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Chapter 8
Internet of Things Security and Privacy

8.1  Introduction

The Internet of Things (IoT) promises to make our lives more convenient by turning 
each physical object in our surrounding environment into a smart object that can 
sense the environment, communicate with the remaining smart objects, perform 
reasoning, and respond properly to changes in the surrounding environment. 
However, the conveniences that the IoT brings are also associated with new security 
risks and privacy issues that must be addressed properly. Ignoring these security and 
privacy issues will have serious effects on the different aspects of our lives including 
the homes we live in, the cars we ride to work, and even the effects that will reach 
our own bodies.

If your home does not already have a smart meter, it will soon have multiple of 
those meters that are dedicated to monitor and control the power consumption, the 
heating, and the lighting of your house. This is not to mention the smart gadgets that 
will be found all over your house such as the smart camera that notifies your smart- 
phone during business hours when movement is detected, the smart door that opens 
remotely, and the smart fridge that notifies you when you are short of milk. Imagine 
now the level of control that an attacker can gain by hacking those smart meters and 
gadgets if the security of those devices was overlooked. In fact, the damage caused 
by cyberattacks in the IoT era will have a direct impact on all the physical objects 
that you use in your daily life. The same applies to your smart car as the number of 
integrated sensors continues to grow rapidly and as the wireless control capabilities 
increase significantly over time, giving an attacker who hacks the car the ability to 
control the windshield wipers, the radio, the door lock, and even the brakes and the 
steering wheel of your car. Our bodies will not also be safe from cyberattacks. In 
fact, researchers have shown that an attacker can control remotely the implantable 
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and wearable health devices (e.g., insulin pumps and heart pacemakers) by hacking 
the communication link that connects them to the control and monitoring system. 
This gives the attacker, for example, the ability to tune the injected insulin dose 
causing serious health problems that may even cause death to patients wearing those 
smart health devices. In fact, such concerns have made doctors disable the wireless 
capability of the heart pacemaker of Dick Cheney, the former US vice president, in 
order to protect him from such malicious attacks.

The security risks are also extremely serious when IoT devices are used in busi-
ness enterprises. If an attacker hacks any of those smart objects that are used in a big 
enterprise, then the sensing capabilities that those smart objects have can be used by 
the attacker to spy on the enterprise. Such cyberattacks can also be used to steal 
sensitive information such as the company earnings report and credit card informa-
tion. In fact, these stealing attacks are common in big enterprises such as the largest 
financial hacking case in the US history, which took place in 2013, where a group 
of five hackers stole $160 million from credit cards and over hundreds of millions 
in criminal loot.

Maintaining users’ privacy in IoT is also crucial as there is an enormous amount 
of information that an outsider can learn about people’s life by eavesdropping on the 
sensed data that their smart house appliances and wearable devices report. In fact, 
people will be living in a “Big Brother” world where smart things record our daily 
activities anytime and everywhere. The advances in the fields of facial, speech, and 
human activity recognition amplify the amount of information that the sensed data 
can reveal if it falls in the wrong hands. Even if your IoT objects are merely report-
ing metadata, you would be surprised by the amount of information that an outsider 
can learn about your personal life when aggregating the metadata collected from 
multiple hacked objects that surround you over time. It is thus essential to find solu-
tions to preserve people’s privacy in the IoT era.

The objective of this chapter is to shed the light on some of the security and pri-
vacy issues that the IoT paradigm is exposed to. We also survey the techniques that 
were proposed to address these issues. Some of the discussed techniques prevent 
security breaches from taking place, while others try to detect malicious behavior 
and trigger an appropriate mitigating countermeasure. The rest of the chapter is 
organized as follows. Section 8.2 identifies the new security challenges that are 
encountered in the IoT paradigm. Section 8.3 identifies the IoT security require-
ments. Section 8.4 briefly describes the three domains in the IoT architecture. 
Sections 8.5–8.7 survey the security attacks and countermeasures at the cloud 
domain, the fog domain, and the sensing domain, respectively. Section 8.8 discusses 
approaches for securing IoT Devices. The section starts by providing several exam-
ples of IoT devices used in security attacks, and then discusses solutions including 
MUD and DICE. Finally, Sect. 8.9 summarizes the chapter and provides directions 
for future work related to the area of IoT security.
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8.2  IoT Security Challenges

IoT has unique characteristics and constraints when it comes to designing efficient 
defensive mechanisms against cybersecurity threats that can be summarized by:

 1. Multiple Technologies: IoT combines multiple technologies such as radio- 
frequency identification (RFID), wireless sensor networks, cloud computing, 
virtualization, etc. Each of these technologies has its own vulnerabilities. The 
problem with the IoT paradigm is that one must secure the chain of all of those 
technologies as the security resistance of an IoT application will be judged based 
on its weakest point which is usually referred to by Achilles’ heel.

 2. Multiple Verticals: The IoT paradigm will have numerous applications (also 
called verticals) that span eHealth, industrial, smart home gadgets, smart cities, 
etc. The security requirements of each vertical are quite different from the 
remaining verticals.

 3. Scalability: According to Cisco, 26.3 billion smart devices will be connected to 
the Internet by 2020. This huge number makes scalability an important issue 
when it comes to developing efficient defensive mechanisms. None of the previ-
ously proposed centralized defensive frameworks can work anymore with the 
IoT paradigm, where the focus must be switched to finding practical decentral-
ized defensive security mechanisms. An IoT solution needs to scale cost- 
effectively, potentially to hundreds of thousands or even millions of endpoints.

 4. Availability: Availability refers to characteristic of a system or subsystem that is 
continuously operational for a desirably long period of time. It is typically mea-
sured relative to “100% operational” or “never failing.” A widely held but 
difficult- to-achieve standard of availability for a system or product is known as 
“five 9 s” (available 99.999% of the time in a given year) availability. Security 
plays a major rule in high availability as network administrators often hesitate to 
use needed threat-response technology functions (e.g., network discovery as 
illustrated in Chap. 7) for fear that such functions will take down critical sys-
tems. Even a simple port scan causes some IoT devices to stop working, and the 
cost of downtime can far exceed the cost of remediating all but the most severe 
incidents. In some instances, network administrators would rather have no 
cybersecurity protection rather than risk an outage due to a false positive. This 
leaves them blind to threats within their control networks. Companies often add 
redundancy to their systems so that failure of a component does not impact the 
entire system.

 5. Big Data: Not only the number of smart objects will be huge, but also the data 
generated by each object will be enormous as each smart object is expected to be 
supplied by numerous sensors, where each sensor generates huge streams of data 
over time. This makes it essential to come up with efficient defensive mecha-
nisms that can secure these large streams of data.

 6. Resource Limitations: The majority of IoT end devices have limited resource 
capabilities such as CPU, memory, storage, battery, and transmission range. This 
makes those devices a low-hanging-fruit for denial of service (DoS) attacks 
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where the attacker can easily overwhelm the limited resource capabilities of 
those devices causing a service disruption. In addition to that, the resource limi-
tations of those devices raise new challenges when it comes to developing secu-
rity protocols especially with the fact that the traditional and mature cryptography 
techniques are known to be computationally expensive.

 7. Remote Locations: In many IoT verticals (e.g., smart grid, railways, roadsides), 
IoT devices, epically sensors, will be installed in unmanned locations that are 
difficult to reach. Attackers can interfere with these devices without being seen. 
Cyber and physical security monitoring systems must be installed in safe- 
guarded location, operate in extreme environmental conditions, fit in small 
spaces, and operate remotely for routine updates and maintenance avoiding 
delayed and expensive visits by network technicians.

 8. Mobility: Smart objects are expected to change their location often in the IoT 
paradigm. This adds extra difficulties when developing efficient defensive mech-
anisms in such dynamic environments.

 9. Delay-Sensitive Service: The majority of IoT applications are expected to be 
delay-sensitive, and thus one should protect the different IoT components from 
any attack that may degrade their service time or may cause a service disruption.

8.3  IoT Security Requirements

We summarize in this section the security requirements for IoT. These requirements 
include:

• Confidentiality: ensures that the exchanged messages can be understood only by 
the intended entities.

• Integrity: ensures that the exchanged messages were not altered/tampered by a 
third party.

• Authentication: ensures that the entities involved in any operation are who they 
claim to be. A masquerade attack or an impersonation attack usually targets this 
requirement where an entity claims to be another identity.

• Availability: ensures that the service is not interrupted. Denial of service attacks 
target this requirement as they cause service disruption.

• Authorization: ensures that entities have the required control permissions to per-
form the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement 
where an old message is replayed in order to return an entity into an old state.

• Non-repudiation: ensures that an entity cannot deny an action that it has 
performed.

• Forward Secrecy: ensures that when an object leaves the network, it will not 
understand the communications that are exchanged after its departure.

• Backward Secrecy: ensures that any new object that joins the network will not be 
able to understand the communications that were exchanged prior to joining the 
network.
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8.4  IoT Three-Domain Architecture

Before introducing IoT security issues, we briefly describe in this section the three- 
domain architecture that we consider in our security analysis.

As illustrated in Figs. 8.1 and 8.2, the architecture is made up of the following 
three domains:

 1. IoT Sensing Domain: This domain is made up of all the smart objects that have 
the capability to sense the surrounding environment and report the sensed data to 
one of the devices in the fog domain. The smart objects in the sensing domain 
are expected to change their location over time.

IoT Applications
IoT Cloud Domain

IoT Services Platform

IoT Network
IoT Fog Domain

IoT Devices
IoT Sensing Domain

Fig. 8.1 Mapping of IoT 
domains

Fig. 8.2 The IoT domains

8.4 IoT Three-Domain Architecture
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 2. Fog Domain: This domain consists of a set of fog devices that are located in 
areas that are highly populated by many smart objects. Each fog device is allo-
cated a set of smart objects where the allocated objects report their sensed data 
to the fog device. The fog device performs operations on the collected data 
including aggregation, preprocessing, and storage. Fog devices are also con-
nected with each other in order to manage the communication among the smart 
objects and in order to coordinate which fog device will be responsible for han-
dling which object as objects change their location over time. Each fog device is 
also connected to one or multiple servers in the cloud domain.

 3. Cloud Domain: This domain is composed of a large number of servers that host 
the applications that are responsible for performing the heavy-computational 
processing operations on the data reported from the fog devices.

We analyze in the following sections the security attacks and countermeasures at 
each one of those three domains. We follow a top-down order where we describe the 
attacks and countermeasures that are encountered at the cloud domain, the fog 
domain, and the sensing domain. For each one of those domains, we identify the 
most popular security attacks and then describe how these attacks are launched, 
what vulnerabilities they exploit, and what countermeasure techniques can be used 
to prevent, detect, or mitigate those attacks.

8.5  Cloud Domain Attacks and Countermeasures

As mentioned earlier, the cloud domain holds the IoT applications that are perform-
ing different operations on the data collected by the IoT objects. Each IoT applica-
tion is dedicated one or multiple virtual machines (VMs) where each VM is assigned 
to one of the servers in the cloud data center and gets allocated certain amount of 
CPU and memory resources in order to perform certain computing tasks. The cloud 
data center is made up of thousands of servers where each server has certain CPU, 
memory, and storage capacities, and thus each server has a limit on the number of 
VMs that it can accommodate. The servers in the cloud data center are virtualized 
which allows multiple VMs to be assigned to the same server as long as the server 
has enough resource capacity to support the resource requirements of each hosted 
VM. Figure 8.3 shows an illustration of how multiple VMs can be assigned to the 
same server, thanks to virtualization (more details on virtualization were discussed 
in Chap. 6). Each IoT application is hosted on a VM that has its own operating sys-
tem (OS). The hypervisor (sometimes also called the virtual machine manager) 
monitors those running VMs and manages how these VMs share the server’s hard-
ware. The hypervisor also provides the logical separation among the VMs and also 
separates each VM from the underlying hardware. The hypervisor has also a migra-
tion module that manages how to move a VM that is currently hosted on the server 
to another server. The migration module also manages the reception of a VM that is 
moved from other servers.
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Cloud computing is considered a high-risk environment for many businesses and 
consumers as they feel its perimeter cannot be defined nor controlled. In addition, 
many government agencies must comply with regulatory statutes, such as the Health 
Insurance Portability and Accountability Act (HIPAA), the Sarbanes-Oxley Act of 
2002 (SOX), and the Federal Information Security Management Act (FISMA). The 
IoT applications running in the cloud domain are susceptible to numerous security 
attacks. We summarize next the most popular ones:

 1. Hidden-Channel Attacks: Although there is a logical separation among the VMs 
running on the same server, there are still some hardware components that are 
shared among those VMs such as the cache. This opens opportunities for data 
leakage across the VMs that reside on the same server. Three steps are followed 
by the attacker in order to leak information from a target VM. These three steps 
are explained next:

 (a) Step1: Mapping Target VM: The first step toward launching an attack 
against a VM in a cloud data center is to locate where the target VM resides. 
A cloud data center is typically divided into multiple management units 
called clusters, where each cluster is located in a certain geographical loca-
tion and is made up of thousands of servers. Each cluster is divided into 
multiple zones (sometimes called “pods”) where each zone consists of a 
large number of servers. Although clients have the choice to specify in 
which cluster their VM resides, they do not have control on selecting the 
zone or the server within the zone where their VM will reside as this deci-
sion is made based on the cloud provider’s scheduling algorithm which is 
not released publicly. In order to know where a target VM resides, the 
attacker needs only to know the external IP address of that VM where each 
VM hosted on the cloud has usually two IP addresses: an external address 
used to communicate with any entity that is located outside the cloud cluster 
and an internal address used only within the cloud cluster and is only visible 
within the cloud cluster. The attacker can infer based on the VM’s external 

Fig. 8.3 Illustration of 
how multiple IoT 
applications can be hosted 
on the same server, thanks 
to virtualization
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IP address on what cluster the VM resides, as cloud clusters are usually 
placed in different geographical locations and have different IP addresses. 
Now in order to identify in what zone within the cluster the target VM 
resides, the attacker needs to know the target VM’s internal IP address as the 
internal IP addresses for all VMs within the same zone have the same net-
work prefix. In order to identify the VM’s internal IP address, the attacker 
rents a VM in the same cluster as the one where the VM resides. The rented 
VM is then used to query the DNS server of the cloud cluster where the 
internal IP address of the target VM can be fetched. By observing the  internal 
IP address of the target VM in the DNS query, the attacker can tell what zone 
within the cloud cluster the VM is hosted in.

 (b) Step2: Malicious VM Placement: having identified on what cluster and on 
what zone the target VM resides, the next step toward launching an attack 
against the target VM is to place a malicious VM on the same server where 
the target VM resides. In order to do that, the attacker rents a VM in the same 
cluster as the target VM. The cloud provider’s scheduling algorithm places 
the rented VM on one of the servers within one of the cluster’s zones. The 
attacker performs a traceroute from the rented VM to the target VM where 
the routing path that separates the rented VM and the target VM is identified. 
If the identified routing path shows multiple hops that separate the target 
VM and the rented VM, then the attacker knows that the rented VM was not 
placed on the same server as the target VM. The attacker then releases the 
rented VM and requests a new one. The cloud provider’s scheduling algo-
rithm selects a server to host the requested VM. The attacker performs a 
traceroute from the new rented VM to the target VM in order to know 
whether or not the target VM and the new rented VM reside on the same 
server. The attacker continues releasing then renting new VMs and perform-
ing a traceroute until he/she identifies that the cloud provider’s scheduling 
algorithm has placed the rented VM on the same server as the target VM.

 (c) Step3: Cross-VM Data Leakage: Having placed a malicious VM on the 
same server as the target VM, the attacker now tries to learn some informa-
tion about the target VM by exploiting the fact that although VMs are sepa-
rated logically, thanks to virtualization, they still share certain parts of the 
server’s hardware such as the instruction cache and the data cache. The 
attacker can now, for example, learn what lines of cache (data or instruction) 
the target VM has accessed recently. This can be done as follows. When the 
shared cache is assigned to the malicious VM that is under the control of the 
attacker, the attacker fills the whole shared cache by dummy data. The mali-
cious VM then yields the shared cache to the target VM which performs 
some data access operations. The malicious VM sends an interrupt after a 
short time from yielding the cache to the target VM asking to assess the 
cache so that the target VM yields the cache for the malicious VM. Now the 
malicious VM probes the different lines of the cache asking to fetch the 
dummy data that were previously filled in the cache. By observing the time 
it takes to access each chunk of the dummy data, the malicious VM can tell 
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which chunks of the dummy data were fetched from the cache and which 
chunks were fetched from memory as they were replaced by data that was 
accessed by the target VM.  This gives information to the malicious VM 
about what addresses the target VM has accessed recently. Knowing what 
addresses the target VM accesses over time can help the malicious VM 
recover parts of the security keys that the target VM is using.

 (d) Different countermeasures can be taken to prevent hidden-channel attacks 
from taking place. The first twos steps needed to launch this attack (mapping 
the target VM and placing a malicious VM on the same server as the target 
VM) can be prevented by not allowing the VMs hosted in the cloud data 
center to send probing packets such as traceroute packets. Preventing data 
from being leaked across VMs that are hosted on the same server can be 
achieved by one of the following techniques:

• Hard Isolation: The basic idea behind this preventive technique is to 
maintain high levels of isolation among the VMs. One way to do this is 
to separate the cache dedicated for each VM through hardware or soft-
ware. Another way to achieve hard isolation is by assigning only one VM 
to each server. Although this completely prevents data leakages across 
VMs, it is not a practical solution as it leaves the servers within the cloud 
data center underutilized. A better way to achieve hard isolation is by let-
ting each cloud client specify a list of trusted cloud users called the white 
list. The cloud client is fine with sharing the server with only the VMs 
belonging to the white list users. New scheduling algorithms are needed 
in that case in order to decide on what server each VM should be placed 
such that the security constraints of each VM that are specified by the 
white and black lists are met. A key limitation of this technique is that 
each VM must have a list of identified untrusted VMs.

• Cache Flushing: This technique flushes the shared cache every time the 
allocation of the cache is switched from a VM to another. The downside 
of this countermeasure is that the VMs running on the server will experi-
ence frequent performance degradation as the shared cache will be emp-
tied every time a switch from a VM to another occurs, which increases 
the time needed to access and fetch data.

• Noisy Data Access Time: This technique adds random noise to the amount 
of time needed to fetch data, which makes it hard to tell whether or not 
the data was fetched from the cache or from the memory. By doing this, 
it becomes harder for a malicious VM to identify what segments of the 
cache were populated by another VM that shares the same server. Of 
course this has a price as the fetched data gets delayed a little bit due to 
the noise (variable time delay) that is added to the time needed to fetch 
the data.

• Limiting Cache Switching Rate: A mitigation technique to limit the 
amount of data that can be leaked across VMs can be achieved by limit-
ing how often the cache is switched from a VM to another. The idea here 
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is that if the cache is not switched from a VM to another too soon, then 
the content of the cache will be modified a lot by the VM that possess the 
cache. This makes it hard for another VM to attain fine-grained knowl-
edge of what data the previous VM has accessed when probing the cache.

 2. VM Migration Attacks: The virtualization technology supports live VM migra-
tion, which allows moving a VM transparently from a server to another. The term 
live refers here to the fact that the application running on the VM is disrupted for 
a very short duration due to this migration where the disruption is as low as hun-
dreds of milliseconds. Before delving into the security issues that VM migration 
brings, we explain briefly the mechanism for performing VM migration and the 
scenarios where VM migration is usually performed.

The mechanism of moving a VM from a source server to a destination server 
is done by copying the VM’s memory content. The VM’s hard disk content does 
not need to be copied as it is usually stored on a network-attached storage (NAS) 
device and can be accessed from any location within the cloud cluster. If the 
destination server where the VM will be moved to lies on the same local network 
as the source server, then the VM keeps the same IP address even after migration 
in order to avoid the need for communication redirection. Maintaining the same 
IP address even after moving to another server is done after copying the memory 
content of the VM by sending a gratuitous ARP reply packet that informs the 
routing devices within the cloud about the VM’s new physical address, so that 
any packet destined to the VM’s IP address gets routed to the VM’s new location 
on the destination server. Each server has a dedicated module in the hypervisor 
called the VM migration module that is responsible for sending the VM content 
for the source server or receiving the VM’s memory content for the destina-
tion server.

VM migration is very useful in multiple scenarios. Consider, for example, the 
case when a server that is hosting some VMs needs to be taken offline for main-
tenance or for patch installation. VM migration can be used in this case to move 
all the VMs currently running on the server into other servers so that the server 
can be taken down for maintenance without terminating the running VMs that 
are hosted on that server. VM migration is also a very useful tool for managing 
the servers in the cloud data center where it can be used to balance the workload 
among the servers or to consolidate the scheduled VMs on fewer number of 
powered servers so that a larger number of servers can be powered down to save 
energy. However, the conveniences that VM migration brings raise new security 
threats. The attacks that exploit VM migration can be divided into two subcate-
gories based on the target plane:

 (a) Control Plane Attacks: These attacks target the module that is responsible 
for handling the migration process on a server which is called the migration 
module that is found in the hypervisor. By exploiting a bug in the migration 
module software, the attacker can hack the server and take full control over 
the migration module. This gives the attacker the ability to launch malicious 
activities including:
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• Migration Flooding: This attack is illustrated in Fig.  8.4 where the 
attacker moves all the VMs that are hosted on the hacked server to a vic-
tim server that does not have enough resource capacity to host all the 
moved VMs. This causes a denial of service of the applications running 
in the VMs of the victim server as there will not be enough resources to 
satisfy the demands of all the hosted VMs leading into VM performance 
degradation and VM crashes.

• False Resource Advertising: The hacked server claims that it has a large 
resource slack (a large amount of free resources). This attracts other 
 servers to off-load some of their VMs to the hacked server so that the 
cloud workload gets distributed over the cloud servers. After moving 
VMs from other servers to the hacked server, the attacker can exploit 
other vulnerabilities to break into the offloaded VMs as now these VMs 
are placed on a server that is under the control of the attacker.

 (b) Data Plane Attacks: These constitute the second type of VM migration 
attacks, and those attacks target the network links over which the VM is 
moved from a server to another. Examples of data plane attacks include:

• Sniffing Attack: where an attacker sniffs the packets that are exchanged 
between the source and destination and reads the migrated memory pages.

• Man-in-the-Middle Attack: the attacker fabricates a gratuitous ARP reply 
packet similar to the one that is usually sent when a VM moves from a 
server to another. This fabricated ARP packet informs the routing devices 
that the physical address where the victim VM resides was changed to 
become the physical address of the attacker’s malicious VM. Now the 
incoming packets that are destined to the victim get routed to the new 
physical address where the attacker resides. The attacker can then pas-

Fig. 8.4 Illustration of the migration flooding attack
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sively monitor the received packets while continuing to forward them to 
the actual physical address where the victim VM resides so that the vic-
tim does not detect that any malicious activity is going on. The attacker 
can also modify the content of the received packets if the integrity of the 
packets is not protected by any security mechanism. An illustration of the 
man-in-the-middle attack is shown in Fig. 8.5.

• Having explained the VM migration attacks, we now discuss the possible 
countermeasures. Unfortunately, little attention was given to secure VM 
migration where the focus was more on how to optimize the performance 
degradation or the energy overhead associated with those migrations. In 
order to secure VM migration, mutual authentication should be per-
formed between the server initiating the migration and the server that will 
be hosting the migrated VM. The control messages that are exchanged 
between the servers to manage the migration should also be encrypted 
and signed by the entity that is generating those control messages in order 
to avoid altering the content of those control messages and in order to 
prevent other entities from fabricating fake control messages. Sequence 
numbers or timestamps should also be included in the exchanged control 
messages in order to prevent a malicious entity from replaying an old 
control message that was sent earlier. Also, gratuitous ARP Reply pack-
ets that update the physical address of the VM should be accepted only 
after authentication in order to prevent man-in-the-middle attacks. The 
reader interested in learning more about VM migration attacks and coun-
termeasures is referred to [19] for further information on this topic.

 3. Theft-of-Service Attack: In this attack a malicious VM misbehaves in a way that 
makes the hypervisor assigns to it more resources than the share it is supposed to 
obtain. This extra allocation of resources for the malicious VM comes at the 
expense of the other VMs that share the same server as the malicious VM, where 
these victim VMs get allocated less share of resources than what they should 
actually obtain, which in turn degrades their performance.

Xen is a well-known hypervisor that is susceptible to this attack. One of the 
main roles of Xen hypervisor is to decide to which VM among the ones running 

Fig. 8.5 Man-in-the-middle attack
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on the server each physical core should be assigned to over time. In order to do 
that, Xen samples every 10 ms to check the VMs that are utilizing the cores. Xen 
then assumes that the VM that is detected to be using one of the cores at the 
sampling time has been using the server’s core during the entire 10  ms. The 
hypervisor then calculates how much time each VM has been assigned the cores. 
VMs that utilized the cores less than the remaining VMs are given higher priority 
to utilize the server’s core in the future in order to guarantee a fair allocation of 
the shared resources.

The fact that Xen performs periodic sampling can be exploited by a malicious 
VM by using one of the cores at times other than the sampling time. As illus-
trated in Fig. 8.6, the malicious VM can yield the acquired core to another VM 
shortly before the sampling tick. The hypervisor then assumes that the other VM 
that has yielded the core has been using the core during the entire 10 ms. The 
malicious VM does not get logged as using the core and thus keeps having high 
priority to use the cores in the future.

Two countermeasures were proposed to handle this attack. The first counter-
measure is to log more accurately the start and end time when each VM was 
utilizing the cores using accurate clocks. Another solution is to randomize the 
sampling times.

 4. VM Escape Attack: Virtual machines are designed in a way that isolate each VM 
from the other VMs running on the same server, which prevents VMs from 
accessing data that belongs to other VMs that reside on the same server. However, 
in reality software bugs can be exploited to break this isolation. If a VM escapes 
the hypervisor layer and reaches the server’s hardware, then the malicious VM 
can gain root access to the whole server where it resides. This gives the VM full 
control on all the VMs hosted on the hacked server. Different techniques were 
proposed to prevent a malicious VM from bypassing the hypervisor layer and 
obtaining the root privileges. An example of such techniques is CloudVisor 
which basically adds an extra isolation layer between the hardware and the 
hypervisor through nested virtualization that prevents the malicious VM from 

Fig. 8.6 Illustration of the theft-of-service attack
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obtaining the root privileges even if it bypasses the hypervisor layer. Other archi-
tecture solutions were also proposed to avoid VM escape attacks and could be 
found in [28].

 5. Insider Attacks: In all the previously discussed attacks, we were treating the 
administrators of the cloud data center as trusted entities, and we were focusing 
only on the attacks that are originating from other malicious VMs that are hosted 
in the cloud data center. However, some sensitive applications may have serious 
concerns about hosting their collected information on the cloud data center in the 
first place as the cloud data center administrators will in that case have the ability 
to access and modify the collected data. Different techniques were proposed to 
protect the data from these insider attacks. Homomorphic encryption is a form 
of encryption that can be used to prevent such attacks as it allows the cloud serv-
ers to perform certain computing operations on encrypted input data to generate 
an encrypted result. This encrypted result when decrypted matches the result of 
performing the computational operation on the unencrypted input data. Applying 
homomorphic encryption in the IoT paradigm allows cloud servers to perform 
the necessary processing operations on the encrypted data that is collected from 
the smart devices without giving the cloud servers the ability to interpret neither 
the input data nor the result as they are both encrypted using a secret key that is 
not shared with the cloud. Only the smart objects and the user running the IoT 
application can interpret these data as they have the key needed for decryption. 
Another form of protection against insider attacks is to chop the data collected 
by the smart object into multiple chunks and then to use a secret key to perform 
certain permutations on those chunks before sending the data to the cloud serv-
ers. This allows storing the data on the cloud servers in an uninterpretable form 
for the cloud administrators. Only authorized entities that have the secret key can 
return the stored data to an interpretable form by performing the correct 
permutations.

For convenience, Table 8.1 summarizes all the cloud domain attacks that were dis-
cussed in this section. The second, third, and fourth columns of Table 8.1 describe, 
respectively, the vulnerability that causes this attack, what security requirement 
each attack violates, and what are the countermeasures that can be used to prevent 
or detect and mitigate each attack.

8.6  Fog Domain Attacks and Countermeasures

Recall that the fog domain is made up of a set of fog devices where each fog device 
collects the sensing data that is reported from a set of smart objects. The fog device 
performs different operations on the collected data which include data aggregation, 
data preprocessing, and data storage. The fog device may also perform some rea-
soning operations on the collected data. After processing and aggregating the col-
lected data, the fog device forwards these data to the cloud domain. It is worth 
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mentioning that not only fog devices are connected with the cloud domain, but also 
fog devices are usually connected with each other in order to allow the fog devices 
connecting different smart objects to communicate directly with each other and in 
order to coordinate assigning objects to fog devices as their location changes. Fog 
devices can be independent components or could be built on top of existing gate-
ways. Each fog device provides computing resources to be used by the IoT smart 
objects that are located close to the fog device. These computing resources are vir-
tualized in order to allow the connected objects to share the computing resources 
that are offered by the fog device where each object or set of connected objects are 
allocated a virtual machine that performs the necessary data processing operations.

One can see that the computing capabilities provided by fog devices are very 
similar to the computing services provided by the servers in the cloud as they are 
both virtualized environments. The high similarities between the fog domain and 
the cloud domain make the fog domain susceptible to all the cloud domain attacks 
that were described in Sect. 8.5.

Although the fog domain is highly similar to the cloud domain, there are three 
key differences that distinguish fog devices from cloud servers:

 1. Location: Unlike cloud servers which are usually located far from smart objects, 
fog devices are placed in areas with high popular access and thus are placed 
close to the smart objects. This placement plays an important role in giving the 
fog devices the ability to respond quickly to changes in the reported data. This 
also gives the fog devices the ability to provide location-aware services as smart 
objects connect to the closest fog device, and thus each fog device knows the 
location of the objects connected to it.

Table 8.1 Summary of the security attacks in the cloud domain

Attack Vulnerability reason Security violation Countermeasures

Hidden- 
channel 
attack

Shared hardware components 
(e.g., cache) among the 
server’s VMs

Confidentiality Hard isolation Cache flushing
Noisy data access time 
Limiting cache switching rate

VM 
migration 
attacks

VM migration software bugs 
VM migration is performed 
without authentication 
Memory pages copied in 
clear

Confidentiality 
Integrity 
Availability

Server authentication 
Encrypting migrated memory 
pages

Theft-of- 
service 
attack

Periodic sampling of VMs’ 
used resources

Availability 
Non-repudiation

Fine-grain sampling using 
high precision clocks Random 
sampling

VM escape 
attack

Hypervisor software bugs Confidentiality 
Availability 
Integrity

Add an isolation domain 
between the hypervisor and 
hardware

Insider 
attacks

Lack of trust in cloud 
administrators

Confidentiality 
Integrity

Homomorphic encryption 
Secret storage through data 
chopping and permutation 
based on a secret key
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 2. Mobility: Since the location of the smart object may change over time, then the 
VMs created to handle those objects at the fog domain must be moved from a fog 
device into another, in order to keep the processing that is performed in the fog 
device close to the object that is generating data.

 3. Lower Computing Capacity: The fog devices that are installed in a certain loca-
tion are expected to have a lower computing capacity when compared to capaci-
ties offered by cloud data centers as the latter are made of thousands of servers.

These characteristics raise new security threats that are specific to the fog domain 
and that distinguish it from the cloud domain. The security threats that are specific 
to the fog domain are the following:

• Authentication and Trust Issues: The fact that fog devices do not require a large 
facility space or a high number of servers compared to cloud data centers will 
encourage many small and less-known companies to install virtualized fog 
devices in dense areas and to offer these computing resources to be rented by the 
smart objects that are near the installed fog devices. Unlike cloud data centers 
which are offered by well-known companies, fog devices are expected to be 
owned by multiple and less-known entities. An important security concern that 
needs then to be taken into account when assigning a smart object to a fog device 
is to authenticate first the identity of the owner of the fog device. Authentication 
is not enough, as the smart object also needs to decide whether or not the owner 
of the fog device can be trusted. Trust is an important aspect as a smart object 
will be assigned to different fog devices belonging to different entities as their 
location may change over time. Reputation systems such as those that were pro-
posed in peer-to-peer networks in or to rank cloud providers in can be used to 
select a trustworthy fog device among the available ones in the area surrounding 
each smart object.

• Higher Migration Security Risks: Although VM migration is common in both the 
cloud and the fog domains, there is an important difference between the migra-
tion in the cloud domain and that in the fog domain. While the migrated VMs in 
the cloud domain are carried over the cloud data center’s internal network, the 
migrations from a fog device into another are carried over the Internet. Thus 
there is a higher probability that the migrated VMs get exposed to compromised 
network links or network routers when moving a VM from a fog device into 
another. This makes it vital to encrypt the migrated VM and to authenticate the 
VM migration messages that are exchanged among the fog devices.

• Higher Vulnerability to DoS Attacks: Since fog devices have lower computing 
capacities, this makes them a low-hanging-fruit for denial of service (DoS) 
attacks where attackers can easily overwhelm fog devices when compared to the 
cloud data centers, where a huge number of servers that have high computing 
capacity are available.

• Additional Security Threats Due to Container Usage: In order to provide the 
computing needs for a larger number of connected objects, the fog device may 
use containers rather than VMs to allocate the resource demands for each con-
nected object. The main difference between a container-based virtualization and 
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full virtualization is the fact that containers share not only the same hardware but 
also the same operating system with the other containers that are hosted on the 
same fog device (refer to Chap. 6). This is unlike the full virtualization (which 
was illustrated in Fig. 8.3) where only the hardware is shared among multiple 
VMs and each VM has its own operating system. The low overhead of containers 
allows larger number of objects to be served by the fog device. However, sharing 
the same operating system among the containers dedicated for objects that 
belong to different users raises serious security concerns as the opportunities for 
data leakage and for hijacking the fog device increase significantly. The industry 
needs to address these gaps in container security to enable IoT applications 
at scale.

• Privacy Issues: We mentioned before that each smart object will be connected to 
one of the fog devices that are close to it. This means that the fog device can infer 
the location of all the connected smart objects. This allows the fog device to track 
users or to know their commuting habits which may break the privacy of the 
users carrying those objects. New mechanisms should be developed in order to 
make it harder for fog devices to track the location of the smart objects over time. 
Furthermore, the advancement in wireless signal processing has made it possible 
now to identify the presence of humans and track their location, their lip move-
ment, and their heartbeats by capturing and analyzing the wireless signals that 
are exchanged between the sensing objects and the fog domain. This advance-
ment makes it possible for any entity to install a reception device close to your 
home that analyzes the wireless signals that are emitted from your home in order 
to spy on your daily activities. The work in [47] is among the first papers that 
identified these risks where the authors in that paper propose a device called an 
obfuscator that prevents leaking such information by emitting signals that make 
it hard for an unauthorized receiver to infer the amplitude, the frequency, and the 
time shift of the originally exchanged signals. The obfuscator does not only pre-
vent such leakages but also acts as a relay that rebroadcasts some of the sent 
messages which increases the transmission rate between the sensing objects and 
the fog domain.

8.7  Sensing Domain Attacks and Countermeasures

The sensing domain contains all the smart objects, where each object is equipped 
with a number of sensors that allow the object to perceive the world. The smart 
object is also supplied with a communication interface that allows it to communi-
cate with the outer world. The smart object reports the sensed data to one of the fog 
devices in the fog domain. This is done by either creating a direct connection with 
the fog device if the smart object is directly connected by wires or has the wireless 
transmission capability to reach that fog device or in a multi-hop fashion where the 
smart object relies on other smart objects that lie along the path to the fog device to 
deliver the sensed data (as illustrated in Fig. 8.7).
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The sensing domain is susceptible to multiple attacks. We summarize next some 
of the most well-known ones:

 1. Jamming Attack: This attack causes a service disruption and takes one of 
two forms:

 (a) Jamming the Receiver: This attack targets the physical domain in the OSI 
stack of the receiver (where the receiver is the fog device in the case of a 
direct connection or another object in the case of a multi-hop connection) 
where a malicious user (called the jammer) emits a signal (called the jam-
ming signal) that interferes with the legitimate signals that are received at 
the receiver side. The interference degrades the quality of the received signal 
causing many errors. As a result, the receiving end does not acknowledge the 
reception of these damaged packets and waits for the sender to retransmit 
those packets.

 (b) Jamming the Sender: Unlike the previous attack, this type targets the data 
link layer at the OSI layer of the sending object where the jammer in this 
attack sends a jamming signal that prevents the neighboring objects from 
transmitting their packets as they sense the wireless channel to be busy and 
back off waiting for the channel to become idle.

There are different jamming strategies that a jammer may follow to 
launch a jamming attack. The most well-known ones are summarized next:

• Constant Jamming: The attacker continuously transmits a random jamming sig-
nal all the time. The main limitation of this attack is that it can be detected easily 
by observing random bits that do not follow the pattern dictated by the MAC 
protocol. Another main limitation is the fact that it requires the jamming device 
to be connected to a source of power as it requires lots of energy.

Fig. 8.7 Multi-hop versus 
direct connection between 
the smart object and the 
fog device
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• Deceptive Jamming: This is similar to the constant jamming with the exception 
that the jammer conceals its malicious behavior by transmitting legitimate pack-
ets that follow the structure of the MAC protocol rather than sending random bits.

• Reactive Jamming: This is a strategy for jamming the receiver that is suitable for 
the case when the jamming device has a limited power budget. The jammer in that 
case listens to the medium and transmits a jamming signal only after it senses that 
a legitimate signal is being transmitted in the medium. This is more power efficient 
than continuously transmitting signals as listening to the channel consumes less 
power than transmitting signals.

• Random Jamming: The jammer alternates between sending a jamming signal and 
remaining idle for random periods of time in order to hide the malicious activity.

• More sophisticated jamming attacks have also emerged that intend to increase 
the service disruption time, reduce the probability of detection, increase the abil-
ities to recover from the countermeasure that the victim node may take, while 
also reducing the power that the jamming device requires. An example of a power 
efficient advanced jamming attack would be to jam only the acknowledgment 
packets that nodes exchange rather than jamming the whole transmitted data 
packets as the former are shorter than the latter and thus require less power to jam 
while causing the same damage.

• Different preventive and detective techniques were proposed to address jamming 
attacks. We summarize next the most popular ones:

• Frequency Hopping: This is a preventive technique where the sender and receiver 
switch from a frequency to another in order to escape from any possible jamming 
signal (IEEE 802.15.4 TSCH discussed in Chap. 5 is an example of a wireless 
technology that employs this technique). Switching from a frequency to another 
is based on a generated random sequence that is known only for the sender and 
receiver. If the jammer is aware of the use of this preventive strategy, then the 
jammer has to switch from a frequency to another trying to collide with the fre-
quency used by the sender and receiver. The interaction between the hopping 
strategies of the legitimate nodes and that of the jammer in that case can be mod-
elled as a two-player game, where game theory can be used to come up with a 
hopping strategy that reduces the chances of colliding with the frequency 
sequence of the jammer.

• Spread Spectrum: This technique uses a hopping sequence that converts the nar-
row band signal into a signal with a very wide band, which makes it harder for 
malicious users to detect or jam the resulting signal. This technique is also very 
efficient when the transmitted data are protected by an error-correction technique 
as it allows the reconstruction of the original signal even if few bits of the trans-
mitted data were jammed by the attacker.

• Directional Antennas: The use of directional antennas can mitigate jamming 
attacks from being successful as the sender and receiver antennas will have less 
sensitivity to the noise coming from the random directions that are different from 
the direction that connects the sender and the receiver.

• Jamming Detection: Different detective techniques were proposed in the litera-
ture to detect jamming attacks. The receiver can detect that it is a victim of a 
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jamming attack by collecting features such as the received signal strength (RSS) 
and the ratio of corrupted received packets. Advanced machine learning tech-
nique can then be used to differentiate jamming attacks from the degradation 
caused by the poor quality of the channel due to normal changes in the wireless 
link. We point the reader to the survey in [2] for further information about jam-
ming intrusion detection systems.

 2. Vampire Attack: This attack exploits the fact that the majority of IoT objects have 
a limited battery lifetime where a malicious user misbehaves in a way that makes 
devices consume extra amounts of power so that they run out of battery earlier 
thereby causing a service disruption. The damage caused by this attack is usually 
measured by the amount of extra energy that objects consume compared to the 
normal case when no malicious behavior exists.

We identify four types of vampire attacks based on the strategy used to 
drain power:

 (a) Denial of Sleep: Different data link layer protocols were proposed to reduce 
the power consumption of smart objects by switching them into sleep when-
ever they are not needed. Examples of these protocols include S-MAC and 
T-MAC protocols. The idea behind these protocols is to agree on a duty- 
cycle schedule where objects exchange control messages in order to syn-
chronize their schedules so that they agree on transmitting signals at certain 
cycles while remaining asleep for the rest of the time. An adversary can now 
launch a denial of sleep attack which prevents objects from switching to 
sleep by simply sending control signals that change their duty-cycles keep-
ing them active for longer durations. The adversary can still succeed in 
launching this attack even if the control messages that synchronize the duty- 
cycles of the objects are encrypted. When the control messages are encrypted, 
the adversary can capture one of those encrypted control messages and 
replay it (resend it) at a later point of time causing the nodes to change their 
synchronization and their schedules. The adversary needs in that case to use 
traffic analysis techniques that rely, for example, on the length of the packets 
and the rate at which packets are exchanged in order to distinguish the con-
trol messages from the data messages that the nodes exchange since the 
content that packets carry is hidden by encryption.

 (b) Flooding Attack: The adversary can flood the neighboring nodes with 
dummy packets and request them to deliver those packets to the fog device, 
where devices waste energy receiving and transmitting those dummy 
packets.

 (c) Carrousel Attack: This attack targets the network layer in the OSI stack and 
can be launched if the routing protocol supports source routing, where the 
object generating the packets can specify the whole routing path of the pack-
ets it wishes to send to the fog device. The adversary in that case specifies 
routing paths that include loops where the same packet gets routed back and 
fourth among the other objects wasting their power. Figure 8.8 illustrates 
this attack.
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 (d) Stretch Attack: This attack also targets the network layer in the OSI stack. If 
the routing protocol supports source routing, then a malicious object can 
send the packets that it is supposed to report to the fog device through very 
long paths rather than the direct and short ones as illustrated in Fig. 8.8. 
Even if source routing is not supported, the attacker can select a next hop 
that does not have the shortest path to the fog device in order to increase the 
power consumption of the objects that will be responsible to deliver those 
packets (Fig. 8.9).

The adversary can further amplify the amount of wasted energy by com-
bining flooding attack with carrousel attack and stretch attack. The adver-

Fig. 8.8 Illustration of the 
carrousel attack where the 
numbered arrows show the 
path specified by the 
malicious objects that the 
packets generated by the 
malicious object follow

Fig. 8.9 Illustration of the 
stretch attack
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sary in that case floods the neighboring objects with a large number of 
generated packets and specifies long paths with loops that the packet should 
follow in order to increase the amount of wasted power.

Denial of sleep attacks can be mitigated by encrypting the control mes-
sage that arranges the schedules of the node while including a timestamp or 
a sequence number in the encrypted control message. This prevents the 
adversary from succeeding, in replaying an old control message, by check-
ing the encrypted timestamp or the encrypted sequence number that the 
replayed control message is not a new message but an old one that someone 
replayed to cause disruption. Flooding attacks can be mitigated by limiting 
the rate of the packets that each object may generate. Carrousel attacks can 
be mitigated by making each object that is requested to forward a packet 
based on a route specified by the source check the specified path where 
packets with loops within their paths are dropped as they are most likely 
originating from malicious users. Finally, stretch attacks can be mitigated by 
disabling source routing or by making sure that the forwarded packets are 
making progress toward their destination and are not following long paths.

 3. Selective-Forwarding Attack: This attack takes place in the case when the object 
cannot send its generated packets directly to the fog device but must rely on 
other objects that lie along the path toward the fog device to deliver those pack-
ets. A malicious object in this attack does not forward a portion of the packets 
that it receives from the neighboring objects. A special case of this attack is the 
black-hole attack where the attacker drops the entire set of packets that it receives 
from the neighboring objects. The best way to prevent packet drops from taking 
place for sensitive IoT applications is to increase the transmission capability of 
the objects so that they can reach the fog device directly without the need for 
help from intermediate objects. Unfortunately not all IoT objects are expected to 
have high transmission range to reach the fog device and thus will be relying on 
other objects to deliver their packets, which makes them susceptible to this 
attack. Different solutions were proposed to mitigate the number of dropped 
packets. Path redundancy is one of those solutions, where each object forwards 
each generated packet to multiple neighboring objects, where multiple copies of 
the same packet get delivered to the fog device through different paths. This 
decreases the chances of not having at least a copy of each generated packet 
delivered to the fog device. The main limitation of this mitigation technique is 
that it has a high energy overhead as it increases significantly the traffic. Rather 
than mitigating the damage caused by those attacks, the approach in [6, 8] tries 
to detect malicious objects that are dropping the sent packets so that packets can 
be routed through different paths that avoid those objects. Detecting the presence 
of objects that are dropping packets along certain paths can be done by selecting 
certain trusted objects as checkpoints. Each time a checkpoint receives a packet, 
it sends an acknowledgment to the object that generated that packet. The 
acknowledgment includes a unique identifier for the packet that was received 
along with a signed hash for the acknowledgment’s content. This guarantees that 
no other entity fabricates fake acknowledgment packets and that no other entity 
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can alter the content of these acknowledgments. The interested reader may refer 
to [7] for a complete overview on the countermeasures that can be used against 
selective-forwarding attacks.

 4. Sinkhole Attack: A malicious object claims that it has the shortest path to the fog 
device which attracts all neighboring objects that do not have the transmission 
capability to reach the fog device to forward their packets to that malicious 
object and count on that object to deliver their packets. Now all the packets that 
are originating from the neighboring nodes pass by this malicious node. This 
gives the malicious node the ability to look at the content of all the forwarded 
packets if data is sent with no encryption. Furthermore, the malicious object can 
drop some or all of the received packets as we explained previously in the 
selective- forwarding attack. Figure  8.10 illustrates how the network topology 
changes before and after this attack. Techniques to detect and isolate the mali-
cious objects were proposed and are based on the idea of collecting information 
from the different objects where each object reports the neighboring objects 
along with the distance to reach those objects. A centralized intrusion detection 
system is then used to rely on the reported information to identify objects that are 
potentially providing misleading information. Detecting such attack becomes 
harder when multiple malicious nodes collude to hide each other.

Finally, Table  8.2 summarizes all security attacks in the sensing domain that 
were discussed in this section. The second column of the table shows what layer in 
the OSI stacks the attack targets, whereas the third, fourth, and fifth columns 
describe, respectively, the vulnerability reason, the security requirement that the 
attack breaks, and the defensive countermeasures against each attack.

Fig. 8.10 Network topology before and after a sinkhole attack. The malicious object M claims 
that it has a shorter route to reach the fog device which attracts the neighboring objects A and E to 
rely on M to deliver their packets
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8.8  Securing IoT Devices

In this section we will provide several examples of IoT devices being used to launch 
security attacks (Sect. 8.8.1), in addition to two solutions that attempt to secure IoT 
devices, namely MUD (Sect. 8.8.2) and DICE (Sect. 8.8.3).

8.8.1  IoT Devices Gone Rogue

With the increase of practical deployments, IoT devices have proven to be easy 
targets for hackers who turn compromised devices into active actors to carry out 
their attacks on networked IT infrastructure. This is especially true in the context of 
distributed denial of service (DDoS) attacks. Insecure IoT devices represent a grow-
ing pool of compute and communications resources that is open to misuse. These 
devices can be hijacked to spread malware, recruited to form botnets that may attack 
other Internet users, and even can be used to attack critical national infrastructure, 
or the structural functions of the Internet itself.

There are multiple recent examples of IoT devices being used as attack vectors. 
We will highlight some of them next.

8.8.1.1  Botnets

A botnet is a typically large collection of networked computers (bots) that are under 
remote control from some malicious third party over the Internet. Usually, these 
computers would have been compromised by an outside attacker who controls 
aspects of their functionality without the owners’ consent or knowledge.

Table 8.2 Summary of the security attacks targeting the sensing domain

Attack
Target 
OSI layer

Vulnerability 
reason

Security 
violation Countermeasures

Jamming 
attack

Physical 
Data link

Shared 
wireless 
channel

Availability Frequency hopping Spread 
spectrum Directional antennas
Jamming detection techniques

Vampire 
attack

Data link 
Network

Limited battery 
lifetime

Availability 
Freshness

Rate limitation
Drop packets with a source route 
that contains a loop Monitor 
whether or not the forwarded 
packets are making progress 
toward their destination

Selective- 
forwarding 
attack

Network Limited 
transmission 
capability

Availability Increase transmission range Path 
redundancy
Choose certain intermediate 
objects as checkpoints to 
acknowledge received packets

Sinkhole 
attack

Network Limited 
transmission 
capability

Confidentiality 
Availability

Analyze the collected routing 
information from multiple objects
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Because there are many such computers in a typical botnet, the attacker has access 
to a quasi supercomputer that can be employed for malicious purposes. Furthermore, 
since the bots are distributed geographically and organizationally over the Internet, 
the quasi supercomputer can be difficult to deter. The first botnet was developed in 
2001 to send spam, and that is still a common use. Another common use for botnets is 
for DDoS attacks, in which a target server is constantly bombarded with network traf-
fic until it is overwhelmed beyond its capacity and forced to go offline.

In 2016, a DDoS attack rendered much of the Internet inaccessible on the US 
East coast, and the attack was perpetrated by the Mirai botnet. Mirai took advantage 
of insecure IoT devices in a simple but clever way: It scanned large blocks of the 
Internet for open Telnet ports, then attempted to log in using username/password 
combinations that are frequently used defaults for these devices and never changed. 
With this simple approach, it was able to recruit an army of compromised closed- 
circuit TV cameras and routers, ready for launching a DDoS attack.

The reason why the botnet was so effective was due to the fact that it leveraged a 
large number of IoT devices which often include an embedded stripped-down Linux 
operating system. These devices had no built-in ability to be patched remotely and 
were in physically remote or inaccessible locations.

8.8.1.2  Webcams

Webcams are often marketed as consumer products for baby monitoring or as secu-
rity devices. In one instance, a webcam manufacturer had faulty software on their 
products that allowed anyone with knowledge of the webcam’s IP address to view 
the camera’s video feed, and sometimes listen in through the embedded micro-
phones. Another manufacturer’s product was susceptible to remote code-injection 
attack, which allowed a malicious user to get administrative access to the camera, 
thereby placing the user at a risk of being spied upon. The remote execution flaw not 
only allows an attacker to set their own custom password to access the device, but 
also to add new users with administrative access to the interface, download mali-
cious firmware or reconfigure the product as they please.

8.8.1.3  Casino Fish Tank

Security firm Darktrace published a report where it revealed that an unnamed casino 
in North America was hacked through an Internet-connected fish tank. That connec-
tion allowed the tank to be remotely monitored, automatically adjust temperature 
and salinity, and automate feedings. In this incident, the vulnerable smart tank was 
used as an easy backdoor into the casino’s network. Once the attackers gained 
access to the tank, they scanned the casino’s network for other vulnerabilities and 
moved laterally to other places in the network where they were able to steal 10 
gigabytes of private data from the casino. The tank’s communication patterns with 
the casino’s network appeared normal enough. However, the data that it was pump-
ing through to the Internet was highly suspect. It was the only tank system that 

8.8 Securing IoT Devices



238

transmitted data to a remote server in Finland, which it was in communications 
with. It also did so by employing protocols that are normally used for streaming 
audio or video.

8.8.1.4  Cardiac Devices

Cardiac devices, such as pacemakers and defibrillators, are used to monitor and 
control patients’ heart functions and prevent heart attacks. In 2017, the FDA 
announced that St Jude’s Medical implantable cardiac devices had security vulner-
abilities that would enable an attacker to access these devices, where they could 
deplete the battery or administer incorrect pacing or shocks. The vulnerabilities 
were in the transmitter that reads the device’s data and remotely shares it with 
physicians.

8.8.1.5  Vehicles

In 2015, Charlie Miller and Chris Valasek, two security researchers, exposed the 
security vulnerabilities in automobiles by hacking into cars remotely, controlling 
the cars’ various functions from the radio volume to the brakes. They did so by 
leveraging day-zero exploits that give attackers wireless access to the car via the 
Internet. This was done by sending commands through the vehicle’s entertainment 
system to its dashboard functions, steering, brakes, and transmission, all remotely 
from their laptops. The entertainment system served as an excellent entry point, 
because automakers are increasingly enabling the linking of these systems to the 
Internet. From that entry point, Miller and Valasek’s attack pivots to an adjacent 
chip in the car’s head unit (the hardware for its entertainment system), silently 
rewriting the chip’s firmware to plant their code. That rewritten firmware is capable 
of sending commands through the car’s internal computer network, known as a 
CAN bus, to its physical components like the engine and wheels.

Proper identification of connected devices is the first step when securing any 
network. With IoT, the asset inventory problem is compounded due to the sheer 
scale of “things,” and there is a key requirement to efficiently and unambiguously 
identify connected devices for onboarding and ongoing management. With the 
ongoing rapid growth in the number of IoT devices, malicious actors view these 
devices as a soft attack surface from where to launch their attacks onto any other 
target in the network. As such, it is critical to provide mechanisms and capabilities 
for securing these devices. Two such mechanisms are MUD and DICE, which will 
be covered in detail next.
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8.8.2  MUD

Manufacturer Usage Descriptor (MUD) is an embedded software standard defined 
by the IETF (RFC 8520) to help reduce the vulnerability surface of IoT devices by 
employing network policy (whitelisting approach). It aims to reduce the scope of 
malware injection and hijacking of over-the-air firmware updates. It also addresses 
the scenario of devices that are no longer being actively maintained by their original 
manufacturer.

MUD enables IoT device manufacturers to advertise formal device specifica-
tions, including the intended communication patterns for a given device when con-
nected to the network. The network can then leverage this advertised intent, or 
profile, to formulate a tailored and context-specific access control policy, to guaran-
tee that the device communicates only within the specified parameters. This way the 
network behavior of the device, in any operating environment, can be locked down 
and verified rigorously. In this context, MUD becomes the delegated identifier and 
authoritative enforcer of policy for IoT devices on the network. MUD works by 
enabling networks to automatically permit each IoT device to send and receive only 
the traffic it requires to perform as intended while blocking unauthorized communi-
cation with the device.

The MUD solution consists of three key components, as shown in Fig. 8.11.

• A unique identifier, in the form of a Universal Resource Locator (URL), that an 
IoT device advertises when it connects to the network.

• An Internet hosted profile file that this URL points to. This file contains an 
abstracted policy that describes the level of communication access which the IoT 
device needs to perform its intended functionality.

• A core process that receives the URL from the IoT Device, retrieves the profile 
file from the MUD File Server, and establishes the appropriate access control 
policies in the network to restrict the communication patterns for that IoT device.

Core MUD 
Process

Network
Internet

MUD File Server

IoT Device

1. MUD URL

2. MUD File Query

3. MUD File4. Access Policy

Fig. 8.11 MUD architecture
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MUD leverages mechanisms that have existed in network infrastructure, includ-
ing routers and switches, for over a decade. In what follows, we will describe the 
MUD workflow and associated mechanisms that can be used in more details.

 1. The IoT device informs the network of the MUD URL using any one of the fol-
lowing existing protocols: DHCP, LLDP, or via a certificate in an IEEE 802.1X 
exchange. Once the device has communicated the URL to the network, its task 
in supporting MUD is done. The goal is to keep the device prerequisites as sim-
ple as possible for IoT device manufacturers.

 2. The URL is received from the network by a Core MUD Process. This module 
may reside in one of many potential systems, depending on the nature of the 
network infrastructure. For instance, in an enterprise network, it may be part of 
the Policy (e.g., AAA) server. In a home network, it may be provided by the 
Internet service provider (ISP) or by the customer premise equipment (CPE) 
vendor. In a mobile service provider network, it might be part of an operational 
support system (OSS).

 3. The Core MUD Process resolves the MUD URL and retrieves the profile file 
from the MUD File Server. This file is a declaration of intent that specifies what 
access the device is intended to have in the form of an abstract policy. The ratio-
nale being that an IoT device may be designed to communicate with a single or 
small number of controllers or with similar Things, or that for a given service, it 
should or should not have access to the local network.

 4. The Core MUD Process translates these abstract intent definitions into a context- 
specific access control policy that the local network infrastructure can consume. 
How that translation occurs will vary depending on the network deployment. 
Some networks may use Access Control Lists (ACLs). Other networks may rely 
on segmentation using VLANs or VNIs, while others may use service groups or 
some other access control mechanism.

 5. An administrator may then approve, reject, or modify the policy, based on 
deployment specifics. This policy may be merged with other policies, for 
instance, to take into account the user of the device or the device’s deployment 
location.

 6. The Core MUD Process pushes the merged policy to the associated systems of 
the network infrastructure (for example, switches, routers, etc.). This can be 
achieved using some configuration protocol such as NETCONF, Radius, or any 
alternative mechanism.

MUD provides a clear value proposition to device owners, network administra-
tors and IoT device manufacturers. First, for device owners, it limits the impact and 
extent of exploitation of any security vulnerability that is potentially discovered in 
their IoT devices. For network administrators, MUD provides them with better vis-
ibility of the types of Things connected to the network and with the type of policies 
that they require. This helps them with better inventory management, risk assess-
ment, and remediation. Finally, for device manufacturers MUD alleviates any sup-
port, financial liability, or brand damage that may arise due to compromised devices.
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8.8.3  DICE

Device Identifier Composition Engine (DICE) is a collection of hardware and soft-
ware mechanisms for cryptographic IoT device identity, attestation, and data 
encryption. DICE is an industry standard created by the Trusted Computing 
Group (TCG).

IoT devices that perform encryption use a private key called a Unique Device 
Secret (UDS) in order to secure their operation. It is possible for an attacker to leak 
this key by compromising the code running on the chip. Having access to the private 
key can enable the attacker to impersonate the device and even to replace its firm-
ware. Therefore, it is paramount to prevent the disclosure of the UDS. The key to 
DICE is its ability to break up the boot process for any device into layers and to 
combine unique secrets and a measure of integrity for each of these layers. This 
way, if malware is present at any stage of the boot process, the device is automati-
cally re-keyed and secrets protected by the legitimate keys remain safe.

DICE implements three measures to secure the UDS:

• Power-on Latch: The power-on latch locks read access to the UDS before early 
boot-code transfers control to subsequent execution layers.

• Cryptographic One-way Functions: A cryptographic one-way function com-
putes a hash of the UDS to store in RAM so that in the event of RAM disclosure 
by compromised code, the original UDS is safe.

• Tying Key Derivation to Software Identity: To prevent compromise of the 
device by attempts to modify the early boot-code, the cryptographic one-way 
function uses a measurement of the boot code as input together with the UDS. The 
function outputs a key called the Compound Device Identifier (CDI) taking both 
the UDS and early boot code hash as input (optionally taking the hardware state 
and configuration as input as well). This process ensures that modification of 
early boot code generates a new key so that the UDS is secure.

The reason for tying the CDI derivation to the code that is booting on the device 
is to guarantee that a firmware update automatically results in the device being re- 
keyed. This behavior is desirable to address two security problems, specifically:

 1. If an attacker changes the code that boots on the device with the intent of stealing 
keys, the attacking program (with a different hash) ends up obtaining a different 
key than the original authorized program.

 2. If authorized code contains a security vulnerability that leads to CDI compro-
mise, then the device must be re-keyed after patching. The CDI derivation func-
tion ensures that patching the vulnerable firmware automatically results in a new 
CDI being computed.

DICE introduces a simple security approach that does not increase the silicon 
requirements for IoT devices. It targets constrained devices where traditional 
Trusted Platform Modules (TPM) may be unfeasible due to limitations related to 
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cost, power, physical space, etc. As such, it is possible to implement it in the tiniest 
microcontrollers.

DICE is predicated upon a hardware root of trust for measurement. It works by 
organizing the boot into layers and creating secrets unique to each layer and con-
figuration based on UDS (refer to Fig. 8.12). If a different code or configuration is 
loaded, at any point in the boot chain, the secrets will be different. Each software 
layer keeps the secret it receives completely confidential. If a vulnerability exists 
and a secret is leaked, it patches the code automatically and creates a new secret, 
effectively re-keying the device. In other words, when malware is present, the device 
is automatically re-keyed and secrets are protected.

DICE provides strong device identity, attestation of device firmware and security 
policy, and safe deployment and verification of software updates. The latter are 
often a source of malware and other attacks. Another key benefit for device manu-
facturers is that they are no longer required to maintain databases of unique secrets.

8.9  Summary and Future Directions

This chapter analyzed IoT from a security and privacy perspectives. Ignoring secu-
rity and privacy will limit the applicability of IoT and will have serious results on 
the different aspects of our lives given that all the physical objects in our surround-
ing will be connected to the network. In this chapter, the IoT security challenges and 
IoT security requirements were identified. A three-domain IoT architecture was 
considered in our analysis where we analyzed the attacks targeting the cloud 
domain, the fog domain, and the sensing domain. Our analysis describes how the 
different attacks at each domain work and what defensive countermeasures can be 
applied to prevent, detect, or mitigate those attacks. We hope that the research and 
industry communities will pay attention to the discussed security threats and will 
apply appropriate countermeasures to address those issues. We also hope that secu-
rity and privacy will be considered at the early design stage of IoT in order to avoid 
the common pitfall of considering security as an afterthought.

We end this chapter by providing some future directions for IoT security and 
privacy:

• Fog Domain Security: The fog domain is a new domain that was introduced to 
bring the computing capabilities to the edge of the network. We believe that 
 further attention should be paid to this domain as it has not received enough 
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Fig. 8.12 DICE architecture
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attention from the academia and the industry. The focus should be on identifying 
threat models related to the fog domain and also on finding efficient solutions 
that can run on the fog devices that are available in the market.

• Collaborative Defense: We identified while surveying the related work that what 
the literature on IoT security lacks is a collaborative solution where the different 
domains (cloud, fog, and sensing) interact with each other to stop or mitigate a 
certain attack. We believe that an interdomain-defensive solution will be way 
more effective than applying countermeasures at each domain separately, where 
the different domains can interact and collaborate in order to stop any ongoing 
malicious activity.

• Lightweight Cryptography: This is a highly important topic that has gained a 
significant attention recently and is anticipated to be very important for the future 
of IoT where the objective is to find efficient cryptographic techniques that can 
replace the traditional computationally expensive ones while achieving an 
acceptable level of security.

• Lightweight Network Security Protocols: Not only the cryptographic computa-
tions must have lower overhead but also the network security protocols that are 
used for communication. Many efforts are being paid by the research and indus-
try communities to find cross-domain-optimized security protocols that achieve 
the necessary security protection while maintaining a low overhead.

• Digital Forensics: Although tracking the location of smart objects is considered 
a privacy violation, it also has some useful cases. Consider, for example, the case 
where police rely on tracking the smart objects that are carried by a missing per-
son in order to identify the missing person’s location. Digital forensics in the IoT 
era will play an important role in solving the different forensic cases as they will 
all become technology related. This area is also expected to receive further atten-
tion in the future where different techniques can be used to extract knowledge 
from the smart objects.

Problems and Exercises

 1. The authors have broken IoT security challenges into seven areas. Name them.
Why big data is an issue for IoT?

 2. What techniques can be applied to prevent cross-VM data leakage? Explain 
how the hard isolation technique can be achieved.

 3. What are some of the typical uses of VM migration in cloud data centers? What 
are the two types of attacks that are related to VM migration?

 4. Who is the entity that initiates insider attacks, and how can homomorphic 
encryption be used to prevent such attacks?

 5. What are the three key differences that distinguish fog devices from cloud serv-
ers? Provide a brief explanation of each difference.

 6. Which provides more protection against security attacks: container-based virtu-
alization or full virtualization? Why?

 7. What are the two connection approaches that the smart objects may use to com-
municate with the fog device? Which approach is more secure and can this 
approach always be used?
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 8. What are the four strategies that a jammer may follow in order to launch a jam-
ming attack? Which strategy is suitable when the jammer have limited 
energy budget?

 9. What are vampire attacks? Name their types.
 10. What is network high availability? What is network redundancy? How are they 

related?
 11. Chapter 3 discusses three different ways to obtain information for IoT “things”: 

sensors, RFID, and video tracking. In a table, compare the security for the three 
technologies.

 12. What is limiting cache switching rate? How can it be accomplished? Explain 
how it works.
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