
213© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_8

Chapter 8
Internet of Things Security and Privacy

8.1 Introduction

The Internet of Things (IoT) promises to make our lives more convenient by turning
each physical object in our surrounding environment into a smart object that can
sense the environment, communicate with the remaining smart objects, perform
reasoning, and respond properly to changes in the surrounding environment.
However, the conveniences that the IoT brings are also associated with new security
risks and privacy issues that must be addressed properly. Ignoring these security and
privacy issues will have serious effects on the different aspects of our lives including
the homes we live in, the cars we ride to work, and even the effects that will reach
our own bodies.

If your home does not already have a smart meter, it will soon have multiple of
those meters that are dedicated to monitor and control the power consumption, the
heating, and the lighting of your house. This is not to mention the smart gadgets that
will be found all over your house such as the smart camera that notifies your smart-
phone during business hours when movement is detected, the smart door that opens
remotely, and the smart fridge that notifies you when you are short of milk. Imagine
now the level of control that an attacker can gain by hacking those smart meters and
gadgets if the security of those devices was overlooked. In fact, the damage caused
by cyberattacks in the IoT era will have a direct impact on all the physical objects
that you use in your daily life. The same applies to your smart car as the number of
integrated sensors continues to grow rapidly and as the wireless control capabilities
increase significantly over time, giving an attacker who hacks the car the ability to
control the windshield wipers, the radio, the door lock, and even the brakes and the
steering wheel of your car. Our bodies will not also be safe from cyberattacks. In
fact, researchers have shown that an attacker can control remotely the implantable

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_8#DOI

214

and wearable health devices (e.g., insulin pumps and heart pacemakers) by hacking
the communication link that connects them to the control and monitoring system.
This gives the attacker, for example, the ability to tune the injected insulin dose
causing serious health problems that may even cause death to patients wearing those
smart health devices. In fact, such concerns have made doctors disable the wireless
capability of the heart pacemaker of Dick Cheney, the former US vice president, in
order to protect him from such malicious attacks.

The security risks are also extremely serious when IoT devices are used in busi-
ness enterprises. If an attacker hacks any of those smart objects that are used in a big
enterprise, then the sensing capabilities that those smart objects have can be used by
the attacker to spy on the enterprise. Such cyberattacks can also be used to steal
sensitive information such as the company earnings report and credit card informa-
tion. In fact, these stealing attacks are common in big enterprises such as the largest
financial hacking case in the US history, which took place in 2013, where a group
of five hackers stole $160 million from credit cards and over hundreds of millions
in criminal loot.

Maintaining users’ privacy in IoT is also crucial as there is an enormous amount
of information that an outsider can learn about people’s life by eavesdropping on the
sensed data that their smart house appliances and wearable devices report. In fact,
people will be living in a “Big Brother” world where smart things record our daily
activities anytime and everywhere. The advances in the fields of facial, speech, and
human activity recognition amplify the amount of information that the sensed data
can reveal if it falls in the wrong hands. Even if your IoT objects are merely report-
ing metadata, you would be surprised by the amount of information that an outsider
can learn about your personal life when aggregating the metadata collected from
multiple hacked objects that surround you over time. It is thus essential to find solu-
tions to preserve people’s privacy in the IoT era.

The objective of this chapter is to shed the light on some of the security and pri-
vacy issues that the IoT paradigm is exposed to. We also survey the techniques that
were proposed to address these issues. Some of the discussed techniques prevent
security breaches from taking place, while others try to detect malicious behavior
and trigger an appropriate mitigating countermeasure. The rest of the chapter is
organized as follows. Section 8.2 identifies the new security challenges that are
encountered in the IoT paradigm. Section 8.3 identifies the IoT security require-
ments. Section 8.4 briefly describes the three domains in the IoT architecture.
Sections 8.5–8.7 survey the security attacks and countermeasures at the cloud
domain, the fog domain, and the sensing domain, respectively. Section 8.8 discusses
approaches for securing IoT Devices. The section starts by providing several exam-
ples of IoT devices used in security attacks, and then discusses solutions including
MUD and DICE. Finally, Sect. 8.9 summarizes the chapter and provides directions
for future work related to the area of IoT security.

8 Internet of Things Security and Privacy

215

8.2 IoT Security Challenges

IoT has unique characteristics and constraints when it comes to designing efficient
defensive mechanisms against cybersecurity threats that can be summarized by:

 1. Multiple Technologies: IoT combines multiple technologies such as radio-
frequency identification (RFID), wireless sensor networks, cloud computing,
virtualization, etc. Each of these technologies has its own vulnerabilities. The
problem with the IoT paradigm is that one must secure the chain of all of those
technologies as the security resistance of an IoT application will be judged based
on its weakest point which is usually referred to by Achilles’ heel.

 2. Multiple Verticals: The IoT paradigm will have numerous applications (also
called verticals) that span eHealth, industrial, smart home gadgets, smart cities,
etc. The security requirements of each vertical are quite different from the
remaining verticals.

 3. Scalability: According to Cisco, 26.3 billion smart devices will be connected to
the Internet by 2020. This huge number makes scalability an important issue
when it comes to developing efficient defensive mechanisms. None of the previ-
ously proposed centralized defensive frameworks can work anymore with the
IoT paradigm, where the focus must be switched to finding practical decentral-
ized defensive security mechanisms. An IoT solution needs to scale cost-
effectively, potentially to hundreds of thousands or even millions of endpoints.

 4. Availability: Availability refers to characteristic of a system or subsystem that is
continuously operational for a desirably long period of time. It is typically mea-
sured relative to “100% operational” or “never failing.” A widely held but
difficult- to-achieve standard of availability for a system or product is known as
“five 9 s” (available 99.999% of the time in a given year) availability. Security
plays a major rule in high availability as network administrators often hesitate to
use needed threat-response technology functions (e.g., network discovery as
illustrated in Chap. 7) for fear that such functions will take down critical sys-
tems. Even a simple port scan causes some IoT devices to stop working, and the
cost of downtime can far exceed the cost of remediating all but the most severe
incidents. In some instances, network administrators would rather have no
cybersecurity protection rather than risk an outage due to a false positive. This
leaves them blind to threats within their control networks. Companies often add
redundancy to their systems so that failure of a component does not impact the
entire system.

 5. Big Data: Not only the number of smart objects will be huge, but also the data
generated by each object will be enormous as each smart object is expected to be
supplied by numerous sensors, where each sensor generates huge streams of data
over time. This makes it essential to come up with efficient defensive mecha-
nisms that can secure these large streams of data.

 6. Resource Limitations: The majority of IoT end devices have limited resource
capabilities such as CPU, memory, storage, battery, and transmission range. This
makes those devices a low-hanging-fruit for denial of service (DoS) attacks

8.2 IoT Security Challenges

https://doi.org/10.1007/978-3-030-90158-5_7

216

where the attacker can easily overwhelm the limited resource capabilities of
those devices causing a service disruption. In addition to that, the resource limi-
tations of those devices raise new challenges when it comes to developing secu-
rity protocols especially with the fact that the traditional and mature cryptography
techniques are known to be computationally expensive.

 7. Remote Locations: In many IoT verticals (e.g., smart grid, railways, roadsides),
IoT devices, epically sensors, will be installed in unmanned locations that are
difficult to reach. Attackers can interfere with these devices without being seen.
Cyber and physical security monitoring systems must be installed in safe-
guarded location, operate in extreme environmental conditions, fit in small
spaces, and operate remotely for routine updates and maintenance avoiding
delayed and expensive visits by network technicians.

 8. Mobility: Smart objects are expected to change their location often in the IoT
paradigm. This adds extra difficulties when developing efficient defensive mech-
anisms in such dynamic environments.

 9. Delay-Sensitive Service: The majority of IoT applications are expected to be
delay-sensitive, and thus one should protect the different IoT components from
any attack that may degrade their service time or may cause a service disruption.

8.3 IoT Security Requirements

We summarize in this section the security requirements for IoT. These requirements
include:

• Confidentiality: ensures that the exchanged messages can be understood only by
the intended entities.

• Integrity: ensures that the exchanged messages were not altered/tampered by a
third party.

• Authentication: ensures that the entities involved in any operation are who they
claim to be. A masquerade attack or an impersonation attack usually targets this
requirement where an entity claims to be another identity.

• Availability: ensures that the service is not interrupted. Denial of service attacks
target this requirement as they cause service disruption.

• Authorization: ensures that entities have the required control permissions to per-
form the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement
where an old message is replayed in order to return an entity into an old state.

• Non-repudiation: ensures that an entity cannot deny an action that it has
performed.

• Forward Secrecy: ensures that when an object leaves the network, it will not
understand the communications that are exchanged after its departure.

• Backward Secrecy: ensures that any new object that joins the network will not be
able to understand the communications that were exchanged prior to joining the
network.

8 Internet of Things Security and Privacy

217

8.4 IoT Three-Domain Architecture

Before introducing IoT security issues, we briefly describe in this section the three-
domain architecture that we consider in our security analysis.

As illustrated in Figs. 8.1 and 8.2, the architecture is made up of the following
three domains:

 1. IoT Sensing Domain: This domain is made up of all the smart objects that have
the capability to sense the surrounding environment and report the sensed data to
one of the devices in the fog domain. The smart objects in the sensing domain
are expected to change their location over time.

IoT Applications
IoT Cloud Domain

IoT Services Platform

IoT Network
IoT Fog Domain

IoT Devices
IoT Sensing Domain

Fig. 8.1 Mapping of IoT
domains

Fig. 8.2 The IoT domains

8.4 IoT Three-Domain Architecture

218

 2. Fog Domain: This domain consists of a set of fog devices that are located in
areas that are highly populated by many smart objects. Each fog device is allo-
cated a set of smart objects where the allocated objects report their sensed data
to the fog device. The fog device performs operations on the collected data
including aggregation, preprocessing, and storage. Fog devices are also con-
nected with each other in order to manage the communication among the smart
objects and in order to coordinate which fog device will be responsible for han-
dling which object as objects change their location over time. Each fog device is
also connected to one or multiple servers in the cloud domain.

 3. Cloud Domain: This domain is composed of a large number of servers that host
the applications that are responsible for performing the heavy-computational
processing operations on the data reported from the fog devices.

We analyze in the following sections the security attacks and countermeasures at
each one of those three domains. We follow a top-down order where we describe the
attacks and countermeasures that are encountered at the cloud domain, the fog
domain, and the sensing domain. For each one of those domains, we identify the
most popular security attacks and then describe how these attacks are launched,
what vulnerabilities they exploit, and what countermeasure techniques can be used
to prevent, detect, or mitigate those attacks.

8.5 Cloud Domain Attacks and Countermeasures

As mentioned earlier, the cloud domain holds the IoT applications that are perform-
ing different operations on the data collected by the IoT objects. Each IoT applica-
tion is dedicated one or multiple virtual machines (VMs) where each VM is assigned
to one of the servers in the cloud data center and gets allocated certain amount of
CPU and memory resources in order to perform certain computing tasks. The cloud
data center is made up of thousands of servers where each server has certain CPU,
memory, and storage capacities, and thus each server has a limit on the number of
VMs that it can accommodate. The servers in the cloud data center are virtualized
which allows multiple VMs to be assigned to the same server as long as the server
has enough resource capacity to support the resource requirements of each hosted
VM. Figure 8.3 shows an illustration of how multiple VMs can be assigned to the
same server, thanks to virtualization (more details on virtualization were discussed
in Chap. 6). Each IoT application is hosted on a VM that has its own operating sys-
tem (OS). The hypervisor (sometimes also called the virtual machine manager)
monitors those running VMs and manages how these VMs share the server’s hard-
ware. The hypervisor also provides the logical separation among the VMs and also
separates each VM from the underlying hardware. The hypervisor has also a migra-
tion module that manages how to move a VM that is currently hosted on the server
to another server. The migration module also manages the reception of a VM that is
moved from other servers.

8 Internet of Things Security and Privacy

https://doi.org/10.1007/978-3-030-90158-5_6

219

Cloud computing is considered a high-risk environment for many businesses and
consumers as they feel its perimeter cannot be defined nor controlled. In addition,
many government agencies must comply with regulatory statutes, such as the Health
Insurance Portability and Accountability Act (HIPAA), the Sarbanes-Oxley Act of
2002 (SOX), and the Federal Information Security Management Act (FISMA). The
IoT applications running in the cloud domain are susceptible to numerous security
attacks. We summarize next the most popular ones:

 1. Hidden-Channel Attacks: Although there is a logical separation among the VMs
running on the same server, there are still some hardware components that are
shared among those VMs such as the cache. This opens opportunities for data
leakage across the VMs that reside on the same server. Three steps are followed
by the attacker in order to leak information from a target VM. These three steps
are explained next:

 (a) Step1: Mapping Target VM: The first step toward launching an attack
against a VM in a cloud data center is to locate where the target VM resides.
A cloud data center is typically divided into multiple management units
called clusters, where each cluster is located in a certain geographical loca-
tion and is made up of thousands of servers. Each cluster is divided into
multiple zones (sometimes called “pods”) where each zone consists of a
large number of servers. Although clients have the choice to specify in
which cluster their VM resides, they do not have control on selecting the
zone or the server within the zone where their VM will reside as this deci-
sion is made based on the cloud provider’s scheduling algorithm which is
not released publicly. In order to know where a target VM resides, the
attacker needs only to know the external IP address of that VM where each
VM hosted on the cloud has usually two IP addresses: an external address
used to communicate with any entity that is located outside the cloud cluster
and an internal address used only within the cloud cluster and is only visible
within the cloud cluster. The attacker can infer based on the VM’s external

Fig. 8.3 Illustration of
how multiple IoT
applications can be hosted
on the same server, thanks
to virtualization

8.5 Cloud Domain Attacks and Countermeasures

220

IP address on what cluster the VM resides, as cloud clusters are usually
placed in different geographical locations and have different IP addresses.
Now in order to identify in what zone within the cluster the target VM
resides, the attacker needs to know the target VM’s internal IP address as the
internal IP addresses for all VMs within the same zone have the same net-
work prefix. In order to identify the VM’s internal IP address, the attacker
rents a VM in the same cluster as the one where the VM resides. The rented
VM is then used to query the DNS server of the cloud cluster where the
internal IP address of the target VM can be fetched. By observing the internal
IP address of the target VM in the DNS query, the attacker can tell what zone
within the cloud cluster the VM is hosted in.

 (b) Step2: Malicious VM Placement: having identified on what cluster and on
what zone the target VM resides, the next step toward launching an attack
against the target VM is to place a malicious VM on the same server where
the target VM resides. In order to do that, the attacker rents a VM in the same
cluster as the target VM. The cloud provider’s scheduling algorithm places
the rented VM on one of the servers within one of the cluster’s zones. The
attacker performs a traceroute from the rented VM to the target VM where
the routing path that separates the rented VM and the target VM is identified.
If the identified routing path shows multiple hops that separate the target
VM and the rented VM, then the attacker knows that the rented VM was not
placed on the same server as the target VM. The attacker then releases the
rented VM and requests a new one. The cloud provider’s scheduling algo-
rithm selects a server to host the requested VM. The attacker performs a
traceroute from the new rented VM to the target VM in order to know
whether or not the target VM and the new rented VM reside on the same
server. The attacker continues releasing then renting new VMs and perform-
ing a traceroute until he/she identifies that the cloud provider’s scheduling
algorithm has placed the rented VM on the same server as the target VM.

 (c) Step3: Cross-VM Data Leakage: Having placed a malicious VM on the
same server as the target VM, the attacker now tries to learn some informa-
tion about the target VM by exploiting the fact that although VMs are sepa-
rated logically, thanks to virtualization, they still share certain parts of the
server’s hardware such as the instruction cache and the data cache. The
attacker can now, for example, learn what lines of cache (data or instruction)
the target VM has accessed recently. This can be done as follows. When the
shared cache is assigned to the malicious VM that is under the control of the
attacker, the attacker fills the whole shared cache by dummy data. The mali-
cious VM then yields the shared cache to the target VM which performs
some data access operations. The malicious VM sends an interrupt after a
short time from yielding the cache to the target VM asking to assess the
cache so that the target VM yields the cache for the malicious VM. Now the
malicious VM probes the different lines of the cache asking to fetch the
dummy data that were previously filled in the cache. By observing the time
it takes to access each chunk of the dummy data, the malicious VM can tell

8 Internet of Things Security and Privacy

221

which chunks of the dummy data were fetched from the cache and which
chunks were fetched from memory as they were replaced by data that was
accessed by the target VM. This gives information to the malicious VM
about what addresses the target VM has accessed recently. Knowing what
addresses the target VM accesses over time can help the malicious VM
recover parts of the security keys that the target VM is using.

 (d) Different countermeasures can be taken to prevent hidden-channel attacks
from taking place. The first twos steps needed to launch this attack (mapping
the target VM and placing a malicious VM on the same server as the target
VM) can be prevented by not allowing the VMs hosted in the cloud data
center to send probing packets such as traceroute packets. Preventing data
from being leaked across VMs that are hosted on the same server can be
achieved by one of the following techniques:

• Hard Isolation: The basic idea behind this preventive technique is to
maintain high levels of isolation among the VMs. One way to do this is
to separate the cache dedicated for each VM through hardware or soft-
ware. Another way to achieve hard isolation is by assigning only one VM
to each server. Although this completely prevents data leakages across
VMs, it is not a practical solution as it leaves the servers within the cloud
data center underutilized. A better way to achieve hard isolation is by let-
ting each cloud client specify a list of trusted cloud users called the white
list. The cloud client is fine with sharing the server with only the VMs
belonging to the white list users. New scheduling algorithms are needed
in that case in order to decide on what server each VM should be placed
such that the security constraints of each VM that are specified by the
white and black lists are met. A key limitation of this technique is that
each VM must have a list of identified untrusted VMs.

• Cache Flushing: This technique flushes the shared cache every time the
allocation of the cache is switched from a VM to another. The downside
of this countermeasure is that the VMs running on the server will experi-
ence frequent performance degradation as the shared cache will be emp-
tied every time a switch from a VM to another occurs, which increases
the time needed to access and fetch data.

• Noisy Data Access Time: This technique adds random noise to the amount
of time needed to fetch data, which makes it hard to tell whether or not
the data was fetched from the cache or from the memory. By doing this,
it becomes harder for a malicious VM to identify what segments of the
cache were populated by another VM that shares the same server. Of
course this has a price as the fetched data gets delayed a little bit due to
the noise (variable time delay) that is added to the time needed to fetch
the data.

• Limiting Cache Switching Rate: A mitigation technique to limit the
amount of data that can be leaked across VMs can be achieved by limit-
ing how often the cache is switched from a VM to another. The idea here

8.5 Cloud Domain Attacks and Countermeasures

222

is that if the cache is not switched from a VM to another too soon, then
the content of the cache will be modified a lot by the VM that possess the
cache. This makes it hard for another VM to attain fine-grained knowl-
edge of what data the previous VM has accessed when probing the cache.

 2. VM Migration Attacks: The virtualization technology supports live VM migra-
tion, which allows moving a VM transparently from a server to another. The term
live refers here to the fact that the application running on the VM is disrupted for
a very short duration due to this migration where the disruption is as low as hun-
dreds of milliseconds. Before delving into the security issues that VM migration
brings, we explain briefly the mechanism for performing VM migration and the
scenarios where VM migration is usually performed.

The mechanism of moving a VM from a source server to a destination server
is done by copying the VM’s memory content. The VM’s hard disk content does
not need to be copied as it is usually stored on a network-attached storage (NAS)
device and can be accessed from any location within the cloud cluster. If the
destination server where the VM will be moved to lies on the same local network
as the source server, then the VM keeps the same IP address even after migration
in order to avoid the need for communication redirection. Maintaining the same
IP address even after moving to another server is done after copying the memory
content of the VM by sending a gratuitous ARP reply packet that informs the
routing devices within the cloud about the VM’s new physical address, so that
any packet destined to the VM’s IP address gets routed to the VM’s new location
on the destination server. Each server has a dedicated module in the hypervisor
called the VM migration module that is responsible for sending the VM content
for the source server or receiving the VM’s memory content for the destina-
tion server.

VM migration is very useful in multiple scenarios. Consider, for example, the
case when a server that is hosting some VMs needs to be taken offline for main-
tenance or for patch installation. VM migration can be used in this case to move
all the VMs currently running on the server into other servers so that the server
can be taken down for maintenance without terminating the running VMs that
are hosted on that server. VM migration is also a very useful tool for managing
the servers in the cloud data center where it can be used to balance the workload
among the servers or to consolidate the scheduled VMs on fewer number of
powered servers so that a larger number of servers can be powered down to save
energy. However, the conveniences that VM migration brings raise new security
threats. The attacks that exploit VM migration can be divided into two subcate-
gories based on the target plane:

 (a) Control Plane Attacks: These attacks target the module that is responsible
for handling the migration process on a server which is called the migration
module that is found in the hypervisor. By exploiting a bug in the migration
module software, the attacker can hack the server and take full control over
the migration module. This gives the attacker the ability to launch malicious
activities including:

8 Internet of Things Security and Privacy

223

• Migration Flooding: This attack is illustrated in Fig. 8.4 where the
attacker moves all the VMs that are hosted on the hacked server to a vic-
tim server that does not have enough resource capacity to host all the
moved VMs. This causes a denial of service of the applications running
in the VMs of the victim server as there will not be enough resources to
satisfy the demands of all the hosted VMs leading into VM performance
degradation and VM crashes.

• False Resource Advertising: The hacked server claims that it has a large
resource slack (a large amount of free resources). This attracts other
 servers to off-load some of their VMs to the hacked server so that the
cloud workload gets distributed over the cloud servers. After moving
VMs from other servers to the hacked server, the attacker can exploit
other vulnerabilities to break into the offloaded VMs as now these VMs
are placed on a server that is under the control of the attacker.

 (b) Data Plane Attacks: These constitute the second type of VM migration
attacks, and those attacks target the network links over which the VM is
moved from a server to another. Examples of data plane attacks include:

• Sniffing Attack: where an attacker sniffs the packets that are exchanged
between the source and destination and reads the migrated memory pages.

• Man-in-the-Middle Attack: the attacker fabricates a gratuitous ARP reply
packet similar to the one that is usually sent when a VM moves from a
server to another. This fabricated ARP packet informs the routing devices
that the physical address where the victim VM resides was changed to
become the physical address of the attacker’s malicious VM. Now the
incoming packets that are destined to the victim get routed to the new
physical address where the attacker resides. The attacker can then pas-

Fig. 8.4 Illustration of the migration flooding attack

8.5 Cloud Domain Attacks and Countermeasures

224

sively monitor the received packets while continuing to forward them to
the actual physical address where the victim VM resides so that the vic-
tim does not detect that any malicious activity is going on. The attacker
can also modify the content of the received packets if the integrity of the
packets is not protected by any security mechanism. An illustration of the
man-in-the-middle attack is shown in Fig. 8.5.

• Having explained the VM migration attacks, we now discuss the possible
countermeasures. Unfortunately, little attention was given to secure VM
migration where the focus was more on how to optimize the performance
degradation or the energy overhead associated with those migrations. In
order to secure VM migration, mutual authentication should be per-
formed between the server initiating the migration and the server that will
be hosting the migrated VM. The control messages that are exchanged
between the servers to manage the migration should also be encrypted
and signed by the entity that is generating those control messages in order
to avoid altering the content of those control messages and in order to
prevent other entities from fabricating fake control messages. Sequence
numbers or timestamps should also be included in the exchanged control
messages in order to prevent a malicious entity from replaying an old
control message that was sent earlier. Also, gratuitous ARP Reply pack-
ets that update the physical address of the VM should be accepted only
after authentication in order to prevent man-in-the-middle attacks. The
reader interested in learning more about VM migration attacks and coun-
termeasures is referred to [19] for further information on this topic.

 3. Theft-of-Service Attack: In this attack a malicious VM misbehaves in a way that
makes the hypervisor assigns to it more resources than the share it is supposed to
obtain. This extra allocation of resources for the malicious VM comes at the
expense of the other VMs that share the same server as the malicious VM, where
these victim VMs get allocated less share of resources than what they should
actually obtain, which in turn degrades their performance.

Xen is a well-known hypervisor that is susceptible to this attack. One of the
main roles of Xen hypervisor is to decide to which VM among the ones running

Fig. 8.5 Man-in-the-middle attack

8 Internet of Things Security and Privacy

225

on the server each physical core should be assigned to over time. In order to do
that, Xen samples every 10 ms to check the VMs that are utilizing the cores. Xen
then assumes that the VM that is detected to be using one of the cores at the
sampling time has been using the server’s core during the entire 10 ms. The
hypervisor then calculates how much time each VM has been assigned the cores.
VMs that utilized the cores less than the remaining VMs are given higher priority
to utilize the server’s core in the future in order to guarantee a fair allocation of
the shared resources.

The fact that Xen performs periodic sampling can be exploited by a malicious
VM by using one of the cores at times other than the sampling time. As illus-
trated in Fig. 8.6, the malicious VM can yield the acquired core to another VM
shortly before the sampling tick. The hypervisor then assumes that the other VM
that has yielded the core has been using the core during the entire 10 ms. The
malicious VM does not get logged as using the core and thus keeps having high
priority to use the cores in the future.

Two countermeasures were proposed to handle this attack. The first counter-
measure is to log more accurately the start and end time when each VM was
utilizing the cores using accurate clocks. Another solution is to randomize the
sampling times.

 4. VM Escape Attack: Virtual machines are designed in a way that isolate each VM
from the other VMs running on the same server, which prevents VMs from
accessing data that belongs to other VMs that reside on the same server. However,
in reality software bugs can be exploited to break this isolation. If a VM escapes
the hypervisor layer and reaches the server’s hardware, then the malicious VM
can gain root access to the whole server where it resides. This gives the VM full
control on all the VMs hosted on the hacked server. Different techniques were
proposed to prevent a malicious VM from bypassing the hypervisor layer and
obtaining the root privileges. An example of such techniques is CloudVisor
which basically adds an extra isolation layer between the hardware and the
hypervisor through nested virtualization that prevents the malicious VM from

Fig. 8.6 Illustration of the theft-of-service attack

8.5 Cloud Domain Attacks and Countermeasures

226

obtaining the root privileges even if it bypasses the hypervisor layer. Other archi-
tecture solutions were also proposed to avoid VM escape attacks and could be
found in [28].

 5. Insider Attacks: In all the previously discussed attacks, we were treating the
administrators of the cloud data center as trusted entities, and we were focusing
only on the attacks that are originating from other malicious VMs that are hosted
in the cloud data center. However, some sensitive applications may have serious
concerns about hosting their collected information on the cloud data center in the
first place as the cloud data center administrators will in that case have the ability
to access and modify the collected data. Different techniques were proposed to
protect the data from these insider attacks. Homomorphic encryption is a form
of encryption that can be used to prevent such attacks as it allows the cloud serv-
ers to perform certain computing operations on encrypted input data to generate
an encrypted result. This encrypted result when decrypted matches the result of
performing the computational operation on the unencrypted input data. Applying
homomorphic encryption in the IoT paradigm allows cloud servers to perform
the necessary processing operations on the encrypted data that is collected from
the smart devices without giving the cloud servers the ability to interpret neither
the input data nor the result as they are both encrypted using a secret key that is
not shared with the cloud. Only the smart objects and the user running the IoT
application can interpret these data as they have the key needed for decryption.
Another form of protection against insider attacks is to chop the data collected
by the smart object into multiple chunks and then to use a secret key to perform
certain permutations on those chunks before sending the data to the cloud serv-
ers. This allows storing the data on the cloud servers in an uninterpretable form
for the cloud administrators. Only authorized entities that have the secret key can
return the stored data to an interpretable form by performing the correct
permutations.

For convenience, Table 8.1 summarizes all the cloud domain attacks that were dis-
cussed in this section. The second, third, and fourth columns of Table 8.1 describe,
respectively, the vulnerability that causes this attack, what security requirement
each attack violates, and what are the countermeasures that can be used to prevent
or detect and mitigate each attack.

8.6 Fog Domain Attacks and Countermeasures

Recall that the fog domain is made up of a set of fog devices where each fog device
collects the sensing data that is reported from a set of smart objects. The fog device
performs different operations on the collected data which include data aggregation,
data preprocessing, and data storage. The fog device may also perform some rea-
soning operations on the collected data. After processing and aggregating the col-
lected data, the fog device forwards these data to the cloud domain. It is worth

8 Internet of Things Security and Privacy

227

mentioning that not only fog devices are connected with the cloud domain, but also
fog devices are usually connected with each other in order to allow the fog devices
connecting different smart objects to communicate directly with each other and in
order to coordinate assigning objects to fog devices as their location changes. Fog
devices can be independent components or could be built on top of existing gate-
ways. Each fog device provides computing resources to be used by the IoT smart
objects that are located close to the fog device. These computing resources are vir-
tualized in order to allow the connected objects to share the computing resources
that are offered by the fog device where each object or set of connected objects are
allocated a virtual machine that performs the necessary data processing operations.

One can see that the computing capabilities provided by fog devices are very
similar to the computing services provided by the servers in the cloud as they are
both virtualized environments. The high similarities between the fog domain and
the cloud domain make the fog domain susceptible to all the cloud domain attacks
that were described in Sect. 8.5.

Although the fog domain is highly similar to the cloud domain, there are three
key differences that distinguish fog devices from cloud servers:

 1. Location: Unlike cloud servers which are usually located far from smart objects,
fog devices are placed in areas with high popular access and thus are placed
close to the smart objects. This placement plays an important role in giving the
fog devices the ability to respond quickly to changes in the reported data. This
also gives the fog devices the ability to provide location-aware services as smart
objects connect to the closest fog device, and thus each fog device knows the
location of the objects connected to it.

Table 8.1 Summary of the security attacks in the cloud domain

Attack Vulnerability reason Security violation Countermeasures

Hidden-
channel
attack

Shared hardware components
(e.g., cache) among the
server’s VMs

Confidentiality Hard isolation Cache flushing
Noisy data access time
Limiting cache switching rate

VM
migration
attacks

VM migration software bugs
VM migration is performed
without authentication
Memory pages copied in
clear

Confidentiality
Integrity
Availability

Server authentication
Encrypting migrated memory
pages

Theft-of-
service
attack

Periodic sampling of VMs’
used resources

Availability
Non-repudiation

Fine-grain sampling using
high precision clocks Random
sampling

VM escape
attack

Hypervisor software bugs Confidentiality
Availability
Integrity

Add an isolation domain
between the hypervisor and
hardware

Insider
attacks

Lack of trust in cloud
administrators

Confidentiality
Integrity

Homomorphic encryption
Secret storage through data
chopping and permutation
based on a secret key

8.6 Fog Domain Attacks and Countermeasures

228

 2. Mobility: Since the location of the smart object may change over time, then the
VMs created to handle those objects at the fog domain must be moved from a fog
device into another, in order to keep the processing that is performed in the fog
device close to the object that is generating data.

 3. Lower Computing Capacity: The fog devices that are installed in a certain loca-
tion are expected to have a lower computing capacity when compared to capaci-
ties offered by cloud data centers as the latter are made of thousands of servers.

These characteristics raise new security threats that are specific to the fog domain
and that distinguish it from the cloud domain. The security threats that are specific
to the fog domain are the following:

• Authentication and Trust Issues: The fact that fog devices do not require a large
facility space or a high number of servers compared to cloud data centers will
encourage many small and less-known companies to install virtualized fog
devices in dense areas and to offer these computing resources to be rented by the
smart objects that are near the installed fog devices. Unlike cloud data centers
which are offered by well-known companies, fog devices are expected to be
owned by multiple and less-known entities. An important security concern that
needs then to be taken into account when assigning a smart object to a fog device
is to authenticate first the identity of the owner of the fog device. Authentication
is not enough, as the smart object also needs to decide whether or not the owner
of the fog device can be trusted. Trust is an important aspect as a smart object
will be assigned to different fog devices belonging to different entities as their
location may change over time. Reputation systems such as those that were pro-
posed in peer-to-peer networks in or to rank cloud providers in can be used to
select a trustworthy fog device among the available ones in the area surrounding
each smart object.

• Higher Migration Security Risks: Although VM migration is common in both the
cloud and the fog domains, there is an important difference between the migra-
tion in the cloud domain and that in the fog domain. While the migrated VMs in
the cloud domain are carried over the cloud data center’s internal network, the
migrations from a fog device into another are carried over the Internet. Thus
there is a higher probability that the migrated VMs get exposed to compromised
network links or network routers when moving a VM from a fog device into
another. This makes it vital to encrypt the migrated VM and to authenticate the
VM migration messages that are exchanged among the fog devices.

• Higher Vulnerability to DoS Attacks: Since fog devices have lower computing
capacities, this makes them a low-hanging-fruit for denial of service (DoS)
attacks where attackers can easily overwhelm fog devices when compared to the
cloud data centers, where a huge number of servers that have high computing
capacity are available.

• Additional Security Threats Due to Container Usage: In order to provide the
computing needs for a larger number of connected objects, the fog device may
use containers rather than VMs to allocate the resource demands for each con-
nected object. The main difference between a container-based virtualization and

8 Internet of Things Security and Privacy

229

full virtualization is the fact that containers share not only the same hardware but
also the same operating system with the other containers that are hosted on the
same fog device (refer to Chap. 6). This is unlike the full virtualization (which
was illustrated in Fig. 8.3) where only the hardware is shared among multiple
VMs and each VM has its own operating system. The low overhead of containers
allows larger number of objects to be served by the fog device. However, sharing
the same operating system among the containers dedicated for objects that
belong to different users raises serious security concerns as the opportunities for
data leakage and for hijacking the fog device increase significantly. The industry
needs to address these gaps in container security to enable IoT applications
at scale.

• Privacy Issues: We mentioned before that each smart object will be connected to
one of the fog devices that are close to it. This means that the fog device can infer
the location of all the connected smart objects. This allows the fog device to track
users or to know their commuting habits which may break the privacy of the
users carrying those objects. New mechanisms should be developed in order to
make it harder for fog devices to track the location of the smart objects over time.
Furthermore, the advancement in wireless signal processing has made it possible
now to identify the presence of humans and track their location, their lip move-
ment, and their heartbeats by capturing and analyzing the wireless signals that
are exchanged between the sensing objects and the fog domain. This advance-
ment makes it possible for any entity to install a reception device close to your
home that analyzes the wireless signals that are emitted from your home in order
to spy on your daily activities. The work in [47] is among the first papers that
identified these risks where the authors in that paper propose a device called an
obfuscator that prevents leaking such information by emitting signals that make
it hard for an unauthorized receiver to infer the amplitude, the frequency, and the
time shift of the originally exchanged signals. The obfuscator does not only pre-
vent such leakages but also acts as a relay that rebroadcasts some of the sent
messages which increases the transmission rate between the sensing objects and
the fog domain.

8.7 Sensing Domain Attacks and Countermeasures

The sensing domain contains all the smart objects, where each object is equipped
with a number of sensors that allow the object to perceive the world. The smart
object is also supplied with a communication interface that allows it to communi-
cate with the outer world. The smart object reports the sensed data to one of the fog
devices in the fog domain. This is done by either creating a direct connection with
the fog device if the smart object is directly connected by wires or has the wireless
transmission capability to reach that fog device or in a multi-hop fashion where the
smart object relies on other smart objects that lie along the path to the fog device to
deliver the sensed data (as illustrated in Fig. 8.7).

8.7 Sensing Domain Attacks and Countermeasures

https://doi.org/10.1007/978-3-030-90158-5_6

230

The sensing domain is susceptible to multiple attacks. We summarize next some
of the most well-known ones:

 1. Jamming Attack: This attack causes a service disruption and takes one of
two forms:

 (a) Jamming the Receiver: This attack targets the physical domain in the OSI
stack of the receiver (where the receiver is the fog device in the case of a
direct connection or another object in the case of a multi-hop connection)
where a malicious user (called the jammer) emits a signal (called the jam-
ming signal) that interferes with the legitimate signals that are received at
the receiver side. The interference degrades the quality of the received signal
causing many errors. As a result, the receiving end does not acknowledge the
reception of these damaged packets and waits for the sender to retransmit
those packets.

 (b) Jamming the Sender: Unlike the previous attack, this type targets the data
link layer at the OSI layer of the sending object where the jammer in this
attack sends a jamming signal that prevents the neighboring objects from
transmitting their packets as they sense the wireless channel to be busy and
back off waiting for the channel to become idle.

There are different jamming strategies that a jammer may follow to
launch a jamming attack. The most well-known ones are summarized next:

• Constant Jamming: The attacker continuously transmits a random jamming sig-
nal all the time. The main limitation of this attack is that it can be detected easily
by observing random bits that do not follow the pattern dictated by the MAC
protocol. Another main limitation is the fact that it requires the jamming device
to be connected to a source of power as it requires lots of energy.

Fig. 8.7 Multi-hop versus
direct connection between
the smart object and the
fog device

8 Internet of Things Security and Privacy

231

• Deceptive Jamming: This is similar to the constant jamming with the exception
that the jammer conceals its malicious behavior by transmitting legitimate pack-
ets that follow the structure of the MAC protocol rather than sending random bits.

• Reactive Jamming: This is a strategy for jamming the receiver that is suitable for
the case when the jamming device has a limited power budget. The jammer in that
case listens to the medium and transmits a jamming signal only after it senses that
a legitimate signal is being transmitted in the medium. This is more power efficient
than continuously transmitting signals as listening to the channel consumes less
power than transmitting signals.

• Random Jamming: The jammer alternates between sending a jamming signal and
remaining idle for random periods of time in order to hide the malicious activity.

• More sophisticated jamming attacks have also emerged that intend to increase
the service disruption time, reduce the probability of detection, increase the abil-
ities to recover from the countermeasure that the victim node may take, while
also reducing the power that the jamming device requires. An example of a power
efficient advanced jamming attack would be to jam only the acknowledgment
packets that nodes exchange rather than jamming the whole transmitted data
packets as the former are shorter than the latter and thus require less power to jam
while causing the same damage.

• Different preventive and detective techniques were proposed to address jamming
attacks. We summarize next the most popular ones:

• Frequency Hopping: This is a preventive technique where the sender and receiver
switch from a frequency to another in order to escape from any possible jamming
signal (IEEE 802.15.4 TSCH discussed in Chap. 5 is an example of a wireless
technology that employs this technique). Switching from a frequency to another
is based on a generated random sequence that is known only for the sender and
receiver. If the jammer is aware of the use of this preventive strategy, then the
jammer has to switch from a frequency to another trying to collide with the fre-
quency used by the sender and receiver. The interaction between the hopping
strategies of the legitimate nodes and that of the jammer in that case can be mod-
elled as a two-player game, where game theory can be used to come up with a
hopping strategy that reduces the chances of colliding with the frequency
sequence of the jammer.

• Spread Spectrum: This technique uses a hopping sequence that converts the nar-
row band signal into a signal with a very wide band, which makes it harder for
malicious users to detect or jam the resulting signal. This technique is also very
efficient when the transmitted data are protected by an error-correction technique
as it allows the reconstruction of the original signal even if few bits of the trans-
mitted data were jammed by the attacker.

• Directional Antennas: The use of directional antennas can mitigate jamming
attacks from being successful as the sender and receiver antennas will have less
sensitivity to the noise coming from the random directions that are different from
the direction that connects the sender and the receiver.

• Jamming Detection: Different detective techniques were proposed in the litera-
ture to detect jamming attacks. The receiver can detect that it is a victim of a

8.7 Sensing Domain Attacks and Countermeasures

https://doi.org/10.1007/978-3-030-90158-5_5

232

jamming attack by collecting features such as the received signal strength (RSS)
and the ratio of corrupted received packets. Advanced machine learning tech-
nique can then be used to differentiate jamming attacks from the degradation
caused by the poor quality of the channel due to normal changes in the wireless
link. We point the reader to the survey in [2] for further information about jam-
ming intrusion detection systems.

 2. Vampire Attack: This attack exploits the fact that the majority of IoT objects have
a limited battery lifetime where a malicious user misbehaves in a way that makes
devices consume extra amounts of power so that they run out of battery earlier
thereby causing a service disruption. The damage caused by this attack is usually
measured by the amount of extra energy that objects consume compared to the
normal case when no malicious behavior exists.

We identify four types of vampire attacks based on the strategy used to
drain power:

 (a) Denial of Sleep: Different data link layer protocols were proposed to reduce
the power consumption of smart objects by switching them into sleep when-
ever they are not needed. Examples of these protocols include S-MAC and
T-MAC protocols. The idea behind these protocols is to agree on a duty-
cycle schedule where objects exchange control messages in order to syn-
chronize their schedules so that they agree on transmitting signals at certain
cycles while remaining asleep for the rest of the time. An adversary can now
launch a denial of sleep attack which prevents objects from switching to
sleep by simply sending control signals that change their duty-cycles keep-
ing them active for longer durations. The adversary can still succeed in
launching this attack even if the control messages that synchronize the duty-
cycles of the objects are encrypted. When the control messages are encrypted,
the adversary can capture one of those encrypted control messages and
replay it (resend it) at a later point of time causing the nodes to change their
synchronization and their schedules. The adversary needs in that case to use
traffic analysis techniques that rely, for example, on the length of the packets
and the rate at which packets are exchanged in order to distinguish the con-
trol messages from the data messages that the nodes exchange since the
content that packets carry is hidden by encryption.

 (b) Flooding Attack: The adversary can flood the neighboring nodes with
dummy packets and request them to deliver those packets to the fog device,
where devices waste energy receiving and transmitting those dummy
packets.

 (c) Carrousel Attack: This attack targets the network layer in the OSI stack and
can be launched if the routing protocol supports source routing, where the
object generating the packets can specify the whole routing path of the pack-
ets it wishes to send to the fog device. The adversary in that case specifies
routing paths that include loops where the same packet gets routed back and
fourth among the other objects wasting their power. Figure 8.8 illustrates
this attack.

8 Internet of Things Security and Privacy

233

 (d) Stretch Attack: This attack also targets the network layer in the OSI stack. If
the routing protocol supports source routing, then a malicious object can
send the packets that it is supposed to report to the fog device through very
long paths rather than the direct and short ones as illustrated in Fig. 8.8.
Even if source routing is not supported, the attacker can select a next hop
that does not have the shortest path to the fog device in order to increase the
power consumption of the objects that will be responsible to deliver those
packets (Fig. 8.9).

The adversary can further amplify the amount of wasted energy by com-
bining flooding attack with carrousel attack and stretch attack. The adver-

Fig. 8.8 Illustration of the
carrousel attack where the
numbered arrows show the
path specified by the
malicious objects that the
packets generated by the
malicious object follow

Fig. 8.9 Illustration of the
stretch attack

8.7 Sensing Domain Attacks and Countermeasures

234

sary in that case floods the neighboring objects with a large number of
generated packets and specifies long paths with loops that the packet should
follow in order to increase the amount of wasted power.

Denial of sleep attacks can be mitigated by encrypting the control mes-
sage that arranges the schedules of the node while including a timestamp or
a sequence number in the encrypted control message. This prevents the
adversary from succeeding, in replaying an old control message, by check-
ing the encrypted timestamp or the encrypted sequence number that the
replayed control message is not a new message but an old one that someone
replayed to cause disruption. Flooding attacks can be mitigated by limiting
the rate of the packets that each object may generate. Carrousel attacks can
be mitigated by making each object that is requested to forward a packet
based on a route specified by the source check the specified path where
packets with loops within their paths are dropped as they are most likely
originating from malicious users. Finally, stretch attacks can be mitigated by
disabling source routing or by making sure that the forwarded packets are
making progress toward their destination and are not following long paths.

 3. Selective-Forwarding Attack: This attack takes place in the case when the object
cannot send its generated packets directly to the fog device but must rely on
other objects that lie along the path toward the fog device to deliver those pack-
ets. A malicious object in this attack does not forward a portion of the packets
that it receives from the neighboring objects. A special case of this attack is the
black-hole attack where the attacker drops the entire set of packets that it receives
from the neighboring objects. The best way to prevent packet drops from taking
place for sensitive IoT applications is to increase the transmission capability of
the objects so that they can reach the fog device directly without the need for
help from intermediate objects. Unfortunately not all IoT objects are expected to
have high transmission range to reach the fog device and thus will be relying on
other objects to deliver their packets, which makes them susceptible to this
attack. Different solutions were proposed to mitigate the number of dropped
packets. Path redundancy is one of those solutions, where each object forwards
each generated packet to multiple neighboring objects, where multiple copies of
the same packet get delivered to the fog device through different paths. This
decreases the chances of not having at least a copy of each generated packet
delivered to the fog device. The main limitation of this mitigation technique is
that it has a high energy overhead as it increases significantly the traffic. Rather
than mitigating the damage caused by those attacks, the approach in [6, 8] tries
to detect malicious objects that are dropping the sent packets so that packets can
be routed through different paths that avoid those objects. Detecting the presence
of objects that are dropping packets along certain paths can be done by selecting
certain trusted objects as checkpoints. Each time a checkpoint receives a packet,
it sends an acknowledgment to the object that generated that packet. The
acknowledgment includes a unique identifier for the packet that was received
along with a signed hash for the acknowledgment’s content. This guarantees that
no other entity fabricates fake acknowledgment packets and that no other entity

8 Internet of Things Security and Privacy

235

can alter the content of these acknowledgments. The interested reader may refer
to [7] for a complete overview on the countermeasures that can be used against
selective-forwarding attacks.

 4. Sinkhole Attack: A malicious object claims that it has the shortest path to the fog
device which attracts all neighboring objects that do not have the transmission
capability to reach the fog device to forward their packets to that malicious
object and count on that object to deliver their packets. Now all the packets that
are originating from the neighboring nodes pass by this malicious node. This
gives the malicious node the ability to look at the content of all the forwarded
packets if data is sent with no encryption. Furthermore, the malicious object can
drop some or all of the received packets as we explained previously in the
selective- forwarding attack. Figure 8.10 illustrates how the network topology
changes before and after this attack. Techniques to detect and isolate the mali-
cious objects were proposed and are based on the idea of collecting information
from the different objects where each object reports the neighboring objects
along with the distance to reach those objects. A centralized intrusion detection
system is then used to rely on the reported information to identify objects that are
potentially providing misleading information. Detecting such attack becomes
harder when multiple malicious nodes collude to hide each other.

Finally, Table 8.2 summarizes all security attacks in the sensing domain that
were discussed in this section. The second column of the table shows what layer in
the OSI stacks the attack targets, whereas the third, fourth, and fifth columns
describe, respectively, the vulnerability reason, the security requirement that the
attack breaks, and the defensive countermeasures against each attack.

Fig. 8.10 Network topology before and after a sinkhole attack. The malicious object M claims
that it has a shorter route to reach the fog device which attracts the neighboring objects A and E to
rely on M to deliver their packets

8.7 Sensing Domain Attacks and Countermeasures

236

8.8 Securing IoT Devices

In this section we will provide several examples of IoT devices being used to launch
security attacks (Sect. 8.8.1), in addition to two solutions that attempt to secure IoT
devices, namely MUD (Sect. 8.8.2) and DICE (Sect. 8.8.3).

8.8.1 IoT Devices Gone Rogue

With the increase of practical deployments, IoT devices have proven to be easy
targets for hackers who turn compromised devices into active actors to carry out
their attacks on networked IT infrastructure. This is especially true in the context of
distributed denial of service (DDoS) attacks. Insecure IoT devices represent a grow-
ing pool of compute and communications resources that is open to misuse. These
devices can be hijacked to spread malware, recruited to form botnets that may attack
other Internet users, and even can be used to attack critical national infrastructure,
or the structural functions of the Internet itself.

There are multiple recent examples of IoT devices being used as attack vectors.
We will highlight some of them next.

8.8.1.1 Botnets

A botnet is a typically large collection of networked computers (bots) that are under
remote control from some malicious third party over the Internet. Usually, these
computers would have been compromised by an outside attacker who controls
aspects of their functionality without the owners’ consent or knowledge.

Table 8.2 Summary of the security attacks targeting the sensing domain

Attack
Target
OSI layer

Vulnerability
reason

Security
violation Countermeasures

Jamming
attack

Physical
Data link

Shared
wireless
channel

Availability Frequency hopping Spread
spectrum Directional antennas
Jamming detection techniques

Vampire
attack

Data link
Network

Limited battery
lifetime

Availability
Freshness

Rate limitation
Drop packets with a source route
that contains a loop Monitor
whether or not the forwarded
packets are making progress
toward their destination

Selective-
forwarding
attack

Network Limited
transmission
capability

Availability Increase transmission range Path
redundancy
Choose certain intermediate
objects as checkpoints to
acknowledge received packets

Sinkhole
attack

Network Limited
transmission
capability

Confidentiality
Availability

Analyze the collected routing
information from multiple objects

8 Internet of Things Security and Privacy

237

Because there are many such computers in a typical botnet, the attacker has access
to a quasi supercomputer that can be employed for malicious purposes. Furthermore,
since the bots are distributed geographically and organizationally over the Internet,
the quasi supercomputer can be difficult to deter. The first botnet was developed in
2001 to send spam, and that is still a common use. Another common use for botnets is
for DDoS attacks, in which a target server is constantly bombarded with network traf-
fic until it is overwhelmed beyond its capacity and forced to go offline.

In 2016, a DDoS attack rendered much of the Internet inaccessible on the US
East coast, and the attack was perpetrated by the Mirai botnet. Mirai took advantage
of insecure IoT devices in a simple but clever way: It scanned large blocks of the
Internet for open Telnet ports, then attempted to log in using username/password
combinations that are frequently used defaults for these devices and never changed.
With this simple approach, it was able to recruit an army of compromised closed-
circuit TV cameras and routers, ready for launching a DDoS attack.

The reason why the botnet was so effective was due to the fact that it leveraged a
large number of IoT devices which often include an embedded stripped-down Linux
operating system. These devices had no built-in ability to be patched remotely and
were in physically remote or inaccessible locations.

8.8.1.2 Webcams

Webcams are often marketed as consumer products for baby monitoring or as secu-
rity devices. In one instance, a webcam manufacturer had faulty software on their
products that allowed anyone with knowledge of the webcam’s IP address to view
the camera’s video feed, and sometimes listen in through the embedded micro-
phones. Another manufacturer’s product was susceptible to remote code-injection
attack, which allowed a malicious user to get administrative access to the camera,
thereby placing the user at a risk of being spied upon. The remote execution flaw not
only allows an attacker to set their own custom password to access the device, but
also to add new users with administrative access to the interface, download mali-
cious firmware or reconfigure the product as they please.

8.8.1.3 Casino Fish Tank

Security firm Darktrace published a report where it revealed that an unnamed casino
in North America was hacked through an Internet-connected fish tank. That connec-
tion allowed the tank to be remotely monitored, automatically adjust temperature
and salinity, and automate feedings. In this incident, the vulnerable smart tank was
used as an easy backdoor into the casino’s network. Once the attackers gained
access to the tank, they scanned the casino’s network for other vulnerabilities and
moved laterally to other places in the network where they were able to steal 10
gigabytes of private data from the casino. The tank’s communication patterns with
the casino’s network appeared normal enough. However, the data that it was pump-
ing through to the Internet was highly suspect. It was the only tank system that

8.8 Securing IoT Devices

238

transmitted data to a remote server in Finland, which it was in communications
with. It also did so by employing protocols that are normally used for streaming
audio or video.

8.8.1.4 Cardiac Devices

Cardiac devices, such as pacemakers and defibrillators, are used to monitor and
control patients’ heart functions and prevent heart attacks. In 2017, the FDA
announced that St Jude’s Medical implantable cardiac devices had security vulner-
abilities that would enable an attacker to access these devices, where they could
deplete the battery or administer incorrect pacing or shocks. The vulnerabilities
were in the transmitter that reads the device’s data and remotely shares it with
physicians.

8.8.1.5 Vehicles

In 2015, Charlie Miller and Chris Valasek, two security researchers, exposed the
security vulnerabilities in automobiles by hacking into cars remotely, controlling
the cars’ various functions from the radio volume to the brakes. They did so by
leveraging day-zero exploits that give attackers wireless access to the car via the
Internet. This was done by sending commands through the vehicle’s entertainment
system to its dashboard functions, steering, brakes, and transmission, all remotely
from their laptops. The entertainment system served as an excellent entry point,
because automakers are increasingly enabling the linking of these systems to the
Internet. From that entry point, Miller and Valasek’s attack pivots to an adjacent
chip in the car’s head unit (the hardware for its entertainment system), silently
rewriting the chip’s firmware to plant their code. That rewritten firmware is capable
of sending commands through the car’s internal computer network, known as a
CAN bus, to its physical components like the engine and wheels.

Proper identification of connected devices is the first step when securing any
network. With IoT, the asset inventory problem is compounded due to the sheer
scale of “things,” and there is a key requirement to efficiently and unambiguously
identify connected devices for onboarding and ongoing management. With the
ongoing rapid growth in the number of IoT devices, malicious actors view these
devices as a soft attack surface from where to launch their attacks onto any other
target in the network. As such, it is critical to provide mechanisms and capabilities
for securing these devices. Two such mechanisms are MUD and DICE, which will
be covered in detail next.

8 Internet of Things Security and Privacy

239

8.8.2 MUD

Manufacturer Usage Descriptor (MUD) is an embedded software standard defined
by the IETF (RFC 8520) to help reduce the vulnerability surface of IoT devices by
employing network policy (whitelisting approach). It aims to reduce the scope of
malware injection and hijacking of over-the-air firmware updates. It also addresses
the scenario of devices that are no longer being actively maintained by their original
manufacturer.

MUD enables IoT device manufacturers to advertise formal device specifica-
tions, including the intended communication patterns for a given device when con-
nected to the network. The network can then leverage this advertised intent, or
profile, to formulate a tailored and context-specific access control policy, to guaran-
tee that the device communicates only within the specified parameters. This way the
network behavior of the device, in any operating environment, can be locked down
and verified rigorously. In this context, MUD becomes the delegated identifier and
authoritative enforcer of policy for IoT devices on the network. MUD works by
enabling networks to automatically permit each IoT device to send and receive only
the traffic it requires to perform as intended while blocking unauthorized communi-
cation with the device.

The MUD solution consists of three key components, as shown in Fig. 8.11.

• A unique identifier, in the form of a Universal Resource Locator (URL), that an
IoT device advertises when it connects to the network.

• An Internet hosted profile file that this URL points to. This file contains an
abstracted policy that describes the level of communication access which the IoT
device needs to perform its intended functionality.

• A core process that receives the URL from the IoT Device, retrieves the profile
file from the MUD File Server, and establishes the appropriate access control
policies in the network to restrict the communication patterns for that IoT device.

Core MUD
Process

Network
Internet

MUD File Server

IoT Device

1. MUD URL

2. MUD File Query

3. MUD File4. Access Policy

Fig. 8.11 MUD architecture

8.8 Securing IoT Devices

240

MUD leverages mechanisms that have existed in network infrastructure, includ-
ing routers and switches, for over a decade. In what follows, we will describe the
MUD workflow and associated mechanisms that can be used in more details.

 1. The IoT device informs the network of the MUD URL using any one of the fol-
lowing existing protocols: DHCP, LLDP, or via a certificate in an IEEE 802.1X
exchange. Once the device has communicated the URL to the network, its task
in supporting MUD is done. The goal is to keep the device prerequisites as sim-
ple as possible for IoT device manufacturers.

 2. The URL is received from the network by a Core MUD Process. This module
may reside in one of many potential systems, depending on the nature of the
network infrastructure. For instance, in an enterprise network, it may be part of
the Policy (e.g., AAA) server. In a home network, it may be provided by the
Internet service provider (ISP) or by the customer premise equipment (CPE)
vendor. In a mobile service provider network, it might be part of an operational
support system (OSS).

 3. The Core MUD Process resolves the MUD URL and retrieves the profile file
from the MUD File Server. This file is a declaration of intent that specifies what
access the device is intended to have in the form of an abstract policy. The ratio-
nale being that an IoT device may be designed to communicate with a single or
small number of controllers or with similar Things, or that for a given service, it
should or should not have access to the local network.

 4. The Core MUD Process translates these abstract intent definitions into a context-
specific access control policy that the local network infrastructure can consume.
How that translation occurs will vary depending on the network deployment.
Some networks may use Access Control Lists (ACLs). Other networks may rely
on segmentation using VLANs or VNIs, while others may use service groups or
some other access control mechanism.

 5. An administrator may then approve, reject, or modify the policy, based on
deployment specifics. This policy may be merged with other policies, for
instance, to take into account the user of the device or the device’s deployment
location.

 6. The Core MUD Process pushes the merged policy to the associated systems of
the network infrastructure (for example, switches, routers, etc.). This can be
achieved using some configuration protocol such as NETCONF, Radius, or any
alternative mechanism.

MUD provides a clear value proposition to device owners, network administra-
tors and IoT device manufacturers. First, for device owners, it limits the impact and
extent of exploitation of any security vulnerability that is potentially discovered in
their IoT devices. For network administrators, MUD provides them with better vis-
ibility of the types of Things connected to the network and with the type of policies
that they require. This helps them with better inventory management, risk assess-
ment, and remediation. Finally, for device manufacturers MUD alleviates any sup-
port, financial liability, or brand damage that may arise due to compromised devices.

8 Internet of Things Security and Privacy

241

8.8.3 DICE

Device Identifier Composition Engine (DICE) is a collection of hardware and soft-
ware mechanisms for cryptographic IoT device identity, attestation, and data
encryption. DICE is an industry standard created by the Trusted Computing
Group (TCG).

IoT devices that perform encryption use a private key called a Unique Device
Secret (UDS) in order to secure their operation. It is possible for an attacker to leak
this key by compromising the code running on the chip. Having access to the private
key can enable the attacker to impersonate the device and even to replace its firm-
ware. Therefore, it is paramount to prevent the disclosure of the UDS. The key to
DICE is its ability to break up the boot process for any device into layers and to
combine unique secrets and a measure of integrity for each of these layers. This
way, if malware is present at any stage of the boot process, the device is automati-
cally re-keyed and secrets protected by the legitimate keys remain safe.

DICE implements three measures to secure the UDS:

• Power-on Latch: The power-on latch locks read access to the UDS before early
boot-code transfers control to subsequent execution layers.

• Cryptographic One-way Functions: A cryptographic one-way function com-
putes a hash of the UDS to store in RAM so that in the event of RAM disclosure
by compromised code, the original UDS is safe.

• Tying Key Derivation to Software Identity: To prevent compromise of the
device by attempts to modify the early boot-code, the cryptographic one-way
function uses a measurement of the boot code as input together with the UDS. The
function outputs a key called the Compound Device Identifier (CDI) taking both
the UDS and early boot code hash as input (optionally taking the hardware state
and configuration as input as well). This process ensures that modification of
early boot code generates a new key so that the UDS is secure.

The reason for tying the CDI derivation to the code that is booting on the device
is to guarantee that a firmware update automatically results in the device being re-
keyed. This behavior is desirable to address two security problems, specifically:

 1. If an attacker changes the code that boots on the device with the intent of stealing
keys, the attacking program (with a different hash) ends up obtaining a different
key than the original authorized program.

 2. If authorized code contains a security vulnerability that leads to CDI compro-
mise, then the device must be re-keyed after patching. The CDI derivation func-
tion ensures that patching the vulnerable firmware automatically results in a new
CDI being computed.

DICE introduces a simple security approach that does not increase the silicon
requirements for IoT devices. It targets constrained devices where traditional
Trusted Platform Modules (TPM) may be unfeasible due to limitations related to

8.8 Securing IoT Devices

242

cost, power, physical space, etc. As such, it is possible to implement it in the tiniest
microcontrollers.

DICE is predicated upon a hardware root of trust for measurement. It works by
organizing the boot into layers and creating secrets unique to each layer and con-
figuration based on UDS (refer to Fig. 8.12). If a different code or configuration is
loaded, at any point in the boot chain, the secrets will be different. Each software
layer keeps the secret it receives completely confidential. If a vulnerability exists
and a secret is leaked, it patches the code automatically and creates a new secret,
effectively re-keying the device. In other words, when malware is present, the device
is automatically re-keyed and secrets are protected.

DICE provides strong device identity, attestation of device firmware and security
policy, and safe deployment and verification of software updates. The latter are
often a source of malware and other attacks. Another key benefit for device manu-
facturers is that they are no longer required to maintain databases of unique secrets.

8.9 Summary and Future Directions

This chapter analyzed IoT from a security and privacy perspectives. Ignoring secu-
rity and privacy will limit the applicability of IoT and will have serious results on
the different aspects of our lives given that all the physical objects in our surround-
ing will be connected to the network. In this chapter, the IoT security challenges and
IoT security requirements were identified. A three-domain IoT architecture was
considered in our analysis where we analyzed the attacks targeting the cloud
domain, the fog domain, and the sensing domain. Our analysis describes how the
different attacks at each domain work and what defensive countermeasures can be
applied to prevent, detect, or mitigate those attacks. We hope that the research and
industry communities will pay attention to the discussed security threats and will
apply appropriate countermeasures to address those issues. We also hope that secu-
rity and privacy will be considered at the early design stage of IoT in order to avoid
the common pitfall of considering security as an afterthought.

We end this chapter by providing some future directions for IoT security and
privacy:

• Fog Domain Security: The fog domain is a new domain that was introduced to
bring the computing capabilities to the edge of the network. We believe that
 further attention should be paid to this domain as it has not received enough

Power
On

DICE

UDS

Layer 0

Secret 0

Layer 1

Secret 1

Layer N

Secret N

Fig. 8.12 DICE architecture

8 Internet of Things Security and Privacy

243

attention from the academia and the industry. The focus should be on identifying
threat models related to the fog domain and also on finding efficient solutions
that can run on the fog devices that are available in the market.

• Collaborative Defense: We identified while surveying the related work that what
the literature on IoT security lacks is a collaborative solution where the different
domains (cloud, fog, and sensing) interact with each other to stop or mitigate a
certain attack. We believe that an interdomain-defensive solution will be way
more effective than applying countermeasures at each domain separately, where
the different domains can interact and collaborate in order to stop any ongoing
malicious activity.

• Lightweight Cryptography: This is a highly important topic that has gained a
significant attention recently and is anticipated to be very important for the future
of IoT where the objective is to find efficient cryptographic techniques that can
replace the traditional computationally expensive ones while achieving an
acceptable level of security.

• Lightweight Network Security Protocols: Not only the cryptographic computa-
tions must have lower overhead but also the network security protocols that are
used for communication. Many efforts are being paid by the research and indus-
try communities to find cross-domain-optimized security protocols that achieve
the necessary security protection while maintaining a low overhead.

• Digital Forensics: Although tracking the location of smart objects is considered
a privacy violation, it also has some useful cases. Consider, for example, the case
where police rely on tracking the smart objects that are carried by a missing per-
son in order to identify the missing person’s location. Digital forensics in the IoT
era will play an important role in solving the different forensic cases as they will
all become technology related. This area is also expected to receive further atten-
tion in the future where different techniques can be used to extract knowledge
from the smart objects.

Problems and Exercises

 1. The authors have broken IoT security challenges into seven areas. Name them.
Why big data is an issue for IoT?

 2. What techniques can be applied to prevent cross-VM data leakage? Explain
how the hard isolation technique can be achieved.

 3. What are some of the typical uses of VM migration in cloud data centers? What
are the two types of attacks that are related to VM migration?

 4. Who is the entity that initiates insider attacks, and how can homomorphic
encryption be used to prevent such attacks?

 5. What are the three key differences that distinguish fog devices from cloud serv-
ers? Provide a brief explanation of each difference.

 6. Which provides more protection against security attacks: container-based virtu-
alization or full virtualization? Why?

 7. What are the two connection approaches that the smart objects may use to com-
municate with the fog device? Which approach is more secure and can this
approach always be used?

8.9 Summary and Future Directions

244

 8. What are the four strategies that a jammer may follow in order to launch a jam-
ming attack? Which strategy is suitable when the jammer have limited
energy budget?

 9. What are vampire attacks? Name their types.
 10. What is network high availability? What is network redundancy? How are they

related?
 11. Chapter 3 discusses three different ways to obtain information for IoT “things”:

sensors, RFID, and video tracking. In a table, compare the security for the three
technologies.

 12. What is limiting cache switching rate? How can it be accomplished? Explain
how it works.

References

 1. D. Willis, A. Dasgupta, S. Banerjee, Paradrop: a multi-tenant platform for dynamically
installed third party services on home gateways, in SIGCOMM workshop on distributed cloud
computing, (ACM, New York, NY, 2014)

 2. W. Xu et al., Jamming sensor networks: attack and defense strategies. Network IEEE 20(3),
41–47 (2006)

 3. W. Ye, J. Heidemann, D. Estrin, Medium access control with coordinated adaptive sleeping for
wireless sensor networks. Networking, IEEE/ACM Transactions 12(3), 493–506 (2004)

 4. T. Van Dam, and K. Langendoen, An adaptive energy-efficient MAC protocol for wireless
sensor networks. in Proceedings of the 1st international conference on Embedded networked
sensor systems, ACM, 2003

 5. K.P. Dyer, et al., Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures fail.
in Security and Privacy (SP), 2012 IEEE Symposium, IEEE, 2012

 6. J. Park, et al., An Energy-Efficient Selective Forwarding Attack Detection Scheme Using
Lazy Detection in Wireless Sensor Networks. in Ubiquitous Information Technologies and
Applications, (Springer, The Netherlands, 2013), pp. 157–164

 7. L.K. Bysani, and A.K. Turuk, A survey on selective forwarding attack in wireless sensor
networks. in Devices and Communications (ICDeCom), 2011 International Conference,
IEEE, 2011

 8. B. Xiao, B. Yu, C. Gao, CHEMAS: Identify suspect nodes in selective forwarding attacks.
J. Parallel Distrib. Comput. 67(11), 1218–1230 (2007)

 9. P. Thulasiraman, S. Ramasubramanian, and M. Krunz, Disjoint multipath routing to two dis-
tinct drains in a multi-drain sensor network. in INFOCOM 2007. 26th IEEE International
Conference on Computer Communications, IEEE, 2007

 10. H.-M. Sun, C.-M. Chen, and Y.-C. Hsiao, An efficient countermeasure to the selective forward-
ing attack in wireless sensor networks. in TENCON 2007–2007 IEEE Region 10 Conference,
IEEE, 2007

 11. A. Grau, Can you trust your fridge? Spectrum, IEEE 52(3), 50–56 (2015)
 12. C. Li, A. Raghunathan, and N. K. Jha, Hijacking an insulin pump: Security attacks and defenses

for a diabetes therapy system. in e-Health Networking Applications and Services (Healthcom),
2011 13th IEEE International Conference, IEEE, 2011

 13. D. Evans, The internet of things how the next evolution of the internet is changing everything.
Technical report, CISCO IBSG, 2011

8 Internet of Things Security and Privacy

https://doi.org/10.1007/978-3-030-90158-5_3

245

 14. R. Thomas, et al., Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. in Proceedings of the 16th ACM conference on Computer and communica-
tions security, ACM, 2009

 15. M. Dabbagh, B. Hamdaoui, M. Guizai and A. Rayes, Release-time aware VM placement. in
Globecom Workshops (GC Wkshps), (2014), pp. 122–126

 16. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Toward energy-efficient cloud computing:
Prediction, consolidation, and overcommitment. Network, IEEE 29(2), 56–61 (2015)

 17. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Efficient datacenter resource utilization
through cloud resource overcommitment, in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2015, pp. 330–335

 18. R. Boutaba, Q. Zhang, and M. Zhani, Virtual Machine Migration in Cloud Computing
Environments: Benefits, Challenges, and Approaches. in Communication Infrastructures
for Cloud Computing, ed. by H. Mouftah and B. Kantarci (IGI-Global, Hershey PA, 2013),
pp. 383–408

 19. D. Perez-Botero, A Brief Tutorial on Live Virtual Machine Migration from a Security
Perspective, University of Princeton, Princeton, 2011

 20. W. Zhang, et al., Performance degradation-aware virtual machine live migration in virtualized
servers. in International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2012

 21. V. Venkatanathan, T. Ristenpart, and M. Swift, Scheduler-based defenses against cross-VM
side-channels. Usenix Security, (2014)

 22. T. Kim, M. Peinado, and G. Mainar-Ruiz, Stealthmem: System-level protection against cache-
based side channel attacks in the cloud. in Proceedings of USENIX Conference on Security
Symposium, Security’12. USENIX Association, 2012

 23. H. Raj, R. Nathuji, A. Singh, and P. England, Resource management for isolation enhanced
cloud services. in Proceedings of the 2009 ACM workshop on Cloud computing security,
ACM, 2009, pp. 77–84

 24. Y. Zhang and M. K. Reiter, Duppel: Retrofitting commodity operating systems to mitigate
cache side channels in the cloud. in Proceedings of the 2013 ACM SIGSAC Conference on
Computer; Communications Security, CCS ‘13. ACM, 2013

 25. P. Li, D. Gao, and M. K. Reiter, Mitigating access driven timing channels in clouds using stop-
watch. in IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2013, pp. 1–12

 26. R. Martin, J. Demme, and S. Sethumadhavan, Timewarp: Rethinking timekeeping and per-
formance monitoring mechanisms to mitigate sidechannel attacks, in Proceedings of the 39th
Annual International Symposium on Computer Architecture, 2012

 27. F. Zhou et al., Scheduler vulnerabilities and coordinated attacks in cloud computing. in 10th
IEEE International Symposium on Network Computing and Applications (NCA), 2011

 28. K. Panagiotis, and M. Bora, Cloud security tactics: Virtualization and the VMM. in Application
of information and communication technologies (AICT), 2012 6th International Conference.
IEEE, 2012

 29. F. Zhang et al., CloudVisor: retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ACM, 2011

 30. T. Taleb, A. Ksentini, Follow me cloud: interworking federated clouds and distributed mobile
networks. IEEE Network 27, 12 (2013)

 31. E. Damiani et al., A reputation-based approach for choosing reliable resources in peer-to-peer
networks. in Proceedings of the 9th ACM conference on computer and communications secu-
rity. ACM, 2002

 32. W. Itani et al., Reputation as a Service: A System for Ranking Service Providers in Cloud
Systems. in Security, Privacy and Trust in Cloud Systems. (Springer, Berlin Heidelberg, 2014).
pp. 375–406

 33. J. Sahoo, M. Subasish, and L. Radha, Virtualization: A survey on concepts, taxonomy and
associated security issues. in Second International Conference on Computer and Network
Technology (ICCNT), 2010

References

246

 34. S.Yi, Q. Zhengrui, and L. Qun, Security and privacy issues of fog computing: A survey. in
Wireless Algorithms, Systems, and Applications, (Springer International Publishing, 2015),
pp. 685–695

 35. E. Oriwoh, J. David, E. Gregory, and S. Paul, Internet of things forensics: Challenges and
approaches. in 9th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (Collaboratecom), IEEE, 2013, pp. 608–615

 36. Z. Brakerski, V. Vinod, Efficient fully homomorphic encryption from (standard) LWE. SIAM
J. Comput. 43(2), 831–871 (2014)

 37. E. Lauter, Practical applications of homomorphic encryption. in Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop, ACM, 2012

 38. C. Hennebert, D. Jessye, Security protocols and privacy issues into 6lowpan stack: A synthe-
sis. Internet of Things Journal IEEE 1(5), 384–398 (2014)

 39. Daily Tech Blogs On Line, http://www.dailytech.com/Five+Charged+in+Largest+Financial+
Hacking+Case+in+US+History/article32050.htm

 40. M. Miller, Car hacking’ just got real: In experiment, hackers disable SUV on busy highway
(The Washington Post, 2015), online: http://www.washingtonpost.com/news/morning- mix/
wp/2015/07/22/car- hacking- just- got- real- hackers- disable- suv- on- busy- highway/

 41. 2015 Data Breach Investigation Report, Verizon Incorporation (2015)
 42. M. Dabbagh et al., Fast dynamic internet mapping. Futur. Gener. Comput. Syst. 39,

55–66 (2014)
 43. Forrester, Security: The Vital Element of the Internet of Things, 2015, online: http://www.

cisco.com/web/solutions/trends/iot/vital- element.pdf
 44. F. Adib and D. Katabi, See through walls with WiFi!, vol. 43. (ACM, 2013)
 45. S. Kumar, S. Gil, D. Katabi, and D. Rus, Accurate indoor localization with zero start-up

cost, in Proceedings of the 20th Annual International Conference on Mobile Computing and
Networking, ACM, 2014, pp. 483–494

 46. G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. Ni, We can hear you with Wi-Fi!, in Proceedings of
the 20th Annual International Conference on Mobile Computing and Networking, ACM, 2014,
pp. 593–604

 47. Y. Qiao, O. Zhang, W. Zhou, K. Srinivasan, and A. Arora, PhyCloak: Obfuscating sensing
from communication signals, in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016

 48. T. Yu, et al., Handling a trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things, Proceedings of the 14th ACM Workshop on Hot Topics in
Networks, 2015

 49. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Software-defined networking security: pros
and cons. IEEE Commun. Mag. 53, 73 (2015)

8 Internet of Things Security and Privacy

http://www.dailytech.com/Five+Charged+in+Largest+Financial+Hacking+Case+in+US+History/article32050.htm
http://www.dailytech.com/Five+Charged+in+Largest+Financial+Hacking+Case+in+US+History/article32050.htm
http://www.washingtonpost.com/news/morning-mix/wp/2015/07/22/car-hacking-just-got-real-hackers-disable-suv-on-busy-highway/
http://www.washingtonpost.com/news/morning-mix/wp/2015/07/22/car-hacking-just-got-real-hackers-disable-suv-on-busy-highway/
http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf
http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf

	Chapter 8: Internet of Things Security and Privacy
	8.1 Introduction
	8.2 IoT Security Challenges
	8.3 IoT Security Requirements
	8.4 IoT Three-Domain Architecture
	8.5 Cloud Domain Attacks and Countermeasures
	8.6 Fog Domain Attacks and Countermeasures
	8.7 Sensing Domain Attacks and Countermeasures
	8.8 Securing IoT Devices
	8.8.1 IoT Devices Gone Rogue
	8.8.1.1 Botnets
	8.8.1.2 Webcams
	8.8.1.3 Casino Fish Tank
	8.8.1.4 Cardiac Devices
	8.8.1.5 Vehicles

	8.8.2 MUD
	8.8.3 DICE

	8.9 Summary and Future Directions
	References

