
179© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_7

Chapter 7
IoT Services Platform: Functions
and Requirements

IoT is expected to connect billions of sensors, devices, and applications over the
Internet. One of the most critical prerequisites for successful, scalable, and effective
IoT solutions is a Services Platform that provides abstraction across the multitude
of diverse devices and data sources in addition to allowing for the management and
control of a range of systems and processes. The operation of this platform requires
a comprehensive and diverse set of requisites to gather relevant data, analyze it, and
create actionable insights.

The Services Platform must surpass vertical solutions by integrating all essential
technologies and required components into a common, open, and multi-application
environment. The functions of the IoT Services Platform include the ability to
deploy, configure, troubleshoot, secure, manage, and monitor IoT devices. They
also include the ability to manage applications in terms of software/firmware instal-
lation, patching, starting/stopping, debugging, and monitoring. The Services
Platform also provides capabilities that simplify application development through a
core set of common application services that include data management, temporary
caching, permanent storage, data normalization, policy-based access control and
exposure. In addition to these, the Services Platform may offer some advanced
application services, which include support for business rules, complex event pro-
cessing, data analytics, and closed loop control. Figure 7.1 shows examples of key
IoT Services Platform Functions. A more detailed and structured list will be pro-
vided in Sects. 7.2–7.12.

As can be seen from the list above, many of the capabilities of the IoT Services
Platform represent what can be loosely categorized as “management functions.”
These, however, are different from traditional network management. Traditional
network-level management functions were originally defined, in the early 1980s, by
the Open Systems Interconnection (OSI) Systems Management Overview (SMO)
standard as FCAPS: Fault, Configuration, Accounting, Performance, and Security.
A decade later, the Telecommunications Management Network (TMN) of ITU-T,
advanced the FCAPS as part of the TMN recommendation on Management

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_7#DOI

180

Functions. The term FCAPS is often used in network management books as a useful
way to break down the multipart network management functions.

While FCAPS still apply, the overall management functions of IoT solutions are
more multifaceted than traditional networks. This is due to the following factors:

• IoT solutions include new devices (e.g., sensors, white-label gateways, and
white-label switches). Some of these devices are inexpensive and generally lack
the type or level of instrumentation required for traditional management
functions.

• IoT solutions utilize relatively recent technologies (e.g., tracking exact location
of IoT device using GPS triangulation) that were not considered by traditional
management solutions.

• IoT solutions support more than two dozen access protocols (as was mentioned
in Chaps. 4 and 5). The network management for each protocol may vary.

• IoT solutions support multiple verticals, each of which has different sets of man-
agement, quality of service, and grade of service requirements.

• IoT solutions utilize a new Fog layer with new and challenging network, com-
pute and storage management requirements.

• Finally, many enterprises and service providers are expected to outsource and, in
many cases, multisource key parts of the network and/or management functions.
This requires additional, mostly new, capabilities such as secure integration that
spans connecting workflows between multiple services providers.

This chapter describes the essential functions of the IoT Services Platform, as
shown in Fig. 7.2. It focuses on identifying key capabilities with minimum empha-
sis on the relationship between the functions or their access protocol interfaces.
Such relationship and protocols were addressed in the IoT Protocol Stack Chaps.
4 and 5.

Before introducing the main functions of the IoT Services Platform, we will first
revisit the key components of IoT solutions that consist of IoT Device elements, IoT
Network elements, IoT Services Platform, and IoT Applications as shown in
Fig. 7.3.

•

•

•

•

•

•

•

•

•

•

Application
Development

•

•

•

•

•

•

•

•

•

•

•

Fig. 7.1 Examples of key IoT Services Platform functions

7 IoT Services Platform: Functions and Requirements

https://doi.org/10.1007/978-3-030-90158-5_4
https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_4
https://doi.org/10.1007/978-3-030-90158-5_5

181

• IoT Device Entities: IoT devices include sensing devices, actuators, and gate-
ways. The main functions of the gateways are (1) collecting and aggregating
information from the devices, (2) on-site filtering and simple correlation of col-
lected information, (3) transferring correlated data to the network layer, and (4)
taking action on the devices (e.g., shutting power off) based on commands from
higher layers.

• IoT Network Entities: IoT network entities provide services from the underly-
ing network to the Services platform. They include super-gateways, access rout-
ers, switches, and possibly element management servers with specific network
management functions.

• IoT Services Platform Entity: The IoT Services Platform sometimes referred to
as “IoT Platform” or “The IoT Application Services Platform,” of any IoT solu-
tion. It is responsible for monitoring and controlling IoT elements in the IoT
Device and Network Layers. It also allows the creation of direct integration
between physical devices (e.g., sensors, actuators, gateways) and computer-
based application systems to improve efficiency, accuracy, and economic benefit.

IoT Devices

IoT Network

IoT Services Platform

IoT Applications

IoT Gateway

Chapter 7
Area of Focus

Fig. 7.2 Areas of focus for this chapter

IoT Devices

IoT Network

IoT Services Platform

IoT Applications

IoT Service
Platform

Functions

Fig. 7.3 Key components of IoT solution

7 IoT Services Platform: Functions and Requirements

182

• IoT Services Platform entity receives information from IoT Device and Network
Entities, and provides services to the Application Entities. More importantly, it
provides network-level and often service-level management functions as will be
discussed in this chapter.

• IoT Application Entities: Application entities receive information from the
Services Platform and provide services and business level functions. These func-
tions are typically vertical dependent. Examples of Application Entities include
an IoT-based Automated Parking application, an IoT-based Hurricane Alert
System application, etc.

7.1 IoT Services Platform Functions

Without a doubt, the IoT Services Platform constitutes the linchpin of successful
IoT solutions. It is responsible for many of the most challenging and complex tasks
of the solution. The IoT Services Platforms include numerous fundamental func-
tions to ensure proper and secure deployment and comprehensive supervision and
control. In this chapter, we will identify key IoT Services Platform functions by
grouping related requirements together and by utilizing recent IoT standards such as
those devised by oneM2M1 and European Telecommunications Standards Institute
(ETS) standards bodies. More information on the IoT standards was provided in
Chap. 5 (Sect. 5.4.2).

The overall functions of the IoT Services Platform can be categorized into the
following 11 key areas:

 1. Platform Manager
 2. Discovery and Registration Manager
 3. Communication Manager
 4. Data Management and Repository
 5. Firmware Manager
 6. Topology Manager
 7. Group Manager
 8. Billing and Accounting Manager
 9. Cloud Service Integration Function/Manager
 10. API Manager
 11. Element Manager: Configuration Management, Fault Management,

Performance Management and Security Management

Figure 7.4 shows the IoT Services Platform functions. It does not constrain the
multiplicity of the entities nor the relationships among them.

1 OneM2M is the global standards initiative for Machine-to-Machine Communications and the
Internet of Things.

7 IoT Services Platform: Functions and Requirements

https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_5#Sec80

183

7.2 IoT Platform Manager

The IoT Services Platform Manager, also known as IoT Service Platform’s
Management Entity in some standards, is responsible for managing the IoT Service
Platform internal modules and interfaces. It works with the Communication
Manager (Sect. 7.4) and the Element Manager (Sect. 7.6) to monitor, configure,
troubleshoot, and upgrade the Services Platform modules. It is really the “manager
of managers” responsible for providing the overall management of the entire
Services Platform functions.

The Platform Manager is used for the overall control and management of the
common management functions. It allows the system administrator, or an applica-
tion in the Application Layer, to manage IoT Services Platform components and
interfaces. This includes initiating an action (e.g., discovery) and receiving results
(e.g., discovered elements) within a specific amount of time.

The Platform Manager is expected to have a full user interface, allowing the
system administrator to initiate requests and review reports, and providing inter-
faces to receive and send information. It must be noted that user and application’s
authorization (specifying access rights level) and authentication (verifying the
user’s credentials) is a top requirement.

The Platform Manager may be a physical system/server or virtual system with
functions distributed among the common management components.

The IoT Platform Manager is responsible for:

• Performance Monitoring and Fault Management of the Services Platform func-
tions. This includes continuous monitoring, troubleshooting, fault identification,
fault correction, and diagnostics. This requires constant collection of logs,

Platform
Manager

Discovery &
Registration

Communication
Manager

Data
Manager

Firmware
Manager

Topology
Manager

Group
Manager

Billing &
Accounting

Subscription &
Notification

API Manager

Element Manager: Configuration, Fault, Performance and Security

Fig. 7.4 Common IoT Services Platform functions

7.2 IoT Platform Manager

184

 performance and fault parameters from the platform functions (e.g., system logs,
alarms).

• Lifecycle software management allowing the IoT Platform Manager to manage
any software packages related to the above Services Platform functions. This
includes upgrading, updating, installing, uninstalling/removing, and download-
ing software packages. Complete configuration backups with roll-back capabili-
ties must be supported (Why? See Problem 24).

• Configuring any of the platform functions when they are first installed. This
includes the configuration of the services offered to Application Entities.

• Supporting multiple levels of IoT Platform Managers operating in a hierarchical
environment. For instance, supporting two Platform Managers, representing two
separate networks, and a third “Supper Platform Manager” with full read and
write access to the first two. Consequence, Platform Managers should have the
ability to establish relationships among each other including establishing par-
ent–child and Read–Write relationships.

The concept of Super Platform Manager is needed to address high availability
requirements.

7.3 Discovery: Entities, Services, and Location

Discovery is the process of identifying and transferring information regarding exist-
ing IoT entities and/or resources with their locations. Accurate discovery is essen-
tial for most IoT management tasks such as asset management, network monitoring,
network diagnostics and fault analysis, network planning, capacity expansion, high
availability, and others.

One of the key discovery requirements is for IoT entities (e.g., sensors, gateways,
routers) to uniquely identify themselves via a common registration process. Hence,
each entity needs to be uniquely identifiable through its embedded computing sys-
tem. It also needs to be able to interoperate within the existing IoT infrastructure via
IoT access protocols as we defined in Chap. 5.

An essential requirement for discovery is entity registration. In this section, we
will first introduce the registration function and then provide the key requirements
for discovery.

7.3.1 Registration

IoT device registration can be defined as the process of delivering the device infor-
mation to the Management Entity (or to another server) in order for IoT devices to
communicate and exchange information. Most IoT devices will be identified and
tracked by their IP addresses. However, as we mentioned in Chap. 2, not all IoT

7 IoT Services Platform: Functions and Requirements

https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_2

185

devices are IP-enabled. In such case, devices (e.g., basic sensors) may be tracked by
their local (typically non-unique) addresses (e.g., local identifier) in combination
with their corresponding gateway IP address. Gateways are expected to have unique
IP addresses and are responsible for providing a means to uniquely identify their
associated sensors and actuators.

In order for the IoT registration process to work, the following key capabilities
are necessary:

• IoT devices must have the capability to register to an associated Platform
Manager entity. This procedure may be self-registration (preferred solution)
where a new IoT device identifies itself to the management entity as soon as it
joins the IoT network or identifies itself during the discovery process as will be
discussed in the next section. The registration requirements must be addressed in
all IoT domains, i.e.,

 – Ability for new sensors and actuators to register themselves with their associ-
ated gateways.

 – Ability for new gateways to register themselves with their associated Platform
Manager entities.

 – Ability for Platform Managers to register themselves with a super (or another)
Platform Manager(s) as defined by the network administrator.

• Once the registration is complete,

 – The IoT Platform Manager must be able to access the IoT gateway and retrieve
information (i.e., Read Access is granted). In other words, IoT gateways must
grant full access privilege to the associated IoT Platform Manager(s). Hence,
all resource information must be available to the IoT Platform Manager.

 – The IoT gateways must be able to access their associated sensors and actua-
tors and retrieve information. In this case, sensors and actuators resource
information must available to the associated IoT gateway(s).

 – Super IoT Platform Manager(s), if present, must be able to access their cor-
responding IoT Platform Managers and retrieve information. Hence, all
resource information must be available to the super management entities
where applicable.

7.3.2 Discovery

Based on some filtering criteria (typically specified by a management entity such as
the Platform Manager, IoT Gateway, or a northbound application) in the discovery
request, the discovery function is responsible for discovering, identifying, and
retuning matching information regarding entities and/or resources. The discovery
function sends matching information to the requester’s system. The discovery
request may include the IP or MAC address (obtained from device registration), set
of addresses, or range of IP addresses of the resource where the discovery is to be

7.3 Discovery: Entities, Services, and Location

186

performed. Full discovery, without any specified addresses, may also be supported.
In such case, all entities (based on some filtering criteria in the discovery request)
are discovered. Example: Discover all entities in a given enterprise network.

In IoT, the location of the physical entities (e.g., sensors, gateways) is also essen-
tial. The discovery function also supports obtaining geographical location
information.

It is assumed, therefore, that IoT entities have the capability of identifying, stor-
ing, and updating their geographical location information. This may be accom-
plished with a GPS module in the entity, a location server responsible for tracking
and storing location information, or information for inferring location stored in
other nodes. The location technology (e.g., Cell-ID, assisted-GPS, and fingerprint)
used by the underlying network depends on its capabilities. Sensors with no geo-
locations are identified by their corresponding gateways.

We will use an example of CoAP (Constrained Application Protocol) to illustrate
discovery.

Discovery Request: Assume the IP Address of the Management Server is
192.15.10.5. Also assume the Management Server is interested in discovering
sensors within 500 m from the location of (37.76724070774898,
−122.37890839576721)2 GPS Coordinates. The management server will send a
CoAP GET request to

Coap://192.15.10.5:5784/.well-known/core?
& ro=SSN-XG-IRI&sd=yyyyyy=&at30004&lg=-122.37890839576721
<=37.76724070774898&md=500&st=2&sr=70

Discovery Reply: Upon receiving the request, the CoAP server will start a match-
ing process comparing the request with all stored information in its local data
store. Let us assume that the returned set consists of two sensors matching the
request. The CoAP server response payload will be

</Hts2030HumidSens>;ct=41; at30004; lg=-122.37890839576721;
lt=37.76724070774898&md=310; ro=SSN-XG-IRI; sd=aaaaaa;
tittle=”Humidity-Sensor-2030”,
</BitLineAnemomSens>;ct=0; ct=41;at=30004; lg=-122.37890839576721;
lt=37.76724070774898&md=276; ro=SSN-XG-IRI; sd=bbbbbb;
tittle=”Anemometer-Sensor-111”,

Table 7.1 summarizes the Registration and Discovery requirements.

2 (37.76724070774898, −122.37890839576721) are the GPS Coordinate for a northern
California area.

7 IoT Services Platform: Functions and Requirements

187

Finally, IoT software services may also be discovered by collecting configura-
tion and operational parameters (e.g., using YANG,3 SNMP MIBs, CLI Outputs).
IETF defined a set of requirements for standard-based device (configuration and
operational data) management. Key functionalities include:

• Ability to collect configuration and operation data from all IoT devices (e.g.,
running configuration files) where applicable.

• Ability to extract and then structure/model data from configuration and operation
files via an information model.

• Ability to distinguish between configuration data and operational data (i.e., data
that describes operational state and statistics).

• Ability for operators to configure the entire network and not just individual
devices.

• Ability to check configurations consistency between devices in the network.
• Ability to use text processing tools such as diff and version management tools

such as CVS.
• Ability to distinguish between the distribution of configurations and the activa-

tion of a certain configuration.

Detailed requirements for discovery of software services are outside the scope of
this book.

3 YANG is a tree-structured data modeling language (defined by IETF) used to model configuration
and state data [6].

Table 7.1 Summary of IoT Registration and Discovery requirements

Function Responsibility Results/outputs

Discovery Identify IoT sensors, actuators, gateways, and
devices via attributes and search protocols

IoT entities, gateways,
sensors, and actuators based
on filtering criteria

Identify the location of physical entities GPS location
Identify access control policies across
management servers and clients (see Sect. 7.5)

Access Control Policy
information

Identify IoT services via attributes and collected
data

IoT configured services
(outside the scope of this
book)

Registration The process of delivering IoT device information
(sensors, actuators, gateways, and IoT entities) to
the Management Entity, or to another server, in
order for IoT devices to communicate and
exchange information

Ability for IoT device
(sensors, actuators, gateways,
and IoT entities) to register
with their associated
gateways

7.3 Discovery: Entities, Services, and Location

188

7.4 Communication Manager

The Communication Manager is responsible for providing communications with
other platform functions, applications, and devices. This includes supporting the
following functionality:

• Ability to provide a global view of the state of the entire underlying platform
network. This is needed to address the next requirement.

• Ability to determine the optimal time to establish the communication connection
to deliver information between at least two platform entities. Such decision is
based on the source delivery request as well as traffic/congestion control optimi-
zation techniques within the platform. Data may be stored/buffered for future
delivery time per the provisioned Communication Manager policies.

• Ability to deliver required information within the delivery request time.
• Ability to publish its own polices to external systems.
• Ability to provide information to external systems to drive policies describing

details of the usage of network resources (i.e., 5% of bandwidth on link X at time
T was utilized for service Y).

• Ability to communicate, select paths for a given amount of time, and manage
buffers based on communication manager polices.

7.5 Data Management and Repository

Collecting, storing, and exchanging information among various platform entities is
one of the key requirements for the IoT Service Platform. Data Storage and
Mediation functionalities must include:

• Data Retrieval: Data may be retrieved from various sources including IoT
devices (e.g., sensors and getaways), IoT network elements (e.g., super-gateways
and switches), IoT subscribers or IoT applications. IoT device and network ele-
ment data is assumed to be collected by collection systems or by collection agents.

• We are using the term “Collection System” to refer to a physical hardware
machine (e.g., server, PC) mainly used for data collection. And the term
“Collection Agent” refers to a software unit (agent) that resides on a gateway/
router blade (or on a computer along with other applications). Hence, Collection
System may be the same as Collection Agent (see Problem 30).

• Data Aggregation: Data aggregation implies grouping data from similar or
diverse sources for further processes. Typically, data from various IoT sources
need to be grouped together based on a well-defined data model (e.g., physical
locations, device types, subscribers with their assigned devices, etc.). The aggre-
gation syntax should be defined by the data model. Also, data from multiple data
collection systems (for the same IoT entity) need to be filtered and aggregated
accordingly.

7 IoT Services Platform: Functions and Requirements

189

• Data Parsing: Data parsing normally implies reading the data, using software,
and extracting useful information. Stages of data parsing are hard to define with-
out a concrete use-case but typically include running code to extract specific
parameters and writing the extracted data to a database.

• Data Storing: The Data Storage and Mediation Function supports taking data
from various sources and storing it based on pre-defined policy. Raw data, aggre-
gated data, and parsed data may be stored with different polices (e.g., store raw
data for 6 months, store parsed data for 2 years). Associated contextual informa-
tion is also stored with the data. Examples of contextual information include:
data type (e.g., Temperature), data format (e.g., −100 °C to +100 °C) data source
(e.g., Sensor ID and Associated Gateway ID), retrieval time and date (e.g.,
03:45:00 PM EST on 12/12/2016), retrieval location (e.g.,
lg = −122.37890839576721; lt = 37.76724070774898).

• Access to data based on defined access control policy: The Data Storage and
Mediation needs to have the capability of providing local or remote data access
based on a well-defined access control policy. The policy, which is typically
defined by the network administrator, needs to capture what types of functions a
specific user or application can perform on the data (read-only write-only, read/
write). The policy may include temporal access restrictions, and may be role
based (e.g., administrator vs. user, etc.).

7.6 Element Manager (Managing IoT Devices
and Network Elements)

The element management function is expected to manage IoT sensors, actuators,
gateways as well as other devices residing within the platform boundaries. The ele-
ment management function, as shown in Fig. 7.5, typically utilizes the client-server
distributed model where a single management server may manage multiple man-
agement clients. In this model, tasks are partitioned between the management server
(provider of the service) and the management client (service requester). The man-
agement client establishes a connection to the management server over the network
to accomplish a particular task (e.g., sending performance results of the last 5 min).
Once the management client’s task is fulfilled, by the management server, the con-
nection is terminated.

In IoT environment, the management server may be residing in a data center
while management client may be residing on the IoT Gateway in an offsite location.

A key function of element management includes:

• Ability for the management client and management server to communicate at
any time. Hence, real-time communication is required to send time-sensitive data.

• While it is recommended to use a standardized protocol so that any management
server can communicate with any management client, any existing client-server

7.6 Element Manager (Managing IoT Devices and Network Elements)

190

communication protocol may be utilized. Key examples include TR-0694
and LWM2M.5

• Ability for the management servers (or adaptors) to receive and fully understand
(based on an agreed upon protocol) management client requests and/or notifica-
tions. For example, air pressure measurements of the oil rig vale.

• Ability for the management clients to receive requests and/or notifications from
the management servers (or their adaptors). The management clients may have
the ability to fully understand such events and deliver them to targeted sensors,
actuators, or device as required. For example, requesting the actuator to shut
down a valve.

• Ability for the management server and management clients to address the secu-
rity requirements as defined later in this chapter and in Chap. 8 including
Authorization, Authentication, Access Control, Non-reputation, Data confidenti-
ality, Communication Security, and Data Integrity and Privacy.

• Ability for the super management server to assign different levels of access con-
trol privileges when multiple management servers and/or clients exist.

4 TR-069 as a bidirectional SOAP/HTTP-based protocol that was originally for remote manage-
ment of end-user devices. It was published by the Broadband Forum and entitled CPE WAN
Management Protocol (CWMP).
5 LWM2M (Lightweight Machine-to-Machine) protocol is defined by the Open Mobile Alliance
for M2M/IoT, as an application layer communication protocol between a LWM2M Server and a
LWM2M Client (located in a LWM2M Device).

Management
Client

Management
Server

IoT Gateway

IoT Sensor

Server

Fig. 7.5 Example of element management function

7 IoT Services Platform: Functions and Requirements

https://doi.org/10.1007/978-3-030-90158-5_8

191

• Ability for the super management server to provide read access (with the appro-
priate access control requirement) to the discovery or other functions to discover
access control policy information.

• Ability for the management server to provide read access (with the appropriate
access control requirement) to the discovery or other functions to discover man-
aged elements with their latest collected information (e.g., metadata, values)
including gateways, sensors, and actuators.

• Ability for the management server to create a new element to be managed (e.g.,
gateway, sensor), delete an existing element, update any parameters of any exist-
ing elements, update the firmware of any element, and to retrieve information of
any existing elements.

7.6.1 Configuration (and Provisioning) Management

Configuration management is one of the most important element and network man-
agement functions. Configuration management is the process of enabling (or dis-
abling) a service. Before providing the overall requirements for IoT configuration
management, it is worthwhile to discuss the main differences between configuration
and provisioning management.

The Provisioning function is concerned with the basic process of preparing and
equipping an IoT network to provide proper and effective services, while the
Configuration function is concerned with the actual enablement or disablement of
an IoT service. Provisioning is often equated to initiation of a service or capability,
whereas configuration is the final set of touches to deliver the actual service to a
particular customer.

Hence, an IoT network is first generically provisioned (e.g., by installing librar-
ies or services on servers) to provide a set of services to any customers. Such provi-
sioning does not imply that a service can simply be launched without additional
instructions on which particular server or set of servers to use, which specific set of
already provisioned parameter to employ, how to distribute the load when demand
increase, etc.

Figure 7.6 shows an example of Device Remote Management/Configuration to
address the machine-to-machine (M2M) environment with OMA (Open Mobile
Alliance) lightweight M2M protocol, which focuses on constrained cellular and
sensor network M2M devices.

Key configuration requirements include:

• Ability to identify IoT devices and their associated management objects and
attributes.

• Ability to enable or disable a device capability.
• Ability to update device parameters.
• Ability to roll-back applied changes in the configuration at least to five back ver-

sions (tracked by time and date).

7.6 Element Manager (Managing IoT Devices and Network Elements)

192

• Ability to reset IoT device parameters to original factory values.

On the IoT network side, an example of network element protocol is the Network
Configuration Protocol (NETCONF). It provides mechanisms to install and update
the configuration of network elements such as a router or switch using XML to
encode the configuration data and the protocol messages.

7.6.2 Fault Management

At the minimum, IoT service providers need to be able to configure new service
(turn-on a service for a customer) and then identify any problem or potential prob-
lem and have the tools to fix it quickly. No service provider will survive in the mar-
ket if they do not have the capabilities and processes to discover problems promptly
(before they occur in most cases) and take quick action to prevent service interrup-
tion or service degradation that could result in Service-Level Agreement (SLA)
violation.

Fault management is among the most challenging and important management
function of IoT networks. This is due to the fact that large-scale deployment of
inexpensive sensors (i.e., with very limited processing capability, storage capacity,
and limited energy) means that failures from various defects will not be uncommon.
It is also due to the fact that managing IoT devices in remote locations and often

LW M2M
Client

LW M2M
Server

IoT Sensor

M2M App

Fig. 7.6 Example of
configuration management
using LW M2M protocol

7 IoT Services Platform: Functions and Requirements

193

harsh environments will be demanding, especially when dealing with various IoT
topologies and verticals.

Fault Management typically consists of three main functions: fault detection,
fault isolation (or diagnostic), and fault correction as shown in Fig. 7.7. In this sec-
tion, we will first describe these three functions. Then we will introduce fault toler-
ance and fault or diagnostic signature. Finally we will list the overall fault
management requirements for IoT devices and services.

• Fault Detection is the process of identifying error (or potential error) of an IoT
element typically using collected statistics. The collected data may be time-
based (e.g., fault-related data collected from the IoT element by the fault man-
ager function every t seconds) or event-based (e.g., IoT element notifies the fault
manager only if pre-defined fault-related conditions are met). When a fault or
event occurs in the event-based case, an IoT element will send an alarm or noti-
fication to the fault manger (and often notify the network administrator) immedi-
ately. An alarm is a persistent indication of a fault that clears only when the
triggering condition has been resolved.

• An example of fault-related data is the Simple Network Management Protocol
(SNMP) Entity Sensor Management Information Base (MIB) as described by
IETF RFC 3433. The Entity Sensor MIB provides generalized access to informa-
tion related to sensors that are often found in network equipment. The complete
list of the MIB information is shown in Table 7.2. One of the key variables of the
Entity Sensor MIB is “Entity Sensor Status” with three defined possible values:

 – Entity Sensor Status = 1: indicates that the sensor data value can be obtained
(normal operation).

 – Entity Sensor Status = 2: indicates that the sensor data value is unavailable
(operational but no data was collected).

 – Entity Sensor Status = 3: indicates that the sensor is broken and cannot collect
the sensors data value (failure). Once the failure status is received by the net-
work administrator/operator, S/he needs to investigate the issue further to
determine if the failure is due to disconnected wire, out-of-range, violently
fluctuating readings, or something else.

Fig. 7.7 Main stages of fault management function

7.6 Element Manager (Managing IoT Devices and Network Elements)

194

Fault detection will be triggered if the value of “Entity Sensor Status” variable is 3.

• Fault Diagnostic and Isolation (also referred to as Fault root cause analysis) is
the process of hierarchal filtering and correlating of fault messages, typically
from hundreds of IoT elements or systems, to pinpoint the faulty element to a
stage where corrective action can be taken. Such process is often based on artifi-
cial intelligence, pattern recognition combined with models of abnormal behav-
ior and/or intelligent rule-based systems.

• Pattern recognition with abnormal behavior models is frequently used in the
industry to construct the so-called Diagnostic Signatures as a form of accumu-
lated and documented knowledge. Fault Diagnostic and Isolation will then take
place at run-time based on matching observed information to the nearest
Diagnostic Signature.

• Fault managers may use complex filtering systems to assign alarms to severity
levels. Alternatively, they could use the ITU X.733 Alarm Reporting Function’s
perceived severity field: cleared, indeterminate, critical, major, minor, or warning.

• Fault Isolation (or Fault Diagnostic) in IoT-based network is a challenging prob-
lem because of the interactions between different network entities (e.g., wireless
sensors, gateways) and protocols.

• Fault correction is the process of fixing the error/fault problem, often remotely.
A fault manager allows a network administrator to monitor events and perform

Table 7.2 Overview of entity sensor MIB

MIB variable Description Examples of potential value

EntitySensorDataType Entity Sensor measurement data type
associated with a physical sensor value

3 = Volts AC
4 = Volts DC
5 = Amperes
6 = Watts
7 = Hertz
8 = Celsius

EntitySensorDataScale A data scaling factor, represented with
an International System of Units prefix

6 = Nano
10 = Kilo
11 = Mega
12 = Giga
13 = Tera
14 = Exa

EntitySensorPrecision Sensors Precision Range 1 = One decimal place in the
fractional part
2 = Two decimal place in the
fractional part

EntitySensorValue Sensor Value From −999,999,999
To +999,999,999

EntitySensorStatus Operational Status of Physical Sensor 1 = Ok
2 = Unavailable
3 = Nonoperational

TimeStamp The time the status and/or value of this
sensor was last obtained

10:00:00 AM PST

7 IoT Services Platform: Functions and Requirements

195

actions based on received information. Ideally, the fault manger system should
be able to not only correctly identify faults but also to automatically take correc-
tive action, such as to activate the notification system to notify a pre-defined list
of administrators (i.e., send e-mail or SMS text to a mobile phone) for interven-
tion when needed, or to launch a program or script to take corrective action.

Critical IoT systems should be designed around the concept of fault tolerance. In
principle, they must be able to continue working at least to some acceptable level in
the presence of faults. Network element redundancy (e.g., multiple sensors per-
forming identical tasks, dual modular sensing engines in the same sensor, fail-over
power supply) is a very common fault tolerance example that is designed to prevent
failures due to hardware components.

It should be noted that fault tolerance is not just a property of individual IoT ele-
ments; it may also impact IoT communication protocols as discussed in Chap. 5.
For example, the Transmission Control Protocol (Chap. 2) was designed as a reli-
able two-way communication protocol, even in the presence of failed or overloaded
communications links. It achieves this by requiring the endpoints of the communi-
cation to expect errors such as packet loss, packet reordering, packet duplication
and corruption.

The element Diagnostics and Fault Management Function in IoT allows network
engineers to troubleshoot sensors and actuators (typically over their gateways) or
any other IoT entity remotely. Service troubleshooting (i.e., when devices are work-
ing correctly but the service-level parameters are not being meet) is also addressed
through this function.

The Diagnostics and Fault Management function supports the following areas:

• Ability to connect and uniquely identify any device in the network including sen-
sors, actuators, gateways, etc. Sensors and actuators are often identified by their
corresponding gateways.

• Once the connection is established, Fault Management function requires the abil-
ity to retrieve device information that identifies a device, its model and manufac-
turer. E.g., Device Universal ID, Device Product ID, Device Serial Number, SKU.

• Ability to retrieve device information for the software and firmware installed on
the device, e.g., embedded software version.

• Ability to retrieve information related to a battery embedded within the device.
• Ability to retrieve information related to memory in use by a device.
• Ability to reconfigure/change (Write option) device specific parameters to diag-

nose or fix an identified problem.
• Ability to compare results from main system and backup system (if backup sys-

tem is deployed and operational) and provide error messages for different results.
• Ability to provide the current list of problems occurring on the network to the

fault manager/network management systems/system administrator. Such list is
cleared only when the triggering condition has been resolved. Or cleared by the
network administrator.

• Ability to retrieve the event logs from any IoT device.

7.6 Element Manager (Managing IoT Devices and Network Elements)

https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_2

196

• Ability to allow a system administrator to monitor events from multiple systems/
locations and perform actions.

• Ability to assign alarms to severity levels. E.g., cleared, indeterminate, critical,
major, minor or warning.

• Ability to notify administrators of critical and/or other alarms (based on pre-
defined rule-based list) via e-mails, text message, call to mobile phones.

• Ability to launch a program or script to take corrective action for critical and/or
other alarm types.

• Ability to reboot diagnostic operation.
• Ability to roll-back any changes at any stage.
• Ability to rest IoT device parameters to original factory values.

7.6.3 Performance Management

The Performance Management function can be defined as a mechanism to quantity
“how the underlying IoT infrastructure (e.g., IoT network and device layers) is
doing?” Is the infrastructure operating under heavy load (e.g., over 90% utilization)
and about to run out of bandwidth or is there substantial extra free capacity so a
service provider can offer discounted services?

As was mentioned in Chap. 2, IoT is more than just devices at rest; there are also
many mobile IoT devices that include wearables, connected vehicles, and even fly-
ing drones. A more formal definition of performance management is a set of pro-
cesses to measure and monitor the quality and grade of the services that are offered
to customers. Quality of Service (QoS) typically refers to performance measures
from one element (e.g., delay of one link), whereas Grades of Service (GoS) typi-
cally refers to a performance measure of the end-to-end service (e.g., delay of the
end-to-end path that a service is taking).6

Consequently, a practical description of IoT network performance incorporates
three main elements:

• What to measure? Determining what to measure is conceivably the most critical
question for IoT management. Smart performance algorithms are useless unless
required measurements that drive such algorithms can be collected. In Chap. 3
(Things in IoT), we have identified over a dozen sensor types. Knowing that
these sensors are performing correctly is very important. Key sensor perfor-
mance measures include: Operating range of input-to-output signals, acceptable
noise level produced by sensors, acceptable resolution, and acceptable response
time to instantaneous change in input signal.

• Generic measurements for all IoT devices (e.g., gateways, routers) will include
device and transport link utilization (based on available bandwidth and capacity),

6 Some researchers use the term QoS to refer to both QoS and GoS as defined above.

7 IoT Services Platform: Functions and Requirements

https://doi.org/10.1007/978-3-030-90158-5_2
https://doi.org/10.1007/978-3-030-90158-5_3

197

end-to-end delay and jitter, packet lost ratios, packet error rates, and any other
parameters that impact services carried on the network. These will continue to be
important for IoT-based networks.

• Where to measure? Theoretically performance should be measured through the
network at all time. Practically, performance should be measured at least between
the network end points where the service is delivered. E.g., sensor to gateway,
gateway to platform and platform to application.

• How to measure the above parameters and then construct QoS and GoS measures
to perform the actual minoring?

Similar to Fault Management, Performance Management supports the following
areas for IoT network elements and devices:

• Ability to connect and uniquely identify any device in the network including sen-
sors, actuators, gateways, etc. Sensors and actuators are often identified by their
corresponding gateways.

• Once the connection is established, Performance Management function needs to
have the ability to ID the device by retrieving device information.

• Ability to retrieve device information for the software and firmware installed on
the device, e.g., embedded software version.

• Ability to retrieve information to measure the performance of a device or a mod-
ule within the device (e.g., battery).

• Ability to measure any performance related parameter including, but not limited
to, element utilization, delay, jitter, packet lost, packet arrives with error, amount
of memory in use by a device.

• Ability to allow a system administrator to monitor events from multiple systems/
locations.

• Ability to notify administrators of critical and/or other performance related
activities (based on pre-defined rule-based list) via e-mails, text message, calling
mobile phones.

7.6.4 Important Performance Measures for IoT Devices
(E.g., Sensors)

The following sensor (and actuators where applicable) performance requirements/
characteristics measures are considered important for IoT solutions:

• IoT Sensor’s Transfer Function should be plotted (e.g., testing the various ranges
of inputs, vendor documentations) to ensure it meets the specific IoT solution
requirements. The Transfer Function represents the functional relationship
between input signal (physical signal captured by the sensor) and output signal
(electrical signal converted by the sensor). Frequently, this relationship is repre-
sented by a graph constituting a comprehensive depiction of the sensor
characteristics.

7.6 Element Manager (Managing IoT Devices and Network Elements)

198

• IoT Sensors’ Sensitivity should be evaluated and within the minimum acceptable
range for the specific IoT solution (e.g., 0.1 variation in temperature sensors may
be acceptable for smart homes but not for more critical solutions). The sensitivity
is generally the ratio between a small change in electrical output signal to a small
change in physical signal. It may be expressed as the derivative of the transfer
function with respect to physical signal.

• IoT Sensor’s Dynamic Range should be established and documented. Dynamic
range is defined as the range of input signals which may be converted to electri-
cal signals by the sensor. Outside of this range, signals cause unsatisfactory accu-
racy in output.

• IoT Sensor’s Accuracy should be established and documented. Accuracy is
defined as the maximum expected error between measured (actual) and ideal
output signals. Manufacturers often provide the accuracy in the datasheet, e.g.,
1% error may be acceptable for some IoT solutions.

• IoT Sensor’s Noise Level should be established and documented. As was stated
in Chap. 3, all sensors produce some level of noise with their output signals. A
sensor’s noise is only an issue if it impacts the performance of the IoT system.
Smarter sensors must filter out unwanted noise and be programmed to produce
alerts on their own when critical limits are reached. Noise is generally distributed
across the frequency spectrum. Many common noise sources produce a white
noise distribution, which is to say that the spectral noise density is the same at all
frequencies.

• IoT Sensor’s Resolution should be established and documented. The resolution
of a sensor is defined as the smallest detectable signal fluctuation. It is the small-
est change in the input that the device can detect. The definition of resolution
must include some information about the nature of the measurement being car-
ried out.

• IoT Sensor’s Bandwidth (the frequency range) should be established and docu-
mented. Some sensors do not operate properly outside their defined band-
width range.

• IoT Sensor should produce a performance alert and notify its IoT gateway once
service issues or interpolation is detected outside its normal operational range
(e.g., outside the defined bandwidth, resolution).

• Finally, IoT Sensors should have some ability (depending on the sensors’
 sophistication level) to work with its IoT gateway to measure the Throughput
(actual rate at which the information is transferred), Latency (the delay
between the sender and the receiver), Jitter (variation in packet delay at the
receiver of the information), and Error Rate (the number of corrupted bits
expressed as a percentage or fraction of the total sent) during a specific period of
time (e.g., 1 h).

7 IoT Services Platform: Functions and Requirements

https://doi.org/10.1007/978-3-030-90158-5_3

199

7.6.5 Security Management

Security management is extremely important for IoT. Any security management
solution must comprehensively address sensitive data handling, data administration,
service subscriptions, data transfer (especially over the Internet), data access con-
trol, and identity protection. Given the importance of this area, we have dedicated
an entire chapter (Chap. 8) to this critical topic. In this section we will simply list
the high level security requirements.

IoT high level security requirements include eight main areas:

• Data Confidentiality: ensures that the exchanged messages can be understood
only by the intended entities.

• Data Integrity: ensures that the exchanged messages were not altered/tampered
by a third party.

• Secure Authentication: ensures that the entities involved in any operation are
who they claim to be. A masquerade attack or an impersonation attack usually
targets this requirement where an entity claims to be another entity.

• Availability: ensures that the service is not interrupted. Denial of Service attacks
target this requirement as they cause service disruption.

• Secure Authorization: ensures that entities have the required control permis-
sions to perform the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement
where an old message is replayed in order to return an entity into an old state.

• Non Repudiation: ensures that an entity cannot deny an action that it has
performed.

• Forward and Backward Secrecy: Forward secrecy ensures that when an entity
leaves the network, it will not understand the communications that are exchanged
after its departure. Backward secrecy ensures that any new entity that joins the
network will not be able to understand the communications that were exchanged
prior to joining the network.

Detailed discussions of the above areas including existing solutions and gaps
will be provided in Chap. 8.

7.7 Firmware Manager

In the past, Firmware Management was not even an issue as older devices rarely
required operating system updates. In fact, Firmware is not part of the traditional
FCAPS capabilities that we described in Sect. 7.1.

Firmware refers to the device’s operating system that controls and operates the
device. Firmware is a program written into read-only-memory (ROM), rather than
simply being loaded into normal device storage, where it may be easily erased in the
event of a crash, and initially added at the time of manufacturing. It is called

7.7 Firmware Manager

https://doi.org/10.1007/978-3-030-90158-5_8
https://doi.org/10.1007/978-3-030-90158-5_8

200

firmware rather than software to highlight that it is very closely tied to the particular
hardware components of a device.

Nowadays, firmware updates are provided by vendors on regular basis, often as
a way to fix bugs or introduce new functionality (e.g., Apple’s iOS, Cisco’s IOS,
Samsung’s Android).

Key Firmware requirements for IoT solutions include:

• Ability for IoT device to store and maintain multiple firmware images and to
manage individual firmware images.

• Ability for IoT management solution to provide a user-friendly device Firmware
Management site that provides lifecycle management for firmware associated
with a device. This includes

 – Downloadable versions of latest Firmware images.
 – Step by step instructions to download/update images on various supported

devices that guarantee full migration of existing settings and applications on
an IoT Device.

 – Step by step instructions to remove a Firmware image and roll-back into an
older image if needed with full device backup of existing applications and
settings.

 – Support for downloading and updating within the same action.
 – Download, update, and removal of Firmware process should be done within a

reasonable amount of time (typically less than 10 min) with clear progress bar
visible to the user.

 – Q&A and troubleshooting support.

• Ability for IoT management solution to support both wire-line and mobile (the
so-called FOTA (Firmware Over-The-Air) firmware upgrade. FTOA is a Mobile
Software Management (MSM) technology in which the operating firmware of a
mobile device is wirelessly upgraded and updated by its manufacturer. FOTA-
capable devices download upgrades directly from the service provider.

7.8 Topology Manager

IoT network topology refers to the arrangement of the various elements (sensors,
gateways, switches, links between gateways and switches, etc.). Topology may be
physical or logical and is often presented explicitly in a structured graph. Physical
Topology is the placement of the actual IoT elements on a graph (e.g., map) as they
are connected with physical information (e.g., locations). Logical Topology, on the
other hand, displays virtual information such as network virtualization data, data
flow on the network.

Key requirements for topology management include:

7 IoT Services Platform: Functions and Requirements

201

• Ability to display IoT Physical network that includes all IoT devices (e.g., sen-
sors, actuators) and IoT network elements (gateways, switches, routers). User
should have the ability to filter which devices to display.

• Ability to display IoT Virtual network (often on top of a physical view).
• Ability to display specific Element Management parameters (e.g., utilization,

devices at faults) based on user selection criteria.
• Ability to filter/configure the topology.
• Ability to retrieve information related to any IoT element.
• Ability to retrieve information related to an IoT protocol.

7.9 Group Manager

Unlike traditional networks, a typical IoT network often contains a large number of
IoT devices (e.g., sensors). Hence, it is important to allow network administrators to
group IoT elements of the same characteristics into groups instead of managing
each element separately.

Group Management is responsible for handling group related requests. The
request is sent to manage a group and its membership as well as for any bulk opera-
tions, including broadcasting/multicasting, that are supported by the group. Group
management security is handled by the element management system.

When facilitating access control using a group, only members with the same
access control policy for a resource are included in the same group. Also, only
application entities, which have a common role with regard to access control policy,
are included in the same group. This is used as a representation of the role when
facilitating role based access control.

Group Management Key requirements include:

• Ability to create, retrieve, update, or delete groups. Groups are created by select-
ing IoT elements of similar characteristics. An IoT element may belong to mul-
tiple groups. New members may be added and/or deleted at any time. When new
members are added to a group, the group manager should validate if the member
complies with the purpose of the group. Requests to create, retrieve, update, or
delete are assumed to be initiated by an application.

• Ability to create super group (group of a group). In this case, operations (e.g.,
Forwarding) are done recursively.

• Ability to initiate and execute a request for the entire members of a group. The
request may be a simple notification or read operation (i.e., retrieve information
form sensors), or write operation (changing a common parameter).

• Ability to support subscriptions to individual groups.
• Ability to notify group members when they are added to or deleted from a group,

or when the group is updated.

7.9 Group Manager

202

7.10 Billing and Accounting

Billing and Accounting management is used to calculate and report the charges
based on subscription and/or usage of a service. It supports different charging mod-
els including online real-time credit control by interacting with the charging system
in the underlying IoT network. Billing polices include the ability to trigger a charge
based on specified events and to charge even when the billing system is offline. The
system may record information for other purposes such as for event logging. The
main charging models include:

• Subscription-based charging (flat rate): Typically a service layer per
subscription.

• Event-based charging (per event or task): Charging based on service layer
chargeable events. For example, an operation on data (Create, Update, and
Retrieve) can be an event.

• Time-based charging: Chargeable events are configurable to initiate information
recording. More than one chargeable event can be simultaneously configured and
triggered for information recording.

• Usage-based charging: Charge based on bandwidth (or other parameters) con-
sumptions. Users are allowed to change usage level within a task (e.g., high
bandwidth for first hour and then switch to lower bandwidth).

Key Billing and Accounting requirements include:

• Ability to bill based on subscription (flat rate), event (per event), time (charge per
hour), or usage.

• Ability to allow an application (or network administrator) to develop billing
related policies. Further, the Billing and Accounting Module has the ability to
start and end the actual billing by applying charging related policies, configura-
tions, and communicating with the charging system in the underlying network.

• Ability to start and end charges based on the defined charges policies. Such
charges must be recorded in a billing system/DB.

• Ability to handle offline billing related operations. The offline billing function
generates service charging records based on billing polices and recorded infor-
mation. A service charging record is a formatted collection of information about
a chargeable event (e.g., amount of data transferred) for use in billing and
accounting.

7.11 Subscription and Notification Manager

Subscription and Notification service provides notifications concerning subscrip-
tion events. It allows authorized devices and applications to subscribe to a set of
notification services, typically from a predetermined list. A notification event may
be generic (e.g., a recent security alert) or subscriber-specific (e.g., security alert

7 IoT Services Platform: Functions and Requirements

203

related to an IoT service and/or device such as end of life date). Subscription and
Notification service also provides notifications concerning subscriptions that track
event changes on a resource (e.g., deletion of a resource, important change in the
resource’s events such as a major increase in the temperature reading). The sub-
scription may be provided by the platform itself or by a northbound application
communicating with the platform via the API Manager, as shown in Fig. 7.4.

Key requirements for the Subscriptions and Notification Modules include:

• Ability to allow devices and/or applications to subscribe to specific set of ser-
vices based on right level of authorization. Hence, authorization information
may be obtained from the authorization service as we mentioned in Sect. 7.6.5
under Element Management system.7

• Ability to allow authorized devices and/or applications to subscribe to a set of
notification services from a drop down list.

• Ability to support generic notifications as well as subscriber-specific notifica-
tions where notifications are correlated with the subscriber’s IoT device or ser-
vice as mentioned above.

• Ability to support subscription and notification services related to event changes
on a resource as mentioned above.

• Ability to provide subscription and notification service in the platform itself and/
or in a northbound application. In the latter case, subscription selection is made
in an application that communicates with the platform via the API Manager.
Notification may also be sent to such application (if so is selected) via the API
Manager.

• Ability to notify devices and/or applications based on subscription and authori-
zation level (e.g., subscribe and notify only for security-related alerts).

• Ability to create and store subscription profile information including device ID,
notification address, notification type, notification policies (e.g., notify any time
for priority 1 issues, notify from 8 AM to 5 PM for priority 2, etc.).

• Ability to subscribe to a single or multiple resources.
• Ability to store subscription profiles as well as directed notifications along with

date, time, and delivery mechanism.

7.12 API Manager

The main function of the API Manager is to manage communication with IoT net-
work and devices, for obtaining network service functions in a common way. It is
intended to shield other platform modules from developing their own technology
and mechanisms supported by the Underlying Networks.

Key functions of the API Manager include:

7 Alternatively, an Authorization, Authentication and Accounting (AAA) server may be used for
device authorization.

7.12 API Manager

204

• Ability to provide adaptation for different sets of network service functions sup-
ported by various Underlying Networks.

• Ability to maintain the necessary connections between the platform entities and
the Underlying Network.

• Ability for the API Manager to provide information to the Communication
Manager related to the IoT Network so the Communication Manager can include
that information determine proper communication handling.

7.13 Commercially Available IoT Platforms

Tens of IoT Platforms exist in the marketplace today. Examples include AWS IoT
Platform, Google Cloud IoT Platform, Microsoft Azure IoT Suite Platform, IBM
Watson IoT Platform, Salesforce IoT Cloud Platform, Cisco IoT Cloud Connect
Platform, Oracle IoT Intelligent Applications Platform, PTC ThingWorx IoT
Platform, OpenRemote IoT Platform (open-source focusing on helping engineers
creating a range of IoT applications), IRI IoT Voracity Platform (focusing on data
discovery, integration, migration, governance, and analytics), Particle Platform, and
Altair IoT SmartWorks Platform.

As we mentioned earlier in this chapter, IoT platforms are used to address one or
more of the following functions.

 1. Rapid and consistent development and deployment of IoT devices and services.
 2. Middleware connecting IoT devices and applications to other devices and

applications.
 3. Streaming data from IoT devices.
 4. Profiling customer context data.
 5. Device management addressing the FCAPS (Fault, configuration, Accounting,

Performance, and Security) functions. See Sect. 7.6 for additional information.
 6. Real-time reporting and advanced analytics, e.g., using artificial intelligence

algorithms for advanced prediction, service optimization, diagnostics, and trend-
ing analysis.

 7. Sandbox allowing subject matter experts to test business or technical ideas with-
out (or with limited) programming.

 8. Provide API library allowing engineers to import data from other sources (e.g.,
gateways, Websites, controllers, end application service) and platforms (e.g.,
using RESTful API).

 9. Handle huge data volume from devices, users, applications, websites, and sen-
sors and take actions to give a real-time response.

Selecting the right IoT Platform is challenging and depends greatly on the
requirements of the specific solution for hardware, real-time access, custom reports,
budget, development skills, and business model.

The purpose of this section is to introduce students and engineers into examples
of known IoT platforms and related functionalities. It is not intended to provide

7 IoT Services Platform: Functions and Requirements

205

recommendations, nor provide feature by feature comparisons. The selected plat-
forms, as shown in Table 7.3, include AWS IoT Platform, Google Cloud IoT
Platform, Microsoft Azure IoT Platform, and PTC ThingWorx IoT Platform. The
first three are typically considered general-purpose platforms addressing various
IoT applications while the last platform (i.e., PTC ThingWorx) is more focused on
addressing industrial IoT requirements.

Again, it is important to note that the feature description (Table 7.3) is snapshots
at the time of the writing. Such features and capabilities are expected to change over
time. Students/engineers are encouraged to log into each platform to understand the
latest capabilities.

7.14 Putting All Together

As we mentioned in pervious section, IoT platforms can be divided into two catego-
ries: product-centered with a stronger focus on specific products for industrial com-
panies, and general-purpose platform for developers. In many cases, general-purpose
platforms are complemented by an accompanying marketplace.

Marketplace is an e-commerce platform owned and operated by a specific ven-
dor (e.g., Amazon). It enables third-party sellers to offer products and/or services
online alongside the vendor’s regular offerings. This allows the vendor (platform
owner) to earn commissions and to create more comprehensive solutions.

Marketplaces have several advantages. First, they bring together offers from
multiple suppliers or service providers with minimum investments. Second, they
relieve marketplace owners from owning the inventory that their platform sells.
Third, they allow platform owners to choose a revenue stream that best fits their
market position and business goals. Finally, marketplace owner leaves the more
operational side of the business to vendors while focusing on promoting their mar-
ketplace brand. Marketplace owners can create a rating and review systems allow-
ing their customers to make informed purchase decisions.

Let us imagine that you are developing an IoT security solution for your own
home. In this case, you will need to install and connect your home cameras and sen-
sors to the Internet, select data sources and protocols, and then develop an applica-
tion for data visualization. You also need to make sure that your data is secure at all
time (e.g., data is not altered by third party, your devices are never hacked, and your
credentials are always secure) and that your network is reliable and available. You
may also chose to combine your data with additional available information (e.g.,
Weather conditions, Fire and Crime alerts along with Locations) for advanced mon-
itoring especially when you are traveling.

In this case, you will need to subscribe to a platform allowing you to connect
your devices, collect data in real-time, and then build (or utilize and existing) inter-
active dashboards to visualize and track your home data. Such capabilities may be
offered by the platform or the associated marketplaces.

7.14 Putting All Together

206

Table 7.3 Examples and glimpses of commercially available platforms

AWS IoT
Platform

Google Cloud IoT
Platform

Microsoft Azure
IoT Platform

PTC ThingWorx
IoT Platform

Overview Almost all IoT platforms allow users to connect their IoT devices and data
sources, select supported protocols, build applications, enable security, and
define the communication between devices and the Internet.

Protocols
Snapshot

Supports wide
variety of
communication
protocols
including custom
ones which enable
communication
b/w devices from
different
manufacturers,
e.g.,
MQTT. HTTP
and WebSockets
for asynchronous
communication.

Supports wide
variety of
communication
protocols to enable
communication
between devices
from different
manufacturers
including, e.g.,
MQTT, HTTP.

Supports wide
variety of
communication
protocols to enable
communication
between devices
from different
manufacturers,
e.g., AMQP,
HTTPS and
AMQP. IoT hub
Supports SASL
and AMQP claim
based security in
conjunction with
AMQP protocol.

Supports wide
variety of
communication
protocols to
enable
communication
between devices
from different
manufacturers,
e.g., MQTT,
HTTP, OAuth2,
and WebSockets.

Element
Management:
Fault
Management
Snapshot

AWS IoT Device
Manager allows
users to
troubleshoot
device
functionality and
query the state of
IoT devices.

Google Cloud IoT
Core supports
trouble
management, e.g.,
predicting when
equipment needs
maintenance.

Microsoft Azure
IoT Monitor
provides guidance
to reduce the time
in diagnosing and
troubleshooting.

Supports various
functions for
troubleshooting
including
connections to
the platform.

Element
Management:
Configuration
Management
Snapshot

Users can query
the state of
device(s) on
demand and
provide the
functionality to
apply firmware
updated
over-the-air.

The device manager
allows devices to be
configured (in
group) through a
console or
programmatically.

Azure IoT Hub
Device
Provisioning
Service enables
zero-touch
provisioning to the
right IoT Hub.

Includes utilities
to provision
devices. Allows
users to create
rule-based
Workflows to
execute across
multiple devices.

Element
Management:
Accounting
and Billing
Snapshot

Basic connectivity
fee (for platform
access) and then
usage-based
billing (bay for
what you use).

Usage-based: Cloud
IoT Core is priced
according to the
data volume.

Basic and standard
tier-based billing
model. e.g.,
$0.123 per 1000
operation for
device
provisioning.

Subscription
based with a
pay-as-you-go
model is
supported.

(continued)

7 IoT Services Platform: Functions and Requirements

207

In general, the following steps are followed:

 1. Install your devices.
 2. Connect devices to the platform.
 3. Select data sources and formats.
 4. Add a custom data source via Developer Console (if applicable).

Table 7.3 (continued)

AWS IoT
Platform

Google Cloud IoT
Platform

Microsoft Azure
IoT Platform

PTC ThingWorx
IoT Platform

Element
Management:
Performance
Management
Snapshot

AWS IoT Device
Manager
monitors,
organizes, and
provides an
interface to
manage IoT
devices. It
provides
functionality to
register an
individual device
or in bulk and
manage security
permissions/
policies.

Google Cloud IoT
Core provides a
solution for
collecting,
processing,
analyzing, and
visualizing IoT data
in real time. E.g.,
automatically
optimize device
performance in real
time while
predicting
downtime.

Azure Monitor
and Resource
Health provides
monitoring
capabilities with
data about the
operations of
Azure IoT Hub,
for instance.
Advanced
analytics features
that can turn
connectivity and
workflow data into
actionable
insights.

ThingWorx
Platform allows
user to select
data and use it to
create specific
charts and
workflow alerts.
Advanced
analytics features
that can turn
connectivity and
workflow data
into actionable
insights.

Element
Management:
Security
Management
Snapshot

Data to and from
AWS IoT is sent
securely over
Transport Layer
Security (TLS).
AWS cloud
security
mechanisms
protect data as it
moves between
AWS IoT and
other AWS
services.

Allows users to
securely connect,
manage, and ingest
data using TLS.

Uses TLS based
handshake and
encryption.
Support various
security functions
including security
information and
event
management,
security
orchestration, and
automation.

Provides
transport
security, identity
management
(device and
platform), and
content & asset
management.

Supports device
authentication and
authorization (via
custom schemes).

Supports device
authentication and
authorization (via
keys and JSON web
tokens).

Supports device
authentication and
authorization (via
certificates and
keys).

Supports device
authentication
and
authorization.

Supports various
compliance
management for
security audits.

Supports various
compliance
management for
security audits.

Supports various
compliance
management for
security audits.

Supports various
compliance
management for
security audits.

7.14 Putting All Together

https://www.itu.int/rec/T-REC-X.509-201210-S

208

 5. Use standard dashboard capabilities (or add a custom dashboard via a developer
console) to create your view. Connect dashboard to data source using an offer
interface.

 6. Continue adding your devices and data sources to enable complete
visualization.

 7. Customize your dashboard if needed (e.g., Drag and drop widgets into the
desired dashboard location, add custom colors).

 8. Share dashboard with family members, e.g., adding users with read-only or
edit access.

 9. Add additional advanced capabilities (if needed).

7.15 Summary

Without a doubt, the IoT Services Platform creates the cornerstone of successful
IoT solutions. It is responsible for many of the most challenging and complex tasks
of the solution. The Services Platform automates the ability to deploy, configure,
troubleshoot, secure, manage, and monitor IoT entities ranging from sensors to
applications in terms of firmware installation, patching, debugging, and monitoring
just to name a few. The Service Platform also provides the ability for data manage-
ment and analytics, temporary caching, permanent storage, data normalization,
policy-based access control and exposure.

Given the complexity of the services platform in IoT, this chapter grouped the
core capabilities into 11 main areas: Platform Manager, Discovery and Registration
Manager, Communication (Delivery Handling) Manager, Data Management and
Repository, Firmware Manager, Topology Management, Group Management,
Billing and Accounting Manager, Cloud Service Integration Function/Manager,
API Manager, and Element Manager addressing Configuration Management, Fault
Management, Performance Management and Security Management across all IoT
entities.

Problems and Exercises

 1. This chapter categorized the IoT Services Platform into 11 functions. (a) Name
and define each of the 11 functions. (b) List and define the Element Manager
functions.

 2. What are the traditional FCAPS management functions? Do they also apply to
IoT? If so, Are they sufficient?

 3. List six reasons why the overall management functions of IoT solutions are
more multifaceted than traditional networks.

 4. IoT solutions are considered much more complex to manage than traditional
networks?

 (a) Why?—List top five factors.
 (b) Why does the Fog Layer introduce new changes for IoT?

7 IoT Services Platform: Functions and Requirements

209

 5. This chapter mentioned that not all IoT entities will be IP address enabled.

 (a) Why is that? Provide an example of IoT devices that are not IP addresses
enabled.

 (b) How do management system track such devices?

 6. What is device registration on IoT? Why is it needed?
 7. List the key responsibilities of the Discovery Function.
 8. It was mentioned in Sect. 5.1 that for non-IP addressed enabled sensors, IoT

sensors may be tracked by the combined (a) IP Address of the Gateway and (b)
Sensor address. Why both addresses do are needed?

 9. Why IoT device self-registration is preferred over the method where a new IoT
device have the capability to be identified during the discovery process?

 10. The IETF has released NETCONF and YANG which are standards focusing on
Configuration management. Name two other older methods that can be used for
configuration management? What are their shortcomings?

 11. Section 7.7 indicated that Accurate discovery is essential for many management
tasks including asset management, network monitoring, network diagnosis and
fault analysis, network planning, high availability, and others.

 (a) Provide short definitions of asset management, network monitoring, net-
work diagnosis and fault analysis, network planning and high availability.

 (b) Why is accurate discovery essential for each of the above functions?

 12. What are the key differences between Provisioning and Configuration func-
tions? Which one is done first?

 13. What are key differences between deployment, Provisioning, and Orchestration?
 14. What are the most basic two management functions to provide a new services?
 15. Provide an example of Service-Level Diagnostics and Fault Management

Function in IoT where all devices are working correctly but the service-level
parameters are not being met.

 16. Why Fault management is considered by many experts to be most challenging
and important management function of IoT-based networks?

 17. What are the three main functions of Fault Management? Provide detailed
description of each term.

 18. What are the concepts of fault tolerance in IoT networks? Give three examples
of failures that should be handled by fault tolerance function in IoT-based
networks.

 19. Fault tolerance is not just a property of individual IoT element; it may also
impact the IoT communication protocol. For example, the Transmission Control
Protocol (TCP) was design as reliable two-way communication protocol, even
in the presence of failed or overloaded communications links. How is this
achieved in TCP?

 20. There are special software and instrumentation packages designed to detect
failures. A good example is a fault masking system. How does Fault Masking
system detect failure?

 21. What is Diagnostic Signature? Where it used?

7.15 Summary

https://doi.org/10.1007/978-3-030-90158-5_5#Sec1

210

 22. In priority order, what are the top three IoT management functions that a ser-
vice provider needs to provide very basic services? Justify your answer.

 23. Why Fault management is considered to be very challenging in IoT network?
i.e., What are the main differences between managing IoT network and a tradi-
tional network?

 24. Why IoT management is considered to be most challenging and complex task
of the solution?

 25. Section 7.1 indicated the need for a complete configuration backups with roll-
back capabilities as a key requirement for the IoT Platform Manager. What is
configuration roll-back? Why is it needed? Provide an example?

 26. What are the definitions of Sensitivity and Dynamic Range? What are the typi-
cal units of Sensitivity and Dynamic Range?

 27. What is Hysteresis? What is a typical unit of Hysteresis?
 28. What is a Firmware? What does it do? Why is it called so?
 29. Why Firmware Images are loaded into ROM and not the device storage?
 30. How come Firmware Management was not part of the tradition FCAPS?
 31. Data may be retrieved from various IoT sources including IoT devices and net-

work elements (e.g., sensors, gateways, switches), IoT subscribers, and IoT
applications. IoT device and network element data is assumed to be collected
by collection systems or by collection agents.

 (a) What are the key differences between a collection system and a collec-
tion agent?

 (b) What is IoT subscriber data? How is the data collected?
 (c) What is an IoT application data? How is the application data collected?

 32. In a table list three Subscription and Notification requirements along with
examples of a subscriber and notification message.

References

 1. IoT – Converging Technologies for Smart Environments and Integrated Ecosystems, Reviewer
Publishers, Online: http://www.internet- of- things- research.eu/pdf/Converging_Technologies_
for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf

 2. Internet of Things, Evolving the Manufacturing Industry, Online: http://www.cisco.com/c/en/
us/solutions/internet- of- things/iot- products/services.html

 3. The Internet of Things: Between the Revolution of the Internet and the Metamorphosis of
Objects, Gerald Santucci, Online: http://cordis.europa.eu/fp7/ict/enet/documents/publications/
iot- between- the- internet- revolution.pdf

 4. From the Internet of Computers to the Internet of Things, Friedemann Mattern and Christian
Floerkemeier, Distributed Systems Group, Institute for Pervasive Computing, Online: http://
www.vs.inf.ethz.ch/publ/papers/Internet- of- things.pdf

 5. Reaping the Benefits of the Internet of Things, Cognizant Reports, May 2014, http://www.
cognizant.com/InsightsWhitepapers/Reaping- the- Benefits- of- the- Internet- of- Things.pdf

 6. Philip N. Howard (8 June 2015). “How big is the Internet of Things and how big will it get?”.
The Brookings Institution. Retrieved 26 June 2015.

7 IoT Services Platform: Functions and Requirements

http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.cisco.com/c/en/us/solutions/internet-of-things/iot-products/services.html
http://www.cisco.com/c/en/us/solutions/internet-of-things/iot-products/services.html
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
http://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf
http://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf

211

 7. Stefan Wallina and Claes Wiksrom, “Automating Network and Service Configuration
Using NETCONF and YANG”: Online: http://www.tail- f.com/wordpress/wp- content/
uploads/2013/03/Tail- f- NETCONF- YANG- Service- Automation- LISA- Usenix- 2011.pdf

 8. BJORKLUND, M. YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020, Oct. 2010.

 9. Broadband Forum Technical Report TR-069, CPE WAN Management Protocol, Issue 1
Amendment 5, Version 1.4, Nov 2013.

 10. Open Mobile Alliance M2M Device Management Specifications, Online: http://openmobileal-
liance.hs- sites.com/lightweight- m2m- specification- from- oma

 11. Open Mobile Alliance LightweightM2M Version 1.0, Online: http://technical.open-
mobilealliance.org/Technical/technical- information/release- program/current- releases/
oma- lightweightm2m- v1- 0

 12. Sokullu, R. and Karaca, O., “Fault Management for Smart Wireless Sensor Networks,”
Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic &
Trusted Computing (UIC/ATC), Sept 4, 2012.

 13. G. Stanley and Associate, White Paper, “A Guide to Fault Detection and Diagnosis”, Online:
http://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/faultdiagnosis.htm

 14. IETF Network Working Group, Request for Comments (RFC) 3433, Entity Sensor Management
Information Base, Online: https://tools.ietf.org/html/rfc3433

 15. G. Huston, “Measuring IP Network Performance”, the Internet Protocol Journal, Vol 6,
Number 1, Online: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6- 1/
measuring_ip.html

 16. H Hui-Ping, X Shi-De, M Xiang-Yin, “Applying SNMP Technology to Manager Sensors in
IoT”, The Open cybernetics & Systemic Journal, 2015, pp. 1019-1024, Online: http://ben-
thamopen.com/contents/pdf/TOCSJ/TOCSJ- 9- 1019.pdf

 17. L. Adaro, Monitoring 101 eBook, Nov 2015, Online: https://thwack.solarwinds.com/docs/
DOC- 187523

 18. Stanford Sensor Course, Online: http://web.stanford.edu/class/me220/data/lectures/lect02/
lect_2.html

 19. B. Hedstrom, A. Watwe, S. Sakthidharan “Protocol Efficiencies of NETCONF versus SNMP
for Configuration Management Functions”, University of Colorado, May 2011, Online: http://
morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf

 20. OMA LightweightM2M v.10, Open Mobile Alliance, Online: http://technical.open-
mobilealliance.org/Technical/technical- information/release- program/current- releases/
oma- lightweightm2m- v1- 0

 21. S. Duquet, Smart Sensors, Enabling Detection and Ranging for IoT and Beyond, Ladder
Technology Magazine Elektronik Praxis, April 2015, Online: http://leddartech.com/
smart- sensors

 22. 50 Sensors Applications for Smarter World, Libelium, Online: http://www.libelium.com/
top_50_iot_sensor_applications_ranking/

 23. P. Seneviratne, Internet Connected Smart Water Sensors, September 2015, Online: https://
www.packtpub.com/books/content/internet- connected- smart- water- meter

 24. P. Jain, Pressure Sensors, Prototype PCB from $10, Online: http://www.engineersgarage.com/
articles/t

 25. D. Merrill, J. Kalanithi, P. Maes, “Siftables: Towards Sensor Network User Interfaces”, Online:
http://alumni.media.mit.edu/~dmerrill/publications/dmerrill_siftables.pdf

 26. Whatis.com, Online: http://whatis.techtarget.com/definition/firmware
 27. Mobileburn, Online: http://www.mobileburn.com/definition.jsp?term=firmware

References

http://www.tail-f.com/wordpress/wp-content/uploads/2013/03/Tail-f-NETCONF-YANG-Service-Automation-LISA-Usenix-2011.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2013/03/Tail-f-NETCONF-YANG-Service-Automation-LISA-Usenix-2011.pdf
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/faultdiagnosis.htm
https://tools.ietf.org/html/rfc3433
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-1/measuring_ip.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-1/measuring_ip.html
http://benthamopen.com/contents/pdf/TOCSJ/TOCSJ-9-1019.pdf
http://benthamopen.com/contents/pdf/TOCSJ/TOCSJ-9-1019.pdf
https://thwack.solarwinds.com/docs/DOC-187523
https://thwack.solarwinds.com/docs/DOC-187523
http://web.stanford.edu/class/me220/data/lectures/lect02/lect_2.html
http://web.stanford.edu/class/me220/data/lectures/lect02/lect_2.html
http://morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf
http://morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://leddartech.com/smart-sensors
http://leddartech.com/smart-sensors
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
https://www.packtpub.com/books/content/internet-connected-smart-water-meter
https://www.packtpub.com/books/content/internet-connected-smart-water-meter
http://www.engineersgarage.com/articles/t
http://www.engineersgarage.com/articles/t
http://alumni.media.mit.edu/~dmerrill/publications/dmerrill_siftables.pdf
http://whatis.techtarget.com/definition/firmware
http://www.mobileburn.com/definition.jsp?term=firmware

	Chapter 7: IoT Services Platform: Functions and Requirements
	7.1 IoT Services Platform Functions
	7.2 IoT Platform Manager
	7.3 Discovery: Entities, Services, and Location
	7.3.1 Registration
	7.3.2 Discovery

	7.4 Communication Manager
	7.5 Data Management and Repository
	7.6 Element Manager (Managing IoT Devices and Network Elements)
	7.6.1 Configuration (and Provisioning) Management
	7.6.2 Fault Management
	7.6.3 Performance Management
	7.6.4 Important Performance Measures for IoT Devices (E.g., Sensors)
	7.6.5 Security Management

	7.7 Firmware Manager
	7.8 Topology Manager
	7.9 Group Manager
	7.10 Billing and Accounting
	7.11 Subscription and Notification Manager
	7.12 API Manager
	7.13 Commercially Available IoT Platforms
	7.14 Putting All Together
	7.15 Summary
	References

