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To invent, you need a good imagination and 
a pile of junk.

—Thomas A. Edison

To invent, you need the Internet, 
communication, good imagination and a pile 
of things.

—Ammar Rayes

Creativity is just connecting things. When 
you ask creative people how they did 
something, they feel a little guilty because 
they didn’t really do it, they just saw 
something. It seemed obvious to them after a 
while. That’s because they were able to 
connect experiences they’ve had and 
synthesize new things.

—Steve Jobs

How the Internet of Things will bend and 
mold the IP hourglass in the decades to come 
will certainly be fascinating to witness. We, 
as engineers, developers, researchers, 
business leaders, consumers and human 
beings are in the vortex of this 
transformation.

—Samer Salam
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Foreword I

In California, just a few months after two people stepped foot on the Moon for the 
first time, two computers began sending messages to each other using protocols 
designed to make it easy for other computers to connect and join the party [2]. On 
October 29, 1969, a computer in Leonard Kleinrock’s lab at UCLA and a computer 
in Doug Engelbart’s lab at SRI forged the first two nodes in what would become 
known as the Internet. Vint Cerf and two colleagues coined the term Internet as a 
shortened version of internetworking in December 1974. It did not take long for 
more computers and their peripherals, as well as more networks of computers, and 
even industrial equipment to connect and begin communicating messages, includ-
ing sharing sensor data and remote control instructions. In early 1982, a soda 
machine at CMU became arguably the first Internet-connected appliance, announced 
by a broadly distributed email that shared its instrumented and interconnected story 
with the world. By 1991, it was clear to Mark Weiser that more and more things 
would someday have embedded computers, including mobile phones, cars, even 
door knobs, and someday even clothing [3]. Today, spacecraft are Internet-connected 
devices on missions exploring other planets and heading to deep space beyond our 
solar system. Courtesy of NASA engineers, some are even sending tweets to mil-
lions of followers here on Earth about their progress.

The Internet of Things (also known as the Internet of Everything) continues to 
grow rapidly today. In fact, the Internet of Things (IoT) forms the basis of what has 
become known as the Fourth Industrial Revolution and digital transformation of 
business and society [1]. The first industrial revolution was the steam engine as the 
focal machine, the second revolution included the machines of mass production, the 
third revolution was based on machines with embedded computers, and the fourth 
revolution (today) interconnected machines and things, including information about 
the materials and energy usage flowing into and out of a globally interconnected 
cyber physical system of systems. The level of instrumentation and interconnection 
is laying the infrastructure for more intelligence, including cognitive computing to 
be incorporated.

Why does the IoT continue to grow so rapidly? What are the business and soci-
etal drivers of its rapid growth? How does IoT relate to the Internet, what types of 
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things make up the IoT, and what are the fundamental and new protocols being used 
today? How are the specific layers of the IoT protocol stack related to each other? 
What is the fog layer? What is the Services Platform layer? How are the security and 
data privacy challenges being resolved? What are the economic and business conse-
quences of IoT, and what new ecosystems are forming? What are the most important 
open standards associated with IoT, and how are they evolving?

In this introductory IoT textbook, Dr. Ammar Rayes and Samer Salam guide the 
reader through answers to the above questions. Faculty will find well-crafted ques-
tions and answers at the end of each chapter, suitable for review and in classroom 
discussion topics. In addition, the material in the book can be used by engineers and 
technical leaders looking to gain a deep technical understanding of IoT as well as by 
managers and business leaders looking to gain a competitive edge and understand 
innovation opportunities for the future. Information systems departments based in 
schools of management, engineering, or computer science will find the approach 
used in this textbook suitable as either a primary or secondary source of course 
material.

In closing, and on a personal note, it has been a pleasure to call Dr. Ammar Rayes 
a colleague and friend for nearly a decade. He has given generously of his time as 
founding President of the International Society of Service Innovation Professionals 
(ISSIP.org), a professional association dedicated to helping multidisciplinary stu-
dents, faculty, practitioners, policy-makers, and others learn about service innova-
tion methods for business and societal applications. Ammar is one of those rare 
technical leaders who contributes to business, academics, and professional associa-
tion contexts. My thanks to Ammar and Samer for this excellent introduction to 
Internet of Things, as it is one more in a line of their contributions that will help 
inspire the next generation of innovators to learn, develop professionally, and make 
their own significant contributions.
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Foreword II

The Internet of Things (IoT) has been many years in the making. Indeed, the con-
cept of using sensor devices to collect data and then transfer it to applications across 
a network has been around for several decades. For example, legacy programmable 
logic controller (PLC) systems already provide data collection and remote actuator 
control using specialized networking protocols and topologies. Even though these 
setups have limited footprints and are rather costly, they are still widely used in 
many industrial settings. Meanwhile, academic researchers have also studied the 
use of networked sensors for various applications in recent years.

However, continuing market shifts and technology trends in the past decade have 
dramatically altered the value proposition of interconnected sensors and actuators. 
Namely, the combination of low-cost hardware and high-speed networking technol-
ogies—both wired and wireless—have enabled a new generation of compact sensor 
devices with ubiquitous connectivity across the wider Internet. These systems are 
facilitating real-time data collection/sharing and providing unprecedented visibility 
and control of assets, personnel, operations, and processes. The further use of cloud-
based computing/storage facilities is introducing even more advanced data analysis 
capabilities, ushering in a new era of intelligent decision-making, control, and auto-
mation. Broadly, these new paradigms are termed as the Internet of Things (IoT).

Indeed there is considerable excitement, perhaps even hype, associated with the 
IoT. However, as technological advances and business drivers start to align here, 
related paradigms are clearly poised at an inflection point of growth. For example, 
a wide range of business and mission-critical IoT systems are already being deployed 
in diverse market sectors, i.e., including defense, energy, transportation, civil infra-
structure, healthcare, home automation/security, and agriculture. New cloud and fog 
computing services are also emerging to deliver actionable insights for improving 
business productivity and reducing cost/risk. As these new business models start to 
take hold, the projected IoT market opportunity is huge, widely projected to be in 
the trillions of dollars in the coming decade.

In light of the above, this text presents a very timely and comprehensive look at 
the IoT space. The writing starts by introducing some important definitions and 
reviewing the key market forces driving IoT technology growth. The fundamental 
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IoT building blocks are then presented, including networking systems and sensor 
technologies. Most notably, IoT-specific networking challenges and requirements 
are first overviewed, including device constraints, identification, performance deter-
minism, security, and interoperability. Emerging, streamlined IoT protocol stacks 
are then detailed, covering topics such as layering, routing, and addressing. The 
main types of sensing technologies are also discussed here along with actuator con-
trol devices. Note that the initial part of this text focuses on core IoT concepts and 
frameworks, leaving more industry and application-specific treatments to later.

The text then addresses broader topics relating to intelligent data management 
and control for IoT. Namely, the distributed fog computing platform is outlined first, 
including market drivers, prerequisites, and enabling technologies within the con-
text of IoT. The crucial notion of an IoT service platform is also presented, touching 
upon issues such as deployment, configuration, monitoring, and troubleshooting. 
The writing also outlines critical security and privacy concerns relating to IoT, i.e., 
by categorizing a range of threat scenarios and highlighting effective countermea-
sures and best practices.

Finally, the latter part of the text progresses into some more business-related aspects 
of IoT technology. This includes a critical look at emerging vertical markets and their 
interconnected ecosystems and partnerships, i.e., across sectors such as energy, indus-
trial, retail, transportation, finance, healthcare, and agriculture. Sample business cases 
are also presented to clearly tie in industry verticals with earlier generalized IoT con-
cepts and frameworks. Finally, the critical role and efforts of IoT standardization orga-
nizations is reviewed along with a look at some important open source initiatives.

Overall, both authors are practicing engineers in the networking industry and 
actively involved in research, technology development, standards, and business 
marketing initiatives. As a result, they bring together wide-ranging and in-depth 
field experience across many diverse areas, including network management, data 
security, intelligent services, software systems, data analytics, and machine learn-
ing, etc. They are also widely published in the research literature and have contrib-
uted many patent inventions and standardization drafts. Hence, this team is uniquely 
qualified to write on this subject.

In summary, this text provides a very compelling study of the IoT space and 
achieves a very good balance between engineering/technology focus and business 
context. As such, it is highly recommended for anyone interested in this rapidly 
expanding field and will have broad appeal to a wide cross section of readers, i.e., 
including engineering professionals, business analysts, university students, and pro-
fessors. Moreover, each chapter comes with a comprehensive, well-defined set of 
questions to allow readers to test their knowledge on the subject matter (and answer 
guides are also available for approved instructors). As such, this writing also pro-
vides an ideal set of materials for new IoT-focused graduate courses in engineering 
and business.

Department of Electrical Engineering & Florida  
Center for Cybersecurity (FC2) 

Nasir Ghani

University of South Florida, 
Tampa, FL, USA

Foreword II
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Preface

Technology is becoming embedded in nearly everything in our lives. Just look 
around you and you will see how the Internet has affected many aspects of our exis-
tence. Virtually anything you desire can be ordered instantly, at a push of a button, 
and delivered to your door in a matter of days if not hours. We all see the impact of 
smart phones, smart appliances, and smart cars to cite a few.

Today, manufacturers are installing tiny sensors in effectively every device they 
make and utilizing the Internet and cloud computing to connect such devices to data 
centers capturing critical information. By connecting things with cloud technology 
and leveraging mobility, desired data is captured and shared at any location and any 
time. The data is then analyzed to provide businesses and consumers with value that 
was unattainable just a decade or less ago.

Up to the minute information is provided about the states and locations of ser-
vices. Further, businesses use the sensors to collect mission-critical data throughout 
their entire business process, allowing them to gain real-time visibility into the loca-
tion, motion and state of assets, people, and transactions and enabling them to make 
smarter decisions.

As more objects become embedded with sensors and the ability to communicate, 
new business models become possible across the industry. These models offer to 
improve business processes, reduce costs and risks, and more importantly create 
huge business opportunities in a way that changes the face and the pace of business. 
Experts agree that the Internet of Things will revolutionize businesses beyond rec-
ognition in the decades to come.

At the core of the success of the Internet, and one of its foundational principles, 
is the presence of a common protocol layer, the IP layer, which provides normaliza-
tion of a plethora of applications (e.g., email, web, voice, video) over numerous 
transport media (e.g., Ethernet, Wi-Fi, cellular). Graphically, this can be rendered as 
an hourglass with IP in the middle: IP being the thin waist of this proverbial hour-
glass. This model has served well; especially since the Internet, over the past three 
decades, has been primarily concerned with enabling connectivity: interconnecting 
networks across the globe. As the Internet evolves into the Internet of Things, the 
focus shifts from connectivity to data. The Internet of Things is primarily about data 
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and gaining actionable insights from that data, as discussed above. From a technol-
ogy perspective, this can be achieved with the availability of networking protocols 
that meet the requirements and satisfy the constraints of new Internet of Things 
devices, and more importantly with the availability of standard interfaces and mech-
anisms for application services including data access, storage, analysis, and man-
agement. How does this translate to the proverbial hourglass? At the very least, a 
second thin waist is required which provides a common normalization layer for 
application services.

The road to a standards-based Internet of Things is well underway. The industry 
has made significant strides toward converging on the Internet Protocol as the com-
mon basis. Multiple standards have been defined or are in the process of being 
defined to address the requirements of interconnecting “Things” to the Internet. 
However, many gaps remain especially with respect to application interoperability, 
common programmable interfaces, and data semantics. How the Internet of Things 
will bend and mold the IP hourglass in the decades to come will certainly be fasci-
nating to witness. We, as engineers, developers, researchers, business leaders, con-
sumers, and human beings, are in the vortex of this transformation.

In this book, we choose to introduce the Internet of Things (IoT) concepts and 
framework in the earlier chapters and avoid painting examples that tie the concepts 
to a specific industry or to a certain system. In later chapters, we provide examples 
and use cases that tie the IoT concepts and framework presented in the earlier chap-
ters to industry verticals.

Therefore, we concentrate on the core concepts of IoT and try to identify the 
major gaps that need to be addressed to take IoT from the hype stage to concrete 
reality. We also focus on equipping the reader with the basic knowledge needed to 
comprehend the vast world of IoT and to apply that knowledge in developing verti-
cals and solutions from the ground up, rather than providing solutions to specific 
problems. In addition, we present detailed examples that illustrate the implementa-
tion and practical application of abstract concepts. Finally, we provide detailed busi-
ness and engineering problems with answer guides at the end of each chapter.

The following provides a chapter-by-chapter breakdown of this book’s material. 
Chapter 1 introduces the foundation of IoT and formulates a comprehensive defini-
tion. The chapter presents a framework to monitor and control things from any-
where in the world and provides business justifications on why such monitoring and 
control of things is important to businesses and enterprises. It then introduces the 12 
factors that make IoT a present reality.

The 12 factors consist of (1) the current convergence of IT and OT; (2) the aston-
ishing introduction of creative Internet-based businesses with emphasis on Uber, 
Airbnb, Square, Amazon, Tesla, and the self-driving cars; (3) mobile device explo-
sion; (4) social network explosion; (5) analytics at the edge; (6) cloud computing 
and virtualization; (7) technology explosion; (8) digital convergence/transforma-
tion; (9) enhanced user interfaces; (10) fast rate of IoT technology adoption (five 
times more than electricity and telephony); (11) the rise of security requirements; 
and (12) the nonstop Moore’s law. The last section of this chapter presents a detailed 
history of the Internet.

Preface
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Chapter 2 describes the “Internet” in the “Internet of Things.” It starts with a 
summary of the well-known Open System Interconnection (OSI) model layers. It 
then describes the TCP/IP model, which is the basis for the Internet. The TCP/IP 
protocol has two big advantages in comparison with earlier network protocols: reli-
ability and flexibility to expand. The TCP/IP protocol was designed for the US 
Army addressing the reliability requirement (resist breakdowns of communication 
lines in times of war). The remarkable growth of Internet applications can be attrib-
uted to this reliable expandable model.

Chapter 2 then compares IP version 4 with IP version 6 by illustrating the limita-
tions of IPv4, especially for the expected growth to ten billions of devices with 
IoT. IPv4 has room for about 4.3 billion addresses, whereas IPv6, with a 128-bit 
address space, has room for 2128 or 340 trillion trillion trillion addresses. Finally, 
detailed description of IoT network level routing is described and compared with 
classical routing protocols. It is mentioned that routing tables are used in routers to 
send and receive packets. Another key feature of TCP/IP routing is the fact that IP 
packets travel through an internetwork one router hop at a time, and thus the entire 
route is not known at the beginning of the journey. The chapter finally discusses the 
IoT network level routing that includes Interior and Exterior Routing Protocols.

Chapter 3 defines the “Things” in IoT and describes the key requirements for 
things to be able to communicate over the Internet: sensing and addressing. Sensing 
is essential to identify and collect key parameters for analysis and addressing is 
necessary to uniquely identify things over the Internet. While sensors are very cru-
cial in collecting key information to monitor and diagnose the “Things,” they typi-
cally lack the ability to control or repair such “Things” when action is required. The 
chapter answers the question: why spend money to sense “Things” if they cannot be 
controlled? It illustrates that actuators are used to address this important question in 
IoT. With this in mind, the key requirements for “Things” in IoT now consist of 
sensing, actuating, and unique identification. Finally, the chapter identifies the main 
sensing technologies that include physical sensors, RFID, and video tracking and 
discusses the advantages and disadvantages of these solutions.

Chapter 4 discusses the requirements of IoT which impact networking protocols. 
It first introduces the concept of constrained devices, which are expected to com-
prise a significant fraction of new devices being connected to the Internet with 
IoT. These are devices with limited compute and power capabilities; hence, they 
impose special design considerations on networking protocols which were tradi-
tionally built for powerful mains-connected computers. The chapter then presents 
the impact of IoT’s massive scalability on device addressing in light of IPv4 address 
exhaustion, on credentials management and how it needs to move toward a low- 
touch lightweight model, on network control plane which scales as a function of the 
number of nodes in the network, and on the wireless spectrum that the billions of 
wireless IoT devices will contend for.

After that, the chapter goes into the requirements for determinism in network 
latency and jitter as mandated by real-time control applications in IoT, such as fac-
tory automation and vehicle control systems. This is followed by an overview of the 
security requirements brought forward by IoT.  Then, the chapter turns into the 
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requirements for application interoperability with focus on the need for standard 
abstractions and application programmatic interfaces (APIs) for application, device, 
and data management, as well as the need for semantic interoperability to ensure 
that all IoT entities can interpret data unambiguously.

Chapter 5 defines the IoT protocol stack and compares it to the existing Internet 
Protocol stack. It provides a layer-by-layer walkthrough of that stack and, for each 
such layer, discusses the challenges brought forward by the IoT requirements of the 
previous chapter, the industry progress made to address those challenges, and the 
remaining gaps that require future work.

Starting with the link layer, the chapter discusses the impact of constrained 
device characteristics, deterministic traffic characteristics, wireless access charac-
teristics, and massive scalability on this layer. It then covers the industry response to 
these challenges in the following standards: IEEE 802.15.4, TCSH, IEEE 802.11ah, 
LoRaWAN, and Time-Sensitive Networking (TSN). Then, shifting to the Internet 
layer, the chapter discusses the challenges in Low Power and Lossy Networks 
(LLNs) and the industry work on 6LowPAN, RPL, and 6TiSCH.  After that, the 
chapter discusses the application protocols layer, focusing on the characteristics and 
attributes of the protocols in this layer as they pertain to IoT and highlighting, where 
applicable, the requirements and challenges that IoT applications impose on these 
protocols. The chapter also provides a survey and comparison of a subset of the 
multitude of available protocols, including CoAP, MQTT, and AMQP to name a 
few. Finally, in the application services layer, the chapter covers the motivation and 
drivers for this new layer of the protocol stack as well as the work in ETSI M2M and 
oneM2M on defining standard application middleware services.

Chapter 6 defines fog computing, a platform for integrated compute, storage, and 
network services that is highly distributed and virtualized. This platform is typically 
located at the network edge. The chapter discusses the main drivers for fog: data 
deluge, rapid mobility, reliable control, and finally data management and analytics. 
It describes the characteristics of fog, which uniquely distinguish it from cloud 
computing.

The chapter then focuses on the prerequisites and enabling technologies for fog 
computing: virtualization technologies such as virtual machines and containers, net-
work mobility solutions including EVPN and LISP, fog orchestration solutions to 
manage topology, things connectivity and provide network performance guarantees, 
and last but not least data management solutions that support data in motion and 
distributed real-time search. The chapter concludes with the various gaps that 
remain to be addressed in orchestration, security, and programming models.

Chapter 7 introduces the IoT Service Platform, which is considered to be the 
cornerstone of successful IoT solutions. It illustrates that the Service Platform is 
responsible for many of the most challenging and complex tasks of the solution. It 
automates the ability to deploy, configure, troubleshoot, secure, manage, and moni-
tor IoT entities, ranging from sensors to applications, in terms of firmware installa-
tion, patching, debugging, and monitoring to name just a few. The Service Platform 
also provides the necessary functions for data management and analytics, 
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temporary caching, permanent storage, data normalization, policy-based access 
control, and exposure.

Given the complexity of the Services Platform in IoT, the chapter groups the core 
capabilities into 11 main areas: Platform Manager, Discovery and Registration 
Manager, Communication (Delivery Handling) Manager, Data Management and 
Repository, Firmware Manager, Topology Management, Group Management, 
Billing and Accounting Manager, Cloud Service Integration Function/Manager, 
API Manager, and finally Element Manager addressing Configuration Management, 
Fault Management, Performance Management, and Security Management across 
all IoT entities.

Chapter 8 focuses on defining the key IoT security and privacy requirements. 
Ignoring security and privacy will not only limit the applicability of IoT but will 
also have serious results on the different aspects of our lives, especially given that 
all the physical objects in our surroundings will be connected to the network. In this 
chapter, the IoT security challenges and IoT security requirements are identified. A 
three-domain IoT architecture is considered in the analysis where we analyze the 
attacks targeting the cloud domain, the fog domain, and the sensing domain. The 
analysis describes how the different attacks at each domain work and what defen-
sive countermeasures can be applied to prevent, detect, or mitigate those attacks.

The chapter ends by providing some future directions for IoT security and pri-
vacy that include fog domain security, collaborative defense, lightweight cryptogra-
phy, lightweight network security protocols, and digital forensics.

Chapter 9 describes IoT Vertical Markets and Connected Ecosystems. It first 
introduces the top IoT verticals that include agriculture and farming, energy, enter-
prise, finance, healthcare, industrial, retail, and transportation. Such verticals 
include a plethora of sensors producing a wealth of new information about device 
status, location, behavior, usage, service configuration, and performance. The chap-
ter then presents a new business model driven mainly by the new information and 
illustrates the new business benefits to the companies that manufacture, support, and 
service IoT products, especially in terms of customer satisfaction. It then presents 
the key requirements to deliver “Anything as a Service” in IoT followed by a spe-
cific use case.

Finally, Chap. 9 combines IoT verticals with the new business model and identi-
fies opportunities for innovative partnerships. It shows the importance of ecosystem 
partnerships given the fact that no single vendor would be able to address all the 
business requirements.

Chapter 10 discusses blockchain in IoT. It briefly introduces the birth of block-
chain technology and its use in Bitcoin. In addition, it describes Bitcoin as an appli-
cation of blockchain and distinguishes blockchain as a key technology, one that has 
various use cases outside of Bitcoin. Next, it dives into how blockchains work and 
outlines the features of the technology; these features include consensus algorithms, 
cryptography, decentralization, transparency, trust, and smart contracts. The chapter 
then introduces how blockchain may impact notable use cases in IoT including 
healthcare, energy management, and supply chain management. It reviews the 
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advantages and disadvantages of blockchain technology and highlights security 
considerations within blockchain and IoT.

Chapter 11 provides an overview of the IoT standardization landscape and a 
glimpse into the main standards defining organizations involved in IoT as well as a 
snapshot of the projects that they are undertaking. It highlights the ongoing conver-
gence toward the Internet Protocol as the normalizing layer for IoT. The chapter 
covers the following industry organizations: IEEE, IETF, ITU, IPSO Alliance, OCF, 
IIC, ETSI, oneM2M, AllSeen Alliance, Thread Group, ZigBee Alliance, TIA, 
Z-Wave Alliance, OASIS, and LoRa Alliance. The chapter concludes with a sum-
mary of the gaps and provides a scorecard of the industry progress to date.

Chapter 12 defines open source in the computer industry and compares the devel-
opment cycles of open source and closed source projects. It discusses the drivers to 
open source from the perspective of the consumers of open source projects as well 
as contributors of these projects. The chapter then goes into discussing the interplay 
between open source and industry standards and stresses the tighter collaboration 
ensuing among them.

The chapter then provides a tour of open source activities in IoT ranging from 
hardware and operating systems to IoT Service Platforms.

Finally, Appendix A presents a comprehensive IoT Glossary that includes the 
definitions of over 1200 terms using information from various sources that include 
key standards and latest research. Appendixes B-F presents examples of IoT 
Projects.

San Jose, CA, USA Ammar Rayes  
Beirut, Lebanon  Samer Salam   
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Chapter 1
Internet of Things (IoT) Overview

The Internet of Things (IoT) has gained significant mindshare, let alone attention, in 
academia and the industry especially over the past few years. The reasons behind 
this interest are the potential capabilities that IoT promises to offer. On the personal 
level, it paints a picture of a future world where all the things in our ambient envi-
ronment are connected to the Internet and seamlessly communicate with each other 
to operate intelligently. The ultimate goal is to enable objects around us to effi-
ciently sense our surroundings, inexpensively communicate, and ultimately create a 
better environment for us: one where everyday objects act based on what we need 
and like without explicit instructions.

IoT’s promise for business is more ambitious. It includes leveraging automatic 
sensing and prompt analysis of thousands of service or product-related parameters 
and then automatically taking action before a service experience or product opera-
tion is impacted. It also includes collecting and analyzing massive amounts of struc-
tured and unstructured data from various internal and external sources, such as 
social media, for the purpose of gaining competitive advantage by offering better 
services and improving business processes. This may seem like a bold statement, 
but consider the impact that the Internet has already had on education, communica-
tion, business, science, government, climate control, and humanity. Many believe 
that IoT will create the largest technology opportunity that we have ever seen.

The term “Internet of Things” was first coined by Kevin Ashton in a presentation 
that he made at Procter & Gamble in 1999. Linking the new idea of RFID (radio- 
frequency identification) in Procter & Gamble’s supply chain to the then-red-hot 
topic of the Internet was more than just a good way to get executive attention. He 
has mentioned “The Internet of Things has the potential to change the world, just as 
the Internet did. Maybe even more so.” Afterward, the MIT Auto-ID center pre-
sented their IoT vision in 2001. Later, IoT was formally introduced by the 
International Telecommunication Union (ITU) Internet Report in 2005.

IoT is gaining momentum, especially in modern wireless telecommunications, as 
evidenced in the increasing presence around us of smart objects or things (e.g., 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_1#DOI
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smartphones, smart watches, smart home automation systems, etc.), which are able 
to communicate with each other and collaborate with other systems to achieve cer-
tain goals.

Undeniably, the main power of IoT is the high impact it is already starting to 
have on business and personal lives. Companies are already employing IoT to create 
new business models, improve business processes, and reduce costs and risks. 
Personal lives are improving with advanced health monitoring, enhanced learning, 
and improved security just to name few examples of possible applications.

1.1  What Is the Internet of Things (IoT)?

Before defining IoT, it may be worthwhile listing the most generic enablement com-
ponents. In its simple form, IoT may be considered as a network of physical ele-
ments empowered by:

• Sensors: to collect information.
• Identifiers: to identify the source of data (e.g., sensors, devices).
• Software: to analyze data.
• Internet connectivity: to communicate and notify.

Putting it all together, IoT is the network of things, with clear element identifica-
tion, embedded with software intelligence, sensors, and ubiquitous connectivity to 
the Internet. IoT enables things or objects to exchange information with the manu-
facturer, operator, and/or other connected devices utilizing the telecommunications 
infrastructure of the Internet. It allows physical objects to be sensed (to provide 
specific information) and controlled remotely across the Internet, thereby creating 
opportunities for more direct integration between the physical world and computer- 
based systems and resulting in improved efficiency, accuracy, and economic benefit. 
Each thing is uniquely identifiable through its embedded computing system and is 
able to interoperate within the existing Internet infrastructure.

There is no disagreement between businesses and/or technical analysts that the 
number of things in IoT will be massive. At the time of writing this book, over 20 
billion devices have been already deployed. This includes  networked devices, 
machine-to-machine devices, phones, TVs, PCs, tablets, and other connected 
devices. Any object with a simple microcontroller, modest on-off switch, or even 
with QR (Quick Response) code1 will be connected to the Internet in the near fea-
ture. Such a view is supported by Moore’s Law, with the observation that the num-
ber of transistors in a dense integrated circuit approximately doubles every 18 
months, as we will illustrate in Sect. 1.3.

1 Quick Response Code is the trademark for a type of matrix barcode.

1 Internet of Things (IoT) Overview
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The main idea of IoT is to physically connect anything/everything (e.g., sensors, 
devices, machines, people, animals, trees) and processes over the Internet for moni-
toring and/or controlling functionality. Connections are not limited to information 
sites, they are actual and physical connections allowing users to reach “things” and 
take control when needed. Hence, connecting objects together is not an objective by 
itself, but gathering intelligence from such objects to enrich products and services is.

1.1.1  Background and More Complete IoT Definition

Before we give historical overview of the Internet and consequently delve into the 
Internet of Things, it is worthwhile providing a definition and the fundamental 
requirements of IoT as a basis for the inexperienced reader.

We assume that the Internet is well known and bears no further definition. The 
question is what do we really mean by “Things”? Well, things are actually “any-
thing” and “everything” from appliances to buildings to cars to people to animals to 
trees to plants, etc. Hence, IoT in its simplest form may be considered as the inter-
section of the Internet, things, and data as shown in Fig. 1.1.

A more complete definition, we believe, should also include “Standards” and 
“Processes” allowing “Things” to be connected over the “Internet” to exchange 
“Data” using industry “Standards” that guarantee interoperability and enabling use-
ful and mostly automated “Processes,” as shown in Fig. 1.2.

Some companies (e.g., Cisco) refer to IoT as the IoE (Internet of Everything) 
with four key components: people, process, data, and Things. In this case, IoE 
connects:

• People: Connecting people in more relevant ways.
• Data: Converting data into intelligence to make better decisions.
• Process: Delivering the right information to the right person or machine at the 

right time.

Fig. 1.1 IoT definition in 
its simplest form

1.1 What Is the Internet of Things (IoT)?
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• Things: Physical devices and objects connected to the Internet and each other for 
intelligent decision-making, often called IoT.

They correctly believe that today’s Internet is the “Internet of People,” i.e., 
today’s Internet is mainly connecting applications that are used by people. People 
are taking action based on notifications from connected applications. IoT is envi-
sioned to connect “things” where “things” (not people) will be taking action, when 
needed, by communicating with each other intelligently. IoE is then combining the 
Internet of People and the Internet of Things. In this book, and in most of the recent 
literature, however, IoT refers to anything and everything (including people).

With this in mind, we can state a more comprehensive definition of IoT as fol-
lows: IoT is the network of things, with device identification, embedded intelligence, 
and sensing and acting capabilities, connecting people and things over the Internet.

As we already mentioned above, we will use the term “IoT” to refer to all objects/
things/anything connected over the Internet including appliances, buildings, cars, 
people, animals, trees, plants, etc.

The basic promise of IoT is to monitor and control “things” from anywhere in the 
world. The first set of fundamental questions an engineer may ask are: How to 
monitor and control things from anywhere in the world? Why do we want to do so? 
Who will perform the monitoring and control? How is security guaranteed? In the 
remainder of this section, we will provide high-level answers to these questions. 
More detailed answers will be provided throughout the various chapters of this book.

1.1.2  How to Monitor and Control Things from Anywhere 
in the World?

Let us start with the first question. The basic requirements for IoT are the unique 
identity per “thing” (e.g., IP address), the ability to communicate between things 
(e.g., wireless communications), and the ability to sense specific information about 
the thing (sensors). With these three requirements, one should be able to monitor 
things from anywhere in the world. Another foundation requirement is a medium to 

Fig. 1.2 IoT—more 
complete definition
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communicate. Such requirement is typically handled by a telecommunications net-
work. Figure 1.3 presents the very basic requirements of an IoT solution.

1.1.3  Why Do We Want to Monitor and Control Things?

There are many reasons to monitor and control things remotely over the Internet: 
monitoring and controlling things by experts (e.g., a patient’s temperature or blood 
pressure while the patient is at the comfort of his or her own home); learning about 
things by pointing a smartphone to a thing of interest, for instance; searching for 
things that search engines (e.g., Google) do not provide today (e.g., where are my 
car keys); allowing authorities to manage things in smart cities in an optimal manner 
(e.g., energy, driver licenses, and other documents from Department Motor Vehicle, 
senior citizen); and, finally, providing more affordable entertainment and games for 
children and adults. All of these are examples of huge business and service oppor-
tunities to boost the economic impact for consumers, businesses, governments, hos-
pitals, and many other entities.

1.1.4  Who Will Monitor and Control?

Generally speaking, monitoring and control of IoT services may be done by any 
person or any machine. For example, a homeowner monitoring his own home on a 
mobile device based on a security system she or he has installed and configured. 
The homeowner may also control lights, turn on the air conditioning, shut off the 
heater, etc. Another example is for a service provider to monitor and control ser-
vices for its customers in a network operations center (NOC) as shown in Fig. 1.4.

Fig. 1.3 Basic 
requirements for an IoT 
solution

1.1 What Is the Internet of Things (IoT)?
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Obviously, security is a major concern to prevent access by non-authorized peo-
ple and, more importantly, prevent a malicious hacker from gaining access to the 
system and sending old views to the homeowner while a thief is breaking in. The 
areas of control are far more critical for enterprise-sensitive applications such as 
healthcare monitoring of patients and banking applications, as we will see in Chap. 8.

1.1.5  How Is Security Guaranteed?

Securing IoT is perhaps the biggest opportunity for technology companies and will 
remain so far some time in the future. Before IoT, information technology security 
professionals worked in a bubble as they literally owned and controlled their entire 
networks and secured all devices behind firewalls. With IoT, data will be collected 
from external, often mobile, sensors that are placed in public sites (e.g., city streets) 
allowing strangers to send harmful data to any network. Bring your own device 
(BYOD) is another example where third-party devices and hence noncorporate data 
sources are allowed to enter the network. IoT areas that are considered to be most 
vulnerable include:

• Accessing data during transport (network and transport security). Data will be 
transported in IoT networks at all time, for example, from sensors to gateways 
and from gateways to data centers in enterprises or from sensors to gateways for 
residential services such as video from home monitoring system to the home- 
owner’s smartphone while he is in a coffee shop. This data may be sniffed by the 
man in the middle unless the transport protocols are fully secured and encrypted.

Fig. 1.4 Example of monitoring systems in a network operations center

1 Internet of Things (IoT) Overview
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• Having control of IoT devices (control of the APIs) allows unauthorized persons 
to take full control of entire networks. Examples include shutting down cameras 
at home and shutting down patient monitoring systems.

• Having access to the IoT data itself. Is the data easily accessible? Is it stored 
encrypted? Shared storage in the cloud is another problem where customer may 
log in as customer B and look at his data. Another common problem is spoofing 
data via Bluetooth. Many companies are adding Bluetooth support to their 
devices making it more feasible for unauthorized persons to access the 
device’s data.

• Stealing official user or network identity (stealing user or network credentials).
Many websites provide default passwords for vendors. We have dedicated Chap. 
8 to IoT security.

1.2  IoT Reference Framework

In this book, we will follow a reference framework that divides IoT solutions into 
four main levels: IoT devices (things), IoT network (infrastructure transporting the 
data), IoT Services Platform (software connecting the things with applications and 
providing overall management), and IoT applications (specialized business-based 
applications such as customer relation management (CRM), Accounting and Billing, 
and Business Intelligence (BI) applications). Control is passed down from one level 
to the one below, starting at the application level and proceeding to the IoT devices 
level and backup the hierarchy.

 1. IoT Device Level includes all IoT sensors and actuators (i.e., the Things in IoT).
The device layer will be covered in Chap. 3.

 2. IoT Network Level includes all IoT network components including IoT gate-
ways, routers, switches, etc. The Internet in IoT will be covered in Chap. 2.

 3. IoT Application Services Platform Level includes the key management software 
functions to enable the overall management of IoT devices and network. It also 
includes main functions connecting the device and network levels with the appli-
cation layer. It will be covered in Chap. 7.

 4. IoT Application Level includes all applications operating in the IoT network, and 
this will be covered in Chap. 9.

Figure 1.5 shows an overview of the IoT levels. It describes how information is 
transferred from one IoT component into another. Advantages of the proposed IoT 
four-level model include:

• Reduced Complexity: It breaks IoT elements and communication processes into 
smaller and simpler components, thereby helping IoT component development, 
design, and troubleshooting.

1.2 IoT Reference Framework



8

• Standardized Components and Interfaces: The model standardizes the specific 
components within each level (e.g., what are the key components for general IoT 
Services Platform) as well as the interfaces between the various levels. This 
would allow different vendors to develop joint solutions and common sup-
port models.

• Module Engineering: It allows various types of IoT hardware and software sys-
tems to communicate with each other.

• Interoperability between vendors by ensuring the various technology building 
blocks can interwork and interoperate.

• Accelerate Innovation: It allows developers to focus on solving the main prob-
lem at hand without worrying about basic functions that can be implemented 
once across different business verticals.

• Simplified Education: It breaks down the overall complex IoT solution into 
smaller more manageable components to make learning easier.

1.3  Why Now? The 12 Factors for a Perfect Storm

IoT has already become a powerful force for business transformation, and its dis-
ruptive impact is already felt across all industries and all areas of society. There is a 
perfect storm of market disruptions happening at an unprecedented pace triggered 
by technology as well as new business and social requirements. This Section intro-
duces the top 12 factors driving the explosion of IoT as shown in Fig. 1.6.

IoT Applications

IoT Management
Services Platform

IoT Network
IoT Gateway

IoT Devices

Fig. 1.5 IoT levels
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1.3.1  Convergence of IT and OT

Operation technology (OT) is the world of industrial plants and industrial control 
and automation equipment that include machines and systems to run the business, 
controllers, sensors, and actuators. Information technology (IT) is the world of end- 
to- end information systems focusing on compute, data storage, and networking to 
support business operation in some context such as business process automation 
systems, customer relation management (CRM) systems, supply chain management 
systems, logistics systems, and human resources systems.

Historically, IT and OT were always managed by two separate organizations 
with different cultures, philosophies, and set of technologies. IT departments were 
originally created by companies to create efficient and effective forms of telephony 
communication among various departments. Then they were extended to provide 
video and web conferences and network internal communications and secure exter-
nal electronic communications such as emails. Often the final decision with the 
selection of communication systems, website hosting, and backup servers was the 
responsibility of the IT department.

OT relies on real-time data that drives safety, security, and control. It depends on 
very well-defined, tested, and trusted processes. Many plants need to run 24 × 7 
with zero downtime (e.g., City Water Filtration System), and thus industrial pro-
cesses cannot tolerate shutdown for software updates. IT is more lenient with soft-
ware updates, introduction of new technologies, etc.

“When you take people with an IT background and bring them into an industrial 
control system environment, there’s a lack of understanding from operations why 
they’re there and there is a lack of understanding of the specific controls environ-
ment needs from IT,” says Tim Conway, technical director, ICS and SCADA for the 
SANS Institute. He points out that typically IT professionals are trained and driven 
to perform a task: “They work on a box, a VM (virtual machine), a storage area 
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network, or a firewall. They don’t realize that they’re a part of a larger control sys-
tem operation, and how the things that they do can impact others.”

IoT is having a major impact on OT and the traditional IT operational model. 
With the fast introduction of business-specific technologies (e.g., Internet-based oil 
rig monitoring systems), IT operations can no longer scale, keep up with the fast- 
evolving requirements, nor provide the required expertise. Traditional IT depart-
ments simply lack the required resources to introduce IoT solutions in a timely 
fashion, effectively operate and monitor such solutions, or react to the massive 
amount of monitoring data that is generated by IoT devices (Fig. 1.7).

The bottom line is that IT is moving fast into plant floors. With the pressure of 
IoT technology adoption by cutting-edge businesses, OT is forced to accept a greater 
level of integration. Hence, traditional IT and OT functions are expected to merge 
or quickly risk the loss of the business to cutting-edge competitors (why? See prob-
lem 11). IT operations leaders must move closer to the business and adapt their 
employee skill sets, their processes, and their tools to monitor IoT availability and 
performance in order to support business initiatives as shown in Fig. 1.7.

1.3.2  The Astonishing Introduction of Creative 
Internet-Based Businesses

1.3.2.1  Uber

Many are familiar with Uber’s story where the co-founders were attending a confer-
ence in Paris in 2008. Travis Kalanick and Garrett Camp were complaining about 
finding a cab especially while carrying luggage and under the rain. When they 
started to brainstorm the next day, they came up with three main requirements: the 
solution had to be Internet-based (i.e., request and track service from mobile device), 
it had to provide the service fast, and the rides had to be picked up from any location.

• Led by Single CIO
• Centralized
• Data Centers
• HR and CRM systems
• Business Applications
• Data Analysis

• Led by Business Leaders
• Distributed
• Industrial Equipments
• Monitoring Systems
• Control Systems

Fig. 1.7 The merger of IT 
and OT
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The key component of Uber’s solution is the Internet-based platform connecting 
customers (passengers) with the service providers (car drivers). Because the con-
sumers are not Uber’s employees and because there is practically an infinite number 
of cars that could potentially join Uber, Uber has the requirement to scale at an 
incredibly fast rate at zero marginal cost.

Uber uses sensor technologies in driver’s smartphones to track their behaviors. If 
you ride with Uber and your driver speeds, breaks too hard, or takes you on a wildly 
lengthy route to your destination, it is no longer your word against theirs. Uber is 
using Gyrometer and GPS data to track the behavior of their drivers. Gyrometers in 
smartphones measure small movements, while GPS combined with accelerometers 
shows how often a vehicle starts and stops and the overall speed.

The idea is to gradually improve safety and customer satisfaction, though there 
is no word on whether or not you might be able to actively seek out a faster driver if 
that is what you are after.

Today Uber is one of the leading transportation services in the world with a mar-
ket value over 20 billion dollars.

1.3.2.2  Airbnb

Airbnb is an Internet-based service for people to list, find, and rent lodging. It was 
founded in 2008  in San Francisco, California, by Brian Check and Joe Gebbia 
shortly after creating AirBed and Breakfast during a conference. The original site 
offered rooms, breakfast, and business networking opportunity for the conference 
attendees who were unable to find a hotel. In February 2008, technical architect 
Nathan Blecharczyk joined Airbnb as the third co-founder. Shortly thereafter, the 
newly created company focused on high-profile events where alternative lodging 
was very limited.

Incredibly similar to the Uber model, Airbnb utilizes a platform business model. 
This means they facilitate the exchange between consumers (travelers) and service 
providers (homeowners). Airbnb also required a scalable Internet-based platform 
supporting from a few customers to hundreds of thousands during major events. 
More importantly, Airbnb is partnering with Internet companies (e.g., Nest of 
Google) to deliver remote keyless solutions to customers by unlocking doors (with 
IoT digital keys) over the Internet.

Just like Uber, Airbnb found a multibillion dollar business based on an Internet 
platform connecting people and places together that competently disrupted the tra-
ditional hotel business model. These linear businesses have to invest millions into 
building new hotels, while Airbnb does not have to deal with that.

Just like Uber, today Airbnb is one of the leading hotel services in the world 
(Fig. 1.8).

1.3 Why Now? The 12 Factors for a Perfect Storm
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1.3.2.3  Square

Square Inc., also San Francisco based, was inspired by Jack Dorsey in 2008 when 
his friend, Jim McKelvey, in St. Louis at the time, was unable to complete a $2000 
sale of his glass faucets and fittings because he could not accept credit cards. Jack 
and Jim started the point-of-sale software financial services company in 2010. The 
company allows small business mobile individuals and merchants to make secure 
payments using applications like Square Capital and Square Payroll. The Internet- 
based software solution allows customers and small business owners to enter credit 
card information manually or to swipe the card via the Square Reader (see Fig. 1.9), 
a small plastic device that plugs into the audio jack of supported smart mobile 
devices with an interface resembling a traditional cash register.

Square has introduced an application that integrates its reader with a smart- 
phone’s motion sensor. The application can determine that the card reader is failing 
by analyzing the motion sensor data to detect movements indicating multiple card 

Fig. 1.8 Examples of Internet-based businesses

Fig. 1.9 Square credit 
card reader. (Source: 
Square Inc.)
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swipes. If the card reader did not read any data during the card swipes, the applica-
tion can deduce that the card reader is broken. This solution allows Square to send 
a replacement card reader to swap the broken card in a timely fashion.

Square also launched Square Cash applications allowing individuals and busi-
nesses to transfer money with a unique username. In 2015, Square introduced 
Customer Engagement, a suite of CRM tools which includes email marketing ser-
vices. These tools allow businesses to target specific customer segments with cus-
tomized promotions based on actual purchase history. Square also introduced 
Square Payroll tool for small business owners to process payroll for their employees.

Other financial companies have also introduced Internet-based mobile payment 
solutions including Intuit GoPayment Reader, which is integrated with Intuit’s host 
of products and software (Fig. 1.10), PayPal Here Reader, and others.

Just like Uber and Airbnb, Square found a novel business based on Internet plat-
form connecting small business owners and customers together that competently 
disrupted the traditional small business payment models.

1.3.2.4  Amazon

Amazon.com is the largest Internet retailer company in the worldIt started, in 1994, 
as an Internet-based book seller and swiftly expanded into music, movies, electron-
ics, and household goods; Amazon utilized the Internet to break the traditional 
retailer model. It did not need to stock many of the merchandises it was selling on 
its website. Instead, it identified matching partner companies and issued customer 
orders over a secure Internet-based platform.

Amazon also offers businesses the capability to sell online via Amazon Services. 
Another part of its retail strategy is to serve as the channel for other retailers to sell 
their products and take a percentage of every purchase.

Fig. 1.10 Intuit GoPayment Reader. (Source: Intuit)
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Retail is only part of Amazon.com business. It also offers cloud-based services 
known as Amazon Web Services or AWS with Software as a Services (SaaS), 
Platform as a Services (PaaS), and Infrastructure as a Services (IaaS) as well as 
other types of businesses. Amazon is perhaps one of the first companies to develop 
a set of businesses based on an Internet platform connecting end customers (e.g., 
retail customer, businesses) to products and services (e.g., merchandise, cloud ser-
vices) thereby disrupting traditional retail models.

1.3.2.5  Tesla

Tesla Motors was founded in 2003 by a group of engineers in Silicon Valley with a 
mission to develop a successful luxurious electrical car and then invest the resulting 
profits to make a less expensive electric car. With instant torque, incredible power, 
and zero emissions, Tesla’s products would be cars without compromise.

Tesla’s engineers first designed a power train for a sports car built around an AC 
induction motor, patented in 1888 by Nikola Tesla, the inventor who inspired the 
company’s name. The resulting Tesla Roadster was launched in 2008 with an incred-
ible range of 245 miles per charge of its lithium ion battery. The Roadster was able 
to set a new standard for electric mobility. In 2012, Tesla launched Model S, the 
world’s first premium electric sedan.

Tesla is considered as the best example yet of IoT. It did not only bend the tradi-
tional industry manufacturing model to Internet-based model with thousands of sen-
sors (Fig. 1.11), but it also demonstrated the tremendous value of IoT with the 2014 
recalls. In early 2014, Traffic Safety Administration published two recall announce-
ments, one for Tesla Motors and one for GM. Both were related to problems that 

Fig. 1.11 Tesla Factory in Fremont, California. (Source: Tesla Motors Inc.)
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could cause fires. Tesla’s fix was conducted for 29,222 cars as an “over-the-air” 
software update without requiring owners to bring their cars to the dealer.

1.3.2.6  Self-Driving Cars

Self-driving cars are no longer a fantasy. There are already thousands of self-driving 
cars with features that allow them to brake, speed, and steer with limited or no driver 
interaction.

Self-driving cars can be divided into two main categories: semiautonomous and 
fully autonomous. A semiautonomous car performs certain self-driving tasks (e.g., 
fully brakes when it gets too close to an object, drives itself on the freeway), while 
a fully autonomous car drives itself from origin to destination without any driver 
interaction. Fully autonomous cars are further divided into user-operated and 
driverless.

Safety is considered one of the biggest advantages of self-driving cars. In gen-
eral, self-driving cars are equipped with a large number of sensors including laser 
range finders (to measure a subject’s distance and take photos that are in sharp 
focus), radars, and video cameras collecting information from the road. They are 
also equipped with actuators to control steering and braking. The collected data 
(from sensors, radars, and video) is promptly processed with the positional informa-
tion from the car’s GPS unit and the navigation system to determine its position and 
to build a three-dimensional model of its surroundings.

The resulting model is then processed by the car’s control system to make navi-
gation decisions. Self-driving car control systems typically use stored maps to find 
optimal path to destination, avoid obstacles, and send decisions to the car’s actua-
tors. IoT applies to interactions and communications between self-driving care 
components, between the car and roadside infrastructure, as well as among self- 
driving cars (Fig. 1.12).

Fig. 1.12 Google 
self-driving car. (Source: 
Google)
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Finally, it is worth noting that there are various other examples of companies that 
have used the Internet for new and creative business models, with various levels of 
success, including Scoop Inc. for carpooling and Pandora in the music industry.

1.3.3  Mobile Device Explosion

There is an unprecedented explosion in the number of new things being connected 
to the Internet every day, where it is not just sheer volume of mobile devices and 
sensors, but things that normally have not been connected to the network, such as 
those found in manufacturing, utilities, and transportation, are all becoming net-
worked devices. Because of the mobile explosion that has touched our home and 
work lives, we have already seen over 5 million mobile applications2 developed in 
the past several years resulting in billions of downloads.

Mobile data traffic has grown 18-fold in the last few years. According to Cisco’s 
Visual Networking Index, smartphone traffic grew from 1.74 exabyte per month in 
2014 to more than 18 exabyte per months in 2019 as shown in Fig. 1.10 and such 
growth rate has even accelerated in recent years.

The increase in mobile data traffic is driven by two factors: the increase in the 
number of users and the data consumption per user. The average smartphone gener-
ated 4 GB of traffic per month in 2019, as shown in Fig. 1.13. This growth is fueled 
by IoT connecting things with people and more importantly allowing people to 
monitor and control things from anywhere in the world in real time.

2 According to Buildfire.com, the number of applications developed by Apple Store and Google 
Play alone were over 4.8 million in 2021.
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1.3.4  Social Network Explosion

Social networks, such as Facebook, Instagram, Twitter, and YouTube, and the adop-
tion of cloud-based services, such as Amazon’s AWS and Salesforce.com, are all 
examples of the large-scale migration to the cloud across virtually every industry. In 
fact, two-thirds of all data center traffic will be from the cloud in 3 years. All of this 
leads to data explosion, where, already, the data being created on the Internet each 
day is equal to half of all the data that has been accumulated since the dawn of 
humanity (Fig. 1.14).

1.3.5  Analytics at the Edge

Before introducing the different versions of analytics, it is important to define the 
terms: big data, structured data, and unstructured data. Big data refers to the 
extremely large amount of data being generated and accumulated by IT systems as 
the result of the operation of an associated system. The latter could be a product, 
process, service, etc. This massive amount of data can be analyzed to identify pat-
terns and gain insights into the operation of the associated system. The analysis 
often involves applying statistical techniques since human processing is not viable 
due to the sheer volume of the data.

Structured data refers to organized data that can fit in rows and columns. 
Examples of such data include customer data, sales data, and stock records. 
Structured data is often high value, cleansed, and indexed. Unstructured data, on the 
other hand, is difficult to organize or bring together. Examples of unstructured data 
include images, X-rays, video, social media data, and some machine outputs mixed 
with text.

Analytics 1.0 refers to the process of collecting structured data from various 
sources and sending the collected data to a centralized location to be correlated and 
analyzed using predefined queries and descriptive/historic views. Businesses and 
enterprises have been collecting structured data from internal systems (e.g., CRM, 

Fig. 1.14 Examples of 
social network explosion
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Sale Records, RMA Records, and Case Records), sending such data to a centralized 
data center to be stored in traditional tables and databases. The data is then parsed 
and often correlated with other types of data to produce business intelligence (e.g., 
offer discounts for customers in a certain location due to large unused inventory). 
The process of collecting, transferring, correlating, and analyzing the structured 
data can take hours or days.

Analytics 1.0 then evolved to Analytics 2.0 or big data and analytics with action-
able insight. Analytics 2.0 basically collects structured and unstructured data from 
various sources but still sends the collected data to a centralized location to be cor-
related and analyzed using complex queries along with forward-looking and pred-
icative views this time. Examples of unstructured data for enterprises include call 
center logs, mobility data, and social media data where users are conversing and 
providing feedback about an enterprise’s service, product, or solutions.

With the deployment of complex systems to capture and analyze big data in a 
data center, the overall process of collecting, transferring, correlating, and analyzing 
the structured and structured data is reduced to minutes or seconds.

Today, massive amounts of data are being created at the edge of the network, and 
the traditional ways of performing analytics over that data are no longer viable. 
Minutes or even seconds of delay in data processing are no longer effective for 
many businesses. Take, for example, a sensor in an oil rig. If the pressure was to 
drop substantially, the rig needs to be shut off instantaneously and before the system 
breaks and causes a major disaster.

Companies are realizing that they just cannot keep moving massive amounts of 
data to centralized data stores. The data is too big, is changing too fast, and is too 
geographically distributed. Certain analysis must be performed in real time and can-
not withstand the delays of sending the raw data to a centralized data center to be 
analyzed and then send back the result to the source. In addition, certain industries 
(e.g., Healthcare, Defense) have the requirement to analyze the data close to the 
source due to data privacy or security.

Analytics 3.0 allows companies to collect, parse, analyze, and correlate (with 
stored data) structured as well as unstructured data at or close to the edge (the source 
of the data). To support this, companies have introduced massive solutions (hard-
ware and software) that allow enterprises to capture, process, and analyze data at the 
edge. Can you think of examples of such companies (see problem 15)?

Analytics 4.0 is expected to be around application development and automated 
network services where businesses develop and deploy integrated application, sen-
sors, networks with APIs.

Analytics 1.0, 2.0, and 3.0 are compared in Table 1.1 and in Fig. 1.15. Table 1.1 
shows a comparison of key factors, while Fig. 1.15 displays a process summary.

1 Internet of Things (IoT) Overview
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1.3.6  Cloud Computing and Virtualization

In the past, enterprises (companies or businesses) were forced to deploy and man-
age their own computing infrastructures. Cloud computing, which was introduced 
in 2008, allows enterprises to outsource their computing infrastructure fully or par-
tially to public cloud provides (e.g., Amazon AWS, Microsoft Azure, Google 
Compute Engine). Data showed that the average network computing and storage 
infrastructure for a start-up in year 2000 was $5 million. The cost in year 2016 has 
dropped to $5 thousand. This enormous 99% decline in cost was made possible by 
cloud computing and vitalization.

Public Cloud providers deliver cloud services, on demand, over the Internet. 
Enterprises pay only for the CPU cycles, storage, or bandwidth they consume.

Analytics 1.0

Analytics 2.0

Analytics 3.0

Structured 
Data

Structured 
Data

Unstructured 
Data

Structured 
Data

Unstructured 
Data

Traditional Data
Warehouse

Big Data
Analysis

Data Streaming
At the Edge

Business Intelligence
(Days / Hours)

Business & 
Services 

Intelligence 
(Minutes / Seconds)

Business & 
Services 

Intelligence
(Micro-seconds)

Fig. 1.15 Analytics 1.0, 2.0, and 3.0

Table 1.1 Comparison of key factors for Analytics 1.0, 2.0, and 3.0

Analytics 1.0 Analytics 2.0 Analytics 3.0

Collected data type Structured Structured and 
unstructured

Structured and 
unstructured

Data analysis 
location

Centralized data 
center

Centralized data center At edge and in data 
center

Time to analyze 
data

Days–hours Hours–minutes Seconds–microseconds

Data volume Small data Big data Big data
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Enterprises also have the choice to deploy Private Cloud solutions in their own 
data centers and deliver computing services to their internal sub-businesses/users. 
Such model offers flexibility and convenience while preserving management, con-
trol, and security to their IT departments.

Cloud computing may be also offered in a Hybrid Cloud model that consists of a 
combination of public and private clouds allowing enterprises to create a scalable 
solution by utilizing the public cloud infrastructure while still preserving full con-
trol over critical data.

Cloud computing is attractive to many enterprises allowing them to self- provision 
their own services for any type of workload on demand. They can start small and 
then scale up almost instantly with minimum expertise and pre-planning, while they 
pay only for what they use, typically, in addition to a basic subscription charge.

Cloud computing has been classified into three main service categories: 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as 
Service (SaaS). PaaS, for instance, allow enterprises to utilize a third-party platform 
and permit them to focus on developing and managing their own software applica-
tions without the complexity of building and maintaining the required 
infrastructure.

Cloud computing has been made possible by the advent of virtualization tech-
nologies. Rather than dedicating distinct IT infrastructure (e.g., servers, storage 
nodes, networking nodes) to a single business entity (e.g., customer or enterprise), 
virtualization allows cloud providers to divide a physical machine (e.g., server) into 
multiple virtual entities thereby creating an isolated virtual server, a virtual storage 
device, and virtual network resources for each enterprise, all running over the same 
shared physical IT infrastructure. Virtual machines are one form of virtualization 
that allows running multiple operating systems over the same physical server 
hardware.

Containers are another form of virtualization. In containers, the virtualization 
layer runs as a service on top of a common operating system kernel. The operating 
system’s kernel runs on the hardware node with several isolated guest process 
groups installed on top of it. The isolated guest process groups are called containers. 
They share the same operating system kernel but are completely isolated at the 
application level.

Containers are intended to run separate applications. Examples of containers 
include Linux containers (LXC) and open-source Docker.

As with Analytics (Sect. 1.3.5), Cloud may be divided into Cloud 1.0 and Cloud 
2.0. Cloud 1.0 is SaaS, PaaS, and IaaS. Cloud 2.0 is Cloud 1.0 with machine learn-
ing to extract business intelligence from the data using algorithms that learn from 
data pattern. It should be noted that traditional techniques and machine learning 
programs work without specific instructions on where to look for data pattern.

1 Internet of Things (IoT) Overview
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1.3.7  Technology Explosion

IoT hardware (e.g., sensors, inexpensive computers such as Raspberry Pi, open- 
source microcontrollers such as Arduino) and software technologies are not only 
being developed faster than ever before but with much lower prices. Such devices 
are already transforming user behaviors and creating new business opportunities. 
Business leaders are realizing that unless their organizations quickly adapt to such 
changes, their businesses will soon become irrelevant or inefficient to survive in an 
increasingly competitive marketplace.

1.3.8  Digital Convergence/Transformation

Digital convergence has initially started with a limited scope: move to “paperless” 
operation and save trees. Now, it is transforming the future in profound ways. 
Digital convergence is being adopted by key industries with extended goals to move 
to digital operation, extract data from various sources including the devices and 
processes that are enabled by digitization, and then analyze the extracted data and 
correlate it with other data sources to extract intelligence that improves products, 
customer experience, security, sales, etc. Many healthcare organizations (e.g., 
Kaiser Permanente) have been using digital convergence with extended goals of 
improving the patient experience, improving population health, and reducing 
healthcare costs.

With the connection of billions smart objects to the Internet, companies are real-
izing the upcoming challenges and are adding to their executive boards the role of a 
Chief Digital Officer (CDO) who can oversee the full range of digital strategies and 
drive change across the organization. CDOs are expected to significantly impact 
existing systems, solutions, and business processes and more importantly intrinsi-
cally enable new types of innovation and creativity.

1.3.9  Enhanced User Interfaces

User experience (UX) or human to machine interaction, where applicable, is very 
essential for the success of IoT. A core IoT UX principle is meeting the basic needs 
for the usage of a product or a service without aggravation or difficulty. 
Overengineering or including too much intelligence into products can backfire and 
be counterproductive. User interfaces that are frustrating to use and slow to extract 
relevant information can lead to customer desertion. A toaster, for example, ulti-
mately exists to make toast. But if we overengineer with too much information, 
switches, and options, we risk building products that are so annoying that our cus-
tomers will not want to use them.
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There is now a wealth of technology and markup languages (e.g., HTML 5) that 
allow software engineers to adapt key UX principles and meet the so-called KISS 
(keep it short and simple) principle. KISS states that most systems work best if they 
are kept simple. Top UX principles include:

• Simple and Easy Principle: Best UX system is a system without UI. Simplicity 
should be a key goal in design, and unnecessary complexity should be avoided. 
Make sure you reduce the user’s cognitive workload whenever possible. Make 
sure the UI is consistent/stable, intuitive, and establish a clear visual hierarchy.

• Contextual Principle: Make sure that users are contextually aware of where they 
are within a system.

• Human Principle: Make sure the UI provides human interactions above the 
machine-like interactions.

• Engagement Principle: Make sure that the UI fully engages the user, delivers 
value, and provides a strong information sense.

• Beauty and Delight Principle: Make sure the UX is enjoyable and make the user 
wants to use the system or service.

1.3.10  Fast Rate of IoT Technology Adoption (Five Times 
More than Electricity and Telephony)

Many of us are changing our mobile devices and tablets at faster rate than ever 
before. Experts believe that there was a point of inflexion sometime between 2009 
and 2010, where the number of connected devices began outnumbering the planet’s 
human population. And these are not just laptops, mobile phones, and tablets—they 
also include sensors and everyday objects that were previously unconnected. 
Surveys and detailed analysis indicated that the adoption rate of such technology is 
five times faster than that of electricity and telephony growth. Traditionally the 
adoption of technology was always proportional to population growth. Hence, IoT 
adoption gap has already widened exponentially over the last several years, with the 
number of sensors, objects, and other “things.” This is best illustrated by global IP 
traffic growth, as shown in Fig.  1.16. According to June 2016 Cisco Visual 
Networking Index (VNI) forecast, global IP traffic in 2015 stands at 72.5 exabytes 
(EB, 1018 byte) per month and nearly tripled by 2020, to reach 194.4 EB per month. 
Consumer IP traffic reached 162.2 EB per month, and business IP traffic surpassed 
32.2 EB per month in 2020.

Adding all these physical objects to IP networks imposes new and novel require-
ments on existing networking models. ITC will need to deal with those require-
ments in a relatively short order.

1 Internet of Things (IoT) Overview
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1.3.11  The Rise of Security Requirements

Protection of business and personal data and systems has been an issue since the 
inception of data networks. With the commercialization of the Internet, security 
concerns expanded to cover personal privacy, financial transactions, and the threat 
of cyber robbery. Today, security of the network is being expanded to include safety 
or physical security.

Many of us are buying and deploying smart gadgets all over our homes. Examples 
include smart cameras that notify our smartphones during business hours when 
movement is detected, smart doors that open remotely, and the smart fridges that 
notify us when we are short of milk. Imagine now the level of control that an attacker 
can gain by hacking those smart gadgets if the security of those devices was to be 
overlooked. In fact, the damage caused by cyberattacks in the IoT era will have a 
direct impact on all the physical objects that you use in your daily life. The same 
applies to smart cars as the number of integrated sensors continues to grow rapidly 
and as the wireless control capabilities increase significantly over time, giving an 
attacker who hacks a car the ability to control the windshield wipers, the radio, the 
door lock, and even the brakes and the steering wheel of the vehicle. Our bodies will 
not also be safe from cyberattacks. In fact, researchers have shown that an attacker 
can control remotely implantable and wearable health devices (e.g., insulin pumps 
and heart pacemakers) by hacking the communication link that connects them to the 
control and monitoring system.

1.3.12  The Nonstop Moore’s Law

It is possible to summarize Moore’s Law impact with three key observations:

Fig. 1.16 Global IP traffic growth, 2015–2020. (Source: 2016 Cisco VIN)
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 1. Over the history of computing hardware, computer power has been doubling 
approximately every 18 months. This relates to the fact that the number of tran-
sistors in a dense integrated circuit has been growing by twofold every 18 months 
since the transistor was invented in 1947 by John Bardeen, Walter Brattain, and 
William Shockley in Bell Labs, as shown in Fig. 1.17.

Now, the largest existing networks contain millions of nodes and billions of 
connections. Human brains, on the other hand, are about a hundred thou sand 
times more powerful. A human brain has one hundred thousand billion nodes 
and a hundred trillion connections. Hence, with Moore’s Law, a computer should 
be as powerful as the human brain in about 25 years!

 2. Silicon transistor storage technology size has continued to shrink over the years 
and is approaching atomic level. For years now, we have been putting more 
power and more storage on the same size device. To illustrate this idea, the 
 number of all transistors in all PCs in 1995, a peak year for Microsoft, was about 
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Fig. 1.17 Moore’s Law: (a) transistor size over time, (b) transistor price over time
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800 trillion transistors. Today, 800 trillion transistors are included in one week-
end’s sales of Apple’s iPhones.

 3. The price of the transistor is being reduced by more than 50% every year. In 
1958 Fairchild Semiconductor procured its first order for 100 transistors at $150 
apiece from IBM’s Federal Systems Division. Today, you can buy over one mil-
lion transistors for 8 cents. Figure 1.17 shows such trend over time.

There is no exact number for the estimated IoT revenue for the next 10 years, but 
all industry leaders have agreed that the opportunity is indeed huge.

A study by General Electric, which likened the IoT trend to the industrial revolu-
tion of the eighteenth and nineteenth centuries, concluded that the IoT over the next 
two decades could add as much as US $15 trillion to the global gross domestic 
product (GDP)—which is roughly the size of today’s US economy.

As we mentioned before, Gartner says 64 billion devices will be in use in 2025. 
That translates to eight devices for every person of the eight billion people that are 
expected to be around in a few years.

Gartner also published the number of “things” connected over the Internet as 
shown in Table 1.2. Without automotive, the total number of IoT installed based 
devices was close to 21 billion in 2020. This includes 4.9 billion in 2015 and 6.4 
billion connected things in use in 2016 (about 7% from 2015). These numbers are 
fueled by major digital shifts by the forces of mobile, cloud computing, and social 
media combined with IoT. Many businesses feel that they are at a competitive dis-
advantage unless they pursue IoT. Gartner believes consumer applications will drive 
the number of connected things, while enterprises will account for most of the 
revenue.

A separate analysis from Morgan Stanley believes that the number can actually 
be as high as 75 billion and also claims that there are unique consumer devices or 
equipment that could be connected to the Internet.

Regardless of which study to agree with, the bottom line is that the stakes are 
high, and people will be the beneficiaries of this new IoT economy. Using IoT- 
developed innovations, for example, we can reduce waste, protect our environment, 
boost farm production, get early warnings of structural weaknesses in bridges and 
dams, and enable remotely controlled lights, sprinkler systems, washing machines, 
sensors, actuators, and gadgets.

This revolution is based on the transformational role of digital technologies, in 
particular Internet-based cloud, mobility, and application technologies. But the real 
power of IoT is moving from an “open-loop” world characterized by people in the 

Table 1.2 IoT units installed base by category, excluding automotive

Category 2014 2015 2016 2020

Consumer 2277 3023 4024 13,509
Generic business 623 815 1092 4408
Vertical business 898 1065 1276 2880
Grand Total 3807 4902 6392 20,797

Source: Gartner

1.3 Why Now? The 12 Factors for a Perfect Storm
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process to one that will be an automated “closed loop.” In this model, humans will 
only intervene in the process as an exception, for example, if a robot, jet engine, 
driverless truck, or gas turbine requires a part within itself to be changed (in some 
cases, even these will be automated!).

There is no reason to doubt that devices connected to IoT will soon be flooding 
the mass market. We will see compact, connected sensors and actuators make their 
way onto everyday consumer electronics and household appliances and on general 
infrastructure.

Networks and semiconductor manufacturers no doubt will benefit from this 
movement, but big data vendors should also be cheering, with all things connected 
to the Internet that opens up more real-time data inventory to sell (Fig. 1.18).

1.4  History of the Internet

Before the advent of the Internet, the world’s main communication networks were 
based on circuit-switching technology: the traditional telephone circuit, wherein 
each telephone call is allocated a dedicated, end-to-end, electronic connection 
between the two communicating stations (stations might be telephones or comput-
ers). Circuit-switching technology was not suitable for computer networking.

The history of the Internet begins with the development of electronic computers 
in the 1950s where the initial concepts of packet switching were introduced in sev-
eral computer science laboratories. Various versions of packet switching were later 
announced in the 1960s. In the early 1980s, the TCP/IP (Transmission Control 
Protocol/Internet Protocol) stack was introduced. Then, the commercial use of the 

Fig. 1.18 IoT business revenue from enterprise

1 Internet of Things (IoT) Overview



27

Internet started in the late 1980s. Later, the World Wide Web (WWW) became avail-
able in 1991, which made the Internet more popular and stimulated the rapid growth. 
The Web of Things (WoT), which based on WWW, is considered a part of IoT.

To illustrate the importance of packet-switching technologies, consider com-
puter A (in Los Angeles) wants to communicate with Computer B (in New York) in 
a circuit-switched network. One common way is to select a path in the network 
connecting computers A and B. In this case, the selected path would be dedicated to 
A and B for the duration of their message exchange. The problem with circuit 
switching is that the line is tied up regardless of how much information is exchanged 
(i.e., no other computers are allowed to utilize the line between A and B even with 
free bandwidth). Unlike voice traffic, circuit switching is a problem for computers 
because their information exchange is typically “bursty” rather than smooth or con-
stant. Two computers might want to exchange a file, but after that file is exchanged, 
the computers may not engage in communication again for quite some time.

Packet switching was introduced as the alternative technology to circuit switch-
ing for computer communications. It has been reported that packet-switching work 
was done during the time of the Cold War, and a key part of motivation for develop-
ing packet switching was the design of a network that could withstand a nuclear 
attack. Such theory was denied by the Advanced Research Projects Agency Network 
(ARPANET), an early packet-switching network adopter and the first network to 
implement the Internet protocol suite TCP/IP. However, the later work on internet-
working emphasized robustness and survivability, including the capability to with-
stand losses of large portions of the underlying networks.

To understand the fundamental of packet switching, consider sending a container 
of goods from Los Angeles to New York City. Rather than sending the entire con-
tainer over a particular route, it is divided into packages (called packets). Packets 
are assembled, addressed, and sent in a particular way such that:

• The packets are numbered so they can be reassembled in the correct sequence at 
the destination.

• Each packet contains destination and return addresses.
• The packets are transmitted over the network of routes as capacity becomes 

available.
• The packets are forwarded across the network separately and do not necessarily 

follow the same route; if a particular link of a given path is busy, some packets 
might take an alternate route.

Packet switching is a generic philosophy of network communication, not a spe-
cific protocol. The protocol used by the Internet is called TCP/IP. The TCP/IP pro-
tocol was invented by Robert Kahn and Vint Cerf. The IP in TCP/IP stands for 
Internet protocol: the protocol used by computers to communicate with each other 
on the Internet. TCP is responsible for the data delivery of a packet, and IP is respon-
sible for the logical addressing. In other words, IP obtains the address, and TCP 
guarantees delivery of data to that address. Both technologies became the technical 
foundation of the Internet.

1.4 History of the Internet
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The earliest ideas for a computer network, intended to allow general communica-
tions among computer users, were formulated by computer scientist J. C. R. Licklider 
of Bolt, Beranek, and Newman (BBN), in April 1963, in memoranda discussing the 
concept of the “Intergalactic Computer Network.” Those ideas encompassed many 
of the features of the contemporary Internet. In October 1963, Licklider was 
appointed head of the Behavioral Sciences and Command and Control programs at 
the Defense Department’s Advanced Research Projects Agency (ARPA). He con-
vinced Ivan Sutherland and Bob Taylor that this network concept was very impor-
tant and merited development although Licklider left ARPA before any contracts 
were assigned for development [5].

Devices using the Internet must implement the IP stack. Packets that follow the 
IP specification are called IP datagrams. These datagrams have two parts: header 
information and data. To continue with the letter analogy, think of the header as the 
information that would go on an envelope and the data as the letter that goes inside 
the envelope. The header information includes such things as total length of the 
packet, destination IP address, source IP address, time to live (the time to live is 
decremented by routers as the packet passes through them; when it hits zero, the 
packet is discarded; this prevents packets from getting into an “infinite loop” and 
tying up the network), and error checking information.

• The IP packets are independent of the underlying hardware structure. In order to 
travel across different types of networks, the packets are encapsulated into 
frames. The underlying hardware understands the particular frame format and 
can deliver the encapsulated packet.

• The TCP in TCP/IP stands for Transmission Control Protocol. This is a protocol 
that, as the name implies, is responsible for assembling the packets in the correct 
order and checking for missing packets. If packets are lost, the TCP endpoint 
requests new ones. It also checks for duplicate packets. The TCP endpoint is 
responsible for establishing the session between two computers on a network. 
The TCP and IP protocols work together.

• An important aspect of packet switching is that the packets have forwarding and 
return addresses. What should an address for a computer look like? Since it is a 
computer and computers only understand binary information, the most sensible 
addressing scheme is one based on binary numbers. Indeed, this is the case, and 
the addressing system used by IP version 4 software is based on a 32-bit IP 
address, and IP version 6 is based on 128-bit IP address as will be explained in 
Chap. 2 (Fig. 1.19).

1.5  Summary

We would like to conclude this chapter by restating our definition of IoT as the net-
work of things, with clear element identification, embedded with software intelli-
gence, sensors, and ubiquitous connectivity to the Internet. IoT is empowered by 
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four main elements: sensors to collect information, identifiers to identify the source 
of data, software to analyze the data, and Internet connectivity to communicate and 
enable notifications. Sensors may be physical (e.g., sensors capturing the tempera-
ture) or logical (e.g., embedded software measurements such as CPU utilization). 
IoT’s ultimate goal is to create a better environment for humanity, where objects 
around us know what we like, what we want, and what we need and act accordingly 
without explicit instructions.

IoT is fueled by explosion in technologies including the IT and OT convergence; 
the introduction of Internet-based business at a fast rate; the explosion in smart 
mobile devices; the explosion in social networking applications; the overall technol-
ogy explosion; the massive digital transformation; the enhanced user interfaces 
allowing people to communicate by a simple touch, voice command, or even an 
observing command; the faster than ever technology adoption; the increased demand 
for security applications and solutions; and of course Moore’s Law. Securing IoT is 
viewed as a challenge and colossal business opportunity at the same time with areas 
that embrace securing the data at rest, securing the transport of the data, securing 
APIs/interfaces among systems and various sources of data, and of course control-
ling sensors and applications.

Problems and Exercises

 1. What is the simple definition of IoT? What is the “more complete definition”? 
What is the main difference?

 2. IoT components were listed for the simple definition to include the intersection 
of the Internet, Things, and data. Process and standards were added to the com-
plete definition. Why are process and standards important for the success of IoT?

Fig. 1.19 Circuit switched vs. packet switched
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 3. What are the main four components that empower IoT? List the main function 
of each component.

 4. What is IoT’s promise? What is IoT’s ultimate goal?
 5. Cisco estimated that the IoT will consist of almost 30 billion objects by 2023. 

Others have higher estimates. What was their logic?
 6. What is Moore’s Law? When was it first observed? Why is it relevant to IoT?
 7. In a table, list the 12 factors that are fueling IoT with a brief summary of 

each factor.
 8. What are the top three challenges for IoT? Why are those challenges also con-

sidered as opportunities?
 9. What is BYOD? Why is it considered a security threat for the network?
 10. How do companies deal with BYOD today? List an example of BYOD system.
 11. Why is operation technology (OT) under pressure to integrate with information 

technology (IT)?
 12. Uber is using smartphone Gyrometer data to monitor speeding drivers. What is 

“Gyrometer”? How does it work? Where was it first used?
 13. What is KISS? What are the top five principles for KISS user experience?
 14. Section 1.3.10 stated the following three facts: (a) over the history of computing 

hardware, computer power has been doubling every 18 months, (b) biggest net-
works we have today have millions of nodes and billions of connection, and (c) 
a human brain has a hundred thousand billion nodes and a hundred trillion con-
nections. It then stated that using (a)–(b), in year 2015, a computer should be as 
powerful as a human brain in about 25 years! How did the author arrive at 25? 
How long would it take if the computer power was doubling every 2 years 
instead of 18 months and why?

 15. What are the key four differences between Analytics 1.0, 2.0, and 3.0?
 16. List examples of solutions that offer Analytics 3.0.
 17. What are the top three benefits of cloud computing? What do they mean?
 18. In a table format, compare IaaS, PaaS, and SaaS. List an example for each.
 19. What are the main differences between virtual machines and containers in vir-

tualization? Provide an example of container technology. Which approach do 
you prefer and why?

 20. List two main functions that TCP/IP protocol, the bread and butter of today’s 
Internet.

 21. Why do we need both TCP and IP protocols?
 22. It is often said by User Experience Experts that the “Best Interface for a system 

is no User Interface.” What does such statement mean? When does it typically 
apply? Provide an example in networking technologies.

 23. This question has four parts:

 (a) What is circuit-switched technology? What is packet-switched technology?
 (b) What are circuit-switched networks and packet-switched networks used 

for? List an example of each use.
 (c) Why did we need packet-switched technology?
 (d) In a table, list three main differences between packet switching and circuit 

switching?
 (e) Which approach is better for the Internet and why?

1 Internet of Things (IoT) Overview
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 24. What is a connection-oriented protocol? What is a connectionless protocol? 
Provide an example of each.

 25. Some companies use the term IoE instead of IoT. What is their logic?
 26. What is Cloud 1.0 and Cloud 2.0? What is the main difference between cloud 

1.0 and cloud 2.0? How does machine learning differ from traditional approaches 
to extract business intelligence form the data?

 27.  Circuit-switched networks are designed with either frequency-division multi-
plexing (FDM) or time-division multiplexing (TDM). For TDM link, time is 
divided into frames of fixed duration,num and each frame is divided onto a 
fixed number of time slots as shown below (for a network link supporting up to 
three connections/circuits).
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When the network establishes a connection across a link, the network dedi-
cates one time slot in every frame to this connection. These slots are dedicated 
for the sole use of that connection, with one time slot available for use (in every 
frame) to transmits the connection’s data.

(a) How does FDM work in circuit-switched networks?
 (b) What is the typical frequency band in tradition circuit-switched-based tele-

phone networks/public-switched telephone network (PSTN)?
 (c) Compare FDM with TDM.
 (d) Draw FDM and TDM for a tradition circuit-switched network link support-

ing up to five connections/circuits.

 28. Refer again to problem 27 above. Let us assume that all links in the circuit- 
switched network are T1 (i.e., have a bit rate of 1.536 Mbps with 24 slots) 
and use TDM

.  
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 (a) Assuming setup and propagation delays are zero, how long does it take to 
send a file of 1.280 M bits from Host A to Host B? How about from Host A 
to Host C? Do you expect the answer to be the same or different and why?

 (b) Let us also assume that it takes 500 ms to establish an end-to-end circuit 
before Host A can begin to transmit the file and 250 ms for a propagation 
delay between any two adjacent routers. How long does it take to send a file 
form Host A to Host B?

 (c) What is the difference between transmission delay and prorogation delay? 
Which delay is a function of the distance between the routers?
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Chapter 2
The Internet in IoT

Reliable and efficient communication is considered one of the most complex tasks 
in large-scale networks. Nearly all data networks in use today are based on the Open 
Systems Interconnection (OSI) standard. The OSI model was introduced by the 
International Organization for Standardization (ISO), in 1984, to address this com-
plex problem. ISO is a global federation of national standards organizations repre-
senting over 100 countries. The model is intended to describe and standardize the 
main communication functions of any telecommunication or computing system 
without regard to their underlying internal structure and technology. Its goal is the 
interoperability of diverse communication systems with standard protocols. The 
OSI is a conceptual model of how various components communicate in data-based 
networks. It uses “divide and conquer” concept to virtually break down network 
communication responsibilities into smaller functions, called layers, so they are 
easier to learn and develop. With well-defined standard interfaces between layers, 
OSI model supports modular engineering and multi-vendor interoperability.

2.1  The Open System Interconnection Model

The OSI model consists of seven layers as shown in Fig. 2.1: Physical (layer 1), 
Data Link (layer 2), Network (layer 3), Transport (layer 4), Session (layer 5), 
Presentation (layer 6), and Application (layer 7). Each layer provides some well- 
defined services to the adjacent layer further up or down the stack, although the 
distinction can become a bit less defined in layers 6 and 7 with some services over- 
lapping the two layers.

• OSI Layer 7—Application Layer: Starting from the top, the Application Layer is 
an abstraction layer that specifies the shared protocols and interface methods 
used by hosts in a communications network. It is where users interact with the 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_2#DOI
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network using higher-level protocols such as DNS (Domain Naming System), 
HTTP (Hypertext Transfer Protocol), Telnet, SSH, FTP (File Transfer Protocol), 
TFTP (Trivial File Transfer Protocol), SNMP (Simple Network Management 
Protocol), SMTP (Simple Mail Transfer Protocol), X Windows, RDP (Remote 
Desktop Protocol), etc.

• OSI Layer 6—Presentation Layer: Underneath the Application Layer is the 
Presentation Layer. This is where operating system services (e.g., Linux, Unix, 
Windows, MacOS) reside. The Presentation Layer is responsible for the delivery 
and formatting of information to the Application Layer for additional processing 
if required. It ensures that the data can be understood between the sender and 
receiver. Thus it is tasked with taking care of any issues that might arise where 
data sent from one system needs to be viewed in a different way by the other 
system. The Presentation Layer releases the Application Layer of concerns 
regarding syntactical differences in data representation within the end-user sys-
tems. Example of a presentation service would be the conversion of an EBCDIC- 
coded text computer file to an ASCII-coded file and certain types of encryption 
such as Secure Sockets Layer (SSL) protocol.

• OSI Layer 5—Session Layer: Below the Presentation Layer is the Session Layer.
The Session Layer deals with the communication to create and manage a session 
(or multiple sessions) between two network elements (e.g., a session between 
your computer and the server that your computer is getting information from).

• OSI Layer 4—Transport Layer: The Transport Layer establishes and manages 
the end-to-end communication between two end points. The Transport Layer 
breaks the data, it receives from the Session Layer, into smaller units called 
Segments. It also ensures reliable data delivery (e.g., error detection and retrans-
mission where applicable). It uses the concept of windowing to decide how much 
information should be sent at a time between end points. Layer 4 main protocols 
include Transmission Control Protocol (TCP) and User Datagram Protocol 
(UDP). TCP is used for guarantee delivery applications such as FTP and web 
browsing applications, whereas UDP is used for best effort applications such as 
IP telephony and video over IP.

• OSI Layer 3—Network Layer: The Network Layer provides connectivity and 
path selection (i.e., IP routing) based on logical addresses (i.e., IP addresses).
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Hence, routers operate at the Network Layer. The Network Layer breaks up the 
data it receives from the Transport Layer into packets, which are also known as 
IP datagrams, which contain source and destination IP address information that 
is used to forward the datagrams between hosts and across networks.1 The 
Network Layer is also responsible for routing of IP datagrams using IP addresses. 
A routing protocol specifies how routers communicate with each other, exchang-
ing information that enables them to select routes between any two nodes on a 
computer network. Routing algorithms determine the specific choice of routes. 
Each router has a priori knowledge only of networks attached to it directly. A 
routing protocol shares this information first among immediate neighbors and 
then throughout the network. This way, routers gain knowledge of the topology 
of the network. The major routing protocol classes in IP networks will be cov-
ered in Sect. 2.5. They include interior gateway protocol type 1, interior gateway 
protocol type 2, and exterior gateway protocols. The latter are routing protocols 
used on the Internet for exchanging routing information between autonomous 
systems.

• It must be noted that while layers 3 and 4 (Network and Transport Layers) are 
theoretically separated, they are typically closely related to each other in prac-
tice. The well-known Internet Protocol name “TCP/IP” comes from the Transport 
Layer protocol (TCP) and Network Layer protocol (IP).

• Packet switching networks depend upon a connectionless internetwork layer in 
which a host can send a message without establishing a physical connection with 
the recipient. In this case, the host simply puts the message onto the network with 
the destination address and hopes that it arrives. The message data packets may 
appear in a different order than they were sent in connectionless networks. It is 
the job of the higher layers, at the destination side, to rearrange out of order 
packets and deliver them to proper network applications operating at the 
Application Layer.

• OSI Layer 2—Data Link Layer: The Data Link Layer defines data formats for 
final transmission. The Data Link Layer breaks up the data it receives into frames. 
It deals with delivery of frames between devices on the same LAN using Media 
Access Control (MAC) Addresses. Frames do not cross the boundaries of a local 
network. Internetwork routing is addressed by layer 3, allowing data link proto-
cols to focus on local delivery, physical addressing, and media arbitration. In this 
way, the Data Link Layer is analogous to a neighborhood traffic cop; it endeavors 
to arbitrate between parties contending for access to a medium, without concern 
for their ultimate destination. The Data Link Layer typically has error detection 
(e.g., Cyclical Redundancy Check (CRC)). Typical Data Link Layer devices 
include switches, bridges, and wireless access points (APs). Examples of data 
link protocols are Ethernet for local area networks (multi-node) and the Point-to- 
Point Protocol (PPP).

1 IP packets are referred to as IP datagrams by many experts. However, some experts used the 
phrase “stream” to refer to packets that are assembled for TCP and the phrase “datagram” to pack-
ets that are assembled for UDP.

2.1 The Open System Interconnection Model
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• OSI Layer 1—Physical Layer: The Physical Layer describes the physical media 
access and properties. It breaks up the data it receives from the Data Link Layer 
into bits of zeros and ones (or “off” and “on” signals). The Physical Layer basi-
cally defines the electrical or mechanical interface to the physical medium. It con-
sists of the basic networking hardware transmission technologies. It principally 
deals with wiring and caballing. The Physical Layer defines the ways of transmit-
ting raw bits over a physical link connecting network nodes including copper 
wires, fiber-optic cables, optical wavelength, and wireless frequencies. The 
Physical Layer determines how to put a stream of bits from the Data Link Layer 
on to the pins for a USB printer interface, an optical fiber transmitter, or a radio 
carrier. The bit stream may be grouped into code words or symbols and converted 
to a physical signal that is transmitted over a hardware transmission medium. For 
instance, it uses +5 volts for sending a bit of 1 and 0 volts for a bit of 0 (Table 2.1).

2.2  End-to-End View of the OSI Model

Figure 2.2 provides an overview of how devices theoretically communicate in the 
OSI mode. An application (e.g., Microsoft Outlook on a User A’s computer) pro-
duces data targeted to another device on the network (e.g., User B’s computer or a 
server that User A is getting information from). Each layer in the OSI model adds 
its own information (i.e., headers, trailers) to the front (or both the front and the end) 
of the data it receives from the layer above it. Such process is called Encapsulation. 

Table 2.1 Summary of key functions, devices, and protocols of the OSI layers

OSI layer Main function
Examples of main 
devices

Examples of main 
protocol

Application Provides network services to 
the end-host’s applications

Server, laptops, PCs HTTPS, FTP, Telnet, 
SSH

Presentation Ensures the data can be 
understood between two end 
hosts

N/A Data encoding, data 
formatting, and 
serialization

Session Manages multiple sessions 
between end hosts

N/A Connection 
management, error 
recovery

Transport Establishes end-to-end 
connectivity and ensures 
reliable data delivery

Firewalls TCP, UDP

Network Connectivity and path selection 
based on logical addresses

Routers, firewalls IPv4, IPv6

Data link Defines data format for 
transmission

Switches, APs IEEE 802.1 (Ethernet), 
PPP

Physical Defines physical media access 
and properties

Fiber optics, category 
5 cables, coaxial 
cables

IEEE 802.3

2 The Internet in IoT
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For instance, the Transport Layer adds a TCP header, the Network Layer adds an IP 
header, and the Data Link Layer adds Ethernet header and trailer.

Encapsulated data is transmitted in protocol data units (PDUs): Segments on the 
Transport Layer, Packets on the Network Layer, and Frames on the Data Link Layer 
and Bits on the Physical Layer, as was illustrated in Fig. 2.2. PDUs are passed down 
through the stack of layers until they can be transmitted over the Physical Layer. 
The Physical Layer then slices the PDUs into bits and transmits the bits over the 
physical connection that may be wireless/radio link, fiber-optic, or copper cable. +5 
volts are often used to transmit 1 s and 0 volts are used to transmit 0 s on copper 
cables. The Physical Layer provides the physical connectivity between hosts over 
which all communication occurs. The Physical Layer is the wire connecting both 
computers on the network. The OSI model ensures that both users speak the same 
language on the same layer allowing sending and receiving layers (e.g., networking 
layers) to virtually communicate. Data passed upward is decapsulated before being 
passed further up. Such process is called decapsulation. Thus, the Physical Layer 
chops up the PDUs and transmits the PDUs over the physical connection.

2.3  Transmission Control Protocol/Internet Protocol 
(TCP/IP)

TCP/IP (Transmission Control Protocol/Internet Protocol) is a connection-oriented 
transport protocol suite that sends data as an unstructured stream of bytes. By using 
sequence numbers and acknowledgment messages, TCP can provide a sending node 
with delivery information about packets transmitted to a destination node. Where 
data has been lost in transit from source to destination, TCP can retransmit the data 
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until either a timeout condition is reached or until successful delivery has been 
achieved. TCP can also recognize duplicate messages and will discard them appro-
priately. If the sending computer is transmitting too fast for the receiving computer, 
TCP can employ flow control mechanisms to slow data transfer. TCP can also com-
municate delivery information to the upper-layer protocols and applications it sup-
ports. All these characteristics make TCP an end-to-end reliable transport protocol.

TCP/IP was in the process of development when the OSI standard was published 
in 1984. The TCP/IP model is not exactly the same as OSI model. OSI is a seven- 
layered standard, but TCP/IP is a four-layered standard. The OSI model has been 
very influential in the growth and development of TCP/IP standard, and that is why 
much of the OSI terminology is applied to TCP/IP.

The TCP/IP Layers along with the relationship to OSI layers are shown in 
Fig. 2.3. TCP/IP has four main layers: Application Layer, Transport Layer, Internet 
Layer, and Network Access Layer. Some researchers believe TCP/IP has five layers: 
Application Layer, Transport Layer, Network Layer, Data Link Layer, and Physical 
Layer. Conceptually both views are the same with Network Access being equivalent 
to Data Link Layer and Physical Layer combined.

2.3.1  TCP/IP Layer 4: Application Layer

As with the OSI model, the Application Layer is the topmost layer of TCP/IP model. 
It combines the Application, Presentation, and Session Layers of the OSI model. 
The Application Layer defines TCP/IP application protocols and how host programs 
interface with Transport Layer services to use the network.
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2.3.2  TCP/IP Layer 3: Transport Layer

The Transport Layer is the third layer of the four-layer TCP/IP model. Its main 
tenacity is to permit devices on the source and destination hosts to carry on a con-
versation. The Transport Layer defines the level of service and status of the connec-
tion used when transporting data. The main protocols included at the Transport 
Layer are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

2.3.3  TCP/IP Layer 2: Internet Layer

The Internet Layer of the TCP/IP stack packs data into data packets known as IP 
datagrams, which contain source and destination address information that is used to 
forward the datagrams between hosts and across networks. The Internet Layer is 
also responsible for routing of IP datagrams.

The main protocols included at the Internet Layer are IP (Internet Protocol), 
ICMP (Internet Control Message Protocol), ARP (Address Resolution Protocol), 
RARP (Reverse Address Resolution Protocol), and IGMP (Internet Group 
Management Protocol).

The main TCP/IP Internet Layer (or Networking Layer in OSI) devices are rout-
ers. Routers are similar to personal computers with hardware and software compo-
nents that include CPU, RAM, ROM, flash memory, NVRAM, and interfaces. 
Given the importance of the router’s role in IoT, we will use the next section to 
describe its main functions.

2.3.3.1  Router Main Components

There are quite a few types and models of routers. Generally speaking, every router 
has the same common hardware components as shown in Fig. 2.4. Depending on the 
model, router’s components may be located in different places inside the router.

 1. CPU (Central Processing Unit): CPU is an older term for microprocessor, the 
central unit containing the logic circuitry that preforms the instruction of a rout-
er’s program. It is considered as the brain of the router or a computer. CPU is 
responsible for executing operating system commands including initialization, 
routing, and switching functions.

 2. RAM (Random Access Memory): As with PCs, RAM is a type of computer mem-
ory that can be accessed randomly; that is, any byte of memory can be accessed 
without touching the preceding bytes. RAM is responsible for storing the instruc-
tions and data that CPU needs to execute. This read/write memory contains the 
software and data structures that allow the router to function. RAM is volatile 
memory, so it loses its content when the router is powered down or restarted. 

2.3 Transmission Control Protocol/Internet Protocol (TCP/IP)
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However, the router also contains permanent storage areas such as ROM, flash 
memory, and NVRAM. RAM is used to store the following:

 (a) Operating system: The software image (e.g., Cisco’s IOS) is copied into 
RAM during the boot process.

 (b) “Running Config” file: This file stores the configuration commands that 
cisco IOS software is currently using on the router.

 (c) IP routing tables: Routing tables are used to determine the best path to route 
packets to destination devices. It will be covered in Sect. 2.5.3.

 (d) ARP cache: ARP cache contains the mapping between IP and MAC 
addresses. It is used on routers that have LAN interfaces such as Ethernet.

 (e) Buffer: Packets are temporary stored in a buffer when they are received on 
congested interface or before they exit an interface.

 3. ROM (Read-Only Memory): As the name indicates, read-only memory typically 
refers to hardwired memory where data (stored in ROM) cannot be changed/
modified except with a slow and difficult process. Hence, ROM is a form of 
permanent storage used by the router. It contains code for basic functions to start 
and maintain the router. ROM contains the ROM monitor, which is used for 
router disaster recovery functions such as password recovery. ROM is nonvola-
tile; it maintains the memory contents even when the power is turned off.

 4. Flash Memory: Flash memory is nonvolatile computer memory that can be elec-
trically stored and erased. Flash is used as permanent storage for the operating 
system. In most models of Cisco router, Cisco IOS software is permanently 
stored in flash memory.

 5. NVRAM (Nonvolatile RAM): NVRAM is used to store the startup configuration 
file “startup config,” which is used during system startup to configure the soft-
ware. This is due to the fact that NVRAM does not lose its content when the 
power is turned off. In other words, the router’s configuration is not erased when 
the router is reloaded.
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System 
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Fig. 2.4 Router main components
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Recall that all configuration changes are stored in the “running config” file in 
RAM.  Hence, to save the changes in the configuration in case the router is 
restarted or loses power, the “running config” must be copied to NVRAM, where 
it is stored as the “startup configuration” file.

Finally, NVRAM contains the software Configuration Register, a configurable set-
ting in Cisco IOS software that determines which image to use when booting 
the router.

 6. Interfaces: Routers are accessed and connected to the external world via the 
interfaces. There are several types of interfaces. The most common interfaces 
include:

 (a) Console (Management) Interface: Console port or interface is the manage-
ment port which is used by administrators to log on to a router directly (i.e., 
without using a network connection) via a computer with an RJ-45 or mini- 
USB connector. This is needed since there is no display device for a router. 
The console port is typically used for initial setup given the lack of initial 
network connections such as SSH or HTTPS. A terminal emulator applica-
tion (e.g., HyperTerminal or PuTTy) is required to be installed on the PC to 
connect to router. Console port connection is a way to connect to the router 
when a router cannot be accessed over the network.

 (b) Auxiliary Interface: Auxiliary port or interface allows a direct, non-network 
connection to the router, from a remote location. It uses a connector type to 
which modems can plug into, which allows an administrator from a remote 
location to access the router like a console port. Auxiliary port is used as a 
way to dial in to the router for troubleshooting purposes should regular con-
nectivity fail. Unlike the console port, the auxiliary port supports hardware 
flow control, which ensures that the receiving device receives all data before 
the sending device transmits more. In cases where the receiving device’s 
buffers become full, it can pass a message to the sender asking it to tempo-
rarily suspend transmission. This makes the auxiliary port capable of han-
dling the higher transmission speeds of a modem.

Much like the console port, the auxiliary port is also an asynchronous serial 
port with an RJ-45 interface. Similarly, a rollover cable is also used for con-
nections, using a DB-25 adapter that connects to the modem. Typically, this 
adapter is labeled “MODEM.”

 (c) USB Interface: It is used to add a USB flash drive to a router.
 (d) Serial Interfaces (Asynchronous and Synchronous): Configuring the serial 

interface allows administrators to enable applications such as wide area net-
work (WAN) access, legacy protocol transport, console server, and remote 
network management.

 (e) Ethernet Interface: Ethernet is the most common type of connection com-
puters use in a local area network (LAN). Some vendors categorize Ethernet 
ports into three areas:

• Standard/Classical Ethernet (or just Ethernet): Usual speed of Ethernet 
is 10 Mbps.

2.3 Transmission Control Protocol/Internet Protocol (TCP/IP)
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• Fast Ethernet: Fast Ethernet was introduced in 1995 with a speed of 
100  Mbps (10× faster than standard Ethernet). It was upgraded by 
improving the speed and reducing the bit transmission time. In standard 
Ethernet, a bit is transmitted in 1 s, and in Fast Ethernet it takes 0.01 μs 
for 1 bit to be transmitted. So, 100 Mbps means transferring speed of 100 
Mbits per second.

• Gigabit Ethernet: Gigabit Ethernet was introduced in 1999 with a speed 
of 1000 Mbps (10× faster than Fast Ethernet and 100× faster than classi-
cal Ethernet) and became very popular in 2010. Gigabit Ethernet maxi-
mum network limit is 70 km if single-mode fiber is used as a medium. 
Gigabit Ethernet is deployed in high-capacity backbone network links. In 
2000, Apple’s Power Mac G4 and PowerBook G4 were the first mass- 
produced personal computers featuring the 1000BASE-T connection [2]. 
It quickly became a built-in feature in many other computers.
Faster Gigabit Ethernet speeds have been introduced by vendors includ-
ing 10 Gbps and 100 Gbps, which is supported, for example, by the Cisco 
Nexus 7700 F3-Series 12-Port 100 Gigabit Ethernet module (Fig. 2.5).

Table 2.2 outlines the main functions of each of the router’s components.

2.3.4  TCP/IP Layer 1: Network Access Layer

The Network Access Layer is the first layer of the four-layer TCP/IP model. It com-
bines the Data Link and the Physical Layers of the OSI model. The Network Access 
Layer defines details of how data is physically sent through the network. This 
includes how bits are electrically or optically signaled by hardware devices that 
interface directly with a network medium, such as coaxial cable, optical fiber, radio 
links, or twisted pair copper wire. The most common protocol included in the 
Network Access Layer is Ethernet. Ethernet uses Carrier Sense Multiple Access/
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Fig. 2.5 Example of a router’s rear panel. (Source: Cisco)
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Collision Detection (CSMA/CD) method to access the media, when Ethernet oper-
ates in a shared media. Such Access Method determines how a host will place data 
on the medium.

2.4  IoT Network Level: Key Performance Characteristics

As we illustrated in Chap. 1, the IoT reference framework consists of four main 
levels: IoT Device Level (e.g., sensors and actuators), IoT Network Level (e.g., IoT 
gateways, routers, switches), IoT Application Services Platform Level (the IoT 
Platform, Chap. 7), and IoT Application Level.

The IoT Network Level is in fact the TCP/IP Layers as shown in Fig. 2.6. It 
should be noted that we have removed TCP/IP’s Application Layer to prevent over-
lap with the IoT Application Level.

In this section we will discuss the most important performance characteristics of 
IoT network elements. Such features are essential in evaluating and selecting IoT 
network devices especially IoT gateways, routers, and switches.

IoT Network Level key characteristics may be grouped into three main areas: 
end-to-end delay, packet loss, and network element throughput. Ideally, engineers 
want the IoT network to move data between any end points (or source and destina-
tion) instantaneously, without any delay or packet loss. However, the physical laws 
in the Internet constrain the amount of packets that can be transferred between end 
points per second (known as throughput), present various types of delays to transfer 
packets from source to destination, and can indeed lose packets.

Table 2.2 Main functions of the router’s component

Router 
component Main function

Volatile/
nonvolatile

CPU Executes operating system commands: initialization, routing, 
and switching functions

Nonvolatile

RAM Stores the instruction and data that CPU needs to execute 
(considered the working area of memory storage used by the 
CPU)
Stores: “running config” file, routing tables, ARP cache, and 
buffer

Volatile

ROM Contains code for basic functions to start and maintain the 
router

Nonvolatile

Flash Permanently stores the operating system (e.g., where a router 
finds and boots its IOS image)

Nonvolatile

NVRAM Stores the “startup config” file, holds configuration register 
software

Nonvolatile

Interfaces/
ports

Routers are accessed and connected to the external world via 
the interfaces

N/A

2.4 IoT Network Level: Key Performance Characteristics
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2.4.1  End-to-End Delay

End-to-end delay across the IoT network is perhaps the most essential performance 
characteristic for real-time applications especially in wide area networks (WAN) 
that connect multiple geographies. It may be defined as the amount of time (typi-
cally in fractions of seconds) for a packet to travel across the network from source 
to destination (e.g., from host A to host B as shown in Fig. 2.7). Measuring the end- 
to- end delay is not a trivial task as it typically varies from one instance to another. 
Engineers, therefore, are required to measure the delay over a specific period of 
time and report the average delay, the maximum delay, and the delay variation dur-
ing such period (known as jitter). Hence, jitter is defined as the variation in the delay 
of received packets between a pair of end points.

In general, there are several contributors to delay across the network (as shown 
in Fig. 2.7). The main ones are the following:

• Processing delay: which is defined as the time a router takes to process the packet 
header and determine where to forward the packet. It may also include the time 
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Fig. 2.6 Mapping of IoT reference framework to TCP/IP Layers
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Fig. 2.7 End-to-end delay from host A to host B with illustration at router A
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needed to check for bit-level errors in the packet (typically in the order of 
microseconds).

• Queuing delay: which is defined as the time the packet spends in router queues 
as it awaits to be transmitted onto the outgoing link. Clearly Queuing delay 
depends on the number of earlier-arriving packets in the same queue (typically in 
the order of microseconds to milliseconds).

• Transmission delay: which is defined as the time it takes to push the packet’s bits 
onto the link. Transmission delay of packet of length L bits is defined L/R where 
R is the transmission rate of a link between two devices. For example, for a 
packet of length 1000 bits and a link of speed of 100 Mbps, the delay is 0.01 ms. 
(Transmission delay is typically in the order of microseconds to milliseconds.)

• Propagation delay: which is defined as the time for a bit (of the packet) to propa-
gate from the beginning of a link (once it leaves the source router) to reach its 
destination router. Hence, Propagation delay on a given link depends on the 
physical medium of the link itself (e.g., twisted pair copper, fiber, coaxial cable) 
and is equal to the distance of the link (between two routers) divided by the 
propagation speed (e.g., speed of light). (Propagation delay is typically in the 
order of milliseconds). It should be noted that unlike Transmission delay (i.e., the 
amount of time required to push a packet out), Propagation delay is independent 
of the packet length.

Hence, the total delay (dTotal), between two end points, is the sum of the Processing 
delay (dProcess), the Queuing delay (dQueue), the Transmission delay (dTrans), and the 
Propagation delay (dProp) across utilized network elements in the path, i.e.,

 
D d d d dTotal Process Queue Trans Prop= + + +

 

End-to-end delay is typically measured using Traceroute utility (available on 
many modern operating systems) as well as vendor-specific tools (e.g., Cisco’s IP 
SLA (service-level agreement) that continuously collects data about delay, jitter, 
response time, and packet loss). What is the other utility/command that returns only 
the final roundtrip times from the destination point (see Problem 27)?

A Traceroute utility’s output displays the route taken between two end systems, 
listing all the intermediate routers across the network. For each intermediate router, 
the utility also shows the roundtrip delay (from source to the intermediate router) 
and time to live (a mechanism that limits the lifetime of the traceroutes packet). 
Other advantageous of Traceroute utility includes troubleshooting (showing the net-
work administrator bottlenecks and why connections to a destination server are 
poor) and connectivity (showing how systems are connected to each other and how 
a service provider connects to the Internet).

Figure 2.8 shows a simple example of Traceroute utility to trace a path from a 
client (connected to router A) to the server. In this case, the client enters the com-
mand “traceroute 10.1.3.2.” Traceroute utility will display four roundtrip delays, 
based on three different test packets, sent from the client’s computer to router A, 
client’s computer to router B, client’s computer to router C, and finally client’s com-
puter to the server.

2.4 IoT Network Level: Key Performance Characteristics



48

The output shows that the roundtrip delay from the client’s computer to router A 
(ingress port) is 1 ms for the first test packet, 2 ms for the second test packet, and 
1 ms for the third and final test. It should be noted that “three test packets” is a typi-
cal default value in Traceroute tool and can be adjusted as needed. Also, other 
parameters may be reported by the tool (e.g., time to live (TTL)) depending on the 
user’s tool configurations.

A# trceroute 10.1.3.2

Type escape sequence to abort. Tracing the route to 10.1.3.2

1 10.1.0.2 1 ms, 2 ms, 1 ms
2 10.1.1.2 13 ms, 14 ms, 15 ms
3 10.1.2.2 26 ms, 31 ms, 29 ms
4 10.1.3.2 41 ms, 43 ms, 44 ms

2.4.2  Packet Loss

Packet loss occurs when at least one packet of data traveling across a network fails 
to reach its destination. In general, packets are dropped and consequently lost when 
the network is congested (i.e., one of the network elements is already operating at 
full capacity and cannot keep up with arriving packets). This is due to the fact that 
both queues and links have finite capacities. Hence, a main reason for packet loss is 
link or queue congestion (i.e., a link between two devices, and its associated queues, 
is fully occupied when data arrives). Another reason for packet loss is router perfor-
mance (i.e., links and queues have adequate capacity, but the device’s CPU or mem-
ory is fully utilized and not able to process additional traffic). Less common reasons 
include faulty software deployed on the network device itself or faulty cables.

It should be noted that packet loss may not be as bad as it first seems. Many 
applications are able to gracefully handle it without impacting the end user, i.e., the 
application realizes that a packet was lost, adjusts the transfer speed, and requests 
data retransmission. This works well for file transfer and emails. However, it does 
not work well for real-time applications such as video conferencing and voice 
over IP.

10.1.0.2 10.1.1.2 10.1.2.2
A B C

10.1.3.2

Client
10.1.0.1 10.1.1.1 10.1.2.1 10.1.3.1

Server

Fig. 2.8 Traceroute example
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2.4.3  Throughput

Throughput may be defined as the maximum amount of data moved successfully 
between two end points in a given amount of time. Related measures include the 
link and device speed (how fast a link or a device can process the information) and 
response time (the amount of time to receive a response once the request is sent).

Throughput is one of the key performance measures for network and computing 
devices and is typically measured in bits per second (bps) or gigabits per second 
(Gbps) at least for larger network devices. The system throughput is typically calcu-
lated by aggregating all throughputs across end points in a network (i.e., sum of 
successful data delivered to all destination terminals in a given amount of time).

The simplest way to show how throughput is calculated is through examples. 
Assume host A is sending a data file to host B through three routers and the speed 
(e.g., maximum bandwidth) of link i is Ri as shown in Fig. 2.9. Also assume that 
each router speed (processing power) is higher than the speed of any link and no 
other host is sending data. In this example, the throughput is

 
min .R ,R ,R andR1 2 3 4( )  

Thus if R1 = R2 = R3 = 10 Mbps and R4 = 1 Mbps, the throughput is 1 Mbps.
Estimating the throughput is more complicated when multiple paths are allowed 

in the network. Figure 2.10, for instance, shows that data from host A to host B may 
take path R1, R2, R3, and R4 or R1, R5, R6, and R4.

Using the pervious example assumptions (i.e., the speed of each router is higher 
than the speed of any link and no other host is sending data) and the following new 
assumptions:

• R2 = R3 = R5 = R6 = 10 Mbps.
• R1 = R4 = 1 Mbps.
• Data is equally divided between the two paths.

The throughput for this example is still 1 Mbps.
Now, if links R1 and R4 are upgraded to 100 Mbps, i.e.,

• R2 = R3 = R5 = R6 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the two paths.

Then, the throughput will be 20 Mbps (see Problem 25).

R1 R2 R3 R4

Host A Host B

Fig. 2.9 Throughput for a file transfer from host A to host B with a single route
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2.5  Internet Protocol Suite

As we mentioned earlier, TCP/IP provides end-to-end connectivity specifying how 
data should be packetized, addressed, transmitted, routed, and received at the desti-
nation. Table 2.3 lists top (partial list) protocols at each layer.

The objective of this chapter is not to provide an exhaustive list of the TCP/IP 
protocols but rather to provide a summary of the key protocols that are essential 
for IoT.

The remainder of this chapter focuses on the main Internet Layer address proto-
cols, namely, IP version 4 and IP version 6. It then describes the main Internet rout-
ing protocols, namely, OSPF, EIRGP, and BGP.

2.5.1  IoT Network Level: Addressing

As we mentioned earlier in this chapter, Internet Protocol (IP) provides the main 
internetwork routing as well as error reporting and fragmentation and reassembly of 
information units called datagrams for transmission over networks with different 
maximum data unit sizes. IP addresses are globally unique numbers assigned by the 
Network Information Center. Globally unique addresses permit IP networks any-
where in the world to communicate with each other. Most of existing networks 
today use IP version 4 (IPv4). Advanced networks use IP version 6 (IPv6).

R5 
R6

R1 R2 R3 R4

Host A Host B

Fig. 2.10 Throughput for a file transfer from host A to host B with multiple routes

Table 2.3 Examples of Internet protocol suite (partial list)

TCP/IP layer Top protocols

Application layer BGP, DHCP, DNS, HTTP, IMAP, LDAP, MGCP, POP, ONC/RPC, RTP, 
RTSP, RIP, SIP, SNMP, SSH, Telnet, SSL, SMTP (Email), XMPP

Transport layer TCP, UDP, DCCP, SCTP, RSVP
Internet layer IPv4, IPv6, ICMP, ICMPv6, IGMP, IPSec, OSPF, EIGRP
Network Interface 
layer

ARP, PPP, MAC

2 The Internet in IoT
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2.5.1.1  IP Version 4

IPv4 addresses are normally expressed in dotted-decimal format, with four numbers 
separated by periods, such as 192.168.10.10. It consists of 4-octets (32-bit) number 
that uniquely identifies a specific TCP/IP (or IoT) network and a host (computer, 
printer, router, IP-enabled sensor, any device requiring a network interface card) 
within the identified network. Hence, an IPv4 address consists of two main parts: 
the network address part and the host address part. A subnet mask is used to divide 
an IP address into these two parts. It is used by the TCP/IP protocol to determine 
whether a host is on the local subnet or on a remote network.

IPv4 Subnet Mask

It is important to recall that in TCP/IP (or IoT) networks, the routers that pass pack-
ets of data between networks do not know the exact location of a host for which a 
packet of information is destined. Routers only know what network the host is a 
member of and use information stored in their route table to determine how to get 
the packet to the destination host’s network. After the packet is delivered to the des-
tination’s network, the packet is delivered to the appropriate host. For this process to 
work, an IP address is divided into two parts: network address and host address.

To better understand how IP addresses and subnet masks work, IP addresses 
should be examined in binary notation. For example, the dotted- decimal IP address 
192.168.10.8 is (in binary notation) the 32 bit number 11000000.10101000.000010 
10.00001000. The decimal numbers separated by periods are the octets converted 
from binary to decimal notation.

The first part of an IP address is used as a network address and the last part as a 
host address. If you take the example 192.168.10.8 and divide it into these two parts, 
you get the following: 192.168.10.0 network address and .8 host address or 
192.168.10.0 network address and 0.0.0.8 host address.

In TCP/IP, the parts of the IP address that are used as the network and host 
addresses are not fixed, so the network and host addresses above cannot be deter-
mined unless you have more information. This information is supplied in another 
32-bit number called a subnet mask. In the above example, the subnet mask is 
255.255.255.0. It is not obvious what this number means unless you know that 
255 in binary notation equals 11111111; so, the subnet mask is

 11111111 11111111 11111111 0000000. . .  

Lining up the IP address and the subnet mask together, the network and host por-
tions of the address can be separated:

 
11000000 10101000 00001010 10001000 192 168 10 8. . . . . .− −IPaddress(( )  

 
11111111 11111111 11111111 00000000 255 255 25. . . . .− −Subnet mask 55 0.( )  

2.5 Internet Protocol Suite
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The first 24 bits (the number of ones in the subnet mask) are identified as the 
network address, with the last 8 bits (the number of remaining zeros in the subnet 
mask) identified as the host address. This gives you the following:

 
11000000 10101000 00001010 00000000 192 16. . . .− −Network address 88 10 0. .( )  

 
00000000 00000000 00000000 00001000 000 000 0. . . . .− −Host address 000 8.( )  

IPv4 Classes

Five classes (A, B, C, D, and E) have been established to identify the network and 
host parts. All the five classes are identified by the first octet of IP address. Classes 
A, B, and C are used in actual networks. Class D is reserved for multicasting (data 
is not destined for a particular host; hence there is no need to extract host address 
from the IP address). Class E is reserved for experimental purposes.

Figure 2.11 shows IPv4 address formats for classes A, B, and C. Class A net-
works provide only 8 bits for the network address field and 24 bits for host address. 
It is intended mainly for use with very large networks with large number of hosts. 
The first bit of the first octet is always set to 0 (zero). Thus the first octet ranges from 
1 to 127, i.e., 00000001–011111111. Class A addresses only include IP starting 
from 1.x.x.x to 126.x.x.x only. The IP range 127.x.x.x is reserved for loopback IP 
addresses. The default subnet mask for class A IP address is 255.0.0.0 which implies 
that class A addressing can have 126 networks (27–2) and 16,777,214 hosts (224–2).

Class B networks allocate 16 bits for the network address field and 16 bits for the 
host address filed. An IP address which belongs to class B has the first two bits in 
the first octet set to 10, i.e., 10000000–10111111 or 128–191 in decimal. Class B IP 

8 Bits 8 Bits 8 Bits 8 Bits

0

Network Bits Host Bits

10

Network Bits Host Bits

110

Network Bits Host Bits

Class A

Class B

Class C

Fig. 2.11 IPv4 address formats for classes A, B, and C
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addresses range from 128.0.x.x to 191.255.x.x. The default subnet mask for class B 
is 255.255.x.x. Class B has 16,384 (214) network addresses and 65,534 (216–2) host 
addresses.

Class C networks allocate 24 bits for the network address field only 8 bits for the 
host field. Hence, the number of hosts per network may be a limiting factor. The first 
octet of Class C IP address has its first 3 bits set to 110, that is: 1110 0000–1110 
1111 or 224–239 in decimal.

Class C IP addresses range from 192.0.0.x to 223.255.255.x. The default subnet 
mask for Class C is 255.255.255.x. Class C gives 2,097,152 (221) Network addresses 
and 254 (28–2) Host addresses.

Finally, IP networks may also be divided into smaller units called subnetworks 
or subnets for short. Subnets provide great flexibility for network administrators. 
For instance, assume that a network has been assigned a Class A address and all the 
nodes on the network use a Class A address. Further assume that the dotted-decimal 
representation of this network’s address is 28.0.0.0. The network administrator can 
subdivide the network using sub-netting by “borrowing” bits from the host portion 
of the address and using them as a subnet field.

2.5.1.2  IP Version 6

IPv4 has room for about 4.3 billion addresses, which is not nearly enough for the 
world’s people, let alone IoT with a forecast of 20 billion devices by 2020. In 1998, 
the Internet Engineering Task Force (IETF) had formalized the successor protocol: 
IPv6. IPv6 uses a 128-bit address, allowing 2128 or 340 trillion trillion trillion 
(3.4 × 1038) addresses. This translates to about 667 × 1021 (667 sextillion) addresses 
per square meter in earth. Version 4 and version 6 protocols are not designed to be 
interoperable, complicating the transition to IPv6. However, several IPv6 transition 
mechanisms have been devised to permit communication between IPv4 and IPv6 hosts.

IPv6 delivers other benefits in addition to a larger addressing space. For example, 
permitting hierarchical address allocation techniques that limit the expansion of 
routing tables simplified and expanded multicast addressing and service delivery 
optimization. Device mobility, security, and configuration aspects have been con-
sidered in the design of IPv6.

 1. IPv6 Addresses Are Broadly Classified Into Three Categories:

 (a) Unicast addresses: A unicast address acts as an identifier for a single 
interface.

An IPv6 packet sent to a unicast address is delivered to the interface identified 
by that address.

 (b) Multicast addresses: A multicast address acts as an identifier for a group/set 
of interfaces that may belong to different nodes. An IPv6 packet delivered to 
a multicast address is delivered to the multiple interfaces.

 (c) Anycast addresses: Anycast addresses act as identifiers for a set of interfaces 
that may belong to different nodes. An IPv6 packet destined for an anycast 
address is delivered to one of the interfaces identified by the address.

2.5 Internet Protocol Suite
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2.5.2  IPv6 Address Notation

The IPv6 address is 128 bits long. It is divided into blocks of 16 bits. Each 16-bit 
block is then converted to a 4-digit hexadecimal number, separated by colons. The 
resulting representation is called colon-hexadecimal. This is in contrast to the 32-bit 
IPv4 address represented in dotted-decimal format, divided along 8-bit boundaries, 
and then converted to its decimal equivalent, separated by periods.

 1. IPV6 Example

 (a) Binary Form

• 01110001110110100000000011010011000000000000000000101 
11100111011

• 000000101010101000000000111111111111111000101000100 
1110001011011

 (b) 16-Bit Boundaries Form

• 0111000111011010 0000000011010011 0000000000000000 
0010111100111011

• 0000001010101010 0000000011111111 1111111000101000 
1001110001011011

 (c) 16-Bit Block Hexadecimal and Delimited with Colons Form

• 71DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5B.
• i.e., (0111000111011010)2 = (71DA)16, (0000000011010011)2 = (D3)16, 

and so on.

 (d) Final Form (16-Bit Block Hexadecimal and Delimited with Colons Form, 
Simplified by Removing the Leading Zeros).

• 71DA:D3:0:2F3B:2AA:FF:FE28:9C5B

2.5.3  IoT Network Level: Routing

Routers use routing tables to communicate: send and receive packets among them-
selves. TCP/IP routing specifies that IP packets travel through an internetwork one 
router hop at a time. Hence, the entire route is not known at the beginning of the 
journey. Instead, at each stop, the next router hop is determined by matching the 
destination address within the packet with an entry in the current router’s routing 
table using internal information.

Before describing the main routing protocols in the Internet today, it is important 
to introduce a few fundamental definitions.
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• Static Routes: Static routes define specific paths that are manually configured 
between two routers. Static routes must be manually updated when network 
changes occur. Static routes use should be limited to simple networks with pre-
dicted traffic behavior.

• Dynamic Routes: Dynamic routing requires the software in the routing devices to 
calculate routes. Dynamic routing algorithms adjust to changes in the network 
and repeatedly select best routes. Internet-based routing protocols are dynamic in 
nature. Routing tables should be updated automatically to capture changes in the 
network (e.g., link just went down, link that was down is no up, link speed 
update).

• Autonomous System (AS): It is a network or a collection of networks that are 
managed by a single entity or organization (e.g., Department Network). An AS 
may have multiple subnetworks with combined routing logic and common rout-
ing policies. Routers used for information exchange within AS are called interior 
routers. They use a variety of interior routing protocols such as OSPF and 
EIGRP. Routers that move information between autonomous systems are called 
exterior routers, and they use the exterior gateway protocol such as Border 
Gateway Protocol (BGP). Interior routing protocols are used to update the rout-
ing tables of routers within an AS. In contrast, exterior routing protocols are used 
to update the routing tables of routers that belong to different AS. Figure 2.12 
shows an illustration of two autonomous systems connected by BGP external 
routing protocol.

• Routing Table: Routing tables basically consist of destination address and next 
hop pairs. Figure 2.13 shows an example of a typical Cisco router routing table 
using the command “show ip route.” It lists the set of comprehensive codes 
including various routing schemes. Figure 2.13 also shows that the first entry is 
interpreted as meaning “to get to network 29.1.0.0 (subnet 1 on network 24), the 
next stop is the node at address 51.29.23.12.” We will refer to this figure as we 
introduce various routing schemes.

• Distance Vector Routing: A vector in distance vector routing contains both dis-
tance and direction to determine the path to remote networks using hop count as 
the metric. A hop count is defined as the number of hops to destination router or 
network (e.g., if there are two routers between a source router and destination 
router, the number of hops will be three). All neighbor routers will send informa-
tion about their connectivity to their neighbors indicating how far other routers 
are from them. Hence, in distance vector routing, all routers exchange informa-
tion only with their neighbors (not with all routers). One of the weaknesses of 
distance vector protocols is convergence time, which is the time it takes for rout-
ing information changes to propagate through all the topology.

• Link-State Routing: Contrast to distance vector, link-state routing requires all 
routers to know about the paths reachable by all other routers in the network. In 
this case, link-state data is flooded to the entire router in AS. Link-state routing 
requires more memory and processor power than distance vector routing. Also, 
link-state routing can degrade the network performance during the initial discov-
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ery process, as it requires flooding the entire network with link-state advertise-
ments (LSAs).

2.5.3.1  Interior Routing Protocols

Interior gateway protocols (IGPs) operate within the confines of autonomous sys-
tems. We will next describe only the key protocols that are currently popular in 
TCP/IP networks. For additional information, the reader is encouraged to peruse the 
references at the end of the chapter.

 1. Routing Information Protocol (RIP): RIP is perhaps the oldest interior distance 
vector protocol. It was developed by Xerox Corporation in the early 1980s. It 
uses hop count (maximum is 15) and maintains times to detect failed links. RIP 
has a few serious shortcomings: it ignores differences in line speed, line utiliza-
tion, and other metrics. More significantly, RIP is very slow to converge for 
larger networks, consumes too much bandwidth to update the routing tables, and 
can take a long time to detect routing loops.

 2. Enhanced Interior Gateway Routing Protocol (EIGRP): Cisco was the first com-
pany to solve RIP’s limitations by introducing the interior gateway routing pro-
tocol (IGRP) first in the mid-1980s. IGRP allows the use of bandwidth and delay 
metrics to determine the best path. It also converges faster than RIP by prevent-
ing sharing hop counts and avoiding potential routing loops caused by disagree-
ment over the next routing hop to be taken.

Cisco then enhanced IGRP to handle larger networks. The enhanced IGRP (EIGRP) 
combines the ease of use of traditional distance vector routing protocols with the 
fast rerouting capabilities of the newer link-state routing protocols. It consumes 
significantly less bandwidth than IGRP because it is able to limit the exchange 
of routing information to include only the changed information.

 3. Open Shortest Path First (OSPF): Open Shortest Path First (OSPF) was devel-
oped by the Internet Engineering Task Force (IETF) in RFC-2328 as a replace-
ment for RIP.  OSPF is based on work started by John McQuillan in the late 
1970s and continued by Radia Perlman and Digital Equipment Corporation in 
the mid-1980s. OSPF is widely used as the Interior Router protocol in TCP/IP 
networks. OSPF is a link-state protocol, so routers inside an AS only broadcast 
their link-states to all the other routers. It uses configurable least cost parameters 
including delay, data rate/link speed, cost, and other parameters. Each router 
maintains a database topology of the AS to which it belongs. In OSPF every 
router calculates the least cost path to all destination networks using Dijkstra’s 
algorithm. Only the next hop to the destination is stored in the routing table.

OSPF maintains three separate tables: neighbor table, link-state database table, and 
routing table.

 (a) Neighbor Table: Neighbor table uses the so-called Hello Protocol to build 
neighbor relationship. The relationship is used to exchange information with 
all neighbors for the purpose of building the link-state DB table. When a 
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new router joins the network, it sends a “Hello” message periodically to all 
neighbors (typically every few seconds). All neighbors will also send Hello 
messages. The messages maintain the state of the neighbor tables.

 (b) Link-State DB Table: Once the neighbor tables are built, link-state advertise-
ments (LSAs) will be sent out to all neighbors. LSAs are packets that con-
tain information about networks that are directly connected to the router that 
is advertising. Neighboring routers will receive the LSAs and add the infor-
mation to the link-state DB. They then increment the sequence number and 
forward LSAs to their neighbors. Hence, LSAs are prorogated from routers 
to all the neighbors with advertised information about all networks con-
nected to them. This is considered the key to dynamical routing.

 (c) Routing Table: Once the link-state DB tables are built, Dijkstra’s algorithm 
(sometimes called the Shortest Path First Algorithm) is used to build the 
routing tables.

 4. Integrated Intermediate System to Intermediate System (IS-IS): Integrated IS-IS 
is similar in many ways to OSPF. It can operate over a variety of subnetworks, 
including broadcast LANs, WANs, and point-to-point links. IS-IS was also 
developed by IETF as an Internet Standard in RFC 1142.

2.5.3.2  Exterior Routing Protocols

Exterior Routing Protocols provide routing between autonomous systems. The two 
most popular Exterior Routing Protocols in the TCP/IP are EGP and BGP.

 1. Exterior Gateway Protocol (EGP): EGP was the first exterior routing protocol 
that provided dynamic connectivity between autonomous systems. It assumes 
that all autonomous systems are connected in a tree topology. This assumption is 
no longer true and made EGP obsolete.

 2. Border Gateway Protocol (BGP): BGP is considered the most important and 
widespread exterior routing protocol. Like EGP, BGP provides dynamic con-
nectivity between autonomous systems acting as the Internet core routers. BGP 
was designed to prevent routing loops in arbitrary topologies by preventing rout-
ers from importing any routes that contain themselves in the autonomous sys-
tem’s path. BGP also allows policy-based route selection based on weight (set 
locally on the router), local preference (indicates which route has local prefer-
ence and BGP selects the one with the highest preference), network or aggregate 
(chooses the path that was originated locally via an aggregate or a network), and 
shortest AS Path (used by BGP only in case it detects two similar paths with 
nearly the same local preference, weight and locally originated or aggregate 
addresses) just to name a few.

BGP’s routing table contains a list of known routers, the addresses they can reach, 
and a cost metric associated with the path to each router so that the best available 
route is chosen. BGP is a layer 4 protocol that sits on top of TCP. It is simpler 
than OSPF, because it does not have to worry about functions that TCP addresses. 
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The latest revision of BGP, BGP4 (based on RFC4271), was designed to handle 
the scaling problems of the growing Internet.

2.6  Summary

This chapter focused on the “Internet” in the “Internet of Things.” It started with an 
overview of the well-known Open System Interconnection Model Seven Layers 
along with the top devices and protocols. It showed how each layer divides the data 
it receives from end-user applications or from layer above it into protocol data units 
(PDUs) and then adds additional information to each PDU for tracking. This pro-
cess is called the Encapsulation. Examples of PDUs include Segments on the 
Transport Layer, Packets on the Network Layer, and Frames on the Data Link Layer. 
PDUs are passed down through the stack of layers until they can be transmitted over 
the Physical Layer. The OSI model ensures that both users speak the same language 
on the same layer allowing sending and receiving layers to virtually communicate. 
Data passed upward is decapsulated, with the decapsulation process, before being 
passed further up to the destination server, user, or application.

Next, it described the TCP/IP model which is the basis for the Internet. The TCP/
IP protocol has two big advantages in comparison with earlier network protocols: 
reliability and flexibility to expand. In fact, the TCP/IP protocol was designed for 
the US Army addressing the reliability requirement (resist breakdowns of commu-
nication lines in times of war). The remarkable growth of Internet applications can 
be attributed to its fixable expandability model.

The chapter then introduced the key IoT Network Level characteristics that 
included end-to-end delay, packet loss, and network element throughput. Such char-
acteristics are vital for network design and vendor selection. The chapter next com-
pared IP version 4 with IP version 6. It showed the limitation of IPv4, especially for 
the expected 50 billion devices for IoT. IPv4 has room for about 4.3 billion addresses, 
whereas IPv6, with a 128-bit address, has room for 2128 or 340 trillion trillion trillion 
(3.4 × 1038) addresses. Finally detailed description of IoT Network Level routing 
was described and compared with classical routing protocols. It was mentioned that 
routing tables are used in routers to send and receive packets. Another key feature 
of TCP/IP routing is the fact that that IP packets travel through an internetwork one 
router hop at a time thus the entire route is not known at the beginning of the journey.

Problems and Exercises

 1. Ethernet and Point-to-Point Protocol (PPP) are two examples of data link pro-
tocols listed in this chapter. Name two other data link protocols.

 2. Provide an example of Session Layer protocol.
 3. In a table format, compare the bandwidth, distance, interference rating, cost, 

and security of (a) twisted pair, (b) coaxial cabling, and (c) fiber optical cabling.
 4. (a) What are the main components of a router? (b) Which element is considered 

the most essential? (c) Why?
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 5. What is the main function of NVRAM? Why is such function important to 
operate a router?

 6. How do network administrators guarantee that changes in the configuration are 
not lost in case the router is restarted or loses power?

 7. What is a disaster recovery function in a router? Which router’s sub-component 
contains such function?

 8. Many argue that routers are special computers but built to handle internetwork 
traffic. List three main differences between routers and personal computers.

 9. There are no input devices for router like a monitor, a keyboard, or a mouse. 
How does a network administrator communicate with the router? List all pos-
sible scenarios. What are the main differences between such interfaces?

 10. How many IPv4 addresses are available? Justify your answer.
 11. What is the ratio of the number of addresses in IPv6 compared to IPv4?
 12. IPv6 uses a 128-bit address, allowing 2128 addresses. In decimal, how many 

IPv6 addresses exist? How many IPv6 addresses will each human have? Why 
do we need billions of addresses for each human being?

 13. How many IPv6 address will be available on each square meter of earth?
 14. What are the major differences between interior and exterior routing protocols?
 15. What is distance vector protocol? Why is it called a vector? Where is it used?
 16. When would you use static routing and when would use dynamic routing? Why?
 17. Most IP networks use dynamic routing to communicate between routers but 

may have one or two static routes. Why would you use static routes?
 18. We have mentioned that in TCP/IP networks, the entire route is not known at 

the beginning of the journey. Instead, at each stop, the next router hop is deter-
mined by matching the destination address within the packet with an entry in 
the current router’s routing table using internal information. IP does not provide 
for error reporting back to the source when routing anomalies occur.

 (a) Which Internet Protocol provides error reporting?
 (b) List two other tasks that this protocol provides?

 19. Why is EGP considered to be obsolete for the current Internet?
 20. In a table, compare the speed and distance Standard Ethernet, Fast Ethernet, and 

Giga Ethernet. Why is Ethernet connection limited to 100 m?
 21. Why the Internet does require both TCP and IP protocols?
 22. Are IPv4 and IPv6 protocols designed to be interoperable? How would an 

enterprise transition from IPv4 to IPv6?
 23. What are the four different reasons for packet loss? List remediation for 

each reason.
 24. List two factors that can affect throughput of a communication system.
 25. Figure 2.10 (in Sect. 2.4.3) stated the throughput between host A and host B is 

20 Mbps with the assumptions:

• R2 = R3 = R5 = R6 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the two paths.

How did the authors arrive at 20 Mbps?
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 26. Assuming host A is transferring a large file to host B. What is the throughput 
between host A and host B for the network shown below? 

 (a) Assumptions:

• The speed of each router is higher than the speed of any link in the 
network.

• No other host is sending data.
• R2 = R3 = R5 = R6 = R7 = R8 = 10 Mbps.
• R1 = R4 = 1 Mbps.
• Data is equally divided between the three paths.

 (b) Assumptions:

• The speed of each router is higher than the speed of any link in the 
network.

• No other host is sending data.
• R2 = R3 = R5 = R6 = R7 = R8 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the three paths.

 (c) Assumptions:

• The speed of each router is 1 Mbps.
• No other host is sending data.
• R2 = R3 = R5 = R6 = R7 = R8 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the three paths.

 27. What is Traceroute? What does it typically report? What are the main advanta-
geous of trace route? What is the main difference between Traceroute and Ping?

 28. For the network shown below, assume the network administer is interested in 
measuring the end-to-end delay from router A to the server.

 (a) What is the Traceroute command? Hence, Traceroute command is sent 
from router A directly (i.e., via the shown connected terminal).
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AS1

Network

BGP

Network Network

AS2

Fig. 2.12 Example of 
autonomous systems

Codes: C - connected,
S - static,
I - IGRP,
R - RIP,
M - mobile,
B - BGP
D - EIGRP,
EX - EIGRP external,
O - OSPF,
IA - OSPF inter area
N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2
E1 - OSPF external type 1,
E2 - OSPF external type 2,
E - EGP,
i - IS-IS,
su - IS-IS summary,
L1 - IS-IS level-1,
L2 - IS-IS level-2
ia - IS-IS inter area,
* - candidate default,
U - per-user static route,
o - ODR,
P - periodic downloaded static route

Gateway of last resort is not set

24.0.0.0/16 is subnetted, 1 subnets
29.1.0.0 [110/65] via 51.29.23.12, 08:01:39, FastEthernet0/1
51.0.0.0/24 is subnetted, 1 subnets C
51.34.23.0 is directly connected, FastEthernet0/1

Fig. 2.13 Example of a routing table
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 (b) Which device will send their delays? 

 29. What is time to live command? Why is it needed?
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Chapter 3
The Things in IoT: Sensors and Actuators

3.1  Introduction

The Internet of Things (IoT) was defined in Chap. 1 as the intersection of the 
Internet, Things, and Data. Processes and standards were also added for a more 
comprehensive IoT definition. Things were defined as anything and everything 
stretching from appliances to buildings to cars to people to animals, to trees, to 
plants, etc.

Chapter 1 further categorized IoT into four main levels: IoT devices, IoT net-
work, IoT services platform, and IoT applications. Each level has its own medium 
and protocols.

This chapter first defines the “Things” in IoT and then describes the key require-
ments for things to be able communicate over the Internet. The two main require-
ments for “Things” in IoT are sensing and addressing. Sensing is essential to identify 
and collect key parameters for analysis, and addressing is necessary to uniquely 
identify things over the Internet. While sensors are very crucial in collecting key 
information to monitor and diagnose the “Things,” they typically lack the ability to 
control or repair such “Things” when overhaul is needed. This raise the question: 
why spend money to sense “Things” if they cannot be controlled? Actuators have 
been introduced to address this important question in IoT. With this in mind, the key 
requirements for “Things” in IoT now consist of sensing, actuating, and unique 
identification as shown in Figs. 3.1 and 3.2. It should be noted that sensing and 
actuating capabilities may be supported on the same device.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_3#DOI
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3.2  IoT Sensors

3.2.1  Definition

A sensor is a device (typically electronic) that detects events or changes in its physi-
cal environment (e.g., temperature, sound, heat, pressure, flow, magnetism, motion, 
chemical and biochemical parameters) and provides a corresponding output. Most 
sensors take analog inputs and deliver digital, often electrical, outputs. Because the 

Fig. 3.1 “Thing” in IoT: definition view

Fig. 3.2 “Things” in IoT: IoT level view
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sensing element, on its own, typically produces analog output, an analog-to-digital 
converter is often required.

Sensors are comparable to the human five senses. They form the front end of the 
IoT devices, i.e., “Things.” Sensors are very crucial in every IoT vertical (e.g., smart 
cities, smart grid, healthcare, agriculture, security and environment monitoring, and 
smart parking) as they bridge the world’s physical objects with the Internet.

Sensors may be very simple with a core function to collect and transmit data or 
smart by providing additional functionality to filter duplicate data and only notify 
the IoT gateway when very specific conditions are met. This requires some pro-
graming logic to be present on the sensor itself. In this case, an IoT sensing device 
requires at least three elements—sensor(s), microcontrollers, and connectivity to 
send filtered data to IoT gateway or other systems. Figure 3.3 shows the components 
for smart sensor.

Sensors may collect large amounts of data at any time and from any location and 
transmit it over an IoT network in real time. The data is then analyzed and possibly 
correlated with other business intelligence databases to provide business insight or 
enhanced awareness of the environment, bringing onward opportunities and/or 
gains in efficiency and productivity.

3.2.2  Why Sensors

As we mentioned above, a sensor’s main purpose is collecting data from its sur-
rounding environment and providing output to its adjoining devices (e.g., gateways, 
actuators) or applications. Sensors typically collect data using physical interfaces 
(inputs) that sense the environment and then convert input signals into electrical 

Electrical Signal

IoT 
Gateway

Transceiver
(Data Transmission)

Microcontroller
(Data Processing)

Sensing Element
(Data Collection)

Physical Signal

Environment

Fig. 3.3 Components of 
smart sensors
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signals (outputs) that are understood by the communication and computing devices. 
Output signals are then processed by the gateways and/or by applications of the IoT 
Platform. In some instances, sensors’ outputs are processed directly by a light- 
weight application.

3.2.3  Sensor Types

There are many types of proprietary and nonproprietary sensors. The current IoT 
trend is to move away from proprietary and closed systems and embrace IP-based 
sensor networks. This allows native connectivity between wireless sensor networks 
and the Internet, enabling smart objects to participate in IoT. IP-based sensor net-
works require each device to be uniquely identifiable with a unique IP address so 
that it can be easily identifiable over a large network. Building an all-IP infrastruc-
ture from scratch, however, would be difficult because many different sensor and 
actuator technologies (both wired and wireless) have already been deployed over 
the years.

There are many different types of sensors across various technologies. The most 
common of which include:

 1. Temperature Sensors: Temperature is perhaps the most commonly measured 
conservational quantity. This is anticipated since most physical, electronic, 
chemical, mechanical, and biological systems are affected by temperature. 
There are four types of temperature sensors:

 (a) Thermocouple Sensors: A thermocouple is a device consisting of two dif-
ferent and dissimilar conductors in contact. It produces a voltage as a result 
of the thermoelectric effect. Thermocouple sensor is made by joining two 
dissimilar metals at one end.

 (b) Resistance Temperature Detector (RTD) Sensors: RTDs are temperature 
sensing devices whose resistance changes with temperature. They have 
been used for many years to measure temperature in laboratory and indus-
trial processes and have developed a reputation for accuracy, repeatability, 
and stability.

 (c) Thermistors: Similar to the RTD, the thermistor is a temperature sensing 
device whose resistance changes with temperature. Thermistors, however, 

Fig. 3.4 Examples of 
temperature sensors and 
applications

3 The Things in IoT: Sensors and Actuators



67

are made from semiconductor materials. Resistance is determined in the 
same manner as the RTD, but thermistors exhibit a highly nonlinear resis-
tance vs. temperature curve.

 (d) Semiconductor Sensors: They are classified into different types like voltage 
output, current output, digital output, resistance output silicon, and diode 
temperature sensors. Modern semiconductor temperature sensors offer 
high accuracy and high linearity over an operating range of about 55 °C to 
+150 °C (−58 to 302 °F). They can also include signal processing circuitry 
within the same package as the sensor, thereby avoiding the need to add 
compensation circuits. Figure 3.4 shows examples of temperature sensor.

 2. Pressure Sensors: Pressure sensors are used to measure the pressure of gases or 
liquids including water level, flow, speed, and altitude. Practical examples 
include sensors for pumps and compressors, hydraulic systems, and refrigera-
tors. A pressure sensor typically acts as a transducer where it generates a signal 
as a function of the pressure imposed. Hence, pressure sensors are also called 
pressure transducers, pressure transmitters, and pressure senders, among 
other names.

Touchscreen smartphones, tablets, and computers come with various pres-
sure sensors. Whenever slight pressure is applied on the touch screen through a 
finger, tiny pressure sensors (typically multiple sensors located at the corners of 
the screen; see Fig. 3.5) determine where exactly pressure is applied and conse-
quently generate an output signal that informs the processor. Pressure sensors 
have also been widely used in automotive applications to measure fluid level, 
airbag, and antilock braking system, in biomedical applications to sense blood 
pressure, in aviation to maintain a balance between the atmospheric pressure 
and the control systems of the airplanes, and in submarines to estimate depth 
and ensure proper operation of electronic systems and other components. 
Figure 3.5 shows examples of pressure sensors.

 3. Flow Sensors: Flow sensors are used to detect and record the rate of fluid flow 
in a pipe or a system. They are also used to measure the flow/transfer of heat 
caused by the moving medium. Sensing and measuring the flow are critical for 
many applications ranging from bereave machine to more serious applications 
such as flow monitoring for high-purity acids.

Fig. 3.5 Examples of 
pressure sensors. (Source: 
Force Sensing & Fitbit)
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A good example about the importance of flow sensing and monitoring is the 
water crisis in Flint, Michigan, USA, which started in April 2014 and resulted 
in criminal charges filed against three people in regard to the crisis by Michigan 
Attorney General in April 2016.

Flint basically changed its water source from treated Detroit Water that was 
sourced from the great lakes and the Detroit River to the Flint River. Officials 
basically had failed to detect a very high lead contamination creating a serious 
public health danger. The acidic Flint River water caused lead from aging pipes 
to leak into the water supply, causing extremely elevated levels of the heavy 
metal. Thousands of children were exposed to drinking water with very high 
levels of lead, and many experienced health problems (Fig. 3.6).

 4. Level Sensors: Level sensors are used to measure the level of fluids continu-
ously or at point values. The element to be measured can be inside a container 
(Fig. 3.7) or can be in its natural form such as a well in an oil rig.

There are many uses for level sensors. Ultrasonic level sensors, for instance, 
are used for non-contact level sensing of highly viscous liquids and even bulk 
solids. They are also widely used in water treatment applications for pump con-
trol and open-channel flow measurement. Another example is the capacitance 
level sensors to measure the presence of a variety of solids and liquids using 
radio-frequency signals in the capacitance circuit.

Fig. 3.6 Examples of flow 
sensor

Fig. 3.7 Examples of level 
sensors with Wi-Fi propane 
remote monitoring. 
(Source: Tank Utility)
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 5. Imaging Sensors: Imaging sensors are sophisticated sensors used in digital 
cameras, medical imaging machines, and night vision equipment. They are uti-
lized to measure image information by capturing and then converting variable 
attenuation of waves into signals (Fig. 3.8).

 6. Noise Sensors: High noise can have damaging effects on humans (e.g., cardio-
vascular) as well as animals (e.g., hearing loss). Such noise is often caused by 
machines, airplanes, trains, construction, and loud music especially in 
closed spaces.

Many government agencies have started installing noise sensors to measure 
noise pollutions or the so-called noise disturbance (excessive noise that may 
harm humans or animals).

Ambient noise sensors continuously monitor noise levels in surrounding 
environments. When the noise level changes, they send electronic signal to an 
overall ambient noise system to take action. Such action may be an automatic 
action (e.g., adjust music level) or a simple notification to authorities.

 7. Air Pollution Sensors: Many governments have established agencies to monitor 
and control the air quality in major cities. For instance, the USA has established 
the EPA (Environmental Protection Agency), in 1970, with a mission to protect 
Americans from significant health risks by providing accurate environmental 
information to its citizens.

Air pollution sensors detect and monitor the presence of air pollution in the 
surrounding environment. They focus on five main components: ozone, particu-
late matter, carbon monoxide, sulfur dioxide, and nitrous oxide.

 8. Proximity and Displacement Sensors: Proximity sensors detect the presence or 
absence of objects using electromagnetic fields, light, or sound. There are many 
types, each suited to specific applications and environments:

 (a) Inductive Sensors: Used for close-range detection of ferrous material.
 (b) Capacitive Sensors: Used for close-range detection of nonferrous material.
 (c) Photoelectric Sensors: Used for long-range target detection.
 (d) Ultrasonic Sensors: Used for long-range detection of targets with difficult 

surface (Table 3.1).

 9. Infrared Sensors: Infrared sensors are used to track an object’s movement. They 
produce and receive infrared waves in the form of heat.

Fig. 3.8 Examples of imaging sensors. (Source: e2v & DGDL)
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 10. Moisture and Humidity Sensors: Moisture and humidity sensors (sometimes 
referred to as hygrometer sensors) are used to measure and report the relative 
humidity in the air. They use capacitive measurement by relying on electrical 
capacitance.

 11. Speed Sensors: Speed sensors are commonly used to detect the speed of trans-
port vehicles. Examples include wheel speed sensors, speedometers, Doppler 
radar, and laser surface velocimeter.

There are so many other types of sensors. Examples include acceleration sensors, 
biosensors, gas and chemical sensors, mass sensor, tilt sensors, and force sensors.

3.2.4  Sensor Characteristics

Most IoT applications require smaller and smarter sensors with advanced function-
ality to collect more data, low-power processors, longer battery life, faster response 
time, and shorter time to market. Sensors are expected to be dynamic in their natural 
surroundings with embedded ability to collect real-time data.

In general, sensors can be either self-directed (autonomous) where they work on 
their own once they are installed or user-controlled where collection conditions are 
preprogrammed by the user depending on their needs. Finally, sensors should also 
have the capability to send the collected data (or a subset of it) to the appropriate 
system via the IoT gateway as we illustrated in Fig. 3.2.

IoT sensors are expected to have the following characteristics:

 1. Data Filtering: A sensor’s core function is the ability to collect and send data to 
the IoT gateway or other appropriate systems. Sensors are not expected to per-
form deep analytical functions. However, simple filtering techniques may be 
required. Onboard data (or signal) processing microcontroller (as shown in 
Fig.  3.3) makes a smart sensor smarter. The microcontroller filters the data/
signals before transmission to the IoT gateway or control network. It basically 
removes duplicate or unwanted data or noise before transferring the data.

As we mentioned in Sect. 3.2.3, non-autonomous sensors are custom- 
programmed to produce alerts automatically when certain conditions are met 

Table 3.1 Examples of proximity sensor types

Sensor 
technology

Sensing range 
(mm) Main use

Inductive 4–40 Ferrous metal (e.g., iron, aluminum, copper) close-range 
detection

Capacitive 3–60 Nonferrous material (e.g., wood, plastic liquid) close-range 
detection

Photoelectric 1–60 Material long-range target detection
Ultrasonic 3–30 Material long-range target detection with challenges (e.g., 

rough service, multiple colors)
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(e.g., temperature is above 70 °F in a data center). They often integrate VLSI 
technology and MEMS devices to reduce cost and optimize integration.

 2. Minimum Power Consumption: Several factors are driving the requirements for 
low-power consumptions in IoT. Sensors for multiple IoT verticals (e.g., smart 
grid, railways, and roadsides) will be installed in locations that are difficult to 
reach to replace batteries.

 3. Compact: Space will also be limited for most IoT verticals. As such, sensors 
need to fit in small spaces.

 4. Smart Detection: An important sensing category for the IoT is remote sensing, 
which consists of acquiring information about an object without making physi-
cal contact with it; the object can be nearby or several hundred meters away. 
Multiple technology options are available for remote sensing, and they can be 
divided into three broad functions:

 (a) Presence or proximity detection—when just determining the absence or 
presence of an object is sufficient (e.g., security applications). This is the 
simplest form of remote sensing.

 (b) Speed measurement—when the exact position of an object is not required, 
but accurate speed is (e.g., traffic monitoring applications).

 (c) Detection and ranging—when the position of an object relative to the sen-
sor must be determined precisely and accurately (e.g., vehicle collision 
avoidance).

 5. High Sensitivity: Sensitivity is generally the ratio between a small change in 
electrical output signal and a small change in physical signal. It may be 
expressed as the derivative of the transfer function (the functional relationship 
between input signal and output signal) with respect to physical signal. 
Sensitivity indicates how much the output of the device changes with unit 
change in input (quantity to be measured). For example, if the voltage of a tem-
perature sensor changes by 1 mV for every 1 °C change in temperature, then the 
sensitivity of the sensor is said to be 1 mV/°C.

 6. Linearity: Linearity is the measure of the extent to which the output is linearly 
proportional to the output. Nonlinearity is the maximum deviation from a linear 
transfer function over the specified dynamic range.

 7. Dynamic Range: The range of input signals which may be converted to electri-
cal signals by the sensor. Outside of this range signals cause unsatisfactory 
accuracy.

 8. Accuracy: The maximum expected error between measured (actual) and ideal 
output signals. Manufacturers often provide the accuracy in the datasheet, e.g., 
high-quality thermometers may list accuracy to within 0.01% of full- 
scale output.

 9. Hysteresis: When a sensor does not return the same output value when the input 
stimulus is driven up or down. The width of the expected error in terms of the 
measured quantity is defined as the hysteresis.

 10. Limited Noise: All sensors produce some level of noise traffic with their output 
signals. Sensor noise is only an issue if it impacts the performance of the IoT 
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system. Smart sensors must filter out unwanted noise and be programmed to 
produce alerts on their own when critical limits are reached. Noise is generally 
distributed across the frequency spectrum. Many common noise sources pro-
duce a white noise distribution, which is to say that the spectral noise density is 
the same at all frequencies.

 11. Wide Bandwidth: Sensors have finite response times to instantaneous changes 
in physical signal. Also, many sensors have decay times, which represent the 
time after a step change in input signal for the sensor output to decay to its 
original value. The bandwidth of a sensor is the frequency range between these 
two frequencies. When a sensor is utilized to collect measurements, it is recom-
mended to use sensors with the widest possible bandwidth. This ensures that the 
basic measurement system is capable of responding linearly over the full range 
of interest. The disadvantage, however, is that wider bandwidth may result in 
sensor response to unwanted frequency.

 12. High Resolution: The resolution of a sensor is defined as the smallest detectable 
signal fluctuation. It is the smallest change in the input that the device can 
detect. The definition of resolution must include some information about the 
nature of the measurement being carried out.

 13. Minimum Interruption: Sensors must operate normally at all time with zero or 
near-zero interruption and be programmed to produce instant alerts on their 
own when their normal operation is interrupted.

 14. Higher Reliability: Higher reliability sensor provides the assurance to rely on 
the accuracy of the output measurements.

 15. Ease of Use: Ease of use is considered the top requirement for any electronic 
system nowadays. Clear examples we have all experienced are Apple’s iPhone 
vs. competitor devices with the same functionality. Users are willing to pay 
more for easy-to-use devices, and sensors are no exceptions. The best user 
interface is “no user interface” where sensors are expected to work by them-
selves once they are connected.

Other characteristics include some data storage and self-warning of anomalous 
symptoms.

3.3  RFID

Another way of capturing information from “Things” is through the use of RFID 
(radio-frequency identification). RFID is not a sensor but a mechanism to capture 
information pre-embedded into the so-called Tag of a thing or an object using 
radio waves.

RFID consists of two parts: a tag and a reader. Further, the tag has two parts: a 
microchip that stores and processes information and an antenna to receive and trans-
mit a signal. The tag contains the specific serial number for one specific object. The 
reader reads the information encoded on a tag, using a two-way radio transmitter- 
receiver, by emitting a signal to the tag using an antenna. The tag responds with the 
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information written in its memory. The reader will then transmit the read results to 
an RFID computer program.

An RFID-based solution has some advantages over older reader-tag-based solu-
tions, such as barcode, including:

• RFID tag does not need to be within direct line of sight of the reader and can be 
read from a distance up to 12 m for passive ultrahigh frequency (UHF) system. 
Battery-powered tags typically have a reading range of 100 m.

• RFID data on the tag can be modified based on business needs. The barcode data 
is very difficult to change once deployed.

• RFID tags are durable. Barcodes, in comparison, are printed on a product for 
everyone to see. They can be damaged or changed. RFID tags are hidden and 
may be reused across multiple products. Also RFID tags are capable of storing 
much more data.

• RFID data may be encrypted on the tag, thereby preventing unauthorized users 
from changing the data or counterfeiting.

• RFID systems can read hundreds of tags simultaneously. This is significant in a 
retail store as it saves the staff valuable time that they can spend on higher- 
value tasks.

Figure 3.9 shows the RFID main components: a programmable RFID tag for 
storing data, a reader with an antenna to read the tags, and an application software 
hosted on a computer to analyze the data.

RFID
Application

RFID Reader
withAntenna

RFID Tag

Thing

Fig. 3.9 RFID main components
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Like any other technology, RFID has a number of disadvantages, but they are 
relatively minor. A top disadvantage is the susceptibility of the tags to jamming by 
blocking the RFID radio waves, for instance, by wrapping the tags with metallic 
material such as aluminum foil. Metallic ink on book covers can also affect the 
transmission of the radio waves.

Another potential disadvantage is the interference between multiple readers and 
tags if the overall system is not set up appropriately. Each RFID reader basically 
scans all the tags it picks up in its range. This may create a mix-up between tag 
information (e.g., charging a customer for items in someone else’s shopping carts 
within the same range).

3.3.1  RFID Main Usage and Applications

RFID is already used by a large number of applications. Top examples include:

• Access Control and Management: Many companies and government agencies 
are using RFID tags in identification badges, replacing earlier magnetic stripe 
cards. With RFID, employees as well as authorized guest may be greeted by their 
name on a screen or by a voice message upon entering a building. Companies are 
currently using data collected from the information associated with each employ-
ee’s badge to plan for workplace optimization.

• RFID tags are also widely used for electronic toll collections (e.g., California’s 
E-ZPass) eliminating major delay on toll roads. Electronic toll collection system 
determines if the passing vehicle is enrolled in the program, automatically issues 
traffic citations for those that are not, and automatically withdraws the toll 
charges from the accounts of registered car owners.

• Passport: Many departments of state around the world (e.g., the USA, Canada, 
Norway, Malaysia, Japan, and many EU countries) are using RFID passports that 
can be read from a reader located up to 10 m away. In this case, passports are 
designed with an electronic tag that contains main information with a digital 
picture of the passport holder. Most solutions are also adding a thin metal lining 
to make it more difficult for unauthorized readers to scan information when the 
passport is closed. Standards for RFID passports have been established by the 
International Civil Aviation Organization, and are contained in ICAO Document 
9303 (6th edition, 2006).

• Healthcare: With 2014 veteran complaints including allegations that 40 veterans 
may have died waiting for care at a Phoenix VA hospital, many hospitals or agen-
cies, including the US Department of Veterans Affairs, have already started or 
announced plans to deploy RFID in hospitals across the USA to improve 
healthcare.

• RFID-based solutions in healthcare have started in private and public hospitals 
across the world, at least several years before the veteran’s complaints, to track 
and manage expensive mobile medical equipment thereby allowing hospital staff 
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to track in real-time data relevant to healthcare equipment or personnel, monitor 
environment conditions, and more importantly protect healthcare workers from 
infections and other hazards.

• Logistics and Supply Chain Tracking: Major retailers in the world (e.g., Walmart), 
as well as the US Department of Defense, have published requirements that their 
vendors place RFID tags on all shipments to improve supply chain management. 
Such requirements allow retailers to manage their merchandise without manual 
data entry. RFID can also help with automatic electronic surveillance and 
 self- checkout process for consumers. Finally, many factories are tracking their 
products throughout the manufacturing process using RFIDs to better estimate 
delivery dates for customers.

• Athletic and Sport Event Timing: Tracking the exact timing of runners in marathons 
or races is crucial, and often a portion of a second makes a difference. Athletic 
Timing is one of the most widespread use cases of RFID. Many runners are not 
even aware that they are being timed with RFID technology. Experts use such fact 
as an evidence of RFID’s seamless ability to enhance consumer experience.

• Animal Tracking: Since the outbreak of mad cow disease, RFID has become 
critical in animal identification management, although RFID animal tagging 
started at least a decade before the disease. Some governments (i.e., Australia) 
are now requiring all cattle, sheep, and goats sold to be RFID tagged.

• Other Applications: RFID is also used for airport baggage tracking logistics, 
interactive marketing, laundry management for employers with huge number of 
uniforms (e.g., casinos), item level inventory tracking, conference attendee track-
ing, material management, IT asset management, library system, and real-time 
location system.

3.4  Video Tracking

Video tracking is the process of capturing and analyzing the video feeds, frame by 
frame, of a particular object or person over a short time interval. It is used to mea-
sure and analyze movements, visual attention, as well as behavior. Video tracking is 
used for customer identification, surveillance, augmented reality, traffic control, and 
medical imaging.

It is yet another mechanism to identify and monitor “things” when sensors or 
RFID tags are not available. Video tracking may also be used in conjunction with 
sensors and/or RFID to provide a more comprehensive solution.

Unlike preinstalled sensors and RFID tags in “things,” video tracking can be 
turned on instantly. However, video tracking does have a major weakness, with 
today’s technology. Video tracking is often time-consuming. It requires analyzing 
large amounts of video traffic and, in many cases, correlation with historical data, to 
arrive at accurate conclusions. Another challenge to video tracking is the complex 
object/image recognition techniques. This is a huge area of research in machine 
learning today.
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3.4.1  Video Tracking Applications

• Retailers: Many retailers have started using video tracking solutions, often in 
conjunction with Wi-Fi access point data (how?; see problem 22), to increase 
sales and provide a better customer experience. Video traffic is analyzed using 
complex algorithms that track eye movements and identify fixation (e.g., desir-
ability, obsession, and attraction to a product) and glissades (e.g., wobbling 
movements). The collected data is then filtered against well-established business 
rules to determine an internal action (e.g., change location of merchandize, add 
more checkout lines) or external action (e.g., offer the customer a certain 
discount).

• Determining the business rules is a very challenging problem. Many companies 
use advanced systems and techniques (e.g., machine learning, analysis of social 
media data, artificial intelligence) or hire a marketing firm to survey a large num-
ber of customers to arrive at such rules. Example of new rules is the fact that the 
faster a shopper finds the first item she/he needs, the more she/he purchases in 
such category. This dispels the pervious myth that the more time a shopper 
spends in a particular area, the more she/he buys.

• Video tracking is also used to improve the overall shopping experience in the 
store as a service differentiation especially if the store is a bit more expensive 
than similar stores in the area. The analysis of multiple grocery store traffic indi-
cated that customers did not mind paying a bit more for faster checkout lines 
with friendly cashiers, bright lights, and clean belts. Analyzed data also indicated 
that the vast majority of customers do not pay attention to internal signs inside 
the store.

• Banking: Similar to retailers, banks have also started using video tracking solu-
tions, often combined with Wi-Fi data. Access to Wi-Fi data in banks is easier 
given that most of the customers download the bank’s mobile app on their smart-
phones. With the right setting, mobile apps often allow the bank to track the 
whereabouts of the customer.

• Banks use the data to quickly identify the customer (often before he lines in the 
queue). Depending on the priority of such customer (e.g., has large sums of 
money deposited at the bank), special greeting may be zero-wait private service 
if offered by the bank manager.

• Other Uses: The applications of video tracking with advanced backend analytics 
are unlimited, ranging from physical monitoring and security to traffic manage-
ment and control and to augmented reality where an actual view is augmented by 
a computer-generated sensual input such as video.
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3.4.2  Video Tracking Algorithms

To perform video tracking, an algorithm analyzes sequential video frames and out-
puts the movement of targets between the frames. There is a variety of algorithms, 
each having its own strengths and weaknesses. Considering the intended application 
is important when choosing which algorithm to use. There are two major compo-
nents of a visual tracking system: target representation and localization and filtering 
and data association.

Target representation and localization are mostly a bottom-up process. These 
methods give a variety of tools for identifying the moving object. Locating and 
tracking the target object successfully are dependent on the algorithm. For example, 
using blob tracking is useful for identifying human movement because a person’s 
profile changes dynamically [6]. Typically, the computational complexity for these 
algorithms is low. The following are some common target representation and local-
ization algorithms:

Kernel-based tracking (mean-shift tracking [7]): an iterative localization procedure 
based on the maximization of a similarity measure (Bhattacharyya coefficient).

Contour tracking: detection of object boundary (e.g., active contours or Condensation 
algorithm). Contour tracking methods iteratively evolve an initial contour initial-
ized from the previous frame to its new position in the current frame. This 
approach to contour tracking directly evolves the contour by minimizing the con-
tour energy using gradient descent.

Filtering and data association is mostly a top-down process, which involves 
incorporating prior information about the scene or object, dealing with object 
dynamics, and evaluation of different hypotheses. These methods allow the tracking 
of complex objects along with more complex object interaction like tracking objects 
moving behind obstructions [8]. Additionally, the complexity is increased if the 
video tracker (also named TV tracker or target tracker) is not mounted on rigid 
foundation (onshore) but on a moving ship (offshore), where typically an inertial 
measurement system is used to pre-stabilize the video tracker to reduce the required 
dynamics and bandwidth of the camera system [9]. The computational complexity 
for these algorithms is usually much higher. The following are some common filter-
ing algorithms:

Kalman filter: an optimal recursive Bayesian filter for linear functions subjected to 
Gaussian noise. It is an algorithm that uses a series of measurements observed 
over time, containing noise (random variations) and other inaccuracies, and pro-
duces estimates of unknown variables that tend to be more precise than those 
based on a single measurement alone [10].

Particle filter: useful for sampling the underlying state-space distribution of non- 
linear and non-Gaussian processes.
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3.5  IoT Actuators

3.5.1  Definition

An actuator is a type of motor that is responsible for controlling or taking action in 
a system. It takes a source of data or energy (e.g., hydraulic fluid pressure, other 
sources of power) and converts the data/energy to motion to control a system.

3.5.2  Why Actuators?

As mentioned in Sect. 3.2, sensors are responsible to sense changes in their sur-
roundings, collect relevant data, and make such data available to monitoring sys-
tems. Collecting and displaying data by a monitoring system are useless unless such 
data is translated into intelligence that can be used to control or govern an environ-
ment before a service is impacted. Actuators use sensor-collected and analyzed data 
as well as other types of data intelligence (see problem 11) to control IoT systems, 
for example, shutting down gas flow when the measured pressure is below a certain 
threshold.

3.5.3  Actuator Types

• Electrical Actuators: Electric actuators are devices driven by small motors that 
convert energy to mechanical torque. The created torque is used to control cer-
tain equipment that requires multi-turn valves or to control gates. Electric actua-
tors are also used in engines to control different valves.

• Mechanical Linear Actuators: Mechanical actuators convert rotary motion to lin-
ear motion. Devices such as screws and chains are utilized in this conversion. 
The simplest example of mechanical liner actuators is referred to as the “screw” 
where leadscrew, screw jack, ball screw, and roller screw actuators all operate on 
the same principle by rotating the actuator’s nut, the screw shaft moves in a line. 

• Hydraulic Actuators: Hydraulic actuators are simple devices with mechanical 
parts that are used on linear or quarter-turn valves. They are designed based on 
Pascal’s Law: when there is an increase in pressure at any point in a confined 
incompressible fluid, then there is an equal increase at every point in the con-
tainer. Hydraulic actuators comprised of a cylinder or fluid motor that utilizes 
hydraulic power to enable a mechanical process. The mechanical motion gives 
an output in terms of linear, rotary, or oscillatory motion. Hydraulic actuators can 
be operated manually, such as a hydraulic car jack, or they can be operated 
through a hydraulic pump, which can be seen in construction equipment such as 
cranes or excavators.
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• Pneumatic Actuators: Pneumatic actuators work on the same concept as hydrau-
lic actuators except compressed gas is used instead of liquid.

• Manual Actuators: Manual actuator employs levers, gears, or wheels to enable 
movement, while an automatic actuator has an external power source to provide 
motion to operate a valve automatically. Power actuators are a necessity on 
valves in pipelines located in remote areas.

3.5.4  Controlling IoT Devices

There are two main philosophies to monitor and control IoT devices: local control 
and global control. The first approach requires an intelligent local controller (e.g., 
home’s thermostat to control furnace and air conditioning system). The second 
approach is to move the control onto the cloud and simply embed inexpensive sen-
sors everywhere (e.g., in this case, thermostat is eliminated altogether), and instead 
put temperature sensors around the house. An extension of this would be to pull the 
controller boards out of the furnace and air conditioner—connect their inputs and 
outputs to the Internet as well, so a cloud application can directly read their states 
and control their subsystems.

Clearly this approach requires many more, much finer-grained connected 
devices. And it offers the possibility of control strategies that would not be possible 
for an isolated thermostat. You could use ambient weather conditions, forecasts, and 
the current locations of the residents as inputs, for example, to determine an opti-
mum strategy for making life comfortable while saving energy.

We believe the right approach is a combination of the two approaches depending 
on the specific IoT vertical and environment. This area will be covered in more 
details in Chap. 9.

3.6  How Things Are Identified in IoT?

As we mentioned in Chap. 2, the most convenient way to identify every IoT devices 
is to assign unique IP address to each sensor and actuator. However, IPv4 addresses 
are expensive and limited. IPv6 addresses are not widely deployed yet. In addition, 
many sensors and actuators are not IP enabled. IoT gateways, however, do have 
unique IP addresses. Hence, non-IP-enabled sensors and actuators may be identified 
by their associated gateways.

Chapter 5 will provide compressive details of various sensing protocols and 
illustrate how IoT sensors and actuator will be tracked and identified.
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3.7  Summary

This chapter defined the “Things” in IoT. Three main techniques to identify things 
were discussed in details: embedded hardware sensors that sense the thing or sur-
rounding environment and notify a client application, RFIDs with a tag to store 
information on a thing and a reader to read such information and pass them to an 
application to analyze, and finally video tracking. The advantages and disadvan-
tages of these solutions were discussed. Once the data is analyzed (from sensors or 
other sources), IoT actuators are responsible for controlling or taking action if 
required. Finally, we have discussed the procedure to identify various devices in IoT 
networks.

Problems and Exercises

 1. List the top three requirements for “Things” in IoT? What is the purpose behind 
these requirements?

 2. Why are actuators required in IoT networks?
 3. What is the definition of a sensor in IoT? Why is there a need for A/D converters 

in most sensors?
 4. Why are sensors required to convert physical signals into electrical signal?
 5. In a table, list and compare the various types of actuators. Which actuator type 

is considered to be environmentally friendly and why?
 6. What are the key differences between sensors and actuators?
 7. Chapter 1 (Sect. 1.2) mentioned that connecting objects together is not an 

objective by itself. Sections 3.1 and 3.5.2 mentioned that collecting data from 
sensors is not an objective by itself either. What is the business objective for 
connecting things and collecting data? How to achieve such objective?

 8. What are the two main uses of flow sensors?
 9. In a table format, list the key functionality of all sensors (A through I) listed in 

Sect. 3.2.3. Which sensor type is considered to be the least sophisticated, and 
which type is considered to be the most sophisticated? Why?

 10. What is an autonomous sensor? When does it notify neighboring system(s) or 
IoT gateway? What is the difference between “autonomous” and “user- 
controller” sensors?

 11. In a table, list and compare the ten characteristics of good sensors. Which char-
acteristic you believe is the most important and why?

 12. It was mentioned in Sect. 3.3 that actuators use sensor-collected and analyzed 
data as well as other types of data intelligence to control IoT systems. What is 
data intelligence? Provide two examples of data intelligence.

 13. What is the definition of sensitivity and dynamic range? What are the typical 
units of sensitivity and dynamic range?

 14. What is hysteresis? What is a typical unit of hysteresis?
 15. How do touch screens operate with the presence of touch sensors?
 16. In a table, list five examples of industries where pressure sensors are used. In 

each case, list at least one main application.
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 17. Some people have raised concerns about the potential invasion of privacy in 
RFID-enabled solutions (e.g., track the whereabouts of a person who checked 
out an RFID-enabled library book). Is this a major concern? How would you 
address it?

 18. Athletic Timing: Athletic Timing is one of the most popular use cases of RFID, 
but often race participants never realize they are being timed using RFID tech-
nology. How does it work?

 19. Describe how RFID works for laundry management. List three benefits.
 20. Provide an example of how RFID works for interactive marketing.
 21. How does RFID track the real-time location of assets or employees? What other 

technology can be used to track an employee location in real time?
 22. How do retailers use Wi-Fi access point data in conjunction with video tracking 

to improve sales and customer experience?
 23. This chapter discussed three different ways to obtain information from IoT 

“Things”: sensors, RFID, and video tracking. In a table, compare the three tech-
nologies addressing:

 (a) Advantages
 (b) Disadvantages
 (c) Key requirements for the things
 (d) Two applications

 24. What are transducers? How are they related to sensors and actuators?
 25. Wind speed sensors typically involve a rotating element that is set in motion by 

wind. These sensor report the frequency of rotation of that moving element. An 
application receiving the frequency readings needs to apply a “transfer function” 
to translate the frequency to actual wind speed. In the weather monitoring station 
at Vancouver International Airport, two wind speed sensors are installed: an RM 
Young 05103 Wind Sensor and a Vaisala WM30 Wind Sensor. The first has the 
following transfer function: Wind Speed (m/s) = 0.0980 × Frequency. The sec-
ond has this transfer function: Wind speed (m/s) = 0.699 × Frequency − 0.24.

 (a) If the RM Young sensor is reporting frequency of 20 Hz, and assuming both 
sensors are measuring the same wind speed value, then what would be the 
frequency reported by the Vasiala sensor?

 (b) What would be the actual wind speed measured?
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Chapter 4
IoT Requirements for Networking 
Protocols

The success of the Internet is attributed, in part, to the Internet Protocol stack that 
offers two key characteristics:

• A normalization layer (the IP layer), which guarantees system interoperability 
while accommodating a multitude of link layer technologies, in addition to a 
plethora of application protocols. IP constitutes the thin waist of the proverbial 
hourglass that is the Internet’s protocol stack.

• Layered abstractions that hide the specifics of a given layer from the one above 
or below it. Such abstractions define contracts or “slip surfaces” allowing inno-
vations in one layer to proceed independent of the adjacent layers.

As researchers and technologists started delving into the world of IoT, it was 
relatively straightforward to justify the benefits of employing a similar layered 
architectural approach for the IoT protocol stack. However, a topic of lively debate 
emerged in whether the Internet Protocol stack was suited for the IoT or whether a 
new stack was needed. In the late 1990s and early 2000s, many researchers in the 
field of wireless sensor networks did not shy away from denouncing IP networking 
as unsuitable for that application domain.

It was deemed that the requirements of IoT were sufficiently different to warrant 
a white canvas approach, rather than reusing the Internet technology, which fell 
short of addressing the requirements in a number of areas. The decade and a half 
that followed witnessed an evolution of the IP stack to address many of the cited 
requirements for sensor networks and the shortcomings of IP technologies at 
the time.

In this chapter, we will discuss the key IoT requirements and their impact on 
each of the layers of the protocol stack. In the next chapter, we take a layer-by-layer 
view and discuss the industry’s efforts, to date, to address these requirements. We 
will also discuss the gaps that remain for further study and require future solutions.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_4&domain=pdf
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4.1  Support for Constrained Devices

The devices that are to be connected to the network in the IoT span a wide gamut of 
capabilities and characteristics along the facets of computational power, mobility, 
size, complexity, dispersion, power resource, placement, and connectivity patterns. 
These and other device characteristics impose a set of requirements and restrictions 
on the network infrastructure used for interconnecting them. In particular, the 
devices’ computational capabilities, as well as their power resources, introduce 
challenging requirements for IP networking technologies.

Stepping back and examining the devices that have traditionally connected to the 
Internet, one can easily categorize them as homogeneous in terms of being fully 
capable computers or peripherals (e.g., servers, desktops, laptops, printers, etc.) that 
have an endless source of power (e.g., mains powered or equipped with recharge-
able batteries). In the IoT, this homogeneity no longer holds: on one end of the 
spectrum are devices with very limited processing power which scavenge energy 
from their environment (e.g., pressure sensors), and on the other end are devices 
with powerful processors, a generous amount of memory, and replenishable power 
sources (e.g., smartphones).

Small devices with limited processing, memory, and power resources are referred 
to as constrained devices. Generally speaking, a constrained device is limited in one 
or more of the following dimensions:

• Maximum code complexity (ROM/Flash).
• Size of run-time state and buffers (RAM).
• Amount of computation feasible in a specific period of time (“processing 

power”).
• Available power resources.
• Management of user interface and accessibility in deployment (ability to set 

security keys, update software, etc.).

IETF RFC 7228 defines a taxonomy of constrained devices based on the first two 
dimensions above, which recognizes three classes of devices as depicted in 
Table 4.1.

Class 0 devices are the most severely constrained in memory and processing 
power. In general, such devices do not have the resources to connect to an IP net-
work directly and will leverage the services of helper devices such as proxies or 
gateways for connectivity. For example, sensor motes fall under this class.

Table 4.1 Classes of constrained devices in RFC 7228

Name Data size Code size

Class 0 ≪10 KB ≪100 KB
Class 1 ~10 KB ~100 KB
Class 2 ~50 KB ~250 KB

4 IoT Requirements for Networking Protocols
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Class 1 devices are highly constrained in terms of code space and processing 
capacity; however they are capable of connecting to an IP network directly, without 
the help of gateways, as long as they are “parsimonious with state memory, code 
space, and often power expenditure for protocol and application usage.” As such, 
these devices face challenges in running certain demanding IPs such as BGP, OSPF, 
HTTP, or Transport Layer Security (TLS) and in exchanging data using verbose 
data serialization formats such as XML.

Class 2 devices are less constrained when compared to the first two classes and 
are capable of running the same IP stack that runs on general compute nodes today. 
Nevertheless, these devices can still benefit from lightweight and efficient commu-
nication stacks since the resources may then be directed toward applications in lieu 
of networking.

Another dimension that characterizes constrained devices is power and/or energy 
resource constraints. These could be attributed to a number of factors such as the 
device size, primary mode of use, cost, operational environment, etc. Again, with 
this dimension, there is a spectrum of possibilities ranging from devices that harvest 
energy from the environment to battery-powered devices where the batteries are 
replaceable or rechargeable, to non-field replaceable battery-powered devices 
(which are discarded past the battery’s lifetime), and to mains-powered devices. 
Energy consumption is a major issue for IoT devices. Research studies suggest that 
communication is over three orders of magnitude more expensive in terms of energy 
consumption than performing local processing functions. This is especially the case 
when wireless communication is used, where the radio takes the lion’s share of the 
energy consumed by the device. To this reason, a common strategy employed by 
power-constrained devices is to remain in sleep mode with no network connectivity 
for extended periods of time and to connect only long enough to send the local data 
either based on periodic timers or asynchronous triggers (e.g., when new data is 
present or an event is detected).

To address the requirements of constrained devices, lightweight, energy- efficient, 
and bandwidth-conscious communication protocols are required across all the lay-
ers of the protocol stack.

4.2  Massive Scalability

Based on an estimate conducted by Cisco, about 99.4% of the physical objects in the 
world, which could potentially be connected to the Internet, are still unconnected. 
Conversely, this means that only about 10 billion out of approximately 1.5 trillion 
global objects are connected. The number of devices connected to the Internet sur-
passed 26 billion devices in 2020 (Fig. 4.1). The majority of this growth continues to 
be due to smart objects and “things” connecting to the Internet. This massive scal-
ability imposes requirements on various aspects of the IoT protocol stack, in the 
areas of device identification and addressing, namely resolution, security, control 
plane (e.g., routing protocols), data plane forwarding, as well as manageability.

4.2 Massive Scalability
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4.2.1  Device Addressing

The goal of the IoT is to build a uniform network that integrates and unifies all the 
communication systems between smart objects in the world. To realize the full 
potential of this vision, the interconnected things need to be individually address-
able for ubiquitous communication between systems. In many current deployments 
of smart objects, the interconnection of things to the Internet, when available, is 
through gateways or proxies. In this sense, the connected things are proverbial 
second- class citizens of the Internet. Realizing the IoT vision requires that a global 
IP address be assigned to each one of the billions of devices that will be connected. 
Taking into account the fact that the IPv4 address space was completely depleted by 
February 1, 2011, it becomes clear that the massive scalability of the IoT will accel-
erate the transition of the Internet to IPv6.

4.2.2  Credentials Management

Security credentials management (e.g., shared key distribution, certificate manage-
ment, etc.) poses a significant challenge in today’s Internet. The addition of billions 
of devices to the network with IoT will only compound the problem further. Manual 
mechanisms currently employed for credentials management (e.g., through precon-
figuration) are not going to be viable in IoT due to two reasons: the sheer number of 
devices and the limitations in (or complete lack of) user interfaces on constrained 
devices. The number of devices renders the use of pre-shared keys impractical for 
production deployments, especially when the devices have rudimentary user inter-
faces or no user interface at all.

The massive scalability of the IoT calls for lightweight, low-touch, and highly 
automated credentials management mechanisms.

Fig. 4.1 Growth of connected devices. (Source: Cisco)
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4.2.3  Control Plane

The Internet encompasses diverse networks running different control plane proto-
cols for the purpose of discovering topology information, communicating connec-
tivity status or link health, signaling session or connection state, guaranteeing 
quality of service, and, among other things, quickly reacting to faults. These proto-
cols maintain distributed state that is synchronized using message exchanges 
between peering nodes. In some cases, these peering relationships are hierarchical 
in nature (e.g., a client-server model) or flat (e.g., overlay peers). The behavior of 
the control plane functions together with the syntax and semantics of the messages 
exchanged defines the specifics of the control plane protocol. As the number of 
nodes participating in a given protocol increases, both the amount of state to be 
maintained by each node increases and the volume of messages required for keep-
ing the distributed state tables in synchronization grows. Beyond a specific limit, 
attempts to scale a specific control plane protocol typically lead to adverse side 
effects on the protocol’s convergence time, the node resources, and the overall net-
work response. The scalability of the IoT calls for elastic control plane mechanisms 
that can accommodate the massive number of connected devices.

4.2.4  Wireless Spectrum

As the Internet of Things continues to evolve, one fact remains constant: these 
things require connectivity. This global network of objects, sensors, actuators, etc. 
must be connected to the Internet in some way, and in many cases wirelessly. The 
wireless spectrum is a finite resource, and the licensed portion of this spectrum is 
both expensive and scarce. With billions of devices coming online over the coming 
decade or so, many of these devices will be contending for the airwaves.

As of now, many IoT systems operate in unlicensed radio frequencies, namely, 
the industrial, scientific, and medical (ISM) bands, for example, the 900 MHz band 
for Electronic Product Code (EPC), one of the standards for radio-frequency identi-
fication (RFID); the 13.56 MHz band for near-field communications (NFC) sup-
porting mobile payments; and the sub-125 kHz band for physical security systems 
(video surveillance and access control). These technologies achieve connectivity 
using a range of different, and in some ways competing, wireless protocol stan-
dards, such as Zigbee, Z-Wave, Bluetooth LE, and Wi-Fi, all of which were designed 
to work in the unlicensed spectrum. There are no spectrum bottlenecks for these 
bands yet, even though Wi-Fi services are approaching the point where they are 
maximizing the number of channels that can be fit into the allotted spectrum. 
However, when it comes to the licensed bands used for cellular communication 
(e.g., the GSM bands defined in 3GPP TS 45.005), the bottlenecks become more 
pronounced, especially with the accelerating growth in data traffic over cellular 
networks. The term “spectrum crunch” has been used in recent years to refer to this 
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issue. There are two variables at play here: growth in the number of endpoints as 
well as growth in the volume of traffic per endpoint, both of which contribute to the 
spectrum crunch phenomenon. Research by Cisco shows that globally, mobile 
M2M connections grew from 495 million in 2014 to more than 3 billion in 2019, a 
sevenfold growth. Global mobile data traffic grew 69% in 2014 reaching 2.5 exa-
bytes per month at the end of 2014, up from 1.5 exabytes per month at the end of 
2013. Further, global mobile data traffic increased nearly tenfold between 2014 and 
2019 (Fig. 4.2).

4.3  Determinism

One of the value propositions of IoT is that the technology will allow for better 
observation and monitoring of the physical world and will also enable the auto-
mated change of that world through closed-loop actuation. IoT opens up the door 
for supporting use cases that demand mission-critical networking with high require-
ments for real-time response as well as overall network, protocol, and device robust-
ness. Some of these use cases emerge from industrial automation, such as monitoring 
systems, movement detection systems for use in process control (i.e., process manu-
facturing), and factory automation (i.e., discrete manufacturing). Other use cases 
have a much broader scope that spans mission-critical automation (e.g., rail control 
systems), motion control (e.g., wind turbines), vehicular networks (e.g., infotain-
ment, power train, driver assistance), etc. With the increasing demand for connectiv-
ity and multimedia in transportation in general, use cases and applications are 
emerging in all elements of the vehicle from head units to rear seat entertainment 
modules, and to amplifiers and camera modules. While these use cases are aimed at 
less critical applications than industrial automation, they do share common 
requirements.
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Fig. 4.2 Global machine-to-machine growth and migration from 2G to 3G and 4G. (Source: Cisco 
VNI Mobile, 2015)
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These use cases all share the common requirement to support real-time informa-
tion transfer: the time it takes for each packet to traverse a path from its source to its 
destination should be determined; that is, the process must be deterministic. Systems 
with control loops involving endpoints communicating over a network can function 
properly only if the networks connecting those endpoints guarantee determinism 
(imagine what would happen if a network delays a packet carrying a control vari-
able for a high-speed CNC mill).

In this context, a network is said to support determinism and is thereby deemed 
to be a “deterministic network,” if the worst-case communication latency and jitter 
of messages of interest are decidable based on a reasonable model of the network. 
A model is considered reasonable when it sufficiently represents reality for the tar-
get use cases of the networking system. Determinism does not imply speed. In con-
trol functions, both speed and determinism are required. Speed is required to attain 
the highest possible throughput. Determinism, on the other hand, is required to 
specify a level of quality for the throughput, i.e., the highest-speed throughput that 
is in fact usable by the application.

Deterministic Networking enables the migration of applications that have so far 
relied on special-purpose non-packet-based (fieldbus) technologies (e.g., HDMI, 
CAN bus, Profibus, etc.) to Internet Protocol technologies to support both these new 
applications, in addition to existing IP network applications, over the same physical 
network (Fig. 4.3). When applied in the context of industrial applications, this leads 
to what is dubbed as the “OT/IT” convergence. Operational technology (OT) refers 
to industrial networks, which, due to their different goals, have evolved in silo but 
in a manner that is substantially different from information technology (IT) net-
works. With OT, the focus has been on transporting fully characterized traffic flows, 
over a small area (e.g., plant floor), in a well-controlled environment with a bounded 
latency, extraordinarily low frame loss, and very narrow jitter.

Experience with custom control and automation networks, as well as proprietary 
audio/video networks, has shown that these applications require one or more of the 
following characteristics: time synchronization of all hosts and network elements 
(routers, bridges, etc.) and accurate in the range of 10 ns to 10 μs, depending on the 
application. The applications also require support for critical packet flows that need 
guarantees of the minimum and maximum latency end-to-end across the network. 
Such flows can be either unicast or multicast and can in total consume more than 
half of the available bandwidth of the network, thereby eliminating the possibility 
of relying on over-provisioning. The applications mandate packet loss ratios that are 
at least in the range of 1.0e−9 to 1.0e−12. Furthermore, the traffic for these applica-
tions cannot be subjected to throttling, congestion feedback, or stochastic network- 
imposed transmission delay.

4.3 Determinism
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4.4  Security and Privacy

The ubiquity of IoT and its potential to extend into all aspects of human life, whether 
in transportation, healthcare, home automation, industrial control, etc., makes guar-
anteeing security and privacy paramount. With traditionally offline systems and 
applications being connected to the Internet, they quickly become targets for attacks 
that will only continue to grow in magnitude and sophistication. Such targets cover 
a multitude of industry segments, and the potential impact of security attacks could 
lead to significant damage and even loss of life.

While the threats in IoT may, at the outset, seem largely similar to those in more 
traditional IT environments, the potential impact of those threats is more profound. 
This is why threat analysis and risk assessment efforts are key in IoT to measure the 
impact of a security incident or breach.

A fundamental pillar in securing the IoT is around mechanisms to authenticate 
device identity. As was discussed in Sect. 4.1, many IoT devices are constrained 
devices, which lack the required processing, memory, storage, and power require-
ments to support state-of-the-art authentication protocols. The state-of-the-art 
encryption and authentication protocols are based on cryptographic suites such as 
Advanced Encryption Standard (AES) for confidential data transport, Rivest–
Shamir–Adleman (RSA) for digital signatures and key transport, and Diffie–
Hellman (DH) for key negotiations and management. While these protocols are 
battle-proven in deployments, they suffer from two shortcomings when it comes to 

Fig. 4.3 Deterministic vs. guaranteed vs. best effort traffic
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applying them to IoT.  The first shortcoming is that these protocols are resource 
hungry and generally demand high-capability compute platforms. Appropriate 
reengineering is required to accommodate constrained devices. The second short-
coming is that the authentication and authorization protocols are high-touch, requir-
ing user input for provisioning and configuration. In many IoT deployments, access 
to the devices will be limited or impractical, thereby requiring that the initial con-
figuration be tamper-proof throughout the usable lifespan of the devices, and such 
lifespan could extend to many years.

In order to address these shortcomings, new lightweight authentication and 
authorization protocols are required which leverage the experience of today’s strong 
encryption/authentication algorithms but are capable of running on constrained 
devices.

Encryption is the cornerstone of network security protocols. The effectiveness of 
encryption algorithms generally decreases with time due to a number of factors 
including Moore’s Law (availability of stronger compute to crack the encryption), 
public disclosure of inherent vulnerabilities with prolonged exposure to attacks, 
wide adoption (which increases the attack surface), etc. This creates an interesting 
predicament for the use of encryption in IoT: deployed devices may outlive the 
effectiveness of the encryption mechanisms embedded within them. For instance, a 
smart meter in a home can operate for 50 years, whereas the encryption protocol 
may lose its effectiveness in about half of that time.

Other aspects of security that need to be considered for IoT include:

• Data privacy levels and geo-fencing of data (i.e., limiting access to data to spe-
cific locales).

• Strong identities.
• Strengthening of base network infrastructure such as the Domain Name System 

(DNS) with DNSSEC and DHCP to prevent attacks.
• Adoption of protocols that are more tolerant to delay or transient connectivity 

(such as delay-tolerant networks).

Privacy is a major issue even in today’s Internet. User data is collected for a mul-
titude of purposes such as targeted advertisements, purchase recommendations, and 
even national security. IoT will exacerbate the importance of preserving privacy 
because many applications generate traceable signatures of the behavior of indi-
viduals and their physical location. Some IoT applications even involve highly sen-
sitive personal information, such as medical records. For these types of applications, 
it is imperative to decouple the device from the owner’s identity while still provid-
ing robust mechanisms for device ownership verification and device identity authen-
tication. Shadowing is one mechanism proposed to achieve this. Effectively, digital 
shadows enable the user’s objects to act on his or her behalf, storing just a virtual 
identity that contains information about his or her attributes. As a matter of fact, 
identity management in the IoT paves the way to increase security by applying a 
combination of diverse authentication methods for humans and machines. For 
instance, biometric data combined with a physical object could be used as grant 
access by unlocking a door.

4.4 Security and Privacy
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The importance of security in IoT cannot be overstated. More details on this 
topic are covered in Chap. 8.

4.5  Application Interoperability

M2M deployments, in one form or another, have existed for over two decades now. 
However, the vision of the Internet of Things is far from being a reality, and the 
technology is yet to realize its full market potential. The complexity of developing, 
deploying, and managing IoT applications remains a key challenge for the industry. 
It constitutes a challenge for network operators who are trying to offer profitable 
services tailored to the IoT market, for application developers building vertical- 
specific applications, as well as for service providers who are trying to speed time 
to market, reduce costs, and simplify robust application deployment. This complex-
ity drives up the cost of building IoT solutions.

The problem of complexity, and associated high cost, can be attributed in part to 
the closed nature of the solutions, which are developed in vertical-specific silos, 
thereby leading to each solution provider having to implement all the building 
blocks required for a minimum viable product, as opposed to reusing standard and 
open components. The resulting solutions are almost ubiquitously characterized by 
having strong coupling between application entities. Here, we use the term applica-
tion entity to refer to an instance of application logic that may be implemented in 
hardware (analogue or digital), software, firmware, etc. Thus, an application entity 
denotes any IoT endpoint responsible for producing or consuming data and spans 
the entire gamut from a sensor/actuator to a cloud application.

The closed nature of existing IoT solutions renders them not only expensive to 
implement initially but also expensive and difficult to maintain and evolve over 
time. This is primarily because application code often needs to be updated or 
changed in the scenario where a device is swapped with another that is functionally 
equivalent albeit manufactured by a different vendor, let alone the scenario where a 
new device type needs to be integrated into the solution.

The above challenges lead to the requirement for application-level interoperabil-
ity for the IoT. This requirement can be further broken down into requirements for 
abstractions and standard application programmatic interfaces (APIs) as well as 
requirement for semantic interoperability.

4.5.1  Abstractions and Standard APIs

Realizing the full vision of the IoT will be difficult unless the application program-
matic interfaces (APIs) that control the functionalities of the devices and smart 
objects adhere to common standards that guarantee interoperability. To reach full 
API interoperability, the industry must converge on mechanisms for identifying the 
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data that application entities will share and methods for sharing it. APIs expose the 
data that enables disparate devices to be composed in innovative ways to create new 
and interesting workflows. With the availability of standard APIs, it is possible to 
introduce abstractions for common IoT functions, including:

• Device management (activation, triggering, authentication, authorization, soft-
ware/firmware update, etc.)

• Data management (read, write, subscribe, notify, delete, etc.)
• Application management (start, stop, debug, upgrade, etc.)

The abstractions provide logical representations of the functions while hiding all 
implementation nuances and variations. They define service contracts that are gov-
erned by the syntax and semantics of the APIs and which formally specify the meth-
ods for interaction with modules supplying those functions. In other words, the use 
of standard APIs introduces “slip surfaces” that eliminate coupling between func-
tionally discrete modules of a given IoT solution. This allows modules supplied by 
different IoT vendors to seamlessly interwork and integrate into a cohesive system. 
A given module can be replaced by another supplied by a different vendor as long 
as it subscribes to the standard API governing the associated slip surfaces between 
the system’s building blocks (Fig. 4.4).

4.5.2  Semantic Interoperability

Semantic interoperability guarantees that application entities in the IoT can access 
and interpret data unambiguously. Providing unambiguous data descriptions that 
can be machine processed and interpreted by application entities is one of the key 
enablers of automated information communications and interactions in IoT.

Fig. 4.4 Abstractions and APIs
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Without semantic interoperability among communicating systems, sharing IoT 
data in a useful way is impossible. Semantic interoperability guarantees a common 
vocabulary that paves the way for accurate and reliable communication between 
applications and systems. This fluent machine-to-machine communication depends 
on the ability of different systems to map data to shared semantics, or meaning. If 
we were to use the analogy of a pyramid to visualize the different tiers of applica-
tion interoperability, the base of that pyramid would be syntactic or structural 
interoperability: it defines the structure or format of data exchange between applica-
tions. Structural interoperability is a prerequisite; it is necessary but not sufficient 
for two applications to successfully work together. The top part of the pyramid is 
reserved to semantic interoperability. It deals with the content of the messages 
exchanged and their associated meaning, not just the message formats.

Semantic interoperability can be achieved in a number of ways. One is through 
the development of pervasive and common information models, or ontologies 
(Fig. 4.5), that capture the knowledge associated with a specific vertical domain. 
Another is through providing semantic mediators, or translators, that perform con-
version of the information to a format that the application entity understands.

4.6  Summary

The Internet Protocol (IP) stack was among the factors that contributed to the suc-
cess of the Internet. While this IP stack provides a strong foundation for building the 
IoT, a number of shortcomings need to be addressed to meet the peculiar require-
ments of IoT. These requirements include support for resource-constrained devices 
that have very limited compute capabilities and limited power; support for the mas-
sive scalability of IoT, with billions of connected devices; the need for deterministic 
networks to support real-time mission-critical applications; the requirement for 
lightweight security protocols and ensuring data privacy; and finally the require-
ment for application interoperability through the use of APIs and unified data 
semantics.

Fig. 4.5 Simple IoT ontology
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Problems and Exercises

 1. What are “constrained” devices? Name their classes and characteristics.
 2. What makes a network “deterministic”?
 3. In what three areas does the massive scalability of IoT impact networking 

protocols?
 4. What is the importance of standard APIs in the success of IoT?
 5. Why is scalability a major requirement for IoT protocols?
 6. What is an ontology? Why are ontologies applicable in the IoT?
 7. Name three key IoT requirements that have impact on networking protocols.
 8. What characteristics of the IP stack contributed to the success of the Internet?
 9. Was the choice of the Internet as the underlying network for IoT always a given 

or agreed upon fact?
 10. Name the various options by which IoT devices can be supplied with power.
 11. Describe the characteristics of Class 0-constrained devices.
 12. What is “semantic interoperability”? Why is it important in IoT?
 13. How does scalability impact the network control plane? Explain the various 

dimensions impacted.
 14. How much of the IPv4 address space is still available for allocation?
 15. What common IoT functions can be abstracted through APIs in order to sim-

plify application development and improve the time to market new IoT applica-
tions and services?

 16. What types of applications can be migrated to IP technologies with the advent 
of Deterministic Networking?

 17. Which is more expensive in terms of power consumption: Communication or 
local processing? What does this imply to IoT devices?

 18. How does the addition of billions of devices to the Internet affect the wireless 
spectrum?

 19. How does the complexity of developing, deploying, and managing IoT applica-
tions today affect the state of the industry?

 20. What makes existing credentials management techniques inadequate for IoT?
 21. What are two shortcomings of the state-of-the-art security protocols (for 

authentication/authorization/encryption) when applied to the IoT?
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Chapter 5
IoT Protocol Stack: A Layered View

The IoT protocol stack can be visualized as an extension of the TCP/IP layered 
protocol model and is comprised of the following layers (refer to Fig. 5.1):

• Physical layer
• Link layer
• Network layer
• Transport layer
• Application Protocols layer
• Application Services layer

Note that the Application layer of the TCP/IP protocol stack is expanded into two 
layers in the IoT protocol stack: Application Protocols and Application Services. It 
is as if the proverbial “narrow waist” of the hourglass is being extended further up 
the stack to provide interoperability between heterogeneous “things.”

5.1  Link Layer

In this section we will examine the impact of the IoT requirements on the Link layer 
through a combined view of the challenges that those requirements impose on net-
working technologies, industry efforts to address those challenges, and remain-
ing gaps.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_5#DOI
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5.1.1  Challenges

The challenges that the IoT presents to the Link layer of the protocol stack can be 
broadly categorized into the following four areas: device characteristics, traffic 
characteristics, access characteristics, and scalability (Fig. 5.2).

On the device characteristics front, the IoT will encompass a wide spectrum of 
“things” that span from fully capable (non-constrained) compute nodes to highly 
constrained devices. The latter typically have limited energy resources to spend on 
processing and communication. As discussed earlier, network communication is 
typically more power consuming when compared to local processing. Hence, com-
munication technologies need to be optimized to accommodate low-power devices. 
Implementation of protocols at all layers of the protocol stack can affect energy 
consumption. However, the Link layer, in particular, has a significant impact due to 

Fig. 5.1 IoT protocol stack

Fig. 5.2 Link layer challenges. (Source Cisco BRKIOT-2020, 2015)
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the fact that this layer is responsible for the nuances of the physical transmission 
technology, framing, media access control, and retransmissions. For instance, it is 
reported that, depending on the link load, between 50% and 80% of the communica-
tion energy is used for repairing lost transmissions at the MAC layer.

The traffic characteristics of IoT endpoints vary widely depending on the appli-
cation’s demands and nature of devices. Some applications have relaxed require-
ments on packet loss, latency, and jitter (e.g., a meteorological monitoring 
application), whereas others have very tight availability, latency, and jitter tolerance 
(e.g., a jet engine control application). It is worth noting here the contrast between 
the meteorological monitoring and jet engine control applications: both applications 
may be using the same types of devices (temperature sensors, pressure sensors) and 
observing the same physical entities (temperature, pressure). However, it is the 
applications’ requirements that dictate the traffic characteristics that the network 
must deliver. By the same token, some IoT devices generate short bursty traffic 
(e.g., point of sale terminal), whereas other devices generate long-tailed traffic (e.g., 
video camera). The dichotomy in traffic characteristics, between solutions that 
expect determinism and those that can withstand best-effort (random) communica-
tions, creates drivers for Link layer technologies that support deterministic and 
Time-Sensitive Networking.

The access characteristics of IoT endpoints become increasingly diverse as the 
footprint of the network grows beyond traditional IT environments, dominated by 
familiar local area network (LAN) and wide area network (WAN) technologies, and 
into new deployment environments such as industrial plant floor, oil fields, marine 
platforms, mines, wells, power grids, vehicles, locomotives, and even the human 
body. IoT devices in these environments may connect to the network using a mix of 
wireless and wired technologies. The devices when connected wirelessly may be 
either mobile or stationary and depending on the logistics of the deployment may 
require either long-range or short-range connectivity solutions. To accommodate 
this diversity, new Link layer protocols that form the foundation of field area net-
work (FAN), neighborhood area network (NAN), and personal area network (PAN) 
technologies are required.

IoT scalability demands present interesting challenges for the Link layer of the 
protocol stack, especially for wireless technologies. On the one hand, these tech-
nologies offer a number of appealing characteristics that make them a good fit for 
the IoT, low upfront investments, wide geographic coverage, fast deployment, and 
pleasing aesthetics (no unsightly wires).

On the other hand, these technologies are susceptible to scalability issues. For 
instance, cellular technologies are subject to the spectrum crunch problem, which 
drives demand for technology optimizations and cellular off-load solutions such as 
Wi-Fi and femtocell. Also, wireless mesh technologies suffer from challenges such 
as forwarding latency and slow convergence as the diameter of the mesh scales.

5.1  Link Layer
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5.1.2  Industry Progress

Now that we have covered the main challenges that IoT presents to the Link layer 
of the protocol stack, we will shift our focus to describe the industry’s progress in 
addressing those challenges through open standard solutions.

5.1.2.1  IEEE 802.15.4

IEEE 802.15 Task Group 4 (TG4) was chartered to investigate a low data rate wire-
less connectivity solution with focus on very low complexity and extended battery 
life span that is in the range of multiple months to multiple years. The solution was 
meant to operate in an unlicensed, international frequency band. While initial activi-
ties of the task group focused on wearable devices, i.e., personal area networks, the 
eventual applications proved to be more diverse and varied. Potential applications of 
the solution include sensors, interactive toys, smart badges, remote controls, and 
home automation. As can be seen from the applications, the focus of the solution 
has primarily revolved around enabling “specialty,” typically short-range, 
communication.

The resulting IEEE 802.15.4 technology is a simple packet-based radio protocol 
aimed at very low-cost, battery-operated devices (whose batteries last years) that 
can intercommunicate and send low-bandwidth data to a centralized device. The 
protocol supports data rates ranging from 1 Mbps to 10 kbps. The data rate is depen-
dent on the operating frequency as well as on the coding and modulation scheme. 
The standard operates over several frequency bands, which vary by region:

• 169 MHz band
• 450 MHz band
• 470 MHz band
• 780 MHz band
• 863 MHz band
• 896 MHz band
• 901 MHz band
• 915 MHz band
• 917 MHz band
• 920 MHz band
• 928 MHz band
• 1427 MHz band
• 2450 MHz band

In addition, the standard supports multiple modulation schemes, including 
BPSK, ASK, O-QPSK, MR-FSK, MR-OFDM, and MR-O-QPSK. The transmis-
sion range varies from tens of meters up to 1 km, the latter introduced with IEEE 
802.15.4g. The protocol is fully acknowledged for transfer reliability. The basic 
frame size is limited to 127 bytes in the original specification, and the philosophy 
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behind that is twofold: to minimize power consumption and to reduce the probabil-
ity of frame errors. However, with IEEE 802.15.4g, the maximum frame size is 
increased to 2047 bytes, accompanied by an increase of the frame check sequence 
(FCS) from 16 to 32 bits for better error protection.

The standard offers optional fully acknowledged frame delivery for transfer reli-
ability in lossy environments (e.g., high interference). If the originator of a frame 
does not receive an acknowledgment after a certain time period, it assumes that the 
transmission failed and retransmits the frame. If an acknowledgment is still not 
received after multiple attempts, the originator may either terminate the transaction 
or continue retrying.

The IEEE 802.15.4 standard only defines the functions of the Physical and Media 
Access Control (MAC) layers. It serves as the foundation for several protocol stacks, 
some of which are non-IP, including Zigbee, Zigbee RF4CE, Zigbee Pro, 
WirelessHART, ISA 100.11a, and RPL.

There are two types of devices in an 802.15.4 network. The first one is the full- 
function device (FFD). It implements all of the functions of the communication 
stack, which allows it to communicate with any other device in the network. It may 
also relay messages, in which case it is dubbed as a personal area network (PAN) 
coordinator. The PAN coordinator is in charge of its network domain: it allocates 
local addresses and acts as a gateway to other domains or networks. The second type 
of device is the reduced-function device (RFD). RFDs are meant to be extremely 
simple devices with very modest resource and communication capabilities. Hence, 
they can only communicate with FFDs and can never act as PAN coordinators. The 
rationale is that RFDs are to be embedded into the “things.” Networks can be built 
using either a star, mesh, or cluster tree topology (Fig. 5.3). In all three cases, every 
network needs at least a single FFD to act as the PAN coordinator. Networks are 
thus formed from clusters of devices separated by suitable distances.

Fig. 5.3 IEEE 802.15.4 topologies
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In the star topology, all devices communicate through a single central controller, 
namely, the PAN coordinator. This is a hub-and-spoke model: the PAN coordinator 
is the hub, and all other devices form spokes that connect only to the hub. The PAN 
coordinator is typically main powered, while the devices are most likely battery 
operated. Use cases that make use of this topology include smart homes (home 
automation), computer peripherals, personal health monitors, toys, and games. Each 
star network chooses a PAN identifier, which is not currently in use by any other 
network within the radio range. This allows each star network to operate indepen-
dently of other networks.

The mesh topology (also called peer to peer) differs from the star topology in that 
any device can communicate with any other device as long as the two are within 
radio range. A mesh network can be ad hoc in formation, self-organizing, and self-
healing on node or link failures. It also provides reliability through multipath rout-
ing. Use cases such as industrial control and process monitoring, wireless sensor 
networks (WSN), precision agriculture, security, asset tracking, and inventory man-
agement all can leverage this topology.

The cluster tree topology is a special case of a mesh network that comprised of 
chained clusters. In a cluster tree, the majority of the devices are FFDs. RFDs may 
connect to the network as leaf nodes at the end of a tree branch. As with any 802.15.4 
topology, the network has a single PAN coordinator. The PAN coordinator forms the 
first cluster by declaring itself as the cluster head (CLH) with a cluster identifier 
(CID) of zero, selecting an unused PAN identifier, and broadcasting beacon frames 
to other neighbor devices. A device, which receives beacon frames, may request 
from the CLH to join the cluster. If the CLH allows the device to join, it will add the 
new device as a child device in its neighbor list. The newly joined device will add 
the CLH as its parent in its neighbor list and commence broadcasting periodic bea-
con frames. This allows other candidate devices to join the same cluster at that 
device. Once the requirements of the application or network are met, the PAN coor-
dinator may instruct a device to become the CLH of a new cluster that is adjacent to 
the first. The advantage of this daisy-chained cluster structure is the ability to 
achieve larger coverage area at the expense of increased message latency.

5.1.2.2  IEEE 802.15.4e TSCH

IEEE 802.15.4e is the next-generation 802.15.4 wireless mesh standard. It aims to 
improve on its predecessor in two focus areas: lower energy consumption and 
increased reliability. The standard introduces a new media access control (MAC) 
layer to 802.15.4 while maintaining the same physical (PHY) layer. Hence, it can be 
supported on existing 802.15.4 hardware. Two key capabilities are added, time syn-
chronization and channel hopping, hence the acronym TSCH. Time synchroniza-
tion addresses the requirement for better energy utilization, whereas channel 
hopping aims at increasing the reliability of communication.

With time synchronization, time is sliced into fixed-length time slots and all 
nodes are synchronized. A time slot is long enough to allow a station to send a 
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maximum transmission unit (MTU)-sized frame and receive an acknowledgment 
back. Time slots are grouped into slotframes of flexible width. The flexibility allows 
different deployments to optimize for bandwidth or for energy saving: the shorter 
the slotframe, the more frequently that a given time slot will be repeated, thereby 
giving a station more chances to transmit (i.e., higher bandwidth) but at the expense 
of increased energy consumption. The current time slot is globally known to all 
nodes in the network via an absolute slot number (ASN). The ASN is initialized to 
0 and is expected to wrap around only after hundreds of years.

With channel hopping, each message transmission between nodes occurs on a 
specified channel offset. The channel offset is then mapped to a radio frequency 
using a function that guarantees that two consecutive transmissions between two 
nodes hop from one frequency to another within the allotted band:

 
Frequency ASN Channel Offset mod nFreq= +( ){ }F

 

where nFreq is the number of available frequencies in the allotted band.
This enhances the reliability of communication as it is proven to be effective 

against multipath fading and interference. Basically, if a specific frequency is sub-
ject to fading or interference, then by changing the frequency used for communica-
tion between nodes with every new message, only a subset of the messages will be 
lost due to those conditions, whereas if all communication were to occur on the 
same frequency, then all messages between the nodes communicating over the 
affected frequency would be lost during the fading or interference event.

The nodes in the network all obey a TSCH schedule. The schedule is a logical 
two-dimensional matrix with one dimension determining the slot offset in the slot-
frame and the second dimension designating the channel offset in the available fre-
quency band (Fig. 5.4). The schedule instructs each node on what it is supposed to 
do in a given time slot: transmit, receive, or sleep. The schedule also indicates for 
every communicating node its neighbor’s address and the channel offset to be used 
for said communication. The width of the schedule is equal to the slotframe width, 
whereas the depth of the schedule is equal to the number of available frequencies in 
the allotted band. Each cell in the schedule corresponds to a unique slot offset and 
channel offset combination. The organization of communication in the schedule 
allows the network to operate using collision-free communication, by ensuring that 

Fig. 5.4 TSCH schedule
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only a single station transmits in a given cell. Alternatively, it can allow the network 
to operate in a slotted Aloha paradigm (i.e., carrier-sense multiple access with col-
lision detection—CSMA/CD) by allowing multiple stations to transmit in the same 
cell. IEEE 802.15.4e does not define the mechanisms by which the TSCH schedule 
is built and leaves that responsibility to upper-layer protocols.

5.1.2.3  LPWAN

Low-power wide area networks (LPWANs) are meant to fill the gap between short- 
range wireless and cellular communication technologies. They are designed for 
low-power, long-range, and light-weight data collection IoT use cases (Fig. 5.5). 
Devices connecting to LPWANs will typically have a battery life of over 10 years 
and will require outdoor coverage of up to 20 km (12 miles) and sufficient indoor 
penetration. From an operational standpoint, the solutions require low service cost 
and endpoint complexity. In general, the LPWAN landscape spans both licensed and 
unlicensed spectrums.

It is not unusual to see Low-power wide area (LPWA) technology combined with 
LTE in solutions where high data rates are required for device (e.g., navigation, 
entertainment systems) and low-data rates are used in the same device for telemetry 
(e.g., position, direction, temperature).

There are two main LPWA technologies in the market today that dominate the 
landscape. They are as follows:

• LoRaWAN (Long-Range Wide Area Network)—An unlicensed radio technology 
(free) that is available for anyone to deploy much like Wi-Fi is today. Note, LoRa 
only provides the radio layer (link layer protocol) therefore it is combined with a 
network layer protocol called LoRaWAN that provided the methods and 
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 procedures for a sensor to transmit and receive packets. LoRaWAN is defined by 
the LoRa Alliance, an industry consortium.

• NB-IoT (Narrow-Band IoT)—A licensed-spectrum (paid) transport provided by 
service providers and defined by the 3GPP (the same organization that defines 
the 3/4/5G specifications).

LoRaWAN

LoRaWAN defines a communication protocol and network architecture for low- 
power wide area networks (LPWANs). LoRaWAN is designed to address the 
requirements for low-power consumption (i.e., long battery life), long range, and 
high capacity in LPWANs while maintaining low cost for the solution. The com-
munication protocol used in LoRaWAN is known as LoRa. The LoRa physical layer 
uses chirp spread spectrum modulation. It is characterized by low-power usage 
while at the same time significantly increasing the communication range when com-
pared to frequency-shifting keying (FSK), which is the modulation technique often 
used in legacy wireless systems. Chirp spread spectrum is not a new technique: it 
has been employed in military and space applications for decades because of its 
extended range and its robustness against interference. A key advantage of the LoRa 
protocol is its extended range: a single base station can cover hundreds of square 
miles. That is enough to provide coverage over cities. Hence, with minimal infra-
structure, entire countries can be covered using LoRaWAN. In wireless communi-
cation systems, the range within a given environment is determined through the link 
budget metric. LoRa has a link budget that is greater than any other standardized 
wireless communication technology today. The link budget is defined as an account-
ing of all the gains and losses between a transmitter and a receiver:

  Link Budget Transmitted Power Gains Losses= + −  

Network Architecture

LoRaWAN employs a long-range star (or hub and spoke) architecture in order to 
minimize power consumption. Star architecture, in contrast to mesh architecture, 
eliminates the scenario where nodes receive and forward information from other 
nodes that is mostly irrelevant to them. In LoRaWAN, gateways act as hub nodes, 
whereas end devices form the spokes. End nodes are not associated with a particular 
gateway. Rather, when a node sends data, it is typically received by multiple gate-
ways. Each of these gateways, in turn, forwards the received data toward the cloud- 
based network server using some backhaul1 technology. The network server is 
responsible for all complex and intelligent functions: it manages the network, filters 

1 The backhaul can be Ethernet, Wi-Fi, satellite, or cellular.
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redundant received data, performs security verification, schedules acknowledg-
ments through the most optimal gateway, and performs adaptive rate control, etc.

A key feature of this architecture is that no handover mechanism is required from 
one gateway to another to support the mobility of end nodes. Therefore, it is straight- 
forward to enable IoT asset tracking applications. Another key feature is the built-in 
access redundancy, where the failure of a gateway or path toward the network server 
is handled by sending redundant copies of data packets (Fig. 5.6).

Device Class Capabilities

In order to address the constrained devices requirement of IoT, LoRaWAN defines 
three device class capabilities targeting different applications with varying needs. 
The classes are labeled A, B, and C. They offer a trade-off between energy con-
sumption and downlink communication latency.

Class A devices support bidirectional communication. They include battery- 
powered sensors. This is the most energy-efficient device class capability and must 
be supported by all devices implementing LoRaWAN. The communication model is 
such that each uplink transmission by the end device is followed by two short down-
link receive windows. The transmission schedule of the end device is dictated by its 
own communication requirements, albeit with a small variation in the allocated 
window based on a random time variance (ALOHA protocol flavor). This class of 
operation is suitable for applications where downlink communication from the 
server to the end device mostly occurs in the short window after the latter had sent 
an uplink transmission. Otherwise, such downlink communication must be deferred 
till the next scheduled uplink transmission.

Class B devices support bidirectional communication with scheduled receive slots. 
They include battery-powered actuators. This class offers energy efficiency with 
latency controlled downlink communication. The communication model for this class 
supports all the capabilities of Class A and in addition requires end devices to open 
extra receive windows at scheduled times. This is accomplished by having the end 
devices receive a time-synchronized beacon from the gateways, so that the applica-
tions on the servers know when the end devices are listening on these extra slots.

LoRaWAN
Devices

Gateways (GW) Network Server (NS) Application Servers (AS)

Backhaul 
(3G/Ethernet)

LoRa 
RF

App Data LoRaWAN
Radio PHY

LoRaWAN MAC IP
Tunnel

IP Transport App Data

Fig. 5.6 LoRaWAN end-to-end network architecture
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Class C devices support bidirectional communication with maximal receive 
slots. They include main powered actuators. This class is for devices that have the 
energy resources to afford to listen continuously. It is well suited for applications 
that require no latency in downlink communication. End devices in this class must 
continuously open receive windows when not in transmitting mode.

Scalability

LoRaWAN ensures the scalability of its long-range star network architecture 
through high-capacity gateways. Gateways achieve high capacity through a twofold 
approach, by using adaptive data rate and by employing a multichannel multi- 
modem transceiver. This allows the gateway to receive simultaneous messages on 
multiple channels from a very high volume of end devices. Several factors affect 
network capacity, among which the following are deemed most critical:

• Number of concurrent channels supported by the transceiver
• Data rate (i.e., time on air)
• Payload size
• Frequency of transmission of communicating nodes

Recall that LoRa uses spread spectrum modulation; hence, when different 
spreading factors are used, the signals end up being orthogonal to one another. The 
effective data rate changes with change in the spreading factor. LoRaWAN gate-
ways capitalize on this property in order to concurrently receive multiple different 
data rates on the same channel. In the scenario where an end device is in the vicinity 
of a gateway and has a good link, there is no technical reason for it to use the lowest 
data rate thereby filling up the available spectrum for a longer time period than 
required. If this device was to shift to a higher data rate, its time on air will be short-
ened, thereby freeing up more time for other devices to transmit. It is worth noting 
that in order for adaptive data rate to work, the uplink and downlink need to be sym-
metrical, with sufficient downlink capacity. These features all contribute to making 
a LoRaWAN network scalable.

However, the duty-cycle limitation in the ISM bands may arise as a limitation to 
the scale of LoRaWAN networks. As an example, the maximum duty cycle of the 
EU 868 ISM band is 1%. This results in a maximum transmission time of 36 s in 
each hour for each end device in a sub-band.

Energy Efficiency

Energy efficiency is achieved in LoRaWAN through the use of the ALOHA method 
of communication: nodes are asynchronous and only communicate when they have 
data ready to be sent, whether scheduled or event driven. This alleviates the need for 
end devices to frequently wake up and synchronize with the network or check for 
messages. Such synchronization is one of the primary contributors to energy con-
sumption in wireless networks.
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Energy efficiency is also achieved through the use of adaptive data rate, where 
transmission power is varied according to link quality. When adaptive data rate is 
enabled, the network collects metrics on a number of the most recent transmissions 
from a node. These metrics include the frame counter, signal-to-noise ratio (SNR), 
and the number of gateways that have received each transmission. Based on these 
metrics, the network then calculates if it is possible to increase the data rate or lower 
the transmission power. If possible, the network will lower the transmission power 
to save energy and cause less interference.

Security

LoRaWAN defines two layers of security: one at the Network layer and one at the 
Application layer. Network security is responsible for ensuring the authenticity of 
the node in the network, whereas the Application layer security guarantees that the 
user’s application data is inaccessible to the network operator. LoRaWAN uses AES 
encryption with key exchanges based on the IEEE EUI64 identifier.

Three different security keys are defined: network session key, application ses-
sion key, and application key. The network session key is used for securing the 
interactions between the end node and the network. It helps in checking the validity 
of the messages. The application session key is used for payload encryption/decryp-
tion. These two session keys are unique per device, per session. When a device is 
dynamically activated, these keys are regenerated upon every activation, whereas, if 
the device is statically activated, these keys remain the same until changed by the 
operator. Devices which are dynamically activated use the application key in order 
to derive the two session keys in the course of the activation procedure. In general, 
it is possible to have either a default application key that is used to activate all 
devices or a customized key per device.

Regional Variations

Due to differences in spectrum allocations and regulatory requirements between 
regions, the LoRaWAN specification varies slightly from region to region. These 
variations affect the following: frequency band, number of channels, channel band- 
width, transmission power, data rate, link budget, and spreading factor.

Challenges

LoRaWAN relies on the acknowledgment of frames in the downlink for reliability. 
This, in turn, causes capacity drain. Therefore, in general, application should try to 
minimize the volume of acknowledgments in order to avoid this drain. This raises 
an open question regarding the feasibility of very large-scale and ultrareliable appli-
cations using LoRaWAN.

Also, the uncoordinated deployment of LoRaWAN gateways and alternate 
LPWAN technologies in large urban centers may lead to a decrease in network 
capacity due to collisions in the ISM bands. This, in addition to the duty-cycle 
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regulation for these bands, poses potential challenges for large-scale LoRaWAN 
deployments.

NB-IoT

In June 2016, 3GPP completed the standardization of Narrow Band IoT (NB-IoT), 
a radio access technology with a spectrum bandwidth that can go as small as 
180  kHz and with higher modulation rates compared to LoRaWAN. 3GPP had 
started NB-IoT under the name “Cellular System Support for Ultra-low Complexity 
and Low Throughput Internet of Things (CIoT) ” with the goal of finding a solution 
that would be competitive in the Low-Power Wide Area segment, which at that time 
was largely defined by unlicensed spectrum technologies.

NB-IoT has its roots in LTE, albeit its operation is kept as simple as possible in 
order to reduce device costs and minimize battery consumption. In order to do so, it 
removes many features of LTE, including handover mechanisms, channel quality 
monitoring measurements, carrier aggregation, and dual connectivity. It uses the 
same licensed frequency bands used in LTE, and employs QPSK modulation. There 
are different frequency band deployments, which are stand-alone, guard-band, and 
in-band deployment. There are 12 subcarriers of 15 kHz in downlink using OFDM 
and 3.75/15 kHz in uplink using SC-FDMA.

Network Architecture

The core network architecture of NB-IoT is based on the 3GPP’s Evolved Packet 
Core (EPC), with simplifications and optimizations that were designed specifically 
for IoT use cases focusing on communication between an IoT device and an appli-
cation in the external network (cloud/Internet). This is achieved using a combined 
node called C-SGN (CIoT Serving Gateway Node) which serves the combined 
functionality of the Mobility Management Entity (MME)/Serving Gateway (SGW) 
and of Packet Data Network Gateway (PGW) in the original EPC architecture. 
Figure 5.7 depicts the architecture.

CIoT RAN AS 
(CIoT Services)

MME

SGW

SCEF

PGW

UE
C-SGN

S1U

S11

S1-MME
T6a

T8

SGi
S5 / S8

Fig. 5.7 NB-IoT network architecture
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For NB-IoT, 3GPP has introduced in addition to the IP Packet Data Network 
(PDN), a non-IP PDN. This is to handle IoT devices where the packets used for 
communication are unstructured from the Evolved Packet System standpoint. While 
an IP based PDN is established through the regular attach procedure, a non-IP type 
PDN can be accomplished by one of two mechanisms:

• Delivery using SCEF.
• Delivery using point to point SGi tunnel (via PGW) based on UDP/IP where 

PGW acts as transparent forwarding node via transferring Non-IP data between 
UE and the AS (Fig. 5.7).

Each application shall have its own PDN and APN to differentiate the bearer. The 
APN configuration in the HSS helps the network to decide whether Non-IP data is 
sent via SCEF or PGW.

SCEF stands for Service Capability Exposure Function. It provides a means to 
securely expose the services and capabilities provided by the 3GPP network and 
hence enables enterprises to develop applications that may benefit from the trans-
port network information. SCEF is primarily used for Non-IP data delivery provided:

• The Application server (AS) registers itself with the SCEF for a particular device 
followed by SCEF informing the Home Subscriber Server (HSS) about the reg-
istration request.

• The device has a PDN connection/bearer available between itself and SCEF (via 
MME) for non-IP data delivery.

In general, a device does not need to know whether a PDN connection is obtained 
via a SCEF or a PGW. In case of the former, an association between the AS and 
SCEF needs to be established to enable transfer of non-IP data. SCEF also helps in 
monitoring device events or state and performing application specific actions based 
on the device trigger or SCS/AS request.

Device Categories

Table 5.1 provides a summary of device categories as they relate to CIoT.

Scalability

NB-IoT allows mobile network operators to support high scale deployments, with 
up to 60K devices per cell, by employing a number of optimizations:

Control Plane CIoT optimization: In the original EPC architecture, the S1U path 
(refer to Fig. 5.7) is required to transfer data. This path is established every time 
the device (UE) needs to send data. In IoT applications that are expected to trans-
fer small amounts of data per day or per month, establishment of frequent data 
radio bearers and consequently S1U path is a signaling overhead. To overcome 
this, data transfer to MME can take place over control plane/Signaling Radio 
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Bearer (SRBs) as Network Access Stratum (NAS) PDUs. This data is further 
sent by MME to SGW or SCEF depending on the PDN type.

User Plane CIoT optimization: In scenarios where large data transfer is required, 
such as remote installation or device software update, Data Radio Bearers 
(DRBs) are used. The existing procedure of S1U establishment consumes sig-
nificant signaling resources due to frequent recurring UE inactivity timer expiry. 
This is why 3GPP TS 36.003 introduces the suspension of the Radio Resource 
Control (RRC) context at eNB until the next data request. A “resume id” is 
shared by radio base-station (eNB) to the device during RRC connection release 
and indicates to the latter to store its context information while suspending SRBs 
and DRBs. This RRC context can later be resumed by the device by simply send-
ing its “resume ID” to the eNB.

Attach without PDN connectivity: This is a new capability to allow devices to 
remain attached without PDN connection. It is useful for devices which seldom 
transfer data and stay inactive most of the time. The device can stay attached 
without PDN but SMS service is available for any data transmission. The SMS 
could also be used to trigger the device to initiate a PDN connection.

APN rate control: Since many IoT devices use minimal data and hence cannot be 
charged based on data usage, Access Point Name (APN) rate control is used to 
decide the maximum number of packets to/from device per time unit (day, 
month, etc.). This upper cap or the limit is decided by the network operator and 
is based on the general data consumption by the IoT application. APN rate con-
trol comes into the picture only for devices attached with PDN.

Table 5.1 CIoT device categories

Release-8 Release-12 Release-13 Release-13
Cat. 1 Cat. 0 Cat. M1 Cat. NB1

Downlink 
peak

10 Mbps 1 Mbps 1 Mbps 200 kbps

Uplink 
peak rate

5 Mbps 1 Mbps 1 Mbps 144 kbps

Number of 
antennas

2 1 1 1

Duplex 
mode

Full duplex Half duplex Half duplex Half duplex

UE receive 
bandwidth

20 MHz 20 MHz 1.4 MHz 200 kHz

UE transmit 
power

23 dBm 23 dBm 20 dBm 23 dBm

Use case Voice services for 
emergency in 
elevators, smart 
Grid Management

Cat0 is the interim 
solution prior to 
Cat-M. Cat0 is used for 
replacing Cat1 but 
cannot replace voice 
use cases

Environment 
monitoring, 
vehicle tracking

Smart metering, 
smart buildings, 
home 
automation
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eSIM: eSIM is a global specification by GSMA that enables remote SIM provision-
ing of any mobile device. This is not based on a regular SIM card rather using 
embedded SIM (also called eUICC) which can accommodate multiple SIM pro-
files, having their respective operator and subscriber data. This allows remote 
provisioning and migrating the SIMs to a different operator/network over the air, 
thereby providing significant operational efficiency for large scale IoT 
deployments.

Energy Efficiency

NB-IoT provides mechanisms for efficient energy consumption, namely:

Power saving mode: This is a device mechanism to conserve energy and support 
extended battery life. When enabled, the device and the network can negotiate 
the sleep and active state duration for transfer and reception of data. However, 
the final values are determined by the network and no re-attach procedures are 
required when the device becomes active again. Mobile network operators are 
expected to use store-and-forward approach during power saving mode so that 
stored messages can be forwarded to the device when it becomes active. The 
amount of storage capacity to be reserved for storing the messages is decided by 
the operator.

Extended Discontinuous Reception (eDRX): eDRX is an extension of an existing 
feature to save more energy and allows the device to sleep for an extended period 
of time. During sleep time, the device does not listen for any paging or control 
channels. While power saving mode can effectively reduce power consumption 
for devices that originate messages, e-DRX could do the same for devices that 
terminate messages.

Security

NB-IoT inherits LTE’s secure authentication, signalling protection, user identity 
confidentiality, data integrity, and encryption capabilities. To protect the mobile 
operator’s network from misbehaving devices, NB-IoT supports PLMN rate con-
trol. It allows the network to measure and protect itself by enabling a rate control on 
the data traffic being carried in NAS PDUs in UL/DL and hence is not applicable to 
user plane optimization.

Comparison of LoRaWAN and NB-IoT

Table 5.2 illustrates the technical differences between LoRaWAN and NB-IoT in 
both implementation and attributes. In short, only Service Provider networks can 
deploy NB-IoT, whilst LoRa/LoRaWAN can be deployed by both Service Providers 
and private enterprises.
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5.1.2.4  IEEE 802.11ah

The popularity of IEEE 802.11 wireless technologies (Wi-Fi) has grown steadily 
over the years in home, business, as well as metropolitan area networks. The tech-
nology, however, cannot sufficiently address the requirements of IoT, due to the 
following two reasons:

• High power consumption for client stations: Wi-Fi has the reputation of not 
being very power efficient, due to the need for client devices to wake up at regu-
lar intervals to listen to AP announcements, waste cycle in contention pro-
cesses, etc.

• Unsuitable frequency bands: Wi-Fi currently uses the 2.4–5  GHz frequency 
bands, which are characterized by short transmission range and high degree of 
loss due to obstructions. A common solution to this is the use of repeaters, but 
those add to the power consumption of the solution and add to the network’s 
complexity.

To address these issues, IEEE 802.11 formed Task Group “ah.” The 802.11ah 
group was chartered to develop a wireless connectivity solution that operates in the 
license-exempt sub-1 GHz bands to address the following IoT requirements: large 
number of constrained devices, long transmission range, small (approximately 100 
bytes) and infrequent data messages (inter-arrival time larger than 30 s), low data 
rates, and one-hop network topologies. The solution is intended to provide a trans-
mission range of up to 1 km in outdoor areas with data rates above 100 kbps while 
maintaining the current Wi-Fi experience for fixed, outdoor, point-to-multipoint 
applications. From a design philosophy perspective, the solution optimizes for 
lower power consumption and extended range at the expense of throughput, where 
applicable. In addition, the solution aims for scalability by supporting a large num-
ber of devices (up to 8191) per Wi-Fi access point.

Table 5.2 LoRaWAN and NB-IoT comparison

Attribute LoRaWAN NB-IoT

Frequency/spectrum Unlicensed Licensed
Bandwidth 500 kHz–125 kHz 180 kHz
Max data rate 50 kbps 200 kbps
Range 5 km (urban)

20 km (rural)
1 km (urban)
10 km (rural)

Base station architecture Device TX to multiple base stations Devices TX to single base
Power efficiency Very high High
Max messages per day Unlimited Unlimited
Protocol Asynchronous Synchronous
Interference immunity High Low
Allows private network Yes No
Standardization LoRa Alliance 3GPP
Modulation CSS QPSK
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IEEE 802.11ah introduces new PHY and MAC layers. The new layers are 
designed for scalability, extended range, and power efficiency. Compared to exist-
ing Wi-Fi technologies which operate in the 2.4–5  GHz range, the use of the 
sub-1 GHz band provides longer range through improved propagation and allows 
better penetration of the radio waves through obstructions (e.g., walls).

However, one of the challenges in the use of the sub-1 GHz spectrum is that its 
availability differs from one country to the next, with large channels available in the 
USA, whereas many other regions only have a few channels. This led the 802.11ah 
group to create several channel sizes: 1, 2, 4, 8, and 16 MHz channels based on the 
needs and regulatory domains of different countries. It also led the group to define 
operation over several frequency bands, which vary by region:

• Europe: 868–868.6 MHz
• Japan: 950–958 MHz
• China: 314–316, 390–434, 470–510, and 779–787 MHz
• Korea: 917–923.5 MHz
• USA: 902–928 MHz

IEEE 802.11ah will support data rates ranging from 150 kbps up to 340 Mbps. 
The supported modulation schemes include BPSK, QPSK, and 16 to 256 QAM.

In order to address the IoT requirements of low-power consumption and massive 
scalability, the emerging 802.11ah introduces several enhancements to Wi-Fi tech-
nology that can be categorized into three functional areas:

• Providing mechanisms for client stations to save power through longer sleep 
times and reducing the need to wake up.

• Improving the mechanisms by which a client station accesses the medium by 
providing procedures to allow the station to know when it will be able to, or will 
have to, access the channel.

• Enhancing the throughput of a client station that accesses the channel, by reduc-
ing the overhead associated with current IEEE 802.11 exchanges through reduc-
ing frame headers, as well as simplifying and speeding management frames 
exchanges.

In what follows, we will describe a number of those enhancements in more detail.

Short MAC Header

To enhance throughput, 802.11ah adds support for a shorter MAC header compared 
to the current 802.11 standard. Information contained in the QoS and HT control 
fields (the latter introduced to the MAC header with 802.11n) are moved to a signal 
(SIG) field in the PHY header. The other non-applicable parts of the header are sup-
pressed, e.g., no duration/ID fields, since there is no virtual clear channel assess-
ment (CCA). The new header is 12 bytes shorter than the standard 802.11n header. 
Following the same logic, the acknowledgment (ACK) frame is replaced with a null 
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data packet, which only contains the PHY header (no MAC header, no FCS). That 
frame is sent at a special reserved modulation and coding scheme (MCS) to make it 
recognizable. MCS is a simple integer assigned to every permutation of modulation, 
coding rate, guard interval, channel width, and number of spatial streams.

Large Number of Stations

To enable support for a large number of client stations, 802.11ah extends the 
Association Identifier (AID), which is limited to 2007 in the current 802.11 stan-
dard, by creating a hierarchical identifier with a virtual map, bringing the number up 
to 8191.

Speeding Frame Exchanges

In current 802.11 frame exchanges, a client station first has to contend for the 
medium, then transmit its frames, and then wait for an acknowledgment from the 
access point (AP). If the client station expects a response, it has to stay awake, while 
the AP contends for the medium and then sends. The client station finally sends an 
acknowledgment. With the 802.11ah speed frame exchange mechanism, the dialog 
can occur within a single transmission opportunity (TXOP): the client station wakes 
up, contends for the medium, and sends the frame to the AP, and the AP immedi-
ately replies after just a short inter-frame gap, allowing the client station (e.g., sen-
sor) to immediately go back to sleep mode after receiving the answer, saving on 
uptime wasted in inter-frame and two-way acknowledgments.

Relay

Client stations often need to exchange information with one another, going through 
one or more intermediary APs when a direct connection is not available. In such 
exchanges, the client stations are forced to stay awake for the entire duration of the 
dialog. This process is greatly optimized with 802.11ah relay coupled with speed 
frame exchange. The client station wakes up and sends a frame to the AP, asking the 
latter to relay. The client station can then immediately go back to sleep/power- 
saving mode. The AP may relay the frame through another AP or deliver it directly 
to the destination. This model is appealing due to a number of reasons: the AP is 
usually main powered and has enough resources to buffer the frame until the desti-
nation client station wakes up. The same process can be repeated for the response 
message, allowing both client stations to optimize power consumption when they 
are not actively sending or receiving. This also eliminates the need for the client 
stations to synchronize wake/sleep cycles.
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Target Wake Time

With target wake time (TWT), the AP can inform client stations when they will gain 
the right to access the medium. A client station and an AP can exchange initial 
frames expressing how much access the former needs. Then, the AP can assign a 
target wake time for the station, which can be either aperiodic or periodic (thus 
eliminating the need for the client station to have to wake up to listen to TWT val-
ues). Outside of the TWT, the client station can sleep and does not have to wake up 
to listen to any messages, not even beacon frames. At those target wake times 
(TWTs), the AP can send a null data packet paging (NDP) that tells the client station 
about the AP buffer status. This allows the AP to smoothly deliver buffer content to 
all client stations one after the other, instead of having all stations wake up at bea-
con time.

Grouping

Client stations can be grouped based on their location, using a group identifier 
assignment that relies on their type or other criteria. The AP then announces which 
groups are allowed to be awake for the next time period and which groups can go 
back to sleep mode because they will not be allowed to access the channel. This 
saves battery power on the sleeping groups, as these do not have to listen to the traf-
fic. This logic brings a form of time division multiplexing (TDM) to Wi-Fi, by 
allowing transmission to each group based on time periods.

Traffic Indication Map (TIM) and Paging Mechanism

802.11ah introduces a traffic indication map (TIM) and page segmentation mecha-
nism, by which an AP splits the TIM virtual bitmap into segments and each beacon 
only carries one segment. This allows IoT devices to wake up only to listen to the 
TIM matching their segment number. 802.11ah also introduces the concept of TIM 
stations (that need to get TIM info and therefore wake up at regular intervals) and 
non-TIM stations (that do not expect to receive anything and therefore can sleep 
beyond TIMs and do not need to wake up unless they need to send).

Restricted Access Windows

The AP can define a restricted access window (RAW), which is a time duration 
composed of several time slots. The AP can inform client stations that they have the 
right to send or receive only during certain time slots within the window, in order to 
distribute traffic evenly. The AP would use the RAW parameter set (RPW) to deter-
mine and communicate these slots and transmission or reception privileges. A client 
station that has traffic to send upstream but for which the AP does not have traffic to 
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send downstream can send a request message to indicate to the AP that it needs a 
slot upstream.

5.1.2.5  Comparison of Wireless Link Layer Protocols

The table below summarizes key characteristics of the wireless IoT link layer pro-
tocols discussed in this chapter:

Protocol Range Data rate Topology Application
Power 
consumption

IEEE 
802.15.4

Up to 
1 km

1 Mbps to 
10 Kbps

Mesh Personal area network/
home network

Very low

LPWAN Up to 
20 km

Up to 50 Kbps Star Wide area network Low

IEEE 
802.11ah

Up to 
1 km

>100 Kbps Star Metropolitan block Medium

5.1.2.6  Time-Sensitive Networking

The requirements for Time-Sensitive Networking originate from real-time control 
applications such as industrial automation and automotive networks. These require-
ments contribute to some of the most prominent gaps that current Internet technolo-
gies need to address at the Link layer to realize the vision of IoT. In the case of 
industrial automation, the networks are relatively large (in the order of one to sev-
eral kilometers) and may include up to 64 hops for a factory and up to 5 hops within 
a work cell (e.g., robot). The network needs to accommodate, in addition to real- 
time control traffic, other long-tailed traffic such as video or large file transfers. One 
of the key requirements for such networks is precise time synchronization, in the 
order of ±500 ns within a work cell and ±100 μs factory wide. Another key require-
ment is deterministic delay, which is not to exceed 5  μs within a work cell and 
125 μs factory wide. Last but not least, a fundamental requirement for such net-
works is high availability as it is critical for the safety of the operators. This trans-
lates to a requirement for redundant paths with seamless or instantaneous switchover 
time, not to exceed 1 μs. In the case of automotive networks, the physical size of the 
deployments is relatively small, but the number of ports required is large: as an 
example, the network may span 30 m over 5 hops with over 100 devices connected 
(sensors, radar, control, driver-assist video, information, and entertainment audio/
video). A key requirement for these networks is support for deterministic and very 
small latency, less than 100 μs over 5 hops using 100 Mbps links. Another important 
requirement is high availability to ensure driver and passenger safety.

The above networks have typically been based on non-IP technologies. 
Connectivity has traditionally been achieved using some fieldbus technology such 
as DeviceNet, Profibus, and Modbus. Each of these technologies conforms to 
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specific power, cable, and communication specifications, depending on the sup-
ported application. This has led to the situation where multiple desperate networks 
are deployed in the same space and has driven the need to have multiple sets of 
replacement parts, skills, and support programs within the same organization. With 
IoT, it will be possible to unite these separate networks into a converged network 
infra-structure based on industry standards. A candidate set of technologies to pro-
vide the Link layer functions of this converged network infrastructure is the IEEE 
802 family of local area network (LAN)/metropolitan area network (MAN) proto-
cols. One of the more popular technologies in the IEEE 802 family of protocols is 
Ethernet. Ethernet is by far the most widely deployed LAN technology today, con-
necting more than 85% of the world’s local area networks (LANs). More than 300 
million switched Ethernet ports have been installed worldwide. Ethernet’s ubiquity 
can be attributed to the technology’s simplicity, plug-and-play characteristics, and 
ease of manageability. Furthermore, it is low cost and flexible and can be deployed 
in any topology. Ethernet and the IEEE 802 family of protocols have steadily 
evolved over the years, with the IEEE Audio-Video Bridging (AVB) task group 
focusing on standards for transporting latency-sensitive traffic over bridged net-
works, primarily for multimedia (audio and video) streaming applications. These 
standards provide a foundation on which to build Time-Sensitive Networking tech-
nologies for IoT. They provide architecture for managing different classes of time- 
sensitive traffic through a set of in-band protocols. In particular, IEEE 802.1AS 
defines a profile for the Precision Timing Protocol (PTP), which provides time syn-
chronization of distributed end systems over the network with accuracy better than 
±1 μs. IEEE 802.1Qav defines forwarding and queuing rules for time-sensitive traf-
fic in Ethernet. It specifies two traffic classes, class A and class B, with maximum 
latency guarantees of 2 ms and 50 ms, respectively. Traffic that does not belong to 
one of these two classes is considered to be “best effort,” which includes all legacy 
Ethernet traffic. Traffic shaping and transmission selection are performed using a 
credit-based shaping algorithm: traffic is organized by priority, according to its 
class, and transmission of a frame in one of the above two classes is only allowed 
when credits are available for the associated class. Upper and lower bounds on the 
credit-based shaper limit the bandwidth and burstiness of the streams. Furthermore, 
IEEE standard 802.1Qat (part of IEEE 802.1Q-2011) defines a signaling protocol 
for dynamic registration and resource reservation of new streams, which provides 
per-hop delays in the order of 130 μs on 1 Gbps Ethernet links.

These standards, however, fall short in a number of areas: First, IEEE 802.1AS 
can take up to 1 s to switch to a new grandmaster clock (GMC) in the case of failure 
of the primary GMC. For real-time control applications, it is required to have the 
switchover time be in the order of 250 ms or less. Also, it is highly desirable to sup-
port multiple concurrently active GMCs for high availability. Second, per-hop 
switch delays need to be reduced by almost two orders of magnitude. Third, path 
selection and reservation for critical streams need to be made faster and simpler in 
order to accommodate high-scale deployments with thousands of streams.

As discussed previously, network high availability is of paramount importance in 
real-time IoT applications. Ethernet has historically, and for a long period of time, 
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relied on the Spanning Tree Protocol (STP) in order to support redundancy and 
failure protection. However, in the past decade or so, requirements for massively 
scalable Ethernet networks in data center and metropolitan area network (MAN) 
deployments have resulted in the evolution of the Ethernet plane toward the use of 
the Intermediate System-to-Intermediate System (IS-IS) protocol, as defined in 
IEEE 802.1aq-2012 (Shortest Path Bridging) and IEEE 802.1Qbp-2014 (Equal 
Cost Multiple Path). IS-IS provides mechanisms for topology discovery and setup 
of redundant paths. It also includes mechanisms for network reconfiguration in the 
case of failures with reasonable delays (better than STP). These standards, however, 
are still lacking in the following areas: There are no standardized mechanisms to 
engineer paths with nonoverlapping or minimally overlapping links and nodes. 
Also, there are no mechanisms that provide extremely fast (i.e., instantaneous) swi-
tchover in the case of failures. Finally, there are no mechanisms for redundant 
(simultaneous) transmission of streams along nonoverlapping paths.

The IEEE Time-Sensitive Networking TSN task group was formed in November 
2012, by renaming the Audio/Video Bridging (AVB) task group, with the goal of 
addressing the gaps highlighted above. Under that umbrella, work on three emerg-
ing standards commenced: 802.1Qca Path Control and Reservation, 802.1Qbv 
Enhancements for Scheduled Traffic, and 802.1CB.

IEEE 802.1Qca

This emerging standard extends the use of IS-IS to control Ethernet networks 
beyond what is defined in IEEE 802.1aq Shortest Path Bridging. It provides explicit 
path control, bandwidth, and stream reservation and redundancy (through protec-
tion or restoration) for data streams. It proposes the use of IS-IS for topology dis-
covery and to carry control information for scheduling and time synchronization. 
The new protocol will enable the use of non-shortest paths and will provide explicit 
forwarding path (explicit tree—ET) control. Path calculation and determination will 
be done through a Path Computation Element (PCE), the latter being defined by the 
IETF PCE workgroup. The PCE is an application that computes paths between 
nodes in the network based on a representation of its topology. In 802.1Qca, IS-IS 
is currently being proposed as the protocol to convey the topology information from 
the Ethernet network to the PCE. The PCE may be centralized and reside in a dedi-
cated server or in a network management system (NMS), or it may be distributed 
and embedded in the network elements (e.g., routers or bridges) themselves.

Figure 5.8 shows an example Ethernet network controlled by a single PCE resid-
ing in end station X. This end station is connected to SPT Bridge 11. The PCE peers 
with the bridge using IS-IS to learn the topology. The PCE can compute explicit 
trees based on, for example, bandwidth or delay requirements, and communicates 
them using IS-IS extensions to the bridges (Fig. 5.8).
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IEEE 802.1Qbv

The IEEE 802.1Qbv standard will provide real-time control applications with per-
formance assurances for network delay and jitter over “engineered” LANs while 
maintaining coexistence with IEEE 802.1Qav/Qat reserved streams and best-effort 
traffic on the same physical network. Engineered LANs are so-called because traffic 
transmission schedules for the network can be designed offline. These pre- configured 
schedules assign dedicated transmission slots to each node in the network, for the 
purpose of preventing congestion and enabling isochronous communication with 
deterministic latency and jitter. The emerging standard will define time-aware shap-
ing algorithm that enables communicating nodes to schedule the transmission of 
messages based on a synchronized time. It is proposed that priority markings car-
ried in the frames will be used to distinguish between time-scheduled, reserved 
stream (credit based), and best-effort traffic.

Figure 5.9 depicts the traffic queue architecture for a bridge port that implements 
this emerging standard. A transmission gate is associated with each traffic queue; 
the state of the transmission gate determines whether or not queued packets can be 
selected for transmission on the port. Global Gate Control logic determines what set 
of gates are open or closed at any given point of time. A packet on a queue cannot 
be transmitted if the transmission gate, for that queue, is in the closed state or if the 
packet size is known and there is insufficient time available to transmit the entirety 
of that packet before the next gate-close event associated with that queue (Fig. 5.9).

IS-IS (ET
Programming)

IS-IS (Topology 
Discovery)

SPT Bridge

Fig. 5.8 Example IEEE 802.1Qca network
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IEEE 802.1CB

In order to maximize the availability and reliability of the network, IEEE 802.1CB 
proposes mechanisms that will enable “seamless redundancy” over 802.1Qca net-
works. With seamless redundancy, the probability of packet loss is reduced by send-
ing multiple copies of every packet of a stream. Each copy is transmitted along one 
of a multitude of redundant paths. Duplicate copies are then eliminated to reconsti-
tute the original stream before it reaches its intended destination.

This is effectively done by tagging packets with sequence numbers to identify 
and eliminate the duplicates and by defining new functions for bridges, a split func-
tion, responsible for replicating packets in a stream, and a merge function respon-
sible for eliminating duplicate packets of a stream (Fig. 5.10).

Fig. 5.9 IEEE 802.1Qbv time-based queuing 

Fig. 5.10 IEEE 802.1CB seamless redundancy
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IEEE 802.1CB proposes introducing a new tag to the 802.1Q frame, the redun-
dancy tag, which includes a 16-bit sequence number. The emerging standard recog-
nizes that alternate tagging mechanisms are possible, for example, through the use 
of multiple protocol label switching (MPLS) pseudowires [RFC4448] or using 
IEEE 802.1AE MacSec.

5.2  Internet Layer

5.2.1  Challenges

Many IoT deployments constitute what is referred to as low-power and lossy net-
works (LLNs). These networks comprised of a large number (several thousand) of 
constrained embedded devices with limited power, memory, and processing 
resources. They are interconnected using a variety of Link layer technologies, such 
as IEEE 802.15.4, Bluetooth, Wi-Fi, or power-line communication (PLC) links. 
There is a wide scope of use cases for LLNs, including industrial monitoring, build-
ing automation (HVAC, lighting, access control, fire), connected homes, healthcare, 
environmental monitoring, urban sensor networks (e.g., smart grid), and asset track-
ing. LLNs present the following five challenges to the Internet layer of the proto-
col stack:

Nodes in LLNs operate with a hard, very small bound on state. As such, Internet 
layer protocols need to minimize the amount of state that needs to be kept per 
node for routing or topology maintenance functions. The design of LLN routing 
protocols needs to pay close attention to trading off efficiency for generality, as 
most LLN nodes do not have resources to spare.

Typically, LLNs are optimized for saving energy. Various techniques are used to that 
effect, including employing extended sleep cycles, where the embedded devices 
only wake up and connect to the network when they have data to send. Thus rout-
ing protocols need to adapt to operate under constant topological changes due to 
sleep/wake cycles.

Traffic patterns within LLNs include point-to-point, point-to-multipoint, and 
multipoint- to-point flows. As such, unicast and multicast considerations should 
be taken into account when designing protocols for this layer.

LLNs will typically be employed over Link layer technologies characterized with 
restricted frame sizes; thus routing protocols for LLNs should be adapted specifi-
cally for those Link layers.

Links within LLNs may be inherently unreliable with time-varying loss character-
istics. The protocols need to offer high reliability under those characteristics.

Internet layer protocols in LLN have to take the above issues and challenges as 
design requirements. The protocol design should take into account the link speeds 
and the device capabilities. For example, if the devices are battery powered, then 
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protocols that require frequent communication will deplete the nodes’ energy faster. 
As described above, LLNs are inherently lossy: a characteristic that is typically 
unpredictable and predominantly transient in nature. The design of the Internet 
layer protocols must account for these characteristics. In conventional networks, 
these protocols react to loss of connectivity by quickly reconverging over alternate 
routing paths. This is to minimize the extent of data loss by routing around link, 
node, or other failures as quickly as possible (e.g., MPLS fast reroute mechanism 
strives for reconvergence within 50 ms). In LLNs, such quick reaction to failures is 
undesirable due to the transient nature of loss in these networks. As a matter of fact, 
it would lead to instability and unacceptable control plane churn. Instead, the proto-
cols should follow a paradigm of underreacting to failures in order to dampen the 
effect of transient connectivity loss, combined with confidence-monitoring model to 
determine when to trigger full reconvergence. The varying link quality levels in 
LLNs have direct bearing on protocol design, especially with regard to convergence 
characteristics and time. In traditional networks, global reconvergence is triggered 
to minimize the convergence time, whereas in LLNs local reconvergence is pre-
ferred, where the traffic is locally redirected to an alternate next hop during transient 
instabilities. This is to minimize the effect of routing instabilities that may lead to 
overall network oscillations or forwarding loops. Another consideration for LLNs is 
the dynamic nature of link and node metrics used in route computation. There are so 
many dynamic factors in LLNs, such as link quality deteriorating due to interfer-
ence, node switching from mains power to battery power, momentary CPU overload 
on a node, etc. These factors cause node and link metrics to be time varying in 
nature, and the routing protocols must be able to handle that.

Existing routing protocols such as OSPF, IS-IS, etc. in their current form do not 
satisfy the routing requirements imposed by the above challenges (Fig. 5.11).

5.2.2  Industry Progress

5.2.2.1  6LowPAN

As discussed previously, one of the challenges imposed by IoT on the Internet layer 
is the adaptation of this layer’s functions to Link layer technologies with restricted 
frame size. A case in point is adapting IP, and specifically the scalable IPv6, to the 
IEEE 802.15.4 Link layer. The base maximum frame size for 802.15.4 is 127 bytes, 
out of which 25 bytes need to be reserved for the frame header and another 21 bytes 
for link layer security. This leaves, in the worst case, 81 bytes per frame to cram the 
IPv6 packet into. What add to the problem are two issues: first, the IPv6 packet 
header, on its own, is 40 bytes in length, and second, IPv6 does not perform segmen-
tation and reassembly of packets; this function is left to the end stations or to lower 
layer protocols. Even though 802.15.4 g increases the maximum frame size to 2047 
bytes, it is still highly desirable to be able to compress IPv6 packet headers over this 
Link layer. For the aforementioned reasons, the IETF defined IPv6 over low-power 
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wireless personal area networks (6LowPAN). 6LowPAN is defined in RFC6282. It 
is an adaptation layer for running IPv6 over 802.15.4 networks (Fig.  5.12). 
6LowPAN provides three main functions: IPv6 header compression, IPv6 packet 
segmentation and reassembly, and layer 2 forwarding (also referred to as mesh 
under). With 6LowPAN, it is possible to compress the IPv6 header into 2 bytes, as 
most of the information is already encoded into the Link layer header.

6LowPAN introduces three headers for each of the three functions that it pro-
vides. Those headers are compression header, fragment header, and mesh header. 

Fig. 5.11 IoT challenges for the Internet layer. (Source Cisco BRKIOT-2020, 2015)

Fig. 5.12 6LowPAN 
Adaptation layer
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One or more of these headers may be available in any given packet depending on 
which functions are applied (Fig. 5.13).

6LowPAN defines new mechanisms to perform IPv6 neighbor discovery (ND) 
operations including link layer address resolution and duplicate address detection.

A recurring issue when adapting IPv6 to any Link Layer technology is support 
for a single broadcast domain, where a host can reach any number of hosts within 
the subnet by sending a single IP datagram. Accommodating a single broadcast 
domain within a 6LoWPAN network requires Link layer routing and forwarding 
functions, often referred to as mesh under, since the multi-hop mesh topology is 
abstracted away from the IP layer to appear as a single network segment. However, 
the IETF has not specified a mesh-under routing protocol for 6LoWPAN. Hence, 
this constitutes a technology gap, especially for IoT applications that can benefit 
from or that rely on intra-subnet broadcast capabilities.

Even though the scope of 6LoWPAN was originally focused on the IEEE 
802.15.4 Link layer, the technology has very limited dependency on 802.15.4 spe-
cifics, thereby allowing other link technologies (e.g., power-line communication—
PLC) to utilize the same adaptation mechanisms. Consequently, the term “6LoWPAN 
networks” is often generalized to refer to any Link layer mesh network built on 
low-power and lossy links leveraging 6LoWPAN mechanisms.

5.2.2.2  RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

The routing over low-power and lossy networks (ROLL) workgroup in IETF has 
defined in RFC 6550 an IPv6 routing protocol for LLNs, known as RPL.2 RPL is a 
distance-vector routing protocol. The reason for choosing a distance-vector proto-
col, as opposed to a link-state paradigm, is primarily to address the requirement of 
minimizing the amount of control-plane state (memory) that needs to be maintained 
on the constrained nodes of LLNs. Link-state routing protocols build and maintain 
a link-state database of the entire network on every node and hence tend to be 
heavier on memory utilization compared to distance-vector algorithms. RPL 

2 Pronounced as “ripple”.

Fig. 5.13 6LowPAN header stack. (Source: Cisco BRKIOT-2020, 2015)
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computes a destination-oriented directed acyclic graph (DODAG) based on an 
objective function and a set of metrics and constraints. In the context of routing, a 
directed acyclic graph (DAG) is formed by a series of nodes and links. Each link 
connects one node to another in a directed fashion such that it is not possible to start 
at a node N and follow a directed path that cycles back to node N. A destination- 
oriented DAG is a DAG that includes a single root node. The DODAG is a logical 
topology built over the physical network for the purpose of meeting specific criteria 
and carrying traffic subject to certain requirements. These criteria and requirements 
are captured in the objective function, metrics, and constraints. The objective func-
tion captures the goal behind setting up a specific topology. Example objective func-
tions include minimizing latency of communication or maximizing the probability 
of message delivery. Metrics are scalar values that serve as input parameters to the 
best-path selection algorithm. Example metrics include link latency or link reliabil-
ity or node energy level. Constraints refer to conditions that would exclude specific 
nodes or links from the topology if they do not meet those constraints, such as 
exclude battery-powered nodes or avoid unencrypted links. RPL supports dynamic 
metrics and constraints, where the values change overtime and the protocol reacts to 
those changes.

In a RPL network, a given node may be a member of different logical topologies, 
or DODAGs, each with a different objective. This is supported through the notion of 
RPL “instances.” An RPL instance is a set of DODAGs rooted at different nodes, all 
sharing the same objective function (Fig. 5.14).

The DODAG root is typically a border router that connects the LLN to a back- 
bone network. It is always assigned a rank of 1. RPL calculates ranks for all nodes 
connected to the root based on the objective function. The rank value increases 
moving down from the root toward leaf nodes. The rank indicates the node’s posi-
tion or coordinates in the graph hierarchy.

RPL has two characteristics that render it well suited for LLNs: First, it is a pro-
active protocol, i.e., it can calculate alternate paths as part of the topology setup, as 
opposed to reactive protocols which rely on exchanging control plane messages 
after a failure occurs to determine backup paths. Second, RPL is underreactive: it 
prefers local repair to global reconvergence. Failures are handled by locally choos-
ing an alternate path, which makes the protocol well suited for operation over 
lossy links.

5.2.2.3  6TiSCH

As discussed previously, IEEE 802.15.4 TSCH defines the medium access control 
functions for low-power wireless networks with time scheduling and channel hop-
ping. TSCH can fit as the Link layer technology in an IPv6-enabled protocol stack 
for LLNs, with 6LoWPAN and RPL. The functional gap in the solution is a set of 
entities that can take control of defining the policies to build and maintain the TSCH 
schedule, matching that schedule to the multi-hop paths maintained by the RPL 
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routing protocol and adapting the resources allocated between adjacent nodes to 
traffic flows.

As such, an adaptation layer is required in order to run the IPv6 stack on top of 
IEEE 802.15.4 TSCH. The IETF has recently formed the 6TiSCH workgroup in 
order to address this technology gap and define what is referred to as the “6top” 
adaptation layer. This adaptation layer is sandwiched in between the 802.15.4 link 
layer and the 6LoWPAN adaptation layer. Its goals are to address the follow-
ing issues:

Network Formation

The adaptation layer must control the formation of the network. This includes two 
functions: the mechanisms by which new nodes securely join the network and the 
mechanisms by which nodes that are already part of the network advertise its 
presence.

Fig. 5.14 RPL instances and DODAGs
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Network Maintenance

After the network is formed, the adaptation layer needs to maintain the network’s 
health and ensure that the nodes stay synchronized. This is because a TSCH node 
must have a time-source neighbor to which it can synchronize at all times. The 
adaptation layer is responsible for assigning those neighbors to the nodes, to guar-
antee the correct operation of the network.

Topology and Schedule Mapping

The adaptation layer needs to gather basic topological information, including node 
and link state, and provide this information to RPL, so the latter can compute multi- 
hop routes. Conversely, the adaptation layer needs to ensure that the TSCH schedule 
contains cells corresponding to the multi-hop routes calculated by RPL.

Resource Management

The adaptation layer is responsible for providing mechanisms by which neighbor-
ing nodes can exchange information regarding their schedule and negotiate the 
addition or deletion of cells. Note that a cell maps to a transmission/reception 
opportunity, and, hence, constitutes an atomic unit of resource in TSCH. The num-
ber of cells to be assigned between two neighbor nodes should be sized proportion-
ately to the volume of traffic between them.

Flow Control

While TSCH defines mechanisms by which a node can signal to its neighbors when 
it can no longer accept incoming packets, it does not, however, specify the policies 
that govern when to trigger those mechanisms. Hence, it is the responsibility of the 
adaptation layer to specify mechanisms for input and output packet queuing poli-
cies, manage the associated packet queues, and indicate to TSCH when to stop 
accepting incoming packets. The adaptation layer should also handle transmission 
failures, in the scenario where TSCH has attempted to retransmit a packet multiple 
times without receiving any acknowledgment.

Determinism

The adaptation layer is responsible for providing deterministic behavior for applica-
tions that demand it. This includes providing mechanisms to ensure that data is 
delivered with guaranteed upper bounds on latency and possibly jitter, all while 
maintaining coexistence between deterministic flows and best-effort traffic.
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Scheduling Mechanisms

It is envisioned that multiple different scheduling mechanisms may be employed 
and even coexist in the same network. This includes centralized mechanisms, for 
example, where a Path Computation Element (PCE) takes control of the schedule, 
in addition to distributed mechanisms where, for instance, neighboring nodes moni-
tor the amount of traffic and adapt the number of cells autonomously by negotiation 
of the allocation or deallocation of cells as needed. The adaptation layer needs to 
provide mechanisms to allow for all these functions.

Secure Communication

TSCH defines mechanisms for encrypting and authenticating frames, but it does not 
define how the security keys are to be generated. Hence, the adaptation layer is 
responsible for generating the keys and defining the authentication mechanisms by 
which a new node can join an existing TSCH network. The layer is also expected to 
provide mechanisms for the secure transfer of signaling (i.e., control) as well as 
application data between nodes.

The envisioned 6TiSCH protocol stack is depicted in Fig. 5.15. RPL will be the 
routing protocol of choice for the architecture. As the work in IETF progresses, 
there may be a need to define a new 6TiSCH-specific objective function for RPL. For 
the management of devices, the architecture will leverage the Constraint Application 
Protocol Management Interface (COMI), which will provide the data model for the 
6top adaptation layer management interface. Centralized scheduling will be carried 
out by the Path Computation Element (PCE). The topology and device capabilities 
will be exposed to the PCE using an extension to a Traffic Engineering Architecture 
and Signaling (TEAS) protocol. The schedule computed by the PCE will be distrib-
uted to the devices in the network using either a light-weight Path Computation 
Element Protocol (PCEP) or an adaptation of Common Control and Measurement 

Fig. 5.15 6TiSCH protocol stack
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Plane (CCAMP) formats. The Datagram Transport Layer Security in Constrained 
Environments (DICE) can be used in the architecture to secure CoAP messages. 
Also, the Protocol for Carrying Authentication for Network Access (PANA) will 
secure the process of a node joining an existing network.

5.3  Application Protocols Layer

Application protocols are responsible for handling the communication between 
Application Entities, i.e., things, gateways, and applications. They typically support 
the flow of data (e.g., readings or measurements) from things to applications and the 
flow of command or control information (e.g., to trigger or actuate end devices) in 
the reverse direction. These protocols define the semantics and mechanisms for 
message exchanges between the communicating endpoints.

The landscape of the application protocols layer in IoT is currently crowded with 
competing protocols and standards, each having its own set of strengths and weak-
nesses and with no clear path toward convergence being agreed upon by the industry 
yet. In this section, we will discuss the characteristics and attributes of the protocols 
in this layer as they pertain to IoT and will highlight, where applicable, the require-
ments and challenges that IoT applications impose on these protocols.

5.3.1  Data Serialization Formats

Applications protocols vary in the data serialization formats used to encode infor-
mation into messages. One of the challenges in IoT data serialization formats is 
mapping between the formats used in constrained devices and those used by appli-
cations in the World Wide Web. These applications should be able to interpret the 
data from IoT devices with minimal format translations and a priori knowledge. 
Hence, the formats should be general and compatible with Web technologies. 
Popular data serialization formats on the Web include XML, JSON, and EXI.

Another challenge in IoT data serialization formats is the impact they have on 
device resource utilization, especially in terms of energy consumption. Data for-
mats have an effect on device resource usage in two facets: in their local processing 
demands and their communication efficiency. The local processing demands include 
both the processing required to serialize memory objects into data encoded in mes-
sages and the processing required to parse the encoded messages into memory 
objects. The communication efficiency is a function of the compactness of the data 
serialization format and its efficiency to encode information in the least amount of 
message real estate. Both of these facets, namely, local processing and communica-
tion, have a direct impact on the energy consumption of the IoT device. Research in 
wireless sensor networks suggests “communication is over 1000 times more expen-
sive in terms of energy than performing a trivial aggregation operation.” Therefore, 
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the data serialization formats for IoT application protocols should be chosen such 
that they require minimal processing and communication demands.

A third challenge in IoT data serialization formats is the impact they have on 
network bandwidth utilization. This ties back to the compactness of the format and 
its encoding efficiency, as discussed above. The more verbose that the data format 
is, the more message space that it will consume on the wire to carry the same amount 
of information, which leads to less efficient use of network bandwidth. For IoT, 
especially when devices are connected over low-bandwidth wireless links, the data 
serialization format of application protocols should be chosen carefully to maxi-
mize the use of the available bandwidth.

5.3.2  Communication Paradigms

Application protocols support different communication patterns. These patterns 
enable varying paradigms of interaction between IoT applications and devices.

5.3.2.1  Request/Response Versus Publish/Subscribe

The request/response paradigm enables bidirectional communication between end-
points (Fig.  5.16). The initiator of the communication sends a request message, 
which is received and operated upon by the target endpoint. The latter then sends a 
response message to the original initiator. This paradigm is well suited for IoT 
deployments that have one or more of the following characteristics:

• The deployment follows a client-server architecture.
• The deployment requires interactive communication: both endpoints have infor-

mation to send to the other side.

Fig. 5.16 Request/
response paradigm
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• The receipt of information needs to be fully acknowledged (e.g., for reliability).

However, not all IoT deployments have the above characteristics. In particular, in 
many scenarios, all what is required is one-way communication from a data pro-
ducer (e.g., a sensor) to a consuming entity (the application). For this, the request/
response paradigm is sub-optimal due to the overhead of the unneeded messages 
running in the reverse direction. This is where the publish/subscribe pattern comes 
in (Fig. 5.17).

The publish/subscribe paradigm, often referred to as pub/sub, enables unidirec-
tional communication from a publisher to one or more subscribers. The subscribers 
declare their interest in a particular class or category of data to the publisher. When 
the publisher has new data available from that class, it pushes it in messages to 
interested subscribers. Besides the obvious proclamation that this paradigm optimal 
for IoT applications requires one-way communication, the pub/sub model is well 
suited for IoT deployments that can benefit from the following characteristics:

• Loose coupling between the communicating endpoints, especially when com-
pared with the client-server model.

• Better scalability by leveraging parallelism and the multicast capabilities of the 
underlying transport network.

5.3.2.2  Blocking Versus Non-blocking

Application protocols can offer IoT endpoints blocking or non-blocking messaging 
service.

In the blocking mode, the endpoint originating a request must wait to get a 
response to its request, after the requested operation has finished on the other end-
point. This involves potentially long or unknown wait times (where a pending 
request has not been responded to) for the originator.

Fig. 5.17 Publish/
subscribe paradigm
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In the non-blocking mode, the endpoint originating a request does not wait until 
the other endpoint has fully serviced the request. Rather, it expects a prompt 
acknowledgment of the request together with a specified reference, so that the origi-
nator can retrieve the outcome of the requested operation at a later point of time.

In the synchronous case, the originator of a request is not able to receive asyn-
chronous messages, i.e., all exchanges of information between the originator and 
the receiver need to be initiated by the originator. The later retrieval of the result of 
a requested operation is through the exchange of request/response messages between 
the originator and the receiver.

In the asynchronous case, the originator of a request is able to receive notifica-
tion messages, i.e., the receiver can send an unsolicited message to the originator at 
an arbitrary time to report the requested operation. The mechanisms for the notifica-
tion to the originator are the same as in the case of a notification after a 
subscription.

5.3.3  QoS

Application protocols should provide mechanisms for fine-grained control over the 
real-time behavior, dependability, and performance of IoT applications by means of 
a rich set of QoS policies. These policies should provide control over local resources 
and the end-to-end properties and characteristics of data transfer. The local proper-
ties controlled by QoS relate to resource usage, whereas the end-to-end properties 
relate to the temporal and spatial aspects of data communication.

5.3.3.1  Resource Utilization

Application protocols should provide QoS policies to control the amount of mem-
ory and processing resources that can be used by the application protocol for data 
transmission and reception. These policies include:

Resource Limits Policy

This policy allows control of the amount of message buffering performed by a pro-
tocol implementation, as this impacts the amount of memory consumed by that 
protocol. Such controls are particularly important for embedded applications run-
ning on constrained devices.
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Time Filter Policy

This policy allows applications to specify the minimum inter-arrival time between 
data samples. Samples that are produced at a faster pace are not delivered. This 
policy allows control of both network bandwidth and memory and processing power 
for applications which are connected over limited bandwidth networks and which 
might have limited computing resources.

5.3.3.2  Data Timeliness

Application protocols should provide a set of QoS policies that allow control of the 
timeliness properties of distributed data. Specifically, the QoS policies that are 
desirable are described below:

Deadline Policy

This QoS policy allows an application to define the maximum inter-arrival time for 
data. Missed deadline can be notified by the protocol to the application.

Latency Budget Policy

This QoS policy provides a means for the application to communicate to the appli-
cation protocol the level of urgency associated with a data communication. The 
latency budget specifies the maximum amount of time that should elapse from the 
instance when the data is transmitted to the instance when the data is placed in the 
queue of the associated recipients.

5.3.3.3  Data Availability

Application protocols should provide the following QoS policies to allow control of 
data availability:

Durability Policy

This QoS policy provides control over the degree of persistence of the data being 
transmitted by the application. At one end of the spectrum, it allows the data be 
configured to be volatile, while at the other end, it allows for data persistency. It is 
worth noting that data persistence enables time decoupling between the producing 
and the consuming endpoint by making the data available for late-joining consum-
ers or even after the producer has disconnected.
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Life Span Policy

This QoS policy allows control of the interval of time for which a data sample will 
be valid.

History Policy

This QoS policy provides a means to control the number of data samples that have 
to be kept available for the recipients. Possible values are the last sample only, the 
last N samples, or all the samples.

5.3.3.4  Data Delivery

Application protocols should provide QoS policies to allow control of how data is 
delivered.

Reliability Policy

This QoS policy allows the application to control the level of reliability associated 
with data diffusion. The possible choices are reliable and best-effort distribution. 
With reliable distribution, the application protocol must ensure message delivery 
and handle acknowledgments and retransmissions without direct application 
involvement.

Transport Priority

This QoS policy allows the application to take advantage of transports that are capa-
ble of sending messages with different priorities. Application protocols are respon-
sible for interacting with the underlying transport layer in order to map this QoS 
policy to the right underlying transport network QoS markings (e.g., IP DSCP, TOS, 
or PCP).

5.3.4  RESTful Constraints

Some application protocols adhere to a set of constraints defined by the representa-
tional state transfer (REST) architectural paradigm. REST is a distributed client- 
server software architecture style that was coined by Roy Fielding after he analyzed 
the design principles that contributed to the success of the Hypertext Transfer 
Protocol (HTTP) employed in the World Wide Web. Fielding concluded on a set of 
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constraints that collectively define the REST architectural style and yield a system 
that is simple, scalable, and reliable.

The formal REST constraints are as follows:

Client-Server Communication Model

This allows for separation of concerns where the server focuses on functions such 
as data storage, whereas clients focus on the user interface and user state. 
Uniform interfaces separate the clients from the servers. This allows for indepen-
dent development of servers and clients as long as they honor the same interface.

Stateless Communication
The server must not store any client context that persists between requests. Session 

state is maintained by the client, which passes all the information necessary to 
service a particular request in the request itself. In other words, requests are self- 
contained from a server perspective.

Cacheable Communication
Responses from the server may be cacheable by clients and intermediate nodes. 

This improves the scalability and performance of the system by partially or com-
pletely eliminating some client–server interactions.

Layered Architecture
To allow for better scalability, the system comprised of a layered architecture that 

includes clients, servers, and potentially multiple intermediate nodes interspersed 
between them. Clients may be in communication with intermediate nodes or 
directly with servers without ordinarily being able to identify a difference 
between the two.

Uniform Interfaces
All interactions between clients and servers (or intermediate nodes) are governed by 

uniform interfaces. These interfaces use the notion of “resources.” A resource is 
an abstraction for server-side information and associated native data representa-
tion. Resources have unique identifiers (e.g., URIs in Web systems). When a 
server communicates with a client, it transfers an external representation of the 
resource to the client (hence the name representational state transfer). REST 
interfaces are representation centric. Hence, a small set of operations (also called 
verbs), which are uniform across all use cases, can be used in the interface. 
Usually, this set of verbs is referred to as CRUD for create, read, update, and 
delete. In REST interfaces, there is no out-of-band contract that defines the types 
of actions that can be initiated by a client. Rather, this information is discovered 
dynamically by the client from prior server interactions through hypermedia 
(i.e., by hyperlinks within hypertext). This characteristic of the interface is 
known as hypermedia as the engine of application state (HATEOAS).

Code on Demand

Client functionality may be extended or modified by the server through the transfer 
of executable pieces of code that can be executed on the client side (e.g., scripts 
or applets). This is an optional REST constraint known as “code on demand.”
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5.3.5  Survey of IoT Application Protocols

5.3.5.1  CoAP

The Constrained Application Protocol (CoAP) was standardized by the IETF 
Constrained RESTful Environments (CORE) workgroup as a lightweight alterna-
tive to HTTP, targeted for constrained nodes in low-power and lossy networks 
(LLNs). The need for a lighter-weight version of HTTP can be appreciated by 
examining, for example, the number of messages that need to be exchanged between 
a client and a server to perform a simple Get operation on a resource: first there are 
three TCP SYN messages exchanged to bring up the TCP session, followed by the 
HTTP Get request from the client, then the HTTP response from the server, and 
finally two messages to terminate the TCP session. Hence, a total of seven messages 
are required just to fetch a resource. CoAP reduces this overhead by using UDP as 
a transport in lieu of TCP. CoAP also uses short headers to reduce message sizes.

Similar to HTTP, CoAP is a RESTful protocol. It supports the create, read, 
update, and delete (CRUD) verbs but in addition provides built-in support for the 
publish/subscribe paradigm via the new observe verb. CoAP optionally provides a 
mechanism where messages may be acknowledged for reliability and provides a 
bulk transfer mode. CoAP was standardized as RFC 7252. Furthermore, there is an 
ongoing work in the IETF to define mechanisms for dynamic resource discovery in 
CoAP via a directory service.

5.3.5.2  XMPP

The Extensible Messaging and Presence Protocol (XMPP) was originally designed 
for instant messaging, contact list, and presence information maintenance. It is a 
message-centric protocol based on the Extensible Markup Language (XML). Due 
to its extensibility, the protocol has been used in several applications, including 
network management, video, voice-over IP, file sharing, social networks, and online 
gaming, among others. In the context of IoT, XMPP has been positioned for smart 
grid solutions, for example, as depicted in RFC 6272. XMPP originally started as an 
open-source effort, but the core protocol was later standardized by the IETF in RFC 
6120 and 6121. Moreover, the XMPP Standards Foundation (XSF) actively devel-
ops open extensions to the protocol.

The native transport protocol for XMPP is TCP. However, there is an option to 
run XMPP over HTTP.
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5.3.5.3  MQTT

The Message Queue Telemetry Transport (MQTT) protocol is a lightweight pub-
lish/subscribe messaging protocol that was originally designed by IBM for enter-
prise telemetry. MQTT follows a client-server architecture where clients connect to 
a central server (called the broker). The protocol is message oriented, where mes-
sages are published to an address, referred to as a topic. Clients subscribe to one or 
more topics and receive updates from a client that is publishing messages for this 
topic. In MQTT, topics are hierarchical (similar to URLs), and subscriptions may 
use wildcards. MQTT is a binary protocol, and it uses TCP transport. The protocol 
is being standardized by the Organization for the Advancement of Structured 
Information Standards (OASIS).

The protocol targets endpoints where “a small code footprint” is required or 
where network bandwidth is limited; hence it could prove useful for constrained 
devices in IoT.

5.3.5.4  AMQP

The Advanced Message Queuing Protocol (AMQP) originates from financial sector 
applications but is generic enough to accommodate other types of applications. 
AMQP is a binary message-oriented protocol. Due to its roots, AMQP provides 
message delivery guarantees for reliability, including at least once, at most once, 
and exactly once. The importance of such guarantees can be easily seen in the con-
text of financial transactions (e.g., when executing a credit or debit transaction). 
AMQP offers flow control through a token-based mechanism, to ensure that a 
receiving endpoint is not overburdened with more messages than it is capable of 
handling. AMQP assumes a reliable underlying transport protocol, such as TCP.

AMQP was standardized by OASIS in 2012 and then by the International 
Standards Organization (ISO) and the International Electrotechnical Commission 
(IEC) in 2014. Several open-source implementations of the protocol are available. 
AMQP defines a type system for encoding message data as well as annotating this 
data with additional context or metadata. AMQP can operate in simple peer-to-peer 
mode as well as in hierarchical architectures with intermediary nodes, e.g., messag-
ing brokers or bridges. Finally, AMQP supports both point-to-point communication 
and multipoint publish/subscribe interactions.

5.3.5.5  SIP

The Session Initiation Protocol (SIP) handles session establishment for voice, video, 
and instant messaging applications on IP networks. It also manages presence (simi-
lar to XMPP).

SIP invitation messages used to create sessions carry session descriptions that 
enable endpoints to agree on a set of compatible media types. SIP leverages 
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elements called proxy servers to route requests to the user’s current location, authen-
ticate and authorize users for services, implement call-routing policies, and provide 
features. SIP also defines a registration function that enables users to update their 
current locations for use by proxy servers. SIP is a text-based protocol and can use 
a variety of underlying transports, TCP, UDP, or SCTP, for example. SIP is stan-
dardized by the IETF as RFC 3261.

5.3.5.6  IEEE 1888

IEEE 1888 is an application protocol for environmental monitoring, smart energy, 
and facility management applications. It is a simple protocol that supports reading 
and writing of time-series data using the Extensible Markup Language (XML) and 
the simple object access protocol (SOAP). The data is identified using Universal 
Resource Identifiers (URIs). The latest revision of the protocol was standardized by 
the IEEE Standards Association in 2014.

5.3.5.7  DDS RTPS

Distributed Data Service Real Time Publish and Subscribe is a data-centric applica-
tion protocol that, as its name indicates, supports the publish/subscribe paradigm. 
DDS organizes data into “topics” that listeners can subscribe to and receive asyn-
chronous updates when the associated data changes. DDS RTPS provides mecha-
nisms where listeners can automatically discover speakers associated with specific 
topics. IP multicast or a centralized broker/server may be used to that effect. Multiple 
speakers may be associated with a single topic and priorities can be defined for dif-
ferent speakers. This provides a redundancy mechanism for the architecture in case 
a speaker fails or loses communication with its listeners.

DDS RTPS supports very elaborate QoS policies for data distribution. These poli-
cies cover reliability, data persistence, delivery deadlines, and data freshness. DDS 
RTPS is a binary protocol, and it uses UDP as the underlying transport. The latest 
version of the protocol was standardized by the Object Management Group (OMG) 
in 2014. Table 5.3 provides a summary of the protocols discussed in this section.

5.4  Application Services Layer

5.4.1  Motivation

M2M deployments have existed for over two decades now. However, what has char-
acterized these deployments is a state of fragmentation: vertical solutions are imple-
mented in silos with proprietary communication stacks and very tight coupling 
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between applications and devices. The paradigm can be best described as “one 
application-one device.” The application code is exposed to all the device specifics 
under this modus operandi. This, in turn, creates complexity and increases the cost 
of the solution’s initial development and ongoing maintenance. For instance, if the 
operator of a deployment wanted to replace a defective device with another from a 
different manufacturer, parts of the application source code would have to be rewrit-
ten in order for the replacement device to be integrated into the solution. By the 
same token, adding new types of devices to the solution cannot be performed with-
out application source code changes. Furthermore, the networks interconnecting the 
devices and the applications are in many case closed proprietary systems, and inter-
connecting those networks requires application gateways that are complex and 
expensive. These issues constitute a major current gap in IoT. What is required is a 
layer of abstraction that fits in between the applications and the devices, i.e., things, 
and enables the paradigm of “any application-any device” (Fig. 5.18).

Table 5.3 Survey of IoT application protocols

Protocol Functions Primary use Transport Format SDO

CoAP REST resource manipulation 
via CRUD
Resource tagging with 
attributes
Resource discovery through 
RD

LLNs UDP Binary IETF

XMPP Manage presence Session 
establishment
Data transfer (text or binary)

Instant messaging TCP HTTP XML IETF 
XSF

MQTT Lightweight pub/sub 
messaging
Message queuing for future 
subscribers

Enterprise telemetry TCP Binary OASIS

AMQP Message orientation, queuing 
and pub/sub
Data transfer with delivery 
guarantees (at least once, at 
most once, exactly once)

Financial services TCP Binary OASIS

SIP Manage presence Session 
establishment
Data transfer (voice, video, 
text)

IP telephony TCP, UDP, 
SCTP

XML IETF

IEEE 
1888

Read/write data into URI 
Handling time-series data

Energy and facility 
management

SOAP/
HTTP

XML IEEE

DDS 
(RTPS)

Pub/sub messaging with 
well-defined data types Data 
discovery Elaborate QoS

Real-time distributed 
systems (military, 
industrial, etc.)

UDP Binary OMG
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In other words, this abstraction layer provides a common set of services that 
enables an application to interface with potentially any device without understand-
ing a priori the specifics and internals of that device. This abstraction layer is 
referred to as the Application Services layer in our model of the IoT protocol stack. 
It provides seamless interoperability between applications and devices and pro-
motes nimble development of IoT solutions.

From a business perspective, the emergence of this new layer is driven, in part, 
by communication service providers (CSPs) looking at using IoT to gain additional 
revenue from their networks. Key to this revenue will be differentiating beyond 
providing simple IP connectivity. CSPs know well the value of IoT is in the data, not 
the way it is transported. To unlock this value, the Application Services layer aims 
to turn the network to a common platform to enable diverse IoT applications. This 
common platform will be built across an ecosystem of heterogeneous devices and 
will enable CSPs to monetize IoT data access, storage, management, and security.

5.4.2  Industry Progress

In 2012, the European Telecommunications Standards Institute (ETSI) published 
the first release of its M2M service layer standard defining a standardized platform 
for multiservice IoT solution. Later that year, seven standards development organi-
zations (TIA and ATSI from the USA, ARIB and TTC from Japan, CCSA from 
China, ETSI from Europe, and TTA from Korea) launched a global organization to 
jointly define and standardize the common horizontal functions of the IoT 
Application Services layer under the umbrella of the oneM2M Partnership Project 
(http://www.onem2m.org). The founders agreed to transfer and stop their own over-
lapping IoT application service layer work.

In what follows, we will discuss the ETSI M2M and oneM2M efforts in more 
details.

Fig. 5.18 Application to device coupling
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5.4.2.1  ETSI M2M

The network architecture adopted by the ETSI M2M effort draws heavily on exist-
ing technologies. The architecture comprised of three domains: M2M device 
domain, network domain, and application domain (Fig.  5.19). The M2M device 
domain provides connectivity between things and gateways, e.g., a field area net-
work or personal area network. Devices are entities that are capable of replying to 
request for data contained within those entities or capable of transmitting data con-
tained within those entities autonomously. Gateways ensure that end devices (which 
may not be IP enabled) can interwork and interconnect with the communication 
network. Technologies in the M2M device domain include IEEE 802.15.4, IEEE 
802.11, Zigbee, Z-WAVE, PLC, etc.

The network domain includes the communication networks, which interconnect 
the gateways and applications. This typically includes access networks (xDSL, 
FTTX, WiMax, 3GPP, etc.) as well as core networks (MPLS/IP). The application 
domain includes the vertical-specific applications (e.g., smart energy, eHealth, 
smart city, fleet management, etc.) in addition to the Service Capabilities layer 
(SCL), a middleware layer that provides various data and application services. The 
main focus of the ETSI M2M standards is on defining the functionality of the 
SCL. The SCL provides functions that are common across different applications 
and exposes those functions through an open API. The goal is to simplify applica-
tion development and deployment through hiding the network specifics.

The functions of the SCL may reside on entities deployed in the field such as 
devices and gateways or on entities deeper in the network (e.g., servers in a data 
center). This gives rise to three flavors of SCL, depending on its placement: device 
SCL (D-SCL), gateway SCL (G-SCL), and network SCL (N-SCL). While the three 
flavors of SCL do share some common functions, they also differ due to the 

Fig. 5.19 ETSI M2M network architecture
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different operations that need to be carried out by devices, gateways, and network 
nodes (servers). In general, the SCL provides the following functions:

• Registration of devices, applications, and remote SCLs
• Synchronous and asynchronous data transfer
• Identification of applications and devices
• Group management for bulk endpoint addressability and operations
• Security mechanisms for authentication, authorization, and access rights control
• Remote device management (through existing protocols)
• Location information

ETSI M2M adopted a RESTful architecture style where all data in the SCL is 
represented as resources. This includes not only the data generated by the devices 
but also data representing device information, application information, remote SCL 
information, access rights information, etc. Resources in the SCL are uniquely 
addressable via Universal Resource Identifiers (URIs). Manipulation of the 
resources is done through a RESTful API, which provides the CRUD primitives (C, 
create; R, read, U, update, D, delete). The API can be bound to any RESTful proto-
col, such as HTTP or CoAP. ETSI technical specification TS 102 921 specifies the 
API binding to HTTP and CoAP protocols.

Resources within the SCL are organized in a well-specified hierarchical structure 
known as the resource tree (Fig. 5.20). This provides a number of advantages: it 
provides a data mediation function, describes how resources relate to each other, 
allows traversal and query of data in an efficient manner, and speeds up the develop-
ment of platforms. The resource tree of an SCL includes:

• Location of other SCLs in the network (in other devices or GWs)
• List of registered applications
• Announced resources on remote elements
• Access rights to various resources
• Containers to store actual application data

Fig. 5.20 Example ETSI M2M resource tree
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In addition to the different flavors of SCL, ETSI M2M defines the following 
types of entities: application and devices. Applications are further categorized as 
network applications (NA), gateway applications (GA), or device applications (DA) 
depending on whether they run in the network domain, on a gateway or embedded 
on a device, respectively. Devices are categorized into those that support the ETSI 
SCL functions (known as D devices) and those that do not support these functions 
(known as D devices).

ETSI M2M defines a number of reference points, or interfaces, between interact-
ing entities. These reference points define the semantics of the interactions, and 
associated API, between the entities. In particular, the following three reference 
points are defined:

• mIa: defines the interactions between a network application and the 
N-SCL. Allows the application to register with the SCL and access resources on it.

• mId: defines the interactions between a device application, on the one hand, and 
a D-SCL or G-SCL on the other. Allows the application to register with the SCL 
and access resources on it.

• dIa: defines the interactions between the N-SCL, on the one hand, and the D-SCL 
or G-SCL on the other. Allows the various SCL instances to register with one 
another and access their respective resources.

The ETSI M2M architecture supports backward compatibility with devices that 
do not support the ETSI reference point functions. This compatibility is achieved 
through gateways that communicate with the legacy devices via their own proprie-
tary mechanisms and handle the translation of the data into the resource tree. ETSI 
does not define the specifics of how the translation should be performed (Fig. 5.21).

Irrespective of the underlying physical network topology, the ETSI model defines 
a strict two-level hierarchy with N-SCL at the top level and G-SCL or D-SCL at the 
bottom level. The daisy chaining of SCLs in deeper hierarchies is not defined or 
supported.

The ETSI M2M functional architecture is defined in technical specification TS 
102 690.

5.4.2.2  oneM2M

The oneM2M standards consider any IoT deployment to be comprised of two 
domains: the field domain and the infrastructure domain (Fig.  5.22). The field 
domain includes things (e.g., sensors, actuator, etc.) and gateways, whereas the 
infrastructure domain includes the communication networks (aggregation, core) as 
well as the data centers. From a functional perspective, each of these domains 
includes three flavors of entities: an application entity, a common services entity, 
and a network services entity.

The application entity implements the vertical-specific application logic. It may 
reside on one or multiple physical nodes in the deployment. Examples of an applica-
tion entity would be a home automation application or a smart parking application.
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The common services entity is a middleware layer that sits in between applica-
tions (application entity) and the underlying network services (network services 
entity) (Fig. 5.23). The common services entity (CSE) provides the following set of 
common functions to applications:

• Identity management: Identification of applications entities and CSEs.
• Registration: Includes registration of application entities and CSEs.
• Connectivity handling: This ensures efficient, reliable, and scalable use of the 

underlying network.
• Remote device management: This includes configuration and diagnostic 

functions.
• Data exchange: Supports storing and sharing of data between applications and 

devices, in addition to event notification.
• Security and access control: Provides control over access to data (who can access 

what and when, etc.).
• Discovery: Provides discovery of entities as well as data and resources.

Fig. 5.21 ETSI M2M system architecture

Fig. 5.22 oneM2M domains
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• Group management: Support of bulk operations and access.
• Location: Provides an abstraction for managing and offering location informa-

tion services.

The CSE is, more or less, logically equivalent to the ETSI M2M SCL.
The network services entity provides value-added services to the CSE, such as 

QoS, device management, location services, and device triggering.
The oneM2M reference architecture identifies five different types of logical 

nodes: application-dedicated nodes, application service nodes, middle nodes, infra- 
structure nodes, and none-oneM2M nodes. These nodes may map to one or more 
physical devices in the network or may have no corresponding physical mapping.

Application-dedicated nodes (ADNs) are oneM2M compliant devices (i.e., 
things) with restricted functionality: they include one or more application entities 
but no CSE. From a physical mapping perspective, ADNs may map to constrained 
IoT devices.

Application service nodes (ASNs) are fully featured oneM2M compliant devices. 
They include a CSE in addition to one or more application entities. From physical 
mapping standpoint, they map to (typically non-constrained) IoT devices.

Middle nodes (MNs) host a CSE. A middle node may or may not include appli-
cation entities. There could be zero, one, or many middle nodes in the network. 
MNs physically map to gateways in the network.

Infrastructure nodes (INs) host the CSE and may or may not host any application 
entities. The CSE on the IN includes functions that do not typically exist in any 
other CSE in the network. There is a single infrastructure node per domain per ser-
vice provider in the oneM2M architecture.

Non-oneM2M Nodes are legacy devices that interwork with the oneM2M archi-
tecture. This provides backward compatibility of oneM2M with existing systems 
(similar to D devices in the ETSI M2M architecture).

As with ETSI M2M, oneM2M follows a RESTful architecture style where all 
data is modeled as resources, albeit oneM2M does not define a static resource struc-
ture like the ETSI resource tree. Instead, the standard provides means by which 
resources can be linked together (through resource links). Client applications can 
discover the resource organization dynamically. In this regard, the oneM2M 
approach complies with the HATEOAS (Hypermedia as the Engine of Application 

Fig. 5.23 oneM2M 
common services entity
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State) REST constraint discussed in Sect. 5.3.4, because it does not assume that the 
clients have any a priori knowledge of the resource organization (Fig. 5.24).

Similar to ETSI M2M, oneM2M defines a set of reference points or interfaces 
between interacting entities. The oneM2M standard defines the following four ref-
erence points:

• Mca: Defines the interactions between application entities and CSE.
• Mcn: Defines the interactions between the CSE and the underlying network ser-

vice entity.
• Mcc: Defines the interactions between two CSEs in the same service pro-

vider domain.
• Mcc’: Defines the interactions between two CSEs across service provider domain 

boundary.

A number of notable differences between the reference points defined by ETSI 
M2M and those defined by oneM2M are worth highlighting:

First, ETSI M2M defines two different reference points for interactions between 
applications and the middleware as well as between devices and the middleware 
(mIa and mId interfaces, respectively), whereas oneM2M collapses both inter-
faces into the Mca reference point.

Second, the Mcn reference point is unique to oneM2M and has no equivalent in the 
ETSI standard. This interface enables the middleware to access network service 
functions. For example, it can be used to signal information from the service 
layer to the transport layer to request QoS and prioritization for M2M communi-

Fig. 5.24 oneM2M resource organization
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cation, for transmission scheduling, to signal indication for small data transmis-
sion, for device triggering, etc.

The interface may also be used to extract information from the underlying trans-
port layer, for example, to fetch data related to the location of M2M devices or 
gateways (Fig. 5.25).

5.4.3  Technology Gaps

While ETSI and oneM2M have made strides in defining standard APIs and common 
application services for IoT, several gaps remain.

First, in terms of search and discovery capabilities, the IoT Application Services 
layer should provide support for:

• Mechanisms by which devices as well as applications can automatically discover 
each other as well as discover middleware/common services nodes.

• Mechanisms by which applications can search for devices with specific attributes 
(e.g., sensors of particular type) or context (e.g., within a specific distance from 
a location).

• Mechanisms by which applications can search for data based on attributes (e.g., 
semantic annotations) or context (e.g., spatial or temporal).

Both ETSI and oneM2M define basic mechanisms for resource search based on 
metadata or text strings. However, these are rudimentary capabilities and do not 
provide the contextual search functions that will be needed for IoT. Furthermore, no 

Fig. 5.25 oneM2M functional architecture
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mechanisms for device or gateway auto-discovery are provided by either standard. 
It is assumed that the various instances of the middleware (SCL in case of ETSI and 
CSE in case of oneM2M), which need to communicate with each other, have a priori 
knowledge of their respective IP addresses. The same assumption holds between 
application endpoints and other entities (devices or middleware instances) that they 
need to communicate with.

Second, with regard to data encoding, interpretation, and modeling, the 
Application Services layer should encompass:

• Mechanisms that render IoT data understandable to applications without a priori 
knowledge of the data or the devices that produced it.

• Mechanisms that enable application interaction at a high level of abstraction by 
means of physical/virtual entity modeling.

• Mechanisms that enable data management services to host the semantic descrip-
tion of IoT data that is being handled.

• Framework for defining formal domain-specific semantic models or ontologies, 
including but not limited to defining an upper-level ontology for IoT.

ETSI’s effort stopped at defining opaque containers for holding data. The inter-
pretation of that data was outside the scope of what was standardized. OneM2M 
went one step further by providing an attribute to link the data container to an ontol-
ogy reference (URI). However, no formal effort has been undertaken to define any 
ontologies or define any associated framework for tying semantic systems with the 
rest of the architecture, beyond this simple linkage.

5.5  Summary

In this chapter we started with an overview of the IoT protocol stack, and then we 
examined each of the Link layer, Internet layer, Application Protocols layer, and 
Application Services layer in details. For each of these layers, we examined the IoT 
challenges and requirements impacting the protocols, which operate at that respec-
tive layer, and discussed the industry progress and gaps.

In the course of the discussion on the Link layer, we covered IEEE 802.15.4, 
TCSH, IEEE 802.11ah, and Time-Sensitive Networking (TSN). In the Internet 
layer, we discussed 6LowPAN, RPL, and 6TiSCH. In the Application Protocols 
layer, we surveyed a subset of the multitude of available protocols. Finally, in the 
Application Services layer, we covered the work in ETSI M2M and oneM2M on 
defining standard application middleware services.

Problems and Exercises

 1. What is the difference between IEEE 802.15.4 full-function device (FFD) and 
reduced-function device (RFD)?

 2. IEEE 802.11ah and IEEE 802.15.4 both provide a low-power wireless protocol. 
What are the main differences between the two?
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 3. Why does IEEE 802.1Qca use IS-IS as the underlying protocol and not some 
other routing protocols such as OSPF or BGP?

 4. What are three functions provided by the 6LowPAN adaptation layer?
 5. Is RPL a link-state or distance-vector routing protocol? Why did the IETF 

ROLL workgroup decide to go with that specific flavor of routing protocols?
 6. What are the constraints that characterize the RESTful communication 

paradigm?
 7. What is the Application Services layer in the IoT protocol stack? What services 

does it provide?
 8. What are the functions of the Service Capabilities layer (SCL) in the ETSI 

M2M architecture?
 9. What are functions of the common services entity (CSE) in the oneM2M archi-

tecture? How do they compare to those of ETSI’s SCL?
 10. Why do the IoT application services architectures under standardization all fol-

low the RESTful paradigm?
 11. A temperature sensor that supports CoAP has an operating range of 0–1000 °F 

reports a reading every 5 s. The sensor has a precision of 1/100 °F. The sensor 
reports along with every temperature reading a time stamp using the ISO 8601 
format (CCYY-MM-DDThh:mm:ss).

 (a) If the current temperature measured by the sensor is 342.5 °F, construct the 
payload of a CoAP message with the reading encoded in XML and then 
in JSON.

 (b) Assuming that the sensor consumes 3 nJ per byte (character) transmitted 
over a wireless network, calculate the total energy required to transmit each 
message. Which of the two encoding schemes (XML or JSON) is more 
energy efficient? By what percentage?

 12. Compare the bandwidth utilization for the XML vs. JSON messages of Question 
11 in bits per second assuming UTF-8 text encoding is being used.

 13. An IoT water level monitoring application requires updates from a sensor peri-
odically, using the command/response paradigm. The application triggers a 
request every 1 s. The roundtrip propagation delay between the application and 
the sensor is 12 ms. The sensor consumes 3 ms on average to process each 
request. The application consumes 2 ms to send or receive any message. If the 
application blocks on every request to the sensor, how much of its time budget 
can be saved by redesigning the application to use the publish/subscribe com-
munication model in lieu of the command/response approach?

 14. A utility company uses IPv6-enabled smart meters running in an IEEE 802.15.4 
mesh. If the mesh is operating at 1  Mbps without 6LoWPAN IPv6 header 
 compression, what is the throughput of the smart metering application in the 
worst- case scenario?

 15. An automotive parts manufacturer is looking to upgrade the network that con-
trols their computer numerical control (CNC) mill. At full speed, the mill can 
cut into solid steel at a rate of 1 inch per second. The manufacturer’s quality 
assurance (QA) guideline mandates that the dimensions of any part produced 
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must be accurate within ±1/100 inch. In order to meet the QA guideline, what 
is the maximum jitter that needs to be guaranteed by the new deterministic net-
work that connects the mill to the controlling computer?

 16. Given the following IEEE 802.15.4 mesh running the RPL protocol. The num-
bers indicated next to each link is the associated latency. If the objective func-
tion is to minimize the communication latency to the Internet, what will be the 
topology computed by RPL?

 

 17. An automation engineer is looking to deploy a deterministic network in a sheet 
metal factory. The control system in charge of safety expects a message from 
the embedded application of a heating element controller every 50 ms, other-
wise it immediately shuts down the production line. The network in question 
has on average a delay of 1 ms per link and 2 ms per node. What is the maxi-
mum number of hops that can separate the control system from the heating 
element controller?

 18. Why does channel hopping improve the reliability of wireless sensor networks?
 19. An application protocol supporting a time filter policy support for client appli-

cations must not deliver messages at a rate higher than what the client applica-
tion is willing to consume. What are common strategies to achieve this?

 20. Which Application layer protocol would you choose for deploying an IoT solu-
tion for a financial institution? Why?
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Chapter 6
Fog Computing

6.1  Defining Fog Computing

In order to define Fog computing, a recap of the concept of Cloud computing is in 
order. Cloud computing refers to a model that provides users with on-demand access 
of a shared pool of computing resources over a network. These resources can be 
quickly provisioned and released through a self-service model. One of the key char-
acteristics of the Cloud computing model is the notion of resource pooling, where 
workloads associated with multiple users (or tenants) are typically collocated on the 
same set of physical resources. This guarantees the economy of scale of the Cloud 
computing model. Hence, essential to Cloud computing is the use of network and 
compute virtualization technologies. Cloud computing provides elastic scalability 
characteristics, where the amount of resources can be grown or diminished based on 
user demand.

Fog computing, or in short Fog, refers to a platform for integrated compute, stor-
age and network services that is highly distributed and virtualized. This platform 
can extend in locality from IoT end devices and gateways all the way to Cloud data 
centers, but is typically located at the network edge (Fig. 6.1). Fog augments Cloud 
computing and brings its functions closer to where data is produced (e.g., sensors) 
or needs to be consumed (e.g., actuators). Fog is not an alternative to Cloud comput-
ing, rather the two synergistically interplay in order to enable new types and classes 
of IoT applications that otherwise would not have been possible when relying on 
Cloud computing stand-alone.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_6&domain=pdf
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6.2  Drivers for Fog

There are several IoT requirements that act as the drivers for the Fog architecture. 
These will be discussed next.

6.2.1  Data Deluge

It has been claimed that 5 exabytes of data have been generated from the dawn of 
humanity to 2003.1 Now this much data is generated every 2 days1, and the rate is 
only increasing. The billions of devices that are projected to be connected to the 
Internet will only exacerbate the data deluge problem. At heart of the issue is the 
question of whether the state of the art will evolve fast enough to handle the immi-
nent explosion of data? There are two technology evolution curves at play here: one 
represents the evolution of compute and storage technologies, which is governed by 
Moore’s Law, and the second represents the growth of bandwidth at the network 
edge, which is covered by Nielsen’s Law. Moore’s Law stipulates that compute and 
storage technologies will double in capability/capacity every 18 months. Nielsen’s 
Law, on the other hand, projects that the bandwidth at the network edge doubles 
every 24 months. Acknowledging that there is a positive correlation between the 
growth of compute and storage technologies and the growth in data volume, it is 
conceivable to foresee an IoT future where data will be produced at rates that far 
outpace the network’s ability to backhaul the information, from the network edge 
where it is produced by the billions of Things, to the Cloud where it will ultimately 

1 As quoted by Eric Schmidt, Executive Chairman of Google

Fig. 6.1 Fog and Cloud
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need to be processed and potentially stored. This disparity between the data volume 
and the available bandwidth is best exemplified with the analogy of attempting to 
push a golf ball through a straw. Luckily, Moore’s Law is not only a culprit by con-
tributing, in part, to the problem but is also a key enabler to the solution: it can be 
leveraged to augment the functions of the network itself with compute and storage 
capabilities at the edge. This allows the network to perform processing, analysis and 
storage of data in lieu of blindly pushing all data up to the Cloud. With that, Cloud 
computing is brought closer to the data sources, the Things, which gives rise to the 
notion of Fog computing. Cloud becomes Fog when it is closer to Things, pun 
intended.

6.2.2  Rapid Mobility

Certain IoT use cases require support for rapid mobility of Things, for example, 
sensors on a speeding vehicle communicating with road-side infrastructure or a pas-
senger commuting on a train. Due to rapid mobility, network conditions may vary 
frequently, due to signal fading, interference, or other conditions. This may even 
lead to severe service degradation or intermittent loss of connectivity to the Cloud. 
Another consideration is the characteristics of the communication path to the Cloud: 
bandwidth and/or latency limitations may have adverse side effects on the operation 
of the IoT application. Multiple variables will typically be at play to contribute to 
these characteristics, including radio coverage, interference, and the amount of 
resources shared with other mobile nodes.

To guarantee the quality of service and reliability required by the application, 
especially when dealing with mobility over extended geographic distances, the 
Cloud infrastructure needs to be augmented with compute and storage functions 
that move with the mobile Things. The mobility of these functions may be either 
physical or virtual. In the former case, the compute and storage is physically situ-
ated with the moving Thing, whereas in the latter, these functions maintain close 
proximity by shadowing and following the Thing albeit in the network edge. In this 
capacity, Fog augments the Cloud to achieve the required pervasiveness and reli-
ability required by rapid mobility in IoT.

6.2.3  Reliable Control

IoT applications that focus on closed-loop control and actuation often share the fol-
lowing characteristics: the data input space and the processing logic required to 
produce the control decision have intensive computational and considerable storage 
demands. The sensing and actuating devices are typically constrained devices, and 
therefore need to off-load the storage and compute functions to external systems or 
infrastructure. In many cases, these control applications require very low latency for 
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correct operation. In a subset of the scenarios, connectivity to the Cloud may be 
either too expensive (e.g., satellite links connecting sensors deployed in oilfields) or 
unreliable due to rapid mobility patterns.

The combination of the above characteristics makes it unpalatable to rely on Cloud 
computing to support reliable real-time control with fixed latency. This is where Fog 
computing can complement the Cloud to address that IoT application niche.

6.2.4  Data Management and Analytics

A class of IoT applications characterized with the confluence of very large scale, in 
terms of the number of devices generating data, widespread geographic footprint 
where these devices are deployed, vast amounts of data that need to be collected, 
aggregated, processed, and exposed to consuming entities, as well as real-time ana-
lytics or closed-loop control. For such class of applications, a data management and 
analytics platform that can handle the scale and performance requirements is 
needed. Experience with large-scale information and communication systems has 
proven that distributed systems built on hierarchical division of functions provide 
the elasticity required while maintaining key performance metrics. Such systems 
typically exploit locality of data for their most basic functions. In other words, they 
tend to minimize the amount of data required from remote sources for critical func-
tions. Interactions between widespread entities are typically confined to system 
wide functions. For data management and analytics, this operating paradigm is even 
more relevant because the IoT data often needs to be operated on within a context, 
which is well known at the edge of the network, close to the data sources, and is 
often lost or is irrelevant as the data travels deeper in the network and into the 
Cloud. Take as an example an ambient noise sensor in a Smart City application, 
which is constantly measuring noise levels and streaming the recorded data. 
Backhauling all the data to the Cloud is both unnecessary and inefficient, especially 
when compared with an alternate design where a local analytics function situated 
close to the sensor filters readings below a specified threshold (depending on the 
context associated with where the sensor is deployed) and only propagates to the 
Cloud interesting readings above that threshold, e.g., to alert city personnel.

Fog computing, in concert with Cloud computing, provides the necessary com-
pute and storage infrastructure required to support such distributed and hierarchical 
data management and analytics.

6.3  Characteristics of Fog

The Fog and the Cloud both comprised of the same three building blocks: compute, 
storage, and networking. However, there are multiple characteristics that uniquely 
shape the Fog and distinguish it from the Cloud:
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First are the network edge location, location awareness, and low latency. Fog 
locates the services close to the data sources and consumers where it is possible to 
enrich the data with location context and operate on it with minimal latency.

Second is geographical and architectural distribution. This is in stark contrast to 
the Cloud model where are all services are centralized in the data center.

Third is the extremely large number of nodes. While the Cloud drives demand 
for massively scalable data centers (MSDC), the Fog pushes the envelope further on 
scalability.

Fourth is mobility of nodes and endpoints. The data sources, consumers, com-
pute or storage resources can all be mobile.

Fifth is real-time interaction. In the Fog, the focus is on real-time analysis of 
streaming data as opposed to batch processing. Fog requires analysis of data in 
motion as opposed to data at rest.

Sixth is predominance of wireless access. In the Cloud, connectivity relies on 
wire-line technologies, predominantly Gigabit Ethernet (10  Gbps, 40  Gbps, and 
soon 100 Gbps). Whereas the Fog will be mostly connected over wireless links, 
both because of the impracticality of running wires everywhere, as well as to sup-
port the mobility requirements.

Seventh is the heterogeneity of resources. In the Cloud, a given data center is 
managed by a single business entity, which goes about deploying homogeneous 
resources in order to minimize complexity and operational costs. With the Fog, the 
architecture is federated over resources managed by different business entities. 
Hence, these resources will vary widely in capabilities, form factors, and operating 
environment.

Table 6.1 summarizes the main facets of difference between Cloud and Fog 
computing.

Table 6.1 Summary comparison of Cloud and Fog computing

Requirement Cloud Computing Fog Computing

Latency & Jitter High/medium Low
Location of service Within Internet Network Edge
Distance between data sources/
consumers

Multiple Hops Single Hop

Location awareness No Yes
Geo-distribution Centralized (Data Center) Distributed
Number of nodes Large Larger
Support for mobility No Yes
Data analytics Data at Rest Data in Motion
Connectivity Wire-line Wireless
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6.4  Enabling Technologies and Prerequisites

The realization of the vision of Fog computing relies on a number of technologies 
that provide enabling building blocks and are key prerequisites for the architecture. 
These include lightweight compute virtualization, network mobility, orchestration, 
and application enablement technologies. In what follows, we will discuss each of 
those technologies in more detail.

6.4.1  Virtualization Technologies

Inherent to Fog computing is the ability to locate compute functions close to data 
producers and/or consumers. This assumes the availability of lightweight compute 
virtualization technologies that allow workloads to be instantiated, as needed, on 
Fog nodes. The latter act as shared compute resources among potentially a multi-
tude of IoT applications.

Virtualization technologies combine or partition computing resources to present 
one or more operating environments using techniques such as hardware and soft-
ware partitioning or aggregation, hardware emulation, resource sharing or time 
multiplexing, etc. Virtualization provides a number of advantages: It enables con-
solidation of both hardware and applications, thereby eliminating the expense asso-
ciated with procuring and managing under-utilized infrastructure. It also enables 
sandboxing, i.e., providing application with secure isolated execution environments. 
Virtualization also provides the flexibility of multiple simultaneous operating sys-
tems over the same hardware infrastructure. It eases the migration of software stacks 
and allows the packaging of applications as stand-alone appliances. Furthermore, 
virtualization enables the portability and mobility of applications from one hard-
ware or physical location to another with ease.

Virtualization technologies generally differ in the abstraction level at which 
operate: CPU instruction set level, hardware abstraction layer (HAL) level, operat-
ing system level.

Virtualization at the CPU instruction set level allows an “emulator” to provide to 
an application the illusion of running on one processor architecture, whereas the 
real hardware actually belongs to a different architecture. It is the job of the emula-
tor to translate the guest instruction set (offered to the application) to the host 
instruction set (used by the actual hardware).

Virtualization at the hardware abstraction layer level involves a virtual machine 
manager, or hypervisor, which is a software layer that sits above the physical hard-
ware (sometimes referred to as “bare metal”) and provides a virtualized view of all 
its services. The hypervisor can create multiple virtual machines (VMs) on top of 
the bare metal. The VMs can be running different operating systems. Applications 
can run within their respective operating systems and are completely oblivious to 
the underlying virtualization.
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Virtualization at the operating system level relies on virtualization software that 
runs on top of or as a module within the operating system. It provides an abstraction 
of the kernel-space system calls to user-space applications, in addition to security 
and sandboxing capabilities to prevent one application from causing collateral dam-
age to another.

Other higher levels of virtualization are possible, such as library and application 
level virtualization, but these are not relevant for the purpose of this discussion.

6.4.1.1  Containers and Virtual Machines

Both Containers and Virtual Machines are popular virtualization constructs 
employed in Cloud Computing today. Each of the two technologies has its own set 
of advantages and trade offs. Virtual Machines (VMs) are a virtualization technol-
ogy at the Hardware Abstraction Layer level. VMs provide an abstraction of a com-
pute platform’s hardware and software resources, complete with all the drivers, full 
operating system and needed libraries. Containers, on the other hand, are a virtual-
ization technology at the operating system level. They include portions of the oper-
ating system and select libraries: the minimal pieces that are absolutely required to 
run the application. Containers share the same operating system and, where appli-
cable, common libraries. Due to this, Containers are lighter weight when compared 
to VMs, both in terms of their memory and processing requirements. As a result, 
given a specific hardware (e.g., a server) with a fixed resource profile, it is possible 
to support more Containers than VMs running concurrently. This gives Containers 

Fig. 6.2 VMs and Containers
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a clear scalability advantage over VMs, not only for Cloud computing but also for 
the Fog. In fact, the compact memory footprint for Containers gives them another 
advantage in the Fog context: they are faster to migrate from one hosting node to 
another, a matter which characterizes them with the nimbleness required to support 
rapid mobility (Fig. 6.2).

However, the lightweight nature of Containers comes with a set of trade offs: 
since Containers share the same underlying operating system, it is not possible to 
use them to deploy applications that require disparate operating system environ-
ments, or different OS versions, on the same physical hardware. Such restriction 
does not apply to Virtual Machines, since they include their own copy of the operat-
ing system. Another trade off associated with the shared operating system in 
Containers is the security implications: there is potential for an application in a 
Container to be subjected to security threats due to malicious or misbehaving code 
running in another Container on the same operating system. With Virtual Machines, 
the security threat is smaller in comparison, because the attack surface is minimized 
due to the fact that each VM has an independent operating system instance. 
Therefore, an application in one VM is better sandboxed and isolated from applica-
tions or code running in another VM.

Linux, the leading open operating system platform, supports both Virtual 
Machines and Containers. Both Kernel-based Virtual Machines (KVM) and Linux 
Containers (LXC) are available in the standard distribution.

Containers and VMs both provide the capability to sandbox Fog applications 
from one another and to control their resource usage. In addition to these relatively 
low-level functions, Fog requires a framework for the packaging, portability, shar-
ing, and deployment of applications. One such framework that has been gaining 
popularity in the industry is Docker, which will be discussed next.

6.4.1.2  Docker

Docker is an open source project that provides a packaging framework to simplify 
the portability and automate the deployment of applications in Containers. Docker 
introduces scripts composed of a series of instructions that automate the deploy-
ment process from start to finish. These scripts are referred to as “Dockerfiles.” 
Docker defines a format for packaging an application and all its dependencies into 
a single portable object. The portability is guaranteed by providing the application 
a runtime environment that behaves exactly the same on all Docker-enabled 
machines. Docker also provides tooling for container version tracking and manage-
ment. In addition, it provides a community for sharing useful source code among 
developers.
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6.4.1.3  Application Mobility

Virtualization technologies decouple the application software from the underlying 
compute, storage, and networking resources. As such, it enables unrestricted work-
load placement and mobility across geographically dispersed physical resources. 
For instance, multiple hypervisors support different flavors of Virtual Machine 
migration, including “cold” migration and “live” migration. In the former case, a 
VM that is either powered down or suspended is moved from one host to another. In 
the latter, a VM that is powered on and operational is moved across hosts, without 
any interruption to its operation. The VM mobility solution takes care of moving the 
VM’s memory footprint, and if applicable, any virtual disk/storage from the old to 
the new hardware. In order to ensure seamless mobility in the case of “live” migra-
tion, the VM retains its original Internet Protocol (IP) and Medium Access Control 
(MAC) addresses. This ensures that any clients or services that are in communica-
tion with the migrating VM can continue to reach it using the same communication 
addresses. The successful orchestration of such seamless live migration requires the 
underlying network infrastructure to support mobility. This will be the topic of the 
next section.

6.4.2  Network Support for Mobility

As previously discussed, rapid mobility is one of the drivers for Fog computing. To 
ensure uninterrupted operation of the IoT application, the network infrastructure 
that is providing the underlying communication fabric for the Fog deployment must 
support seamless mobility of the communicating endpoints.

Networking systems rely on the address of the endpoints in order to deliver mes-
sages to their intended recipients. Depending on the technology at hand, the address 
either connotes the identity or the location of the endpoint. For example, Media 
Access Control (MAC) addresses are identity addresses, because they are burnt into 
the machine and uniquely identify it on a network. Internet Protocol (IP) addresses, 
on the other hand, are typically used as location addresses because they indicate the 
geographic locality of the endpoint. In some contexts, IP addresses are used as iden-
tity addresses as well, for example, in wireless mobile IP applications.

Applications that are deployed in a virtualization construct, such as a Virtual 
Machine, can perform seamless mobility. With seamless mobility, the application’s 
MAC and IP addresses remain unchanged as the associated VM moves from one 
physical server node to another. The network infrastructure needs to handle the 
application mobility event and update the forwarding information on the routers 
and/or switches to deliver the messages correctly to the right physical server that is 
now hosting the VM. In order to do this, the network infrastructure needs to treat the 
VM’s IP and MAC addresses as identity addresses, and correlate them with dynamic 
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location addresses that get updated automatically as the VM moves from one local-
ity to another. In order to properly scale the solution, the knowledge of identity 
addresses should be confined to the edge of the network, whereas the core of the 
network performs forwarding solely based on the location addresses. This is 
achieved by relying on tunnels established between the edge nodes of the network 
to forward the end-host traffic over the core. The tunnel encapsulation uses location 
addresses and hides identity addresses from the core network nodes. The correlation 
between identity addresses and location addresses is established through a mapping 
service provided by the network infrastructure. In a way, this is similar to how the 
post office mail forwarding service works: If a person moves her home, then she 
informs the post office in order to update the association of her name (identity 
address) from an old home address (old location address) to a new home address 
(new location address), in order to guarantee uninterrupted delivery of mail (pack-
ets) (Fig. 6.3).

The industry has recently been working on defining networking solutions to sup-
port seamless VM mobility, primarily driven by Enterprise mobility, Data Center, 
and Cloud use cases. The solutions generally differ in how the mapping service (for 
identity to location address) is implemented: some proposals use a centralized 
server for the mapping service, whereas others rely on a distributed control proto-
col. These solutions can be leveraged by Fog computing. We will discuss two of the 
most promising solutions: Ethernet Virtual Private Network (EVPN) and Locator/
identifier Separation Protocol (LISP).

Fig. 6.3 Identity vs. location addresses with application mobility
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6.4.2.1  EVPN

Ethernet Virtual Private Network (EVPN) is an overlay technology that allows 
Layer 2, and even Layer 3, virtual private networks to be created over a shared 
Internet Protocol (IP) or Multiprotocol Label Switched (MPLS) transport network. 
EVPN was standardized by the IETF in RFC 7432. EVPN uses the Border Gateway 
Protocol (BGP) in order to build the forwarding tables on the participating network 
elements. Given that EVPN is an overlay technology, only network elements that 
are at the edge of the network need to support it, and core network elements are 
oblivious to the fact that EVPN is running in the network. The edge nodes, which 
run EVPN, are known as EVPN Provider Edge (PE) nodes. PE nodes learn the 
MAC and IP addresses of connected hosts, from the access side, either by snooping 
on the host traffic in the data-plane (similar to how Ethernet bridges learn addresses) 
or by running some control protocol (e.g., the Address Resolution Protocol—ARP). 
The PE nodes then build a database of the local addresses and advertise these 
addresses to remote PEs using BGP route messages. Remote PEs, which receive the 
BGP route messages, build their own forwarding databases where they associate the 
MAC and IP addresses (identity addresses) of the hosts with the next hop address 
(location address) of the PE that advertised the route. Host traffic packets received 
by ingress PE nodes are tunneled (using IP or MPLS encapsulation) over the core 
network to egress PE nodes, where the tunnel encapsulation is removed, and the 
original host packets are forwarded to their intended destination(s) (Fig. 6.4).

To handle application mobility, EVPN introduces new BGP messages and dedi-
cated protocol machinery. These mechanisms provide a solution for two issues: 
first, updating the network infrastructure with the new identity address to location 

Fig. 6.4 Ethernet virtual private network (EVPN) architecture
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address mappings, and second, guaranteeing optimal forwarding to the default IP 
gateway after mobility. These two issues and how they are addressed with EVPN 
will be discussed next.

Updating the Identity to Location Address Mappings

When an application running in a VM starts sending traffic, the EVPN PE that is 
servicing the physical server on which the VM is hosted will receive this traffic and 
learn the application/VM IP and MAC addresses. This PE, call it PEorigin, will then 
advertise the VMs addresses in BGP to all the remote PEs in the virtual private net-
work instance. The remote PEs will then update their forwarding tables to indicate 
that the VM IP and MAC addresses are reachable via PEorigin. Now, assume that the 
VM moves to a new physical server, which is serviced by a different PE, call it 
PEtarget. If the PE nodes continue to send traffic for the VM to PEorigin, then this traffic 
will not be delivered to the VM because the latter is no longer on the old server. 
EVPN solves this issue as follows: when the VM starts sending traffic from its new 
location, PEtarget will receive the packets over its access interfaces and will deduce 
that the VM is locally connected. PEtarget would also recognize that the VM’s IP and 
MAC addresses were previously learnt from a remote PE, PEorigin, via a previous 
BGP route advertisement. Hence, PEtarget deduces that the VM must have moved, 
and so it needs to update the rest of the network with the new location of the 
VM. PEtarget would then advertise BGP routes for the VM’s IP and MAC addresses 
with a special attribute to indicate the mobility event. This route is sent to all remote 
PEs, including PEorigin. When PEorigin processes the BGP route message, the special 
attribute indicates to it that the VM has moved, so PEorigin withdraws its previously 
advertised BGP route for that VM’s addresses. This handshake mechanism results 
in all the PEs converging on using PEtarget as the new next hop (location address) for 
the VM traffic (Fig. 6.5).

Fig. 6.5 Mobility in EVPN
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Default IP Gateway Problem

As a VM moves from one physical server to another, both its memory (RAM) and 
disk image are maintained unchanged. This means that the VM’s configuration 
remains unmodified. The configuration includes, among other things, the address of 
the Default IP Gateway that the VM should use in order to forward network traffic 
to remote nodes. Typically, the Default IP Gateway should be in close topological 
proximity to the server that is hosting the VM, in order to guarantee optimal for-
warding of network traffic originating from the VM. However, with VM mobility, 
the VM may land on a new host server that is topological distant from the original 
Default IP Gateway. In such a case, network traffic sourced by the VM will most 
likely follow a sub-optimal forwarding path to its destination.

For example, consider the network of Fig. 6.6, where VM1 is in communication 
with VM2 (hosted on Server 3). VM1 is originally hosted on Server 1, and its net-
work traffic that is destined to VM2 initially follows an optimal forwarding path 
through the Default IP Gateway (the dotted black line). When this VM moves from 
its initial location to a new location on Server 2, the network traffic will start follow-
ing a sub-optimal path from Server 2, via the same default gateway, to Server 3 (the 
solid black line).

To address this problem, EVPN delegates the Default IP Gateway function to the 
edge of the network (the PE nodes), and enables all the PEs to act as a distributed 
logical default gateway for hosts that are attached over the PE access interfaces. 
When a host sends an ARP request for the Default IP Gateway IP address, the EVPN 
PE intercepts the ARP message and responds to it with its own MAC address. The 
default gateway IP address is the same across all the participating EVPN PEs. This 
is specifically to cater for the fact that the VM retains its configured default gateway 
address after a mobility event (Fig. 6.7).

Fig. 6.6 Default IP Gateway problem with VM mobility
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This approach solves the problem by ensuring that the default gateway is always 
in topological proximity to the VM after it moves from one physical host to another.

6.4.2.2  LISP

Locator/Identifier Separation Protocol (LISP) is an overlay networking solution that 
allows complete decoupling of the addressing structure of end hosts from that of the 
network infrastructure. LISP formally defines two namespaces for IP addresses: 
Endpoint Identifiers (EIDs) and Routing Locators (RLOCs). EIDs are identity 
addresses associated with end hosts, whereas RLOCs are location addresses primar-
ily assigned to routers. LISP dedicates an entire system for the directory service that 
performs the mapping between EIDs and RLOCs, and provides two approaches by 
which that system can be implemented: a distributed approach that relies on BGP 
over an Alternative Logical Topology (ALT), and a centralized approach that uses a 
dedicated database for the mapping known as Dedicated Database Tree (DDT). 
LISP is standardized in IETF RFC 6830.

Network elements that sit at the edge of a LISP network are known as Ingress 
Tunnel Routers (ITRs) and Egress Tunnel Routers (ETRs). The ITR receives traffic 
from end hosts and is responsible for encapsulating the traffic within a tunnel to be 
transported over the LISP network. The ETR decapsulates the tunneled traffic and 
forwards the original end-host packets to their destinations. ITRs and ETRs are 
identified based on their RLOCs. In order to determine which ETR to forward the 
traffic to, the ITR consults with a Map Resolver to resolve the RLOC of the ETR 
associated with the destination EID of the traffic. The Map Resolver is responsible 
for identifying which Map Server to direct the query to in order to determine the 
RLOC associated with a given EID. The Map Server is a database that holds all 
EID/ETR associations. It may be deployed on a pair of devices or a full-blown hier-
archy of devices for large-scale implementation (LISP-DDT). Each ETR registers 

Fig. 6.7 EVPN Default Gateway solution
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with the Map Server the EID address space that it is authoritative for. When trig-
gered in the data-plane by a packet destined to a remote EID, the ITR issues a “Map- 
Request” towards the Map Resolver. The latter forwards it to the right Map Server, 
which in turn forwards the request to the authoritative ETR. This ETR replies to the 
requesting ITR with a “Map-Reply” message that contains the list of the RLOCs 
having the capability to reach the requested EID, with their characteristics in terms 
of priority of usage and weighted load partitioning (Fig. 6.8).

To handle application mobility, LISP introduces specific protocol mechanisms. 
These mechanisms provide a solution for the two issues discussed in the previous 
section: first, updating the network infrastructure with the new identity address to 
location address mappings, and second, guaranteeing optimal forwarding to the 
default IP gateway after mobility.

Updating the Identity to Location Address Mappings

Mobility is enabled on an ETR by configuring the node with the list of the mobile 
IP subnets (EIDs) that the ETR is to support. This ETR then becomes the local 
Default IP Gateway for these mobile EIDs. When an application, with its unique 
EID, moves into the LISP site, the first packet that it will send to its local Default IP 
Gateway will trigger the mobility detection on the ETR. The ETR then registers this 
specific EID with the Map Server. The latter, in turn, deregisters the EID from the 
previous authoritative ETR. What remains is to update the map caches of all the 
ITRs that have communicated with the application prior to its move, as those ITRs 
will have stale entries to the RLOC of the old authoritative ETR. This function is 
performed by the old authoritative ETR itself, which upon receiving any data traffic 

Fig. 6.8 LISP architecture
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for the EID that has moved, sends back a “Solicit-Map-Request” message to the 
originating ITR. This message instructs the ITR to refresh its cache (Fig. 6.9).

Default IP Gateway Problem

LISP solves the Default IP Gateway Problem by ensuring that every site has a 
default gateway configured for the same prefix. This gateway must use the same 
(virtual) IP and MAC Addresses in order to guarantee that the traffic originating 
from the moved VM follows an optimal path out of the local LISP Tunneling Router 
rather than being forwarded to another site. First Hop Redundancy Protocols (e.g., 
VRRP) must be configured with identical gateway and MAC addresses in all sites, 
and their packets must not be allowed to leak beyond a given site. This way, when a 
VM moves it will always find the same default gateway regardless of its location.

6.4.3  Fog Orchestration

Orchestration, in the context of Fog computing, refers to the process of automating 
the various workflows that perform the full lifecycle management of the Fog infra-
structure. This includes the provisioning and management of its three components 
(compute, network, storage) and associated resources. For illustration, tasks such as 
deploying, debugging, patching, and updating applications or operating systems, 
setting up network connectivity between application entities and reserving band-
width, as well as allocating and expanding disk space are all examples of workflows 
that fall under orchestration.

Orchestration is a complex task in Fog environment as it involves components 
spread across heterogeneous systems and distributed across multiple locations. Due 
to the Fog’s multi-tiered hierarchical organization, it requires a hierarchically 

Fig. 6.9 LISP mobility
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organized Orchestration plane that supports dynamic policies and interplay with 
Cloud orchestration (Fig. 6.10).

Fog orchestration differs from Cloud orchestration in three different facets: 
Topology, Things Connectivity, and Network Performance Guarantees.

6.4.3.1  Topology

Cloud orchestration systems that are available today make assumptions about the 
network: the physical layout of the topology (3-tiered, 4-tiered, Fat Tree, etc.), the 
abundance of available bandwidth, and the fact that the network elements are capa-
ble devices and therefore have no restrictions on the size of the routing tables. While 
these assumptions are valid in the Cloud, they do not hold true in the Fog. Fog 
topologies are ad-hoc best-fit affairs. They have heterogeneous interconnects as 
well as dynamically varying bandwidth, latency and reliability characteristics. Fog 
orchestration software has to deal with isomorphic topologies that are directly con-
nected to Things.

6.4.3.2  Things Connectivity

With Fog, the orchestration software needs to be able to deploy applications, which 
need direct access to Things (e.g., legacy applications), on Fog nodes that are physi-
cally connected to these specific Things. To enable the communication between the 
applications and their Things, specialized device drivers need to be initialized on the 

Fig. 6.10 Fog orchestration
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Fog nodes by the orchestration system. Furthermore, applications may require data 
from remote Things, in which case the orchestration software needs to dynamically 
establish network overlays to facilitate network communication between the appli-
cations and those remote Things.

6.4.3.3  Network Performance Guarantees

Orchestration systems for the Cloud are capable of deploying applications on nodes 
that can offer the right performance guarantees in terms of processing power, mem-
ory, and disk space. For Fog, these performance guarantees alone are not enough. 
Another dimension of complexity arises due to Control Applications that require 
network performance guarantees, in terms of upper bounds on latency and jitter, in 
their communication with Things. In order to support these control applications in 
the Fog, the orchestration system needs to be able to incorporate network latency 
and jitter into the application placement and scheduling algorithms. Mobility com-
plicates this further, as the placement decisions need to be recalculated with chang-
ing conditions.

6.4.4  Data Management

6.4.4.1  Data in Motion

There are vast amounts of data crossing the network every day. However, those bits 
and bytes provide a wealth of information about actions, time, location, and devices. 
By gathering and combining pieces of information together it is possible to start 
seeing patterns, and gain greater insights. In other words, it is possible to gain 
knowledge. And it is through knowledge that we, as humans, can learn and apply 
wisdom, leading to better outcomes (Fig. 6.11).

Fig. 6.11 DIKW pyramid
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New data sources are being created and added to the network every day. From a 
video camera in a transit bus, a tire pressure sensor in a truck, a jet engine, to a smart 
meter attached to a house. These devices are creating a constant stream of data. Very 
soon, the data generated by the IoT will make up the majority of all information 
available on the Internet and will change the face of Big Data. It will not be possible 
to store all this data and analyze it later. The real-time nature of these new sources 
of data requires that their output be evaluated in motion and in meaningful way. The 
value of data is often dictated by time—being at its highest value when it is first 
created. Actionable insights can be extracted and acted upon, as data is generated, 
to create advantage here and now or even predict the future. Mastery of data—mov-
ing from data to wisdom—has the potential to improve various aspects of our per-
sonal and business life. Organizations can make better decisions, provide enhanced 
experiences, and achieve competitive advantage.

Most of the new data that will be generated in the IoT is real-time data that fits 
into a broad category called Data in Motion. This refers to the constant stream of 
sensor-generated data that defies traditional processes for capture, storage, and 
analysis.

Historically, in order to find actionable insights, enterprises have focused their 
analytics or business intelligence applications on data captured and stored using 
traditional relational data warehouses or “enterprise historian” technologies.

However, the limits of this approach have been tested by the increase in volume 
of this so-called Data at Rest. The challenges inherent in collecting, searching, shar-
ing, analyzing, and visualizing insights from these ever-expanding data sets have 
led to the development of massively parallel computing software running on tens, 
hundreds, or even thousands of servers. As innovative and adaptive as these Big 
Data technologies are, they still rely on historical data to find the proverbial needle 
in the haystack.

As the IoT gathers momentum, the vast number of connections will trigger a 
flood of data, at an even more accelerated pace. While this new Data in Motion has 
huge potential, it also has a very limited shelf life. As such, its primary value lies in 
it being analyzed soon after it is created—in many cases, immediately after it is cre-
ated. Hence, the traditional data management paradigm where raw data is stored 
first and analyzed later does not fit the temporal nature of IoT data. A new paradigm 
for handling Data in Motion is required, where data is analyzed as soon as it is gen-
erated and then optionally stored if required. The analysis can involve one or more 
of the following: aggregation, reduction/filtering, categorization/classification, con-
textualization, dimensioning, compression, pattern matching, normalization, and 
anonymization. All of these functions can be applied in micro-services that are 
hosted in the Fog (Fig. 6.12).
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6.4.4.2  Search Technologies and Engines

With the availability of massive amounts of data, the need arises for reliable and 
effective mechanisms of searching for information that is useful and relevant. 
Search technologies have made great strides since the inception of the World Wide 
Web. However, these technologies, and the engines that utilize them, target static or 
slowly changing web data, and are generally lacking when dealing with the con-
stantly streaming data in IoT.

IoT requires a solution for distributed data search, where queries can be propa-
gated throughout the Fog domains. The solution can be logically organized into two 
planes: Things Plane and Search Plane (Fig. 6.13). The Things Plane encompasses 
the physical Things, Network and Compute nodes in the Fog. The Search Plane is a 
logical view of the various Fog nodes that support the distributed search functional-
ity together with the network overlay that enables communication between them. 
Such overlay could be implemented, for instance, using a Federation Message Bus. 
Search queries are injected into the Search Plane at some Fog node, and propagate 
throughout the Search Plane. Special considerations are required to ensure that such 
propagation does not lead to traffic storms that overwhelm the network or the Fog 
nodes. Furthermore, mechanisms are required to limit the search scope, or radius, 
order to guarantee scalability and relevance of returned results. One approach would 
be to rely on Wave algorithms, such as the Echo algorithm, for query distribution 
and perform tree-based aggregation of partial results. These algorithms typically 
result in very low latency, have a low overhead and generally scale to hundreds of 
thousands of nodes.

Fig. 6.12 Data management in the Fog
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As discussed in Chap. 5, both the ETSI and oneM2M standards define basic 
mechanisms for data search based on metadata. However, these mechanisms only 
allow elementary search procedures based on string matching between requests and 
the resource metadata. This provides a syntactic search capability with binary (yes/
no) outcomes based on exact matches. Exact matches are highly unlikely in real- 
world IoT deployments with heterogeneous devices and Things from different ven-
dors and providers. As such, effective search mechanisms should allow for “fuzzy 
matches,” with partial correspondence between the request and the available data. 
Such mechanisms, ideally, would provide a measure of the semantic similarity 
between the original request and the retrieved results. To achieve this, Semantic 
Web technologies could be applied to the IoT: the IoT data can be enriched with 
semantic-based annotations that reference shared domain conceptualizations, and 
the search mechanisms can utilize Semantic Matching techniques to perform the 
ranking of potential results. Ruta et al. [15] propose such a framework that utilizes 
and enhanced version of CoAP as the underlying protocol for the Federation 
Message Bus.

6.4.5  More Gaps Ahead

Clouds are deployed in data centers, where network topologies are well defined and 
the infrastructure is physically secured with solid walls and cages. Network input 
and output between applications deployed in the data center and the outside world 
(e.g., Internet) are mediated through security appliances, such as Firewalls, which 
provide applications with a well-incubated environment under which they can oper-
ate. Furthermore, network bandwidth is abundant and it is relatively easy to change 

Fig. 6.13 Data search in Fog
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the network physical topology. With Fog, applications may be logically grouped 
together but not necessarily part of the same physical set up. The first gap to address 
is providing an orchestration system that enables the connection of applications 
deployed on Fog nodes to other applications, which are part of the same group, but 
are on desperate Fog nodes, as well as to applications that are in the Cloud. These 
connections could be over bandwidth-constrained links that cannot be changed due 
to the physical realities of the deployment. In light of this, open questions remain as 
to whether the Fog nodes need to replicate the entire functionality of the data center, 
including server, switch, and gateway functions (Data-Center-in-a-Box) or whether 
these functions should be distributed across multiple nodes and assembled together 
logically through the notion of “service chains.” Another open gap is security: Fog 
nodes may be mounted in the field or on top of a light pole, so anyone could poten-
tially gain physical access to them, attach wires, and compromise the security of the 
application or the network connectivity. New mechanisms of anomaly and tamper-
ing detection are needed. Yet another gap is in how would Fog nodes talk to Things: 
should that be through direct electric connectivity (e.g., PCI bus) or via the network-
ing stack. Furthermore, in order for applications to leverage Fog, a high-level pro-
gramming model is required which simplifies the development of large-scale 
distributed software. Such model provides simplified programming abstractions and 
supports dynamic application scaling at runtime.

6.5  Summary

In this chapter we introduced the concept of Fog computing and discussed its rela-
tionship to Cloud computing. The various IoT requirements driving the need for 
Fog were covered. We also discussed the prerequisites and enabling technologies 
for Fog, in terms of virtualization technologies, network mobility technologies, 
orchestration, and data management technologies.

Problems and Exercises

 1. Will Fog Computing replace Cloud Computing? Why or why not?
 2. What is the definition of Fog Computing?
 3. What are the characteristics that uniquely distinguish Fog from Cloud 

Computing?
 4. What makes Containers lighter-weight virtualization constructs compared to 

Virtual Machines? Why is this attribute of Containers important for Fog?
 5. What are the two problems that all network mobility solutions aim to address?
 6. Why can’t traditional data management and analytics techniques be 

applied to IoT?
 7. What three functions should a Fog Orchestration solution address and solve?
 8. What is “data in motion”?
 9. Why are semantic search mechanisms important for IoT?
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 10. Consider the following Fog domain shown in the Figure below. For each Fog 
node, the diagram shows the number of virtual CPUs (vCPU) and RAM avail-
able. Also, the communication latency from each node to a remote sensor 
(labeled R1 through R4) is captured.

R1 R2 R3 R4

10 ms
10 ms 15 ms

15 ms 20 ms20 ms
25 ms25 ms 10 ms

10 ms10 ms
10 ms

Node C

6 vCPU
4 GB RAM

Node B

10 vCPU
1 GB RAM

Node A

8 vCPU
2 GB RAM  

There are five applications that need to be placed on the Fog nodes, and each 
application has specific demands for CPU, RAM, and communication as 
depicted in the table below:

Application CPU demand (vCPU) RAM demand (GB) Communications demand

1 5 0.5 R1 (<12 ms)
2 2 1 R2

3 1 0.25 R3

4 1 1 R4

Find the optimal placement of the five applications on the three Fog nodes 
such as to minimize the communication latency between each application and 
the sensor that it needs to connect to.

 11. A Fog domain is using EVPN to support workload mobility. The topology of 
the domain is as shown in the figure below. Every BGP speaker requires approx-
imately 10 ms to process a BGP message, including any transmission/reception 
delay. A VM moves from the Melville server farm to the Granville server farm.

 (a) If N1, N2, and N3 form a BGP route-reflector (RR) cluster (i.e., fully 
meshed BGP sessions) and each of PEb, Peg, and PEm have a BGP session 
with their directly attached RR, how long would it be before all other appli-
cations are capable of communicating with the VM in its new location 
assuming it takes 20 ms for GARP messages to be received and processed 
by the PE connected to the new server?

 (b) If N1, N2, and N3 are MPLS core routers, rather than route-reflectors, how 
does the above convergence time change?
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 12. An IT administrator is trying to decide on whether to use Linux container or 
Virtual Machine for an interactive location-based interactive marketing applica-
tion. Each instance of the application requires 200 MB of RAM to run, includ-
ing all dependencies/libraries. The Linux distribution she is considering has a 
runtime memory footprint of 800 MB. A given application instance needs to 
move frequently in the Fog domain, to maintain close proximity to a target 
customer and deliver an immersive HD video/audio experience. Assume that 
the wireless links interconnecting the Fog nodes operate at 100 Mbps.

 (a) In the best-case scenario, how long would it take for the memory image of 
the application to move from one Fog Node to another in the case where the 
application runs in a Virtual Machine?

 (b) Repeat (a) for the case where the application runs in a Linux container?
 (c) Which virtualization construct should the IT administrator pick for her 

application and why?

 13. A smart parking application is implemented in the future city of Metrotown 
using Fog computing. Fred is looking for parking in Metrotown’s downtown 
shopping district. His car is capable of communicating automatically with the 
city infrastructure to locate available parking. The Fog domain in Metrotown is 
such that Fog nodes are placed roughly 50 m apart, on street lighting poles. The 
car’s embedded application is searching for parking availability within a 1 km 
radius from the current vehicle’s location. Assume that the Fog domain is using 
the Echo algorithm to search for data. If node processing latency and link prop-
agation latency are 2 ms and 1 ms respectively, how long would it be before the 
search request has reached all nodes in the Fog domain?
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 14. A Fog orchestration system is responsible for the mobility of workloads among 
three Fog nodes dispersed in three locations: Coal Harbor, Yaletown and West 
End. The choice of a server for a given workload is a function of the CPU load 
of that server and the network communication latency from the server to the 
client. The orchestrator assigns a score between 0 and 1 to each server based on 
its CPU load, with a score of 1 for servers having less than 25% utilization, a 
score of 0.5 for servers with utilization between 25% and 75%, and a score of 
0.25 for utilization above 75%. The orchestrator ranks the servers based on 
network latency and assigns them a score between 0 and 1 linearly depending 
on their rank in the ordered list, with a score of 0 assigned to the server with the 
highest latency and a score of 1 assigned to the server with the least latency. 
Assume that a user on her smartphone is roaming between the three locations. 
The network latency from her phone to the Coal Harbor Fog node is 200 μs, to 
the West End Fog node is 300 μs and to the Yaletown Fog node is 250 μs. The 
average CPU utilization for the servers is 80% for Coal Harbor, 13% for 
Yaletown and 50% for West End Fog nodes.

 (a) If the Fog orchestrator is configured to give equal weight to communication 
latency as server CPU load, which server would the orchestrator select?

 (b) If the communication latency carries twice the weight of the server CPU 
load, what would be the server that the orchestrator selects?

 15. Explain the difference between the three different levels of virtualization: CPU 
instruction set level, hardware abstraction layer (HAL) level, operating sys-
tem level.

 16. What distinguishes LISP from other networking solutions that support mobility?
 17. Describe Nielsen’s Law. How does it relate to Moore’s Law? What are the 

implications for IoT?
 18. How is network connectivity different in the Fog from the Cloud?
 19. How does rapid mobility impact communicating IoT applications?
 20. When you conduct a search on your favorite Web search engine, is the search 

conducted over the Internet in real time? Will this model work for IoT?
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Chapter 7
IoT Services Platform: Functions 
and Requirements

IoT is expected to connect billions of sensors, devices, and applications over the 
Internet. One of the most critical prerequisites for successful, scalable, and effective 
IoT solutions is a Services Platform that provides abstraction across the multitude 
of diverse devices and data sources in addition to allowing for the management and 
control of a range of systems and processes. The operation of this platform requires 
a comprehensive and diverse set of requisites to gather relevant data, analyze it, and 
create actionable insights.

The Services Platform must surpass vertical solutions by integrating all essential 
technologies and required components into a common, open, and multi-application 
environment. The functions of the IoT Services Platform include the ability to 
deploy, configure, troubleshoot, secure, manage, and monitor IoT devices. They 
also include the ability to manage applications in terms of software/firmware instal-
lation, patching, starting/stopping, debugging, and monitoring. The Services 
Platform also provides capabilities that simplify application development through a 
core set of common application services that include data management, temporary 
caching, permanent storage, data normalization, policy-based access control and 
exposure. In addition to these, the Services Platform may offer some advanced 
application services, which include support for business rules, complex event pro-
cessing, data analytics, and closed loop control. Figure 7.1 shows examples of key 
IoT Services Platform Functions. A more detailed and structured list will be pro-
vided in Sects. 7.2–7.12.

As can be seen from the list above, many of the capabilities of the IoT Services 
Platform represent what can be loosely categorized as “management functions.” 
These, however, are different from traditional network management. Traditional 
network-level management functions were originally defined, in the early 1980s, by 
the Open Systems Interconnection (OSI) Systems Management Overview (SMO) 
standard as FCAPS: Fault, Configuration, Accounting, Performance, and Security. 
A decade later, the Telecommunications Management Network (TMN) of ITU-T, 
advanced the FCAPS as part of the TMN recommendation on Management 
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Functions. The term FCAPS is often used in network management books as a useful 
way to break down the multipart network management functions.

While FCAPS still apply, the overall management functions of IoT solutions are 
more multifaceted than traditional networks. This is due to the following factors:

• IoT solutions include new devices (e.g., sensors, white-label gateways, and 
white-label switches). Some of these devices are inexpensive and generally lack 
the type or level of instrumentation required for traditional management 
functions.

• IoT solutions utilize relatively recent technologies (e.g., tracking exact location 
of IoT device using GPS triangulation) that were not considered by traditional 
management solutions.

• IoT solutions support more than two dozen access protocols (as was mentioned 
in Chaps. 4 and 5). The network management for each protocol may vary.

• IoT solutions support multiple verticals, each of which has different sets of man-
agement, quality of service, and grade of service requirements.

• IoT solutions utilize a new Fog layer with new and challenging network, com-
pute and storage management requirements.

• Finally, many enterprises and service providers are expected to outsource and, in 
many cases, multisource key parts of the network and/or management functions. 
This requires additional, mostly new, capabilities such as secure integration that 
spans connecting workflows between multiple services providers.

This chapter describes the essential functions of the IoT Services Platform, as 
shown in Fig. 7.2. It focuses on identifying key capabilities with minimum empha-
sis on the relationship between the functions or their access protocol interfaces. 
Such relationship and protocols were addressed in the IoT Protocol Stack Chaps. 
4 and 5.

Before introducing the main functions of the IoT Services Platform, we will first 
revisit the key components of IoT solutions that consist of IoT Device elements, IoT 
Network elements, IoT Services Platform, and IoT Applications as shown in 
Fig. 7.3.
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Fig. 7.1 Examples of key IoT Services Platform functions
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• IoT Device Entities: IoT devices include sensing devices, actuators, and gate-
ways. The main functions of the gateways are (1) collecting and aggregating 
information from the devices, (2) on-site filtering and simple correlation of col-
lected information, (3) transferring correlated data to the network layer, and (4) 
taking action on the devices (e.g., shutting power off) based on commands from 
higher layers.

• IoT Network Entities: IoT network entities provide services from the underly-
ing network to the Services platform. They include super-gateways, access rout-
ers, switches, and possibly element management servers with specific network 
management functions.

• IoT Services Platform Entity: The IoT Services Platform sometimes referred to 
as “IoT Platform” or “The IoT Application Services Platform,” of any IoT solu-
tion. It is responsible for monitoring and controlling IoT elements in the IoT 
Device and Network Layers. It also allows the creation of direct integration 
between physical devices (e.g., sensors, actuators, gateways) and computer- 
based application systems to improve efficiency, accuracy, and economic benefit.

IoT Devices

IoT Network

IoT Services Platform

IoT Applications

IoT Gateway

Chapter 7
Area of Focus

Fig. 7.2 Areas of focus for this chapter

IoT Devices

IoT Network

IoT Services Platform

IoT Applications

IoT Service
Platform

Functions

Fig. 7.3 Key components of IoT solution
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• IoT Services Platform entity receives information from IoT Device and Network 
Entities, and provides services to the Application Entities. More importantly, it 
provides network-level and often service-level management functions as will be 
discussed in this chapter.

• IoT Application Entities: Application entities receive information from the 
Services Platform and provide services and business level functions. These func-
tions are typically vertical dependent. Examples of Application Entities include 
an IoT-based Automated Parking application, an IoT-based Hurricane Alert 
System application, etc.

7.1  IoT Services Platform Functions

Without a doubt, the IoT Services Platform constitutes the linchpin of successful 
IoT solutions. It is responsible for many of the most challenging and complex tasks 
of the solution. The IoT Services Platforms include numerous fundamental func-
tions to ensure proper and secure deployment and comprehensive supervision and 
control. In this chapter, we will identify key IoT Services Platform functions by 
grouping related requirements together and by utilizing recent IoT standards such as 
those devised by oneM2M1 and European Telecommunications Standards Institute 
(ETS) standards bodies. More information on the IoT standards was provided in 
Chap. 5 (Sect. 5.4.2).

The overall functions of the IoT Services Platform can be categorized into the 
following 11 key areas:

 1. Platform Manager
 2. Discovery and Registration Manager
 3. Communication Manager
 4. Data Management and Repository
 5. Firmware Manager
 6. Topology Manager
 7. Group Manager
 8. Billing and Accounting Manager
 9. Cloud Service Integration Function/Manager
 10. API Manager
 11. Element Manager: Configuration Management, Fault Management, 

Performance Management and Security Management

Figure 7.4 shows the IoT Services Platform functions. It does not constrain the 
multiplicity of the entities nor the relationships among them.

1 OneM2M is the global standards initiative for Machine-to-Machine Communications and the 
Internet of Things.

7 IoT Services Platform: Functions and Requirements



183

7.2  IoT Platform Manager

The IoT Services Platform Manager, also known as IoT Service Platform’s 
Management Entity in some standards, is responsible for managing the IoT Service 
Platform internal modules and interfaces. It works with the Communication 
Manager (Sect. 7.4) and the Element Manager (Sect. 7.6) to monitor, configure, 
troubleshoot, and upgrade the Services Platform modules. It is really the “manager 
of managers” responsible for providing the overall management of the entire 
Services Platform functions.

The Platform Manager is used for the overall control and management of the 
common management functions. It allows the system administrator, or an applica-
tion in the Application Layer, to manage IoT Services Platform components and 
interfaces. This includes initiating an action (e.g., discovery) and receiving results 
(e.g., discovered elements) within a specific amount of time.

The Platform Manager is expected to have a full user interface, allowing the 
system administrator to initiate requests and review reports, and providing inter-
faces to receive and send information. It must be noted that user and application’s 
authorization (specifying access rights level) and authentication (verifying the 
user’s credentials) is a top requirement.

The Platform Manager may be a physical system/server or virtual system with 
functions distributed among the common management components.

The IoT Platform Manager is responsible for:

• Performance Monitoring and Fault Management of the Services Platform func-
tions. This includes continuous monitoring, troubleshooting, fault identification, 
fault correction, and diagnostics. This requires constant collection of logs, 
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Fig. 7.4 Common IoT Services Platform functions
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 performance and fault parameters from the platform functions (e.g., system logs, 
alarms).

• Lifecycle software management allowing the IoT Platform Manager to manage 
any software packages related to the above Services Platform functions. This 
includes upgrading, updating, installing, uninstalling/removing, and download-
ing software packages. Complete configuration backups with roll-back capabili-
ties must be supported (Why? See Problem 24).

• Configuring any of the platform functions when they are first installed. This 
includes the configuration of the services offered to Application Entities.

• Supporting multiple levels of IoT Platform Managers operating in a hierarchical 
environment. For instance, supporting two Platform Managers, representing two 
separate networks, and a third “Supper Platform Manager” with full read and 
write access to the first two. Consequence, Platform Managers should have the 
ability to establish relationships among each other including establishing par-
ent–child and Read–Write relationships.

The concept of Super Platform Manager is needed to address high availability 
requirements.

7.3  Discovery: Entities, Services, and Location

Discovery is the process of identifying and transferring information regarding exist-
ing IoT entities and/or resources with their locations. Accurate discovery is essen-
tial for most IoT management tasks such as asset management, network monitoring, 
network diagnostics and fault analysis, network planning, capacity expansion, high 
availability, and others.

One of the key discovery requirements is for IoT entities (e.g., sensors, gateways, 
routers) to uniquely identify themselves via a common registration process. Hence, 
each entity needs to be uniquely identifiable through its embedded computing sys-
tem. It also needs to be able to interoperate within the existing IoT infrastructure via 
IoT access protocols as we defined in Chap. 5.

An essential requirement for discovery is entity registration. In this section, we 
will first introduce the registration function and then provide the key requirements 
for discovery.

7.3.1  Registration

IoT device registration can be defined as the process of delivering the device infor-
mation to the Management Entity (or to another server) in order for IoT devices to 
communicate and exchange information. Most IoT devices will be identified and 
tracked by their IP addresses. However, as we mentioned in Chap. 2, not all IoT 
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devices are IP-enabled. In such case, devices (e.g., basic sensors) may be tracked by 
their local (typically non-unique) addresses (e.g., local identifier) in combination 
with their corresponding gateway IP address. Gateways are expected to have unique 
IP addresses and are responsible for providing a means to uniquely identify their 
associated sensors and actuators.

In order for the IoT registration process to work, the following key capabilities 
are necessary:

• IoT devices must have the capability to register to an associated Platform 
Manager entity. This procedure may be self-registration (preferred solution) 
where a new IoT device identifies itself to the management entity as soon as it 
joins the IoT network or identifies itself during the discovery process as will be 
discussed in the next section. The registration requirements must be addressed in 
all IoT domains, i.e.,

 – Ability for new sensors and actuators to register themselves with their associ-
ated gateways.

 – Ability for new gateways to register themselves with their associated Platform 
Manager entities.

 – Ability for Platform Managers to register themselves with a super (or another) 
Platform Manager(s) as defined by the network administrator.

• Once the registration is complete,

 – The IoT Platform Manager must be able to access the IoT gateway and retrieve 
information (i.e., Read Access is granted). In other words, IoT gateways must 
grant full access privilege to the associated IoT Platform Manager(s). Hence, 
all resource information must be available to the IoT Platform Manager.

 – The IoT gateways must be able to access their associated sensors and actua-
tors and retrieve information. In this case, sensors and actuators resource 
information must available to the associated IoT gateway(s).

 – Super IoT Platform Manager(s), if present, must be able to access their cor-
responding IoT Platform Managers and retrieve information. Hence, all 
resource information must be available to the super management entities 
where applicable.

7.3.2  Discovery

Based on some filtering criteria (typically specified by a management entity such as 
the Platform Manager, IoT Gateway, or a northbound application) in the discovery 
request, the discovery function is responsible for discovering, identifying, and 
retuning matching information regarding entities and/or resources. The discovery 
function sends matching information to the requester’s system. The discovery 
request may include the IP or MAC address (obtained from device registration), set 
of addresses, or range of IP addresses of the resource where the discovery is to be 
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performed. Full discovery, without any specified addresses, may also be supported. 
In such case, all entities (based on some filtering criteria in the discovery request) 
are discovered. Example: Discover all entities in a given enterprise network.

In IoT, the location of the physical entities (e.g., sensors, gateways) is also essen-
tial. The discovery function also supports obtaining geographical location 
information.

It is assumed, therefore, that IoT entities have the capability of identifying, stor-
ing, and updating their geographical location information. This may be accom-
plished with a GPS module in the entity, a location server responsible for tracking 
and storing location information, or information for inferring location stored in 
other nodes. The location technology (e.g., Cell-ID, assisted-GPS, and fingerprint) 
used by the underlying network depends on its capabilities. Sensors with no geo- 
locations are identified by their corresponding gateways.

We will use an example of CoAP (Constrained Application Protocol) to illustrate 
discovery.

Discovery Request: Assume the IP Address of the Management Server is 
192.15.10.5. Also assume the Management Server is interested in discovering 
sensors within 500  m from the location of (37.76724070774898, 
−122.37890839576721)2 GPS Coordinates. The management server will send a 
CoAP GET request to

Coap://192.15.10.5:5784/.well-known/core?
& ro=SSN-XG-IRI&sd=yyyyyy=&at30004&lg=-122.37890839576721
&lt=37.76724070774898&md=500&st=2&sr=70

Discovery Reply: Upon receiving the request, the CoAP server will start a match-
ing process comparing the request with all stored information in its local data 
store. Let us assume that the returned set consists of two sensors matching the 
request. The CoAP server response payload will be

</Hts2030HumidSens>;ct=41; at30004; lg=-122.37890839576721; 
lt=37.76724070774898&md=310; ro=SSN-XG-IRI; sd=aaaaaa; 
tittle=”Humidity-Sensor-2030”,
</BitLineAnemomSens>;ct=0; ct=41;at=30004; lg=-122.37890839576721; 
lt=37.76724070774898&md=276; ro=SSN-XG-IRI; sd=bbbbbb; 
tittle=”Anemometer-Sensor-111”,

Table 7.1 summarizes the Registration and Discovery requirements.

2 (37.76724070774898, −122.37890839576721) are the GPS Coordinate for a northern 
California area.
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Finally, IoT software services may also be discovered by collecting configura-
tion and operational parameters (e.g., using YANG,3 SNMP MIBs, CLI Outputs). 
IETF defined a set of requirements for standard-based device (configuration and 
operational data) management. Key functionalities include:

• Ability to collect configuration and operation data from all IoT devices (e.g., 
running configuration files) where applicable.

• Ability to extract and then structure/model data from configuration and operation 
files via an information model.

• Ability to distinguish between configuration data and operational data (i.e., data 
that describes operational state and statistics).

• Ability for operators to configure the entire network and not just individual 
devices.

• Ability to check configurations consistency between devices in the network.
• Ability to use text processing tools such as diff and version management tools 

such as CVS.
• Ability to distinguish between the distribution of configurations and the activa-

tion of a certain configuration.

Detailed requirements for discovery of software services are outside the scope of 
this book.

3 YANG is a tree-structured data modeling language (defined by IETF) used to model configuration 
and state data [6].

Table 7.1 Summary of IoT Registration and Discovery requirements

Function Responsibility Results/outputs

Discovery Identify IoT sensors, actuators, gateways, and 
devices via attributes and search protocols

IoT entities, gateways, 
sensors, and actuators based 
on filtering criteria

Identify the location of physical entities GPS location
Identify access control policies across 
management servers and clients (see Sect. 7.5)

Access Control Policy 
information

Identify IoT services via attributes and collected 
data

IoT configured services 
(outside the scope of this 
book)

Registration The process of delivering IoT device information 
(sensors, actuators, gateways, and IoT entities) to 
the Management Entity, or to another server, in 
order for IoT devices to communicate and 
exchange information

Ability for IoT device 
(sensors, actuators, gateways, 
and IoT entities) to register 
with their associated 
gateways
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7.4  Communication Manager

The Communication Manager is responsible for providing communications with 
other platform functions, applications, and devices. This includes supporting the 
following functionality:

• Ability to provide a global view of the state of the entire underlying platform 
network. This is needed to address the next requirement.

• Ability to determine the optimal time to establish the communication connection 
to deliver information between at least two platform entities. Such decision is 
based on the source delivery request as well as traffic/congestion control optimi-
zation techniques within the platform. Data may be stored/buffered for future 
delivery time per the provisioned Communication Manager policies.

• Ability to deliver required information within the delivery request time.
• Ability to publish its own polices to external systems.
• Ability to provide information to external systems to drive policies describing 

details of the usage of network resources (i.e., 5% of bandwidth on link X at time 
T was utilized for service Y).

• Ability to communicate, select paths for a given amount of time, and manage 
buffers based on communication manager polices.

7.5  Data Management and Repository

Collecting, storing, and exchanging information among various platform entities is 
one of the key requirements for the IoT Service Platform. Data Storage and 
Mediation functionalities must include:

• Data Retrieval: Data may be retrieved from various sources including IoT 
devices (e.g., sensors and getaways), IoT network elements (e.g., super-gateways 
and switches), IoT subscribers or IoT applications. IoT device and network ele-
ment data is assumed to be collected by collection systems or by collection agents.

• We are using the term “Collection System” to refer to a physical hardware 
machine (e.g., server, PC) mainly used for data collection. And the term 
“Collection Agent” refers to a software unit (agent) that resides on a gateway/
router blade (or on a computer along with other applications). Hence, Collection 
System may be the same as Collection Agent (see Problem 30).

• Data Aggregation: Data aggregation implies grouping data from similar or 
diverse sources for further processes. Typically, data from various IoT sources 
need to be grouped together based on a well-defined data model (e.g., physical 
locations, device types, subscribers with their assigned devices, etc.). The aggre-
gation syntax should be defined by the data model. Also, data from multiple data 
collection systems (for the same IoT entity) need to be filtered and aggregated 
accordingly.
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• Data Parsing: Data parsing normally implies reading the data, using software, 
and extracting useful information. Stages of data parsing are hard to define with-
out a concrete use-case but typically include running code to extract specific 
parameters and writing the extracted data to a database.

• Data Storing: The Data Storage and Mediation Function supports taking data 
from various sources and storing it based on pre-defined policy. Raw data, aggre-
gated data, and parsed data may be stored with different polices (e.g., store raw 
data for 6 months, store parsed data for 2 years). Associated contextual informa-
tion is also stored with the data. Examples of contextual information include: 
data type (e.g., Temperature), data format (e.g., −100 °C to +100 °C) data source 
(e.g., Sensor ID and Associated Gateway ID), retrieval time and date (e.g., 
03:45:00  PM EST on 12/12/2016), retrieval location (e.g., 
lg = −122.37890839576721; lt = 37.76724070774898).

• Access to data based on defined access control policy: The Data Storage and 
Mediation needs to have the capability of providing local or remote data access 
based on a well-defined access control policy. The policy, which is typically 
defined by the network administrator, needs to capture what types of functions a 
specific user or application can perform on the data (read-only write-only, read/
write). The policy may include temporal access restrictions, and may be role 
based (e.g., administrator vs. user, etc.).

7.6  Element Manager (Managing IoT Devices 
and Network Elements)

The element management function is expected to manage IoT sensors, actuators, 
gateways as well as other devices residing within the platform boundaries. The ele-
ment management function, as shown in Fig. 7.5, typically utilizes the client-server 
distributed model where a single management server may manage multiple man-
agement clients. In this model, tasks are partitioned between the management server 
(provider of the service) and the management client (service requester). The man-
agement client establishes a connection to the management server over the network 
to accomplish a particular task (e.g., sending performance results of the last 5 min). 
Once the management client’s task is fulfilled, by the management server, the con-
nection is terminated.

In IoT environment, the management server may be residing in a data center 
while management client may be residing on the IoT Gateway in an offsite location.

A key function of element management includes:

• Ability for the management client and management server to communicate at 
any time. Hence, real-time communication is required to send time-sensitive data.

• While it is recommended to use a standardized protocol so that any management 
server can communicate with any management client, any existing client-server 
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communication protocol may be utilized. Key examples include TR-0694 
and LWM2M.5

• Ability for the management servers (or adaptors) to receive and fully understand 
(based on an agreed upon protocol) management client requests and/or notifica-
tions. For example, air pressure measurements of the oil rig vale.

• Ability for the management clients to receive requests and/or notifications from 
the management servers (or their adaptors). The management clients may have 
the ability to fully understand such events and deliver them to targeted sensors, 
actuators, or device as required. For example, requesting the actuator to shut 
down a valve.

• Ability for the management server and management clients to address the secu-
rity requirements as defined later in this chapter and in Chap. 8 including 
Authorization, Authentication, Access Control, Non-reputation, Data confidenti-
ality, Communication Security, and Data Integrity and Privacy.

• Ability for the super management server to assign different levels of access con-
trol privileges when multiple management servers and/or clients exist.

4 TR-069 as a bidirectional SOAP/HTTP-based protocol that was originally for remote manage-
ment of end-user devices. It was published by the Broadband Forum and entitled CPE WAN 
Management Protocol (CWMP).
5 LWM2M (Lightweight Machine-to-Machine) protocol is defined by the Open Mobile Alliance 
for M2M/IoT, as an application layer communication protocol between a LWM2M Server and a 
LWM2M Client (located in a LWM2M Device).

Management 
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Management 
Server

IoT Gateway

IoT Sensor

Server

Fig. 7.5 Example of element management function
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• Ability for the super management server to provide read access (with the appro-
priate access control requirement) to the discovery or other functions to discover 
access control policy information.

• Ability for the management server to provide read access (with the appropriate 
access control requirement) to the discovery or other functions to discover man-
aged elements with their latest collected information (e.g., metadata, values) 
including gateways, sensors, and actuators.

• Ability for the management server to create a new element to be managed (e.g., 
gateway, sensor), delete an existing element, update any parameters of any exist-
ing elements, update the firmware of any element, and to retrieve information of 
any existing elements.

7.6.1  Configuration (and Provisioning) Management

Configuration management is one of the most important element and network man-
agement functions. Configuration management is the process of enabling (or dis-
abling) a service. Before providing the overall requirements for IoT configuration 
management, it is worthwhile to discuss the main differences between configuration 
and provisioning management.

The Provisioning function is concerned with the basic process of preparing and 
equipping an IoT network to provide proper and effective services, while the 
Configuration function is concerned with the actual enablement or disablement of 
an IoT service. Provisioning is often equated to initiation of a service or capability, 
whereas configuration is the final set of touches to deliver the actual service to a 
particular customer.

Hence, an IoT network is first generically provisioned (e.g., by installing librar-
ies or services on servers) to provide a set of services to any customers. Such provi-
sioning does not imply that a service can simply be launched without additional 
instructions on which particular server or set of servers to use, which specific set of 
already provisioned parameter to employ, how to distribute the load when demand 
increase, etc.

Figure 7.6 shows an example of Device Remote Management/Configuration to 
address the machine-to-machine (M2M) environment with OMA (Open Mobile 
Alliance) lightweight M2M protocol, which focuses on constrained cellular and 
sensor network M2M devices.

Key configuration requirements include:

• Ability to identify IoT devices and their associated management objects and 
attributes.

• Ability to enable or disable a device capability.
• Ability to update device parameters.
• Ability to roll-back applied changes in the configuration at least to five back ver-

sions (tracked by time and date).
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• Ability to reset IoT device parameters to original factory values.

On the IoT network side, an example of network element protocol is the Network 
Configuration Protocol (NETCONF). It provides mechanisms to install and update 
the configuration of network elements such as a router or switch using XML to 
encode the configuration data and the protocol messages.

7.6.2  Fault Management

At the minimum, IoT service providers need to be able to configure new service 
(turn-on a service for a customer) and then identify any problem or potential prob-
lem and have the tools to fix it quickly. No service provider will survive in the mar-
ket if they do not have the capabilities and processes to discover problems promptly 
(before they occur in most cases) and take quick action to prevent service interrup-
tion or service degradation that could result in Service-Level Agreement (SLA) 
violation.

Fault management is among the most challenging and important management 
function of IoT networks. This is due to the fact that large-scale deployment of 
inexpensive sensors (i.e., with very limited processing capability, storage capacity, 
and limited energy) means that failures from various defects will not be uncommon. 
It is also due to the fact that managing IoT devices in remote locations and often 
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Fig. 7.6 Example of 
configuration management 
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harsh environments will be demanding, especially when dealing with various IoT 
topologies and verticals.

Fault Management typically consists of three main functions: fault detection, 
fault isolation (or diagnostic), and fault correction as shown in Fig. 7.7. In this sec-
tion, we will first describe these three functions. Then we will introduce fault toler-
ance and fault or diagnostic signature. Finally we will list the overall fault 
management requirements for IoT devices and services.

• Fault Detection is the process of identifying error (or potential error) of an IoT 
element typically using collected statistics. The collected data may be time- 
based (e.g., fault-related data collected from the IoT element by the fault man-
ager function every t seconds) or event-based (e.g., IoT element notifies the fault 
manager only if pre-defined fault-related conditions are met). When a fault or 
event occurs in the event-based case, an IoT element will send an alarm or noti-
fication to the fault manger (and often notify the network administrator) immedi-
ately. An alarm is a persistent indication of a fault that clears only when the 
triggering condition has been resolved.

• An example of fault-related data is the Simple Network Management Protocol 
(SNMP) Entity Sensor Management Information Base (MIB) as described by 
IETF RFC 3433. The Entity Sensor MIB provides generalized access to informa-
tion related to sensors that are often found in network equipment. The complete 
list of the MIB information is shown in Table 7.2. One of the key variables of the 
Entity Sensor MIB is “Entity Sensor Status” with three defined possible values:

 – Entity Sensor Status = 1: indicates that the sensor data value can be obtained 
(normal operation).

 – Entity Sensor Status = 2: indicates that the sensor data value is unavailable 
(operational but no data was collected).

 – Entity Sensor Status = 3: indicates that the sensor is broken and cannot collect 
the sensors data value (failure). Once the failure status is received by the net-
work administrator/operator, S/he needs to investigate the issue further to 
determine if the failure is due to disconnected wire, out-of-range, violently 
fluctuating readings, or something else.

Fig. 7.7 Main stages of fault management function
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Fault detection will be triggered if the value of “Entity Sensor Status” variable is 3.

• Fault Diagnostic and Isolation (also referred to as Fault root cause analysis) is 
the process of hierarchal filtering and correlating of fault messages, typically 
from hundreds of IoT elements or systems, to pinpoint the faulty element to a 
stage where corrective action can be taken. Such process is often based on artifi-
cial intelligence, pattern recognition combined with models of abnormal behav-
ior and/or intelligent rule-based systems.

• Pattern recognition with abnormal behavior models is frequently used in the 
industry to construct the so-called Diagnostic Signatures as a form of accumu-
lated and documented knowledge. Fault Diagnostic and Isolation will then take 
place at run-time based on matching observed information to the nearest 
Diagnostic Signature.

• Fault managers may use complex filtering systems to assign alarms to severity 
levels. Alternatively, they could use the ITU X.733 Alarm Reporting Function’s 
perceived severity field: cleared, indeterminate, critical, major, minor, or warning.

• Fault Isolation (or Fault Diagnostic) in IoT-based network is a challenging prob-
lem because of the interactions between different network entities (e.g., wireless 
sensors, gateways) and protocols.

• Fault correction is the process of fixing the error/fault problem, often remotely. 
A fault manager allows a network administrator to monitor events and perform 

Table 7.2 Overview of entity sensor MIB

MIB variable Description Examples of potential value

EntitySensorDataType Entity Sensor measurement data type 
associated with a physical sensor value

3 = Volts AC
4 = Volts DC
5 = Amperes
6 = Watts
7 = Hertz
8 = Celsius

EntitySensorDataScale A data scaling factor, represented with 
an International System of Units prefix

6 = Nano
10 = Kilo
11 = Mega
12 = Giga
13 = Tera
14 = Exa

EntitySensorPrecision Sensors Precision Range 1 = One decimal place in the 
fractional part
2 = Two decimal place in the 
fractional part

EntitySensorValue Sensor Value From −999,999,999
To +999,999,999

EntitySensorStatus Operational Status of Physical Sensor 1 = Ok
2 = Unavailable
3 = Nonoperational

TimeStamp The time the status and/or value of this 
sensor was last obtained

10:00:00 AM PST
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actions based on received information. Ideally, the fault manger system should 
be able to not only correctly identify faults but also to automatically take correc-
tive action, such as to activate the notification system to notify a pre-defined list 
of administrators (i.e., send e-mail or SMS text to a mobile phone) for interven-
tion when needed, or to launch a program or script to take corrective action.

Critical IoT systems should be designed around the concept of fault tolerance. In 
principle, they must be able to continue working at least to some acceptable level in 
the presence of faults. Network element redundancy (e.g., multiple sensors per-
forming identical tasks, dual modular sensing engines in the same sensor, fail-over 
power supply) is a very common fault tolerance example that is designed to prevent 
failures due to hardware components.

It should be noted that fault tolerance is not just a property of individual IoT ele-
ments; it may also impact IoT communication protocols as discussed in Chap. 5. 
For example, the Transmission Control Protocol (Chap. 2) was designed as a reli-
able two-way communication protocol, even in the presence of failed or overloaded 
communications links. It achieves this by requiring the endpoints of the communi-
cation to expect errors such as packet loss, packet reordering, packet duplication 
and corruption.

The element Diagnostics and Fault Management Function in IoT allows network 
engineers to troubleshoot sensors and actuators (typically over their gateways) or 
any other IoT entity remotely. Service troubleshooting (i.e., when devices are work-
ing correctly but the service-level parameters are not being meet) is also addressed 
through this function.

The Diagnostics and Fault Management function supports the following areas:

• Ability to connect and uniquely identify any device in the network including sen-
sors, actuators, gateways, etc. Sensors and actuators are often identified by their 
corresponding gateways.

• Once the connection is established, Fault Management function requires the abil-
ity to retrieve device information that identifies a device, its model and manufac-
turer. E.g., Device Universal ID, Device Product ID, Device Serial Number, SKU.

• Ability to retrieve device information for the software and firmware installed on 
the device, e.g., embedded software version.

• Ability to retrieve information related to a battery embedded within the device.
• Ability to retrieve information related to memory in use by a device.
• Ability to reconfigure/change (Write option) device specific parameters to diag-

nose or fix an identified problem.
• Ability to compare results from main system and backup system (if backup sys-

tem is deployed and operational) and provide error messages for different results.
• Ability to provide the current list of problems occurring on the network to the 

fault manager/network management systems/system administrator. Such list is 
cleared only when the triggering condition has been resolved. Or cleared by the 
network administrator.

• Ability to retrieve the event logs from any IoT device.
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• Ability to allow a system administrator to monitor events from multiple systems/
locations and perform actions.

• Ability to assign alarms to severity levels. E.g., cleared, indeterminate, critical, 
major, minor or warning.

• Ability to notify administrators of critical and/or other alarms (based on pre- 
defined rule-based list) via e-mails, text message, call to mobile phones.

• Ability to launch a program or script to take corrective action for critical and/or 
other alarm types.

• Ability to reboot diagnostic operation.
• Ability to roll-back any changes at any stage.
• Ability to rest IoT device parameters to original factory values.

7.6.3  Performance Management

The Performance Management function can be defined as a mechanism to quantity 
“how the underlying IoT infrastructure (e.g., IoT network and device layers) is 
doing?” Is the infrastructure operating under heavy load (e.g., over 90% utilization) 
and about to run out of bandwidth or is there substantial extra free capacity so a 
service provider can offer discounted services?

As was mentioned in Chap. 2, IoT is more than just devices at rest; there are also 
many mobile IoT devices that include wearables, connected vehicles, and even fly-
ing drones. A more formal definition of performance management is a set of pro-
cesses to measure and monitor the quality and grade of the services that are offered 
to customers. Quality of Service (QoS) typically refers to performance measures 
from one element (e.g., delay of one link), whereas Grades of Service (GoS) typi-
cally refers to a performance measure of the end-to-end service (e.g., delay of the 
end-to-end path that a service is taking).6

Consequently, a practical description of IoT network performance incorporates 
three main elements:

• What to measure? Determining what to measure is conceivably the most critical 
question for IoT management. Smart performance algorithms are useless unless 
required measurements that drive such algorithms can be collected. In Chap. 3 
(Things in IoT), we have identified over a dozen sensor types. Knowing that 
these sensors are performing correctly is very important. Key sensor perfor-
mance measures include: Operating range of input-to-output signals, acceptable 
noise level produced by sensors, acceptable resolution, and acceptable response 
time to instantaneous change in input signal.

• Generic measurements for all IoT devices (e.g., gateways, routers) will include 
device and transport link utilization (based on available bandwidth and capacity), 

6 Some researchers use the term QoS to refer to both QoS and GoS as defined above.

7 IoT Services Platform: Functions and Requirements



197

end-to-end delay and jitter, packet lost ratios, packet error rates, and any other 
parameters that impact services carried on the network. These will continue to be 
important for IoT-based networks.

• Where to measure? Theoretically performance should be measured through the 
network at all time. Practically, performance should be measured at least between 
the network end points where the service is delivered. E.g., sensor to gateway, 
gateway to platform and platform to application.

• How to measure the above parameters and then construct QoS and GoS measures 
to perform the actual minoring?

Similar to Fault Management, Performance Management supports the following 
areas for IoT network elements and devices:

• Ability to connect and uniquely identify any device in the network including sen-
sors, actuators, gateways, etc. Sensors and actuators are often identified by their 
corresponding gateways.

• Once the connection is established, Performance Management function needs to 
have the ability to ID the device by retrieving device information.

• Ability to retrieve device information for the software and firmware installed on 
the device, e.g., embedded software version.

• Ability to retrieve information to measure the performance of a device or a mod-
ule within the device (e.g., battery).

• Ability to measure any performance related parameter including, but not limited 
to, element utilization, delay, jitter, packet lost, packet arrives with error, amount 
of memory in use by a device.

• Ability to allow a system administrator to monitor events from multiple systems/
locations.

• Ability to notify administrators of critical and/or other performance related 
activities (based on pre-defined rule-based list) via e-mails, text message, calling 
mobile phones.

7.6.4  Important Performance Measures for IoT Devices  
(E.g., Sensors)

The following sensor (and actuators where applicable) performance requirements/
characteristics measures are considered important for IoT solutions:

• IoT Sensor’s Transfer Function should be plotted (e.g., testing the various ranges 
of inputs, vendor documentations) to ensure it meets the specific IoT solution 
requirements. The Transfer Function represents the functional relationship 
between input signal (physical signal captured by the sensor) and output signal 
(electrical signal converted by the sensor). Frequently, this relationship is repre-
sented by a graph constituting a comprehensive depiction of the sensor 
characteristics.
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• IoT Sensors’ Sensitivity should be evaluated and within the minimum acceptable 
range for the specific IoT solution (e.g., 0.1 variation in temperature sensors may 
be acceptable for smart homes but not for more critical solutions). The sensitivity 
is generally the ratio between a small change in electrical output signal to a small 
change in physical signal. It may be expressed as the derivative of the transfer 
function with respect to physical signal.

• IoT Sensor’s Dynamic Range should be established and documented. Dynamic 
range is defined as the range of input signals which may be converted to electri-
cal signals by the sensor. Outside of this range, signals cause unsatisfactory accu-
racy in output.

• IoT Sensor’s Accuracy should be established and documented. Accuracy is 
defined as the maximum expected error between measured (actual) and ideal 
output signals. Manufacturers often provide the accuracy in the datasheet, e.g., 
1% error may be acceptable for some IoT solutions.

• IoT Sensor’s Noise Level should be established and documented. As was stated 
in Chap. 3, all sensors produce some level of noise with their output signals. A 
sensor’s noise is only an issue if it impacts the performance of the IoT system. 
Smarter sensors must filter out unwanted noise and be programmed to produce 
alerts on their own when critical limits are reached. Noise is generally distributed 
across the frequency spectrum. Many common noise sources produce a white 
noise distribution, which is to say that the spectral noise density is the same at all 
frequencies.

• IoT Sensor’s Resolution should be established and documented. The resolution 
of a sensor is defined as the smallest detectable signal fluctuation. It is the small-
est change in the input that the device can detect. The definition of resolution 
must include some information about the nature of the measurement being car-
ried out.

• IoT Sensor’s Bandwidth (the frequency range) should be established and docu-
mented. Some sensors do not operate properly outside their defined band-
width range.

• IoT Sensor should produce a performance alert and notify its IoT gateway once 
service issues or interpolation is detected outside its normal operational range 
(e.g., outside the defined bandwidth, resolution).

• Finally, IoT Sensors should have some ability (depending on the sensors’ 
 sophistication level) to work with its IoT gateway to measure the Throughput 
(actual rate at which the information is transferred), Latency (the delay  
between the sender and the receiver), Jitter (variation in packet delay at the 
receiver of the information), and Error Rate (the number of corrupted bits 
expressed as a percentage or fraction of the total sent) during a specific period of 
time (e.g., 1 h).
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7.6.5  Security Management

Security management is extremely important for IoT.  Any security management 
solution must comprehensively address sensitive data handling, data administration, 
service subscriptions, data transfer (especially over the Internet), data access con-
trol, and identity protection. Given the importance of this area, we have dedicated 
an entire chapter (Chap. 8) to this critical topic. In this section we will simply list 
the high level security requirements.

IoT high level security requirements include eight main areas:

• Data Confidentiality: ensures that the exchanged messages can be understood 
only by the intended entities.

• Data Integrity: ensures that the exchanged messages were not altered/tampered 
by a third party.

• Secure Authentication: ensures that the entities involved in any operation are 
who they claim to be. A masquerade attack or an impersonation attack usually 
targets this requirement where an entity claims to be another entity.

• Availability: ensures that the service is not interrupted. Denial of Service attacks 
target this requirement as they cause service disruption.

• Secure Authorization: ensures that entities have the required control permis-
sions to perform the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement 
where an old message is replayed in order to return an entity into an old state.

• Non Repudiation: ensures that an entity cannot deny an action that it has 
performed.

• Forward and Backward Secrecy: Forward secrecy ensures that when an entity 
leaves the network, it will not understand the communications that are exchanged 
after its departure. Backward secrecy ensures that any new entity that joins the 
network will not be able to understand the communications that were exchanged 
prior to joining the network.

Detailed discussions of the above areas including existing solutions and gaps 
will be provided in Chap. 8.

7.7  Firmware Manager

In the past, Firmware Management was not even an issue as older devices rarely 
required operating system updates. In fact, Firmware is not part of the traditional 
FCAPS capabilities that we described in Sect. 7.1.

Firmware refers to the device’s operating system that controls and operates the 
device. Firmware is a program written into read-only-memory (ROM), rather than 
simply being loaded into normal device storage, where it may be easily erased in the 
event of a crash, and initially added at the time of manufacturing. It is called 
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firmware rather than software to highlight that it is very closely tied to the particular 
hardware components of a device.

Nowadays, firmware updates are provided by vendors on regular basis, often as 
a way to fix bugs or introduce new functionality (e.g., Apple’s iOS, Cisco’s IOS, 
Samsung’s Android).

Key Firmware requirements for IoT solutions include:

• Ability for IoT device to store and maintain multiple firmware images and to 
manage individual firmware images.

• Ability for IoT management solution to provide a user-friendly device Firmware 
Management site that provides lifecycle management for firmware associated 
with a device. This includes

 – Downloadable versions of latest Firmware images.
 – Step by step instructions to download/update images on various supported 

devices that guarantee full migration of existing settings and applications on 
an IoT Device.

 – Step by step instructions to remove a Firmware image and roll-back into an 
older image if needed with full device backup of existing applications and 
settings.

 – Support for downloading and updating within the same action.
 – Download, update, and removal of Firmware process should be done within a 

reasonable amount of time (typically less than 10 min) with clear progress bar 
visible to the user.

 – Q&A and troubleshooting support.

• Ability for IoT management solution to support both wire-line and mobile (the 
so-called FOTA (Firmware Over-The-Air) firmware upgrade. FTOA is a Mobile 
Software Management (MSM) technology in which the operating firmware of a 
mobile device is wirelessly upgraded and updated by its manufacturer. FOTA- 
capable devices download upgrades directly from the service provider.

7.8  Topology Manager

IoT network topology refers to the arrangement of the various elements (sensors, 
gateways, switches, links between gateways and switches, etc.). Topology may be 
physical or logical and is often presented explicitly in a structured graph. Physical 
Topology is the placement of the actual IoT elements on a graph (e.g., map) as they 
are connected with physical information (e.g., locations). Logical Topology, on the 
other hand, displays virtual information such as network virtualization data, data 
flow on the network.

Key requirements for topology management include:
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• Ability to display IoT Physical network that includes all IoT devices (e.g., sen-
sors, actuators) and IoT network elements (gateways, switches, routers). User 
should have the ability to filter which devices to display.

• Ability to display IoT Virtual network (often on top of a physical view).
• Ability to display specific Element Management parameters (e.g., utilization, 

devices at faults) based on user selection criteria.
• Ability to filter/configure the topology.
• Ability to retrieve information related to any IoT element.
• Ability to retrieve information related to an IoT protocol.

7.9  Group Manager

Unlike traditional networks, a typical IoT network often contains a large number of 
IoT devices (e.g., sensors). Hence, it is important to allow network administrators to 
group IoT elements of the same characteristics into groups instead of managing 
each element separately.

Group Management is responsible for handling group related requests. The 
request is sent to manage a group and its membership as well as for any bulk opera-
tions, including broadcasting/multicasting, that are supported by the group. Group 
management security is handled by the element management system.

When facilitating access control using a group, only members with the same 
access control policy for a resource are included in the same group. Also, only 
application entities, which have a common role with regard to access control policy, 
are included in the same group. This is used as a representation of the role when 
facilitating role based access control.

Group Management Key requirements include:

• Ability to create, retrieve, update, or delete groups. Groups are created by select-
ing IoT elements of similar characteristics. An IoT element may belong to mul-
tiple groups. New members may be added and/or deleted at any time. When new 
members are added to a group, the group manager should validate if the member 
complies with the purpose of the group. Requests to create, retrieve, update, or 
delete are assumed to be initiated by an application.

• Ability to create super group (group of a group). In this case, operations (e.g., 
Forwarding) are done recursively.

• Ability to initiate and execute a request for the entire members of a group. The 
request may be a simple notification or read operation (i.e., retrieve information 
form sensors), or write operation (changing a common parameter).

• Ability to support subscriptions to individual groups.
• Ability to notify group members when they are added to or deleted from a group, 

or when the group is updated.
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7.10  Billing and Accounting

Billing and Accounting management is used to calculate and report the charges 
based on subscription and/or usage of a service. It supports different charging mod-
els including online real-time credit control by interacting with the charging system 
in the underlying IoT network. Billing polices include the ability to trigger a charge 
based on specified events and to charge even when the billing system is offline. The 
system may record information for other purposes such as for event logging. The 
main charging models include:

• Subscription-based charging (flat rate): Typically a service layer per 
subscription.

• Event-based charging (per event or task): Charging based on service layer 
chargeable events. For example, an operation on data (Create, Update, and 
Retrieve) can be an event.

• Time-based charging: Chargeable events are configurable to initiate information 
recording. More than one chargeable event can be simultaneously configured and 
triggered for information recording.

• Usage-based charging: Charge based on bandwidth (or other parameters) con-
sumptions. Users are allowed to change usage level within a task (e.g., high 
bandwidth for first hour and then switch to lower bandwidth).

Key Billing and Accounting requirements include:

• Ability to bill based on subscription (flat rate), event (per event), time (charge per 
hour), or usage.

• Ability to allow an application (or network administrator) to develop billing 
related policies. Further, the Billing and Accounting Module has the ability to 
start and end the actual billing by applying charging related policies, configura-
tions, and communicating with the charging system in the underlying network.

• Ability to start and end charges based on the defined charges policies. Such 
charges must be recorded in a billing system/DB.

• Ability to handle offline billing related operations. The offline billing function 
generates service charging records based on billing polices and recorded infor-
mation. A service charging record is a formatted collection of information about 
a chargeable event (e.g., amount of data transferred) for use in billing and 
accounting.

7.11  Subscription and Notification Manager

Subscription and Notification service provides notifications concerning subscrip-
tion events. It allows authorized devices and applications to subscribe to a set of 
notification services, typically from a predetermined list. A notification event may 
be generic (e.g., a recent security alert) or subscriber-specific (e.g., security alert 
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related to an IoT service and/or device such as end of life date). Subscription and 
Notification service also provides notifications concerning subscriptions that track 
event changes on a resource (e.g., deletion of a resource, important change in the 
resource’s events such as a major increase in the temperature reading). The sub-
scription may be provided by the platform itself or by a northbound application 
communicating with the platform via the API Manager, as shown in Fig. 7.4.

Key requirements for the Subscriptions and Notification Modules include:

• Ability to allow devices and/or applications to subscribe to specific set of ser-
vices based on right level of authorization. Hence, authorization information 
may be obtained from the authorization service as we mentioned in Sect. 7.6.5 
under Element Management system.7

• Ability to allow authorized devices and/or applications to subscribe to a set of 
notification services from a drop down list.

• Ability to support generic notifications as well as subscriber-specific notifica-
tions where notifications are correlated with the subscriber’s IoT device or ser-
vice as mentioned above.

• Ability to support subscription and notification services related to event changes 
on a resource as mentioned above.

• Ability to provide subscription and notification service in the platform itself and/
or in a northbound application. In the latter case, subscription selection is made 
in an application that communicates with the platform via the API Manager. 
Notification may also be sent to such application (if so is selected) via the API 
Manager.

• Ability to notify devices and/or applications based on subscription and authori-
zation level (e.g., subscribe and notify only for security-related alerts).

• Ability to create and store subscription profile information including device ID, 
notification address, notification type, notification policies (e.g., notify any time 
for priority 1 issues, notify from 8 AM to 5 PM for priority 2, etc.).

• Ability to subscribe to a single or multiple resources.
• Ability to store subscription profiles as well as directed notifications along with 

date, time, and delivery mechanism.

7.12  API Manager

The main function of the API Manager is to manage communication with IoT net-
work and devices, for obtaining network service functions in a common way. It is 
intended to shield other platform modules from developing their own technology 
and mechanisms supported by the Underlying Networks.

Key functions of the API Manager include:

7 Alternatively, an Authorization, Authentication and Accounting (AAA) server may be used for 
device authorization.
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• Ability to provide adaptation for different sets of network service functions sup-
ported by various Underlying Networks.

• Ability to maintain the necessary connections between the platform entities and 
the Underlying Network.

• Ability for the API Manager to provide information to the Communication 
Manager related to the IoT Network so the Communication Manager can include 
that information determine proper communication handling.

7.13  Commercially Available IoT Platforms

Tens of IoT Platforms exist in the marketplace today. Examples include AWS IoT 
Platform, Google Cloud IoT Platform, Microsoft Azure IoT Suite Platform, IBM 
Watson IoT Platform, Salesforce IoT Cloud Platform, Cisco IoT Cloud Connect 
Platform, Oracle IoT Intelligent Applications Platform, PTC ThingWorx IoT 
Platform, OpenRemote IoT Platform (open-source focusing on helping engineers 
creating a range of IoT applications), IRI IoT Voracity Platform (focusing on data 
discovery, integration, migration, governance, and analytics), Particle Platform, and 
Altair IoT SmartWorks Platform.

As we mentioned earlier in this chapter, IoT platforms are used to address one or 
more of the following functions.

 1. Rapid and consistent development and deployment of IoT devices and services.
 2. Middleware connecting IoT devices and applications to other devices and 

applications.
 3. Streaming data from IoT devices.
 4. Profiling customer context data.
 5. Device management addressing the FCAPS (Fault, configuration, Accounting, 

Performance, and Security) functions. See Sect. 7.6 for additional information.
 6. Real-time reporting and advanced analytics, e.g., using artificial intelligence 

algorithms for advanced prediction, service optimization, diagnostics, and trend-
ing analysis.

 7. Sandbox allowing subject matter experts to test business or technical ideas with-
out (or with limited) programming.

 8. Provide API library allowing engineers to import data from other sources (e.g., 
gateways, Websites, controllers, end application service) and platforms (e.g., 
using RESTful API).

 9. Handle huge data volume from devices, users, applications, websites, and sen-
sors and take actions to give a real-time response.

Selecting the right IoT Platform is challenging and depends greatly on the 
requirements of the specific solution for hardware, real-time access, custom reports, 
budget, development skills, and business model.

The purpose of this section is to introduce students and engineers into examples 
of known IoT platforms and related functionalities. It is not intended to provide 
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recommendations, nor provide feature by feature comparisons. The selected plat-
forms, as shown in Table  7.3, include AWS IoT Platform, Google Cloud IoT 
Platform, Microsoft Azure IoT Platform, and PTC ThingWorx IoT Platform. The 
first three are typically considered general-purpose platforms addressing various 
IoT applications while the last platform (i.e., PTC ThingWorx) is more focused on 
addressing industrial IoT requirements.

Again, it is important to note that the feature description (Table 7.3) is snapshots 
at the time of the writing. Such features and capabilities are expected to change over 
time. Students/engineers are encouraged to log into each platform to understand the 
latest capabilities.

7.14  Putting All Together

As we mentioned in pervious section, IoT platforms can be divided into two catego-
ries: product-centered with a stronger focus on specific products for industrial com-
panies, and general-purpose platform for developers. In many cases, general-purpose 
platforms are complemented by an accompanying marketplace.

Marketplace is an e-commerce platform owned and operated by a specific ven-
dor (e.g., Amazon). It enables third-party sellers to offer products and/or services 
online alongside the vendor’s regular offerings. This allows the vendor (platform 
owner) to earn commissions and to create more comprehensive solutions.

Marketplaces have several advantages. First, they bring together offers from 
multiple suppliers or service providers with minimum investments. Second, they 
relieve marketplace owners from owning the inventory that their platform sells. 
Third, they allow platform owners to choose a revenue stream that best fits their 
market position and business goals. Finally, marketplace owner leaves the more 
operational side of the business to vendors while focusing on promoting their mar-
ketplace brand. Marketplace owners can create a rating and review systems allow-
ing their customers to make informed purchase decisions.

Let us imagine that you are developing an IoT security solution for your own 
home. In this case, you will need to install and connect your home cameras and sen-
sors to the Internet, select data sources and protocols, and then develop an applica-
tion for data visualization. You also need to make sure that your data is secure at all 
time (e.g., data is not altered by third party, your devices are never hacked, and your 
credentials are always secure) and that your network is reliable and available. You 
may also chose to combine your data with additional available information (e.g., 
Weather conditions, Fire and Crime alerts along with Locations) for advanced mon-
itoring especially when you are traveling.

In this case, you will need to subscribe to a platform allowing you to connect 
your devices, collect data in real-time, and then build (or utilize and existing) inter-
active dashboards to visualize and track your home data. Such capabilities may be 
offered by the platform or the associated marketplaces.
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Table 7.3 Examples and glimpses of commercially available platforms

AWS IoT 
Platform

Google Cloud IoT 
Platform

Microsoft Azure 
IoT Platform

PTC ThingWorx 
IoT Platform

Overview Almost all IoT platforms allow users to connect their IoT devices and data 
sources, select supported protocols, build applications, enable security, and 
define the communication between devices and the Internet.

Protocols 
Snapshot

Supports wide 
variety of 
communication 
protocols 
including custom 
ones which enable 
communication 
b/w devices from 
different 
manufacturers, 
e.g., 
MQTT. HTTP 
and WebSockets 
for asynchronous 
communication.

Supports wide 
variety of 
communication 
protocols to enable 
communication 
between devices 
from different 
manufacturers 
including, e.g., 
MQTT, HTTP.

Supports wide 
variety of 
communication 
protocols to enable 
communication 
between devices 
from different 
manufacturers, 
e.g., AMQP, 
HTTPS and 
AMQP. IoT hub 
Supports SASL 
and AMQP claim 
based security in 
conjunction with 
AMQP protocol.

Supports wide 
variety of 
communication 
protocols to 
enable 
communication 
between devices 
from different 
manufacturers, 
e.g., MQTT, 
HTTP, OAuth2, 
and WebSockets.

Element 
Management: 
Fault 
Management 
Snapshot

AWS IoT Device 
Manager allows 
users to 
troubleshoot 
device 
functionality and 
query the state of 
IoT devices.

Google Cloud IoT 
Core supports 
trouble 
management, e.g., 
predicting when 
equipment needs 
maintenance.

Microsoft Azure 
IoT Monitor 
provides guidance 
to reduce the time 
in diagnosing and 
troubleshooting.

Supports various 
functions for 
troubleshooting 
including 
connections to 
the platform.

Element 
Management: 
Configuration 
Management 
Snapshot

Users can query 
the state of 
device(s) on 
demand and 
provide the 
functionality to 
apply firmware 
updated 
over-the-air.

The device manager 
allows devices to be 
configured (in 
group) through a 
console or 
programmatically.

Azure IoT Hub 
Device 
Provisioning 
Service enables 
zero-touch 
provisioning to the 
right IoT Hub.

Includes utilities 
to provision 
devices. Allows 
users to create 
rule-based 
Workflows to 
execute across 
multiple devices.

Element 
Management: 
Accounting 
and Billing 
Snapshot

Basic connectivity 
fee (for platform 
access) and then 
usage-based 
billing (bay for 
what you use).

Usage-based: Cloud 
IoT Core is priced 
according to the 
data volume.

Basic and standard 
tier-based billing 
model. e.g., 
$0.123 per 1000 
operation for 
device 
provisioning.

Subscription 
based with a 
pay-as-you-go 
model is 
supported.

(continued)
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In general, the following steps are followed:

 1. Install your devices.
 2. Connect devices to the platform.
 3. Select data sources and formats.
 4. Add a custom data source via Developer Console (if applicable).

Table 7.3 (continued)

AWS IoT 
Platform

Google Cloud IoT 
Platform

Microsoft Azure 
IoT Platform

PTC ThingWorx 
IoT Platform

Element 
Management: 
Performance 
Management 
Snapshot

AWS IoT Device 
Manager 
monitors, 
organizes, and 
provides an 
interface to 
manage IoT 
devices. It 
provides 
functionality to 
register an 
individual device 
or in bulk and 
manage security 
permissions/
policies.

Google Cloud IoT 
Core provides a 
solution for 
collecting, 
processing, 
analyzing, and 
visualizing IoT data 
in real time. E.g., 
automatically 
optimize device 
performance in real 
time while 
predicting 
downtime.

Azure Monitor 
and Resource 
Health provides 
monitoring 
capabilities with 
data about the 
operations of 
Azure IoT Hub, 
for instance. 
Advanced 
analytics features 
that can turn 
connectivity and 
workflow data into 
actionable 
insights.

ThingWorx 
Platform allows 
user to select 
data and use it to 
create specific 
charts and 
workflow alerts.
Advanced 
analytics features 
that can turn 
connectivity and 
workflow data 
into actionable 
insights.

Element 
Management: 
Security 
Management 
Snapshot

Data to and from 
AWS IoT is sent 
securely over 
Transport Layer 
Security (TLS). 
AWS cloud 
security 
mechanisms 
protect data as it 
moves between 
AWS IoT and 
other AWS 
services.

Allows users to 
securely connect, 
manage, and ingest 
data using TLS.

Uses TLS based 
handshake and 
encryption. 
Support various 
security functions 
including security 
information and 
event 
management, 
security 
orchestration, and 
automation.

Provides 
transport 
security, identity 
management 
(device and 
platform), and 
content & asset 
management.

Supports device 
authentication and 
authorization (via 
custom schemes).

Supports device 
authentication and 
authorization (via 
keys and JSON web 
tokens).

Supports device 
authentication and 
authorization (via 
certificates and 
keys).

Supports device 
authentication 
and 
authorization.

Supports various 
compliance 
management for 
security audits.

Supports various 
compliance 
management for 
security audits.

Supports various 
compliance 
management for 
security audits.

Supports various 
compliance 
management for 
security audits.
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 5. Use standard dashboard capabilities (or add a custom dashboard via a developer 
console) to create your view. Connect dashboard to data source using an offer 
interface.

 6. Continue adding your devices and data sources to enable complete 
visualization.

 7. Customize your dashboard if needed (e.g., Drag and drop widgets into the 
desired dashboard location, add custom colors).

 8. Share dashboard with family members, e.g., adding users with read-only or 
edit access.

 9. Add additional advanced capabilities (if needed).

7.15  Summary

Without a doubt, the IoT Services Platform creates the cornerstone of successful 
IoT solutions. It is responsible for many of the most challenging and complex tasks 
of the solution. The Services Platform automates the ability to deploy, configure, 
troubleshoot, secure, manage, and monitor IoT entities ranging from sensors to 
applications in terms of firmware installation, patching, debugging, and monitoring 
just to name a few. The Service Platform also provides the ability for data manage-
ment and analytics, temporary caching, permanent storage, data normalization, 
policy-based access control and exposure.

Given the complexity of the services platform in IoT, this chapter grouped the 
core capabilities into 11 main areas: Platform Manager, Discovery and Registration 
Manager, Communication (Delivery Handling) Manager, Data Management and 
Repository, Firmware Manager, Topology Management, Group Management, 
Billing and Accounting Manager, Cloud Service Integration Function/Manager, 
API Manager, and Element Manager addressing Configuration Management, Fault 
Management, Performance Management and Security Management across all IoT 
entities.

Problems and Exercises

 1. This chapter categorized the IoT Services Platform into 11 functions. (a) Name 
and define each of the 11 functions. (b) List and define the Element Manager 
functions.

 2. What are the traditional FCAPS management functions? Do they also apply to 
IoT? If so, Are they sufficient?

 3. List six reasons why the overall management functions of IoT solutions are 
more multifaceted than traditional networks.

 4. IoT solutions are considered much more complex to manage than traditional 
networks?

 (a) Why?—List top five factors.
 (b) Why does the Fog Layer introduce new changes for IoT?

7 IoT Services Platform: Functions and Requirements
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 5. This chapter mentioned that not all IoT entities will be IP address enabled.

 (a) Why is that? Provide an example of IoT devices that are not IP addresses 
enabled.

 (b) How do management system track such devices?

 6. What is device registration on IoT? Why is it needed?
 7. List the key responsibilities of the Discovery Function.
 8. It was mentioned in Sect. 5.1 that for non-IP addressed enabled sensors, IoT 

sensors may be tracked by the combined (a) IP Address of the Gateway and (b) 
Sensor address. Why both addresses do are needed?

 9. Why IoT device self-registration is preferred over the method where a new IoT 
device have the capability to be identified during the discovery process?

 10. The IETF has released NETCONF and YANG which are standards focusing on 
Configuration management. Name two other older methods that can be used for 
configuration management? What are their shortcomings?

 11. Section 7.7 indicated that Accurate discovery is essential for many management 
tasks including asset management, network monitoring, network diagnosis and 
fault analysis, network planning, high availability, and others.

 (a) Provide short definitions of asset management, network monitoring, net-
work diagnosis and fault analysis, network planning and high availability.

 (b) Why is accurate discovery essential for each of the above functions?

 12. What are the key differences between Provisioning and Configuration func-
tions? Which one is done first?

 13. What are key differences between deployment, Provisioning, and Orchestration?
 14. What are the most basic two management functions to provide a new services?
 15. Provide an example of Service-Level Diagnostics and Fault Management 

Function in IoT where all devices are working correctly but the service-level 
parameters are not being met.

 16. Why Fault management is considered by many experts to be most challenging 
and important management function of IoT-based networks?

 17. What are the three main functions of Fault Management? Provide detailed 
description of each term.

 18. What are the concepts of fault tolerance in IoT networks? Give three examples 
of failures that should be handled by fault tolerance function in IoT-based 
networks.

 19. Fault tolerance is not just a property of individual IoT element; it may also 
impact the IoT communication protocol. For example, the Transmission Control 
Protocol (TCP) was design as reliable two-way communication protocol, even 
in the presence of failed or overloaded communications links. How is this 
achieved in TCP?

 20. There are special software and instrumentation packages designed to detect 
failures. A good example is a fault masking system. How does Fault Masking 
system detect failure?

 21. What is Diagnostic Signature? Where it used?

7.15 Summary
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 22. In priority order, what are the top three IoT management functions that a ser-
vice provider needs to provide very basic services? Justify your answer.

 23. Why Fault management is considered to be very challenging in IoT network? 
i.e., What are the main differences between managing IoT network and a tradi-
tional network?

 24. Why IoT management is considered to be most challenging and complex task 
of the solution?

 25. Section 7.1 indicated the need for a complete configuration backups with roll- 
back capabilities as a key requirement for the IoT Platform Manager. What is 
configuration roll-back? Why is it needed? Provide an example?

 26. What are the definitions of Sensitivity and Dynamic Range? What are the typi-
cal units of Sensitivity and Dynamic Range?

 27. What is Hysteresis? What is a typical unit of Hysteresis?
 28. What is a Firmware? What does it do? Why is it called so?
 29. Why Firmware Images are loaded into ROM and not the device storage?
 30. How come Firmware Management was not part of the tradition FCAPS?
 31. Data may be retrieved from various IoT sources including IoT devices and net-

work elements (e.g., sensors, gateways, switches), IoT subscribers, and IoT 
applications. IoT device and network element data is assumed to be collected 
by collection systems or by collection agents.

 (a) What are the key differences between a collection system and a collec-
tion agent?

 (b) What is IoT subscriber data? How is the data collected?
 (c) What is an IoT application data? How is the application data collected?

 32. In a table list three Subscription and Notification requirements along with 
examples of a subscriber and notification message.
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Chapter 8
Internet of Things Security and Privacy

8.1  Introduction

The Internet of Things (IoT) promises to make our lives more convenient by turning 
each physical object in our surrounding environment into a smart object that can 
sense the environment, communicate with the remaining smart objects, perform 
reasoning, and respond properly to changes in the surrounding environment. 
However, the conveniences that the IoT brings are also associated with new security 
risks and privacy issues that must be addressed properly. Ignoring these security and 
privacy issues will have serious effects on the different aspects of our lives including 
the homes we live in, the cars we ride to work, and even the effects that will reach 
our own bodies.

If your home does not already have a smart meter, it will soon have multiple of 
those meters that are dedicated to monitor and control the power consumption, the 
heating, and the lighting of your house. This is not to mention the smart gadgets that 
will be found all over your house such as the smart camera that notifies your smart- 
phone during business hours when movement is detected, the smart door that opens 
remotely, and the smart fridge that notifies you when you are short of milk. Imagine 
now the level of control that an attacker can gain by hacking those smart meters and 
gadgets if the security of those devices was overlooked. In fact, the damage caused 
by cyberattacks in the IoT era will have a direct impact on all the physical objects 
that you use in your daily life. The same applies to your smart car as the number of 
integrated sensors continues to grow rapidly and as the wireless control capabilities 
increase significantly over time, giving an attacker who hacks the car the ability to 
control the windshield wipers, the radio, the door lock, and even the brakes and the 
steering wheel of your car. Our bodies will not also be safe from cyberattacks. In 
fact, researchers have shown that an attacker can control remotely the implantable 
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and wearable health devices (e.g., insulin pumps and heart pacemakers) by hacking 
the communication link that connects them to the control and monitoring system. 
This gives the attacker, for example, the ability to tune the injected insulin dose 
causing serious health problems that may even cause death to patients wearing those 
smart health devices. In fact, such concerns have made doctors disable the wireless 
capability of the heart pacemaker of Dick Cheney, the former US vice president, in 
order to protect him from such malicious attacks.

The security risks are also extremely serious when IoT devices are used in busi-
ness enterprises. If an attacker hacks any of those smart objects that are used in a big 
enterprise, then the sensing capabilities that those smart objects have can be used by 
the attacker to spy on the enterprise. Such cyberattacks can also be used to steal 
sensitive information such as the company earnings report and credit card informa-
tion. In fact, these stealing attacks are common in big enterprises such as the largest 
financial hacking case in the US history, which took place in 2013, where a group 
of five hackers stole $160 million from credit cards and over hundreds of millions 
in criminal loot.

Maintaining users’ privacy in IoT is also crucial as there is an enormous amount 
of information that an outsider can learn about people’s life by eavesdropping on the 
sensed data that their smart house appliances and wearable devices report. In fact, 
people will be living in a “Big Brother” world where smart things record our daily 
activities anytime and everywhere. The advances in the fields of facial, speech, and 
human activity recognition amplify the amount of information that the sensed data 
can reveal if it falls in the wrong hands. Even if your IoT objects are merely report-
ing metadata, you would be surprised by the amount of information that an outsider 
can learn about your personal life when aggregating the metadata collected from 
multiple hacked objects that surround you over time. It is thus essential to find solu-
tions to preserve people’s privacy in the IoT era.

The objective of this chapter is to shed the light on some of the security and pri-
vacy issues that the IoT paradigm is exposed to. We also survey the techniques that 
were proposed to address these issues. Some of the discussed techniques prevent 
security breaches from taking place, while others try to detect malicious behavior 
and trigger an appropriate mitigating countermeasure. The rest of the chapter is 
organized as follows. Section 8.2 identifies the new security challenges that are 
encountered in the IoT paradigm. Section 8.3 identifies the IoT security require-
ments. Section 8.4 briefly describes the three domains in the IoT architecture. 
Sections 8.5–8.7 survey the security attacks and countermeasures at the cloud 
domain, the fog domain, and the sensing domain, respectively. Section 8.8 discusses 
approaches for securing IoT Devices. The section starts by providing several exam-
ples of IoT devices used in security attacks, and then discusses solutions including 
MUD and DICE. Finally, Sect. 8.9 summarizes the chapter and provides directions 
for future work related to the area of IoT security.

8 Internet of Things Security and Privacy
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8.2  IoT Security Challenges

IoT has unique characteristics and constraints when it comes to designing efficient 
defensive mechanisms against cybersecurity threats that can be summarized by:

 1. Multiple Technologies: IoT combines multiple technologies such as radio- 
frequency identification (RFID), wireless sensor networks, cloud computing, 
virtualization, etc. Each of these technologies has its own vulnerabilities. The 
problem with the IoT paradigm is that one must secure the chain of all of those 
technologies as the security resistance of an IoT application will be judged based 
on its weakest point which is usually referred to by Achilles’ heel.

 2. Multiple Verticals: The IoT paradigm will have numerous applications (also 
called verticals) that span eHealth, industrial, smart home gadgets, smart cities, 
etc. The security requirements of each vertical are quite different from the 
remaining verticals.

 3. Scalability: According to Cisco, 26.3 billion smart devices will be connected to 
the Internet by 2020. This huge number makes scalability an important issue 
when it comes to developing efficient defensive mechanisms. None of the previ-
ously proposed centralized defensive frameworks can work anymore with the 
IoT paradigm, where the focus must be switched to finding practical decentral-
ized defensive security mechanisms. An IoT solution needs to scale cost- 
effectively, potentially to hundreds of thousands or even millions of endpoints.

 4. Availability: Availability refers to characteristic of a system or subsystem that is 
continuously operational for a desirably long period of time. It is typically mea-
sured relative to “100% operational” or “never failing.” A widely held but 
difficult- to-achieve standard of availability for a system or product is known as 
“five 9 s” (available 99.999% of the time in a given year) availability. Security 
plays a major rule in high availability as network administrators often hesitate to 
use needed threat-response technology functions (e.g., network discovery as 
illustrated in Chap. 7) for fear that such functions will take down critical sys-
tems. Even a simple port scan causes some IoT devices to stop working, and the 
cost of downtime can far exceed the cost of remediating all but the most severe 
incidents. In some instances, network administrators would rather have no 
cybersecurity protection rather than risk an outage due to a false positive. This 
leaves them blind to threats within their control networks. Companies often add 
redundancy to their systems so that failure of a component does not impact the 
entire system.

 5. Big Data: Not only the number of smart objects will be huge, but also the data 
generated by each object will be enormous as each smart object is expected to be 
supplied by numerous sensors, where each sensor generates huge streams of data 
over time. This makes it essential to come up with efficient defensive mecha-
nisms that can secure these large streams of data.

 6. Resource Limitations: The majority of IoT end devices have limited resource 
capabilities such as CPU, memory, storage, battery, and transmission range. This 
makes those devices a low-hanging-fruit for denial of service (DoS) attacks 
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where the attacker can easily overwhelm the limited resource capabilities of 
those devices causing a service disruption. In addition to that, the resource limi-
tations of those devices raise new challenges when it comes to developing secu-
rity protocols especially with the fact that the traditional and mature cryptography 
techniques are known to be computationally expensive.

 7. Remote Locations: In many IoT verticals (e.g., smart grid, railways, roadsides), 
IoT devices, epically sensors, will be installed in unmanned locations that are 
difficult to reach. Attackers can interfere with these devices without being seen. 
Cyber and physical security monitoring systems must be installed in safe- 
guarded location, operate in extreme environmental conditions, fit in small 
spaces, and operate remotely for routine updates and maintenance avoiding 
delayed and expensive visits by network technicians.

 8. Mobility: Smart objects are expected to change their location often in the IoT 
paradigm. This adds extra difficulties when developing efficient defensive mech-
anisms in such dynamic environments.

 9. Delay-Sensitive Service: The majority of IoT applications are expected to be 
delay-sensitive, and thus one should protect the different IoT components from 
any attack that may degrade their service time or may cause a service disruption.

8.3  IoT Security Requirements

We summarize in this section the security requirements for IoT. These requirements 
include:

• Confidentiality: ensures that the exchanged messages can be understood only by 
the intended entities.

• Integrity: ensures that the exchanged messages were not altered/tampered by a 
third party.

• Authentication: ensures that the entities involved in any operation are who they 
claim to be. A masquerade attack or an impersonation attack usually targets this 
requirement where an entity claims to be another identity.

• Availability: ensures that the service is not interrupted. Denial of service attacks 
target this requirement as they cause service disruption.

• Authorization: ensures that entities have the required control permissions to per-
form the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement 
where an old message is replayed in order to return an entity into an old state.

• Non-repudiation: ensures that an entity cannot deny an action that it has 
performed.

• Forward Secrecy: ensures that when an object leaves the network, it will not 
understand the communications that are exchanged after its departure.

• Backward Secrecy: ensures that any new object that joins the network will not be 
able to understand the communications that were exchanged prior to joining the 
network.

8 Internet of Things Security and Privacy
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8.4  IoT Three-Domain Architecture

Before introducing IoT security issues, we briefly describe in this section the three- 
domain architecture that we consider in our security analysis.

As illustrated in Figs. 8.1 and 8.2, the architecture is made up of the following 
three domains:

 1. IoT Sensing Domain: This domain is made up of all the smart objects that have 
the capability to sense the surrounding environment and report the sensed data to 
one of the devices in the fog domain. The smart objects in the sensing domain 
are expected to change their location over time.

IoT Applications
IoT Cloud Domain

IoT Services Platform

IoT Network
IoT Fog Domain

IoT Devices
IoT Sensing Domain

Fig. 8.1 Mapping of IoT 
domains

Fig. 8.2 The IoT domains

8.4 IoT Three-Domain Architecture
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 2. Fog Domain: This domain consists of a set of fog devices that are located in 
areas that are highly populated by many smart objects. Each fog device is allo-
cated a set of smart objects where the allocated objects report their sensed data 
to the fog device. The fog device performs operations on the collected data 
including aggregation, preprocessing, and storage. Fog devices are also con-
nected with each other in order to manage the communication among the smart 
objects and in order to coordinate which fog device will be responsible for han-
dling which object as objects change their location over time. Each fog device is 
also connected to one or multiple servers in the cloud domain.

 3. Cloud Domain: This domain is composed of a large number of servers that host 
the applications that are responsible for performing the heavy-computational 
processing operations on the data reported from the fog devices.

We analyze in the following sections the security attacks and countermeasures at 
each one of those three domains. We follow a top-down order where we describe the 
attacks and countermeasures that are encountered at the cloud domain, the fog 
domain, and the sensing domain. For each one of those domains, we identify the 
most popular security attacks and then describe how these attacks are launched, 
what vulnerabilities they exploit, and what countermeasure techniques can be used 
to prevent, detect, or mitigate those attacks.

8.5  Cloud Domain Attacks and Countermeasures

As mentioned earlier, the cloud domain holds the IoT applications that are perform-
ing different operations on the data collected by the IoT objects. Each IoT applica-
tion is dedicated one or multiple virtual machines (VMs) where each VM is assigned 
to one of the servers in the cloud data center and gets allocated certain amount of 
CPU and memory resources in order to perform certain computing tasks. The cloud 
data center is made up of thousands of servers where each server has certain CPU, 
memory, and storage capacities, and thus each server has a limit on the number of 
VMs that it can accommodate. The servers in the cloud data center are virtualized 
which allows multiple VMs to be assigned to the same server as long as the server 
has enough resource capacity to support the resource requirements of each hosted 
VM. Figure 8.3 shows an illustration of how multiple VMs can be assigned to the 
same server, thanks to virtualization (more details on virtualization were discussed 
in Chap. 6). Each IoT application is hosted on a VM that has its own operating sys-
tem (OS). The hypervisor (sometimes also called the virtual machine manager) 
monitors those running VMs and manages how these VMs share the server’s hard-
ware. The hypervisor also provides the logical separation among the VMs and also 
separates each VM from the underlying hardware. The hypervisor has also a migra-
tion module that manages how to move a VM that is currently hosted on the server 
to another server. The migration module also manages the reception of a VM that is 
moved from other servers.
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Cloud computing is considered a high-risk environment for many businesses and 
consumers as they feel its perimeter cannot be defined nor controlled. In addition, 
many government agencies must comply with regulatory statutes, such as the Health 
Insurance Portability and Accountability Act (HIPAA), the Sarbanes-Oxley Act of 
2002 (SOX), and the Federal Information Security Management Act (FISMA). The 
IoT applications running in the cloud domain are susceptible to numerous security 
attacks. We summarize next the most popular ones:

 1. Hidden-Channel Attacks: Although there is a logical separation among the VMs 
running on the same server, there are still some hardware components that are 
shared among those VMs such as the cache. This opens opportunities for data 
leakage across the VMs that reside on the same server. Three steps are followed 
by the attacker in order to leak information from a target VM. These three steps 
are explained next:

 (a) Step1: Mapping Target VM: The first step toward launching an attack 
against a VM in a cloud data center is to locate where the target VM resides. 
A cloud data center is typically divided into multiple management units 
called clusters, where each cluster is located in a certain geographical loca-
tion and is made up of thousands of servers. Each cluster is divided into 
multiple zones (sometimes called “pods”) where each zone consists of a 
large number of servers. Although clients have the choice to specify in 
which cluster their VM resides, they do not have control on selecting the 
zone or the server within the zone where their VM will reside as this deci-
sion is made based on the cloud provider’s scheduling algorithm which is 
not released publicly. In order to know where a target VM resides, the 
attacker needs only to know the external IP address of that VM where each 
VM hosted on the cloud has usually two IP addresses: an external address 
used to communicate with any entity that is located outside the cloud cluster 
and an internal address used only within the cloud cluster and is only visible 
within the cloud cluster. The attacker can infer based on the VM’s external 

Fig. 8.3 Illustration of 
how multiple IoT 
applications can be hosted 
on the same server, thanks 
to virtualization

8.5 Cloud Domain Attacks and Countermeasures



220

IP address on what cluster the VM resides, as cloud clusters are usually 
placed in different geographical locations and have different IP addresses. 
Now in order to identify in what zone within the cluster the target VM 
resides, the attacker needs to know the target VM’s internal IP address as the 
internal IP addresses for all VMs within the same zone have the same net-
work prefix. In order to identify the VM’s internal IP address, the attacker 
rents a VM in the same cluster as the one where the VM resides. The rented 
VM is then used to query the DNS server of the cloud cluster where the 
internal IP address of the target VM can be fetched. By observing the  internal 
IP address of the target VM in the DNS query, the attacker can tell what zone 
within the cloud cluster the VM is hosted in.

 (b) Step2: Malicious VM Placement: having identified on what cluster and on 
what zone the target VM resides, the next step toward launching an attack 
against the target VM is to place a malicious VM on the same server where 
the target VM resides. In order to do that, the attacker rents a VM in the same 
cluster as the target VM. The cloud provider’s scheduling algorithm places 
the rented VM on one of the servers within one of the cluster’s zones. The 
attacker performs a traceroute from the rented VM to the target VM where 
the routing path that separates the rented VM and the target VM is identified. 
If the identified routing path shows multiple hops that separate the target 
VM and the rented VM, then the attacker knows that the rented VM was not 
placed on the same server as the target VM. The attacker then releases the 
rented VM and requests a new one. The cloud provider’s scheduling algo-
rithm selects a server to host the requested VM. The attacker performs a 
traceroute from the new rented VM to the target VM in order to know 
whether or not the target VM and the new rented VM reside on the same 
server. The attacker continues releasing then renting new VMs and perform-
ing a traceroute until he/she identifies that the cloud provider’s scheduling 
algorithm has placed the rented VM on the same server as the target VM.

 (c) Step3: Cross-VM Data Leakage: Having placed a malicious VM on the 
same server as the target VM, the attacker now tries to learn some informa-
tion about the target VM by exploiting the fact that although VMs are sepa-
rated logically, thanks to virtualization, they still share certain parts of the 
server’s hardware such as the instruction cache and the data cache. The 
attacker can now, for example, learn what lines of cache (data or instruction) 
the target VM has accessed recently. This can be done as follows. When the 
shared cache is assigned to the malicious VM that is under the control of the 
attacker, the attacker fills the whole shared cache by dummy data. The mali-
cious VM then yields the shared cache to the target VM which performs 
some data access operations. The malicious VM sends an interrupt after a 
short time from yielding the cache to the target VM asking to assess the 
cache so that the target VM yields the cache for the malicious VM. Now the 
malicious VM probes the different lines of the cache asking to fetch the 
dummy data that were previously filled in the cache. By observing the time 
it takes to access each chunk of the dummy data, the malicious VM can tell 

8 Internet of Things Security and Privacy



221

which chunks of the dummy data were fetched from the cache and which 
chunks were fetched from memory as they were replaced by data that was 
accessed by the target VM.  This gives information to the malicious VM 
about what addresses the target VM has accessed recently. Knowing what 
addresses the target VM accesses over time can help the malicious VM 
recover parts of the security keys that the target VM is using.

 (d) Different countermeasures can be taken to prevent hidden-channel attacks 
from taking place. The first twos steps needed to launch this attack (mapping 
the target VM and placing a malicious VM on the same server as the target 
VM) can be prevented by not allowing the VMs hosted in the cloud data 
center to send probing packets such as traceroute packets. Preventing data 
from being leaked across VMs that are hosted on the same server can be 
achieved by one of the following techniques:

• Hard Isolation: The basic idea behind this preventive technique is to 
maintain high levels of isolation among the VMs. One way to do this is 
to separate the cache dedicated for each VM through hardware or soft-
ware. Another way to achieve hard isolation is by assigning only one VM 
to each server. Although this completely prevents data leakages across 
VMs, it is not a practical solution as it leaves the servers within the cloud 
data center underutilized. A better way to achieve hard isolation is by let-
ting each cloud client specify a list of trusted cloud users called the white 
list. The cloud client is fine with sharing the server with only the VMs 
belonging to the white list users. New scheduling algorithms are needed 
in that case in order to decide on what server each VM should be placed 
such that the security constraints of each VM that are specified by the 
white and black lists are met. A key limitation of this technique is that 
each VM must have a list of identified untrusted VMs.

• Cache Flushing: This technique flushes the shared cache every time the 
allocation of the cache is switched from a VM to another. The downside 
of this countermeasure is that the VMs running on the server will experi-
ence frequent performance degradation as the shared cache will be emp-
tied every time a switch from a VM to another occurs, which increases 
the time needed to access and fetch data.

• Noisy Data Access Time: This technique adds random noise to the amount 
of time needed to fetch data, which makes it hard to tell whether or not 
the data was fetched from the cache or from the memory. By doing this, 
it becomes harder for a malicious VM to identify what segments of the 
cache were populated by another VM that shares the same server. Of 
course this has a price as the fetched data gets delayed a little bit due to 
the noise (variable time delay) that is added to the time needed to fetch 
the data.

• Limiting Cache Switching Rate: A mitigation technique to limit the 
amount of data that can be leaked across VMs can be achieved by limit-
ing how often the cache is switched from a VM to another. The idea here 
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is that if the cache is not switched from a VM to another too soon, then 
the content of the cache will be modified a lot by the VM that possess the 
cache. This makes it hard for another VM to attain fine-grained knowl-
edge of what data the previous VM has accessed when probing the cache.

 2. VM Migration Attacks: The virtualization technology supports live VM migra-
tion, which allows moving a VM transparently from a server to another. The term 
live refers here to the fact that the application running on the VM is disrupted for 
a very short duration due to this migration where the disruption is as low as hun-
dreds of milliseconds. Before delving into the security issues that VM migration 
brings, we explain briefly the mechanism for performing VM migration and the 
scenarios where VM migration is usually performed.

The mechanism of moving a VM from a source server to a destination server 
is done by copying the VM’s memory content. The VM’s hard disk content does 
not need to be copied as it is usually stored on a network-attached storage (NAS) 
device and can be accessed from any location within the cloud cluster. If the 
destination server where the VM will be moved to lies on the same local network 
as the source server, then the VM keeps the same IP address even after migration 
in order to avoid the need for communication redirection. Maintaining the same 
IP address even after moving to another server is done after copying the memory 
content of the VM by sending a gratuitous ARP reply packet that informs the 
routing devices within the cloud about the VM’s new physical address, so that 
any packet destined to the VM’s IP address gets routed to the VM’s new location 
on the destination server. Each server has a dedicated module in the hypervisor 
called the VM migration module that is responsible for sending the VM content 
for the source server or receiving the VM’s memory content for the destina-
tion server.

VM migration is very useful in multiple scenarios. Consider, for example, the 
case when a server that is hosting some VMs needs to be taken offline for main-
tenance or for patch installation. VM migration can be used in this case to move 
all the VMs currently running on the server into other servers so that the server 
can be taken down for maintenance without terminating the running VMs that 
are hosted on that server. VM migration is also a very useful tool for managing 
the servers in the cloud data center where it can be used to balance the workload 
among the servers or to consolidate the scheduled VMs on fewer number of 
powered servers so that a larger number of servers can be powered down to save 
energy. However, the conveniences that VM migration brings raise new security 
threats. The attacks that exploit VM migration can be divided into two subcate-
gories based on the target plane:

 (a) Control Plane Attacks: These attacks target the module that is responsible 
for handling the migration process on a server which is called the migration 
module that is found in the hypervisor. By exploiting a bug in the migration 
module software, the attacker can hack the server and take full control over 
the migration module. This gives the attacker the ability to launch malicious 
activities including:
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• Migration Flooding: This attack is illustrated in Fig.  8.4 where the 
attacker moves all the VMs that are hosted on the hacked server to a vic-
tim server that does not have enough resource capacity to host all the 
moved VMs. This causes a denial of service of the applications running 
in the VMs of the victim server as there will not be enough resources to 
satisfy the demands of all the hosted VMs leading into VM performance 
degradation and VM crashes.

• False Resource Advertising: The hacked server claims that it has a large 
resource slack (a large amount of free resources). This attracts other 
 servers to off-load some of their VMs to the hacked server so that the 
cloud workload gets distributed over the cloud servers. After moving 
VMs from other servers to the hacked server, the attacker can exploit 
other vulnerabilities to break into the offloaded VMs as now these VMs 
are placed on a server that is under the control of the attacker.

 (b) Data Plane Attacks: These constitute the second type of VM migration 
attacks, and those attacks target the network links over which the VM is 
moved from a server to another. Examples of data plane attacks include:

• Sniffing Attack: where an attacker sniffs the packets that are exchanged 
between the source and destination and reads the migrated memory pages.

• Man-in-the-Middle Attack: the attacker fabricates a gratuitous ARP reply 
packet similar to the one that is usually sent when a VM moves from a 
server to another. This fabricated ARP packet informs the routing devices 
that the physical address where the victim VM resides was changed to 
become the physical address of the attacker’s malicious VM. Now the 
incoming packets that are destined to the victim get routed to the new 
physical address where the attacker resides. The attacker can then pas-

Fig. 8.4 Illustration of the migration flooding attack
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sively monitor the received packets while continuing to forward them to 
the actual physical address where the victim VM resides so that the vic-
tim does not detect that any malicious activity is going on. The attacker 
can also modify the content of the received packets if the integrity of the 
packets is not protected by any security mechanism. An illustration of the 
man-in-the-middle attack is shown in Fig. 8.5.

• Having explained the VM migration attacks, we now discuss the possible 
countermeasures. Unfortunately, little attention was given to secure VM 
migration where the focus was more on how to optimize the performance 
degradation or the energy overhead associated with those migrations. In 
order to secure VM migration, mutual authentication should be per-
formed between the server initiating the migration and the server that will 
be hosting the migrated VM. The control messages that are exchanged 
between the servers to manage the migration should also be encrypted 
and signed by the entity that is generating those control messages in order 
to avoid altering the content of those control messages and in order to 
prevent other entities from fabricating fake control messages. Sequence 
numbers or timestamps should also be included in the exchanged control 
messages in order to prevent a malicious entity from replaying an old 
control message that was sent earlier. Also, gratuitous ARP Reply pack-
ets that update the physical address of the VM should be accepted only 
after authentication in order to prevent man-in-the-middle attacks. The 
reader interested in learning more about VM migration attacks and coun-
termeasures is referred to [19] for further information on this topic.

 3. Theft-of-Service Attack: In this attack a malicious VM misbehaves in a way that 
makes the hypervisor assigns to it more resources than the share it is supposed to 
obtain. This extra allocation of resources for the malicious VM comes at the 
expense of the other VMs that share the same server as the malicious VM, where 
these victim VMs get allocated less share of resources than what they should 
actually obtain, which in turn degrades their performance.

Xen is a well-known hypervisor that is susceptible to this attack. One of the 
main roles of Xen hypervisor is to decide to which VM among the ones running 

Fig. 8.5 Man-in-the-middle attack
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on the server each physical core should be assigned to over time. In order to do 
that, Xen samples every 10 ms to check the VMs that are utilizing the cores. Xen 
then assumes that the VM that is detected to be using one of the cores at the 
sampling time has been using the server’s core during the entire 10  ms. The 
hypervisor then calculates how much time each VM has been assigned the cores. 
VMs that utilized the cores less than the remaining VMs are given higher priority 
to utilize the server’s core in the future in order to guarantee a fair allocation of 
the shared resources.

The fact that Xen performs periodic sampling can be exploited by a malicious 
VM by using one of the cores at times other than the sampling time. As illus-
trated in Fig. 8.6, the malicious VM can yield the acquired core to another VM 
shortly before the sampling tick. The hypervisor then assumes that the other VM 
that has yielded the core has been using the core during the entire 10 ms. The 
malicious VM does not get logged as using the core and thus keeps having high 
priority to use the cores in the future.

Two countermeasures were proposed to handle this attack. The first counter-
measure is to log more accurately the start and end time when each VM was 
utilizing the cores using accurate clocks. Another solution is to randomize the 
sampling times.

 4. VM Escape Attack: Virtual machines are designed in a way that isolate each VM 
from the other VMs running on the same server, which prevents VMs from 
accessing data that belongs to other VMs that reside on the same server. However, 
in reality software bugs can be exploited to break this isolation. If a VM escapes 
the hypervisor layer and reaches the server’s hardware, then the malicious VM 
can gain root access to the whole server where it resides. This gives the VM full 
control on all the VMs hosted on the hacked server. Different techniques were 
proposed to prevent a malicious VM from bypassing the hypervisor layer and 
obtaining the root privileges. An example of such techniques is CloudVisor 
which basically adds an extra isolation layer between the hardware and the 
hypervisor through nested virtualization that prevents the malicious VM from 

Fig. 8.6 Illustration of the theft-of-service attack
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obtaining the root privileges even if it bypasses the hypervisor layer. Other archi-
tecture solutions were also proposed to avoid VM escape attacks and could be 
found in [28].

 5. Insider Attacks: In all the previously discussed attacks, we were treating the 
administrators of the cloud data center as trusted entities, and we were focusing 
only on the attacks that are originating from other malicious VMs that are hosted 
in the cloud data center. However, some sensitive applications may have serious 
concerns about hosting their collected information on the cloud data center in the 
first place as the cloud data center administrators will in that case have the ability 
to access and modify the collected data. Different techniques were proposed to 
protect the data from these insider attacks. Homomorphic encryption is a form 
of encryption that can be used to prevent such attacks as it allows the cloud serv-
ers to perform certain computing operations on encrypted input data to generate 
an encrypted result. This encrypted result when decrypted matches the result of 
performing the computational operation on the unencrypted input data. Applying 
homomorphic encryption in the IoT paradigm allows cloud servers to perform 
the necessary processing operations on the encrypted data that is collected from 
the smart devices without giving the cloud servers the ability to interpret neither 
the input data nor the result as they are both encrypted using a secret key that is 
not shared with the cloud. Only the smart objects and the user running the IoT 
application can interpret these data as they have the key needed for decryption. 
Another form of protection against insider attacks is to chop the data collected 
by the smart object into multiple chunks and then to use a secret key to perform 
certain permutations on those chunks before sending the data to the cloud serv-
ers. This allows storing the data on the cloud servers in an uninterpretable form 
for the cloud administrators. Only authorized entities that have the secret key can 
return the stored data to an interpretable form by performing the correct 
permutations.

For convenience, Table 8.1 summarizes all the cloud domain attacks that were dis-
cussed in this section. The second, third, and fourth columns of Table 8.1 describe, 
respectively, the vulnerability that causes this attack, what security requirement 
each attack violates, and what are the countermeasures that can be used to prevent 
or detect and mitigate each attack.

8.6  Fog Domain Attacks and Countermeasures

Recall that the fog domain is made up of a set of fog devices where each fog device 
collects the sensing data that is reported from a set of smart objects. The fog device 
performs different operations on the collected data which include data aggregation, 
data preprocessing, and data storage. The fog device may also perform some rea-
soning operations on the collected data. After processing and aggregating the col-
lected data, the fog device forwards these data to the cloud domain. It is worth 
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mentioning that not only fog devices are connected with the cloud domain, but also 
fog devices are usually connected with each other in order to allow the fog devices 
connecting different smart objects to communicate directly with each other and in 
order to coordinate assigning objects to fog devices as their location changes. Fog 
devices can be independent components or could be built on top of existing gate-
ways. Each fog device provides computing resources to be used by the IoT smart 
objects that are located close to the fog device. These computing resources are vir-
tualized in order to allow the connected objects to share the computing resources 
that are offered by the fog device where each object or set of connected objects are 
allocated a virtual machine that performs the necessary data processing operations.

One can see that the computing capabilities provided by fog devices are very 
similar to the computing services provided by the servers in the cloud as they are 
both virtualized environments. The high similarities between the fog domain and 
the cloud domain make the fog domain susceptible to all the cloud domain attacks 
that were described in Sect. 8.5.

Although the fog domain is highly similar to the cloud domain, there are three 
key differences that distinguish fog devices from cloud servers:

 1. Location: Unlike cloud servers which are usually located far from smart objects, 
fog devices are placed in areas with high popular access and thus are placed 
close to the smart objects. This placement plays an important role in giving the 
fog devices the ability to respond quickly to changes in the reported data. This 
also gives the fog devices the ability to provide location-aware services as smart 
objects connect to the closest fog device, and thus each fog device knows the 
location of the objects connected to it.

Table 8.1 Summary of the security attacks in the cloud domain

Attack Vulnerability reason Security violation Countermeasures

Hidden- 
channel 
attack

Shared hardware components 
(e.g., cache) among the 
server’s VMs

Confidentiality Hard isolation Cache flushing
Noisy data access time 
Limiting cache switching rate

VM 
migration 
attacks

VM migration software bugs 
VM migration is performed 
without authentication 
Memory pages copied in 
clear

Confidentiality 
Integrity 
Availability

Server authentication 
Encrypting migrated memory 
pages

Theft-of- 
service 
attack

Periodic sampling of VMs’ 
used resources

Availability 
Non-repudiation

Fine-grain sampling using 
high precision clocks Random 
sampling

VM escape 
attack

Hypervisor software bugs Confidentiality 
Availability 
Integrity

Add an isolation domain 
between the hypervisor and 
hardware

Insider 
attacks

Lack of trust in cloud 
administrators

Confidentiality 
Integrity

Homomorphic encryption 
Secret storage through data 
chopping and permutation 
based on a secret key
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 2. Mobility: Since the location of the smart object may change over time, then the 
VMs created to handle those objects at the fog domain must be moved from a fog 
device into another, in order to keep the processing that is performed in the fog 
device close to the object that is generating data.

 3. Lower Computing Capacity: The fog devices that are installed in a certain loca-
tion are expected to have a lower computing capacity when compared to capaci-
ties offered by cloud data centers as the latter are made of thousands of servers.

These characteristics raise new security threats that are specific to the fog domain 
and that distinguish it from the cloud domain. The security threats that are specific 
to the fog domain are the following:

• Authentication and Trust Issues: The fact that fog devices do not require a large 
facility space or a high number of servers compared to cloud data centers will 
encourage many small and less-known companies to install virtualized fog 
devices in dense areas and to offer these computing resources to be rented by the 
smart objects that are near the installed fog devices. Unlike cloud data centers 
which are offered by well-known companies, fog devices are expected to be 
owned by multiple and less-known entities. An important security concern that 
needs then to be taken into account when assigning a smart object to a fog device 
is to authenticate first the identity of the owner of the fog device. Authentication 
is not enough, as the smart object also needs to decide whether or not the owner 
of the fog device can be trusted. Trust is an important aspect as a smart object 
will be assigned to different fog devices belonging to different entities as their 
location may change over time. Reputation systems such as those that were pro-
posed in peer-to-peer networks in or to rank cloud providers in can be used to 
select a trustworthy fog device among the available ones in the area surrounding 
each smart object.

• Higher Migration Security Risks: Although VM migration is common in both the 
cloud and the fog domains, there is an important difference between the migra-
tion in the cloud domain and that in the fog domain. While the migrated VMs in 
the cloud domain are carried over the cloud data center’s internal network, the 
migrations from a fog device into another are carried over the Internet. Thus 
there is a higher probability that the migrated VMs get exposed to compromised 
network links or network routers when moving a VM from a fog device into 
another. This makes it vital to encrypt the migrated VM and to authenticate the 
VM migration messages that are exchanged among the fog devices.

• Higher Vulnerability to DoS Attacks: Since fog devices have lower computing 
capacities, this makes them a low-hanging-fruit for denial of service (DoS) 
attacks where attackers can easily overwhelm fog devices when compared to the 
cloud data centers, where a huge number of servers that have high computing 
capacity are available.

• Additional Security Threats Due to Container Usage: In order to provide the 
computing needs for a larger number of connected objects, the fog device may 
use containers rather than VMs to allocate the resource demands for each con-
nected object. The main difference between a container-based virtualization and 
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full virtualization is the fact that containers share not only the same hardware but 
also the same operating system with the other containers that are hosted on the 
same fog device (refer to Chap. 6). This is unlike the full virtualization (which 
was illustrated in Fig. 8.3) where only the hardware is shared among multiple 
VMs and each VM has its own operating system. The low overhead of containers 
allows larger number of objects to be served by the fog device. However, sharing 
the same operating system among the containers dedicated for objects that 
belong to different users raises serious security concerns as the opportunities for 
data leakage and for hijacking the fog device increase significantly. The industry 
needs to address these gaps in container security to enable IoT applications 
at scale.

• Privacy Issues: We mentioned before that each smart object will be connected to 
one of the fog devices that are close to it. This means that the fog device can infer 
the location of all the connected smart objects. This allows the fog device to track 
users or to know their commuting habits which may break the privacy of the 
users carrying those objects. New mechanisms should be developed in order to 
make it harder for fog devices to track the location of the smart objects over time. 
Furthermore, the advancement in wireless signal processing has made it possible 
now to identify the presence of humans and track their location, their lip move-
ment, and their heartbeats by capturing and analyzing the wireless signals that 
are exchanged between the sensing objects and the fog domain. This advance-
ment makes it possible for any entity to install a reception device close to your 
home that analyzes the wireless signals that are emitted from your home in order 
to spy on your daily activities. The work in [47] is among the first papers that 
identified these risks where the authors in that paper propose a device called an 
obfuscator that prevents leaking such information by emitting signals that make 
it hard for an unauthorized receiver to infer the amplitude, the frequency, and the 
time shift of the originally exchanged signals. The obfuscator does not only pre-
vent such leakages but also acts as a relay that rebroadcasts some of the sent 
messages which increases the transmission rate between the sensing objects and 
the fog domain.

8.7  Sensing Domain Attacks and Countermeasures

The sensing domain contains all the smart objects, where each object is equipped 
with a number of sensors that allow the object to perceive the world. The smart 
object is also supplied with a communication interface that allows it to communi-
cate with the outer world. The smart object reports the sensed data to one of the fog 
devices in the fog domain. This is done by either creating a direct connection with 
the fog device if the smart object is directly connected by wires or has the wireless 
transmission capability to reach that fog device or in a multi-hop fashion where the 
smart object relies on other smart objects that lie along the path to the fog device to 
deliver the sensed data (as illustrated in Fig. 8.7).
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The sensing domain is susceptible to multiple attacks. We summarize next some 
of the most well-known ones:

 1. Jamming Attack: This attack causes a service disruption and takes one of 
two forms:

 (a) Jamming the Receiver: This attack targets the physical domain in the OSI 
stack of the receiver (where the receiver is the fog device in the case of a 
direct connection or another object in the case of a multi-hop connection) 
where a malicious user (called the jammer) emits a signal (called the jam-
ming signal) that interferes with the legitimate signals that are received at 
the receiver side. The interference degrades the quality of the received signal 
causing many errors. As a result, the receiving end does not acknowledge the 
reception of these damaged packets and waits for the sender to retransmit 
those packets.

 (b) Jamming the Sender: Unlike the previous attack, this type targets the data 
link layer at the OSI layer of the sending object where the jammer in this 
attack sends a jamming signal that prevents the neighboring objects from 
transmitting their packets as they sense the wireless channel to be busy and 
back off waiting for the channel to become idle.

There are different jamming strategies that a jammer may follow to 
launch a jamming attack. The most well-known ones are summarized next:

• Constant Jamming: The attacker continuously transmits a random jamming sig-
nal all the time. The main limitation of this attack is that it can be detected easily 
by observing random bits that do not follow the pattern dictated by the MAC 
protocol. Another main limitation is the fact that it requires the jamming device 
to be connected to a source of power as it requires lots of energy.

Fig. 8.7 Multi-hop versus 
direct connection between 
the smart object and the 
fog device
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• Deceptive Jamming: This is similar to the constant jamming with the exception 
that the jammer conceals its malicious behavior by transmitting legitimate pack-
ets that follow the structure of the MAC protocol rather than sending random bits.

• Reactive Jamming: This is a strategy for jamming the receiver that is suitable for 
the case when the jamming device has a limited power budget. The jammer in that 
case listens to the medium and transmits a jamming signal only after it senses that 
a legitimate signal is being transmitted in the medium. This is more power efficient 
than continuously transmitting signals as listening to the channel consumes less 
power than transmitting signals.

• Random Jamming: The jammer alternates between sending a jamming signal and 
remaining idle for random periods of time in order to hide the malicious activity.

• More sophisticated jamming attacks have also emerged that intend to increase 
the service disruption time, reduce the probability of detection, increase the abil-
ities to recover from the countermeasure that the victim node may take, while 
also reducing the power that the jamming device requires. An example of a power 
efficient advanced jamming attack would be to jam only the acknowledgment 
packets that nodes exchange rather than jamming the whole transmitted data 
packets as the former are shorter than the latter and thus require less power to jam 
while causing the same damage.

• Different preventive and detective techniques were proposed to address jamming 
attacks. We summarize next the most popular ones:

• Frequency Hopping: This is a preventive technique where the sender and receiver 
switch from a frequency to another in order to escape from any possible jamming 
signal (IEEE 802.15.4 TSCH discussed in Chap. 5 is an example of a wireless 
technology that employs this technique). Switching from a frequency to another 
is based on a generated random sequence that is known only for the sender and 
receiver. If the jammer is aware of the use of this preventive strategy, then the 
jammer has to switch from a frequency to another trying to collide with the fre-
quency used by the sender and receiver. The interaction between the hopping 
strategies of the legitimate nodes and that of the jammer in that case can be mod-
elled as a two-player game, where game theory can be used to come up with a 
hopping strategy that reduces the chances of colliding with the frequency 
sequence of the jammer.

• Spread Spectrum: This technique uses a hopping sequence that converts the nar-
row band signal into a signal with a very wide band, which makes it harder for 
malicious users to detect or jam the resulting signal. This technique is also very 
efficient when the transmitted data are protected by an error-correction technique 
as it allows the reconstruction of the original signal even if few bits of the trans-
mitted data were jammed by the attacker.

• Directional Antennas: The use of directional antennas can mitigate jamming 
attacks from being successful as the sender and receiver antennas will have less 
sensitivity to the noise coming from the random directions that are different from 
the direction that connects the sender and the receiver.

• Jamming Detection: Different detective techniques were proposed in the litera-
ture to detect jamming attacks. The receiver can detect that it is a victim of a 
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jamming attack by collecting features such as the received signal strength (RSS) 
and the ratio of corrupted received packets. Advanced machine learning tech-
nique can then be used to differentiate jamming attacks from the degradation 
caused by the poor quality of the channel due to normal changes in the wireless 
link. We point the reader to the survey in [2] for further information about jam-
ming intrusion detection systems.

 2. Vampire Attack: This attack exploits the fact that the majority of IoT objects have 
a limited battery lifetime where a malicious user misbehaves in a way that makes 
devices consume extra amounts of power so that they run out of battery earlier 
thereby causing a service disruption. The damage caused by this attack is usually 
measured by the amount of extra energy that objects consume compared to the 
normal case when no malicious behavior exists.

We identify four types of vampire attacks based on the strategy used to 
drain power:

 (a) Denial of Sleep: Different data link layer protocols were proposed to reduce 
the power consumption of smart objects by switching them into sleep when-
ever they are not needed. Examples of these protocols include S-MAC and 
T-MAC protocols. The idea behind these protocols is to agree on a duty- 
cycle schedule where objects exchange control messages in order to syn-
chronize their schedules so that they agree on transmitting signals at certain 
cycles while remaining asleep for the rest of the time. An adversary can now 
launch a denial of sleep attack which prevents objects from switching to 
sleep by simply sending control signals that change their duty-cycles keep-
ing them active for longer durations. The adversary can still succeed in 
launching this attack even if the control messages that synchronize the duty- 
cycles of the objects are encrypted. When the control messages are encrypted, 
the adversary can capture one of those encrypted control messages and 
replay it (resend it) at a later point of time causing the nodes to change their 
synchronization and their schedules. The adversary needs in that case to use 
traffic analysis techniques that rely, for example, on the length of the packets 
and the rate at which packets are exchanged in order to distinguish the con-
trol messages from the data messages that the nodes exchange since the 
content that packets carry is hidden by encryption.

 (b) Flooding Attack: The adversary can flood the neighboring nodes with 
dummy packets and request them to deliver those packets to the fog device, 
where devices waste energy receiving and transmitting those dummy 
packets.

 (c) Carrousel Attack: This attack targets the network layer in the OSI stack and 
can be launched if the routing protocol supports source routing, where the 
object generating the packets can specify the whole routing path of the pack-
ets it wishes to send to the fog device. The adversary in that case specifies 
routing paths that include loops where the same packet gets routed back and 
fourth among the other objects wasting their power. Figure 8.8 illustrates 
this attack.
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 (d) Stretch Attack: This attack also targets the network layer in the OSI stack. If 
the routing protocol supports source routing, then a malicious object can 
send the packets that it is supposed to report to the fog device through very 
long paths rather than the direct and short ones as illustrated in Fig. 8.8. 
Even if source routing is not supported, the attacker can select a next hop 
that does not have the shortest path to the fog device in order to increase the 
power consumption of the objects that will be responsible to deliver those 
packets (Fig. 8.9).

The adversary can further amplify the amount of wasted energy by com-
bining flooding attack with carrousel attack and stretch attack. The adver-

Fig. 8.8 Illustration of the 
carrousel attack where the 
numbered arrows show the 
path specified by the 
malicious objects that the 
packets generated by the 
malicious object follow

Fig. 8.9 Illustration of the 
stretch attack
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sary in that case floods the neighboring objects with a large number of 
generated packets and specifies long paths with loops that the packet should 
follow in order to increase the amount of wasted power.

Denial of sleep attacks can be mitigated by encrypting the control mes-
sage that arranges the schedules of the node while including a timestamp or 
a sequence number in the encrypted control message. This prevents the 
adversary from succeeding, in replaying an old control message, by check-
ing the encrypted timestamp or the encrypted sequence number that the 
replayed control message is not a new message but an old one that someone 
replayed to cause disruption. Flooding attacks can be mitigated by limiting 
the rate of the packets that each object may generate. Carrousel attacks can 
be mitigated by making each object that is requested to forward a packet 
based on a route specified by the source check the specified path where 
packets with loops within their paths are dropped as they are most likely 
originating from malicious users. Finally, stretch attacks can be mitigated by 
disabling source routing or by making sure that the forwarded packets are 
making progress toward their destination and are not following long paths.

 3. Selective-Forwarding Attack: This attack takes place in the case when the object 
cannot send its generated packets directly to the fog device but must rely on 
other objects that lie along the path toward the fog device to deliver those pack-
ets. A malicious object in this attack does not forward a portion of the packets 
that it receives from the neighboring objects. A special case of this attack is the 
black-hole attack where the attacker drops the entire set of packets that it receives 
from the neighboring objects. The best way to prevent packet drops from taking 
place for sensitive IoT applications is to increase the transmission capability of 
the objects so that they can reach the fog device directly without the need for 
help from intermediate objects. Unfortunately not all IoT objects are expected to 
have high transmission range to reach the fog device and thus will be relying on 
other objects to deliver their packets, which makes them susceptible to this 
attack. Different solutions were proposed to mitigate the number of dropped 
packets. Path redundancy is one of those solutions, where each object forwards 
each generated packet to multiple neighboring objects, where multiple copies of 
the same packet get delivered to the fog device through different paths. This 
decreases the chances of not having at least a copy of each generated packet 
delivered to the fog device. The main limitation of this mitigation technique is 
that it has a high energy overhead as it increases significantly the traffic. Rather 
than mitigating the damage caused by those attacks, the approach in [6, 8] tries 
to detect malicious objects that are dropping the sent packets so that packets can 
be routed through different paths that avoid those objects. Detecting the presence 
of objects that are dropping packets along certain paths can be done by selecting 
certain trusted objects as checkpoints. Each time a checkpoint receives a packet, 
it sends an acknowledgment to the object that generated that packet. The 
acknowledgment includes a unique identifier for the packet that was received 
along with a signed hash for the acknowledgment’s content. This guarantees that 
no other entity fabricates fake acknowledgment packets and that no other entity 
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can alter the content of these acknowledgments. The interested reader may refer 
to [7] for a complete overview on the countermeasures that can be used against 
selective-forwarding attacks.

 4. Sinkhole Attack: A malicious object claims that it has the shortest path to the fog 
device which attracts all neighboring objects that do not have the transmission 
capability to reach the fog device to forward their packets to that malicious 
object and count on that object to deliver their packets. Now all the packets that 
are originating from the neighboring nodes pass by this malicious node. This 
gives the malicious node the ability to look at the content of all the forwarded 
packets if data is sent with no encryption. Furthermore, the malicious object can 
drop some or all of the received packets as we explained previously in the 
selective- forwarding attack. Figure  8.10 illustrates how the network topology 
changes before and after this attack. Techniques to detect and isolate the mali-
cious objects were proposed and are based on the idea of collecting information 
from the different objects where each object reports the neighboring objects 
along with the distance to reach those objects. A centralized intrusion detection 
system is then used to rely on the reported information to identify objects that are 
potentially providing misleading information. Detecting such attack becomes 
harder when multiple malicious nodes collude to hide each other.

Finally, Table  8.2 summarizes all security attacks in the sensing domain that 
were discussed in this section. The second column of the table shows what layer in 
the OSI stacks the attack targets, whereas the third, fourth, and fifth columns 
describe, respectively, the vulnerability reason, the security requirement that the 
attack breaks, and the defensive countermeasures against each attack.

Fig. 8.10 Network topology before and after a sinkhole attack. The malicious object M claims 
that it has a shorter route to reach the fog device which attracts the neighboring objects A and E to 
rely on M to deliver their packets
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8.8  Securing IoT Devices

In this section we will provide several examples of IoT devices being used to launch 
security attacks (Sect. 8.8.1), in addition to two solutions that attempt to secure IoT 
devices, namely MUD (Sect. 8.8.2) and DICE (Sect. 8.8.3).

8.8.1  IoT Devices Gone Rogue

With the increase of practical deployments, IoT devices have proven to be easy 
targets for hackers who turn compromised devices into active actors to carry out 
their attacks on networked IT infrastructure. This is especially true in the context of 
distributed denial of service (DDoS) attacks. Insecure IoT devices represent a grow-
ing pool of compute and communications resources that is open to misuse. These 
devices can be hijacked to spread malware, recruited to form botnets that may attack 
other Internet users, and even can be used to attack critical national infrastructure, 
or the structural functions of the Internet itself.

There are multiple recent examples of IoT devices being used as attack vectors. 
We will highlight some of them next.

8.8.1.1  Botnets

A botnet is a typically large collection of networked computers (bots) that are under 
remote control from some malicious third party over the Internet. Usually, these 
computers would have been compromised by an outside attacker who controls 
aspects of their functionality without the owners’ consent or knowledge.

Table 8.2 Summary of the security attacks targeting the sensing domain

Attack
Target 
OSI layer

Vulnerability 
reason

Security 
violation Countermeasures

Jamming 
attack

Physical 
Data link

Shared 
wireless 
channel

Availability Frequency hopping Spread 
spectrum Directional antennas
Jamming detection techniques

Vampire 
attack

Data link 
Network

Limited battery 
lifetime

Availability 
Freshness

Rate limitation
Drop packets with a source route 
that contains a loop Monitor 
whether or not the forwarded 
packets are making progress 
toward their destination

Selective- 
forwarding 
attack

Network Limited 
transmission 
capability

Availability Increase transmission range Path 
redundancy
Choose certain intermediate 
objects as checkpoints to 
acknowledge received packets

Sinkhole 
attack

Network Limited 
transmission 
capability

Confidentiality 
Availability

Analyze the collected routing 
information from multiple objects
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Because there are many such computers in a typical botnet, the attacker has access 
to a quasi supercomputer that can be employed for malicious purposes. Furthermore, 
since the bots are distributed geographically and organizationally over the Internet, 
the quasi supercomputer can be difficult to deter. The first botnet was developed in 
2001 to send spam, and that is still a common use. Another common use for botnets is 
for DDoS attacks, in which a target server is constantly bombarded with network traf-
fic until it is overwhelmed beyond its capacity and forced to go offline.

In 2016, a DDoS attack rendered much of the Internet inaccessible on the US 
East coast, and the attack was perpetrated by the Mirai botnet. Mirai took advantage 
of insecure IoT devices in a simple but clever way: It scanned large blocks of the 
Internet for open Telnet ports, then attempted to log in using username/password 
combinations that are frequently used defaults for these devices and never changed. 
With this simple approach, it was able to recruit an army of compromised closed- 
circuit TV cameras and routers, ready for launching a DDoS attack.

The reason why the botnet was so effective was due to the fact that it leveraged a 
large number of IoT devices which often include an embedded stripped-down Linux 
operating system. These devices had no built-in ability to be patched remotely and 
were in physically remote or inaccessible locations.

8.8.1.2  Webcams

Webcams are often marketed as consumer products for baby monitoring or as secu-
rity devices. In one instance, a webcam manufacturer had faulty software on their 
products that allowed anyone with knowledge of the webcam’s IP address to view 
the camera’s video feed, and sometimes listen in through the embedded micro-
phones. Another manufacturer’s product was susceptible to remote code-injection 
attack, which allowed a malicious user to get administrative access to the camera, 
thereby placing the user at a risk of being spied upon. The remote execution flaw not 
only allows an attacker to set their own custom password to access the device, but 
also to add new users with administrative access to the interface, download mali-
cious firmware or reconfigure the product as they please.

8.8.1.3  Casino Fish Tank

Security firm Darktrace published a report where it revealed that an unnamed casino 
in North America was hacked through an Internet-connected fish tank. That connec-
tion allowed the tank to be remotely monitored, automatically adjust temperature 
and salinity, and automate feedings. In this incident, the vulnerable smart tank was 
used as an easy backdoor into the casino’s network. Once the attackers gained 
access to the tank, they scanned the casino’s network for other vulnerabilities and 
moved laterally to other places in the network where they were able to steal 10 
gigabytes of private data from the casino. The tank’s communication patterns with 
the casino’s network appeared normal enough. However, the data that it was pump-
ing through to the Internet was highly suspect. It was the only tank system that 
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transmitted data to a remote server in Finland, which it was in communications 
with. It also did so by employing protocols that are normally used for streaming 
audio or video.

8.8.1.4  Cardiac Devices

Cardiac devices, such as pacemakers and defibrillators, are used to monitor and 
control patients’ heart functions and prevent heart attacks. In 2017, the FDA 
announced that St Jude’s Medical implantable cardiac devices had security vulner-
abilities that would enable an attacker to access these devices, where they could 
deplete the battery or administer incorrect pacing or shocks. The vulnerabilities 
were in the transmitter that reads the device’s data and remotely shares it with 
physicians.

8.8.1.5  Vehicles

In 2015, Charlie Miller and Chris Valasek, two security researchers, exposed the 
security vulnerabilities in automobiles by hacking into cars remotely, controlling 
the cars’ various functions from the radio volume to the brakes. They did so by 
leveraging day-zero exploits that give attackers wireless access to the car via the 
Internet. This was done by sending commands through the vehicle’s entertainment 
system to its dashboard functions, steering, brakes, and transmission, all remotely 
from their laptops. The entertainment system served as an excellent entry point, 
because automakers are increasingly enabling the linking of these systems to the 
Internet. From that entry point, Miller and Valasek’s attack pivots to an adjacent 
chip in the car’s head unit (the hardware for its entertainment system), silently 
rewriting the chip’s firmware to plant their code. That rewritten firmware is capable 
of sending commands through the car’s internal computer network, known as a 
CAN bus, to its physical components like the engine and wheels.

Proper identification of connected devices is the first step when securing any 
network. With IoT, the asset inventory problem is compounded due to the sheer 
scale of “things,” and there is a key requirement to efficiently and unambiguously 
identify connected devices for onboarding and ongoing management. With the 
ongoing rapid growth in the number of IoT devices, malicious actors view these 
devices as a soft attack surface from where to launch their attacks onto any other 
target in the network. As such, it is critical to provide mechanisms and capabilities 
for securing these devices. Two such mechanisms are MUD and DICE, which will 
be covered in detail next.

8 Internet of Things Security and Privacy



239

8.8.2  MUD

Manufacturer Usage Descriptor (MUD) is an embedded software standard defined 
by the IETF (RFC 8520) to help reduce the vulnerability surface of IoT devices by 
employing network policy (whitelisting approach). It aims to reduce the scope of 
malware injection and hijacking of over-the-air firmware updates. It also addresses 
the scenario of devices that are no longer being actively maintained by their original 
manufacturer.

MUD enables IoT device manufacturers to advertise formal device specifica-
tions, including the intended communication patterns for a given device when con-
nected to the network. The network can then leverage this advertised intent, or 
profile, to formulate a tailored and context-specific access control policy, to guaran-
tee that the device communicates only within the specified parameters. This way the 
network behavior of the device, in any operating environment, can be locked down 
and verified rigorously. In this context, MUD becomes the delegated identifier and 
authoritative enforcer of policy for IoT devices on the network. MUD works by 
enabling networks to automatically permit each IoT device to send and receive only 
the traffic it requires to perform as intended while blocking unauthorized communi-
cation with the device.

The MUD solution consists of three key components, as shown in Fig. 8.11.

• A unique identifier, in the form of a Universal Resource Locator (URL), that an 
IoT device advertises when it connects to the network.

• An Internet hosted profile file that this URL points to. This file contains an 
abstracted policy that describes the level of communication access which the IoT 
device needs to perform its intended functionality.

• A core process that receives the URL from the IoT Device, retrieves the profile 
file from the MUD File Server, and establishes the appropriate access control 
policies in the network to restrict the communication patterns for that IoT device.

Core MUD 
Process

Network
Internet

MUD File Server

IoT Device

1. MUD URL

2. MUD File Query

3. MUD File4. Access Policy

Fig. 8.11 MUD architecture
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MUD leverages mechanisms that have existed in network infrastructure, includ-
ing routers and switches, for over a decade. In what follows, we will describe the 
MUD workflow and associated mechanisms that can be used in more details.

 1. The IoT device informs the network of the MUD URL using any one of the fol-
lowing existing protocols: DHCP, LLDP, or via a certificate in an IEEE 802.1X 
exchange. Once the device has communicated the URL to the network, its task 
in supporting MUD is done. The goal is to keep the device prerequisites as sim-
ple as possible for IoT device manufacturers.

 2. The URL is received from the network by a Core MUD Process. This module 
may reside in one of many potential systems, depending on the nature of the 
network infrastructure. For instance, in an enterprise network, it may be part of 
the Policy (e.g., AAA) server. In a home network, it may be provided by the 
Internet service provider (ISP) or by the customer premise equipment (CPE) 
vendor. In a mobile service provider network, it might be part of an operational 
support system (OSS).

 3. The Core MUD Process resolves the MUD URL and retrieves the profile file 
from the MUD File Server. This file is a declaration of intent that specifies what 
access the device is intended to have in the form of an abstract policy. The ratio-
nale being that an IoT device may be designed to communicate with a single or 
small number of controllers or with similar Things, or that for a given service, it 
should or should not have access to the local network.

 4. The Core MUD Process translates these abstract intent definitions into a context- 
specific access control policy that the local network infrastructure can consume. 
How that translation occurs will vary depending on the network deployment. 
Some networks may use Access Control Lists (ACLs). Other networks may rely 
on segmentation using VLANs or VNIs, while others may use service groups or 
some other access control mechanism.

 5. An administrator may then approve, reject, or modify the policy, based on 
deployment specifics. This policy may be merged with other policies, for 
instance, to take into account the user of the device or the device’s deployment 
location.

 6. The Core MUD Process pushes the merged policy to the associated systems of 
the network infrastructure (for example, switches, routers, etc.). This can be 
achieved using some configuration protocol such as NETCONF, Radius, or any 
alternative mechanism.

MUD provides a clear value proposition to device owners, network administra-
tors and IoT device manufacturers. First, for device owners, it limits the impact and 
extent of exploitation of any security vulnerability that is potentially discovered in 
their IoT devices. For network administrators, MUD provides them with better vis-
ibility of the types of Things connected to the network and with the type of policies 
that they require. This helps them with better inventory management, risk assess-
ment, and remediation. Finally, for device manufacturers MUD alleviates any sup-
port, financial liability, or brand damage that may arise due to compromised devices.
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8.8.3  DICE

Device Identifier Composition Engine (DICE) is a collection of hardware and soft-
ware mechanisms for cryptographic IoT device identity, attestation, and data 
encryption. DICE is an industry standard created by the Trusted Computing 
Group (TCG).

IoT devices that perform encryption use a private key called a Unique Device 
Secret (UDS) in order to secure their operation. It is possible for an attacker to leak 
this key by compromising the code running on the chip. Having access to the private 
key can enable the attacker to impersonate the device and even to replace its firm-
ware. Therefore, it is paramount to prevent the disclosure of the UDS. The key to 
DICE is its ability to break up the boot process for any device into layers and to 
combine unique secrets and a measure of integrity for each of these layers. This 
way, if malware is present at any stage of the boot process, the device is automati-
cally re-keyed and secrets protected by the legitimate keys remain safe.

DICE implements three measures to secure the UDS:

• Power-on Latch: The power-on latch locks read access to the UDS before early 
boot-code transfers control to subsequent execution layers.

• Cryptographic One-way Functions: A cryptographic one-way function com-
putes a hash of the UDS to store in RAM so that in the event of RAM disclosure 
by compromised code, the original UDS is safe.

• Tying Key Derivation to Software Identity: To prevent compromise of the 
device by attempts to modify the early boot-code, the cryptographic one-way 
function uses a measurement of the boot code as input together with the UDS. The 
function outputs a key called the Compound Device Identifier (CDI) taking both 
the UDS and early boot code hash as input (optionally taking the hardware state 
and configuration as input as well). This process ensures that modification of 
early boot code generates a new key so that the UDS is secure.

The reason for tying the CDI derivation to the code that is booting on the device 
is to guarantee that a firmware update automatically results in the device being re- 
keyed. This behavior is desirable to address two security problems, specifically:

 1. If an attacker changes the code that boots on the device with the intent of stealing 
keys, the attacking program (with a different hash) ends up obtaining a different 
key than the original authorized program.

 2. If authorized code contains a security vulnerability that leads to CDI compro-
mise, then the device must be re-keyed after patching. The CDI derivation func-
tion ensures that patching the vulnerable firmware automatically results in a new 
CDI being computed.

DICE introduces a simple security approach that does not increase the silicon 
requirements for IoT devices. It targets constrained devices where traditional 
Trusted Platform Modules (TPM) may be unfeasible due to limitations related to 
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cost, power, physical space, etc. As such, it is possible to implement it in the tiniest 
microcontrollers.

DICE is predicated upon a hardware root of trust for measurement. It works by 
organizing the boot into layers and creating secrets unique to each layer and con-
figuration based on UDS (refer to Fig. 8.12). If a different code or configuration is 
loaded, at any point in the boot chain, the secrets will be different. Each software 
layer keeps the secret it receives completely confidential. If a vulnerability exists 
and a secret is leaked, it patches the code automatically and creates a new secret, 
effectively re-keying the device. In other words, when malware is present, the device 
is automatically re-keyed and secrets are protected.

DICE provides strong device identity, attestation of device firmware and security 
policy, and safe deployment and verification of software updates. The latter are 
often a source of malware and other attacks. Another key benefit for device manu-
facturers is that they are no longer required to maintain databases of unique secrets.

8.9  Summary and Future Directions

This chapter analyzed IoT from a security and privacy perspectives. Ignoring secu-
rity and privacy will limit the applicability of IoT and will have serious results on 
the different aspects of our lives given that all the physical objects in our surround-
ing will be connected to the network. In this chapter, the IoT security challenges and 
IoT security requirements were identified. A three-domain IoT architecture was 
considered in our analysis where we analyzed the attacks targeting the cloud 
domain, the fog domain, and the sensing domain. Our analysis describes how the 
different attacks at each domain work and what defensive countermeasures can be 
applied to prevent, detect, or mitigate those attacks. We hope that the research and 
industry communities will pay attention to the discussed security threats and will 
apply appropriate countermeasures to address those issues. We also hope that secu-
rity and privacy will be considered at the early design stage of IoT in order to avoid 
the common pitfall of considering security as an afterthought.

We end this chapter by providing some future directions for IoT security and 
privacy:

• Fog Domain Security: The fog domain is a new domain that was introduced to 
bring the computing capabilities to the edge of the network. We believe that 
 further attention should be paid to this domain as it has not received enough 
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attention from the academia and the industry. The focus should be on identifying 
threat models related to the fog domain and also on finding efficient solutions 
that can run on the fog devices that are available in the market.

• Collaborative Defense: We identified while surveying the related work that what 
the literature on IoT security lacks is a collaborative solution where the different 
domains (cloud, fog, and sensing) interact with each other to stop or mitigate a 
certain attack. We believe that an interdomain-defensive solution will be way 
more effective than applying countermeasures at each domain separately, where 
the different domains can interact and collaborate in order to stop any ongoing 
malicious activity.

• Lightweight Cryptography: This is a highly important topic that has gained a 
significant attention recently and is anticipated to be very important for the future 
of IoT where the objective is to find efficient cryptographic techniques that can 
replace the traditional computationally expensive ones while achieving an 
acceptable level of security.

• Lightweight Network Security Protocols: Not only the cryptographic computa-
tions must have lower overhead but also the network security protocols that are 
used for communication. Many efforts are being paid by the research and indus-
try communities to find cross-domain-optimized security protocols that achieve 
the necessary security protection while maintaining a low overhead.

• Digital Forensics: Although tracking the location of smart objects is considered 
a privacy violation, it also has some useful cases. Consider, for example, the case 
where police rely on tracking the smart objects that are carried by a missing per-
son in order to identify the missing person’s location. Digital forensics in the IoT 
era will play an important role in solving the different forensic cases as they will 
all become technology related. This area is also expected to receive further atten-
tion in the future where different techniques can be used to extract knowledge 
from the smart objects.

Problems and Exercises

 1. The authors have broken IoT security challenges into seven areas. Name them.
Why big data is an issue for IoT?

 2. What techniques can be applied to prevent cross-VM data leakage? Explain 
how the hard isolation technique can be achieved.

 3. What are some of the typical uses of VM migration in cloud data centers? What 
are the two types of attacks that are related to VM migration?

 4. Who is the entity that initiates insider attacks, and how can homomorphic 
encryption be used to prevent such attacks?

 5. What are the three key differences that distinguish fog devices from cloud serv-
ers? Provide a brief explanation of each difference.

 6. Which provides more protection against security attacks: container-based virtu-
alization or full virtualization? Why?

 7. What are the two connection approaches that the smart objects may use to com-
municate with the fog device? Which approach is more secure and can this 
approach always be used?

8.9 Summary and Future Directions
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 8. What are the four strategies that a jammer may follow in order to launch a jam-
ming attack? Which strategy is suitable when the jammer have limited 
energy budget?

 9. What are vampire attacks? Name their types.
 10. What is network high availability? What is network redundancy? How are they 

related?
 11. Chapter 3 discusses three different ways to obtain information for IoT “things”: 

sensors, RFID, and video tracking. In a table, compare the security for the three 
technologies.

 12. What is limiting cache switching rate? How can it be accomplished? Explain 
how it works.
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Chapter 9
IoT Vertical Markets and Connected 
Ecosystems

The Internet of Things is expected to connect over 20 billion “things” to the Internet 
by 2020, covering a broad range of markets and applications. As IoT becomes more 
cost effective and easier to deploy, new contenders and industry players are expected 
to enter the market. Hence, existing companies will be forced to disrupt or be dis-
rupted. For the leaders of any of these companies, this begs two main questions: 
Firstly, what new business models to employ in order to deliver better and cheaper 
service? And secondly, who to partner with to bring services to market quicker and 
at a lower cost?

In this chapter, we will first introduce, in Sect. 9.1, the key IoT application 
domains, which are often referred to in the literature as IoT verticals. Alphabetically, 
key verticals include Agriculture and Farming, Energy, Enterprise, Finance, 
Healthcare, Industrial, Retail, and Transportations.

These verticals will include data sources (e.g., sensors, RFIDs, video cameras, 
etc.) producing wealth of new information about the status, location, behaviors, 
usage, service configuration, and/or performance of systems, products, or devices. 
In Sect. 9.2, we will present the new business model which is mainly driven by the 
availability of new information, thereby offering extraordinary business benefits to 
the companies that manufacture, support, and service those systems, products, or 
devices, especially in terms of customer relationships. In Sect. 9.3, we will present 
the top requirements to deliver “Anything as a Service” in IoT followed by a specific 
use case.

Finally, the manifold IoT verticals in combination with the new business model 
will undeniably introduce opportunities for innovative partnerships. No single ven-
dor will be able to address all business requirements. We will describe the require-
ments for such model in the last section.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_9#DOI
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9.1  IoT Verticals

There is no agreement across the industry on the number of IoT verticals. The num-
ber ranges from a few to over a dozen across various standards and marketing col-
laterals. The oneM2M and ETSI standard bodies have identified ten IoT verticals: 
Agricultural and Farming, Energy, Finance, Healthcare, Industrial, Public Services, 
Residential, Retail, and Transportation. Other companies have used a slightly differ-
ent categorization to include Energy, Transportation, Education, Healthcare, 
Commerce, Travel and Tourism, Finance, IT, and Environment.

As we mentioned in pervious chapters, the objective is not to divide IoT into 
verticals and silos. On the contrary, the real impact of IoT will only occur when data 
from the silos is combined to create completely new types of applications. In other 
words, an IoT application should be able to manage IoT elements from many verti-
cals with common parameters, open data models, and APIs. The collected data from 
IoT elements, combined with the new knowledge emerging in the area of “big data,” 
will create the framework for many new types of applications. This progress will 
drive the growth of IoT.

In this chapter, we will describe IoT use cases using a modified version of the 
oneM2M and ETSI categorizations, as shown in Fig. 9.1. The IoT verticals include: 
Agriculture and Farming, Energy, Oil and Gas, Enterprise, Finance, Healthcare, 
Industrial, Retail, and Transportations.

It is important to note that some IoT standard bodies have used the term “Energy” 
as a comprehensive label to include “Energy Consumption” in smart buildings/cit-
ies as well as “Oil and Gas” in the petroleum industry (e.g., to monitor oilrigs, 
pipelines, and emission). We believe IoT Energy and IoT Oil and Gas are two sepa-
rate verticals. Energy comes from Oil and Gas as well as other sources such as solar 
and winds. In addition, energy is about managing smart meters, smart buildings, and 
smart cities, while Oil and Gas is more about process and asset management in the 
petroleum industry. More information will be provided in Sects. 9.1.2 and 9.1.3.
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9.1.1  IoT Agriculture and Farming

According to the World Agriculture reports, global food consumption is expected to 
grow by 70% by 2050. IoT is well positioned to transform the agriculture industry 
and enable farmers to increase the quantity and quality of their crops at reasonable 
costs. IoT farming techniques are already increasing crops productivity and creating 
economies of scale for farmers. This is critical especially with the recent environ-
mental challenges farmers are facing, such as increased water shortage in many 
regions of the World and the diminishing availability of farmland.

IoT sensor-based agriculture solutions are used to monitor soil moisture, crop 
growth, livestock feed levels, and irrigation equipment. The solutions utilize analyt-
ics to analyze operational data combined with weather and other information to 
improve decision-making.

Top IoT Agriculture and Farming use cases include:

• Advanced Yield Monitoring: Farming companies have introduced solutions to 
monitor and control various types of crops to deliver better results. For instance, 
wine quality is being monitored by installing sensors to monitor soil moisture 
and trunk diameter in vineries to optimize the amount of sugar in grapes. Similar 
techniques are used for water management by sensing the soil and determining 
the optimal amount of water required as part of green initiatives.

• Optimal Seeding: Based on soil analysis and historical weather data, IoT 
enabled solutions determine the best kind of seeds and optimal row spacing as 
well as seeding depth. They also produce soil fertilization recommendations that 
include type and amount.

• Optimal Water Usage: Monitoring and controlling surrounding environmental 
conditions to determine water usage to capitalize on the production of fruits and 
vegetables. This includes utilizing weather forecast information to prevent dam-
age due to ice formation, heavy rain, drought, snow, or strong wind. The humid-
ity levels are also monitored in crops such as hay and alfalfa to avoid fungus and 
other bacterial contaminants.

• Livestock Monitoring: Monitoring, tracking, and controlling farm animals 
(cows, goats, chickens, etc.) in open grasslands or indoor locations such as cages 
or stables. IoT is also used to monitor animal toxic gas levels, study ventilation, 
and warn on air quality to protect farm animals from harmful gases from 
excrements.

• Farming as a Service: see Sect. 9.2.

9.1.2  IoT Energy Solutions

IoT Energy covers smart buildings offering dynamic monitoring of overall energy 
consumption, thereby allowing their occupants or tenants to see when they are con-
suming power during peak hours at abnormally high rates. This allows the tenants 
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to optimize energy usage while maintaining comfort. It also covers smart cities 
offering automatic dynamic optimization of global energy consumption on the 
streets, highways, and public facilities.

IoT Energy use cases include:

• IoT Smart Meters: IoT smart meters record electrical power consumption on 
regular basis (e.g., hourly, every 15 min) and send collected information to the 
power company for monitoring and billing.

• IoT smart meters benefit power companies as well consumers. Power companies 
use the collected information to construct usage patterns and trend analyses to 
predict future energy usage especially during peak hours. They plan for such 
peaks with additional supply and by offering very attractive offers to customers 
to conserve energy. Customers use the information to view, typically on the por-
tal of the power company, hourly electric and daily gas energy usage data. 
Consumers use the detailed hourly, daily, weekly, or monthly information to 
make smarter energy choices (e.g., use washing machine after 7  PM for 
cheaper rate).

• Smart Homes (Connected Home): Connected home is defined as any home 
with at least one connected device (e.g., connected appliance, home security 
system, and door or motion sensor). Connected devices can learn usage patterns 
and enable remote operation to reduce energy consumption (e.g., water heaters, 
air conditioning, and lighting.)

• Connected devices send information to service provider systems, which in turn, 
quickly analyze the data and notify homeowners if needed, or directly send alerts 
to homeowners. The first model is often a subscription-based service in which a 
homeowner subscribes to a service (e.g., home security company) while the sec-
ond model is non-subscription model (e.g., home security camera installed by 
homeowner and connected over the home Wi-Fi gateway). Can you name an 
example of model 2? (see Problem 8).

• Other Cases: IoT is also used to monitor and optimize solar energy plants per-
formance. How? (see Problem 10).

• To meet the IoT key promise of making human lives better, all connected home 
devices should come together into a single connected IoT system or connected 
service provider system offering the homeowner full and simple access and 
control.

9.1.3  IoT Oil and Gas Solutions

Ever since the explosion and sinking of the Deepwater Horizon oil rig in the Gulf of 
Mexico in April 2010, which was recognized as the worst oil spill in U.S. history, 
combined with the increase in strict government regulations, IoT has been at the 
core of the oil and gas industry transformation. It is not only enabling full real-time 
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monitoring of oilrigs but also allowing contingent workforce to run near real-time 
maintenance of critical assets.

IoT Oil and Gas is used for predictive maintenance, pipeline monitoring, emis-
sion control, and location intelligence. It is also used for near real-time alert and 
trending analysis using sensors, installed on various equipment and augmented with 
ERP (enterprise resource planning) data to trigger maintenance workflows for asset 
management and fleet operations monitoring.

• Connected Oil and Gas fields: IoT sensors are being installed to monitor and 
control oil wellheads, pipelines, and equipment, to enhance the overall oil field 
remote operations, to enable predictive maintenance, and provide comprehensive 
facility operations at reasonable costs. Hence achieving better reliability and pro-
ductivity from the fields.

• Also Connected Oil and Gas fields reduce the need for site visits (e.g., site visits 
to unmanned offshore platforms), hence reducing the associated hazards and 
improving personnel safety.

• Downstream Applications: IoT Oil and Gas also can play a role in downstream 
operations such as Oil and Gas storage, transportation, refineries, and distribu-
tion (e.g., petrol station fuel tanks can be monitored by distribution companies to 
dispatch tank trucks).

9.1.3.1  Oil and Gas Exercise

Chemical injection stations (Fig. 9.2) are used to dose corrosion inhibiting and bio-
cide chemicals into oil pipelines. This eliminates the growth of organisms and 
reduces the corrosion rate of the pipelines in order to prolong their operational life.

One chemical station is required to dose at a rate of 0.4 gpm (gallons per minute) 
of chemicals per 10,000 bpd (barrels per day) of oil in the pipeline. In an existing 
plant, the station is set to dose at a constant 0.4 gpm. Considering the following 
pipeline flowrate profile during a day, calculate the quantity of chemicals saved per 
day by applying IoT to control the chemical injection station.

Answer
We only need to examine the part of the timeline where the flow within the pipeline 
drops below the 10,000 bpd threshold, as that is where the IoT solution will yield 
savings over the constant/static solution.

The flow within the pipeline drops to 8000 bpd for 12 h. During this time, the 
variable dosage supplied by the IoT solution drops to 8000/10,000  ×  0.4  gpm 
= 0.32 gpm.

The amount of chemical dispensed by the IoT solution for those 12 h is = 0.32 gal-
lons/min × 12 h × 60 min/h = 230.4 gallons.

The non-IoT solution would have dispensed during the same time = 0.4 × 12 × 6
0 = 288 gallons.

The savings = 288 − 230.4 = 57.6 gallons.
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9.1.4  IoT Smart Building Solutions

As with smart homes (under smart energy), smart buildings utilize sensors and con-
trollers to monitor and automatically trigger services to save valuable time in cases 
of emergency (e.g., fire, intrusion, or gas leak). With the smart building system, 
services like video monitoring, light control, air-condition control, and power sup-
ply control are often managed from the same control center. In this section, we will 
focus on Smart buildings as an enterprise solution, as specified in the oneM2M 
standards.

• Safety Monitoring and Alerting: Examples include noise level monitoring in 
urban zones and sounding alarms in real time, electromagnetic field levels mon-
itoring by measuring the energy radiated by cell stations and other devices, 
chemical leakage detection in rivers by detecting leakages and wastes of 
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 factories in rivers, air pollution and control of CO2 emission factors, pollution 
emitted by cars and toxic gases generated in farms, as well as earthquake early 
detection.

• Smart Lighting: In smart lighting, IoT is used to minimize energy consumption, 
provide weather adaptive lighting in street-lights and to automate maintenance.

• Flooding, Water Leakage, and Pollution Monitoring: Monitoring of safe 
water levels in rivers, lakes, dams, and reservoirs. Detection of the presence of 
toxic chemical. Monitoring of tanks, pipes, and pressure variations. Real-time 
control of leakages and waste in the sea.

• Detection of Hazardous Gases and Radiation Levels: Detection of gas levels 
and leakages in and around industrial buildings and chemical factories. 
Monitoring of ozone levels during the meat drying process in food factories. 
Distributed measurement of radiation levels in the surroundings of nuclear power 
stations to generate leakage alerts.

• Other use cases include detection of garbage levels in containers to optimize the 
trash collection routes, preemptive monitoring of burning gasses and fire condi-
tions to define alert zones, snow level measurement to know in real time the 
quality of ski tracks and alert avalanche prevention security corps, monitoring 
vibrations and earth density to detect dangerous patterns in land conditions, and 
monitoring of vibrations and structural conditions in buildings and bridges.

9.1.5  IoT Finance

While IoT Financial solutions are not as obvious as other IoT verticals, the financial 
industry has indeed benefited greatly from IoT. For many financial services busi-
nesses, the reality is that their business model is based on the flow of information, 
rather than on actual sensors and physical objects. As we mentioned in Chap. 1, 
some financial companies (e.g., Square, Intuit) have introduced IoT platform-based 
solutions connecting customers instantly with financial institutes and services. Such 
process used to be tedious and required time that often resulted in losing prospective 
deals to competitors. Banks are using IoT-based facial recognition solutions to iden-
tify important customers when they walk into the bank so they can be offered first 
class treatment.

Auto insurance companies are working with technology companies and com-
munication service providers to install sensors-based IoT telematics solutions in 
automobiles, to track driver behaviors in order to improve underwriting and pricing 
of policies. Other use cases include:

• IoT Usage-based auto insurance: Sensors are installed in vehicles to track 
actual mileage, car location, and driving areas. In addition, IoT-based claim fil-
ing system is utilized allowing drivers to file claims using their smart phones 
eliminating the need for expensive agents and paper work.

9.1 IoT Verticals
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• IoT Solution to reduce Fraud and Liability: In highly delicate work environ-
ments (e.g., chemical or nuclear plants, physical activities), smart sensors may 
be embedded in employees’ uniforms. This allows the IoT solution to monitor 
employee whereabouts in high-risk areas, warn them in real time of any potential 
danger, and prevent them from entering restricted areas. This should result in 
safer work environments for the employees and reduce fraudulent workplace 
related claims for the employer.

• IoT Safety Solutions: Sensors embedded in commercial infrastructure can mon-
itor safety breaches such as smoke, mold, or toxic fumes, allowing for adjust-
ments to the environment to head off or at least mitigate a potentially 
hazardous event.

• Other use cases include IoT-based commercial real estate building-management 
systems to speed up the overall building management processes, location-based 
near-field communication (NFC) Payment Processing, paperless mortgage appli-
cations including home inspection and the approval process.

The progression of financial IoT is not without its challenges. Most driving con-
sumers and corporations are uncomfortable with the notion of being “watched” at 
all time. Many have asked for limits on the collection and use of sensor-based data. 
This is a critical area for the industry to address by introducing balanced solutions 
that allow the collection of adequately limited data while protecting the interests of 
clients and markets. Full disclosure of collected data (what are you collecting about 
me?) as well as the secure handling and use of personal information (who has access 
to my data and how is it being used?) are already being demanded by consumers and 
corporations.

9.1.6  IoT Healthcare

Healthcare is considered as one of the most important verticals for IoT. Healthcare 
providers as well as patients are in great position to benefit from IoT. Intelligent IoT 
wearable devices in combination with mobile apps are allowing patients to capture 
their health data easily and send medical information for up to the minute analysis. 
Hospitals are using IoT for real-time tracking of important medical devices, person-
nel, and patients.

Examples of IoT Healthcare use cases include:

• Fall Detection: Fall detection is considered a main public health concern among 
senior citizens. The number of wearable medical devices, systems, and compa-
nies offering services intended at detecting falling have increased radically over 
recent years. Fall detection alert systems, typically worn around the waist or 
neck, include intelligent accelerometers that differentiae normal activities from 
actual falls. Fall detection solutions are already improving the quality of life of 
many elderly or disabled people living independently. It should be noted that 
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smart phones also use accelerometers to determine vertical and horizontal dis-
play based on orientation.

• Tracking of medical devices: Accurate tracking of expensive medical devices is 
very essential for hospitals especially in crowded emergency rooms with large 
medical staff. IoT solutions are being used to identify the exact location of such 
devices, identify last user, and then auto adjust the device setting, if applicable, 
based on the fingerprint of the current user.

• Medical fridges for hospitals: Sensors are being embedded in medical fridges 
for hospitals and medical offices to dynamically control temperatures inside 
mobile and stationary freezers filled with vaccines, medicines, and organic 
elements.

• Other use cases include measuring ultraviolet radiation and warning people of 
the hazard of sun exposure especially during certain hours.

As is the case with IoT financial, IoT healthcare has its own share of challenges. 
The security of IoT data and devices as well as government regulations are consid-
ered by many as the most important concerns for patients and healthcare providers. 
Patients are concerned about employers gaining access to their medical records, 
especially when they register their BYOD mobile devices. Some physicians and 
healthcare IT departments are still adjusting to using and securing mobile devices in 
their operations. Finally the lack of standards and communication protocols around 
IoT put the development of solutions at risk.

9.1.7  IoT Industrial

Industrial equipment and machines used in the overall manufacturing process, for 
instance, are becoming more digitized with capabilities to connect to the Internet. 
At the same time, manufacturers are looking at ways to advance operational effi-
ciency such as supply chain and quality control, by utilizing such equipment to 
gather important data for their business to remain competitive and provide services 
at reasonable costs.

IoT is used to establish networks between machines, humans, and the Internet, 
thereby creating new ecosystems. It is also used to identify business gaps and oppor-
tunities, as we will cover in Sect. 10.3. Examples of Industrial use cases include:

• Predictive maintenance: Predictive maintenance covers all connected assets in 
industrial plants (e.g., water treatment site). By utilizing real-time data collected 
from sensors and cameras, combined with advanced analytics it is possible for 
companies to anticipate equipment failures and respond faster to critical situa-
tions. Advanced analytics is a hot research area that includes artificial intelli-
gence and machine learning. With machine learning, computers can develop 
algorithms on their own by analyzing data overtime. These algorithms can then 
be used to make predictions.
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• Connected Factory: as the name indicates, connected factory means connecting 
the entire factory network to the Internet with full monitoring and controlling 
solution. Connected factory typically includes mobile operation center for com-
prehensive and secure management.

• Connected Mine: In connected mines, all mining vehicles, mining operation, 
mining asset tracking and personal safety equipment are connected.

• Supply Chain Control: Monitoring of storage conditions along with the supply 
chain and product tracking for traceability purposes.

9.1.8  IoT Retail

According to a survey by Infosys, more than 80% of consumers are willing to pay 
up to 25% more for a better experience. This translates to a huge opportunity to be 
gained with IoT by collecting and analyzing information about products and cus-
tomer interests and then gaining actionable insights from this information. Input 
sources include point of sale (PoS), supply chain sensors, RFID as well as video 
cameras in the store.

• Full Tracking of Products in Stores: With IoT, retailers have full visibility into 
products and merchandise with digital supply chains. This makes it possible for 
retailers to emphasize on top selling products by offering more personal choices 
to fulfill and enhance the overall customer experience. It also makes it possible 
to determine under-selling products as well as overstocked and low stock 
products.

• Full Automation of Product Delivery: Range of delivery options may be 
offered to the customers including pick up in-store, home or car delivery, or 
retrieval from another location such as smart lockers from local 24-h stores. In 
the latter case, smart lockers are equipped with sensors that send automatic mes-
sages to customers reminding them to pick up.

• On the business side, some retailers have capitalized on IoT to redesign their 
distribution system to leverage larger stores as distribution centers. In this case, 
larger stores are used to offer a larger range of products to smaller stores for col-
lection the same day, thereby extending customers’ choice of delivery and col-
lection options.

• Flexible Shopping and Loyalty Programs: Retailers are already using Web 
technologies such as cookies, Wi-Fi, and video cameras to track customers shop-
ping behavior to enhance customer experience and send special offers based on 
buying patterns or even online browsing and search trends. For instance, retailers 
are using Bluetooth beacons in combination with shopping apps on customers’ 
smart phones to generate heat maps that show how consumers move around 
stores (why would customer download retailer apps?—see Problem 11). For cus-
tomers who are not willing to download retailors apps, Wi-Fi triangulation is 
alternatively used to generate detailed heat maps.
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• Customer Engagement Suite: As we mentioned in Chap. 1, some companies 
have introduced customer engagement tools that include email marketing ser-
vices. These tools allow businesses to target specific customer segments with 
customized promotions based on actual purchase history. Square also introduced 
Square Payroll tool for small business owners to process payroll for their 
employees.

• Interactive consumer engagement and operations: Using real-time video 
cameras, in-store programmable devices and in-store display screens retailers 
can deliver smarter messaging based on what customers are looking at. This 
allows them to influence buying decisions, including up-sells.

9.1.9  IoT Transportation

As industry regulations force transportation and logistics organizations to do more 
with less, many companies have already discovered the benefits of using IoT to 
offer new services, improve efficiency and security, significantly gain real-time vis-
ibility of their operations, and save on fuel just to name a few advantages.

Top use cases include:

• Smart and Connected Parking: Smart parking addresses one of the causes of 
pollution in urban areas. We all have been in situations where we drive back and 
forth looking for a parking spot. Smart and Connected Parking has addressed this 
problem very effectively. With smart parking service, drivers can easily find 
available parking spaces, pay parking fees and even make advance reservations. 
Making parking reservations may be available for limited people such as VIPs or 
the disabled, since ordinary parking service needs to satisfy first-come-first- 
served rule.

• Smart Roads and Traffic Congestion: Smart roads include Intelligent Highways 
with warning messages and diversions based on sensors capturing climate condi-
tions and traffic events like accidents and traffic jams. Traffic congestion solu-
tions monitor traffic as well as pedestrian levels to optimize driving and 
walking routes.

• Connected Rail: Connected rail solutions are used to connect trains, tracksides, 
stations, and passengers. For instance, IoT is used to automatically alert passen-
gers of scheduling and safety issues on their smart devices as well as offering 
onboard entertainment. IoT is also used to implement solutions to meet govern-
mental and industrial safety compliance requirements at a minimum cost.

• Other use cases include continuous quality of shipment monitoring, which 
encompasses observing vibrations, location, temperature, strokes, container 
openings, and storage incompatibility detection. For instance, emissions warning 
on containers storing flammable goods close to others containing explosive 
material. Control of routes followed for delicate goods like medical drugs, jew-
els, or dangerous merchandise are also included.
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9.2  IoT Service Model: Anything as a Service

IoT enabled devices and products will provide a wealth of information about their 
status, location, behaviors, usage, service configuration, and performance. This 
information, if leveraged correctly, offers extraordinary business benefits to the 
companies that manufacture, support, and service those products, especially in 
terms of customer satisfaction.

With the availability of such data combined with cost effective Internet-based 
communications, many companies are starting to ponder why would they stop at 
selling a product and forgo very essential feedback information, when they can also 
sell a service with the right to monitor the actual usage and behavior of the product 
in the deployed environment. Usage information are not only used to service a prod-
uct/device and prevent service deterioration by verifying contract Service Level 
Agreements (SLAs) but also to learn about the product in the field and determine the 
most essential set of future enhancements. Feedback information may be catego-
rized by market segments but generally include common set of specific information 
such as which features are used the most, which features are used the least, which 
features are never used and feature usage patterns (feature A is used with feature B).

IoT is bending the traditional linear value chain by allowing companies to eco-
nomically connect to products and collect essential data. The data is then analyzed 
and correlated with business intelligence (BI) and Intellectual Capital (IC), and used 
to provide a proactive, predictive, and preemptive service experience. This is made 
possible with the creation of a “feedback loop” through which the heartbeats of 
manufactured objects continually flow back though the complex business systems 
that create, distribute, and service those products. Adopters of this new IoT service 
model are in a great position to deliver extraordinary business performance and 
break away from their competition.

With this model, many companies are already offering at least a form of their 
products (or main features of such products) as a service with an always-on connec-
tion to fully monitor actual usage and behavior in the deployed environment. Next 
we will present a few key examples.

9.2.1  Thrust as a Service

Aircraft engine manufacturers are moving from the business of selling engines to 
the business of selling thrust as a service. In fact, Rolls-Royce has been offering 
such services for the last several years. It sends jet engine telemetry data to data 
centers for full analysis and diagnostics. An inspection can be scheduled at the cor-
rect time or spare parts can be directed to the right destination even before the pilots 
or the airline know that one of their engines has a problem.

Today most of Rolls-Royce engines are not sold, but rented out on an hourly 
basis under their TotalCare® program, and a center is monitoring maybe hundreds 
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or even thousands of engines at the same time. This model allows Rolls-Royce to 
accumulate a wealth of engine operational data and enables it to consult airlines on 
best practices. This makes it difficult for third parties to take maintenance business 
away from Rolls-Royce. Figure  9.3 illustrates the framework of “Thrust as a 
Service.”

Other aircraft engine manufacturers have similar programs. Airlines do not pay 
for the engines, but for the time they are flying. With this model, engine manufactur-
ers have a strong incentive to improve the reliability of their engines and drive out 
third-party maintenance providers.

9.2.2  Imaging as a Service

Hospitals and large medical facilities worldwide are being challenged with high 
cost of medical equipment and increased government regulations. Vendors of medi-
cal imaging machines (e.g., Magnetic Resonance Imaging (MRI) machines, 
Computed Tomography (CT) scanners, and X-ray machines) are taking advantage 
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of such challenges and offering “Imaging as Service” provisions. The new con-
nected “as a service” business model is not only reducing imaging equipment opera-
tional costs, but also offering equipment manufacturers, service providers, and 
hospitals new revenue streams. Figure  9.4 depicts an example of imaging as a 
service.

9.2.3  Farming as a Service

Agriculture machinery and chemical companies are also realizing the value of the 
new IoT service model. Tractors and many farming machines are being equipped 
with sensors and actuators. Agriculture machinery and chemical companies are 
partnering together to offer Farming as a Service (FaaS) where the farming machines 
are brought to a farm during seeding seasons. The machines analyze the soil square 
feet by square feet, send the data back to the agriculture machinery company data 
centers, where the data is analyzed in real time, and the result is sent to actuators to 
release into the soil the best matching kinds of seeds and the right amount of 
fertilizers.

Farming machines (e.g., tractors) may be connected over cellular (e.g., 4G) net-
works or drones as shown in Fig. 9.5. In the latter case, drones are deployed by 
agriculture machinery companies just for the duration of seeding. Drones are typi-
cally used when the cellular signal is weak. What is another method of connecting 
agriculture machinery to the network? (see Problem 7).

Data Center

IoT Network
The Internet

Fig. 9.4 Example of CT 
machine connected to a 
data center
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9.2.4  IT as a Service

Another and perhaps less obvious example is the IoT network provider itself. 
Virtually all modern businesses/enterprises are powered by technologies, and visi-
bility into the underlying infrastructure is mission critical. In the past, businesses 
relied on IT to deliver mission-critical business functions (e.g., customer portals, 
finical applications, email, supply chain systems, and a myriad of other crucial ser-
vices that need to work flawlessly to prevent any impact on services and customers).

Today, businesses can no longer afford waiting for IT to provide all infrastructure 
capabilities.

As IT infrastructure continues to grow and become more complex, especially 
with the proliferation of hardware, software, applications, VMs, cloud services, and 
mobile devices, providing visibility into that infrastructure is a constantly mov-
ing target.

Vendors of IoT hardware and software solutions (e.g., sensors, gateways, routers, 
switches, platforms) are also offering “Feature as a Service.” For instance, a net-
work vendor may own IoT getaways (or IoT routers and switches) and simply offers 
connection services with guaranteed SLAs (service level agreements). As with per-
vious examples, the networking vendor can only do so by enabling its IoT elements 
(e.g., gateways, routers, switches) to collect and send data to the vendor’s data cen-
ters for service monitoring, analysis, and diagnostic. Such model also allows the 
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vendors to gather a wealth of operational data and enables them to offer consultation 
to other enterprises on best practices (Fig. 9.6).

It should be noted that in all of the above examples:

• Any device or system (e.g., jet engine, medical imaging equipment, IoT gate-
ways) downtime represents a loss of revenue or time, none of which airlines, 
hospitals, or IoT service providers are willing to lose. With IoT “as service” 
model, jet engines, medical imaging equipment as well as IoT network elements 
are covered via service contracts with the original equipment manufacturers. 
Through remote predictive monitoring and maintenance, service contract provid-
ers can fix problems before the service is even impacted.

• The ability for manufacturers to connect and pull intelligence from their systems 
(e.g., jet engine, medical imaging equipment, IoT gateways) has been available 
for some time now, primarily as an outgrowth from their own support and main-
tenance service offers. With IoT, a new “as a service” model is being realized. 
Services on top of connectivity are improving equipment ROI and competitive-
ness for equipment vendors and stakeholders (e.g., hospitals, OEMs, and service 
providers). Also, in existing solutions, connectivity may not be realized over the 
Internet, rather over dedicated links and proprietary networks. However, many 
vendors are indeed building IoT platforms to transition from propriety rigid and 
expensive solutions into open economical IoT-based solutions.

Data Center

IoT Network
The Internet

IoT Gateway IoT SensorIoT Router

Fig. 9.6 IT as a service
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9.3  Enabling “Anything as a Service”

In this section, we will describe the requirements for end-to-end intelligent service 
automation. This includes the basic requirements for specific instrumentation and 
telemetry data to be provided by the product, embedded management capabilities as 
well as vertical-specific intellectual capital to provide a proactive, predictive, and 
preemptive service experience addressing the operations and health of the product.

Regardless of IoT verticals or underlying technologies, “Anything as a Service” 
can only be realized with several key capabilities. In this section, we will list these 
capabilities in ten main areas. Once the capabilities are enabled across the IoT lay-
ers, systems (e.g., IoT Platform as we specified in Chap. 6) are required to automate 
the end-to-end functionalities.

Given the difficulties with providing generic answers across IoT verticals, we 
will use the Thrust as a service as the guiding example for illustrations.

 1. Which data to collect and from which entities? E.g., for the Thrust as a service 
example, the data includes: jet engine operational parameters including engine 
RPM (Revolutions Per Minute), fuel consumption, temperature, pressure, air-
craft aerodynamic and mechanical operational parameters such as wind speed, 
ground speed, positions of flaps, positions of slats, positions of spoilers, posi-
tions of ailerons, positions of rudders, positions of elevators, positions of hori-
zontal stabilizers, fuel level, etc.

 2. How to collect (or sense) such data? E.g., using embedded pressure, tempera-
ture, or speed sensors, or by tapping into aircraft control bus messages, etc.

 3. Once the data is collected and while it is in the Fog layer, what type of local 
analysis (e.g., by the collection agent itself) is required? E.g., an hour of flight 
generates terra-bytes worth of data. It makes sense to compress this data by 
filtering out and compacting duplicate sensor readings before transporting the 
data over expensive satellite links.

 4. How to transmit the collected (or locally analyzed) data from the device to 
backend data centers securely and with minimum impact on the network? E.g., 
utilize satellite links for critical data that needs to be delivered in real-time, and 
airport Wi-Fi while the aircraft is docked at the gate for non-critical data.

 5. How to entitle, validate parse, and analyze the collected data once it is received 
by the backend system? Hence, entitlement, data validation, data parsing, and 
data analysis require interactions with the supplier/partner backend systems and 
databases including intellectual capital information. E.g., matching the data 
with the correct models based on the jet-engine model and aircraft type. 
Segregating one airline’s flight data records from those of another airline, etc.

 6. Which service based performance (e.g., end-to-end delay), diagnostic and secu-
rity compliance measures should be calculated at the backend and by which 
algorithms? E.g., fuel economy can be a function of the engine RPM, wind 
speed and direction (head vs. tail), flaps/slats positions, etc. Complex algo-
rithms come into play for that single performance metric.
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 7. Which thresholds (e.g., Quality of Service, Grade of Service) should Step #6 
estimated measures be evaluated against?

 8. If Step #6 estimated measures are above the threshold, what type of real-time 
and none-real-time actions should be taken in the impacted device and/or the 
network? Which algorithms? E.g., suggest alternate flaps/slats settings on take- 
off or landing to minimize fuel consumption.

 9. If action is needed, which secure protocol should be used access the device/
network from the backend system and take action? E.g., using Secure Socket 
Layers (SSL) to encrypt communication between the aircraft and data centers.

 10. Finally, which trending algorithms should be used to predict future measures?

Determining the required feature data (Question 1) is considered to be the most 
critical and difficult question especially for new technology. Feature data can only 
be defined if the performance measures and trending algorithms are well defined 
and understood.

9.3.1  Example: IoT IT Services

We will use the example of IT infrastructure as a service. Specifically, we will 
assume an IT infrastructure (e.g., IoT Gateways and network switches) is deployed 
by an IT company to provide “IT Service” to a transportation company.

IoT-based IT Service requires identifying every managed entity with an IP 
address, collecting data from these managed entities and performing event correla-
tion based on vendor best practices and intellectual capital. Such information is 
used to proactively predict network and service performance and to provide infor-
mation about future trends and threats to enable proactive remediation. This way, 
network planners/administrators can take action before a problem occurs thereby 
preventing risk-inducing conditions from occurring at all.

The most essential input for an IT service is well defined standardized embedded 
measurements to be collected from the network devices. This includes data sub-
scribing to the standardized YANG (Yet Another Next Generation) data modeling 
language for the Network Configuration Protocol (NETCONF) or Simple Network 
Management Protocol (SNMP) MIBs. NETCONF and the older SNMP are network 
management protocols developed and standardized by the Internet Engineering 
Task Force (IETF).

NETCONF and SNMP are essential for FACPS (Fault, Accounting, Configuration, 
Performance, and Security) management. When NETCONF and SNMP data is not 
sufficient, “syslog” and the output of Command Line Interface (CLI) commands are 
also utilized. In fact, many network devices are configured to send syslog messages 
to an event collector, such as a syslog server, in response to specific events. The 
syslog protocol separates the content of a message from the transport of the mes-
sage. In other words, the device sending the syslog message does not require any 
communication from the devices transporting or logging the message. This enables 
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devices, which would otherwise be unable to communicate, to notify network 
administrators of problems. The syslog standard is documented in Request for 
Comments (RFC) 3164 and RFC 5424 of the IETF.

It should be noted that unlike the jet engine and medical machine examples (Sect. 
9.2), which mainly employ mechanical or external sensors, IT services rely on 
embedded software to sense and collect data from the device. Other embedded mea-
surements include IP SLA and Netflow as mentioned in Chap. 1.

The collected statistics are then consumed by various algorithms, utilizing the 
Intellectual Capital (IC) information1 to calculate management and contract renewal 
related measures as outlined in steps 3–6 above. IC is another critical input for IP 
based smart services.

Figure 9.7 shows an overview of IoT IT services. A service becomes proactive by 
adding advanced software analytics algorithms to the collected data, and then deliv-
ering this results in a actionable way that provides critical value for the customers. 
IoT Services provide a proactive, predictive, and preemptive service experience that 
is automated and intelligence based to address the operations, health, performance, 
and security of the network. It securely automates the collection of device, network, 
and operations information from the network. The collected information is analyzed 
and correlated with the vendor’s vast repository of proprietary intellectual capital 
turning it into actionable intelligence to aid network planners/administrators 
increase IT value, simplify IT infrastructure, reduce cost and streamline processes.

1 IC information is typically captured by analyzing collected data overtime against the supplier 
intelligence and data bases (e.g., Microsoft collects and analyzes data from its Windows customers 
over the Internet).
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Fig. 9.7 Overview of IoT 
IT services
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IoT IT services enable network vendors and technology service providers to pro-
vide solutions through machine-to-machine2 interactions that automatically provide 
real-time visibility and issue resolution. Such intelligence enables people-to-people 
interactions and enhanced social media collaboration. The interactions enable ven-
dors and service providers to continue growing their critical intellectual capital.

Another essential requirements for IoT IT services is the smart agent with auto-
mated two-ways always-on connectivity between the device (or the network) and 
service management backend systems that typically reside in the network operation 
center (NOC), at the network supplier, or managing partner. This connection is used 
to (a) send uninterrupted near-real-time device/network intelligence from the 
device/network to the service management system(s) and to (b) allow network man-
agement system(s) to connect to the device/network to take action to prevent service 
outage or service deterioration.

Thus, one of the key differences between traditional network management and 
IoT IT service is the fact that IoT IT services utilize uninterrupted, persistent 
machine-to-machine or machine-to-person diagnostics, fortified with intellectual 
capital and best practices, in a blend designed to give network administrators deep 
visibility into the network. Network management solutions themselves may be con-
nected to backend services.

With IoT IT services, network administrators have direct view and intelligence at 
the device, network, operations, and application layer providing automated reports 
and recommendations. This end-to-end approach results in network intelligence 
that enables network vendors (typically responsible for network and service war-
ranty), customers/clients (network owners), and partners (typically responsible for 
operating, monitoring, and maintaining the network by working with vendors and 
customers) to deliver proactive services including regular monitoring, proactive 
notification, and remote remediation to enhance the customers’ network availability 
and performance.

9.4  Connected Ecosystems

As was mentioned in quite a few chapters in this book, the number of devices con-
nected to the Internet is already in billions and expected to reach over 20 billion in 
just a few years. Each of these devices is in a position to create a set of new auto-
mated services that are essential to business as well as the advancement of the world 
economy. Today’s businesses are already requiring manufacturers to supplement 
their products with intelligence and connectivity. With such capabilities, IoT layers 
and domains will be drivers for major software development as well as services sup-
port in devices, infrastructure, platforms, and applications. No single vendor will be 

2 The term “Machine” refers to managed entity with an IP address such as router, switch, router 
interface.
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able to handle a complete IoT vertical, let alone offering an end-to-end solution. IoT 
go to market will be driven by complex partnerships that includes a combination of 
Original Equipment Manufacturers (OEM), Value-added Resellers (VAR), Systems 
Integrators (SI), and Independent Software Vendors (ISV). IoT products, hardware 
and software, as well as end-to-end solutions will be developed in multi- dimensional 
partnerships, meaning that they are developed to integrate into IOT devices, net-
works, platforms, applications, and/or service. They will also be utilized to extend 
an IoT enabled service portfolio.

On the device and network side, for instance, suppliers have been exploiting the 
device embedded intelligence and connectivity capabilities to offer IoT-based ser-
vices changing the traditional maintenance and support from reactive to proactive 
approach. These services are typically offered as part of remote management of 
network equipment and assets, which provides proactive network monitoring, 
health checkups, diagnostics, and software repairs in addition to technical support.

Suppliers are also realizing that connected devices continue to generate informa-
tion value not just for services but over their lifespans. They now know the current 
location of the device, when it was first installed, important specifications, diagnos-
tics, availability of spares, replacement alternatives, repair instructions, support sta-
tus, and so on. This information can then be used by manufacturers and their partners 
for sales and marketing efforts, product development, and new customer services.

Analysts believe that manufactures who have been exposed to the values driven 
by connected device have a superior advantage. Their businesses will be shaped by 
new, significant revenue opportunities emerging from the availability of the infor-
mation provided by these newly connected devices.

In the reaming of this chapter, we will describe the new IoT ecosystem-based 
business model, using IT use cases for illustration, and then describe the key gaps to 
allowing OEM, VAR, SI, and ISV to form partnership to develop end-to-end IoT 
solutions.

9.4.1  IoT Services Terminologies

As we just mentioned in Sect. 9.2, suppliers have been able to connect their devices 
(e.g., Jet Engines) to send information to their data centers for some time even 
before IoT fully materialized. However, proprietary communication protocols and 
algorithms were often utilized. The proprietary algorithms were used by tools to 
sense, collect, store, analyze, and transport the data. Proprietary systems are rigid in 
nature, developed to support a single solution and are prohibitory expensive to sup-
port and maintain (e.g., over satellites).

IoT promises to provide an open and efficient solution that can be utilized across 
multiple environments and technologies. The Internet Protocol itself has been 
shown to present a proficient and open approach to support “as a service” model as 
illustrated in Chap. 3.
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Before we introduce IoT Ecosystem solutions, however, we will define the key 
terminologies to be used in the rest of this chapter.

• Product, device, or machine refers to an “entity to be managed” such as IoT 
Gateway, router, switch, card on the switch, platform, or application, network 
management system. Such entity is expected to have a unique identifier (i.e., IP 
Address).

• Supplier (or vendor) refers to the company that manufactures, sells, and/or leases 
the device/machine. e.g., Cisco is a supplier of networking devices, Rolls-Royce 
or GE is a supplier of jet engines, Caterpillar is a supplier of heavy machinery.

• Enterprise (or network owner) refers to a business/company that has purchased 
services and purchased or leased the required devices/products that are required 
to run the services. e.g., AT&T is a customer of Cisco and Owner of AT&T net-
work. An end subscriber to AT&T services is a customer of AT&T and an owner 
of a device managed by AT&T.

• Partner refers to the third party company that partners with a vendor to service a 
customer network. The partner may be an OEM, VAR, SI, ISV, or business part-
ner on the service level, e.g., IBM is a partner of Cisco that may be hired by 
AT&T to manage/service AT&T network.

9.4.2  IoT Connected Ecosystems Models

In this section, we will describe multiple flavors of ecosystem models that have 
resulted from the IOT models with connectivity and device intelligence. But first, 
we will describe the traditional model. Historically, vendors have sold their prod-
ucts to an enterprise, The enterprise fully manages the products on their own, as 
shown in Fig. 9.8, or the enterprise outsources the management of such products to 
a single or multiple partners, as shown in Fig. 9.9.

In IoT, the support paradigm is expected to be a combination of the above two 
models. We will refer to this model as a Full Ecosystem Model which has been 
empowered by Virtualization and Cloud Computing. Figure 9.10 shows a flavor of 
such model with Customer–Partner–Supplier Relationships. In this model, network 
vendors and/or their partners are often contracted by the network owners to manage 
the network as well as the services that are offered on the networks.

The depth of such contracts varies between companies and typically depends on 
the structure, resources, and expertise of the client. It can range from a limited 
device warranty service where vendors are responsible for the health of their devices 
by providing TAC (Technical Assistance Center) support and RMA (Return Material 
Authorization) to full Managed Service where the network vendor and/or its partner 
is responsible for the comprehensive management functions as well as the end-to- 
end services offered by the network owner to end customers. In this case, the enter-
prise may own some aspect of the service management (e.g., in charge of monitoring 
and fixing level 0 and level 1 problems). The partner owns more complex aspects of 
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Fig. 9.8 Traditional support model—limited to vendors and enterprises

Fig. 9.9 Traditional support model—limited to vendors and partners

Fig. 9.10 Full ecosystem model with Customer–Partner–Supplier relationships
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service management (e.g., level 2) and the vendor is responsible for levels 3 and 4 
which may include fixing defects by subject matter experts as well as, RMAs and 
firmware update support.

It should be noted that:

• Level 0 typically means self-support by searching support documentations such 
as FAQs and information from the Internet. It allows users to access and resolve 
issues on their own without contacting a local Helpdesk or Service Desk for 
resolution.

• Level 1: is the initial support level responsible for basic customer issues.
• Level 2: is a more in-depth technical support level than Level 1 with more expe-

rienced technicians with knowledgeable on a particular product or service.
• Level 3: is the highest level of support in a three-tiered technical support model 

responsible for handling the most difficult or advanced problems.
• Level 4: While not universally used, a fourth level often represents an escalation 

point beyond the organization, e.g., The Research & Development organization 
that have developed the code and algorithms.

Other flavors of the Full Ecosystem Model include multiple partners and even 
vendors for the same IoT layer (e.g., sensors from multiple vendors). In this case, 
data integrity is very essential to prevent partner 1, for example, from accessing data 
managed by partner 2 especially when partner 1 and 2 are competitors.

In all of these three cases (Figs. 9.8, 9.9, and 9.10), the value of an IT product has 
been limited to the product itself and a traditional maintenance and support contract. 
With IoT, these support and “break-fix” contracts provide a valuable augmentation 
to the product for customers and have a potential to grow to a considerable scale.

9.4.3  IoT Connected Ecosystems Models Key Capabilities

The IoT Ecosystem model cannot work properly without addressing data privacy, 
standardization, and security.

Data privacy is vital to prevent data from being exposed to hackers and competi-
tors. Data privacy is very delegate in IoT connected ecosystem model: Data must be 
shared but only with the appropriate vendors and/or partners to speed up the discov-
ery of any potential issue. With multiple partners managing, the three way ecosys-
tem model that includes vendor-partner-enterprise (Fig. 9.9) required a full proof 
secure system guarantees sensitive data does not fall into the wrong hands.

Security is important for every player including the enterprises, vendors, part-
ners, and of course the end customers. Ecosystem players are not willing to risk 
investments unless standard technologies and methodologies are first established.

Standardization is essential to deliver scalable and flexible solutions to the mar-
ket at reasonable price. It makes it possible for individual stakeholders to partner 
and work with IoT hardware (e.g., sensors, getaways) and software (e.g., IoT 
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platform and applications) vendors, application developers, solution integrators, 
data content owners, and connectivity providers.

Outsourcing the management and operation of the network is gaining significant 
attractiveness in recent years. It benefits the enterprises in so many ways. Examples 
of such benefits include:

 1. Allowing enterprises to concentrate on their own business and leave IT related 
functions to the experts. This is especially important for Small or Medium 
Business (e.g., Small Banks, Retailers) with limited IT resources.

 2. Allowing network owners to introduce and deploy new technologies quickly. 
Network owners do not need to hire or train subject matter experts every time a 
new service/technology is introduced.

 3. Allowing enterprises to take more intelligent risks (e.g., trying multiple tech-
nologies at the same time) by taking advantage of Cloud Computing to lease 
required infrastructures only for the duration of service.

 4. Allowing network vendors and partners to manage the full lifecycle of the prod-
ucts and use the collected information to develop smarter products customized 
for the customer. For example, a farming equipment company may offer embed-
ding soil analysis system that analyzes farm soil in real-time and determines the 
best type and amount of fertilizer, in addition to the business of selling farming 
traditional equipment.

 5. Allowing network vendors and partners to compare the network health and KPI 
(Key Performance Indictors) with other networks of the same type and provide 
reports to the customers to repair and/or improve the network and service 
performance.

Key capabilities to enable connected ecosystem models include:

 1. Ability to acquire essential data from managed devices or products in timely 
fashion. Depending on the specific IoT vertical, such capability requires agree-
ments on the data to be collected, APIs and embedded storage via smart agents 
for instance. Smart agent may be defined as capability that resides on the device 
or product to collect the required data on regular basis or on demand. It should 
also have the ability to notify northbound applications based on programmed 
conditions (e.g., notify northbound application when the temperature change is 
more than 1 degree).

 2. Ability for Supplier or Partner to analyze the data in timely fashion with a ser-
vice platform as we mentioned in Chap. 7.

 3. Ability for suppliers or partners to correlate collected data against Intellectual 
Capital (IC) and business intelligence rules and other databases to produce 
actionable results.

 4. Two-ways connectivity: Connectivity allowing devices and products to send 
data securely to the supplier and/or partner service platform systems. It also 
allows the service platform system to access the device or product secularly to 
take action when required.
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 5. Secure entitlement and data transfer capability to register and entitle customer 
networks and communicate securely (via encryption and security keys) with ser-
vice providers or network vendors as we mentioned in detailed in Chap. 8.

With the above capabilities, services will be transitioned from being reactive to 
being proactive and predictive.

9.5  Summary

This chapter introduced key IoT verticals that included Agriculture and Farming, 
Energy, Oil and Gas, Enterprise, Finance, Healthcare, Industrial, Retail, and 
Transportations.

Some standard bodies have used the term “Energy” to include energy consump-
tion in smart cities as well as “Oil and Gas” in the petroleum industry. We believe 
“IoT Energy” and “IoT Oil and Gas” should be treated as two separate verticals. 
This is due to the fact that energy is produced from many other sources (e.g., Winds, 
solar) with focus on energy consumption. However, Oil and Gas focuses more on 
process and asset management for the petroleum industry.

The chapter then presented a new IoT business model, driven by the availability 
of new information, and offering key business benefits to the companies that manu-
facture, support, and service those systems, products, or devices.

Next the chapter presented the top requirements to deliver “Anything as a 
Service” that includes: ability to determine: which data is needed? How to capture 
the data? What type of local analysis is needed? How to transmit the data? How to 
entitle, validate parse, and analyze the collected data once it is received by the back-
end system? Which service based performance? Which QoS and GoS thresholds? 
What type of real-time and non-real-time actions should be taken in the impacted 
device and/or the network and which algorithms? Which secure protocol should be 
used access the device/network from the backend system and take action? And 
which trending algorithms should be used to predict future measures?

Multiple IoT verticals in combination with the new ecosystem business model 
were also introduced. The chapter clearly showed that no single vendor would be 
able to address all business requirements. Finally the chapter listed the key benefits 
of the proposed IoT Ecosystem partner and the capabilities to enable connected 
ecosystem models to function properly.

Problems and Exercises

 1. What are the top ten IoT verticals As defined by oneM2M and ETSI stan-
dard bodies?

 2. This chapter stated that the real impact of IoT will only occur when data from 
the silos is combined to create completely new types of applications. What does 
this mean? Why is it important?

 3. What are the top two challenges to the farming industry? Why does IoT address 
these challenges?
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 4. Some Companies identified the Six-Pillar for IoT to include Connectivity, Fog 
Computing, Security, Data analytics, Management and automation and 
 Application Engagement Platform. What is meant by each area? Why each of 
these areas is essential?

 5. Complete the following Tables

 6. Three main use cases were listed for IoT Agriculture and Farming. List another 
use case.

 7. What is the definition of a connected home? Provide an example.
 8. Devices in connected homes can send information to service providers or 

directly to homeowners. List example for each case.
 9. In the Farming as a Service (FaaS), Agriculture machinery companies are uti-

lizing drones when the cellular coverage is not available.

 (a) Beside drones, what other technology may be used?
 (b) How does drone technology work?
 (c) Compare pros and cons of Drones vs. The other Technology in part (a).

 10. Describe how IoT is used to monitor and optimize solar energy plants?
 11. Experts believe that the lack of IoT standards and communication protocols is 

putting development in risk especially in Healthcare and Finical. Why is that?
 12. Define the top requirements and framework to introduce “Heat as a Service” 

under smart building?
 13. In IoT Retails use cases, retails use customer smart phones to generate heat 

maps that show how consumers move around stores. Why would a customer 
download retailer apps? What can the retailer do if customers are not willing to 
download the app?

 14. In a table format, compare the transport, end device and place of analytics for 
Thrust as a Service, Imaging as a Service, Farming as a Service, and IT as a 
Service.

 15. In Sect. 9.3 mentioned that the IT infrastructure for business is growing and 
becoming moving target with complexity. How is the infrastructure becoming 
more complex? Provide examples.

 16. Describe the operational model of IT as a Service (ITaaS)? Which organization 
is delivering the service? Which organization is receiving the service? How is 
the service deliver?

 17. With the availability of IoT data combined with cost effective Internet-based 
communications, many companies starting to contemplate why they would they 

IoT solution Definition IoT vertical

Smart and Connected Parking
Structural health
Noise Urban Maps
Smartphone Detection
Electromagnetic Field Levels detection
Traffic Congestion
Smart Lighting
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stop at selling a product and forgo very essential feedback information, when 
they can also sell a service with the right to monitor the actual usage and behav-
ior of the product in the deployed environment. Usage information are not only 
used to service a product/device and prevent service deterioration by verifying 
contract level Service Level Agreements but also to learn about the product in 
the field and determine the most essential set of future enhancements. Provide 
an example.

 18. With IoT, who do service providers determine “which features, of a particular 
product, are used the most?”

 19. What is IoT-based IT Service? What are to tow top requirements for IoT-based 
IT and why are they needed?

 20. What are the key differences between traditional network management and IoT 
IT service?

 21. (a) Why businesses are requiring manufacturers to supplement their products 
with intelligence and connectivity? (b) Why is it difficult for single vendor to 
provide a complete IoT solution? (c) List three typical partnerships that vendors 
needs to establish to provide complete IoT solutions.

 22. Some IoT standard bodies have combined “IoT Energy” and “IoT Oil and Gas” 
into one vertical, called “Energy”. However, the authors have decided to keep 
“IoT Energy” and “IoT Oil and Gas” as two separate verticals. What was their 
arguments based upon?

 23. What is the 80–20 Business Rule? Which IoT Businesses does it apply to?
 24. Why many suppliers are utilizing IoT connectivity to generate information 

value not just for services but over their lifespans? Provide examples of such 
information.

 25. What Level 0–4 support in Technical Services? Is there a Level 0? If so, 
what is it?

 26. What is IoT Full Ecosystem Model? Which major technology has made make 
such model feasible?

 27. What are the top three requirements that are required for the IoT Connected 
Ecosystems Model to work? Provide a brief summary of each requirement?

 28. Why outsourcing the management and operation of an IoT network is gaining 
significant attractiveness in recent years?

 29. What are the top five capabilities to enable connected ecosystem model for IT- 
based service?
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Chapter 10
The Blockchain in IoT

10.1  Introduction

The role of centralized governance over networks and entities has allowed for the 
mass control of digital media and private life. As the Internet has evolved, research-
ers and developers have looked for new ways to distribute control and trust. 
Blockchain technology was first introduced in 2008 with the famous Bitcoin white-
paper by pseudonym Satoshi Nakamoto. Since then, we have seen a global wave of 
interest and investments into the world of cryptocurrencies and digital assets. While 
some are just trying to invest into cryptocurrencies, others believe more in the 
underlying technology behind it—blockchain.

Through the use of blockchain technology, one can decentralize an entire net-
work—never relying on a central entity—and can place trust across all users instead 
of one central node. By distributing the data throughout the network, any one person 
or computer can contact their closest node to retrieve information residing on a 
common ledger.

Many expect that blockchain technology has the potential to transform a range of 
different industries. Because of this, blockchain is already being used and researched 
by many of the leading companies in technology. While many efforts are still in 
their infancy, and there are many challenges to solve, it is expected that blockchain 
has the power to propel significant transformations in the IoT sector.

Cisco estimates that there will be roughly 26 billion devices connected to the 
Internet by 2020. Server-client models will struggle to scale to such demand. 
Centralized models mean high maintenance costs for the manufacturer, and limited 
consumer trust in devices that are always connected to the Internet [3]. Blockchains 
facilitate the sharing of services and assets like never before. These types of possi-
bilities have led companies like IBM, Cisco, and Intel to contribute to blockchain in 
IoT efforts.
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There are countless digital currencies and innovative applications being devel-
oped on top of blockchain. The impact of these efforts will be hard to predict. In IoT, 
blockchains can facilitate things like M2M transactions, automated firmware 
updates, or even the tracking of food quality and control. Imagine cars automati-
cally negotiating rates for parking spaces, or drones automatically reserving and 
paying for a landing pad. These are just a few possibilities, and in this chapter, we 
explore further how the blockchain can impact the IoT domain.

The chapter is organized in the following way. Section 10.2 defines the block-
chain. We describe the difference between Bitcoin and blockchain, and provide an 
overview of how blockchain has evolved over time. In Sect. 10.3 we dive into how 
blockchains work, and review the features that make the technology important. 
Section 10.4 introduces how the blockchain may impact notable use cases in IoT, 
and reviews the advantages and disadvantages of blockchain technology. Lastly in 
Sect. 10.5, we go over security considerations within blockchain and IoT.

10.2  What Is the Blockchain?

Before learning what a blockchain is, we should first understand why Bitcoin and 
the blockchain were introduced together in the original Bitcoin whitepaper. Bitcoin 
was presented as the peer-to-peer electronic payment system, and blockchain was 
the proposed mechanism that allowed it to work. A peer-to-peer digital currency 
needs a mechanism that allows its users to trust each other without the need for a 
central authority (like a bank). It is in the Bitcoin whitepaper that Satoshi Nakamoto 
proposes such a mechanism. More specifically, Nakamoto proposes the blockchain 
as the solution to the double spending problem—how to tell if a user, or device, has 
spent the same digital coin more than once. Double spending is particularly hard to 
detect in a distributed system like Bitcoin, because there is no central authority 
tracking balances. This means that without a solution like the blockchain ledger, it 
is easy for a user to send the same coin to different users before anyone in the net-
work learns of the fraudulent transactions. Blockchain is therefore what allows 
Bitcoin to be a trustless system, and is the key innovation responsible for the success 
of Bitcoin and other cryptocurrencies that later emerged.

What is needed is an electronic payment system based on cryptographic proof instead of 
trust, allowing any two willing parties to transact directly with each other without the need 
for a trusted third party…In this paper, we propose a solution to the double-spending prob-
lem using a peer-to-peer distributed timestamp server…—Nakamoto, 2008

10.2.1  Bitcoin and Blockchain

It is important to make a clear distinction between Bitcoin and the blockchain. As 
mentioned earlier, the blockchain is the mechanism that allows Bitcoin to work. 
Thus, Bitcoin can be considered to be an application that uses blockchain—but 
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blockchain can be used on its own. It can be used to enable other cryptocurrencies, 
or as we will see in the next section, blockchain can also enable an array of different 
applications beyond Bitcoin and other cryptocurrencies (Fig. 10.1).

A simple analogy we can use is that of the car and the combustion engine. A car 
uses a combustion engine to function, but the combustion engine can be used to 
power other systems such as buses, trucks, boats, electrical generators, etc. Thus, 
we can think of the blockchain as the combustion engine and Bitcoin as the car. 
Bitcoin is just the first example of many possible applications of blockchain 
technology.

10.2.2  Evolution of Blockchain

Since its introduction in 2008, the blockchain has evolved as it has been adapted in 
a wide range of applications and industries. In Table 10.1, we break down the differ-
ent categories of blockchain as proposed by Melanie Swan in the book “Blockchain, 
a Blueprint for a new economy.”

Blockchain 1.0: Blockchain 1.0 consists of the use of blockchain in digital currency 
applications for the decentralization of money or payment systems. This includes 
Bitcoin, other cryptocurrencies, and payment systems. In the beginning, these 
were the first applications to employ blockchain as a technology.

Blockchain 2.0: The next major innovation in blockchain, considered Blockchain 
2.0, is a technology known as “contracts.” Beyond peer-to-peer payment sys-
tems, Blockchain 2.0 includes the transfers of other property such as stocks, 
bonds, and smart property. It also includes “smart contracts,” which are described 
later in this section.

Fig. 10.1 Bitcoin vs. 
Blockchain

Table 10.1 Categories of Blockchain

Categories Description

Blockchain 1.0 Blockchains used for currencies
Blockchain 2.0 Use of smart contracts within blockchains
Blockchain 3.0 Applications beyond currency and financial 

markets
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Blockchain 3.0: Blockchain 3.0 consists of all applications beyond currency and 
markets. This includes the use of blockchain in areas like healthcare, govern-
ments, and commercial settings. In Sect. 10.5 of this chapter, we cover a couple 
of these segments, and the potential use cases of blockchain in IoT.

10.2.3  Defining Blockchain

A blockchain is composed of a distributed digital ledger that is immutable—cannot 
be edited—and is shared among all participants in a blockchain network. More 
specifically, a blockchain is a data structure composed of timestamped and crypto-
graphically linked blocks. Each block has a cryptographic hash, a list of validated 
transactions and a reference to the previous block’s hash. Through this mechanism, 
nodes can verify that a participant owns an asset without the need for a central gov-
erning authority. The key characteristics behind the success of blockchain are as 
follows:

 1. Decentralized architecture.
 2. A “trustless” system.
 3. Consensus mechanism.
 4. History of transactions.
 5. Ensured immutability.

We consider these as the key factors that have made the technology transforma-
tional. The blockchain allows for participants to engage in trustless peer-to-peer 
transactions. In short, it is said that decentralized, trustless transactions are the key 
innovation of the blockchain [1].

10.3  How Blockchains Work

A blockchain is just what the name implies, a group of blocks linked, or chained, 
together cryptographically. It also keeps record of all transactions that have ever 
been executed by nodes on the network. In this section, we provide an overview of 
how blockchains work by using Bitcoin as an example. We examine how transac-
tions are created, how they are broadcasted, how they are recorded into blocks, and 
how they are accepted into the distributed network of nodes.

Important Definitions

Nodes: Any computer or device connected to a blockchain network.
Ledger: A shared and distributed history of all transactions and balances.
Mining/Miners: In Bitcoin, mining is the process of generating a new legitimate 

block by applying proof-of-work. There are people that dedicate their nodes to 
“mine” new blocks. These nodes are considered “miners.”
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Consensus: A consensus algorithm is the mechanism by which all nodes in the 
network agree on the same version of the truth. A consensus algorithm allows 
nodes on the system to trust that a given piece of data is valid, and that it has been 
synchronized with all other nodes.

Cryptocurrency: A digital currency built upon cryptographic protocols.
Decentralized Application (DAPP): A decentralized application built on top of a 

blockchain based system.
Secure Cryptographic Hash Functions: A secure cryptographic hash function is a 

hash function that preserves one-wayness—easy to compute, but virtually impos-
sible to reverse engineer.

Cryptographic Keys: The use of symmetric (same) keys and asymmetric (public- 
private) key pairs for the use of signing and verifying transactions.

Merkle Tree Root: The root of a Merkle tree (binary hash tree). The root is the 
result of all leafs hashed together to a single hash.

10.3.1  Anatomy of the Blockchain

Components of the block’s header:

 1. Version: The version of block validation rules it follows.
 2. Previous Block Hash: The hash of the previous block in the blockchain.
 3. Merkle Root Hash: The root of all transactions hashes in a block.
 4. Timestamp: The Unix epoch time the block was mined.
 5. Bits: Encoded version of the target threshold.
 6. Nonce: Arbitrary number that can only be used once.
 7. Transaction Count: Total count of transactions contained within this block.

In Fig. 10.2, we show the basic architecture of the blockchain. A blockchain is very 
similar to a linked list—each block contains a pointer to the previous block. A key 
difference in blockchain is that each block contains a hash pointer to the previous 
block. A hash pointer contains two things: A pointer, or reference to the location of 
the previous block, and the cryptographic hash of that block. Storing the crypto-
graphic hash of the previous block allows us to verify that the block we are pointing 
to has not been tampered with. To verify a block, we simply compare our stored 
hash pointer with the previous block’s hash and make sure they are equal.

10.3.2  Understanding a Block’s Hash

Cryptographic hash functions are an important aspect of blockchain’s security. For 
this reason, let us take a look at how block hashes are calculated and how they are 
used in preventing an attack. To calculate the hash, three inputs are used: Previous 
block hash, the Merkle root hash, and the nonce. These values are processed by the 
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SHA-256 cryptographic hashing algorithm. The output is the block hash—a fixed 
size output that uniquely represents all of the block’s contents.

In Bitcoin, hashing is performed by miners, and the hash produced must be lower 
than the target hash set by the network. To find a hash meeting this criteria, miners 
try different nonce values and check if the output hash is lower than the target, while 
the previous block hash and Merkle root hash remain the same. Miners do this itera-
tively until a valid hash is found. Because of this, the mining process consumes a lot 
of power and compute resources. This procedure is how the miners create proof-of- 
work. In Fig. 10.3 we illustrate how the block hashes are calculated.

To understand how it works, consider a scenario where an attacker attempts to 
pay themselves some Bitcoins by modifying one of the blocks in the chain. Imagine 
they attempt to add a fake transaction to block 1, claiming that someone has sent 
them some coins. Upon changing the transaction list, the hacker will be forced to 
update the Merkle root hash. Because the block’s hash is dependent on the Merkle 
root hash, if the Merkle root hash is altered, then we must recalculate the block’s 
hash. But that is not so easy. In Bitcoin, it takes considerable compute power to 
mine one block. So the attacker would then have to invest power and time recalcu-
lating the block they maliciously altered. Once the attacker has calculated the new 
hash, then they have to figure out a way to make the block a legitimate part of the 
blockchain.

This is where hash pointers play a key role. For the attacker to alter any block in 
the chain, they also have to change every other block that follows! Why? Because 
every subsequent block points to the previous block—block 2 contains a hash 

Fig. 10.2 Anatomy of the Blockchain
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pointer to block 1. But our attacker was forced to recalculate the hash for block 1, 
so a comparison with the hash pointer in block 2 will fail. To avoid this, the attacker 
must change the hash pointer in block 2 to match the block hash of the new (mali-
cious) block 1. But changing the hash pointer in block 2, changes block 2’s hash. 
Thus, the attacker would have to recalculate the hash for block 2 as well. Once they 
change block 2, same would have to be done for block 3, and block 4 …etc. During 
this time, the network has still been progressing while the attacker is spending time 
altering past blocks. Time and cost used in such an attack are expensive and point-
less as long as the attacker holds less than 51% of the network’s compute power. It 
is this combination of proof-of-work and hash pointers that trumps 51% attacks and 
is considered to be the fundamental security feature of Bitcoin’s blockchain.

10.3.3  Lifecycle of a Transaction

To understand how transactions are executed in a blockchain, let us consider an 
example scenario where Alice sends Bob .5 Bitcoin (BTC). In order for the transac-
tion to take effect and be accepted into the blockchain, the following main steps 
need to be completed (Fig. 10.4):

Let us assume Alice’s current balance is: 10BTC and Bob’s is 2BTC.

 1. Alice agrees to send Bob .5BTC

 (a) Alice initiates a transaction using Bob’s Bitcoin address. While Bob’s iden-
tity is not linked to his Bitcoin address, Bob may create a new address for 
every new transaction to minimize tracking of his activity.

 (b) Bitcoin is pseudo-anonymous, meaning Bob’s transactions are not fully 
obfuscated, and if his address is exposed in connection to his identity, then 
there are tools that can potentially track all of his past activity on Bitcoin.

Fig. 10.3 Block SHA256 calculation
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 2. Alice generates a transaction

 (a) When Alice broadcasts a transaction to the blockchain network, the message 
notes that Alice should now have .5 less BTC and Bob should gain .5BTC. In 
reality, no coin or asset is actually transferred (there is no digital coin that 
actually exists in the form of bits), instead, only records of transactions are 
recorded in the blockchain’s ledger. In order for the transaction to be broad-
cast securely, Alice signs that the transaction is legitimate. This verifies that 
no one is trying to withdraw coins out of her wallet without permission. 
Alice signs the message using her private key to Bob’s public key, thus only 
Bob can spend these coins.

 3. Alice’s wallet or interface into the Bitcoin network will now propagate the 
transaction to known peers

 (a) Once the transaction has been generated and is valid, Alice’s wallet or inter-
face to the network will propagate the transaction to her known peers. These 
nodes will in turn propagate it to their peers upon validating the transaction. 
This mechanism is called flooding.

 4. Miners receive the transaction, and validate it, ensuring that it has not been 
corrupted or tampered with.

 (a) Miners will use the consensus rules to validate the transactions making sure 
there is no double spending and that each address associated with the trans-
action exists.

Fig. 10.4 How a Bitcoin transaction is executed
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 5. Miners include the transaction into a block, and apply the consensus algo-
rithm (proof-of-work in case of Bitcoin) to mine a new block.

 (a) Transactions are then added to the new block in order of precedence. 
Transactions are added in descending order based off of their fees. Each 
transaction usually contains a fee that is paid to the miner. Once the miner 
receives the previous block in the network, they will start mining the new-
est block.

 6. Once a new block is mined, miners then broadcast the new block to be added 
to the blockchain by all other nodes in the network.

 (a) The miner will propagate its new block to the network and begin the process 
all over again with new transactions.

10.4  Features of Blockchain

A blockchain provides key benefits that have never been possible before. These 
benefits stem from the clever combination of novel and existing technologies that 
allow the community to build innovative blockchain based solutions. In this section 
we cover some of the important features that a blockchain provides and discuss why 
they are important in IoT.

10.4.1  Consensus Algorithms in IoT

Blockchains can be considered “trustless” because they provide a mechanism to 
validate that data being added to the blockchain is legitimate. To achieve this, all 
nodes need a way of agreeing on the correct version of the truth. The algorithms 
used to reach an agreement are referred to as “consensus algorithms.” For example, 
Bitcoin uses the “Proof of Work” (PoW) algorithm, but as we will see in this section, 
PoW is not the only algorithm that exists; there are many, and all of them offer dif-
ferent advantages and disadvantages. In IoT, it is essential that the consensus algo-
rithms used can meet certain security, energy consumption, and computational 
requirements. In this section, we introduce a short list of the most prominent con-
sensus algorithms, and examine their viability in IoT solutions.

Byzantine Generals Problem Before diving into different consensus algorithms, 
let us further define the goal of a consensus algorithm. In July 5th, 1982, Leslie 
Lamport, Robert Shostak, and Marshall Pease published a paper named “The 
Byzantine Generals Problem.” From the original paper:

…imagine that several divisions of the Byzantine army are camped outside an enemy city, 
each division commanded by its own general. The generals can communicate with one 
another only by messenger. After observing the enemy, they must decide upon a common 
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plan of action. However, some of the generals may be traitors, trying to prevent the loyal 
generals from reaching agreement. The generals must decide on when to attack the city, but 
they need a strong majority of their army to attack at the same time. The generals must have 
an algorithm to guarantee that (A) all loyal generals decide upon the same plan of action … 
(B) A small number of traitors cannot cause the loyal generals to adopt a bad plan…The 
loyal generals will all do what the algorithm says they should, but the traitors may do any-
thing they wish. The algorithm must guarantee condition A regardless of what the traitors 
do. The loyal generals should not only reach agreement, but should agree upon a reason-
able plan.

In the case of blockchain, the generals are the nodes in the distributed network, 
and the messages are the communications, or transactions, across blockchain net-
work. In short, how do all truthful network nodes reach a consensus on the validity 
of a new transaction even if there exists a certain percentage of malicious or faulty 
nodes? A Byzantine Fault Tolerant system is one that can tolerate the Byzantine 
Generals Problem.

Proof-of-Work (PoW) Proof-of-Work algorithms require “miners” to solve a very 
complex cryptographic puzzle to try to prove that the current transactions on the 
blockchain are valid. This is the consensus algorithm used in Bitcoin. All miners 
receive transactions and begin a race to “mine” a new block. The first “miner” to 
solve this puzzle correctly, wins and receives an incentive in return. In Bitcoin, 
“miners” receive Bitcoins as a reward. The reward is halved every 210,000 blocks. 
In PoW, nodes trust the longest chain—the one with the most blocks added to it by 
other miners. Thus PoW is safe as long as 51% of the compute power is owned by 
honest miners.

In PoW, solving the puzzle consumes a lot of computational power and takes 
considerable amount of time to complete. Thus, adding new blocks translates to 
high energy costs and low amount of transactions per second. In IoT, both present a 
big challenge. First, the actual sensors/devices on the network will not be interfac-
ing with computation and consensus. The main gateway and fog domain will most 
likely be in-charge of computation and consensus as they can manage memory and 
power in a more sustainable fashion. Sensors will primarily rely on sending infor-
mation to the fog and dealing with identity management between peers. PoW could 
potentially work with IoT devices, but there would have to be a strict separation of 
compute nodes and light clients (sensors) throughout the network. We argue that 
while a feasible algorithm for IoT, it is not a good choice for IoT solutions due to 
the large computational and energy consumption requirements that will have to be 
introduced into the networks.

Proof of Stake (PoS) Proof of Stake does not require expensive compute resources 
to mine blocks. Instead, PoS uses a validation process based on the amount of coins 
that you already own. If you own 1% of the stake in the blockchain, then you will 
have a 1% chance of getting chosen to create, or “mint,” a block. Thus, simply by 
having a stake in the system, you can be chosen to “mint” a block. The idea is that 
the more value you have at stake in the system, the less likely you will be willing to 
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create a malicious block. If a block is invalidated by the rest of the network, then 
you lose your stake. This action will fall into an invalidation period, where the con-
sensus for that transaction may be taken over by fellow peers, but your validity will 
drop among the nodes.

We argue that PoS would be a good fit for IoT because does not suffer from PoW 
energy drawbacks and does not require high computational capabilities. With PoS, 
a possible drawback is that a node with more stake has more control of the network; 
and this control can continue growing because the node with the most stake is more 
likely to be chosen to mint a block. In permissioned blockchains this should not be 
a problem, but more research is needed to understand the effects of PoS in permis-
sioned and permissionless IoT blockchains.

Proof of Activity (PoA) Similar to PoW, Proof of Activity requires miners to mine 
a new block, the only difference being that the transactions on the network are not 
required to be part of the new block, the mining is done for the sole purpose of solv-
ing a cryptographic puzzle. Once a new block is found, a similar validation to PoS 
is performed. The block is broadcasted to a group of chosen validators for them to 
sign the new block. The likelihood a new validator is chosen is similar to that of 
PoS, the more stake they own in the network, the more likely they will be chosen to 
sign the new block. Proof of Activity suffers from the same drawbacks as 
PoW. Because of this, it is probably not a good choice for IoT applications.

Proof of Elapsed Time (PoET): Proof of Elapsed Time is a bit different than the 
other consensus algorithms mentioned so far. PoET was developed by Intel and is a 
proposed contribution to the open-source Hyperledger blockchain project. At a high 
level, PoET essentially works by assigning each node a random wait time, the vali-
dator with the shortest wait time “wins” and gets to mine the next block. The algo-
rithm is considered to be “lottery algorithm”—the probability of being selected is 
proportional to the amount of resources contributed. This consensus algorithm has 
advantages in that it is much more energy efficient than PoW and does not require 
expensive hardware. On the other hand, it requires Intel processors to run it (requires 
trusted execution environment on the CPU), in which case it requires trust in Intel’s 
hardware, which many say goes against the decentralization of trust concept. As far 
as IoT devices are concerned, we believe that PoET would be a good option for 
private IoT blockchains. This is because there is no need to have high compute 
power, or expensive hardware, and is also power efficient (Table 10.2).

While not an exhaustive list of consensus algorithms (and there are many), it is 
easy to see that at the heart of a blockchain is the consensus algorithm that glues the 
whole system together. Each consensus algorithm will have its own advantages and 
disadvantages depending on the use case; different industries and applications will 
apply different consensus depending on requirements such as scalability, transac-
tions per second, and if the system will be permissioned or permissionless.
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10.4.2  Cryptography

What makes blockchains trustworthy and secure is its underlying mechanisms 
based on cryptography, signed keys, and digital signatures. While Bitcoin has been 
exposed to various attacks in the past, it is worth noting that the ledger itself, or the 
blockchain, has never itself been knowingly hacked. In the past, Bitcoin hacks tar-
geted Bitcoin wallets or Bitcoin exchange websites instead. Let us consider Bitcoin’s 
cryptographic elements as an example, and see how they are used to maintain the 
block chain’s integrity. Bitcoin’s cryptographic components are mainly com-
posed of:

• Secure Hash Algorithm (SHA-256): Cryptographic hash functions are a set of 
mathematical functions that output unique outputs for unique inputs. The input 
can be of any size, and the output is always a fixed size—256 bits (32 bytes) in 
the case of SHA-256. If any one bit of the input is changed, the cryptographic 
hash function outputs a completely different and unpredictable output. Secure 
cryptographic hashing preserves one-wayness, that is, you can easily produce a 
hash from a given input, but it is extremely difficult to generate the input to the 
hash by only knowing the hashed output value. How difficult? SHA-256 is used 
for most functions including integrity, block-chaining, and hashcash cost func-
tion calculations.

• Elliptic Curve Digital Signature Algorithm (ECDSA): ECDSA is used to cre-
ate cryptographic keys that can derive addresses for use within the blockchain. 
Each ECDSA algorithm calls a specific curve to be used for key generation, 
which enables efficient computation.

Cryptography is at the heart of why the blockchain is so revolutionary. Everything 
from consensus algorithms, to encryption, to the immutability aspects of the block-
chain are due to the underlying cryptography. This is a fundamental key in unlock-
ing the potential to IoT, as different devices need to engage in transactions with 
trustless entities and devices on a constant basis.

Table 10.2 Consensus algorithms in IoT

Consensus 
Algorithm Description

IoT 
compatibility

Proof-of-Work Computation is needed to solve cryptographic puzzle to 
ensure consensus.

No

Proof of Stake Ability to mint a new block is proportional to the stake in 
the blockchain network.

Yes

Proof of Activity Computation is needed to solve cryptographic puzzle to 
only known validators who are active.

No

Proof of Elapsed 
Time

Use of random time intervals that determine which node is 
the current miner.

Yes
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10.4.3  Decentralized

Having a decentralized architecture can propel IoT applications to be realized at a 
wide scale. Currently, IoT systems mostly depend on client/server or publish sub-
scribe architectures [7]. Centralized architectures require expensive infrastructure 
with high compute and storage capabilities. In addition, they present a form of cen-
tralized control that can be act as a single point of failure or the target of a security 
attack. Publish subscribe architectures can also have a few drawbacks with scalabil-
ity and security. If devices could perform secure transactions using a peer-to-peer 
paradigm, it would greatly reduce the cost, transaction time, and probability of ser-
vice interruption.

The blockchain is composed of a decentralized, distributed network of nodes that 
participate in transactions and maintenance of the network. This is the core concept 
behind blockchain. All transactions are peer-to-peer and are tracked by all of the 
participating nodes in a network. Blockchain networks have a reliability factor of 
(n − 1)—if any node fails, or drops from the network, there is no interruption to 
service. The network always maintains availability and fault tolerance. 
Decentralization in IoT is a very attractive alternative to previous architectures, but 
there are still many challenges, and no clear consensus on how to best take advan-
tage of blockchains decentralized nature in IoT (Fig. 10.5).

10.4.4  Transparency and Trust

The use of a public ledger allows all nodes on the network to see the entire history 
of the given blockchain. This opens access to the history of data on the chain, giving 
transparency to all transactions. The trust that is built up within the network is main-
tained through the use of the public ledger and gossip protocol. Each node always 

Fig. 10.5 Network types
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knows of its nearest neighbors and new nodes. Through each node gossiping to one 
another, they learn of new transactions. Utilizing the public ledger and protocol 
instills trust within each node as each node is responsible for one another. This 
decentralization mechanism holds the nodes responsible for the integrity of the 
network.

10.4.5  Permissioned, Permissionless, and Consortium

Permissionless blockchains, such as Bitcoin, are designed so that anyone can join 
and participate in the network without having to establish their identity. There is no 
need to verify a given user through some sort of identity management system. The 
only identity needed is the user’s public key. In contrast, permissioned ledgers  
are primarily used in private applications where strong indicators of identity are 
required to join the network. Permissioned ledgers are preferred among B2B and 
B2C enterprises. There are usually multiple layers of validation before enrollment 
to the network is verified. The use of regulators, as seen in IBM and Linux 
Foundation’s Hyperledger, is used to ensure all users meet various requirements on 
the network. Other blockchains such as Ethereum give one the option to setup the 
network as permissioned, permissionless, or consortium. Consortium blockchains 
are very similar to permissioned blockchains. The key difference being that in a 
consortium, new participants are authenticated by a predetermined group of private 
entities.

10.4.6  Smart Contracts

Originally introduced by Nick Szabo in 1994, smart contracts consist of small com-
puter programs that contain—embedded in their code—an agreement between two 
entities. This contract is then distributed across the blockchain and is responsible for 
facilitating the execution, verification, and enforcement of an agreement between 
seller and buyer. Essentially, a smart contract is just a digital, auto-enforceable ver-
sion of a traditional paper-based contract. Ethereum is the most popular blockchain 
system with embodied smart contracts. It has a current market cap of more than $35 
billion as of November 2017. As we will see in later sections, smart contracts allow 
devices in IoT to negotiate and execute previously agreed actions automatically, 
enabling a new set of functions and use cases for IoT solutions.
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10.4.7  Advantages and Disadvantages

There has been much debate over the use of blockchain technology and its possible 
applications. In most use cases, traditional back end infrastructures offer a good 
solution to existing problems. Yet, the industry is beginning to move to a more 
decentralized infrastructure to improve security and trust between users and the rest 
of the network. While blockchain presents a lot of promise, it is not a silver bullet—
blockchain does not solve all security and privacy concerns, it is only part of the 
solution. With every new technology there are advantages and disadvantages, and 
blockchain is just one part of a complex technology stack.

Blockchain technology has multiple disadvantages that have decreased its adop-
tion rate. An often-overlooked challenge is that the technology is initially difficult 
to understand and adopt. Trying to get people to use blockchain applications is a 
difficult task, which brings disadvantages as people believe it is an unnecessary 
precaution for a network.

Scalability is another widely debated challenge. As an example, there has been 
much debate over scaling in regard to Bitcoin, which brought about a fork in the 
chain to allow larger than 1 MB block sizes. People felt that this size limitation does 
not scale with the adoption of Bitcoin and transactions will take longer and longer 
to be validated and added to the main chain. There has also been other discussions 
of the scalability of Ethereum with the nature of storing everything within various 
Merkle roots, where over time downloading the full chain will be much larger than 
Bitcoin’s full chain (as of April 2018 its around 180 GB). To avoid similar storage 
issues, people—especially users on mobile devices—use Simplified Payment 
Verification (SPV) nodes which allow them to not run a full node and use filters to 
only grab the information that they need. This will rise over the next years as well 
as the use of Lightning network and other off-chain protocols.

Other disadvantages include the size of the network and limiting the control of 
nodes. Whether one is building a permissionless, permissioned, or consortium 
blockchain, limits will have to be set on the admin privileges of nodes, so that the 
network does not gravitate towards a “centralized” paradigm. With this, there is 
always the risk of a Sybil (51%) attack on the network. As these are definitely 
important disadvantages, there are also a great deal of positives from the technology.

Blockchains bring about a new way to enable privacy and security between par-
ties through cryptographic principles. The cryptographic principles employed 
ensure the handling of assets to be controlled only by the one who hold the private 
key. The decentralized nature enables all users to share the responsibility for the 
integrity of the network. Blockchains use an immutable ledger, once something is 
added into the ledger it cannot be changed or altered. This allows for a fully trust-
worthy system as we can trust that it will not be manipulated. There is no more 
“middle-man” or centralized authority that holds all of the information. Every node 
on the network holds a copy of the ledger which allows for confirmations, validity, 
and for a truly trustless system to survive. Blockchains are fairly simple to bootstrap 
once they are implemented. Furthermore, it is a new way to envision technology and 
the next frontier of Internet.
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10.5  Blockchain Applications in IoT

From financial services, to government services, to peer-to-peer transactions, com-
panies around the world are working to integrate blockchain into our everyday lives. 
Currently, there is no consensus on exactly how blockchain might transform differ-
ent industries. Thus, in this section we introduce different IoT applications, and 
examine how integrating a blockchain might transform these use cases.

10.5.1  M2M Transactions

According to Cisco, it is estimated that there will be 26 billion connected devices on 
the Internet by 2020. M2M interactions are essential for the true potential of IoT to 
be realized. Multiple challenges still need to be addressed for M2M interactions to 
truly flourish in IoT, including connectivity standards, lightweight security proto-
cols, and ensuring data privacy; aspects which are covered in Chap. 4 of this book. 
While there are technical challenges in implementing M2M interactions, “smart 
contracts” introduce a solution to a fundamental M2M challenge: what protocol do 
the devices in the IoT utilize to negotiate and execute M2M transactions?

Smart contracts will be heavily used in IoT. You can imagine a vending machine 
that can automatically order certain items, and pay for the transaction through the 
agreement of a smart contract. All of this can be accomplished without the need for 
a central server, or other central entity. The contract would be automatically negoti-
ated, executed, and enforced by the blockchain network.

10.5.2  Energy Management

Blockchain and smart contracts show potential promise in the energy sector. As 
mentioned in the IoT Verticals chapter of this book, IoT energy use cases include 
energy monitoring through smart meters and IoT energy management in the con-
nected home. Through these mechanisms, power providers can collect more data on 
energy patterns, and adjust power plant performance and predictability.

As the grid gets smarter and more capable, homes will be able to not only con-
sume energy, but also provide energy that they generate through solar, wind, or any 
other means. Potentially, homes could use smart contracts on a blockchain to nego-
tiate energy exchanges, and execute energy transfer from one home to another auto-
matically. Payments for the renewable energy transfer would be bought and sold via 
a blockchain network.
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10.5.3  Supply Chain Management

The supply chain is often a complex set of interactions among a long chain of dif-
ferent vendors. Tracking a set of shipped goods is often a convoluted task that 
requires information from many parties. IoT has already begun to provide more 
insights that enables companies to collect data as their goods travel the globe. 
Sensors provide temperature data, location data and more; giving companies new 
found control and quality assurance that did not exist before.

Blockchain can be used to simplify the expensive logistics involved when ship-
ping products around the world. By using smart contracts, shipments can be tracked 
at each stage. Every time a product arrives to a location, that product can be scanned, 
and a contract would be executed between the two vendors exchanging goods. This 
would enable an open and verifiable history of where the product was handed off, 
its condition, and if the contract terms were met (time, date, temperature…etc.). 
This eliminates the need for each stakeholder to independently track an asset in their 
own database, a database that provides no transparency, collaboration, or verifica-
tion with all other stakeholders in the supply chain.

In addition, using a blockchain network to track products can provide more 
transparency and accountability in trading. Consumers will be able to track and 
understand where their products came from, and how the product arrived to their 
doorstep. For example, according to the Mintel Press Office, only 26% of consum-
ers trust organic food labels, and only 13% believe that organic foods are highly 
regulated. Having better insight into where food was grown, how it was processed, 
and how it arrived to the store is important to consumers. There are already exist IoT 
solutions in agriculture that aim to improve quality of food by means of yield moni-
toring, optimal seeding, optimal water usage, and more. There also exist IoT solu-
tions in supply chain management to monitor conditions and track of goods as they 
are transported from the source to the store. Adding all of the information collected 
via IoT to a consumer accessible blockchain would provide the consumer a secure, 
trackable, and tamper proof way of understanding where their goods were sourced 
from, and how they got to their store; increasing the trust between consumer and 
producer (Fig. 10.6).

10.5.4  Healthcare

Healthcare is considered one of the most important verticals for IoT.  Intelligent 
wearable devices present new ways to monitor non-critical patients remotely while 
clearing up room in hospitals for more critical patients. The healthcare industry is 
already adopting real-time tracking of medical devices, personnel, and patients. 
That said, there are still critical challenges in the collection, management, and dis-
tribution of patient data that blockchain has potential to provide solutions for.
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The main limitation that blockchains can help improve is around the collection 
and storage of patient data. According to the centers for medicare and medicaid 
services, these records hold information such as demographics, progress notes, 
problems, medications, vital signs, past medical history, immunizations, laboratory 
data, and radiology reports. Currently, these electronic health records (EHRs) oper-
ate in largely in silos; each medical facility collects, maintains, and stores its own 
medical records for each patient. This creates a high potential for duplication of data 
while also preventing the cross validation, verification, and data accuracy. 
Blockchain may allow for all medical records to be stored and shared in a decentral-
ized manner, ensuring one verifiable, non-immutable source of information on any 
patient, to any authorized provider.

Having EHRs on a blockchain would provide a mechanism that would enable:

 1. IoT Data Exchange: The ability for M2M medical data management would 
open the doors for a secure and viable way for patient’s data to be monitored 
remotely by medical staff. The blockchain allows for these M2M interactions to 
happen automatically, and would ensure a secure data transfer while preventing 
duplication of data. In addition, when IoT sensors can exchange data through the 
blockchain, data is protected from tampering and single sources of failure can be 
eliminated.

 2. Data Interoperability: The potential to create a single EHR system is an oppor-
tunity that the entire industry is excited about. It is so important, that according 
to the Premier Healthcare Alliance, sharing data across organizations could save 
hospitals about 93 billion dollars over 5 years alone. A system like that on block-
chain would contain a single version of patients records and would be shareable, 
traceable, anonymized and would put the patient in control of what records could 
be accessed and by whom.

Fig. 10.6 Blockchain in supply chain
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 3. Drug and Treatment Management: In 2015, a study conducted by the 
American Journal of Managed care found that 76.9% of patients that partici-
pated in the study had at least one medication discrepancy in their medication 
lists. In addition to errors, there are also issues with ensuring that control sub-
stances such as opioids are not abused or that a patient is not a victim of fraud. A 
shared EHR system would allow pharmacies and medical staff to ensure that a 
patient is not prescribed more than once, and would provide a clean record of 
substances taken in the past. The power of shared data, along with new smart 
labels that leverage the power of IoT to remind patients of when to take their 
prescriptions along with a track of when the medicines are taken, would provide 
very useful data not just for doctors, but also for the machine learning algorithms 
that are trying to provide more specialized care.

There are of course a lot of challenges that still need to be addressed such as 
privacy and access management to name a few. Additionally, blockchain’s adoption 
in the healthcare sector will largely depend on the cooperation of healthcare provid-
ers, who currently depend on a large array of proprietary software solutions and 
established IT infrastructures.

10.5.5  Retail

IoT is already used in the retail—enabling the tracking of products in stores, auto-
mating and tracking product delivery, and allowing for more beneficial loyalty pro-
grams. The blockchain can further these advances, which can result in a better 
customer experience by increasing consumer trust and improving consumer reward 
programs.

Product Authenticity: The authenticity of a product is difficult to identify, and can 
result in damage to brands and declining sales. An IP Commission Report on U.S 
Intellectual Property mentions that the cost of counterfeit goods to the U.S econ-
omy could be anywhere between $225 and $600 billion annual U.S dollars. 
Blockchain along with IoT solutions would provide the consumer with a clear 
and direct insight into the entire history of the product—from where their prod-
uct was manufactured to how it arrived to the store. Such transparency drastically 
lowers the possibility of a merchant or consumer unknowingly buying a product 
that is not genuine.

Loyalty Programs: Currently, many loyalty programs work in silos, and do not 
work together to benefit the consumer. IoT solutions are allowing retailers to 
enhance the customer experience by collecting data on customer patterns and 
behaviors. Blockchain could allow for one universal loyalty program that a con-
sumer can use at any store or to buy any service. This way, all the companies get 
access to consumer behavior while providing more value and savings for the 
customer.
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Inventory Tracking: IoT solutions have allowed retailers full visibility into their 
products and merchandise—along with the ability to track product performance 
and stocking levels through digitized inventory and supply chain. Like in other 
use cases, blockchain introduces a way to track a product at every point in the 
supply chain and in-store, providing an accurate, and up-to date, trail of where 
the product is.

10.5.6  Automotive and Transportation

The automotive industry is going through transformations unlike the ones seen in 
the last few decades. From electric vehicles to autonomous vehicles, the industry is 
going through significant technological changes. These changes represent vast 
opportunities for drivers, manufacturers, and other stakeholders such as insurance 
providers and dealerships. Companies have already discovered how IoT can improve 
services, efficiency and can even provide real-time visibility into vehicle functions. 
As in other use cases, blockchain can augment IoT to create an array of potential 
benefits.

M2M Microtransactions: One of the most important use cases that blockchain can 
securely enable is M2M microtransactions. Vehicles would be able to automati-
cally negotiate and pay for a wide array of services. Services like finding or 
reserving a parking spot automatically, or negotiating a faster lane if the person 
in the car is in a hurry, or automatic payments at a gas station or charging station; 
just to name a few. All of these M2M interactions could be negotiated and auto-
matically executed through smart contracts. As the industry moves towards 
autonomous vehicles, these M2M transactions will become ever more crucial.

Vehicle Dynamic Ecosystem: IoT, analytics, artificial intelligence, and blockchain 
are redefining how vehicles will be owned and cared for. IoT is enabling manu-
facturers to collect and track more data about their vehicles, improving in- vehicle 
experience, maintenance downtime, and quality. Logging sensor data in vehicles 
to a blockchain based system enables the automobile ecosystem to view all of the 
same data about a particular vehicle, a set of vehicles (specific model), or even a 
brand of vehicles. This means that regulators, manufacturers, insurance provid-
ers, etc. all see the same exact data on a vehicle. Data that cannot be modified and 
is reliable opening the door for opportunities for new business models. Insurance 
providers could automatically provide dynamic pricing based on driving behav-
iors, and even automate the insurance claim process as soon as an accident is 
detected. Manufacturers could automatically use that same data to run analytics 
on their vehicles to extract patterns and possible issues early (allowing for a more 
proactive recall and maintenance schedule). Even auto financing and title trans-
fers could be done in a much faster, transparent and verifiable way through the 
blockchain.
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10.5.7  Smart City

According to a past World Urban Prospects report, 54% of the world’s population 
lived in cities as of 2014, and that number is expected to grow to about 66% by 
2050. With such population growth, cities have already begun developing smart cit-
ies to cope with growing challenges and provide more benefits for their citizens. 
Around the world, there are hundreds of smart city pilots taking place. IoT solutions 
are being used to digitize the world around us and improve things like transporta-
tion, air/water quality, energy management, and public safety.

Blockchain and IoT: To support the evolution of smart cities, the blockchain can 
be combined with current IoT solutions. Blockchain can accelerate the adoption 
of energy microgrids by providing a billing system for automatic negotiation and 
execution of energy distribution. It can be used to automate water supply man-
agement by implementing smart contracts that continuously track and manage 
water distribution so that it happens in the most efficient manner. Air and water 
quality can also be improved by implementing blockchain systems to record and 
share data from sensors installed all around the city.

Governance and digital services: Another way that blockchains can influence 
smart cities is through the digitization of citizen records and government ser-
vices—with the potential to practically eliminate paperwork across government 
agencies and services. Here are some examples of potential services or solutions:

• Civil Registration: Can be used for record keeping of each citizen. A block-
chain would make these records secure, tamper proof (reducing fraud) and 
shareable among a variety of stakeholders with needed access to the data.

• Citizen Identity: Holding the digital identities for each citizen on a block-
chain. Digital management of one’s identity through blockchain could elimi-
nate a lot of paperwork and make government services much faster and more 
efficient.

• Governance: Digitizing all records and transactions would transform the effi-
ciency of government agencies. Currently, all records are maintained in silos, 
making sharing of data across agencies hard and inefficient. Not only would 
a blockchain improve efficiency, but also would increase transparency and 
visibility into processes.

10.5.8  Identity, Authentication, and Access Management

Most application stacks require a form of authentication. This topic has been 
researched and implemented through handshake protocols, key escrow, and various 
cryptographic modules. For IoT, with respect to blockchain technology, there will 
have to be a primary use of identity management. When a new device is added to the 
network, the use of key escrow will have to establish their identity on the network. 
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This exchange and generation of keys can be determined within the secure enclave 
of the device’s hardware—removing the risk of attacks via ports, wireless, and 
Bluetooth capabilities.

Once the identity of the device has been setup, it would broadcast its public key/
address to the network for others to know of its presence. The use of public key/
asymmetric cryptography adds a benefit to the network, where all we need to know 
is your public key. Similar to Bitcoin, there could be time sensitive intervals set in 
place, where the device generates new addresses—thus never using the same address 
twice. This can promote anonymity to malicious observers and sway predictive 
analysis by attackers.

Another alternative to identity management is to use an escrow or auditing node. 
This node can be in-charge of asset management and communicating to others when 
a new node has joined or established itself to the network. In a sense, they will work 
as a Directory Server similar to BitTorrent type peer-to-peer networks. This allows 
for easily addresses the key-value store of asset management which could be 
mapped to public addresses.

As blockchain evolves and starts being used in IoT frameworks, the identity of 
each device and model on the network will become significantly more important. 
Each individual device will be granted access via identity and key management. The 
key management will need to be controlled via the hardware on each device where 
the actual access is done through software. As IoT networks are quite large, the entire 
infrastructure will need to uphold strong cryptographic modules to maintain identity 
management. While actual key storage is done through HSMs on each device.

10.5.9  Other Blockchain IoT Applications

While it is still too early to tell which IoT solutions the blockchain will revolution-
ize, the ones mentioned in earlier sections constitute the use cases with the most 
notable traction. Other notable use cases include:

Decentralized DNS: Provides a more secure Internet that is decentralized and not 
easily hijackable, potentially preventing past attacks on IoT devices. Examples 
include Namecoin and EmerDNS, already available through browser extensions.

Legal Contracts: Provides a system where things such as ownership registries, 
notary services, taxes, and even voting could be performed on a blockchain.

Insurance: Insurance on a blockchain could affect multiple industries. In automo-
tive, insurance can turn into an on-demand and dynamic policy system based on 
information that is retrieved in real time from sensors in your car. The same 
could be done for other property like your home.

Sharing Economy: Companies like Slock.it have created a platform that allows 
anyone to share anything with others. Using blockchain, they can lock and 
unlock physical assets based on predetermined smart contracts, giving anyone 
temporary access to any physical asset.
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10.6  Blockchain Security in IoT

When it comes to blockchain technology, there are normal security risks that mod-
ern day technological infrastructures face every day. Yet, blockchain technology 
also holds an important security risk which involves key management. As men-
tioned in earlier sections, one’s private keys are the ultimate key/password to obtain 
your information and assets. Whoever holds those private keys holds your identity. 
Throughout this section we will discuss the advantages and disadvantages of secu-
rity within blockchains and how that relates IoT.

10.6.1  Trust Between Nodes

Decentralization allows for a trustless mechanism to perform consensus among 
nodes while adhering to one’s privacy and truthfulness. Do you have what you say 
you have? Based off of your connection, known past activity, can we correctly iden-
tify you? All of these questions and more need to be asked when building a block-
chain based system. The elimination of a single point of failure is a huge win for all 
stakeholders. However, this now brings attack vectors to all nodes. Especially in the 
realm of IoT, we need to carefully consider the protocols between applications and 
nodes. All messaging between nodes should be secure and private. There should be 
no possibility of 51% attacks or node compromises. Sybil attacks, also known as a 
51% take over of a network, are one of the attacks that are looked at when it comes 
to consensus and node propagation. The use of keys, messaging systems, and gossip 
protocols can help protect against this as there are multiple layers of verification 
before any information that a node posts to the network is accepted and added to the 
chain. To ensure all nodes are safe, we need to maintain trust between them.

A node first joins the network by bootstrapping off of some discovery peers. 
These peers are hard coded into the blockchain code-base. These nodes may be the 
major nodes that help uphold the network, or just the main nodes that we started 
with. Once they connect they start gossiping between one another to propagate infor-
mation throughout the network and add blocks to the chain. If an attacker could 
control a node within this network, they could potentially take over the entire net-
work or propagate faulty information to sway or alter the chain in some malicious 
manner. By posting invalid transactions and possibly using another malicious node 
to accept it could be catastrophic. Luckily, most security measures will be built into 
the blockchain network when developed. The trustless nature of a decentralized net-
work allows for a consensus to take place among nodes before things are committed 
to the chain or propagated. If a faulty transaction is propagated, another node will 
realize that this does not match the chain and has not been seen by other nodes. 
Nodes could add in delays between propagation to make sure that n of m other nodes 
have verified this transaction or information that was propagated to validate the peer.
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10.6.2  Malicious Activity and Cryptographic Principles

If malicious activity does happen to take place within a blockchain, the hope is that 
nodes and users will easily be able to verify given information based off of the 
secure cryptographic nature of information through the use of secure cryptographic 
hash functions or elliptic curve cryptography. If faulty information is introduced 
into the network, then the actual hash of that information will be different than what 
is recorded in the main chain. From basic verification of hashes, we can easily dis-
tinguish the integrity of the data (as seen in Sect. 10.3). Also, the specific curves that 
are used in the elliptic cryptography modules are specific and used for a reason. It is 
highly advised to use NIST approved and known cryptographic modules. Never 
attempt to write proprietary cryptographic libraries. Most of the time, these will not 
be tested as in-depth as NIST approved libraries and have the potential for collision. 
Collisions within cryptographic modules can lead to stolen keys, and overall com-
promise of the blockchain.

Attacks and hacks have been taking place within the blockchain industry over the 
past few months of 2017. Most have been from ICO’s or “Initial Coin Offerings” for 
Ethereum’s ERC20 tokens. Others have been from exchanges and hardware wallets. 
These attacks mainly occur from exploiting bugs in smart contract code or finding 
flaws in the safeguarding of private keys. As we have mentioned throughout this 
chapter, private keys are the holy grail of wallets and blockchain identity. To main-
tain security and privacy when it comes to keys is to ensure a proper key manage-
ment and escrow process. Key management can be taken care of in software or 
hardware. The use of HSMs (Hardware Security Modules) can move the overhead 
of key escrow and processing to a hardware device to ensure privacy, security, and 
proper authentication mechanism for nodes. When maintaining your key manage-
ment and escrow in software, there are more attack vectors exposed. Some core 
wallets within the blockchain space keep keys in “keyfiles” or a file that is held 
in  local storage. This can be attacked from any sort of malware from phishing 
attacks to visiting a malicious web site that installs loggers onto your system. A way 
to protect keys when they are stored through software is by using multi-signature 
wallets. Multi-signature wallets need more than one user to have access to the wal-
let. By using a n of m or a majority of the users to allows access to a wallet means 
that if 1 key is compromised the entire wallet is not lost.

10.6.3  IoT Security and Blockchain Advantages

For most IoT devices, they rely on a central entity to send them information or alert 
them of security risks. By moving these responsibilities to individual nodes that are 
decentralized, it theoretically makes these devices “smart” devices. By using a 
blockchain for IoT, the security level and fundamentals will greatly increase, and it 
will put the messaging and alerting functions within each devices protocol layer. 
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When dealing with the multiple layers within blockchain technology, we commonly 
focus upon consensus. Consensus algorithms are what allow the decentralized net-
work to obtain a “trustless” model. As mentioned in earlier sections there are vari-
ous types of consensus algorithms to base your blockchain on when building its 
network and infrastructure. The types of attacks vary in regard to consensus algo-
rithm. For example, PoW deals with miners providing enough computation to gain 
rewards, enabling the blockchain to grow. In this type of blockchain, the attacker 
would have to perform a Sybil attack to compromise the network. In a PoS block-
chain, the attacker would have to take control of the actual digital asset or sway the 
market, as nodes use the asset as a proving point within the network. Attacks within 
PoS blockchains deal much more with attack vectors of change in currency, whereas 
PoW deals with Dos/DDoS and Sybil attacks. PoS takes a different approach to the 
normal attack vectors that the security industry has seen over the years. In regard to 
IoT, the use of PoS would be a great benefit as each device could “mint” its own 
token in order to pay into the blockchain or protocol of their nature. This will protect 
them from Sybil attacks which could happen on a specific protocol layer and main-
tain consensus among n + m IoT devices.

Blockchain offers many security advantages for any desired application or sys-
tem. Yet blockchain technology is not the end-all-be-all answers for all applications. 
Blockchain technology should only be used for use cases that require high security, 
privacy, and a peer-to-peer nature in regard to networking. IoT can greatly benefit 
from blockchain technology as it will be able to secure the protocol layer and infor-
mation that is broadcasted between devices and networks. As blockchain technol-
ogy grows, so will the attack vectors. There will always be phishing attempts, 
punycode domains, and smart contract hacks. As time progresses the security space 
will evolve to build out standards and proper testing methodologies for blockchain 
technology. The importance of key management, node propagation, messaging, and 
consensus is what upholds the privacy and security within blockchain technology. 
Attackers will always try to outsmart your system, so be aware of your technology 
when building and implementing it in both a secure manner in regard to IoT and 
blockchain technology.

10.7  Summary

Blockchain is expanding to new industries every day, and has the possibility to pro-
pel IoT forward. This potential is greatly due to the technology’s foundation in 
cryptography and the mechanisms by which it addresses the Byzantine Generals 
Problem. Blockchain presents key features such as decentralization, security, and 
trust—all important aspects in IoT solutions. A handful of use cases in M2M, energy 
management, supply chain management, healthcare, retail and transportation dis-
play a picture of a fast-emerging technology within various industries. Lastly it is 
important to consider the challenges being faced by blockchain, such as scalability, 
privacy, and anonymity. While blockchain is not the answer to all the challenges in 
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IoT, it should be clear to appreciate why the hype exists—the technology presents 
many new possibilities that are only beginning to gain traction.

Problems and Exercises

 1. What is the double spending problem in digital currencies?
 2. Describe what a “Merkle Tree” is? How is it used in Bitcoin?
 3. In Sect. 10.3.2 we mention hash pointers, and how they are key to immutability 

of the blockchain. Keeping that in mind, what are other features of blockchains 
that work with hash pointers to maintain immutability?

 4. What are they key characteristics provided by the blockchain? Explain what 
they are, and why they are important for adoption in IoT solutions.

 5. What is a hash function and how does it work? What is the difference between 
a hash and a cryptographic hash function? Provide an example of how crypto-
graphic hashes are used in a blockchain (any blockchain will suffice as an 
example).

 6. What is a hash collision? Does Bitcoin suffer from the probability of hash 
collisions?

 7. Consider a scenario where there a potential double spend attempt by a mali-
cious actor in Bitcoin. Explain how the blockchain works to reject such attempt 
and what the malicious actor would have to do in order to fool all other hon-
est nodes.

 8. In table format, describe centralized, decentralized, and distributed network 
architectures.

 9. Perform a search and mention five companies that are currently working on 
blockchain  +  IoT solutions. Describe their solutions and how IoT and 
Blockchain are being combined. Make sure to include at least one start up and 
at least one established company.

 10. What type of records can be kept in a blockchain?
 11. In Sect. 10.4 we describe some consensus algorithms. Research consensus 

algorithms for blockchain and name an algorithm that we did not mention in 
this section. Is it good for IoT? Explain why or why not.

 12. What is Elliptic Curve Cryptography and how does it benefit the use of keys 
within blockchain technology?

 13. Describe a Sybil attack and other types of attack vectors that could take place 
on a blockchain.

 14. Blockchains all start from a genesis block and then maintain a block height as 
the chain grows. Describe the importance of block heights as timestamps and 
lookups within Merkle Trees.

 15. Describe the difference between permissioned, permissionless, and consortium 
blockchains. What type do you think best fits a blockchain involving IoT 
devices.

 16. What is the difference between a smart contract and multi-sig address?
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Chapter 11
Industry Organizations and Standards 
Landscape

11.1  Overview

The IoT industry landscape is crowded with different standards bodies and organi-
zations chipping away at various aspects of the technology. As is typically the case 
early on in the technology cycle, some of the organizations are tackling the same 
problem and hence a subset of the standards that they are proposing are overlapping 
and competing for mainstream adoption. This creates confusion in a vast and multi-
faceted industry and inevitably slows down product development, as vendors do not 
want to take bets on standards that may never take off in the market (think Betamax 
vs. VHS in the early video format war days).

Some of the industry organizations focus their efforts on a specific IoT vertical, 
whereas others are involved in defining crosscutting technologies that apply across 
various IoT applications and verticals. Furthermore, not all organizations are 
actively defining their own standards; rather some are promoting harmony and 
alignment among others, which define and ratify standards.

What is common across all these standards is that they are all being based on (or 
migrating to) a common normalization layer, the IP network layer, which guaran-
tees system interoperability while accommodating a multitude of link layer tech-
nologies, in addition to a plethora of application protocols. IP constitutes the thin 
waist of the proverbial hourglass that is the IoT’s protocol stack (refer to Fig. 11.1). 
The diversity in Physical and Link layer standards is a manifestation of the IoT chal-
lenges and requirements that impact that layer of the protocol stack, as was dis-
cussed in Chap. 5 (Sect. 5.1.1). By the same token, the large number of Application 
layer standards is a reflection of the many industry verticals and applications (as 
discussed in Chap. 9) that IoT enables.

In this chapter, we will provide an overview of the key IoT standards defining 
organizations and the various protocols that they have been defining or promoting. 
Our focus will be on standards operating at the Physical, Data Link, Network, and 
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Transport layers of the OSI model presented in Chap. 2. We will also touch upon a 
select subset of standards efforts operating at the Application layer of the model. As 
can be seen in Fig. 11.1, such efforts are numerous, industry vertical specific and 
require expert domain knowledge in the associated industry or application (e.g., 
IEC 61968, ANSI C12.19/C12.22, DLMS/COSEM are Smart Grid standards).

11.2  IEEE (Institute of Electrical and Electronics Engineers)

IEEE is a well-established technology standards body, which, among other things, 
had defined the standards for Ethernet and wireless Local Area Networks (LANs). 
Given its legacy and expertise in physical and link layer network technologies, the 
IEEE embarked on defining a number of physical and link layer standards for 
IoT.  These include the 802.15.4 family of low-power wireless protocols, which 
were discussed in Sect. 5.1.2.1, the 802.11ah long-range Wi-Fi standard discussed 
in Sect. 5.1.2.3, as well as the 1901 power line communications standards. The lat-
ter define technologies for carrying network data, in addition to Alternating current 
(AC), over conventional electric wiring.

Beyond the efforts on standardizing physical and link layer technologies, IEEE 
kicked off the IoT Initiative as a platform for the technical community to collaborate 
on technologies that advance the IoT. Adjunct to this initiative, many IoT related 
standards activities had been completed or are underway. We will go through an 
overview of these activities next.

Fig. 11.1 IoT standards landscape
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11.2.1  IEEE 1451 Series

The IEEE 1451 series addresses smart transducers, which are defined as devices 
that convert a physical measurement into an electrical signal, or vice versa. 
Transducers include sensors or actuators that we discussed in Chap. 3. The stan-
dards define communication interfaces for interconnecting smart transducers to net-
works or external systems via either wired or wireless mechanisms. Among the 
main elements of these standards is the definition of the Transducer Electronic Data 
Sheets (TEDS). The TEDS is associated with every smart transducer. It provides 
relevant technical data pertaining to the transducer in a standard format. Such data 
includes the device identity, type, accuracy, calibration, or other manufacturer- 
related information, etc. The standards define common mechanisms by which a 
transducer can communicate its associated TEDS to the connected network or sys-
tem. TEDS may be implemented in one of two ways. They can be embedded 
onboard within the transducer itself, typically on some memory component such as 
EEPROM. Alternatively, a virtual TEDS can be implemented as an off-board data 
file that is stored in some component separated from the transducer albeit accessible 
to the instrument or system connected to the transducer. Virtual TEDS allows the 
extension of the TEDS standard to legacy sensors and devices where onboard or 
embedded memory may not exist.

11.2.2  IEEE 1547 Series

The IEEE 1547 series addresses Smart Grid, and in particular handling distributed 
resources in electric power systems. The standard defines technical requirements for 
interconnecting distributed generators and energy storage systems to electric power 
systems. Examples of such generators include fuel cells, photovoltaic, micro- 
turbine, reciprocating engines, wind generators, large turbines, and other local gen-
erators. The technology helps utilities tap into surplus electricity from alternative 
and renewable energy sources. Furthermore, the IEEE 1547 series deals with vari-
ous facets of renewable energy, including micro-grids (IEEE 1547.4) and secondary 
networks for distributed resources (IEEE 1547.6).

11.2.3  IEEE 1609 Series

The IEEE 1609 series addresses intelligent transportation systems (ITS) and focuses 
on Wireless Access in Vehicular Environments (WAVE). The series defines the 
architecture, services, and interfaces to enable secure vehicle-to-vehicle and vehicle 
to roadside infrastructure wireless communication. The standard enables applica-
tions that include vehicle safety, enhanced navigation, traffic management, 
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automated tolling and more. The IEEE 1609 series specifies standards for commu-
nication security (IEEE 1609.2), WAVE connection management (IEEE 1609.3), 
and Layer 3 through Layer 7 operation across multiple channels on top of IEEE 
802.11p.

11.2.4  IEEE 1888 Series

The IEEE 1888 series focuses on ubiquitous green community control networks. It 
describes remote control architecture for buildings, digital communities, and metro-
politan networks. The standard defines the data formats between systems as well as 
the data exchange protocol that interconnects various components, including gate-
ways, storage systems, and application units over an IP network. This network pro-
vides open interfaces for public administration/service, property management, and 
individual service. The interfaces enable central management, remote surveillance, 
and collaboration.

11.2.5  IEEE 1900 Series

IEEE 1900 series focuses on dynamic spectrum access radio systems and networks. 
One of the main goals of this series is to improve spectrum utilization. To that effect, 
the standard explores architectures and interfaces for dynamic spectrum access in 
the TV whitespace frequency bands, as well as management systems for optimiza-
tion of radio resource usage, spectrum access control, and compliance with regional 
regulations aimed at protecting broadcast systems. The standard also defines policy 
language and architectures for managing dynamic spectrum access among distrib-
uted heterogeneous devices.

11.2.6  IEEE 2030 Series

IEEE 2030 series focuses on the smart grid, including electric vehicle infrastruc-
ture. It defines a reference model for smart grid interoperability including the three 
pillars of energy, information, and communications technologies. The standard 
addresses applications for electric vehicles and associated support infrastructure 
used for personal and mass transit. Furthermore, the standard covers energy storage 
systems that are integrated with the electric power infrastructure and relevant test 
procedures for these systems.
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11.2.7  IEEE 2040 Series

The IEEE 2040 series focuses on connected, automated, and intelligent vehicles. 
The series defines an overview and architectural framework (IEEE 2040), taxonomy 
and definitions (IEEE 2040.1), as well as testing and verification (IEEE 2040.2) 
standards. The series leverages existing standards where applicable.

11.2.8  IEEE 11073 Series

The IEEE 11073 series of standards focuses on point-of-care medical device com-
munication and personal health device communication. The standard enables 
interoperability between medical devices and external computer systems. It defines 
information models to guarantee semantic interoperability between communicating 
medical devices. It also specifies a tree hierarchy for modeling the device and its 
relevant information: measurements, physiological and technical alerts, as well as 
contextual data.

11.2.9  IEEE 2413 Series

The IEEE 2413 series defines an architectural framework for the IoT, including 
descriptions of various IoT verticals, definitions of their associated abstractions and 
identification of commonalities across those verticals. The standard establishes a 
reference model for IoT domain verticals and an architecture that defines the build-
ing blocks and common elements.

11.3  IETF

The IETF has been instrumental in defining and standardizing Internet technolo-
gies, including IPv4 and IPv6 as well as numerous routing protocols (e.g., OSPF, 
RIP, PIM, BGP), application protocols (e.g., HTTP, LDAP, SMTP), and security 
protocols (e.g., TLS, IPSec, IKE). In 2006, work started in the IETF on a number of 
IoT standards. The initial scope centered on enabling IP on top of IEEE 802.15.4 
wireless networks, but has expanded beyond that over time. Currently, there are five 
IETF working groups focusing on IoT related technologies. We will discuss their 
work next.

11.3 IETF
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11.3.1  ROLL

The Routing over Low Power and Lossy networks (ROLL) working group focuses 
on routing issues for Low Power and Lossy Networks (LLNs). LLNs typically com-
prised of embedded devices with limited power, memory, and processing resources 
that are interconnected by a variety of link technologies. LLNs cover a multitude of 
applications such as building automation, smart homes, smart health care, industrial 
monitoring, environmental monitoring, asset tracking, smart grid, etc. The ROLL 
working group is concerned with defining routing requirements for a subset of the 
aforementioned applications: industrial (RFC 5673), connected home (RFC 5826), 
building automation (RFC 5867), and urban sensor networks (RFC 5548). The 
working group is approaching these requirements by defining an IPv6 architecture 
that enables scalable networks of constraint devices to communicate with high reli-
ability. Routing security and manageability (e.g., autonomic configuration) are 
among the key issues that ROLL is looking into.

ROLL analyzed the particular routing protocol requirements of LLNs, starting 
with the constraints that these protocols must adhere to. The following constraints 
were identified, which stem from the constrained nature of the nodes in LLNs:

• Protocols need to operate with minimal amount of state.
• Protocols must be optimized for efficiency, i.e., saving energy, memory, and pro-

cessing power.
• Protocols must support unicast and multicast application traffic patterns.
• Protocols must be very efficient in encoding information to operate with very 

small link layer maximum transfer unit (MTU) size.

The ROLL working group evaluated existing routing protocols to examine 
whether they could operate within the confines of the above constraints. The follow-
ing protocols were analyzed: OSPF (RFC2328), IS-IS (RFC1142), RIP (RFC2453), 
OLSR (RFC3626), TBRPF (RFC3684), AODV (RFC3561), DSR (RFC4728), 
DYMO and OLSv2 (RFC7181). Based on this analysis, the working group deter-
mined that none of the existing protocols meets the requirements of LLNs. As a 
result, the working group defined a new protocol, RPL, which was discussed in 
Sect. 5.2.2.2.

11.3.2  Core

The Constrained RESTful Environments (CORE) working group focuses on defin-
ing a framework for RESTful applications running over constrained IP networks. 
These applications include applications to monitor simple sensors (e.g., temperature 
sensors or power meters), to control actuators (e.g., valves or light switches) and to 
remotely manage devices. Such applications are typical of several IoT verticals such 
as home and building automation and Smart Grid. The applications are forced to 
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operate under the same set of constraints that define LLNs, namely: limitations on 
memory, processing power, and energy as well as high loss rates and small packet 
sizes. In addition, the applications must deal with the fact that nodes are typically 
powered off and wake up for a short period of time.

The framework defined by the working group assumes a general operating para-
digm for applications where network nodes run embedded web services and are 
responsible for resources (e.g., sensors or actuators) that can be queried or manipu-
lated by remote nodes. Furthermore, nodes may publish local resource changes to 
remote nodes that have subscribed to receive notifications. CORE has defined the 
CoAP protocol, which was discussed in Sect. 5.3.5.1, to support this application 
framework.

One of the key challenges to applications running in these constrained environ-
ments is security. The working group’s scope includes selecting viable approaches 
for security bootstrapping to handle secure service discovery, distribution of secu-
rity credentials, and application-specific node configuration.

11.3.3  6LowPAN

The IPv6 over Low-Power Wireless Personal Area Networks (6LowPAN) working 
group focused on enabling IPv6 over IEEE 802.15.4 networks. The group started its 
work in 2005 and concluded in 2014 after working through the following goals:

First, defining a fragmentation and reassembly layer to allow adaptation of IPv6 to 
IEEE 802.15.4 links. This is because the link protocol data units may be as small 
as 81 bytes, which is much smaller than that the minimum IPv6 packet size of 
1280 bytes.

Second, introduce an IPv6 header compression mechanism to avoid excessive frag-
mentation and reassembly, since the IPv6 header alone is 40 bytes long, without 
optional headers.

Third, specify methods for IPv6 address stateless auto configuration to reduce the 
provisioning overhead on the end nodes.

Fourth, examine mesh routing protocol suitability to 802.15.4 networks, especially 
in light of the packet size constraints.

Finally, investigate the suitability of existing network management protocols and 
mechanisms in terms of meeting the requirements for minimal configuration and 
self-healing as well as meeting the constraints in processing power, memory, and 
packet size.

The working group produced six standards: 6LowPAN problem statement docu-
ment (RFC4919), IPv6 adaptation layer and header format specification (RFC4944), 
IPv6 header compression specification (RFC6282), 6LowPAN use cases and appli-
cations document (RFC6568), IPv6 routing requirements document (RFC6606), 
and IPv6 neighbor discovery optimization specification (RFC6775).

11.3 IETF
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11.3.4  6TisCH

This working group is chartered with enabling IPv6 over the Time Slotted Channel 
Hopping (TSCH) mode of IEEE 802.15.4e. The target network comprised of Low 
Power and Lossy Networks (LLNs) connected through a common backbone via 
LLN Border Routers (LBRs). The focus of the working group is on defining an 
architecture that describes the design of 6TiSCH networks in terms of the compo-
nent building blocks and protocol signaling flows. The working group will also 
produce an information model that describes the management requirements of 
6TiSCH network nodes, together with a data model mapping for an existing proto-
col, such as Concise Binary Object Representation (CBOR) over the Constrained 
Application Protocol (CoAP). In addition, the working group will define a minimal 
and a best practice 6TiSCH configuration that provides guidance on how to con-
struct a 6TiSCH network using the Routing Protocol for LLNs (RPL) and static 
TSCH schedule. Finally, the working group may produce implementation and co- 
existence guides to help accelerate the industry.

11.3.5  ACE

The Authentication and Authorization for Constrained Environments (ACE) work-
ing group is tasked with producing use cases and requirements for authentication 
and authorization in IoT, as well as defining protocol mechanisms that can address 
these requirements, and are capable of running on constrained IoT devices. The 
scope of the work is limited to RESTful architectures running the Constrained 
Application Protocol (CoAP) over Datagram Transport Layer Security (DTLS). 
Hence, the working group is looking to provide a standardized solution for authen-
tication and authorization to enable a client’s authorized access to REST resources 
hosted on a server. Both client and server are assumed to be constrained devices. 
The access will be facilitated by a non-constrained authorization server. The work-
ing group will evaluate existing protocol mechanisms for suitability and applicabil-
ity to constrained environments, and will advise on any required restrictions, 
changes, or gaps.

11.4  ITU

The International Telecommunication Union (ITU) is a United Nations (UN) spe-
cialized agency with over 190 member states and over 700 industry members in 
addition to universities as well as research and development institutes. It has been 
heavily involved in the definition and development of telecommunication standards.
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ITU published one of the first reports on “The Internet of Things” in 2005 and 
has been involved in IoT since then, producing multiple standards documents in this 
space, as discussed next.

Recommendation ITU-T Y.2060, Overview of the Internet of Things, provides a 
definition of IoT, terming it: “A global infrastructure for the Information Society, 
enabling advanced services by interconnecting (physical and virtual) things based 
on, existing and evolving, interoperable information and communication technolo-
gies.” It describes the concept and scope of IoT, discussing its fundamental charac-
teristics and high-level requirements, and providing a detailed overview of the IoT 
reference model. Additionally, the standard discusses the IoT ecosystem and accom-
panying business models.

Recommendation ITU-T Y.2061, Requirements for support of machine-oriented 
communication applications in the NGN environment, offers a description of 
machine-oriented communication applications in next-generation network (NGN) 
environments; covering the NGN extensions, additions, and device capabilities 
required to support MOC applications.

Recommendation ITU-T Y.2062, Framework of object-to-object communication 
for ubiquitous networking in an NGN environment, discusses the concept and high- 
level architectural model of such communication, and provides a mechanism to 
identify objects and enable communications between them.

Recommendation ITU-T Y.2063, Framework of Web of Things, specifies the 
functional architecture including conceptual and deployment models for the Web of 
Things. The standard also provides an overview of service information flows and 
use cases in home control.

Recommendation ITU-T Y.2069, Terms and definitions for Internet of Things, 
specifies the terms and definitions relevant to the Internet of things (IoT) from an 
ITU-T perspective, in order to clarify the Internet of Things and IoT related 
activities.

ITU has multiple study groups looking into various aspects of IoT: Study Group 
11 started activity in July 2014 and is looking into application programmatic inter-
faces and protocols for IoT as well as IoT testing. Study Group 13 focuses on the 
networking aspects of IoT. Study Group 15 looks at Smart Grid and home networks. 
Study Group 16 focuses on IoT applications including eHealth. Study Group 17 is 
looking at the security and privacy protection aspects of IoT. In addition, there are 
multiple focus groups looking at topics including smart cities, water management, 
and connected cars.

11.5  IPSO Alliance

The “Internet Protocol for Smart Objects” (IPSO) Alliance is an open non-profit 
special interest group that promotes the use of the IP protocol to connect smart 
objects (i.e., Things) to the network. It was formed in 2008 and includes members 
from technology and communication companies in addition to industry verticals 
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companies (e.g., energy). The alliance complements the work of other standards 
defining bodies, such as the IETF, IEEE, and ETSI, by promoting IoT technologies 
through publishing whitepapers and hosting webinars, interoperability events, and 
challenges.

The interoperability events have helped in advancing IP technologies for IoT by 
providing a vendor-neutral forum to test evolving IoT technologies and providing 
feedback to the standards bodies defining them in order to fix potential issues that 
affect interoperability. For instance, in one of the interoperability events held in 
conjunction with the IETF, a number of issues related to early versions of RPL were 
communicated back to the Routing over Low Power and Lossy Networks (ROLL) 
working group in order to improve the developing drafts.

IPSO has published the IPSO Application Framework, which defines a represen-
tational state transfer RESTful design for use in IP smart objects for Machine-to- 
Machine applications. It specifies a set of REST interfaces that may be used by a 
Thing to represent its available resources and to interact with other Things and 
remote applications. The framework was extended to cover a wide range of use 
cases and to more precisely describe the parameters of smart objects during an 
interoperability event held during IETF 84 in Vancouver, Canada.

11.6  OCF

The Open Connectivity Foundation (OCF) is an industry group that focuses on 
developing standards and certification for IoT devices based on the IETF CoAP 
protocol. It was formed in July 2014 by Intel, Broadcom, and Samsung Electronics 
under the name of the Open Interconnect Consortium. The consortium changed its 
name to OCF in February 2016. It currently has more than 80 member companies 
including General Electric, Cisco Systems, Microsoft, and Qualcomm. The OCF is 
defining a framework for easy device discovery and trusted connectivity between 
things. In September 2015, it released the first version of the specification of this 
framework. OCF is also working on open source reference implementation of the 
specification, which is called “IoTivity.”

11.7  IIC

The Industrial Internet Consortium is a non-profit organization that aims to acceler-
ate the development and adoption of interconnected machines and devices, intelli-
gent analytics, and people at work. It was founded by AT&T, Cisco, General 
Electric, IBM, and Intel in March 2014. IIC does not develop standards for IoT; 
rather, it provides requirements to other standards defining organizations. IIC 
focuses on creating use cases, reference architectures, frameworks, and test-beds for 
real IoT applications across varying industrial environments. IIC also states among 
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its goals to facilitate open forums for sharing and exchanging real-world ideas, prac-
tices, and insights, in addition to building confidence around new and innovative 
approaches to security. The work of the IIC does not include consumer IoT, rather it 
is targeted at business verticals such as energy, healthcare, transportation, and 
manufacturing.

11.8  ETSI

The European Telecommunication Standards Institute (ETSI) is an independent 
non-profit standards defining organization. ETSI was among the very first organiza-
tions to develop a set of standards that define a complete horizontal service layer for 
M2M communications.

The ETSI M2M standards specify architectural components for IoT including: 
devices (things), gateways with associated interfaces, applications, access technolo-
gies as well as the M2M Service Capabilities Layer (middleware). They also include 
security, traffic scheduling, device discovery, and lifecycle management features. 
These standards, which were released in 2012, include:

• Requirements in ETSI TS 102 689
• Functional architecture in ETSI TS 102 690
• Interface definitions in ETSI TS 102 921

ETSI is also looking into various applications of M2M technologies, including: 
smart appliances, smart metering, smart cities, smart grid, eHealth, intelligent trans-
portation systems, and wireless industrial automation.

11.9  oneM2M

In July 2012, seven standards development organizations (TIA and ATSI from USA, 
ARIB and TTC from Japan, CCSA from China, ETSI from Europe and TTA from 
Korea) launched a global organization to jointly define and standardize the common 
horizontal functions of the IoT Application Services layer under the umbrella of the 
oneM2M Partnership Project (http://www.onem2m.org). The founders agreed to 
transfer and stop their own overlapping IoT Application Service layer work. The 
partnership has grown to include, in addition to the seven standards bodies, five 
global information and communications technology forums and more than 200 
companies. oneM2M states among its objectives the development of the following:

• Use cases and requirements for a common set of Application Services 
capabilities.

• Service architecture and Protocols/APIs/standard objects based on this architec-
ture (open interfaces & protocols).

11.9 oneM2M
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• Security and privacy aspects (authentication, encryption, integrity verification).
• Reachability and discovery of applications.
• Interoperability, including test and conformance specifications.
• Collection of data for accounting (to be used for billing and statistical purposes).
• Identification and naming of devices and applications.
• Information models and data management (including store and publish/subscribe 

functionality).
• Management aspects (including remote management of entities).

Among the work items being undertaken by oneM2M, the effort on Abstractions 
and Semantics Enablement will be key to achieving application level interoperabil-
ity for IoT, as was discussed in Chap. 4. This area of Semantics remains a major gap 
in the overall IoT standardization journey.

11.10  AllSeen Alliance

The AllSeen Alliance was formed in December 2013 as a Linux Foundation 
Collaboration Project.

It is an open non-profit consortium that aims to promote the IoT based on the 
AllJoyn open source project. AllJoyn is an open, secure, and programmable soft-
ware framework for connectivity and services. It enables devices to discover, con-
nect, and interact directly with other AllJoyn-enabled products. The project was 
originally created by Qualcomm and released into the open source domain.

It consists of an open source software development kit (SDK) and code base of 
service frameworks that enable basic IoT functions such as discovery, onboarding, 
connection management, message routing, and security, thereby ensuring interoper-
ability among systems.

11.11  Thread Group

The Thread working group was formed in July 2014 and included Google’s Nest 
subsidiary, Samsung, ARM Holdings, Freescale, Silicon Labs, Big Ass Fans, and 
the lock company Yale. The purpose of the group is to promote Thread as the proto-
col for the connected home and certify products that support this protocol. The 
Thread protocol is a closed-documentation royalty-free protocol that runs on top of 
IEEE 802.15.4 and 6LowPAN. It adds functions such as security, routing, setup, and 
device wakeup to maximize battery life. Thread competes with other protocols 
already in this space such as Bluetooth Smart, Z-Wave, and ZigBee.
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11.12  ZigBee Alliance

The ZigBee Alliance was formed in 2002 by Motorola, Philips, Invensys, Honeywell, 
and Mitsubishi to develop, maintain, and publish the ZigBee standard. Since then, 
the alliance has grown to include over 170 participant members and over 230 
adopter companies, including ABB, Fujitsu, British Telecom, Huawei, Cisco, etc. 
The alliance publishes “application profiles” that enable vendors to create interoper-
able products. The initial ZigBee specification focused on home automation, but the 
scope has since expanded to include large building automation, retail applications, 
and health monitoring.

Most of the protocol specifications are based on the IEEE 802.15.4 radio, even 
though the more recent Smart Energy specifications are no longer tied to 802.15.4.

The initial protocols standardized by the alliance were based on the standard 
IEEE 802.15.4 MAC/PHY, but defined a ZigBee specific stack that includes the 
networking and services layer, through the full application layer. Since those begin-
nings, the ZigBee Alliance has undertaken a constant effort to increase the interop-
erability with the Internet Protocol suite, which renders ZigBee as one of the 
protocols that are capable of adapting to different market segments. In 2013, the 
ZigBee Alliance released ZigBee IP, an IoT solution based on IPv6, RPL, and 
6LowPAN.

11.13  TIA

The Telecommunications Industry Association (TIA) develops industry standards 
for information and communication technologies, and represents over 400 compa-
nies in this domain. The TIA TR-50 engineering committee was launched in 2009 
to develop application programmatic interface (API) standards for the monitoring 
and bi-directional communication between smart devices and other devices, appli-
cations, or networks. The committee includes many industry players, including 
Alcatel Lucent, AT&T, CenturyLink, Cisco, Ericsson, ILS Technology, Intel, LG, 
Nokia Siemens Networks, Numerex, Qualcomm, Sprint, Verizon, and Wyless. Even 
pre-dating TR-50, TIA was involved in M2M standards, with several of its engi-
neering committees having worked on smart device communications, including 
TR-45 (Mobile and Personal Communications Systems Standards), TR-48 
(Vehicular Telematics), TR-49 (Healthcare ICT) and through its work on the Third 
Generation Partnership Project 2 (3GPP2).
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11.14  Z-Wave Alliance

The Z-Wave Alliance is an industry consortium of over 300 companies creating IoT 
products and service over the Z-Wave protocol. Z-Wave is a short-range wireless 
protocol, initially developed by a small Danish company called Zensys. Z-Wave is 
a vertically integrated protocol, which runs over its own radio. Z-Wave’s physical 
and media access layers were ratified by the International Telecommunication 
Union (ITU) as the international standard G.9959. Z-Wave is often considered to be 
the main competitor to ZigBee, but unlike ZigBee, it only focuses on home environ-
ment applications.

11.15  OASIS

OASIS is a non-profit consortium that drives the development, convergence, and 
adoption of open standards for the global information society. OASIS produces 
standards for security, Internet of Things, cloud computing, energy, content tech-
nologies, emergency management, and other areas.

There are three technical committees in OASIS involved in defining IoT 
technologies:

The Advanced Message Queuing Protocol (AMQP) technical committee is stan-
dardizing the AMQP protocol, a secure, reliable, and open Internet protocol for 
handling business messaging.

The Message Queuing Telemetry Transport (MQTT) technical committee is stan-
dardizing the MQTT protocol, a lightweight publish/subscribe reliable messag-
ing transport protocol suitable for communication in M2M/IoT contexts where a 
small code footprint is required and/or network bandwidth is at a premium.

The Open Building Information Exchange (oBIX) technical committee is defining 
technologies to enable mechanical and electrical control systems in buildings to 
communicate with enterprise applications.

11.16  LoRa Alliance

The LoRa Alliance is an open, non-profit association to standardize Low Power 
Wide Area Networks (LPWAN) using the LoRa protocol (LoRaWAN). The alliance 
was announced in January 2015, and initial members include IoT solution providers 
Actility, Cisco, Eolane, IBM, Kerlink, IMST, MultiTech, Sagemcom, Semtech, and 
Microchip Technology, as well as telecom operators: Bouygues Telecom, KPN, 
SingTel, Proximus, Swisscom, and FastNet (part of Telkom South Africa). The 
LoRA protocol provides long-range wireless connectivity for devices at low bit 
rates (from 0.3 to 50  kbps) with low-power consumption for battery-powered 
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devices. LoRaWAN transceivers can communicate over distances of more than 
100 km (62 miles) in favorable environments, 15 km (9 miles) in typical semi-rural 
environments and more than 2 km (1.2 miles) in dense urban environments.

The LoRa alliance claims that the scope of applications where LPWAN’s are 
applicable is endless, but indicates that the main applications driving current net-
work deployments are intelligent building, supply chain, Smart City, and agriculture.

11.17  Gaps and Standards Progress Scorecard

The road to a standards-based IoT is well underway. The industry has made signifi-
cant strides towards converging on the IP network protocol as the common basis for 
IoT communication protocols. Multiple Physical and Link layer standards have 
been defined to address the requirements of constrained devices, which are limited 
in both compute capacity and available power. Some work remains at these layers, 
particularly with regard to adding support for determinism and time-sensitive appli-
cations. At the Network layer, the gaps are relatively limited and manifest in the 
need to add support for routing over Time Slotted Channel Hopping (TCSH) link 
technologies. The lion’s share of the gaps exists at the Application Protocols and 
Application Services layers. The former is currently characterized by a multitude of 
competing and largely functionally overlapping standards. No clear winner has 
emerged; especially as the industry adoption remains highly fragmented. The latter 
is currently in a state where the industry has more or less rallied around a common 
forum, namely oneM2M, and an initial standard has been released, which defines 
the Common Services Entities and Common Services Functions. However, at the 
time of this writing, the market acceptance and adoption of the standard remain 
unknown. In addition, the released standard is only a first step towards standardiza-
tion as the area of Semantics remains largely unchartered territory. Figure 11.2 sum-
marizes the progress scorecard for IoT industry standards.

Fig. 11.2 IoT standards progress scorecard
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11.18  Summary

In this chapter, we started with an overview of the IoT standardization landscape 
and then provided an overview of the main standards defining organizations involved 
in IoT and a snapshot of the projects that they are undertaking. We covered the fol-
lowing industry organizations: IEEE, IETF, ITU, IPSO Alliance, OCF, IIC, ETSI, 
oneM2M, AllSeen Alliance, Thread Group, ZigBee Alliance, TIA, Z-Wave Alliance, 
OASIS, and LoRa Alliance. Finally, we presented a summary of the standards gaps 
and provided a scorecard of the progress to the time of this writing.

Problems and Exercises

 1. Name three established networking standards bodies involved in defining tech-
nology standards for IoT?

 2. Which devices does IEEE 1451 series address? What does it specifically define? 
What does TEDS provide for IEEE 1451 devices? Provide specific examples.

 3. What are the two mays to implement TEDS?
 4. What does the IEEE 1888 standard define?
 5. What constraints should routing protocols adhere to in order to meet the require-

ments of LLNs, as analyzed by the IETF ROLL workgroup?
 6. Which RESTful protocol, defined by the IETF CORE workgroup, extends 

RESTful architectures to constrained devices? Why is REST applicable here?
 7. What is the role of the IPSO Alliance among IoT standards organizations?
 8. What two standards bodies are developing competing wireless technologies for 

home automation?
 9. What is the scope of the standards being developed by oneM2M?
 10. What IoT verticals does the work of the IIC encompass?
 11. The LoRA Alliance standardizes the LoRA protocol. Describe the data rate and 

range characteristics of the technology?
 12. Is the IoT standards landscape well defined? What is the net result of this on the 

industry?
 13. Where does the industry stand on the road to a standards-based IoT? State the 

gaps per protocol layer.
 14. Name two IoT Application Protocols that are being standardized by 

OASIS. Describe what function does each protocol serve.
 15. Is the ZigBee stack based on the Internet Protocol? Explain.
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Chapter 12
The Role of Open Source in IoT

12.1  The Open Source Movement

Open source in the computer industry is the publishing of source code or hardware 
design, with associated licensing that permits the reuse, modification, improvement, 
and potential commercialization under favorable terms. Example of favorable dis-
tribution terms includes the following criteria:

• Free Distribution: Any party may sell or give away the open-source component 
as part of a larger system without being obligated to pay a royalty or other fee for 
such sale.

• Source Code/Design: The source code or design must be distributed and made 
publicly available.

• Derived Works: Derivation and modification of the original open-source compo-
nent are allowed under the original licensing terms.

• No Discrimination: The license must not discriminate against any person, group, 
or a field of business, academics, or research.

• No Packaging Restrictions: The open-source component is not limited to be used 
as part of a specific distribution or product and is not precluded from being used 
with other open-source or closed-source components.

• Technology Neutral: There are no assumptions or conditions favoring a specific 
technology or interface.

While any system can potentially be released under an open source license by its 
owner, successful open source projects have associated communities of interest that 
are integral to their success. Such communities are typically geographically distrib-
uted and rely on electronic platforms for collaboration. These platforms ensure pro-
cess compliance, source code management, issue tracking, and continuous 
integration and test.
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The development lifecycle of an open-source activity is quite different from the 
proprietary development cycle. Building a critical mass with an engaged open 
source community is a critical factor in successful adoption of a project. The ability 
of a community to garner interest and passion is an indicator of their engagement 
and potential for providing the advocacy necessary for successful market adoption.

That takes time. On the other hand, if a company decides to create a product, they 
will staff the project accordingly, and progress in the early phases of the project will 
be achieved much faster but the rate of progress will remain relatively constant 
over time.

However, with open source, once the community is fully engaged, the rate of 
progress can rapidly accelerate and the project can potentially progress at a rate that 
can far outpace closed source development. This is referred to as the “crowdsourc-
ing” effect. According to Howe [5], crowdsourcing is “the act of a company or 
institution taking a function once performed by employees and outsourcing it to an 
undefined (and generally large) network of people in the form of an open call.” 
Without a doubt, open source is one of the most successful forms of crowdsourcing 
in the software development industry. Figure 12.1 shows how the crowdsourcing 
effect impacts the speed of development.

Like other initiatives, the open source movement has certain disadvantages. For 
example, the leadership of the project does not have control over the contributors. If 
a key developer decides to move on to another project, there is very little that the 
coordinators of the open source organization can do. They cannot nominate or 
recruit another leader unless one comes forward. Another issue is focusing the 
energy of the contributors in the right direction. If a group of people were to make 
a contribution that is not in line with the original goal or intent of the project, there 
are only two options: either the leadership rejects the contribution or they allow it. 
If they reject the contribution, they will lose the potential contributors. If they allow 
the contribution, they risk diluting the original impact of their open source project.

There are many open-source success stories: Linux, Apache Hadoop and HTTP 
server, MySQL, Google Chrome, OpenOffice, Android, and Java to name a few. 
The days of viewing open source as a fad are long gone. Open source is how modern 
organizations and increasingly more traditional organizations build software. Large 

Fig. 12.1 The crowdsourcing effect on the speed of development
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corporations are embracing open source and intend to use it in production. Recently, 
John Donovan, CTO at AT&T mentioned that, today, open source products repre-
sent about 5% of their infrastructure. They plan for that number to reach 50% by 
2020. The open source high-speed train is in motion and there is no turning back.

12.2  Why Open Source?

There are numerous reasons driving individuals, corporations, small businesses, 
non-profits, government agencies, and other organizations to consume, publish, col-
laborate on, or support open source. We will discuss the main drivers here.

12.2.1  Drivers for Open Source Consumers

The reasons driving individuals and organizations to leverage and use open source 
projects are many, and can be attributed to the following:

Business Efficiency: Many technical problems already have open source solutions 
available. Hence, instead of wasting time and resources reinventing the wheel, 
open source consumers can use the best-of-breed solution and focus their efforts 
on working to address yet-unsolved challenges. These are the types of challenges 
that add value to their business or mission. This enables a shift from low-value 
work to high-value work.

Best-of-Breed Solution: Evidence shows that open source software has better qual-
ity compared to closed source [2]. With a closed source system, bugs can poten-
tially be detected and resolved by only the employees of the company developing 
that system. Whereas open source provides clear advantages here: First, it pres-
ents the opportunity to tap into a larger pool of contributors and leverage the 
knowledge of the world’s best engineers, not just those on a company’s payroll. 
Second, open source systems are hardened through exposure to a wide array of 
use cases, not just the one that the original developer intended. This helps in 
surfacing issues and corner cases much more rapidly compared to traditional test 
and quality assurance processes baked into typical engineering/development 
pipelines.

Lower Total Cost of Ownership (TCO): Whether employing open source or 
closed source systems, certain costs, such as training, maintenance, and support, 
are sunk costs that have to be paid. In the case of closed source commercial sys-
tems, these costs are baked into the equipment price or licensing fees. What sets 
open source systems apart is the generally lower up-front cost (you do not pay 
for the right to use the underlying intellectual property). The cost center is shifted 
from licensing to customization and integration. This generally yields a lower 
total cost of ownership compared to proprietary and closed systems.

12.2 Why Open Source?
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Modern, Nimble Development Processes: Open source projects go hand-in-hand 
with online collaboration tools and platforms that enable distributed, asynchronous, 
and lock-free electronic workflows. These workflows enable rapid development and 
allow for more frequent releases. This provides the adopters of open source systems 
with the required system capabilities without the typical long lead times associated 
with more traditional corporate processes. This applies not only to new feature func-
tionality, but also to bugs and security vulnerabilities. With access to the source 
code, the adopters of open source systems can often apply patches, or fixes, at their 
own convenience, without being gated by the release cycles of a specific vendor.

12.2.2  Drivers for Open Source Contributors

Open source contributors include both individuals and large corporations. There are 
many moral and participatory motivations that drive individuals to contribute to 
open source projects. While acknowledging the importance of those motives and 
contributions, in this section, we will only focus on the drivers that encourage large 
corporations to engage in open source projects.

Workforce Multiplier: Open source provides a platform for scaling a development 
organization’s workforce. This happens in two ways: First, when a community 
comes together to solve a shared challenge, the human capital that becomes dedi-
cated to work on the problem can quickly eclipse what could have been possible 
in a close corporate setting. Also, the diversity of that capital has been proven to 
correlate to the degree of innovation and quality of ideas generated. Second, the 
incubators of the open source system receive peer review and feedback from the 
community of adopters, who effectively act as “for free” testers of the open 
source system. This helps improve the original product and bring it to a level of 
quality and maturity that a small group of developers would have trouble achiev-
ing on their own.

Better Product Architecture: Open source generally leads to well-architected sys-
tems that are designed with modularity, maintainability, and flexibility in mind. 
This is because open source systems, by their nature, are built for a wide array of 
use cases, environments, and users. Hence, technical shortcuts that typically lure 
developers who are working on proprietary systems, e.g., due to scheduling con-
straints or laser-focus on a specific use case, generally do not manifest in open 
source projects. Over the long run, this results in greater flexibility and lower 

Cost Open source Proprietary

Licensing No Yes
Training Yes Yes
Maintenance Yes Yes
Support Yes Yes
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customization costs when comparing open source with closed source systems. 
This is the reason why some software engineering pundits advocate for architect-
ing all software, even proprietary or internal code, as if it were open source.

Great Advertising: Contributors and shepherds of successful open source projects 
are perceived as industry thought leaders. This bestows upon them the ability to 
shape the conversation around a particular software problem and allows them to 
associate their brand with the preferred solution. In a way, this solution becomes 
the de facto standard for the associated technology. For example, 37Signals is 
known for creating Ruby on Rails. GitHub is known for creating Hubot.

Customer Feedback and Trust: Open source offers companies a direct line of 
interaction with their most passionate customers. It empowers those customers to 
have a collective powerful voice in the technology development process. The 
feedback that a company receives can better guide its product development pri-
orities and roadmap decisions, in addition to improving the overall product qual-
ity. Furthermore, open source increases transparency which helps promote the 
customer’s trust in a corporation’s software.

Attracting and Vetting Talent: Open source allows a corporation to showcase to 
the developer community the interesting challenges that it is trying to solve, and 
how it is looking at solving them. Open source developers can casually contrib-
ute to projects, to learn how the organization works, and what it is like to develop 
solutions for a particular set of challenges. If they are engaged and enthused, the 
likelihood of them applying for a job at the corporation will be much higher than 
if the organization were a black box. Similarly, the corporation can see firsthand 
the quality of the contributed code of prospective employees, which provides 
better confidence in their capabilities than a typical interview process.

12.3  Open Source vs. Standards

Promoting interoperability through standards is achieved in a very different way 
compared to open source. Standards organizations come in a continuum of sizes, 
from the large and well-established international bodies such as IEEE or ITU to the 
more nimble and usually scope-focused organizations. Smaller organizations tend 
to have less procedures and target specific problem domains. Regardless of the size 
of the organization, companies approach them in the same way: they bring their 
technology and try to turn it into a standard. This usually results in long debates, 
power struggles, and eventually negotiations, which lead to the creation of a docu-
ment. This process may take years to conclude. If the company fails to include its 
technology into a specification, it may try somewhere else, in a different 
organization.

In the case of IoT, the situation is more complex. The behavior described above 
is possible but, since IoT is a green field, some companies may claim that the exist-
ing standard bodies do not have the specific skill set or expertise required to realize 

12.3 Open Source vs. Standards



328

a new IoT standard. This may result in the creation of a new organization, specifi-
cally designed to address one of the IoT verticals such as industrial automation.

However, even if the scene has changed, the format remains more or less the 
same. A credible standards organization needs to have rules and processes in place 
to ensure quality and openness. This also applies to IoT standards organizations 
(Chap. 10). Therefore, the development cycle of IoT standards is on track to match 
the pace of other technologies in “legacy” standards bodies, and this is to be 
expected. There needs to be a requirements definition phase, a scoping phase, a 
debate phase, a drafting phase, a review phase and finally a voting or some sort of 
consensus to sanction the work. Eventually, when the standard draft is stable 
enough, companies can develop to it, which may add several months of delay before 
a final stable implementation sees the light of day.

In the open-source world however, things can proceed at a much faster rate. A 
group of developers write source code, they submit it to an existing project if there 
is one. The code is peer reviewed. If it does not cause any regressions in the system 
operation and follows the best practice coding guidelines, the code is integrated. No 
one can block a contribution on the grounds that their company is doing things dif-
ferently, or because there is a better way to implement. If there is, then code must be 
submitted by those making such claims. Eventually, the end-users will vote by eval-
uating the code and its functionality. Some user may feel compelled to fix bugs so 
their company can use the product, and other users benefit instantly.

Of course, the leap of faith a company may take by giving away the implementa-
tion of their technology is a substantial barrier to overcome. But the key to success 
in open source is to add a “secret sauce” that complements the public domain func-
tions. The open source project then becomes a vehicle to get immediate feedback on 
a way to do things, ignite the spark of curiosity, and attract potential developers and 
partners. With a common basis built, new proprietary improvements can be added 
on top of the public domain code. This brings all the players to a higher common 
ground, which is beneficial for everybody, the producer and the consumer.

12.4  Open Source Partnering with Standards

As we saw earlier, the way companies approach open source and standards is very 
different. However, since open source is beneficial for companies, standard bodies 
quickly realized that they could use open source efforts for their benefit. After all, 
what the consumer needs is not a 300 page document describing in mundane details 
how a system should be implemented. Consumers want to have real products in 
their hand, with real functionalities to use and evaluate in their own business or 
home environments. This is not something that they get out of the usually dry read-
ing of a standards document. “Code is King” and having some code, which imple-
ments a standard is a very powerful combination. The standard represents an 
agreement between several parties and the code is the proof that the system on paper 
does indeed work.
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Therefore, it is now becoming a must-have for a project under development in a 
standards body to be associated with some form of open source effort. Following 
are some examples related to IoT (Table 12.1).

12.5  A Tour of Open-Source Activities in IoT

As mentioned previously, the IoT open source community is quite active. There are 
several open projects, some are backed by consortiums of large industry players, 
others are backed by just a single startup. Large or small, they all aim at facilitating 
the deployment of IoT solutions. But, unfortunately, they are not compatible with 
each other. Some of the larger efforts are attempting to bridge the gap and connect 
with other overlapping communities or projects.

The list below is far from being exhaustive. It is merely meant to provide an 
overview of active projects, which have the potential to make a difference in the IoT 
space. The list is organized per the IoT reference model presented in Fig. 1.5.

12.5.1  IoT Devices

12.5.1.1  Hardware

Arduino

Arduino is both a hardware specification for interactive electronics and a set of 
software that includes an Integrated Development Environment (IDE) and the 
Arduino programming language. Arduino is “a tool for making computers that can 
sense and control more of the physical world than your desktop computer.” The 

Table 12.1 Examples of open source initiatives for IoT

Standards organization or project Open source implementation

Open Interconnect Consortium IoTVity (Linux Foundation)
oneM2M IoTDM (Linux Foundation), OCEAN, OM2M 

(Eclipse)
Allseen Alliance AllJoyn
ZigBee® Alliance (IEEE) Zboss, Open-ZB, NS2, OpNet
CoAP (IETF) Californium (Eclipse)
MQTT (OASIS) Mosquitto.org, Paho (Eclipse)
ZWave (Z-Wave Alliance) openZwave
DASH7 (Alliance) OSS-7, OpenTag
Modbus (Schneider) libmodbus.org
BACnet (ASHRAE) Wacnet
KNX (ISO) Linknx and Webknx2
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organization behind it offers a variety of electronic boards, starter kits, robots and 
related products for sale, and many other groups have used Arduino to build IoT- 
related hardware and software products of their own.

GizmoSphere

GizmoSphere is an open source development platform for the embedded design 
community; the site includes code downloads and hardware schematics along with 
free user guides, specification sheets, and other documentation.

Tinkerforge

Tinkerforge is a system of open source stackable microcontroller building blocks. It 
allows the control of motors and reading out sensors with the following program-
ming languages: C, C++, C#, Object Pascal, Java, PHP, Python, and Ruby over a 
USB or Wi-Fi connection on Windows, Linux, and Mac OS X. All of the hardware 
is licensed under CERN OHL (CERN Open Hardware License).

BeagleBoard

BeagleBoard offers credit-card sized computers that can run Android and Linux. 
Because they have very low-power requirements, they are a good option for IoT 
devices. Both the hardware designs and the software they run are open source, and 
BeagleBoard hardware (often sold under the name BeagleBone) is available through 
a wide variety of distributors.

12.5.1.2  Operating Systems

Contiki

Contiki is an open source operating system for networked, memory-constrained 
systems with a particular focus on low-power wireless Internet of Things devices. 
Examples of where Contiki is used include street lighting systems, sound monitor-
ing for smart cities, radiation monitoring systems, and alarm systems. Other key 
features include highly efficient memory allocation, full IP networking, very low- 
power consumption, dynamic module loading, and more. Supported hardware plat-
forms include Redwire Econotags, Zolertia z1 motes, ST Microelectronics 
development kits and Texas Instruments chips and boards. Paid commercial support 
is available.

12 The Role of Open Source in IoT
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Raspbian

While the Raspberry Pi is not an open source project, many components of its OS 
are. Raspbian is a free operating system based on Debian optimized for the 
Raspberry Pi hardware.

RIOT

This 1.5  kB embedded OS bills itself as “the friendly operating system for the 
Internet of Things.” It fits in the category of Contiki and TinyOS. Forked from the 
FeuerWhere project, RIOT debuted in 2013. It aims to be both developer- and 
resource-friendly. It supports multiple architectures, including MSP430, ARM7, 
Cortex-M0, Cortex-M3, Cortex-M4, and standard x86 PCs.

12.5.2  IoT Services Platform

12.5.2.1  Eclipse IoT Project

Eclipse is sponsoring several different projects surrounding IoT. They include appli-
cation frameworks and services; open source implementations of IoT protocols, 
including MQTT CoAP, OMA-DM, and OMA LWM2M; and tools for working 
with Lua, which Eclipse is promoting as an ideal IoT programming language. 
Eclipse-related projects include:

• Paho provides client implementations of the MQTT protocol.
• Mihini is an embedded Lua runtime providing hardware abstraction and other 

services.
• Koneki provides tools for embedded Lua developers.
• Eclipse SCADA is a complete Java/OSGi-based SCADA system which provides 

communication, monitoring, GUI and other capabilities.
• Kura is a Java/OSGi-based M2M container for gateways. It has support for 

Modbus, CANbus, MQTT, and other protocols.
• Mosquitto is a lightweight server implementation of the MQTT and MQTT-SN 

protocols written in C.
• Ponte bridges IoT protocols (MQTT and CoAP) to the Web.
• Smarthome provides a complete set of services for home automation gateways.
• OM2M implements the ETSI M2M standard.
• Californium is a Java implementation of the CoAP protocol, which includes 

DTLS for security.
• Wakaama is an implementation of LWM2M written in C.
• Krikkit is a rules system for programming edge devices.
• Concierge is a lightweight implementation of OSGi Core R5.

12.5 A Tour of Open-Source Activities in IoT
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12.5.2.2  Kinoma

The Kinoma group’s hardware and software prototyping solutions help developers, 
programmers, and designers rapidly create connected products. Owned by Marvell, 
the Kinoma software platform encompasses three different open source projects. 
Kimona Create is a DIY construction kit for prototyping electronic devices. Kimona 
Studio is the development environment that works with Create and the Kinoma 
Platform Runtime. Kimona Connect is a free iOS and Android app that links smart-
phones and tables with IoT devices.

12.5.2.3  OneM2M the Linux Foundation and Eclipse

The purpose and goal of oneM2M is to develop technical specifications, which 
address the need for a common M2M Service Layer that can be readily embedded 
within various hardware and software. oneM2M positions itself as a cross vertical 
platform. This means that it will be well suited for various sectors such as industrial, 
energy, home, etc. These specifications are being implemented as open source proj-
ects at the Linux Foundation (IoTDM), Eclipse (oM2M), and OCEAN.

12.5.2.4  Open Interconnect Consortium (OIC)

The goal of OIC is to enable application developers and device manufacturers to 
deliver interoperable products across Android, iOS, Windows, Linux, Tizen, and 
more. The Linux Foundation hosts a project called IoTvity, which provides open 
source code for OIC. At the time of this writing, OIC and oneM2M are specifying 
gateway functions to bridge the two domains.

12.5.2.5  IT6.eu, OpenIoT, and IoTSyS

The European Union is actively financing the development of IoT research. OpenIoT 
and IoTSyS are examples. The OpenIoT website explains that the project is “an 
open source middleware for getting information from sensor clouds, without worry-
ing what exact sensors are used.” It aims to enable cloud-based “sensing as a 
service.”

IoTSyS is an IoT middleware providing a communication stack for smart devices. 
It supports multiple standards and protocols, including IPv6, oBIX, 6LoWPAN, 
Constrained Application Protocol, and Efficient XML Interchange.

12 The Role of Open Source in IoT
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12.5.2.6  DeviceHive

This project offers a data collection facility for connecting IoT devices. It includes 
easy-to-use web-based management software for creating devices, applying secu-
rity rules, and monitoring devices. The website offers sample projects built with 
DeviceHub, and it also has a “playground” section that allows users to use 
DeviceHub online to see how it works.

12.5.2.7  IoT Toolkit

The group behind this project is working on a variety of tools for integrating mul-
tiple IoT-related sensor networks and protocols. IoT Toolkit implements HTTP/
REST, CoAP, and MQTT protocols and acts as a stateful bridge between these dif-
ferent protocols.

The primary project is a Smart Object API, but the group is also working on an 
HTTP-to-CoAP Semantic mapping, an application framework with embedded soft-
ware agents and more.

Note there is a difference between open source efforts implementing a standard 
(such as oneM2M and OIC) versus open source efforts trying to realize a middle-
ware implementation with their own data models and protocols. We expect the 
industry to be more likely to embrace the former.

12.6  Conclusions

There are many aspects to IoT (device, transport, data aggregation and collection, 
big data, etc.), this translates to a large number of standards and slow progress. Most 
of the standards are backed by an open source activity. It is now becoming clear that 
the industry wants to see working code in addition to seeing concise documents 
describing a technology. The open-source community has preceded the standards in 
most cases, proposing working solutions to real problems.

Therefore there are two classes of open-source activities in IoT: one backed by a 
standard, and those evolving by themselves. The latter group is of course more agile 
and can offer solutions without the overhead of standard development procedures. 
However, in many cases, there is no domination of one group over the others. This 
leads to the conclusion that, eventually, a combination of standard plus associated 
open source will be the long-term solutions the industry will adopt.

Problems and Exercises

 1. What is open source? What are the key benefits to the producer and users?
 2. Why open source platform is appealing to platform for developers? Why 

appealing application consumers (companies and individuals)?
 3. List three downsides for open source projects.

12.6 Conclusions
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 4. List two main disadvantages of open-source projects.
 5. Linux is a well know open source project. List three other examples of success-

ful open source projects.
 6. Name three examples of IoT open source activities.
 7. Are there major differences between standards and open source developments? 

If so, what is the key difference (i.e., what’s the deliverables/outcomes of stan-
dard bodies and they are for Open Source)? What is the relationship between 
the two?

 8. Name three standards which are implemented in open source.
 9. When was the open source label developed? Who developed it?
 10. A license defines the rights and obligations that a licensor grants to a licensee. 

Does need open source provide licenses to its users? What do such 
license impose?

 11. Certification often helps to build higher user confidence. Are there certifications 
issued for open source? If so, name two examples.

 12. Global Desktop Project is an example of Open Source initiative developed by 
the United Nation University. What does it do?

 13. What are the main phases of IoT standard development cycles? What are the 
main phases of IoT open source developments? What are they key 
differences?

 14. It is said that a key to success in open source is to add a “secret sauce” that 
complements the public domain functions? Why is it the case? Can you provide 
an example?

 15. What is meant by “Code is King” in open source?
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Appendix A

Glossary

6LowPAN
IPv6 over Low-power Wireless Personal Area Networks (IETF).

6TiSCH
IPv6 over Time Slotted Channel Hopping mode of IEEE 802.15.4 (IETF).

AAA
Authentication, authorization, and accounting. See also TACACS+ and RADIUS 
(Various).

AAAA
Authentication, Authorization, Accounting, and Auditing (Various).

Access Modes
The security appliance CLI uses several command modes. The commands available 
in each mode vary. See also user EXEC mode, privileged EXEC mode, global con-
figuration mode, command-specific configuration mode (Cisco).

ACE
Access Control Entry. Information entered into the configuration that lets you spec-
ify what type of traffic to permit or deny on an interface. By default, traffic that is 
not explicitly permitted is denied (Cisco).

ACL
Access Control List. A collection of ACEs. An ACL lets you specify what type of 
traffic to allow on an interface. By default, traffic that is not explicitly permitted is 
denied. ACLs are usually applied to the interface which is the source of inbound 
traffic. See also rule, outbound ACL (Cisco).

https://doi.org/10.1007/978-3-030-90158-5#DOI
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Actuators
“An actuator is a type of motor that is responsible for moving or controlling a mech-
anism or system. It is operated by a source of energy, typically electric current, 
hydraulic fluid pressure, or pneumatic pressure, and converts that energy into 
motion. An actuator is the mechanism by which a control system acts upon an envi-
ronment. The control system can be simple (a fixed mechanical or electronic sys-
tem), software-based (e.g., a printer driver, robot control system), a human, or any 
other input” (Wikipedia).

Address
An address is used for locating and accessing—“talking to”—a Device, a Resource, 
or a Service. In some cases, the ID and the Address can be the same, but conceptu-
ally they are different (IoT-A).

Address Resolution Protocol (ARP)
Address Resolution Protocol. A low-level TCP/IP protocol that maps a hardware 
address, or MAC address, to an IP address. An example hardware address is 
00:00:a6:00:01:ba. The first three groups of characters (00:00:a6) identify the man-
ufacturer; the rest of the characters (00:01:ba) identify the system card. ARP is 
defined in RFC 826 (Cisco).

Address Translation
The translation of a network address and/or port to another network address/or port. 
See also IP address, interface PAT, NAT, PAT, Static PAT, xlate (Cisco).

ADN
Application Dedicated Node. oneM2M compliant device (i.e., Thing) with restricted 
functionality (oneM2M).

AES
Advanced Encryption Standard. A symmetric block cipher that can encrypt and 
decrypt information. The AES algorithm is capable of using cryptographic keys of 
128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. See also 
DES (Cisco).

AH
Authentication Header. An IP protocol (type 51) that can ensure data integrity, 
authentication, and replay detection. AH is embedded in the data to be protected (a 
full IP datagram, for example). AH can be used either by itself or with ESP. This is 
an older IPSec protocol that is less important in most networks than ESP. AH pro-
vides authentication services but does not provide encryption services. It is pro-
vided to ensure compatibility with IPSec peers that do not support ESP, which 
provides both authentication and encryption. See also encryption and VPN. Refer to 
the RFC 2402 (Cisco).

AMQP
Advanced Message Queuing Protocol (Various).
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Application Software
“Software that provides an application service to the user. It is specific to an appli-
cation in the multimedia and/or hypermedia domain and is composed of programs 
and data” ([ETSI-ETR173]).

Architectural Reference Model
The IoT-A architectural reference model follows the definition of the IoT reference 
model and combines it with the related IoT reference architecture. Furthermore, it 
describes the methodology with which the reference model and the reference archi-
tecture are derived, including the use of internal and external stakeholder require-
ments (IoT-A).

Architecture
“The fundamental organization of a system embodied in its components, their rela-
tionships to each other, and to the environment, and the principles guiding its design 
and evolution” ([IEEE-1471-2000]).

Architecture Vision
“A high-level, aspirational view of the target architecture” ([TOGAF9]).

ARP
Address Resolution Protocol. A low-level TCP/IP protocol that maps a hardware 
address, or MAC address, to an IP address. An example hardware address is 
00:00:a6:00:01:ba. The first three groups of characters (00:00:a6) identify the man-
ufacturer; the rest of the characters (00:01:ba) identify the system card. ARP is 
defined in RFC 826 (Cisco).

ASA
Adaptive Security Algorithm. Used by the security appliance to perform inspec-
tions. ASA allows one-way (inside to outside) connections without an explicit con-
figuration for each internal system and application (Cisco).

ASDM
Adaptive Security Device Manager. An application for managing and configuring a 
single security appliance (Cisco).

ASN
Application Service Node. Fully featured oneM2M compliant device (oneM2M).

Association
An association establishes the relation between a service and resource on the one 
hand and a Physical Entity on the other hand (IoT-A).

Asymmetric Encryption
Also called public key systems, asymmetric encryption allows anyone to obtain 
access to the public key of anyone else. Once the public key is accessed, one can 
send an encrypted message to that person using the public key. See also encryption, 
public key (Cisco).

Augmented Entity
The composition of a Physical Entity together with its Virtual Entity (IoT-A).
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Authentication
Cryptographic protocols and services that verify the identity of users and the integ-
rity of data. One of the functions of the IPSec framework. Authentication estab-
lishes the integrity of datastream and ensures that it is not tampered with in transit. 
It also provides confirmation about the origin of the datastream. See also AAA, 
encryption, and VPN (Cisco).

Authentication
Authentication ensures that the entities involved in any operation are who they 
claim to be. A masquerade attack or an impersonation attack usually targets this 
requirement where an entity claims to be another identity (Various).

Authorization
Authorization: ensures that entities have the required control permissions to per-
form the operation they request to perform (Various).

Auto Applet Download
Automatically downloads the WebVPN port-forwarding applet when the user first 
logs in to WebVPN (Cisco).

Auto-signon
This command provides a single sign-on method for WebVPN users. It passes the 
WebVPN login credentials (username and password) to internal servers for authen-
tication using NTLM authentication, basic authentication, or both (Cisco).

Availability
Availability refers to characteristic of a system or subsystem that is continuously 
operational for a desirably long period of time. It is typically measured relative to 
“100% operational” or “never failing.” A widely-held but difficult- to- achieve stan-
dard of availability for a system or product is known as “five 9s” (available 99.999% 
of the time in a given year) availability (Various).

AVB
Audio Video Bridging. IEEE standards for supporting time sensitive audio/video 
streams over wireless Ethernet networks. Also known as Time Sensitive Network-
ing (Various).

Backup Server
IPSec backup servers let a VPN client connect to the central site when the primary 
security appliance is unavailable (Cisco).

Backward Secrecy
Backward Secrecy: ensures that any new object that joins the network will not be 
able to understand the communications that were exchanged prior to joining the 
network (Various).

BGP
Border Gateway Protocol. BGP performs interdomain routing in TCP/IP networks. 
BGP is an Exterior Gateway Protocol, which means that it performs routing between 
multiple autonomous systems or domains and exchanges routing and access infor-
mation with other BGP systems. The security appliance does not support BGP. See 
also EGP (Cisco).
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BI
Business Intelligence (Authors).

Blockchain
A decentralized public ledger that records all transactions within a given network 
(Authors).

BLT stream
Bandwidth Limited Traffic stream. Stream or flow of packets whose bandwidth is 
constrained (Cisco).

Bluetooth
Short-range wireless protocol usually used to connect input/output electronic acces-
sories and peripherals.

BOOTP
Bootstrap Protocol. Let us diskless workstations boot over the network as is 
described in RFC 951 and RFC 1542 (Cisco).

BPDU
Bridge Protocol Data Unit. Spanning-Tree Protocol hello packet that is sent out at 
configurable intervals to exchange information among bridges in the network. Pro-
tocol data unit is the OSI term for packet (Cisco).

Business Logic
Goal or behavior of a system involving Things serving a particular business pur-
pose. Business Logic can define the behavior of a single Thing, a group of Things, 
or a complete business process (IoT-A).

CA
Certificate Authority, Certification Authority. A third-party entity that is responsible 
for issuing and revoking certificates. Each device with the public key of the CA can 
authenticate a device that has a certificate issued by the CA. The term CA also refers 
to software that provides CA services. See also certificate, CRL, public key, RA 
(Cisco).

Cache
A temporary repository of information accumulated from previous task executions 
that can be reused, decreasing the time required to perform the tasks. Caching stores 
frequently reused objects in the system cache, which reduces the need to perform 
repeated rewriting and compressing of content (Cisco).

Carrousel Attack
This attack targets the Network layer in the OSI stack and can be launched if the 
routing protocol supports source routing, where the object generating the packets 
can specify the whole routing path of the packets it wishes to send to the fog device 
(Various).

CBC
Cipher Block Chaining. A cryptographic technique that increases the encryption 
strength of an algorithm. CBC requires an initialization vector (IV) to start encryp-
tion. The IV is explicitly given in the IPSec packet (Cisco).
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certificate
A signed cryptographic object that contains the identity of a user or device and the 
public key of the CA that issued the certificate. Certificates have an expiration date 
and may also be placed on a CRL if known to be compromised. Certificates also 
establish non-repudiation for IKE negotiation, which means that you can prove to a 
third party that IKE negotiation was completed with a specific peer (Cisco).

CHAP
Challenge Handshake Authentication Protocol (Cisco).

CIFS
Common Internet File System. It is a platform-independent file sharing system that 
provides users with network access to files, printers, and other machine resources. 
Microsoft implemented CIFS for networks of Windows computers, however, open 
source implementations of CIFS provide file access to servers running other operat-
ing systems, such as Linux, UNIX, and Mac OS X (Cisco).

CLI
Command line interface. The primary interface for entering configuration and mon-
itoring commands to the security appliance (Cisco).

Client update
Let us update revisions of clients to which the update applies; provide a URL or IP 
address from which to get the update; and, in the case of Windows clients, option-
ally notify users that they should update their VPN client version (Cisco).

client/server computing
Distributed computing (processing) network systems in which transaction responsi-
bilities are divided into two parts: client (front end) and server (back end). Also 
called distributed computing. See also RPC (Cisco).

CoAP
Constrained Application Protocol (Various).

command-specific configuration mode
From global configuration mode, some commands enter a command-specific con-
figuration mode. All user EXEC, privileged EXEC, global configuration, and com-
mand-specific configuration commands are available in this mode. See also global 
configuration mode, privileged EXEC mode, user EXEC mode (Cisco).

Communication Model
The communication model aims at defining the main communication paradigms for 
connecting elements, as, in the IoT-A case, defined in the domain model. This model 
provides a set of communication rules to build interoperable stacks, together with 
insights about the main interactions among the elements of the domain model 
(IoT-A).

Compression
The process of encoding information using fewer bits or other information-bearing 
units than an unencoded representation would use. Compression can reduce the size 
of transferring packets and increase communication performance (Cisco).
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Confidentiality
Confidentiality ensures that the exchanged messages can be understood only by the 
intended entities (Various).

Consensus Algorithm
A consensus algorithm allows nodes on the network to trust that a given piece of 
data is valid, and that it has been synchronized with all other nodes (Authors).

Consortium Blockchain
A blockchain where the network is controlled by a certain set of nodes (Authors).

Constrained Network
A constrained network is a network of devices with restricted capabilities regarding 
storage, computing power, and/or transfer rate (IoT-A).

Container
Light-weight virtualization construct where the underlying operating system kernel 
is common among members (Authors).

Content Rewriting/Transformation
Interprets and modifies applications so that they render correctly over a WebVPN 
connection (Cisco).

Controller
Anything that has the capability to affect a Physical Entity, like changing its state or 
moving it (IoT-A).

cookie
A cookie is an object stored by a browser. Cookies contain information, such as user 
preferences, to persistent storage (Cisco).

CORE
IETF Constrained RESTful Environments workgroup (IETF).

CPU
Central Processing Unit. Main processor (Cisco).

CRC
Cyclical Redundancy Check. Error-checking technique in which the frame recipient 
calculates a remainder by dividing frame contents by a prime binary  divisor and 
compares the calculated remainder to a value stored in the frame by the sending 
node (Cisco).

Credentials
A credential is a record that contains the authentication information (credentials) 
required to connect to a resource. Most credentials contain a user name and pass-
word (IoT-A).

CRM
Customer Relation Management (Authors).
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Crypto map
A data structure with a unique name and sequence number that is used for configur-
ing VPNs on the security appliance. A crypto map selects data flows that need secu-
rity processing and defines the policy for these flows and the crypto peer that traffic 
needs to go to. A crypto map is applied to an interface. Crypto maps contain the 
ACLs, encryption standards, peers, and other parameters necessary to specify secu-
rity policies for VPNs using IKE and IPSec. See also VPN (Cisco).

Cryptocurrency
A digital currency built upon cryptographic protocols (Authors).

Cryptography
Encryption, authentication, integrity, keys, and other services used for secure com-
munication over networks. See also VPN and IPSec (Cisco).

CSE
Common Services Entity. In oneM2M architecture, the middleware layer that sits in 
between applications (Application Entity) and the underlying network services 
(Network Services Entity) (Various).

Data confidentiality
Describes any method that manipulates data so that no attacker can read it. This is 
commonly achieved by data encryption and keys that are only available to the par-
ties involved in the communication (Cisco).

Data integrity
Describes mechanisms that, through the use of encryption based on secret key or 
public key algorithms, allow the recipient of a piece of protected data to verify that 
the data has not been modified in transit (Cisco).

Data origin authentication
A security service where the receiver can verify that protected data could have origi-
nated only from the sender. This service requires a data integrity service plus a key 
distribution mechanism, where a secret key is shared only between the sender and 
receiver (Cisco).

DDS RTPS
Distribute Data Service Real Time Publish and Subscribe Protocol (Various).

Decryption
Application of a specific algorithm or cipher to encrypted data so as to render the 
data comprehensible to those who are authorized to see the information. See also 
encryption (Cisco).

Denial of Sleep Attack
Denial of Sleep: Different data link layer protocols were proposed to reduce the 
power consumption of smart objects by switching them into sleep whenever they 
are not needed. Examples of these protocols include S-MAC [3] and T-MAC [4] 
protocols (Various).
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DES
Data encryption standard. DES was published in 1977 by the National Bureau of 
Standards and is a secret key encryption scheme based on the Lucifer algorithm 
from IBM. Cisco uses DES in classic crypto (40-bit and 56-bit key lengths), IPSec 
crypto (56-bit key), and 3DES (triple DES), which performs encryption three times 
using a 56-bit key. 3DES is more secure than DES but requires more processing for 
encryption and decryption. See also AES, ESP (Cisco).

Device
Technical physical component (hardware) with communication capabilities to other 
IT systems. A device can be either attached to or embedded inside a Physical Entity, 
or monitor a Physical Entity in its vicinity (IoT-A).

DHCP
Dynamic Host Configuration Protocol. Provides a mechanism for allocating IP 
addresses to hosts dynamically, so that addresses can be reused when hosts no lon-
ger need them and so that mobile computers, such as laptops, receive an IP address 
applicable to the LAN to which it is connected (Cisco).

Digital certificate
See certificate (Cisco).

Digital Certificate Or Pubic Key Certificate
In cryptography, a public key certificate (also known as a digital certificate or iden-
tity certificate) is an electronic document used to prove ownership of a public key. 
The certificate includes information about the key, information about its owner’s 
identity, and the digital signature of an entity that has verified the certificate’s con-
tents are correct. If the signature is valid, and the person examining the certificate 
trusts the signer, then they know they can use that key to communicate with its owner.

In a typical public-key infrastructure (PKI) scheme, the signer is a certificate author-
ity (CA), usually a company that charges customers to issue certificates for them. In 
a web of trust scheme, the signer is either the key’s owner (a self-signed certificate) 
or other users (“endorsements”) whom the person examining the certificate might 
know and trust.

Certificates are an important component of Transport Layer Security (TLS, some-
times called by its older name SSL, Secure Sockets Layer), where they prevent an 
attacker from impersonating a secure website or other server. They are also used in 
other important applications, such as email encryption and code signing (see also, 
PKI and X509) (Wikipedia).

Digital Entity
Any computational or data element of an IT-based system (IoT-A).

Discovery
Discovery is a service to find unknown resources/entities/services based on a rough 
specification of the desired result. It may be utilized by a human or another service. 
Credentials for authorization are considered when executing the discovery (IoT-A).
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DN
Distinguished Name. Global, authoritative name of an entry in the OSI Directory 
(X.500) (Cisco).

DNS
Domain Name System (or Service). An Internet service that translates domain 
names into IP addresses (Cisco).

Docker
Open source project that provides a packaging framework to simplify the portability 
and automate the deployment of applications in Containers (Authors).

DODAG
Destination Oriented Directed Acyclic Graph (IETF).

Domain Model
“A domain model describes objects belonging to a particular area of interest. The 
domain model also defines attributes of those objects, such as name and identifier. 
The domain model defines relationships between objects such as ‘instruments pro-
duce data sets’. Besides describing a domain, domain models also help to facilitate 
correlative use and exchange of data between domains” ([CCSDS 312.0-G-0]).

DoS
Denial of Service. A type of network attack in which the goal is to render a network 
service unavailable (Cisco).

DSL
Digital subscriber line. Public network technology that delivers high bandwidth 
over conventional copper wiring at limited distances. DSL is provisioned via modem 
pairs, with one modem located at a central office and the other at the customer site. 
Because most DSL technologies do not use the whole bandwidth of the twisted pair, 
there is room remaining for a voice channel (Cisco).

DSP
digital signal processor. A DSP segments a voice signal into frames and stores them 
in voice packets (Cisco).

DSS
Digital Signature Standard. A digital signature algorithm designed by The US 
National Institute of Standards and Technology and based on public-key cryptogra-
phy. DSS does not do user datagram encryption. DSS is a component in classic 
crypto, as well as the Redcreek IPSec card, but not in IPSec implemented in Cisco 
IOS software (Cisco).

Dynamic NAT
See NAT and address translation (Cisco).

EGP
Exterior Gateway Protocol. Replaced by BGP. The security appliance does not sup-
port EGP. See also BGP (Cisco).
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EIGRP
Enhanced Interior Gateway Routing Protocol. The security appliance does not sup-
port EIGRP (Cisco).

Encryption
Application of a specific algorithm or cipher to data so as to render the data incom-
prehensible to those unauthorized to see the information. See also decryption 
(Cisco).

ESMTP
Extended SMTP. Extended version of SMTP that includes additional functionality, 
such as delivery notification and session delivery. ESMTP is described in RFC 
1869, SMTP Service Extensions (Cisco).

ESP
Encapsulating Security Payload. An IPSec protocol, ESP provides authentication 
and encryption services for establishing a secure tunnel over an insecure network. 
For more information, refer to RFCs 2406 and 1827 (Cisco).

EVPN
Ethernet Virtual Private Networks, an IETF solution standardized in RFC 
7432 (IETF).

Failover, Failover mode
Failover lets you configure two security appliances so that one will take over opera-
tion if the other one fails. The security appliance supports two failover configura-
tions, Active/Active failover and Active/Standby failover. Each failover configuration 
has its own method for determining and performing failover. With Active/Active 
failover, both units can pass network traffic. This lets you configure load balancing 
on your network. Active/Active failover is only available on units running in mul-
tiple context mode. With Active/Standby failover, only one unit passes traffic while 
the other unit waits in a standby state. Active/Standby failover is available on units 
running in either single or multiple context mode (Cisco).

FCAPS
(see NMS) Fault, Configuration, Accounting, Performance, and Security manage-
ment (Authors).

FFD
IEEE 802.15.4 Full-Function Device. Implements all of the functions of the IEEE 
802.15.4 communication stack (IEEE).

Flash, Flash memory
A nonvolatile storage device used to store the configuration file when the security 
appliance is powered down (Cisco).

Flooding Attack
The adversary can flood the neighboring nodes with dummy packets and request 
them to deliver those packets to the fog device, where devices waste energy receiv-
ing and transmitting those dummy packets (Various).
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Forward Secrecy and Backward Secrecy
Forward Secrecy: ensures that when an object leaves the network, it will not under-
stand the communications that are exchanged after its departure. Backward Secrecy: 
ensures that any new object that joins the network will not be able to understand the 
communications that were exchanged prior to joining the network (Various).

Freshness
Freshness: ensures that the data is fresh. Replay attacks target this requirement 
where an old message is replayed in order to return an entity into an old state 
(Various).

FTP
File Transfer Protocol. Part of the TCP/IP protocol stack, used for transferring files 
between hosts (Cisco).

Gateway
A Gateway is a forwarding element, enabling various local networks to be con-
nected (IoT-A).

Global Configuration Mode
Global configuration mode lets you to change the security appliance configuration. 
All user EXEC, privileged EXEC, and global configuration commands are available 
in this mode. See also user EXEC mode, privileged EXEC mode, command-specific 
configuration mode (Cisco).

Global Storage
Storage that contains global information about many entities of interest. Access to 
the global storage is available over the Internet (IoT-A).

GMT
Greenwich Mean Time. Replaced by UTC (Coordinated Universal Time) in 1967 as 
the world time standard (Cisco).

GPRS
General packet radio service. A service defined and standardized by the European 
Telecommunication Standards Institute. GPRS is an IP-packet-based extension of 
GSM networks and provides mobile, wireless, data communications (Cisco).

GRE
Generic Routing Encapsulation described in RFCs 1701 and 1702. GRE is a tunnel-
ing protocol that can encapsulate a wide variety of protocol packet types inside IP 
tunnels, creating a virtual point-to-point link to routers at remote points over an IP 
network. By connecting multiprotocol subnetworks in a single-protocol backbone 
environment, IP tunneling using GRE allows network expansion across a single 
protocol backbone environment (Cisco).

GSM
Global System for Mobile Communication. A digital, mobile, radio standard devel-
oped for mobile, wireless, voice communications (Cisco).
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GTP
GPRS tunneling protocol. GTP handles the flow of user packet data and signaling 
information between the SGSN and GGSN in a GPRS network. GTP is defined on 
both the Gn and Gp interfaces of a GPRS network (Cisco).

Host
The name for any device on a TCP/IP network that has an IP address. See also net-
work and node (Cisco).

Host/network
An IP address and netmask used with other information to identify a single host or 
network subnet for security appliance configuration, such as an address translation 
(xlate) or ACE (Cisco).

HTTP
Hypertext Transfer Protocol. A protocol used by browsers and web servers to trans-
fer files. When a user views a web page, the browser can use HTTP to request and 
receive the files used by the web page. HTTP transmissions are not encrypted 
(Cisco).

HTTPS
Hypertext Transfer Protocol Secure. An SSL-encrypted version of HTTP (Cisco).

IANA
Internet Assigned Number Authority. Assigns all port and protocol numbers for use 
on the Internet (Cisco).

ICMP
Internet Control Message Protocol. Network-layer Internet protocol that reports 
errors and provides other information relevant to IP packet processing (Cisco).

Identifier (ID)
Artificially generated or natural feature used to disambiguate things from each 
other. There can be several Ids for the same Physical Entity. The set of Ids is an 
attribute of a Physical Entity (IoT-A).

Identity
Properties of an entity that makes it definable and recognizable (IoT-A).

IDS
Intrusion Detection System. A method of detecting malicious network activity by 
signatures and then implementing a policy for that signature (Cisco).

IETF
The Internet Engineering Task Force. A technical standards organization that devel-
ops RFC documents defining protocols for the Internet (Cisco).

IGMP
Internet Group Management Protocol. IGMP is a protocol used by IPv4 systems to 
report IP multicast memberships to neighboring multicast routers (Cisco).
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IKE
Internet Key Exchange. IKE establishes a shared security policy and authenticates 
keys for services (such as IPSec) that require keys. Before any IPSec traffic can be 
passed, each security appliance must verify the identity of its peer. This can be done 
by manually entering preshared keys into both hosts or by a CA service. IKE is a 
hybrid protocol that uses part Oakley and part of another protocol suite called 
SKEME inside ISAKMP framework. This is the protocol formerly known as 
ISAKMP/Oakley, and is defined in RFC 2409 (Cisco).

ILS
Internet Locator Service. ILS is based on LDAP and is ILSv2 compliant. ILS was 
developed by Microsoft for use with its NetMeeting, SiteServer, and Active Direc-
tory products (Cisco).

IMAP
Internet Message Access Protocol. Method of accessing e-mail or bulletin board 
messages kept on a mail server that can be shared. IMAP permits client e-mail 
applications to access remote message stores as if they were local without actually 
transferring the message (Cisco).

implicit rule
An access rule automatically created by the security appliance based on default 
rules or as a result of user-defined rules (Cisco).

IMSI
International Mobile Subscriber Identity. One of two components of a GTP tunnel 
ID, the other being the NSAPI. See also NSAPI (Cisco).

Information Model
“An information model is a representation of concepts, relationships, constraints, 
rules, and operations to specify data semantics for a chosen domain of discourse. 
The advantage of using an information model is that it can provide sharable, stable, 
and organized structure of information requirements for the domain context.

The information model is an abstract representation of entities which can be real 
objects such as devices in a network or logical such as the entities used in a billing 
system. Typically, the information model provides formalism to the description of a 
specific domain without constraining how that description is mapped to an actual 
implementation. Thus, different mappings can be derived from the same informa-
tion model. Such mappings are called data models” ([AutoI]).

Infrastructure Services
Specific services that are essential for any IoT implementation to work properly. 
Such services provide support for essential features of the IoT (IoT-A).

Integrity
Integrity ensures that the exchanged messages were not altered/tampered by a third 
party (Various).
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Interface
“Named set of operations that characterize the behaviour of an entity” ([OGS]).

interface
The physical connection between a particular network and a security appliance 
(Cisco).

interface ip_address
The IP address of a security appliance network interface. Each interface IP address 
must be unique. Two or more interfaces must not be given the same IP address or IP 
addresses that are on the same IP network (Cisco).

Internet
“The Internet is a global system of interconnected computer networks that use the 
standard Internet protocol suite (TCP/IP) to serve billions of users worldwide. It is 
a network of networks that consists of millions of private, public, academic, busi-
ness, and government networks of local to global scope that are linked by a broad 
array of electronic and optical networking technologies. The Internet carries a vast 
array of information resources and services, most notably the inter- linked hypertext 
documents of the World Wide Web (WWW) and the infrastructure to support elec-
tronic mail.

Most traditional communications media, such as telephone and television services, 
are reshaped or redefined using the technologies of the Internet, giving rise to ser-
vices such as Voice over Internet Protocol (VoIP) and IPTV. Newspaper publishing 
has been reshaped into Web sites, blogging, and web feeds. The Internet has enabled 
or accelerated the creation of new forms of human interactions through instant mes-
saging, Internet forums, and social networking sites.

The Internet has no centralized governance in either technological implementation 
or policies for access and usage; each constituent network sets its own standards. 
Only the overreaching definitions of the two principal name spaces in the Internet, 
the Internet-protocol address space and the domain-name system, are directed by a 
maintainer organization, the Internet Corporation for Assigned Names and Num-
bers (ICANN). The technical underpinning and standardization of the core proto-
cols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a 
non-profit organization of loosely affiliated international participants that anyone 
may associate with by contributing technical expertise” (Wikipedia).

Internet of Things (IoT)
IoT is the network of things, with device identification, embedded software intelli-
gence, sensors, and connectivity connecting people and things over the Internet at 
anytime, anyplace, with anything and anyone (Authors).

Interoperability
“The ability to share information and services. The ability of two or more systems 
or components to exchange and use information. The ability of systems to provide 
and receive services from other systems and to use the services so interchanged to 
enable them to operate effectively together” ([TOGAF 9]).
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intf n
Any interface, usually beginning with port 2, that connects to a subset network of 
your design that you can custom name and configure (Cisco).

intranet
Intranetwork. A LAN that uses IP. See also network and Internet (Cisco).

IoT Service
Software component enabling interaction with resources through a well-defined 
interface. Can be orchestrated together with non-IoT services (e.g., enterprise ser-
vices). Interaction with the service is done via the network (IoT-A).

IP
Internet Protocol. IP protocols are the most popular nonproprietary protocols 
because they can be used to communicate across any set of interconnected networks 
and are equally well suited for LAN and WAN communications (Cisco).

IP address
An IP protocol address. A security appliance interface ip_address. IP version 4 
addresses are 32 bits in length. This address space is used to designate the network 
number, optional subnetwork number, and a host number. The 32 bits are grouped 
into four octets (8 binary bits), represented by 4 decimal numbers separated by peri-
ods, or dots. The meaning of each of the four octets is determined by their use in a 
particular network (Cisco).

IP pool
A range of local IP addresses specified by a name, and a range with a starting IP 
address and an ending address. IP Pools are used by DHCP and VPNs to assign 
local IP addresses to clients on the inside interface (Cisco).

IPS
Intrusion Prevention Service. An in-line, deep-packet inspection-based solution that 
helps mitigate a wide range of network attacks (Cisco).

IPSec
IP Security. A framework of open standards that provides data confidentiality, data 
integrity, and data authentication between participating peers. IPSec provides these 
security services at the IP layer. IPSec uses IKE to handle the negotiation of proto-
cols and algorithms based on local policy and to generate the encryption and authen-
tication keys to be used by IPSec. IPSec can protect one or more data flows between 
a pair of hosts, between a pair of security gateways, or between a security gateway 
and a host (Cisco).

ISAKMP
Internet Security Association and Key Management Protocol. A protocol frame-
work that defines payload formats, the mechanics of implementing a key exchange 
protocol, and the negotiation of a security association. See IKE (Cisco).
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IS-IS
Intermediate System to Intermediate System. A routing protocol used as the control 
plane for IP and next generation Ethernet networks (Authors).

ISP
Internet Service Provider. An organization that provides connection to the Internet 
via their services, such as modem dial in over telephone voice lines or DSL (Cisco).

ISV
Independent Software Vendors (ISV) (Authors).

key
A data object used for encryption, decryption, or authentication (Cisco).

LAN
Local area network. A network residing in one location, such as a single building or 
campus. See also Internet, intranet, and network (Cisco).

layer, layers
Networking models implement layers with which different protocols are associated. 
The most common networking model is the OSI model, which consists of the fol-
lowing seven layers, in order: physical, data link, network, transport, session, pre-
sentation, and application (Cisco).

LDAP
Lightweight Directory Access Protocol. LDAP provides management and browser 
applications with access to X.500 directories (Cisco).

Ledger
A shared and distributed history of all transactions within the blockchain (Authors).

LISP
Locator/Identifier Separation Protocol, an IETF solution standardized in RFC 
6830 (IETF).

LLN
Low Power and Lossy Networks (IETF).

Local Storage
Special type of resource that contains information about one or only a few entities 
in the vicinity of a device (IoT-A).

Location Technologies
All technologies whose primary purpose is to establish and communicate the loca-
tion of a device, e.g., GPS, RTLS, etc. (IoT-A).

Look-up
In contrast to discovery, look-up is a service that addresses exiting known resources 
using a key or identifier (IoT-A).
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LoRaWAN Network Architecture
LoRaWAN network architecture is typically laid out in a star-of-stars topology in 
which gateways are a transparent bridge relaying messages between end-devices 
and a central network server in the backend. Gateways are connected to the network 
server via standard IP connections while end-devices use single-hop wireless com-
munication to one or many gateways. All endpoint communication is generally bi-
directional, but also supports operation such as multicast enabling software upgrade 
over the air or other mass distribution messages to reduce the on air communication 
time (LoRa Alliance).

LoRaWAN™
LoEa WAN is a Low Power Wide Area Network (LPWAN) specification intended 
for wireless battery operated Things in regional, national, or global network. 
LoRaWAN target key requirements of Internet of Things such as secure bi-direc-
tional communication, mobility, and localization services. This standard will pro-
vide seamless interoperability among smart Things without the need of complex 
local installations and gives back the freedom to the user, developer, businesses 
enabling the roll out of IoT (LoRa Alliance).

LPN
Low-Power Network (LPN) or Low-Power Wide-Area Network (LPWAN) is a type 
of wireless telecommunication network designed to allow long-range communica-
tions at a low bit rate among things (connected objects), such as sensors operated on 
a battery (Wikipedia).

LPWAN
Low-Power Wide-Area Network (LPWAN) or Low-Power Network (LPN) is a type 
of wireless telecommunication network designed to allow long-range communica-
tions at a low bit rate among things (connected objects), such as sensors operated on 
a battery (Wikipedia).

M2M (also referred to as machine to machine)
“The automatic communications between devices without human intervention. It 
often refers to a system of remote sensors that is continuously transmitting data to a 
central system. Agricultural weather sensing systems, automatic meter reading and 
RFID tags are examples” ([COMPDICT-M2M]).

MAN
Metropolitan Area Network. A network for a city or metro area (Various).

Mask
A 32-bit mask that shows how an Internet address is divided into network, subnet, 
and host parts. The mask has ones in the bit positions to be used for the network and 
subnet parts, and zeros for the host part. The mask should contain at least the stan-
dard network portion, and the subnet field should be contiguous with the network 
portion (Cisco).

Merkle Tree
A data structure where each leaf of the tree is a hash of data and the root is the hash 
of all its children hashes (Authors).
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Microcontroller
“A microcontroller is a small computer on a single integrated circuit containing a 
processor core, memory, and programmable input/output peripherals. Program 
memory in the form of NOR flash or OTP ROM is also often included on chip, as 
well as a typically small amount of RAM. Microcontrollers are designed for embed-
ded applications, in contrast to the microprocessors used in personal computers or 
other general purpose applications.

Microcontrollers are used in automatically controlled products and devices, such as 
automobile engine control systems, implantable medical devices, remote controls, 
office machines, appliances, power tools, and toys. By reducing the size and cost 
compared to a design that uses a separate microprocessor, memory, and input/output 
devices, microcontrollers make it economical to digitally control even more devices 
and processes. Mixed signal microcontrollers are common, integrating analog com-
ponents needed to control non-digital electronic systems” (Wikipedia).

Miner
A node that generates new blocks for the blockchain through the work of computa-
tion and using the given consensus algorithm (Authors).

Mode
See Access Modes (Cisco).

MQTT
Message Queuing Telemetry Transport, an application layer protocol (OASIS).

MS
Mobile Station. Refers generically to any mobile device, such as a mobile handset 
or computer that is used to access network services. GPRS networks support three 
classes of MS, which describe the type of operation supported within the GPRS and 
the GSM mobile wireless networks. For example, a Class A MS supports simultane-
ous operation of GPRS and GSM services (Cisco).

MTU
Maximum transmission unit, the maximum number of bytes in a packet that can 
flow efficiently across the network with best response time. For Ethernet, the default 
MTU is 1500 bytes, but each network can have different values, with serial connec-
tions having the smallest values. The MTU is described in RFC 1191 (Cisco).

Multicast
Multicast refers to a network addressing method in which the source transmits a 
packet to multiple destinations, a multicast group, simultaneously. See also PIM, 
SMR (Cisco).

NAT
Network Address Translation. Mechanism for reducing the need for globally unique 
IP addresses. NAT allows an organization with addresses that are not globally 
unique to connect to the Internet by translating those addresses into a globally 
routable address space (Cisco).
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Network
In the context of security appliance configuration, a network is a group of comput-
ing devices that share part of an IP address space and not a single host. A network 
consists of multiple nodes or hosts. See also host, Internet, intranet, IP, LAN, and 
node (Cisco).

Network resource
Resource hosted somewhere in the network, e.g., in the cloud (IoT-A).

Next-Generation Networks (NGN)
“Packet-based network able to provide telecommunication services and able to 
make use of multiple broadband, QoS-enabled transport technologies and in which 
service-related functions are independent from underlying transport-related tech-
nologies” ([ETSI TR 102 477]).

NFC
Near Field Communication (Various).

NMS
Network management system: a software system responsible for managing a net-
work. It includes: Fault, Configuration, Accounting, Performance and Security 
management (known as FCAPS). NMS communicates with Element Management 
Systems (EMS), agents and/or the network devices themselves to collect data, push 
updates or help keep track of network statistics and resources (Authors).

Node
Devices such as routers and printers that would not normally be called hosts. See 
also host, network (Cisco).

Non Repudiation
Non Repudiation: ensures that an entity cannot deny an action that it has performed 
(Various).

nonvolatile storage, memory
Storage or memory that, unlike RAM, retains its contents without power. Data in a 
nonvolatile storage device survives a power- off, power-on cycle or reboot (Cisco).

NTP
Network time protocol (Cisco).

OASIS
Organization for the Advancement of Structured Information Standards (Various).

object grouping
Simplifies access control by letting you apply access control statements to groups of 
network objects, such as protocol, services, hosts, and networks (Cisco).

Observer
Anything that has the capability to monitor a Physical Entity, like its state or loca-
tion (IoT-A).
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OEM
Original Equipment Manufacturers (Authors).

On-device Resource
Resource hosted inside a Device and enabling access to the Device and thus to the 
related Physical Entity (IoT-A).

Ontology
Ontology is the philosophical study of the nature of being, or reality, as well as the 
basic categories of being and their relations. Ontology engineering offers a direction 
towards solving the inter-operability problems brought about by semantic obstacles, 
i.e., the obstacles related to the definitions of business terms and software classes. 
Ontology engineering is a set of tasks related to the development of ontologies for a 
particular domain (Wikipedia).

Open source
Open source in the computer industry is the sharing of source code or hardware 
design, with the permission to reuse, modify, and improve at no cost (Various).

Operator
The operator owns administration rights on the services it provides and/or on the 
entities it owns, is able to negotiate partnerships with equivalent counterparts and 
define policies specifying how a service can be accessed by users (IoT-A).

OSI
Open Systems Interconnection (Authors).

OSPF
Open Shortest Path First. OSPF is a routing protocol for IP networks. OSPF is a 
routing protocol widely deployed in large networks because of its efficient use of 
network bandwidth and its rapid convergence after changes in topology. The secu-
rity appliance supports OSPF (Cisco).

outbound
Refers to traffic whose destination is on an interface with lower security than the 
source interface (Cisco).

PAN
Personal Area Network. A network comprising electronic accessories/peripherals or 
wearable devices (Various).

Passive Digital Entities
A digital representation of something stored in an IT- based system (IoT-A).

PCE
Path Computational Element. A server dedicated to running network path computa-
tion calculations. Typically used in network traffic engineering applications (IETF).

Permissioned Blockchain
A private blockchain with strong understanding of identity management and nodes 
within the network (Authors).
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Permissionless Blockchain
A public blockchain that allows anyone to join the network and participate (Authors).

Perspective (also referred to as architectural perspective)
“Architectural perspective is a collection of activities, checklists, tactics and guide-
lines to guide the process of ensuring that a system exhibits a particular set of closely 
related quality properties that require consideration across a number of the system’s 
architectural views” ([ROZANSKI2005]).

Physical Entity
Any physical object that is relevant from a user or application perspective (IoT-A).

PIM
Protocol Independent Multicast. PIM provides a scalable method for determining 
the best paths for distributing a specific multicast transmission to a group of hosts. 
Each host has registered using IGMP to receive the transmission. See also PIM-SM 
(Cisco).

Ping
An ICMP request sent by a host to determine if a second host is accessible (Cisco).

PIX
Private Internet eXchange. The Cisco PIX 500-series security appliances range 
from compact, plug-and-play desktop models for small/home offices to carrier- class 
gigabit models for the most demanding enterprise and service provider environ-
ments. Cisco PIX security appliances provide robust, enterprise-class integrated 
network security services to create a strong multilayered defense for fast changing 
network environments (Cisco).

PKI
A public key infrastructure is a set of roles, policies, and procedures needed to cre-
ate, manage, distribute, use, store, and revoke digital certificates and manage public-
key encryption. The purpose of a PKI is to facilitate the secure electronic transfer of 
information for a range of network activities such as e-commerce, Internet banking, 
and confidential email. It is required for activities where simple passwords are an 
inadequate authentication method and more rigorous proof is required to confirm 
the identity of the parties involved in the communication and to validate the infor-
mation being transferred.

In cryptography, a PKI is an arrangement that binds public keys with respective 
identities of entities (like persons and organizations). The binding is established 
through a process of registration and issuance of certificates at and by a certificate 
authority (CA). Depending on the assurance level of the binding, this may be carried 
out by an automated process or under human supervision (Wikipedia).

Port
A field in the packet headers of TCP and UDP protocols that identifies the higher 
level service which is the source or destination of the packet (Cisco).
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PPP
Point-to-Point Protocol. Developed for dial-up ISP access using analog phone lines 
and modems (Cisco).

PPTP
Point-to-Point Tunneling Protocol. PPTP was introduced by Microsoft to provide 
secure remote access to Windows networks; however, because it is vulnerable to 
attack, PPTP is commonly used only when stronger security methods are not avail-
able or are not required. PPTP Ports are pptp, 1723/tcp, 1723/udp, and pptp. For 
more information about PPTP, see RFC 2637. See also PAC, PPTP GRE, PPTP 
GRE tunnel, PNS, PPTP session, and PPTP TCP (Cisco).

Privacy
Information Privacy is the interest an individual has in controlling, or at least signifi-
cantly influencing, the handling of data about themselves (IoT-A).

Proxy-ARP
Enables the security appliance to reply to an ARP request for IP addresses in the 
global pool. See also ARP (Cisco).

public key
A public key is one of a pair of keys that are generated by devices involved in public 
key infrastructure. Data encrypted with a public key can only be decrypted using the 
associated private key. When a private key is used to produce a digital signature, the 
receiver can use the public key of the sender to verify that the message was signed 
by the sender. These characteristics of key pairs provide a scalable and secure 
method of authentication over an insecure media, such as the Internet (Cisco).

Public Key Certificate
See Digital Certificate

QoS
Quality of service. Measure of performance for a transmission system that reflects 
its transmission quality and service availability (Cisco).

RADIUS
Remote Authentication Dial-In User Service. RADIUS is a distributed client/server 
system that secures networks against unauthorized access. RFC 2058 and RFC 2059 
define the RADIUS protocol standard. See also AAA and TACACS+ (Cisco).

Reference Architecture
A reference architecture is an architectural design pattern that indicates how an 
abstract set of mechanisms and relationships realizes a predetermined set of require-
ments. It captures the essence of the architecture of a collection of systems. The 
main purpose of a reference architecture is to provide guidance for the development 
of architectures. One or more reference architectures may be derived from a com-
mon reference model, to address different purposes/usages to which the Reference 
Model may be targeted (IoT-A).
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Reference Model
“A reference model is an abstract framework for understanding significant relation-
ships among the entities of some environment. It enables the development of spe-
cific reference or concrete architectures using consistent standards or specifications 
supporting that environment. A reference model consists of a minimal set of unify-
ing concepts, axioms and relationships within a particular problem domain, and is 
independent of specific standards, technologies, implementations, or other concrete 
details. A reference model may be used as a basis for education and explaining 
standards to non-specialists” ([OASIS-RM]).

Refresh
Retrieve the running configuration from the security appliance and update the 
screen. The icon and the button perform the same function (Cisco).

Requirement
“A quantitative statement of business need that must be met by a particulararchitec-
ture or work package” ([TOGAF9]).

Resolution
Service by which a given ID is associated with a set of Addresses of information and 
interaction Services. Information services allow querying, changing, and adding 
information about the thing in question, while interaction services enable direct 
interaction with the thing by accessing the Resources of the associated Devices. 
Based on a priori knowledge (IoT-A).

Resource
Computational element that gives access to information about or actuation capabili-
ties on a Physical Entity (IoT-A).

REST or RESTful
Representational State Transfer. The architectural paradigm for the World Wide 
Web employing the HTTP protocol (Various).

RFC
Request for Comments. RFC documents define protocols and standards for com-
munications over the Internet. RFCs are developed and published by IETF (Cisco).

RFD
IEEE 802.15.4 Reduced Function Device. Implements minimal subset of the proto-
col stack, and is typically battery powered (IEEE).

RFID
“The use of electromagnetic or inductive coupling in the radio frequency portion of 
the spectrum to communicate to or from a tag through a variety of modulation and 
encoding schemes to uniquely read the identity of an RF Tag” ([ISO/IEC 19762]).

RIP
Routing Information Protocol. Interior gateway protocol (IGP) supplied with UNIX 
BSD systems. The most common IGP in the Internet. RIP uses hop count as a rout-
ing metric (Cisco).
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ROLL
IETF Routing over Low Power and Lossy Networks workgroup (IETF).

RPL
Routing Protocol for Low Power and Lossy Networks, a distance vector routing 
protocol for IoT standardized in RFC6550 (IETF).

RSA
A public key cryptographic algorithm (named after its inventors, Rivest, Shamir, 
and Adelman) with a variable key length. The main weakness of RSA is that it is 
significantly slow to compute compared to popular secret-key algorithms, such as 
DES. The Cisco implementation of IKE uses a Diffie–Hellman exchange to get the 
secret keys. This exchange can be authenticated with RSA (or preshared keys). With 
the Diffie–Hellman exchange, the DES key never crosses the network (not even in 
encrypted form), which is not the case with the RSA encrypt and sign technique. 
RSA is not public domain, and must be licensed from RSA Data Security (Cisco).

RSH
Remote Shell. A protocol that allows a user to execute commands on a remote sys-
tem without having to log in to the system. For example, RSH can be used to 
remotely examine the status of a number of access servers without connecting to 
each communication server, executing the command, and then disconnecting from 
the communication server (Cisco).

RSU
Road Side Unit (Various).

RTP
Real-Time Transport Protocol. Commonly used with IP networks. RTP is designed 
to provide end-to-end network transport functions for applications transmitting real-
time data, such as audio, video, or simulation data, over multicast or unicast net-
work services. RTP provides such services as payload type identification, sequence 
numbering, timestamping, and delivery monitoring to real-time applications 
(Cisco).

RTSP
Real Time Streaming Protocol. Enables the controlled delivery of real- time data, 
such as audio and video. RTSP is designed to work with established protocols, such 
as RTP and HTTP (Cisco).

rule
Conditional statements added to the security appliance configuration to define secu-
rity policy for a particular situation. See also ACE, ACL, NAT (Cisco).

running configuration
The configuration currently running in RAM on the security appliance. The con-
figuration that determines the operational characteristics of the security appliance 
(Cisco).

Appendix A



362

SA
Security association. An instance of security policy and keying material applied to 
a data flow. SAs are established in pairs by IPSec peers during both phases of IPSec. 
SAs specify the encryption algorithms and other security parameters used to create 
a secure tunnel. Phase 1 SAs (IKE SAs) establish a secure tunnel for negotiating 
Phase 2 SAs. Phase 2 SAs (IPSec SAs) establish the secure tunnel used for sending 
user data. Both IKE and IPSec use SAs, although SAs are independent of one 
another. IPSec SAs are unidirectional and they are unique in each security protocol. 
A set of SAs are needed for a protected data pipe, one per direction per protocol. For 
example, if you have a pipe that supports ESP between peers, one ESP SA is 
required for each direction. SAs are uniquely identified by destination (IPSec end-
point) address, security protocol (AH or ESP), and Security Parameter Index. IKE 
negotiates and establishes SAs on behalf of IPSec. A user can also establish IPSec 
SAs manually. An IKE SA is used by IKE only, and unlike the IPSec SA, it is bidi-
rectional (Cisco).

Satoshi Nakamoto
Pseudonym for the person or group of people who created Bitcoin (Authors).

SCL
Services Capability Layer. A set of common application services standardized by 
ETSI TS 102690 (Authors).

secret key
A secret key is a key shared only between the sender and receiver. See key, public 
key (Cisco).

Security
The correct term is ‘information security’ and typically information security com-
prises three component parts:

Confidentiality. Assurance that information is shared only among authorized per-
sons or organizations. Breaches of confidentiality can occur when data is not han-
dled in a manner appropriate to safeguard the confidentiality of the information 
concerned. Such disclosure can take place by word of mouth, by printing, copying, 
e-mailing or creating documents and other data, etc.;

Integrity. Assurance that the information is authentic and complete. Ensuring that 
information can be relied upon to be sufficiently accurate for its purpose. The term 
‘integrity’ is used frequently when considering information security as it represents 
one of the primary indicators of information security (or lack of it). The integrity of 
data is not only whether the data is ‘correct’, but whether it can be trusted and 
relied upon;

Availability. Assurance that the systems responsible for delivering, storing, and pro-
cessing information are accessible when needed, by those who need them 
([ISO27001]).
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security context
You can partition a single security appliance into multiple virtual firewalls, known 
as security contexts. Each context is an independent firewall, with its own security 
policy, interfaces, and administrators. Multiple contexts are similar to having mul-
tiple stand-alone firewalls (Cisco).

security services
See cryptography (Cisco).

Selective-Forwarding Attack
This attack takes place in the case when the object cannot send its generated packets 
directly to the fog device but must rely on other objects that lie along the path 
towards the fog device to deliver those packets (Various).

Semantics
The study of meaning. It focuses on the relation between signifiers, like words, 
phrases, signs, and symbols, and what they stand for their denotation (Wikipedia).

Sensor
A sensor is a special Device that perceives certain characteristics of the real world 
and transfers them into a digital representation (IoT-A).

serial transmission
A method of data transmission in which the bits of a data character are transmitted 
sequentially over a single channel (Cisco).

Service
“Services are the mechanism by which needs and capabilities are brought together” 
([OASIS-RM]).

SI
Systems Integrators (Authors).

Sinkhole Attack
In this attack, a malicious object claims that it has the shortest- path to the fog device 
which attracts all neighboring objects that do not have the transmission capability to 
reach the fog device to forward their packets to that malicious object and count on 
that object to deliver their packets (Various).

SIP
Session Initiation Protocol. Enables call handling sessions, particularly two-party 
audio conferences, or “calls.” SIP works with SDP for call signaling. SDP specifies 
the ports for the media stream. Using SIP, the security appliance can support any 
SIP VoIP gateways and VoIP proxy servers (Cisco).

site-to-site VPN
A site-to-site VPN is established between two IPSec peers that connect remote net-
works into a single VPN. In this type of VPN, neither IPSec peer is the destination 
or source of user traffic. Instead, each IPSec peer provides encryption and authenti-
cation services for hosts on the LANs connected to each IPSec peer. The hosts on 
each LAN send and receive data through the secure tunnel established by the pair of 
IPSec peers (Cisco).
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SMO
Systems Management Overview (Authors).

SMTP
Simple Mail Transfer Protocol. SMTP is an Internet protocol that supports email 
services (Cisco).

SNMP
Simple Network Management Protocol. A standard method for managing network 
devices using data structures called Management Information Bases (Cisco).

spoofing
A type of attack designed to foil network security mechanisms such as filters and 
access lists. A spoofing attack sends a packet that claims to be from an address from 
which it was not actually sent (Cisco).

SQL*Net
Structured Query Language Protocol. An Oracle protocol used to communicate 
between client and server processes (Cisco).

SSH
Secure Shell. An application running on top of a reliable transport layer, such as 
TCP/IP, that provides strong authentication and encryption capabilities (Cisco).

SSL
Secure Sockets Layer. A protocol that resides between the application layer and 
TCP/IP to provide transparent encryption of data traffic (Cisco).

SSN
Semantic Sensor Network (Various).

Stakeholder (also referred to as system stakeholder)
“An individual, team, or organization (or classes thereof) with interests in, or con-
cerns relative to, a system” ([IEEE-1471-2000]).

stateful inspection
Network protocols maintain certain data, called state information, at each end of a 
network connection between two hosts. State information is necessary to implement 
the features of a protocol, such as guaranteed packet delivery, data sequencing, flow 
control, and transaction or session IDs. Some of the protocol state information is 
sent in each packet while each protocol is being used. For example, a browser con-
nected to a web server uses HTTP and supporting TCP/IP protocols. Each protocol 
layer maintains state information in the packets it sends and receives. The security 
appliance and some other firewalls inspect the state information in each packet to 
verify that it is current and valid for every protocol it contains. This is called stateful 
inspection and is designed to create a powerful barrier to certain types of computer 
security threats (Cisco).
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Storage
Special type of Resource that stores information coming from resources and pro-
vides information about Entities. They may also include services to process the 
information stored by the resource. As Storages are Resources, they can be deployed 
either on-device or in the network (IoT-A).

STP
Spanning Tree Protocol. A protocol to create a loop-free Ethernet topology 
(Authors).

Stretch Attack
This attack targets the Network layer in the OSI stack. If the routing protocol sup-
ports source routing, then a malicious object can send the packets that it is supposed 
to report to the fog device through very long paths rather than the direct and short 
ones as illustrated in Fi (Various).

subnetmask
See mask (Cisco).

System
“A collection of components organized to accomplish a specific function or set of 
functions” ([IEEE-1471-2000]).

TACACS+
Terminal Access Controller Access Control System Plus. A client- server protocol 
that supports AAA services, including command authorization. See also AAA, 
RADIUS (Cisco).

Tag
Label or other physical object used to identify the Physical Entity to which it is 
attached (IoT-A).

TAPI
Telephony Application Programming Interface. A programming interface in Micro-
soft Windows that supports telephony functions (Cisco).

TCP
Transmission Control Protocol. Connection-oriented transport layer protocol that 
provides reliable full-duplex data transmission (Cisco).

TCP Intercept
With the TCP intercept feature, once the optional embryonic connection limit is 
reached, and until the embryonic connection count falls below this threshold, every 
SYN bound for the effected server is intercepted. For each SYN, the security appli-
ance responds on behalf of the server with an empty SYN/ACK segment. The secu-
rity appliance retains pertinent state information, drops the packet, and waits for the 
client acknowledgment. If the ACK is received, then a copy of the client SYN seg-
ment is sent to the server and the TCP three-way handshake is performed between 
the security appliance and the server. If this three-way handshake completes, may 
the connection resume as normal. If the client does not respond during any part of 
the connection phase, then the security appliance retransmits the necessary segment 
using exponential back-offs (Cisco).

Appendix A



366

TDP
Tag Distribution Protocol. TDP is used by tag switching devices to distribute, 
request, and release tag binding information for multiple network layer protocols in 
a tag switching network. TDP does not replace routing protocols. Instead, it uses 
information learned from routing protocols to create tag bindings. TDP is also used 
to open, monitor, and close TDP sessions and to indicate errors that occur during 
those sessions. TDP operates over a connection-oriented transport layer protocol 
with guaranteed sequential delivery (such as TCP). The use of TDP does not pre-
clude the use of other mechanisms to distribute tag binding information, such as 
piggybacking information on other protocols (Cisco).

Telnet
A terminal emulation protocol for TCP/IP networks such as the Internet. Telnet is a 
common way to control web servers remotely; however, its security vulnerabilities 
have led to its replacement by SSH (Cisco).

TFTP
Trivial File Transfer Protocol. TFTP is a simple protocol used to transfer files. It 
runs on UDP and is explained in depth in RFC 1350 (Cisco).

Thing
Generally speaking, any physical object. In the term “Internet of Things” however, 
it denotes the same concept as a Physical Entity (IoT-A).

TID
Tunnel Identifier (Cisco).

TLS
Transport Layer Security. A future IETF protocol to replace SSL (Cisco).

TMN
Telecommunications Management Network (TMN) of IUT-T (Authors).

TMN
Telecommunications Management Network of IUT-T (Various).

Traffic policing
The traffic policing feature ensures that no traffic exceeds the maximum rate (bits 
per second) that you configure, thus ensuring that no one traffic flow can take over 
the entire resource (Cisco).

TSCH
Time Slotted Channel Hopping. A mode of IEEE 802.15.4 networks (IEEE).

TSN
Time Sensitive Networking. See also AVB (IEEE).

TSP
TAPI Service Provider. See also TAPI (Cisco).
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UDP
User Datagram Protocol. A connectionless transport layer protocol in the IP proto-
col stack. UDP is a simple protocol that exchanges datagrams without acknowledg-
ments or guaranteed delivery, which requires other protocols to handle error 
processing and retransmission. UDP is defined in RFC 768 (Cisco).

UMTS
Universal Mobile Telecommunication System. An extension of GPRS networks that 
moves toward an all-IP network by delivering broadband information, including 
commerce and entertainment services, to mobile users via fixed, wireless, and satel-
lite networks (Cisco).

Unconstrained Network
An unconstrained network is a network of devices with no restriction on capabilities 
such as storage, computing power, and/or transfer rate (IoT-A).

Unicast RPF
Unicast Reverse Path Forwarding. Unicast RPF guards against spoofing by ensuring 
that packets have a source IP address that matches the correct source interface 
according to the routing table (Cisco).

URL
Uniform Resource Locator. A standardized addressing scheme for accessing hyper-
text documents and other services using a browser. For example, http://www.cisco.
com (Cisco).

User
A Human or any Active Digital Entity that is interested in interacting with a particu-
lar physical object. (IoT-A).

User EXEC mode
User EXEC mode lets you to see the security appliance settings. The user EXEC 
mode prompt appears as follows when you first access the security appliance. See 
also command-specific configuration mode, global configuration mode, and privi-
leged EXEC mode (Cisco).

Vampire Attack
This attack exploits the fact that the majority of IoT objects have a limited battery 
lifetime where a malicious user misbehaves in a way that makes devices consume 
extra amounts of power so that they run out of battery earlier causing a service dis-
ruption (Various).

VANET
Vehicular ad-Hoc Network (Various).

VAR
Value-added Resellers (Authors).
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View
“The representation of a related set of concerns. A view is what is seen from a view-
point. An architecture view may be represented by a model to demonstrate to stake-
holders their areas of interest in the architecture. Aview does not have to be visual 
or graphical in nature” ([TOGAF 9]).

Viewpoint
“A definition of the perspective from which a view is taken. It is a specification of 
the conventions for constructing and using a view (often by means of an appropriate 
schema or template). A view is what you see; aviewpoint is where you are looking 
from—the vantage point or perspective that determines what you see” ([TOGAF 9]).

Virtual Entity
Computational or data element representing a Physical Entity. Virtual Entities can 
be either Active or Passive Digital Entities. (IoT-A).

VLAN
Virtual LAN. A group of devices on one or more LANs that are configured (using 
management software) so that they can communicate as if they were attached to the 
same physical network cable, when in fact they are located on a number of different 
LAN segments. Because VLANs are based on logical instead of physical connec-
tions, they are extremely flexible (Cisco).

VM
Virtual Machine. A virtualization construct where multiple virtual devices each with 
its own independent operating system can run on the same physical computer, typi-
cally a server (Authors).

VoIP
Voice over IP. VoIP carries normal voice traffic, such as telephone calls and faxes, 
over an IP-based network. DSP segments the voice signal into frames, which then 
are coupled in groups of two and stored in voice packets. These voice packets are 
transported using IP in compliance with ITU-T specification H.323 (Cisco).

VPN
Virtual Private Network. A network connection between two peers over the public 
network that is made private by strict authentication of users and the encryption of 
all data traffic. You can establish VPNs between clients, such as PCs, or a headend, 
such as the security appliance. (Cisco).

VSA
Vendor-specific attribute. An attribute in a RADIUS packet that is defined by a ven-
dor rather than by RADIUS RFCs. The RADIUS protocol uses IANA- assigned 
vendor numbers to help identify VSAs. This lets different vendors have VSAs of the 
same number. The combination of a vendor number and a VSA number makes a 
VSA unique. For example, the cisco-av-pair VSA is attribute 1 in the set of VSAs 
related to vendor number 9. Each vendor can define up to 256 VSAs. A RADIUS 
packet contains any VSAs attribute 26, named Vendor-specific. VSAs are some-
times referred to as subattributes (Cisco).
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WAN
wide-area network. Data communications network that serves users across a broad 
geographic area and often uses transmission devices provided by common carriers 
(Cisco).

WCCP
Web Cache Communication Protocol. Transparently redirects selected types of traf-
fic to a group of web cache engines to optimize resource usage and lower response 
times (Cisco).

Websense
A content filtering solution that manages employee access to the Internet. Websense 
uses a policy engine and a URL database to control user access to websites (Cisco).

WEP
Wired Equivalent Privacy. A security protocol for wireless LANs, defined in the 
IEEE 802.11b standard (Cisco).

Wi-Fi
Wireless Fidelity, Wireless Internet (Various).

WINS
Windows Internet Naming Service. A Windows system that determines the IP 
address associated with a particular network device, also known as “name resolu-
tion.” WINS uses a distributed database that is automatically updated with the Net-
BIOS names of network devices currently available and the IP address assigned to 
each one. WINS provides a distributed database for registering and querying 
dynamic NetBIOS names to IP address mapping in a routed network environment. 
It is the best choice for NetBIOS name resolution in such a routed network because 
it is designed to solve the problems that occur with name resolution in complex 
networks (Cisco).

Wireless communication technologies
“Wireless communication is the transfer of information over a distance without the 
use of enhanced electrical conductors or ‘wires’. The distances involved may be 
short (a few meters as in television remote control) or long (thousands or millions 
of kilometers for radio communications). When the context is clear, the term is 
often shortened to ‘wireless’. Wireless communication is generally considered to be 
a branch of telecommunications” ([Wikipedia WI]).

Wireless Sensors and Actuators Network
“Wireless sensor and actuator networks (WSANs) are networks of nodes that sense 
and, potentially, control their environment. They communicate the information 
through wireless links enabling interaction between people or computers and the 
surrounding environment” ([OECD2009]).

Wireline communication technologies
“A term associated with a network or terminal that uses metallic wire conductors 
(and/or optical fibres) for telecommunications” ([setzer-messtechnik2010]).
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WoT
The Web of Things (WoT) is a term used to describe approaches, software architec-
tural styles, and programming patterns that allow real-world objects to be part of the 
World Wide Web. Similarly to what the Web (Application Layer) is to the Internet 
(Network Layer), the Web of Things provides an Application Layer that simplifies 
the creation of Internet of Things applications (Wikipedia).

WSN
Wireless Sensor Network. A network of typically low powered sensors connected 
over a wireless network often employing mesh technology (Various).

X.509
In cryptography, X.509 is a standard for a public key infrastructure (PKI) to manage 
digital certificates and public-key encryption and a key part of the Transport Layer 
Security protocol used to secure web and email communication.

An ITU-T standard, X.509 specifies formats for public key certificates, certificate 
revocation lists, attribute certificates, and a certification path validation algorithm 
(Wikipedia).

xauth
See IKE Extended Authentication (Cisco).

xlate
An xlate, also referred to as a translation entry, represents the mapping of one IP 
address to another, or the mapping of one IP address/port pair to another (Cisco).

XML
Extensible Markup Language (W3C).

XMPP
Extensible Messaging and Presence Protocol. Standardized in IETF RFC 6120 and 
6121 (IETF).

ZigBee
Short-range wireless protocol promoted by the ZigBee Alliance (ZigBee Alliance).

Z-Wave
Short-range wireless protocol, initially developed by a small Danish company 
called Zensys. Focuses on home automation applications (Z-Wave Alliance).
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Appendix B: IoT Projects for Engineering 
Students

To pass this course, engineering students are required to build an IoT solution, dem-
onstrate their results, and then write detailed reports describing their findings. This 
Appendix lists the main elements of standard IoT projects and then provides exam-
ples of such projects with supplement information, i.e., sensor types and the 
expected outcomes. Appendixes C–F show examples of IoT Reports.

One of two well-known educational platforms is often used by the students: 
Arduino IoT and Raspberry Pi. Arduino is an open-source platform that was 
designed by hobbyists. Arduino IoT Cloud is an application helps students to con-
nect IoT devices and allows them to exchange data with basic mentoring capability. 
Raspberry Pi platform was developed by Raspberry Pi Foundation to promote com-
puter science education. Arduino is microcontroller board, while Raspberry Pi is a 
microprocessor based mini-computer. The Microcontroller on the Arduino board 
contains the CPU, RAM, and ROM. Raspberry Pi typically requires an Operating 
System to run.

Typical Elements of IoT Projects

In general, IoT projects will include the following main components:

• Sensors: to detect and capture data.
• Switch (e.g., Raspberry Pi, Arduino Uno): to receive, process, and analyze data 

from sensors and other sources. Results may be sent to other devices for 
notification.

• Electrical Board (optional): to connect sensors, switches, LEDs (if needed), 
and other devices in a consistent and secure way. The board allows students to 
connect multiple devices to each other and allow them to exchange real-time 
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data. Common boards include 3.2″ × 2.1″ solderless breadboard with four bus 
lines spanning the length of the board and 30 rows of pins, enough for up to four 
14-pin DIP ICs or three 16-pin DIP ICs.

• Wireless Module (e.g., Wi-Fi) to integrate the system onto cloud and send 
updates to specified devices.

• Cloud Platform/Application (e.g., Microsoft Azure, Amazon AWS, IBM Wat-
son): for detailed data storage, services monitoring, analysis with advanced 
capabilities such as artificial intelligent, machine learning, object/face recogni-
tion, data trending, predictions, and forecasting.

It should be noted that some of the above elements may be already integrated, 
e.g., Raspberry Pi 4 with integrated USBs, Giga Ethernet port HDMI ports.1

Examples of IoT Projects

Hundreds of IoT Projects are available on various Internet IoT training sites. Table 
B.1 lists over a dozen of typical IoT projects for students. Additional projects may 
be found in https://create.arduino.cc/projecthub/products/arduino- iot- cloud and 
https://create.arduino.cc/projecthub/projects/tags/iot.

1 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Table B.1 Examples of IoT Projects

IoT Projects Sensors used Expected outcome

Home Security 
system Motion- 
Sensing Alarm 
using IR Sensors

Infrared (IR) 
Sensor

The solution includes IR sensors to detect unusual 
movement, Wi-Fi Module to integrate the system onto 
cloud and send updates to user, and Arduino Uno/
Raspberry Pi to capture and process sensor’s data and 
then notify homeowner(s) when a harmful activity 
(e.g., front door is opened) takes place in the home. 
The system can also store collected data in a cloud 
platform for further interpretation. Alarm should be 
sounded in the home when a major issue is detected.

Touch Dimmer 
Switched Circuit 
Project

Touch Sensor LED/Light is turned on when a sensor is touched.

Weather 
Monitoring 
System: 
Thermometer and 
Humidity

Temperature 
sensor (e.g., 
Arduino LM35) 
and Humidity 
sensor

Temperature (in Fahrenheit of Celsius) and Humidity 
readings are displayed, with two decimal digit 
accuracy, on digital thermometer.

(continued)
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Table B.1 (continued)

IoT Projects Sensors used Expected outcome

Automatic 
Lighting System: 
LDR Controlled 
Bulb

LDR (Light 
Dependent 
Resistor) Sensor

LDR sensors detect the changes in the sunlight 
intensity and send the data to the Arduino Uno/
Raspberry Pi for interpretation. LED/Light is turned on 
when the intensity is low (or sensor is covered). 
Arduino Uno/Raspberry Pi receives data from sensors 
and switch the light on or off. Relay drivers can be 
used to convert the voltage to operate the light.

Sun tracker Using 
LDR

LDR (Light 
Dependent 
Resistor) Sensor

Sensor/Machine is turned in 3-dimension following the 
sun/light source.

Smart Irrigation 
System

Moisture Sensor Soil moisture level is measured from a sample of dry 
soil first. The result may be displayed on Laptop/
Smart-Phone/etc. Water is added to the sample soil and 
the moisture level is measured again.

Smart Water and 
Flood Monitoring 
System

Rain and Water 
Sensor

Water is placed on the rain and water sensor. Alarm is 
sounded, LED is illuminated, and an email/text 
message is issued. Alarm should stop once the sensor 
is dried out.

Accelerometer 
Based Hand- 
Gesture- 
Controlled Robot

Accelerometer 
Sensor

Accelerometer sensor based machine (e.g., small 
vehicle) moves and turns according to a sensor-enabled 
hand. LED may be taped into a student’s hand.

Line Following 
Robot

IR Sensor Small vehicle follows a specific trajectory (e.g., based 
on a line on the street).

Fix Distance 
Alarm

Ultrasonic Sensor Alarm is sounded once an object approaches the 
sensor. Distance of the object is measured and 
reported.

Smart Blind Stick Ultrasonic Sensor Alarm is sounded once an objective is detected by the 
blind stick.

Motion-Sensor 
Lamp

PIR (Passive 
Infrared) Sensor

When a hand is waved in-front of the sensor, the lamp/
light is turned on/off. Two modes may be tested: 
repeatable and non-repeatable triggered modes.

Home Automation 
System

DHT (digital 
temperature and 
humidity) Sensor

The idea is building a single system to control 
electrical appliances in the home. It can be integrated 
with a Raspberry Pi board to make it an IoT device and 
then can be controlled from a remote location via 
Internet.

Smart Trash Can
Smart Mailbox

RFID Reader The idea is designing a system that notifies waste truck 
driver when the bin is nearly full (or to notify a 
homeowner when a mailbox has mail). In addition to 
sensors, the solution may include: RFID Reader (to 
scan the code of the trash can integrated with a RFID 
Tag), RFID Tags and Raspberry Pi to process the data 
and send notifications to the truck driver.
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Appendix C: IoT Project 1—Parking 
Availability App Using IoT

Abstract Finding parking in densely populated areas has become an issue due to 
the high volume of cars in the road. People often struggle to choose between the 
many parking garages in the area because they do not know if parking spaces will 
be available. In this paper we explore a solution to this problem that involves using 
IoT devices and the cloud. The idea is to make all the parking garages in the area 
“smart” by attaching ultrasonic sensors to each of the parking spaces in order to 
detect if the parking spaces are occupied. Micro-controllers will collect this infor-
mation and upload it to a web server in the cloud where it can be accessed by users 
via a web application.

Keywords IoT, Ultrasonic, Sensor, Arduino, Webapp

Introduction

People tend to use their cars over public transportation because it can be more con-
venient. This has led to many parking garages running out of space. People currently 
do not have access to information regarding how busy parking garages are in terms 
of spaces available to park. Currently, there are parking garages that display parking 
availability before you actually enter the garage but they are not connected to the 
cloud. We can solve this problem by taking advantage of the popularity of IoT 
devices and the cloud. For this project, I will monitor the availability of parking 
spaces from different parking garages by attaching object detection sensors to 
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parking spaces. How does sensor work? “Sensors typically collect data using physi-
cal interfaces (inputs) that sense the environment and then convert input signals into 
electrical signals (outputs) that are understood by the communication and computing 
devices” [1, p. 70]. There are different sensors such as IR (Infrared) or ultrasonic that 
are used for object detection. In this project I used ultrasonic sensors because they 
can be calibrated to detect objects within specific distances. Using physical sensors 
will provide the users with most accurate information about parking availability.

Problem Statement/Project Architecture

In this paper I will present a solution for finding available parking spaces in parking 
garages. The solution will use IoT devices located in the physical parking garages 
and the statuses about the parking spaces will be sent to a web server in the cloud 
where it can be accessed by users via a web application. This architecture covers the 
sensor layer, network layer, data processing layer, and application layer as shown in 
Fig. C.1. In the sensor layer I am using an Arduino microcontroller that receives the 
signals from the ultrasonic sensors. The microcontroller then processes the signals 
and evaluates if any of the parking spaces is occupied or open to use. This informa-
tion is then sent over the Internet as a post request to the web server (IoT Data 
Processing Hub) for storage. The Arduino will also turn on the local green LED 
light if a parking space is open to use or it turn on the red LED light if a parking 
space occupied. Once the web server receives the payload from the Arduino it will 
then store the status of the parking garages in a memory data structure. The struc-
tured live data can then be accessed by users via a web application. Users will then 
be able to make decisions on where to go park based on the live data coming from 
the parking garages IoT devices.

Fig. C.1 Architecture
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Method(s) System Design

1.1.1 Sensor Layer (Physical Devices)

First, the main physical components of this IoT project are the Arduino Uno Wi-Fi 
Rev2, ultrasonic sensors, LED’s wires, breadboard, and the power source as shown 
in Fig. C.2.

In this model there are three ultrasonic sensors with two LED lights (green and 
red) and each of the sensors represents a parking space in the parking garage. The 
sensors are placed in front of the parking spaces in order for the sensors to detect 
objects in front of them. The way the ultrasonic sensors work is by using sound 
waves above 20 kHz range to detect the proximity of objects [2, p. 1]. The waves 
(pulses) that the sensor emits are reflected back towards the sensor by objects within 
the field of view of the sensor [2, p. 2] as shown in Fig. C.3. By calculating the time 
it takes for the pulse to get back to the sensor and by using the speed of sound 
(29 μs/cm) the distance of the object in centimeters can be calculated as in (C.1).

 
d

t v
OneWay

RoundTrip Sound�
�

2  C.1

In this project I have defined a distance of 7 cm for the ultrasonic sensors to 
detect objects. This is an ideal value for the small parking garage model that I have 
created. For use in a real parking space, we would only need to update the distance 
value. The Arduino takes readings from the censors every 2 s and if an object is 
detected within 7 cm then the Arduino sends an “on” signal to the appropriate red 

Fig. C.2 Arduino circuit 
diagram
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LED in the parking garage. In addition, the green LEDs in the parking garage will 
turn on if the sensors do not report objects within the defined distance.

Network Layer

The Arduino that I am using has a Wi-Fi module that allows it to connect to the 
Internet. This is very useful because it can send information about the statuses of the 
different parking spaces to a web server for storage. In the network, the Arduino has 
its own assigned IP address, and this can be used as a unique identifier. However, for 
this project I have decided to pre-program the only Arduino with a unique defined 
name. When it comes to sending data to the Internet from IoT devices, the data 
serialization format is important. This is because you want the applications to inter-
pret the data from IoT devices with minimal format translations [1, p.  132]. 
Furthermore, it is good practice to only send the minimal required information to 
save bandwidth. Popular data serialization formats include XML, JSON, and 
EXI. For this project I decided to use the JSON format for the data payload which 
is sent as a HTTP post request from the Arduino every 2  s to the web server as 
in (C.2):

 

{ : , : ,

: ,

" " " " " "

" "

parkingId Garage spotId

isAvailable true tot

′′1 1

aalAvailableSpots" : }3  C.2

In average, the payload size for each post request is 100 bytes and this payload is 
sent every 2 s for each parking space. Using this information, we can determine how 
busy our network can get depending on the number of parking spaces. Figure C.4 
shows the code that the microcontroller executes to send the post request to the web 
server API.

Fig. C.3 Ultrasonic time-of-flight measurement [2]
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Data Processing and Application Layer

The web server (IoT Data Processing Hub) as shown in Fig. C.1 collects and pro-
cesses the data sent by the Arduino. Then the data is stored in a memory data struc-
ture that can be accessed by REST API. For this implementation I decided to only 
keep the most recent status of the parking spaces in the garages, but in an actual 

Fig. C.4 Arduino code post request

Fig. C.5 Actual Web App 
from a mobile device
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production implementation it would be a good idea to keep the historic data for 
analytics. Both the Web UI and Web server were created using the React and Node.
js frameworks. Figure C.5 shows how the web application looks like from a 
mobile device.

Deployment

The Web UI and Web server were built on top of Docker images to make the deploy-
ment to the cloud easy. For this project I decided to use AWS (Amazon Web Services) 
as my cloud platform because I was able to create a free student account. To deploy 
the applications, I created an EC2 (Elastic Compute Cloud) instance in AWS and 
transferred the Docker image from my personal computer to the instance. Once the 
Docker image was transferred in the EC2 instance it only took one Docker command 
to deploy the application. I had to make sure that the proper ports on the instance 
were exposed to the public in order to access the applications from anywhere. The 
EC2 instance had its own public IP that I used as the API endpoint when I deployed 
the Arduino code. It was trivial to verify if the application was working since I was 
able to see the parking spaces statuses change after I placed/removed cars into my 
garage model. Deploying the web application is a straightforward process but when 
it comes to deploying new code into the microcontrollers it becomes more difficult. 
In order to accomplish this and more there needs to be in place an IoT Service 
Platform. “The functions of the IoT Services Platform include the ability to deploy, 
configure, troubleshoot, secure, manage, and monitor IoT devices. They also include 
the ability to manage applications in terms of software/firmware installation, patch-
ing, starting/stopping, debugging, and monitoring” [1, p. 181]. However, due to time 
constrains I was not able to implement this key component of the IoT workflow.

Fig. C.6 Parking garage 
model
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Evaluation Methodology/Results

The parking garage model that I created is shown in Fig. C.6. In this model you can 
see the red LED lights turned on when the ultrasonic sensors detect an object in 
front of them. You can also see that the parking space in the middle has the green 
LED turned on because there is no object in front of the sensor. Figure C.5 shows 
what a user would see from the web application according to Fig. C.6. I also tested 
this model by pacing the car about eight centimeters away from the sensor and as I 
expected the red LED did not turn on. In Fig. C.7 we can see the actual implemented 
Arduino circuit that is attached to parking garage model.

I wanted to add an LCD display to show the number of parking spaces available 
but LCD display requires several more pins and I did not have a breadboard extender. 
Also, it is hard to see in the image but the LED lights are using a resistor in order to 
limit the current going through it and prevent that from burns.

Conclusion and Future Work

I was very satisfied with what I was able to accomplish in this project. I applied in 
real life the concepts that I learned in class. This project was a good proof of concept 
that demonstrated that it is possible to use IoT and the cloud to inform users about 
parking availability within parking garages. There are many things that can be 
improved on this prototype such as the website UI/UX, security, and fault manage-
ment with respect to the sensors and microcontrollers. I believe that this project 
would be very useful if it was implemented in real life and the cost would be low 
because the IoT devices are not expensive. In addition to using ultrasonic sensors, it 
would be a good idea to use a type of pressure sensor to be able to differentiate 
between cars that are actually parked or people that are just standing on the parking 

Fig. C.7 Actual Arduino 
circuit attached to garage 
model
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space. Furthermore, developing an analytics dashboard with information for each 
parking garage such as the most busy hours, average parking space usage, and the 
number of current users looking for parking would be very useful. I believe IoT has 
a great future ahead and I believe this is just the start.

Acknowledgment I would like to thank professor Ammar Rayes for sharing his 
knowledge and lecturing the IoT class at SJSU.
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Appendix D: IoT Project 2—Sensor Activated 
Lights with Cloud Data

Abstract Thoughtful design is not always something that successfully makes its 
way into the infrastructure of a living space. Sometimes it is the priority, but other 
times, it completely lacks. One of the areas where thoughtful design is sometimes 
lacking is good lighting, either by natural lighting or light fixtures. A lot of house-
holds and work spaces end up with rooms or closets that have little to no natural 
light and the light source in that room is either weak or nonexistent. This makes it 
hard for people to utilize these spaces. Luckily, this is an issue that can be easily 
solved if we have access to a portable light source that can be mounted in some of 
these places. This project looks at creating that type of light source while also incor-
porating modern cloud technologies to collect and display metrics. It experiments 
with using an Arduino Uno and a Node MCU Wi-Fi Module to create a light source 
which then sends data to the cloud. This data is stored and displayed for testing and 
analytical purposes.

Keywords IoT, Internet of Things, Arduino, Sensor, Grafana, AWS, EC2, 
InfluxDB, Docker

Introduction

How many times have you lived in a place that did not have any kind of light within 
a dark corner or closet? In many apartments and living spaces, there are plenty of 
areas that are not reached by natural light and that do not have their own light 
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source. Thanks to this, most people likely have an area of their home where they 
wish they had more light, especially in a closet-like space. In my apartment alone, I 
can name a handful of places where a small light would make the world of a differ-
ence. This light does not have to be something that is complicated or expensive, just 
a simple fixture that could illuminate the space. If these spaces were more illumi-
nated, I feel as if I could get so much more use out of a currently dark space. This 
project looks to solve that problem with a light fixture for one of my closets that has 
little to no natural light. To do this, I will utilize Arduino accessories, sensors, and 
modern cloud technologies.

Problem Statement and Architecture

Having a space with no access to natural light becomes a real pain when you would 
like to realistically use it. Without the light, the space gets wasted and the rest of the 
space in the apartment has to compensate for that. With this project, I hope to solve 
that problem by creating a small light fixture that turns on when the door opens and 
off when the door closes. In creating this, I would also like to have the device send 
metrics to the cloud, so that I can track usage statistics of the light source. This will 
be very useful for testing and tracking the actual usage of the light in the future. 
With this project, I also hope to inspire others to build on my idea to solve problems 
in their own homes with IoT Devices.

For this proposed solution, I will need to have a light source and a door sensor 
connected to an Arduino Uno, which will then connect to the Internet so that data 
can be sent to the cloud. To do this, I will need an extra Wi-Fi module and to create 
an instance on the cloud where I can store and display data. This will be done using 
AWS services and Docker containers. In Fig. D.1, you can see the basic architecture 
of the project that I created for my proposed solution. I have incorporated various 
aspects of IoT, so that I could gain knowledge in a multitude of ways while working 
on this solution.

As pictured, I will have a door sensor that connects to an Arduino Uno and a 
Wi-Fi Module circuit. This circuit will then connect both to a light source and to the 
cloud. The cloud will be moderated with an EC2 Instance, a database hosted with 
InfluxDB, and a front-end dashboard display using Grafana. I will go more into 
detail on this in the next section.

Equipment and System Design

When working on the design for this project, a few things were taken into account. 
First, I knew this fixture would need to have some sort of power source since the 
closet does not have any kind of source within it. Also, I knew that I would need to 
find a way to connect my project to the Internet since I wanted to send and store 
metrics within the cloud. This was something that I knew I could not do with the 
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Arduino module that I currently had. Now that those two problems were noted, I 
ordered necessary parts and started designing a circuit for the project.

In this section I will discuss the hardware parts that I used, such as sensors, light 
sources, and modules. Also, I will describe a few of the main software tools that I 
used for connecting everything to the cloud, and I will go into detail about the final 
circuit design for the project once I had everything in place.

Hardware Used

One of the first major pieces of equipment that I used was an Arduino Uno. This is 
a small micro-controller that I bought a few years back, but I had never had the 
chance to work with it until now. It was something that was pretty simple to work 
with and gave me exactly what I needed to connect my sensor and light source 
together. Once I connected everything on here, I could use the Arduino IDE to write 
a short program to control my circuit and basically tell the Arduino what to do and 
when (Fig. D.2).

The next major piece that I used in my project was a Node MCU 12E Wi-Fi 
Module. This piece was a tool that I did not have, so I had to order it if I wanted to 
connect my project to the Internet. I had never worked with one of these before, so 
it was a little challenging to get started. Without this, I never would have been able 
to collect metrics for the project. Thus, it was instrumental in getting a lot of things 
working and certainly gave me more freedom with the project (Fig. D.3).

The final major piece of hardware that I used was a door sensor. The one that I 
used for this project was a magnetic door sensor, which can be found on any elec-
tronics website or on Amazon. It connects to the circuit on the one side and the other 
side is used on the opening door. When the circuit is closed, it sends a signal on the 
connected side, letting the light know to turn off. And when the sensors are not con-
nected together, the signal is sent to turn the light on. This sensor is pretty basic, but 
it worked nicely for what I needed (Fig. D.4).

Fig. D.1 Project architecture
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Fig. D.2 Arduino Uno and 
Breadboard

Fig. D.3 Node MCU 
Wi-Fi module

Software Used

For this project, I did not want to just have a basic door light built with my Arduino, 
so I decided that I wanted to track various metrics and store them on the cloud. 
Doing this, would be very helpful when testing the circuit, and also would keep 
track of usage statistics for the light source. Again, without purchasing the Wi-Fi 
module, this would not have been possible. Thus, once I had this module and com-
pleted the set up, I was able to store information by using a few more tools.
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The first tool I used was an Amazon EC2 Instance. This was my first time setting 
one of these up on my own, so it took some research, but luckily Amazon has great 
tutorials. I used this tool to create a Linux instance that I knew I could install the 
necessary packages on without too many roadblocks. Working with an EC2 Instance 
was flexible for every need that I had, and it was free for the tiers that I chose.

Next tool that I used was Docker. Docker is a container platform that basically 
packages environments for development and makes it easier to develop and deploy 
products [3]. I installed Docker onto the EC2 Instance, as well as Docker Compose, 
which is “a tool for defining and running multi-container Docker applications” [2]. 
By using Docker compose, it was very easy to start up each container at once and 
each kept external storage in case they got shut down by accident, or the system 
crashes. All that was needed was a YAML file with information for each container 
that I used.

Another tool that was very important for this project was InfluxDB. InfluxDB is 
a database that I used to store all of the data coming in from the Arduino and Node 
MCU.  I did this by creating an InfluxDB container using Docker and Docker 
Compose. Storing data with this tool was simple and it connected seamlessly to my 
final software tool, Grafana.

Grafana is a tool that I used to create dashboards for displaying and observing 
data [1]. I am using this tool to display my data on a dashboard that could be cus-
tomized for my needs. As I mentioned, it connects directly to InfluxDB, so that I can 
retrieve whatever data I need and then Grafana displays what I specify. It always 
looks very beautiful and clean, especially if you use one of their many built- in 
plugins. As long as you have data coming in, you can create tables, graphs, meters, 
and so much more.

Using these tools for this project really helped me take the data collection to the 
next level and show what you could do with even just simple metrics. All of this, of 
course, would not have been possible without the hardware tools that I mentioned 
earlier and the circuit design that I will discuss next.

Fig. D.4 Door sensor
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Circuit

Designing the circuit was important for having a successful project. I knew it needed 
to be compact and also connect so that everything worked as intended. I first started 
with just the Arduino circuit that used the lightsource and the door sensor. Once I 
had that working together, I worked on connecting the Node MCU Wi-Fi Module to 
those, and tested that out. Both of these were connected to my laptop for their source 
of power, but after testing each component out, I was able to connect the circuit to 
power sources that were detached from my laptop (Fig. D.5).

Methodology

This project gave me a chance to work with not only sensors and computers, but 
also with cloud technologies and Docker containers. Having this wide range was 
important for me so that I could get the most out of this experience. The project was 
completed in quite a few steps, which I will lay out in this section.

First, I was tasked to design a circuit for how I wanted this to work. The first 
thing I did was connect the door sensor, resistor, and the light source to the Arduino 
Uno. That part was not too challenging and moved pretty quickly. The next task was 
connecting the Node MCU and connecting the circuit to the Internet so that I could 
collect metrics from the project to store in the cloud.

Connecting the Node MCU to the Internet was not as hard as I thought it would 
be. Thus, I was able to start working on setting up my EC2 Instance, so that I could 
begin sending data. This part was also rather straightforward since Amazon has a lot 
of great tutorials in their documentation for AWS services. Once this was all done, 

Fig. D.5 Project circuit
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I installed Docker and Docker Compose onto the instance so that I could utilize 
containers in this project. I worked on setting up these containers that would be 
home to InfluxDB and Grafana. These required only a little customization at the 
start so that I could ensure things were set up properly.

Now that the containers were ready to go, I had to work on sending data to them 
for collection. This task was one of the most challenging parts of the project. It was 
quite simple to get the Node MCU connected to the Internet, but it was a bigger 
challenge to get the data sent to the EC2 instance. Figuring out how to properly 
format the data for the POST request was difficult. Each way I tried, I seemed to get 
an invalid response. Eventually, I figured out how to format the data by concatenat-
ing strings. This works very nicely, however, I would like to find a more efficient 
way of doing this in the future.

From this point on, the main parts of the project were complete. I now had to 
figure out how to power the Uno and Node MCU without my laptop so that I could 
place the project in my closet. I had a 9 V battery power adapter that I was able to 
use for the Arduino, but I had to end up using a portable charger for the Node MCU 
since I did not have any other adapters, and could not purchase one at this point in 
time. This worked fine to power both of the modules, however, I did have an issue 
with sending data between the two. I realized that I had not connected the two for 
serial communication correctly. It worked while plugged into the laptop, but not 
separately. To fix this, I quickly connected each Tx connector to the other Rx, and 
vice versa. This allowed the two devices to transmit and receive data to each other. 
After this, the project was complete and ready to be placed in the closet.

Evaluation

As far as goals went, I met every goal with this project. The project met the require-
ments necessary to be a light fixture within a small space that turns on when the 
door opens. It also sends metrics to the cloud where I can view them with ease. This 
project was able to be placed inside my closet and it worked as intended. I filmed a 
few videos of it working inside of the closet that are available to watch in my demo 
video [4]. I am very satisfied with how this project turned out and I cannot wait to 
add more and build off of it. I worked really hard to get the final circuit out and mak-
ing it portable was an added bonus. Figure D.6 is a picture of the final circuit 
detached from the closet.

Once the final circuit was complete and powered on, adding it into the closet was 
simple since the door sensors that I bought came with an adhesive backing. I just 
placed the project on a shelf near the door and attached the sensors. Once in place, I 
was able to use Grafana to view the metrics that I was collecting. Grafana displayed 
the metrics beautifully, and I was able to customize what I wanted it to show and how.

As of now, I have a table displaying the time a metric came in, the status of the 
door, the time the door has been open in seconds, and the total amount of open time 
in seconds. Figure D.7 is a screenshot of the dashboard where you can view 
this table.
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Fig. D.6 Final project

Fig. D.7 Grafana screenshot of the dashboard

Also in this dashboard is a big number metric that is showing the total amount of 
time that the door has been open with the light on. This is useful for tracking the 
amount of usage that a light source may get. It may mean you will expect the light 
bulb to go out since you will have an estimate of its usage. There is also a graph on 
this dashboard that graphs the seconds that the door has been open. As you can see 
in Fig. D.7, the time increases and then flattens out to zero when the door was 
closed. What is great about Grafana is that you can choose a time frame of data to 
look at, so you can see the history of the metrics.
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Having the ability to see these metrics was very helpful while I was testing out 
my project. It helped me see if there were any errors in my code logic or within my 
circuit. Overall, I am very happy with how this project turned out and how well the 
metrics were able to be sent to the cloud from my Arduino and Node MCU 
Wi-Fi Module.

Future Work

Although this project was very successful, and I met all of my initial goals, I would 
love to build on it. A few things I would like to change are the lightsource, Amazon 
Alexa integration, and a fixture to display the project.

For this phase, I was not able to add a real lightbulb fixture, I could only add a 
basic LED light. That is something that I would love to change, once I have the 
funds to do so. This would be an improvement for how much light I could get within 
the dark space and I could also buy a bulb that has some sort of dimming ability. 
That way I could adjust the light for my needs based on the time of day and how 
dark the different spaces may be.

After changing the lightbulb, I would also love to incorporate Amazon Alexa into 
this project. If I was able to do this, I could control the light without the need for a 
door sensor at all times. I would also be able to change the brightness of the light 
with my voice.

Finally, if possible, I would love to create some sort of holder for the light, so that 
I can mount it on the wall or ceiling. This might require a 3D printer, but it could be 
possible without one. This would be a project much farther in the future.

Conclusion

The finished project met all of my goals and I am very happy with the end result. 
Adding cloud services worked very well for testing and enabled me to see how 
everything was being recorded. I am also very impressed with how well I was able 
to display data using InfluxDB and Grafana. This was all possible with only a few 
snags while creating it. In the future, I hope that I could build upon this project and 
create something even more impressive. This project just shows that even some of 
our simplest problems can be solved with IoT.
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Appendix E: Warehouse Inventory Management 
System

Abstract One of the reasons behind every successful package shipment is proper 
communication from warehouse to the point of destination. The real-time develop-
ing information provided during the shipment allows the team to manage the mul-
tiple shipments efficiently. Proper management also helps in maintaining per 
shipment requirements for better service to the customer. In the transportation of 
medicines it is a must requirement to maintain the temperature of the shipment 
between a certain range. For example, the developing COVID vaccines are required 
to be maintained between 2 and 8 °C during transportation. Ineffectiveness in main-
taining the temperature and other environmental metrics will result in the loss of 
complete vaccination shipment, in the worse-case scenario it can cost the life of 
patient. Proper network coverage are among several factors that impede proper 
communication during shipment. Identifying, customizing, and reporting vital envi-
ronmental metrics are also a significant challenge. Conventionally tracking of a 
shipment was done manually, which was a tedious task involving a lot of cost and 
manual labor. In addition to manual tracking, RFID tags are also used for tracking 
the packages inside the warehouse. Though these tags provided wireless communi-
cation, the tags effectiveness is affected with the amount of metal and liquid present 
around the package. Our proposed solution to the above problem is to develop a 
complete-intelligent Warehouse Inventory Management system for the better track-
ing. It deals with the convergence of various services for customizing requirements 
for each shipment and timely management of it. NRF52832 Bluetooth low energy 
(BLE) module is used to design the shipment beacons. The BLE tags are ideal to 
track location or movement of inventory, individual packages, pallets, or equipment, 
regardless of whether they are indoors, outdoors, or in transit. This BLE-based solu-
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tion offers real-time condition monitoring for COVID and CANCER vaccines 
including their temperature, humidity, altitude(from pressure), and in some cases 
ambient light for the closed packaging of the sterilizing kits. The Raspberry Pi 
device is used to design a Warehouse tracker. The device transmits real-time sensor 
data collected from multiple shipment beacons over BLE along with the alerts for 
any temperature excursions due to unfavorable conditions of the vaccines to the 
Azure Internet of Things (IoT) Hub. Thus, warehouse tracker IoT system presents a 
complete tracking system to the warehouse industry. The Azure platform offers real- 
time data visualization and device tracking. It provides visualization of sensor data 
from multiple trackers with the help of charts and text from the Azure explorer.

Keywords Internet of Things, BLE, High reliability, Live-tracking, Real-time vis-
ibility, IoT

Introduction

In the early 1990s, the demand for expansion of interaction between the devices 
beyond just the computers connected to the web led to the development of several 
smart objects which can be controlled in real time over the Internet such as WearCam, 
toaster, etc. [1]. A global identification system based on RFID was developed to 
provide the devices the capability to “observe, identify and understand the world” 
with the help of sensors by the late 1990s. RFID technology was extensively uti-
lized in commercial products to decrease the dependency of the inputs from humans 
[2]. To boost Internet Protocols (IP) in the network of the Internet of Things (IoT) 
devices, the IPSO Alliance was launched by the companies. In 2006 the Federal 
Communications Commission (FCC) approved the “white space spectrum” for the 
IoT devices, which helped to reduce the gap between the rural digital connectivity 
with the help of the broadband services. By 2016, Narrow band IoT was developed 
by 3GPP to provide cellular services over a broader area with the help of Low- 
Power Wide Area Network radio technology [3, 4]. The 3G and 4G technology are 
not sufficient today to meet the requirements of fifth-generation (5G) wireless 
devices, and this was the motivation for the usage of an unlicensed spectrum for the 
IoT devices [5]. This technology improvement and faster connectivity can be uti-
lized in wide IoT applications. They could be used to track shipments of vaccination 
in healthcare industry to large distance with lesser utilization of power. The future 
concentration of the IoT systems is towards autonomous vehicle communication 
which can be used for easy transport and shipment tracking without further manual 
labor and guarantees reliable delivery [6].

The basic building blocks of smart products are hardware, software, sensors, and 
communication networks. In smart surveillance applications, the maturity of 
installed sensors plays a vital role in tracking a shipment and also in maintaining 
customized parameters required for proper maintenance of the shipment. For quick 
detection of any unusual situations in the surrounding helps to prevent the damage 
in advance. Shipment management mainly relies on temperature and pressure 
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monitoring; using relevant sensors facilitates detecting change in temperature and 
humidity content in the air [7]. The main reasons for change in preset temperature 
are because of human mistakes or system faults which harms patients’ lives if it was 
during the medicine transport. After successful detection of change in parameters 
the proposed warehouse tracker network sends an alert to the Azure IoT Hub using 
MQTT communication protocol. Traditional methods fail to detect change in the 
customized environmental parameters.

Problems in the Existing Tracking and Monitoring Systems

In the fast moving world, the time is money and the business efficiency is critical to 
any competitive edge. Making an essential to nowhere your products, equipment and 
assets are, at all times. Unfortunately, packets in transit often go missing or delivered 
to the wrong location as shown in Fig. E.1. An assets or inventory in a storage or in 
use can be difficult to locate in a warehouse or a port. The current tracking and the 
monitoring solution such as RFID tags are limited in functionality and expensive to 
set up. The lack of the visibility to the location, the condition of the individual pack-
ages and assets can be result in wasted time, missing inventory, customer dissatisfac-
tion, loss of profits, and big headaches to the firms involved in the shipments.

Solutions to the Limitations of Existing Tracking Systems

In the healthcare industries, the collection of data points performs a significant role 
that includes gathering, analyzing, and data processing from various sources. One 
of the most important use case of data collection in the healthcare is needed to moni-
tor the vaccines conditions during the shipment [8]. The shipment beacon solution 
can work with the warehouse trackers or mobile phones to provide package or item 
level monitoring for all the important goods such as vaccines. It will be the 

Fig. E.1 Problems in current monitoring systems
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industries most affordable, in-transit indoor or the outdoor battery operated solu-
tion. The shipment beacon is Bluetooth low energy (BLE) based hot-spot beacon 
solution which provides end-to-end supply chain and asset monitoring solution 
across the enterprise, whereas the warehouse tracker is the GSM or Wi-Fi based 
hotspot solution, which provides reliable device-cloud communication for a fleet of 
devices.

This project report aims at describing the integration of the shipment beacon and 
the warehouse tracker for monitoring the healthcare shipments. It includes the 
design implementation and development of the warehouse inventory management 
system. This report is divided into seven parts. The following Section describes the 
architecture of the overall design implementation. However, the section “Method(s)/
System Design” describes the methods and system designs components of our solu-
tion. It additionally includes the software components of the system are emphasized 
to present the update of data collected from the shipment beacon to the warehouse 
tracker. The design ease outs the tracking of the devices and provides their real-time 
status. Additionally, in the section “Project Implementation” that includes system 
implementation of the proposed solution for shipment beacon and for the ware-
house tracker. Then we have system integration in the section “System Integration” 
and its basic unit testing section “Testing and Verification” and finally testing ends 
with the evaluation tests section “Evaluation Methodology and Results” results of 
our solution. At last, the section “Summary, Conclusions and Recommendations” 
concludes the paper (Fig. E.2).

Fig. E.2 Warehouse inventory management system design

Appendix E: Warehouse Inventory Management System



401

Project Architecture

This section contains the design and development of BLE beacon device and the 
Internet based tracker for monitoring shipments and the conditions for the health-
care medicines. The High-level design architecture consists of a BLE based wireless 
MCU that will transmit BLE Beacons after every 10 s (configurable from App) in a 
connection-less mode that will be collected by BLE enabled central devices 
(Raspberry Pi). This device will be used for monitoring physical status of the ship-
ments using temperature, humidity and the motion sensors. Multiple users can 
receive data whoever will be present in the range of the device (Fig. E.3).

This project includes a shipment beacon for real-time monitoring of the vaccines 
using multiple sensors which collects temperature, pressure, humidity, and ambient 
light from the surroundings. The shipment beacon transmits the sensor data to the 
warehouse tracker, which is actually the Raspberry Pi processor. The Raspberry Pi 
acts as a hotspot to get the data from BLE and connects to the Azure IoT Hub via 
MQTT protocol and sends the data to Azure platform. The azure IoT Hub ensures 
the security and reliability of communication. This section details the BLE beacon 
device architecture design. It is designed with nRF52832 wireless MCU targeting 
for BLE applications from Nordic Semiconductors. This device will transmit the 
beacons along with the sensor data and these beacons will be collected by central 
devices like mobile phones and the Raspberry Pi devices. Figure E.4 shows the 
overall architecture of the warehouse inventory management system.

The architecture consists of three layers, the sensor layer, communication layer, 
and the data processing layer. The first layer is the sensor layer which contains the 
physical sensors. It deals with reading and writing of the sensor register values 
directly from the physical devices. The type of data collected from this layer depends 
on the type of application. The data can be collected from environmental parameters 
such as temperature, pressure, and humidity or human physical activities [9]. In our 
project application, the data is collected from environmental sensors. Later, the 

Fig. E.3 High-level design architecture
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collected data from the sensors is concatenated with the BLE beacon payload and 
transferred to the second layer. The intermediate layer represents the communica-
tion layer. This layer will act as a BLE central hot-spot for the first layer. This layer 
can perform tasks, run algorithms required for temperature excursions, and contain 
enough memory to collect the BLE data from the beacons. The Last layer in the 
architecture is the cloud layer. This layer is essential for providing remote access to 
the data and for online monitoring of the shipments and for vaccines diagnostics 
[10]. The second layer is used to establish the connection with the azure server 
using Internet services. This layer performs a major role when it comes to long-term 
storage of data and to minimize congestion at the core network by performing an 
in-depth analysis of mega data at the cloud layer [11]. The warehouse inventory 
management system architecture from Fig. E.4 used to collect real-time condition 
monitoring of the vaccines and transfer the data to the mobile phone or to the azure 
server for its computation and analysis.

Method(s)/System Design

This section of the report presents the hardware and the software components used 
in the warehouse inventory management system design.

Fig. E.4 Warehouse tracker architecture
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Shipment Beacon

The shipment beacon consists of two components nRF52832 BLE module and the 
environmental sensors (Fig. E.5)

 1. BLE Module nRF52832: The shipment beacon’s firmware built on nRF52832. 
The nRF52832 is a wireless MCU targeting Bluetooth Smart application. The 
device is a member of the nRF52xx family of cost-effective, ultra-low power, 
2.4-GHz RF devices. Very low active RF and MCU current and low-power mode 
current consumption provide excellent battery lifetime.

The nRF52832 contains a 32-bit ARM Cortex-M4 running at 64-MHz as the main 
processor and a rich Peripheral feature set, including a unique ultra-low-power 
sensor controller, ideal for interfacing external sensors and/or collecting analog 
and digital data autonomously while the rest of the system is in sleep mode. The 
key features of the nRF52832 Micro-Controller are as follows:

 (a) Powerful ARMCortex-M4.
 (b) Up to 64-MHz Clock Speed.
 (c) 512 KB of In-System Programmable Flash.
 (d) 64-KB SRAM.
 (e) Supports Over-The-Air Upgrade (OTA).

 2. Humidity, Temperature Pressure Sensor: BME280: These sensors are packed 
with embedded functions with flexible user-programmable options, configurable 
interrupt pins. Embedded interrupt functions allow for overall power savings 
relieving the host processor from continuously polling data. There is access to 
both low-pass filtered data and high-pass filtered data, which minimizes the data 
analysis required for tilt detection/faster transitions, temperature detection, pres-
sure detection, humidity detection, and light intensity.

The device can be configured to generate inertial wake-up interrupt signals from 
any combination of the configurable embedded functions allowing the tempera-
ture, pressure, humidity, and light sensor to monitor events and remain in a low- 
power mode during periods of inactivity. The sensor interface is communicating 
with controller via Serial Bus Interface.

Fig. E.5 BLE MCU nRF52832
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 (a) SDA is for data receiving and transmitting to and from controller.
 (b) SCL is for controlling the data on sensor interface that is transmitting and receiv-

ing to and from controller.

 3. Working of Shipment beacon: The shipment beacon not only records the sensor 
data of the vaccines conditions but also send alerts in real time when an excep-
tion occurs. It also reduces the need of download the data manually via USB 
cable at the end of every shipment. It provides the cold chain real-time visibility 
for the vaccines which needs to maintain the stringent requirement of the cold 
chain temperature range, i.e., 2–8 °C.

In the shipment beacon design, the nrf52832 BLE microcontroller will perform the 
role of communication as master and sensors act as either as a slave receiver or 
transmitter. The master must generate the Start(S)/Stop(P) condition for the 
inter-integrated circuit(I2C) interface and provide the serial clock on SCL pin. 
BME280 Sensor will be used to measure temperature, humidity, and pressure of 
the containers/boxes in which it will be placed. BME280 is a 8 Pin, I2C/SPI 
based sensor IC from Bosch Sensortec. It will be powered up directly via coin 
cell battery/USB and kept in low-power mode or shutdown mode as per require-
ment. It will measure the temperature, relative humidity, and pressure of a ship-
ment container and send to BLE module through I2C. The BLE module will 
send it in form of packets to a central device like smart phone or the Raspberry 
Pi (Fig. E.6).

As shown in Fig. E.7 nrf52832 BLE module will advertise the BLE packet which 
contains the payload as mentioned in the Table E.1 which includes the sensor and 
the battery information in the advertisement.

Warehouse Tracker

The real-time sensor data sent out by multiple shipment beacons is received by the 
warehouse tracker. The warehouse tracker is implemented using Raspberry Pi as 
shown in Fig. E.8 the Raspberry Pi after receiving the data from multiple nRF52 
boards is sent in real time to the Azure IoT Hub for further processing.

Fig. E.6 Environmental 
sensor BME280
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Fig. E.7 Working of BLE tag

Table E.1 BLE broadcast data format

Info 0x2F (Temp)

0x04 (Temp)
0x64 (Battery)
0x01 (Light)

0x48 (Humidity)

0x64 (Humidity)

0x03 (Pressure MSB)

0x4A (Pressure LSB)

:
:
:
0x00
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Project Implementation

1.1.1 BLE Advertisement and BME280 Sensor Interfacing

Interfacing of the BME280 sensor with controller is done by the Serial Bus Interface. 
It is a three step process to get the values from the sensor. The first step is the sensor 
initialization. During initialization the driver registers the slave device and basic 
initialization is done for the temperature, pressure and for the humidity sensors. In 
the second step, slave device, i.e., sensor will read the values of the respective sen-
sors from the registers and will broadcast the sensor readings to the central device, 
i.e., Raspberry Pi. The software flow diagram for the master (nrf52832) and slave 
interaction (BME280) is shown in Fig. E.9.

The code snippet of the BLE advertisement payload which includes the sensors 
information from array index 5 to 12 is shown below:

Fig. E.8 Architecture of 
warehouse tracker
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BLE Advertisement on Mobile App

As described in the BLE advertisement payload code snippet we can verify the 
advertisement payload by connecting the shipment beacon with the NRF connect 
open source mobile application which can be easily downloadable from the App 
Store or the Play Store depending on the users smartphone. We can connect the 
shipment beacon with the NRF Connect mobile app (android or iOS) by following 
the steps shown in Fig. E.10.

After connecting with the mobile application the payload of the shipment beacon 
will look like as shown in Fig. E.11. The payload includes the temperature, pres-
sure, humidity, and the light sensor readings as marked in Fig. E.11. The payload 
advertised by the beacon is in 8.8 Fixed-Point Format (FPF).

  

Fig. E.9 Software Flow diagram for BLE and Sensor interfacing
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Fig. E.10 Shipment Beacon and NRF Connect App interfacing

Fig. E.11 Shipment 
Beacon Advertisement on 
Mobile APP

The FPF can be converted at the Raspberry Pi side by using the following code:

float mTemp = Measured Temperature; 
uint8_t firstByte = (uint8_t) mTemp;
Uint8_t second Byte = (uint8_t) (mTemp x 256);
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//! Example:
//! Temperature of 30.81 is sent as 0x1E and 0xCF in
       8.8 Fixed-Point Format

mTemp = 30.81
firstByte = (uint8_t)30.81 = 30 = 0x1E 
secondByte = 30.81 * 256 = 7887.36 = (uint8_t) 0
      x1ECF = 0xCF

Raspberry Pi and Microsoft Azure IoT Hub Connection

Implementation of Microsoft Azure IoT Hub was a simple process to setup. A 
Microsoft account is required to utilize any Azure services including Azure IoT 
Hub. Upon making an account and setting a service subscription, several IoT hub 
resource groups were made to accommodate the devices needed to connect to the 
IoT server. Each device is provided a private connection string which can be used to 
authenticate secure communication to the server. Shared Access Signature tokens 
were also generated using the Azure IoT Explorer tool (on Windows) to authenticate 
communication between device and server. Additionally the Azure IoT tool included 
telemetry to monitor device-to-cloud messages.

Configuration of Raspberry Pi for connection with Azure IoT Hub

• Get the connection string from the Azure IoT Hub page after adding the device 
to Azure platform.

• Add the connection string mentioned on the Azure Portal to establish connection 
with the Azure platform to the python script.

• Connect the device client (Fig. E.12).

• conn_str = "HostName=5G-IoT-System-For-Emergency-   

•      Responders.azure-devices.net;DeviceId= 

•      application_device1;SharedAccessKey= 

•      x84oYfc8Wm4lL7nfMzNm87X7YmFbC+TtHX4ny+bV8ck=" 

•      device_client = IoTHubDeviceClient. 

•      create_from_connection_string(conn_str)

•        # Connect the device client. 

•        await device_client.connect()
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Real-Time Sensor Data Transfer

The Raspberry Pi collects the data from multiple shipment beacons via the BLE 
communication and parses the data to send the temperature, humidity, pressure, and 
ambient light parameters to the Azure IoT Hub.

Configuration of Raspberry Pi for Environmental Data Transmission 
to Azure Hub

• Get the data from the BLE beacons.
• Use the python script to parse the sensor data.
• Add the connection string mentioned on the Azure Portal to establish connection 

with the Azure platform.
• The script periodically captures the data in real time.
• The captured data is transmitted to the Azure IoT Hub for every 2 s.

while count < 45:
         raw_bytes_array = sim_data_raw_data[idx] 
         pressure_lsb = raw_bytes_array[12] 
         pressure_msb = raw_bytes_array[11] 
         curr_pressure = (pressure_msb * 256 +
      pressure_lsb) #Pascal

         humidity_lsb = raw_bytes_array[9] 
         humidity_msb = raw_bytes_array[10] 
         curr_humidity = ((humidity_msb*256) + (
      humidity_lsb)) #g/kg

         temp_lsb = raw_bytes_array[5] 
         temp_msb = raw_bytes_array[6]
         curr_temp = (temp_msb * 256 + temp_lsb)/100 

Fig. E.12 Application Device creation on Azure platform
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#Celcius

         curr_light = False
         light_msb = raw_bytes_array[8] if light_msb >= 1:
             curr_light = True

         message_properties = {} 
message_properties["deviceId"] = "Shipment
      -05"
         message_properties["pressure"] = 
curr_pressure
         message_properties["ambientLight"] = 
curr_light
         message_properties["temperature"] = 
curr_temp
         message_properties["humidity"] = 
curr_humidity

         if curr_temp > threshold_temp :
             print ("WARNING: Vaccine shipment temp 
     exceeded set threshold!!!")

             message_properties[’Warning’] = "Temp 
Exceeded"

         if curr_pressure > threshold_pressure : 
             print ("WARNING: Vaccine shipment temp
      exceeded set threshold!!!") 
          message_properties[’Warning’] = "
      Pressure Exceeded"

         if curr_humidity > threshold_humidity: 
             print ("WARNING: Vaccine shipment temp
      exceeded set threshold!!!") 
              message_properties[’Warning’] = "
      Humidity Exceeded"

         msg = Message(json.dumps(message_properties)
      )
         msg.message_id = uuid.uuid4() 
         msg.content_type = ’application/json’ 
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         await device_client.send_message(msg)
         print("Message successfully sent:" + str(msg
      ))
         print()

         count = count + 1 
         time.sleep(2)

System Integration

The shipment beacons each have unique MAC address and fitted with condition 
sensors which collects valuable data for the vaccines. The data is transmitted to the 
warehouse trackers which contains the Raspberry Pi. The warehouse tracker 
accesses the hot-spot via Internet service. This can be used in transit, as a part of 
shipment or in warehouses. The warehouse trackers transmit the real-time data from 
the shipment beacon to the azure IoT hub via MQTT protocol. It improves the 
inventory forecasting and keeping projects on track by monitoring vaccines in use 
and vaccines that are idle sitting in the cold chain environment.

As shown in Fig. E.13, the shipment beacons can be stick on the surface of the 
containers or multi-modal simple affix the beacon to the cases and the pallets that 
you are shipping and place the portable wire- free warehouse tracker in the shipment 
truck. The sensor data is uploaded as frequently as every 5 min to the azure cloud. 
So, that user can take the action when it counts to protect your vaccines with real-
time fore-sights and insight about temperature. This project mainly concerns the 
temperature excursions and the information about the hot-spot inside the ship-
ment truck.

Fig. E.13 Real-time vaccine monitoring
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In the current scenarios, the vaccine shipment for the COVID. It can be used with 
great advantages. Typically medicines, including COVID and cancer vaccines are 
shipped in a cold chain temperature range with stringent requirement of maintaining 
2–8 °C. Any anomaly in the temperature during the cold chain shipment will lead to 
spoilage of the product and can adversely affect the patients’ life. Hence, real-time 
condition monitoring and the passive monitoring mode are useful for various vac-
cines condition monitoring.

Although active monitoring allows us to track the shipment/condition in real 
time it is bound by a dependency on a hot-spot/back-haul device. The passive moni-
toring mode enables device to store data over the duration of the shipment to be 
retrieved later directly through the APP. If the warehouse tracker is unable to com-
municate in real-time due to the overseas shipment of vaccines. The condition data 
stored in the shipment beacons and automatically transmitted or pulled by the user 
by a mobile app. This provides the zero touch data upload feature from the data-
logger at any point in transit or upon the arrival. This guarantees no loss of data over 
the shipment which helps make a decision regarding the state of the shipment 

(Fig. E.14).

Fig. E.14 Passive vaccine monitoring mode
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Testing and Verification

1.1.2 Real-Time Environmental Sensor Testing

The python script parses the temperature, humidity, pressure, and ambient light and 
constructs a message before sending it to the Azure IoT Hub. The message is printed 
out in the terminal and verifies w.r.t. to the logs received from the BLE beacons. As 
shown in Fig. E.15 we are packaging the message along with Device ID for easy 
processing at later stage.

Real-Time Azure IoT Hub Integration Testing

The connection is established with the Azure Explorer using the connection string 
for the Application device to verify the messages sent to the platform.

Figure E.16 shows the application device connection with the explorer and the 
services offered by the explorer.

Fig. E.15 Application Device Terminal data

Fig. E.16 Azure explorer connection and services
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The telemetry services offered by the explorer are utilized to visualize the data in 
real time as shown in Fig. E.17.

Click the start button highlighted in the mentioned Fig. E.17 to start receiving the 
messages. The data in shown in Fig. E.18.

Evaluation Methodology and Results

1.1.3 Real-Time Sensor Evaluation

The sensor data to the Azure IoT Hub is verified by sending data to the Hub for a 
long period of time. Periodical verification is done on the explorer to verify the mes-
sages being sent. As shown in Fig. E.19 we have sent more than 2000 messages to 
evaluate the real-time data transfer.

Bluetooth Low Energy Range Evaluation Testing

In BLE-based projects range testing is very important. Range testing depends on the 
RSSI value of the broadcasting beacons from the device. RSSI stands for Received 
Signal Strength Indicator. It is the strength of the beacon’s signal as seen on the 
receiving device, e.g., a smartphone. The signal strength depends on distance and 
broadcasting power value. At maximum broadcasting power (+4 dBm) the RSSI 
ranges from −26 (a few inches) to −100 (40–50 m distance). Figure E.20 shows the 
graph of distance vs. RSSI for one shipment beacon. The data for the range testing 
is plotted in Table E.2 which shows the two RSSI readings at the same distance to 
make sure the consistency of the results.

Fig. E.17 Telemetry connection
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Fig. E.18 Real-time data 
transfer to Azure IoT

However, there is no standard application available for testing the BLE range. 
For testing range in meters, we have connected the BLE beacon with the NRF appli-
cation and they started walking away from the beacon until it lost the connection. 
Apart from that we have done the different casings testing, by keeping the 2 BLE 
devices, i.e., beacon with the BLE-based speakers at 2 m apart, and then checked the 
RSSI values in the NRF application.

Summary, Conclusions, and Recommendations

The proposed Warehouse Inventory Management presented several implementa-
tions toward improving the efficiency of the communication networks currently 
employed in warehouse management. The key implementations that the system 
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introduces are device-to-cloud communication, real-time monitoring of environ-
mental (temperature, humidity, light, pressure) sensors and remote management of 
application device is done by Azure IoT platform. All data from each IoT shipment 
beacon was simultaneously sent to the Azure IoT Hub in real time. All features were 
successfully implemented, tested, and evaluated by recording numerous trials of 
operating each device individually and as a complete integrated system. These fea-
tures would not only improve timely communication between the shipment beacon 
and warehouse tracker in real time for better inventory management, but it would 
also reduce the manual effort required in maintaining the inventory and tracking the 
lost package.

In future live-video streaming can be implemented on the Application device for 
better real-time monitoring. BLE beacons have shorter connectivity range, one can 
look out for long-connectivity network technology.

Fig. E.19 Sending data to the Azure IoT Hub for a long time

Appendix E: Warehouse Inventory Management System



418

References

 1. L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward 5G 
Wireless Systems,” in IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020.

 2. Whitmore, A., Agarwal, A. Da Xu, L. The Internet of Things—A survey of topics and trends. 
Inf Syst Front 17, 261–274 (2015). https://doi.org/10.1007/s10796- 014- 9489- 2.

Table E.2 RSSI Readings

Distance RSSI (BLE)

0 m −35
0 m −38
2 m −55
2 m −64
3.2 m −55
3.2 m −56
8 m −64
8 m −66
12 m −81
12 m −74
17 m −81
17 m −74
23 m −76
23 m −78
32 m −75
32 m −79
40 m −92
40 m −92

Distance vs RSSI

Series1

0 
m

Dist
an

ce
0 

m
2 

m
2 

m
3.

2 
m

3.
2 

m
8 

m
8 

m
12

 m
12

 m
17

 m
17

 m
23

 m
23

 m
32

 m
32

 m
32

 m
40

 m
40

 m

20

0

-20

-40

-60

-80

-100

Fig. E.20 BLE range evaluation testing

Appendix E: Warehouse Inventory Management System

https://doi.org/10.1007/s10796-014-9489-2


419

 3. Grant, Svetlana (September 1, 2016). “3GPP Low Power Wide Area Technologies - GSMA 
White Paper” (PDF). gsma.com. GSMA. p. 49. Retrieved October 17, 2016.

 4. J.  M. Khurpade, D.  Rao and P.  D. Sanghavi, “A Survey on IoT and 5G Network,” 2018 
International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, 2018, 
pp. 1-3.

 5. F. Khan, Z. Pi, and S. Rajagopal, “Millimeter-wave mobile broadband with large scale spa-
tial processing for 5G mobile communication,” inProc. 50th Annu. Allerton Conf. Commun. 
Control Comput. (Allerton), 2012, pp. 1517–1523.

 6. H.  S. Ma, E.  Zhang, S.  Li, Z.  Lv, and J.  Hu, “A V2X Design for 5G Network Based on 
Requirements of Autonomous Driving,” SAE Technical Paper Series, Sep. 2016.

 7. E. K. Markakis et al., “Efficient Next Generation Emergency Communications over Multi-
Access Edge Computing,” in IEEE Communications Magazine, vol. 55, no. 11, pp. 92-97, 
Nov. 2017.

 8. Natallia Sakovich. “The Importance of Data Collection in Healthcare,” Sam Solutions, April 9, 
2019. [Online].

 9. S.  Salkic, B.C.  Ustundag, T.  Uzunovic, and E.  Golubovic, “Edge Computing Framework 
for Wearable Sensor-Based Human Activity Recognition,” Lecture Notes in Networks and 
Systems, pp. 376–387, Jul. 2019.

 10. G. Manogaran, P. Shakeel, H. Fouad, Y. Nam, S. Baskar, N. Chilamkurti, and R. Sundarasekar, 
“Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning 
Network System for Multi Access Physical Monitoring System,” Sensors, vol. 19, no. 13, 
p. 3030, Jul. 2019.

 11. M.M.  Shurman and M.K.  Aljarah, “Collaborative execution of distributed mobile and IoT 
applications running at the edge,” 2017 International Conference on Electrical and Computing 
Technologies and Applications (ICECTA), Nov. 2017.

Appendix E: Warehouse Inventory Management System



421© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
A. Rayes, S. Salam, Internet of Things from Hype to Reality, 
https://doi.org/10.1007/978-3-030-90158-5

Appendix F: IoT Fumigation Robot

Abstract The goal of this project was to build a robot capable of carrying a fumi-
gation apparatus and dispensing its chemicals, an Android application to control the 
robot’s movement and dispensation of the fumigation chemicals, and a mock fumi-
gation apparatus to imitate a real fumigation apparatus. The motivation for this proj-
ect was to improve the safety of fumigation workers by building a robot to perform 
this task. This allows fumigation workers to perform their job at a safe distance by 
controlling the movement of the robot and dispensation of the fumigation chemicals 
via an Android application, while the robot carries the fumigation apparatus. The 
overall goal was accomplished successfully, resulting in a mock fumigation appara-
tus and a robot chassis capable of carrying a fumigation apparatus and dispensing 
its chemicals with the robot’s movement and chemical dispensation capability con-
trolled via an Android application.

Keywords IoT, Fumigation, Raspberry Pi, Robot

Introduction: Written by Nicholas K

The purpose of this project was to build a robot capable of carrying a fumigation 
apparatus and dispensing its chemicals via an Android application in order to reduce 
the exposure of fumigation workers to harsh chemicals. Additionally, a mock fumi-
gation apparatus was built in order to emulate the functionality of a real fumigation 
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apparatus, which is a costly piece of equipment that we could not obtain for this 
project (Fig. F.1).

Fumigation is a method of pest control that completely fills an area with gaseous 
pesticides to suffocate or poison the pests within [1]. The pesticides are also 
extremely harmful to the human workers who are exposed to them during the dis-
pensation process [2]. This project aims to improve the health and safety of these 
fumigation workers while still allowing them to perform fumigation services.

The first technical goal of this project was to interface an L298n motor driver, a 
Raspberry Pi 3B+, a servo motor, and two 12  V DC motors, and to actuate the 
motors by issuing commands from an Android application connected to the 
Raspberry Pi over a Wi-Fi interface. This technical goal was accomplished by com-
pleting several objectives. The first objective was to design and implement the inter-
face between all electrical components in order to actuate the motors. The second 
objective was to design and implement an Android application capable of sending 
movement direction commands to control the DC motors, and rotation direction 
commands to control the servo motors. The third objective was to establish com-
munication between the Android application and Raspberry Pi in order to actuate 
the motors using the Android application.

The second technical goal of this project was to interface a 5 V 2 Channel relay, 
a 12 V submersible water pump, and a Raspberry Pi 3B+ in order to be able to pump 
water by turning the water pump on and off by issuing commands from an Android 
application connected to the Raspberry Pi over a Wi-Fi interface. This technical 
goal was accomplished by completing the following objective. The fourth objective 
was to design and implement the interface between all electrical components in 
order to turn the water pump on and off. The interface between the Raspberry Pi and 
Android app will already be set up in the previous technical goal and so the water 
pump circuitry can simply be added to the existing system.

The functional goal of this project was to design a robot chassis capable of car-
rying a fumigation apparatus and pulling or releasing its trigger in order to control 
the dispensation of fumigation chemicals. This functional goal was accomplished 

Fig. F.1 IoT fumigation 
robot final result
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by completing several objectives. The fifth objective was to design and build a chas-
sis to carry a fumigation apparatus, and hold the servo motor in place so that it can 
pull or release the trigger on the fumigation apparatus. The sixth objective was to 
integrate the circuitry onto the chassis in order to drive the wheels of the robot, 
therefore controlling the robot’s movement direction.

Methodology: Written by Nicholas K

This section discusses the objectives, challenges, problem formulation, and design 
of the entire project in more detail.

Objectives

• The first objective was to design and implement the interface between the L298n 
motor driver, two 12 V DC motors, servo motor, and Raspberry Pi in order to 
actuate all motors in a specific way. The two DC motors were required to do the 
following; both rotate clockwise, both rotate counter-clockwise, and both rotate 
in opposite directions of each other. The servo motor was required to rotate 
clockwise 180°, and rotate counter-clockwise 180°.

• The second objective was to design and implement an Android application with 
buttons in order to move the chassis left, right, forward, and reverse, and buttons 
in order to turn the servo motor 180° clockwise or counter-clockwise.

• The third objective was to establish communication between the Android appli-
cation and Raspberry Pi so that the DC and servo motors could be actuated based 
on the button pressed in the Android application.

• The fourth objective was to design and implement the interface between the 12 V 
submersible water pump, 5 V 2 channel relay, and Raspberry Pi in order to turn 
the water pump on and off at the touch of a button on our Android application.

• The fifth objective was to design and build a sturdy but lightweight chassis that 
was capable of carrying a fumigation apparatus, and pulling or releasing its trig-
ger in order to dispense the chemicals stored inside the fumigation apparatus.

• The sixth objective was to integrate the Raspberry Pi, motor driver, and motors 
onto the chassis in order to drive the robot left, right, forward, reverse, and to pull 
or release the fumigation apparatus’s trigger with the servo motor mounted onto 
the chassis.

Challenges

• The first challenge encountered was finding the right size motors that would sup-
port our weight requirements. Typical 3.3 V or 5 V DC hobby motors were not 
capable of supporting the weight of our relatively heavy wooden chassis, let 
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alone a fumigation apparatus in addition to the weight of the chassis. Larger 
motors have greater power requirements and so our options were limited since 
the motors had to be able to run on a portable battery due to the nature of our 
project. Fortunately, we were able to find some lower RPM rated 12 V DC motors 
that would fit our power requirement limitations, but could still support the 
weight of our chassis and fumigation apparatus.

• The second challenge encountered was finding a suitable, but inexpensive battery 
and battery charger for our two DC motors. Due to the power requirements of our 
motors, a power source that could supply enough current for a reasonable amount 
of time was on the expensive side. We ended up sacrificing battery life for afford-
ability since our project was a prototype and a smaller mAh power supply would 
get the job done for demonstration purposes. We ended up going with a smaller 
mAh battery and battery charger which helped keep the cost of this project down.

• The third challenge encountered was mounting the two DC motors onto the 
wheels. The types of wheels that small DC motors (12 V or less) are designed to 
“plug into” were not suitable for our project. We needed taller wheels to suspend 
our chassis a sufficient height off of the ground, and we needed stronger wheels 
that could support the weight of a fumigation apparatus in addition to the chassis 
weight. Due to these requirements, we had to use 7-in. plastic wheels which can-
not be directly mounted onto the shaft of our DC motors. We had to design our 
own hub that would attach to the DC motor shaft on the one end, and attach to 
the wheel on the other end. The wheels have thick bits of plastic placed in incon-
venient places, which made it hard to center the hub onto the wheel.

Problem Formulation and Design

The design of the entire system consists of a Raspberry Pi 3B+ and its power supply, 
L298n motor driver, a servo motor, a 5 V 2 channel relay, two 12 V DC motors, and 
a LiPo battery to power the DC motors and 12  V submersible water pump, all 
mounted inside a wooden box-shaped chassis and a mock fumigation apparatus 
made out of PVC pipe, plastic tubing, and cardboard. Additionally, an Android 
phone is connected to the Raspberry Pi over a Wi-Fi interface. The overall system 
design was broken down into several smaller modules that were tested individually 
in order to ensure correct functionality upon integration into the full system.

The first module is the Raspberry Pi—Android application module, which 
requires the Raspberry Pi to produce the specific outputs shown in Table F.1 based 
on the commands it receives from the Android application over a Wi-Fi interface.

The second module is the Raspberry Pi—motor driver—DC motors module, 
which requires both DC motors to produce the outputs shown in Table F.2 based on 
the input that the motor driver receives from the Raspberry Pi, and requires the 
servo motor to produce the outputs also shown in Table F.2 based on the input it 
receives from the Raspberry Pi over a PWM interface.

The full system design was created by merging the two separate modules. The 
system design requires the motors to produce the outputs show in Table F.3 based 
on the commands that the Raspberry Pi receives from the Android application over 
the Wi-Fi interface.
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Table F.1 Raspberry Pi output with Android App input

Android App Button pressed Raspberry Pi output

Left Rotate chassis left
Right Rotate chassis right
Forward Move chassis forward straight
Reverse Move chassis reverse straight
Stop Halt all movement
Open Pull fumigation apparatus trigger and turn water pump ON
Close Release fumigation apparatus trigger and turn water pump OFF

Table F.2 Motor output with Raspberry Pi input

Raspberry Pi command Motor output

Rotate chassis left L DC motor: turn clockwise
R DC motor: turn clockwise

Rotate chassis right L DC motor: turn counter-clockwise
R DC motor: turn counter-clockwise

Move chassis forward straight L DC motor: turn counter-clockwise
R DC motor: turn clockwise

Move chassis reverse straight L DC motor: turn clockwise
R DC motor: turn counter-clockwise

Halt all movement L DC motor: don’t turn
R DC motor: don’t turn

Pull fumigation apparatus trigger Servo motor: rotate 180° clockwise
Release fumigation apparatus trigger Servo motor: rotate 180° counter-clockwise

Table F.3 Motor output with Android App input

Android App Button pressed Motor output

Left L DC motor: turn clockwise
R DC motor: turn clockwise

Right L DC motor: turn counter-clockwise
R DC motor: turn counter-clockwise

Forward L DC motor: turn counter-clockwise
R DC motor: turn clockwise

Reverse L DC motor: turn clockwise
R DC motor: turn counter-clockwise

Stop L DC motor: don’t turn
R DC motor: don’t turn

Open Servo motor: rotate 180° clockwise
Water pump: turn ON

Close Servo motor: rotate 180° counter-clockwise
Water pump: turn OFF
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Implementation

This section covers the hardware and software design of the entire project in 
more detail.

Chassis Design: Written by Nicholas K

The fumigation robot’s chassis consists of a larger wooden box and a smaller 
wooden box stacked on top of each other. The smaller wooden box is where the 
robot’s circuitry is placed, and the larger wooden box is where the fumigation appa-
ratus is placed. A cutout was made in the bottom of the larger wooden box so that 
the smaller wooden box could be nailed to the bottom of the cutout in order to 
secure it in place. A swivel wheel was attached to the rear of the chassis in order to 
prevent the back end of the larger wooden box from dragging on the floor (Figs. F.2, 
F.3, and F.4).

In order to mount the DC motors on the chassis, two mounting brackets were 
screwed onto the bottom of the larger wooden box. The DC motors were fastened to 
the mounting brackets by screwing them into the brackets using the screw holes 
present on the faceplate of the DC motors (Fig. F.5).

In order to mount the wheels onto the DC motor shafts, a mounting hub was 
fastened to the one side of a bottle cap, and a wheel was fastened to the other side 
of the bottle cap. The drive shafts of each DC motor were inserted into a mounting 
hub, and then screws were used in order to keep the motor shafts from slipping out 
of the mounting hubs (Fig. F.6).

Mock Fumigation Apparatus Design: Written by Nicholas K

The mock fumigation apparatus consists of a cardboard box with cutouts to insert a 
PVC pipe, and a cutout for the water pump’s power wires. The PVC pipe is secured 
to the cardboard box by screwing long screws into the pipe onto each side of the 
cardboard box in order to prevent the pipe from slipping out. The PVC pipe also has 
a hole drilled into it about half way in order to route the tubing that is connected to 
the water pump through the pipe (Figs. F.7 and F.8).

A plastic container was placed inside the cardboard box in order to hold the 
pump and the water that the pump is submerged in. The plastic container has a hole 
drilled into the center of its lid in order to route the tubing through the PVC pipe, 
and a hole drilled in the corner of its lid in order to route the water pump’s power 
wires through the container.

The servo motor was adhered to the front of the mock fumigation apparatus right 
below the PVC pipe. On a real fumigation apparatus, this is where the trigger would 
be located. Our mock fumigation apparatus does not have a trigger and so the servo 
motor was mounted here for proof-of-concept purposes (Fig. F.9).
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Hardware Design: Written by Jesus D

The processor used in the robot is a Raspberry Pi 3B. This hardware was chosen for 
its capabilities and the quantity of resources and support that can be found on the 
Internet. This board contains more GPIO pins than required to complete this project, 

Fig. F.2 Chassis 
front view

Fig. F.3 Chassis top view
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Fig. F.4 Chassis 
bottom view

Fig. F.5 Chassis with 
wheels bottom view
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with pulse-width modulation (PWM), and has Wi-Fi capabilities for remote com-
munication for the IoT project. Of the 27 accessible GPIO pins, only 7 are used to 
control the other components.

One PWM pin goes to the servo motor to control the direction and speed of rota-
tion, which could be considered the amount of pressure applied to the fumigation 
apparatus, controlling the quantity of spray that is expelled. The other four pins are 
connected to the motor driver’s four “In” pins. Pins In1 and In2 are for controlling 
DC motor 1 with the driver’s Out1A and B output pins. Pins In3 and In4 control DC 
motor 2 with pins Out2A and B.

For this architecture, two separate power sources are required, a 5-V power 
source to power the Raspberry Pi, servo motor, and the relay-board, and a 12-V 
power supply for the motor driver, the two DC motors, and the water pump. The 
smaller supply’s voltage would not be sufficient to drive the motors and water pump, 

Fig. F.6 Wheel mounted 
onto DC motor

Fig. F.7 Mock fumigation 
apparatus side view
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hence a larger 12-V supply was required. The 12 V are also supplied at the normally 
open pin of relay 1 (NO1), and ground is placed at the normally closed pin (NC2) 
of relay 2. Both common pins of the relay board, COM1 and COM2, are connected 
to the pump’s power and ground wires, respectively. A diagram of the described 
architecture is shown in Fig. F.10.

Fig. F.8 Mock fumigation 
apparatus back view

Fig. F.9 Mock fumigation 
apparatus inside view
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With this hardware design, we are able to control the robot by moving forward, 
in reverse, or rotating the body in clockwise or counterclockwise fashion. The servo 
motor is also controlled by making it rotate clockwise and counterclockwise. 
Finally, the water pump used to dispense the “pesticide” is activated by setting both 
relays in the closed configuration.

Software Design: Written by Jesus D

Software flowchart for this project is shown in Fig. F.11. The robot’s programming was 
done in Python, and is only a few steps. The code for this project was developed refer-
encing RootSaid [3] and Instructables Circuits [4]. When the code is executed, it starts 
by initializing the socket for communicating over a Wi-Fi network, then five GPIO pins 
(pins 11, 12, 13, 15, 33, 35, and 37) are initialized as outputs. PWM is enabled on pin 
12 for use in controlling the rotational speed and direction of the servo motor.

After initializing Wi-Fi communication and GPIO pins, the Raspberry Pi now 
waits for input from the user that is sending commands via the Android app 
“RootSaid—WiFi Command Center,” which can be downloaded from the Google 
Store. The app itself contains three tabs. In this project we only use two of them. 
One is for setting up the IP address and port for communication between the app and 
Raspberry Pi. The second tab is used for sending commands. The third tab is for 
powering on/off smart appliances, which is not relevant to this project. Once the 
user has entered the IP address and port number, the link symbol to the left must be 
pressed for the app to know where it will be sending data. With this app, we send the 
Raspberry Pi seven different commands: “forward,” “backward,” “left,” “right,” 
“stop,” “action 1,” or “action2.” The two tabs that are used in RootSaid app are 
shown in Fig. F.12.

Fig. F.10 Hardware architecture of the fumigation robot
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Fig. F.11 Software 
flowchart

Fig. F.12 RootSaid’s Set-Up tab (left) and Robot Controller tab (right)
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To be able to execute the code, we needed to import Python libraries into our 
code: RPi.GPIO and Socket. RPi.GPIO is a standard library used in Raspberry Pi to 
set up the GPIO pins and its peripherals. The pins are configured as an output and 
they are controlled with APIs. With this library, the PWM output is also controlled. 
With the socket library, we established communication over Wi-Fi for the Raspberry 
Pi to receive commands from the Android application. The source code can be 
viewed in Appendix A.

Functions were created to make the code easier to read with what the pin output 
results in. For example, if the input to In2 is high and In1 is low, this will result in 
the left motor to push the robot forward. Therefore, functions were named left_
motor_forward(), right_motor_forward(), left_motor_reverse(), right_motor_
reverse(), spray_on() and spray_off(), and motors_stop() to make the code easier 
to read.

Testing and Verification: Written by Jesus D

The first test was establishing and verifying communication between the mobile 
phone via RootSaid—Wi-Fi Command center app and the Raspberry Pi over the 
Wi-Fi network. Connecting the Pi to a monitor and using the “ipconfig” command, 
we can acquire the IP address to enter in the mobile app’s “Setup” tab. Running the 
same code shown in step 7 of RootSaid [3], print statements for each command can 
be used to verify Wi-Fi communication between the app and robot, which will be 
essential for the following tests.

Next, to test the DC motors, the motor driver (L298N), 12-V battery, Wi-Fi net-
work, RootSaid android app, and the Raspberry Pi were required. Making the con-
nections from the controller to the motor driver and DC motors shown in Fig. F.6, 
we used the code from the previous test-verification. At each directional command, 
the behavior was observed for comparison with the described behavior in Table F.3 
for verification.

Testing the water pump required the relays, 12-V battery, Raspberry Pi, water for 
the pump, and code allowing control of the relays to better understand the configu-
ration needed to activate the pump. To test the parts, they were connected as shown 
in Fig. F.6. The pump was placed in a container with enough water to be above the 
impeller. Once everything is connected and enough water is supplied, relays 1 and 
2 are opened and closed to find the combination that activates the pump. The testing 
python script, shown in Appendix B, accepts the relay number to be controlled and 
configuration to be set. After sending the configuration command, the current state 
of each relay would be displayed to note each relay’s state and the water pump’s 
action, as shown in Fig. F.13. With this, the output values of the pins required to set 
each relay as closed are noted and properly implemented in the fumigation 
robot’s code.
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Conclusion: Written by Nicholas K

The first technical goal of this project was to interface an L298n motor driver, a 
Raspberry Pi 3B+, a servo motor, and two 12  V DC motors, and to actuate the 
motors by issuing commands from an Android application connected to the 
Raspberry Pi over a Wi-Fi interface. The second technical goal of this project was 
to interface a 12 V submersible water pump, a Raspberry Pi 3B+, and a 5 V 2 chan-
nel relay in order to turn the water pump on and off by issuing commands from an 
Android application. The purpose of this project was to integrate the aforemen-
tioned circuitry onto a robot chassis in order to build a robot capable of carrying a 
fumigation apparatus and dispensing its chemicals via a user operated Android 
application in order to reduce the exposure of fumigation workers to harsh chemi-
cals. The primary objectives of this project were to first design and implement the 
interface between all electrical components in order to actuate the motors. The sec-
ond objective was to design and implement an Android application capable of send-
ing movement direction commands to control the DC motors, and rotation direction 
commands to control the servo motors. The third objective was to establish com-
munication between the Android application and Raspberry Pi in order to actuate 
the motors using the Android application. The fourth objective was to design and 
implement the interface between all electrical components in order to turn the water 
pump on and off. The fifth objective was to design and build a chassis to carry a 
fumigation apparatus, and hold the servo motor in place so that it can pull or release 
the trigger on the fumigation apparatus. The sixth and final objective was to inte-
grate the circuitry onto the chassis in order to drive the wheels of the robot, therefore 

Fig. F.13 Relay testing script output
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controlling the robot’s movement direction. The overall goals and individual objec-
tives were all completed successfully, rendering an IoT fumigation robot that 
improves the health and safety of fumigation workers while still allowing them to 
perform fumigation services. Lessons learned throughout the entire duration of this 
project consisted of gaining a better understanding of the Wi-Fi IoT protocol, 
becoming more familiar with the Raspberry Pi embedded hardware platform as well 
as the Python programming language, and learning the basics of DC and servo 
motors. Further improvements can be made to this project, such as designing a bet-
ter hub so that the wheels are mounted to the DC motors more securely, and design-
ing and building a larger chassis such that the size and weight of a full-size 
fumigation apparatus can be supported.

Acknowledgment We would like to thank San Jose State University for providing 
lots of space for us to conduct drive tests with our robot.
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Appendix A: Source Code

import RPi.GPIO as GPIO
import socket
import time

#UDP_IP = "192.168.0.14"
UDP_IP = "192.168.43.40"
UDP_PORT = 5050

pin_IN1 = 33
pin_IN2 = 11
pin_IN3 = 13
pin_IN4 = 15
pin_SERVO = 12
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relay1 = 35
relay2 = 37

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin_IN1, GPIO.OUT) # Pins 33 and 11 for left motor (IN1 
and IN2, respectively)
GPIO.setup(pin_IN2, GPIO.OUT)
GPIO.setup(pin_IN3, GPIO.OUT) # Pins 13 and 15 for right motor (IN3 
and IN4, respectively)
GPIO.setup(pin_IN4, GPIO.OUT)

GPIO.setup(relay1, GPIO.OUT)
GPIO.setup(relay2, GPIO.OUT)

GPIO.output(relay1, True)
GPIO.output(relay2, True)

def left_motor_forward():
    GPIO.output(pin_IN2, True)
    GPIO.output(pin_IN1, False)

def left_motor_reverse():
    GPIO.output(pin_IN2, False)
    GPIO.output(pin_IN1, True)

def right_motor_forward():
    GPIO.output(pin_IN4, True)
    GPIO.output(pin_IN3, False)

def right_motor_reverse():
    GPIO.output(pin_IN4, False)
    GPIO.output(pin_IN3, True)

def motors_stop():
    GPIO.output(pin_IN1, False)
    GPIO.output(pin_IN2, False)
    GPIO.output(pin_IN3, False)
    GPIO.output(pin_IN4, False)

def servo_stop():
    global servo
    servo.ChangeDutyCycle(0)

def spray_on():
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    GPIO.output(relay2, True)
    GPIO.output(relay1, False)

def spray_off():
    GPIO.output(relay2, False)
    GPIO.output(relay1, True)

def main():
    global UDP_IP
    global UDP_PORT

    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    sock.bind((UDP_IP, UDP_PORT))

    GPIO.setup(pin_SERVO, GPIO.OUT)
    servo = GPIO.PWM(pin_SERVO, 50)
    servo.start(0)

    t = 0.15

    while True:
        data, addr = sock.recvfrom(1024)
        print("data: " + str(data))
        print("addr: " + str(addr))
        raw = data

        if raw == "forward":
            left_motor_forward()
            right_motor_forward()
            print("Robot Move Forward")
        elif raw == "stop":
            motors_stop()
            print("Robot Stop")
        elif raw == "backward":
            left_motor_reverse()
            right_motor_reverse()
            print("Robot Move Backward")
        elif raw == "left":
            left_motor_reverse()
            right_motor_forward()
            print("Robot Move Left")
        elif raw == "right":
            left_motor_forward()
            right_motor_reverse()
            print("Robot Move Right")
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        elif raw == "action 1":
            spray_on()
            servo.ChangeDutyCycle(2.5)
            time.sleep(t)
            servo.ChangeDutyCycle(0)
            print("Robot Action 1: Servo Open")
        elif raw == "action2":
            spray_off()
            servo.ChangeDutyCycle(12.5)
            time.sleep(t)
            servo.ChangeDutyCycle(0)
            print("Robot Action 2: Servo Close")
        else:
            spray_off()
            motors_stop()
            print("STOP")
        print("")

if __name__ == "__main__":
    try:
        print("Starting controller.py\n")
        main()
    except KeyboardInterrupt:
        print("Exiting controller.py")

Appendix B: Relay Test Code

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)

relay1 = 35
relay2 = 37

GPIO.setup(relay1, GPIO.OUT)
GPIO.setup(relay2, GPIO.OUT)

r1_state = "closed"
r2_state = "open"
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print("Relay 1 state: " + r1_state)
print("Relay 2 state: " + r2_state)

while(True):
    relay_num = input("Enter relay: ")
    relay_cmd = raw_input("Enter command: ")

    if relay_num == 1:
        if relay_cmd == "closed":
            GPIO.output(relay1, False)
            r1_state = "closed"
        elif relay_cmd == "open":
            GPIO.output(relay1, True)
            r1_state = "open"
        else:
            print("Invalid command: " + relay_cmd)
    elif relay_num == 2:
        if relay_cmd == "open":
            GPIO.output(relay2, False)
            r2_state = "open"
        elif relay_cmd == "closed":
            GPIO.output(relay2, True)
            r2_state = "closed"
        else:
            print("Invalid command: " + relay_cmd)
    else:
        print("Not a relay: " + str(relay_num))

    print("\nRelay 1 state: " + r1_state)
    print("Relay 2 state: " + r2_state)
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