
97© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_5

Chapter 5
IoT Protocol Stack: A Layered View

The IoT protocol stack can be visualized as an extension of the TCP/IP layered
protocol model and is comprised of the following layers (refer to Fig. 5.1):

• Physical layer
• Link layer
• Network layer
• Transport layer
• Application Protocols layer
• Application Services layer

Note that the Application layer of the TCP/IP protocol stack is expanded into two
layers in the IoT protocol stack: Application Protocols and Application Services. It
is as if the proverbial “narrow waist” of the hourglass is being extended further up
the stack to provide interoperability between heterogeneous “things.”

5.1 Link Layer

In this section we will examine the impact of the IoT requirements on the Link layer
through a combined view of the challenges that those requirements impose on net-
working technologies, industry efforts to address those challenges, and remain-
ing gaps.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_5#DOI

98

5.1.1 Challenges

The challenges that the IoT presents to the Link layer of the protocol stack can be
broadly categorized into the following four areas: device characteristics, traffic
characteristics, access characteristics, and scalability (Fig. 5.2).

On the device characteristics front, the IoT will encompass a wide spectrum of
“things” that span from fully capable (non-constrained) compute nodes to highly
constrained devices. The latter typically have limited energy resources to spend on
processing and communication. As discussed earlier, network communication is
typically more power consuming when compared to local processing. Hence, com-
munication technologies need to be optimized to accommodate low-power devices.
Implementation of protocols at all layers of the protocol stack can affect energy
consumption. However, the Link layer, in particular, has a significant impact due to

Fig. 5.1 IoT protocol stack

Fig. 5.2 Link layer challenges. (Source Cisco BRKIOT-2020, 2015)

5 IoT Protocol Stack: A Layered View

99

the fact that this layer is responsible for the nuances of the physical transmission
technology, framing, media access control, and retransmissions. For instance, it is
reported that, depending on the link load, between 50% and 80% of the communica-
tion energy is used for repairing lost transmissions at the MAC layer.

The traffic characteristics of IoT endpoints vary widely depending on the appli-
cation’s demands and nature of devices. Some applications have relaxed require-
ments on packet loss, latency, and jitter (e.g., a meteorological monitoring
application), whereas others have very tight availability, latency, and jitter tolerance
(e.g., a jet engine control application). It is worth noting here the contrast between
the meteorological monitoring and jet engine control applications: both applications
may be using the same types of devices (temperature sensors, pressure sensors) and
observing the same physical entities (temperature, pressure). However, it is the
applications’ requirements that dictate the traffic characteristics that the network
must deliver. By the same token, some IoT devices generate short bursty traffic
(e.g., point of sale terminal), whereas other devices generate long-tailed traffic (e.g.,
video camera). The dichotomy in traffic characteristics, between solutions that
expect determinism and those that can withstand best-effort (random) communica-
tions, creates drivers for Link layer technologies that support deterministic and
Time-Sensitive Networking.

The access characteristics of IoT endpoints become increasingly diverse as the
footprint of the network grows beyond traditional IT environments, dominated by
familiar local area network (LAN) and wide area network (WAN) technologies, and
into new deployment environments such as industrial plant floor, oil fields, marine
platforms, mines, wells, power grids, vehicles, locomotives, and even the human
body. IoT devices in these environments may connect to the network using a mix of
wireless and wired technologies. The devices when connected wirelessly may be
either mobile or stationary and depending on the logistics of the deployment may
require either long-range or short-range connectivity solutions. To accommodate
this diversity, new Link layer protocols that form the foundation of field area net-
work (FAN), neighborhood area network (NAN), and personal area network (PAN)
technologies are required.

IoT scalability demands present interesting challenges for the Link layer of the
protocol stack, especially for wireless technologies. On the one hand, these tech-
nologies offer a number of appealing characteristics that make them a good fit for
the IoT, low upfront investments, wide geographic coverage, fast deployment, and
pleasing aesthetics (no unsightly wires).

On the other hand, these technologies are susceptible to scalability issues. For
instance, cellular technologies are subject to the spectrum crunch problem, which
drives demand for technology optimizations and cellular off-load solutions such as
Wi-Fi and femtocell. Also, wireless mesh technologies suffer from challenges such
as forwarding latency and slow convergence as the diameter of the mesh scales.

5.1 Link Layer

100

5.1.2 Industry Progress

Now that we have covered the main challenges that IoT presents to the Link layer
of the protocol stack, we will shift our focus to describe the industry’s progress in
addressing those challenges through open standard solutions.

5.1.2.1 IEEE 802.15.4

IEEE 802.15 Task Group 4 (TG4) was chartered to investigate a low data rate wire-
less connectivity solution with focus on very low complexity and extended battery
life span that is in the range of multiple months to multiple years. The solution was
meant to operate in an unlicensed, international frequency band. While initial activi-
ties of the task group focused on wearable devices, i.e., personal area networks, the
eventual applications proved to be more diverse and varied. Potential applications of
the solution include sensors, interactive toys, smart badges, remote controls, and
home automation. As can be seen from the applications, the focus of the solution
has primarily revolved around enabling “specialty,” typically short-range,
communication.

The resulting IEEE 802.15.4 technology is a simple packet-based radio protocol
aimed at very low-cost, battery-operated devices (whose batteries last years) that
can intercommunicate and send low-bandwidth data to a centralized device. The
protocol supports data rates ranging from 1 Mbps to 10 kbps. The data rate is depen-
dent on the operating frequency as well as on the coding and modulation scheme.
The standard operates over several frequency bands, which vary by region:

• 169 MHz band
• 450 MHz band
• 470 MHz band
• 780 MHz band
• 863 MHz band
• 896 MHz band
• 901 MHz band
• 915 MHz band
• 917 MHz band
• 920 MHz band
• 928 MHz band
• 1427 MHz band
• 2450 MHz band

In addition, the standard supports multiple modulation schemes, including
BPSK, ASK, O-QPSK, MR-FSK, MR-OFDM, and MR-O-QPSK. The transmis-
sion range varies from tens of meters up to 1 km, the latter introduced with IEEE
802.15.4g. The protocol is fully acknowledged for transfer reliability. The basic
frame size is limited to 127 bytes in the original specification, and the philosophy

5 IoT Protocol Stack: A Layered View

101

behind that is twofold: to minimize power consumption and to reduce the probabil-
ity of frame errors. However, with IEEE 802.15.4g, the maximum frame size is
increased to 2047 bytes, accompanied by an increase of the frame check sequence
(FCS) from 16 to 32 bits for better error protection.

The standard offers optional fully acknowledged frame delivery for transfer reli-
ability in lossy environments (e.g., high interference). If the originator of a frame
does not receive an acknowledgment after a certain time period, it assumes that the
transmission failed and retransmits the frame. If an acknowledgment is still not
received after multiple attempts, the originator may either terminate the transaction
or continue retrying.

The IEEE 802.15.4 standard only defines the functions of the Physical and Media
Access Control (MAC) layers. It serves as the foundation for several protocol stacks,
some of which are non-IP, including Zigbee, Zigbee RF4CE, Zigbee Pro,
WirelessHART, ISA 100.11a, and RPL.

There are two types of devices in an 802.15.4 network. The first one is the full-
function device (FFD). It implements all of the functions of the communication
stack, which allows it to communicate with any other device in the network. It may
also relay messages, in which case it is dubbed as a personal area network (PAN)
coordinator. The PAN coordinator is in charge of its network domain: it allocates
local addresses and acts as a gateway to other domains or networks. The second type
of device is the reduced-function device (RFD). RFDs are meant to be extremely
simple devices with very modest resource and communication capabilities. Hence,
they can only communicate with FFDs and can never act as PAN coordinators. The
rationale is that RFDs are to be embedded into the “things.” Networks can be built
using either a star, mesh, or cluster tree topology (Fig. 5.3). In all three cases, every
network needs at least a single FFD to act as the PAN coordinator. Networks are
thus formed from clusters of devices separated by suitable distances.

Fig. 5.3 IEEE 802.15.4 topologies

5.1 Link Layer

102

In the star topology, all devices communicate through a single central controller,
namely, the PAN coordinator. This is a hub-and-spoke model: the PAN coordinator
is the hub, and all other devices form spokes that connect only to the hub. The PAN
coordinator is typically main powered, while the devices are most likely battery
operated. Use cases that make use of this topology include smart homes (home
automation), computer peripherals, personal health monitors, toys, and games. Each
star network chooses a PAN identifier, which is not currently in use by any other
network within the radio range. This allows each star network to operate indepen-
dently of other networks.

The mesh topology (also called peer to peer) differs from the star topology in that
any device can communicate with any other device as long as the two are within
radio range. A mesh network can be ad hoc in formation, self-organizing, and self-
healing on node or link failures. It also provides reliability through multipath rout-
ing. Use cases such as industrial control and process monitoring, wireless sensor
networks (WSN), precision agriculture, security, asset tracking, and inventory man-
agement all can leverage this topology.

The cluster tree topology is a special case of a mesh network that comprised of
chained clusters. In a cluster tree, the majority of the devices are FFDs. RFDs may
connect to the network as leaf nodes at the end of a tree branch. As with any 802.15.4
topology, the network has a single PAN coordinator. The PAN coordinator forms the
first cluster by declaring itself as the cluster head (CLH) with a cluster identifier
(CID) of zero, selecting an unused PAN identifier, and broadcasting beacon frames
to other neighbor devices. A device, which receives beacon frames, may request
from the CLH to join the cluster. If the CLH allows the device to join, it will add the
new device as a child device in its neighbor list. The newly joined device will add
the CLH as its parent in its neighbor list and commence broadcasting periodic bea-
con frames. This allows other candidate devices to join the same cluster at that
device. Once the requirements of the application or network are met, the PAN coor-
dinator may instruct a device to become the CLH of a new cluster that is adjacent to
the first. The advantage of this daisy-chained cluster structure is the ability to
achieve larger coverage area at the expense of increased message latency.

5.1.2.2 IEEE 802.15.4e TSCH

IEEE 802.15.4e is the next-generation 802.15.4 wireless mesh standard. It aims to
improve on its predecessor in two focus areas: lower energy consumption and
increased reliability. The standard introduces a new media access control (MAC)
layer to 802.15.4 while maintaining the same physical (PHY) layer. Hence, it can be
supported on existing 802.15.4 hardware. Two key capabilities are added, time syn-
chronization and channel hopping, hence the acronym TSCH. Time synchroniza-
tion addresses the requirement for better energy utilization, whereas channel
hopping aims at increasing the reliability of communication.

With time synchronization, time is sliced into fixed-length time slots and all
nodes are synchronized. A time slot is long enough to allow a station to send a

5 IoT Protocol Stack: A Layered View

103

maximum transmission unit (MTU)-sized frame and receive an acknowledgment
back. Time slots are grouped into slotframes of flexible width. The flexibility allows
different deployments to optimize for bandwidth or for energy saving: the shorter
the slotframe, the more frequently that a given time slot will be repeated, thereby
giving a station more chances to transmit (i.e., higher bandwidth) but at the expense
of increased energy consumption. The current time slot is globally known to all
nodes in the network via an absolute slot number (ASN). The ASN is initialized to
0 and is expected to wrap around only after hundreds of years.

With channel hopping, each message transmission between nodes occurs on a
specified channel offset. The channel offset is then mapped to a radio frequency
using a function that guarantees that two consecutive transmissions between two
nodes hop from one frequency to another within the allotted band:

Frequency ASN Channel Offset mod nFreq= +(){ }F

where nFreq is the number of available frequencies in the allotted band.
This enhances the reliability of communication as it is proven to be effective

against multipath fading and interference. Basically, if a specific frequency is sub-
ject to fading or interference, then by changing the frequency used for communica-
tion between nodes with every new message, only a subset of the messages will be
lost due to those conditions, whereas if all communication were to occur on the
same frequency, then all messages between the nodes communicating over the
affected frequency would be lost during the fading or interference event.

The nodes in the network all obey a TSCH schedule. The schedule is a logical
two-dimensional matrix with one dimension determining the slot offset in the slot-
frame and the second dimension designating the channel offset in the available fre-
quency band (Fig. 5.4). The schedule instructs each node on what it is supposed to
do in a given time slot: transmit, receive, or sleep. The schedule also indicates for
every communicating node its neighbor’s address and the channel offset to be used
for said communication. The width of the schedule is equal to the slotframe width,
whereas the depth of the schedule is equal to the number of available frequencies in
the allotted band. Each cell in the schedule corresponds to a unique slot offset and
channel offset combination. The organization of communication in the schedule
allows the network to operate using collision-free communication, by ensuring that

Fig. 5.4 TSCH schedule

5.1 Link Layer

104

only a single station transmits in a given cell. Alternatively, it can allow the network
to operate in a slotted Aloha paradigm (i.e., carrier-sense multiple access with col-
lision detection—CSMA/CD) by allowing multiple stations to transmit in the same
cell. IEEE 802.15.4e does not define the mechanisms by which the TSCH schedule
is built and leaves that responsibility to upper-layer protocols.

5.1.2.3 LPWAN

Low-power wide area networks (LPWANs) are meant to fill the gap between short-
range wireless and cellular communication technologies. They are designed for
low-power, long-range, and light-weight data collection IoT use cases (Fig. 5.5).
Devices connecting to LPWANs will typically have a battery life of over 10 years
and will require outdoor coverage of up to 20 km (12 miles) and sufficient indoor
penetration. From an operational standpoint, the solutions require low service cost
and endpoint complexity. In general, the LPWAN landscape spans both licensed and
unlicensed spectrums.

It is not unusual to see Low-power wide area (LPWA) technology combined with
LTE in solutions where high data rates are required for device (e.g., navigation,
entertainment systems) and low-data rates are used in the same device for telemetry
(e.g., position, direction, temperature).

There are two main LPWA technologies in the market today that dominate the
landscape. They are as follows:

• LoRaWAN (Long-Range Wide Area Network)—An unlicensed radio technology
(free) that is available for anyone to deploy much like Wi-Fi is today. Note, LoRa
only provides the radio layer (link layer protocol) therefore it is combined with a
network layer protocol called LoRaWAN that provided the methods and

Lo
w

P
ow

er
 C

on
su

m
pt

io
n

H
ig

h

WLANs
(Wi-Fi)

Cellular
(3G/4G)

IEEE 802.15.4 LPWAN

Short Range Long

Fig. 5.5 LPWAN
positioning

5 IoT Protocol Stack: A Layered View

105

 procedures for a sensor to transmit and receive packets. LoRaWAN is defined by
the LoRa Alliance, an industry consortium.

• NB-IoT (Narrow-Band IoT)—A licensed-spectrum (paid) transport provided by
service providers and defined by the 3GPP (the same organization that defines
the 3/4/5G specifications).

LoRaWAN

LoRaWAN defines a communication protocol and network architecture for low-
power wide area networks (LPWANs). LoRaWAN is designed to address the
requirements for low-power consumption (i.e., long battery life), long range, and
high capacity in LPWANs while maintaining low cost for the solution. The com-
munication protocol used in LoRaWAN is known as LoRa. The LoRa physical layer
uses chirp spread spectrum modulation. It is characterized by low-power usage
while at the same time significantly increasing the communication range when com-
pared to frequency-shifting keying (FSK), which is the modulation technique often
used in legacy wireless systems. Chirp spread spectrum is not a new technique: it
has been employed in military and space applications for decades because of its
extended range and its robustness against interference. A key advantage of the LoRa
protocol is its extended range: a single base station can cover hundreds of square
miles. That is enough to provide coverage over cities. Hence, with minimal infra-
structure, entire countries can be covered using LoRaWAN. In wireless communi-
cation systems, the range within a given environment is determined through the link
budget metric. LoRa has a link budget that is greater than any other standardized
wireless communication technology today. The link budget is defined as an account-
ing of all the gains and losses between a transmitter and a receiver:

 Link Budget Transmitted Power Gains Losses= + −

Network Architecture

LoRaWAN employs a long-range star (or hub and spoke) architecture in order to
minimize power consumption. Star architecture, in contrast to mesh architecture,
eliminates the scenario where nodes receive and forward information from other
nodes that is mostly irrelevant to them. In LoRaWAN, gateways act as hub nodes,
whereas end devices form the spokes. End nodes are not associated with a particular
gateway. Rather, when a node sends data, it is typically received by multiple gate-
ways. Each of these gateways, in turn, forwards the received data toward the cloud-
based network server using some backhaul1 technology. The network server is
responsible for all complex and intelligent functions: it manages the network, filters

1 The backhaul can be Ethernet, Wi-Fi, satellite, or cellular.

5.1 Link Layer

106

redundant received data, performs security verification, schedules acknowledg-
ments through the most optimal gateway, and performs adaptive rate control, etc.

A key feature of this architecture is that no handover mechanism is required from
one gateway to another to support the mobility of end nodes. Therefore, it is straight-
forward to enable IoT asset tracking applications. Another key feature is the built-in
access redundancy, where the failure of a gateway or path toward the network server
is handled by sending redundant copies of data packets (Fig. 5.6).

Device Class Capabilities

In order to address the constrained devices requirement of IoT, LoRaWAN defines
three device class capabilities targeting different applications with varying needs.
The classes are labeled A, B, and C. They offer a trade-off between energy con-
sumption and downlink communication latency.

Class A devices support bidirectional communication. They include battery-
powered sensors. This is the most energy-efficient device class capability and must
be supported by all devices implementing LoRaWAN. The communication model is
such that each uplink transmission by the end device is followed by two short down-
link receive windows. The transmission schedule of the end device is dictated by its
own communication requirements, albeit with a small variation in the allocated
window based on a random time variance (ALOHA protocol flavor). This class of
operation is suitable for applications where downlink communication from the
server to the end device mostly occurs in the short window after the latter had sent
an uplink transmission. Otherwise, such downlink communication must be deferred
till the next scheduled uplink transmission.

Class B devices support bidirectional communication with scheduled receive slots.
They include battery-powered actuators. This class offers energy efficiency with
latency controlled downlink communication. The communication model for this class
supports all the capabilities of Class A and in addition requires end devices to open
extra receive windows at scheduled times. This is accomplished by having the end
devices receive a time-synchronized beacon from the gateways, so that the applica-
tions on the servers know when the end devices are listening on these extra slots.

LoRaWAN
Devices

Gateways (GW) Network Server (NS) Application Servers (AS)

Backhaul
(3G/Ethernet)

LoRa
RF

App Data LoRaWAN
Radio PHY

LoRaWAN MAC IP
Tunnel

IP Transport App Data

Fig. 5.6 LoRaWAN end-to-end network architecture

5 IoT Protocol Stack: A Layered View

107

Class C devices support bidirectional communication with maximal receive
slots. They include main powered actuators. This class is for devices that have the
energy resources to afford to listen continuously. It is well suited for applications
that require no latency in downlink communication. End devices in this class must
continuously open receive windows when not in transmitting mode.

Scalability

LoRaWAN ensures the scalability of its long-range star network architecture
through high-capacity gateways. Gateways achieve high capacity through a twofold
approach, by using adaptive data rate and by employing a multichannel multi-
modem transceiver. This allows the gateway to receive simultaneous messages on
multiple channels from a very high volume of end devices. Several factors affect
network capacity, among which the following are deemed most critical:

• Number of concurrent channels supported by the transceiver
• Data rate (i.e., time on air)
• Payload size
• Frequency of transmission of communicating nodes

Recall that LoRa uses spread spectrum modulation; hence, when different
spreading factors are used, the signals end up being orthogonal to one another. The
effective data rate changes with change in the spreading factor. LoRaWAN gate-
ways capitalize on this property in order to concurrently receive multiple different
data rates on the same channel. In the scenario where an end device is in the vicinity
of a gateway and has a good link, there is no technical reason for it to use the lowest
data rate thereby filling up the available spectrum for a longer time period than
required. If this device was to shift to a higher data rate, its time on air will be short-
ened, thereby freeing up more time for other devices to transmit. It is worth noting
that in order for adaptive data rate to work, the uplink and downlink need to be sym-
metrical, with sufficient downlink capacity. These features all contribute to making
a LoRaWAN network scalable.

However, the duty-cycle limitation in the ISM bands may arise as a limitation to
the scale of LoRaWAN networks. As an example, the maximum duty cycle of the
EU 868 ISM band is 1%. This results in a maximum transmission time of 36 s in
each hour for each end device in a sub-band.

Energy Efficiency

Energy efficiency is achieved in LoRaWAN through the use of the ALOHA method
of communication: nodes are asynchronous and only communicate when they have
data ready to be sent, whether scheduled or event driven. This alleviates the need for
end devices to frequently wake up and synchronize with the network or check for
messages. Such synchronization is one of the primary contributors to energy con-
sumption in wireless networks.

5.1 Link Layer

108

Energy efficiency is also achieved through the use of adaptive data rate, where
transmission power is varied according to link quality. When adaptive data rate is
enabled, the network collects metrics on a number of the most recent transmissions
from a node. These metrics include the frame counter, signal-to-noise ratio (SNR),
and the number of gateways that have received each transmission. Based on these
metrics, the network then calculates if it is possible to increase the data rate or lower
the transmission power. If possible, the network will lower the transmission power
to save energy and cause less interference.

Security

LoRaWAN defines two layers of security: one at the Network layer and one at the
Application layer. Network security is responsible for ensuring the authenticity of
the node in the network, whereas the Application layer security guarantees that the
user’s application data is inaccessible to the network operator. LoRaWAN uses AES
encryption with key exchanges based on the IEEE EUI64 identifier.

Three different security keys are defined: network session key, application ses-
sion key, and application key. The network session key is used for securing the
interactions between the end node and the network. It helps in checking the validity
of the messages. The application session key is used for payload encryption/decryp-
tion. These two session keys are unique per device, per session. When a device is
dynamically activated, these keys are regenerated upon every activation, whereas, if
the device is statically activated, these keys remain the same until changed by the
operator. Devices which are dynamically activated use the application key in order
to derive the two session keys in the course of the activation procedure. In general,
it is possible to have either a default application key that is used to activate all
devices or a customized key per device.

Regional Variations

Due to differences in spectrum allocations and regulatory requirements between
regions, the LoRaWAN specification varies slightly from region to region. These
variations affect the following: frequency band, number of channels, channel band-
width, transmission power, data rate, link budget, and spreading factor.

Challenges

LoRaWAN relies on the acknowledgment of frames in the downlink for reliability.
This, in turn, causes capacity drain. Therefore, in general, application should try to
minimize the volume of acknowledgments in order to avoid this drain. This raises
an open question regarding the feasibility of very large-scale and ultrareliable appli-
cations using LoRaWAN.

Also, the uncoordinated deployment of LoRaWAN gateways and alternate
LPWAN technologies in large urban centers may lead to a decrease in network
capacity due to collisions in the ISM bands. This, in addition to the duty-cycle

5 IoT Protocol Stack: A Layered View

109

regulation for these bands, poses potential challenges for large-scale LoRaWAN
deployments.

NB-IoT

In June 2016, 3GPP completed the standardization of Narrow Band IoT (NB-IoT),
a radio access technology with a spectrum bandwidth that can go as small as
180 kHz and with higher modulation rates compared to LoRaWAN. 3GPP had
started NB-IoT under the name “Cellular System Support for Ultra-low Complexity
and Low Throughput Internet of Things (CIoT) ” with the goal of finding a solution
that would be competitive in the Low-Power Wide Area segment, which at that time
was largely defined by unlicensed spectrum technologies.

NB-IoT has its roots in LTE, albeit its operation is kept as simple as possible in
order to reduce device costs and minimize battery consumption. In order to do so, it
removes many features of LTE, including handover mechanisms, channel quality
monitoring measurements, carrier aggregation, and dual connectivity. It uses the
same licensed frequency bands used in LTE, and employs QPSK modulation. There
are different frequency band deployments, which are stand-alone, guard-band, and
in-band deployment. There are 12 subcarriers of 15 kHz in downlink using OFDM
and 3.75/15 kHz in uplink using SC-FDMA.

Network Architecture

The core network architecture of NB-IoT is based on the 3GPP’s Evolved Packet
Core (EPC), with simplifications and optimizations that were designed specifically
for IoT use cases focusing on communication between an IoT device and an appli-
cation in the external network (cloud/Internet). This is achieved using a combined
node called C-SGN (CIoT Serving Gateway Node) which serves the combined
functionality of the Mobility Management Entity (MME)/Serving Gateway (SGW)
and of Packet Data Network Gateway (PGW) in the original EPC architecture.
Figure 5.7 depicts the architecture.

CIoT RAN AS
(CIoT Services)

MME

SGW

SCEF

PGW

UE
C-SGN

S1U

S11

S1-MME
T6a

T8

SGi
S5 / S8

Fig. 5.7 NB-IoT network architecture

5.1 Link Layer

110

For NB-IoT, 3GPP has introduced in addition to the IP Packet Data Network
(PDN), a non-IP PDN. This is to handle IoT devices where the packets used for
communication are unstructured from the Evolved Packet System standpoint. While
an IP based PDN is established through the regular attach procedure, a non-IP type
PDN can be accomplished by one of two mechanisms:

• Delivery using SCEF.
• Delivery using point to point SGi tunnel (via PGW) based on UDP/IP where

PGW acts as transparent forwarding node via transferring Non-IP data between
UE and the AS (Fig. 5.7).

Each application shall have its own PDN and APN to differentiate the bearer. The
APN configuration in the HSS helps the network to decide whether Non-IP data is
sent via SCEF or PGW.

SCEF stands for Service Capability Exposure Function. It provides a means to
securely expose the services and capabilities provided by the 3GPP network and
hence enables enterprises to develop applications that may benefit from the trans-
port network information. SCEF is primarily used for Non-IP data delivery provided:

• The Application server (AS) registers itself with the SCEF for a particular device
followed by SCEF informing the Home Subscriber Server (HSS) about the reg-
istration request.

• The device has a PDN connection/bearer available between itself and SCEF (via
MME) for non-IP data delivery.

In general, a device does not need to know whether a PDN connection is obtained
via a SCEF or a PGW. In case of the former, an association between the AS and
SCEF needs to be established to enable transfer of non-IP data. SCEF also helps in
monitoring device events or state and performing application specific actions based
on the device trigger or SCS/AS request.

Device Categories

Table 5.1 provides a summary of device categories as they relate to CIoT.

Scalability

NB-IoT allows mobile network operators to support high scale deployments, with
up to 60K devices per cell, by employing a number of optimizations:

Control Plane CIoT optimization: In the original EPC architecture, the S1U path
(refer to Fig. 5.7) is required to transfer data. This path is established every time
the device (UE) needs to send data. In IoT applications that are expected to trans-
fer small amounts of data per day or per month, establishment of frequent data
radio bearers and consequently S1U path is a signaling overhead. To overcome
this, data transfer to MME can take place over control plane/Signaling Radio

5 IoT Protocol Stack: A Layered View

111

Bearer (SRBs) as Network Access Stratum (NAS) PDUs. This data is further
sent by MME to SGW or SCEF depending on the PDN type.

User Plane CIoT optimization: In scenarios where large data transfer is required,
such as remote installation or device software update, Data Radio Bearers
(DRBs) are used. The existing procedure of S1U establishment consumes sig-
nificant signaling resources due to frequent recurring UE inactivity timer expiry.
This is why 3GPP TS 36.003 introduces the suspension of the Radio Resource
Control (RRC) context at eNB until the next data request. A “resume id” is
shared by radio base-station (eNB) to the device during RRC connection release
and indicates to the latter to store its context information while suspending SRBs
and DRBs. This RRC context can later be resumed by the device by simply send-
ing its “resume ID” to the eNB.

Attach without PDN connectivity: This is a new capability to allow devices to
remain attached without PDN connection. It is useful for devices which seldom
transfer data and stay inactive most of the time. The device can stay attached
without PDN but SMS service is available for any data transmission. The SMS
could also be used to trigger the device to initiate a PDN connection.

APN rate control: Since many IoT devices use minimal data and hence cannot be
charged based on data usage, Access Point Name (APN) rate control is used to
decide the maximum number of packets to/from device per time unit (day,
month, etc.). This upper cap or the limit is decided by the network operator and
is based on the general data consumption by the IoT application. APN rate con-
trol comes into the picture only for devices attached with PDN.

Table 5.1 CIoT device categories

Release-8 Release-12 Release-13 Release-13
Cat. 1 Cat. 0 Cat. M1 Cat. NB1

Downlink
peak

10 Mbps 1 Mbps 1 Mbps 200 kbps

Uplink
peak rate

5 Mbps 1 Mbps 1 Mbps 144 kbps

Number of
antennas

2 1 1 1

Duplex
mode

Full duplex Half duplex Half duplex Half duplex

UE receive
bandwidth

20 MHz 20 MHz 1.4 MHz 200 kHz

UE transmit
power

23 dBm 23 dBm 20 dBm 23 dBm

Use case Voice services for
emergency in
elevators, smart
Grid Management

Cat0 is the interim
solution prior to
Cat-M. Cat0 is used for
replacing Cat1 but
cannot replace voice
use cases

Environment
monitoring,
vehicle tracking

Smart metering,
smart buildings,
home
automation

5.1 Link Layer

112

eSIM: eSIM is a global specification by GSMA that enables remote SIM provision-
ing of any mobile device. This is not based on a regular SIM card rather using
embedded SIM (also called eUICC) which can accommodate multiple SIM pro-
files, having their respective operator and subscriber data. This allows remote
provisioning and migrating the SIMs to a different operator/network over the air,
thereby providing significant operational efficiency for large scale IoT
deployments.

Energy Efficiency

NB-IoT provides mechanisms for efficient energy consumption, namely:

Power saving mode: This is a device mechanism to conserve energy and support
extended battery life. When enabled, the device and the network can negotiate
the sleep and active state duration for transfer and reception of data. However,
the final values are determined by the network and no re-attach procedures are
required when the device becomes active again. Mobile network operators are
expected to use store-and-forward approach during power saving mode so that
stored messages can be forwarded to the device when it becomes active. The
amount of storage capacity to be reserved for storing the messages is decided by
the operator.

Extended Discontinuous Reception (eDRX): eDRX is an extension of an existing
feature to save more energy and allows the device to sleep for an extended period
of time. During sleep time, the device does not listen for any paging or control
channels. While power saving mode can effectively reduce power consumption
for devices that originate messages, e-DRX could do the same for devices that
terminate messages.

Security

NB-IoT inherits LTE’s secure authentication, signalling protection, user identity
confidentiality, data integrity, and encryption capabilities. To protect the mobile
operator’s network from misbehaving devices, NB-IoT supports PLMN rate con-
trol. It allows the network to measure and protect itself by enabling a rate control on
the data traffic being carried in NAS PDUs in UL/DL and hence is not applicable to
user plane optimization.

Comparison of LoRaWAN and NB-IoT

Table 5.2 illustrates the technical differences between LoRaWAN and NB-IoT in
both implementation and attributes. In short, only Service Provider networks can
deploy NB-IoT, whilst LoRa/LoRaWAN can be deployed by both Service Providers
and private enterprises.

5 IoT Protocol Stack: A Layered View

113

5.1.2.4 IEEE 802.11ah

The popularity of IEEE 802.11 wireless technologies (Wi-Fi) has grown steadily
over the years in home, business, as well as metropolitan area networks. The tech-
nology, however, cannot sufficiently address the requirements of IoT, due to the
following two reasons:

• High power consumption for client stations: Wi-Fi has the reputation of not
being very power efficient, due to the need for client devices to wake up at regu-
lar intervals to listen to AP announcements, waste cycle in contention pro-
cesses, etc.

• Unsuitable frequency bands: Wi-Fi currently uses the 2.4–5 GHz frequency
bands, which are characterized by short transmission range and high degree of
loss due to obstructions. A common solution to this is the use of repeaters, but
those add to the power consumption of the solution and add to the network’s
complexity.

To address these issues, IEEE 802.11 formed Task Group “ah.” The 802.11ah
group was chartered to develop a wireless connectivity solution that operates in the
license-exempt sub-1 GHz bands to address the following IoT requirements: large
number of constrained devices, long transmission range, small (approximately 100
bytes) and infrequent data messages (inter-arrival time larger than 30 s), low data
rates, and one-hop network topologies. The solution is intended to provide a trans-
mission range of up to 1 km in outdoor areas with data rates above 100 kbps while
maintaining the current Wi-Fi experience for fixed, outdoor, point-to-multipoint
applications. From a design philosophy perspective, the solution optimizes for
lower power consumption and extended range at the expense of throughput, where
applicable. In addition, the solution aims for scalability by supporting a large num-
ber of devices (up to 8191) per Wi-Fi access point.

Table 5.2 LoRaWAN and NB-IoT comparison

Attribute LoRaWAN NB-IoT

Frequency/spectrum Unlicensed Licensed
Bandwidth 500 kHz–125 kHz 180 kHz
Max data rate 50 kbps 200 kbps
Range 5 km (urban)

20 km (rural)
1 km (urban)
10 km (rural)

Base station architecture Device TX to multiple base stations Devices TX to single base
Power efficiency Very high High
Max messages per day Unlimited Unlimited
Protocol Asynchronous Synchronous
Interference immunity High Low
Allows private network Yes No
Standardization LoRa Alliance 3GPP
Modulation CSS QPSK

5.1 Link Layer

114

IEEE 802.11ah introduces new PHY and MAC layers. The new layers are
designed for scalability, extended range, and power efficiency. Compared to exist-
ing Wi-Fi technologies which operate in the 2.4–5 GHz range, the use of the
sub-1 GHz band provides longer range through improved propagation and allows
better penetration of the radio waves through obstructions (e.g., walls).

However, one of the challenges in the use of the sub-1 GHz spectrum is that its
availability differs from one country to the next, with large channels available in the
USA, whereas many other regions only have a few channels. This led the 802.11ah
group to create several channel sizes: 1, 2, 4, 8, and 16 MHz channels based on the
needs and regulatory domains of different countries. It also led the group to define
operation over several frequency bands, which vary by region:

• Europe: 868–868.6 MHz
• Japan: 950–958 MHz
• China: 314–316, 390–434, 470–510, and 779–787 MHz
• Korea: 917–923.5 MHz
• USA: 902–928 MHz

IEEE 802.11ah will support data rates ranging from 150 kbps up to 340 Mbps.
The supported modulation schemes include BPSK, QPSK, and 16 to 256 QAM.

In order to address the IoT requirements of low-power consumption and massive
scalability, the emerging 802.11ah introduces several enhancements to Wi-Fi tech-
nology that can be categorized into three functional areas:

• Providing mechanisms for client stations to save power through longer sleep
times and reducing the need to wake up.

• Improving the mechanisms by which a client station accesses the medium by
providing procedures to allow the station to know when it will be able to, or will
have to, access the channel.

• Enhancing the throughput of a client station that accesses the channel, by reduc-
ing the overhead associated with current IEEE 802.11 exchanges through reduc-
ing frame headers, as well as simplifying and speeding management frames
exchanges.

In what follows, we will describe a number of those enhancements in more detail.

Short MAC Header

To enhance throughput, 802.11ah adds support for a shorter MAC header compared
to the current 802.11 standard. Information contained in the QoS and HT control
fields (the latter introduced to the MAC header with 802.11n) are moved to a signal
(SIG) field in the PHY header. The other non-applicable parts of the header are sup-
pressed, e.g., no duration/ID fields, since there is no virtual clear channel assess-
ment (CCA). The new header is 12 bytes shorter than the standard 802.11n header.
Following the same logic, the acknowledgment (ACK) frame is replaced with a null

5 IoT Protocol Stack: A Layered View

115

data packet, which only contains the PHY header (no MAC header, no FCS). That
frame is sent at a special reserved modulation and coding scheme (MCS) to make it
recognizable. MCS is a simple integer assigned to every permutation of modulation,
coding rate, guard interval, channel width, and number of spatial streams.

Large Number of Stations

To enable support for a large number of client stations, 802.11ah extends the
Association Identifier (AID), which is limited to 2007 in the current 802.11 stan-
dard, by creating a hierarchical identifier with a virtual map, bringing the number up
to 8191.

Speeding Frame Exchanges

In current 802.11 frame exchanges, a client station first has to contend for the
medium, then transmit its frames, and then wait for an acknowledgment from the
access point (AP). If the client station expects a response, it has to stay awake, while
the AP contends for the medium and then sends. The client station finally sends an
acknowledgment. With the 802.11ah speed frame exchange mechanism, the dialog
can occur within a single transmission opportunity (TXOP): the client station wakes
up, contends for the medium, and sends the frame to the AP, and the AP immedi-
ately replies after just a short inter-frame gap, allowing the client station (e.g., sen-
sor) to immediately go back to sleep mode after receiving the answer, saving on
uptime wasted in inter-frame and two-way acknowledgments.

Relay

Client stations often need to exchange information with one another, going through
one or more intermediary APs when a direct connection is not available. In such
exchanges, the client stations are forced to stay awake for the entire duration of the
dialog. This process is greatly optimized with 802.11ah relay coupled with speed
frame exchange. The client station wakes up and sends a frame to the AP, asking the
latter to relay. The client station can then immediately go back to sleep/power-
saving mode. The AP may relay the frame through another AP or deliver it directly
to the destination. This model is appealing due to a number of reasons: the AP is
usually main powered and has enough resources to buffer the frame until the desti-
nation client station wakes up. The same process can be repeated for the response
message, allowing both client stations to optimize power consumption when they
are not actively sending or receiving. This also eliminates the need for the client
stations to synchronize wake/sleep cycles.

5.1 Link Layer

116

Target Wake Time

With target wake time (TWT), the AP can inform client stations when they will gain
the right to access the medium. A client station and an AP can exchange initial
frames expressing how much access the former needs. Then, the AP can assign a
target wake time for the station, which can be either aperiodic or periodic (thus
eliminating the need for the client station to have to wake up to listen to TWT val-
ues). Outside of the TWT, the client station can sleep and does not have to wake up
to listen to any messages, not even beacon frames. At those target wake times
(TWTs), the AP can send a null data packet paging (NDP) that tells the client station
about the AP buffer status. This allows the AP to smoothly deliver buffer content to
all client stations one after the other, instead of having all stations wake up at bea-
con time.

Grouping

Client stations can be grouped based on their location, using a group identifier
assignment that relies on their type or other criteria. The AP then announces which
groups are allowed to be awake for the next time period and which groups can go
back to sleep mode because they will not be allowed to access the channel. This
saves battery power on the sleeping groups, as these do not have to listen to the traf-
fic. This logic brings a form of time division multiplexing (TDM) to Wi-Fi, by
allowing transmission to each group based on time periods.

Traffic Indication Map (TIM) and Paging Mechanism

802.11ah introduces a traffic indication map (TIM) and page segmentation mecha-
nism, by which an AP splits the TIM virtual bitmap into segments and each beacon
only carries one segment. This allows IoT devices to wake up only to listen to the
TIM matching their segment number. 802.11ah also introduces the concept of TIM
stations (that need to get TIM info and therefore wake up at regular intervals) and
non-TIM stations (that do not expect to receive anything and therefore can sleep
beyond TIMs and do not need to wake up unless they need to send).

Restricted Access Windows

The AP can define a restricted access window (RAW), which is a time duration
composed of several time slots. The AP can inform client stations that they have the
right to send or receive only during certain time slots within the window, in order to
distribute traffic evenly. The AP would use the RAW parameter set (RPW) to deter-
mine and communicate these slots and transmission or reception privileges. A client
station that has traffic to send upstream but for which the AP does not have traffic to

5 IoT Protocol Stack: A Layered View

117

send downstream can send a request message to indicate to the AP that it needs a
slot upstream.

5.1.2.5 Comparison of Wireless Link Layer Protocols

The table below summarizes key characteristics of the wireless IoT link layer pro-
tocols discussed in this chapter:

Protocol Range Data rate Topology Application
Power
consumption

IEEE
802.15.4

Up to
1 km

1 Mbps to
10 Kbps

Mesh Personal area network/
home network

Very low

LPWAN Up to
20 km

Up to 50 Kbps Star Wide area network Low

IEEE
802.11ah

Up to
1 km

>100 Kbps Star Metropolitan block Medium

5.1.2.6 Time-Sensitive Networking

The requirements for Time-Sensitive Networking originate from real-time control
applications such as industrial automation and automotive networks. These require-
ments contribute to some of the most prominent gaps that current Internet technolo-
gies need to address at the Link layer to realize the vision of IoT. In the case of
industrial automation, the networks are relatively large (in the order of one to sev-
eral kilometers) and may include up to 64 hops for a factory and up to 5 hops within
a work cell (e.g., robot). The network needs to accommodate, in addition to real-
time control traffic, other long-tailed traffic such as video or large file transfers. One
of the key requirements for such networks is precise time synchronization, in the
order of ±500 ns within a work cell and ±100 μs factory wide. Another key require-
ment is deterministic delay, which is not to exceed 5 μs within a work cell and
125 μs factory wide. Last but not least, a fundamental requirement for such net-
works is high availability as it is critical for the safety of the operators. This trans-
lates to a requirement for redundant paths with seamless or instantaneous switchover
time, not to exceed 1 μs. In the case of automotive networks, the physical size of the
deployments is relatively small, but the number of ports required is large: as an
example, the network may span 30 m over 5 hops with over 100 devices connected
(sensors, radar, control, driver-assist video, information, and entertainment audio/
video). A key requirement for these networks is support for deterministic and very
small latency, less than 100 μs over 5 hops using 100 Mbps links. Another important
requirement is high availability to ensure driver and passenger safety.

The above networks have typically been based on non-IP technologies.
Connectivity has traditionally been achieved using some fieldbus technology such
as DeviceNet, Profibus, and Modbus. Each of these technologies conforms to

5.1 Link Layer

118

specific power, cable, and communication specifications, depending on the sup-
ported application. This has led to the situation where multiple desperate networks
are deployed in the same space and has driven the need to have multiple sets of
replacement parts, skills, and support programs within the same organization. With
IoT, it will be possible to unite these separate networks into a converged network
infra-structure based on industry standards. A candidate set of technologies to pro-
vide the Link layer functions of this converged network infrastructure is the IEEE
802 family of local area network (LAN)/metropolitan area network (MAN) proto-
cols. One of the more popular technologies in the IEEE 802 family of protocols is
Ethernet. Ethernet is by far the most widely deployed LAN technology today, con-
necting more than 85% of the world’s local area networks (LANs). More than 300
million switched Ethernet ports have been installed worldwide. Ethernet’s ubiquity
can be attributed to the technology’s simplicity, plug-and-play characteristics, and
ease of manageability. Furthermore, it is low cost and flexible and can be deployed
in any topology. Ethernet and the IEEE 802 family of protocols have steadily
evolved over the years, with the IEEE Audio-Video Bridging (AVB) task group
focusing on standards for transporting latency-sensitive traffic over bridged net-
works, primarily for multimedia (audio and video) streaming applications. These
standards provide a foundation on which to build Time-Sensitive Networking tech-
nologies for IoT. They provide architecture for managing different classes of time-
sensitive traffic through a set of in-band protocols. In particular, IEEE 802.1AS
defines a profile for the Precision Timing Protocol (PTP), which provides time syn-
chronization of distributed end systems over the network with accuracy better than
±1 μs. IEEE 802.1Qav defines forwarding and queuing rules for time-sensitive traf-
fic in Ethernet. It specifies two traffic classes, class A and class B, with maximum
latency guarantees of 2 ms and 50 ms, respectively. Traffic that does not belong to
one of these two classes is considered to be “best effort,” which includes all legacy
Ethernet traffic. Traffic shaping and transmission selection are performed using a
credit-based shaping algorithm: traffic is organized by priority, according to its
class, and transmission of a frame in one of the above two classes is only allowed
when credits are available for the associated class. Upper and lower bounds on the
credit-based shaper limit the bandwidth and burstiness of the streams. Furthermore,
IEEE standard 802.1Qat (part of IEEE 802.1Q-2011) defines a signaling protocol
for dynamic registration and resource reservation of new streams, which provides
per-hop delays in the order of 130 μs on 1 Gbps Ethernet links.

These standards, however, fall short in a number of areas: First, IEEE 802.1AS
can take up to 1 s to switch to a new grandmaster clock (GMC) in the case of failure
of the primary GMC. For real-time control applications, it is required to have the
switchover time be in the order of 250 ms or less. Also, it is highly desirable to sup-
port multiple concurrently active GMCs for high availability. Second, per-hop
switch delays need to be reduced by almost two orders of magnitude. Third, path
selection and reservation for critical streams need to be made faster and simpler in
order to accommodate high-scale deployments with thousands of streams.

As discussed previously, network high availability is of paramount importance in
real-time IoT applications. Ethernet has historically, and for a long period of time,

5 IoT Protocol Stack: A Layered View

119

relied on the Spanning Tree Protocol (STP) in order to support redundancy and
failure protection. However, in the past decade or so, requirements for massively
scalable Ethernet networks in data center and metropolitan area network (MAN)
deployments have resulted in the evolution of the Ethernet plane toward the use of
the Intermediate System-to-Intermediate System (IS-IS) protocol, as defined in
IEEE 802.1aq-2012 (Shortest Path Bridging) and IEEE 802.1Qbp-2014 (Equal
Cost Multiple Path). IS-IS provides mechanisms for topology discovery and setup
of redundant paths. It also includes mechanisms for network reconfiguration in the
case of failures with reasonable delays (better than STP). These standards, however,
are still lacking in the following areas: There are no standardized mechanisms to
engineer paths with nonoverlapping or minimally overlapping links and nodes.
Also, there are no mechanisms that provide extremely fast (i.e., instantaneous) swi-
tchover in the case of failures. Finally, there are no mechanisms for redundant
(simultaneous) transmission of streams along nonoverlapping paths.

The IEEE Time-Sensitive Networking TSN task group was formed in November
2012, by renaming the Audio/Video Bridging (AVB) task group, with the goal of
addressing the gaps highlighted above. Under that umbrella, work on three emerg-
ing standards commenced: 802.1Qca Path Control and Reservation, 802.1Qbv
Enhancements for Scheduled Traffic, and 802.1CB.

IEEE 802.1Qca

This emerging standard extends the use of IS-IS to control Ethernet networks
beyond what is defined in IEEE 802.1aq Shortest Path Bridging. It provides explicit
path control, bandwidth, and stream reservation and redundancy (through protec-
tion or restoration) for data streams. It proposes the use of IS-IS for topology dis-
covery and to carry control information for scheduling and time synchronization.
The new protocol will enable the use of non-shortest paths and will provide explicit
forwarding path (explicit tree—ET) control. Path calculation and determination will
be done through a Path Computation Element (PCE), the latter being defined by the
IETF PCE workgroup. The PCE is an application that computes paths between
nodes in the network based on a representation of its topology. In 802.1Qca, IS-IS
is currently being proposed as the protocol to convey the topology information from
the Ethernet network to the PCE. The PCE may be centralized and reside in a dedi-
cated server or in a network management system (NMS), or it may be distributed
and embedded in the network elements (e.g., routers or bridges) themselves.

Figure 5.8 shows an example Ethernet network controlled by a single PCE resid-
ing in end station X. This end station is connected to SPT Bridge 11. The PCE peers
with the bridge using IS-IS to learn the topology. The PCE can compute explicit
trees based on, for example, bandwidth or delay requirements, and communicates
them using IS-IS extensions to the bridges (Fig. 5.8).

5.1 Link Layer

120

IEEE 802.1Qbv

The IEEE 802.1Qbv standard will provide real-time control applications with per-
formance assurances for network delay and jitter over “engineered” LANs while
maintaining coexistence with IEEE 802.1Qav/Qat reserved streams and best-effort
traffic on the same physical network. Engineered LANs are so-called because traffic
transmission schedules for the network can be designed offline. These pre- configured
schedules assign dedicated transmission slots to each node in the network, for the
purpose of preventing congestion and enabling isochronous communication with
deterministic latency and jitter. The emerging standard will define time-aware shap-
ing algorithm that enables communicating nodes to schedule the transmission of
messages based on a synchronized time. It is proposed that priority markings car-
ried in the frames will be used to distinguish between time-scheduled, reserved
stream (credit based), and best-effort traffic.

Figure 5.9 depicts the traffic queue architecture for a bridge port that implements
this emerging standard. A transmission gate is associated with each traffic queue;
the state of the transmission gate determines whether or not queued packets can be
selected for transmission on the port. Global Gate Control logic determines what set
of gates are open or closed at any given point of time. A packet on a queue cannot
be transmitted if the transmission gate, for that queue, is in the closed state or if the
packet size is known and there is insufficient time available to transmit the entirety
of that packet before the next gate-close event associated with that queue (Fig. 5.9).

IS-IS (ET
Programming)

IS-IS (Topology
Discovery)

SPT Bridge

Fig. 5.8 Example IEEE 802.1Qca network

5 IoT Protocol Stack: A Layered View

121

IEEE 802.1CB

In order to maximize the availability and reliability of the network, IEEE 802.1CB
proposes mechanisms that will enable “seamless redundancy” over 802.1Qca net-
works. With seamless redundancy, the probability of packet loss is reduced by send-
ing multiple copies of every packet of a stream. Each copy is transmitted along one
of a multitude of redundant paths. Duplicate copies are then eliminated to reconsti-
tute the original stream before it reaches its intended destination.

This is effectively done by tagging packets with sequence numbers to identify
and eliminate the duplicates and by defining new functions for bridges, a split func-
tion, responsible for replicating packets in a stream, and a merge function respon-
sible for eliminating duplicate packets of a stream (Fig. 5.10).

Fig. 5.9 IEEE 802.1Qbv time-based queuing

Fig. 5.10 IEEE 802.1CB seamless redundancy

5.1 Link Layer

122

IEEE 802.1CB proposes introducing a new tag to the 802.1Q frame, the redun-
dancy tag, which includes a 16-bit sequence number. The emerging standard recog-
nizes that alternate tagging mechanisms are possible, for example, through the use
of multiple protocol label switching (MPLS) pseudowires [RFC4448] or using
IEEE 802.1AE MacSec.

5.2 Internet Layer

5.2.1 Challenges

Many IoT deployments constitute what is referred to as low-power and lossy net-
works (LLNs). These networks comprised of a large number (several thousand) of
constrained embedded devices with limited power, memory, and processing
resources. They are interconnected using a variety of Link layer technologies, such
as IEEE 802.15.4, Bluetooth, Wi-Fi, or power-line communication (PLC) links.
There is a wide scope of use cases for LLNs, including industrial monitoring, build-
ing automation (HVAC, lighting, access control, fire), connected homes, healthcare,
environmental monitoring, urban sensor networks (e.g., smart grid), and asset track-
ing. LLNs present the following five challenges to the Internet layer of the proto-
col stack:

Nodes in LLNs operate with a hard, very small bound on state. As such, Internet
layer protocols need to minimize the amount of state that needs to be kept per
node for routing or topology maintenance functions. The design of LLN routing
protocols needs to pay close attention to trading off efficiency for generality, as
most LLN nodes do not have resources to spare.

Typically, LLNs are optimized for saving energy. Various techniques are used to that
effect, including employing extended sleep cycles, where the embedded devices
only wake up and connect to the network when they have data to send. Thus rout-
ing protocols need to adapt to operate under constant topological changes due to
sleep/wake cycles.

Traffic patterns within LLNs include point-to-point, point-to-multipoint, and
multipoint- to-point flows. As such, unicast and multicast considerations should
be taken into account when designing protocols for this layer.

LLNs will typically be employed over Link layer technologies characterized with
restricted frame sizes; thus routing protocols for LLNs should be adapted specifi-
cally for those Link layers.

Links within LLNs may be inherently unreliable with time-varying loss character-
istics. The protocols need to offer high reliability under those characteristics.

Internet layer protocols in LLN have to take the above issues and challenges as
design requirements. The protocol design should take into account the link speeds
and the device capabilities. For example, if the devices are battery powered, then

5 IoT Protocol Stack: A Layered View

123

protocols that require frequent communication will deplete the nodes’ energy faster.
As described above, LLNs are inherently lossy: a characteristic that is typically
unpredictable and predominantly transient in nature. The design of the Internet
layer protocols must account for these characteristics. In conventional networks,
these protocols react to loss of connectivity by quickly reconverging over alternate
routing paths. This is to minimize the extent of data loss by routing around link,
node, or other failures as quickly as possible (e.g., MPLS fast reroute mechanism
strives for reconvergence within 50 ms). In LLNs, such quick reaction to failures is
undesirable due to the transient nature of loss in these networks. As a matter of fact,
it would lead to instability and unacceptable control plane churn. Instead, the proto-
cols should follow a paradigm of underreacting to failures in order to dampen the
effect of transient connectivity loss, combined with confidence-monitoring model to
determine when to trigger full reconvergence. The varying link quality levels in
LLNs have direct bearing on protocol design, especially with regard to convergence
characteristics and time. In traditional networks, global reconvergence is triggered
to minimize the convergence time, whereas in LLNs local reconvergence is pre-
ferred, where the traffic is locally redirected to an alternate next hop during transient
instabilities. This is to minimize the effect of routing instabilities that may lead to
overall network oscillations or forwarding loops. Another consideration for LLNs is
the dynamic nature of link and node metrics used in route computation. There are so
many dynamic factors in LLNs, such as link quality deteriorating due to interfer-
ence, node switching from mains power to battery power, momentary CPU overload
on a node, etc. These factors cause node and link metrics to be time varying in
nature, and the routing protocols must be able to handle that.

Existing routing protocols such as OSPF, IS-IS, etc. in their current form do not
satisfy the routing requirements imposed by the above challenges (Fig. 5.11).

5.2.2 Industry Progress

5.2.2.1 6LowPAN

As discussed previously, one of the challenges imposed by IoT on the Internet layer
is the adaptation of this layer’s functions to Link layer technologies with restricted
frame size. A case in point is adapting IP, and specifically the scalable IPv6, to the
IEEE 802.15.4 Link layer. The base maximum frame size for 802.15.4 is 127 bytes,
out of which 25 bytes need to be reserved for the frame header and another 21 bytes
for link layer security. This leaves, in the worst case, 81 bytes per frame to cram the
IPv6 packet into. What add to the problem are two issues: first, the IPv6 packet
header, on its own, is 40 bytes in length, and second, IPv6 does not perform segmen-
tation and reassembly of packets; this function is left to the end stations or to lower
layer protocols. Even though 802.15.4 g increases the maximum frame size to 2047
bytes, it is still highly desirable to be able to compress IPv6 packet headers over this
Link layer. For the aforementioned reasons, the IETF defined IPv6 over low-power

5.2 Internet Layer

124

wireless personal area networks (6LowPAN). 6LowPAN is defined in RFC6282. It
is an adaptation layer for running IPv6 over 802.15.4 networks (Fig. 5.12).
6LowPAN provides three main functions: IPv6 header compression, IPv6 packet
segmentation and reassembly, and layer 2 forwarding (also referred to as mesh
under). With 6LowPAN, it is possible to compress the IPv6 header into 2 bytes, as
most of the information is already encoded into the Link layer header.

6LowPAN introduces three headers for each of the three functions that it pro-
vides. Those headers are compression header, fragment header, and mesh header.

Fig. 5.11 IoT challenges for the Internet layer. (Source Cisco BRKIOT-2020, 2015)

Fig. 5.12 6LowPAN
Adaptation layer

5 IoT Protocol Stack: A Layered View

125

One or more of these headers may be available in any given packet depending on
which functions are applied (Fig. 5.13).

6LowPAN defines new mechanisms to perform IPv6 neighbor discovery (ND)
operations including link layer address resolution and duplicate address detection.

A recurring issue when adapting IPv6 to any Link Layer technology is support
for a single broadcast domain, where a host can reach any number of hosts within
the subnet by sending a single IP datagram. Accommodating a single broadcast
domain within a 6LoWPAN network requires Link layer routing and forwarding
functions, often referred to as mesh under, since the multi-hop mesh topology is
abstracted away from the IP layer to appear as a single network segment. However,
the IETF has not specified a mesh-under routing protocol for 6LoWPAN. Hence,
this constitutes a technology gap, especially for IoT applications that can benefit
from or that rely on intra-subnet broadcast capabilities.

Even though the scope of 6LoWPAN was originally focused on the IEEE
802.15.4 Link layer, the technology has very limited dependency on 802.15.4 spe-
cifics, thereby allowing other link technologies (e.g., power-line communication—
PLC) to utilize the same adaptation mechanisms. Consequently, the term “6LoWPAN
networks” is often generalized to refer to any Link layer mesh network built on
low-power and lossy links leveraging 6LoWPAN mechanisms.

5.2.2.2 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

The routing over low-power and lossy networks (ROLL) workgroup in IETF has
defined in RFC 6550 an IPv6 routing protocol for LLNs, known as RPL.2 RPL is a
distance-vector routing protocol. The reason for choosing a distance-vector proto-
col, as opposed to a link-state paradigm, is primarily to address the requirement of
minimizing the amount of control-plane state (memory) that needs to be maintained
on the constrained nodes of LLNs. Link-state routing protocols build and maintain
a link-state database of the entire network on every node and hence tend to be
heavier on memory utilization compared to distance-vector algorithms. RPL

2 Pronounced as “ripple”.

Fig. 5.13 6LowPAN header stack. (Source: Cisco BRKIOT-2020, 2015)

5.2 Internet Layer

126

computes a destination-oriented directed acyclic graph (DODAG) based on an
objective function and a set of metrics and constraints. In the context of routing, a
directed acyclic graph (DAG) is formed by a series of nodes and links. Each link
connects one node to another in a directed fashion such that it is not possible to start
at a node N and follow a directed path that cycles back to node N. A destination-
oriented DAG is a DAG that includes a single root node. The DODAG is a logical
topology built over the physical network for the purpose of meeting specific criteria
and carrying traffic subject to certain requirements. These criteria and requirements
are captured in the objective function, metrics, and constraints. The objective func-
tion captures the goal behind setting up a specific topology. Example objective func-
tions include minimizing latency of communication or maximizing the probability
of message delivery. Metrics are scalar values that serve as input parameters to the
best-path selection algorithm. Example metrics include link latency or link reliabil-
ity or node energy level. Constraints refer to conditions that would exclude specific
nodes or links from the topology if they do not meet those constraints, such as
exclude battery-powered nodes or avoid unencrypted links. RPL supports dynamic
metrics and constraints, where the values change overtime and the protocol reacts to
those changes.

In a RPL network, a given node may be a member of different logical topologies,
or DODAGs, each with a different objective. This is supported through the notion of
RPL “instances.” An RPL instance is a set of DODAGs rooted at different nodes, all
sharing the same objective function (Fig. 5.14).

The DODAG root is typically a border router that connects the LLN to a back-
bone network. It is always assigned a rank of 1. RPL calculates ranks for all nodes
connected to the root based on the objective function. The rank value increases
moving down from the root toward leaf nodes. The rank indicates the node’s posi-
tion or coordinates in the graph hierarchy.

RPL has two characteristics that render it well suited for LLNs: First, it is a pro-
active protocol, i.e., it can calculate alternate paths as part of the topology setup, as
opposed to reactive protocols which rely on exchanging control plane messages
after a failure occurs to determine backup paths. Second, RPL is underreactive: it
prefers local repair to global reconvergence. Failures are handled by locally choos-
ing an alternate path, which makes the protocol well suited for operation over
lossy links.

5.2.2.3 6TiSCH

As discussed previously, IEEE 802.15.4 TSCH defines the medium access control
functions for low-power wireless networks with time scheduling and channel hop-
ping. TSCH can fit as the Link layer technology in an IPv6-enabled protocol stack
for LLNs, with 6LoWPAN and RPL. The functional gap in the solution is a set of
entities that can take control of defining the policies to build and maintain the TSCH
schedule, matching that schedule to the multi-hop paths maintained by the RPL

5 IoT Protocol Stack: A Layered View

127

routing protocol and adapting the resources allocated between adjacent nodes to
traffic flows.

As such, an adaptation layer is required in order to run the IPv6 stack on top of
IEEE 802.15.4 TSCH. The IETF has recently formed the 6TiSCH workgroup in
order to address this technology gap and define what is referred to as the “6top”
adaptation layer. This adaptation layer is sandwiched in between the 802.15.4 link
layer and the 6LoWPAN adaptation layer. Its goals are to address the follow-
ing issues:

Network Formation

The adaptation layer must control the formation of the network. This includes two
functions: the mechanisms by which new nodes securely join the network and the
mechanisms by which nodes that are already part of the network advertise its
presence.

Fig. 5.14 RPL instances and DODAGs

5.2 Internet Layer

128

Network Maintenance

After the network is formed, the adaptation layer needs to maintain the network’s
health and ensure that the nodes stay synchronized. This is because a TSCH node
must have a time-source neighbor to which it can synchronize at all times. The
adaptation layer is responsible for assigning those neighbors to the nodes, to guar-
antee the correct operation of the network.

Topology and Schedule Mapping

The adaptation layer needs to gather basic topological information, including node
and link state, and provide this information to RPL, so the latter can compute multi-
hop routes. Conversely, the adaptation layer needs to ensure that the TSCH schedule
contains cells corresponding to the multi-hop routes calculated by RPL.

Resource Management

The adaptation layer is responsible for providing mechanisms by which neighbor-
ing nodes can exchange information regarding their schedule and negotiate the
addition or deletion of cells. Note that a cell maps to a transmission/reception
opportunity, and, hence, constitutes an atomic unit of resource in TSCH. The num-
ber of cells to be assigned between two neighbor nodes should be sized proportion-
ately to the volume of traffic between them.

Flow Control

While TSCH defines mechanisms by which a node can signal to its neighbors when
it can no longer accept incoming packets, it does not, however, specify the policies
that govern when to trigger those mechanisms. Hence, it is the responsibility of the
adaptation layer to specify mechanisms for input and output packet queuing poli-
cies, manage the associated packet queues, and indicate to TSCH when to stop
accepting incoming packets. The adaptation layer should also handle transmission
failures, in the scenario where TSCH has attempted to retransmit a packet multiple
times without receiving any acknowledgment.

Determinism

The adaptation layer is responsible for providing deterministic behavior for applica-
tions that demand it. This includes providing mechanisms to ensure that data is
delivered with guaranteed upper bounds on latency and possibly jitter, all while
maintaining coexistence between deterministic flows and best-effort traffic.

5 IoT Protocol Stack: A Layered View

129

Scheduling Mechanisms

It is envisioned that multiple different scheduling mechanisms may be employed
and even coexist in the same network. This includes centralized mechanisms, for
example, where a Path Computation Element (PCE) takes control of the schedule,
in addition to distributed mechanisms where, for instance, neighboring nodes moni-
tor the amount of traffic and adapt the number of cells autonomously by negotiation
of the allocation or deallocation of cells as needed. The adaptation layer needs to
provide mechanisms to allow for all these functions.

Secure Communication

TSCH defines mechanisms for encrypting and authenticating frames, but it does not
define how the security keys are to be generated. Hence, the adaptation layer is
responsible for generating the keys and defining the authentication mechanisms by
which a new node can join an existing TSCH network. The layer is also expected to
provide mechanisms for the secure transfer of signaling (i.e., control) as well as
application data between nodes.

The envisioned 6TiSCH protocol stack is depicted in Fig. 5.15. RPL will be the
routing protocol of choice for the architecture. As the work in IETF progresses,
there may be a need to define a new 6TiSCH-specific objective function for RPL. For
the management of devices, the architecture will leverage the Constraint Application
Protocol Management Interface (COMI), which will provide the data model for the
6top adaptation layer management interface. Centralized scheduling will be carried
out by the Path Computation Element (PCE). The topology and device capabilities
will be exposed to the PCE using an extension to a Traffic Engineering Architecture
and Signaling (TEAS) protocol. The schedule computed by the PCE will be distrib-
uted to the devices in the network using either a light-weight Path Computation
Element Protocol (PCEP) or an adaptation of Common Control and Measurement

Fig. 5.15 6TiSCH protocol stack

5.2 Internet Layer

130

Plane (CCAMP) formats. The Datagram Transport Layer Security in Constrained
Environments (DICE) can be used in the architecture to secure CoAP messages.
Also, the Protocol for Carrying Authentication for Network Access (PANA) will
secure the process of a node joining an existing network.

5.3 Application Protocols Layer

Application protocols are responsible for handling the communication between
Application Entities, i.e., things, gateways, and applications. They typically support
the flow of data (e.g., readings or measurements) from things to applications and the
flow of command or control information (e.g., to trigger or actuate end devices) in
the reverse direction. These protocols define the semantics and mechanisms for
message exchanges between the communicating endpoints.

The landscape of the application protocols layer in IoT is currently crowded with
competing protocols and standards, each having its own set of strengths and weak-
nesses and with no clear path toward convergence being agreed upon by the industry
yet. In this section, we will discuss the characteristics and attributes of the protocols
in this layer as they pertain to IoT and will highlight, where applicable, the require-
ments and challenges that IoT applications impose on these protocols.

5.3.1 Data Serialization Formats

Applications protocols vary in the data serialization formats used to encode infor-
mation into messages. One of the challenges in IoT data serialization formats is
mapping between the formats used in constrained devices and those used by appli-
cations in the World Wide Web. These applications should be able to interpret the
data from IoT devices with minimal format translations and a priori knowledge.
Hence, the formats should be general and compatible with Web technologies.
Popular data serialization formats on the Web include XML, JSON, and EXI.

Another challenge in IoT data serialization formats is the impact they have on
device resource utilization, especially in terms of energy consumption. Data for-
mats have an effect on device resource usage in two facets: in their local processing
demands and their communication efficiency. The local processing demands include
both the processing required to serialize memory objects into data encoded in mes-
sages and the processing required to parse the encoded messages into memory
objects. The communication efficiency is a function of the compactness of the data
serialization format and its efficiency to encode information in the least amount of
message real estate. Both of these facets, namely, local processing and communica-
tion, have a direct impact on the energy consumption of the IoT device. Research in
wireless sensor networks suggests “communication is over 1000 times more expen-
sive in terms of energy than performing a trivial aggregation operation.” Therefore,

5 IoT Protocol Stack: A Layered View

131

the data serialization formats for IoT application protocols should be chosen such
that they require minimal processing and communication demands.

A third challenge in IoT data serialization formats is the impact they have on
network bandwidth utilization. This ties back to the compactness of the format and
its encoding efficiency, as discussed above. The more verbose that the data format
is, the more message space that it will consume on the wire to carry the same amount
of information, which leads to less efficient use of network bandwidth. For IoT,
especially when devices are connected over low-bandwidth wireless links, the data
serialization format of application protocols should be chosen carefully to maxi-
mize the use of the available bandwidth.

5.3.2 Communication Paradigms

Application protocols support different communication patterns. These patterns
enable varying paradigms of interaction between IoT applications and devices.

5.3.2.1 Request/Response Versus Publish/Subscribe

The request/response paradigm enables bidirectional communication between end-
points (Fig. 5.16). The initiator of the communication sends a request message,
which is received and operated upon by the target endpoint. The latter then sends a
response message to the original initiator. This paradigm is well suited for IoT
deployments that have one or more of the following characteristics:

• The deployment follows a client-server architecture.
• The deployment requires interactive communication: both endpoints have infor-

mation to send to the other side.

Fig. 5.16 Request/
response paradigm

5.3 Application Protocols Layer

132

• The receipt of information needs to be fully acknowledged (e.g., for reliability).

However, not all IoT deployments have the above characteristics. In particular, in
many scenarios, all what is required is one-way communication from a data pro-
ducer (e.g., a sensor) to a consuming entity (the application). For this, the request/
response paradigm is sub-optimal due to the overhead of the unneeded messages
running in the reverse direction. This is where the publish/subscribe pattern comes
in (Fig. 5.17).

The publish/subscribe paradigm, often referred to as pub/sub, enables unidirec-
tional communication from a publisher to one or more subscribers. The subscribers
declare their interest in a particular class or category of data to the publisher. When
the publisher has new data available from that class, it pushes it in messages to
interested subscribers. Besides the obvious proclamation that this paradigm optimal
for IoT applications requires one-way communication, the pub/sub model is well
suited for IoT deployments that can benefit from the following characteristics:

• Loose coupling between the communicating endpoints, especially when com-
pared with the client-server model.

• Better scalability by leveraging parallelism and the multicast capabilities of the
underlying transport network.

5.3.2.2 Blocking Versus Non-blocking

Application protocols can offer IoT endpoints blocking or non-blocking messaging
service.

In the blocking mode, the endpoint originating a request must wait to get a
response to its request, after the requested operation has finished on the other end-
point. This involves potentially long or unknown wait times (where a pending
request has not been responded to) for the originator.

Fig. 5.17 Publish/
subscribe paradigm

5 IoT Protocol Stack: A Layered View

133

In the non-blocking mode, the endpoint originating a request does not wait until
the other endpoint has fully serviced the request. Rather, it expects a prompt
acknowledgment of the request together with a specified reference, so that the origi-
nator can retrieve the outcome of the requested operation at a later point of time.

In the synchronous case, the originator of a request is not able to receive asyn-
chronous messages, i.e., all exchanges of information between the originator and
the receiver need to be initiated by the originator. The later retrieval of the result of
a requested operation is through the exchange of request/response messages between
the originator and the receiver.

In the asynchronous case, the originator of a request is able to receive notifica-
tion messages, i.e., the receiver can send an unsolicited message to the originator at
an arbitrary time to report the requested operation. The mechanisms for the notifica-
tion to the originator are the same as in the case of a notification after a
subscription.

5.3.3 QoS

Application protocols should provide mechanisms for fine-grained control over the
real-time behavior, dependability, and performance of IoT applications by means of
a rich set of QoS policies. These policies should provide control over local resources
and the end-to-end properties and characteristics of data transfer. The local proper-
ties controlled by QoS relate to resource usage, whereas the end-to-end properties
relate to the temporal and spatial aspects of data communication.

5.3.3.1 Resource Utilization

Application protocols should provide QoS policies to control the amount of mem-
ory and processing resources that can be used by the application protocol for data
transmission and reception. These policies include:

Resource Limits Policy

This policy allows control of the amount of message buffering performed by a pro-
tocol implementation, as this impacts the amount of memory consumed by that
protocol. Such controls are particularly important for embedded applications run-
ning on constrained devices.

5.3 Application Protocols Layer

134

Time Filter Policy

This policy allows applications to specify the minimum inter-arrival time between
data samples. Samples that are produced at a faster pace are not delivered. This
policy allows control of both network bandwidth and memory and processing power
for applications which are connected over limited bandwidth networks and which
might have limited computing resources.

5.3.3.2 Data Timeliness

Application protocols should provide a set of QoS policies that allow control of the
timeliness properties of distributed data. Specifically, the QoS policies that are
desirable are described below:

Deadline Policy

This QoS policy allows an application to define the maximum inter-arrival time for
data. Missed deadline can be notified by the protocol to the application.

Latency Budget Policy

This QoS policy provides a means for the application to communicate to the appli-
cation protocol the level of urgency associated with a data communication. The
latency budget specifies the maximum amount of time that should elapse from the
instance when the data is transmitted to the instance when the data is placed in the
queue of the associated recipients.

5.3.3.3 Data Availability

Application protocols should provide the following QoS policies to allow control of
data availability:

Durability Policy

This QoS policy provides control over the degree of persistence of the data being
transmitted by the application. At one end of the spectrum, it allows the data be
configured to be volatile, while at the other end, it allows for data persistency. It is
worth noting that data persistence enables time decoupling between the producing
and the consuming endpoint by making the data available for late-joining consum-
ers or even after the producer has disconnected.

5 IoT Protocol Stack: A Layered View

135

Life Span Policy

This QoS policy allows control of the interval of time for which a data sample will
be valid.

History Policy

This QoS policy provides a means to control the number of data samples that have
to be kept available for the recipients. Possible values are the last sample only, the
last N samples, or all the samples.

5.3.3.4 Data Delivery

Application protocols should provide QoS policies to allow control of how data is
delivered.

Reliability Policy

This QoS policy allows the application to control the level of reliability associated
with data diffusion. The possible choices are reliable and best-effort distribution.
With reliable distribution, the application protocol must ensure message delivery
and handle acknowledgments and retransmissions without direct application
involvement.

Transport Priority

This QoS policy allows the application to take advantage of transports that are capa-
ble of sending messages with different priorities. Application protocols are respon-
sible for interacting with the underlying transport layer in order to map this QoS
policy to the right underlying transport network QoS markings (e.g., IP DSCP, TOS,
or PCP).

5.3.4 RESTful Constraints

Some application protocols adhere to a set of constraints defined by the representa-
tional state transfer (REST) architectural paradigm. REST is a distributed client-
server software architecture style that was coined by Roy Fielding after he analyzed
the design principles that contributed to the success of the Hypertext Transfer
Protocol (HTTP) employed in the World Wide Web. Fielding concluded on a set of

5.3 Application Protocols Layer

136

constraints that collectively define the REST architectural style and yield a system
that is simple, scalable, and reliable.

The formal REST constraints are as follows:

Client-Server Communication Model

This allows for separation of concerns where the server focuses on functions such
as data storage, whereas clients focus on the user interface and user state.
Uniform interfaces separate the clients from the servers. This allows for indepen-
dent development of servers and clients as long as they honor the same interface.

Stateless Communication
The server must not store any client context that persists between requests. Session

state is maintained by the client, which passes all the information necessary to
service a particular request in the request itself. In other words, requests are self-
contained from a server perspective.

Cacheable Communication
Responses from the server may be cacheable by clients and intermediate nodes.

This improves the scalability and performance of the system by partially or com-
pletely eliminating some client–server interactions.

Layered Architecture
To allow for better scalability, the system comprised of a layered architecture that

includes clients, servers, and potentially multiple intermediate nodes interspersed
between them. Clients may be in communication with intermediate nodes or
directly with servers without ordinarily being able to identify a difference
between the two.

Uniform Interfaces
All interactions between clients and servers (or intermediate nodes) are governed by

uniform interfaces. These interfaces use the notion of “resources.” A resource is
an abstraction for server-side information and associated native data representa-
tion. Resources have unique identifiers (e.g., URIs in Web systems). When a
server communicates with a client, it transfers an external representation of the
resource to the client (hence the name representational state transfer). REST
interfaces are representation centric. Hence, a small set of operations (also called
verbs), which are uniform across all use cases, can be used in the interface.
Usually, this set of verbs is referred to as CRUD for create, read, update, and
delete. In REST interfaces, there is no out-of-band contract that defines the types
of actions that can be initiated by a client. Rather, this information is discovered
dynamically by the client from prior server interactions through hypermedia
(i.e., by hyperlinks within hypertext). This characteristic of the interface is
known as hypermedia as the engine of application state (HATEOAS).

Code on Demand

Client functionality may be extended or modified by the server through the transfer
of executable pieces of code that can be executed on the client side (e.g., scripts
or applets). This is an optional REST constraint known as “code on demand.”

5 IoT Protocol Stack: A Layered View

137

5.3.5 Survey of IoT Application Protocols

5.3.5.1 CoAP

The Constrained Application Protocol (CoAP) was standardized by the IETF
Constrained RESTful Environments (CORE) workgroup as a lightweight alterna-
tive to HTTP, targeted for constrained nodes in low-power and lossy networks
(LLNs). The need for a lighter-weight version of HTTP can be appreciated by
examining, for example, the number of messages that need to be exchanged between
a client and a server to perform a simple Get operation on a resource: first there are
three TCP SYN messages exchanged to bring up the TCP session, followed by the
HTTP Get request from the client, then the HTTP response from the server, and
finally two messages to terminate the TCP session. Hence, a total of seven messages
are required just to fetch a resource. CoAP reduces this overhead by using UDP as
a transport in lieu of TCP. CoAP also uses short headers to reduce message sizes.

Similar to HTTP, CoAP is a RESTful protocol. It supports the create, read,
update, and delete (CRUD) verbs but in addition provides built-in support for the
publish/subscribe paradigm via the new observe verb. CoAP optionally provides a
mechanism where messages may be acknowledged for reliability and provides a
bulk transfer mode. CoAP was standardized as RFC 7252. Furthermore, there is an
ongoing work in the IETF to define mechanisms for dynamic resource discovery in
CoAP via a directory service.

5.3.5.2 XMPP

The Extensible Messaging and Presence Protocol (XMPP) was originally designed
for instant messaging, contact list, and presence information maintenance. It is a
message-centric protocol based on the Extensible Markup Language (XML). Due
to its extensibility, the protocol has been used in several applications, including
network management, video, voice-over IP, file sharing, social networks, and online
gaming, among others. In the context of IoT, XMPP has been positioned for smart
grid solutions, for example, as depicted in RFC 6272. XMPP originally started as an
open-source effort, but the core protocol was later standardized by the IETF in RFC
6120 and 6121. Moreover, the XMPP Standards Foundation (XSF) actively devel-
ops open extensions to the protocol.

The native transport protocol for XMPP is TCP. However, there is an option to
run XMPP over HTTP.

5.3 Application Protocols Layer

138

5.3.5.3 MQTT

The Message Queue Telemetry Transport (MQTT) protocol is a lightweight pub-
lish/subscribe messaging protocol that was originally designed by IBM for enter-
prise telemetry. MQTT follows a client-server architecture where clients connect to
a central server (called the broker). The protocol is message oriented, where mes-
sages are published to an address, referred to as a topic. Clients subscribe to one or
more topics and receive updates from a client that is publishing messages for this
topic. In MQTT, topics are hierarchical (similar to URLs), and subscriptions may
use wildcards. MQTT is a binary protocol, and it uses TCP transport. The protocol
is being standardized by the Organization for the Advancement of Structured
Information Standards (OASIS).

The protocol targets endpoints where “a small code footprint” is required or
where network bandwidth is limited; hence it could prove useful for constrained
devices in IoT.

5.3.5.4 AMQP

The Advanced Message Queuing Protocol (AMQP) originates from financial sector
applications but is generic enough to accommodate other types of applications.
AMQP is a binary message-oriented protocol. Due to its roots, AMQP provides
message delivery guarantees for reliability, including at least once, at most once,
and exactly once. The importance of such guarantees can be easily seen in the con-
text of financial transactions (e.g., when executing a credit or debit transaction).
AMQP offers flow control through a token-based mechanism, to ensure that a
receiving endpoint is not overburdened with more messages than it is capable of
handling. AMQP assumes a reliable underlying transport protocol, such as TCP.

AMQP was standardized by OASIS in 2012 and then by the International
Standards Organization (ISO) and the International Electrotechnical Commission
(IEC) in 2014. Several open-source implementations of the protocol are available.
AMQP defines a type system for encoding message data as well as annotating this
data with additional context or metadata. AMQP can operate in simple peer-to-peer
mode as well as in hierarchical architectures with intermediary nodes, e.g., messag-
ing brokers or bridges. Finally, AMQP supports both point-to-point communication
and multipoint publish/subscribe interactions.

5.3.5.5 SIP

The Session Initiation Protocol (SIP) handles session establishment for voice, video,
and instant messaging applications on IP networks. It also manages presence (simi-
lar to XMPP).

SIP invitation messages used to create sessions carry session descriptions that
enable endpoints to agree on a set of compatible media types. SIP leverages

5 IoT Protocol Stack: A Layered View

139

elements called proxy servers to route requests to the user’s current location, authen-
ticate and authorize users for services, implement call-routing policies, and provide
features. SIP also defines a registration function that enables users to update their
current locations for use by proxy servers. SIP is a text-based protocol and can use
a variety of underlying transports, TCP, UDP, or SCTP, for example. SIP is stan-
dardized by the IETF as RFC 3261.

5.3.5.6 IEEE 1888

IEEE 1888 is an application protocol for environmental monitoring, smart energy,
and facility management applications. It is a simple protocol that supports reading
and writing of time-series data using the Extensible Markup Language (XML) and
the simple object access protocol (SOAP). The data is identified using Universal
Resource Identifiers (URIs). The latest revision of the protocol was standardized by
the IEEE Standards Association in 2014.

5.3.5.7 DDS RTPS

Distributed Data Service Real Time Publish and Subscribe is a data-centric applica-
tion protocol that, as its name indicates, supports the publish/subscribe paradigm.
DDS organizes data into “topics” that listeners can subscribe to and receive asyn-
chronous updates when the associated data changes. DDS RTPS provides mecha-
nisms where listeners can automatically discover speakers associated with specific
topics. IP multicast or a centralized broker/server may be used to that effect. Multiple
speakers may be associated with a single topic and priorities can be defined for dif-
ferent speakers. This provides a redundancy mechanism for the architecture in case
a speaker fails or loses communication with its listeners.

DDS RTPS supports very elaborate QoS policies for data distribution. These poli-
cies cover reliability, data persistence, delivery deadlines, and data freshness. DDS
RTPS is a binary protocol, and it uses UDP as the underlying transport. The latest
version of the protocol was standardized by the Object Management Group (OMG)
in 2014. Table 5.3 provides a summary of the protocols discussed in this section.

5.4 Application Services Layer

5.4.1 Motivation

M2M deployments have existed for over two decades now. However, what has char-
acterized these deployments is a state of fragmentation: vertical solutions are imple-
mented in silos with proprietary communication stacks and very tight coupling

5.4 Application Services Layer

140

between applications and devices. The paradigm can be best described as “one
application-one device.” The application code is exposed to all the device specifics
under this modus operandi. This, in turn, creates complexity and increases the cost
of the solution’s initial development and ongoing maintenance. For instance, if the
operator of a deployment wanted to replace a defective device with another from a
different manufacturer, parts of the application source code would have to be rewrit-
ten in order for the replacement device to be integrated into the solution. By the
same token, adding new types of devices to the solution cannot be performed with-
out application source code changes. Furthermore, the networks interconnecting the
devices and the applications are in many case closed proprietary systems, and inter-
connecting those networks requires application gateways that are complex and
expensive. These issues constitute a major current gap in IoT. What is required is a
layer of abstraction that fits in between the applications and the devices, i.e., things,
and enables the paradigm of “any application-any device” (Fig. 5.18).

Table 5.3 Survey of IoT application protocols

Protocol Functions Primary use Transport Format SDO

CoAP REST resource manipulation
via CRUD
Resource tagging with
attributes
Resource discovery through
RD

LLNs UDP Binary IETF

XMPP Manage presence Session
establishment
Data transfer (text or binary)

Instant messaging TCP HTTP XML IETF
XSF

MQTT Lightweight pub/sub
messaging
Message queuing for future
subscribers

Enterprise telemetry TCP Binary OASIS

AMQP Message orientation, queuing
and pub/sub
Data transfer with delivery
guarantees (at least once, at
most once, exactly once)

Financial services TCP Binary OASIS

SIP Manage presence Session
establishment
Data transfer (voice, video,
text)

IP telephony TCP, UDP,
SCTP

XML IETF

IEEE
1888

Read/write data into URI
Handling time-series data

Energy and facility
management

SOAP/
HTTP

XML IEEE

DDS
(RTPS)

Pub/sub messaging with
well-defined data types Data
discovery Elaborate QoS

Real-time distributed
systems (military,
industrial, etc.)

UDP Binary OMG

5 IoT Protocol Stack: A Layered View

141

In other words, this abstraction layer provides a common set of services that
enables an application to interface with potentially any device without understand-
ing a priori the specifics and internals of that device. This abstraction layer is
referred to as the Application Services layer in our model of the IoT protocol stack.
It provides seamless interoperability between applications and devices and pro-
motes nimble development of IoT solutions.

From a business perspective, the emergence of this new layer is driven, in part,
by communication service providers (CSPs) looking at using IoT to gain additional
revenue from their networks. Key to this revenue will be differentiating beyond
providing simple IP connectivity. CSPs know well the value of IoT is in the data, not
the way it is transported. To unlock this value, the Application Services layer aims
to turn the network to a common platform to enable diverse IoT applications. This
common platform will be built across an ecosystem of heterogeneous devices and
will enable CSPs to monetize IoT data access, storage, management, and security.

5.4.2 Industry Progress

In 2012, the European Telecommunications Standards Institute (ETSI) published
the first release of its M2M service layer standard defining a standardized platform
for multiservice IoT solution. Later that year, seven standards development organi-
zations (TIA and ATSI from the USA, ARIB and TTC from Japan, CCSA from
China, ETSI from Europe, and TTA from Korea) launched a global organization to
jointly define and standardize the common horizontal functions of the IoT
Application Services layer under the umbrella of the oneM2M Partnership Project
(http://www.onem2m.org). The founders agreed to transfer and stop their own over-
lapping IoT application service layer work.

In what follows, we will discuss the ETSI M2M and oneM2M efforts in more
details.

Fig. 5.18 Application to device coupling

5.4 Application Services Layer

http://www.onem2m.org

142

5.4.2.1 ETSI M2M

The network architecture adopted by the ETSI M2M effort draws heavily on exist-
ing technologies. The architecture comprised of three domains: M2M device
domain, network domain, and application domain (Fig. 5.19). The M2M device
domain provides connectivity between things and gateways, e.g., a field area net-
work or personal area network. Devices are entities that are capable of replying to
request for data contained within those entities or capable of transmitting data con-
tained within those entities autonomously. Gateways ensure that end devices (which
may not be IP enabled) can interwork and interconnect with the communication
network. Technologies in the M2M device domain include IEEE 802.15.4, IEEE
802.11, Zigbee, Z-WAVE, PLC, etc.

The network domain includes the communication networks, which interconnect
the gateways and applications. This typically includes access networks (xDSL,
FTTX, WiMax, 3GPP, etc.) as well as core networks (MPLS/IP). The application
domain includes the vertical-specific applications (e.g., smart energy, eHealth,
smart city, fleet management, etc.) in addition to the Service Capabilities layer
(SCL), a middleware layer that provides various data and application services. The
main focus of the ETSI M2M standards is on defining the functionality of the
SCL. The SCL provides functions that are common across different applications
and exposes those functions through an open API. The goal is to simplify applica-
tion development and deployment through hiding the network specifics.

The functions of the SCL may reside on entities deployed in the field such as
devices and gateways or on entities deeper in the network (e.g., servers in a data
center). This gives rise to three flavors of SCL, depending on its placement: device
SCL (D-SCL), gateway SCL (G-SCL), and network SCL (N-SCL). While the three
flavors of SCL do share some common functions, they also differ due to the

Fig. 5.19 ETSI M2M network architecture

5 IoT Protocol Stack: A Layered View

143

different operations that need to be carried out by devices, gateways, and network
nodes (servers). In general, the SCL provides the following functions:

• Registration of devices, applications, and remote SCLs
• Synchronous and asynchronous data transfer
• Identification of applications and devices
• Group management for bulk endpoint addressability and operations
• Security mechanisms for authentication, authorization, and access rights control
• Remote device management (through existing protocols)
• Location information

ETSI M2M adopted a RESTful architecture style where all data in the SCL is
represented as resources. This includes not only the data generated by the devices
but also data representing device information, application information, remote SCL
information, access rights information, etc. Resources in the SCL are uniquely
addressable via Universal Resource Identifiers (URIs). Manipulation of the
resources is done through a RESTful API, which provides the CRUD primitives (C,
create; R, read, U, update, D, delete). The API can be bound to any RESTful proto-
col, such as HTTP or CoAP. ETSI technical specification TS 102 921 specifies the
API binding to HTTP and CoAP protocols.

Resources within the SCL are organized in a well-specified hierarchical structure
known as the resource tree (Fig. 5.20). This provides a number of advantages: it
provides a data mediation function, describes how resources relate to each other,
allows traversal and query of data in an efficient manner, and speeds up the develop-
ment of platforms. The resource tree of an SCL includes:

• Location of other SCLs in the network (in other devices or GWs)
• List of registered applications
• Announced resources on remote elements
• Access rights to various resources
• Containers to store actual application data

Fig. 5.20 Example ETSI M2M resource tree

5.4 Application Services Layer

144

In addition to the different flavors of SCL, ETSI M2M defines the following
types of entities: application and devices. Applications are further categorized as
network applications (NA), gateway applications (GA), or device applications (DA)
depending on whether they run in the network domain, on a gateway or embedded
on a device, respectively. Devices are categorized into those that support the ETSI
SCL functions (known as D devices) and those that do not support these functions
(known as D devices).

ETSI M2M defines a number of reference points, or interfaces, between interact-
ing entities. These reference points define the semantics of the interactions, and
associated API, between the entities. In particular, the following three reference
points are defined:

• mIa: defines the interactions between a network application and the
N-SCL. Allows the application to register with the SCL and access resources on it.

• mId: defines the interactions between a device application, on the one hand, and
a D-SCL or G-SCL on the other. Allows the application to register with the SCL
and access resources on it.

• dIa: defines the interactions between the N-SCL, on the one hand, and the D-SCL
or G-SCL on the other. Allows the various SCL instances to register with one
another and access their respective resources.

The ETSI M2M architecture supports backward compatibility with devices that
do not support the ETSI reference point functions. This compatibility is achieved
through gateways that communicate with the legacy devices via their own proprie-
tary mechanisms and handle the translation of the data into the resource tree. ETSI
does not define the specifics of how the translation should be performed (Fig. 5.21).

Irrespective of the underlying physical network topology, the ETSI model defines
a strict two-level hierarchy with N-SCL at the top level and G-SCL or D-SCL at the
bottom level. The daisy chaining of SCLs in deeper hierarchies is not defined or
supported.

The ETSI M2M functional architecture is defined in technical specification TS
102 690.

5.4.2.2 oneM2M

The oneM2M standards consider any IoT deployment to be comprised of two
domains: the field domain and the infrastructure domain (Fig. 5.22). The field
domain includes things (e.g., sensors, actuator, etc.) and gateways, whereas the
infrastructure domain includes the communication networks (aggregation, core) as
well as the data centers. From a functional perspective, each of these domains
includes three flavors of entities: an application entity, a common services entity,
and a network services entity.

The application entity implements the vertical-specific application logic. It may
reside on one or multiple physical nodes in the deployment. Examples of an applica-
tion entity would be a home automation application or a smart parking application.

5 IoT Protocol Stack: A Layered View

145

The common services entity is a middleware layer that sits in between applica-
tions (application entity) and the underlying network services (network services
entity) (Fig. 5.23). The common services entity (CSE) provides the following set of
common functions to applications:

• Identity management: Identification of applications entities and CSEs.
• Registration: Includes registration of application entities and CSEs.
• Connectivity handling: This ensures efficient, reliable, and scalable use of the

underlying network.
• Remote device management: This includes configuration and diagnostic

functions.
• Data exchange: Supports storing and sharing of data between applications and

devices, in addition to event notification.
• Security and access control: Provides control over access to data (who can access

what and when, etc.).
• Discovery: Provides discovery of entities as well as data and resources.

Fig. 5.21 ETSI M2M system architecture

Fig. 5.22 oneM2M domains

5.4 Application Services Layer

146

• Group management: Support of bulk operations and access.
• Location: Provides an abstraction for managing and offering location informa-

tion services.

The CSE is, more or less, logically equivalent to the ETSI M2M SCL.
The network services entity provides value-added services to the CSE, such as

QoS, device management, location services, and device triggering.
The oneM2M reference architecture identifies five different types of logical

nodes: application-dedicated nodes, application service nodes, middle nodes, infra-
structure nodes, and none-oneM2M nodes. These nodes may map to one or more
physical devices in the network or may have no corresponding physical mapping.

Application-dedicated nodes (ADNs) are oneM2M compliant devices (i.e.,
things) with restricted functionality: they include one or more application entities
but no CSE. From a physical mapping perspective, ADNs may map to constrained
IoT devices.

Application service nodes (ASNs) are fully featured oneM2M compliant devices.
They include a CSE in addition to one or more application entities. From physical
mapping standpoint, they map to (typically non-constrained) IoT devices.

Middle nodes (MNs) host a CSE. A middle node may or may not include appli-
cation entities. There could be zero, one, or many middle nodes in the network.
MNs physically map to gateways in the network.

Infrastructure nodes (INs) host the CSE and may or may not host any application
entities. The CSE on the IN includes functions that do not typically exist in any
other CSE in the network. There is a single infrastructure node per domain per ser-
vice provider in the oneM2M architecture.

Non-oneM2M Nodes are legacy devices that interwork with the oneM2M archi-
tecture. This provides backward compatibility of oneM2M with existing systems
(similar to D devices in the ETSI M2M architecture).

As with ETSI M2M, oneM2M follows a RESTful architecture style where all
data is modeled as resources, albeit oneM2M does not define a static resource struc-
ture like the ETSI resource tree. Instead, the standard provides means by which
resources can be linked together (through resource links). Client applications can
discover the resource organization dynamically. In this regard, the oneM2M
approach complies with the HATEOAS (Hypermedia as the Engine of Application

Fig. 5.23 oneM2M
common services entity

5 IoT Protocol Stack: A Layered View

147

State) REST constraint discussed in Sect. 5.3.4, because it does not assume that the
clients have any a priori knowledge of the resource organization (Fig. 5.24).

Similar to ETSI M2M, oneM2M defines a set of reference points or interfaces
between interacting entities. The oneM2M standard defines the following four ref-
erence points:

• Mca: Defines the interactions between application entities and CSE.
• Mcn: Defines the interactions between the CSE and the underlying network ser-

vice entity.
• Mcc: Defines the interactions between two CSEs in the same service pro-

vider domain.
• Mcc’: Defines the interactions between two CSEs across service provider domain

boundary.

A number of notable differences between the reference points defined by ETSI
M2M and those defined by oneM2M are worth highlighting:

First, ETSI M2M defines two different reference points for interactions between
applications and the middleware as well as between devices and the middleware
(mIa and mId interfaces, respectively), whereas oneM2M collapses both inter-
faces into the Mca reference point.

Second, the Mcn reference point is unique to oneM2M and has no equivalent in the
ETSI standard. This interface enables the middleware to access network service
functions. For example, it can be used to signal information from the service
layer to the transport layer to request QoS and prioritization for M2M communi-

Fig. 5.24 oneM2M resource organization

5.4 Application Services Layer

148

cation, for transmission scheduling, to signal indication for small data transmis-
sion, for device triggering, etc.

The interface may also be used to extract information from the underlying trans-
port layer, for example, to fetch data related to the location of M2M devices or
gateways (Fig. 5.25).

5.4.3 Technology Gaps

While ETSI and oneM2M have made strides in defining standard APIs and common
application services for IoT, several gaps remain.

First, in terms of search and discovery capabilities, the IoT Application Services
layer should provide support for:

• Mechanisms by which devices as well as applications can automatically discover
each other as well as discover middleware/common services nodes.

• Mechanisms by which applications can search for devices with specific attributes
(e.g., sensors of particular type) or context (e.g., within a specific distance from
a location).

• Mechanisms by which applications can search for data based on attributes (e.g.,
semantic annotations) or context (e.g., spatial or temporal).

Both ETSI and oneM2M define basic mechanisms for resource search based on
metadata or text strings. However, these are rudimentary capabilities and do not
provide the contextual search functions that will be needed for IoT. Furthermore, no

Fig. 5.25 oneM2M functional architecture

5 IoT Protocol Stack: A Layered View

149

mechanisms for device or gateway auto-discovery are provided by either standard.
It is assumed that the various instances of the middleware (SCL in case of ETSI and
CSE in case of oneM2M), which need to communicate with each other, have a priori
knowledge of their respective IP addresses. The same assumption holds between
application endpoints and other entities (devices or middleware instances) that they
need to communicate with.

Second, with regard to data encoding, interpretation, and modeling, the
Application Services layer should encompass:

• Mechanisms that render IoT data understandable to applications without a priori
knowledge of the data or the devices that produced it.

• Mechanisms that enable application interaction at a high level of abstraction by
means of physical/virtual entity modeling.

• Mechanisms that enable data management services to host the semantic descrip-
tion of IoT data that is being handled.

• Framework for defining formal domain-specific semantic models or ontologies,
including but not limited to defining an upper-level ontology for IoT.

ETSI’s effort stopped at defining opaque containers for holding data. The inter-
pretation of that data was outside the scope of what was standardized. OneM2M
went one step further by providing an attribute to link the data container to an ontol-
ogy reference (URI). However, no formal effort has been undertaken to define any
ontologies or define any associated framework for tying semantic systems with the
rest of the architecture, beyond this simple linkage.

5.5 Summary

In this chapter we started with an overview of the IoT protocol stack, and then we
examined each of the Link layer, Internet layer, Application Protocols layer, and
Application Services layer in details. For each of these layers, we examined the IoT
challenges and requirements impacting the protocols, which operate at that respec-
tive layer, and discussed the industry progress and gaps.

In the course of the discussion on the Link layer, we covered IEEE 802.15.4,
TCSH, IEEE 802.11ah, and Time-Sensitive Networking (TSN). In the Internet
layer, we discussed 6LowPAN, RPL, and 6TiSCH. In the Application Protocols
layer, we surveyed a subset of the multitude of available protocols. Finally, in the
Application Services layer, we covered the work in ETSI M2M and oneM2M on
defining standard application middleware services.

Problems and Exercises

 1. What is the difference between IEEE 802.15.4 full-function device (FFD) and
reduced-function device (RFD)?

 2. IEEE 802.11ah and IEEE 802.15.4 both provide a low-power wireless protocol.
What are the main differences between the two?

5.5 Summary

150

 3. Why does IEEE 802.1Qca use IS-IS as the underlying protocol and not some
other routing protocols such as OSPF or BGP?

 4. What are three functions provided by the 6LowPAN adaptation layer?
 5. Is RPL a link-state or distance-vector routing protocol? Why did the IETF

ROLL workgroup decide to go with that specific flavor of routing protocols?
 6. What are the constraints that characterize the RESTful communication

paradigm?
 7. What is the Application Services layer in the IoT protocol stack? What services

does it provide?
 8. What are the functions of the Service Capabilities layer (SCL) in the ETSI

M2M architecture?
 9. What are functions of the common services entity (CSE) in the oneM2M archi-

tecture? How do they compare to those of ETSI’s SCL?
 10. Why do the IoT application services architectures under standardization all fol-

low the RESTful paradigm?
 11. A temperature sensor that supports CoAP has an operating range of 0–1000 °F

reports a reading every 5 s. The sensor has a precision of 1/100 °F. The sensor
reports along with every temperature reading a time stamp using the ISO 8601
format (CCYY-MM-DDThh:mm:ss).

 (a) If the current temperature measured by the sensor is 342.5 °F, construct the
payload of a CoAP message with the reading encoded in XML and then
in JSON.

 (b) Assuming that the sensor consumes 3 nJ per byte (character) transmitted
over a wireless network, calculate the total energy required to transmit each
message. Which of the two encoding schemes (XML or JSON) is more
energy efficient? By what percentage?

 12. Compare the bandwidth utilization for the XML vs. JSON messages of Question
11 in bits per second assuming UTF-8 text encoding is being used.

 13. An IoT water level monitoring application requires updates from a sensor peri-
odically, using the command/response paradigm. The application triggers a
request every 1 s. The roundtrip propagation delay between the application and
the sensor is 12 ms. The sensor consumes 3 ms on average to process each
request. The application consumes 2 ms to send or receive any message. If the
application blocks on every request to the sensor, how much of its time budget
can be saved by redesigning the application to use the publish/subscribe com-
munication model in lieu of the command/response approach?

 14. A utility company uses IPv6-enabled smart meters running in an IEEE 802.15.4
mesh. If the mesh is operating at 1 Mbps without 6LoWPAN IPv6 header
 compression, what is the throughput of the smart metering application in the
worst- case scenario?

 15. An automotive parts manufacturer is looking to upgrade the network that con-
trols their computer numerical control (CNC) mill. At full speed, the mill can
cut into solid steel at a rate of 1 inch per second. The manufacturer’s quality
assurance (QA) guideline mandates that the dimensions of any part produced

5 IoT Protocol Stack: A Layered View

151

must be accurate within ±1/100 inch. In order to meet the QA guideline, what
is the maximum jitter that needs to be guaranteed by the new deterministic net-
work that connects the mill to the controlling computer?

 16. Given the following IEEE 802.15.4 mesh running the RPL protocol. The num-
bers indicated next to each link is the associated latency. If the objective func-
tion is to minimize the communication latency to the Internet, what will be the
topology computed by RPL?

 17. An automation engineer is looking to deploy a deterministic network in a sheet
metal factory. The control system in charge of safety expects a message from
the embedded application of a heating element controller every 50 ms, other-
wise it immediately shuts down the production line. The network in question
has on average a delay of 1 ms per link and 2 ms per node. What is the maxi-
mum number of hops that can separate the control system from the heating
element controller?

 18. Why does channel hopping improve the reliability of wireless sensor networks?
 19. An application protocol supporting a time filter policy support for client appli-

cations must not deliver messages at a rate higher than what the client applica-
tion is willing to consume. What are common strategies to achieve this?

 20. Which Application layer protocol would you choose for deploying an IoT solu-
tion for a financial institution? Why?

References

 1. J. Yick et al., Wireless sensor network survey. Comput. Netw 52(12), 2292–2330 (2008)
 2. M. Sichitiu, Wireless Mesh Networks: Opportunities and Challenges, Wireless World

Congress, 1–6, 2005
 3. IEEE 802.15.4–2011, September 2011

References

152

 4. R. Krasteva et al., Application of wireless protocols Bluetooth and ZigBee in telemetry system
development. Prob. Eng. Cybern. Robot 55, 30–38 (2005)

 5. N. Garg, M. Yadav, A review on comparative study of Bluetooth and ZigBee, Proceedings of
the Second International Conference on Advances in Electronics, Electrical and Computer
Engineering, EEC 2013

 6. IEEE 802.15.4g-2012, April 2012
 7. T. Adame et al., IEEE 802.11ah: The Wi-Fi Approach for M2M Communications, IEEE

Wireless Communications, December 2014
 8. IEEE draft standard 802.11ah Draft 4
 9. M. Teener. IEEE 802 Time Sensitive Networking: Extending Beyond AVB
 10. “Industrial Ethernet: A Control Engineer’s Guide,” Cisco Whitepaper
 11. D. Pannell, Audio Vidor Bridging Gen 2 Assumptions, July 2011
 12. IEEE 802.1Qca Draft 2.0, April 2015
 13. P. Meyer et al., Extending IEEE 802.1 AVB with time-triggered scheduling: A simulation

study of the coexistence of synchronous and asynchronous traffic, IEEE Vehicular Networking
Conference (VNC), At Boston, Massachusetts, 2013

 14. IEEE 802.1Qbv Draft 2.3, April 2015
 15. IEEE Standard 802.15.4e-2012
 16. T. Watteyne et al., Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the

Internet of Things (IoT): Problem Statement, IETF RFC 7554, May 2015
 17. X. Su et al., Enabling Semantics For The Internet of Things – Data Representation and Energy

Consumption, Internet of Things Finland, January 2013
 18. Z. Shelby et al., The Constrained Application Protocol (CoAP), IETF RFC 7252, June 2014
 19. Z. Shelby et al., CoRE Resource Directory, draft-ietf-core-resource-directory, work in prog-

ress, March 2016
 20. Baker & Meyer, Internet Protocols for the Smart Grid, IETF RFC 6272, June 2011
 21. J. Rosenberg et al., SIP: Session Initiation Protocol, IETF RFC 3261, June 2002
 22. T. Watteyne et al., Reliability through frequency diversity: why channel hopping makes sense,

PE-WASUN ’09 Proceedings of the 6th ACM symposium on Performance evaluation of wire-
less ad hoc, sensor, and ubiquitous networks, Pages 116–123, October 2009

 23. LoRa Alliance, Technical Marketing Workgroup 1.0, “LoRaWAN What is it? A technical over-
view of LoRa and LoRaWAN,” November 2015

 24. LoRaWAN Adaptive Data Rate: https://www.thethingsnetwork.org/wiki/LoRaWAN/ADR
 25. F. Adelantado et al. Understanding the Limits of LoRaWAN, IEEE Communications Magazine,

January 2017
 26. Rashmi Sharan Sinha, Yiqiao Wei, Seung-Hoon Hwang, A survey on LPWA technology: LoRa

and NB-IoT, ICT Express, Volume 3, Issue 1, 2017, Pages 14-21
 27. Kumar, V., Jha, R.K. & Jain, S. NB-IoT Security: A Survey. Wireless Pers Commun 113,

2661–2708 (2020).

5 IoT Protocol Stack: A Layered View

https://www.thethingsnetwork.org/wiki/LoRaWAN/ADR

	Chapter 5: IoT Protocol Stack: A Layered View
	5.1 Link Layer
	5.1.1 Challenges
	5.1.2 Industry Progress
	5.1.2.1 IEEE 802.15.4
	5.1.2.2 IEEE 802.15.4e TSCH
	5.1.2.3 LPWAN
	LoRaWAN
	Network Architecture
	Device Class Capabilities
	Scalability
	Energy Efficiency
	Security
	Regional Variations
	Challenges

	NB-IoT
	Network Architecture
	Device Categories
	Scalability
	Energy Efficiency
	Security

	Comparison of LoRaWAN and NB-IoT

	5.1.2.4 IEEE 802.11ah
	Short MAC Header
	Large Number of Stations
	Speeding Frame Exchanges
	Relay
	Target Wake Time
	Grouping
	Traffic Indication Map (TIM) and Paging Mechanism
	Restricted Access Windows

	5.1.2.5 Comparison of Wireless Link Layer Protocols
	5.1.2.6 Time-Sensitive Networking
	IEEE 802.1Qca
	IEEE 802.1Qbv
	IEEE 802.1CB

	5.2 Internet Layer
	5.2.1 Challenges
	5.2.2 Industry Progress
	5.2.2.1 6LowPAN
	5.2.2.2 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
	5.2.2.3 6TiSCH
	Network Formation
	Network Maintenance
	Topology and Schedule Mapping
	Resource Management
	Flow Control
	Determinism
	Scheduling Mechanisms
	Secure Communication

	5.3 Application Protocols Layer
	5.3.1 Data Serialization Formats
	5.3.2 Communication Paradigms
	5.3.2.1 Request/Response Versus Publish/Subscribe
	5.3.2.2 Blocking Versus Non-blocking

	5.3.3 QoS
	5.3.3.1 Resource Utilization
	Resource Limits Policy
	Time Filter Policy

	5.3.3.2 Data Timeliness
	Deadline Policy
	Latency Budget Policy

	5.3.3.3 Data Availability
	Durability Policy
	Life Span Policy
	History Policy

	5.3.3.4 Data Delivery
	Reliability Policy
	Transport Priority

	5.3.4 RESTful Constraints
	5.3.5 Survey of IoT Application Protocols
	5.3.5.1 CoAP
	5.3.5.2 XMPP
	5.3.5.3 MQTT
	5.3.5.4 AMQP
	5.3.5.5 SIP
	5.3.5.6 IEEE 1888
	5.3.5.7 DDS RTPS

	5.4 Application Services Layer
	5.4.1 Motivation
	5.4.2 Industry Progress
	5.4.2.1 ETSI M2M
	5.4.2.2 oneM2M

	5.4.3 Technology Gaps

	5.5 Summary
	References

