments do not provide
enough opportunity for teachers to participate in the design of teaching materi-
als and teachers are thus forced into the unhelpful role as users of prefabricated
materials. Without the ability to respond appropriately to individual circum-
stances, to generate curricular content themselves, and to integrate it directly
into students’ learning environments, there is a risk that teachers may not want
to support the introduction of a new school subject.

Merits of Integrating Learning Environments with Curriculum

Many different programming languages and environments are used in schools [17];
some of which follow a free-form approach while others are task-based. These two
categories can be distinguished as follows:

– Free-form environments: We consider a programming environment to be
free-form if it is set up as generalist platform – i.e. it allows for numerous appli-
cations while not providing any concrete embedded programming challenges.
This category includes several well-known environments such as Scratch and
ScratchJr [12], AppInventor [19], TigerJython [9,18], or AgentCubes [6].

– Task-based environments: If a learning platform is designed around the
idea of a built-in collection of programming challenges that programmers
can attempt to solve, we consider the platform to be part of the family of
task-based learning environments. Examples in this category include the pro-
gramming environments Code.org, Lightbot, and Emil [7], as well as the pro-
gramming competition platforms Pisek [11] and Algorea [10].

Regardless of whether students are taught in a free-form environment or on
a task-based platform, the ultimate goal of programming education is typically
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to make students explore the most important programming concepts, become
proficient in them by creating tangible outputs, and learn how to solve prob-
lems in an efficient and elegant way. Most programming curricula used in K–6
revolve around the concepts of sequences, repetition, functions, parameteriza-
tion, branching, and variables [1]. All of these concepts can be taught using an
external textbook or via tasks that are directly integrated into the programming
environment.

We argue that neither of these approaches alone adequately addresses the
needs of teachers at the moment. Whilst free-form programming environments
allow for an infinite variety of different programming activities, decoupling tasks
from their associated programming platform has the disadvantage that it is not
possible to give pupils automated individual feedback as they progress. More-
over, it is not guaranteed that learners actually use programming concepts in a
meaningful way [13]. Task-based learning platforms, on the other hand, integrate
a curriculum directly into a digital learning platform which allows for automated
feedback. The downside of most platforms belonging to this category, however,
consists in their limited number of tasks and lack of customization.

We have addressed these shortcomings by adding a task collection mode
to the free-form programming environment XLogoOnline, effectively making it
a hybrid task-based and free-form programming platform. The proposed tool
allows teachers and students to create their own custom tasks which subsequently
can be solved and shared with others. Different categories of tasks can be easily
assembled in a graphical user interface and submitted solutions are automatically
verified by the programming environment. In the following sections, we will
present the technical basis of the tool (Sect. 2) as well as a small selection of
tasks that have been created by our user base in the past 18 months (Sect. 3).

2 An Extensible Collection of Programming Tasks

XLogoOnline [14] is a Logo learning environment currently used by roughly
70 000 users every year. Most of these users are primary school students or teach-
ers originating from any of the four language regions of Switzerland. There is,
however, also a growing population of XLogoOnline users in various other parts
of the world such as Germany, Spain, or Lithuania [15]. The platform was orig-
inally designed as a free-form programming environment that is used alongside
a programming textbook. The textbooks we usually use [2–4] constitute a spiral
curriculum from kindergarten to the end of high school [16].

This work is oriented towards K–2 but nevertheless ties into a larger frame-
work that spans K–6 (children aged 6 to 12 years). Throughout the quoted age
range, the environment comprises three stages that guide students from their
first timid steps in the world of block-based programming with only a handful
of unparameterized instructions to full-featured text-based programming with
extended features and the possibility to add any number of abstraction lay-
ers thanks to user-defined procedures. Due to their linguistic differences (i. e.,
parameterized vs. non-parameterized basic commands), the application domain
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used with the youngest age group is only remotely reminiscent of classical turtle
graphics. Instead of drawing geometric shapes using arbitrary angles and lines,
novices ages 6 to 8 years learn to steer the turtle through a two-dimensional grid
and solve navigation tasks (see Fig. 1). As we will show, whilst a pared-down
command set and grid-based task setting heavily reduce the problem domain for
the youngest pupils, with minor tweaks this basic concept still permits a wide
assortment of stimulating tasks.

Fig. 1. XLogoOnline contains two different application domains. Students aged 9 years
or older are acquainted with traditional turtle graphics where they draw geometric
shapes (as shown on the right). Children aged 6 to 8 years, on the other hand, use a
simplified vocabulary that does not provide the possibility to draw arbitrary angles.
Instead, they learn programming by solving simple navigation tasks as shown on the
left.

Programming is not only a challenge for students, but also for their teachers.
Children are notorious for only skimming over assignments [20]. As a result,
they struggle to verify the correctness of their own solutions and often rely on
external guidance to point out mistakes. For teachers with limited experience in
programming and holding the responsibility of devoting attention to an entire
class, this creates a significant hurdle.

We created a task collection made up of almost 100 predefined tasks1 which
are embedded directly into the XLogoOnline programming environment. All the
tasks require students to navigate a turtle on a two-dimensional grid using just
the four basic commands forward, back, left, and right. To start with, the
initial assignments are straightforward and ask the student to find a path to a
given object in the grid. Once basic movements have become familiar, additional
requirements are introduced such as obstacles that cannot be traversed, multiple
objects that need to be collected, or finding a solution with constrained vocabu-
lary. Latter tasks rely on students identifying patterns and writing more concise
solutions by identifying symmetry and making use of the command repeat.

All of these tasks can be clustered in three rough categories: (i) tasks that
contain exactly one target cell, (ii) tasks that contain several target cells which
all need to be visited in a specific order or randomly, and (iii) tasks that
1 https://xlogo.inf.ethz.ch/release/latest/mini.

https://xlogo.inf.ethz.ch/release/latest/mini
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Fig. 2. The three tasks “find the strawberry”, “collect the letters in the order implied
by the word TURTLE”, “find a green triangle without standing on a square” represent
instances for each of the task categories (single target, multi-target, added restrictions).
(Color figure online)

contain additional restrictions such as forbidden cells or a constrained vocabu-
lary. Figure 2 shows some instances of tasks that cover all three of the mentioned
categories.

2.1 Finding Common Ground: Task Data Structure

Despite their differing formulation, all the previously-presented tasks share the
same fundamental structure. That is, each task consists of three main elements
that must be specified individually:

1. Tiles: Each task consists of a grid with one or more grid cells that must be
arranged contiguously, but not necessarily in a perfect rectangular configu-
ration. Each cell in the grid is uniquely identified by its x- and y-coordinate
specifying its absolute location. The coordinate at the top left always corre-
sponds to the location (0, 0). All other cells are identified by their horizontal
and vertical distance from this cell.

2. Turtle: Each task must contain exactly one turtle whose initial location on
the grid must be specified in terms of an x- and y-coordinate. The turtle’s
initial orientation can be expressed using one of four possible states: 0 (facing
North), 90 (facing East), 180 (facing South), or 270 (facing West).

3. Objects: As depicted in Fig. 2, there are several kinds of objects that can
be used as part of a task assignment. Four categories of objects are provided:
(i) strawberry and lemon patches with up to 4 fruit per field, (ii) eight color-
ful circles, (iii) nine colorful shapes including triangles, squares, and crosses,
(iv) Unicode characters such as letters, digits, and emoticons.

Within the programming environment, tasks are represented using an inter-
nal data structure that contains detailed information for each of the task ele-
ments listed above. Figure 3 shows a side-by-side comparison between a visual
task and its corresponding internal representation.

The presented data structure is suitable as a universal representation as it
allows millions of different tasks to be described by the same underlying struc-
ture. XLogoOnline offers an embedded graphical user interface allowing both
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Fig. 3. A simple task containing four grid cells, a turtle and two special objects. The
code shows how the visual task on the left is represented internally.

teachers and students to intuitively develop and share their own exercises with-
out having to look at the structure inside. The interface is able to interpret and
visualize any task written in this format.

Without the possibility to check the correctness of student solutions, the
tool permits sharing of ideas but serves only half of its educational purpose. The
next logical extension is to explain how the data structure can be extended to
automatically verify student submissions and – in the case of faulty solutions –
to provide targeted feedback, which we will now elaborate on.

2.2 Solution Verification

In this section, we explain how arbitrary solutions for the task categories pre-
sented earlier can be automatically verified. We discuss what different kinds of
tasks exist and how each of these task classes can be verified.

So far, we have managed to represent all navigation tasks with one single
unified data structure. Therefore, the question arises: Does this conceptual sym-
metry also apply to the aspect of solution validation? The answer, sadly, is ‘no’.
Despite superficial similarities, the correction of seemingly-related tasks often
differs substantially and several differing verification strategies are needed to
fully cover the spectrum of possible tasks.

Broadly speaking, the realm of different tasks can be clustered into three
categories: (i) tasks with one target, (ii) tasks with multiple targets, (iii) tasks
with additional restrictions. However, these categories need to be broken down
further to actually differentiate all relevant classes from the verification point of
view. Specifically, we identify a total of six different task types, namely:

– A: Tasks with one target field.
– B: Tasks with multiple targets.
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• B1: Items can be collected in any order.
• B2: Items must be collected in a specific order.

– C: Tasks with additional restrictions.
• C1: Tasks with obstacles, i.e., forbidden fields.
• C2: Tasks with walls, i.e., forbidden passage between fields.
• C3: Tasks with restricted command set.

Fig. 4. A simple task containing one success field and one forbidden field.

The constraints and requirements of categories A, C1, and C2 all relate
to properties of the grid structure and cells therein. Accordingly, the “tiles”
attribute can be annotated with information that describes the specific task
type. Any cell in the grid can be labeled as the designated target by setting the
“success” flag in it. Likewise, grid cells can be marked as inaccessible terrain by
applying a “forbidden” attribute (as in Fig. 4). In addition, the “walls” attribute
is used to shield fields from one side only.

Fig. 5. A task that requires three fields to be visited in a specific order to form the
character sequence ‘ABC’.

As soon as a task requires more than one target (as in task types B1 and B2),
the question arises whether the individual targets are independent of each other.
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If this is the case, it is sufficient to annotate several cells with a corresponding
“success” flag. If, however, the cells are to be visited in a specific order (as in
Fig. 5), an adapted representation must be used. In this case, the task contains
Unicode characters which are accessible via the “value” attribute of a special
object. Using these values and a simple concatenation of all visited fields, we
are able to distinguish the correct solution “ABC” from an incorrect one like
“CBA”.

Fig. 6. The task asks for a meaningful concatenation of the four letters ‘D’, ‘I’, ‘E’,
and ‘T’. There are, however, multiple correct solutions to this question. We need to
note them all as valid solution candidates.

Some tasks may inherently permit more than just one correct solution and
there is no technical barrier to prevent users from creating such tasks. Figure 6
depicts a scenario where this is the case: using the four given letters ‘D’, ‘I’, ‘E’
and ‘T’, we are required to form an English word. The obvious solution “DIET”
could be substituted by any of the following alternative words: “EDIT”, “TIDE”,
“TIED”. All four solutions are valid and should be recognized as acceptable by
the automatic verification mechanism. In order to reach this goal, we need to
extend the “solution” entry with all possible solutions to the task such that the
algorithm is able to validate that the student’s submitted solution comes from
this permitted set.

The last category of tasks C2 imposes constraints on the linguistic level (i.e.,
tasks may restrict the vocabulary that can be used or the number of commands
allowed in a solution). This idea is especially intriguing when working with the
repeat statement which often goes hand-in-hand with a drastic reduction of
program length. In order to restrict solutions linguistically, we state which com-
mands are allowed to be used, how many such commands are permitted, or what
total length the final program is allowed to have. Figure 7 shows an example of
a task with a restricted command set.
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Fig. 7. All 4 berries must be collected with at most 4 commands.

In this section we presented the underlying representation form and mecha-
nisms used to support custom tasks within XLogoOnline’s learning environment.
All the previously-presented features are fully integrated and accessible from a
graphical frontend. In this way, teachers have the possibility to create custom
content for their class and adapt tasks to the linguistic, cognitive, and cultural
background of their learners. In the next chapter we dive deeper into this col-
laborative aspect and present new and imaginative tasks that were created by
our user base.

3 Case Study: User Activity During the Past 18 Months

Our tool also offers a graphical frontend from which users can easily design,
test and publish custom content directly within the XLogoOnline programming
environment. This task creation mode has been publicly available since January
2020 and, from the very beginning, it has been used by both teachers and stu-
dents alike. Over the past 1.5 years, community contributions have grown to
number well over 1331 tasks. To give a glimpse of this valuable dataset, we will
now present a few exemplary tasks of particular interest.

One noticeable observation within the data was the presence of numerous
misspellings and linguistic errors in a non-negligible proportion of all tasks. These
errors are characteristic of our target audience (children aged 6 through 8) and
we consequently assume that some teachers actively use the tool with their pupils
in class. To help pick apart these differing audiences, we divided the data into
two categories using the presence of orthographic errors as a rough indicator of
whether the task author was presumably a child or an adult. We acknowledge
that this criteria isn’t foolproof and defer a more thorough analysis to future
work.

Among the tasks we attribute to adults, we see a broad variety of task types
and, in particular, several imaginative examples that rely on transfer from other
fields (e.g. spatial reasoning, arithmetic) which were not previously included
in our task collection in this form. Figure 8 shows two such examples: (i) The
first task requires students to connect digits and mathematical operators in a
grid in such a way that the resulting text is both a valid and numerically-correct
mathematical statement; (ii) The second task falls into the category of tasks with



144 J. Staub et al.

Fig. 8. Two examples of teacher tasks. The task on the left requires pupils to first iden-
tify a mathematically valid statement and then make the turtle discover the equation.
The task on the right is a natural use case for the repeat statement.

restrictions. In this latter example, the turtle is expected to find the strawberry
at the end of a slalom using the shortest possible representation. In order to solve
the task, students need to make use the repeat statement. We consider both tasks
as a testimony that teachers – when given the opportunity – do indeed come up
with highly creative and cognitively-appealing tasks.

Fig. 9. Two examples of student-created tasks. Both cannot be solved correctly.

Ultimately, tasks are intended to support pupils in their learning. If we
instead look at tasks created by children themselves, these are more playful and
exploratory in nature. There are numerous interesting examples that show how
students explore the limits of the provided rule system or otherwise try to test
the feasibility of tasks. Whether intentional or not, there are several instances
of tasks that have a clear formulation yet are unsolvable as given and in Fig. 9
we see two such examples. Though the attempt didn’t succeed in these cases,
this shift to the pupil’s point of view is valuable as it gives the teacher a window
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into how the pupil operates and what they think. In any case, the tool obviously
provides a learning ground for pupils to explore the system they work in and
expand their understanding.

4 Conclusion

Computer science has established itself as a vibrant and growing discipline in
research, however, is still as-yet unformalized and unfamiliar to the broader pop-
ulation of educators. With many countries having recently introduced Computer
Science as a new subject across all age ranges, teachers are being forced to re-
orient themselves and are confronted with the daunting task of creating new
teaching materials, exercises, differentiation tasks, tests and more. Naturally,
there are a range of books, curricula and learning environments that exist, how-
ever, these touch on a specific set of topics, present closed facts and overall leave
little room for tweaks and adaptation. Precisely this adaptation is vital as it is
well-known that educational reforms must be supported and directly driven by
teachers to be successful. Formulated differently, this implies that teachers need
the possibility to create individual learning opportunities for their students.

In this work, we presented a collection of navigation tasks where pupils direct
a turtle around a 2D grid and collect various objects. Aside from demonstrating
how the same basic structure permits a range of task difficulties for different
ages, we formalized a technological solution that is tightly integrated within the
XLogoOnline programming environment. Using the new task collection mode,
teachers – or even pupils themselves – are able to playfully design, test, and
share their own tasks without any background knowledge. As an added benefit,
the environment includes an automatic verification mechanism that provides
students with individualized feedback, allows them to progress at their own pace
and reduces the burden on teachers. Because of these attributes, the tool is well
suited as a platform to host in-class exams or even competitions. We have begun
early exploration in this direction and plan to further develop this aspect and
eventually create a full-featured programming competition platform that allows
pupils to practice in an authentic context, supports the workflow of designing
new problem sets, and facilitates distribution and grading of tasks.
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