
Ammar Rayes
Samer Salam

Internet
of Things
from Hype
to Reality
The Road to Digitization

Third Edition

Internet of Things from Hype to Reality

Ammar Rayes • Samer Salam

Internet of Things
from Hype to Reality
The Road to Digitization

Third Edition

ISBN 978-3-030-90157-8 ISBN 978-3-030-90158-5 (eBook)
https://doi.org/10.1007/978-3-030-90158-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Ammar Rayes
Cisco
San Jose, CA, USA

Samer Salam
Cisco
Beirut, Lebanon

https://doi.org/10.1007/978-3-030-90158-5

To invent, you need a good imagination and
a pile of junk.

—Thomas A. Edison

To invent, you need the Internet,
communication, good imagination and a pile
of things.

—Ammar Rayes

Creativity is just connecting things. When
you ask creative people how they did
something, they feel a little guilty because
they didn’t really do it, they just saw
something. It seemed obvious to them after a
while. That’s because they were able to
connect experiences they’ve had and
synthesize new things.

—Steve Jobs

How the Internet of Things will bend and
mold the IP hourglass in the decades to come
will certainly be fascinating to witness. We,
as engineers, developers, researchers,
business leaders, consumers and human
beings are in the vortex of this
transformation.

—Samer Salam

vii

Foreword I

In California, just a few months after two people stepped foot on the Moon for the
first time, two computers began sending messages to each other using protocols
designed to make it easy for other computers to connect and join the party [2]. On
October 29, 1969, a computer in Leonard Kleinrock’s lab at UCLA and a computer
in Doug Engelbart’s lab at SRI forged the first two nodes in what would become
known as the Internet. Vint Cerf and two colleagues coined the term Internet as a
shortened version of internetworking in December 1974. It did not take long for
more computers and their peripherals, as well as more networks of computers, and
even industrial equipment to connect and begin communicating messages, includ-
ing sharing sensor data and remote control instructions. In early 1982, a soda
machine at CMU became arguably the first Internet-connected appliance, announced
by a broadly distributed email that shared its instrumented and interconnected story
with the world. By 1991, it was clear to Mark Weiser that more and more things
would someday have embedded computers, including mobile phones, cars, even
door knobs, and someday even clothing [3]. Today, spacecraft are Internet-connected
devices on missions exploring other planets and heading to deep space beyond our
solar system. Courtesy of NASA engineers, some are even sending tweets to mil-
lions of followers here on Earth about their progress.

The Internet of Things (also known as the Internet of Everything) continues to
grow rapidly today. In fact, the Internet of Things (IoT) forms the basis of what has
become known as the Fourth Industrial Revolution and digital transformation of
business and society [1]. The first industrial revolution was the steam engine as the
focal machine, the second revolution included the machines of mass production, the
third revolution was based on machines with embedded computers, and the fourth
revolution (today) interconnected machines and things, including information about
the materials and energy usage flowing into and out of a globally interconnected
cyber physical system of systems. The level of instrumentation and interconnection
is laying the infrastructure for more intelligence, including cognitive computing to
be incorporated.

Why does the IoT continue to grow so rapidly? What are the business and soci-
etal drivers of its rapid growth? How does IoT relate to the Internet, what types of

viii

things make up the IoT, and what are the fundamental and new protocols being used
today? How are the specific layers of the IoT protocol stack related to each other?
What is the fog layer? What is the Services Platform layer? How are the security and
data privacy challenges being resolved? What are the economic and business conse-
quences of IoT, and what new ecosystems are forming? What are the most important
open standards associated with IoT, and how are they evolving?

In this introductory IoT textbook, Dr. Ammar Rayes and Samer Salam guide the
reader through answers to the above questions. Faculty will find well-crafted ques-
tions and answers at the end of each chapter, suitable for review and in classroom
discussion topics. In addition, the material in the book can be used by engineers and
technical leaders looking to gain a deep technical understanding of IoT as well as by
managers and business leaders looking to gain a competitive edge and understand
innovation opportunities for the future. Information systems departments based in
schools of management, engineering, or computer science will find the approach
used in this textbook suitable as either a primary or secondary source of course
material.

In closing, and on a personal note, it has been a pleasure to call Dr. Ammar Rayes
a colleague and friend for nearly a decade. He has given generously of his time as
founding President of the International Society of Service Innovation Professionals
(ISSIP.org), a professional association dedicated to helping multidisciplinary stu-
dents, faculty, practitioners, policy-makers, and others learn about service innova-
tion methods for business and societal applications. Ammar is one of those rare
technical leaders who contributes to business, academics, and professional associa-
tion contexts. My thanks to Ammar and Samer for this excellent introduction to
Internet of Things, as it is one more in a line of their contributions that will help
inspire the next generation of innovators to learn, develop professionally, and make
their own significant contributions.

References

 1. J. Lee, H.A. Kao, S. Yang, Service innovation and smart analytics for industry 4.0 and big data
environment. Procedia CIRP. 16, 3–8 (2014)

 2. B.M. Leiner, V.G. Cerf, D.D. Clark, R.E. Kahn, L. Kleinrock, D.C. Lynch, J. Postel,
L.G. Roberts, S. Wolff, A brief history of the internet. ACM SIGCOMM Comput. Commun.
Rev. 39(5), 22–31 (2009)

 3. M. Weiser, The computer for the 21st century. Scientific American. 265(3), 94–104 (1991)

IBM, San Jose, CA, USA Jim Spohrer

Foreword I

ix

Foreword II

The Internet of Things (IoT) has been many years in the making. Indeed, the con-
cept of using sensor devices to collect data and then transfer it to applications across
a network has been around for several decades. For example, legacy programmable
logic controller (PLC) systems already provide data collection and remote actuator
control using specialized networking protocols and topologies. Even though these
setups have limited footprints and are rather costly, they are still widely used in
many industrial settings. Meanwhile, academic researchers have also studied the
use of networked sensors for various applications in recent years.

However, continuing market shifts and technology trends in the past decade have
dramatically altered the value proposition of interconnected sensors and actuators.
Namely, the combination of low-cost hardware and high-speed networking technol-
ogies—both wired and wireless—have enabled a new generation of compact sensor
devices with ubiquitous connectivity across the wider Internet. These systems are
facilitating real-time data collection/sharing and providing unprecedented visibility
and control of assets, personnel, operations, and processes. The further use of cloud-
based computing/storage facilities is introducing even more advanced data analysis
capabilities, ushering in a new era of intelligent decision-making, control, and auto-
mation. Broadly, these new paradigms are termed as the Internet of Things (IoT).

Indeed there is considerable excitement, perhaps even hype, associated with the
IoT. However, as technological advances and business drivers start to align here,
related paradigms are clearly poised at an inflection point of growth. For example,
a wide range of business and mission-critical IoT systems are already being deployed
in diverse market sectors, i.e., including defense, energy, transportation, civil infra-
structure, healthcare, home automation/security, and agriculture. New cloud and fog
computing services are also emerging to deliver actionable insights for improving
business productivity and reducing cost/risk. As these new business models start to
take hold, the projected IoT market opportunity is huge, widely projected to be in
the trillions of dollars in the coming decade.

In light of the above, this text presents a very timely and comprehensive look at
the IoT space. The writing starts by introducing some important definitions and
reviewing the key market forces driving IoT technology growth. The fundamental

x

IoT building blocks are then presented, including networking systems and sensor
technologies. Most notably, IoT-specific networking challenges and requirements
are first overviewed, including device constraints, identification, performance deter-
minism, security, and interoperability. Emerging, streamlined IoT protocol stacks
are then detailed, covering topics such as layering, routing, and addressing. The
main types of sensing technologies are also discussed here along with actuator con-
trol devices. Note that the initial part of this text focuses on core IoT concepts and
frameworks, leaving more industry and application-specific treatments to later.

The text then addresses broader topics relating to intelligent data management
and control for IoT. Namely, the distributed fog computing platform is outlined first,
including market drivers, prerequisites, and enabling technologies within the con-
text of IoT. The crucial notion of an IoT service platform is also presented, touching
upon issues such as deployment, configuration, monitoring, and troubleshooting.
The writing also outlines critical security and privacy concerns relating to IoT, i.e.,
by categorizing a range of threat scenarios and highlighting effective countermea-
sures and best practices.

Finally, the latter part of the text progresses into some more business-related aspects
of IoT technology. This includes a critical look at emerging vertical markets and their
interconnected ecosystems and partnerships, i.e., across sectors such as energy, indus-
trial, retail, transportation, finance, healthcare, and agriculture. Sample business cases
are also presented to clearly tie in industry verticals with earlier generalized IoT con-
cepts and frameworks. Finally, the critical role and efforts of IoT standardization orga-
nizations is reviewed along with a look at some important open source initiatives.

Overall, both authors are practicing engineers in the networking industry and
actively involved in research, technology development, standards, and business
marketing initiatives. As a result, they bring together wide-ranging and in-depth
field experience across many diverse areas, including network management, data
security, intelligent services, software systems, data analytics, and machine learn-
ing, etc. They are also widely published in the research literature and have contrib-
uted many patent inventions and standardization drafts. Hence, this team is uniquely
qualified to write on this subject.

In summary, this text provides a very compelling study of the IoT space and
achieves a very good balance between engineering/technology focus and business
context. As such, it is highly recommended for anyone interested in this rapidly
expanding field and will have broad appeal to a wide cross section of readers, i.e.,
including engineering professionals, business analysts, university students, and pro-
fessors. Moreover, each chapter comes with a comprehensive, well-defined set of
questions to allow readers to test their knowledge on the subject matter (and answer
guides are also available for approved instructors). As such, this writing also pro-
vides an ideal set of materials for new IoT-focused graduate courses in engineering
and business.

Department of Electrical Engineering & Florida
Center for Cybersecurity (FC2)

Nasir Ghani

University of South Florida,
Tampa, FL, USA

Foreword II

xi

Preface

Technology is becoming embedded in nearly everything in our lives. Just look
around you and you will see how the Internet has affected many aspects of our exis-
tence. Virtually anything you desire can be ordered instantly, at a push of a button,
and delivered to your door in a matter of days if not hours. We all see the impact of
smart phones, smart appliances, and smart cars to cite a few.

Today, manufacturers are installing tiny sensors in effectively every device they
make and utilizing the Internet and cloud computing to connect such devices to data
centers capturing critical information. By connecting things with cloud technology
and leveraging mobility, desired data is captured and shared at any location and any
time. The data is then analyzed to provide businesses and consumers with value that
was unattainable just a decade or less ago.

Up to the minute information is provided about the states and locations of ser-
vices. Further, businesses use the sensors to collect mission-critical data throughout
their entire business process, allowing them to gain real-time visibility into the loca-
tion, motion and state of assets, people, and transactions and enabling them to make
smarter decisions.

As more objects become embedded with sensors and the ability to communicate,
new business models become possible across the industry. These models offer to
improve business processes, reduce costs and risks, and more importantly create
huge business opportunities in a way that changes the face and the pace of business.
Experts agree that the Internet of Things will revolutionize businesses beyond rec-
ognition in the decades to come.

At the core of the success of the Internet, and one of its foundational principles,
is the presence of a common protocol layer, the IP layer, which provides normaliza-
tion of a plethora of applications (e.g., email, web, voice, video) over numerous
transport media (e.g., Ethernet, Wi-Fi, cellular). Graphically, this can be rendered as
an hourglass with IP in the middle: IP being the thin waist of this proverbial hour-
glass. This model has served well; especially since the Internet, over the past three
decades, has been primarily concerned with enabling connectivity: interconnecting
networks across the globe. As the Internet evolves into the Internet of Things, the
focus shifts from connectivity to data. The Internet of Things is primarily about data

xii

and gaining actionable insights from that data, as discussed above. From a technol-
ogy perspective, this can be achieved with the availability of networking protocols
that meet the requirements and satisfy the constraints of new Internet of Things
devices, and more importantly with the availability of standard interfaces and mech-
anisms for application services including data access, storage, analysis, and man-
agement. How does this translate to the proverbial hourglass? At the very least, a
second thin waist is required which provides a common normalization layer for
application services.

The road to a standards-based Internet of Things is well underway. The industry
has made significant strides toward converging on the Internet Protocol as the com-
mon basis. Multiple standards have been defined or are in the process of being
defined to address the requirements of interconnecting “Things” to the Internet.
However, many gaps remain especially with respect to application interoperability,
common programmable interfaces, and data semantics. How the Internet of Things
will bend and mold the IP hourglass in the decades to come will certainly be fasci-
nating to witness. We, as engineers, developers, researchers, business leaders, con-
sumers, and human beings, are in the vortex of this transformation.

In this book, we choose to introduce the Internet of Things (IoT) concepts and
framework in the earlier chapters and avoid painting examples that tie the concepts
to a specific industry or to a certain system. In later chapters, we provide examples
and use cases that tie the IoT concepts and framework presented in the earlier chap-
ters to industry verticals.

Therefore, we concentrate on the core concepts of IoT and try to identify the
major gaps that need to be addressed to take IoT from the hype stage to concrete
reality. We also focus on equipping the reader with the basic knowledge needed to
comprehend the vast world of IoT and to apply that knowledge in developing verti-
cals and solutions from the ground up, rather than providing solutions to specific
problems. In addition, we present detailed examples that illustrate the implementa-
tion and practical application of abstract concepts. Finally, we provide detailed busi-
ness and engineering problems with answer guides at the end of each chapter.

The following provides a chapter-by-chapter breakdown of this book’s material.
Chapter 1 introduces the foundation of IoT and formulates a comprehensive defini-
tion. The chapter presents a framework to monitor and control things from any-
where in the world and provides business justifications on why such monitoring and
control of things is important to businesses and enterprises. It then introduces the 12
factors that make IoT a present reality.

The 12 factors consist of (1) the current convergence of IT and OT; (2) the aston-
ishing introduction of creative Internet-based businesses with emphasis on Uber,
Airbnb, Square, Amazon, Tesla, and the self-driving cars; (3) mobile device explo-
sion; (4) social network explosion; (5) analytics at the edge; (6) cloud computing
and virtualization; (7) technology explosion; (8) digital convergence/transforma-
tion; (9) enhanced user interfaces; (10) fast rate of IoT technology adoption (five
times more than electricity and telephony); (11) the rise of security requirements;
and (12) the nonstop Moore’s law. The last section of this chapter presents a detailed
history of the Internet.

Preface

xiii

Chapter 2 describes the “Internet” in the “Internet of Things.” It starts with a
summary of the well-known Open System Interconnection (OSI) model layers. It
then describes the TCP/IP model, which is the basis for the Internet. The TCP/IP
protocol has two big advantages in comparison with earlier network protocols: reli-
ability and flexibility to expand. The TCP/IP protocol was designed for the US
Army addressing the reliability requirement (resist breakdowns of communication
lines in times of war). The remarkable growth of Internet applications can be attrib-
uted to this reliable expandable model.

Chapter 2 then compares IP version 4 with IP version 6 by illustrating the limita-
tions of IPv4, especially for the expected growth to ten billions of devices with
IoT. IPv4 has room for about 4.3 billion addresses, whereas IPv6, with a 128-bit
address space, has room for 2128 or 340 trillion trillion trillion addresses. Finally,
detailed description of IoT network level routing is described and compared with
classical routing protocols. It is mentioned that routing tables are used in routers to
send and receive packets. Another key feature of TCP/IP routing is the fact that IP
packets travel through an internetwork one router hop at a time, and thus the entire
route is not known at the beginning of the journey. The chapter finally discusses the
IoT network level routing that includes Interior and Exterior Routing Protocols.

Chapter 3 defines the “Things” in IoT and describes the key requirements for
things to be able to communicate over the Internet: sensing and addressing. Sensing
is essential to identify and collect key parameters for analysis and addressing is
necessary to uniquely identify things over the Internet. While sensors are very cru-
cial in collecting key information to monitor and diagnose the “Things,” they typi-
cally lack the ability to control or repair such “Things” when action is required. The
chapter answers the question: why spend money to sense “Things” if they cannot be
controlled? It illustrates that actuators are used to address this important question in
IoT. With this in mind, the key requirements for “Things” in IoT now consist of
sensing, actuating, and unique identification. Finally, the chapter identifies the main
sensing technologies that include physical sensors, RFID, and video tracking and
discusses the advantages and disadvantages of these solutions.

Chapter 4 discusses the requirements of IoT which impact networking protocols.
It first introduces the concept of constrained devices, which are expected to com-
prise a significant fraction of new devices being connected to the Internet with
IoT. These are devices with limited compute and power capabilities; hence, they
impose special design considerations on networking protocols which were tradi-
tionally built for powerful mains-connected computers. The chapter then presents
the impact of IoT’s massive scalability on device addressing in light of IPv4 address
exhaustion, on credentials management and how it needs to move toward a low-
touch lightweight model, on network control plane which scales as a function of the
number of nodes in the network, and on the wireless spectrum that the billions of
wireless IoT devices will contend for.

After that, the chapter goes into the requirements for determinism in network
latency and jitter as mandated by real-time control applications in IoT, such as fac-
tory automation and vehicle control systems. This is followed by an overview of the
security requirements brought forward by IoT. Then, the chapter turns into the

Preface

xiv

requirements for application interoperability with focus on the need for standard
abstractions and application programmatic interfaces (APIs) for application, device,
and data management, as well as the need for semantic interoperability to ensure
that all IoT entities can interpret data unambiguously.

Chapter 5 defines the IoT protocol stack and compares it to the existing Internet
Protocol stack. It provides a layer-by-layer walkthrough of that stack and, for each
such layer, discusses the challenges brought forward by the IoT requirements of the
previous chapter, the industry progress made to address those challenges, and the
remaining gaps that require future work.

Starting with the link layer, the chapter discusses the impact of constrained
device characteristics, deterministic traffic characteristics, wireless access charac-
teristics, and massive scalability on this layer. It then covers the industry response to
these challenges in the following standards: IEEE 802.15.4, TCSH, IEEE 802.11ah,
LoRaWAN, and Time-Sensitive Networking (TSN). Then, shifting to the Internet
layer, the chapter discusses the challenges in Low Power and Lossy Networks
(LLNs) and the industry work on 6LowPAN, RPL, and 6TiSCH. After that, the
chapter discusses the application protocols layer, focusing on the characteristics and
attributes of the protocols in this layer as they pertain to IoT and highlighting, where
applicable, the requirements and challenges that IoT applications impose on these
protocols. The chapter also provides a survey and comparison of a subset of the
multitude of available protocols, including CoAP, MQTT, and AMQP to name a
few. Finally, in the application services layer, the chapter covers the motivation and
drivers for this new layer of the protocol stack as well as the work in ETSI M2M and
oneM2M on defining standard application middleware services.

Chapter 6 defines fog computing, a platform for integrated compute, storage, and
network services that is highly distributed and virtualized. This platform is typically
located at the network edge. The chapter discusses the main drivers for fog: data
deluge, rapid mobility, reliable control, and finally data management and analytics.
It describes the characteristics of fog, which uniquely distinguish it from cloud
computing.

The chapter then focuses on the prerequisites and enabling technologies for fog
computing: virtualization technologies such as virtual machines and containers, net-
work mobility solutions including EVPN and LISP, fog orchestration solutions to
manage topology, things connectivity and provide network performance guarantees,
and last but not least data management solutions that support data in motion and
distributed real-time search. The chapter concludes with the various gaps that
remain to be addressed in orchestration, security, and programming models.

Chapter 7 introduces the IoT Service Platform, which is considered to be the
cornerstone of successful IoT solutions. It illustrates that the Service Platform is
responsible for many of the most challenging and complex tasks of the solution. It
automates the ability to deploy, configure, troubleshoot, secure, manage, and moni-
tor IoT entities, ranging from sensors to applications, in terms of firmware installa-
tion, patching, debugging, and monitoring to name just a few. The Service Platform
also provides the necessary functions for data management and analytics,

Preface

xv

temporary caching, permanent storage, data normalization, policy-based access
control, and exposure.

Given the complexity of the Services Platform in IoT, the chapter groups the core
capabilities into 11 main areas: Platform Manager, Discovery and Registration
Manager, Communication (Delivery Handling) Manager, Data Management and
Repository, Firmware Manager, Topology Management, Group Management,
Billing and Accounting Manager, Cloud Service Integration Function/Manager,
API Manager, and finally Element Manager addressing Configuration Management,
Fault Management, Performance Management, and Security Management across
all IoT entities.

Chapter 8 focuses on defining the key IoT security and privacy requirements.
Ignoring security and privacy will not only limit the applicability of IoT but will
also have serious results on the different aspects of our lives, especially given that
all the physical objects in our surroundings will be connected to the network. In this
chapter, the IoT security challenges and IoT security requirements are identified. A
three-domain IoT architecture is considered in the analysis where we analyze the
attacks targeting the cloud domain, the fog domain, and the sensing domain. The
analysis describes how the different attacks at each domain work and what defen-
sive countermeasures can be applied to prevent, detect, or mitigate those attacks.

The chapter ends by providing some future directions for IoT security and pri-
vacy that include fog domain security, collaborative defense, lightweight cryptogra-
phy, lightweight network security protocols, and digital forensics.

Chapter 9 describes IoT Vertical Markets and Connected Ecosystems. It first
introduces the top IoT verticals that include agriculture and farming, energy, enter-
prise, finance, healthcare, industrial, retail, and transportation. Such verticals
include a plethora of sensors producing a wealth of new information about device
status, location, behavior, usage, service configuration, and performance. The chap-
ter then presents a new business model driven mainly by the new information and
illustrates the new business benefits to the companies that manufacture, support, and
service IoT products, especially in terms of customer satisfaction. It then presents
the key requirements to deliver “Anything as a Service” in IoT followed by a spe-
cific use case.

Finally, Chap. 9 combines IoT verticals with the new business model and identi-
fies opportunities for innovative partnerships. It shows the importance of ecosystem
partnerships given the fact that no single vendor would be able to address all the
business requirements.

Chapter 10 discusses blockchain in IoT. It briefly introduces the birth of block-
chain technology and its use in Bitcoin. In addition, it describes Bitcoin as an appli-
cation of blockchain and distinguishes blockchain as a key technology, one that has
various use cases outside of Bitcoin. Next, it dives into how blockchains work and
outlines the features of the technology; these features include consensus algorithms,
cryptography, decentralization, transparency, trust, and smart contracts. The chapter
then introduces how blockchain may impact notable use cases in IoT including
healthcare, energy management, and supply chain management. It reviews the

Preface

xvi

advantages and disadvantages of blockchain technology and highlights security
considerations within blockchain and IoT.

Chapter 11 provides an overview of the IoT standardization landscape and a
glimpse into the main standards defining organizations involved in IoT as well as a
snapshot of the projects that they are undertaking. It highlights the ongoing conver-
gence toward the Internet Protocol as the normalizing layer for IoT. The chapter
covers the following industry organizations: IEEE, IETF, ITU, IPSO Alliance, OCF,
IIC, ETSI, oneM2M, AllSeen Alliance, Thread Group, ZigBee Alliance, TIA,
Z-Wave Alliance, OASIS, and LoRa Alliance. The chapter concludes with a sum-
mary of the gaps and provides a scorecard of the industry progress to date.

Chapter 12 defines open source in the computer industry and compares the devel-
opment cycles of open source and closed source projects. It discusses the drivers to
open source from the perspective of the consumers of open source projects as well
as contributors of these projects. The chapter then goes into discussing the interplay
between open source and industry standards and stresses the tighter collaboration
ensuing among them.

The chapter then provides a tour of open source activities in IoT ranging from
hardware and operating systems to IoT Service Platforms.

Finally, Appendix A presents a comprehensive IoT Glossary that includes the
definitions of over 1200 terms using information from various sources that include
key standards and latest research. Appendixes B-F presents examples of IoT
Projects.

San Jose, CA, USA Ammar Rayes
Beirut, Lebanon Samer Salam

Preface

xvii

Acknowledgments

We realize that the completion of this book could not have been possible without the
support of many people whose names go far beyond the list that we can recognize
here. Their effort is sincerely appreciated, and support is gratefully recognized.
With that in heart and mind, we would like to express our appreciation and acknowl-
edgment particularly to the following.

First, we would like to express our gratitude to members of the Cisco executive
team for their support. In particular, thanks to Ghaida Nouchy, Senior Director;
Grace Francisco, VP of engineering; and Pradeep Kathail, Chief Technology Officer
of the Enterprise Networking Business, for their support in the planning and prepa-
ration of this book.

We also would like to express our gratefulness to Dr. Jim Spohrer of IBM
Research and Professor Nasir Ghani of the University of South Florida for taking
the time to write comprehensive forewords. We are very grateful to Alumni
Distinguished Graduate Professor and IEEE Fellow, Harry Perros of North Carolina
State University, and Dr. Alex Clemn for peer-reviewing the book proposal.

Ammar is ceaselessly thankful to his wife Rana and his children Raneem, Merna,
Tina, and Sami for their love and patience during the long process of writing
this book.

Samer would like to thank his parents, to whom he is eternally grateful, his wife
Zeina and children Kynda, Malek, and Ziyad for their love, support, and encourage-
ment that made this book possible. Last but not least, he would like to thank Samir,
especially for his help on the use cases and his sense of humor.

xix

Disclaimer

The recommendations and opinions expressed in this book are those of the authors
and contributors and do not necessarily represent those of Cisco Systems.

xxi

 1 Internet of Things (IoT) Overview . 1
 1.1 What Is the Internet of Things (IoT)? . 2

 1.1.1 Background and More Complete IoT Definition 3
 1.1.2 How to Monitor and Control Things from Anywhere

in the World? . 4
 1.1.3 Why Do We Want to Monitor and Control Things? 5
 1.1.4 Who Will Monitor and Control? . 5
 1.1.5 How Is Security Guaranteed? . 6

 1.2 IoT Reference Framework . 7
 1.3 Why Now? The 12 Factors for a Perfect Storm 8

 1.3.1 Convergence of IT and OT . 9
 1.3.2 The Astonishing Introduction of Creative Internet-Based

Businesses . 10
 1.3.3 Mobile Device Explosion . 16
 1.3.4 Social Network Explosion . 17
 1.3.5 Analytics at the Edge . 17
 1.3.6 Cloud Computing and Virtualization 19
 1.3.7 Technology Explosion . 21
 1.3.8 Digital Convergence/Transformation 21
 1.3.9 Enhanced User Interfaces . 21
 1.3.10 Fast Rate of IoT Technology Adoption (Five Times

More than Electricity and Telephony) 22
 1.3.11 The Rise of Security Requirements 23
 1.3.12 The Nonstop Moore’s Law . 23

 1.4 History of the Internet . 26
 1.5 Summary . 28
References . 32

 2 The Internet in IoT . 35
 2.1 The Open System Interconnection Model . 35
 2.2 End-to-End View of the OSI Model . 38

Contents

xxii

 2.3 Transmission Control Protocol/Internet Protocol (TCP/IP) 39
 2.3.1 TCP/IP Layer 4: Application Layer 40
 2.3.2 TCP/IP Layer 3: Transport Layer . 41
 2.3.3 TCP/IP Layer 2: Internet Layer . 41
 2.3.4 TCP/IP Layer 1: Network Access Layer 44

 2.4 IoT Network Level: Key Performance Characteristics 45
 2.4.1 End-to-End Delay . 46
 2.4.2 Packet Loss . 48
 2.4.3 Throughput . 49

 2.5 Internet Protocol Suite . 50
 2.5.1 IoT Network Level: Addressing . 50
 2.5.2 IPv6 Address Notation . 54
 2.5.3 IoT Network Level: Routing . 54

 2.6 Summary . 58
References . 62

 3 The Things in IoT: Sensors and Actuators . 63
 3.1 Introduction . 63
 3.2 IoT Sensors . 64

 3.2.1 Definition . 64
 3.2.2 Why Sensors . 65
 3.2.3 Sensor Types . 66
 3.2.4 Sensor Characteristics . 70

 3.3 RFID . 72
 3.3.1 RFID Main Usage and Applications 74

 3.4 Video Tracking . 75
 3.4.1 Video Tracking Applications . 76
 3.4.2 Video Tracking Algorithms . 77

 3.5 IoT Actuators . 78
 3.5.1 Definition . 78
 3.5.2 Why Actuators? . 78
 3.5.3 Actuator Types . 78
 3.5.4 Controlling IoT Devices . 79

 3.6 How Things Are Identified in IoT? . 79
 3.7 Summary . 80
References . 81

 4 IoT Requirements for Networking Protocols . 83
 4.1 Support for Constrained Devices . 84
 4.2 Massive Scalability . 85

 4.2.1 Device Addressing . 86
 4.2.2 Credentials Management . 86
 4.2.3 Control Plane . 87
 4.2.4 Wireless Spectrum . 87

 4.3 Determinism . 88
 4.4 Security and Privacy . 90

Contents

xxiii

 4.5 Application Interoperability . 92
 4.5.1 Abstractions and Standard APIs. 92
 4.5.2 Semantic Interoperability . 93

 4.6 Summary . 94
References . 95

 5 IoT Protocol Stack: A Layered View . 97
 5.1 Link Layer . 97

 5.1.1 Challenges . 98
 5.1.2 Industry Progress . 100

 5.2 Internet Layer . 122
 5.2.1 Challenges . 122
 5.2.2 Industry Progress . 123

 5.3 Application Protocols Layer . 130
 5.3.1 Data Serialization Formats . 130
 5.3.2 Communication Paradigms . 131
 5.3.3 QoS . 133
 5.3.4 RESTful Constraints . 135
 5.3.5 Survey of IoT Application Protocols 137

 5.4 Application Services Layer . 139
 5.4.1 Motivation . 139
 5.4.2 Industry Progress . 141
 5.4.3 Technology Gaps . 148

 5.5 Summary . 149
References . 151

 6 Fog Computing . 153
 6.1 Defining Fog Computing . 153
 6.2 Drivers for Fog . 154

 6.2.1 Data Deluge . 154
 6.2.2 Rapid Mobility . 155
 6.2.3 Reliable Control . 155
 6.2.4 Data Management and Analytics . 156

 6.3 Characteristics of Fog . 156
 6.4 Enabling Technologies and Prerequisites . 158

 6.4.1 Virtualization Technologies . 158
 6.4.2 Network Support for Mobility . 161
 6.4.3 Fog Orchestration . 168
 6.4.4 Data Management . 170
 6.4.5 More Gaps Ahead . 173

 6.5 Summary . 174
References . 177

 7 IoT Services Platform: Functions and Requirements 179
 7.1 IoT Services Platform Functions . 182
 7.2 IoT Platform Manager . 183

Contents

xxiv

 7.3 Discovery: Entities, Services, and Location 184
 7.3.1 Registration . 184
 7.3.2 Discovery . 185

 7.4 Communication Manager . 188
 7.5 Data Management and Repository . 188
 7.6 Element Manager (Managing IoT Devices

and Network Elements) . 189
 7.6.1 Configuration (and Provisioning) Management 191
 7.6.2 Fault Management . 192
 7.6.3 Performance Management . 196
 7.6.4 Important Performance Measures for IoT Devices

(E.g., Sensors) . 197
 7.6.5 Security Management . 199

 7.7 Firmware Manager . 199
 7.8 Topology Manager . 200
 7.9 Group Manager . 201
 7.10 Billing and Accounting . 202
 7.11 Subscription and Notification Manager . 202
 7.12 API Manager . 203
 7.13 Commercially Available IoT Platforms . 204
 7.14 Putting All Together . 205
 7.15 Summary . 208
References . 210

 8 Internet of Things Security and Privacy . 213
 8.1 Introduction . 213
 8.2 IoT Security Challenges . 215
 8.3 IoT Security Requirements . 216
 8.4 IoT Three-Domain Architecture. 217
 8.5 Cloud Domain Attacks and Countermeasures 218
 8.6 Fog Domain Attacks and Countermeasures 226
 8.7 Sensing Domain Attacks and Countermeasures 229
 8.8 Securing IoT Devices . 236

 8.8.1 IoT Devices Gone Rogue . 236
 8.8.2 MUD . 239
 8.8.3 DICE . 241

 8.9 Summary and Future Directions . 242
References . 244

 9 IoT Vertical Markets and Connected Ecosystems 247
 9.1 IoT Verticals . 248

 9.1.1 IoT Agriculture and Farming . 249
 9.1.2 IoT Energy Solutions . 249
 9.1.3 IoT Oil and Gas Solutions . 250
 9.1.4 IoT Smart Building Solutions . 252
 9.1.5 IoT Finance . 253

Contents

xxv

 9.1.6 IoT Healthcare . 254
 9.1.7 IoT Industrial . 255
 9.1.8 IoT Retail . 256
 9.1.9 IoT Transportation . 257

 9.2 IoT Service Model: Anything as a Service 258
 9.2.1 Thrust as a Service . 258
 9.2.2 Imaging as a Service . 259
 9.2.3 Farming as a Service . 260
 9.2.4 IT as a Service . 261

 9.3 Enabling “Anything as a Service” . 263
 9.3.1 Example: IoT IT Services . 264

 9.4 Connected Ecosystems . 266
 9.4.1 IoT Services Terminologies . 267
 9.4.2 IoT Connected Ecosystems Models 268
 9.4.3 IoT Connected Ecosystems Models Key Capabilities 270

 9.5 Summary . 272
References . 274

 10 The Blockchain in IoT . 277
 10.1 Introduction . 277
 10.2 What Is the Blockchain? . 278

10.2.1 Bitcoin and Blockchain . 278
10.2.2 Evolution of Blockchain . 279
10.2.3 Defining Blockchain . 280

 10.3 How Blockchains Work . 280
10.3.1 Anatomy of the Blockchain . 281
10.3.2 Understanding a Block’s Hash . 281
10.3.3 Lifecycle of a Transaction . 283

 10.4 Features of Blockchain . 285
10.4.1 Consensus Algorithms in IoT . 285
10.4.2 Cryptography . 288
10.4.3 Decentralized . 289
10.4.4 Transparency and Trust . 289
10.4.5 Permissioned, Permissionless, and Consortium 290
10.4.6 Smart Contracts . 290
10.4.7 Advantages and Disadvantages . 291

 10.5 Blockchain Applications in IoT . 292
10.5.1 M2M Transactions . 292
10.5.2 Energy Management . 292
10.5.3 Supply Chain Management . 293
10.5.4 Healthcare . 293
10.5.5 Retail . 295
10.5.6 Automotive and Transportation . 296
10.5.7 Smart City . 297
10.5.8 Identity, Authentication, and Access Management 297
10.5.9 Other Blockchain IoT Applications 298

Contents

xxvi

 10.6 Blockchain Security in IoT . 299
10.6.1 Trust Between Nodes . 299
10.6.2 Malicious Activity and Cryptographic Principles 300
10.6.3 IoT Security and Blockchain Advantages 300

 10.7 Summary . 301
References . 303

 11 Industry Organizations and Standards Landscape 305
 11.1 Overview . 305
 11.2 IEEE (Institute of Electrical and Electronics Engineers) 306

11.2.1 IEEE 1451 Series . 307
11.2.2 IEEE 1547 Series . 307
11.2.3 IEEE 1609 Series . 307
11.2.4 IEEE 1888 Series . 308
11.2.5 IEEE 1900 Series . 308
11.2.6 IEEE 2030 Series . 308
11.2.7 IEEE 2040 Series . 309
11.2.8 IEEE 11073 Series . 309
11.2.9 IEEE 2413 Series . 309

 11.3 IETF . 309
11.3.1 ROLL . 310
11.3.2 Core . 310
11.3.3 6LowPAN . 311
11.3.4 6TisCH . 312
11.3.5 ACE . 312

 11.4 ITU . 312
 11.5 IPSO Alliance . 313
 11.6 OCF . 314
 11.7 IIC . 314
 11.8 ETSI . 315
 11.9 oneM2M . 315
 11.10 AllSeen Alliance . 316
 11.11 Thread Group . 316
 11.12 ZigBee Alliance . 317
 11.13 TIA . 317
 11.14 Z-Wave Alliance . 318
 11.15 OASIS . 318
 11.16 LoRa Alliance . 318
 11.17 Gaps and Standards Progress Scorecard . 319
 11.18 Summary . 320
References . 320

Contents

xxvii

 12 The Role of Open Source in IoT . 323
 12.1 The Open Source Movement . 323
 12.2 Why Open Source? . 325

12.2.1 Drivers for Open Source Consumers 325
12.2.2 Drivers for Open Source Contributors 326

 12.3 Open Source vs. Standards . 327
 12.4 Open Source Partnering with Standards . 328
 12.5 A Tour of Open-Source Activities in IoT . 329

12.5.1 IoT Devices . 329
12.5.2 IoT Services Platform . 331

 12.6 Conclusions . 333
References . 334

 Appendix A . 337

 Appendix B: IoT Projects for Engineering Students 375

 Appendix C: IoT Project 1—Parking Availability App Using IoT 379

 Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data . . 387

 Appendix E: Warehouse Inventory Management System 397

 Appendix F: IoT Fumigation Robot . 421

 Index . 441

Contents

xxix

About the Authors

Ammar Rayes is a Distinguished Engineer at Cisco
Systems. His current works include DevNet, network
analytics, machine learning, and security. Previously at
Cisco, he led solution teams focusing on mobile wire-
less, network management NMS/OSS, and Metro
Ethernet. Prior to join Cisco, he was the Director of
Traffic Engineering at Bellcore (formally Bell
Labs).Ammar has authored 4 books, over 100 publica-
tions in refereed journals and conferences on advances
in software and networking-related technologies, and
over 35 patents.Ammar is the Founding President and
board member of the International Society of Service

Innovation Professionals (www.issip.org), Adjunct Professor at SJSU, Editor in
Chief of Advances in Internet of Things journal, and Board Member on Transactions
on Industrial Networks and Intelligent Systems. He has served as Associate Editor
of ACM Transactions on Internet Technology and Wireless Communications and
Mobile Computing journals, Guest Editor of multiple journals and several IEEE
Communications Magazine issues, Co-chaired the Frontiers in Service Conference
and appeared as Keynote Speaker at multiple IEEE and industry conferences.At
Cisco, Ammar is the Founding Chair of Cisco Services Research board and pro-
gram and the Founding Chair of Cisco Services Patent council. He received Cisco
Chairman’s Choice Award for IoT Excellent Innovation & Execution in 2013.He
received his BS and MS degrees in EE from the University of Illinois at Urbana—
Champaign, IL, USA, and his PhD degree in EE from Washington University in St.
Louis, MO, USA, where he received the Outstanding Graduate Student Award in
Telecommunications.

http://www.issip.org

xxx

Samer Salam is a Distinguished Engineer at Cisco
Systems. He focuses on the system and software archi-
tecture for networking products in addition to technol-
ogy incubation. His work covers the areas of machine
reasoning, immersive visualization, IoT data manage-
ment and analytics, machine-to-machine communica-
tion, as well as next-generation Layer 2 networking
solutions and protocols.Previously at Cisco, he held
multiple technical leadership and software development
positions working on Layer 2 VPNs, Carrier/Metro
Ethernet services, OAM, network resiliency, system
scalability, software quality, multiservice edge, broad-
band, MPLS, and dial solutions.He holds over 90 US

and international patents, is author of 13 IETF RFCs, and has authored several arti-
cles in telecommunications industry journals. He is also a speaker at CiscoLive and
blogs on networking technology at http://blogs.cisco.com/author/samersalam.He
holds an MS degree in Computer Engineering from the University of Southern
California in Los Angeles and a BE degree in Computer and Communications
Engineering, with Distinction, from the American University of Beirut, where he
received the Faculty of Engineering and Architecture Dean’s Award for Creative
Achievement.

About the Authors

http://blogs.cisco.com/author/samersalam

1© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_1

Chapter 1
Internet of Things (IoT) Overview

The Internet of Things (IoT) has gained significant mindshare, let alone attention, in
academia and the industry especially over the past few years. The reasons behind
this interest are the potential capabilities that IoT promises to offer. On the personal
level, it paints a picture of a future world where all the things in our ambient envi-
ronment are connected to the Internet and seamlessly communicate with each other
to operate intelligently. The ultimate goal is to enable objects around us to effi-
ciently sense our surroundings, inexpensively communicate, and ultimately create a
better environment for us: one where everyday objects act based on what we need
and like without explicit instructions.

IoT’s promise for business is more ambitious. It includes leveraging automatic
sensing and prompt analysis of thousands of service or product-related parameters
and then automatically taking action before a service experience or product opera-
tion is impacted. It also includes collecting and analyzing massive amounts of struc-
tured and unstructured data from various internal and external sources, such as
social media, for the purpose of gaining competitive advantage by offering better
services and improving business processes. This may seem like a bold statement,
but consider the impact that the Internet has already had on education, communica-
tion, business, science, government, climate control, and humanity. Many believe
that IoT will create the largest technology opportunity that we have ever seen.

The term “Internet of Things” was first coined by Kevin Ashton in a presentation
that he made at Procter & Gamble in 1999. Linking the new idea of RFID (radio-
frequency identification) in Procter & Gamble’s supply chain to the then-red-hot
topic of the Internet was more than just a good way to get executive attention. He
has mentioned “The Internet of Things has the potential to change the world, just as
the Internet did. Maybe even more so.” Afterward, the MIT Auto-ID center pre-
sented their IoT vision in 2001. Later, IoT was formally introduced by the
International Telecommunication Union (ITU) Internet Report in 2005.

IoT is gaining momentum, especially in modern wireless telecommunications, as
evidenced in the increasing presence around us of smart objects or things (e.g.,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_1#DOI

2

smartphones, smart watches, smart home automation systems, etc.), which are able
to communicate with each other and collaborate with other systems to achieve cer-
tain goals.

Undeniably, the main power of IoT is the high impact it is already starting to
have on business and personal lives. Companies are already employing IoT to create
new business models, improve business processes, and reduce costs and risks.
Personal lives are improving with advanced health monitoring, enhanced learning,
and improved security just to name few examples of possible applications.

1.1 What Is the Internet of Things (IoT)?

Before defining IoT, it may be worthwhile listing the most generic enablement com-
ponents. In its simple form, IoT may be considered as a network of physical ele-
ments empowered by:

• Sensors: to collect information.
• Identifiers: to identify the source of data (e.g., sensors, devices).
• Software: to analyze data.
• Internet connectivity: to communicate and notify.

Putting it all together, IoT is the network of things, with clear element identifica-
tion, embedded with software intelligence, sensors, and ubiquitous connectivity to
the Internet. IoT enables things or objects to exchange information with the manu-
facturer, operator, and/or other connected devices utilizing the telecommunications
infrastructure of the Internet. It allows physical objects to be sensed (to provide
specific information) and controlled remotely across the Internet, thereby creating
opportunities for more direct integration between the physical world and computer-
based systems and resulting in improved efficiency, accuracy, and economic benefit.
Each thing is uniquely identifiable through its embedded computing system and is
able to interoperate within the existing Internet infrastructure.

There is no disagreement between businesses and/or technical analysts that the
number of things in IoT will be massive. At the time of writing this book, over 20
billion devices have been already deployed. This includes networked devices,
machine-to-machine devices, phones, TVs, PCs, tablets, and other connected
devices. Any object with a simple microcontroller, modest on-off switch, or even
with QR (Quick Response) code1 will be connected to the Internet in the near fea-
ture. Such a view is supported by Moore’s Law, with the observation that the num-
ber of transistors in a dense integrated circuit approximately doubles every 18
months, as we will illustrate in Sect. 1.3.

1 Quick Response Code is the trademark for a type of matrix barcode.

1 Internet of Things (IoT) Overview

3

The main idea of IoT is to physically connect anything/everything (e.g., sensors,
devices, machines, people, animals, trees) and processes over the Internet for moni-
toring and/or controlling functionality. Connections are not limited to information
sites, they are actual and physical connections allowing users to reach “things” and
take control when needed. Hence, connecting objects together is not an objective by
itself, but gathering intelligence from such objects to enrich products and services is.

1.1.1 Background and More Complete IoT Definition

Before we give historical overview of the Internet and consequently delve into the
Internet of Things, it is worthwhile providing a definition and the fundamental
requirements of IoT as a basis for the inexperienced reader.

We assume that the Internet is well known and bears no further definition. The
question is what do we really mean by “Things”? Well, things are actually “any-
thing” and “everything” from appliances to buildings to cars to people to animals to
trees to plants, etc. Hence, IoT in its simplest form may be considered as the inter-
section of the Internet, things, and data as shown in Fig. 1.1.

A more complete definition, we believe, should also include “Standards” and
“Processes” allowing “Things” to be connected over the “Internet” to exchange
“Data” using industry “Standards” that guarantee interoperability and enabling use-
ful and mostly automated “Processes,” as shown in Fig. 1.2.

Some companies (e.g., Cisco) refer to IoT as the IoE (Internet of Everything)
with four key components: people, process, data, and Things. In this case, IoE
connects:

• People: Connecting people in more relevant ways.
• Data: Converting data into intelligence to make better decisions.
• Process: Delivering the right information to the right person or machine at the

right time.

Fig. 1.1 IoT definition in
its simplest form

1.1 What Is the Internet of Things (IoT)?

4

• Things: Physical devices and objects connected to the Internet and each other for
intelligent decision-making, often called IoT.

They correctly believe that today’s Internet is the “Internet of People,” i.e.,
today’s Internet is mainly connecting applications that are used by people. People
are taking action based on notifications from connected applications. IoT is envi-
sioned to connect “things” where “things” (not people) will be taking action, when
needed, by communicating with each other intelligently. IoE is then combining the
Internet of People and the Internet of Things. In this book, and in most of the recent
literature, however, IoT refers to anything and everything (including people).

With this in mind, we can state a more comprehensive definition of IoT as fol-
lows: IoT is the network of things, with device identification, embedded intelligence,
and sensing and acting capabilities, connecting people and things over the Internet.

As we already mentioned above, we will use the term “IoT” to refer to all objects/
things/anything connected over the Internet including appliances, buildings, cars,
people, animals, trees, plants, etc.

The basic promise of IoT is to monitor and control “things” from anywhere in the
world. The first set of fundamental questions an engineer may ask are: How to
monitor and control things from anywhere in the world? Why do we want to do so?
Who will perform the monitoring and control? How is security guaranteed? In the
remainder of this section, we will provide high-level answers to these questions.
More detailed answers will be provided throughout the various chapters of this book.

1.1.2 How to Monitor and Control Things from Anywhere
in the World?

Let us start with the first question. The basic requirements for IoT are the unique
identity per “thing” (e.g., IP address), the ability to communicate between things
(e.g., wireless communications), and the ability to sense specific information about
the thing (sensors). With these three requirements, one should be able to monitor
things from anywhere in the world. Another foundation requirement is a medium to

Fig. 1.2 IoT—more
complete definition

1 Internet of Things (IoT) Overview

5

communicate. Such requirement is typically handled by a telecommunications net-
work. Figure 1.3 presents the very basic requirements of an IoT solution.

1.1.3 Why Do We Want to Monitor and Control Things?

There are many reasons to monitor and control things remotely over the Internet:
monitoring and controlling things by experts (e.g., a patient’s temperature or blood
pressure while the patient is at the comfort of his or her own home); learning about
things by pointing a smartphone to a thing of interest, for instance; searching for
things that search engines (e.g., Google) do not provide today (e.g., where are my
car keys); allowing authorities to manage things in smart cities in an optimal manner
(e.g., energy, driver licenses, and other documents from Department Motor Vehicle,
senior citizen); and, finally, providing more affordable entertainment and games for
children and adults. All of these are examples of huge business and service oppor-
tunities to boost the economic impact for consumers, businesses, governments, hos-
pitals, and many other entities.

1.1.4 Who Will Monitor and Control?

Generally speaking, monitoring and control of IoT services may be done by any
person or any machine. For example, a homeowner monitoring his own home on a
mobile device based on a security system she or he has installed and configured.
The homeowner may also control lights, turn on the air conditioning, shut off the
heater, etc. Another example is for a service provider to monitor and control ser-
vices for its customers in a network operations center (NOC) as shown in Fig. 1.4.

Fig. 1.3 Basic
requirements for an IoT
solution

1.1 What Is the Internet of Things (IoT)?

6

Obviously, security is a major concern to prevent access by non-authorized peo-
ple and, more importantly, prevent a malicious hacker from gaining access to the
system and sending old views to the homeowner while a thief is breaking in. The
areas of control are far more critical for enterprise-sensitive applications such as
healthcare monitoring of patients and banking applications, as we will see in Chap. 8.

1.1.5 How Is Security Guaranteed?

Securing IoT is perhaps the biggest opportunity for technology companies and will
remain so far some time in the future. Before IoT, information technology security
professionals worked in a bubble as they literally owned and controlled their entire
networks and secured all devices behind firewalls. With IoT, data will be collected
from external, often mobile, sensors that are placed in public sites (e.g., city streets)
allowing strangers to send harmful data to any network. Bring your own device
(BYOD) is another example where third-party devices and hence noncorporate data
sources are allowed to enter the network. IoT areas that are considered to be most
vulnerable include:

• Accessing data during transport (network and transport security). Data will be
transported in IoT networks at all time, for example, from sensors to gateways
and from gateways to data centers in enterprises or from sensors to gateways for
residential services such as video from home monitoring system to the home-
owner’s smartphone while he is in a coffee shop. This data may be sniffed by the
man in the middle unless the transport protocols are fully secured and encrypted.

Fig. 1.4 Example of monitoring systems in a network operations center

1 Internet of Things (IoT) Overview

7

• Having control of IoT devices (control of the APIs) allows unauthorized persons
to take full control of entire networks. Examples include shutting down cameras
at home and shutting down patient monitoring systems.

• Having access to the IoT data itself. Is the data easily accessible? Is it stored
encrypted? Shared storage in the cloud is another problem where customer may
log in as customer B and look at his data. Another common problem is spoofing
data via Bluetooth. Many companies are adding Bluetooth support to their
devices making it more feasible for unauthorized persons to access the
device’s data.

• Stealing official user or network identity (stealing user or network credentials).
Many websites provide default passwords for vendors. We have dedicated Chap.
8 to IoT security.

1.2 IoT Reference Framework

In this book, we will follow a reference framework that divides IoT solutions into
four main levels: IoT devices (things), IoT network (infrastructure transporting the
data), IoT Services Platform (software connecting the things with applications and
providing overall management), and IoT applications (specialized business-based
applications such as customer relation management (CRM), Accounting and Billing,
and Business Intelligence (BI) applications). Control is passed down from one level
to the one below, starting at the application level and proceeding to the IoT devices
level and backup the hierarchy.

 1. IoT Device Level includes all IoT sensors and actuators (i.e., the Things in IoT).
The device layer will be covered in Chap. 3.

 2. IoT Network Level includes all IoT network components including IoT gate-
ways, routers, switches, etc. The Internet in IoT will be covered in Chap. 2.

 3. IoT Application Services Platform Level includes the key management software
functions to enable the overall management of IoT devices and network. It also
includes main functions connecting the device and network levels with the appli-
cation layer. It will be covered in Chap. 7.

 4. IoT Application Level includes all applications operating in the IoT network, and
this will be covered in Chap. 9.

Figure 1.5 shows an overview of the IoT levels. It describes how information is
transferred from one IoT component into another. Advantages of the proposed IoT
four-level model include:

• Reduced Complexity: It breaks IoT elements and communication processes into
smaller and simpler components, thereby helping IoT component development,
design, and troubleshooting.

1.2 IoT Reference Framework

8

• Standardized Components and Interfaces: The model standardizes the specific
components within each level (e.g., what are the key components for general IoT
Services Platform) as well as the interfaces between the various levels. This
would allow different vendors to develop joint solutions and common sup-
port models.

• Module Engineering: It allows various types of IoT hardware and software sys-
tems to communicate with each other.

• Interoperability between vendors by ensuring the various technology building
blocks can interwork and interoperate.

• Accelerate Innovation: It allows developers to focus on solving the main prob-
lem at hand without worrying about basic functions that can be implemented
once across different business verticals.

• Simplified Education: It breaks down the overall complex IoT solution into
smaller more manageable components to make learning easier.

1.3 Why Now? The 12 Factors for a Perfect Storm

IoT has already become a powerful force for business transformation, and its dis-
ruptive impact is already felt across all industries and all areas of society. There is a
perfect storm of market disruptions happening at an unprecedented pace triggered
by technology as well as new business and social requirements. This Section intro-
duces the top 12 factors driving the explosion of IoT as shown in Fig. 1.6.

IoT Applications

IoT Management
Services Platform

IoT Network
IoT Gateway

IoT Devices

Fig. 1.5 IoT levels

1 Internet of Things (IoT) Overview

9

1.3.1 Convergence of IT and OT

Operation technology (OT) is the world of industrial plants and industrial control
and automation equipment that include machines and systems to run the business,
controllers, sensors, and actuators. Information technology (IT) is the world of end-
to- end information systems focusing on compute, data storage, and networking to
support business operation in some context such as business process automation
systems, customer relation management (CRM) systems, supply chain management
systems, logistics systems, and human resources systems.

Historically, IT and OT were always managed by two separate organizations
with different cultures, philosophies, and set of technologies. IT departments were
originally created by companies to create efficient and effective forms of telephony
communication among various departments. Then they were extended to provide
video and web conferences and network internal communications and secure exter-
nal electronic communications such as emails. Often the final decision with the
selection of communication systems, website hosting, and backup servers was the
responsibility of the IT department.

OT relies on real-time data that drives safety, security, and control. It depends on
very well-defined, tested, and trusted processes. Many plants need to run 24 × 7
with zero downtime (e.g., City Water Filtration System), and thus industrial pro-
cesses cannot tolerate shutdown for software updates. IT is more lenient with soft-
ware updates, introduction of new technologies, etc.

“When you take people with an IT background and bring them into an industrial
control system environment, there’s a lack of understanding from operations why
they’re there and there is a lack of understanding of the specific controls environ-
ment needs from IT,” says Tim Conway, technical director, ICS and SCADA for the
SANS Institute. He points out that typically IT professionals are trained and driven
to perform a task: “They work on a box, a VM (virtual machine), a storage area

OT & IT
Convergence

Internet-Based
Businesses

Mobile
Explosion

Social Media
Explosion

Analytics
At Edge

Virtualization
& Cloud

IoT
Driving
Factors

Technology
Explosion

Digital
Transformation

Enhanced
UI

Fast
Adaption

Rise of
Security

Moore's
Law

Fig. 1.6 IoT 12 driving factors

1.3 Why Now? The 12 Factors for a Perfect Storm

10

network, or a firewall. They don’t realize that they’re a part of a larger control sys-
tem operation, and how the things that they do can impact others.”

IoT is having a major impact on OT and the traditional IT operational model.
With the fast introduction of business-specific technologies (e.g., Internet-based oil
rig monitoring systems), IT operations can no longer scale, keep up with the fast-
evolving requirements, nor provide the required expertise. Traditional IT depart-
ments simply lack the required resources to introduce IoT solutions in a timely
fashion, effectively operate and monitor such solutions, or react to the massive
amount of monitoring data that is generated by IoT devices (Fig. 1.7).

The bottom line is that IT is moving fast into plant floors. With the pressure of
IoT technology adoption by cutting-edge businesses, OT is forced to accept a greater
level of integration. Hence, traditional IT and OT functions are expected to merge
or quickly risk the loss of the business to cutting-edge competitors (why? See prob-
lem 11). IT operations leaders must move closer to the business and adapt their
employee skill sets, their processes, and their tools to monitor IoT availability and
performance in order to support business initiatives as shown in Fig. 1.7.

1.3.2 The Astonishing Introduction of Creative
Internet-Based Businesses

1.3.2.1 Uber

Many are familiar with Uber’s story where the co-founders were attending a confer-
ence in Paris in 2008. Travis Kalanick and Garrett Camp were complaining about
finding a cab especially while carrying luggage and under the rain. When they
started to brainstorm the next day, they came up with three main requirements: the
solution had to be Internet-based (i.e., request and track service from mobile device),
it had to provide the service fast, and the rides had to be picked up from any location.

• Led by Single CIO
• Centralized
• Data Centers
• HR and CRM systems
• Business Applications
• Data Analysis

• Led by Business Leaders
• Distributed
• Industrial Equipments
• Monitoring Systems
• Control Systems

Fig. 1.7 The merger of IT
and OT

1 Internet of Things (IoT) Overview

11

The key component of Uber’s solution is the Internet-based platform connecting
customers (passengers) with the service providers (car drivers). Because the con-
sumers are not Uber’s employees and because there is practically an infinite number
of cars that could potentially join Uber, Uber has the requirement to scale at an
incredibly fast rate at zero marginal cost.

Uber uses sensor technologies in driver’s smartphones to track their behaviors. If
you ride with Uber and your driver speeds, breaks too hard, or takes you on a wildly
lengthy route to your destination, it is no longer your word against theirs. Uber is
using Gyrometer and GPS data to track the behavior of their drivers. Gyrometers in
smartphones measure small movements, while GPS combined with accelerometers
shows how often a vehicle starts and stops and the overall speed.

The idea is to gradually improve safety and customer satisfaction, though there
is no word on whether or not you might be able to actively seek out a faster driver if
that is what you are after.

Today Uber is one of the leading transportation services in the world with a mar-
ket value over 20 billion dollars.

1.3.2.2 Airbnb

Airbnb is an Internet-based service for people to list, find, and rent lodging. It was
founded in 2008 in San Francisco, California, by Brian Check and Joe Gebbia
shortly after creating AirBed and Breakfast during a conference. The original site
offered rooms, breakfast, and business networking opportunity for the conference
attendees who were unable to find a hotel. In February 2008, technical architect
Nathan Blecharczyk joined Airbnb as the third co-founder. Shortly thereafter, the
newly created company focused on high-profile events where alternative lodging
was very limited.

Incredibly similar to the Uber model, Airbnb utilizes a platform business model.
This means they facilitate the exchange between consumers (travelers) and service
providers (homeowners). Airbnb also required a scalable Internet-based platform
supporting from a few customers to hundreds of thousands during major events.
More importantly, Airbnb is partnering with Internet companies (e.g., Nest of
Google) to deliver remote keyless solutions to customers by unlocking doors (with
IoT digital keys) over the Internet.

Just like Uber, Airbnb found a multibillion dollar business based on an Internet
platform connecting people and places together that competently disrupted the tra-
ditional hotel business model. These linear businesses have to invest millions into
building new hotels, while Airbnb does not have to deal with that.

Just like Uber, today Airbnb is one of the leading hotel services in the world
(Fig. 1.8).

1.3 Why Now? The 12 Factors for a Perfect Storm

12

1.3.2.3 Square

Square Inc., also San Francisco based, was inspired by Jack Dorsey in 2008 when
his friend, Jim McKelvey, in St. Louis at the time, was unable to complete a $2000
sale of his glass faucets and fittings because he could not accept credit cards. Jack
and Jim started the point-of-sale software financial services company in 2010. The
company allows small business mobile individuals and merchants to make secure
payments using applications like Square Capital and Square Payroll. The Internet-
based software solution allows customers and small business owners to enter credit
card information manually or to swipe the card via the Square Reader (see Fig. 1.9),
a small plastic device that plugs into the audio jack of supported smart mobile
devices with an interface resembling a traditional cash register.

Square has introduced an application that integrates its reader with a smart-
phone’s motion sensor. The application can determine that the card reader is failing
by analyzing the motion sensor data to detect movements indicating multiple card

Fig. 1.8 Examples of Internet-based businesses

Fig. 1.9 Square credit
card reader. (Source:
Square Inc.)

1 Internet of Things (IoT) Overview

13

swipes. If the card reader did not read any data during the card swipes, the applica-
tion can deduce that the card reader is broken. This solution allows Square to send
a replacement card reader to swap the broken card in a timely fashion.

Square also launched Square Cash applications allowing individuals and busi-
nesses to transfer money with a unique username. In 2015, Square introduced
Customer Engagement, a suite of CRM tools which includes email marketing ser-
vices. These tools allow businesses to target specific customer segments with cus-
tomized promotions based on actual purchase history. Square also introduced
Square Payroll tool for small business owners to process payroll for their employees.

Other financial companies have also introduced Internet-based mobile payment
solutions including Intuit GoPayment Reader, which is integrated with Intuit’s host
of products and software (Fig. 1.10), PayPal Here Reader, and others.

Just like Uber and Airbnb, Square found a novel business based on Internet plat-
form connecting small business owners and customers together that competently
disrupted the traditional small business payment models.

1.3.2.4 Amazon

Amazon.com is the largest Internet retailer company in the worldIt started, in 1994,
as an Internet-based book seller and swiftly expanded into music, movies, electron-
ics, and household goods; Amazon utilized the Internet to break the traditional
retailer model. It did not need to stock many of the merchandises it was selling on
its website. Instead, it identified matching partner companies and issued customer
orders over a secure Internet-based platform.

Amazon also offers businesses the capability to sell online via Amazon Services.
Another part of its retail strategy is to serve as the channel for other retailers to sell
their products and take a percentage of every purchase.

Fig. 1.10 Intuit GoPayment Reader. (Source: Intuit)

1.3 Why Now? The 12 Factors for a Perfect Storm

14

Retail is only part of Amazon.com business. It also offers cloud-based services
known as Amazon Web Services or AWS with Software as a Services (SaaS),
Platform as a Services (PaaS), and Infrastructure as a Services (IaaS) as well as
other types of businesses. Amazon is perhaps one of the first companies to develop
a set of businesses based on an Internet platform connecting end customers (e.g.,
retail customer, businesses) to products and services (e.g., merchandise, cloud ser-
vices) thereby disrupting traditional retail models.

1.3.2.5 Tesla

Tesla Motors was founded in 2003 by a group of engineers in Silicon Valley with a
mission to develop a successful luxurious electrical car and then invest the resulting
profits to make a less expensive electric car. With instant torque, incredible power,
and zero emissions, Tesla’s products would be cars without compromise.

Tesla’s engineers first designed a power train for a sports car built around an AC
induction motor, patented in 1888 by Nikola Tesla, the inventor who inspired the
company’s name. The resulting Tesla Roadster was launched in 2008 with an incred-
ible range of 245 miles per charge of its lithium ion battery. The Roadster was able
to set a new standard for electric mobility. In 2012, Tesla launched Model S, the
world’s first premium electric sedan.

Tesla is considered as the best example yet of IoT. It did not only bend the tradi-
tional industry manufacturing model to Internet-based model with thousands of sen-
sors (Fig. 1.11), but it also demonstrated the tremendous value of IoT with the 2014
recalls. In early 2014, Traffic Safety Administration published two recall announce-
ments, one for Tesla Motors and one for GM. Both were related to problems that

Fig. 1.11 Tesla Factory in Fremont, California. (Source: Tesla Motors Inc.)

1 Internet of Things (IoT) Overview

http://amazon.com

15

could cause fires. Tesla’s fix was conducted for 29,222 cars as an “over-the-air”
software update without requiring owners to bring their cars to the dealer.

1.3.2.6 Self-Driving Cars

Self-driving cars are no longer a fantasy. There are already thousands of self-driving
cars with features that allow them to brake, speed, and steer with limited or no driver
interaction.

Self-driving cars can be divided into two main categories: semiautonomous and
fully autonomous. A semiautonomous car performs certain self-driving tasks (e.g.,
fully brakes when it gets too close to an object, drives itself on the freeway), while
a fully autonomous car drives itself from origin to destination without any driver
interaction. Fully autonomous cars are further divided into user-operated and
driverless.

Safety is considered one of the biggest advantages of self-driving cars. In gen-
eral, self-driving cars are equipped with a large number of sensors including laser
range finders (to measure a subject’s distance and take photos that are in sharp
focus), radars, and video cameras collecting information from the road. They are
also equipped with actuators to control steering and braking. The collected data
(from sensors, radars, and video) is promptly processed with the positional informa-
tion from the car’s GPS unit and the navigation system to determine its position and
to build a three-dimensional model of its surroundings.

The resulting model is then processed by the car’s control system to make navi-
gation decisions. Self-driving car control systems typically use stored maps to find
optimal path to destination, avoid obstacles, and send decisions to the car’s actua-
tors. IoT applies to interactions and communications between self-driving care
components, between the car and roadside infrastructure, as well as among self-
driving cars (Fig. 1.12).

Fig. 1.12 Google
self-driving car. (Source:
Google)

1.3 Why Now? The 12 Factors for a Perfect Storm

16

Finally, it is worth noting that there are various other examples of companies that
have used the Internet for new and creative business models, with various levels of
success, including Scoop Inc. for carpooling and Pandora in the music industry.

1.3.3 Mobile Device Explosion

There is an unprecedented explosion in the number of new things being connected
to the Internet every day, where it is not just sheer volume of mobile devices and
sensors, but things that normally have not been connected to the network, such as
those found in manufacturing, utilities, and transportation, are all becoming net-
worked devices. Because of the mobile explosion that has touched our home and
work lives, we have already seen over 5 million mobile applications2 developed in
the past several years resulting in billions of downloads.

Mobile data traffic has grown 18-fold in the last few years. According to Cisco’s
Visual Networking Index, smartphone traffic grew from 1.74 exabyte per month in
2014 to more than 18 exabyte per months in 2019 as shown in Fig. 1.10 and such
growth rate has even accelerated in recent years.

The increase in mobile data traffic is driven by two factors: the increase in the
number of users and the data consumption per user. The average smartphone gener-
ated 4 GB of traffic per month in 2019, as shown in Fig. 1.13. This growth is fueled
by IoT connecting things with people and more importantly allowing people to
monitor and control things from anywhere in the world in real time.

2 According to Buildfire.com, the number of applications developed by Apple Store and Google
Play alone were over 4.8 million in 2021.

Sm
ar
tP

ho
ne

D
at
a
Tr

af
fic

(E
xa

B
yt
e
pe

rS
ec

on
d)

2014 2015 2016 2017 2018 2019
Year

Fig. 1.13 Smartphone traffic over time

1 Internet of Things (IoT) Overview

http://buildfire.com

17

1.3.4 Social Network Explosion

Social networks, such as Facebook, Instagram, Twitter, and YouTube, and the adop-
tion of cloud-based services, such as Amazon’s AWS and Salesforce.com, are all
examples of the large-scale migration to the cloud across virtually every industry. In
fact, two-thirds of all data center traffic will be from the cloud in 3 years. All of this
leads to data explosion, where, already, the data being created on the Internet each
day is equal to half of all the data that has been accumulated since the dawn of
humanity (Fig. 1.14).

1.3.5 Analytics at the Edge

Before introducing the different versions of analytics, it is important to define the
terms: big data, structured data, and unstructured data. Big data refers to the
extremely large amount of data being generated and accumulated by IT systems as
the result of the operation of an associated system. The latter could be a product,
process, service, etc. This massive amount of data can be analyzed to identify pat-
terns and gain insights into the operation of the associated system. The analysis
often involves applying statistical techniques since human processing is not viable
due to the sheer volume of the data.

Structured data refers to organized data that can fit in rows and columns.
Examples of such data include customer data, sales data, and stock records.
Structured data is often high value, cleansed, and indexed. Unstructured data, on the
other hand, is difficult to organize or bring together. Examples of unstructured data
include images, X-rays, video, social media data, and some machine outputs mixed
with text.

Analytics 1.0 refers to the process of collecting structured data from various
sources and sending the collected data to a centralized location to be correlated and
analyzed using predefined queries and descriptive/historic views. Businesses and
enterprises have been collecting structured data from internal systems (e.g., CRM,

Fig. 1.14 Examples of
social network explosion

1.3 Why Now? The 12 Factors for a Perfect Storm

http://salesforce.com

18

Sale Records, RMA Records, and Case Records), sending such data to a centralized
data center to be stored in traditional tables and databases. The data is then parsed
and often correlated with other types of data to produce business intelligence (e.g.,
offer discounts for customers in a certain location due to large unused inventory).
The process of collecting, transferring, correlating, and analyzing the structured
data can take hours or days.

Analytics 1.0 then evolved to Analytics 2.0 or big data and analytics with action-
able insight. Analytics 2.0 basically collects structured and unstructured data from
various sources but still sends the collected data to a centralized location to be cor-
related and analyzed using complex queries along with forward-looking and pred-
icative views this time. Examples of unstructured data for enterprises include call
center logs, mobility data, and social media data where users are conversing and
providing feedback about an enterprise’s service, product, or solutions.

With the deployment of complex systems to capture and analyze big data in a
data center, the overall process of collecting, transferring, correlating, and analyzing
the structured and structured data is reduced to minutes or seconds.

Today, massive amounts of data are being created at the edge of the network, and
the traditional ways of performing analytics over that data are no longer viable.
Minutes or even seconds of delay in data processing are no longer effective for
many businesses. Take, for example, a sensor in an oil rig. If the pressure was to
drop substantially, the rig needs to be shut off instantaneously and before the system
breaks and causes a major disaster.

Companies are realizing that they just cannot keep moving massive amounts of
data to centralized data stores. The data is too big, is changing too fast, and is too
geographically distributed. Certain analysis must be performed in real time and can-
not withstand the delays of sending the raw data to a centralized data center to be
analyzed and then send back the result to the source. In addition, certain industries
(e.g., Healthcare, Defense) have the requirement to analyze the data close to the
source due to data privacy or security.

Analytics 3.0 allows companies to collect, parse, analyze, and correlate (with
stored data) structured as well as unstructured data at or close to the edge (the source
of the data). To support this, companies have introduced massive solutions (hard-
ware and software) that allow enterprises to capture, process, and analyze data at the
edge. Can you think of examples of such companies (see problem 15)?

Analytics 4.0 is expected to be around application development and automated
network services where businesses develop and deploy integrated application, sen-
sors, networks with APIs.

Analytics 1.0, 2.0, and 3.0 are compared in Table 1.1 and in Fig. 1.15. Table 1.1
shows a comparison of key factors, while Fig. 1.15 displays a process summary.

1 Internet of Things (IoT) Overview

19

1.3.6 Cloud Computing and Virtualization

In the past, enterprises (companies or businesses) were forced to deploy and man-
age their own computing infrastructures. Cloud computing, which was introduced
in 2008, allows enterprises to outsource their computing infrastructure fully or par-
tially to public cloud provides (e.g., Amazon AWS, Microsoft Azure, Google
Compute Engine). Data showed that the average network computing and storage
infrastructure for a start-up in year 2000 was $5 million. The cost in year 2016 has
dropped to $5 thousand. This enormous 99% decline in cost was made possible by
cloud computing and vitalization.

Public Cloud providers deliver cloud services, on demand, over the Internet.
Enterprises pay only for the CPU cycles, storage, or bandwidth they consume.

Analytics 1.0

Analytics 2.0

Analytics 3.0

Structured
Data

Structured
Data

Unstructured
Data

Structured
Data

Unstructured
Data

Traditional Data
Warehouse

Big Data
Analysis

Data Streaming
At the Edge

Business Intelligence
(Days / Hours)

Business &
Services

Intelligence
(Minutes / Seconds)

Business &
Services

Intelligence
(Micro-seconds)

Fig. 1.15 Analytics 1.0, 2.0, and 3.0

Table 1.1 Comparison of key factors for Analytics 1.0, 2.0, and 3.0

Analytics 1.0 Analytics 2.0 Analytics 3.0

Collected data type Structured Structured and
unstructured

Structured and
unstructured

Data analysis
location

Centralized data
center

Centralized data center At edge and in data
center

Time to analyze
data

Days–hours Hours–minutes Seconds–microseconds

Data volume Small data Big data Big data

1.3 Why Now? The 12 Factors for a Perfect Storm

20

Enterprises also have the choice to deploy Private Cloud solutions in their own
data centers and deliver computing services to their internal sub-businesses/users.
Such model offers flexibility and convenience while preserving management, con-
trol, and security to their IT departments.

Cloud computing may be also offered in a Hybrid Cloud model that consists of a
combination of public and private clouds allowing enterprises to create a scalable
solution by utilizing the public cloud infrastructure while still preserving full con-
trol over critical data.

Cloud computing is attractive to many enterprises allowing them to self- provision
their own services for any type of workload on demand. They can start small and
then scale up almost instantly with minimum expertise and pre-planning, while they
pay only for what they use, typically, in addition to a basic subscription charge.

Cloud computing has been classified into three main service categories:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
Service (SaaS). PaaS, for instance, allow enterprises to utilize a third-party platform
and permit them to focus on developing and managing their own software applica-
tions without the complexity of building and maintaining the required
infrastructure.

Cloud computing has been made possible by the advent of virtualization tech-
nologies. Rather than dedicating distinct IT infrastructure (e.g., servers, storage
nodes, networking nodes) to a single business entity (e.g., customer or enterprise),
virtualization allows cloud providers to divide a physical machine (e.g., server) into
multiple virtual entities thereby creating an isolated virtual server, a virtual storage
device, and virtual network resources for each enterprise, all running over the same
shared physical IT infrastructure. Virtual machines are one form of virtualization
that allows running multiple operating systems over the same physical server
hardware.

Containers are another form of virtualization. In containers, the virtualization
layer runs as a service on top of a common operating system kernel. The operating
system’s kernel runs on the hardware node with several isolated guest process
groups installed on top of it. The isolated guest process groups are called containers.
They share the same operating system kernel but are completely isolated at the
application level.

Containers are intended to run separate applications. Examples of containers
include Linux containers (LXC) and open-source Docker.

As with Analytics (Sect. 1.3.5), Cloud may be divided into Cloud 1.0 and Cloud
2.0. Cloud 1.0 is SaaS, PaaS, and IaaS. Cloud 2.0 is Cloud 1.0 with machine learn-
ing to extract business intelligence from the data using algorithms that learn from
data pattern. It should be noted that traditional techniques and machine learning
programs work without specific instructions on where to look for data pattern.

1 Internet of Things (IoT) Overview

21

1.3.7 Technology Explosion

IoT hardware (e.g., sensors, inexpensive computers such as Raspberry Pi, open-
source microcontrollers such as Arduino) and software technologies are not only
being developed faster than ever before but with much lower prices. Such devices
are already transforming user behaviors and creating new business opportunities.
Business leaders are realizing that unless their organizations quickly adapt to such
changes, their businesses will soon become irrelevant or inefficient to survive in an
increasingly competitive marketplace.

1.3.8 Digital Convergence/Transformation

Digital convergence has initially started with a limited scope: move to “paperless”
operation and save trees. Now, it is transforming the future in profound ways.
Digital convergence is being adopted by key industries with extended goals to move
to digital operation, extract data from various sources including the devices and
processes that are enabled by digitization, and then analyze the extracted data and
correlate it with other data sources to extract intelligence that improves products,
customer experience, security, sales, etc. Many healthcare organizations (e.g.,
Kaiser Permanente) have been using digital convergence with extended goals of
improving the patient experience, improving population health, and reducing
healthcare costs.

With the connection of billions smart objects to the Internet, companies are real-
izing the upcoming challenges and are adding to their executive boards the role of a
Chief Digital Officer (CDO) who can oversee the full range of digital strategies and
drive change across the organization. CDOs are expected to significantly impact
existing systems, solutions, and business processes and more importantly intrinsi-
cally enable new types of innovation and creativity.

1.3.9 Enhanced User Interfaces

User experience (UX) or human to machine interaction, where applicable, is very
essential for the success of IoT. A core IoT UX principle is meeting the basic needs
for the usage of a product or a service without aggravation or difficulty.
Overengineering or including too much intelligence into products can backfire and
be counterproductive. User interfaces that are frustrating to use and slow to extract
relevant information can lead to customer desertion. A toaster, for example, ulti-
mately exists to make toast. But if we overengineer with too much information,
switches, and options, we risk building products that are so annoying that our cus-
tomers will not want to use them.

1.3 Why Now? The 12 Factors for a Perfect Storm

22

There is now a wealth of technology and markup languages (e.g., HTML 5) that
allow software engineers to adapt key UX principles and meet the so-called KISS
(keep it short and simple) principle. KISS states that most systems work best if they
are kept simple. Top UX principles include:

• Simple and Easy Principle: Best UX system is a system without UI. Simplicity
should be a key goal in design, and unnecessary complexity should be avoided.
Make sure you reduce the user’s cognitive workload whenever possible. Make
sure the UI is consistent/stable, intuitive, and establish a clear visual hierarchy.

• Contextual Principle: Make sure that users are contextually aware of where they
are within a system.

• Human Principle: Make sure the UI provides human interactions above the
machine-like interactions.

• Engagement Principle: Make sure that the UI fully engages the user, delivers
value, and provides a strong information sense.

• Beauty and Delight Principle: Make sure the UX is enjoyable and make the user
wants to use the system or service.

1.3.10 Fast Rate of IoT Technology Adoption (Five Times
More than Electricity and Telephony)

Many of us are changing our mobile devices and tablets at faster rate than ever
before. Experts believe that there was a point of inflexion sometime between 2009
and 2010, where the number of connected devices began outnumbering the planet’s
human population. And these are not just laptops, mobile phones, and tablets—they
also include sensors and everyday objects that were previously unconnected.
Surveys and detailed analysis indicated that the adoption rate of such technology is
five times faster than that of electricity and telephony growth. Traditionally the
adoption of technology was always proportional to population growth. Hence, IoT
adoption gap has already widened exponentially over the last several years, with the
number of sensors, objects, and other “things.” This is best illustrated by global IP
traffic growth, as shown in Fig. 1.16. According to June 2016 Cisco Visual
Networking Index (VNI) forecast, global IP traffic in 2015 stands at 72.5 exabytes
(EB, 1018 byte) per month and nearly tripled by 2020, to reach 194.4 EB per month.
Consumer IP traffic reached 162.2 EB per month, and business IP traffic surpassed
32.2 EB per month in 2020.

Adding all these physical objects to IP networks imposes new and novel require-
ments on existing networking models. ITC will need to deal with those require-
ments in a relatively short order.

1 Internet of Things (IoT) Overview

23

1.3.11 The Rise of Security Requirements

Protection of business and personal data and systems has been an issue since the
inception of data networks. With the commercialization of the Internet, security
concerns expanded to cover personal privacy, financial transactions, and the threat
of cyber robbery. Today, security of the network is being expanded to include safety
or physical security.

Many of us are buying and deploying smart gadgets all over our homes. Examples
include smart cameras that notify our smartphones during business hours when
movement is detected, smart doors that open remotely, and the smart fridges that
notify us when we are short of milk. Imagine now the level of control that an attacker
can gain by hacking those smart gadgets if the security of those devices was to be
overlooked. In fact, the damage caused by cyberattacks in the IoT era will have a
direct impact on all the physical objects that you use in your daily life. The same
applies to smart cars as the number of integrated sensors continues to grow rapidly
and as the wireless control capabilities increase significantly over time, giving an
attacker who hacks a car the ability to control the windshield wipers, the radio, the
door lock, and even the brakes and the steering wheel of the vehicle. Our bodies will
not also be safe from cyberattacks. In fact, researchers have shown that an attacker
can control remotely implantable and wearable health devices (e.g., insulin pumps
and heart pacemakers) by hacking the communication link that connects them to the
control and monitoring system.

1.3.12 The Nonstop Moore’s Law

It is possible to summarize Moore’s Law impact with three key observations:

Fig. 1.16 Global IP traffic growth, 2015–2020. (Source: 2016 Cisco VIN)

1.3 Why Now? The 12 Factors for a Perfect Storm

24

 1. Over the history of computing hardware, computer power has been doubling
approximately every 18 months. This relates to the fact that the number of tran-
sistors in a dense integrated circuit has been growing by twofold every 18 months
since the transistor was invented in 1947 by John Bardeen, Walter Brattain, and
William Shockley in Bell Labs, as shown in Fig. 1.17.

Now, the largest existing networks contain millions of nodes and billions of
connections. Human brains, on the other hand, are about a hundred thou sand
times more powerful. A human brain has one hundred thousand billion nodes
and a hundred trillion connections. Hence, with Moore’s Law, a computer should
be as powerful as the human brain in about 25 years!

 2. Silicon transistor storage technology size has continued to shrink over the years
and is approaching atomic level. For years now, we have been putting more
power and more storage on the same size device. To illustrate this idea, the
 number of all transistors in all PCs in 1995, a peak year for Microsoft, was about

Pr
ic

ei
n

$
Tr

an
sis

to
rS

iz
e

(G
at

e
Le

ng
th

in
nm

)

a
30
28
26
24
22
20
18
16
14
12
10
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

b 1.00E-05

1.00E-07

1.00E-09

1.00E-11

1.00E-13

1.00E-15

1.00E-17

1.00E-19
1976 1979 1982 1985 1988 1991 1994 1997 2001 2004 2007 2016

Year

Fig. 1.17 Moore’s Law: (a) transistor size over time, (b) transistor price over time

1 Internet of Things (IoT) Overview

25

800 trillion transistors. Today, 800 trillion transistors are included in one week-
end’s sales of Apple’s iPhones.

 3. The price of the transistor is being reduced by more than 50% every year. In
1958 Fairchild Semiconductor procured its first order for 100 transistors at $150
apiece from IBM’s Federal Systems Division. Today, you can buy over one mil-
lion transistors for 8 cents. Figure 1.17 shows such trend over time.

There is no exact number for the estimated IoT revenue for the next 10 years, but
all industry leaders have agreed that the opportunity is indeed huge.

A study by General Electric, which likened the IoT trend to the industrial revolu-
tion of the eighteenth and nineteenth centuries, concluded that the IoT over the next
two decades could add as much as US $15 trillion to the global gross domestic
product (GDP)—which is roughly the size of today’s US economy.

As we mentioned before, Gartner says 64 billion devices will be in use in 2025.
That translates to eight devices for every person of the eight billion people that are
expected to be around in a few years.

Gartner also published the number of “things” connected over the Internet as
shown in Table 1.2. Without automotive, the total number of IoT installed based
devices was close to 21 billion in 2020. This includes 4.9 billion in 2015 and 6.4
billion connected things in use in 2016 (about 7% from 2015). These numbers are
fueled by major digital shifts by the forces of mobile, cloud computing, and social
media combined with IoT. Many businesses feel that they are at a competitive dis-
advantage unless they pursue IoT. Gartner believes consumer applications will drive
the number of connected things, while enterprises will account for most of the
revenue.

A separate analysis from Morgan Stanley believes that the number can actually
be as high as 75 billion and also claims that there are unique consumer devices or
equipment that could be connected to the Internet.

Regardless of which study to agree with, the bottom line is that the stakes are
high, and people will be the beneficiaries of this new IoT economy. Using IoT-
developed innovations, for example, we can reduce waste, protect our environment,
boost farm production, get early warnings of structural weaknesses in bridges and
dams, and enable remotely controlled lights, sprinkler systems, washing machines,
sensors, actuators, and gadgets.

This revolution is based on the transformational role of digital technologies, in
particular Internet-based cloud, mobility, and application technologies. But the real
power of IoT is moving from an “open-loop” world characterized by people in the

Table 1.2 IoT units installed base by category, excluding automotive

Category 2014 2015 2016 2020

Consumer 2277 3023 4024 13,509
Generic business 623 815 1092 4408
Vertical business 898 1065 1276 2880
Grand Total 3807 4902 6392 20,797

Source: Gartner

1.3 Why Now? The 12 Factors for a Perfect Storm

26

process to one that will be an automated “closed loop.” In this model, humans will
only intervene in the process as an exception, for example, if a robot, jet engine,
driverless truck, or gas turbine requires a part within itself to be changed (in some
cases, even these will be automated!).

There is no reason to doubt that devices connected to IoT will soon be flooding
the mass market. We will see compact, connected sensors and actuators make their
way onto everyday consumer electronics and household appliances and on general
infrastructure.

Networks and semiconductor manufacturers no doubt will benefit from this
movement, but big data vendors should also be cheering, with all things connected
to the Internet that opens up more real-time data inventory to sell (Fig. 1.18).

1.4 History of the Internet

Before the advent of the Internet, the world’s main communication networks were
based on circuit-switching technology: the traditional telephone circuit, wherein
each telephone call is allocated a dedicated, end-to-end, electronic connection
between the two communicating stations (stations might be telephones or comput-
ers). Circuit-switching technology was not suitable for computer networking.

The history of the Internet begins with the development of electronic computers
in the 1950s where the initial concepts of packet switching were introduced in sev-
eral computer science laboratories. Various versions of packet switching were later
announced in the 1960s. In the early 1980s, the TCP/IP (Transmission Control
Protocol/Internet Protocol) stack was introduced. Then, the commercial use of the

Fig. 1.18 IoT business revenue from enterprise

1 Internet of Things (IoT) Overview

27

Internet started in the late 1980s. Later, the World Wide Web (WWW) became avail-
able in 1991, which made the Internet more popular and stimulated the rapid growth.
The Web of Things (WoT), which based on WWW, is considered a part of IoT.

To illustrate the importance of packet-switching technologies, consider com-
puter A (in Los Angeles) wants to communicate with Computer B (in New York) in
a circuit-switched network. One common way is to select a path in the network
connecting computers A and B. In this case, the selected path would be dedicated to
A and B for the duration of their message exchange. The problem with circuit
switching is that the line is tied up regardless of how much information is exchanged
(i.e., no other computers are allowed to utilize the line between A and B even with
free bandwidth). Unlike voice traffic, circuit switching is a problem for computers
because their information exchange is typically “bursty” rather than smooth or con-
stant. Two computers might want to exchange a file, but after that file is exchanged,
the computers may not engage in communication again for quite some time.

Packet switching was introduced as the alternative technology to circuit switch-
ing for computer communications. It has been reported that packet-switching work
was done during the time of the Cold War, and a key part of motivation for develop-
ing packet switching was the design of a network that could withstand a nuclear
attack. Such theory was denied by the Advanced Research Projects Agency Network
(ARPANET), an early packet-switching network adopter and the first network to
implement the Internet protocol suite TCP/IP. However, the later work on internet-
working emphasized robustness and survivability, including the capability to with-
stand losses of large portions of the underlying networks.

To understand the fundamental of packet switching, consider sending a container
of goods from Los Angeles to New York City. Rather than sending the entire con-
tainer over a particular route, it is divided into packages (called packets). Packets
are assembled, addressed, and sent in a particular way such that:

• The packets are numbered so they can be reassembled in the correct sequence at
the destination.

• Each packet contains destination and return addresses.
• The packets are transmitted over the network of routes as capacity becomes

available.
• The packets are forwarded across the network separately and do not necessarily

follow the same route; if a particular link of a given path is busy, some packets
might take an alternate route.

Packet switching is a generic philosophy of network communication, not a spe-
cific protocol. The protocol used by the Internet is called TCP/IP. The TCP/IP pro-
tocol was invented by Robert Kahn and Vint Cerf. The IP in TCP/IP stands for
Internet protocol: the protocol used by computers to communicate with each other
on the Internet. TCP is responsible for the data delivery of a packet, and IP is respon-
sible for the logical addressing. In other words, IP obtains the address, and TCP
guarantees delivery of data to that address. Both technologies became the technical
foundation of the Internet.

1.4 History of the Internet

28

The earliest ideas for a computer network, intended to allow general communica-
tions among computer users, were formulated by computer scientist J. C. R. Licklider
of Bolt, Beranek, and Newman (BBN), in April 1963, in memoranda discussing the
concept of the “Intergalactic Computer Network.” Those ideas encompassed many
of the features of the contemporary Internet. In October 1963, Licklider was
appointed head of the Behavioral Sciences and Command and Control programs at
the Defense Department’s Advanced Research Projects Agency (ARPA). He con-
vinced Ivan Sutherland and Bob Taylor that this network concept was very impor-
tant and merited development although Licklider left ARPA before any contracts
were assigned for development [5].

Devices using the Internet must implement the IP stack. Packets that follow the
IP specification are called IP datagrams. These datagrams have two parts: header
information and data. To continue with the letter analogy, think of the header as the
information that would go on an envelope and the data as the letter that goes inside
the envelope. The header information includes such things as total length of the
packet, destination IP address, source IP address, time to live (the time to live is
decremented by routers as the packet passes through them; when it hits zero, the
packet is discarded; this prevents packets from getting into an “infinite loop” and
tying up the network), and error checking information.

• The IP packets are independent of the underlying hardware structure. In order to
travel across different types of networks, the packets are encapsulated into
frames. The underlying hardware understands the particular frame format and
can deliver the encapsulated packet.

• The TCP in TCP/IP stands for Transmission Control Protocol. This is a protocol
that, as the name implies, is responsible for assembling the packets in the correct
order and checking for missing packets. If packets are lost, the TCP endpoint
requests new ones. It also checks for duplicate packets. The TCP endpoint is
responsible for establishing the session between two computers on a network.
The TCP and IP protocols work together.

• An important aspect of packet switching is that the packets have forwarding and
return addresses. What should an address for a computer look like? Since it is a
computer and computers only understand binary information, the most sensible
addressing scheme is one based on binary numbers. Indeed, this is the case, and
the addressing system used by IP version 4 software is based on a 32-bit IP
address, and IP version 6 is based on 128-bit IP address as will be explained in
Chap. 2 (Fig. 1.19).

1.5 Summary

We would like to conclude this chapter by restating our definition of IoT as the net-
work of things, with clear element identification, embedded with software intelli-
gence, sensors, and ubiquitous connectivity to the Internet. IoT is empowered by

1 Internet of Things (IoT) Overview

29

four main elements: sensors to collect information, identifiers to identify the source
of data, software to analyze the data, and Internet connectivity to communicate and
enable notifications. Sensors may be physical (e.g., sensors capturing the tempera-
ture) or logical (e.g., embedded software measurements such as CPU utilization).
IoT’s ultimate goal is to create a better environment for humanity, where objects
around us know what we like, what we want, and what we need and act accordingly
without explicit instructions.

IoT is fueled by explosion in technologies including the IT and OT convergence;
the introduction of Internet-based business at a fast rate; the explosion in smart
mobile devices; the explosion in social networking applications; the overall technol-
ogy explosion; the massive digital transformation; the enhanced user interfaces
allowing people to communicate by a simple touch, voice command, or even an
observing command; the faster than ever technology adoption; the increased demand
for security applications and solutions; and of course Moore’s Law. Securing IoT is
viewed as a challenge and colossal business opportunity at the same time with areas
that embrace securing the data at rest, securing the transport of the data, securing
APIs/interfaces among systems and various sources of data, and of course control-
ling sensors and applications.

Problems and Exercises

 1. What is the simple definition of IoT? What is the “more complete definition”?
What is the main difference?

 2. IoT components were listed for the simple definition to include the intersection
of the Internet, Things, and data. Process and standards were added to the com-
plete definition. Why are process and standards important for the success of IoT?

Fig. 1.19 Circuit switched vs. packet switched

1.5 Summary

30

 3. What are the main four components that empower IoT? List the main function
of each component.

 4. What is IoT’s promise? What is IoT’s ultimate goal?
 5. Cisco estimated that the IoT will consist of almost 30 billion objects by 2023.

Others have higher estimates. What was their logic?
 6. What is Moore’s Law? When was it first observed? Why is it relevant to IoT?
 7. In a table, list the 12 factors that are fueling IoT with a brief summary of

each factor.
 8. What are the top three challenges for IoT? Why are those challenges also con-

sidered as opportunities?
 9. What is BYOD? Why is it considered a security threat for the network?
 10. How do companies deal with BYOD today? List an example of BYOD system.
 11. Why is operation technology (OT) under pressure to integrate with information

technology (IT)?
 12. Uber is using smartphone Gyrometer data to monitor speeding drivers. What is

“Gyrometer”? How does it work? Where was it first used?
 13. What is KISS? What are the top five principles for KISS user experience?
 14. Section 1.3.10 stated the following three facts: (a) over the history of computing

hardware, computer power has been doubling every 18 months, (b) biggest net-
works we have today have millions of nodes and billions of connection, and (c)
a human brain has a hundred thousand billion nodes and a hundred trillion con-
nections. It then stated that using (a)–(b), in year 2015, a computer should be as
powerful as a human brain in about 25 years! How did the author arrive at 25?
How long would it take if the computer power was doubling every 2 years
instead of 18 months and why?

 15. What are the key four differences between Analytics 1.0, 2.0, and 3.0?
 16. List examples of solutions that offer Analytics 3.0.
 17. What are the top three benefits of cloud computing? What do they mean?
 18. In a table format, compare IaaS, PaaS, and SaaS. List an example for each.
 19. What are the main differences between virtual machines and containers in vir-

tualization? Provide an example of container technology. Which approach do
you prefer and why?

 20. List two main functions that TCP/IP protocol, the bread and butter of today’s
Internet.

 21. Why do we need both TCP and IP protocols?
 22. It is often said by User Experience Experts that the “Best Interface for a system

is no User Interface.” What does such statement mean? When does it typically
apply? Provide an example in networking technologies.

 23. This question has four parts:

 (a) What is circuit-switched technology? What is packet-switched technology?
 (b) What are circuit-switched networks and packet-switched networks used

for? List an example of each use.
 (c) Why did we need packet-switched technology?
 (d) In a table, list three main differences between packet switching and circuit

switching?
 (e) Which approach is better for the Internet and why?

1 Internet of Things (IoT) Overview

31

 24. What is a connection-oriented protocol? What is a connectionless protocol?
Provide an example of each.

 25. Some companies use the term IoE instead of IoT. What is their logic?
 26. What is Cloud 1.0 and Cloud 2.0? What is the main difference between cloud

1.0 and cloud 2.0? How does machine learning differ from traditional approaches
to extract business intelligence form the data?

 27. Circuit-switched networks are designed with either frequency-division multi-
plexing (FDM) or time-division multiplexing (TDM). For TDM link, time is
divided into frames of fixed duration,num and each frame is divided onto a
fixed number of time slots as shown below (for a network link supporting up to
three connections/circuits).

1 2

3

1

2

3

1

2

3

1

2

3

Slot Slot

Frame

Slot Slot Slot

Frame

Slot Slot Slot

Frame

Slot Slot Slot

Frame

Slot

Time

When the network establishes a connection across a link, the network dedi-
cates one time slot in every frame to this connection. These slots are dedicated
for the sole use of that connection, with one time slot available for use (in every
frame) to transmits the connection’s data.

(a) How does FDM work in circuit-switched networks?
 (b) What is the typical frequency band in tradition circuit-switched-based tele-

phone networks/public-switched telephone network (PSTN)?
 (c) Compare FDM with TDM.
 (d) Draw FDM and TDM for a tradition circuit-switched network link support-

ing up to five connections/circuits.

 28. Refer again to problem 27 above. Let us assume that all links in the circuit-
switched network are T1 (i.e., have a bit rate of 1.536 Mbps with 24 slots)
and use TDM

.

1.5 Summary

32

 (a) Assuming setup and propagation delays are zero, how long does it take to
send a file of 1.280 M bits from Host A to Host B? How about from Host A
to Host C? Do you expect the answer to be the same or different and why?

 (b) Let us also assume that it takes 500 ms to establish an end-to-end circuit
before Host A can begin to transmit the file and 250 ms for a propagation
delay between any two adjacent routers. How long does it take to send a file
form Host A to Host B?

 (c) What is the difference between transmission delay and prorogation delay?
Which delay is a function of the distance between the routers?

References

 1. A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, G. Schreier, The internet of things for
ambient assisted living, in Information Technology: New Generations (ITNG), 2010 Seventh
International Conference on, 2010, pp. 804–809 Online: http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5501633

 2. M Drobics, E Fugger, B Prazak-Aram, G Schreier, Evaluation of a Personal Drug Reminder.
(unpublished, 2009)

 3. S. Haller, S. Karnouskos, C. Schroth, The Internet of Things in an Enterprise Context (Springer
(Berlin-Heidelberg), Vienna, 2008)

 4. International Telecommunication Union. ITU Internet Reports 2005 and 2015: The Internet of
Things. Geneva, s.n., 2005. http://www.itu.int/internetofthings/

 5. K. Ashton, “That ‘Internet of Things’ Thing, In the real world, things matter more than ideas”,
June 22, 2009, Online: http://www.rfidjournal.com/articles/view?4986

 6. Top 3 Security Issues in Consumer Internet of Things (IoT) and Industrial IoT Youtube John
Barrett at TEDxCIT: https://www.youtube.com/watch?v=QaTIt1C5R- M

 7. Wikipedia, ARPANET, Online: http://en.wikipedia.org/wiki/ARPANET
 8. Gail Honda, Kipp Martin, Essential Guide to Internet Business Technology Book, Feb 19, 2002

by Prentice Hall, Online: http://www.informit.com/articles/article.aspx?p=27569&seqNum=4
 9. http://www.businessinsider.com/75- billion- devices- will- be- connected- to- the- internet-

by- 2020- 2013- 10#ixzz3YAtxfDCp
 10. IoT Definitions, Online: http://gblogs.cisco.com/asiapacific/the- internet- of- everything-

opportunity- for- anz- agribusiness/#more- 120
 11. Gartner News View: http://www.gartner.com/newsroom/id/2905717
 12. Information Week IoE, Peter Waterhouse, December 2013, Online: http://

www.informationweek.com/strategic- cio/execut ive- insights- and- innovat ion/
internet- of- everything- connecting- things- is- just- step- one/d/d- id/1112958

 13. LG Answers to IoT, the Latest Trend in IT-Talk Service-Oriented IoT, Online: http://www.
lgcnsblog.com/features/answers- to- iot- the- latest- trend- in- it- talk- service- oriented- iot- 1/

 14. Driving Moore’s Law with Python-Powered Machine Learning: An Insider’s Perspective
by Trent McConaghy PyData Berlin 2014, OnLine: http://www.slideshare.net/PyData/
py- data- berlin- trent- mcconaghy- moores- law

 15. Clock speed: Data from 1976–1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, “Price
and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History,” July
17, 2000, http://www.nber.org/~confer/2000/si2000/berndt.pdf

 16. Data from 2001–2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance
and Package Chips: Frequency On-Chip Wiring Levels—Near-Term Years, p. 167. OnLine:
http://www.singularity.com/charts/page62.html

1 Internet of Things (IoT) Overview

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5501633
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5501633
http://www.itu.int/internetofthings/
http://www.rfidjournal.com/articles/view?4986
https://www.youtube.com/watch?v=QaTIt1C5R-M
http://en.wikipedia.org/wiki/ARPANET
http://www.informit.com/articles/article.aspx?p=27569&seqNum=4
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10#ixzz3YAtxfDCp
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10#ixzz3YAtxfDCp
http://gblogs.cisco.com/asiapacific/the-internet-of-everything-opportunity-for-anz-agribusiness/#more-120
http://gblogs.cisco.com/asiapacific/the-internet-of-everything-opportunity-for-anz-agribusiness/#more-120
http://www.gartner.com/newsroom/id/2905717
http://www.informationweek.com/strategic-cio/executive-insights-and-innovation/internet-of-everything-connecting-things-is-just-step-one/d/d-id/1112958
http://www.informationweek.com/strategic-cio/executive-insights-and-innovation/internet-of-everything-connecting-things-is-just-step-one/d/d-id/1112958
http://www.informationweek.com/strategic-cio/executive-insights-and-innovation/internet-of-everything-connecting-things-is-just-step-one/d/d-id/1112958
http://www.lgcnsblog.com/features/answers-to-iot-the-latest-trend-in-it-talk-service-oriented-iot-1/
http://www.lgcnsblog.com/features/answers-to-iot-the-latest-trend-in-it-talk-service-oriented-iot-1/
http://www.slideshare.net/PyData/py-data-berlin-trent-mcconaghy-moores-law
http://www.slideshare.net/PyData/py-data-berlin-trent-mcconaghy-moores-law
http://www.nber.org/~confer/2000/si2000/berndt.pdf
http://www.singularity.com/charts/page62.html

33

 17. Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore,
“Our Revolution,” http://www.sia- online.org/downloads/Moore.pdf

 18. The Internet of Things, Online: https://en.wikipedia.org/wiki/Internet_of_Things
 19. L. David Roper, Silicon Intelligence Evolution: Online http://arts.bev.net/roperldavid, October

23, 2010, http://www.roperld.com/science/SiliconIntelligenceEvolution.htm
 20. The Silicon Engine: A Timeline of Semiconductor in Computer, Online: http://www.com-

puterhistory.org/semiconductor/timeline/1958- Mesa.html
 21. T.E. Kurt, Disrupting and enhancing Healthcare with IoT, Health, Technology & engi-

neering Program at USC, Arch 2, 2013, online: http://www.slideshare.net/todbotdotcom/
disrupting- and- enhancing- healthcare- with- the- internet- of- things

 22. Insight’s The Semiconductor Laser’s Cost Curve, Online: http://sweptlaser.com/
semiconductor- laser- cost- curve

 23. P. Welander “IT vs. OT: Bridging the divide - Traditional IT is moving more onto the plant
floor. OT will have to accept a greater level of integration. Is that a problem or an opportunity?”,
Control engineering, 08/16/2013, Online: http://www.controleng.com/single- article/it- vs- ot-
bridging- the- divide/db503d6cb9af3014f532cf19b5bf75e8.html

 24. Airbnb Business Model, Online: https://www.quora.com/What- is- Airbnbs- business- model
 25. Five Things You Can Learn From One of Airbnb’s Earliest Hustles, Online: http://www.inc.

com/alex- moazed/cereal- obama- denver- the- recipe- these- airbnb- hustlers- used- to- launch- a-
unicorn.html

 26. S. Ganguli, The Impact of the IoT on Infrastructure Monitoring, October 2015, Online: https://
www.gartner.com/doc/3147818?srcId=1- 2819006590&pcp=itg

 27. Sqaure Inc, Online: https://en.wikipedia.org/wiki/Square,_Inc
 28. G. Sterling, Greg, “Expanding Its Services, Square Launches Email Marketing With A

Twist”, April 2015, Online: http://marketingland.com/expanding- its- services- square-
launches- email- marketing- with- a- twist- 2- 124282

 29. Analysis of the Amazon Business Model, July 2015, Online: http://www.digitalbusinessmod- -
elguru.com/

 30. About Tesla, Online: http://www.teslamotors.com/about
 31. A. Brisbourne, Tesla’s Over The Air Fix: Best Example yet of the Internet of Things,

February 2014, Online: http://www.wired.com/insights/2014/02/teslas- air- fix- best- example-
yet- internet- things/

 32. U. Wang, A Manufacturing Lesson From Tesla Motors, Forbes, August 2013, Online: http://
www.forbes.com/sites/uciliawang/2013/08/08/a- manufacturing- lesson- from- tesla- motors/

 33. How PayPal Here Stacks Up Against Other Mobile Payment Options, Online: http://mashable.
com/2012/03/16/paypal- here- competitors/#cSQKd8eMwPqa

 34. F. Richter, “Global Smartphone Traffic to Increase Tenfold by 2019”, February 2015, Online:
http://www.statista.com/chart/3227/global- smartphone- traffic- to- increase- tenfold- by- 2019/

 35. Security of IoT: Lessons from the Past for the Connected Future, Aa, Online: http://www.
windriver.com/whitepapers/security- in- the- internet- of- things/wr_security- in- the- internet- of-
things.pdf

 36. Curb Your Enthusiasm, Uber Newsroom, Joe Sullivan, Chief Security Officer, January
26, 2016

 37. Fundamental Principles of Great UX Design | How to Deliver Great UX Design, Janet
M. Six, Nov 17, 2014, Online: http://www.uxmatters.com/mt/archives/2014/11/fundamental-
principles- of- great- ux- design- how- to- deliver- great- ux- design.php#sthash.oEzaPFAH.dpuf

 38. Three Social Media Marketing Options to Consider in 2016, Hiral Rana, Jan 31, 2016, Online:
https://www.google.com/search?q=social+media&rls=com.microsoft:en- US:IE- Address&so
urce=lnms&tbm=isch&sa=X&ved=0ahUKEwiU4_y107nMAhXFMKYKHXldAEAQ_AUIC
CgC&biw=1577&bih=912#imgrc=ZH- 8cjbgp- pIBM%3A

 39. Detecting a malfunctioning device using sensors, United States Patent 8777104, Online: http://
www.freepatentsonline.com/8777104.html

References

http://www.sia-online.org/downloads/Moore.pdf
https://en.wikipedia.org/wiki/Internet_of_Things
http://arts.bev.net/roperldavid
http://www.roperld.com/science/SiliconIntelligenceEvolution.htm
http://www.computerhistory.org/semiconductor/timeline/1958-Mesa.html
http://www.computerhistory.org/semiconductor/timeline/1958-Mesa.html
http://www.slideshare.net/todbotdotcom/disrupting-and-enhancing-healthcare-with-the-internet-of-things
http://www.slideshare.net/todbotdotcom/disrupting-and-enhancing-healthcare-with-the-internet-of-things
http://sweptlaser.com/semiconductor-laser-cost-curve
http://sweptlaser.com/semiconductor-laser-cost-curve
http://www.controleng.com/single-article/it-vs-ot-bridging-the-divide/db503d6cb9af3014f532cf19b5bf75e8.html
http://www.controleng.com/single-article/it-vs-ot-bridging-the-divide/db503d6cb9af3014f532cf19b5bf75e8.html
https://www.quora.com/What-is-Airbnbs-business-model
http://www.inc.com/alex-moazed/cereal-obama-denver-the-recipe-these-airbnb-hustlers-used-to-launch-a-unicorn.html
http://www.inc.com/alex-moazed/cereal-obama-denver-the-recipe-these-airbnb-hustlers-used-to-launch-a-unicorn.html
http://www.inc.com/alex-moazed/cereal-obama-denver-the-recipe-these-airbnb-hustlers-used-to-launch-a-unicorn.html
https://www.gartner.com/doc/3147818?srcId=1-2819006590&pcp=itg
https://www.gartner.com/doc/3147818?srcId=1-2819006590&pcp=itg
https://en.wikipedia.org/wiki/Square,_Inc
http://marketingland.com/expanding-its-services-square-launches-email-marketing-with-a-twist-2-124282
http://marketingland.com/expanding-its-services-square-launches-email-marketing-with-a-twist-2-124282
http://www.digitalbusinessmod-elguru.com/
http://www.digitalbusinessmod-elguru.com/
http://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-internet-things/
http://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-internet-things/
http://www.forbes.com/sites/uciliawang/2013/08/08/a-manufacturing-lesson-from-tesla-motors/
http://www.forbes.com/sites/uciliawang/2013/08/08/a-manufacturing-lesson-from-tesla-motors/
http://mashable.com/2012/03/16/paypal-here-competitors/#cSQKd8eMwPqa
http://mashable.com/2012/03/16/paypal-here-competitors/#cSQKd8eMwPqa
http://www.statista.com/chart/3227/global-smartphone-traffic-to-increase-tenfold-by-2019/
http://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
http://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
http://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
http://www.uxmatters.com/mt/archives/2014/11/fundamental-principles-of-great-ux-design-how-to-deliver-great-ux-design.php#sthash.oEzaPFAH.dpuf
http://www.uxmatters.com/mt/archives/2014/11/fundamental-principles-of-great-ux-design-how-to-deliver-great-ux-design.php#sthash.oEzaPFAH.dpuf
https://www.google.com/search?q=social+media&rls=com.microsoft:en-US:IE-Address&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiU4_y107nMAhXFMKYKHXldAEAQ_AUICCgC&biw=1577&bih=912#imgrc=ZH-8cjbgp-pIBM:
https://www.google.com/search?q=social+media&rls=com.microsoft:en-US:IE-Address&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiU4_y107nMAhXFMKYKHXldAEAQ_AUICCgC&biw=1577&bih=912#imgrc=ZH-8cjbgp-pIBM:
https://www.google.com/search?q=social+media&rls=com.microsoft:en-US:IE-Address&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiU4_y107nMAhXFMKYKHXldAEAQ_AUICCgC&biw=1577&bih=912#imgrc=ZH-8cjbgp-pIBM:
http://www.freepatentsonline.com/8777104.html
http://www.freepatentsonline.com/8777104.html

34

 40. Virtual Machines Vs. Containers: A Matter Of Scope, Information Week Network
Computing, May 28, 2014, Online: http://www.networkcomputing.com/cloud- infrastructure/
virtual- machines- vs- containers- matter- scope/2039932943

 41. “Google’s Self-Driving Car Hit a Bus”, American Safety Council February 29, 2016, Online:
http://blog.americansafetycouncil.com/googles- self- driving- car- hit- a- bus/

 42. “10 Million Self-Driving Cars will be on the Road by 2020”, Business Insider, Juley
29, 2015, Online: http://www.businessinsider.com/report- 10- million- self- driving- cars- will-
be- on- the- road- by- 2020- 2015- 5- 6

 43. “How Self-driving Cars work”, Shima Rayej, Robohub Automotive, June 3, 2014, Online:
http://robohub.org/how- do- self- driving- cars- work/

 44. Alternative To, NetCrunch, Online: http://alternativeto.net/software/netcrunch/comments/
 45. Amazon Web Services is Approaching a $10 billion-a-year business, Recorde, April 28 2016,

Online: http://www.recode.net/2016/4/28/11586526/aws- cloud- revenue- growth
 46. Google says welcome to the Cloud 2.0, ComuterWold, May 24, 2016 issue, Online:

http://www.computerworld.com/article/3074998/cloud- computing/google- says-
welcome- to- the- cloud- 20.html?token=%23tk.CTWNLE_nlt_computerworld_
enterprise_apps_2016- 05- 27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&
utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld%20
Enterprise%20Apps%202016- 05- 27&utm_term=computerworld_enterprise_apps#tk.
CW_nlt_computerworld_enterprise_apps_2016- 05- 27

 47. “Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30 Percent From
2015”, November 10, 2015, online: http://www.gartner.com/newsroom/id/3165317

 48. Cisco Visual Networking Index: Forecast and Methodology, 2015–2020, June 6, 2016, Online:
http://www.cisco.com/c/en/us/solutions/collateral/service- provider/visual- networking- index-
vni/complete- white- paper- c11- 481360.html

 49. 2021 Cisco Global Networking Trends Report: https://www.lazorpoint.com/hubfs/
eBooks/2021- networking%20report.pdf

1 Internet of Things (IoT) Overview

http://www.networkcomputing.com/cloud-infrastructure/virtual-machines-vs-containers-matter-scope/2039932943
http://www.networkcomputing.com/cloud-infrastructure/virtual-machines-vs-containers-matter-scope/2039932943
http://blog.americansafetycouncil.com/googles-self-driving-car-hit-a-bus/
http://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6
http://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6
http://robohub.org/how-do-self-driving-cars-work/
http://alternativeto.net/software/netcrunch/comments/
http://www.recode.net/2016/4/28/11586526/aws-cloud-revenue-growth
http://www.computerworld.com/article/3074998/cloud-computing/google-says-welcome-to-the-cloud-20.html?token=#tk.CTWNLE_nlt_computerworld_enterprise_apps_2016-05-27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld Enterprise Apps 2016-05-27&utm_term=computerworld_enterprise_apps#tk.CW_nlt_computerworld_enterprise_apps_2016-05-27
http://www.computerworld.com/article/3074998/cloud-computing/google-says-welcome-to-the-cloud-20.html?token=#tk.CTWNLE_nlt_computerworld_enterprise_apps_2016-05-27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld Enterprise Apps 2016-05-27&utm_term=computerworld_enterprise_apps#tk.CW_nlt_computerworld_enterprise_apps_2016-05-27
http://www.computerworld.com/article/3074998/cloud-computing/google-says-welcome-to-the-cloud-20.html?token=#tk.CTWNLE_nlt_computerworld_enterprise_apps_2016-05-27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld Enterprise Apps 2016-05-27&utm_term=computerworld_enterprise_apps#tk.CW_nlt_computerworld_enterprise_apps_2016-05-27
http://www.computerworld.com/article/3074998/cloud-computing/google-says-welcome-to-the-cloud-20.html?token=#tk.CTWNLE_nlt_computerworld_enterprise_apps_2016-05-27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld Enterprise Apps 2016-05-27&utm_term=computerworld_enterprise_apps#tk.CW_nlt_computerworld_enterprise_apps_2016-05-27
http://www.computerworld.com/article/3074998/cloud-computing/google-says-welcome-to-the-cloud-20.html?token=#tk.CTWNLE_nlt_computerworld_enterprise_apps_2016-05-27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld Enterprise Apps 2016-05-27&utm_term=computerworld_enterprise_apps#tk.CW_nlt_computerworld_enterprise_apps_2016-05-27
http://www.computerworld.com/article/3074998/cloud-computing/google-says-welcome-to-the-cloud-20.html?token=#tk.CTWNLE_nlt_computerworld_enterprise_apps_2016-05-27&idg_eid=28bc8cb86c8c36cb5f0c09ae2e86ba26&utm_source=Sailthru&utm_medium=email&utm_campaign=Computerworld Enterprise Apps 2016-05-27&utm_term=computerworld_enterprise_apps#tk.CW_nlt_computerworld_enterprise_apps_2016-05-27
http://www.gartner.com/newsroom/id/3165317
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.lazorpoint.com/hubfs/eBooks/2021-networking report.pdf
https://www.lazorpoint.com/hubfs/eBooks/2021-networking report.pdf

35© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_2

Chapter 2
The Internet in IoT

Reliable and efficient communication is considered one of the most complex tasks
in large-scale networks. Nearly all data networks in use today are based on the Open
Systems Interconnection (OSI) standard. The OSI model was introduced by the
International Organization for Standardization (ISO), in 1984, to address this com-
plex problem. ISO is a global federation of national standards organizations repre-
senting over 100 countries. The model is intended to describe and standardize the
main communication functions of any telecommunication or computing system
without regard to their underlying internal structure and technology. Its goal is the
interoperability of diverse communication systems with standard protocols. The
OSI is a conceptual model of how various components communicate in data-based
networks. It uses “divide and conquer” concept to virtually break down network
communication responsibilities into smaller functions, called layers, so they are
easier to learn and develop. With well-defined standard interfaces between layers,
OSI model supports modular engineering and multi-vendor interoperability.

2.1 The Open System Interconnection Model

The OSI model consists of seven layers as shown in Fig. 2.1: Physical (layer 1),
Data Link (layer 2), Network (layer 3), Transport (layer 4), Session (layer 5),
Presentation (layer 6), and Application (layer 7). Each layer provides some well-
defined services to the adjacent layer further up or down the stack, although the
distinction can become a bit less defined in layers 6 and 7 with some services over-
lapping the two layers.

• OSI Layer 7—Application Layer: Starting from the top, the Application Layer is
an abstraction layer that specifies the shared protocols and interface methods
used by hosts in a communications network. It is where users interact with the

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_2#DOI

36

network using higher-level protocols such as DNS (Domain Naming System),
HTTP (Hypertext Transfer Protocol), Telnet, SSH, FTP (File Transfer Protocol),
TFTP (Trivial File Transfer Protocol), SNMP (Simple Network Management
Protocol), SMTP (Simple Mail Transfer Protocol), X Windows, RDP (Remote
Desktop Protocol), etc.

• OSI Layer 6—Presentation Layer: Underneath the Application Layer is the
Presentation Layer. This is where operating system services (e.g., Linux, Unix,
Windows, MacOS) reside. The Presentation Layer is responsible for the delivery
and formatting of information to the Application Layer for additional processing
if required. It ensures that the data can be understood between the sender and
receiver. Thus it is tasked with taking care of any issues that might arise where
data sent from one system needs to be viewed in a different way by the other
system. The Presentation Layer releases the Application Layer of concerns
regarding syntactical differences in data representation within the end-user sys-
tems. Example of a presentation service would be the conversion of an EBCDIC-
coded text computer file to an ASCII-coded file and certain types of encryption
such as Secure Sockets Layer (SSL) protocol.

• OSI Layer 5—Session Layer: Below the Presentation Layer is the Session Layer.
The Session Layer deals with the communication to create and manage a session
(or multiple sessions) between two network elements (e.g., a session between
your computer and the server that your computer is getting information from).

• OSI Layer 4—Transport Layer: The Transport Layer establishes and manages
the end-to-end communication between two end points. The Transport Layer
breaks the data, it receives from the Session Layer, into smaller units called
Segments. It also ensures reliable data delivery (e.g., error detection and retrans-
mission where applicable). It uses the concept of windowing to decide how much
information should be sent at a time between end points. Layer 4 main protocols
include Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP). TCP is used for guarantee delivery applications such as FTP and web
browsing applications, whereas UDP is used for best effort applications such as
IP telephony and video over IP.

• OSI Layer 3—Network Layer: The Network Layer provides connectivity and
path selection (i.e., IP routing) based on logical addresses (i.e., IP addresses).

Application

Presentation

Session

Transport

Network

Data Link

Physical

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Data

Data

Data

Segment

Packets

Frames

Bits

Fig. 2.1 OSI layers and
data formats

2 The Internet in IoT

37

Hence, routers operate at the Network Layer. The Network Layer breaks up the
data it receives from the Transport Layer into packets, which are also known as
IP datagrams, which contain source and destination IP address information that
is used to forward the datagrams between hosts and across networks.1 The
Network Layer is also responsible for routing of IP datagrams using IP addresses.
A routing protocol specifies how routers communicate with each other, exchang-
ing information that enables them to select routes between any two nodes on a
computer network. Routing algorithms determine the specific choice of routes.
Each router has a priori knowledge only of networks attached to it directly. A
routing protocol shares this information first among immediate neighbors and
then throughout the network. This way, routers gain knowledge of the topology
of the network. The major routing protocol classes in IP networks will be cov-
ered in Sect. 2.5. They include interior gateway protocol type 1, interior gateway
protocol type 2, and exterior gateway protocols. The latter are routing protocols
used on the Internet for exchanging routing information between autonomous
systems.

• It must be noted that while layers 3 and 4 (Network and Transport Layers) are
theoretically separated, they are typically closely related to each other in prac-
tice. The well-known Internet Protocol name “TCP/IP” comes from the Transport
Layer protocol (TCP) and Network Layer protocol (IP).

• Packet switching networks depend upon a connectionless internetwork layer in
which a host can send a message without establishing a physical connection with
the recipient. In this case, the host simply puts the message onto the network with
the destination address and hopes that it arrives. The message data packets may
appear in a different order than they were sent in connectionless networks. It is
the job of the higher layers, at the destination side, to rearrange out of order
packets and deliver them to proper network applications operating at the
Application Layer.

• OSI Layer 2—Data Link Layer: The Data Link Layer defines data formats for
final transmission. The Data Link Layer breaks up the data it receives into frames.
It deals with delivery of frames between devices on the same LAN using Media
Access Control (MAC) Addresses. Frames do not cross the boundaries of a local
network. Internetwork routing is addressed by layer 3, allowing data link proto-
cols to focus on local delivery, physical addressing, and media arbitration. In this
way, the Data Link Layer is analogous to a neighborhood traffic cop; it endeavors
to arbitrate between parties contending for access to a medium, without concern
for their ultimate destination. The Data Link Layer typically has error detection
(e.g., Cyclical Redundancy Check (CRC)). Typical Data Link Layer devices
include switches, bridges, and wireless access points (APs). Examples of data
link protocols are Ethernet for local area networks (multi-node) and the Point-to-
Point Protocol (PPP).

1 IP packets are referred to as IP datagrams by many experts. However, some experts used the
phrase “stream” to refer to packets that are assembled for TCP and the phrase “datagram” to pack-
ets that are assembled for UDP.

2.1 The Open System Interconnection Model

38

• OSI Layer 1—Physical Layer: The Physical Layer describes the physical media
access and properties. It breaks up the data it receives from the Data Link Layer
into bits of zeros and ones (or “off” and “on” signals). The Physical Layer basi-
cally defines the electrical or mechanical interface to the physical medium. It con-
sists of the basic networking hardware transmission technologies. It principally
deals with wiring and caballing. The Physical Layer defines the ways of transmit-
ting raw bits over a physical link connecting network nodes including copper
wires, fiber-optic cables, optical wavelength, and wireless frequencies. The
Physical Layer determines how to put a stream of bits from the Data Link Layer
on to the pins for a USB printer interface, an optical fiber transmitter, or a radio
carrier. The bit stream may be grouped into code words or symbols and converted
to a physical signal that is transmitted over a hardware transmission medium. For
instance, it uses +5 volts for sending a bit of 1 and 0 volts for a bit of 0 (Table 2.1).

2.2 End-to-End View of the OSI Model

Figure 2.2 provides an overview of how devices theoretically communicate in the
OSI mode. An application (e.g., Microsoft Outlook on a User A’s computer) pro-
duces data targeted to another device on the network (e.g., User B’s computer or a
server that User A is getting information from). Each layer in the OSI model adds
its own information (i.e., headers, trailers) to the front (or both the front and the end)
of the data it receives from the layer above it. Such process is called Encapsulation.

Table 2.1 Summary of key functions, devices, and protocols of the OSI layers

OSI layer Main function
Examples of main
devices

Examples of main
protocol

Application Provides network services to
the end-host’s applications

Server, laptops, PCs HTTPS, FTP, Telnet,
SSH

Presentation Ensures the data can be
understood between two end
hosts

N/A Data encoding, data
formatting, and
serialization

Session Manages multiple sessions
between end hosts

N/A Connection
management, error
recovery

Transport Establishes end-to-end
connectivity and ensures
reliable data delivery

Firewalls TCP, UDP

Network Connectivity and path selection
based on logical addresses

Routers, firewalls IPv4, IPv6

Data link Defines data format for
transmission

Switches, APs IEEE 802.1 (Ethernet),
PPP

Physical Defines physical media access
and properties

Fiber optics, category
5 cables, coaxial
cables

IEEE 802.3

2 The Internet in IoT

39

For instance, the Transport Layer adds a TCP header, the Network Layer adds an IP
header, and the Data Link Layer adds Ethernet header and trailer.

Encapsulated data is transmitted in protocol data units (PDUs): Segments on the
Transport Layer, Packets on the Network Layer, and Frames on the Data Link Layer
and Bits on the Physical Layer, as was illustrated in Fig. 2.2. PDUs are passed down
through the stack of layers until they can be transmitted over the Physical Layer.
The Physical Layer then slices the PDUs into bits and transmits the bits over the
physical connection that may be wireless/radio link, fiber-optic, or copper cable. +5
volts are often used to transmit 1 s and 0 volts are used to transmit 0 s on copper
cables. The Physical Layer provides the physical connectivity between hosts over
which all communication occurs. The Physical Layer is the wire connecting both
computers on the network. The OSI model ensures that both users speak the same
language on the same layer allowing sending and receiving layers (e.g., networking
layers) to virtually communicate. Data passed upward is decapsulated before being
passed further up. Such process is called decapsulation. Thus, the Physical Layer
chops up the PDUs and transmits the PDUs over the physical connection.

2.3 Transmission Control Protocol/Internet Protocol
(TCP/IP)

TCP/IP (Transmission Control Protocol/Internet Protocol) is a connection-oriented
transport protocol suite that sends data as an unstructured stream of bytes. By using
sequence numbers and acknowledgment messages, TCP can provide a sending node
with delivery information about packets transmitted to a destination node. Where
data has been lost in transit from source to destination, TCP can retransmit the data

User A
(or Client)

User B
(or Server)

Application

Presentation

Session

Transport

Network

Data Link

Physical

Data

Data

Data

TCP Data

IP TCP Data

Eth IP TCP Data Eth

10010001110…….

Application

Presentation

Session

Transport

Network

Data Link

Physical

Data

Data

Data

TCP Data

IP TCP Data

Eth IP TCP Data Eth

10010001110…….

Internet = Header or Trailer

Fig. 2.2 Illustration of OSI model

2.3 Transmission Control Protocol/Internet Protocol (TCP/IP)

40

until either a timeout condition is reached or until successful delivery has been
achieved. TCP can also recognize duplicate messages and will discard them appro-
priately. If the sending computer is transmitting too fast for the receiving computer,
TCP can employ flow control mechanisms to slow data transfer. TCP can also com-
municate delivery information to the upper-layer protocols and applications it sup-
ports. All these characteristics make TCP an end-to-end reliable transport protocol.

TCP/IP was in the process of development when the OSI standard was published
in 1984. The TCP/IP model is not exactly the same as OSI model. OSI is a seven-
layered standard, but TCP/IP is a four-layered standard. The OSI model has been
very influential in the growth and development of TCP/IP standard, and that is why
much of the OSI terminology is applied to TCP/IP.

The TCP/IP Layers along with the relationship to OSI layers are shown in
Fig. 2.3. TCP/IP has four main layers: Application Layer, Transport Layer, Internet
Layer, and Network Access Layer. Some researchers believe TCP/IP has five layers:
Application Layer, Transport Layer, Network Layer, Data Link Layer, and Physical
Layer. Conceptually both views are the same with Network Access being equivalent
to Data Link Layer and Physical Layer combined.

2.3.1 TCP/IP Layer 4: Application Layer

As with the OSI model, the Application Layer is the topmost layer of TCP/IP model.
It combines the Application, Presentation, and Session Layers of the OSI model.
The Application Layer defines TCP/IP application protocols and how host programs
interface with Transport Layer services to use the network.

Interface

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

OSI Layers TCP/IP Layers

Fig. 2.3 Relationship between OSI reference model and TCP/IP

2 The Internet in IoT

41

2.3.2 TCP/IP Layer 3: Transport Layer

The Transport Layer is the third layer of the four-layer TCP/IP model. Its main
tenacity is to permit devices on the source and destination hosts to carry on a con-
versation. The Transport Layer defines the level of service and status of the connec-
tion used when transporting data. The main protocols included at the Transport
Layer are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

2.3.3 TCP/IP Layer 2: Internet Layer

The Internet Layer of the TCP/IP stack packs data into data packets known as IP
datagrams, which contain source and destination address information that is used to
forward the datagrams between hosts and across networks. The Internet Layer is
also responsible for routing of IP datagrams.

The main protocols included at the Internet Layer are IP (Internet Protocol),
ICMP (Internet Control Message Protocol), ARP (Address Resolution Protocol),
RARP (Reverse Address Resolution Protocol), and IGMP (Internet Group
Management Protocol).

The main TCP/IP Internet Layer (or Networking Layer in OSI) devices are rout-
ers. Routers are similar to personal computers with hardware and software compo-
nents that include CPU, RAM, ROM, flash memory, NVRAM, and interfaces.
Given the importance of the router’s role in IoT, we will use the next section to
describe its main functions.

2.3.3.1 Router Main Components

There are quite a few types and models of routers. Generally speaking, every router
has the same common hardware components as shown in Fig. 2.4. Depending on the
model, router’s components may be located in different places inside the router.

 1. CPU (Central Processing Unit): CPU is an older term for microprocessor, the
central unit containing the logic circuitry that preforms the instruction of a rout-
er’s program. It is considered as the brain of the router or a computer. CPU is
responsible for executing operating system commands including initialization,
routing, and switching functions.

 2. RAM (Random Access Memory): As with PCs, RAM is a type of computer mem-
ory that can be accessed randomly; that is, any byte of memory can be accessed
without touching the preceding bytes. RAM is responsible for storing the instruc-
tions and data that CPU needs to execute. This read/write memory contains the
software and data structures that allow the router to function. RAM is volatile
memory, so it loses its content when the router is powered down or restarted.

2.3 Transmission Control Protocol/Internet Protocol (TCP/IP)

42

However, the router also contains permanent storage areas such as ROM, flash
memory, and NVRAM. RAM is used to store the following:

 (a) Operating system: The software image (e.g., Cisco’s IOS) is copied into
RAM during the boot process.

 (b) “Running Config” file: This file stores the configuration commands that
cisco IOS software is currently using on the router.

 (c) IP routing tables: Routing tables are used to determine the best path to route
packets to destination devices. It will be covered in Sect. 2.5.3.

 (d) ARP cache: ARP cache contains the mapping between IP and MAC
addresses. It is used on routers that have LAN interfaces such as Ethernet.

 (e) Buffer: Packets are temporary stored in a buffer when they are received on
congested interface or before they exit an interface.

 3. ROM (Read-Only Memory): As the name indicates, read-only memory typically
refers to hardwired memory where data (stored in ROM) cannot be changed/
modified except with a slow and difficult process. Hence, ROM is a form of
permanent storage used by the router. It contains code for basic functions to start
and maintain the router. ROM contains the ROM monitor, which is used for
router disaster recovery functions such as password recovery. ROM is nonvola-
tile; it maintains the memory contents even when the power is turned off.

 4. Flash Memory: Flash memory is nonvolatile computer memory that can be elec-
trically stored and erased. Flash is used as permanent storage for the operating
system. In most models of Cisco router, Cisco IOS software is permanently
stored in flash memory.

 5. NVRAM (Nonvolatile RAM): NVRAM is used to store the startup configuration
file “startup config,” which is used during system startup to configure the soft-
ware. This is due to the fact that NVRAM does not lose its content when the
power is turned off. In other words, the router’s configuration is not erased when
the router is reloaded.

Flash CPU
Serial Port 0 AUX

Port

VNRAM

CPU
Bus

System
Control
(ASIC)

System
Bus

Serial Port n

Ethernet Port 0

Console
Port

RAM
Ethernet Port m USB

Port

Fig. 2.4 Router main components

2 The Internet in IoT

43

Recall that all configuration changes are stored in the “running config” file in
RAM. Hence, to save the changes in the configuration in case the router is
restarted or loses power, the “running config” must be copied to NVRAM, where
it is stored as the “startup configuration” file.

Finally, NVRAM contains the software Configuration Register, a configurable set-
ting in Cisco IOS software that determines which image to use when booting
the router.

 6. Interfaces: Routers are accessed and connected to the external world via the
interfaces. There are several types of interfaces. The most common interfaces
include:

 (a) Console (Management) Interface: Console port or interface is the manage-
ment port which is used by administrators to log on to a router directly (i.e.,
without using a network connection) via a computer with an RJ-45 or mini-
USB connector. This is needed since there is no display device for a router.
The console port is typically used for initial setup given the lack of initial
network connections such as SSH or HTTPS. A terminal emulator applica-
tion (e.g., HyperTerminal or PuTTy) is required to be installed on the PC to
connect to router. Console port connection is a way to connect to the router
when a router cannot be accessed over the network.

 (b) Auxiliary Interface: Auxiliary port or interface allows a direct, non-network
connection to the router, from a remote location. It uses a connector type to
which modems can plug into, which allows an administrator from a remote
location to access the router like a console port. Auxiliary port is used as a
way to dial in to the router for troubleshooting purposes should regular con-
nectivity fail. Unlike the console port, the auxiliary port supports hardware
flow control, which ensures that the receiving device receives all data before
the sending device transmits more. In cases where the receiving device’s
buffers become full, it can pass a message to the sender asking it to tempo-
rarily suspend transmission. This makes the auxiliary port capable of han-
dling the higher transmission speeds of a modem.

Much like the console port, the auxiliary port is also an asynchronous serial
port with an RJ-45 interface. Similarly, a rollover cable is also used for con-
nections, using a DB-25 adapter that connects to the modem. Typically, this
adapter is labeled “MODEM.”

 (c) USB Interface: It is used to add a USB flash drive to a router.
 (d) Serial Interfaces (Asynchronous and Synchronous): Configuring the serial

interface allows administrators to enable applications such as wide area net-
work (WAN) access, legacy protocol transport, console server, and remote
network management.

 (e) Ethernet Interface: Ethernet is the most common type of connection com-
puters use in a local area network (LAN). Some vendors categorize Ethernet
ports into three areas:

• Standard/Classical Ethernet (or just Ethernet): Usual speed of Ethernet
is 10 Mbps.

2.3 Transmission Control Protocol/Internet Protocol (TCP/IP)

44

• Fast Ethernet: Fast Ethernet was introduced in 1995 with a speed of
100 Mbps (10× faster than standard Ethernet). It was upgraded by
improving the speed and reducing the bit transmission time. In standard
Ethernet, a bit is transmitted in 1 s, and in Fast Ethernet it takes 0.01 μs
for 1 bit to be transmitted. So, 100 Mbps means transferring speed of 100
Mbits per second.

• Gigabit Ethernet: Gigabit Ethernet was introduced in 1999 with a speed
of 1000 Mbps (10× faster than Fast Ethernet and 100× faster than classi-
cal Ethernet) and became very popular in 2010. Gigabit Ethernet maxi-
mum network limit is 70 km if single-mode fiber is used as a medium.
Gigabit Ethernet is deployed in high-capacity backbone network links. In
2000, Apple’s Power Mac G4 and PowerBook G4 were the first mass-
produced personal computers featuring the 1000BASE-T connection [2].
It quickly became a built-in feature in many other computers.
Faster Gigabit Ethernet speeds have been introduced by vendors includ-
ing 10 Gbps and 100 Gbps, which is supported, for example, by the Cisco
Nexus 7700 F3-Series 12-Port 100 Gigabit Ethernet module (Fig. 2.5).

Table 2.2 outlines the main functions of each of the router’s components.

2.3.4 TCP/IP Layer 1: Network Access Layer

The Network Access Layer is the first layer of the four-layer TCP/IP model. It com-
bines the Data Link and the Physical Layers of the OSI model. The Network Access
Layer defines details of how data is physically sent through the network. This
includes how bits are electrically or optically signaled by hardware devices that
interface directly with a network medium, such as coaxial cable, optical fiber, radio
links, or twisted pair copper wire. The most common protocol included in the
Network Access Layer is Ethernet. Ethernet uses Carrier Sense Multiple Access/

FastEthernet 0/1
FastEthernet 0/0

Compact Flash slot

73
05

6

Console
port

Auxiliary
port

Fig. 2.5 Example of a router’s rear panel. (Source: Cisco)

2 The Internet in IoT

45

Collision Detection (CSMA/CD) method to access the media, when Ethernet oper-
ates in a shared media. Such Access Method determines how a host will place data
on the medium.

2.4 IoT Network Level: Key Performance Characteristics

As we illustrated in Chap. 1, the IoT reference framework consists of four main
levels: IoT Device Level (e.g., sensors and actuators), IoT Network Level (e.g., IoT
gateways, routers, switches), IoT Application Services Platform Level (the IoT
Platform, Chap. 7), and IoT Application Level.

The IoT Network Level is in fact the TCP/IP Layers as shown in Fig. 2.6. It
should be noted that we have removed TCP/IP’s Application Layer to prevent over-
lap with the IoT Application Level.

In this section we will discuss the most important performance characteristics of
IoT network elements. Such features are essential in evaluating and selecting IoT
network devices especially IoT gateways, routers, and switches.

IoT Network Level key characteristics may be grouped into three main areas:
end-to-end delay, packet loss, and network element throughput. Ideally, engineers
want the IoT network to move data between any end points (or source and destina-
tion) instantaneously, without any delay or packet loss. However, the physical laws
in the Internet constrain the amount of packets that can be transferred between end
points per second (known as throughput), present various types of delays to transfer
packets from source to destination, and can indeed lose packets.

Table 2.2 Main functions of the router’s component

Router
component Main function

Volatile/
nonvolatile

CPU Executes operating system commands: initialization, routing,
and switching functions

Nonvolatile

RAM Stores the instruction and data that CPU needs to execute
(considered the working area of memory storage used by the
CPU)
Stores: “running config” file, routing tables, ARP cache, and
buffer

Volatile

ROM Contains code for basic functions to start and maintain the
router

Nonvolatile

Flash Permanently stores the operating system (e.g., where a router
finds and boots its IOS image)

Nonvolatile

NVRAM Stores the “startup config” file, holds configuration register
software

Nonvolatile

Interfaces/
ports

Routers are accessed and connected to the external world via
the interfaces

N/A

2.4 IoT Network Level: Key Performance Characteristics

46

2.4.1 End-to-End Delay

End-to-end delay across the IoT network is perhaps the most essential performance
characteristic for real-time applications especially in wide area networks (WAN)
that connect multiple geographies. It may be defined as the amount of time (typi-
cally in fractions of seconds) for a packet to travel across the network from source
to destination (e.g., from host A to host B as shown in Fig. 2.7). Measuring the end-
to- end delay is not a trivial task as it typically varies from one instance to another.
Engineers, therefore, are required to measure the delay over a specific period of
time and report the average delay, the maximum delay, and the delay variation dur-
ing such period (known as jitter). Hence, jitter is defined as the variation in the delay
of received packets between a pair of end points.

In general, there are several contributors to delay across the network (as shown
in Fig. 2.7). The main ones are the following:

• Processing delay: which is defined as the time a router takes to process the packet
header and determine where to forward the packet. It may also include the time

Applications

Application Services
Platform

Network

Devices

TCP/IP Layers IoT Levels

Fig. 2.6 Mapping of IoT reference framework to TCP/IP Layers

Transm
ission D

elay

Processing D
elay

Host A
Host B

Queueing
Delay

Propagation
Delay

Fig. 2.7 End-to-end delay from host A to host B with illustration at router A

2 The Internet in IoT

47

needed to check for bit-level errors in the packet (typically in the order of
microseconds).

• Queuing delay: which is defined as the time the packet spends in router queues
as it awaits to be transmitted onto the outgoing link. Clearly Queuing delay
depends on the number of earlier-arriving packets in the same queue (typically in
the order of microseconds to milliseconds).

• Transmission delay: which is defined as the time it takes to push the packet’s bits
onto the link. Transmission delay of packet of length L bits is defined L/R where
R is the transmission rate of a link between two devices. For example, for a
packet of length 1000 bits and a link of speed of 100 Mbps, the delay is 0.01 ms.
(Transmission delay is typically in the order of microseconds to milliseconds.)

• Propagation delay: which is defined as the time for a bit (of the packet) to propa-
gate from the beginning of a link (once it leaves the source router) to reach its
destination router. Hence, Propagation delay on a given link depends on the
physical medium of the link itself (e.g., twisted pair copper, fiber, coaxial cable)
and is equal to the distance of the link (between two routers) divided by the
propagation speed (e.g., speed of light). (Propagation delay is typically in the
order of milliseconds). It should be noted that unlike Transmission delay (i.e., the
amount of time required to push a packet out), Propagation delay is independent
of the packet length.

Hence, the total delay (dTotal), between two end points, is the sum of the Processing
delay (dProcess), the Queuing delay (dQueue), the Transmission delay (dTrans), and the
Propagation delay (dProp) across utilized network elements in the path, i.e.,

D d d d dTotal Process Queue Trans Prop= + + +

End-to-end delay is typically measured using Traceroute utility (available on
many modern operating systems) as well as vendor-specific tools (e.g., Cisco’s IP
SLA (service-level agreement) that continuously collects data about delay, jitter,
response time, and packet loss). What is the other utility/command that returns only
the final roundtrip times from the destination point (see Problem 27)?

A Traceroute utility’s output displays the route taken between two end systems,
listing all the intermediate routers across the network. For each intermediate router,
the utility also shows the roundtrip delay (from source to the intermediate router)
and time to live (a mechanism that limits the lifetime of the traceroutes packet).
Other advantageous of Traceroute utility includes troubleshooting (showing the net-
work administrator bottlenecks and why connections to a destination server are
poor) and connectivity (showing how systems are connected to each other and how
a service provider connects to the Internet).

Figure 2.8 shows a simple example of Traceroute utility to trace a path from a
client (connected to router A) to the server. In this case, the client enters the com-
mand “traceroute 10.1.3.2.” Traceroute utility will display four roundtrip delays,
based on three different test packets, sent from the client’s computer to router A,
client’s computer to router B, client’s computer to router C, and finally client’s com-
puter to the server.

2.4 IoT Network Level: Key Performance Characteristics

48

The output shows that the roundtrip delay from the client’s computer to router A
(ingress port) is 1 ms for the first test packet, 2 ms for the second test packet, and
1 ms for the third and final test. It should be noted that “three test packets” is a typi-
cal default value in Traceroute tool and can be adjusted as needed. Also, other
parameters may be reported by the tool (e.g., time to live (TTL)) depending on the
user’s tool configurations.

A# trceroute 10.1.3.2

Type escape sequence to abort. Tracing the route to 10.1.3.2

1 10.1.0.2 1 ms, 2 ms, 1 ms
2 10.1.1.2 13 ms, 14 ms, 15 ms
3 10.1.2.2 26 ms, 31 ms, 29 ms
4 10.1.3.2 41 ms, 43 ms, 44 ms

2.4.2 Packet Loss

Packet loss occurs when at least one packet of data traveling across a network fails
to reach its destination. In general, packets are dropped and consequently lost when
the network is congested (i.e., one of the network elements is already operating at
full capacity and cannot keep up with arriving packets). This is due to the fact that
both queues and links have finite capacities. Hence, a main reason for packet loss is
link or queue congestion (i.e., a link between two devices, and its associated queues,
is fully occupied when data arrives). Another reason for packet loss is router perfor-
mance (i.e., links and queues have adequate capacity, but the device’s CPU or mem-
ory is fully utilized and not able to process additional traffic). Less common reasons
include faulty software deployed on the network device itself or faulty cables.

It should be noted that packet loss may not be as bad as it first seems. Many
applications are able to gracefully handle it without impacting the end user, i.e., the
application realizes that a packet was lost, adjusts the transfer speed, and requests
data retransmission. This works well for file transfer and emails. However, it does
not work well for real-time applications such as video conferencing and voice
over IP.

10.1.0.2 10.1.1.2 10.1.2.2
A B C

10.1.3.2

Client
10.1.0.1 10.1.1.1 10.1.2.1 10.1.3.1

Server

Fig. 2.8 Traceroute example

2 The Internet in IoT

49

2.4.3 Throughput

Throughput may be defined as the maximum amount of data moved successfully
between two end points in a given amount of time. Related measures include the
link and device speed (how fast a link or a device can process the information) and
response time (the amount of time to receive a response once the request is sent).

Throughput is one of the key performance measures for network and computing
devices and is typically measured in bits per second (bps) or gigabits per second
(Gbps) at least for larger network devices. The system throughput is typically calcu-
lated by aggregating all throughputs across end points in a network (i.e., sum of
successful data delivered to all destination terminals in a given amount of time).

The simplest way to show how throughput is calculated is through examples.
Assume host A is sending a data file to host B through three routers and the speed
(e.g., maximum bandwidth) of link i is Ri as shown in Fig. 2.9. Also assume that
each router speed (processing power) is higher than the speed of any link and no
other host is sending data. In this example, the throughput is

min .R ,R ,R andR1 2 3 4()

Thus if R1 = R2 = R3 = 10 Mbps and R4 = 1 Mbps, the throughput is 1 Mbps.
Estimating the throughput is more complicated when multiple paths are allowed

in the network. Figure 2.10, for instance, shows that data from host A to host B may
take path R1, R2, R3, and R4 or R1, R5, R6, and R4.

Using the pervious example assumptions (i.e., the speed of each router is higher
than the speed of any link and no other host is sending data) and the following new
assumptions:

• R2 = R3 = R5 = R6 = 10 Mbps.
• R1 = R4 = 1 Mbps.
• Data is equally divided between the two paths.

The throughput for this example is still 1 Mbps.
Now, if links R1 and R4 are upgraded to 100 Mbps, i.e.,

• R2 = R3 = R5 = R6 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the two paths.

Then, the throughput will be 20 Mbps (see Problem 25).

R1 R2 R3 R4

Host A Host B

Fig. 2.9 Throughput for a file transfer from host A to host B with a single route

2.4 IoT Network Level: Key Performance Characteristics

50

2.5 Internet Protocol Suite

As we mentioned earlier, TCP/IP provides end-to-end connectivity specifying how
data should be packetized, addressed, transmitted, routed, and received at the desti-
nation. Table 2.3 lists top (partial list) protocols at each layer.

The objective of this chapter is not to provide an exhaustive list of the TCP/IP
protocols but rather to provide a summary of the key protocols that are essential
for IoT.

The remainder of this chapter focuses on the main Internet Layer address proto-
cols, namely, IP version 4 and IP version 6. It then describes the main Internet rout-
ing protocols, namely, OSPF, EIRGP, and BGP.

2.5.1 IoT Network Level: Addressing

As we mentioned earlier in this chapter, Internet Protocol (IP) provides the main
internetwork routing as well as error reporting and fragmentation and reassembly of
information units called datagrams for transmission over networks with different
maximum data unit sizes. IP addresses are globally unique numbers assigned by the
Network Information Center. Globally unique addresses permit IP networks any-
where in the world to communicate with each other. Most of existing networks
today use IP version 4 (IPv4). Advanced networks use IP version 6 (IPv6).

R5
R6

R1 R2 R3 R4

Host A Host B

Fig. 2.10 Throughput for a file transfer from host A to host B with multiple routes

Table 2.3 Examples of Internet protocol suite (partial list)

TCP/IP layer Top protocols

Application layer BGP, DHCP, DNS, HTTP, IMAP, LDAP, MGCP, POP, ONC/RPC, RTP,
RTSP, RIP, SIP, SNMP, SSH, Telnet, SSL, SMTP (Email), XMPP

Transport layer TCP, UDP, DCCP, SCTP, RSVP
Internet layer IPv4, IPv6, ICMP, ICMPv6, IGMP, IPSec, OSPF, EIGRP
Network Interface
layer

ARP, PPP, MAC

2 The Internet in IoT

51

2.5.1.1 IP Version 4

IPv4 addresses are normally expressed in dotted-decimal format, with four numbers
separated by periods, such as 192.168.10.10. It consists of 4-octets (32-bit) number
that uniquely identifies a specific TCP/IP (or IoT) network and a host (computer,
printer, router, IP-enabled sensor, any device requiring a network interface card)
within the identified network. Hence, an IPv4 address consists of two main parts:
the network address part and the host address part. A subnet mask is used to divide
an IP address into these two parts. It is used by the TCP/IP protocol to determine
whether a host is on the local subnet or on a remote network.

IPv4 Subnet Mask

It is important to recall that in TCP/IP (or IoT) networks, the routers that pass pack-
ets of data between networks do not know the exact location of a host for which a
packet of information is destined. Routers only know what network the host is a
member of and use information stored in their route table to determine how to get
the packet to the destination host’s network. After the packet is delivered to the des-
tination’s network, the packet is delivered to the appropriate host. For this process to
work, an IP address is divided into two parts: network address and host address.

To better understand how IP addresses and subnet masks work, IP addresses
should be examined in binary notation. For example, the dotted- decimal IP address
192.168.10.8 is (in binary notation) the 32 bit number 11000000.10101000.000010
10.00001000. The decimal numbers separated by periods are the octets converted
from binary to decimal notation.

The first part of an IP address is used as a network address and the last part as a
host address. If you take the example 192.168.10.8 and divide it into these two parts,
you get the following: 192.168.10.0 network address and .8 host address or
192.168.10.0 network address and 0.0.0.8 host address.

In TCP/IP, the parts of the IP address that are used as the network and host
addresses are not fixed, so the network and host addresses above cannot be deter-
mined unless you have more information. This information is supplied in another
32-bit number called a subnet mask. In the above example, the subnet mask is
255.255.255.0. It is not obvious what this number means unless you know that
255 in binary notation equals 11111111; so, the subnet mask is

 11111111 11111111 11111111 0000000. . .

Lining up the IP address and the subnet mask together, the network and host por-
tions of the address can be separated:

11000000 10101000 00001010 10001000 192 168 10 8.− −IPaddress(()

11111111 11111111 11111111 00000000 255 255 25.− −Subnet mask 55 0.()

2.5 Internet Protocol Suite

52

The first 24 bits (the number of ones in the subnet mask) are identified as the
network address, with the last 8 bits (the number of remaining zeros in the subnet
mask) identified as the host address. This gives you the following:

11000000 10101000 00001010 00000000 192 16. . . .− −Network address 88 10 0. .()

00000000 00000000 00000000 00001000 000 000 0.− −Host address 000 8.()

IPv4 Classes

Five classes (A, B, C, D, and E) have been established to identify the network and
host parts. All the five classes are identified by the first octet of IP address. Classes
A, B, and C are used in actual networks. Class D is reserved for multicasting (data
is not destined for a particular host; hence there is no need to extract host address
from the IP address). Class E is reserved for experimental purposes.

Figure 2.11 shows IPv4 address formats for classes A, B, and C. Class A net-
works provide only 8 bits for the network address field and 24 bits for host address.
It is intended mainly for use with very large networks with large number of hosts.
The first bit of the first octet is always set to 0 (zero). Thus the first octet ranges from
1 to 127, i.e., 00000001–011111111. Class A addresses only include IP starting
from 1.x.x.x to 126.x.x.x only. The IP range 127.x.x.x is reserved for loopback IP
addresses. The default subnet mask for class A IP address is 255.0.0.0 which implies
that class A addressing can have 126 networks (27–2) and 16,777,214 hosts (224–2).

Class B networks allocate 16 bits for the network address field and 16 bits for the
host address filed. An IP address which belongs to class B has the first two bits in
the first octet set to 10, i.e., 10000000–10111111 or 128–191 in decimal. Class B IP

8 Bits 8 Bits 8 Bits 8 Bits

0

Network Bits Host Bits

10

Network Bits Host Bits

110

Network Bits Host Bits

Class A

Class B

Class C

Fig. 2.11 IPv4 address formats for classes A, B, and C

2 The Internet in IoT

53

addresses range from 128.0.x.x to 191.255.x.x. The default subnet mask for class B
is 255.255.x.x. Class B has 16,384 (214) network addresses and 65,534 (216–2) host
addresses.

Class C networks allocate 24 bits for the network address field only 8 bits for the
host field. Hence, the number of hosts per network may be a limiting factor. The first
octet of Class C IP address has its first 3 bits set to 110, that is: 1110 0000–1110
1111 or 224–239 in decimal.

Class C IP addresses range from 192.0.0.x to 223.255.255.x. The default subnet
mask for Class C is 255.255.255.x. Class C gives 2,097,152 (221) Network addresses
and 254 (28–2) Host addresses.

Finally, IP networks may also be divided into smaller units called subnetworks
or subnets for short. Subnets provide great flexibility for network administrators.
For instance, assume that a network has been assigned a Class A address and all the
nodes on the network use a Class A address. Further assume that the dotted-decimal
representation of this network’s address is 28.0.0.0. The network administrator can
subdivide the network using sub-netting by “borrowing” bits from the host portion
of the address and using them as a subnet field.

2.5.1.2 IP Version 6

IPv4 has room for about 4.3 billion addresses, which is not nearly enough for the
world’s people, let alone IoT with a forecast of 20 billion devices by 2020. In 1998,
the Internet Engineering Task Force (IETF) had formalized the successor protocol:
IPv6. IPv6 uses a 128-bit address, allowing 2128 or 340 trillion trillion trillion
(3.4 × 1038) addresses. This translates to about 667 × 1021 (667 sextillion) addresses
per square meter in earth. Version 4 and version 6 protocols are not designed to be
interoperable, complicating the transition to IPv6. However, several IPv6 transition
mechanisms have been devised to permit communication between IPv4 and IPv6 hosts.

IPv6 delivers other benefits in addition to a larger addressing space. For example,
permitting hierarchical address allocation techniques that limit the expansion of
routing tables simplified and expanded multicast addressing and service delivery
optimization. Device mobility, security, and configuration aspects have been con-
sidered in the design of IPv6.

 1. IPv6 Addresses Are Broadly Classified Into Three Categories:

 (a) Unicast addresses: A unicast address acts as an identifier for a single
interface.

An IPv6 packet sent to a unicast address is delivered to the interface identified
by that address.

 (b) Multicast addresses: A multicast address acts as an identifier for a group/set
of interfaces that may belong to different nodes. An IPv6 packet delivered to
a multicast address is delivered to the multiple interfaces.

 (c) Anycast addresses: Anycast addresses act as identifiers for a set of interfaces
that may belong to different nodes. An IPv6 packet destined for an anycast
address is delivered to one of the interfaces identified by the address.

2.5 Internet Protocol Suite

54

2.5.2 IPv6 Address Notation

The IPv6 address is 128 bits long. It is divided into blocks of 16 bits. Each 16-bit
block is then converted to a 4-digit hexadecimal number, separated by colons. The
resulting representation is called colon-hexadecimal. This is in contrast to the 32-bit
IPv4 address represented in dotted-decimal format, divided along 8-bit boundaries,
and then converted to its decimal equivalent, separated by periods.

 1. IPV6 Example

 (a) Binary Form

• 01110001110110100000000011010011000000000000000000101
11100111011

• 000000101010101000000000111111111111111000101000100
1110001011011

 (b) 16-Bit Boundaries Form

• 0111000111011010 0000000011010011 0000000000000000
0010111100111011

• 0000001010101010 0000000011111111 1111111000101000
1001110001011011

 (c) 16-Bit Block Hexadecimal and Delimited with Colons Form

• 71DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5B.
• i.e., (0111000111011010)2 = (71DA)16, (0000000011010011)2 = (D3)16,

and so on.

 (d) Final Form (16-Bit Block Hexadecimal and Delimited with Colons Form,
Simplified by Removing the Leading Zeros).

• 71DA:D3:0:2F3B:2AA:FF:FE28:9C5B

2.5.3 IoT Network Level: Routing

Routers use routing tables to communicate: send and receive packets among them-
selves. TCP/IP routing specifies that IP packets travel through an internetwork one
router hop at a time. Hence, the entire route is not known at the beginning of the
journey. Instead, at each stop, the next router hop is determined by matching the
destination address within the packet with an entry in the current router’s routing
table using internal information.

Before describing the main routing protocols in the Internet today, it is important
to introduce a few fundamental definitions.

2 The Internet in IoT

55

• Static Routes: Static routes define specific paths that are manually configured
between two routers. Static routes must be manually updated when network
changes occur. Static routes use should be limited to simple networks with pre-
dicted traffic behavior.

• Dynamic Routes: Dynamic routing requires the software in the routing devices to
calculate routes. Dynamic routing algorithms adjust to changes in the network
and repeatedly select best routes. Internet-based routing protocols are dynamic in
nature. Routing tables should be updated automatically to capture changes in the
network (e.g., link just went down, link that was down is no up, link speed
update).

• Autonomous System (AS): It is a network or a collection of networks that are
managed by a single entity or organization (e.g., Department Network). An AS
may have multiple subnetworks with combined routing logic and common rout-
ing policies. Routers used for information exchange within AS are called interior
routers. They use a variety of interior routing protocols such as OSPF and
EIGRP. Routers that move information between autonomous systems are called
exterior routers, and they use the exterior gateway protocol such as Border
Gateway Protocol (BGP). Interior routing protocols are used to update the rout-
ing tables of routers within an AS. In contrast, exterior routing protocols are used
to update the routing tables of routers that belong to different AS. Figure 2.12
shows an illustration of two autonomous systems connected by BGP external
routing protocol.

• Routing Table: Routing tables basically consist of destination address and next
hop pairs. Figure 2.13 shows an example of a typical Cisco router routing table
using the command “show ip route.” It lists the set of comprehensive codes
including various routing schemes. Figure 2.13 also shows that the first entry is
interpreted as meaning “to get to network 29.1.0.0 (subnet 1 on network 24), the
next stop is the node at address 51.29.23.12.” We will refer to this figure as we
introduce various routing schemes.

• Distance Vector Routing: A vector in distance vector routing contains both dis-
tance and direction to determine the path to remote networks using hop count as
the metric. A hop count is defined as the number of hops to destination router or
network (e.g., if there are two routers between a source router and destination
router, the number of hops will be three). All neighbor routers will send informa-
tion about their connectivity to their neighbors indicating how far other routers
are from them. Hence, in distance vector routing, all routers exchange informa-
tion only with their neighbors (not with all routers). One of the weaknesses of
distance vector protocols is convergence time, which is the time it takes for rout-
ing information changes to propagate through all the topology.

• Link-State Routing: Contrast to distance vector, link-state routing requires all
routers to know about the paths reachable by all other routers in the network. In
this case, link-state data is flooded to the entire router in AS. Link-state routing
requires more memory and processor power than distance vector routing. Also,
link-state routing can degrade the network performance during the initial discov-

2.5 Internet Protocol Suite

56

ery process, as it requires flooding the entire network with link-state advertise-
ments (LSAs).

2.5.3.1 Interior Routing Protocols

Interior gateway protocols (IGPs) operate within the confines of autonomous sys-
tems. We will next describe only the key protocols that are currently popular in
TCP/IP networks. For additional information, the reader is encouraged to peruse the
references at the end of the chapter.

 1. Routing Information Protocol (RIP): RIP is perhaps the oldest interior distance
vector protocol. It was developed by Xerox Corporation in the early 1980s. It
uses hop count (maximum is 15) and maintains times to detect failed links. RIP
has a few serious shortcomings: it ignores differences in line speed, line utiliza-
tion, and other metrics. More significantly, RIP is very slow to converge for
larger networks, consumes too much bandwidth to update the routing tables, and
can take a long time to detect routing loops.

 2. Enhanced Interior Gateway Routing Protocol (EIGRP): Cisco was the first com-
pany to solve RIP’s limitations by introducing the interior gateway routing pro-
tocol (IGRP) first in the mid-1980s. IGRP allows the use of bandwidth and delay
metrics to determine the best path. It also converges faster than RIP by prevent-
ing sharing hop counts and avoiding potential routing loops caused by disagree-
ment over the next routing hop to be taken.

Cisco then enhanced IGRP to handle larger networks. The enhanced IGRP (EIGRP)
combines the ease of use of traditional distance vector routing protocols with the
fast rerouting capabilities of the newer link-state routing protocols. It consumes
significantly less bandwidth than IGRP because it is able to limit the exchange
of routing information to include only the changed information.

 3. Open Shortest Path First (OSPF): Open Shortest Path First (OSPF) was devel-
oped by the Internet Engineering Task Force (IETF) in RFC-2328 as a replace-
ment for RIP. OSPF is based on work started by John McQuillan in the late
1970s and continued by Radia Perlman and Digital Equipment Corporation in
the mid-1980s. OSPF is widely used as the Interior Router protocol in TCP/IP
networks. OSPF is a link-state protocol, so routers inside an AS only broadcast
their link-states to all the other routers. It uses configurable least cost parameters
including delay, data rate/link speed, cost, and other parameters. Each router
maintains a database topology of the AS to which it belongs. In OSPF every
router calculates the least cost path to all destination networks using Dijkstra’s
algorithm. Only the next hop to the destination is stored in the routing table.

OSPF maintains three separate tables: neighbor table, link-state database table, and
routing table.

 (a) Neighbor Table: Neighbor table uses the so-called Hello Protocol to build
neighbor relationship. The relationship is used to exchange information with
all neighbors for the purpose of building the link-state DB table. When a

2 The Internet in IoT

57

new router joins the network, it sends a “Hello” message periodically to all
neighbors (typically every few seconds). All neighbors will also send Hello
messages. The messages maintain the state of the neighbor tables.

 (b) Link-State DB Table: Once the neighbor tables are built, link-state advertise-
ments (LSAs) will be sent out to all neighbors. LSAs are packets that con-
tain information about networks that are directly connected to the router that
is advertising. Neighboring routers will receive the LSAs and add the infor-
mation to the link-state DB. They then increment the sequence number and
forward LSAs to their neighbors. Hence, LSAs are prorogated from routers
to all the neighbors with advertised information about all networks con-
nected to them. This is considered the key to dynamical routing.

 (c) Routing Table: Once the link-state DB tables are built, Dijkstra’s algorithm
(sometimes called the Shortest Path First Algorithm) is used to build the
routing tables.

 4. Integrated Intermediate System to Intermediate System (IS-IS): Integrated IS-IS
is similar in many ways to OSPF. It can operate over a variety of subnetworks,
including broadcast LANs, WANs, and point-to-point links. IS-IS was also
developed by IETF as an Internet Standard in RFC 1142.

2.5.3.2 Exterior Routing Protocols

Exterior Routing Protocols provide routing between autonomous systems. The two
most popular Exterior Routing Protocols in the TCP/IP are EGP and BGP.

 1. Exterior Gateway Protocol (EGP): EGP was the first exterior routing protocol
that provided dynamic connectivity between autonomous systems. It assumes
that all autonomous systems are connected in a tree topology. This assumption is
no longer true and made EGP obsolete.

 2. Border Gateway Protocol (BGP): BGP is considered the most important and
widespread exterior routing protocol. Like EGP, BGP provides dynamic con-
nectivity between autonomous systems acting as the Internet core routers. BGP
was designed to prevent routing loops in arbitrary topologies by preventing rout-
ers from importing any routes that contain themselves in the autonomous sys-
tem’s path. BGP also allows policy-based route selection based on weight (set
locally on the router), local preference (indicates which route has local prefer-
ence and BGP selects the one with the highest preference), network or aggregate
(chooses the path that was originated locally via an aggregate or a network), and
shortest AS Path (used by BGP only in case it detects two similar paths with
nearly the same local preference, weight and locally originated or aggregate
addresses) just to name a few.

BGP’s routing table contains a list of known routers, the addresses they can reach,
and a cost metric associated with the path to each router so that the best available
route is chosen. BGP is a layer 4 protocol that sits on top of TCP. It is simpler
than OSPF, because it does not have to worry about functions that TCP addresses.

2.5 Internet Protocol Suite

58

The latest revision of BGP, BGP4 (based on RFC4271), was designed to handle
the scaling problems of the growing Internet.

2.6 Summary

This chapter focused on the “Internet” in the “Internet of Things.” It started with an
overview of the well-known Open System Interconnection Model Seven Layers
along with the top devices and protocols. It showed how each layer divides the data
it receives from end-user applications or from layer above it into protocol data units
(PDUs) and then adds additional information to each PDU for tracking. This pro-
cess is called the Encapsulation. Examples of PDUs include Segments on the
Transport Layer, Packets on the Network Layer, and Frames on the Data Link Layer.
PDUs are passed down through the stack of layers until they can be transmitted over
the Physical Layer. The OSI model ensures that both users speak the same language
on the same layer allowing sending and receiving layers to virtually communicate.
Data passed upward is decapsulated, with the decapsulation process, before being
passed further up to the destination server, user, or application.

Next, it described the TCP/IP model which is the basis for the Internet. The TCP/
IP protocol has two big advantages in comparison with earlier network protocols:
reliability and flexibility to expand. In fact, the TCP/IP protocol was designed for
the US Army addressing the reliability requirement (resist breakdowns of commu-
nication lines in times of war). The remarkable growth of Internet applications can
be attributed to its fixable expandability model.

The chapter then introduced the key IoT Network Level characteristics that
included end-to-end delay, packet loss, and network element throughput. Such char-
acteristics are vital for network design and vendor selection. The chapter next com-
pared IP version 4 with IP version 6. It showed the limitation of IPv4, especially for
the expected 50 billion devices for IoT. IPv4 has room for about 4.3 billion addresses,
whereas IPv6, with a 128-bit address, has room for 2128 or 340 trillion trillion trillion
(3.4 × 1038) addresses. Finally detailed description of IoT Network Level routing
was described and compared with classical routing protocols. It was mentioned that
routing tables are used in routers to send and receive packets. Another key feature
of TCP/IP routing is the fact that that IP packets travel through an internetwork one
router hop at a time thus the entire route is not known at the beginning of the journey.

Problems and Exercises

 1. Ethernet and Point-to-Point Protocol (PPP) are two examples of data link pro-
tocols listed in this chapter. Name two other data link protocols.

 2. Provide an example of Session Layer protocol.
 3. In a table format, compare the bandwidth, distance, interference rating, cost,

and security of (a) twisted pair, (b) coaxial cabling, and (c) fiber optical cabling.
 4. (a) What are the main components of a router? (b) Which element is considered

the most essential? (c) Why?

2 The Internet in IoT

59

 5. What is the main function of NVRAM? Why is such function important to
operate a router?

 6. How do network administrators guarantee that changes in the configuration are
not lost in case the router is restarted or loses power?

 7. What is a disaster recovery function in a router? Which router’s sub-component
contains such function?

 8. Many argue that routers are special computers but built to handle internetwork
traffic. List three main differences between routers and personal computers.

 9. There are no input devices for router like a monitor, a keyboard, or a mouse.
How does a network administrator communicate with the router? List all pos-
sible scenarios. What are the main differences between such interfaces?

 10. How many IPv4 addresses are available? Justify your answer.
 11. What is the ratio of the number of addresses in IPv6 compared to IPv4?
 12. IPv6 uses a 128-bit address, allowing 2128 addresses. In decimal, how many

IPv6 addresses exist? How many IPv6 addresses will each human have? Why
do we need billions of addresses for each human being?

 13. How many IPv6 address will be available on each square meter of earth?
 14. What are the major differences between interior and exterior routing protocols?
 15. What is distance vector protocol? Why is it called a vector? Where is it used?
 16. When would you use static routing and when would use dynamic routing? Why?
 17. Most IP networks use dynamic routing to communicate between routers but

may have one or two static routes. Why would you use static routes?
 18. We have mentioned that in TCP/IP networks, the entire route is not known at

the beginning of the journey. Instead, at each stop, the next router hop is deter-
mined by matching the destination address within the packet with an entry in
the current router’s routing table using internal information. IP does not provide
for error reporting back to the source when routing anomalies occur.

 (a) Which Internet Protocol provides error reporting?
 (b) List two other tasks that this protocol provides?

 19. Why is EGP considered to be obsolete for the current Internet?
 20. In a table, compare the speed and distance Standard Ethernet, Fast Ethernet, and

Giga Ethernet. Why is Ethernet connection limited to 100 m?
 21. Why the Internet does require both TCP and IP protocols?
 22. Are IPv4 and IPv6 protocols designed to be interoperable? How would an

enterprise transition from IPv4 to IPv6?
 23. What are the four different reasons for packet loss? List remediation for

each reason.
 24. List two factors that can affect throughput of a communication system.
 25. Figure 2.10 (in Sect. 2.4.3) stated the throughput between host A and host B is

20 Mbps with the assumptions:

• R2 = R3 = R5 = R6 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the two paths.

How did the authors arrive at 20 Mbps?

2.6 Summary

60

 26. Assuming host A is transferring a large file to host B. What is the throughput
between host A and host B for the network shown below?

 (a) Assumptions:

• The speed of each router is higher than the speed of any link in the
network.

• No other host is sending data.
• R2 = R3 = R5 = R6 = R7 = R8 = 10 Mbps.
• R1 = R4 = 1 Mbps.
• Data is equally divided between the three paths.

 (b) Assumptions:

• The speed of each router is higher than the speed of any link in the
network.

• No other host is sending data.
• R2 = R3 = R5 = R6 = R7 = R8 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the three paths.

 (c) Assumptions:

• The speed of each router is 1 Mbps.
• No other host is sending data.
• R2 = R3 = R5 = R6 = R7 = R8 = 10 Mbps.
• R1 = R4 = 100 Mbps.
• Data is equally divided between the three paths.

 27. What is Traceroute? What does it typically report? What are the main advanta-
geous of trace route? What is the main difference between Traceroute and Ping?

 28. For the network shown below, assume the network administer is interested in
measuring the end-to-end delay from router A to the server.

 (a) What is the Traceroute command? Hence, Traceroute command is sent
from router A directly (i.e., via the shown connected terminal).

2 The Internet in IoT

61

AS1

Network

BGP

Network Network

AS2

Fig. 2.12 Example of
autonomous systems

Codes: C - connected,
S - static,
I - IGRP,
R - RIP,
M - mobile,
B - BGP
D - EIGRP,
EX - EIGRP external,
O - OSPF,
IA - OSPF inter area
N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2
E1 - OSPF external type 1,
E2 - OSPF external type 2,
E - EGP,
i - IS-IS,
su - IS-IS summary,
L1 - IS-IS level-1,
L2 - IS-IS level-2
ia - IS-IS inter area,
* - candidate default,
U - per-user static route,
o - ODR,
P - periodic downloaded static route

Gateway of last resort is not set

24.0.0.0/16 is subnetted, 1 subnets
29.1.0.0 [110/65] via 51.29.23.12, 08:01:39, FastEthernet0/1
51.0.0.0/24 is subnetted, 1 subnets C
51.34.23.0 is directly connected, FastEthernet0/1

Fig. 2.13 Example of a routing table

2.6 Summary

62

 (b) Which device will send their delays?

 29. What is time to live command? Why is it needed?

References

 1. W. Odom, CCNA Routing and Switching 200–120 Official Cert Guide Library Book, ISBN:
978–1587143878, May 2013

 2. P. Browning, F. Tafa, D. Gheorghe, D. Barinic, Cisco CCNA in 60 Days, ISBN: 0956989292,
March 2014

 3. G. Heap, L. Maynes, CCNA Piratical Studies Book (Cisco Press, April 2002)
 4. Information IT Online Library.: http://www.informit.com/library/content.

aspx?b=CCNA_Practical_Studies&seqNum=12
 5. Inter NIC (InterNIC is a registered service mark of the US Department of Commerce. It is

licensed to the Internet Corporation for Assigned Names and Numbers, which operates this
website)—Public Information Regarding Internet Domain Name Registration Services, Inter
NIC, Online: https://lookup.icann.org/

 6. Understanding TCP/IP addressing and subnetting basics, Online: https://support.microsoft.
com/en- us/kb/164015

 7. Tutorials Point, “IPv4 – Address Classes”, Online: http://www.tutorialspoint.com/ipv4/ipv4_
address_classes.htm

 8. Google IPv6, “What if the Internet ran out of room? In fact, it’s already happening”, Online:
http://www.google.com/intl/en/ipv6/

 9. Wikipedia, “Internet Protocol version 6 (IPv6):, Online: https://en.wikipedia.org/wiki/IPv6
 10. IPv6 Addresses, Microsoft Windows Mobile 6.5, April 8, 2010, Online: https://msdn.micro-

soft.com/en- us/library/aa921042.aspx
 11. Binary to Hexadecimal Convert, Online: http://www.binaryhexconverter.com/

binary- to- hex- converter
 12. Technology White Paper, Cisco Systems online: http://www.cisco.com/c/en/us/tech/ip/ip-

routing/tech- white- papers- list.html
 13. M. Caeser, J. Rexford, “BGP routing policies in ISP networks”, Online: https://www.

cs.princeton.edu/~jrex/papers/policies.pdf
 14. A. Shaikh, A.M. Goyal, A. Greenberg, R. Rajan, An OSPF topology server: Design and evalu-

ation. IEEE J. Sel. Areas Commun 20(4) (2002)
 15. Y. Yang, H. Xie, H. Wang, A. Silberschatz, Y. Liu, L. Li, A. Krishnamurthy, On route selection

for interdomain traffic engineering. IEEE Netw. Mag. Spec. Issue Interdomain Rout (2005)
 16. N. Feamster, J. Winick, J. Rexford, “A model of BGP routing for network engineering,” in

Proc. ACM SIGMETRICS, June 2004
 17. N. Feamster, H. Balakrishnan, Detecting BGP configuration faults with static analysis, in Proc.

Networked Systems Design and Implementation, (2005)
 18. Apple History/Power Macintosh Gigabit Ethernet, Online: http://www.apple- history.com/

g4giga. Retrieved November 5, 2007

2 The Internet in IoT

http://www.informit.com/library/content.aspx?b=CCNA_Practical_Studies&seqNum=12
http://www.informit.com/library/content.aspx?b=CCNA_Practical_Studies&seqNum=12
https://lookup.icann.org/
https://support.microsoft.com/en-us/kb/164015
https://support.microsoft.com/en-us/kb/164015
http://www.tutorialspoint.com/ipv4/ipv4_address_classes.htm
http://www.tutorialspoint.com/ipv4/ipv4_address_classes.htm
http://www.google.com/intl/en/ipv6/
https://en.wikipedia.org/wiki/IPv6
https://msdn.microsoft.com/en-us/library/aa921042.aspx
https://msdn.microsoft.com/en-us/library/aa921042.aspx
http://www.binaryhexconverter.com/binary-to-hex-converter
http://www.binaryhexconverter.com/binary-to-hex-converter
http://www.cisco.com/c/en/us/tech/ip/ip-routing/tech-white-papers-list.html
http://www.cisco.com/c/en/us/tech/ip/ip-routing/tech-white-papers-list.html
https://www.cs.princeton.edu/~jrex/papers/policies.pdf
https://www.cs.princeton.edu/~jrex/papers/policies.pdf
http://www.apple-history.com/g4giga
http://www.apple-history.com/g4giga

63© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_3

Chapter 3
The Things in IoT: Sensors and Actuators

3.1 Introduction

The Internet of Things (IoT) was defined in Chap. 1 as the intersection of the
Internet, Things, and Data. Processes and standards were also added for a more
comprehensive IoT definition. Things were defined as anything and everything
stretching from appliances to buildings to cars to people to animals, to trees, to
plants, etc.

Chapter 1 further categorized IoT into four main levels: IoT devices, IoT net-
work, IoT services platform, and IoT applications. Each level has its own medium
and protocols.

This chapter first defines the “Things” in IoT and then describes the key require-
ments for things to be able communicate over the Internet. The two main require-
ments for “Things” in IoT are sensing and addressing. Sensing is essential to identify
and collect key parameters for analysis, and addressing is necessary to uniquely
identify things over the Internet. While sensors are very crucial in collecting key
information to monitor and diagnose the “Things,” they typically lack the ability to
control or repair such “Things” when overhaul is needed. This raise the question:
why spend money to sense “Things” if they cannot be controlled? Actuators have
been introduced to address this important question in IoT. With this in mind, the key
requirements for “Things” in IoT now consist of sensing, actuating, and unique
identification as shown in Figs. 3.1 and 3.2. It should be noted that sensing and
actuating capabilities may be supported on the same device.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_3#DOI

64

3.2 IoT Sensors

3.2.1 Definition

A sensor is a device (typically electronic) that detects events or changes in its physi-
cal environment (e.g., temperature, sound, heat, pressure, flow, magnetism, motion,
chemical and biochemical parameters) and provides a corresponding output. Most
sensors take analog inputs and deliver digital, often electrical, outputs. Because the

Fig. 3.1 “Thing” in IoT: definition view

Fig. 3.2 “Things” in IoT: IoT level view

3 The Things in IoT: Sensors and Actuators

65

sensing element, on its own, typically produces analog output, an analog-to-digital
converter is often required.

Sensors are comparable to the human five senses. They form the front end of the
IoT devices, i.e., “Things.” Sensors are very crucial in every IoT vertical (e.g., smart
cities, smart grid, healthcare, agriculture, security and environment monitoring, and
smart parking) as they bridge the world’s physical objects with the Internet.

Sensors may be very simple with a core function to collect and transmit data or
smart by providing additional functionality to filter duplicate data and only notify
the IoT gateway when very specific conditions are met. This requires some pro-
graming logic to be present on the sensor itself. In this case, an IoT sensing device
requires at least three elements—sensor(s), microcontrollers, and connectivity to
send filtered data to IoT gateway or other systems. Figure 3.3 shows the components
for smart sensor.

Sensors may collect large amounts of data at any time and from any location and
transmit it over an IoT network in real time. The data is then analyzed and possibly
correlated with other business intelligence databases to provide business insight or
enhanced awareness of the environment, bringing onward opportunities and/or
gains in efficiency and productivity.

3.2.2 Why Sensors

As we mentioned above, a sensor’s main purpose is collecting data from its sur-
rounding environment and providing output to its adjoining devices (e.g., gateways,
actuators) or applications. Sensors typically collect data using physical interfaces
(inputs) that sense the environment and then convert input signals into electrical

Electrical Signal

IoT
Gateway

Transceiver
(Data Transmission)

Microcontroller
(Data Processing)

Sensing Element
(Data Collection)

Physical Signal

Environment

Fig. 3.3 Components of
smart sensors

3.2 IoT Sensors

66

signals (outputs) that are understood by the communication and computing devices.
Output signals are then processed by the gateways and/or by applications of the IoT
Platform. In some instances, sensors’ outputs are processed directly by a light-
weight application.

3.2.3 Sensor Types

There are many types of proprietary and nonproprietary sensors. The current IoT
trend is to move away from proprietary and closed systems and embrace IP-based
sensor networks. This allows native connectivity between wireless sensor networks
and the Internet, enabling smart objects to participate in IoT. IP-based sensor net-
works require each device to be uniquely identifiable with a unique IP address so
that it can be easily identifiable over a large network. Building an all-IP infrastruc-
ture from scratch, however, would be difficult because many different sensor and
actuator technologies (both wired and wireless) have already been deployed over
the years.

There are many different types of sensors across various technologies. The most
common of which include:

 1. Temperature Sensors: Temperature is perhaps the most commonly measured
conservational quantity. This is anticipated since most physical, electronic,
chemical, mechanical, and biological systems are affected by temperature.
There are four types of temperature sensors:

 (a) Thermocouple Sensors: A thermocouple is a device consisting of two dif-
ferent and dissimilar conductors in contact. It produces a voltage as a result
of the thermoelectric effect. Thermocouple sensor is made by joining two
dissimilar metals at one end.

 (b) Resistance Temperature Detector (RTD) Sensors: RTDs are temperature
sensing devices whose resistance changes with temperature. They have
been used for many years to measure temperature in laboratory and indus-
trial processes and have developed a reputation for accuracy, repeatability,
and stability.

 (c) Thermistors: Similar to the RTD, the thermistor is a temperature sensing
device whose resistance changes with temperature. Thermistors, however,

Fig. 3.4 Examples of
temperature sensors and
applications

3 The Things in IoT: Sensors and Actuators

67

are made from semiconductor materials. Resistance is determined in the
same manner as the RTD, but thermistors exhibit a highly nonlinear resis-
tance vs. temperature curve.

 (d) Semiconductor Sensors: They are classified into different types like voltage
output, current output, digital output, resistance output silicon, and diode
temperature sensors. Modern semiconductor temperature sensors offer
high accuracy and high linearity over an operating range of about 55 °C to
+150 °C (−58 to 302 °F). They can also include signal processing circuitry
within the same package as the sensor, thereby avoiding the need to add
compensation circuits. Figure 3.4 shows examples of temperature sensor.

 2. Pressure Sensors: Pressure sensors are used to measure the pressure of gases or
liquids including water level, flow, speed, and altitude. Practical examples
include sensors for pumps and compressors, hydraulic systems, and refrigera-
tors. A pressure sensor typically acts as a transducer where it generates a signal
as a function of the pressure imposed. Hence, pressure sensors are also called
pressure transducers, pressure transmitters, and pressure senders, among
other names.

Touchscreen smartphones, tablets, and computers come with various pres-
sure sensors. Whenever slight pressure is applied on the touch screen through a
finger, tiny pressure sensors (typically multiple sensors located at the corners of
the screen; see Fig. 3.5) determine where exactly pressure is applied and conse-
quently generate an output signal that informs the processor. Pressure sensors
have also been widely used in automotive applications to measure fluid level,
airbag, and antilock braking system, in biomedical applications to sense blood
pressure, in aviation to maintain a balance between the atmospheric pressure
and the control systems of the airplanes, and in submarines to estimate depth
and ensure proper operation of electronic systems and other components.
Figure 3.5 shows examples of pressure sensors.

 3. Flow Sensors: Flow sensors are used to detect and record the rate of fluid flow
in a pipe or a system. They are also used to measure the flow/transfer of heat
caused by the moving medium. Sensing and measuring the flow are critical for
many applications ranging from bereave machine to more serious applications
such as flow monitoring for high-purity acids.

Fig. 3.5 Examples of
pressure sensors. (Source:
Force Sensing & Fitbit)

3.2 IoT Sensors

68

A good example about the importance of flow sensing and monitoring is the
water crisis in Flint, Michigan, USA, which started in April 2014 and resulted
in criminal charges filed against three people in regard to the crisis by Michigan
Attorney General in April 2016.

Flint basically changed its water source from treated Detroit Water that was
sourced from the great lakes and the Detroit River to the Flint River. Officials
basically had failed to detect a very high lead contamination creating a serious
public health danger. The acidic Flint River water caused lead from aging pipes
to leak into the water supply, causing extremely elevated levels of the heavy
metal. Thousands of children were exposed to drinking water with very high
levels of lead, and many experienced health problems (Fig. 3.6).

 4. Level Sensors: Level sensors are used to measure the level of fluids continu-
ously or at point values. The element to be measured can be inside a container
(Fig. 3.7) or can be in its natural form such as a well in an oil rig.

There are many uses for level sensors. Ultrasonic level sensors, for instance,
are used for non-contact level sensing of highly viscous liquids and even bulk
solids. They are also widely used in water treatment applications for pump con-
trol and open-channel flow measurement. Another example is the capacitance
level sensors to measure the presence of a variety of solids and liquids using
radio-frequency signals in the capacitance circuit.

Fig. 3.6 Examples of flow
sensor

Fig. 3.7 Examples of level
sensors with Wi-Fi propane
remote monitoring.
(Source: Tank Utility)

3 The Things in IoT: Sensors and Actuators

69

 5. Imaging Sensors: Imaging sensors are sophisticated sensors used in digital
cameras, medical imaging machines, and night vision equipment. They are uti-
lized to measure image information by capturing and then converting variable
attenuation of waves into signals (Fig. 3.8).

 6. Noise Sensors: High noise can have damaging effects on humans (e.g., cardio-
vascular) as well as animals (e.g., hearing loss). Such noise is often caused by
machines, airplanes, trains, construction, and loud music especially in
closed spaces.

Many government agencies have started installing noise sensors to measure
noise pollutions or the so-called noise disturbance (excessive noise that may
harm humans or animals).

Ambient noise sensors continuously monitor noise levels in surrounding
environments. When the noise level changes, they send electronic signal to an
overall ambient noise system to take action. Such action may be an automatic
action (e.g., adjust music level) or a simple notification to authorities.

 7. Air Pollution Sensors: Many governments have established agencies to monitor
and control the air quality in major cities. For instance, the USA has established
the EPA (Environmental Protection Agency), in 1970, with a mission to protect
Americans from significant health risks by providing accurate environmental
information to its citizens.

Air pollution sensors detect and monitor the presence of air pollution in the
surrounding environment. They focus on five main components: ozone, particu-
late matter, carbon monoxide, sulfur dioxide, and nitrous oxide.

 8. Proximity and Displacement Sensors: Proximity sensors detect the presence or
absence of objects using electromagnetic fields, light, or sound. There are many
types, each suited to specific applications and environments:

 (a) Inductive Sensors: Used for close-range detection of ferrous material.
 (b) Capacitive Sensors: Used for close-range detection of nonferrous material.
 (c) Photoelectric Sensors: Used for long-range target detection.
 (d) Ultrasonic Sensors: Used for long-range detection of targets with difficult

surface (Table 3.1).

 9. Infrared Sensors: Infrared sensors are used to track an object’s movement. They
produce and receive infrared waves in the form of heat.

Fig. 3.8 Examples of imaging sensors. (Source: e2v & DGDL)

3.2 IoT Sensors

70

 10. Moisture and Humidity Sensors: Moisture and humidity sensors (sometimes
referred to as hygrometer sensors) are used to measure and report the relative
humidity in the air. They use capacitive measurement by relying on electrical
capacitance.

 11. Speed Sensors: Speed sensors are commonly used to detect the speed of trans-
port vehicles. Examples include wheel speed sensors, speedometers, Doppler
radar, and laser surface velocimeter.

There are so many other types of sensors. Examples include acceleration sensors,
biosensors, gas and chemical sensors, mass sensor, tilt sensors, and force sensors.

3.2.4 Sensor Characteristics

Most IoT applications require smaller and smarter sensors with advanced function-
ality to collect more data, low-power processors, longer battery life, faster response
time, and shorter time to market. Sensors are expected to be dynamic in their natural
surroundings with embedded ability to collect real-time data.

In general, sensors can be either self-directed (autonomous) where they work on
their own once they are installed or user-controlled where collection conditions are
preprogrammed by the user depending on their needs. Finally, sensors should also
have the capability to send the collected data (or a subset of it) to the appropriate
system via the IoT gateway as we illustrated in Fig. 3.2.

IoT sensors are expected to have the following characteristics:

 1. Data Filtering: A sensor’s core function is the ability to collect and send data to
the IoT gateway or other appropriate systems. Sensors are not expected to per-
form deep analytical functions. However, simple filtering techniques may be
required. Onboard data (or signal) processing microcontroller (as shown in
Fig. 3.3) makes a smart sensor smarter. The microcontroller filters the data/
signals before transmission to the IoT gateway or control network. It basically
removes duplicate or unwanted data or noise before transferring the data.

As we mentioned in Sect. 3.2.3, non-autonomous sensors are custom-
programmed to produce alerts automatically when certain conditions are met

Table 3.1 Examples of proximity sensor types

Sensor
technology

Sensing range
(mm) Main use

Inductive 4–40 Ferrous metal (e.g., iron, aluminum, copper) close-range
detection

Capacitive 3–60 Nonferrous material (e.g., wood, plastic liquid) close-range
detection

Photoelectric 1–60 Material long-range target detection
Ultrasonic 3–30 Material long-range target detection with challenges (e.g.,

rough service, multiple colors)

3 The Things in IoT: Sensors and Actuators

71

(e.g., temperature is above 70 °F in a data center). They often integrate VLSI
technology and MEMS devices to reduce cost and optimize integration.

 2. Minimum Power Consumption: Several factors are driving the requirements for
low-power consumptions in IoT. Sensors for multiple IoT verticals (e.g., smart
grid, railways, and roadsides) will be installed in locations that are difficult to
reach to replace batteries.

 3. Compact: Space will also be limited for most IoT verticals. As such, sensors
need to fit in small spaces.

 4. Smart Detection: An important sensing category for the IoT is remote sensing,
which consists of acquiring information about an object without making physi-
cal contact with it; the object can be nearby or several hundred meters away.
Multiple technology options are available for remote sensing, and they can be
divided into three broad functions:

 (a) Presence or proximity detection—when just determining the absence or
presence of an object is sufficient (e.g., security applications). This is the
simplest form of remote sensing.

 (b) Speed measurement—when the exact position of an object is not required,
but accurate speed is (e.g., traffic monitoring applications).

 (c) Detection and ranging—when the position of an object relative to the sen-
sor must be determined precisely and accurately (e.g., vehicle collision
avoidance).

 5. High Sensitivity: Sensitivity is generally the ratio between a small change in
electrical output signal and a small change in physical signal. It may be
expressed as the derivative of the transfer function (the functional relationship
between input signal and output signal) with respect to physical signal.
Sensitivity indicates how much the output of the device changes with unit
change in input (quantity to be measured). For example, if the voltage of a tem-
perature sensor changes by 1 mV for every 1 °C change in temperature, then the
sensitivity of the sensor is said to be 1 mV/°C.

 6. Linearity: Linearity is the measure of the extent to which the output is linearly
proportional to the output. Nonlinearity is the maximum deviation from a linear
transfer function over the specified dynamic range.

 7. Dynamic Range: The range of input signals which may be converted to electri-
cal signals by the sensor. Outside of this range signals cause unsatisfactory
accuracy.

 8. Accuracy: The maximum expected error between measured (actual) and ideal
output signals. Manufacturers often provide the accuracy in the datasheet, e.g.,
high-quality thermometers may list accuracy to within 0.01% of full-
scale output.

 9. Hysteresis: When a sensor does not return the same output value when the input
stimulus is driven up or down. The width of the expected error in terms of the
measured quantity is defined as the hysteresis.

 10. Limited Noise: All sensors produce some level of noise traffic with their output
signals. Sensor noise is only an issue if it impacts the performance of the IoT

3.2 IoT Sensors

72

system. Smart sensors must filter out unwanted noise and be programmed to
produce alerts on their own when critical limits are reached. Noise is generally
distributed across the frequency spectrum. Many common noise sources pro-
duce a white noise distribution, which is to say that the spectral noise density is
the same at all frequencies.

 11. Wide Bandwidth: Sensors have finite response times to instantaneous changes
in physical signal. Also, many sensors have decay times, which represent the
time after a step change in input signal for the sensor output to decay to its
original value. The bandwidth of a sensor is the frequency range between these
two frequencies. When a sensor is utilized to collect measurements, it is recom-
mended to use sensors with the widest possible bandwidth. This ensures that the
basic measurement system is capable of responding linearly over the full range
of interest. The disadvantage, however, is that wider bandwidth may result in
sensor response to unwanted frequency.

 12. High Resolution: The resolution of a sensor is defined as the smallest detectable
signal fluctuation. It is the smallest change in the input that the device can
detect. The definition of resolution must include some information about the
nature of the measurement being carried out.

 13. Minimum Interruption: Sensors must operate normally at all time with zero or
near-zero interruption and be programmed to produce instant alerts on their
own when their normal operation is interrupted.

 14. Higher Reliability: Higher reliability sensor provides the assurance to rely on
the accuracy of the output measurements.

 15. Ease of Use: Ease of use is considered the top requirement for any electronic
system nowadays. Clear examples we have all experienced are Apple’s iPhone
vs. competitor devices with the same functionality. Users are willing to pay
more for easy-to-use devices, and sensors are no exceptions. The best user
interface is “no user interface” where sensors are expected to work by them-
selves once they are connected.

Other characteristics include some data storage and self-warning of anomalous
symptoms.

3.3 RFID

Another way of capturing information from “Things” is through the use of RFID
(radio-frequency identification). RFID is not a sensor but a mechanism to capture
information pre-embedded into the so-called Tag of a thing or an object using
radio waves.

RFID consists of two parts: a tag and a reader. Further, the tag has two parts: a
microchip that stores and processes information and an antenna to receive and trans-
mit a signal. The tag contains the specific serial number for one specific object. The
reader reads the information encoded on a tag, using a two-way radio transmitter-
receiver, by emitting a signal to the tag using an antenna. The tag responds with the

3 The Things in IoT: Sensors and Actuators

73

information written in its memory. The reader will then transmit the read results to
an RFID computer program.

An RFID-based solution has some advantages over older reader-tag-based solu-
tions, such as barcode, including:

• RFID tag does not need to be within direct line of sight of the reader and can be
read from a distance up to 12 m for passive ultrahigh frequency (UHF) system.
Battery-powered tags typically have a reading range of 100 m.

• RFID data on the tag can be modified based on business needs. The barcode data
is very difficult to change once deployed.

• RFID tags are durable. Barcodes, in comparison, are printed on a product for
everyone to see. They can be damaged or changed. RFID tags are hidden and
may be reused across multiple products. Also RFID tags are capable of storing
much more data.

• RFID data may be encrypted on the tag, thereby preventing unauthorized users
from changing the data or counterfeiting.

• RFID systems can read hundreds of tags simultaneously. This is significant in a
retail store as it saves the staff valuable time that they can spend on higher-
value tasks.

Figure 3.9 shows the RFID main components: a programmable RFID tag for
storing data, a reader with an antenna to read the tags, and an application software
hosted on a computer to analyze the data.

RFID
Application

RFID Reader
withAntenna

RFID Tag

Thing

Fig. 3.9 RFID main components

3.3 RFID

74

Like any other technology, RFID has a number of disadvantages, but they are
relatively minor. A top disadvantage is the susceptibility of the tags to jamming by
blocking the RFID radio waves, for instance, by wrapping the tags with metallic
material such as aluminum foil. Metallic ink on book covers can also affect the
transmission of the radio waves.

Another potential disadvantage is the interference between multiple readers and
tags if the overall system is not set up appropriately. Each RFID reader basically
scans all the tags it picks up in its range. This may create a mix-up between tag
information (e.g., charging a customer for items in someone else’s shopping carts
within the same range).

3.3.1 RFID Main Usage and Applications

RFID is already used by a large number of applications. Top examples include:

• Access Control and Management: Many companies and government agencies
are using RFID tags in identification badges, replacing earlier magnetic stripe
cards. With RFID, employees as well as authorized guest may be greeted by their
name on a screen or by a voice message upon entering a building. Companies are
currently using data collected from the information associated with each employ-
ee’s badge to plan for workplace optimization.

• RFID tags are also widely used for electronic toll collections (e.g., California’s
E-ZPass) eliminating major delay on toll roads. Electronic toll collection system
determines if the passing vehicle is enrolled in the program, automatically issues
traffic citations for those that are not, and automatically withdraws the toll
charges from the accounts of registered car owners.

• Passport: Many departments of state around the world (e.g., the USA, Canada,
Norway, Malaysia, Japan, and many EU countries) are using RFID passports that
can be read from a reader located up to 10 m away. In this case, passports are
designed with an electronic tag that contains main information with a digital
picture of the passport holder. Most solutions are also adding a thin metal lining
to make it more difficult for unauthorized readers to scan information when the
passport is closed. Standards for RFID passports have been established by the
International Civil Aviation Organization, and are contained in ICAO Document
9303 (6th edition, 2006).

• Healthcare: With 2014 veteran complaints including allegations that 40 veterans
may have died waiting for care at a Phoenix VA hospital, many hospitals or agen-
cies, including the US Department of Veterans Affairs, have already started or
announced plans to deploy RFID in hospitals across the USA to improve
healthcare.

• RFID-based solutions in healthcare have started in private and public hospitals
across the world, at least several years before the veteran’s complaints, to track
and manage expensive mobile medical equipment thereby allowing hospital staff

3 The Things in IoT: Sensors and Actuators

75

to track in real-time data relevant to healthcare equipment or personnel, monitor
environment conditions, and more importantly protect healthcare workers from
infections and other hazards.

• Logistics and Supply Chain Tracking: Major retailers in the world (e.g., Walmart),
as well as the US Department of Defense, have published requirements that their
vendors place RFID tags on all shipments to improve supply chain management.
Such requirements allow retailers to manage their merchandise without manual
data entry. RFID can also help with automatic electronic surveillance and
 self- checkout process for consumers. Finally, many factories are tracking their
products throughout the manufacturing process using RFIDs to better estimate
delivery dates for customers.

• Athletic and Sport Event Timing: Tracking the exact timing of runners in marathons
or races is crucial, and often a portion of a second makes a difference. Athletic
Timing is one of the most widespread use cases of RFID. Many runners are not
even aware that they are being timed with RFID technology. Experts use such fact
as an evidence of RFID’s seamless ability to enhance consumer experience.

• Animal Tracking: Since the outbreak of mad cow disease, RFID has become
critical in animal identification management, although RFID animal tagging
started at least a decade before the disease. Some governments (i.e., Australia)
are now requiring all cattle, sheep, and goats sold to be RFID tagged.

• Other Applications: RFID is also used for airport baggage tracking logistics,
interactive marketing, laundry management for employers with huge number of
uniforms (e.g., casinos), item level inventory tracking, conference attendee track-
ing, material management, IT asset management, library system, and real-time
location system.

3.4 Video Tracking

Video tracking is the process of capturing and analyzing the video feeds, frame by
frame, of a particular object or person over a short time interval. It is used to mea-
sure and analyze movements, visual attention, as well as behavior. Video tracking is
used for customer identification, surveillance, augmented reality, traffic control, and
medical imaging.

It is yet another mechanism to identify and monitor “things” when sensors or
RFID tags are not available. Video tracking may also be used in conjunction with
sensors and/or RFID to provide a more comprehensive solution.

Unlike preinstalled sensors and RFID tags in “things,” video tracking can be
turned on instantly. However, video tracking does have a major weakness, with
today’s technology. Video tracking is often time-consuming. It requires analyzing
large amounts of video traffic and, in many cases, correlation with historical data, to
arrive at accurate conclusions. Another challenge to video tracking is the complex
object/image recognition techniques. This is a huge area of research in machine
learning today.

3.4 Video Tracking

76

3.4.1 Video Tracking Applications

• Retailers: Many retailers have started using video tracking solutions, often in
conjunction with Wi-Fi access point data (how?; see problem 22), to increase
sales and provide a better customer experience. Video traffic is analyzed using
complex algorithms that track eye movements and identify fixation (e.g., desir-
ability, obsession, and attraction to a product) and glissades (e.g., wobbling
movements). The collected data is then filtered against well-established business
rules to determine an internal action (e.g., change location of merchandize, add
more checkout lines) or external action (e.g., offer the customer a certain
discount).

• Determining the business rules is a very challenging problem. Many companies
use advanced systems and techniques (e.g., machine learning, analysis of social
media data, artificial intelligence) or hire a marketing firm to survey a large num-
ber of customers to arrive at such rules. Example of new rules is the fact that the
faster a shopper finds the first item she/he needs, the more she/he purchases in
such category. This dispels the pervious myth that the more time a shopper
spends in a particular area, the more she/he buys.

• Video tracking is also used to improve the overall shopping experience in the
store as a service differentiation especially if the store is a bit more expensive
than similar stores in the area. The analysis of multiple grocery store traffic indi-
cated that customers did not mind paying a bit more for faster checkout lines
with friendly cashiers, bright lights, and clean belts. Analyzed data also indicated
that the vast majority of customers do not pay attention to internal signs inside
the store.

• Banking: Similar to retailers, banks have also started using video tracking solu-
tions, often combined with Wi-Fi data. Access to Wi-Fi data in banks is easier
given that most of the customers download the bank’s mobile app on their smart-
phones. With the right setting, mobile apps often allow the bank to track the
whereabouts of the customer.

• Banks use the data to quickly identify the customer (often before he lines in the
queue). Depending on the priority of such customer (e.g., has large sums of
money deposited at the bank), special greeting may be zero-wait private service
if offered by the bank manager.

• Other Uses: The applications of video tracking with advanced backend analytics
are unlimited, ranging from physical monitoring and security to traffic manage-
ment and control and to augmented reality where an actual view is augmented by
a computer-generated sensual input such as video.

3 The Things in IoT: Sensors and Actuators

77

3.4.2 Video Tracking Algorithms

To perform video tracking, an algorithm analyzes sequential video frames and out-
puts the movement of targets between the frames. There is a variety of algorithms,
each having its own strengths and weaknesses. Considering the intended application
is important when choosing which algorithm to use. There are two major compo-
nents of a visual tracking system: target representation and localization and filtering
and data association.

Target representation and localization are mostly a bottom-up process. These
methods give a variety of tools for identifying the moving object. Locating and
tracking the target object successfully are dependent on the algorithm. For example,
using blob tracking is useful for identifying human movement because a person’s
profile changes dynamically [6]. Typically, the computational complexity for these
algorithms is low. The following are some common target representation and local-
ization algorithms:

Kernel-based tracking (mean-shift tracking [7]): an iterative localization procedure
based on the maximization of a similarity measure (Bhattacharyya coefficient).

Contour tracking: detection of object boundary (e.g., active contours or Condensation
algorithm). Contour tracking methods iteratively evolve an initial contour initial-
ized from the previous frame to its new position in the current frame. This
approach to contour tracking directly evolves the contour by minimizing the con-
tour energy using gradient descent.

Filtering and data association is mostly a top-down process, which involves
incorporating prior information about the scene or object, dealing with object
dynamics, and evaluation of different hypotheses. These methods allow the tracking
of complex objects along with more complex object interaction like tracking objects
moving behind obstructions [8]. Additionally, the complexity is increased if the
video tracker (also named TV tracker or target tracker) is not mounted on rigid
foundation (onshore) but on a moving ship (offshore), where typically an inertial
measurement system is used to pre-stabilize the video tracker to reduce the required
dynamics and bandwidth of the camera system [9]. The computational complexity
for these algorithms is usually much higher. The following are some common filter-
ing algorithms:

Kalman filter: an optimal recursive Bayesian filter for linear functions subjected to
Gaussian noise. It is an algorithm that uses a series of measurements observed
over time, containing noise (random variations) and other inaccuracies, and pro-
duces estimates of unknown variables that tend to be more precise than those
based on a single measurement alone [10].

Particle filter: useful for sampling the underlying state-space distribution of non-
linear and non-Gaussian processes.

3.4 Video Tracking

78

3.5 IoT Actuators

3.5.1 Definition

An actuator is a type of motor that is responsible for controlling or taking action in
a system. It takes a source of data or energy (e.g., hydraulic fluid pressure, other
sources of power) and converts the data/energy to motion to control a system.

3.5.2 Why Actuators?

As mentioned in Sect. 3.2, sensors are responsible to sense changes in their sur-
roundings, collect relevant data, and make such data available to monitoring sys-
tems. Collecting and displaying data by a monitoring system are useless unless such
data is translated into intelligence that can be used to control or govern an environ-
ment before a service is impacted. Actuators use sensor-collected and analyzed data
as well as other types of data intelligence (see problem 11) to control IoT systems,
for example, shutting down gas flow when the measured pressure is below a certain
threshold.

3.5.3 Actuator Types

• Electrical Actuators: Electric actuators are devices driven by small motors that
convert energy to mechanical torque. The created torque is used to control cer-
tain equipment that requires multi-turn valves or to control gates. Electric actua-
tors are also used in engines to control different valves.

• Mechanical Linear Actuators: Mechanical actuators convert rotary motion to lin-
ear motion. Devices such as screws and chains are utilized in this conversion.
The simplest example of mechanical liner actuators is referred to as the “screw”
where leadscrew, screw jack, ball screw, and roller screw actuators all operate on
the same principle by rotating the actuator’s nut, the screw shaft moves in a line.

• Hydraulic Actuators: Hydraulic actuators are simple devices with mechanical
parts that are used on linear or quarter-turn valves. They are designed based on
Pascal’s Law: when there is an increase in pressure at any point in a confined
incompressible fluid, then there is an equal increase at every point in the con-
tainer. Hydraulic actuators comprised of a cylinder or fluid motor that utilizes
hydraulic power to enable a mechanical process. The mechanical motion gives
an output in terms of linear, rotary, or oscillatory motion. Hydraulic actuators can
be operated manually, such as a hydraulic car jack, or they can be operated
through a hydraulic pump, which can be seen in construction equipment such as
cranes or excavators.

3 The Things in IoT: Sensors and Actuators

79

• Pneumatic Actuators: Pneumatic actuators work on the same concept as hydrau-
lic actuators except compressed gas is used instead of liquid.

• Manual Actuators: Manual actuator employs levers, gears, or wheels to enable
movement, while an automatic actuator has an external power source to provide
motion to operate a valve automatically. Power actuators are a necessity on
valves in pipelines located in remote areas.

3.5.4 Controlling IoT Devices

There are two main philosophies to monitor and control IoT devices: local control
and global control. The first approach requires an intelligent local controller (e.g.,
home’s thermostat to control furnace and air conditioning system). The second
approach is to move the control onto the cloud and simply embed inexpensive sen-
sors everywhere (e.g., in this case, thermostat is eliminated altogether), and instead
put temperature sensors around the house. An extension of this would be to pull the
controller boards out of the furnace and air conditioner—connect their inputs and
outputs to the Internet as well, so a cloud application can directly read their states
and control their subsystems.

Clearly this approach requires many more, much finer-grained connected
devices. And it offers the possibility of control strategies that would not be possible
for an isolated thermostat. You could use ambient weather conditions, forecasts, and
the current locations of the residents as inputs, for example, to determine an opti-
mum strategy for making life comfortable while saving energy.

We believe the right approach is a combination of the two approaches depending
on the specific IoT vertical and environment. This area will be covered in more
details in Chap. 9.

3.6 How Things Are Identified in IoT?

As we mentioned in Chap. 2, the most convenient way to identify every IoT devices
is to assign unique IP address to each sensor and actuator. However, IPv4 addresses
are expensive and limited. IPv6 addresses are not widely deployed yet. In addition,
many sensors and actuators are not IP enabled. IoT gateways, however, do have
unique IP addresses. Hence, non-IP-enabled sensors and actuators may be identified
by their associated gateways.

Chapter 5 will provide compressive details of various sensing protocols and
illustrate how IoT sensors and actuator will be tracked and identified.

3.6 How Things Are Identified in IoT?

80

3.7 Summary

This chapter defined the “Things” in IoT. Three main techniques to identify things
were discussed in details: embedded hardware sensors that sense the thing or sur-
rounding environment and notify a client application, RFIDs with a tag to store
information on a thing and a reader to read such information and pass them to an
application to analyze, and finally video tracking. The advantages and disadvan-
tages of these solutions were discussed. Once the data is analyzed (from sensors or
other sources), IoT actuators are responsible for controlling or taking action if
required. Finally, we have discussed the procedure to identify various devices in IoT
networks.

Problems and Exercises

 1. List the top three requirements for “Things” in IoT? What is the purpose behind
these requirements?

 2. Why are actuators required in IoT networks?
 3. What is the definition of a sensor in IoT? Why is there a need for A/D converters

in most sensors?
 4. Why are sensors required to convert physical signals into electrical signal?
 5. In a table, list and compare the various types of actuators. Which actuator type

is considered to be environmentally friendly and why?
 6. What are the key differences between sensors and actuators?
 7. Chapter 1 (Sect. 1.2) mentioned that connecting objects together is not an

objective by itself. Sections 3.1 and 3.5.2 mentioned that collecting data from
sensors is not an objective by itself either. What is the business objective for
connecting things and collecting data? How to achieve such objective?

 8. What are the two main uses of flow sensors?
 9. In a table format, list the key functionality of all sensors (A through I) listed in

Sect. 3.2.3. Which sensor type is considered to be the least sophisticated, and
which type is considered to be the most sophisticated? Why?

 10. What is an autonomous sensor? When does it notify neighboring system(s) or
IoT gateway? What is the difference between “autonomous” and “user-
controller” sensors?

 11. In a table, list and compare the ten characteristics of good sensors. Which char-
acteristic you believe is the most important and why?

 12. It was mentioned in Sect. 3.3 that actuators use sensor-collected and analyzed
data as well as other types of data intelligence to control IoT systems. What is
data intelligence? Provide two examples of data intelligence.

 13. What is the definition of sensitivity and dynamic range? What are the typical
units of sensitivity and dynamic range?

 14. What is hysteresis? What is a typical unit of hysteresis?
 15. How do touch screens operate with the presence of touch sensors?
 16. In a table, list five examples of industries where pressure sensors are used. In

each case, list at least one main application.

3 The Things in IoT: Sensors and Actuators

81

 17. Some people have raised concerns about the potential invasion of privacy in
RFID-enabled solutions (e.g., track the whereabouts of a person who checked
out an RFID-enabled library book). Is this a major concern? How would you
address it?

 18. Athletic Timing: Athletic Timing is one of the most popular use cases of RFID,
but often race participants never realize they are being timed using RFID tech-
nology. How does it work?

 19. Describe how RFID works for laundry management. List three benefits.
 20. Provide an example of how RFID works for interactive marketing.
 21. How does RFID track the real-time location of assets or employees? What other

technology can be used to track an employee location in real time?
 22. How do retailers use Wi-Fi access point data in conjunction with video tracking

to improve sales and customer experience?
 23. This chapter discussed three different ways to obtain information from IoT

“Things”: sensors, RFID, and video tracking. In a table, compare the three tech-
nologies addressing:

 (a) Advantages
 (b) Disadvantages
 (c) Key requirements for the things
 (d) Two applications

 24. What are transducers? How are they related to sensors and actuators?
 25. Wind speed sensors typically involve a rotating element that is set in motion by

wind. These sensor report the frequency of rotation of that moving element. An
application receiving the frequency readings needs to apply a “transfer function”
to translate the frequency to actual wind speed. In the weather monitoring station
at Vancouver International Airport, two wind speed sensors are installed: an RM
Young 05103 Wind Sensor and a Vaisala WM30 Wind Sensor. The first has the
following transfer function: Wind Speed (m/s) = 0.0980 × Frequency. The sec-
ond has this transfer function: Wind speed (m/s) = 0.699 × Frequency − 0.24.

 (a) If the RM Young sensor is reporting frequency of 20 Hz, and assuming both
sensors are measuring the same wind speed value, then what would be the
frequency reported by the Vasiala sensor?

 (b) What would be the actual wind speed measured?

References

 1. A Framework for IoT Sensor Data Analytics and Visualisation in Cloud Computing
Environments, University of Melbourne, Online: http://www.cloudbus.org/students/
Krishnakumar- IoT- Project2011.pdf

 2. Wikipedia, Online.: https://en.wikipedia.org/wiki/Sensor
 3. Sensors: Online Electr. Eng. Online: http://www.electrical4u.com/sensor- types- of- sensor/

References

http://www.cloudbus.org/students/Krishnakumar-IoT-Project2011.pdf
http://www.cloudbus.org/students/Krishnakumar-IoT-Project2011.pdf
https://en.wikipedia.org/wiki/Sensor
http://www.electrical4u.com/sensor-types-of-sensor/

82

 4. I. Gubbia, R. Buyyab, S. Marusica, M. Palaniswamia, Internet of things (IoT): A vision, archi-
tectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

 5. L. Patrono, A. Vilei, Evolution of wireless sensor networks towards the Internet of Things: A
survey, 19th IEEE SoftCom, p. 106, Sept. 2011

 6. Sukanay, A Walk Through IoT, Online: https://opentechdiary.wordpress.
com/2015/07/16/a- walk- through- internet- of- things- iot- basics- part- 2/

 7. T. A. Kinney, Proximity sensors compared: Inductive, capacitive, photoelectric and ultra-
sonic, Online: http://machinedesign.com/sensors/proximity- sensors- compared- inductive-
 capacitive- photoelectric- and- ultrasonic

 8. Sensor Basics - Different Types of Sensors with Working Principles, https://www.youtube.
com/watch?v=Xs1uicalZYA

 9. Thermocouple, Wikipedia, Online: https://en.wikipedia.org/wiki/Thermocouple
 10. T. Agarwal, Temperature sensors – Types, Working & Operation, white paper, Online: http://

www.elprocus.com/temperature- sensors- types- working- operation/
 11. Future Electronics, Online: http://www.futureelectronics.com/en/sensors/humidity- dew.aspx
 12. Paul Garden, Electronic design, Online: http://electronicdesign.com/communications/

iot- requires- new- type- low- power- processor
 13. Common Actuator Types, Online: http://www.vma.org/?ActuatorTypes
 14. Actuators, The Green Book, Online: http://www.thegreenbook.com/four- types- of-

actuators.htm
 15. Type of Robot Actuators, Robot Platform, Online: http://www.robotplatform.com/knowledge/

actuators/types_of_actuators.html
 16. S. Duquet, Smart sensors, enabling detection and ranging for IoT and beyond, ladder technol-

ogy magazine Elektronik Praxis, April 2015, Online: http://leddartech.com/smart- sensors
 17. 50 Sensors Applications for Smarter World, Libelium, Online: http://www.libelium.com/

top_50_iot_sensor_applications_ranking/
 18. P. Seneviratne, Internet Connected Smart Water Sensors, September 2015, Online: https://

www.packtpub.com/books/content/internet- connected- smart- water- meter
 19. P. Jain, Pressure sensors, prototype PCB from $10, Online: http://www.engineersgarage.com/

articles/t
 20. D. Merrill, J. Kalanithi, P. Maes, Siftables: Towards sensor network user interfaces, Online:

http://alumni.media.mit.edu/~dmerrill/publications/dmerrill_siftables.pdf
 21. A. Alcom, RFID Can Be Hacked: Here’s How, & What You Can Do To Stay Safe, October

2012, Online: http://www.makeuseof.com/tag/rfid- hacked- stay- safe/
 22. B. Hoffmann, S. Moebus, A. Stang, E. Beck, N. Dragano, S. Möhlenkamp, A. Schmermund,

M. Memmesheimer, K. Mann, 2006, Residence close to high traffic and prevalence of coro-
nary heart disease. Eur. Heart J. 27 Online: http://www.ncbi.nlm.nih.gov/pubmed/17003049

 23. J. Thrasher, RFID vs. Barcodes: What are the advantages?, RFID Insider, April 2013, Online:
http://blog.atlasrfidstore.com/rfid- vs- barcodes

 24. S. Egloff, Advantages and disadvantages of using RFID Technology in Libraries, informa-
tion Technology at the University of Maryland, Online: http://terpconnect.umd.edu/~segloff/
RFIDTest3/AdvantagesandDisadvantages.html

 25. P. Harrison, EU considers overhauling rules for lost air luggage. Reuters, September 2009,
Online: http://www.reuters.com/article/eu- aviation- baggage- idUSLS63631320090728

 26. P. Sweeney, Social Media Winner’s Circle at Geneva Motor Show,
Social Media Today, September 2013, Online: http://www.social-
m e d i a t o d a y . c o m / c o n t e n t / s o c i a l - m e d i a - w i n n e r s - c i r c l e - g e n e v a -
 motor- show- video

 27. J. Thrasher, “How is RFID Used in Real World Applications?”, August 2013, Online: http://
blog.atlasrfidstore.com/what- is- rfid- used- for- in- applications

 28. M. Nystrom, K. Holmqvist, An adaptive algorithm for fixation, saccade and glissade detection
in eye tracking data. Behav. Res. Methods 42(1), 188–204 (2010)

 29. Tank Monitoring on a New Level, Online: https://www.tankutility.com/

3 The Things in IoT: Sensors and Actuators

https://opentechdiary.wordpress.com/2015/07/16/a-walk-through-internet-of-things-iot-basics-part-2/
https://opentechdiary.wordpress.com/2015/07/16/a-walk-through-internet-of-things-iot-basics-part-2/
http://machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelectric-and-ultrasonic
http://machinedesign.com/sensors/proximity-sensors-compared-inductive-capacitive-photoelectric-and-ultrasonic
https://www.youtube.com/watch?v=Xs1uicalZYA
https://www.youtube.com/watch?v=Xs1uicalZYA
https://en.wikipedia.org/wiki/Thermocouple
http://www.elprocus.com/temperature-sensors-types-working-operation/
http://www.elprocus.com/temperature-sensors-types-working-operation/
http://www.futureelectronics.com/en/sensors/humidity-dew.aspx
http://electronicdesign.com/communications/iot-requires-new-type-low-power-processor
http://electronicdesign.com/communications/iot-requires-new-type-low-power-processor
http://www.vma.org/?ActuatorTypes
http://www.thegreenbook.com/four-types-of-actuators.htm
http://www.thegreenbook.com/four-types-of-actuators.htm
http://www.robotplatform.com/knowledge/actuators/types_of_actuators.html
http://www.robotplatform.com/knowledge/actuators/types_of_actuators.html
http://leddartech.com/smart-sensors
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
https://www.packtpub.com/books/content/internet-connected-smart-water-meter
https://www.packtpub.com/books/content/internet-connected-smart-water-meter
http://www.engineersgarage.com/articles/t
http://www.engineersgarage.com/articles/t
http://alumni.media.mit.edu/~dmerrill/publications/dmerrill_siftables.pdf
http://www.makeuseof.com/tag/rfid-hacked-stay-safe/
http://www.ncbi.nlm.nih.gov/pubmed/17003049
http://blog.atlasrfidstore.com/rfid-vs-barcodes
http://terpconnect.umd.edu/~segloff/RFIDTest3/AdvantagesandDisadvantages.html
http://terpconnect.umd.edu/~segloff/RFIDTest3/AdvantagesandDisadvantages.html
http://www.reuters.com/article/eu-aviation-baggage-idUSLS63631320090728
http://www.socialmediatoday.com/content/social-media-winners-circle-geneva-motor-show-video
http://www.socialmediatoday.com/content/social-media-winners-circle-geneva-motor-show-video
http://www.socialmediatoday.com/content/social-media-winners-circle-geneva-motor-show-video
http://blog.atlasrfidstore.com/what-is-rfid-used-for-in-applications
http://blog.atlasrfidstore.com/what-is-rfid-used-for-in-applications
https://www.tankutility.com/

83© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_4

Chapter 4
IoT Requirements for Networking
Protocols

The success of the Internet is attributed, in part, to the Internet Protocol stack that
offers two key characteristics:

• A normalization layer (the IP layer), which guarantees system interoperability
while accommodating a multitude of link layer technologies, in addition to a
plethora of application protocols. IP constitutes the thin waist of the proverbial
hourglass that is the Internet’s protocol stack.

• Layered abstractions that hide the specifics of a given layer from the one above
or below it. Such abstractions define contracts or “slip surfaces” allowing inno-
vations in one layer to proceed independent of the adjacent layers.

As researchers and technologists started delving into the world of IoT, it was
relatively straightforward to justify the benefits of employing a similar layered
architectural approach for the IoT protocol stack. However, a topic of lively debate
emerged in whether the Internet Protocol stack was suited for the IoT or whether a
new stack was needed. In the late 1990s and early 2000s, many researchers in the
field of wireless sensor networks did not shy away from denouncing IP networking
as unsuitable for that application domain.

It was deemed that the requirements of IoT were sufficiently different to warrant
a white canvas approach, rather than reusing the Internet technology, which fell
short of addressing the requirements in a number of areas. The decade and a half
that followed witnessed an evolution of the IP stack to address many of the cited
requirements for sensor networks and the shortcomings of IP technologies at
the time.

In this chapter, we will discuss the key IoT requirements and their impact on
each of the layers of the protocol stack. In the next chapter, we take a layer-by-layer
view and discuss the industry’s efforts, to date, to address these requirements. We
will also discuss the gaps that remain for further study and require future solutions.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_4#DOI

84

4.1 Support for Constrained Devices

The devices that are to be connected to the network in the IoT span a wide gamut of
capabilities and characteristics along the facets of computational power, mobility,
size, complexity, dispersion, power resource, placement, and connectivity patterns.
These and other device characteristics impose a set of requirements and restrictions
on the network infrastructure used for interconnecting them. In particular, the
devices’ computational capabilities, as well as their power resources, introduce
challenging requirements for IP networking technologies.

Stepping back and examining the devices that have traditionally connected to the
Internet, one can easily categorize them as homogeneous in terms of being fully
capable computers or peripherals (e.g., servers, desktops, laptops, printers, etc.) that
have an endless source of power (e.g., mains powered or equipped with recharge-
able batteries). In the IoT, this homogeneity no longer holds: on one end of the
spectrum are devices with very limited processing power which scavenge energy
from their environment (e.g., pressure sensors), and on the other end are devices
with powerful processors, a generous amount of memory, and replenishable power
sources (e.g., smartphones).

Small devices with limited processing, memory, and power resources are referred
to as constrained devices. Generally speaking, a constrained device is limited in one
or more of the following dimensions:

• Maximum code complexity (ROM/Flash).
• Size of run-time state and buffers (RAM).
• Amount of computation feasible in a specific period of time (“processing

power”).
• Available power resources.
• Management of user interface and accessibility in deployment (ability to set

security keys, update software, etc.).

IETF RFC 7228 defines a taxonomy of constrained devices based on the first two
dimensions above, which recognizes three classes of devices as depicted in
Table 4.1.

Class 0 devices are the most severely constrained in memory and processing
power. In general, such devices do not have the resources to connect to an IP net-
work directly and will leverage the services of helper devices such as proxies or
gateways for connectivity. For example, sensor motes fall under this class.

Table 4.1 Classes of constrained devices in RFC 7228

Name Data size Code size

Class 0 ≪10 KB ≪100 KB
Class 1 ~10 KB ~100 KB
Class 2 ~50 KB ~250 KB

4 IoT Requirements for Networking Protocols

85

Class 1 devices are highly constrained in terms of code space and processing
capacity; however they are capable of connecting to an IP network directly, without
the help of gateways, as long as they are “parsimonious with state memory, code
space, and often power expenditure for protocol and application usage.” As such,
these devices face challenges in running certain demanding IPs such as BGP, OSPF,
HTTP, or Transport Layer Security (TLS) and in exchanging data using verbose
data serialization formats such as XML.

Class 2 devices are less constrained when compared to the first two classes and
are capable of running the same IP stack that runs on general compute nodes today.
Nevertheless, these devices can still benefit from lightweight and efficient commu-
nication stacks since the resources may then be directed toward applications in lieu
of networking.

Another dimension that characterizes constrained devices is power and/or energy
resource constraints. These could be attributed to a number of factors such as the
device size, primary mode of use, cost, operational environment, etc. Again, with
this dimension, there is a spectrum of possibilities ranging from devices that harvest
energy from the environment to battery-powered devices where the batteries are
replaceable or rechargeable, to non-field replaceable battery-powered devices
(which are discarded past the battery’s lifetime), and to mains-powered devices.
Energy consumption is a major issue for IoT devices. Research studies suggest that
communication is over three orders of magnitude more expensive in terms of energy
consumption than performing local processing functions. This is especially the case
when wireless communication is used, where the radio takes the lion’s share of the
energy consumed by the device. To this reason, a common strategy employed by
power-constrained devices is to remain in sleep mode with no network connectivity
for extended periods of time and to connect only long enough to send the local data
either based on periodic timers or asynchronous triggers (e.g., when new data is
present or an event is detected).

To address the requirements of constrained devices, lightweight, energy- efficient,
and bandwidth-conscious communication protocols are required across all the lay-
ers of the protocol stack.

4.2 Massive Scalability

Based on an estimate conducted by Cisco, about 99.4% of the physical objects in the
world, which could potentially be connected to the Internet, are still unconnected.
Conversely, this means that only about 10 billion out of approximately 1.5 trillion
global objects are connected. The number of devices connected to the Internet sur-
passed 26 billion devices in 2020 (Fig. 4.1). The majority of this growth continues to
be due to smart objects and “things” connecting to the Internet. This massive scal-
ability imposes requirements on various aspects of the IoT protocol stack, in the
areas of device identification and addressing, namely resolution, security, control
plane (e.g., routing protocols), data plane forwarding, as well as manageability.

4.2 Massive Scalability

86

4.2.1 Device Addressing

The goal of the IoT is to build a uniform network that integrates and unifies all the
communication systems between smart objects in the world. To realize the full
potential of this vision, the interconnected things need to be individually address-
able for ubiquitous communication between systems. In many current deployments
of smart objects, the interconnection of things to the Internet, when available, is
through gateways or proxies. In this sense, the connected things are proverbial
second- class citizens of the Internet. Realizing the IoT vision requires that a global
IP address be assigned to each one of the billions of devices that will be connected.
Taking into account the fact that the IPv4 address space was completely depleted by
February 1, 2011, it becomes clear that the massive scalability of the IoT will accel-
erate the transition of the Internet to IPv6.

4.2.2 Credentials Management

Security credentials management (e.g., shared key distribution, certificate manage-
ment, etc.) poses a significant challenge in today’s Internet. The addition of billions
of devices to the network with IoT will only compound the problem further. Manual
mechanisms currently employed for credentials management (e.g., through precon-
figuration) are not going to be viable in IoT due to two reasons: the sheer number of
devices and the limitations in (or complete lack of) user interfaces on constrained
devices. The number of devices renders the use of pre-shared keys impractical for
production deployments, especially when the devices have rudimentary user inter-
faces or no user interface at all.

The massive scalability of the IoT calls for lightweight, low-touch, and highly
automated credentials management mechanisms.

Fig. 4.1 Growth of connected devices. (Source: Cisco)

4 IoT Requirements for Networking Protocols

87

4.2.3 Control Plane

The Internet encompasses diverse networks running different control plane proto-
cols for the purpose of discovering topology information, communicating connec-
tivity status or link health, signaling session or connection state, guaranteeing
quality of service, and, among other things, quickly reacting to faults. These proto-
cols maintain distributed state that is synchronized using message exchanges
between peering nodes. In some cases, these peering relationships are hierarchical
in nature (e.g., a client-server model) or flat (e.g., overlay peers). The behavior of
the control plane functions together with the syntax and semantics of the messages
exchanged defines the specifics of the control plane protocol. As the number of
nodes participating in a given protocol increases, both the amount of state to be
maintained by each node increases and the volume of messages required for keep-
ing the distributed state tables in synchronization grows. Beyond a specific limit,
attempts to scale a specific control plane protocol typically lead to adverse side
effects on the protocol’s convergence time, the node resources, and the overall net-
work response. The scalability of the IoT calls for elastic control plane mechanisms
that can accommodate the massive number of connected devices.

4.2.4 Wireless Spectrum

As the Internet of Things continues to evolve, one fact remains constant: these
things require connectivity. This global network of objects, sensors, actuators, etc.
must be connected to the Internet in some way, and in many cases wirelessly. The
wireless spectrum is a finite resource, and the licensed portion of this spectrum is
both expensive and scarce. With billions of devices coming online over the coming
decade or so, many of these devices will be contending for the airwaves.

As of now, many IoT systems operate in unlicensed radio frequencies, namely,
the industrial, scientific, and medical (ISM) bands, for example, the 900 MHz band
for Electronic Product Code (EPC), one of the standards for radio-frequency identi-
fication (RFID); the 13.56 MHz band for near-field communications (NFC) sup-
porting mobile payments; and the sub-125 kHz band for physical security systems
(video surveillance and access control). These technologies achieve connectivity
using a range of different, and in some ways competing, wireless protocol stan-
dards, such as Zigbee, Z-Wave, Bluetooth LE, and Wi-Fi, all of which were designed
to work in the unlicensed spectrum. There are no spectrum bottlenecks for these
bands yet, even though Wi-Fi services are approaching the point where they are
maximizing the number of channels that can be fit into the allotted spectrum.
However, when it comes to the licensed bands used for cellular communication
(e.g., the GSM bands defined in 3GPP TS 45.005), the bottlenecks become more
pronounced, especially with the accelerating growth in data traffic over cellular
networks. The term “spectrum crunch” has been used in recent years to refer to this

4.2 Massive Scalability

88

issue. There are two variables at play here: growth in the number of endpoints as
well as growth in the volume of traffic per endpoint, both of which contribute to the
spectrum crunch phenomenon. Research by Cisco shows that globally, mobile
M2M connections grew from 495 million in 2014 to more than 3 billion in 2019, a
sevenfold growth. Global mobile data traffic grew 69% in 2014 reaching 2.5 exa-
bytes per month at the end of 2014, up from 1.5 exabytes per month at the end of
2013. Further, global mobile data traffic increased nearly tenfold between 2014 and
2019 (Fig. 4.2).

4.3 Determinism

One of the value propositions of IoT is that the technology will allow for better
observation and monitoring of the physical world and will also enable the auto-
mated change of that world through closed-loop actuation. IoT opens up the door
for supporting use cases that demand mission-critical networking with high require-
ments for real-time response as well as overall network, protocol, and device robust-
ness. Some of these use cases emerge from industrial automation, such as monitoring
systems, movement detection systems for use in process control (i.e., process manu-
facturing), and factory automation (i.e., discrete manufacturing). Other use cases
have a much broader scope that spans mission-critical automation (e.g., rail control
systems), motion control (e.g., wind turbines), vehicular networks (e.g., infotain-
ment, power train, driver assistance), etc. With the increasing demand for connectiv-
ity and multimedia in transportation in general, use cases and applications are
emerging in all elements of the vehicle from head units to rear seat entertainment
modules, and to amplifiers and camera modules. While these use cases are aimed at
less critical applications than industrial automation, they do share common
requirements.

0.5 B 0.7 B
1%
32%
67%

2014 2015 2016 2017 2018

3.5

3.0
2G 3G 4G LPWA

45% CAGR 2014-2019

3.2 B

29%

Billions
of M2M

Connections

2.5

2.0

1.5

1.0

0.5

0.0

1.1 B

1.6 B

2.3 B

13%

35%

23%

2019

Fig. 4.2 Global machine-to-machine growth and migration from 2G to 3G and 4G. (Source: Cisco
VNI Mobile, 2015)

4 IoT Requirements for Networking Protocols

89

These use cases all share the common requirement to support real-time informa-
tion transfer: the time it takes for each packet to traverse a path from its source to its
destination should be determined; that is, the process must be deterministic. Systems
with control loops involving endpoints communicating over a network can function
properly only if the networks connecting those endpoints guarantee determinism
(imagine what would happen if a network delays a packet carrying a control vari-
able for a high-speed CNC mill).

In this context, a network is said to support determinism and is thereby deemed
to be a “deterministic network,” if the worst-case communication latency and jitter
of messages of interest are decidable based on a reasonable model of the network.
A model is considered reasonable when it sufficiently represents reality for the tar-
get use cases of the networking system. Determinism does not imply speed. In con-
trol functions, both speed and determinism are required. Speed is required to attain
the highest possible throughput. Determinism, on the other hand, is required to
specify a level of quality for the throughput, i.e., the highest-speed throughput that
is in fact usable by the application.

Deterministic Networking enables the migration of applications that have so far
relied on special-purpose non-packet-based (fieldbus) technologies (e.g., HDMI,
CAN bus, Profibus, etc.) to Internet Protocol technologies to support both these new
applications, in addition to existing IP network applications, over the same physical
network (Fig. 4.3). When applied in the context of industrial applications, this leads
to what is dubbed as the “OT/IT” convergence. Operational technology (OT) refers
to industrial networks, which, due to their different goals, have evolved in silo but
in a manner that is substantially different from information technology (IT) net-
works. With OT, the focus has been on transporting fully characterized traffic flows,
over a small area (e.g., plant floor), in a well-controlled environment with a bounded
latency, extraordinarily low frame loss, and very narrow jitter.

Experience with custom control and automation networks, as well as proprietary
audio/video networks, has shown that these applications require one or more of the
following characteristics: time synchronization of all hosts and network elements
(routers, bridges, etc.) and accurate in the range of 10 ns to 10 μs, depending on the
application. The applications also require support for critical packet flows that need
guarantees of the minimum and maximum latency end-to-end across the network.
Such flows can be either unicast or multicast and can in total consume more than
half of the available bandwidth of the network, thereby eliminating the possibility
of relying on over-provisioning. The applications mandate packet loss ratios that are
at least in the range of 1.0e−9 to 1.0e−12. Furthermore, the traffic for these applica-
tions cannot be subjected to throttling, congestion feedback, or stochastic network-
imposed transmission delay.

4.3 Determinism

90

4.4 Security and Privacy

The ubiquity of IoT and its potential to extend into all aspects of human life, whether
in transportation, healthcare, home automation, industrial control, etc., makes guar-
anteeing security and privacy paramount. With traditionally offline systems and
applications being connected to the Internet, they quickly become targets for attacks
that will only continue to grow in magnitude and sophistication. Such targets cover
a multitude of industry segments, and the potential impact of security attacks could
lead to significant damage and even loss of life.

While the threats in IoT may, at the outset, seem largely similar to those in more
traditional IT environments, the potential impact of those threats is more profound.
This is why threat analysis and risk assessment efforts are key in IoT to measure the
impact of a security incident or breach.

A fundamental pillar in securing the IoT is around mechanisms to authenticate
device identity. As was discussed in Sect. 4.1, many IoT devices are constrained
devices, which lack the required processing, memory, storage, and power require-
ments to support state-of-the-art authentication protocols. The state-of-the-art
encryption and authentication protocols are based on cryptographic suites such as
Advanced Encryption Standard (AES) for confidential data transport, Rivest–
Shamir–Adleman (RSA) for digital signatures and key transport, and Diffie–
Hellman (DH) for key negotiations and management. While these protocols are
battle-proven in deployments, they suffer from two shortcomings when it comes to

Fig. 4.3 Deterministic vs. guaranteed vs. best effort traffic

4 IoT Requirements for Networking Protocols

91

applying them to IoT. The first shortcoming is that these protocols are resource
hungry and generally demand high-capability compute platforms. Appropriate
reengineering is required to accommodate constrained devices. The second short-
coming is that the authentication and authorization protocols are high-touch, requir-
ing user input for provisioning and configuration. In many IoT deployments, access
to the devices will be limited or impractical, thereby requiring that the initial con-
figuration be tamper-proof throughout the usable lifespan of the devices, and such
lifespan could extend to many years.

In order to address these shortcomings, new lightweight authentication and
authorization protocols are required which leverage the experience of today’s strong
encryption/authentication algorithms but are capable of running on constrained
devices.

Encryption is the cornerstone of network security protocols. The effectiveness of
encryption algorithms generally decreases with time due to a number of factors
including Moore’s Law (availability of stronger compute to crack the encryption),
public disclosure of inherent vulnerabilities with prolonged exposure to attacks,
wide adoption (which increases the attack surface), etc. This creates an interesting
predicament for the use of encryption in IoT: deployed devices may outlive the
effectiveness of the encryption mechanisms embedded within them. For instance, a
smart meter in a home can operate for 50 years, whereas the encryption protocol
may lose its effectiveness in about half of that time.

Other aspects of security that need to be considered for IoT include:

• Data privacy levels and geo-fencing of data (i.e., limiting access to data to spe-
cific locales).

• Strong identities.
• Strengthening of base network infrastructure such as the Domain Name System

(DNS) with DNSSEC and DHCP to prevent attacks.
• Adoption of protocols that are more tolerant to delay or transient connectivity

(such as delay-tolerant networks).

Privacy is a major issue even in today’s Internet. User data is collected for a mul-
titude of purposes such as targeted advertisements, purchase recommendations, and
even national security. IoT will exacerbate the importance of preserving privacy
because many applications generate traceable signatures of the behavior of indi-
viduals and their physical location. Some IoT applications even involve highly sen-
sitive personal information, such as medical records. For these types of applications,
it is imperative to decouple the device from the owner’s identity while still provid-
ing robust mechanisms for device ownership verification and device identity authen-
tication. Shadowing is one mechanism proposed to achieve this. Effectively, digital
shadows enable the user’s objects to act on his or her behalf, storing just a virtual
identity that contains information about his or her attributes. As a matter of fact,
identity management in the IoT paves the way to increase security by applying a
combination of diverse authentication methods for humans and machines. For
instance, biometric data combined with a physical object could be used as grant
access by unlocking a door.

4.4 Security and Privacy

92

The importance of security in IoT cannot be overstated. More details on this
topic are covered in Chap. 8.

4.5 Application Interoperability

M2M deployments, in one form or another, have existed for over two decades now.
However, the vision of the Internet of Things is far from being a reality, and the
technology is yet to realize its full market potential. The complexity of developing,
deploying, and managing IoT applications remains a key challenge for the industry.
It constitutes a challenge for network operators who are trying to offer profitable
services tailored to the IoT market, for application developers building vertical-
specific applications, as well as for service providers who are trying to speed time
to market, reduce costs, and simplify robust application deployment. This complex-
ity drives up the cost of building IoT solutions.

The problem of complexity, and associated high cost, can be attributed in part to
the closed nature of the solutions, which are developed in vertical-specific silos,
thereby leading to each solution provider having to implement all the building
blocks required for a minimum viable product, as opposed to reusing standard and
open components. The resulting solutions are almost ubiquitously characterized by
having strong coupling between application entities. Here, we use the term applica-
tion entity to refer to an instance of application logic that may be implemented in
hardware (analogue or digital), software, firmware, etc. Thus, an application entity
denotes any IoT endpoint responsible for producing or consuming data and spans
the entire gamut from a sensor/actuator to a cloud application.

The closed nature of existing IoT solutions renders them not only expensive to
implement initially but also expensive and difficult to maintain and evolve over
time. This is primarily because application code often needs to be updated or
changed in the scenario where a device is swapped with another that is functionally
equivalent albeit manufactured by a different vendor, let alone the scenario where a
new device type needs to be integrated into the solution.

The above challenges lead to the requirement for application-level interoperabil-
ity for the IoT. This requirement can be further broken down into requirements for
abstractions and standard application programmatic interfaces (APIs) as well as
requirement for semantic interoperability.

4.5.1 Abstractions and Standard APIs

Realizing the full vision of the IoT will be difficult unless the application program-
matic interfaces (APIs) that control the functionalities of the devices and smart
objects adhere to common standards that guarantee interoperability. To reach full
API interoperability, the industry must converge on mechanisms for identifying the

4 IoT Requirements for Networking Protocols

93

data that application entities will share and methods for sharing it. APIs expose the
data that enables disparate devices to be composed in innovative ways to create new
and interesting workflows. With the availability of standard APIs, it is possible to
introduce abstractions for common IoT functions, including:

• Device management (activation, triggering, authentication, authorization, soft-
ware/firmware update, etc.)

• Data management (read, write, subscribe, notify, delete, etc.)
• Application management (start, stop, debug, upgrade, etc.)

The abstractions provide logical representations of the functions while hiding all
implementation nuances and variations. They define service contracts that are gov-
erned by the syntax and semantics of the APIs and which formally specify the meth-
ods for interaction with modules supplying those functions. In other words, the use
of standard APIs introduces “slip surfaces” that eliminate coupling between func-
tionally discrete modules of a given IoT solution. This allows modules supplied by
different IoT vendors to seamlessly interwork and integrate into a cohesive system.
A given module can be replaced by another supplied by a different vendor as long
as it subscribes to the standard API governing the associated slip surfaces between
the system’s building blocks (Fig. 4.4).

4.5.2 Semantic Interoperability

Semantic interoperability guarantees that application entities in the IoT can access
and interpret data unambiguously. Providing unambiguous data descriptions that
can be machine processed and interpreted by application entities is one of the key
enablers of automated information communications and interactions in IoT.

Fig. 4.4 Abstractions and APIs

4.5 Application Interoperability

94

Without semantic interoperability among communicating systems, sharing IoT
data in a useful way is impossible. Semantic interoperability guarantees a common
vocabulary that paves the way for accurate and reliable communication between
applications and systems. This fluent machine-to-machine communication depends
on the ability of different systems to map data to shared semantics, or meaning. If
we were to use the analogy of a pyramid to visualize the different tiers of applica-
tion interoperability, the base of that pyramid would be syntactic or structural
interoperability: it defines the structure or format of data exchange between applica-
tions. Structural interoperability is a prerequisite; it is necessary but not sufficient
for two applications to successfully work together. The top part of the pyramid is
reserved to semantic interoperability. It deals with the content of the messages
exchanged and their associated meaning, not just the message formats.

Semantic interoperability can be achieved in a number of ways. One is through
the development of pervasive and common information models, or ontologies
(Fig. 4.5), that capture the knowledge associated with a specific vertical domain.
Another is through providing semantic mediators, or translators, that perform con-
version of the information to a format that the application entity understands.

4.6 Summary

The Internet Protocol (IP) stack was among the factors that contributed to the suc-
cess of the Internet. While this IP stack provides a strong foundation for building the
IoT, a number of shortcomings need to be addressed to meet the peculiar require-
ments of IoT. These requirements include support for resource-constrained devices
that have very limited compute capabilities and limited power; support for the mas-
sive scalability of IoT, with billions of connected devices; the need for deterministic
networks to support real-time mission-critical applications; the requirement for
lightweight security protocols and ensuring data privacy; and finally the require-
ment for application interoperability through the use of APIs and unified data
semantics.

Fig. 4.5 Simple IoT ontology

4 IoT Requirements for Networking Protocols

95

Problems and Exercises

 1. What are “constrained” devices? Name their classes and characteristics.
 2. What makes a network “deterministic”?
 3. In what three areas does the massive scalability of IoT impact networking

protocols?
 4. What is the importance of standard APIs in the success of IoT?
 5. Why is scalability a major requirement for IoT protocols?
 6. What is an ontology? Why are ontologies applicable in the IoT?
 7. Name three key IoT requirements that have impact on networking protocols.
 8. What characteristics of the IP stack contributed to the success of the Internet?
 9. Was the choice of the Internet as the underlying network for IoT always a given

or agreed upon fact?
 10. Name the various options by which IoT devices can be supplied with power.
 11. Describe the characteristics of Class 0-constrained devices.
 12. What is “semantic interoperability”? Why is it important in IoT?
 13. How does scalability impact the network control plane? Explain the various

dimensions impacted.
 14. How much of the IPv4 address space is still available for allocation?
 15. What common IoT functions can be abstracted through APIs in order to sim-

plify application development and improve the time to market new IoT applica-
tions and services?

 16. What types of applications can be migrated to IP technologies with the advent
of Deterministic Networking?

 17. Which is more expensive in terms of power consumption: Communication or
local processing? What does this imply to IoT devices?

 18. How does the addition of billions of devices to the Internet affect the wireless
spectrum?

 19. How does the complexity of developing, deploying, and managing IoT applica-
tions today affect the state of the industry?

 20. What makes existing credentials management techniques inadequate for IoT?
 21. What are two shortcomings of the state-of-the-art security protocols (for

authentication/authorization/encryption) when applied to the IoT?

References

 1. D. Estrin, R. Govindan, J. Heidemann, S. Kumar, Next century challenges: Scalable coor-
dination in sensor networks, in MobiCom ‘99: Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking, (ACM, New York, 1999),
pp. 263–270

 2. Bormann, et al., “Terminology for Constrained-Node Networks”. Internet Engineering Task
Force RFC 7228. May 2014

References

96

 3. V. Cantoni, L. Lombardi, P. Lombardi, Challenges for data Mining in Distributed Sensor
Networks, in 18th International Conference on Pattern Recognition (ICPR’06), (2006),
pp. 1000–1007

 4. J. Bradley, J. Barbier, D. Handler, Embracing the Internet of Everything To Capture Your Share
of $14.4 Trillion, Cisco Whitepaper, (2013)

 5. The Zettabyte Era: Trends and Analysis, Cisco Whitepaper, (June 2016)
 6. D. Evans, The Internet of Things – How the Next Evolution of the Internet is Changing

Everything, Cisco Whitepaper, (April 2011)
 7. “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019”,

Cisco Whitepaper, February 2015
 8. http://www.ieee802.org/802_tutorials/2012- 11/8021- tutorial- final- v4.pdf, IEEE 802.1

Tutorial on Deterministic Ethernet, November 2012
 9. N. Finn, P. Thubert, “Deterministic Networking Problem Statement”, draft-finn-detnet-

problem-statement-01, work in progress, (October 2014)
 10. W. Steiner, N. Finn, Deterministic Ethernet: Standardization in Progress and Beyond, RATE

Workshop, (December 2013)
 11. P. Barnaghi et al., Semantics for the internet of things: Early progress and back to the future.

Int. J. Semant. Web. Inf. Syst 8(1) (2012)
 12. Securing the Internet of Things: A Proposed Framework, Cisco Whitepaper

4 IoT Requirements for Networking Protocols

http://www.ieee802.org/802_tutorials/2012-11/8021-tutorial-final-v4.pdf

97© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_5

Chapter 5
IoT Protocol Stack: A Layered View

The IoT protocol stack can be visualized as an extension of the TCP/IP layered
protocol model and is comprised of the following layers (refer to Fig. 5.1):

• Physical layer
• Link layer
• Network layer
• Transport layer
• Application Protocols layer
• Application Services layer

Note that the Application layer of the TCP/IP protocol stack is expanded into two
layers in the IoT protocol stack: Application Protocols and Application Services. It
is as if the proverbial “narrow waist” of the hourglass is being extended further up
the stack to provide interoperability between heterogeneous “things.”

5.1 Link Layer

In this section we will examine the impact of the IoT requirements on the Link layer
through a combined view of the challenges that those requirements impose on net-
working technologies, industry efforts to address those challenges, and remain-
ing gaps.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_5#DOI

98

5.1.1 Challenges

The challenges that the IoT presents to the Link layer of the protocol stack can be
broadly categorized into the following four areas: device characteristics, traffic
characteristics, access characteristics, and scalability (Fig. 5.2).

On the device characteristics front, the IoT will encompass a wide spectrum of
“things” that span from fully capable (non-constrained) compute nodes to highly
constrained devices. The latter typically have limited energy resources to spend on
processing and communication. As discussed earlier, network communication is
typically more power consuming when compared to local processing. Hence, com-
munication technologies need to be optimized to accommodate low-power devices.
Implementation of protocols at all layers of the protocol stack can affect energy
consumption. However, the Link layer, in particular, has a significant impact due to

Fig. 5.1 IoT protocol stack

Fig. 5.2 Link layer challenges. (Source Cisco BRKIOT-2020, 2015)

5 IoT Protocol Stack: A Layered View

99

the fact that this layer is responsible for the nuances of the physical transmission
technology, framing, media access control, and retransmissions. For instance, it is
reported that, depending on the link load, between 50% and 80% of the communica-
tion energy is used for repairing lost transmissions at the MAC layer.

The traffic characteristics of IoT endpoints vary widely depending on the appli-
cation’s demands and nature of devices. Some applications have relaxed require-
ments on packet loss, latency, and jitter (e.g., a meteorological monitoring
application), whereas others have very tight availability, latency, and jitter tolerance
(e.g., a jet engine control application). It is worth noting here the contrast between
the meteorological monitoring and jet engine control applications: both applications
may be using the same types of devices (temperature sensors, pressure sensors) and
observing the same physical entities (temperature, pressure). However, it is the
applications’ requirements that dictate the traffic characteristics that the network
must deliver. By the same token, some IoT devices generate short bursty traffic
(e.g., point of sale terminal), whereas other devices generate long-tailed traffic (e.g.,
video camera). The dichotomy in traffic characteristics, between solutions that
expect determinism and those that can withstand best-effort (random) communica-
tions, creates drivers for Link layer technologies that support deterministic and
Time-Sensitive Networking.

The access characteristics of IoT endpoints become increasingly diverse as the
footprint of the network grows beyond traditional IT environments, dominated by
familiar local area network (LAN) and wide area network (WAN) technologies, and
into new deployment environments such as industrial plant floor, oil fields, marine
platforms, mines, wells, power grids, vehicles, locomotives, and even the human
body. IoT devices in these environments may connect to the network using a mix of
wireless and wired technologies. The devices when connected wirelessly may be
either mobile or stationary and depending on the logistics of the deployment may
require either long-range or short-range connectivity solutions. To accommodate
this diversity, new Link layer protocols that form the foundation of field area net-
work (FAN), neighborhood area network (NAN), and personal area network (PAN)
technologies are required.

IoT scalability demands present interesting challenges for the Link layer of the
protocol stack, especially for wireless technologies. On the one hand, these tech-
nologies offer a number of appealing characteristics that make them a good fit for
the IoT, low upfront investments, wide geographic coverage, fast deployment, and
pleasing aesthetics (no unsightly wires).

On the other hand, these technologies are susceptible to scalability issues. For
instance, cellular technologies are subject to the spectrum crunch problem, which
drives demand for technology optimizations and cellular off-load solutions such as
Wi-Fi and femtocell. Also, wireless mesh technologies suffer from challenges such
as forwarding latency and slow convergence as the diameter of the mesh scales.

5.1 Link Layer

100

5.1.2 Industry Progress

Now that we have covered the main challenges that IoT presents to the Link layer
of the protocol stack, we will shift our focus to describe the industry’s progress in
addressing those challenges through open standard solutions.

5.1.2.1 IEEE 802.15.4

IEEE 802.15 Task Group 4 (TG4) was chartered to investigate a low data rate wire-
less connectivity solution with focus on very low complexity and extended battery
life span that is in the range of multiple months to multiple years. The solution was
meant to operate in an unlicensed, international frequency band. While initial activi-
ties of the task group focused on wearable devices, i.e., personal area networks, the
eventual applications proved to be more diverse and varied. Potential applications of
the solution include sensors, interactive toys, smart badges, remote controls, and
home automation. As can be seen from the applications, the focus of the solution
has primarily revolved around enabling “specialty,” typically short-range,
communication.

The resulting IEEE 802.15.4 technology is a simple packet-based radio protocol
aimed at very low-cost, battery-operated devices (whose batteries last years) that
can intercommunicate and send low-bandwidth data to a centralized device. The
protocol supports data rates ranging from 1 Mbps to 10 kbps. The data rate is depen-
dent on the operating frequency as well as on the coding and modulation scheme.
The standard operates over several frequency bands, which vary by region:

• 169 MHz band
• 450 MHz band
• 470 MHz band
• 780 MHz band
• 863 MHz band
• 896 MHz band
• 901 MHz band
• 915 MHz band
• 917 MHz band
• 920 MHz band
• 928 MHz band
• 1427 MHz band
• 2450 MHz band

In addition, the standard supports multiple modulation schemes, including
BPSK, ASK, O-QPSK, MR-FSK, MR-OFDM, and MR-O-QPSK. The transmis-
sion range varies from tens of meters up to 1 km, the latter introduced with IEEE
802.15.4g. The protocol is fully acknowledged for transfer reliability. The basic
frame size is limited to 127 bytes in the original specification, and the philosophy

5 IoT Protocol Stack: A Layered View

101

behind that is twofold: to minimize power consumption and to reduce the probabil-
ity of frame errors. However, with IEEE 802.15.4g, the maximum frame size is
increased to 2047 bytes, accompanied by an increase of the frame check sequence
(FCS) from 16 to 32 bits for better error protection.

The standard offers optional fully acknowledged frame delivery for transfer reli-
ability in lossy environments (e.g., high interference). If the originator of a frame
does not receive an acknowledgment after a certain time period, it assumes that the
transmission failed and retransmits the frame. If an acknowledgment is still not
received after multiple attempts, the originator may either terminate the transaction
or continue retrying.

The IEEE 802.15.4 standard only defines the functions of the Physical and Media
Access Control (MAC) layers. It serves as the foundation for several protocol stacks,
some of which are non-IP, including Zigbee, Zigbee RF4CE, Zigbee Pro,
WirelessHART, ISA 100.11a, and RPL.

There are two types of devices in an 802.15.4 network. The first one is the full-
function device (FFD). It implements all of the functions of the communication
stack, which allows it to communicate with any other device in the network. It may
also relay messages, in which case it is dubbed as a personal area network (PAN)
coordinator. The PAN coordinator is in charge of its network domain: it allocates
local addresses and acts as a gateway to other domains or networks. The second type
of device is the reduced-function device (RFD). RFDs are meant to be extremely
simple devices with very modest resource and communication capabilities. Hence,
they can only communicate with FFDs and can never act as PAN coordinators. The
rationale is that RFDs are to be embedded into the “things.” Networks can be built
using either a star, mesh, or cluster tree topology (Fig. 5.3). In all three cases, every
network needs at least a single FFD to act as the PAN coordinator. Networks are
thus formed from clusters of devices separated by suitable distances.

Fig. 5.3 IEEE 802.15.4 topologies

5.1 Link Layer

102

In the star topology, all devices communicate through a single central controller,
namely, the PAN coordinator. This is a hub-and-spoke model: the PAN coordinator
is the hub, and all other devices form spokes that connect only to the hub. The PAN
coordinator is typically main powered, while the devices are most likely battery
operated. Use cases that make use of this topology include smart homes (home
automation), computer peripherals, personal health monitors, toys, and games. Each
star network chooses a PAN identifier, which is not currently in use by any other
network within the radio range. This allows each star network to operate indepen-
dently of other networks.

The mesh topology (also called peer to peer) differs from the star topology in that
any device can communicate with any other device as long as the two are within
radio range. A mesh network can be ad hoc in formation, self-organizing, and self-
healing on node or link failures. It also provides reliability through multipath rout-
ing. Use cases such as industrial control and process monitoring, wireless sensor
networks (WSN), precision agriculture, security, asset tracking, and inventory man-
agement all can leverage this topology.

The cluster tree topology is a special case of a mesh network that comprised of
chained clusters. In a cluster tree, the majority of the devices are FFDs. RFDs may
connect to the network as leaf nodes at the end of a tree branch. As with any 802.15.4
topology, the network has a single PAN coordinator. The PAN coordinator forms the
first cluster by declaring itself as the cluster head (CLH) with a cluster identifier
(CID) of zero, selecting an unused PAN identifier, and broadcasting beacon frames
to other neighbor devices. A device, which receives beacon frames, may request
from the CLH to join the cluster. If the CLH allows the device to join, it will add the
new device as a child device in its neighbor list. The newly joined device will add
the CLH as its parent in its neighbor list and commence broadcasting periodic bea-
con frames. This allows other candidate devices to join the same cluster at that
device. Once the requirements of the application or network are met, the PAN coor-
dinator may instruct a device to become the CLH of a new cluster that is adjacent to
the first. The advantage of this daisy-chained cluster structure is the ability to
achieve larger coverage area at the expense of increased message latency.

5.1.2.2 IEEE 802.15.4e TSCH

IEEE 802.15.4e is the next-generation 802.15.4 wireless mesh standard. It aims to
improve on its predecessor in two focus areas: lower energy consumption and
increased reliability. The standard introduces a new media access control (MAC)
layer to 802.15.4 while maintaining the same physical (PHY) layer. Hence, it can be
supported on existing 802.15.4 hardware. Two key capabilities are added, time syn-
chronization and channel hopping, hence the acronym TSCH. Time synchroniza-
tion addresses the requirement for better energy utilization, whereas channel
hopping aims at increasing the reliability of communication.

With time synchronization, time is sliced into fixed-length time slots and all
nodes are synchronized. A time slot is long enough to allow a station to send a

5 IoT Protocol Stack: A Layered View

103

maximum transmission unit (MTU)-sized frame and receive an acknowledgment
back. Time slots are grouped into slotframes of flexible width. The flexibility allows
different deployments to optimize for bandwidth or for energy saving: the shorter
the slotframe, the more frequently that a given time slot will be repeated, thereby
giving a station more chances to transmit (i.e., higher bandwidth) but at the expense
of increased energy consumption. The current time slot is globally known to all
nodes in the network via an absolute slot number (ASN). The ASN is initialized to
0 and is expected to wrap around only after hundreds of years.

With channel hopping, each message transmission between nodes occurs on a
specified channel offset. The channel offset is then mapped to a radio frequency
using a function that guarantees that two consecutive transmissions between two
nodes hop from one frequency to another within the allotted band:

Frequency ASN Channel Offset mod nFreq= +(){ }F

where nFreq is the number of available frequencies in the allotted band.
This enhances the reliability of communication as it is proven to be effective

against multipath fading and interference. Basically, if a specific frequency is sub-
ject to fading or interference, then by changing the frequency used for communica-
tion between nodes with every new message, only a subset of the messages will be
lost due to those conditions, whereas if all communication were to occur on the
same frequency, then all messages between the nodes communicating over the
affected frequency would be lost during the fading or interference event.

The nodes in the network all obey a TSCH schedule. The schedule is a logical
two-dimensional matrix with one dimension determining the slot offset in the slot-
frame and the second dimension designating the channel offset in the available fre-
quency band (Fig. 5.4). The schedule instructs each node on what it is supposed to
do in a given time slot: transmit, receive, or sleep. The schedule also indicates for
every communicating node its neighbor’s address and the channel offset to be used
for said communication. The width of the schedule is equal to the slotframe width,
whereas the depth of the schedule is equal to the number of available frequencies in
the allotted band. Each cell in the schedule corresponds to a unique slot offset and
channel offset combination. The organization of communication in the schedule
allows the network to operate using collision-free communication, by ensuring that

Fig. 5.4 TSCH schedule

5.1 Link Layer

104

only a single station transmits in a given cell. Alternatively, it can allow the network
to operate in a slotted Aloha paradigm (i.e., carrier-sense multiple access with col-
lision detection—CSMA/CD) by allowing multiple stations to transmit in the same
cell. IEEE 802.15.4e does not define the mechanisms by which the TSCH schedule
is built and leaves that responsibility to upper-layer protocols.

5.1.2.3 LPWAN

Low-power wide area networks (LPWANs) are meant to fill the gap between short-
range wireless and cellular communication technologies. They are designed for
low-power, long-range, and light-weight data collection IoT use cases (Fig. 5.5).
Devices connecting to LPWANs will typically have a battery life of over 10 years
and will require outdoor coverage of up to 20 km (12 miles) and sufficient indoor
penetration. From an operational standpoint, the solutions require low service cost
and endpoint complexity. In general, the LPWAN landscape spans both licensed and
unlicensed spectrums.

It is not unusual to see Low-power wide area (LPWA) technology combined with
LTE in solutions where high data rates are required for device (e.g., navigation,
entertainment systems) and low-data rates are used in the same device for telemetry
(e.g., position, direction, temperature).

There are two main LPWA technologies in the market today that dominate the
landscape. They are as follows:

• LoRaWAN (Long-Range Wide Area Network)—An unlicensed radio technology
(free) that is available for anyone to deploy much like Wi-Fi is today. Note, LoRa
only provides the radio layer (link layer protocol) therefore it is combined with a
network layer protocol called LoRaWAN that provided the methods and

Lo
w

P
ow

er
 C

on
su

m
pt

io
n

H
ig

h

WLANs
(Wi-Fi)

Cellular
(3G/4G)

IEEE 802.15.4 LPWAN

Short Range Long

Fig. 5.5 LPWAN
positioning

5 IoT Protocol Stack: A Layered View

105

 procedures for a sensor to transmit and receive packets. LoRaWAN is defined by
the LoRa Alliance, an industry consortium.

• NB-IoT (Narrow-Band IoT)—A licensed-spectrum (paid) transport provided by
service providers and defined by the 3GPP (the same organization that defines
the 3/4/5G specifications).

LoRaWAN

LoRaWAN defines a communication protocol and network architecture for low-
power wide area networks (LPWANs). LoRaWAN is designed to address the
requirements for low-power consumption (i.e., long battery life), long range, and
high capacity in LPWANs while maintaining low cost for the solution. The com-
munication protocol used in LoRaWAN is known as LoRa. The LoRa physical layer
uses chirp spread spectrum modulation. It is characterized by low-power usage
while at the same time significantly increasing the communication range when com-
pared to frequency-shifting keying (FSK), which is the modulation technique often
used in legacy wireless systems. Chirp spread spectrum is not a new technique: it
has been employed in military and space applications for decades because of its
extended range and its robustness against interference. A key advantage of the LoRa
protocol is its extended range: a single base station can cover hundreds of square
miles. That is enough to provide coverage over cities. Hence, with minimal infra-
structure, entire countries can be covered using LoRaWAN. In wireless communi-
cation systems, the range within a given environment is determined through the link
budget metric. LoRa has a link budget that is greater than any other standardized
wireless communication technology today. The link budget is defined as an account-
ing of all the gains and losses between a transmitter and a receiver:

 Link Budget Transmitted Power Gains Losses= + −

Network Architecture

LoRaWAN employs a long-range star (or hub and spoke) architecture in order to
minimize power consumption. Star architecture, in contrast to mesh architecture,
eliminates the scenario where nodes receive and forward information from other
nodes that is mostly irrelevant to them. In LoRaWAN, gateways act as hub nodes,
whereas end devices form the spokes. End nodes are not associated with a particular
gateway. Rather, when a node sends data, it is typically received by multiple gate-
ways. Each of these gateways, in turn, forwards the received data toward the cloud-
based network server using some backhaul1 technology. The network server is
responsible for all complex and intelligent functions: it manages the network, filters

1 The backhaul can be Ethernet, Wi-Fi, satellite, or cellular.

5.1 Link Layer

106

redundant received data, performs security verification, schedules acknowledg-
ments through the most optimal gateway, and performs adaptive rate control, etc.

A key feature of this architecture is that no handover mechanism is required from
one gateway to another to support the mobility of end nodes. Therefore, it is straight-
forward to enable IoT asset tracking applications. Another key feature is the built-in
access redundancy, where the failure of a gateway or path toward the network server
is handled by sending redundant copies of data packets (Fig. 5.6).

Device Class Capabilities

In order to address the constrained devices requirement of IoT, LoRaWAN defines
three device class capabilities targeting different applications with varying needs.
The classes are labeled A, B, and C. They offer a trade-off between energy con-
sumption and downlink communication latency.

Class A devices support bidirectional communication. They include battery-
powered sensors. This is the most energy-efficient device class capability and must
be supported by all devices implementing LoRaWAN. The communication model is
such that each uplink transmission by the end device is followed by two short down-
link receive windows. The transmission schedule of the end device is dictated by its
own communication requirements, albeit with a small variation in the allocated
window based on a random time variance (ALOHA protocol flavor). This class of
operation is suitable for applications where downlink communication from the
server to the end device mostly occurs in the short window after the latter had sent
an uplink transmission. Otherwise, such downlink communication must be deferred
till the next scheduled uplink transmission.

Class B devices support bidirectional communication with scheduled receive slots.
They include battery-powered actuators. This class offers energy efficiency with
latency controlled downlink communication. The communication model for this class
supports all the capabilities of Class A and in addition requires end devices to open
extra receive windows at scheduled times. This is accomplished by having the end
devices receive a time-synchronized beacon from the gateways, so that the applica-
tions on the servers know when the end devices are listening on these extra slots.

LoRaWAN
Devices

Gateways (GW) Network Server (NS) Application Servers (AS)

Backhaul
(3G/Ethernet)

LoRa
RF

App Data LoRaWAN
Radio PHY

LoRaWAN MAC IP
Tunnel

IP Transport App Data

Fig. 5.6 LoRaWAN end-to-end network architecture

5 IoT Protocol Stack: A Layered View

107

Class C devices support bidirectional communication with maximal receive
slots. They include main powered actuators. This class is for devices that have the
energy resources to afford to listen continuously. It is well suited for applications
that require no latency in downlink communication. End devices in this class must
continuously open receive windows when not in transmitting mode.

Scalability

LoRaWAN ensures the scalability of its long-range star network architecture
through high-capacity gateways. Gateways achieve high capacity through a twofold
approach, by using adaptive data rate and by employing a multichannel multi-
modem transceiver. This allows the gateway to receive simultaneous messages on
multiple channels from a very high volume of end devices. Several factors affect
network capacity, among which the following are deemed most critical:

• Number of concurrent channels supported by the transceiver
• Data rate (i.e., time on air)
• Payload size
• Frequency of transmission of communicating nodes

Recall that LoRa uses spread spectrum modulation; hence, when different
spreading factors are used, the signals end up being orthogonal to one another. The
effective data rate changes with change in the spreading factor. LoRaWAN gate-
ways capitalize on this property in order to concurrently receive multiple different
data rates on the same channel. In the scenario where an end device is in the vicinity
of a gateway and has a good link, there is no technical reason for it to use the lowest
data rate thereby filling up the available spectrum for a longer time period than
required. If this device was to shift to a higher data rate, its time on air will be short-
ened, thereby freeing up more time for other devices to transmit. It is worth noting
that in order for adaptive data rate to work, the uplink and downlink need to be sym-
metrical, with sufficient downlink capacity. These features all contribute to making
a LoRaWAN network scalable.

However, the duty-cycle limitation in the ISM bands may arise as a limitation to
the scale of LoRaWAN networks. As an example, the maximum duty cycle of the
EU 868 ISM band is 1%. This results in a maximum transmission time of 36 s in
each hour for each end device in a sub-band.

Energy Efficiency

Energy efficiency is achieved in LoRaWAN through the use of the ALOHA method
of communication: nodes are asynchronous and only communicate when they have
data ready to be sent, whether scheduled or event driven. This alleviates the need for
end devices to frequently wake up and synchronize with the network or check for
messages. Such synchronization is one of the primary contributors to energy con-
sumption in wireless networks.

5.1 Link Layer

108

Energy efficiency is also achieved through the use of adaptive data rate, where
transmission power is varied according to link quality. When adaptive data rate is
enabled, the network collects metrics on a number of the most recent transmissions
from a node. These metrics include the frame counter, signal-to-noise ratio (SNR),
and the number of gateways that have received each transmission. Based on these
metrics, the network then calculates if it is possible to increase the data rate or lower
the transmission power. If possible, the network will lower the transmission power
to save energy and cause less interference.

Security

LoRaWAN defines two layers of security: one at the Network layer and one at the
Application layer. Network security is responsible for ensuring the authenticity of
the node in the network, whereas the Application layer security guarantees that the
user’s application data is inaccessible to the network operator. LoRaWAN uses AES
encryption with key exchanges based on the IEEE EUI64 identifier.

Three different security keys are defined: network session key, application ses-
sion key, and application key. The network session key is used for securing the
interactions between the end node and the network. It helps in checking the validity
of the messages. The application session key is used for payload encryption/decryp-
tion. These two session keys are unique per device, per session. When a device is
dynamically activated, these keys are regenerated upon every activation, whereas, if
the device is statically activated, these keys remain the same until changed by the
operator. Devices which are dynamically activated use the application key in order
to derive the two session keys in the course of the activation procedure. In general,
it is possible to have either a default application key that is used to activate all
devices or a customized key per device.

Regional Variations

Due to differences in spectrum allocations and regulatory requirements between
regions, the LoRaWAN specification varies slightly from region to region. These
variations affect the following: frequency band, number of channels, channel band-
width, transmission power, data rate, link budget, and spreading factor.

Challenges

LoRaWAN relies on the acknowledgment of frames in the downlink for reliability.
This, in turn, causes capacity drain. Therefore, in general, application should try to
minimize the volume of acknowledgments in order to avoid this drain. This raises
an open question regarding the feasibility of very large-scale and ultrareliable appli-
cations using LoRaWAN.

Also, the uncoordinated deployment of LoRaWAN gateways and alternate
LPWAN technologies in large urban centers may lead to a decrease in network
capacity due to collisions in the ISM bands. This, in addition to the duty-cycle

5 IoT Protocol Stack: A Layered View

109

regulation for these bands, poses potential challenges for large-scale LoRaWAN
deployments.

NB-IoT

In June 2016, 3GPP completed the standardization of Narrow Band IoT (NB-IoT),
a radio access technology with a spectrum bandwidth that can go as small as
180 kHz and with higher modulation rates compared to LoRaWAN. 3GPP had
started NB-IoT under the name “Cellular System Support for Ultra-low Complexity
and Low Throughput Internet of Things (CIoT) ” with the goal of finding a solution
that would be competitive in the Low-Power Wide Area segment, which at that time
was largely defined by unlicensed spectrum technologies.

NB-IoT has its roots in LTE, albeit its operation is kept as simple as possible in
order to reduce device costs and minimize battery consumption. In order to do so, it
removes many features of LTE, including handover mechanisms, channel quality
monitoring measurements, carrier aggregation, and dual connectivity. It uses the
same licensed frequency bands used in LTE, and employs QPSK modulation. There
are different frequency band deployments, which are stand-alone, guard-band, and
in-band deployment. There are 12 subcarriers of 15 kHz in downlink using OFDM
and 3.75/15 kHz in uplink using SC-FDMA.

Network Architecture

The core network architecture of NB-IoT is based on the 3GPP’s Evolved Packet
Core (EPC), with simplifications and optimizations that were designed specifically
for IoT use cases focusing on communication between an IoT device and an appli-
cation in the external network (cloud/Internet). This is achieved using a combined
node called C-SGN (CIoT Serving Gateway Node) which serves the combined
functionality of the Mobility Management Entity (MME)/Serving Gateway (SGW)
and of Packet Data Network Gateway (PGW) in the original EPC architecture.
Figure 5.7 depicts the architecture.

CIoT RAN AS
(CIoT Services)

MME

SGW

SCEF

PGW

UE
C-SGN

S1U

S11

S1-MME
T6a

T8

SGi
S5 / S8

Fig. 5.7 NB-IoT network architecture

5.1 Link Layer

110

For NB-IoT, 3GPP has introduced in addition to the IP Packet Data Network
(PDN), a non-IP PDN. This is to handle IoT devices where the packets used for
communication are unstructured from the Evolved Packet System standpoint. While
an IP based PDN is established through the regular attach procedure, a non-IP type
PDN can be accomplished by one of two mechanisms:

• Delivery using SCEF.
• Delivery using point to point SGi tunnel (via PGW) based on UDP/IP where

PGW acts as transparent forwarding node via transferring Non-IP data between
UE and the AS (Fig. 5.7).

Each application shall have its own PDN and APN to differentiate the bearer. The
APN configuration in the HSS helps the network to decide whether Non-IP data is
sent via SCEF or PGW.

SCEF stands for Service Capability Exposure Function. It provides a means to
securely expose the services and capabilities provided by the 3GPP network and
hence enables enterprises to develop applications that may benefit from the trans-
port network information. SCEF is primarily used for Non-IP data delivery provided:

• The Application server (AS) registers itself with the SCEF for a particular device
followed by SCEF informing the Home Subscriber Server (HSS) about the reg-
istration request.

• The device has a PDN connection/bearer available between itself and SCEF (via
MME) for non-IP data delivery.

In general, a device does not need to know whether a PDN connection is obtained
via a SCEF or a PGW. In case of the former, an association between the AS and
SCEF needs to be established to enable transfer of non-IP data. SCEF also helps in
monitoring device events or state and performing application specific actions based
on the device trigger or SCS/AS request.

Device Categories

Table 5.1 provides a summary of device categories as they relate to CIoT.

Scalability

NB-IoT allows mobile network operators to support high scale deployments, with
up to 60K devices per cell, by employing a number of optimizations:

Control Plane CIoT optimization: In the original EPC architecture, the S1U path
(refer to Fig. 5.7) is required to transfer data. This path is established every time
the device (UE) needs to send data. In IoT applications that are expected to trans-
fer small amounts of data per day or per month, establishment of frequent data
radio bearers and consequently S1U path is a signaling overhead. To overcome
this, data transfer to MME can take place over control plane/Signaling Radio

5 IoT Protocol Stack: A Layered View

111

Bearer (SRBs) as Network Access Stratum (NAS) PDUs. This data is further
sent by MME to SGW or SCEF depending on the PDN type.

User Plane CIoT optimization: In scenarios where large data transfer is required,
such as remote installation or device software update, Data Radio Bearers
(DRBs) are used. The existing procedure of S1U establishment consumes sig-
nificant signaling resources due to frequent recurring UE inactivity timer expiry.
This is why 3GPP TS 36.003 introduces the suspension of the Radio Resource
Control (RRC) context at eNB until the next data request. A “resume id” is
shared by radio base-station (eNB) to the device during RRC connection release
and indicates to the latter to store its context information while suspending SRBs
and DRBs. This RRC context can later be resumed by the device by simply send-
ing its “resume ID” to the eNB.

Attach without PDN connectivity: This is a new capability to allow devices to
remain attached without PDN connection. It is useful for devices which seldom
transfer data and stay inactive most of the time. The device can stay attached
without PDN but SMS service is available for any data transmission. The SMS
could also be used to trigger the device to initiate a PDN connection.

APN rate control: Since many IoT devices use minimal data and hence cannot be
charged based on data usage, Access Point Name (APN) rate control is used to
decide the maximum number of packets to/from device per time unit (day,
month, etc.). This upper cap or the limit is decided by the network operator and
is based on the general data consumption by the IoT application. APN rate con-
trol comes into the picture only for devices attached with PDN.

Table 5.1 CIoT device categories

Release-8 Release-12 Release-13 Release-13
Cat. 1 Cat. 0 Cat. M1 Cat. NB1

Downlink
peak

10 Mbps 1 Mbps 1 Mbps 200 kbps

Uplink
peak rate

5 Mbps 1 Mbps 1 Mbps 144 kbps

Number of
antennas

2 1 1 1

Duplex
mode

Full duplex Half duplex Half duplex Half duplex

UE receive
bandwidth

20 MHz 20 MHz 1.4 MHz 200 kHz

UE transmit
power

23 dBm 23 dBm 20 dBm 23 dBm

Use case Voice services for
emergency in
elevators, smart
Grid Management

Cat0 is the interim
solution prior to
Cat-M. Cat0 is used for
replacing Cat1 but
cannot replace voice
use cases

Environment
monitoring,
vehicle tracking

Smart metering,
smart buildings,
home
automation

5.1 Link Layer

112

eSIM: eSIM is a global specification by GSMA that enables remote SIM provision-
ing of any mobile device. This is not based on a regular SIM card rather using
embedded SIM (also called eUICC) which can accommodate multiple SIM pro-
files, having their respective operator and subscriber data. This allows remote
provisioning and migrating the SIMs to a different operator/network over the air,
thereby providing significant operational efficiency for large scale IoT
deployments.

Energy Efficiency

NB-IoT provides mechanisms for efficient energy consumption, namely:

Power saving mode: This is a device mechanism to conserve energy and support
extended battery life. When enabled, the device and the network can negotiate
the sleep and active state duration for transfer and reception of data. However,
the final values are determined by the network and no re-attach procedures are
required when the device becomes active again. Mobile network operators are
expected to use store-and-forward approach during power saving mode so that
stored messages can be forwarded to the device when it becomes active. The
amount of storage capacity to be reserved for storing the messages is decided by
the operator.

Extended Discontinuous Reception (eDRX): eDRX is an extension of an existing
feature to save more energy and allows the device to sleep for an extended period
of time. During sleep time, the device does not listen for any paging or control
channels. While power saving mode can effectively reduce power consumption
for devices that originate messages, e-DRX could do the same for devices that
terminate messages.

Security

NB-IoT inherits LTE’s secure authentication, signalling protection, user identity
confidentiality, data integrity, and encryption capabilities. To protect the mobile
operator’s network from misbehaving devices, NB-IoT supports PLMN rate con-
trol. It allows the network to measure and protect itself by enabling a rate control on
the data traffic being carried in NAS PDUs in UL/DL and hence is not applicable to
user plane optimization.

Comparison of LoRaWAN and NB-IoT

Table 5.2 illustrates the technical differences between LoRaWAN and NB-IoT in
both implementation and attributes. In short, only Service Provider networks can
deploy NB-IoT, whilst LoRa/LoRaWAN can be deployed by both Service Providers
and private enterprises.

5 IoT Protocol Stack: A Layered View

113

5.1.2.4 IEEE 802.11ah

The popularity of IEEE 802.11 wireless technologies (Wi-Fi) has grown steadily
over the years in home, business, as well as metropolitan area networks. The tech-
nology, however, cannot sufficiently address the requirements of IoT, due to the
following two reasons:

• High power consumption for client stations: Wi-Fi has the reputation of not
being very power efficient, due to the need for client devices to wake up at regu-
lar intervals to listen to AP announcements, waste cycle in contention pro-
cesses, etc.

• Unsuitable frequency bands: Wi-Fi currently uses the 2.4–5 GHz frequency
bands, which are characterized by short transmission range and high degree of
loss due to obstructions. A common solution to this is the use of repeaters, but
those add to the power consumption of the solution and add to the network’s
complexity.

To address these issues, IEEE 802.11 formed Task Group “ah.” The 802.11ah
group was chartered to develop a wireless connectivity solution that operates in the
license-exempt sub-1 GHz bands to address the following IoT requirements: large
number of constrained devices, long transmission range, small (approximately 100
bytes) and infrequent data messages (inter-arrival time larger than 30 s), low data
rates, and one-hop network topologies. The solution is intended to provide a trans-
mission range of up to 1 km in outdoor areas with data rates above 100 kbps while
maintaining the current Wi-Fi experience for fixed, outdoor, point-to-multipoint
applications. From a design philosophy perspective, the solution optimizes for
lower power consumption and extended range at the expense of throughput, where
applicable. In addition, the solution aims for scalability by supporting a large num-
ber of devices (up to 8191) per Wi-Fi access point.

Table 5.2 LoRaWAN and NB-IoT comparison

Attribute LoRaWAN NB-IoT

Frequency/spectrum Unlicensed Licensed
Bandwidth 500 kHz–125 kHz 180 kHz
Max data rate 50 kbps 200 kbps
Range 5 km (urban)

20 km (rural)
1 km (urban)
10 km (rural)

Base station architecture Device TX to multiple base stations Devices TX to single base
Power efficiency Very high High
Max messages per day Unlimited Unlimited
Protocol Asynchronous Synchronous
Interference immunity High Low
Allows private network Yes No
Standardization LoRa Alliance 3GPP
Modulation CSS QPSK

5.1 Link Layer

114

IEEE 802.11ah introduces new PHY and MAC layers. The new layers are
designed for scalability, extended range, and power efficiency. Compared to exist-
ing Wi-Fi technologies which operate in the 2.4–5 GHz range, the use of the
sub-1 GHz band provides longer range through improved propagation and allows
better penetration of the radio waves through obstructions (e.g., walls).

However, one of the challenges in the use of the sub-1 GHz spectrum is that its
availability differs from one country to the next, with large channels available in the
USA, whereas many other regions only have a few channels. This led the 802.11ah
group to create several channel sizes: 1, 2, 4, 8, and 16 MHz channels based on the
needs and regulatory domains of different countries. It also led the group to define
operation over several frequency bands, which vary by region:

• Europe: 868–868.6 MHz
• Japan: 950–958 MHz
• China: 314–316, 390–434, 470–510, and 779–787 MHz
• Korea: 917–923.5 MHz
• USA: 902–928 MHz

IEEE 802.11ah will support data rates ranging from 150 kbps up to 340 Mbps.
The supported modulation schemes include BPSK, QPSK, and 16 to 256 QAM.

In order to address the IoT requirements of low-power consumption and massive
scalability, the emerging 802.11ah introduces several enhancements to Wi-Fi tech-
nology that can be categorized into three functional areas:

• Providing mechanisms for client stations to save power through longer sleep
times and reducing the need to wake up.

• Improving the mechanisms by which a client station accesses the medium by
providing procedures to allow the station to know when it will be able to, or will
have to, access the channel.

• Enhancing the throughput of a client station that accesses the channel, by reduc-
ing the overhead associated with current IEEE 802.11 exchanges through reduc-
ing frame headers, as well as simplifying and speeding management frames
exchanges.

In what follows, we will describe a number of those enhancements in more detail.

Short MAC Header

To enhance throughput, 802.11ah adds support for a shorter MAC header compared
to the current 802.11 standard. Information contained in the QoS and HT control
fields (the latter introduced to the MAC header with 802.11n) are moved to a signal
(SIG) field in the PHY header. The other non-applicable parts of the header are sup-
pressed, e.g., no duration/ID fields, since there is no virtual clear channel assess-
ment (CCA). The new header is 12 bytes shorter than the standard 802.11n header.
Following the same logic, the acknowledgment (ACK) frame is replaced with a null

5 IoT Protocol Stack: A Layered View

115

data packet, which only contains the PHY header (no MAC header, no FCS). That
frame is sent at a special reserved modulation and coding scheme (MCS) to make it
recognizable. MCS is a simple integer assigned to every permutation of modulation,
coding rate, guard interval, channel width, and number of spatial streams.

Large Number of Stations

To enable support for a large number of client stations, 802.11ah extends the
Association Identifier (AID), which is limited to 2007 in the current 802.11 stan-
dard, by creating a hierarchical identifier with a virtual map, bringing the number up
to 8191.

Speeding Frame Exchanges

In current 802.11 frame exchanges, a client station first has to contend for the
medium, then transmit its frames, and then wait for an acknowledgment from the
access point (AP). If the client station expects a response, it has to stay awake, while
the AP contends for the medium and then sends. The client station finally sends an
acknowledgment. With the 802.11ah speed frame exchange mechanism, the dialog
can occur within a single transmission opportunity (TXOP): the client station wakes
up, contends for the medium, and sends the frame to the AP, and the AP immedi-
ately replies after just a short inter-frame gap, allowing the client station (e.g., sen-
sor) to immediately go back to sleep mode after receiving the answer, saving on
uptime wasted in inter-frame and two-way acknowledgments.

Relay

Client stations often need to exchange information with one another, going through
one or more intermediary APs when a direct connection is not available. In such
exchanges, the client stations are forced to stay awake for the entire duration of the
dialog. This process is greatly optimized with 802.11ah relay coupled with speed
frame exchange. The client station wakes up and sends a frame to the AP, asking the
latter to relay. The client station can then immediately go back to sleep/power-
saving mode. The AP may relay the frame through another AP or deliver it directly
to the destination. This model is appealing due to a number of reasons: the AP is
usually main powered and has enough resources to buffer the frame until the desti-
nation client station wakes up. The same process can be repeated for the response
message, allowing both client stations to optimize power consumption when they
are not actively sending or receiving. This also eliminates the need for the client
stations to synchronize wake/sleep cycles.

5.1 Link Layer

116

Target Wake Time

With target wake time (TWT), the AP can inform client stations when they will gain
the right to access the medium. A client station and an AP can exchange initial
frames expressing how much access the former needs. Then, the AP can assign a
target wake time for the station, which can be either aperiodic or periodic (thus
eliminating the need for the client station to have to wake up to listen to TWT val-
ues). Outside of the TWT, the client station can sleep and does not have to wake up
to listen to any messages, not even beacon frames. At those target wake times
(TWTs), the AP can send a null data packet paging (NDP) that tells the client station
about the AP buffer status. This allows the AP to smoothly deliver buffer content to
all client stations one after the other, instead of having all stations wake up at bea-
con time.

Grouping

Client stations can be grouped based on their location, using a group identifier
assignment that relies on their type or other criteria. The AP then announces which
groups are allowed to be awake for the next time period and which groups can go
back to sleep mode because they will not be allowed to access the channel. This
saves battery power on the sleeping groups, as these do not have to listen to the traf-
fic. This logic brings a form of time division multiplexing (TDM) to Wi-Fi, by
allowing transmission to each group based on time periods.

Traffic Indication Map (TIM) and Paging Mechanism

802.11ah introduces a traffic indication map (TIM) and page segmentation mecha-
nism, by which an AP splits the TIM virtual bitmap into segments and each beacon
only carries one segment. This allows IoT devices to wake up only to listen to the
TIM matching their segment number. 802.11ah also introduces the concept of TIM
stations (that need to get TIM info and therefore wake up at regular intervals) and
non-TIM stations (that do not expect to receive anything and therefore can sleep
beyond TIMs and do not need to wake up unless they need to send).

Restricted Access Windows

The AP can define a restricted access window (RAW), which is a time duration
composed of several time slots. The AP can inform client stations that they have the
right to send or receive only during certain time slots within the window, in order to
distribute traffic evenly. The AP would use the RAW parameter set (RPW) to deter-
mine and communicate these slots and transmission or reception privileges. A client
station that has traffic to send upstream but for which the AP does not have traffic to

5 IoT Protocol Stack: A Layered View

117

send downstream can send a request message to indicate to the AP that it needs a
slot upstream.

5.1.2.5 Comparison of Wireless Link Layer Protocols

The table below summarizes key characteristics of the wireless IoT link layer pro-
tocols discussed in this chapter:

Protocol Range Data rate Topology Application
Power
consumption

IEEE
802.15.4

Up to
1 km

1 Mbps to
10 Kbps

Mesh Personal area network/
home network

Very low

LPWAN Up to
20 km

Up to 50 Kbps Star Wide area network Low

IEEE
802.11ah

Up to
1 km

>100 Kbps Star Metropolitan block Medium

5.1.2.6 Time-Sensitive Networking

The requirements for Time-Sensitive Networking originate from real-time control
applications such as industrial automation and automotive networks. These require-
ments contribute to some of the most prominent gaps that current Internet technolo-
gies need to address at the Link layer to realize the vision of IoT. In the case of
industrial automation, the networks are relatively large (in the order of one to sev-
eral kilometers) and may include up to 64 hops for a factory and up to 5 hops within
a work cell (e.g., robot). The network needs to accommodate, in addition to real-
time control traffic, other long-tailed traffic such as video or large file transfers. One
of the key requirements for such networks is precise time synchronization, in the
order of ±500 ns within a work cell and ±100 μs factory wide. Another key require-
ment is deterministic delay, which is not to exceed 5 μs within a work cell and
125 μs factory wide. Last but not least, a fundamental requirement for such net-
works is high availability as it is critical for the safety of the operators. This trans-
lates to a requirement for redundant paths with seamless or instantaneous switchover
time, not to exceed 1 μs. In the case of automotive networks, the physical size of the
deployments is relatively small, but the number of ports required is large: as an
example, the network may span 30 m over 5 hops with over 100 devices connected
(sensors, radar, control, driver-assist video, information, and entertainment audio/
video). A key requirement for these networks is support for deterministic and very
small latency, less than 100 μs over 5 hops using 100 Mbps links. Another important
requirement is high availability to ensure driver and passenger safety.

The above networks have typically been based on non-IP technologies.
Connectivity has traditionally been achieved using some fieldbus technology such
as DeviceNet, Profibus, and Modbus. Each of these technologies conforms to

5.1 Link Layer

118

specific power, cable, and communication specifications, depending on the sup-
ported application. This has led to the situation where multiple desperate networks
are deployed in the same space and has driven the need to have multiple sets of
replacement parts, skills, and support programs within the same organization. With
IoT, it will be possible to unite these separate networks into a converged network
infra-structure based on industry standards. A candidate set of technologies to pro-
vide the Link layer functions of this converged network infrastructure is the IEEE
802 family of local area network (LAN)/metropolitan area network (MAN) proto-
cols. One of the more popular technologies in the IEEE 802 family of protocols is
Ethernet. Ethernet is by far the most widely deployed LAN technology today, con-
necting more than 85% of the world’s local area networks (LANs). More than 300
million switched Ethernet ports have been installed worldwide. Ethernet’s ubiquity
can be attributed to the technology’s simplicity, plug-and-play characteristics, and
ease of manageability. Furthermore, it is low cost and flexible and can be deployed
in any topology. Ethernet and the IEEE 802 family of protocols have steadily
evolved over the years, with the IEEE Audio-Video Bridging (AVB) task group
focusing on standards for transporting latency-sensitive traffic over bridged net-
works, primarily for multimedia (audio and video) streaming applications. These
standards provide a foundation on which to build Time-Sensitive Networking tech-
nologies for IoT. They provide architecture for managing different classes of time-
sensitive traffic through a set of in-band protocols. In particular, IEEE 802.1AS
defines a profile for the Precision Timing Protocol (PTP), which provides time syn-
chronization of distributed end systems over the network with accuracy better than
±1 μs. IEEE 802.1Qav defines forwarding and queuing rules for time-sensitive traf-
fic in Ethernet. It specifies two traffic classes, class A and class B, with maximum
latency guarantees of 2 ms and 50 ms, respectively. Traffic that does not belong to
one of these two classes is considered to be “best effort,” which includes all legacy
Ethernet traffic. Traffic shaping and transmission selection are performed using a
credit-based shaping algorithm: traffic is organized by priority, according to its
class, and transmission of a frame in one of the above two classes is only allowed
when credits are available for the associated class. Upper and lower bounds on the
credit-based shaper limit the bandwidth and burstiness of the streams. Furthermore,
IEEE standard 802.1Qat (part of IEEE 802.1Q-2011) defines a signaling protocol
for dynamic registration and resource reservation of new streams, which provides
per-hop delays in the order of 130 μs on 1 Gbps Ethernet links.

These standards, however, fall short in a number of areas: First, IEEE 802.1AS
can take up to 1 s to switch to a new grandmaster clock (GMC) in the case of failure
of the primary GMC. For real-time control applications, it is required to have the
switchover time be in the order of 250 ms or less. Also, it is highly desirable to sup-
port multiple concurrently active GMCs for high availability. Second, per-hop
switch delays need to be reduced by almost two orders of magnitude. Third, path
selection and reservation for critical streams need to be made faster and simpler in
order to accommodate high-scale deployments with thousands of streams.

As discussed previously, network high availability is of paramount importance in
real-time IoT applications. Ethernet has historically, and for a long period of time,

5 IoT Protocol Stack: A Layered View

119

relied on the Spanning Tree Protocol (STP) in order to support redundancy and
failure protection. However, in the past decade or so, requirements for massively
scalable Ethernet networks in data center and metropolitan area network (MAN)
deployments have resulted in the evolution of the Ethernet plane toward the use of
the Intermediate System-to-Intermediate System (IS-IS) protocol, as defined in
IEEE 802.1aq-2012 (Shortest Path Bridging) and IEEE 802.1Qbp-2014 (Equal
Cost Multiple Path). IS-IS provides mechanisms for topology discovery and setup
of redundant paths. It also includes mechanisms for network reconfiguration in the
case of failures with reasonable delays (better than STP). These standards, however,
are still lacking in the following areas: There are no standardized mechanisms to
engineer paths with nonoverlapping or minimally overlapping links and nodes.
Also, there are no mechanisms that provide extremely fast (i.e., instantaneous) swi-
tchover in the case of failures. Finally, there are no mechanisms for redundant
(simultaneous) transmission of streams along nonoverlapping paths.

The IEEE Time-Sensitive Networking TSN task group was formed in November
2012, by renaming the Audio/Video Bridging (AVB) task group, with the goal of
addressing the gaps highlighted above. Under that umbrella, work on three emerg-
ing standards commenced: 802.1Qca Path Control and Reservation, 802.1Qbv
Enhancements for Scheduled Traffic, and 802.1CB.

IEEE 802.1Qca

This emerging standard extends the use of IS-IS to control Ethernet networks
beyond what is defined in IEEE 802.1aq Shortest Path Bridging. It provides explicit
path control, bandwidth, and stream reservation and redundancy (through protec-
tion or restoration) for data streams. It proposes the use of IS-IS for topology dis-
covery and to carry control information for scheduling and time synchronization.
The new protocol will enable the use of non-shortest paths and will provide explicit
forwarding path (explicit tree—ET) control. Path calculation and determination will
be done through a Path Computation Element (PCE), the latter being defined by the
IETF PCE workgroup. The PCE is an application that computes paths between
nodes in the network based on a representation of its topology. In 802.1Qca, IS-IS
is currently being proposed as the protocol to convey the topology information from
the Ethernet network to the PCE. The PCE may be centralized and reside in a dedi-
cated server or in a network management system (NMS), or it may be distributed
and embedded in the network elements (e.g., routers or bridges) themselves.

Figure 5.8 shows an example Ethernet network controlled by a single PCE resid-
ing in end station X. This end station is connected to SPT Bridge 11. The PCE peers
with the bridge using IS-IS to learn the topology. The PCE can compute explicit
trees based on, for example, bandwidth or delay requirements, and communicates
them using IS-IS extensions to the bridges (Fig. 5.8).

5.1 Link Layer

120

IEEE 802.1Qbv

The IEEE 802.1Qbv standard will provide real-time control applications with per-
formance assurances for network delay and jitter over “engineered” LANs while
maintaining coexistence with IEEE 802.1Qav/Qat reserved streams and best-effort
traffic on the same physical network. Engineered LANs are so-called because traffic
transmission schedules for the network can be designed offline. These pre- configured
schedules assign dedicated transmission slots to each node in the network, for the
purpose of preventing congestion and enabling isochronous communication with
deterministic latency and jitter. The emerging standard will define time-aware shap-
ing algorithm that enables communicating nodes to schedule the transmission of
messages based on a synchronized time. It is proposed that priority markings car-
ried in the frames will be used to distinguish between time-scheduled, reserved
stream (credit based), and best-effort traffic.

Figure 5.9 depicts the traffic queue architecture for a bridge port that implements
this emerging standard. A transmission gate is associated with each traffic queue;
the state of the transmission gate determines whether or not queued packets can be
selected for transmission on the port. Global Gate Control logic determines what set
of gates are open or closed at any given point of time. A packet on a queue cannot
be transmitted if the transmission gate, for that queue, is in the closed state or if the
packet size is known and there is insufficient time available to transmit the entirety
of that packet before the next gate-close event associated with that queue (Fig. 5.9).

IS-IS (ET
Programming)

IS-IS (Topology
Discovery)

SPT Bridge

Fig. 5.8 Example IEEE 802.1Qca network

5 IoT Protocol Stack: A Layered View

121

IEEE 802.1CB

In order to maximize the availability and reliability of the network, IEEE 802.1CB
proposes mechanisms that will enable “seamless redundancy” over 802.1Qca net-
works. With seamless redundancy, the probability of packet loss is reduced by send-
ing multiple copies of every packet of a stream. Each copy is transmitted along one
of a multitude of redundant paths. Duplicate copies are then eliminated to reconsti-
tute the original stream before it reaches its intended destination.

This is effectively done by tagging packets with sequence numbers to identify
and eliminate the duplicates and by defining new functions for bridges, a split func-
tion, responsible for replicating packets in a stream, and a merge function respon-
sible for eliminating duplicate packets of a stream (Fig. 5.10).

Fig. 5.9 IEEE 802.1Qbv time-based queuing

Fig. 5.10 IEEE 802.1CB seamless redundancy

5.1 Link Layer

122

IEEE 802.1CB proposes introducing a new tag to the 802.1Q frame, the redun-
dancy tag, which includes a 16-bit sequence number. The emerging standard recog-
nizes that alternate tagging mechanisms are possible, for example, through the use
of multiple protocol label switching (MPLS) pseudowires [RFC4448] or using
IEEE 802.1AE MacSec.

5.2 Internet Layer

5.2.1 Challenges

Many IoT deployments constitute what is referred to as low-power and lossy net-
works (LLNs). These networks comprised of a large number (several thousand) of
constrained embedded devices with limited power, memory, and processing
resources. They are interconnected using a variety of Link layer technologies, such
as IEEE 802.15.4, Bluetooth, Wi-Fi, or power-line communication (PLC) links.
There is a wide scope of use cases for LLNs, including industrial monitoring, build-
ing automation (HVAC, lighting, access control, fire), connected homes, healthcare,
environmental monitoring, urban sensor networks (e.g., smart grid), and asset track-
ing. LLNs present the following five challenges to the Internet layer of the proto-
col stack:

Nodes in LLNs operate with a hard, very small bound on state. As such, Internet
layer protocols need to minimize the amount of state that needs to be kept per
node for routing or topology maintenance functions. The design of LLN routing
protocols needs to pay close attention to trading off efficiency for generality, as
most LLN nodes do not have resources to spare.

Typically, LLNs are optimized for saving energy. Various techniques are used to that
effect, including employing extended sleep cycles, where the embedded devices
only wake up and connect to the network when they have data to send. Thus rout-
ing protocols need to adapt to operate under constant topological changes due to
sleep/wake cycles.

Traffic patterns within LLNs include point-to-point, point-to-multipoint, and
multipoint- to-point flows. As such, unicast and multicast considerations should
be taken into account when designing protocols for this layer.

LLNs will typically be employed over Link layer technologies characterized with
restricted frame sizes; thus routing protocols for LLNs should be adapted specifi-
cally for those Link layers.

Links within LLNs may be inherently unreliable with time-varying loss character-
istics. The protocols need to offer high reliability under those characteristics.

Internet layer protocols in LLN have to take the above issues and challenges as
design requirements. The protocol design should take into account the link speeds
and the device capabilities. For example, if the devices are battery powered, then

5 IoT Protocol Stack: A Layered View

123

protocols that require frequent communication will deplete the nodes’ energy faster.
As described above, LLNs are inherently lossy: a characteristic that is typically
unpredictable and predominantly transient in nature. The design of the Internet
layer protocols must account for these characteristics. In conventional networks,
these protocols react to loss of connectivity by quickly reconverging over alternate
routing paths. This is to minimize the extent of data loss by routing around link,
node, or other failures as quickly as possible (e.g., MPLS fast reroute mechanism
strives for reconvergence within 50 ms). In LLNs, such quick reaction to failures is
undesirable due to the transient nature of loss in these networks. As a matter of fact,
it would lead to instability and unacceptable control plane churn. Instead, the proto-
cols should follow a paradigm of underreacting to failures in order to dampen the
effect of transient connectivity loss, combined with confidence-monitoring model to
determine when to trigger full reconvergence. The varying link quality levels in
LLNs have direct bearing on protocol design, especially with regard to convergence
characteristics and time. In traditional networks, global reconvergence is triggered
to minimize the convergence time, whereas in LLNs local reconvergence is pre-
ferred, where the traffic is locally redirected to an alternate next hop during transient
instabilities. This is to minimize the effect of routing instabilities that may lead to
overall network oscillations or forwarding loops. Another consideration for LLNs is
the dynamic nature of link and node metrics used in route computation. There are so
many dynamic factors in LLNs, such as link quality deteriorating due to interfer-
ence, node switching from mains power to battery power, momentary CPU overload
on a node, etc. These factors cause node and link metrics to be time varying in
nature, and the routing protocols must be able to handle that.

Existing routing protocols such as OSPF, IS-IS, etc. in their current form do not
satisfy the routing requirements imposed by the above challenges (Fig. 5.11).

5.2.2 Industry Progress

5.2.2.1 6LowPAN

As discussed previously, one of the challenges imposed by IoT on the Internet layer
is the adaptation of this layer’s functions to Link layer technologies with restricted
frame size. A case in point is adapting IP, and specifically the scalable IPv6, to the
IEEE 802.15.4 Link layer. The base maximum frame size for 802.15.4 is 127 bytes,
out of which 25 bytes need to be reserved for the frame header and another 21 bytes
for link layer security. This leaves, in the worst case, 81 bytes per frame to cram the
IPv6 packet into. What add to the problem are two issues: first, the IPv6 packet
header, on its own, is 40 bytes in length, and second, IPv6 does not perform segmen-
tation and reassembly of packets; this function is left to the end stations or to lower
layer protocols. Even though 802.15.4 g increases the maximum frame size to 2047
bytes, it is still highly desirable to be able to compress IPv6 packet headers over this
Link layer. For the aforementioned reasons, the IETF defined IPv6 over low-power

5.2 Internet Layer

124

wireless personal area networks (6LowPAN). 6LowPAN is defined in RFC6282. It
is an adaptation layer for running IPv6 over 802.15.4 networks (Fig. 5.12).
6LowPAN provides three main functions: IPv6 header compression, IPv6 packet
segmentation and reassembly, and layer 2 forwarding (also referred to as mesh
under). With 6LowPAN, it is possible to compress the IPv6 header into 2 bytes, as
most of the information is already encoded into the Link layer header.

6LowPAN introduces three headers for each of the three functions that it pro-
vides. Those headers are compression header, fragment header, and mesh header.

Fig. 5.11 IoT challenges for the Internet layer. (Source Cisco BRKIOT-2020, 2015)

Fig. 5.12 6LowPAN
Adaptation layer

5 IoT Protocol Stack: A Layered View

125

One or more of these headers may be available in any given packet depending on
which functions are applied (Fig. 5.13).

6LowPAN defines new mechanisms to perform IPv6 neighbor discovery (ND)
operations including link layer address resolution and duplicate address detection.

A recurring issue when adapting IPv6 to any Link Layer technology is support
for a single broadcast domain, where a host can reach any number of hosts within
the subnet by sending a single IP datagram. Accommodating a single broadcast
domain within a 6LoWPAN network requires Link layer routing and forwarding
functions, often referred to as mesh under, since the multi-hop mesh topology is
abstracted away from the IP layer to appear as a single network segment. However,
the IETF has not specified a mesh-under routing protocol for 6LoWPAN. Hence,
this constitutes a technology gap, especially for IoT applications that can benefit
from or that rely on intra-subnet broadcast capabilities.

Even though the scope of 6LoWPAN was originally focused on the IEEE
802.15.4 Link layer, the technology has very limited dependency on 802.15.4 spe-
cifics, thereby allowing other link technologies (e.g., power-line communication—
PLC) to utilize the same adaptation mechanisms. Consequently, the term “6LoWPAN
networks” is often generalized to refer to any Link layer mesh network built on
low-power and lossy links leveraging 6LoWPAN mechanisms.

5.2.2.2 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

The routing over low-power and lossy networks (ROLL) workgroup in IETF has
defined in RFC 6550 an IPv6 routing protocol for LLNs, known as RPL.2 RPL is a
distance-vector routing protocol. The reason for choosing a distance-vector proto-
col, as opposed to a link-state paradigm, is primarily to address the requirement of
minimizing the amount of control-plane state (memory) that needs to be maintained
on the constrained nodes of LLNs. Link-state routing protocols build and maintain
a link-state database of the entire network on every node and hence tend to be
heavier on memory utilization compared to distance-vector algorithms. RPL

2 Pronounced as “ripple”.

Fig. 5.13 6LowPAN header stack. (Source: Cisco BRKIOT-2020, 2015)

5.2 Internet Layer

126

computes a destination-oriented directed acyclic graph (DODAG) based on an
objective function and a set of metrics and constraints. In the context of routing, a
directed acyclic graph (DAG) is formed by a series of nodes and links. Each link
connects one node to another in a directed fashion such that it is not possible to start
at a node N and follow a directed path that cycles back to node N. A destination-
oriented DAG is a DAG that includes a single root node. The DODAG is a logical
topology built over the physical network for the purpose of meeting specific criteria
and carrying traffic subject to certain requirements. These criteria and requirements
are captured in the objective function, metrics, and constraints. The objective func-
tion captures the goal behind setting up a specific topology. Example objective func-
tions include minimizing latency of communication or maximizing the probability
of message delivery. Metrics are scalar values that serve as input parameters to the
best-path selection algorithm. Example metrics include link latency or link reliabil-
ity or node energy level. Constraints refer to conditions that would exclude specific
nodes or links from the topology if they do not meet those constraints, such as
exclude battery-powered nodes or avoid unencrypted links. RPL supports dynamic
metrics and constraints, where the values change overtime and the protocol reacts to
those changes.

In a RPL network, a given node may be a member of different logical topologies,
or DODAGs, each with a different objective. This is supported through the notion of
RPL “instances.” An RPL instance is a set of DODAGs rooted at different nodes, all
sharing the same objective function (Fig. 5.14).

The DODAG root is typically a border router that connects the LLN to a back-
bone network. It is always assigned a rank of 1. RPL calculates ranks for all nodes
connected to the root based on the objective function. The rank value increases
moving down from the root toward leaf nodes. The rank indicates the node’s posi-
tion or coordinates in the graph hierarchy.

RPL has two characteristics that render it well suited for LLNs: First, it is a pro-
active protocol, i.e., it can calculate alternate paths as part of the topology setup, as
opposed to reactive protocols which rely on exchanging control plane messages
after a failure occurs to determine backup paths. Second, RPL is underreactive: it
prefers local repair to global reconvergence. Failures are handled by locally choos-
ing an alternate path, which makes the protocol well suited for operation over
lossy links.

5.2.2.3 6TiSCH

As discussed previously, IEEE 802.15.4 TSCH defines the medium access control
functions for low-power wireless networks with time scheduling and channel hop-
ping. TSCH can fit as the Link layer technology in an IPv6-enabled protocol stack
for LLNs, with 6LoWPAN and RPL. The functional gap in the solution is a set of
entities that can take control of defining the policies to build and maintain the TSCH
schedule, matching that schedule to the multi-hop paths maintained by the RPL

5 IoT Protocol Stack: A Layered View

127

routing protocol and adapting the resources allocated between adjacent nodes to
traffic flows.

As such, an adaptation layer is required in order to run the IPv6 stack on top of
IEEE 802.15.4 TSCH. The IETF has recently formed the 6TiSCH workgroup in
order to address this technology gap and define what is referred to as the “6top”
adaptation layer. This adaptation layer is sandwiched in between the 802.15.4 link
layer and the 6LoWPAN adaptation layer. Its goals are to address the follow-
ing issues:

Network Formation

The adaptation layer must control the formation of the network. This includes two
functions: the mechanisms by which new nodes securely join the network and the
mechanisms by which nodes that are already part of the network advertise its
presence.

Fig. 5.14 RPL instances and DODAGs

5.2 Internet Layer

128

Network Maintenance

After the network is formed, the adaptation layer needs to maintain the network’s
health and ensure that the nodes stay synchronized. This is because a TSCH node
must have a time-source neighbor to which it can synchronize at all times. The
adaptation layer is responsible for assigning those neighbors to the nodes, to guar-
antee the correct operation of the network.

Topology and Schedule Mapping

The adaptation layer needs to gather basic topological information, including node
and link state, and provide this information to RPL, so the latter can compute multi-
hop routes. Conversely, the adaptation layer needs to ensure that the TSCH schedule
contains cells corresponding to the multi-hop routes calculated by RPL.

Resource Management

The adaptation layer is responsible for providing mechanisms by which neighbor-
ing nodes can exchange information regarding their schedule and negotiate the
addition or deletion of cells. Note that a cell maps to a transmission/reception
opportunity, and, hence, constitutes an atomic unit of resource in TSCH. The num-
ber of cells to be assigned between two neighbor nodes should be sized proportion-
ately to the volume of traffic between them.

Flow Control

While TSCH defines mechanisms by which a node can signal to its neighbors when
it can no longer accept incoming packets, it does not, however, specify the policies
that govern when to trigger those mechanisms. Hence, it is the responsibility of the
adaptation layer to specify mechanisms for input and output packet queuing poli-
cies, manage the associated packet queues, and indicate to TSCH when to stop
accepting incoming packets. The adaptation layer should also handle transmission
failures, in the scenario where TSCH has attempted to retransmit a packet multiple
times without receiving any acknowledgment.

Determinism

The adaptation layer is responsible for providing deterministic behavior for applica-
tions that demand it. This includes providing mechanisms to ensure that data is
delivered with guaranteed upper bounds on latency and possibly jitter, all while
maintaining coexistence between deterministic flows and best-effort traffic.

5 IoT Protocol Stack: A Layered View

129

Scheduling Mechanisms

It is envisioned that multiple different scheduling mechanisms may be employed
and even coexist in the same network. This includes centralized mechanisms, for
example, where a Path Computation Element (PCE) takes control of the schedule,
in addition to distributed mechanisms where, for instance, neighboring nodes moni-
tor the amount of traffic and adapt the number of cells autonomously by negotiation
of the allocation or deallocation of cells as needed. The adaptation layer needs to
provide mechanisms to allow for all these functions.

Secure Communication

TSCH defines mechanisms for encrypting and authenticating frames, but it does not
define how the security keys are to be generated. Hence, the adaptation layer is
responsible for generating the keys and defining the authentication mechanisms by
which a new node can join an existing TSCH network. The layer is also expected to
provide mechanisms for the secure transfer of signaling (i.e., control) as well as
application data between nodes.

The envisioned 6TiSCH protocol stack is depicted in Fig. 5.15. RPL will be the
routing protocol of choice for the architecture. As the work in IETF progresses,
there may be a need to define a new 6TiSCH-specific objective function for RPL. For
the management of devices, the architecture will leverage the Constraint Application
Protocol Management Interface (COMI), which will provide the data model for the
6top adaptation layer management interface. Centralized scheduling will be carried
out by the Path Computation Element (PCE). The topology and device capabilities
will be exposed to the PCE using an extension to a Traffic Engineering Architecture
and Signaling (TEAS) protocol. The schedule computed by the PCE will be distrib-
uted to the devices in the network using either a light-weight Path Computation
Element Protocol (PCEP) or an adaptation of Common Control and Measurement

Fig. 5.15 6TiSCH protocol stack

5.2 Internet Layer

130

Plane (CCAMP) formats. The Datagram Transport Layer Security in Constrained
Environments (DICE) can be used in the architecture to secure CoAP messages.
Also, the Protocol for Carrying Authentication for Network Access (PANA) will
secure the process of a node joining an existing network.

5.3 Application Protocols Layer

Application protocols are responsible for handling the communication between
Application Entities, i.e., things, gateways, and applications. They typically support
the flow of data (e.g., readings or measurements) from things to applications and the
flow of command or control information (e.g., to trigger or actuate end devices) in
the reverse direction. These protocols define the semantics and mechanisms for
message exchanges between the communicating endpoints.

The landscape of the application protocols layer in IoT is currently crowded with
competing protocols and standards, each having its own set of strengths and weak-
nesses and with no clear path toward convergence being agreed upon by the industry
yet. In this section, we will discuss the characteristics and attributes of the protocols
in this layer as they pertain to IoT and will highlight, where applicable, the require-
ments and challenges that IoT applications impose on these protocols.

5.3.1 Data Serialization Formats

Applications protocols vary in the data serialization formats used to encode infor-
mation into messages. One of the challenges in IoT data serialization formats is
mapping between the formats used in constrained devices and those used by appli-
cations in the World Wide Web. These applications should be able to interpret the
data from IoT devices with minimal format translations and a priori knowledge.
Hence, the formats should be general and compatible with Web technologies.
Popular data serialization formats on the Web include XML, JSON, and EXI.

Another challenge in IoT data serialization formats is the impact they have on
device resource utilization, especially in terms of energy consumption. Data for-
mats have an effect on device resource usage in two facets: in their local processing
demands and their communication efficiency. The local processing demands include
both the processing required to serialize memory objects into data encoded in mes-
sages and the processing required to parse the encoded messages into memory
objects. The communication efficiency is a function of the compactness of the data
serialization format and its efficiency to encode information in the least amount of
message real estate. Both of these facets, namely, local processing and communica-
tion, have a direct impact on the energy consumption of the IoT device. Research in
wireless sensor networks suggests “communication is over 1000 times more expen-
sive in terms of energy than performing a trivial aggregation operation.” Therefore,

5 IoT Protocol Stack: A Layered View

131

the data serialization formats for IoT application protocols should be chosen such
that they require minimal processing and communication demands.

A third challenge in IoT data serialization formats is the impact they have on
network bandwidth utilization. This ties back to the compactness of the format and
its encoding efficiency, as discussed above. The more verbose that the data format
is, the more message space that it will consume on the wire to carry the same amount
of information, which leads to less efficient use of network bandwidth. For IoT,
especially when devices are connected over low-bandwidth wireless links, the data
serialization format of application protocols should be chosen carefully to maxi-
mize the use of the available bandwidth.

5.3.2 Communication Paradigms

Application protocols support different communication patterns. These patterns
enable varying paradigms of interaction between IoT applications and devices.

5.3.2.1 Request/Response Versus Publish/Subscribe

The request/response paradigm enables bidirectional communication between end-
points (Fig. 5.16). The initiator of the communication sends a request message,
which is received and operated upon by the target endpoint. The latter then sends a
response message to the original initiator. This paradigm is well suited for IoT
deployments that have one or more of the following characteristics:

• The deployment follows a client-server architecture.
• The deployment requires interactive communication: both endpoints have infor-

mation to send to the other side.

Fig. 5.16 Request/
response paradigm

5.3 Application Protocols Layer

132

• The receipt of information needs to be fully acknowledged (e.g., for reliability).

However, not all IoT deployments have the above characteristics. In particular, in
many scenarios, all what is required is one-way communication from a data pro-
ducer (e.g., a sensor) to a consuming entity (the application). For this, the request/
response paradigm is sub-optimal due to the overhead of the unneeded messages
running in the reverse direction. This is where the publish/subscribe pattern comes
in (Fig. 5.17).

The publish/subscribe paradigm, often referred to as pub/sub, enables unidirec-
tional communication from a publisher to one or more subscribers. The subscribers
declare their interest in a particular class or category of data to the publisher. When
the publisher has new data available from that class, it pushes it in messages to
interested subscribers. Besides the obvious proclamation that this paradigm optimal
for IoT applications requires one-way communication, the pub/sub model is well
suited for IoT deployments that can benefit from the following characteristics:

• Loose coupling between the communicating endpoints, especially when com-
pared with the client-server model.

• Better scalability by leveraging parallelism and the multicast capabilities of the
underlying transport network.

5.3.2.2 Blocking Versus Non-blocking

Application protocols can offer IoT endpoints blocking or non-blocking messaging
service.

In the blocking mode, the endpoint originating a request must wait to get a
response to its request, after the requested operation has finished on the other end-
point. This involves potentially long or unknown wait times (where a pending
request has not been responded to) for the originator.

Fig. 5.17 Publish/
subscribe paradigm

5 IoT Protocol Stack: A Layered View

133

In the non-blocking mode, the endpoint originating a request does not wait until
the other endpoint has fully serviced the request. Rather, it expects a prompt
acknowledgment of the request together with a specified reference, so that the origi-
nator can retrieve the outcome of the requested operation at a later point of time.

In the synchronous case, the originator of a request is not able to receive asyn-
chronous messages, i.e., all exchanges of information between the originator and
the receiver need to be initiated by the originator. The later retrieval of the result of
a requested operation is through the exchange of request/response messages between
the originator and the receiver.

In the asynchronous case, the originator of a request is able to receive notifica-
tion messages, i.e., the receiver can send an unsolicited message to the originator at
an arbitrary time to report the requested operation. The mechanisms for the notifica-
tion to the originator are the same as in the case of a notification after a
subscription.

5.3.3 QoS

Application protocols should provide mechanisms for fine-grained control over the
real-time behavior, dependability, and performance of IoT applications by means of
a rich set of QoS policies. These policies should provide control over local resources
and the end-to-end properties and characteristics of data transfer. The local proper-
ties controlled by QoS relate to resource usage, whereas the end-to-end properties
relate to the temporal and spatial aspects of data communication.

5.3.3.1 Resource Utilization

Application protocols should provide QoS policies to control the amount of mem-
ory and processing resources that can be used by the application protocol for data
transmission and reception. These policies include:

Resource Limits Policy

This policy allows control of the amount of message buffering performed by a pro-
tocol implementation, as this impacts the amount of memory consumed by that
protocol. Such controls are particularly important for embedded applications run-
ning on constrained devices.

5.3 Application Protocols Layer

134

Time Filter Policy

This policy allows applications to specify the minimum inter-arrival time between
data samples. Samples that are produced at a faster pace are not delivered. This
policy allows control of both network bandwidth and memory and processing power
for applications which are connected over limited bandwidth networks and which
might have limited computing resources.

5.3.3.2 Data Timeliness

Application protocols should provide a set of QoS policies that allow control of the
timeliness properties of distributed data. Specifically, the QoS policies that are
desirable are described below:

Deadline Policy

This QoS policy allows an application to define the maximum inter-arrival time for
data. Missed deadline can be notified by the protocol to the application.

Latency Budget Policy

This QoS policy provides a means for the application to communicate to the appli-
cation protocol the level of urgency associated with a data communication. The
latency budget specifies the maximum amount of time that should elapse from the
instance when the data is transmitted to the instance when the data is placed in the
queue of the associated recipients.

5.3.3.3 Data Availability

Application protocols should provide the following QoS policies to allow control of
data availability:

Durability Policy

This QoS policy provides control over the degree of persistence of the data being
transmitted by the application. At one end of the spectrum, it allows the data be
configured to be volatile, while at the other end, it allows for data persistency. It is
worth noting that data persistence enables time decoupling between the producing
and the consuming endpoint by making the data available for late-joining consum-
ers or even after the producer has disconnected.

5 IoT Protocol Stack: A Layered View

135

Life Span Policy

This QoS policy allows control of the interval of time for which a data sample will
be valid.

History Policy

This QoS policy provides a means to control the number of data samples that have
to be kept available for the recipients. Possible values are the last sample only, the
last N samples, or all the samples.

5.3.3.4 Data Delivery

Application protocols should provide QoS policies to allow control of how data is
delivered.

Reliability Policy

This QoS policy allows the application to control the level of reliability associated
with data diffusion. The possible choices are reliable and best-effort distribution.
With reliable distribution, the application protocol must ensure message delivery
and handle acknowledgments and retransmissions without direct application
involvement.

Transport Priority

This QoS policy allows the application to take advantage of transports that are capa-
ble of sending messages with different priorities. Application protocols are respon-
sible for interacting with the underlying transport layer in order to map this QoS
policy to the right underlying transport network QoS markings (e.g., IP DSCP, TOS,
or PCP).

5.3.4 RESTful Constraints

Some application protocols adhere to a set of constraints defined by the representa-
tional state transfer (REST) architectural paradigm. REST is a distributed client-
server software architecture style that was coined by Roy Fielding after he analyzed
the design principles that contributed to the success of the Hypertext Transfer
Protocol (HTTP) employed in the World Wide Web. Fielding concluded on a set of

5.3 Application Protocols Layer

136

constraints that collectively define the REST architectural style and yield a system
that is simple, scalable, and reliable.

The formal REST constraints are as follows:

Client-Server Communication Model

This allows for separation of concerns where the server focuses on functions such
as data storage, whereas clients focus on the user interface and user state.
Uniform interfaces separate the clients from the servers. This allows for indepen-
dent development of servers and clients as long as they honor the same interface.

Stateless Communication
The server must not store any client context that persists between requests. Session

state is maintained by the client, which passes all the information necessary to
service a particular request in the request itself. In other words, requests are self-
contained from a server perspective.

Cacheable Communication
Responses from the server may be cacheable by clients and intermediate nodes.

This improves the scalability and performance of the system by partially or com-
pletely eliminating some client–server interactions.

Layered Architecture
To allow for better scalability, the system comprised of a layered architecture that

includes clients, servers, and potentially multiple intermediate nodes interspersed
between them. Clients may be in communication with intermediate nodes or
directly with servers without ordinarily being able to identify a difference
between the two.

Uniform Interfaces
All interactions between clients and servers (or intermediate nodes) are governed by

uniform interfaces. These interfaces use the notion of “resources.” A resource is
an abstraction for server-side information and associated native data representa-
tion. Resources have unique identifiers (e.g., URIs in Web systems). When a
server communicates with a client, it transfers an external representation of the
resource to the client (hence the name representational state transfer). REST
interfaces are representation centric. Hence, a small set of operations (also called
verbs), which are uniform across all use cases, can be used in the interface.
Usually, this set of verbs is referred to as CRUD for create, read, update, and
delete. In REST interfaces, there is no out-of-band contract that defines the types
of actions that can be initiated by a client. Rather, this information is discovered
dynamically by the client from prior server interactions through hypermedia
(i.e., by hyperlinks within hypertext). This characteristic of the interface is
known as hypermedia as the engine of application state (HATEOAS).

Code on Demand

Client functionality may be extended or modified by the server through the transfer
of executable pieces of code that can be executed on the client side (e.g., scripts
or applets). This is an optional REST constraint known as “code on demand.”

5 IoT Protocol Stack: A Layered View

137

5.3.5 Survey of IoT Application Protocols

5.3.5.1 CoAP

The Constrained Application Protocol (CoAP) was standardized by the IETF
Constrained RESTful Environments (CORE) workgroup as a lightweight alterna-
tive to HTTP, targeted for constrained nodes in low-power and lossy networks
(LLNs). The need for a lighter-weight version of HTTP can be appreciated by
examining, for example, the number of messages that need to be exchanged between
a client and a server to perform a simple Get operation on a resource: first there are
three TCP SYN messages exchanged to bring up the TCP session, followed by the
HTTP Get request from the client, then the HTTP response from the server, and
finally two messages to terminate the TCP session. Hence, a total of seven messages
are required just to fetch a resource. CoAP reduces this overhead by using UDP as
a transport in lieu of TCP. CoAP also uses short headers to reduce message sizes.

Similar to HTTP, CoAP is a RESTful protocol. It supports the create, read,
update, and delete (CRUD) verbs but in addition provides built-in support for the
publish/subscribe paradigm via the new observe verb. CoAP optionally provides a
mechanism where messages may be acknowledged for reliability and provides a
bulk transfer mode. CoAP was standardized as RFC 7252. Furthermore, there is an
ongoing work in the IETF to define mechanisms for dynamic resource discovery in
CoAP via a directory service.

5.3.5.2 XMPP

The Extensible Messaging and Presence Protocol (XMPP) was originally designed
for instant messaging, contact list, and presence information maintenance. It is a
message-centric protocol based on the Extensible Markup Language (XML). Due
to its extensibility, the protocol has been used in several applications, including
network management, video, voice-over IP, file sharing, social networks, and online
gaming, among others. In the context of IoT, XMPP has been positioned for smart
grid solutions, for example, as depicted in RFC 6272. XMPP originally started as an
open-source effort, but the core protocol was later standardized by the IETF in RFC
6120 and 6121. Moreover, the XMPP Standards Foundation (XSF) actively devel-
ops open extensions to the protocol.

The native transport protocol for XMPP is TCP. However, there is an option to
run XMPP over HTTP.

5.3 Application Protocols Layer

138

5.3.5.3 MQTT

The Message Queue Telemetry Transport (MQTT) protocol is a lightweight pub-
lish/subscribe messaging protocol that was originally designed by IBM for enter-
prise telemetry. MQTT follows a client-server architecture where clients connect to
a central server (called the broker). The protocol is message oriented, where mes-
sages are published to an address, referred to as a topic. Clients subscribe to one or
more topics and receive updates from a client that is publishing messages for this
topic. In MQTT, topics are hierarchical (similar to URLs), and subscriptions may
use wildcards. MQTT is a binary protocol, and it uses TCP transport. The protocol
is being standardized by the Organization for the Advancement of Structured
Information Standards (OASIS).

The protocol targets endpoints where “a small code footprint” is required or
where network bandwidth is limited; hence it could prove useful for constrained
devices in IoT.

5.3.5.4 AMQP

The Advanced Message Queuing Protocol (AMQP) originates from financial sector
applications but is generic enough to accommodate other types of applications.
AMQP is a binary message-oriented protocol. Due to its roots, AMQP provides
message delivery guarantees for reliability, including at least once, at most once,
and exactly once. The importance of such guarantees can be easily seen in the con-
text of financial transactions (e.g., when executing a credit or debit transaction).
AMQP offers flow control through a token-based mechanism, to ensure that a
receiving endpoint is not overburdened with more messages than it is capable of
handling. AMQP assumes a reliable underlying transport protocol, such as TCP.

AMQP was standardized by OASIS in 2012 and then by the International
Standards Organization (ISO) and the International Electrotechnical Commission
(IEC) in 2014. Several open-source implementations of the protocol are available.
AMQP defines a type system for encoding message data as well as annotating this
data with additional context or metadata. AMQP can operate in simple peer-to-peer
mode as well as in hierarchical architectures with intermediary nodes, e.g., messag-
ing brokers or bridges. Finally, AMQP supports both point-to-point communication
and multipoint publish/subscribe interactions.

5.3.5.5 SIP

The Session Initiation Protocol (SIP) handles session establishment for voice, video,
and instant messaging applications on IP networks. It also manages presence (simi-
lar to XMPP).

SIP invitation messages used to create sessions carry session descriptions that
enable endpoints to agree on a set of compatible media types. SIP leverages

5 IoT Protocol Stack: A Layered View

139

elements called proxy servers to route requests to the user’s current location, authen-
ticate and authorize users for services, implement call-routing policies, and provide
features. SIP also defines a registration function that enables users to update their
current locations for use by proxy servers. SIP is a text-based protocol and can use
a variety of underlying transports, TCP, UDP, or SCTP, for example. SIP is stan-
dardized by the IETF as RFC 3261.

5.3.5.6 IEEE 1888

IEEE 1888 is an application protocol for environmental monitoring, smart energy,
and facility management applications. It is a simple protocol that supports reading
and writing of time-series data using the Extensible Markup Language (XML) and
the simple object access protocol (SOAP). The data is identified using Universal
Resource Identifiers (URIs). The latest revision of the protocol was standardized by
the IEEE Standards Association in 2014.

5.3.5.7 DDS RTPS

Distributed Data Service Real Time Publish and Subscribe is a data-centric applica-
tion protocol that, as its name indicates, supports the publish/subscribe paradigm.
DDS organizes data into “topics” that listeners can subscribe to and receive asyn-
chronous updates when the associated data changes. DDS RTPS provides mecha-
nisms where listeners can automatically discover speakers associated with specific
topics. IP multicast or a centralized broker/server may be used to that effect. Multiple
speakers may be associated with a single topic and priorities can be defined for dif-
ferent speakers. This provides a redundancy mechanism for the architecture in case
a speaker fails or loses communication with its listeners.

DDS RTPS supports very elaborate QoS policies for data distribution. These poli-
cies cover reliability, data persistence, delivery deadlines, and data freshness. DDS
RTPS is a binary protocol, and it uses UDP as the underlying transport. The latest
version of the protocol was standardized by the Object Management Group (OMG)
in 2014. Table 5.3 provides a summary of the protocols discussed in this section.

5.4 Application Services Layer

5.4.1 Motivation

M2M deployments have existed for over two decades now. However, what has char-
acterized these deployments is a state of fragmentation: vertical solutions are imple-
mented in silos with proprietary communication stacks and very tight coupling

5.4 Application Services Layer

140

between applications and devices. The paradigm can be best described as “one
application-one device.” The application code is exposed to all the device specifics
under this modus operandi. This, in turn, creates complexity and increases the cost
of the solution’s initial development and ongoing maintenance. For instance, if the
operator of a deployment wanted to replace a defective device with another from a
different manufacturer, parts of the application source code would have to be rewrit-
ten in order for the replacement device to be integrated into the solution. By the
same token, adding new types of devices to the solution cannot be performed with-
out application source code changes. Furthermore, the networks interconnecting the
devices and the applications are in many case closed proprietary systems, and inter-
connecting those networks requires application gateways that are complex and
expensive. These issues constitute a major current gap in IoT. What is required is a
layer of abstraction that fits in between the applications and the devices, i.e., things,
and enables the paradigm of “any application-any device” (Fig. 5.18).

Table 5.3 Survey of IoT application protocols

Protocol Functions Primary use Transport Format SDO

CoAP REST resource manipulation
via CRUD
Resource tagging with
attributes
Resource discovery through
RD

LLNs UDP Binary IETF

XMPP Manage presence Session
establishment
Data transfer (text or binary)

Instant messaging TCP HTTP XML IETF
XSF

MQTT Lightweight pub/sub
messaging
Message queuing for future
subscribers

Enterprise telemetry TCP Binary OASIS

AMQP Message orientation, queuing
and pub/sub
Data transfer with delivery
guarantees (at least once, at
most once, exactly once)

Financial services TCP Binary OASIS

SIP Manage presence Session
establishment
Data transfer (voice, video,
text)

IP telephony TCP, UDP,
SCTP

XML IETF

IEEE
1888

Read/write data into URI
Handling time-series data

Energy and facility
management

SOAP/
HTTP

XML IEEE

DDS
(RTPS)

Pub/sub messaging with
well-defined data types Data
discovery Elaborate QoS

Real-time distributed
systems (military,
industrial, etc.)

UDP Binary OMG

5 IoT Protocol Stack: A Layered View

141

In other words, this abstraction layer provides a common set of services that
enables an application to interface with potentially any device without understand-
ing a priori the specifics and internals of that device. This abstraction layer is
referred to as the Application Services layer in our model of the IoT protocol stack.
It provides seamless interoperability between applications and devices and pro-
motes nimble development of IoT solutions.

From a business perspective, the emergence of this new layer is driven, in part,
by communication service providers (CSPs) looking at using IoT to gain additional
revenue from their networks. Key to this revenue will be differentiating beyond
providing simple IP connectivity. CSPs know well the value of IoT is in the data, not
the way it is transported. To unlock this value, the Application Services layer aims
to turn the network to a common platform to enable diverse IoT applications. This
common platform will be built across an ecosystem of heterogeneous devices and
will enable CSPs to monetize IoT data access, storage, management, and security.

5.4.2 Industry Progress

In 2012, the European Telecommunications Standards Institute (ETSI) published
the first release of its M2M service layer standard defining a standardized platform
for multiservice IoT solution. Later that year, seven standards development organi-
zations (TIA and ATSI from the USA, ARIB and TTC from Japan, CCSA from
China, ETSI from Europe, and TTA from Korea) launched a global organization to
jointly define and standardize the common horizontal functions of the IoT
Application Services layer under the umbrella of the oneM2M Partnership Project
(http://www.onem2m.org). The founders agreed to transfer and stop their own over-
lapping IoT application service layer work.

In what follows, we will discuss the ETSI M2M and oneM2M efforts in more
details.

Fig. 5.18 Application to device coupling

5.4 Application Services Layer

http://www.onem2m.org

142

5.4.2.1 ETSI M2M

The network architecture adopted by the ETSI M2M effort draws heavily on exist-
ing technologies. The architecture comprised of three domains: M2M device
domain, network domain, and application domain (Fig. 5.19). The M2M device
domain provides connectivity between things and gateways, e.g., a field area net-
work or personal area network. Devices are entities that are capable of replying to
request for data contained within those entities or capable of transmitting data con-
tained within those entities autonomously. Gateways ensure that end devices (which
may not be IP enabled) can interwork and interconnect with the communication
network. Technologies in the M2M device domain include IEEE 802.15.4, IEEE
802.11, Zigbee, Z-WAVE, PLC, etc.

The network domain includes the communication networks, which interconnect
the gateways and applications. This typically includes access networks (xDSL,
FTTX, WiMax, 3GPP, etc.) as well as core networks (MPLS/IP). The application
domain includes the vertical-specific applications (e.g., smart energy, eHealth,
smart city, fleet management, etc.) in addition to the Service Capabilities layer
(SCL), a middleware layer that provides various data and application services. The
main focus of the ETSI M2M standards is on defining the functionality of the
SCL. The SCL provides functions that are common across different applications
and exposes those functions through an open API. The goal is to simplify applica-
tion development and deployment through hiding the network specifics.

The functions of the SCL may reside on entities deployed in the field such as
devices and gateways or on entities deeper in the network (e.g., servers in a data
center). This gives rise to three flavors of SCL, depending on its placement: device
SCL (D-SCL), gateway SCL (G-SCL), and network SCL (N-SCL). While the three
flavors of SCL do share some common functions, they also differ due to the

Fig. 5.19 ETSI M2M network architecture

5 IoT Protocol Stack: A Layered View

143

different operations that need to be carried out by devices, gateways, and network
nodes (servers). In general, the SCL provides the following functions:

• Registration of devices, applications, and remote SCLs
• Synchronous and asynchronous data transfer
• Identification of applications and devices
• Group management for bulk endpoint addressability and operations
• Security mechanisms for authentication, authorization, and access rights control
• Remote device management (through existing protocols)
• Location information

ETSI M2M adopted a RESTful architecture style where all data in the SCL is
represented as resources. This includes not only the data generated by the devices
but also data representing device information, application information, remote SCL
information, access rights information, etc. Resources in the SCL are uniquely
addressable via Universal Resource Identifiers (URIs). Manipulation of the
resources is done through a RESTful API, which provides the CRUD primitives (C,
create; R, read, U, update, D, delete). The API can be bound to any RESTful proto-
col, such as HTTP or CoAP. ETSI technical specification TS 102 921 specifies the
API binding to HTTP and CoAP protocols.

Resources within the SCL are organized in a well-specified hierarchical structure
known as the resource tree (Fig. 5.20). This provides a number of advantages: it
provides a data mediation function, describes how resources relate to each other,
allows traversal and query of data in an efficient manner, and speeds up the develop-
ment of platforms. The resource tree of an SCL includes:

• Location of other SCLs in the network (in other devices or GWs)
• List of registered applications
• Announced resources on remote elements
• Access rights to various resources
• Containers to store actual application data

Fig. 5.20 Example ETSI M2M resource tree

5.4 Application Services Layer

144

In addition to the different flavors of SCL, ETSI M2M defines the following
types of entities: application and devices. Applications are further categorized as
network applications (NA), gateway applications (GA), or device applications (DA)
depending on whether they run in the network domain, on a gateway or embedded
on a device, respectively. Devices are categorized into those that support the ETSI
SCL functions (known as D devices) and those that do not support these functions
(known as D devices).

ETSI M2M defines a number of reference points, or interfaces, between interact-
ing entities. These reference points define the semantics of the interactions, and
associated API, between the entities. In particular, the following three reference
points are defined:

• mIa: defines the interactions between a network application and the
N-SCL. Allows the application to register with the SCL and access resources on it.

• mId: defines the interactions between a device application, on the one hand, and
a D-SCL or G-SCL on the other. Allows the application to register with the SCL
and access resources on it.

• dIa: defines the interactions between the N-SCL, on the one hand, and the D-SCL
or G-SCL on the other. Allows the various SCL instances to register with one
another and access their respective resources.

The ETSI M2M architecture supports backward compatibility with devices that
do not support the ETSI reference point functions. This compatibility is achieved
through gateways that communicate with the legacy devices via their own proprie-
tary mechanisms and handle the translation of the data into the resource tree. ETSI
does not define the specifics of how the translation should be performed (Fig. 5.21).

Irrespective of the underlying physical network topology, the ETSI model defines
a strict two-level hierarchy with N-SCL at the top level and G-SCL or D-SCL at the
bottom level. The daisy chaining of SCLs in deeper hierarchies is not defined or
supported.

The ETSI M2M functional architecture is defined in technical specification TS
102 690.

5.4.2.2 oneM2M

The oneM2M standards consider any IoT deployment to be comprised of two
domains: the field domain and the infrastructure domain (Fig. 5.22). The field
domain includes things (e.g., sensors, actuator, etc.) and gateways, whereas the
infrastructure domain includes the communication networks (aggregation, core) as
well as the data centers. From a functional perspective, each of these domains
includes three flavors of entities: an application entity, a common services entity,
and a network services entity.

The application entity implements the vertical-specific application logic. It may
reside on one or multiple physical nodes in the deployment. Examples of an applica-
tion entity would be a home automation application or a smart parking application.

5 IoT Protocol Stack: A Layered View

145

The common services entity is a middleware layer that sits in between applica-
tions (application entity) and the underlying network services (network services
entity) (Fig. 5.23). The common services entity (CSE) provides the following set of
common functions to applications:

• Identity management: Identification of applications entities and CSEs.
• Registration: Includes registration of application entities and CSEs.
• Connectivity handling: This ensures efficient, reliable, and scalable use of the

underlying network.
• Remote device management: This includes configuration and diagnostic

functions.
• Data exchange: Supports storing and sharing of data between applications and

devices, in addition to event notification.
• Security and access control: Provides control over access to data (who can access

what and when, etc.).
• Discovery: Provides discovery of entities as well as data and resources.

Fig. 5.21 ETSI M2M system architecture

Fig. 5.22 oneM2M domains

5.4 Application Services Layer

146

• Group management: Support of bulk operations and access.
• Location: Provides an abstraction for managing and offering location informa-

tion services.

The CSE is, more or less, logically equivalent to the ETSI M2M SCL.
The network services entity provides value-added services to the CSE, such as

QoS, device management, location services, and device triggering.
The oneM2M reference architecture identifies five different types of logical

nodes: application-dedicated nodes, application service nodes, middle nodes, infra-
structure nodes, and none-oneM2M nodes. These nodes may map to one or more
physical devices in the network or may have no corresponding physical mapping.

Application-dedicated nodes (ADNs) are oneM2M compliant devices (i.e.,
things) with restricted functionality: they include one or more application entities
but no CSE. From a physical mapping perspective, ADNs may map to constrained
IoT devices.

Application service nodes (ASNs) are fully featured oneM2M compliant devices.
They include a CSE in addition to one or more application entities. From physical
mapping standpoint, they map to (typically non-constrained) IoT devices.

Middle nodes (MNs) host a CSE. A middle node may or may not include appli-
cation entities. There could be zero, one, or many middle nodes in the network.
MNs physically map to gateways in the network.

Infrastructure nodes (INs) host the CSE and may or may not host any application
entities. The CSE on the IN includes functions that do not typically exist in any
other CSE in the network. There is a single infrastructure node per domain per ser-
vice provider in the oneM2M architecture.

Non-oneM2M Nodes are legacy devices that interwork with the oneM2M archi-
tecture. This provides backward compatibility of oneM2M with existing systems
(similar to D devices in the ETSI M2M architecture).

As with ETSI M2M, oneM2M follows a RESTful architecture style where all
data is modeled as resources, albeit oneM2M does not define a static resource struc-
ture like the ETSI resource tree. Instead, the standard provides means by which
resources can be linked together (through resource links). Client applications can
discover the resource organization dynamically. In this regard, the oneM2M
approach complies with the HATEOAS (Hypermedia as the Engine of Application

Fig. 5.23 oneM2M
common services entity

5 IoT Protocol Stack: A Layered View

147

State) REST constraint discussed in Sect. 5.3.4, because it does not assume that the
clients have any a priori knowledge of the resource organization (Fig. 5.24).

Similar to ETSI M2M, oneM2M defines a set of reference points or interfaces
between interacting entities. The oneM2M standard defines the following four ref-
erence points:

• Mca: Defines the interactions between application entities and CSE.
• Mcn: Defines the interactions between the CSE and the underlying network ser-

vice entity.
• Mcc: Defines the interactions between two CSEs in the same service pro-

vider domain.
• Mcc’: Defines the interactions between two CSEs across service provider domain

boundary.

A number of notable differences between the reference points defined by ETSI
M2M and those defined by oneM2M are worth highlighting:

First, ETSI M2M defines two different reference points for interactions between
applications and the middleware as well as between devices and the middleware
(mIa and mId interfaces, respectively), whereas oneM2M collapses both inter-
faces into the Mca reference point.

Second, the Mcn reference point is unique to oneM2M and has no equivalent in the
ETSI standard. This interface enables the middleware to access network service
functions. For example, it can be used to signal information from the service
layer to the transport layer to request QoS and prioritization for M2M communi-

Fig. 5.24 oneM2M resource organization

5.4 Application Services Layer

148

cation, for transmission scheduling, to signal indication for small data transmis-
sion, for device triggering, etc.

The interface may also be used to extract information from the underlying trans-
port layer, for example, to fetch data related to the location of M2M devices or
gateways (Fig. 5.25).

5.4.3 Technology Gaps

While ETSI and oneM2M have made strides in defining standard APIs and common
application services for IoT, several gaps remain.

First, in terms of search and discovery capabilities, the IoT Application Services
layer should provide support for:

• Mechanisms by which devices as well as applications can automatically discover
each other as well as discover middleware/common services nodes.

• Mechanisms by which applications can search for devices with specific attributes
(e.g., sensors of particular type) or context (e.g., within a specific distance from
a location).

• Mechanisms by which applications can search for data based on attributes (e.g.,
semantic annotations) or context (e.g., spatial or temporal).

Both ETSI and oneM2M define basic mechanisms for resource search based on
metadata or text strings. However, these are rudimentary capabilities and do not
provide the contextual search functions that will be needed for IoT. Furthermore, no

Fig. 5.25 oneM2M functional architecture

5 IoT Protocol Stack: A Layered View

149

mechanisms for device or gateway auto-discovery are provided by either standard.
It is assumed that the various instances of the middleware (SCL in case of ETSI and
CSE in case of oneM2M), which need to communicate with each other, have a priori
knowledge of their respective IP addresses. The same assumption holds between
application endpoints and other entities (devices or middleware instances) that they
need to communicate with.

Second, with regard to data encoding, interpretation, and modeling, the
Application Services layer should encompass:

• Mechanisms that render IoT data understandable to applications without a priori
knowledge of the data or the devices that produced it.

• Mechanisms that enable application interaction at a high level of abstraction by
means of physical/virtual entity modeling.

• Mechanisms that enable data management services to host the semantic descrip-
tion of IoT data that is being handled.

• Framework for defining formal domain-specific semantic models or ontologies,
including but not limited to defining an upper-level ontology for IoT.

ETSI’s effort stopped at defining opaque containers for holding data. The inter-
pretation of that data was outside the scope of what was standardized. OneM2M
went one step further by providing an attribute to link the data container to an ontol-
ogy reference (URI). However, no formal effort has been undertaken to define any
ontologies or define any associated framework for tying semantic systems with the
rest of the architecture, beyond this simple linkage.

5.5 Summary

In this chapter we started with an overview of the IoT protocol stack, and then we
examined each of the Link layer, Internet layer, Application Protocols layer, and
Application Services layer in details. For each of these layers, we examined the IoT
challenges and requirements impacting the protocols, which operate at that respec-
tive layer, and discussed the industry progress and gaps.

In the course of the discussion on the Link layer, we covered IEEE 802.15.4,
TCSH, IEEE 802.11ah, and Time-Sensitive Networking (TSN). In the Internet
layer, we discussed 6LowPAN, RPL, and 6TiSCH. In the Application Protocols
layer, we surveyed a subset of the multitude of available protocols. Finally, in the
Application Services layer, we covered the work in ETSI M2M and oneM2M on
defining standard application middleware services.

Problems and Exercises

 1. What is the difference between IEEE 802.15.4 full-function device (FFD) and
reduced-function device (RFD)?

 2. IEEE 802.11ah and IEEE 802.15.4 both provide a low-power wireless protocol.
What are the main differences between the two?

5.5 Summary

150

 3. Why does IEEE 802.1Qca use IS-IS as the underlying protocol and not some
other routing protocols such as OSPF or BGP?

 4. What are three functions provided by the 6LowPAN adaptation layer?
 5. Is RPL a link-state or distance-vector routing protocol? Why did the IETF

ROLL workgroup decide to go with that specific flavor of routing protocols?
 6. What are the constraints that characterize the RESTful communication

paradigm?
 7. What is the Application Services layer in the IoT protocol stack? What services

does it provide?
 8. What are the functions of the Service Capabilities layer (SCL) in the ETSI

M2M architecture?
 9. What are functions of the common services entity (CSE) in the oneM2M archi-

tecture? How do they compare to those of ETSI’s SCL?
 10. Why do the IoT application services architectures under standardization all fol-

low the RESTful paradigm?
 11. A temperature sensor that supports CoAP has an operating range of 0–1000 °F

reports a reading every 5 s. The sensor has a precision of 1/100 °F. The sensor
reports along with every temperature reading a time stamp using the ISO 8601
format (CCYY-MM-DDThh:mm:ss).

 (a) If the current temperature measured by the sensor is 342.5 °F, construct the
payload of a CoAP message with the reading encoded in XML and then
in JSON.

 (b) Assuming that the sensor consumes 3 nJ per byte (character) transmitted
over a wireless network, calculate the total energy required to transmit each
message. Which of the two encoding schemes (XML or JSON) is more
energy efficient? By what percentage?

 12. Compare the bandwidth utilization for the XML vs. JSON messages of Question
11 in bits per second assuming UTF-8 text encoding is being used.

 13. An IoT water level monitoring application requires updates from a sensor peri-
odically, using the command/response paradigm. The application triggers a
request every 1 s. The roundtrip propagation delay between the application and
the sensor is 12 ms. The sensor consumes 3 ms on average to process each
request. The application consumes 2 ms to send or receive any message. If the
application blocks on every request to the sensor, how much of its time budget
can be saved by redesigning the application to use the publish/subscribe com-
munication model in lieu of the command/response approach?

 14. A utility company uses IPv6-enabled smart meters running in an IEEE 802.15.4
mesh. If the mesh is operating at 1 Mbps without 6LoWPAN IPv6 header
 compression, what is the throughput of the smart metering application in the
worst- case scenario?

 15. An automotive parts manufacturer is looking to upgrade the network that con-
trols their computer numerical control (CNC) mill. At full speed, the mill can
cut into solid steel at a rate of 1 inch per second. The manufacturer’s quality
assurance (QA) guideline mandates that the dimensions of any part produced

5 IoT Protocol Stack: A Layered View

151

must be accurate within ±1/100 inch. In order to meet the QA guideline, what
is the maximum jitter that needs to be guaranteed by the new deterministic net-
work that connects the mill to the controlling computer?

 16. Given the following IEEE 802.15.4 mesh running the RPL protocol. The num-
bers indicated next to each link is the associated latency. If the objective func-
tion is to minimize the communication latency to the Internet, what will be the
topology computed by RPL?

 17. An automation engineer is looking to deploy a deterministic network in a sheet
metal factory. The control system in charge of safety expects a message from
the embedded application of a heating element controller every 50 ms, other-
wise it immediately shuts down the production line. The network in question
has on average a delay of 1 ms per link and 2 ms per node. What is the maxi-
mum number of hops that can separate the control system from the heating
element controller?

 18. Why does channel hopping improve the reliability of wireless sensor networks?
 19. An application protocol supporting a time filter policy support for client appli-

cations must not deliver messages at a rate higher than what the client applica-
tion is willing to consume. What are common strategies to achieve this?

 20. Which Application layer protocol would you choose for deploying an IoT solu-
tion for a financial institution? Why?

References

 1. J. Yick et al., Wireless sensor network survey. Comput. Netw 52(12), 2292–2330 (2008)
 2. M. Sichitiu, Wireless Mesh Networks: Opportunities and Challenges, Wireless World

Congress, 1–6, 2005
 3. IEEE 802.15.4–2011, September 2011

References

152

 4. R. Krasteva et al., Application of wireless protocols Bluetooth and ZigBee in telemetry system
development. Prob. Eng. Cybern. Robot 55, 30–38 (2005)

 5. N. Garg, M. Yadav, A review on comparative study of Bluetooth and ZigBee, Proceedings of
the Second International Conference on Advances in Electronics, Electrical and Computer
Engineering, EEC 2013

 6. IEEE 802.15.4g-2012, April 2012
 7. T. Adame et al., IEEE 802.11ah: The Wi-Fi Approach for M2M Communications, IEEE

Wireless Communications, December 2014
 8. IEEE draft standard 802.11ah Draft 4
 9. M. Teener. IEEE 802 Time Sensitive Networking: Extending Beyond AVB
 10. “Industrial Ethernet: A Control Engineer’s Guide,” Cisco Whitepaper
 11. D. Pannell, Audio Vidor Bridging Gen 2 Assumptions, July 2011
 12. IEEE 802.1Qca Draft 2.0, April 2015
 13. P. Meyer et al., Extending IEEE 802.1 AVB with time-triggered scheduling: A simulation

study of the coexistence of synchronous and asynchronous traffic, IEEE Vehicular Networking
Conference (VNC), At Boston, Massachusetts, 2013

 14. IEEE 802.1Qbv Draft 2.3, April 2015
 15. IEEE Standard 802.15.4e-2012
 16. T. Watteyne et al., Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the

Internet of Things (IoT): Problem Statement, IETF RFC 7554, May 2015
 17. X. Su et al., Enabling Semantics For The Internet of Things – Data Representation and Energy

Consumption, Internet of Things Finland, January 2013
 18. Z. Shelby et al., The Constrained Application Protocol (CoAP), IETF RFC 7252, June 2014
 19. Z. Shelby et al., CoRE Resource Directory, draft-ietf-core-resource-directory, work in prog-

ress, March 2016
 20. Baker & Meyer, Internet Protocols for the Smart Grid, IETF RFC 6272, June 2011
 21. J. Rosenberg et al., SIP: Session Initiation Protocol, IETF RFC 3261, June 2002
 22. T. Watteyne et al., Reliability through frequency diversity: why channel hopping makes sense,

PE-WASUN ’09 Proceedings of the 6th ACM symposium on Performance evaluation of wire-
less ad hoc, sensor, and ubiquitous networks, Pages 116–123, October 2009

 23. LoRa Alliance, Technical Marketing Workgroup 1.0, “LoRaWAN What is it? A technical over-
view of LoRa and LoRaWAN,” November 2015

 24. LoRaWAN Adaptive Data Rate: https://www.thethingsnetwork.org/wiki/LoRaWAN/ADR
 25. F. Adelantado et al. Understanding the Limits of LoRaWAN, IEEE Communications Magazine,

January 2017
 26. Rashmi Sharan Sinha, Yiqiao Wei, Seung-Hoon Hwang, A survey on LPWA technology: LoRa

and NB-IoT, ICT Express, Volume 3, Issue 1, 2017, Pages 14-21
 27. Kumar, V., Jha, R.K. & Jain, S. NB-IoT Security: A Survey. Wireless Pers Commun 113,

2661–2708 (2020).

5 IoT Protocol Stack: A Layered View

https://www.thethingsnetwork.org/wiki/LoRaWAN/ADR

153© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_6

Chapter 6
Fog Computing

6.1 Defining Fog Computing

In order to define Fog computing, a recap of the concept of Cloud computing is in
order. Cloud computing refers to a model that provides users with on-demand access
of a shared pool of computing resources over a network. These resources can be
quickly provisioned and released through a self-service model. One of the key char-
acteristics of the Cloud computing model is the notion of resource pooling, where
workloads associated with multiple users (or tenants) are typically collocated on the
same set of physical resources. This guarantees the economy of scale of the Cloud
computing model. Hence, essential to Cloud computing is the use of network and
compute virtualization technologies. Cloud computing provides elastic scalability
characteristics, where the amount of resources can be grown or diminished based on
user demand.

Fog computing, or in short Fog, refers to a platform for integrated compute, stor-
age and network services that is highly distributed and virtualized. This platform
can extend in locality from IoT end devices and gateways all the way to Cloud data
centers, but is typically located at the network edge (Fig. 6.1). Fog augments Cloud
computing and brings its functions closer to where data is produced (e.g., sensors)
or needs to be consumed (e.g., actuators). Fog is not an alternative to Cloud comput-
ing, rather the two synergistically interplay in order to enable new types and classes
of IoT applications that otherwise would not have been possible when relying on
Cloud computing stand-alone.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_6#DOI

154

6.2 Drivers for Fog

There are several IoT requirements that act as the drivers for the Fog architecture.
These will be discussed next.

6.2.1 Data Deluge

It has been claimed that 5 exabytes of data have been generated from the dawn of
humanity to 2003.1 Now this much data is generated every 2 days1, and the rate is
only increasing. The billions of devices that are projected to be connected to the
Internet will only exacerbate the data deluge problem. At heart of the issue is the
question of whether the state of the art will evolve fast enough to handle the immi-
nent explosion of data? There are two technology evolution curves at play here: one
represents the evolution of compute and storage technologies, which is governed by
Moore’s Law, and the second represents the growth of bandwidth at the network
edge, which is covered by Nielsen’s Law. Moore’s Law stipulates that compute and
storage technologies will double in capability/capacity every 18 months. Nielsen’s
Law, on the other hand, projects that the bandwidth at the network edge doubles
every 24 months. Acknowledging that there is a positive correlation between the
growth of compute and storage technologies and the growth in data volume, it is
conceivable to foresee an IoT future where data will be produced at rates that far
outpace the network’s ability to backhaul the information, from the network edge
where it is produced by the billions of Things, to the Cloud where it will ultimately

1 As quoted by Eric Schmidt, Executive Chairman of Google

Fig. 6.1 Fog and Cloud

6 Fog Computing

155

need to be processed and potentially stored. This disparity between the data volume
and the available bandwidth is best exemplified with the analogy of attempting to
push a golf ball through a straw. Luckily, Moore’s Law is not only a culprit by con-
tributing, in part, to the problem but is also a key enabler to the solution: it can be
leveraged to augment the functions of the network itself with compute and storage
capabilities at the edge. This allows the network to perform processing, analysis and
storage of data in lieu of blindly pushing all data up to the Cloud. With that, Cloud
computing is brought closer to the data sources, the Things, which gives rise to the
notion of Fog computing. Cloud becomes Fog when it is closer to Things, pun
intended.

6.2.2 Rapid Mobility

Certain IoT use cases require support for rapid mobility of Things, for example,
sensors on a speeding vehicle communicating with road-side infrastructure or a pas-
senger commuting on a train. Due to rapid mobility, network conditions may vary
frequently, due to signal fading, interference, or other conditions. This may even
lead to severe service degradation or intermittent loss of connectivity to the Cloud.
Another consideration is the characteristics of the communication path to the Cloud:
bandwidth and/or latency limitations may have adverse side effects on the operation
of the IoT application. Multiple variables will typically be at play to contribute to
these characteristics, including radio coverage, interference, and the amount of
resources shared with other mobile nodes.

To guarantee the quality of service and reliability required by the application,
especially when dealing with mobility over extended geographic distances, the
Cloud infrastructure needs to be augmented with compute and storage functions
that move with the mobile Things. The mobility of these functions may be either
physical or virtual. In the former case, the compute and storage is physically situ-
ated with the moving Thing, whereas in the latter, these functions maintain close
proximity by shadowing and following the Thing albeit in the network edge. In this
capacity, Fog augments the Cloud to achieve the required pervasiveness and reli-
ability required by rapid mobility in IoT.

6.2.3 Reliable Control

IoT applications that focus on closed-loop control and actuation often share the fol-
lowing characteristics: the data input space and the processing logic required to
produce the control decision have intensive computational and considerable storage
demands. The sensing and actuating devices are typically constrained devices, and
therefore need to off-load the storage and compute functions to external systems or
infrastructure. In many cases, these control applications require very low latency for

6.2 Drivers for Fog

156

correct operation. In a subset of the scenarios, connectivity to the Cloud may be
either too expensive (e.g., satellite links connecting sensors deployed in oilfields) or
unreliable due to rapid mobility patterns.

The combination of the above characteristics makes it unpalatable to rely on Cloud
computing to support reliable real-time control with fixed latency. This is where Fog
computing can complement the Cloud to address that IoT application niche.

6.2.4 Data Management and Analytics

A class of IoT applications characterized with the confluence of very large scale, in
terms of the number of devices generating data, widespread geographic footprint
where these devices are deployed, vast amounts of data that need to be collected,
aggregated, processed, and exposed to consuming entities, as well as real-time ana-
lytics or closed-loop control. For such class of applications, a data management and
analytics platform that can handle the scale and performance requirements is
needed. Experience with large-scale information and communication systems has
proven that distributed systems built on hierarchical division of functions provide
the elasticity required while maintaining key performance metrics. Such systems
typically exploit locality of data for their most basic functions. In other words, they
tend to minimize the amount of data required from remote sources for critical func-
tions. Interactions between widespread entities are typically confined to system
wide functions. For data management and analytics, this operating paradigm is even
more relevant because the IoT data often needs to be operated on within a context,
which is well known at the edge of the network, close to the data sources, and is
often lost or is irrelevant as the data travels deeper in the network and into the
Cloud. Take as an example an ambient noise sensor in a Smart City application,
which is constantly measuring noise levels and streaming the recorded data.
Backhauling all the data to the Cloud is both unnecessary and inefficient, especially
when compared with an alternate design where a local analytics function situated
close to the sensor filters readings below a specified threshold (depending on the
context associated with where the sensor is deployed) and only propagates to the
Cloud interesting readings above that threshold, e.g., to alert city personnel.

Fog computing, in concert with Cloud computing, provides the necessary com-
pute and storage infrastructure required to support such distributed and hierarchical
data management and analytics.

6.3 Characteristics of Fog

The Fog and the Cloud both comprised of the same three building blocks: compute,
storage, and networking. However, there are multiple characteristics that uniquely
shape the Fog and distinguish it from the Cloud:

6 Fog Computing

157

First are the network edge location, location awareness, and low latency. Fog
locates the services close to the data sources and consumers where it is possible to
enrich the data with location context and operate on it with minimal latency.

Second is geographical and architectural distribution. This is in stark contrast to
the Cloud model where are all services are centralized in the data center.

Third is the extremely large number of nodes. While the Cloud drives demand
for massively scalable data centers (MSDC), the Fog pushes the envelope further on
scalability.

Fourth is mobility of nodes and endpoints. The data sources, consumers, com-
pute or storage resources can all be mobile.

Fifth is real-time interaction. In the Fog, the focus is on real-time analysis of
streaming data as opposed to batch processing. Fog requires analysis of data in
motion as opposed to data at rest.

Sixth is predominance of wireless access. In the Cloud, connectivity relies on
wire-line technologies, predominantly Gigabit Ethernet (10 Gbps, 40 Gbps, and
soon 100 Gbps). Whereas the Fog will be mostly connected over wireless links,
both because of the impracticality of running wires everywhere, as well as to sup-
port the mobility requirements.

Seventh is the heterogeneity of resources. In the Cloud, a given data center is
managed by a single business entity, which goes about deploying homogeneous
resources in order to minimize complexity and operational costs. With the Fog, the
architecture is federated over resources managed by different business entities.
Hence, these resources will vary widely in capabilities, form factors, and operating
environment.

Table 6.1 summarizes the main facets of difference between Cloud and Fog
computing.

Table 6.1 Summary comparison of Cloud and Fog computing

Requirement Cloud Computing Fog Computing

Latency & Jitter High/medium Low
Location of service Within Internet Network Edge
Distance between data sources/
consumers

Multiple Hops Single Hop

Location awareness No Yes
Geo-distribution Centralized (Data Center) Distributed
Number of nodes Large Larger
Support for mobility No Yes
Data analytics Data at Rest Data in Motion
Connectivity Wire-line Wireless

6.3 Characteristics of Fog

158

6.4 Enabling Technologies and Prerequisites

The realization of the vision of Fog computing relies on a number of technologies
that provide enabling building blocks and are key prerequisites for the architecture.
These include lightweight compute virtualization, network mobility, orchestration,
and application enablement technologies. In what follows, we will discuss each of
those technologies in more detail.

6.4.1 Virtualization Technologies

Inherent to Fog computing is the ability to locate compute functions close to data
producers and/or consumers. This assumes the availability of lightweight compute
virtualization technologies that allow workloads to be instantiated, as needed, on
Fog nodes. The latter act as shared compute resources among potentially a multi-
tude of IoT applications.

Virtualization technologies combine or partition computing resources to present
one or more operating environments using techniques such as hardware and soft-
ware partitioning or aggregation, hardware emulation, resource sharing or time
multiplexing, etc. Virtualization provides a number of advantages: It enables con-
solidation of both hardware and applications, thereby eliminating the expense asso-
ciated with procuring and managing under-utilized infrastructure. It also enables
sandboxing, i.e., providing application with secure isolated execution environments.
Virtualization also provides the flexibility of multiple simultaneous operating sys-
tems over the same hardware infrastructure. It eases the migration of software stacks
and allows the packaging of applications as stand-alone appliances. Furthermore,
virtualization enables the portability and mobility of applications from one hard-
ware or physical location to another with ease.

Virtualization technologies generally differ in the abstraction level at which
operate: CPU instruction set level, hardware abstraction layer (HAL) level, operat-
ing system level.

Virtualization at the CPU instruction set level allows an “emulator” to provide to
an application the illusion of running on one processor architecture, whereas the
real hardware actually belongs to a different architecture. It is the job of the emula-
tor to translate the guest instruction set (offered to the application) to the host
instruction set (used by the actual hardware).

Virtualization at the hardware abstraction layer level involves a virtual machine
manager, or hypervisor, which is a software layer that sits above the physical hard-
ware (sometimes referred to as “bare metal”) and provides a virtualized view of all
its services. The hypervisor can create multiple virtual machines (VMs) on top of
the bare metal. The VMs can be running different operating systems. Applications
can run within their respective operating systems and are completely oblivious to
the underlying virtualization.

6 Fog Computing

159

Virtualization at the operating system level relies on virtualization software that
runs on top of or as a module within the operating system. It provides an abstraction
of the kernel-space system calls to user-space applications, in addition to security
and sandboxing capabilities to prevent one application from causing collateral dam-
age to another.

Other higher levels of virtualization are possible, such as library and application
level virtualization, but these are not relevant for the purpose of this discussion.

6.4.1.1 Containers and Virtual Machines

Both Containers and Virtual Machines are popular virtualization constructs
employed in Cloud Computing today. Each of the two technologies has its own set
of advantages and trade offs. Virtual Machines (VMs) are a virtualization technol-
ogy at the Hardware Abstraction Layer level. VMs provide an abstraction of a com-
pute platform’s hardware and software resources, complete with all the drivers, full
operating system and needed libraries. Containers, on the other hand, are a virtual-
ization technology at the operating system level. They include portions of the oper-
ating system and select libraries: the minimal pieces that are absolutely required to
run the application. Containers share the same operating system and, where appli-
cable, common libraries. Due to this, Containers are lighter weight when compared
to VMs, both in terms of their memory and processing requirements. As a result,
given a specific hardware (e.g., a server) with a fixed resource profile, it is possible
to support more Containers than VMs running concurrently. This gives Containers

Fig. 6.2 VMs and Containers

6.4 Enabling Technologies and Prerequisites

160

a clear scalability advantage over VMs, not only for Cloud computing but also for
the Fog. In fact, the compact memory footprint for Containers gives them another
advantage in the Fog context: they are faster to migrate from one hosting node to
another, a matter which characterizes them with the nimbleness required to support
rapid mobility (Fig. 6.2).

However, the lightweight nature of Containers comes with a set of trade offs:
since Containers share the same underlying operating system, it is not possible to
use them to deploy applications that require disparate operating system environ-
ments, or different OS versions, on the same physical hardware. Such restriction
does not apply to Virtual Machines, since they include their own copy of the operat-
ing system. Another trade off associated with the shared operating system in
Containers is the security implications: there is potential for an application in a
Container to be subjected to security threats due to malicious or misbehaving code
running in another Container on the same operating system. With Virtual Machines,
the security threat is smaller in comparison, because the attack surface is minimized
due to the fact that each VM has an independent operating system instance.
Therefore, an application in one VM is better sandboxed and isolated from applica-
tions or code running in another VM.

Linux, the leading open operating system platform, supports both Virtual
Machines and Containers. Both Kernel-based Virtual Machines (KVM) and Linux
Containers (LXC) are available in the standard distribution.

Containers and VMs both provide the capability to sandbox Fog applications
from one another and to control their resource usage. In addition to these relatively
low-level functions, Fog requires a framework for the packaging, portability, shar-
ing, and deployment of applications. One such framework that has been gaining
popularity in the industry is Docker, which will be discussed next.

6.4.1.2 Docker

Docker is an open source project that provides a packaging framework to simplify
the portability and automate the deployment of applications in Containers. Docker
introduces scripts composed of a series of instructions that automate the deploy-
ment process from start to finish. These scripts are referred to as “Dockerfiles.”
Docker defines a format for packaging an application and all its dependencies into
a single portable object. The portability is guaranteed by providing the application
a runtime environment that behaves exactly the same on all Docker-enabled
machines. Docker also provides tooling for container version tracking and manage-
ment. In addition, it provides a community for sharing useful source code among
developers.

6 Fog Computing

161

6.4.1.3 Application Mobility

Virtualization technologies decouple the application software from the underlying
compute, storage, and networking resources. As such, it enables unrestricted work-
load placement and mobility across geographically dispersed physical resources.
For instance, multiple hypervisors support different flavors of Virtual Machine
migration, including “cold” migration and “live” migration. In the former case, a
VM that is either powered down or suspended is moved from one host to another. In
the latter, a VM that is powered on and operational is moved across hosts, without
any interruption to its operation. The VM mobility solution takes care of moving the
VM’s memory footprint, and if applicable, any virtual disk/storage from the old to
the new hardware. In order to ensure seamless mobility in the case of “live” migra-
tion, the VM retains its original Internet Protocol (IP) and Medium Access Control
(MAC) addresses. This ensures that any clients or services that are in communica-
tion with the migrating VM can continue to reach it using the same communication
addresses. The successful orchestration of such seamless live migration requires the
underlying network infrastructure to support mobility. This will be the topic of the
next section.

6.4.2 Network Support for Mobility

As previously discussed, rapid mobility is one of the drivers for Fog computing. To
ensure uninterrupted operation of the IoT application, the network infrastructure
that is providing the underlying communication fabric for the Fog deployment must
support seamless mobility of the communicating endpoints.

Networking systems rely on the address of the endpoints in order to deliver mes-
sages to their intended recipients. Depending on the technology at hand, the address
either connotes the identity or the location of the endpoint. For example, Media
Access Control (MAC) addresses are identity addresses, because they are burnt into
the machine and uniquely identify it on a network. Internet Protocol (IP) addresses,
on the other hand, are typically used as location addresses because they indicate the
geographic locality of the endpoint. In some contexts, IP addresses are used as iden-
tity addresses as well, for example, in wireless mobile IP applications.

Applications that are deployed in a virtualization construct, such as a Virtual
Machine, can perform seamless mobility. With seamless mobility, the application’s
MAC and IP addresses remain unchanged as the associated VM moves from one
physical server node to another. The network infrastructure needs to handle the
application mobility event and update the forwarding information on the routers
and/or switches to deliver the messages correctly to the right physical server that is
now hosting the VM. In order to do this, the network infrastructure needs to treat the
VM’s IP and MAC addresses as identity addresses, and correlate them with dynamic

6.4 Enabling Technologies and Prerequisites

162

location addresses that get updated automatically as the VM moves from one local-
ity to another. In order to properly scale the solution, the knowledge of identity
addresses should be confined to the edge of the network, whereas the core of the
network performs forwarding solely based on the location addresses. This is
achieved by relying on tunnels established between the edge nodes of the network
to forward the end-host traffic over the core. The tunnel encapsulation uses location
addresses and hides identity addresses from the core network nodes. The correlation
between identity addresses and location addresses is established through a mapping
service provided by the network infrastructure. In a way, this is similar to how the
post office mail forwarding service works: If a person moves her home, then she
informs the post office in order to update the association of her name (identity
address) from an old home address (old location address) to a new home address
(new location address), in order to guarantee uninterrupted delivery of mail (pack-
ets) (Fig. 6.3).

The industry has recently been working on defining networking solutions to sup-
port seamless VM mobility, primarily driven by Enterprise mobility, Data Center,
and Cloud use cases. The solutions generally differ in how the mapping service (for
identity to location address) is implemented: some proposals use a centralized
server for the mapping service, whereas others rely on a distributed control proto-
col. These solutions can be leveraged by Fog computing. We will discuss two of the
most promising solutions: Ethernet Virtual Private Network (EVPN) and Locator/
identifier Separation Protocol (LISP).

Fig. 6.3 Identity vs. location addresses with application mobility

6 Fog Computing

163

6.4.2.1 EVPN

Ethernet Virtual Private Network (EVPN) is an overlay technology that allows
Layer 2, and even Layer 3, virtual private networks to be created over a shared
Internet Protocol (IP) or Multiprotocol Label Switched (MPLS) transport network.
EVPN was standardized by the IETF in RFC 7432. EVPN uses the Border Gateway
Protocol (BGP) in order to build the forwarding tables on the participating network
elements. Given that EVPN is an overlay technology, only network elements that
are at the edge of the network need to support it, and core network elements are
oblivious to the fact that EVPN is running in the network. The edge nodes, which
run EVPN, are known as EVPN Provider Edge (PE) nodes. PE nodes learn the
MAC and IP addresses of connected hosts, from the access side, either by snooping
on the host traffic in the data-plane (similar to how Ethernet bridges learn addresses)
or by running some control protocol (e.g., the Address Resolution Protocol—ARP).
The PE nodes then build a database of the local addresses and advertise these
addresses to remote PEs using BGP route messages. Remote PEs, which receive the
BGP route messages, build their own forwarding databases where they associate the
MAC and IP addresses (identity addresses) of the hosts with the next hop address
(location address) of the PE that advertised the route. Host traffic packets received
by ingress PE nodes are tunneled (using IP or MPLS encapsulation) over the core
network to egress PE nodes, where the tunnel encapsulation is removed, and the
original host packets are forwarded to their intended destination(s) (Fig. 6.4).

To handle application mobility, EVPN introduces new BGP messages and dedi-
cated protocol machinery. These mechanisms provide a solution for two issues:
first, updating the network infrastructure with the new identity address to location

Fig. 6.4 Ethernet virtual private network (EVPN) architecture

6.4 Enabling Technologies and Prerequisites

164

address mappings, and second, guaranteeing optimal forwarding to the default IP
gateway after mobility. These two issues and how they are addressed with EVPN
will be discussed next.

Updating the Identity to Location Address Mappings

When an application running in a VM starts sending traffic, the EVPN PE that is
servicing the physical server on which the VM is hosted will receive this traffic and
learn the application/VM IP and MAC addresses. This PE, call it PEorigin, will then
advertise the VMs addresses in BGP to all the remote PEs in the virtual private net-
work instance. The remote PEs will then update their forwarding tables to indicate
that the VM IP and MAC addresses are reachable via PEorigin. Now, assume that the
VM moves to a new physical server, which is serviced by a different PE, call it
PEtarget. If the PE nodes continue to send traffic for the VM to PEorigin, then this traffic
will not be delivered to the VM because the latter is no longer on the old server.
EVPN solves this issue as follows: when the VM starts sending traffic from its new
location, PEtarget will receive the packets over its access interfaces and will deduce
that the VM is locally connected. PEtarget would also recognize that the VM’s IP and
MAC addresses were previously learnt from a remote PE, PEorigin, via a previous
BGP route advertisement. Hence, PEtarget deduces that the VM must have moved,
and so it needs to update the rest of the network with the new location of the
VM. PEtarget would then advertise BGP routes for the VM’s IP and MAC addresses
with a special attribute to indicate the mobility event. This route is sent to all remote
PEs, including PEorigin. When PEorigin processes the BGP route message, the special
attribute indicates to it that the VM has moved, so PEorigin withdraws its previously
advertised BGP route for that VM’s addresses. This handshake mechanism results
in all the PEs converging on using PEtarget as the new next hop (location address) for
the VM traffic (Fig. 6.5).

Fig. 6.5 Mobility in EVPN

6 Fog Computing

165

Default IP Gateway Problem

As a VM moves from one physical server to another, both its memory (RAM) and
disk image are maintained unchanged. This means that the VM’s configuration
remains unmodified. The configuration includes, among other things, the address of
the Default IP Gateway that the VM should use in order to forward network traffic
to remote nodes. Typically, the Default IP Gateway should be in close topological
proximity to the server that is hosting the VM, in order to guarantee optimal for-
warding of network traffic originating from the VM. However, with VM mobility,
the VM may land on a new host server that is topological distant from the original
Default IP Gateway. In such a case, network traffic sourced by the VM will most
likely follow a sub-optimal forwarding path to its destination.

For example, consider the network of Fig. 6.6, where VM1 is in communication
with VM2 (hosted on Server 3). VM1 is originally hosted on Server 1, and its net-
work traffic that is destined to VM2 initially follows an optimal forwarding path
through the Default IP Gateway (the dotted black line). When this VM moves from
its initial location to a new location on Server 2, the network traffic will start follow-
ing a sub-optimal path from Server 2, via the same default gateway, to Server 3 (the
solid black line).

To address this problem, EVPN delegates the Default IP Gateway function to the
edge of the network (the PE nodes), and enables all the PEs to act as a distributed
logical default gateway for hosts that are attached over the PE access interfaces.
When a host sends an ARP request for the Default IP Gateway IP address, the EVPN
PE intercepts the ARP message and responds to it with its own MAC address. The
default gateway IP address is the same across all the participating EVPN PEs. This
is specifically to cater for the fact that the VM retains its configured default gateway
address after a mobility event (Fig. 6.7).

Fig. 6.6 Default IP Gateway problem with VM mobility

6.4 Enabling Technologies and Prerequisites

166

This approach solves the problem by ensuring that the default gateway is always
in topological proximity to the VM after it moves from one physical host to another.

6.4.2.2 LISP

Locator/Identifier Separation Protocol (LISP) is an overlay networking solution that
allows complete decoupling of the addressing structure of end hosts from that of the
network infrastructure. LISP formally defines two namespaces for IP addresses:
Endpoint Identifiers (EIDs) and Routing Locators (RLOCs). EIDs are identity
addresses associated with end hosts, whereas RLOCs are location addresses primar-
ily assigned to routers. LISP dedicates an entire system for the directory service that
performs the mapping between EIDs and RLOCs, and provides two approaches by
which that system can be implemented: a distributed approach that relies on BGP
over an Alternative Logical Topology (ALT), and a centralized approach that uses a
dedicated database for the mapping known as Dedicated Database Tree (DDT).
LISP is standardized in IETF RFC 6830.

Network elements that sit at the edge of a LISP network are known as Ingress
Tunnel Routers (ITRs) and Egress Tunnel Routers (ETRs). The ITR receives traffic
from end hosts and is responsible for encapsulating the traffic within a tunnel to be
transported over the LISP network. The ETR decapsulates the tunneled traffic and
forwards the original end-host packets to their destinations. ITRs and ETRs are
identified based on their RLOCs. In order to determine which ETR to forward the
traffic to, the ITR consults with a Map Resolver to resolve the RLOC of the ETR
associated with the destination EID of the traffic. The Map Resolver is responsible
for identifying which Map Server to direct the query to in order to determine the
RLOC associated with a given EID. The Map Server is a database that holds all
EID/ETR associations. It may be deployed on a pair of devices or a full-blown hier-
archy of devices for large-scale implementation (LISP-DDT). Each ETR registers

Fig. 6.7 EVPN Default Gateway solution

6 Fog Computing

167

with the Map Server the EID address space that it is authoritative for. When trig-
gered in the data-plane by a packet destined to a remote EID, the ITR issues a “Map-
Request” towards the Map Resolver. The latter forwards it to the right Map Server,
which in turn forwards the request to the authoritative ETR. This ETR replies to the
requesting ITR with a “Map-Reply” message that contains the list of the RLOCs
having the capability to reach the requested EID, with their characteristics in terms
of priority of usage and weighted load partitioning (Fig. 6.8).

To handle application mobility, LISP introduces specific protocol mechanisms.
These mechanisms provide a solution for the two issues discussed in the previous
section: first, updating the network infrastructure with the new identity address to
location address mappings, and second, guaranteeing optimal forwarding to the
default IP gateway after mobility.

Updating the Identity to Location Address Mappings

Mobility is enabled on an ETR by configuring the node with the list of the mobile
IP subnets (EIDs) that the ETR is to support. This ETR then becomes the local
Default IP Gateway for these mobile EIDs. When an application, with its unique
EID, moves into the LISP site, the first packet that it will send to its local Default IP
Gateway will trigger the mobility detection on the ETR. The ETR then registers this
specific EID with the Map Server. The latter, in turn, deregisters the EID from the
previous authoritative ETR. What remains is to update the map caches of all the
ITRs that have communicated with the application prior to its move, as those ITRs
will have stale entries to the RLOC of the old authoritative ETR. This function is
performed by the old authoritative ETR itself, which upon receiving any data traffic

Fig. 6.8 LISP architecture

6.4 Enabling Technologies and Prerequisites

168

for the EID that has moved, sends back a “Solicit-Map-Request” message to the
originating ITR. This message instructs the ITR to refresh its cache (Fig. 6.9).

Default IP Gateway Problem

LISP solves the Default IP Gateway Problem by ensuring that every site has a
default gateway configured for the same prefix. This gateway must use the same
(virtual) IP and MAC Addresses in order to guarantee that the traffic originating
from the moved VM follows an optimal path out of the local LISP Tunneling Router
rather than being forwarded to another site. First Hop Redundancy Protocols (e.g.,
VRRP) must be configured with identical gateway and MAC addresses in all sites,
and their packets must not be allowed to leak beyond a given site. This way, when a
VM moves it will always find the same default gateway regardless of its location.

6.4.3 Fog Orchestration

Orchestration, in the context of Fog computing, refers to the process of automating
the various workflows that perform the full lifecycle management of the Fog infra-
structure. This includes the provisioning and management of its three components
(compute, network, storage) and associated resources. For illustration, tasks such as
deploying, debugging, patching, and updating applications or operating systems,
setting up network connectivity between application entities and reserving band-
width, as well as allocating and expanding disk space are all examples of workflows
that fall under orchestration.

Orchestration is a complex task in Fog environment as it involves components
spread across heterogeneous systems and distributed across multiple locations. Due
to the Fog’s multi-tiered hierarchical organization, it requires a hierarchically

Fig. 6.9 LISP mobility

6 Fog Computing

169

organized Orchestration plane that supports dynamic policies and interplay with
Cloud orchestration (Fig. 6.10).

Fog orchestration differs from Cloud orchestration in three different facets:
Topology, Things Connectivity, and Network Performance Guarantees.

6.4.3.1 Topology

Cloud orchestration systems that are available today make assumptions about the
network: the physical layout of the topology (3-tiered, 4-tiered, Fat Tree, etc.), the
abundance of available bandwidth, and the fact that the network elements are capa-
ble devices and therefore have no restrictions on the size of the routing tables. While
these assumptions are valid in the Cloud, they do not hold true in the Fog. Fog
topologies are ad-hoc best-fit affairs. They have heterogeneous interconnects as
well as dynamically varying bandwidth, latency and reliability characteristics. Fog
orchestration software has to deal with isomorphic topologies that are directly con-
nected to Things.

6.4.3.2 Things Connectivity

With Fog, the orchestration software needs to be able to deploy applications, which
need direct access to Things (e.g., legacy applications), on Fog nodes that are physi-
cally connected to these specific Things. To enable the communication between the
applications and their Things, specialized device drivers need to be initialized on the

Fig. 6.10 Fog orchestration

6.4 Enabling Technologies and Prerequisites

170

Fog nodes by the orchestration system. Furthermore, applications may require data
from remote Things, in which case the orchestration software needs to dynamically
establish network overlays to facilitate network communication between the appli-
cations and those remote Things.

6.4.3.3 Network Performance Guarantees

Orchestration systems for the Cloud are capable of deploying applications on nodes
that can offer the right performance guarantees in terms of processing power, mem-
ory, and disk space. For Fog, these performance guarantees alone are not enough.
Another dimension of complexity arises due to Control Applications that require
network performance guarantees, in terms of upper bounds on latency and jitter, in
their communication with Things. In order to support these control applications in
the Fog, the orchestration system needs to be able to incorporate network latency
and jitter into the application placement and scheduling algorithms. Mobility com-
plicates this further, as the placement decisions need to be recalculated with chang-
ing conditions.

6.4.4 Data Management

6.4.4.1 Data in Motion

There are vast amounts of data crossing the network every day. However, those bits
and bytes provide a wealth of information about actions, time, location, and devices.
By gathering and combining pieces of information together it is possible to start
seeing patterns, and gain greater insights. In other words, it is possible to gain
knowledge. And it is through knowledge that we, as humans, can learn and apply
wisdom, leading to better outcomes (Fig. 6.11).

Fig. 6.11 DIKW pyramid

6 Fog Computing

171

New data sources are being created and added to the network every day. From a
video camera in a transit bus, a tire pressure sensor in a truck, a jet engine, to a smart
meter attached to a house. These devices are creating a constant stream of data. Very
soon, the data generated by the IoT will make up the majority of all information
available on the Internet and will change the face of Big Data. It will not be possible
to store all this data and analyze it later. The real-time nature of these new sources
of data requires that their output be evaluated in motion and in meaningful way. The
value of data is often dictated by time—being at its highest value when it is first
created. Actionable insights can be extracted and acted upon, as data is generated,
to create advantage here and now or even predict the future. Mastery of data—mov-
ing from data to wisdom—has the potential to improve various aspects of our per-
sonal and business life. Organizations can make better decisions, provide enhanced
experiences, and achieve competitive advantage.

Most of the new data that will be generated in the IoT is real-time data that fits
into a broad category called Data in Motion. This refers to the constant stream of
sensor-generated data that defies traditional processes for capture, storage, and
analysis.

Historically, in order to find actionable insights, enterprises have focused their
analytics or business intelligence applications on data captured and stored using
traditional relational data warehouses or “enterprise historian” technologies.

However, the limits of this approach have been tested by the increase in volume
of this so-called Data at Rest. The challenges inherent in collecting, searching, shar-
ing, analyzing, and visualizing insights from these ever-expanding data sets have
led to the development of massively parallel computing software running on tens,
hundreds, or even thousands of servers. As innovative and adaptive as these Big
Data technologies are, they still rely on historical data to find the proverbial needle
in the haystack.

As the IoT gathers momentum, the vast number of connections will trigger a
flood of data, at an even more accelerated pace. While this new Data in Motion has
huge potential, it also has a very limited shelf life. As such, its primary value lies in
it being analyzed soon after it is created—in many cases, immediately after it is cre-
ated. Hence, the traditional data management paradigm where raw data is stored
first and analyzed later does not fit the temporal nature of IoT data. A new paradigm
for handling Data in Motion is required, where data is analyzed as soon as it is gen-
erated and then optionally stored if required. The analysis can involve one or more
of the following: aggregation, reduction/filtering, categorization/classification, con-
textualization, dimensioning, compression, pattern matching, normalization, and
anonymization. All of these functions can be applied in micro-services that are
hosted in the Fog (Fig. 6.12).

6.4 Enabling Technologies and Prerequisites

172

6.4.4.2 Search Technologies and Engines

With the availability of massive amounts of data, the need arises for reliable and
effective mechanisms of searching for information that is useful and relevant.
Search technologies have made great strides since the inception of the World Wide
Web. However, these technologies, and the engines that utilize them, target static or
slowly changing web data, and are generally lacking when dealing with the con-
stantly streaming data in IoT.

IoT requires a solution for distributed data search, where queries can be propa-
gated throughout the Fog domains. The solution can be logically organized into two
planes: Things Plane and Search Plane (Fig. 6.13). The Things Plane encompasses
the physical Things, Network and Compute nodes in the Fog. The Search Plane is a
logical view of the various Fog nodes that support the distributed search functional-
ity together with the network overlay that enables communication between them.
Such overlay could be implemented, for instance, using a Federation Message Bus.
Search queries are injected into the Search Plane at some Fog node, and propagate
throughout the Search Plane. Special considerations are required to ensure that such
propagation does not lead to traffic storms that overwhelm the network or the Fog
nodes. Furthermore, mechanisms are required to limit the search scope, or radius,
order to guarantee scalability and relevance of returned results. One approach would
be to rely on Wave algorithms, such as the Echo algorithm, for query distribution
and perform tree-based aggregation of partial results. These algorithms typically
result in very low latency, have a low overhead and generally scale to hundreds of
thousands of nodes.

Fig. 6.12 Data management in the Fog

6 Fog Computing

173

As discussed in Chap. 5, both the ETSI and oneM2M standards define basic
mechanisms for data search based on metadata. However, these mechanisms only
allow elementary search procedures based on string matching between requests and
the resource metadata. This provides a syntactic search capability with binary (yes/
no) outcomes based on exact matches. Exact matches are highly unlikely in real-
world IoT deployments with heterogeneous devices and Things from different ven-
dors and providers. As such, effective search mechanisms should allow for “fuzzy
matches,” with partial correspondence between the request and the available data.
Such mechanisms, ideally, would provide a measure of the semantic similarity
between the original request and the retrieved results. To achieve this, Semantic
Web technologies could be applied to the IoT: the IoT data can be enriched with
semantic-based annotations that reference shared domain conceptualizations, and
the search mechanisms can utilize Semantic Matching techniques to perform the
ranking of potential results. Ruta et al. [15] propose such a framework that utilizes
and enhanced version of CoAP as the underlying protocol for the Federation
Message Bus.

6.4.5 More Gaps Ahead

Clouds are deployed in data centers, where network topologies are well defined and
the infrastructure is physically secured with solid walls and cages. Network input
and output between applications deployed in the data center and the outside world
(e.g., Internet) are mediated through security appliances, such as Firewalls, which
provide applications with a well-incubated environment under which they can oper-
ate. Furthermore, network bandwidth is abundant and it is relatively easy to change

Fig. 6.13 Data search in Fog

6.4 Enabling Technologies and Prerequisites

174

the network physical topology. With Fog, applications may be logically grouped
together but not necessarily part of the same physical set up. The first gap to address
is providing an orchestration system that enables the connection of applications
deployed on Fog nodes to other applications, which are part of the same group, but
are on desperate Fog nodes, as well as to applications that are in the Cloud. These
connections could be over bandwidth-constrained links that cannot be changed due
to the physical realities of the deployment. In light of this, open questions remain as
to whether the Fog nodes need to replicate the entire functionality of the data center,
including server, switch, and gateway functions (Data-Center-in-a-Box) or whether
these functions should be distributed across multiple nodes and assembled together
logically through the notion of “service chains.” Another open gap is security: Fog
nodes may be mounted in the field or on top of a light pole, so anyone could poten-
tially gain physical access to them, attach wires, and compromise the security of the
application or the network connectivity. New mechanisms of anomaly and tamper-
ing detection are needed. Yet another gap is in how would Fog nodes talk to Things:
should that be through direct electric connectivity (e.g., PCI bus) or via the network-
ing stack. Furthermore, in order for applications to leverage Fog, a high-level pro-
gramming model is required which simplifies the development of large-scale
distributed software. Such model provides simplified programming abstractions and
supports dynamic application scaling at runtime.

6.5 Summary

In this chapter we introduced the concept of Fog computing and discussed its rela-
tionship to Cloud computing. The various IoT requirements driving the need for
Fog were covered. We also discussed the prerequisites and enabling technologies
for Fog, in terms of virtualization technologies, network mobility technologies,
orchestration, and data management technologies.

Problems and Exercises

 1. Will Fog Computing replace Cloud Computing? Why or why not?
 2. What is the definition of Fog Computing?
 3. What are the characteristics that uniquely distinguish Fog from Cloud

Computing?
 4. What makes Containers lighter-weight virtualization constructs compared to

Virtual Machines? Why is this attribute of Containers important for Fog?
 5. What are the two problems that all network mobility solutions aim to address?
 6. Why can’t traditional data management and analytics techniques be

applied to IoT?
 7. What three functions should a Fog Orchestration solution address and solve?
 8. What is “data in motion”?
 9. Why are semantic search mechanisms important for IoT?

6 Fog Computing

175

 10. Consider the following Fog domain shown in the Figure below. For each Fog
node, the diagram shows the number of virtual CPUs (vCPU) and RAM avail-
able. Also, the communication latency from each node to a remote sensor
(labeled R1 through R4) is captured.

R1 R2 R3 R4

10 ms
10 ms 15 ms

15 ms 20 ms20 ms
25 ms25 ms 10 ms

10 ms10 ms
10 ms

Node C

6 vCPU
4 GB RAM

Node B

10 vCPU
1 GB RAM

Node A

8 vCPU
2 GB RAM

There are five applications that need to be placed on the Fog nodes, and each
application has specific demands for CPU, RAM, and communication as
depicted in the table below:

Application CPU demand (vCPU) RAM demand (GB) Communications demand

1 5 0.5 R1 (<12 ms)
2 2 1 R2

3 1 0.25 R3

4 1 1 R4

Find the optimal placement of the five applications on the three Fog nodes
such as to minimize the communication latency between each application and
the sensor that it needs to connect to.

 11. A Fog domain is using EVPN to support workload mobility. The topology of
the domain is as shown in the figure below. Every BGP speaker requires approx-
imately 10 ms to process a BGP message, including any transmission/reception
delay. A VM moves from the Melville server farm to the Granville server farm.

 (a) If N1, N2, and N3 form a BGP route-reflector (RR) cluster (i.e., fully
meshed BGP sessions) and each of PEb, Peg, and PEm have a BGP session
with their directly attached RR, how long would it be before all other appli-
cations are capable of communicating with the VM in its new location
assuming it takes 20 ms for GARP messages to be received and processed
by the PE connected to the new server?

 (b) If N1, N2, and N3 are MPLS core routers, rather than route-reflectors, how
does the above convergence time change?

6.5 Summary

176

 12. An IT administrator is trying to decide on whether to use Linux container or
Virtual Machine for an interactive location-based interactive marketing applica-
tion. Each instance of the application requires 200 MB of RAM to run, includ-
ing all dependencies/libraries. The Linux distribution she is considering has a
runtime memory footprint of 800 MB. A given application instance needs to
move frequently in the Fog domain, to maintain close proximity to a target
customer and deliver an immersive HD video/audio experience. Assume that
the wireless links interconnecting the Fog nodes operate at 100 Mbps.

 (a) In the best-case scenario, how long would it take for the memory image of
the application to move from one Fog Node to another in the case where the
application runs in a Virtual Machine?

 (b) Repeat (a) for the case where the application runs in a Linux container?
 (c) Which virtualization construct should the IT administrator pick for her

application and why?

 13. A smart parking application is implemented in the future city of Metrotown
using Fog computing. Fred is looking for parking in Metrotown’s downtown
shopping district. His car is capable of communicating automatically with the
city infrastructure to locate available parking. The Fog domain in Metrotown is
such that Fog nodes are placed roughly 50 m apart, on street lighting poles. The
car’s embedded application is searching for parking availability within a 1 km
radius from the current vehicle’s location. Assume that the Fog domain is using
the Echo algorithm to search for data. If node processing latency and link prop-
agation latency are 2 ms and 1 ms respectively, how long would it be before the
search request has reached all nodes in the Fog domain?

6 Fog Computing

177

 14. A Fog orchestration system is responsible for the mobility of workloads among
three Fog nodes dispersed in three locations: Coal Harbor, Yaletown and West
End. The choice of a server for a given workload is a function of the CPU load
of that server and the network communication latency from the server to the
client. The orchestrator assigns a score between 0 and 1 to each server based on
its CPU load, with a score of 1 for servers having less than 25% utilization, a
score of 0.5 for servers with utilization between 25% and 75%, and a score of
0.25 for utilization above 75%. The orchestrator ranks the servers based on
network latency and assigns them a score between 0 and 1 linearly depending
on their rank in the ordered list, with a score of 0 assigned to the server with the
highest latency and a score of 1 assigned to the server with the least latency.
Assume that a user on her smartphone is roaming between the three locations.
The network latency from her phone to the Coal Harbor Fog node is 200 μs, to
the West End Fog node is 300 μs and to the Yaletown Fog node is 250 μs. The
average CPU utilization for the servers is 80% for Coal Harbor, 13% for
Yaletown and 50% for West End Fog nodes.

 (a) If the Fog orchestrator is configured to give equal weight to communication
latency as server CPU load, which server would the orchestrator select?

 (b) If the communication latency carries twice the weight of the server CPU
load, what would be the server that the orchestrator selects?

 15. Explain the difference between the three different levels of virtualization: CPU
instruction set level, hardware abstraction layer (HAL) level, operating sys-
tem level.

 16. What distinguishes LISP from other networking solutions that support mobility?
 17. Describe Nielsen’s Law. How does it relate to Moore’s Law? What are the

implications for IoT?
 18. How is network connectivity different in the Fog from the Cloud?
 19. How does rapid mobility impact communicating IoT applications?
 20. When you conduct a search on your favorite Web search engine, is the search

conducted over the Internet in real time? Will this model work for IoT?

References

 1. Nielsen’s Law of Internet Bandwidth, J. Nielsen, April 5, 1998, Online: http://www.nngroup.
com/articles/law- of- bandwidth/

 2. Yannuzzi M. et al., “Key Ingredients in an IoT Recipe: Fog Computing, Cloud Computing and
more Fog Computing”, IEEE 19th International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), December 2014.

 3. Bonomi F., et al., “Fog Computing and its Role in the Internet of Things”, SIGCOMM 2012.
 4. Mell P., Grance T., “The NIST Definition of Cloud Computing”, National Institute of Standards

and Technology Special Publication 800-145, September 2011.
 5. Nanda S., et al., “A Survey on Virtualization Technologies”. http://www.ecsl.cs.sunysb.edu/tr/

TR179.pdf

References

http://www.nngroup.com/articles/law-of-bandwidth/
http://www.nngroup.com/articles/law-of-bandwidth/
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf

178

 6. Docker, www.docker.com
 7. Kondo T., et al., “A Mobility Management System for the Global Live Migration of Virtual

Machine across Multiple Sites”, Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International, July 2014.

 8. Sajassi A., et al., “BGP MPLS-Based Ethernet VPN”, IETF RFC 7432, February 2015.
 9. Rekhter Y., et al., “Network-related VM Mobility Issues”, draft-ietf-nvo3-vm-mobility-issues,

work in progress, June 2014.
 10. Farinacci D., et al., “The Locator/ID Separation Protocol (LISP)”, IETF RFC 6830,

January 2013.
 11. Hertoghs Y., Binderberg M., “End Host Mobility Use Cases for LISP”, draft-hertoghs-lisp-

mobility-use-cases, work in progress, February 2014.
 12. Morales C., “A Vision for Fog Software and Application Architecture”, Fog Computing Expo,

November 2014.
 13. Uddin M., et al. “Graph Search for Cloud Network Management”, Network Operations and

Management Symposium (NOMS), 2014 IEEE, May 2014.
 14. Chang, E.J.H., “Echo Algorithms: Depth Parallel Operations on General Graphs”, Software

Engineering, IEEE Transactions on (Volume:SE-8 , Issue: 4), July 1982.
 15. Ruta, M., et al. “Resource Annotation, Dissemination and Discovery in the Semantic Web

of Things: a CoAP based Framework”, IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social
Computing, 2013.

6 Fog Computing

http://www.docker.com

179© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_7

Chapter 7
IoT Services Platform: Functions
and Requirements

IoT is expected to connect billions of sensors, devices, and applications over the
Internet. One of the most critical prerequisites for successful, scalable, and effective
IoT solutions is a Services Platform that provides abstraction across the multitude
of diverse devices and data sources in addition to allowing for the management and
control of a range of systems and processes. The operation of this platform requires
a comprehensive and diverse set of requisites to gather relevant data, analyze it, and
create actionable insights.

The Services Platform must surpass vertical solutions by integrating all essential
technologies and required components into a common, open, and multi-application
environment. The functions of the IoT Services Platform include the ability to
deploy, configure, troubleshoot, secure, manage, and monitor IoT devices. They
also include the ability to manage applications in terms of software/firmware instal-
lation, patching, starting/stopping, debugging, and monitoring. The Services
Platform also provides capabilities that simplify application development through a
core set of common application services that include data management, temporary
caching, permanent storage, data normalization, policy-based access control and
exposure. In addition to these, the Services Platform may offer some advanced
application services, which include support for business rules, complex event pro-
cessing, data analytics, and closed loop control. Figure 7.1 shows examples of key
IoT Services Platform Functions. A more detailed and structured list will be pro-
vided in Sects. 7.2–7.12.

As can be seen from the list above, many of the capabilities of the IoT Services
Platform represent what can be loosely categorized as “management functions.”
These, however, are different from traditional network management. Traditional
network-level management functions were originally defined, in the early 1980s, by
the Open Systems Interconnection (OSI) Systems Management Overview (SMO)
standard as FCAPS: Fault, Configuration, Accounting, Performance, and Security.
A decade later, the Telecommunications Management Network (TMN) of ITU-T,
advanced the FCAPS as part of the TMN recommendation on Management

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_7#DOI

180

Functions. The term FCAPS is often used in network management books as a useful
way to break down the multipart network management functions.

While FCAPS still apply, the overall management functions of IoT solutions are
more multifaceted than traditional networks. This is due to the following factors:

• IoT solutions include new devices (e.g., sensors, white-label gateways, and
white-label switches). Some of these devices are inexpensive and generally lack
the type or level of instrumentation required for traditional management
functions.

• IoT solutions utilize relatively recent technologies (e.g., tracking exact location
of IoT device using GPS triangulation) that were not considered by traditional
management solutions.

• IoT solutions support more than two dozen access protocols (as was mentioned
in Chaps. 4 and 5). The network management for each protocol may vary.

• IoT solutions support multiple verticals, each of which has different sets of man-
agement, quality of service, and grade of service requirements.

• IoT solutions utilize a new Fog layer with new and challenging network, com-
pute and storage management requirements.

• Finally, many enterprises and service providers are expected to outsource and, in
many cases, multisource key parts of the network and/or management functions.
This requires additional, mostly new, capabilities such as secure integration that
spans connecting workflows between multiple services providers.

This chapter describes the essential functions of the IoT Services Platform, as
shown in Fig. 7.2. It focuses on identifying key capabilities with minimum empha-
sis on the relationship between the functions or their access protocol interfaces.
Such relationship and protocols were addressed in the IoT Protocol Stack Chaps.
4 and 5.

Before introducing the main functions of the IoT Services Platform, we will first
revisit the key components of IoT solutions that consist of IoT Device elements, IoT
Network elements, IoT Services Platform, and IoT Applications as shown in
Fig. 7.3.

•

•

•

•

•

•

•

•

•

•

Application
Development

•

•

•

•

•

•

•

•

•

•

•

Fig. 7.1 Examples of key IoT Services Platform functions

7 IoT Services Platform: Functions and Requirements

181

• IoT Device Entities: IoT devices include sensing devices, actuators, and gate-
ways. The main functions of the gateways are (1) collecting and aggregating
information from the devices, (2) on-site filtering and simple correlation of col-
lected information, (3) transferring correlated data to the network layer, and (4)
taking action on the devices (e.g., shutting power off) based on commands from
higher layers.

• IoT Network Entities: IoT network entities provide services from the underly-
ing network to the Services platform. They include super-gateways, access rout-
ers, switches, and possibly element management servers with specific network
management functions.

• IoT Services Platform Entity: The IoT Services Platform sometimes referred to
as “IoT Platform” or “The IoT Application Services Platform,” of any IoT solu-
tion. It is responsible for monitoring and controlling IoT elements in the IoT
Device and Network Layers. It also allows the creation of direct integration
between physical devices (e.g., sensors, actuators, gateways) and computer-
based application systems to improve efficiency, accuracy, and economic benefit.

IoT Devices

IoT Network

IoT Services Platform

IoT Applications

IoT Gateway

Chapter 7
Area of Focus

Fig. 7.2 Areas of focus for this chapter

IoT Devices

IoT Network

IoT Services Platform

IoT Applications

IoT Service
Platform

Functions

Fig. 7.3 Key components of IoT solution

7 IoT Services Platform: Functions and Requirements

182

• IoT Services Platform entity receives information from IoT Device and Network
Entities, and provides services to the Application Entities. More importantly, it
provides network-level and often service-level management functions as will be
discussed in this chapter.

• IoT Application Entities: Application entities receive information from the
Services Platform and provide services and business level functions. These func-
tions are typically vertical dependent. Examples of Application Entities include
an IoT-based Automated Parking application, an IoT-based Hurricane Alert
System application, etc.

7.1 IoT Services Platform Functions

Without a doubt, the IoT Services Platform constitutes the linchpin of successful
IoT solutions. It is responsible for many of the most challenging and complex tasks
of the solution. The IoT Services Platforms include numerous fundamental func-
tions to ensure proper and secure deployment and comprehensive supervision and
control. In this chapter, we will identify key IoT Services Platform functions by
grouping related requirements together and by utilizing recent IoT standards such as
those devised by oneM2M1 and European Telecommunications Standards Institute
(ETS) standards bodies. More information on the IoT standards was provided in
Chap. 5 (Sect. 5.4.2).

The overall functions of the IoT Services Platform can be categorized into the
following 11 key areas:

 1. Platform Manager
 2. Discovery and Registration Manager
 3. Communication Manager
 4. Data Management and Repository
 5. Firmware Manager
 6. Topology Manager
 7. Group Manager
 8. Billing and Accounting Manager
 9. Cloud Service Integration Function/Manager
 10. API Manager
 11. Element Manager: Configuration Management, Fault Management,

Performance Management and Security Management

Figure 7.4 shows the IoT Services Platform functions. It does not constrain the
multiplicity of the entities nor the relationships among them.

1 OneM2M is the global standards initiative for Machine-to-Machine Communications and the
Internet of Things.

7 IoT Services Platform: Functions and Requirements

183

7.2 IoT Platform Manager

The IoT Services Platform Manager, also known as IoT Service Platform’s
Management Entity in some standards, is responsible for managing the IoT Service
Platform internal modules and interfaces. It works with the Communication
Manager (Sect. 7.4) and the Element Manager (Sect. 7.6) to monitor, configure,
troubleshoot, and upgrade the Services Platform modules. It is really the “manager
of managers” responsible for providing the overall management of the entire
Services Platform functions.

The Platform Manager is used for the overall control and management of the
common management functions. It allows the system administrator, or an applica-
tion in the Application Layer, to manage IoT Services Platform components and
interfaces. This includes initiating an action (e.g., discovery) and receiving results
(e.g., discovered elements) within a specific amount of time.

The Platform Manager is expected to have a full user interface, allowing the
system administrator to initiate requests and review reports, and providing inter-
faces to receive and send information. It must be noted that user and application’s
authorization (specifying access rights level) and authentication (verifying the
user’s credentials) is a top requirement.

The Platform Manager may be a physical system/server or virtual system with
functions distributed among the common management components.

The IoT Platform Manager is responsible for:

• Performance Monitoring and Fault Management of the Services Platform func-
tions. This includes continuous monitoring, troubleshooting, fault identification,
fault correction, and diagnostics. This requires constant collection of logs,

Platform
Manager

Discovery &
Registration

Communication
Manager

Data
Manager

Firmware
Manager

Topology
Manager

Group
Manager

Billing &
Accounting

Subscription &
Notification

API Manager

Element Manager: Configuration, Fault, Performance and Security

Fig. 7.4 Common IoT Services Platform functions

7.2 IoT Platform Manager

184

 performance and fault parameters from the platform functions (e.g., system logs,
alarms).

• Lifecycle software management allowing the IoT Platform Manager to manage
any software packages related to the above Services Platform functions. This
includes upgrading, updating, installing, uninstalling/removing, and download-
ing software packages. Complete configuration backups with roll-back capabili-
ties must be supported (Why? See Problem 24).

• Configuring any of the platform functions when they are first installed. This
includes the configuration of the services offered to Application Entities.

• Supporting multiple levels of IoT Platform Managers operating in a hierarchical
environment. For instance, supporting two Platform Managers, representing two
separate networks, and a third “Supper Platform Manager” with full read and
write access to the first two. Consequence, Platform Managers should have the
ability to establish relationships among each other including establishing par-
ent–child and Read–Write relationships.

The concept of Super Platform Manager is needed to address high availability
requirements.

7.3 Discovery: Entities, Services, and Location

Discovery is the process of identifying and transferring information regarding exist-
ing IoT entities and/or resources with their locations. Accurate discovery is essen-
tial for most IoT management tasks such as asset management, network monitoring,
network diagnostics and fault analysis, network planning, capacity expansion, high
availability, and others.

One of the key discovery requirements is for IoT entities (e.g., sensors, gateways,
routers) to uniquely identify themselves via a common registration process. Hence,
each entity needs to be uniquely identifiable through its embedded computing sys-
tem. It also needs to be able to interoperate within the existing IoT infrastructure via
IoT access protocols as we defined in Chap. 5.

An essential requirement for discovery is entity registration. In this section, we
will first introduce the registration function and then provide the key requirements
for discovery.

7.3.1 Registration

IoT device registration can be defined as the process of delivering the device infor-
mation to the Management Entity (or to another server) in order for IoT devices to
communicate and exchange information. Most IoT devices will be identified and
tracked by their IP addresses. However, as we mentioned in Chap. 2, not all IoT

7 IoT Services Platform: Functions and Requirements

185

devices are IP-enabled. In such case, devices (e.g., basic sensors) may be tracked by
their local (typically non-unique) addresses (e.g., local identifier) in combination
with their corresponding gateway IP address. Gateways are expected to have unique
IP addresses and are responsible for providing a means to uniquely identify their
associated sensors and actuators.

In order for the IoT registration process to work, the following key capabilities
are necessary:

• IoT devices must have the capability to register to an associated Platform
Manager entity. This procedure may be self-registration (preferred solution)
where a new IoT device identifies itself to the management entity as soon as it
joins the IoT network or identifies itself during the discovery process as will be
discussed in the next section. The registration requirements must be addressed in
all IoT domains, i.e.,

 – Ability for new sensors and actuators to register themselves with their associ-
ated gateways.

 – Ability for new gateways to register themselves with their associated Platform
Manager entities.

 – Ability for Platform Managers to register themselves with a super (or another)
Platform Manager(s) as defined by the network administrator.

• Once the registration is complete,

 – The IoT Platform Manager must be able to access the IoT gateway and retrieve
information (i.e., Read Access is granted). In other words, IoT gateways must
grant full access privilege to the associated IoT Platform Manager(s). Hence,
all resource information must be available to the IoT Platform Manager.

 – The IoT gateways must be able to access their associated sensors and actua-
tors and retrieve information. In this case, sensors and actuators resource
information must available to the associated IoT gateway(s).

 – Super IoT Platform Manager(s), if present, must be able to access their cor-
responding IoT Platform Managers and retrieve information. Hence, all
resource information must be available to the super management entities
where applicable.

7.3.2 Discovery

Based on some filtering criteria (typically specified by a management entity such as
the Platform Manager, IoT Gateway, or a northbound application) in the discovery
request, the discovery function is responsible for discovering, identifying, and
retuning matching information regarding entities and/or resources. The discovery
function sends matching information to the requester’s system. The discovery
request may include the IP or MAC address (obtained from device registration), set
of addresses, or range of IP addresses of the resource where the discovery is to be

7.3 Discovery: Entities, Services, and Location

186

performed. Full discovery, without any specified addresses, may also be supported.
In such case, all entities (based on some filtering criteria in the discovery request)
are discovered. Example: Discover all entities in a given enterprise network.

In IoT, the location of the physical entities (e.g., sensors, gateways) is also essen-
tial. The discovery function also supports obtaining geographical location
information.

It is assumed, therefore, that IoT entities have the capability of identifying, stor-
ing, and updating their geographical location information. This may be accom-
plished with a GPS module in the entity, a location server responsible for tracking
and storing location information, or information for inferring location stored in
other nodes. The location technology (e.g., Cell-ID, assisted-GPS, and fingerprint)
used by the underlying network depends on its capabilities. Sensors with no geo-
locations are identified by their corresponding gateways.

We will use an example of CoAP (Constrained Application Protocol) to illustrate
discovery.

Discovery Request: Assume the IP Address of the Management Server is
192.15.10.5. Also assume the Management Server is interested in discovering
sensors within 500 m from the location of (37.76724070774898,
−122.37890839576721)2 GPS Coordinates. The management server will send a
CoAP GET request to

Coap://192.15.10.5:5784/.well-known/core?
& ro=SSN-XG-IRI&sd=yyyyyy=&at30004&lg=-122.37890839576721
<=37.76724070774898&md=500&st=2&sr=70

Discovery Reply: Upon receiving the request, the CoAP server will start a match-
ing process comparing the request with all stored information in its local data
store. Let us assume that the returned set consists of two sensors matching the
request. The CoAP server response payload will be

</Hts2030HumidSens>;ct=41; at30004; lg=-122.37890839576721;
lt=37.76724070774898&md=310; ro=SSN-XG-IRI; sd=aaaaaa;
tittle=”Humidity-Sensor-2030”,
</BitLineAnemomSens>;ct=0; ct=41;at=30004; lg=-122.37890839576721;
lt=37.76724070774898&md=276; ro=SSN-XG-IRI; sd=bbbbbb;
tittle=”Anemometer-Sensor-111”,

Table 7.1 summarizes the Registration and Discovery requirements.

2 (37.76724070774898, −122.37890839576721) are the GPS Coordinate for a northern
California area.

7 IoT Services Platform: Functions and Requirements

187

Finally, IoT software services may also be discovered by collecting configura-
tion and operational parameters (e.g., using YANG,3 SNMP MIBs, CLI Outputs).
IETF defined a set of requirements for standard-based device (configuration and
operational data) management. Key functionalities include:

• Ability to collect configuration and operation data from all IoT devices (e.g.,
running configuration files) where applicable.

• Ability to extract and then structure/model data from configuration and operation
files via an information model.

• Ability to distinguish between configuration data and operational data (i.e., data
that describes operational state and statistics).

• Ability for operators to configure the entire network and not just individual
devices.

• Ability to check configurations consistency between devices in the network.
• Ability to use text processing tools such as diff and version management tools

such as CVS.
• Ability to distinguish between the distribution of configurations and the activa-

tion of a certain configuration.

Detailed requirements for discovery of software services are outside the scope of
this book.

3 YANG is a tree-structured data modeling language (defined by IETF) used to model configuration
and state data [6].

Table 7.1 Summary of IoT Registration and Discovery requirements

Function Responsibility Results/outputs

Discovery Identify IoT sensors, actuators, gateways, and
devices via attributes and search protocols

IoT entities, gateways,
sensors, and actuators based
on filtering criteria

Identify the location of physical entities GPS location
Identify access control policies across
management servers and clients (see Sect. 7.5)

Access Control Policy
information

Identify IoT services via attributes and collected
data

IoT configured services
(outside the scope of this
book)

Registration The process of delivering IoT device information
(sensors, actuators, gateways, and IoT entities) to
the Management Entity, or to another server, in
order for IoT devices to communicate and
exchange information

Ability for IoT device
(sensors, actuators, gateways,
and IoT entities) to register
with their associated
gateways

7.3 Discovery: Entities, Services, and Location

188

7.4 Communication Manager

The Communication Manager is responsible for providing communications with
other platform functions, applications, and devices. This includes supporting the
following functionality:

• Ability to provide a global view of the state of the entire underlying platform
network. This is needed to address the next requirement.

• Ability to determine the optimal time to establish the communication connection
to deliver information between at least two platform entities. Such decision is
based on the source delivery request as well as traffic/congestion control optimi-
zation techniques within the platform. Data may be stored/buffered for future
delivery time per the provisioned Communication Manager policies.

• Ability to deliver required information within the delivery request time.
• Ability to publish its own polices to external systems.
• Ability to provide information to external systems to drive policies describing

details of the usage of network resources (i.e., 5% of bandwidth on link X at time
T was utilized for service Y).

• Ability to communicate, select paths for a given amount of time, and manage
buffers based on communication manager polices.

7.5 Data Management and Repository

Collecting, storing, and exchanging information among various platform entities is
one of the key requirements for the IoT Service Platform. Data Storage and
Mediation functionalities must include:

• Data Retrieval: Data may be retrieved from various sources including IoT
devices (e.g., sensors and getaways), IoT network elements (e.g., super-gateways
and switches), IoT subscribers or IoT applications. IoT device and network ele-
ment data is assumed to be collected by collection systems or by collection agents.

• We are using the term “Collection System” to refer to a physical hardware
machine (e.g., server, PC) mainly used for data collection. And the term
“Collection Agent” refers to a software unit (agent) that resides on a gateway/
router blade (or on a computer along with other applications). Hence, Collection
System may be the same as Collection Agent (see Problem 30).

• Data Aggregation: Data aggregation implies grouping data from similar or
diverse sources for further processes. Typically, data from various IoT sources
need to be grouped together based on a well-defined data model (e.g., physical
locations, device types, subscribers with their assigned devices, etc.). The aggre-
gation syntax should be defined by the data model. Also, data from multiple data
collection systems (for the same IoT entity) need to be filtered and aggregated
accordingly.

7 IoT Services Platform: Functions and Requirements

189

• Data Parsing: Data parsing normally implies reading the data, using software,
and extracting useful information. Stages of data parsing are hard to define with-
out a concrete use-case but typically include running code to extract specific
parameters and writing the extracted data to a database.

• Data Storing: The Data Storage and Mediation Function supports taking data
from various sources and storing it based on pre-defined policy. Raw data, aggre-
gated data, and parsed data may be stored with different polices (e.g., store raw
data for 6 months, store parsed data for 2 years). Associated contextual informa-
tion is also stored with the data. Examples of contextual information include:
data type (e.g., Temperature), data format (e.g., −100 °C to +100 °C) data source
(e.g., Sensor ID and Associated Gateway ID), retrieval time and date (e.g.,
03:45:00 PM EST on 12/12/2016), retrieval location (e.g.,
lg = −122.37890839576721; lt = 37.76724070774898).

• Access to data based on defined access control policy: The Data Storage and
Mediation needs to have the capability of providing local or remote data access
based on a well-defined access control policy. The policy, which is typically
defined by the network administrator, needs to capture what types of functions a
specific user or application can perform on the data (read-only write-only, read/
write). The policy may include temporal access restrictions, and may be role
based (e.g., administrator vs. user, etc.).

7.6 Element Manager (Managing IoT Devices
and Network Elements)

The element management function is expected to manage IoT sensors, actuators,
gateways as well as other devices residing within the platform boundaries. The ele-
ment management function, as shown in Fig. 7.5, typically utilizes the client-server
distributed model where a single management server may manage multiple man-
agement clients. In this model, tasks are partitioned between the management server
(provider of the service) and the management client (service requester). The man-
agement client establishes a connection to the management server over the network
to accomplish a particular task (e.g., sending performance results of the last 5 min).
Once the management client’s task is fulfilled, by the management server, the con-
nection is terminated.

In IoT environment, the management server may be residing in a data center
while management client may be residing on the IoT Gateway in an offsite location.

A key function of element management includes:

• Ability for the management client and management server to communicate at
any time. Hence, real-time communication is required to send time-sensitive data.

• While it is recommended to use a standardized protocol so that any management
server can communicate with any management client, any existing client-server

7.6 Element Manager (Managing IoT Devices and Network Elements)

190

communication protocol may be utilized. Key examples include TR-0694
and LWM2M.5

• Ability for the management servers (or adaptors) to receive and fully understand
(based on an agreed upon protocol) management client requests and/or notifica-
tions. For example, air pressure measurements of the oil rig vale.

• Ability for the management clients to receive requests and/or notifications from
the management servers (or their adaptors). The management clients may have
the ability to fully understand such events and deliver them to targeted sensors,
actuators, or device as required. For example, requesting the actuator to shut
down a valve.

• Ability for the management server and management clients to address the secu-
rity requirements as defined later in this chapter and in Chap. 8 including
Authorization, Authentication, Access Control, Non-reputation, Data confidenti-
ality, Communication Security, and Data Integrity and Privacy.

• Ability for the super management server to assign different levels of access con-
trol privileges when multiple management servers and/or clients exist.

4 TR-069 as a bidirectional SOAP/HTTP-based protocol that was originally for remote manage-
ment of end-user devices. It was published by the Broadband Forum and entitled CPE WAN
Management Protocol (CWMP).
5 LWM2M (Lightweight Machine-to-Machine) protocol is defined by the Open Mobile Alliance
for M2M/IoT, as an application layer communication protocol between a LWM2M Server and a
LWM2M Client (located in a LWM2M Device).

Management
Client

Management
Server

IoT Gateway

IoT Sensor

Server

Fig. 7.5 Example of element management function

7 IoT Services Platform: Functions and Requirements

191

• Ability for the super management server to provide read access (with the appro-
priate access control requirement) to the discovery or other functions to discover
access control policy information.

• Ability for the management server to provide read access (with the appropriate
access control requirement) to the discovery or other functions to discover man-
aged elements with their latest collected information (e.g., metadata, values)
including gateways, sensors, and actuators.

• Ability for the management server to create a new element to be managed (e.g.,
gateway, sensor), delete an existing element, update any parameters of any exist-
ing elements, update the firmware of any element, and to retrieve information of
any existing elements.

7.6.1 Configuration (and Provisioning) Management

Configuration management is one of the most important element and network man-
agement functions. Configuration management is the process of enabling (or dis-
abling) a service. Before providing the overall requirements for IoT configuration
management, it is worthwhile to discuss the main differences between configuration
and provisioning management.

The Provisioning function is concerned with the basic process of preparing and
equipping an IoT network to provide proper and effective services, while the
Configuration function is concerned with the actual enablement or disablement of
an IoT service. Provisioning is often equated to initiation of a service or capability,
whereas configuration is the final set of touches to deliver the actual service to a
particular customer.

Hence, an IoT network is first generically provisioned (e.g., by installing librar-
ies or services on servers) to provide a set of services to any customers. Such provi-
sioning does not imply that a service can simply be launched without additional
instructions on which particular server or set of servers to use, which specific set of
already provisioned parameter to employ, how to distribute the load when demand
increase, etc.

Figure 7.6 shows an example of Device Remote Management/Configuration to
address the machine-to-machine (M2M) environment with OMA (Open Mobile
Alliance) lightweight M2M protocol, which focuses on constrained cellular and
sensor network M2M devices.

Key configuration requirements include:

• Ability to identify IoT devices and their associated management objects and
attributes.

• Ability to enable or disable a device capability.
• Ability to update device parameters.
• Ability to roll-back applied changes in the configuration at least to five back ver-

sions (tracked by time and date).

7.6 Element Manager (Managing IoT Devices and Network Elements)

192

• Ability to reset IoT device parameters to original factory values.

On the IoT network side, an example of network element protocol is the Network
Configuration Protocol (NETCONF). It provides mechanisms to install and update
the configuration of network elements such as a router or switch using XML to
encode the configuration data and the protocol messages.

7.6.2 Fault Management

At the minimum, IoT service providers need to be able to configure new service
(turn-on a service for a customer) and then identify any problem or potential prob-
lem and have the tools to fix it quickly. No service provider will survive in the mar-
ket if they do not have the capabilities and processes to discover problems promptly
(before they occur in most cases) and take quick action to prevent service interrup-
tion or service degradation that could result in Service-Level Agreement (SLA)
violation.

Fault management is among the most challenging and important management
function of IoT networks. This is due to the fact that large-scale deployment of
inexpensive sensors (i.e., with very limited processing capability, storage capacity,
and limited energy) means that failures from various defects will not be uncommon.
It is also due to the fact that managing IoT devices in remote locations and often

LW M2M
Client

LW M2M
Server

IoT Sensor

M2M App

Fig. 7.6 Example of
configuration management
using LW M2M protocol

7 IoT Services Platform: Functions and Requirements

193

harsh environments will be demanding, especially when dealing with various IoT
topologies and verticals.

Fault Management typically consists of three main functions: fault detection,
fault isolation (or diagnostic), and fault correction as shown in Fig. 7.7. In this sec-
tion, we will first describe these three functions. Then we will introduce fault toler-
ance and fault or diagnostic signature. Finally we will list the overall fault
management requirements for IoT devices and services.

• Fault Detection is the process of identifying error (or potential error) of an IoT
element typically using collected statistics. The collected data may be time-
based (e.g., fault-related data collected from the IoT element by the fault man-
ager function every t seconds) or event-based (e.g., IoT element notifies the fault
manager only if pre-defined fault-related conditions are met). When a fault or
event occurs in the event-based case, an IoT element will send an alarm or noti-
fication to the fault manger (and often notify the network administrator) immedi-
ately. An alarm is a persistent indication of a fault that clears only when the
triggering condition has been resolved.

• An example of fault-related data is the Simple Network Management Protocol
(SNMP) Entity Sensor Management Information Base (MIB) as described by
IETF RFC 3433. The Entity Sensor MIB provides generalized access to informa-
tion related to sensors that are often found in network equipment. The complete
list of the MIB information is shown in Table 7.2. One of the key variables of the
Entity Sensor MIB is “Entity Sensor Status” with three defined possible values:

 – Entity Sensor Status = 1: indicates that the sensor data value can be obtained
(normal operation).

 – Entity Sensor Status = 2: indicates that the sensor data value is unavailable
(operational but no data was collected).

 – Entity Sensor Status = 3: indicates that the sensor is broken and cannot collect
the sensors data value (failure). Once the failure status is received by the net-
work administrator/operator, S/he needs to investigate the issue further to
determine if the failure is due to disconnected wire, out-of-range, violently
fluctuating readings, or something else.

Fig. 7.7 Main stages of fault management function

7.6 Element Manager (Managing IoT Devices and Network Elements)

194

Fault detection will be triggered if the value of “Entity Sensor Status” variable is 3.

• Fault Diagnostic and Isolation (also referred to as Fault root cause analysis) is
the process of hierarchal filtering and correlating of fault messages, typically
from hundreds of IoT elements or systems, to pinpoint the faulty element to a
stage where corrective action can be taken. Such process is often based on artifi-
cial intelligence, pattern recognition combined with models of abnormal behav-
ior and/or intelligent rule-based systems.

• Pattern recognition with abnormal behavior models is frequently used in the
industry to construct the so-called Diagnostic Signatures as a form of accumu-
lated and documented knowledge. Fault Diagnostic and Isolation will then take
place at run-time based on matching observed information to the nearest
Diagnostic Signature.

• Fault managers may use complex filtering systems to assign alarms to severity
levels. Alternatively, they could use the ITU X.733 Alarm Reporting Function’s
perceived severity field: cleared, indeterminate, critical, major, minor, or warning.

• Fault Isolation (or Fault Diagnostic) in IoT-based network is a challenging prob-
lem because of the interactions between different network entities (e.g., wireless
sensors, gateways) and protocols.

• Fault correction is the process of fixing the error/fault problem, often remotely.
A fault manager allows a network administrator to monitor events and perform

Table 7.2 Overview of entity sensor MIB

MIB variable Description Examples of potential value

EntitySensorDataType Entity Sensor measurement data type
associated with a physical sensor value

3 = Volts AC
4 = Volts DC
5 = Amperes
6 = Watts
7 = Hertz
8 = Celsius

EntitySensorDataScale A data scaling factor, represented with
an International System of Units prefix

6 = Nano
10 = Kilo
11 = Mega
12 = Giga
13 = Tera
14 = Exa

EntitySensorPrecision Sensors Precision Range 1 = One decimal place in the
fractional part
2 = Two decimal place in the
fractional part

EntitySensorValue Sensor Value From −999,999,999
To +999,999,999

EntitySensorStatus Operational Status of Physical Sensor 1 = Ok
2 = Unavailable
3 = Nonoperational

TimeStamp The time the status and/or value of this
sensor was last obtained

10:00:00 AM PST

7 IoT Services Platform: Functions and Requirements

195

actions based on received information. Ideally, the fault manger system should
be able to not only correctly identify faults but also to automatically take correc-
tive action, such as to activate the notification system to notify a pre-defined list
of administrators (i.e., send e-mail or SMS text to a mobile phone) for interven-
tion when needed, or to launch a program or script to take corrective action.

Critical IoT systems should be designed around the concept of fault tolerance. In
principle, they must be able to continue working at least to some acceptable level in
the presence of faults. Network element redundancy (e.g., multiple sensors per-
forming identical tasks, dual modular sensing engines in the same sensor, fail-over
power supply) is a very common fault tolerance example that is designed to prevent
failures due to hardware components.

It should be noted that fault tolerance is not just a property of individual IoT ele-
ments; it may also impact IoT communication protocols as discussed in Chap. 5.
For example, the Transmission Control Protocol (Chap. 2) was designed as a reli-
able two-way communication protocol, even in the presence of failed or overloaded
communications links. It achieves this by requiring the endpoints of the communi-
cation to expect errors such as packet loss, packet reordering, packet duplication
and corruption.

The element Diagnostics and Fault Management Function in IoT allows network
engineers to troubleshoot sensors and actuators (typically over their gateways) or
any other IoT entity remotely. Service troubleshooting (i.e., when devices are work-
ing correctly but the service-level parameters are not being meet) is also addressed
through this function.

The Diagnostics and Fault Management function supports the following areas:

• Ability to connect and uniquely identify any device in the network including sen-
sors, actuators, gateways, etc. Sensors and actuators are often identified by their
corresponding gateways.

• Once the connection is established, Fault Management function requires the abil-
ity to retrieve device information that identifies a device, its model and manufac-
turer. E.g., Device Universal ID, Device Product ID, Device Serial Number, SKU.

• Ability to retrieve device information for the software and firmware installed on
the device, e.g., embedded software version.

• Ability to retrieve information related to a battery embedded within the device.
• Ability to retrieve information related to memory in use by a device.
• Ability to reconfigure/change (Write option) device specific parameters to diag-

nose or fix an identified problem.
• Ability to compare results from main system and backup system (if backup sys-

tem is deployed and operational) and provide error messages for different results.
• Ability to provide the current list of problems occurring on the network to the

fault manager/network management systems/system administrator. Such list is
cleared only when the triggering condition has been resolved. Or cleared by the
network administrator.

• Ability to retrieve the event logs from any IoT device.

7.6 Element Manager (Managing IoT Devices and Network Elements)

196

• Ability to allow a system administrator to monitor events from multiple systems/
locations and perform actions.

• Ability to assign alarms to severity levels. E.g., cleared, indeterminate, critical,
major, minor or warning.

• Ability to notify administrators of critical and/or other alarms (based on pre-
defined rule-based list) via e-mails, text message, call to mobile phones.

• Ability to launch a program or script to take corrective action for critical and/or
other alarm types.

• Ability to reboot diagnostic operation.
• Ability to roll-back any changes at any stage.
• Ability to rest IoT device parameters to original factory values.

7.6.3 Performance Management

The Performance Management function can be defined as a mechanism to quantity
“how the underlying IoT infrastructure (e.g., IoT network and device layers) is
doing?” Is the infrastructure operating under heavy load (e.g., over 90% utilization)
and about to run out of bandwidth or is there substantial extra free capacity so a
service provider can offer discounted services?

As was mentioned in Chap. 2, IoT is more than just devices at rest; there are also
many mobile IoT devices that include wearables, connected vehicles, and even fly-
ing drones. A more formal definition of performance management is a set of pro-
cesses to measure and monitor the quality and grade of the services that are offered
to customers. Quality of Service (QoS) typically refers to performance measures
from one element (e.g., delay of one link), whereas Grades of Service (GoS) typi-
cally refers to a performance measure of the end-to-end service (e.g., delay of the
end-to-end path that a service is taking).6

Consequently, a practical description of IoT network performance incorporates
three main elements:

• What to measure? Determining what to measure is conceivably the most critical
question for IoT management. Smart performance algorithms are useless unless
required measurements that drive such algorithms can be collected. In Chap. 3
(Things in IoT), we have identified over a dozen sensor types. Knowing that
these sensors are performing correctly is very important. Key sensor perfor-
mance measures include: Operating range of input-to-output signals, acceptable
noise level produced by sensors, acceptable resolution, and acceptable response
time to instantaneous change in input signal.

• Generic measurements for all IoT devices (e.g., gateways, routers) will include
device and transport link utilization (based on available bandwidth and capacity),

6 Some researchers use the term QoS to refer to both QoS and GoS as defined above.

7 IoT Services Platform: Functions and Requirements

197

end-to-end delay and jitter, packet lost ratios, packet error rates, and any other
parameters that impact services carried on the network. These will continue to be
important for IoT-based networks.

• Where to measure? Theoretically performance should be measured through the
network at all time. Practically, performance should be measured at least between
the network end points where the service is delivered. E.g., sensor to gateway,
gateway to platform and platform to application.

• How to measure the above parameters and then construct QoS and GoS measures
to perform the actual minoring?

Similar to Fault Management, Performance Management supports the following
areas for IoT network elements and devices:

• Ability to connect and uniquely identify any device in the network including sen-
sors, actuators, gateways, etc. Sensors and actuators are often identified by their
corresponding gateways.

• Once the connection is established, Performance Management function needs to
have the ability to ID the device by retrieving device information.

• Ability to retrieve device information for the software and firmware installed on
the device, e.g., embedded software version.

• Ability to retrieve information to measure the performance of a device or a mod-
ule within the device (e.g., battery).

• Ability to measure any performance related parameter including, but not limited
to, element utilization, delay, jitter, packet lost, packet arrives with error, amount
of memory in use by a device.

• Ability to allow a system administrator to monitor events from multiple systems/
locations.

• Ability to notify administrators of critical and/or other performance related
activities (based on pre-defined rule-based list) via e-mails, text message, calling
mobile phones.

7.6.4 Important Performance Measures for IoT Devices
(E.g., Sensors)

The following sensor (and actuators where applicable) performance requirements/
characteristics measures are considered important for IoT solutions:

• IoT Sensor’s Transfer Function should be plotted (e.g., testing the various ranges
of inputs, vendor documentations) to ensure it meets the specific IoT solution
requirements. The Transfer Function represents the functional relationship
between input signal (physical signal captured by the sensor) and output signal
(electrical signal converted by the sensor). Frequently, this relationship is repre-
sented by a graph constituting a comprehensive depiction of the sensor
characteristics.

7.6 Element Manager (Managing IoT Devices and Network Elements)

198

• IoT Sensors’ Sensitivity should be evaluated and within the minimum acceptable
range for the specific IoT solution (e.g., 0.1 variation in temperature sensors may
be acceptable for smart homes but not for more critical solutions). The sensitivity
is generally the ratio between a small change in electrical output signal to a small
change in physical signal. It may be expressed as the derivative of the transfer
function with respect to physical signal.

• IoT Sensor’s Dynamic Range should be established and documented. Dynamic
range is defined as the range of input signals which may be converted to electri-
cal signals by the sensor. Outside of this range, signals cause unsatisfactory accu-
racy in output.

• IoT Sensor’s Accuracy should be established and documented. Accuracy is
defined as the maximum expected error between measured (actual) and ideal
output signals. Manufacturers often provide the accuracy in the datasheet, e.g.,
1% error may be acceptable for some IoT solutions.

• IoT Sensor’s Noise Level should be established and documented. As was stated
in Chap. 3, all sensors produce some level of noise with their output signals. A
sensor’s noise is only an issue if it impacts the performance of the IoT system.
Smarter sensors must filter out unwanted noise and be programmed to produce
alerts on their own when critical limits are reached. Noise is generally distributed
across the frequency spectrum. Many common noise sources produce a white
noise distribution, which is to say that the spectral noise density is the same at all
frequencies.

• IoT Sensor’s Resolution should be established and documented. The resolution
of a sensor is defined as the smallest detectable signal fluctuation. It is the small-
est change in the input that the device can detect. The definition of resolution
must include some information about the nature of the measurement being car-
ried out.

• IoT Sensor’s Bandwidth (the frequency range) should be established and docu-
mented. Some sensors do not operate properly outside their defined band-
width range.

• IoT Sensor should produce a performance alert and notify its IoT gateway once
service issues or interpolation is detected outside its normal operational range
(e.g., outside the defined bandwidth, resolution).

• Finally, IoT Sensors should have some ability (depending on the sensors’
 sophistication level) to work with its IoT gateway to measure the Throughput
(actual rate at which the information is transferred), Latency (the delay
between the sender and the receiver), Jitter (variation in packet delay at the
receiver of the information), and Error Rate (the number of corrupted bits
expressed as a percentage or fraction of the total sent) during a specific period of
time (e.g., 1 h).

7 IoT Services Platform: Functions and Requirements

199

7.6.5 Security Management

Security management is extremely important for IoT. Any security management
solution must comprehensively address sensitive data handling, data administration,
service subscriptions, data transfer (especially over the Internet), data access con-
trol, and identity protection. Given the importance of this area, we have dedicated
an entire chapter (Chap. 8) to this critical topic. In this section we will simply list
the high level security requirements.

IoT high level security requirements include eight main areas:

• Data Confidentiality: ensures that the exchanged messages can be understood
only by the intended entities.

• Data Integrity: ensures that the exchanged messages were not altered/tampered
by a third party.

• Secure Authentication: ensures that the entities involved in any operation are
who they claim to be. A masquerade attack or an impersonation attack usually
targets this requirement where an entity claims to be another entity.

• Availability: ensures that the service is not interrupted. Denial of Service attacks
target this requirement as they cause service disruption.

• Secure Authorization: ensures that entities have the required control permis-
sions to perform the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement
where an old message is replayed in order to return an entity into an old state.

• Non Repudiation: ensures that an entity cannot deny an action that it has
performed.

• Forward and Backward Secrecy: Forward secrecy ensures that when an entity
leaves the network, it will not understand the communications that are exchanged
after its departure. Backward secrecy ensures that any new entity that joins the
network will not be able to understand the communications that were exchanged
prior to joining the network.

Detailed discussions of the above areas including existing solutions and gaps
will be provided in Chap. 8.

7.7 Firmware Manager

In the past, Firmware Management was not even an issue as older devices rarely
required operating system updates. In fact, Firmware is not part of the traditional
FCAPS capabilities that we described in Sect. 7.1.

Firmware refers to the device’s operating system that controls and operates the
device. Firmware is a program written into read-only-memory (ROM), rather than
simply being loaded into normal device storage, where it may be easily erased in the
event of a crash, and initially added at the time of manufacturing. It is called

7.7 Firmware Manager

200

firmware rather than software to highlight that it is very closely tied to the particular
hardware components of a device.

Nowadays, firmware updates are provided by vendors on regular basis, often as
a way to fix bugs or introduce new functionality (e.g., Apple’s iOS, Cisco’s IOS,
Samsung’s Android).

Key Firmware requirements for IoT solutions include:

• Ability for IoT device to store and maintain multiple firmware images and to
manage individual firmware images.

• Ability for IoT management solution to provide a user-friendly device Firmware
Management site that provides lifecycle management for firmware associated
with a device. This includes

 – Downloadable versions of latest Firmware images.
 – Step by step instructions to download/update images on various supported

devices that guarantee full migration of existing settings and applications on
an IoT Device.

 – Step by step instructions to remove a Firmware image and roll-back into an
older image if needed with full device backup of existing applications and
settings.

 – Support for downloading and updating within the same action.
 – Download, update, and removal of Firmware process should be done within a

reasonable amount of time (typically less than 10 min) with clear progress bar
visible to the user.

 – Q&A and troubleshooting support.

• Ability for IoT management solution to support both wire-line and mobile (the
so-called FOTA (Firmware Over-The-Air) firmware upgrade. FTOA is a Mobile
Software Management (MSM) technology in which the operating firmware of a
mobile device is wirelessly upgraded and updated by its manufacturer. FOTA-
capable devices download upgrades directly from the service provider.

7.8 Topology Manager

IoT network topology refers to the arrangement of the various elements (sensors,
gateways, switches, links between gateways and switches, etc.). Topology may be
physical or logical and is often presented explicitly in a structured graph. Physical
Topology is the placement of the actual IoT elements on a graph (e.g., map) as they
are connected with physical information (e.g., locations). Logical Topology, on the
other hand, displays virtual information such as network virtualization data, data
flow on the network.

Key requirements for topology management include:

7 IoT Services Platform: Functions and Requirements

201

• Ability to display IoT Physical network that includes all IoT devices (e.g., sen-
sors, actuators) and IoT network elements (gateways, switches, routers). User
should have the ability to filter which devices to display.

• Ability to display IoT Virtual network (often on top of a physical view).
• Ability to display specific Element Management parameters (e.g., utilization,

devices at faults) based on user selection criteria.
• Ability to filter/configure the topology.
• Ability to retrieve information related to any IoT element.
• Ability to retrieve information related to an IoT protocol.

7.9 Group Manager

Unlike traditional networks, a typical IoT network often contains a large number of
IoT devices (e.g., sensors). Hence, it is important to allow network administrators to
group IoT elements of the same characteristics into groups instead of managing
each element separately.

Group Management is responsible for handling group related requests. The
request is sent to manage a group and its membership as well as for any bulk opera-
tions, including broadcasting/multicasting, that are supported by the group. Group
management security is handled by the element management system.

When facilitating access control using a group, only members with the same
access control policy for a resource are included in the same group. Also, only
application entities, which have a common role with regard to access control policy,
are included in the same group. This is used as a representation of the role when
facilitating role based access control.

Group Management Key requirements include:

• Ability to create, retrieve, update, or delete groups. Groups are created by select-
ing IoT elements of similar characteristics. An IoT element may belong to mul-
tiple groups. New members may be added and/or deleted at any time. When new
members are added to a group, the group manager should validate if the member
complies with the purpose of the group. Requests to create, retrieve, update, or
delete are assumed to be initiated by an application.

• Ability to create super group (group of a group). In this case, operations (e.g.,
Forwarding) are done recursively.

• Ability to initiate and execute a request for the entire members of a group. The
request may be a simple notification or read operation (i.e., retrieve information
form sensors), or write operation (changing a common parameter).

• Ability to support subscriptions to individual groups.
• Ability to notify group members when they are added to or deleted from a group,

or when the group is updated.

7.9 Group Manager

202

7.10 Billing and Accounting

Billing and Accounting management is used to calculate and report the charges
based on subscription and/or usage of a service. It supports different charging mod-
els including online real-time credit control by interacting with the charging system
in the underlying IoT network. Billing polices include the ability to trigger a charge
based on specified events and to charge even when the billing system is offline. The
system may record information for other purposes such as for event logging. The
main charging models include:

• Subscription-based charging (flat rate): Typically a service layer per
subscription.

• Event-based charging (per event or task): Charging based on service layer
chargeable events. For example, an operation on data (Create, Update, and
Retrieve) can be an event.

• Time-based charging: Chargeable events are configurable to initiate information
recording. More than one chargeable event can be simultaneously configured and
triggered for information recording.

• Usage-based charging: Charge based on bandwidth (or other parameters) con-
sumptions. Users are allowed to change usage level within a task (e.g., high
bandwidth for first hour and then switch to lower bandwidth).

Key Billing and Accounting requirements include:

• Ability to bill based on subscription (flat rate), event (per event), time (charge per
hour), or usage.

• Ability to allow an application (or network administrator) to develop billing
related policies. Further, the Billing and Accounting Module has the ability to
start and end the actual billing by applying charging related policies, configura-
tions, and communicating with the charging system in the underlying network.

• Ability to start and end charges based on the defined charges policies. Such
charges must be recorded in a billing system/DB.

• Ability to handle offline billing related operations. The offline billing function
generates service charging records based on billing polices and recorded infor-
mation. A service charging record is a formatted collection of information about
a chargeable event (e.g., amount of data transferred) for use in billing and
accounting.

7.11 Subscription and Notification Manager

Subscription and Notification service provides notifications concerning subscrip-
tion events. It allows authorized devices and applications to subscribe to a set of
notification services, typically from a predetermined list. A notification event may
be generic (e.g., a recent security alert) or subscriber-specific (e.g., security alert

7 IoT Services Platform: Functions and Requirements

203

related to an IoT service and/or device such as end of life date). Subscription and
Notification service also provides notifications concerning subscriptions that track
event changes on a resource (e.g., deletion of a resource, important change in the
resource’s events such as a major increase in the temperature reading). The sub-
scription may be provided by the platform itself or by a northbound application
communicating with the platform via the API Manager, as shown in Fig. 7.4.

Key requirements for the Subscriptions and Notification Modules include:

• Ability to allow devices and/or applications to subscribe to specific set of ser-
vices based on right level of authorization. Hence, authorization information
may be obtained from the authorization service as we mentioned in Sect. 7.6.5
under Element Management system.7

• Ability to allow authorized devices and/or applications to subscribe to a set of
notification services from a drop down list.

• Ability to support generic notifications as well as subscriber-specific notifica-
tions where notifications are correlated with the subscriber’s IoT device or ser-
vice as mentioned above.

• Ability to support subscription and notification services related to event changes
on a resource as mentioned above.

• Ability to provide subscription and notification service in the platform itself and/
or in a northbound application. In the latter case, subscription selection is made
in an application that communicates with the platform via the API Manager.
Notification may also be sent to such application (if so is selected) via the API
Manager.

• Ability to notify devices and/or applications based on subscription and authori-
zation level (e.g., subscribe and notify only for security-related alerts).

• Ability to create and store subscription profile information including device ID,
notification address, notification type, notification policies (e.g., notify any time
for priority 1 issues, notify from 8 AM to 5 PM for priority 2, etc.).

• Ability to subscribe to a single or multiple resources.
• Ability to store subscription profiles as well as directed notifications along with

date, time, and delivery mechanism.

7.12 API Manager

The main function of the API Manager is to manage communication with IoT net-
work and devices, for obtaining network service functions in a common way. It is
intended to shield other platform modules from developing their own technology
and mechanisms supported by the Underlying Networks.

Key functions of the API Manager include:

7 Alternatively, an Authorization, Authentication and Accounting (AAA) server may be used for
device authorization.

7.12 API Manager

204

• Ability to provide adaptation for different sets of network service functions sup-
ported by various Underlying Networks.

• Ability to maintain the necessary connections between the platform entities and
the Underlying Network.

• Ability for the API Manager to provide information to the Communication
Manager related to the IoT Network so the Communication Manager can include
that information determine proper communication handling.

7.13 Commercially Available IoT Platforms

Tens of IoT Platforms exist in the marketplace today. Examples include AWS IoT
Platform, Google Cloud IoT Platform, Microsoft Azure IoT Suite Platform, IBM
Watson IoT Platform, Salesforce IoT Cloud Platform, Cisco IoT Cloud Connect
Platform, Oracle IoT Intelligent Applications Platform, PTC ThingWorx IoT
Platform, OpenRemote IoT Platform (open-source focusing on helping engineers
creating a range of IoT applications), IRI IoT Voracity Platform (focusing on data
discovery, integration, migration, governance, and analytics), Particle Platform, and
Altair IoT SmartWorks Platform.

As we mentioned earlier in this chapter, IoT platforms are used to address one or
more of the following functions.

 1. Rapid and consistent development and deployment of IoT devices and services.
 2. Middleware connecting IoT devices and applications to other devices and

applications.
 3. Streaming data from IoT devices.
 4. Profiling customer context data.
 5. Device management addressing the FCAPS (Fault, configuration, Accounting,

Performance, and Security) functions. See Sect. 7.6 for additional information.
 6. Real-time reporting and advanced analytics, e.g., using artificial intelligence

algorithms for advanced prediction, service optimization, diagnostics, and trend-
ing analysis.

 7. Sandbox allowing subject matter experts to test business or technical ideas with-
out (or with limited) programming.

 8. Provide API library allowing engineers to import data from other sources (e.g.,
gateways, Websites, controllers, end application service) and platforms (e.g.,
using RESTful API).

 9. Handle huge data volume from devices, users, applications, websites, and sen-
sors and take actions to give a real-time response.

Selecting the right IoT Platform is challenging and depends greatly on the
requirements of the specific solution for hardware, real-time access, custom reports,
budget, development skills, and business model.

The purpose of this section is to introduce students and engineers into examples
of known IoT platforms and related functionalities. It is not intended to provide

7 IoT Services Platform: Functions and Requirements

205

recommendations, nor provide feature by feature comparisons. The selected plat-
forms, as shown in Table 7.3, include AWS IoT Platform, Google Cloud IoT
Platform, Microsoft Azure IoT Platform, and PTC ThingWorx IoT Platform. The
first three are typically considered general-purpose platforms addressing various
IoT applications while the last platform (i.e., PTC ThingWorx) is more focused on
addressing industrial IoT requirements.

Again, it is important to note that the feature description (Table 7.3) is snapshots
at the time of the writing. Such features and capabilities are expected to change over
time. Students/engineers are encouraged to log into each platform to understand the
latest capabilities.

7.14 Putting All Together

As we mentioned in pervious section, IoT platforms can be divided into two catego-
ries: product-centered with a stronger focus on specific products for industrial com-
panies, and general-purpose platform for developers. In many cases, general-purpose
platforms are complemented by an accompanying marketplace.

Marketplace is an e-commerce platform owned and operated by a specific ven-
dor (e.g., Amazon). It enables third-party sellers to offer products and/or services
online alongside the vendor’s regular offerings. This allows the vendor (platform
owner) to earn commissions and to create more comprehensive solutions.

Marketplaces have several advantages. First, they bring together offers from
multiple suppliers or service providers with minimum investments. Second, they
relieve marketplace owners from owning the inventory that their platform sells.
Third, they allow platform owners to choose a revenue stream that best fits their
market position and business goals. Finally, marketplace owner leaves the more
operational side of the business to vendors while focusing on promoting their mar-
ketplace brand. Marketplace owners can create a rating and review systems allow-
ing their customers to make informed purchase decisions.

Let us imagine that you are developing an IoT security solution for your own
home. In this case, you will need to install and connect your home cameras and sen-
sors to the Internet, select data sources and protocols, and then develop an applica-
tion for data visualization. You also need to make sure that your data is secure at all
time (e.g., data is not altered by third party, your devices are never hacked, and your
credentials are always secure) and that your network is reliable and available. You
may also chose to combine your data with additional available information (e.g.,
Weather conditions, Fire and Crime alerts along with Locations) for advanced mon-
itoring especially when you are traveling.

In this case, you will need to subscribe to a platform allowing you to connect
your devices, collect data in real-time, and then build (or utilize and existing) inter-
active dashboards to visualize and track your home data. Such capabilities may be
offered by the platform or the associated marketplaces.

7.14 Putting All Together

206

Table 7.3 Examples and glimpses of commercially available platforms

AWS IoT
Platform

Google Cloud IoT
Platform

Microsoft Azure
IoT Platform

PTC ThingWorx
IoT Platform

Overview Almost all IoT platforms allow users to connect their IoT devices and data
sources, select supported protocols, build applications, enable security, and
define the communication between devices and the Internet.

Protocols
Snapshot

Supports wide
variety of
communication
protocols
including custom
ones which enable
communication
b/w devices from
different
manufacturers,
e.g.,
MQTT. HTTP
and WebSockets
for asynchronous
communication.

Supports wide
variety of
communication
protocols to enable
communication
between devices
from different
manufacturers
including, e.g.,
MQTT, HTTP.

Supports wide
variety of
communication
protocols to enable
communication
between devices
from different
manufacturers,
e.g., AMQP,
HTTPS and
AMQP. IoT hub
Supports SASL
and AMQP claim
based security in
conjunction with
AMQP protocol.

Supports wide
variety of
communication
protocols to
enable
communication
between devices
from different
manufacturers,
e.g., MQTT,
HTTP, OAuth2,
and WebSockets.

Element
Management:
Fault
Management
Snapshot

AWS IoT Device
Manager allows
users to
troubleshoot
device
functionality and
query the state of
IoT devices.

Google Cloud IoT
Core supports
trouble
management, e.g.,
predicting when
equipment needs
maintenance.

Microsoft Azure
IoT Monitor
provides guidance
to reduce the time
in diagnosing and
troubleshooting.

Supports various
functions for
troubleshooting
including
connections to
the platform.

Element
Management:
Configuration
Management
Snapshot

Users can query
the state of
device(s) on
demand and
provide the
functionality to
apply firmware
updated
over-the-air.

The device manager
allows devices to be
configured (in
group) through a
console or
programmatically.

Azure IoT Hub
Device
Provisioning
Service enables
zero-touch
provisioning to the
right IoT Hub.

Includes utilities
to provision
devices. Allows
users to create
rule-based
Workflows to
execute across
multiple devices.

Element
Management:
Accounting
and Billing
Snapshot

Basic connectivity
fee (for platform
access) and then
usage-based
billing (bay for
what you use).

Usage-based: Cloud
IoT Core is priced
according to the
data volume.

Basic and standard
tier-based billing
model. e.g.,
$0.123 per 1000
operation for
device
provisioning.

Subscription
based with a
pay-as-you-go
model is
supported.

(continued)

7 IoT Services Platform: Functions and Requirements

207

In general, the following steps are followed:

 1. Install your devices.
 2. Connect devices to the platform.
 3. Select data sources and formats.
 4. Add a custom data source via Developer Console (if applicable).

Table 7.3 (continued)

AWS IoT
Platform

Google Cloud IoT
Platform

Microsoft Azure
IoT Platform

PTC ThingWorx
IoT Platform

Element
Management:
Performance
Management
Snapshot

AWS IoT Device
Manager
monitors,
organizes, and
provides an
interface to
manage IoT
devices. It
provides
functionality to
register an
individual device
or in bulk and
manage security
permissions/
policies.

Google Cloud IoT
Core provides a
solution for
collecting,
processing,
analyzing, and
visualizing IoT data
in real time. E.g.,
automatically
optimize device
performance in real
time while
predicting
downtime.

Azure Monitor
and Resource
Health provides
monitoring
capabilities with
data about the
operations of
Azure IoT Hub,
for instance.
Advanced
analytics features
that can turn
connectivity and
workflow data into
actionable
insights.

ThingWorx
Platform allows
user to select
data and use it to
create specific
charts and
workflow alerts.
Advanced
analytics features
that can turn
connectivity and
workflow data
into actionable
insights.

Element
Management:
Security
Management
Snapshot

Data to and from
AWS IoT is sent
securely over
Transport Layer
Security (TLS).
AWS cloud
security
mechanisms
protect data as it
moves between
AWS IoT and
other AWS
services.

Allows users to
securely connect,
manage, and ingest
data using TLS.

Uses TLS based
handshake and
encryption.
Support various
security functions
including security
information and
event
management,
security
orchestration, and
automation.

Provides
transport
security, identity
management
(device and
platform), and
content & asset
management.

Supports device
authentication and
authorization (via
custom schemes).

Supports device
authentication and
authorization (via
keys and JSON web
tokens).

Supports device
authentication and
authorization (via
certificates and
keys).

Supports device
authentication
and
authorization.

Supports various
compliance
management for
security audits.

Supports various
compliance
management for
security audits.

Supports various
compliance
management for
security audits.

Supports various
compliance
management for
security audits.

7.14 Putting All Together

https://www.itu.int/rec/T-REC-X.509-201210-S

208

 5. Use standard dashboard capabilities (or add a custom dashboard via a developer
console) to create your view. Connect dashboard to data source using an offer
interface.

 6. Continue adding your devices and data sources to enable complete
visualization.

 7. Customize your dashboard if needed (e.g., Drag and drop widgets into the
desired dashboard location, add custom colors).

 8. Share dashboard with family members, e.g., adding users with read-only or
edit access.

 9. Add additional advanced capabilities (if needed).

7.15 Summary

Without a doubt, the IoT Services Platform creates the cornerstone of successful
IoT solutions. It is responsible for many of the most challenging and complex tasks
of the solution. The Services Platform automates the ability to deploy, configure,
troubleshoot, secure, manage, and monitor IoT entities ranging from sensors to
applications in terms of firmware installation, patching, debugging, and monitoring
just to name a few. The Service Platform also provides the ability for data manage-
ment and analytics, temporary caching, permanent storage, data normalization,
policy-based access control and exposure.

Given the complexity of the services platform in IoT, this chapter grouped the
core capabilities into 11 main areas: Platform Manager, Discovery and Registration
Manager, Communication (Delivery Handling) Manager, Data Management and
Repository, Firmware Manager, Topology Management, Group Management,
Billing and Accounting Manager, Cloud Service Integration Function/Manager,
API Manager, and Element Manager addressing Configuration Management, Fault
Management, Performance Management and Security Management across all IoT
entities.

Problems and Exercises

 1. This chapter categorized the IoT Services Platform into 11 functions. (a) Name
and define each of the 11 functions. (b) List and define the Element Manager
functions.

 2. What are the traditional FCAPS management functions? Do they also apply to
IoT? If so, Are they sufficient?

 3. List six reasons why the overall management functions of IoT solutions are
more multifaceted than traditional networks.

 4. IoT solutions are considered much more complex to manage than traditional
networks?

 (a) Why?—List top five factors.
 (b) Why does the Fog Layer introduce new changes for IoT?

7 IoT Services Platform: Functions and Requirements

209

 5. This chapter mentioned that not all IoT entities will be IP address enabled.

 (a) Why is that? Provide an example of IoT devices that are not IP addresses
enabled.

 (b) How do management system track such devices?

 6. What is device registration on IoT? Why is it needed?
 7. List the key responsibilities of the Discovery Function.
 8. It was mentioned in Sect. 5.1 that for non-IP addressed enabled sensors, IoT

sensors may be tracked by the combined (a) IP Address of the Gateway and (b)
Sensor address. Why both addresses do are needed?

 9. Why IoT device self-registration is preferred over the method where a new IoT
device have the capability to be identified during the discovery process?

 10. The IETF has released NETCONF and YANG which are standards focusing on
Configuration management. Name two other older methods that can be used for
configuration management? What are their shortcomings?

 11. Section 7.7 indicated that Accurate discovery is essential for many management
tasks including asset management, network monitoring, network diagnosis and
fault analysis, network planning, high availability, and others.

 (a) Provide short definitions of asset management, network monitoring, net-
work diagnosis and fault analysis, network planning and high availability.

 (b) Why is accurate discovery essential for each of the above functions?

 12. What are the key differences between Provisioning and Configuration func-
tions? Which one is done first?

 13. What are key differences between deployment, Provisioning, and Orchestration?
 14. What are the most basic two management functions to provide a new services?
 15. Provide an example of Service-Level Diagnostics and Fault Management

Function in IoT where all devices are working correctly but the service-level
parameters are not being met.

 16. Why Fault management is considered by many experts to be most challenging
and important management function of IoT-based networks?

 17. What are the three main functions of Fault Management? Provide detailed
description of each term.

 18. What are the concepts of fault tolerance in IoT networks? Give three examples
of failures that should be handled by fault tolerance function in IoT-based
networks.

 19. Fault tolerance is not just a property of individual IoT element; it may also
impact the IoT communication protocol. For example, the Transmission Control
Protocol (TCP) was design as reliable two-way communication protocol, even
in the presence of failed or overloaded communications links. How is this
achieved in TCP?

 20. There are special software and instrumentation packages designed to detect
failures. A good example is a fault masking system. How does Fault Masking
system detect failure?

 21. What is Diagnostic Signature? Where it used?

7.15 Summary

210

 22. In priority order, what are the top three IoT management functions that a ser-
vice provider needs to provide very basic services? Justify your answer.

 23. Why Fault management is considered to be very challenging in IoT network?
i.e., What are the main differences between managing IoT network and a tradi-
tional network?

 24. Why IoT management is considered to be most challenging and complex task
of the solution?

 25. Section 7.1 indicated the need for a complete configuration backups with roll-
back capabilities as a key requirement for the IoT Platform Manager. What is
configuration roll-back? Why is it needed? Provide an example?

 26. What are the definitions of Sensitivity and Dynamic Range? What are the typi-
cal units of Sensitivity and Dynamic Range?

 27. What is Hysteresis? What is a typical unit of Hysteresis?
 28. What is a Firmware? What does it do? Why is it called so?
 29. Why Firmware Images are loaded into ROM and not the device storage?
 30. How come Firmware Management was not part of the tradition FCAPS?
 31. Data may be retrieved from various IoT sources including IoT devices and net-

work elements (e.g., sensors, gateways, switches), IoT subscribers, and IoT
applications. IoT device and network element data is assumed to be collected
by collection systems or by collection agents.

 (a) What are the key differences between a collection system and a collec-
tion agent?

 (b) What is IoT subscriber data? How is the data collected?
 (c) What is an IoT application data? How is the application data collected?

 32. In a table list three Subscription and Notification requirements along with
examples of a subscriber and notification message.

References

 1. IoT – Converging Technologies for Smart Environments and Integrated Ecosystems, Reviewer
Publishers, Online: http://www.internet- of- things- research.eu/pdf/Converging_Technologies_
for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf

 2. Internet of Things, Evolving the Manufacturing Industry, Online: http://www.cisco.com/c/en/
us/solutions/internet- of- things/iot- products/services.html

 3. The Internet of Things: Between the Revolution of the Internet and the Metamorphosis of
Objects, Gerald Santucci, Online: http://cordis.europa.eu/fp7/ict/enet/documents/publications/
iot- between- the- internet- revolution.pdf

 4. From the Internet of Computers to the Internet of Things, Friedemann Mattern and Christian
Floerkemeier, Distributed Systems Group, Institute for Pervasive Computing, Online: http://
www.vs.inf.ethz.ch/publ/papers/Internet- of- things.pdf

 5. Reaping the Benefits of the Internet of Things, Cognizant Reports, May 2014, http://www.
cognizant.com/InsightsWhitepapers/Reaping- the- Benefits- of- the- Internet- of- Things.pdf

 6. Philip N. Howard (8 June 2015). “How big is the Internet of Things and how big will it get?”.
The Brookings Institution. Retrieved 26 June 2015.

7 IoT Services Platform: Functions and Requirements

http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.cisco.com/c/en/us/solutions/internet-of-things/iot-products/services.html
http://www.cisco.com/c/en/us/solutions/internet-of-things/iot-products/services.html
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://cordis.europa.eu/fp7/ict/enet/documents/publications/iot-between-the-internet-revolution.pdf
http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
http://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf
http://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf

211

 7. Stefan Wallina and Claes Wiksrom, “Automating Network and Service Configuration
Using NETCONF and YANG”: Online: http://www.tail- f.com/wordpress/wp- content/
uploads/2013/03/Tail- f- NETCONF- YANG- Service- Automation- LISA- Usenix- 2011.pdf

 8. BJORKLUND, M. YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020, Oct. 2010.

 9. Broadband Forum Technical Report TR-069, CPE WAN Management Protocol, Issue 1
Amendment 5, Version 1.4, Nov 2013.

 10. Open Mobile Alliance M2M Device Management Specifications, Online: http://openmobileal-
liance.hs- sites.com/lightweight- m2m- specification- from- oma

 11. Open Mobile Alliance LightweightM2M Version 1.0, Online: http://technical.open-
mobilealliance.org/Technical/technical- information/release- program/current- releases/
oma- lightweightm2m- v1- 0

 12. Sokullu, R. and Karaca, O., “Fault Management for Smart Wireless Sensor Networks,”
Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic &
Trusted Computing (UIC/ATC), Sept 4, 2012.

 13. G. Stanley and Associate, White Paper, “A Guide to Fault Detection and Diagnosis”, Online:
http://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/faultdiagnosis.htm

 14. IETF Network Working Group, Request for Comments (RFC) 3433, Entity Sensor Management
Information Base, Online: https://tools.ietf.org/html/rfc3433

 15. G. Huston, “Measuring IP Network Performance”, the Internet Protocol Journal, Vol 6,
Number 1, Online: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6- 1/
measuring_ip.html

 16. H Hui-Ping, X Shi-De, M Xiang-Yin, “Applying SNMP Technology to Manager Sensors in
IoT”, The Open cybernetics & Systemic Journal, 2015, pp. 1019-1024, Online: http://ben-
thamopen.com/contents/pdf/TOCSJ/TOCSJ- 9- 1019.pdf

 17. L. Adaro, Monitoring 101 eBook, Nov 2015, Online: https://thwack.solarwinds.com/docs/
DOC- 187523

 18. Stanford Sensor Course, Online: http://web.stanford.edu/class/me220/data/lectures/lect02/
lect_2.html

 19. B. Hedstrom, A. Watwe, S. Sakthidharan “Protocol Efficiencies of NETCONF versus SNMP
for Configuration Management Functions”, University of Colorado, May 2011, Online: http://
morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf

 20. OMA LightweightM2M v.10, Open Mobile Alliance, Online: http://technical.open-
mobilealliance.org/Technical/technical- information/release- program/current- releases/
oma- lightweightm2m- v1- 0

 21. S. Duquet, Smart Sensors, Enabling Detection and Ranging for IoT and Beyond, Ladder
Technology Magazine Elektronik Praxis, April 2015, Online: http://leddartech.com/
smart- sensors

 22. 50 Sensors Applications for Smarter World, Libelium, Online: http://www.libelium.com/
top_50_iot_sensor_applications_ranking/

 23. P. Seneviratne, Internet Connected Smart Water Sensors, September 2015, Online: https://
www.packtpub.com/books/content/internet- connected- smart- water- meter

 24. P. Jain, Pressure Sensors, Prototype PCB from $10, Online: http://www.engineersgarage.com/
articles/t

 25. D. Merrill, J. Kalanithi, P. Maes, “Siftables: Towards Sensor Network User Interfaces”, Online:
http://alumni.media.mit.edu/~dmerrill/publications/dmerrill_siftables.pdf

 26. Whatis.com, Online: http://whatis.techtarget.com/definition/firmware
 27. Mobileburn, Online: http://www.mobileburn.com/definition.jsp?term=firmware

References

http://www.tail-f.com/wordpress/wp-content/uploads/2013/03/Tail-f-NETCONF-YANG-Service-Automation-LISA-Usenix-2011.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2013/03/Tail-f-NETCONF-YANG-Service-Automation-LISA-Usenix-2011.pdf
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/faultdiagnosis.htm
https://tools.ietf.org/html/rfc3433
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-1/measuring_ip.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-1/measuring_ip.html
http://benthamopen.com/contents/pdf/TOCSJ/TOCSJ-9-1019.pdf
http://benthamopen.com/contents/pdf/TOCSJ/TOCSJ-9-1019.pdf
https://thwack.solarwinds.com/docs/DOC-187523
https://thwack.solarwinds.com/docs/DOC-187523
http://web.stanford.edu/class/me220/data/lectures/lect02/lect_2.html
http://web.stanford.edu/class/me220/data/lectures/lect02/lect_2.html
http://morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf
http://morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://leddartech.com/smart-sensors
http://leddartech.com/smart-sensors
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
https://www.packtpub.com/books/content/internet-connected-smart-water-meter
https://www.packtpub.com/books/content/internet-connected-smart-water-meter
http://www.engineersgarage.com/articles/t
http://www.engineersgarage.com/articles/t
http://alumni.media.mit.edu/~dmerrill/publications/dmerrill_siftables.pdf
http://whatis.techtarget.com/definition/firmware
http://www.mobileburn.com/definition.jsp?term=firmware

213© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_8

Chapter 8
Internet of Things Security and Privacy

8.1 Introduction

The Internet of Things (IoT) promises to make our lives more convenient by turning
each physical object in our surrounding environment into a smart object that can
sense the environment, communicate with the remaining smart objects, perform
reasoning, and respond properly to changes in the surrounding environment.
However, the conveniences that the IoT brings are also associated with new security
risks and privacy issues that must be addressed properly. Ignoring these security and
privacy issues will have serious effects on the different aspects of our lives including
the homes we live in, the cars we ride to work, and even the effects that will reach
our own bodies.

If your home does not already have a smart meter, it will soon have multiple of
those meters that are dedicated to monitor and control the power consumption, the
heating, and the lighting of your house. This is not to mention the smart gadgets that
will be found all over your house such as the smart camera that notifies your smart-
phone during business hours when movement is detected, the smart door that opens
remotely, and the smart fridge that notifies you when you are short of milk. Imagine
now the level of control that an attacker can gain by hacking those smart meters and
gadgets if the security of those devices was overlooked. In fact, the damage caused
by cyberattacks in the IoT era will have a direct impact on all the physical objects
that you use in your daily life. The same applies to your smart car as the number of
integrated sensors continues to grow rapidly and as the wireless control capabilities
increase significantly over time, giving an attacker who hacks the car the ability to
control the windshield wipers, the radio, the door lock, and even the brakes and the
steering wheel of your car. Our bodies will not also be safe from cyberattacks. In
fact, researchers have shown that an attacker can control remotely the implantable

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_8#DOI

214

and wearable health devices (e.g., insulin pumps and heart pacemakers) by hacking
the communication link that connects them to the control and monitoring system.
This gives the attacker, for example, the ability to tune the injected insulin dose
causing serious health problems that may even cause death to patients wearing those
smart health devices. In fact, such concerns have made doctors disable the wireless
capability of the heart pacemaker of Dick Cheney, the former US vice president, in
order to protect him from such malicious attacks.

The security risks are also extremely serious when IoT devices are used in busi-
ness enterprises. If an attacker hacks any of those smart objects that are used in a big
enterprise, then the sensing capabilities that those smart objects have can be used by
the attacker to spy on the enterprise. Such cyberattacks can also be used to steal
sensitive information such as the company earnings report and credit card informa-
tion. In fact, these stealing attacks are common in big enterprises such as the largest
financial hacking case in the US history, which took place in 2013, where a group
of five hackers stole $160 million from credit cards and over hundreds of millions
in criminal loot.

Maintaining users’ privacy in IoT is also crucial as there is an enormous amount
of information that an outsider can learn about people’s life by eavesdropping on the
sensed data that their smart house appliances and wearable devices report. In fact,
people will be living in a “Big Brother” world where smart things record our daily
activities anytime and everywhere. The advances in the fields of facial, speech, and
human activity recognition amplify the amount of information that the sensed data
can reveal if it falls in the wrong hands. Even if your IoT objects are merely report-
ing metadata, you would be surprised by the amount of information that an outsider
can learn about your personal life when aggregating the metadata collected from
multiple hacked objects that surround you over time. It is thus essential to find solu-
tions to preserve people’s privacy in the IoT era.

The objective of this chapter is to shed the light on some of the security and pri-
vacy issues that the IoT paradigm is exposed to. We also survey the techniques that
were proposed to address these issues. Some of the discussed techniques prevent
security breaches from taking place, while others try to detect malicious behavior
and trigger an appropriate mitigating countermeasure. The rest of the chapter is
organized as follows. Section 8.2 identifies the new security challenges that are
encountered in the IoT paradigm. Section 8.3 identifies the IoT security require-
ments. Section 8.4 briefly describes the three domains in the IoT architecture.
Sections 8.5–8.7 survey the security attacks and countermeasures at the cloud
domain, the fog domain, and the sensing domain, respectively. Section 8.8 discusses
approaches for securing IoT Devices. The section starts by providing several exam-
ples of IoT devices used in security attacks, and then discusses solutions including
MUD and DICE. Finally, Sect. 8.9 summarizes the chapter and provides directions
for future work related to the area of IoT security.

8 Internet of Things Security and Privacy

215

8.2 IoT Security Challenges

IoT has unique characteristics and constraints when it comes to designing efficient
defensive mechanisms against cybersecurity threats that can be summarized by:

 1. Multiple Technologies: IoT combines multiple technologies such as radio-
frequency identification (RFID), wireless sensor networks, cloud computing,
virtualization, etc. Each of these technologies has its own vulnerabilities. The
problem with the IoT paradigm is that one must secure the chain of all of those
technologies as the security resistance of an IoT application will be judged based
on its weakest point which is usually referred to by Achilles’ heel.

 2. Multiple Verticals: The IoT paradigm will have numerous applications (also
called verticals) that span eHealth, industrial, smart home gadgets, smart cities,
etc. The security requirements of each vertical are quite different from the
remaining verticals.

 3. Scalability: According to Cisco, 26.3 billion smart devices will be connected to
the Internet by 2020. This huge number makes scalability an important issue
when it comes to developing efficient defensive mechanisms. None of the previ-
ously proposed centralized defensive frameworks can work anymore with the
IoT paradigm, where the focus must be switched to finding practical decentral-
ized defensive security mechanisms. An IoT solution needs to scale cost-
effectively, potentially to hundreds of thousands or even millions of endpoints.

 4. Availability: Availability refers to characteristic of a system or subsystem that is
continuously operational for a desirably long period of time. It is typically mea-
sured relative to “100% operational” or “never failing.” A widely held but
difficult- to-achieve standard of availability for a system or product is known as
“five 9 s” (available 99.999% of the time in a given year) availability. Security
plays a major rule in high availability as network administrators often hesitate to
use needed threat-response technology functions (e.g., network discovery as
illustrated in Chap. 7) for fear that such functions will take down critical sys-
tems. Even a simple port scan causes some IoT devices to stop working, and the
cost of downtime can far exceed the cost of remediating all but the most severe
incidents. In some instances, network administrators would rather have no
cybersecurity protection rather than risk an outage due to a false positive. This
leaves them blind to threats within their control networks. Companies often add
redundancy to their systems so that failure of a component does not impact the
entire system.

 5. Big Data: Not only the number of smart objects will be huge, but also the data
generated by each object will be enormous as each smart object is expected to be
supplied by numerous sensors, where each sensor generates huge streams of data
over time. This makes it essential to come up with efficient defensive mecha-
nisms that can secure these large streams of data.

 6. Resource Limitations: The majority of IoT end devices have limited resource
capabilities such as CPU, memory, storage, battery, and transmission range. This
makes those devices a low-hanging-fruit for denial of service (DoS) attacks

8.2 IoT Security Challenges

216

where the attacker can easily overwhelm the limited resource capabilities of
those devices causing a service disruption. In addition to that, the resource limi-
tations of those devices raise new challenges when it comes to developing secu-
rity protocols especially with the fact that the traditional and mature cryptography
techniques are known to be computationally expensive.

 7. Remote Locations: In many IoT verticals (e.g., smart grid, railways, roadsides),
IoT devices, epically sensors, will be installed in unmanned locations that are
difficult to reach. Attackers can interfere with these devices without being seen.
Cyber and physical security monitoring systems must be installed in safe-
guarded location, operate in extreme environmental conditions, fit in small
spaces, and operate remotely for routine updates and maintenance avoiding
delayed and expensive visits by network technicians.

 8. Mobility: Smart objects are expected to change their location often in the IoT
paradigm. This adds extra difficulties when developing efficient defensive mech-
anisms in such dynamic environments.

 9. Delay-Sensitive Service: The majority of IoT applications are expected to be
delay-sensitive, and thus one should protect the different IoT components from
any attack that may degrade their service time or may cause a service disruption.

8.3 IoT Security Requirements

We summarize in this section the security requirements for IoT. These requirements
include:

• Confidentiality: ensures that the exchanged messages can be understood only by
the intended entities.

• Integrity: ensures that the exchanged messages were not altered/tampered by a
third party.

• Authentication: ensures that the entities involved in any operation are who they
claim to be. A masquerade attack or an impersonation attack usually targets this
requirement where an entity claims to be another identity.

• Availability: ensures that the service is not interrupted. Denial of service attacks
target this requirement as they cause service disruption.

• Authorization: ensures that entities have the required control permissions to per-
form the operation they request to perform.

• Freshness: ensures that the data is fresh. Replay attacks target this requirement
where an old message is replayed in order to return an entity into an old state.

• Non-repudiation: ensures that an entity cannot deny an action that it has
performed.

• Forward Secrecy: ensures that when an object leaves the network, it will not
understand the communications that are exchanged after its departure.

• Backward Secrecy: ensures that any new object that joins the network will not be
able to understand the communications that were exchanged prior to joining the
network.

8 Internet of Things Security and Privacy

217

8.4 IoT Three-Domain Architecture

Before introducing IoT security issues, we briefly describe in this section the three-
domain architecture that we consider in our security analysis.

As illustrated in Figs. 8.1 and 8.2, the architecture is made up of the following
three domains:

 1. IoT Sensing Domain: This domain is made up of all the smart objects that have
the capability to sense the surrounding environment and report the sensed data to
one of the devices in the fog domain. The smart objects in the sensing domain
are expected to change their location over time.

IoT Applications
IoT Cloud Domain

IoT Services Platform

IoT Network
IoT Fog Domain

IoT Devices
IoT Sensing Domain

Fig. 8.1 Mapping of IoT
domains

Fig. 8.2 The IoT domains

8.4 IoT Three-Domain Architecture

218

 2. Fog Domain: This domain consists of a set of fog devices that are located in
areas that are highly populated by many smart objects. Each fog device is allo-
cated a set of smart objects where the allocated objects report their sensed data
to the fog device. The fog device performs operations on the collected data
including aggregation, preprocessing, and storage. Fog devices are also con-
nected with each other in order to manage the communication among the smart
objects and in order to coordinate which fog device will be responsible for han-
dling which object as objects change their location over time. Each fog device is
also connected to one or multiple servers in the cloud domain.

 3. Cloud Domain: This domain is composed of a large number of servers that host
the applications that are responsible for performing the heavy-computational
processing operations on the data reported from the fog devices.

We analyze in the following sections the security attacks and countermeasures at
each one of those three domains. We follow a top-down order where we describe the
attacks and countermeasures that are encountered at the cloud domain, the fog
domain, and the sensing domain. For each one of those domains, we identify the
most popular security attacks and then describe how these attacks are launched,
what vulnerabilities they exploit, and what countermeasure techniques can be used
to prevent, detect, or mitigate those attacks.

8.5 Cloud Domain Attacks and Countermeasures

As mentioned earlier, the cloud domain holds the IoT applications that are perform-
ing different operations on the data collected by the IoT objects. Each IoT applica-
tion is dedicated one or multiple virtual machines (VMs) where each VM is assigned
to one of the servers in the cloud data center and gets allocated certain amount of
CPU and memory resources in order to perform certain computing tasks. The cloud
data center is made up of thousands of servers where each server has certain CPU,
memory, and storage capacities, and thus each server has a limit on the number of
VMs that it can accommodate. The servers in the cloud data center are virtualized
which allows multiple VMs to be assigned to the same server as long as the server
has enough resource capacity to support the resource requirements of each hosted
VM. Figure 8.3 shows an illustration of how multiple VMs can be assigned to the
same server, thanks to virtualization (more details on virtualization were discussed
in Chap. 6). Each IoT application is hosted on a VM that has its own operating sys-
tem (OS). The hypervisor (sometimes also called the virtual machine manager)
monitors those running VMs and manages how these VMs share the server’s hard-
ware. The hypervisor also provides the logical separation among the VMs and also
separates each VM from the underlying hardware. The hypervisor has also a migra-
tion module that manages how to move a VM that is currently hosted on the server
to another server. The migration module also manages the reception of a VM that is
moved from other servers.

8 Internet of Things Security and Privacy

219

Cloud computing is considered a high-risk environment for many businesses and
consumers as they feel its perimeter cannot be defined nor controlled. In addition,
many government agencies must comply with regulatory statutes, such as the Health
Insurance Portability and Accountability Act (HIPAA), the Sarbanes-Oxley Act of
2002 (SOX), and the Federal Information Security Management Act (FISMA). The
IoT applications running in the cloud domain are susceptible to numerous security
attacks. We summarize next the most popular ones:

 1. Hidden-Channel Attacks: Although there is a logical separation among the VMs
running on the same server, there are still some hardware components that are
shared among those VMs such as the cache. This opens opportunities for data
leakage across the VMs that reside on the same server. Three steps are followed
by the attacker in order to leak information from a target VM. These three steps
are explained next:

 (a) Step1: Mapping Target VM: The first step toward launching an attack
against a VM in a cloud data center is to locate where the target VM resides.
A cloud data center is typically divided into multiple management units
called clusters, where each cluster is located in a certain geographical loca-
tion and is made up of thousands of servers. Each cluster is divided into
multiple zones (sometimes called “pods”) where each zone consists of a
large number of servers. Although clients have the choice to specify in
which cluster their VM resides, they do not have control on selecting the
zone or the server within the zone where their VM will reside as this deci-
sion is made based on the cloud provider’s scheduling algorithm which is
not released publicly. In order to know where a target VM resides, the
attacker needs only to know the external IP address of that VM where each
VM hosted on the cloud has usually two IP addresses: an external address
used to communicate with any entity that is located outside the cloud cluster
and an internal address used only within the cloud cluster and is only visible
within the cloud cluster. The attacker can infer based on the VM’s external

Fig. 8.3 Illustration of
how multiple IoT
applications can be hosted
on the same server, thanks
to virtualization

8.5 Cloud Domain Attacks and Countermeasures

220

IP address on what cluster the VM resides, as cloud clusters are usually
placed in different geographical locations and have different IP addresses.
Now in order to identify in what zone within the cluster the target VM
resides, the attacker needs to know the target VM’s internal IP address as the
internal IP addresses for all VMs within the same zone have the same net-
work prefix. In order to identify the VM’s internal IP address, the attacker
rents a VM in the same cluster as the one where the VM resides. The rented
VM is then used to query the DNS server of the cloud cluster where the
internal IP address of the target VM can be fetched. By observing the internal
IP address of the target VM in the DNS query, the attacker can tell what zone
within the cloud cluster the VM is hosted in.

 (b) Step2: Malicious VM Placement: having identified on what cluster and on
what zone the target VM resides, the next step toward launching an attack
against the target VM is to place a malicious VM on the same server where
the target VM resides. In order to do that, the attacker rents a VM in the same
cluster as the target VM. The cloud provider’s scheduling algorithm places
the rented VM on one of the servers within one of the cluster’s zones. The
attacker performs a traceroute from the rented VM to the target VM where
the routing path that separates the rented VM and the target VM is identified.
If the identified routing path shows multiple hops that separate the target
VM and the rented VM, then the attacker knows that the rented VM was not
placed on the same server as the target VM. The attacker then releases the
rented VM and requests a new one. The cloud provider’s scheduling algo-
rithm selects a server to host the requested VM. The attacker performs a
traceroute from the new rented VM to the target VM in order to know
whether or not the target VM and the new rented VM reside on the same
server. The attacker continues releasing then renting new VMs and perform-
ing a traceroute until he/she identifies that the cloud provider’s scheduling
algorithm has placed the rented VM on the same server as the target VM.

 (c) Step3: Cross-VM Data Leakage: Having placed a malicious VM on the
same server as the target VM, the attacker now tries to learn some informa-
tion about the target VM by exploiting the fact that although VMs are sepa-
rated logically, thanks to virtualization, they still share certain parts of the
server’s hardware such as the instruction cache and the data cache. The
attacker can now, for example, learn what lines of cache (data or instruction)
the target VM has accessed recently. This can be done as follows. When the
shared cache is assigned to the malicious VM that is under the control of the
attacker, the attacker fills the whole shared cache by dummy data. The mali-
cious VM then yields the shared cache to the target VM which performs
some data access operations. The malicious VM sends an interrupt after a
short time from yielding the cache to the target VM asking to assess the
cache so that the target VM yields the cache for the malicious VM. Now the
malicious VM probes the different lines of the cache asking to fetch the
dummy data that were previously filled in the cache. By observing the time
it takes to access each chunk of the dummy data, the malicious VM can tell

8 Internet of Things Security and Privacy

221

which chunks of the dummy data were fetched from the cache and which
chunks were fetched from memory as they were replaced by data that was
accessed by the target VM. This gives information to the malicious VM
about what addresses the target VM has accessed recently. Knowing what
addresses the target VM accesses over time can help the malicious VM
recover parts of the security keys that the target VM is using.

 (d) Different countermeasures can be taken to prevent hidden-channel attacks
from taking place. The first twos steps needed to launch this attack (mapping
the target VM and placing a malicious VM on the same server as the target
VM) can be prevented by not allowing the VMs hosted in the cloud data
center to send probing packets such as traceroute packets. Preventing data
from being leaked across VMs that are hosted on the same server can be
achieved by one of the following techniques:

• Hard Isolation: The basic idea behind this preventive technique is to
maintain high levels of isolation among the VMs. One way to do this is
to separate the cache dedicated for each VM through hardware or soft-
ware. Another way to achieve hard isolation is by assigning only one VM
to each server. Although this completely prevents data leakages across
VMs, it is not a practical solution as it leaves the servers within the cloud
data center underutilized. A better way to achieve hard isolation is by let-
ting each cloud client specify a list of trusted cloud users called the white
list. The cloud client is fine with sharing the server with only the VMs
belonging to the white list users. New scheduling algorithms are needed
in that case in order to decide on what server each VM should be placed
such that the security constraints of each VM that are specified by the
white and black lists are met. A key limitation of this technique is that
each VM must have a list of identified untrusted VMs.

• Cache Flushing: This technique flushes the shared cache every time the
allocation of the cache is switched from a VM to another. The downside
of this countermeasure is that the VMs running on the server will experi-
ence frequent performance degradation as the shared cache will be emp-
tied every time a switch from a VM to another occurs, which increases
the time needed to access and fetch data.

• Noisy Data Access Time: This technique adds random noise to the amount
of time needed to fetch data, which makes it hard to tell whether or not
the data was fetched from the cache or from the memory. By doing this,
it becomes harder for a malicious VM to identify what segments of the
cache were populated by another VM that shares the same server. Of
course this has a price as the fetched data gets delayed a little bit due to
the noise (variable time delay) that is added to the time needed to fetch
the data.

• Limiting Cache Switching Rate: A mitigation technique to limit the
amount of data that can be leaked across VMs can be achieved by limit-
ing how often the cache is switched from a VM to another. The idea here

8.5 Cloud Domain Attacks and Countermeasures

222

is that if the cache is not switched from a VM to another too soon, then
the content of the cache will be modified a lot by the VM that possess the
cache. This makes it hard for another VM to attain fine-grained knowl-
edge of what data the previous VM has accessed when probing the cache.

 2. VM Migration Attacks: The virtualization technology supports live VM migra-
tion, which allows moving a VM transparently from a server to another. The term
live refers here to the fact that the application running on the VM is disrupted for
a very short duration due to this migration where the disruption is as low as hun-
dreds of milliseconds. Before delving into the security issues that VM migration
brings, we explain briefly the mechanism for performing VM migration and the
scenarios where VM migration is usually performed.

The mechanism of moving a VM from a source server to a destination server
is done by copying the VM’s memory content. The VM’s hard disk content does
not need to be copied as it is usually stored on a network-attached storage (NAS)
device and can be accessed from any location within the cloud cluster. If the
destination server where the VM will be moved to lies on the same local network
as the source server, then the VM keeps the same IP address even after migration
in order to avoid the need for communication redirection. Maintaining the same
IP address even after moving to another server is done after copying the memory
content of the VM by sending a gratuitous ARP reply packet that informs the
routing devices within the cloud about the VM’s new physical address, so that
any packet destined to the VM’s IP address gets routed to the VM’s new location
on the destination server. Each server has a dedicated module in the hypervisor
called the VM migration module that is responsible for sending the VM content
for the source server or receiving the VM’s memory content for the destina-
tion server.

VM migration is very useful in multiple scenarios. Consider, for example, the
case when a server that is hosting some VMs needs to be taken offline for main-
tenance or for patch installation. VM migration can be used in this case to move
all the VMs currently running on the server into other servers so that the server
can be taken down for maintenance without terminating the running VMs that
are hosted on that server. VM migration is also a very useful tool for managing
the servers in the cloud data center where it can be used to balance the workload
among the servers or to consolidate the scheduled VMs on fewer number of
powered servers so that a larger number of servers can be powered down to save
energy. However, the conveniences that VM migration brings raise new security
threats. The attacks that exploit VM migration can be divided into two subcate-
gories based on the target plane:

 (a) Control Plane Attacks: These attacks target the module that is responsible
for handling the migration process on a server which is called the migration
module that is found in the hypervisor. By exploiting a bug in the migration
module software, the attacker can hack the server and take full control over
the migration module. This gives the attacker the ability to launch malicious
activities including:

8 Internet of Things Security and Privacy

223

• Migration Flooding: This attack is illustrated in Fig. 8.4 where the
attacker moves all the VMs that are hosted on the hacked server to a vic-
tim server that does not have enough resource capacity to host all the
moved VMs. This causes a denial of service of the applications running
in the VMs of the victim server as there will not be enough resources to
satisfy the demands of all the hosted VMs leading into VM performance
degradation and VM crashes.

• False Resource Advertising: The hacked server claims that it has a large
resource slack (a large amount of free resources). This attracts other
 servers to off-load some of their VMs to the hacked server so that the
cloud workload gets distributed over the cloud servers. After moving
VMs from other servers to the hacked server, the attacker can exploit
other vulnerabilities to break into the offloaded VMs as now these VMs
are placed on a server that is under the control of the attacker.

 (b) Data Plane Attacks: These constitute the second type of VM migration
attacks, and those attacks target the network links over which the VM is
moved from a server to another. Examples of data plane attacks include:

• Sniffing Attack: where an attacker sniffs the packets that are exchanged
between the source and destination and reads the migrated memory pages.

• Man-in-the-Middle Attack: the attacker fabricates a gratuitous ARP reply
packet similar to the one that is usually sent when a VM moves from a
server to another. This fabricated ARP packet informs the routing devices
that the physical address where the victim VM resides was changed to
become the physical address of the attacker’s malicious VM. Now the
incoming packets that are destined to the victim get routed to the new
physical address where the attacker resides. The attacker can then pas-

Fig. 8.4 Illustration of the migration flooding attack

8.5 Cloud Domain Attacks and Countermeasures

224

sively monitor the received packets while continuing to forward them to
the actual physical address where the victim VM resides so that the vic-
tim does not detect that any malicious activity is going on. The attacker
can also modify the content of the received packets if the integrity of the
packets is not protected by any security mechanism. An illustration of the
man-in-the-middle attack is shown in Fig. 8.5.

• Having explained the VM migration attacks, we now discuss the possible
countermeasures. Unfortunately, little attention was given to secure VM
migration where the focus was more on how to optimize the performance
degradation or the energy overhead associated with those migrations. In
order to secure VM migration, mutual authentication should be per-
formed between the server initiating the migration and the server that will
be hosting the migrated VM. The control messages that are exchanged
between the servers to manage the migration should also be encrypted
and signed by the entity that is generating those control messages in order
to avoid altering the content of those control messages and in order to
prevent other entities from fabricating fake control messages. Sequence
numbers or timestamps should also be included in the exchanged control
messages in order to prevent a malicious entity from replaying an old
control message that was sent earlier. Also, gratuitous ARP Reply pack-
ets that update the physical address of the VM should be accepted only
after authentication in order to prevent man-in-the-middle attacks. The
reader interested in learning more about VM migration attacks and coun-
termeasures is referred to [19] for further information on this topic.

 3. Theft-of-Service Attack: In this attack a malicious VM misbehaves in a way that
makes the hypervisor assigns to it more resources than the share it is supposed to
obtain. This extra allocation of resources for the malicious VM comes at the
expense of the other VMs that share the same server as the malicious VM, where
these victim VMs get allocated less share of resources than what they should
actually obtain, which in turn degrades their performance.

Xen is a well-known hypervisor that is susceptible to this attack. One of the
main roles of Xen hypervisor is to decide to which VM among the ones running

Fig. 8.5 Man-in-the-middle attack

8 Internet of Things Security and Privacy

225

on the server each physical core should be assigned to over time. In order to do
that, Xen samples every 10 ms to check the VMs that are utilizing the cores. Xen
then assumes that the VM that is detected to be using one of the cores at the
sampling time has been using the server’s core during the entire 10 ms. The
hypervisor then calculates how much time each VM has been assigned the cores.
VMs that utilized the cores less than the remaining VMs are given higher priority
to utilize the server’s core in the future in order to guarantee a fair allocation of
the shared resources.

The fact that Xen performs periodic sampling can be exploited by a malicious
VM by using one of the cores at times other than the sampling time. As illus-
trated in Fig. 8.6, the malicious VM can yield the acquired core to another VM
shortly before the sampling tick. The hypervisor then assumes that the other VM
that has yielded the core has been using the core during the entire 10 ms. The
malicious VM does not get logged as using the core and thus keeps having high
priority to use the cores in the future.

Two countermeasures were proposed to handle this attack. The first counter-
measure is to log more accurately the start and end time when each VM was
utilizing the cores using accurate clocks. Another solution is to randomize the
sampling times.

 4. VM Escape Attack: Virtual machines are designed in a way that isolate each VM
from the other VMs running on the same server, which prevents VMs from
accessing data that belongs to other VMs that reside on the same server. However,
in reality software bugs can be exploited to break this isolation. If a VM escapes
the hypervisor layer and reaches the server’s hardware, then the malicious VM
can gain root access to the whole server where it resides. This gives the VM full
control on all the VMs hosted on the hacked server. Different techniques were
proposed to prevent a malicious VM from bypassing the hypervisor layer and
obtaining the root privileges. An example of such techniques is CloudVisor
which basically adds an extra isolation layer between the hardware and the
hypervisor through nested virtualization that prevents the malicious VM from

Fig. 8.6 Illustration of the theft-of-service attack

8.5 Cloud Domain Attacks and Countermeasures

226

obtaining the root privileges even if it bypasses the hypervisor layer. Other archi-
tecture solutions were also proposed to avoid VM escape attacks and could be
found in [28].

 5. Insider Attacks: In all the previously discussed attacks, we were treating the
administrators of the cloud data center as trusted entities, and we were focusing
only on the attacks that are originating from other malicious VMs that are hosted
in the cloud data center. However, some sensitive applications may have serious
concerns about hosting their collected information on the cloud data center in the
first place as the cloud data center administrators will in that case have the ability
to access and modify the collected data. Different techniques were proposed to
protect the data from these insider attacks. Homomorphic encryption is a form
of encryption that can be used to prevent such attacks as it allows the cloud serv-
ers to perform certain computing operations on encrypted input data to generate
an encrypted result. This encrypted result when decrypted matches the result of
performing the computational operation on the unencrypted input data. Applying
homomorphic encryption in the IoT paradigm allows cloud servers to perform
the necessary processing operations on the encrypted data that is collected from
the smart devices without giving the cloud servers the ability to interpret neither
the input data nor the result as they are both encrypted using a secret key that is
not shared with the cloud. Only the smart objects and the user running the IoT
application can interpret these data as they have the key needed for decryption.
Another form of protection against insider attacks is to chop the data collected
by the smart object into multiple chunks and then to use a secret key to perform
certain permutations on those chunks before sending the data to the cloud serv-
ers. This allows storing the data on the cloud servers in an uninterpretable form
for the cloud administrators. Only authorized entities that have the secret key can
return the stored data to an interpretable form by performing the correct
permutations.

For convenience, Table 8.1 summarizes all the cloud domain attacks that were dis-
cussed in this section. The second, third, and fourth columns of Table 8.1 describe,
respectively, the vulnerability that causes this attack, what security requirement
each attack violates, and what are the countermeasures that can be used to prevent
or detect and mitigate each attack.

8.6 Fog Domain Attacks and Countermeasures

Recall that the fog domain is made up of a set of fog devices where each fog device
collects the sensing data that is reported from a set of smart objects. The fog device
performs different operations on the collected data which include data aggregation,
data preprocessing, and data storage. The fog device may also perform some rea-
soning operations on the collected data. After processing and aggregating the col-
lected data, the fog device forwards these data to the cloud domain. It is worth

8 Internet of Things Security and Privacy

227

mentioning that not only fog devices are connected with the cloud domain, but also
fog devices are usually connected with each other in order to allow the fog devices
connecting different smart objects to communicate directly with each other and in
order to coordinate assigning objects to fog devices as their location changes. Fog
devices can be independent components or could be built on top of existing gate-
ways. Each fog device provides computing resources to be used by the IoT smart
objects that are located close to the fog device. These computing resources are vir-
tualized in order to allow the connected objects to share the computing resources
that are offered by the fog device where each object or set of connected objects are
allocated a virtual machine that performs the necessary data processing operations.

One can see that the computing capabilities provided by fog devices are very
similar to the computing services provided by the servers in the cloud as they are
both virtualized environments. The high similarities between the fog domain and
the cloud domain make the fog domain susceptible to all the cloud domain attacks
that were described in Sect. 8.5.

Although the fog domain is highly similar to the cloud domain, there are three
key differences that distinguish fog devices from cloud servers:

 1. Location: Unlike cloud servers which are usually located far from smart objects,
fog devices are placed in areas with high popular access and thus are placed
close to the smart objects. This placement plays an important role in giving the
fog devices the ability to respond quickly to changes in the reported data. This
also gives the fog devices the ability to provide location-aware services as smart
objects connect to the closest fog device, and thus each fog device knows the
location of the objects connected to it.

Table 8.1 Summary of the security attacks in the cloud domain

Attack Vulnerability reason Security violation Countermeasures

Hidden-
channel
attack

Shared hardware components
(e.g., cache) among the
server’s VMs

Confidentiality Hard isolation Cache flushing
Noisy data access time
Limiting cache switching rate

VM
migration
attacks

VM migration software bugs
VM migration is performed
without authentication
Memory pages copied in
clear

Confidentiality
Integrity
Availability

Server authentication
Encrypting migrated memory
pages

Theft-of-
service
attack

Periodic sampling of VMs’
used resources

Availability
Non-repudiation

Fine-grain sampling using
high precision clocks Random
sampling

VM escape
attack

Hypervisor software bugs Confidentiality
Availability
Integrity

Add an isolation domain
between the hypervisor and
hardware

Insider
attacks

Lack of trust in cloud
administrators

Confidentiality
Integrity

Homomorphic encryption
Secret storage through data
chopping and permutation
based on a secret key

8.6 Fog Domain Attacks and Countermeasures

228

 2. Mobility: Since the location of the smart object may change over time, then the
VMs created to handle those objects at the fog domain must be moved from a fog
device into another, in order to keep the processing that is performed in the fog
device close to the object that is generating data.

 3. Lower Computing Capacity: The fog devices that are installed in a certain loca-
tion are expected to have a lower computing capacity when compared to capaci-
ties offered by cloud data centers as the latter are made of thousands of servers.

These characteristics raise new security threats that are specific to the fog domain
and that distinguish it from the cloud domain. The security threats that are specific
to the fog domain are the following:

• Authentication and Trust Issues: The fact that fog devices do not require a large
facility space or a high number of servers compared to cloud data centers will
encourage many small and less-known companies to install virtualized fog
devices in dense areas and to offer these computing resources to be rented by the
smart objects that are near the installed fog devices. Unlike cloud data centers
which are offered by well-known companies, fog devices are expected to be
owned by multiple and less-known entities. An important security concern that
needs then to be taken into account when assigning a smart object to a fog device
is to authenticate first the identity of the owner of the fog device. Authentication
is not enough, as the smart object also needs to decide whether or not the owner
of the fog device can be trusted. Trust is an important aspect as a smart object
will be assigned to different fog devices belonging to different entities as their
location may change over time. Reputation systems such as those that were pro-
posed in peer-to-peer networks in or to rank cloud providers in can be used to
select a trustworthy fog device among the available ones in the area surrounding
each smart object.

• Higher Migration Security Risks: Although VM migration is common in both the
cloud and the fog domains, there is an important difference between the migra-
tion in the cloud domain and that in the fog domain. While the migrated VMs in
the cloud domain are carried over the cloud data center’s internal network, the
migrations from a fog device into another are carried over the Internet. Thus
there is a higher probability that the migrated VMs get exposed to compromised
network links or network routers when moving a VM from a fog device into
another. This makes it vital to encrypt the migrated VM and to authenticate the
VM migration messages that are exchanged among the fog devices.

• Higher Vulnerability to DoS Attacks: Since fog devices have lower computing
capacities, this makes them a low-hanging-fruit for denial of service (DoS)
attacks where attackers can easily overwhelm fog devices when compared to the
cloud data centers, where a huge number of servers that have high computing
capacity are available.

• Additional Security Threats Due to Container Usage: In order to provide the
computing needs for a larger number of connected objects, the fog device may
use containers rather than VMs to allocate the resource demands for each con-
nected object. The main difference between a container-based virtualization and

8 Internet of Things Security and Privacy

229

full virtualization is the fact that containers share not only the same hardware but
also the same operating system with the other containers that are hosted on the
same fog device (refer to Chap. 6). This is unlike the full virtualization (which
was illustrated in Fig. 8.3) where only the hardware is shared among multiple
VMs and each VM has its own operating system. The low overhead of containers
allows larger number of objects to be served by the fog device. However, sharing
the same operating system among the containers dedicated for objects that
belong to different users raises serious security concerns as the opportunities for
data leakage and for hijacking the fog device increase significantly. The industry
needs to address these gaps in container security to enable IoT applications
at scale.

• Privacy Issues: We mentioned before that each smart object will be connected to
one of the fog devices that are close to it. This means that the fog device can infer
the location of all the connected smart objects. This allows the fog device to track
users or to know their commuting habits which may break the privacy of the
users carrying those objects. New mechanisms should be developed in order to
make it harder for fog devices to track the location of the smart objects over time.
Furthermore, the advancement in wireless signal processing has made it possible
now to identify the presence of humans and track their location, their lip move-
ment, and their heartbeats by capturing and analyzing the wireless signals that
are exchanged between the sensing objects and the fog domain. This advance-
ment makes it possible for any entity to install a reception device close to your
home that analyzes the wireless signals that are emitted from your home in order
to spy on your daily activities. The work in [47] is among the first papers that
identified these risks where the authors in that paper propose a device called an
obfuscator that prevents leaking such information by emitting signals that make
it hard for an unauthorized receiver to infer the amplitude, the frequency, and the
time shift of the originally exchanged signals. The obfuscator does not only pre-
vent such leakages but also acts as a relay that rebroadcasts some of the sent
messages which increases the transmission rate between the sensing objects and
the fog domain.

8.7 Sensing Domain Attacks and Countermeasures

The sensing domain contains all the smart objects, where each object is equipped
with a number of sensors that allow the object to perceive the world. The smart
object is also supplied with a communication interface that allows it to communi-
cate with the outer world. The smart object reports the sensed data to one of the fog
devices in the fog domain. This is done by either creating a direct connection with
the fog device if the smart object is directly connected by wires or has the wireless
transmission capability to reach that fog device or in a multi-hop fashion where the
smart object relies on other smart objects that lie along the path to the fog device to
deliver the sensed data (as illustrated in Fig. 8.7).

8.7 Sensing Domain Attacks and Countermeasures

230

The sensing domain is susceptible to multiple attacks. We summarize next some
of the most well-known ones:

 1. Jamming Attack: This attack causes a service disruption and takes one of
two forms:

 (a) Jamming the Receiver: This attack targets the physical domain in the OSI
stack of the receiver (where the receiver is the fog device in the case of a
direct connection or another object in the case of a multi-hop connection)
where a malicious user (called the jammer) emits a signal (called the jam-
ming signal) that interferes with the legitimate signals that are received at
the receiver side. The interference degrades the quality of the received signal
causing many errors. As a result, the receiving end does not acknowledge the
reception of these damaged packets and waits for the sender to retransmit
those packets.

 (b) Jamming the Sender: Unlike the previous attack, this type targets the data
link layer at the OSI layer of the sending object where the jammer in this
attack sends a jamming signal that prevents the neighboring objects from
transmitting their packets as they sense the wireless channel to be busy and
back off waiting for the channel to become idle.

There are different jamming strategies that a jammer may follow to
launch a jamming attack. The most well-known ones are summarized next:

• Constant Jamming: The attacker continuously transmits a random jamming sig-
nal all the time. The main limitation of this attack is that it can be detected easily
by observing random bits that do not follow the pattern dictated by the MAC
protocol. Another main limitation is the fact that it requires the jamming device
to be connected to a source of power as it requires lots of energy.

Fig. 8.7 Multi-hop versus
direct connection between
the smart object and the
fog device

8 Internet of Things Security and Privacy

231

• Deceptive Jamming: This is similar to the constant jamming with the exception
that the jammer conceals its malicious behavior by transmitting legitimate pack-
ets that follow the structure of the MAC protocol rather than sending random bits.

• Reactive Jamming: This is a strategy for jamming the receiver that is suitable for
the case when the jamming device has a limited power budget. The jammer in that
case listens to the medium and transmits a jamming signal only after it senses that
a legitimate signal is being transmitted in the medium. This is more power efficient
than continuously transmitting signals as listening to the channel consumes less
power than transmitting signals.

• Random Jamming: The jammer alternates between sending a jamming signal and
remaining idle for random periods of time in order to hide the malicious activity.

• More sophisticated jamming attacks have also emerged that intend to increase
the service disruption time, reduce the probability of detection, increase the abil-
ities to recover from the countermeasure that the victim node may take, while
also reducing the power that the jamming device requires. An example of a power
efficient advanced jamming attack would be to jam only the acknowledgment
packets that nodes exchange rather than jamming the whole transmitted data
packets as the former are shorter than the latter and thus require less power to jam
while causing the same damage.

• Different preventive and detective techniques were proposed to address jamming
attacks. We summarize next the most popular ones:

• Frequency Hopping: This is a preventive technique where the sender and receiver
switch from a frequency to another in order to escape from any possible jamming
signal (IEEE 802.15.4 TSCH discussed in Chap. 5 is an example of a wireless
technology that employs this technique). Switching from a frequency to another
is based on a generated random sequence that is known only for the sender and
receiver. If the jammer is aware of the use of this preventive strategy, then the
jammer has to switch from a frequency to another trying to collide with the fre-
quency used by the sender and receiver. The interaction between the hopping
strategies of the legitimate nodes and that of the jammer in that case can be mod-
elled as a two-player game, where game theory can be used to come up with a
hopping strategy that reduces the chances of colliding with the frequency
sequence of the jammer.

• Spread Spectrum: This technique uses a hopping sequence that converts the nar-
row band signal into a signal with a very wide band, which makes it harder for
malicious users to detect or jam the resulting signal. This technique is also very
efficient when the transmitted data are protected by an error-correction technique
as it allows the reconstruction of the original signal even if few bits of the trans-
mitted data were jammed by the attacker.

• Directional Antennas: The use of directional antennas can mitigate jamming
attacks from being successful as the sender and receiver antennas will have less
sensitivity to the noise coming from the random directions that are different from
the direction that connects the sender and the receiver.

• Jamming Detection: Different detective techniques were proposed in the litera-
ture to detect jamming attacks. The receiver can detect that it is a victim of a

8.7 Sensing Domain Attacks and Countermeasures

232

jamming attack by collecting features such as the received signal strength (RSS)
and the ratio of corrupted received packets. Advanced machine learning tech-
nique can then be used to differentiate jamming attacks from the degradation
caused by the poor quality of the channel due to normal changes in the wireless
link. We point the reader to the survey in [2] for further information about jam-
ming intrusion detection systems.

 2. Vampire Attack: This attack exploits the fact that the majority of IoT objects have
a limited battery lifetime where a malicious user misbehaves in a way that makes
devices consume extra amounts of power so that they run out of battery earlier
thereby causing a service disruption. The damage caused by this attack is usually
measured by the amount of extra energy that objects consume compared to the
normal case when no malicious behavior exists.

We identify four types of vampire attacks based on the strategy used to
drain power:

 (a) Denial of Sleep: Different data link layer protocols were proposed to reduce
the power consumption of smart objects by switching them into sleep when-
ever they are not needed. Examples of these protocols include S-MAC and
T-MAC protocols. The idea behind these protocols is to agree on a duty-
cycle schedule where objects exchange control messages in order to syn-
chronize their schedules so that they agree on transmitting signals at certain
cycles while remaining asleep for the rest of the time. An adversary can now
launch a denial of sleep attack which prevents objects from switching to
sleep by simply sending control signals that change their duty-cycles keep-
ing them active for longer durations. The adversary can still succeed in
launching this attack even if the control messages that synchronize the duty-
cycles of the objects are encrypted. When the control messages are encrypted,
the adversary can capture one of those encrypted control messages and
replay it (resend it) at a later point of time causing the nodes to change their
synchronization and their schedules. The adversary needs in that case to use
traffic analysis techniques that rely, for example, on the length of the packets
and the rate at which packets are exchanged in order to distinguish the con-
trol messages from the data messages that the nodes exchange since the
content that packets carry is hidden by encryption.

 (b) Flooding Attack: The adversary can flood the neighboring nodes with
dummy packets and request them to deliver those packets to the fog device,
where devices waste energy receiving and transmitting those dummy
packets.

 (c) Carrousel Attack: This attack targets the network layer in the OSI stack and
can be launched if the routing protocol supports source routing, where the
object generating the packets can specify the whole routing path of the pack-
ets it wishes to send to the fog device. The adversary in that case specifies
routing paths that include loops where the same packet gets routed back and
fourth among the other objects wasting their power. Figure 8.8 illustrates
this attack.

8 Internet of Things Security and Privacy

233

 (d) Stretch Attack: This attack also targets the network layer in the OSI stack. If
the routing protocol supports source routing, then a malicious object can
send the packets that it is supposed to report to the fog device through very
long paths rather than the direct and short ones as illustrated in Fig. 8.8.
Even if source routing is not supported, the attacker can select a next hop
that does not have the shortest path to the fog device in order to increase the
power consumption of the objects that will be responsible to deliver those
packets (Fig. 8.9).

The adversary can further amplify the amount of wasted energy by com-
bining flooding attack with carrousel attack and stretch attack. The adver-

Fig. 8.8 Illustration of the
carrousel attack where the
numbered arrows show the
path specified by the
malicious objects that the
packets generated by the
malicious object follow

Fig. 8.9 Illustration of the
stretch attack

8.7 Sensing Domain Attacks and Countermeasures

234

sary in that case floods the neighboring objects with a large number of
generated packets and specifies long paths with loops that the packet should
follow in order to increase the amount of wasted power.

Denial of sleep attacks can be mitigated by encrypting the control mes-
sage that arranges the schedules of the node while including a timestamp or
a sequence number in the encrypted control message. This prevents the
adversary from succeeding, in replaying an old control message, by check-
ing the encrypted timestamp or the encrypted sequence number that the
replayed control message is not a new message but an old one that someone
replayed to cause disruption. Flooding attacks can be mitigated by limiting
the rate of the packets that each object may generate. Carrousel attacks can
be mitigated by making each object that is requested to forward a packet
based on a route specified by the source check the specified path where
packets with loops within their paths are dropped as they are most likely
originating from malicious users. Finally, stretch attacks can be mitigated by
disabling source routing or by making sure that the forwarded packets are
making progress toward their destination and are not following long paths.

 3. Selective-Forwarding Attack: This attack takes place in the case when the object
cannot send its generated packets directly to the fog device but must rely on
other objects that lie along the path toward the fog device to deliver those pack-
ets. A malicious object in this attack does not forward a portion of the packets
that it receives from the neighboring objects. A special case of this attack is the
black-hole attack where the attacker drops the entire set of packets that it receives
from the neighboring objects. The best way to prevent packet drops from taking
place for sensitive IoT applications is to increase the transmission capability of
the objects so that they can reach the fog device directly without the need for
help from intermediate objects. Unfortunately not all IoT objects are expected to
have high transmission range to reach the fog device and thus will be relying on
other objects to deliver their packets, which makes them susceptible to this
attack. Different solutions were proposed to mitigate the number of dropped
packets. Path redundancy is one of those solutions, where each object forwards
each generated packet to multiple neighboring objects, where multiple copies of
the same packet get delivered to the fog device through different paths. This
decreases the chances of not having at least a copy of each generated packet
delivered to the fog device. The main limitation of this mitigation technique is
that it has a high energy overhead as it increases significantly the traffic. Rather
than mitigating the damage caused by those attacks, the approach in [6, 8] tries
to detect malicious objects that are dropping the sent packets so that packets can
be routed through different paths that avoid those objects. Detecting the presence
of objects that are dropping packets along certain paths can be done by selecting
certain trusted objects as checkpoints. Each time a checkpoint receives a packet,
it sends an acknowledgment to the object that generated that packet. The
acknowledgment includes a unique identifier for the packet that was received
along with a signed hash for the acknowledgment’s content. This guarantees that
no other entity fabricates fake acknowledgment packets and that no other entity

8 Internet of Things Security and Privacy

235

can alter the content of these acknowledgments. The interested reader may refer
to [7] for a complete overview on the countermeasures that can be used against
selective-forwarding attacks.

 4. Sinkhole Attack: A malicious object claims that it has the shortest path to the fog
device which attracts all neighboring objects that do not have the transmission
capability to reach the fog device to forward their packets to that malicious
object and count on that object to deliver their packets. Now all the packets that
are originating from the neighboring nodes pass by this malicious node. This
gives the malicious node the ability to look at the content of all the forwarded
packets if data is sent with no encryption. Furthermore, the malicious object can
drop some or all of the received packets as we explained previously in the
selective- forwarding attack. Figure 8.10 illustrates how the network topology
changes before and after this attack. Techniques to detect and isolate the mali-
cious objects were proposed and are based on the idea of collecting information
from the different objects where each object reports the neighboring objects
along with the distance to reach those objects. A centralized intrusion detection
system is then used to rely on the reported information to identify objects that are
potentially providing misleading information. Detecting such attack becomes
harder when multiple malicious nodes collude to hide each other.

Finally, Table 8.2 summarizes all security attacks in the sensing domain that
were discussed in this section. The second column of the table shows what layer in
the OSI stacks the attack targets, whereas the third, fourth, and fifth columns
describe, respectively, the vulnerability reason, the security requirement that the
attack breaks, and the defensive countermeasures against each attack.

Fig. 8.10 Network topology before and after a sinkhole attack. The malicious object M claims
that it has a shorter route to reach the fog device which attracts the neighboring objects A and E to
rely on M to deliver their packets

8.7 Sensing Domain Attacks and Countermeasures

236

8.8 Securing IoT Devices

In this section we will provide several examples of IoT devices being used to launch
security attacks (Sect. 8.8.1), in addition to two solutions that attempt to secure IoT
devices, namely MUD (Sect. 8.8.2) and DICE (Sect. 8.8.3).

8.8.1 IoT Devices Gone Rogue

With the increase of practical deployments, IoT devices have proven to be easy
targets for hackers who turn compromised devices into active actors to carry out
their attacks on networked IT infrastructure. This is especially true in the context of
distributed denial of service (DDoS) attacks. Insecure IoT devices represent a grow-
ing pool of compute and communications resources that is open to misuse. These
devices can be hijacked to spread malware, recruited to form botnets that may attack
other Internet users, and even can be used to attack critical national infrastructure,
or the structural functions of the Internet itself.

There are multiple recent examples of IoT devices being used as attack vectors.
We will highlight some of them next.

8.8.1.1 Botnets

A botnet is a typically large collection of networked computers (bots) that are under
remote control from some malicious third party over the Internet. Usually, these
computers would have been compromised by an outside attacker who controls
aspects of their functionality without the owners’ consent or knowledge.

Table 8.2 Summary of the security attacks targeting the sensing domain

Attack
Target
OSI layer

Vulnerability
reason

Security
violation Countermeasures

Jamming
attack

Physical
Data link

Shared
wireless
channel

Availability Frequency hopping Spread
spectrum Directional antennas
Jamming detection techniques

Vampire
attack

Data link
Network

Limited battery
lifetime

Availability
Freshness

Rate limitation
Drop packets with a source route
that contains a loop Monitor
whether or not the forwarded
packets are making progress
toward their destination

Selective-
forwarding
attack

Network Limited
transmission
capability

Availability Increase transmission range Path
redundancy
Choose certain intermediate
objects as checkpoints to
acknowledge received packets

Sinkhole
attack

Network Limited
transmission
capability

Confidentiality
Availability

Analyze the collected routing
information from multiple objects

8 Internet of Things Security and Privacy

237

Because there are many such computers in a typical botnet, the attacker has access
to a quasi supercomputer that can be employed for malicious purposes. Furthermore,
since the bots are distributed geographically and organizationally over the Internet,
the quasi supercomputer can be difficult to deter. The first botnet was developed in
2001 to send spam, and that is still a common use. Another common use for botnets is
for DDoS attacks, in which a target server is constantly bombarded with network traf-
fic until it is overwhelmed beyond its capacity and forced to go offline.

In 2016, a DDoS attack rendered much of the Internet inaccessible on the US
East coast, and the attack was perpetrated by the Mirai botnet. Mirai took advantage
of insecure IoT devices in a simple but clever way: It scanned large blocks of the
Internet for open Telnet ports, then attempted to log in using username/password
combinations that are frequently used defaults for these devices and never changed.
With this simple approach, it was able to recruit an army of compromised closed-
circuit TV cameras and routers, ready for launching a DDoS attack.

The reason why the botnet was so effective was due to the fact that it leveraged a
large number of IoT devices which often include an embedded stripped-down Linux
operating system. These devices had no built-in ability to be patched remotely and
were in physically remote or inaccessible locations.

8.8.1.2 Webcams

Webcams are often marketed as consumer products for baby monitoring or as secu-
rity devices. In one instance, a webcam manufacturer had faulty software on their
products that allowed anyone with knowledge of the webcam’s IP address to view
the camera’s video feed, and sometimes listen in through the embedded micro-
phones. Another manufacturer’s product was susceptible to remote code-injection
attack, which allowed a malicious user to get administrative access to the camera,
thereby placing the user at a risk of being spied upon. The remote execution flaw not
only allows an attacker to set their own custom password to access the device, but
also to add new users with administrative access to the interface, download mali-
cious firmware or reconfigure the product as they please.

8.8.1.3 Casino Fish Tank

Security firm Darktrace published a report where it revealed that an unnamed casino
in North America was hacked through an Internet-connected fish tank. That connec-
tion allowed the tank to be remotely monitored, automatically adjust temperature
and salinity, and automate feedings. In this incident, the vulnerable smart tank was
used as an easy backdoor into the casino’s network. Once the attackers gained
access to the tank, they scanned the casino’s network for other vulnerabilities and
moved laterally to other places in the network where they were able to steal 10
gigabytes of private data from the casino. The tank’s communication patterns with
the casino’s network appeared normal enough. However, the data that it was pump-
ing through to the Internet was highly suspect. It was the only tank system that

8.8 Securing IoT Devices

238

transmitted data to a remote server in Finland, which it was in communications
with. It also did so by employing protocols that are normally used for streaming
audio or video.

8.8.1.4 Cardiac Devices

Cardiac devices, such as pacemakers and defibrillators, are used to monitor and
control patients’ heart functions and prevent heart attacks. In 2017, the FDA
announced that St Jude’s Medical implantable cardiac devices had security vulner-
abilities that would enable an attacker to access these devices, where they could
deplete the battery or administer incorrect pacing or shocks. The vulnerabilities
were in the transmitter that reads the device’s data and remotely shares it with
physicians.

8.8.1.5 Vehicles

In 2015, Charlie Miller and Chris Valasek, two security researchers, exposed the
security vulnerabilities in automobiles by hacking into cars remotely, controlling
the cars’ various functions from the radio volume to the brakes. They did so by
leveraging day-zero exploits that give attackers wireless access to the car via the
Internet. This was done by sending commands through the vehicle’s entertainment
system to its dashboard functions, steering, brakes, and transmission, all remotely
from their laptops. The entertainment system served as an excellent entry point,
because automakers are increasingly enabling the linking of these systems to the
Internet. From that entry point, Miller and Valasek’s attack pivots to an adjacent
chip in the car’s head unit (the hardware for its entertainment system), silently
rewriting the chip’s firmware to plant their code. That rewritten firmware is capable
of sending commands through the car’s internal computer network, known as a
CAN bus, to its physical components like the engine and wheels.

Proper identification of connected devices is the first step when securing any
network. With IoT, the asset inventory problem is compounded due to the sheer
scale of “things,” and there is a key requirement to efficiently and unambiguously
identify connected devices for onboarding and ongoing management. With the
ongoing rapid growth in the number of IoT devices, malicious actors view these
devices as a soft attack surface from where to launch their attacks onto any other
target in the network. As such, it is critical to provide mechanisms and capabilities
for securing these devices. Two such mechanisms are MUD and DICE, which will
be covered in detail next.

8 Internet of Things Security and Privacy

239

8.8.2 MUD

Manufacturer Usage Descriptor (MUD) is an embedded software standard defined
by the IETF (RFC 8520) to help reduce the vulnerability surface of IoT devices by
employing network policy (whitelisting approach). It aims to reduce the scope of
malware injection and hijacking of over-the-air firmware updates. It also addresses
the scenario of devices that are no longer being actively maintained by their original
manufacturer.

MUD enables IoT device manufacturers to advertise formal device specifica-
tions, including the intended communication patterns for a given device when con-
nected to the network. The network can then leverage this advertised intent, or
profile, to formulate a tailored and context-specific access control policy, to guaran-
tee that the device communicates only within the specified parameters. This way the
network behavior of the device, in any operating environment, can be locked down
and verified rigorously. In this context, MUD becomes the delegated identifier and
authoritative enforcer of policy for IoT devices on the network. MUD works by
enabling networks to automatically permit each IoT device to send and receive only
the traffic it requires to perform as intended while blocking unauthorized communi-
cation with the device.

The MUD solution consists of three key components, as shown in Fig. 8.11.

• A unique identifier, in the form of a Universal Resource Locator (URL), that an
IoT device advertises when it connects to the network.

• An Internet hosted profile file that this URL points to. This file contains an
abstracted policy that describes the level of communication access which the IoT
device needs to perform its intended functionality.

• A core process that receives the URL from the IoT Device, retrieves the profile
file from the MUD File Server, and establishes the appropriate access control
policies in the network to restrict the communication patterns for that IoT device.

Core MUD
Process

Network
Internet

MUD File Server

IoT Device

1. MUD URL

2. MUD File Query

3. MUD File4. Access Policy

Fig. 8.11 MUD architecture

8.8 Securing IoT Devices

240

MUD leverages mechanisms that have existed in network infrastructure, includ-
ing routers and switches, for over a decade. In what follows, we will describe the
MUD workflow and associated mechanisms that can be used in more details.

 1. The IoT device informs the network of the MUD URL using any one of the fol-
lowing existing protocols: DHCP, LLDP, or via a certificate in an IEEE 802.1X
exchange. Once the device has communicated the URL to the network, its task
in supporting MUD is done. The goal is to keep the device prerequisites as sim-
ple as possible for IoT device manufacturers.

 2. The URL is received from the network by a Core MUD Process. This module
may reside in one of many potential systems, depending on the nature of the
network infrastructure. For instance, in an enterprise network, it may be part of
the Policy (e.g., AAA) server. In a home network, it may be provided by the
Internet service provider (ISP) or by the customer premise equipment (CPE)
vendor. In a mobile service provider network, it might be part of an operational
support system (OSS).

 3. The Core MUD Process resolves the MUD URL and retrieves the profile file
from the MUD File Server. This file is a declaration of intent that specifies what
access the device is intended to have in the form of an abstract policy. The ratio-
nale being that an IoT device may be designed to communicate with a single or
small number of controllers or with similar Things, or that for a given service, it
should or should not have access to the local network.

 4. The Core MUD Process translates these abstract intent definitions into a context-
specific access control policy that the local network infrastructure can consume.
How that translation occurs will vary depending on the network deployment.
Some networks may use Access Control Lists (ACLs). Other networks may rely
on segmentation using VLANs or VNIs, while others may use service groups or
some other access control mechanism.

 5. An administrator may then approve, reject, or modify the policy, based on
deployment specifics. This policy may be merged with other policies, for
instance, to take into account the user of the device or the device’s deployment
location.

 6. The Core MUD Process pushes the merged policy to the associated systems of
the network infrastructure (for example, switches, routers, etc.). This can be
achieved using some configuration protocol such as NETCONF, Radius, or any
alternative mechanism.

MUD provides a clear value proposition to device owners, network administra-
tors and IoT device manufacturers. First, for device owners, it limits the impact and
extent of exploitation of any security vulnerability that is potentially discovered in
their IoT devices. For network administrators, MUD provides them with better vis-
ibility of the types of Things connected to the network and with the type of policies
that they require. This helps them with better inventory management, risk assess-
ment, and remediation. Finally, for device manufacturers MUD alleviates any sup-
port, financial liability, or brand damage that may arise due to compromised devices.

8 Internet of Things Security and Privacy

241

8.8.3 DICE

Device Identifier Composition Engine (DICE) is a collection of hardware and soft-
ware mechanisms for cryptographic IoT device identity, attestation, and data
encryption. DICE is an industry standard created by the Trusted Computing
Group (TCG).

IoT devices that perform encryption use a private key called a Unique Device
Secret (UDS) in order to secure their operation. It is possible for an attacker to leak
this key by compromising the code running on the chip. Having access to the private
key can enable the attacker to impersonate the device and even to replace its firm-
ware. Therefore, it is paramount to prevent the disclosure of the UDS. The key to
DICE is its ability to break up the boot process for any device into layers and to
combine unique secrets and a measure of integrity for each of these layers. This
way, if malware is present at any stage of the boot process, the device is automati-
cally re-keyed and secrets protected by the legitimate keys remain safe.

DICE implements three measures to secure the UDS:

• Power-on Latch: The power-on latch locks read access to the UDS before early
boot-code transfers control to subsequent execution layers.

• Cryptographic One-way Functions: A cryptographic one-way function com-
putes a hash of the UDS to store in RAM so that in the event of RAM disclosure
by compromised code, the original UDS is safe.

• Tying Key Derivation to Software Identity: To prevent compromise of the
device by attempts to modify the early boot-code, the cryptographic one-way
function uses a measurement of the boot code as input together with the UDS. The
function outputs a key called the Compound Device Identifier (CDI) taking both
the UDS and early boot code hash as input (optionally taking the hardware state
and configuration as input as well). This process ensures that modification of
early boot code generates a new key so that the UDS is secure.

The reason for tying the CDI derivation to the code that is booting on the device
is to guarantee that a firmware update automatically results in the device being re-
keyed. This behavior is desirable to address two security problems, specifically:

 1. If an attacker changes the code that boots on the device with the intent of stealing
keys, the attacking program (with a different hash) ends up obtaining a different
key than the original authorized program.

 2. If authorized code contains a security vulnerability that leads to CDI compro-
mise, then the device must be re-keyed after patching. The CDI derivation func-
tion ensures that patching the vulnerable firmware automatically results in a new
CDI being computed.

DICE introduces a simple security approach that does not increase the silicon
requirements for IoT devices. It targets constrained devices where traditional
Trusted Platform Modules (TPM) may be unfeasible due to limitations related to

8.8 Securing IoT Devices

242

cost, power, physical space, etc. As such, it is possible to implement it in the tiniest
microcontrollers.

DICE is predicated upon a hardware root of trust for measurement. It works by
organizing the boot into layers and creating secrets unique to each layer and con-
figuration based on UDS (refer to Fig. 8.12). If a different code or configuration is
loaded, at any point in the boot chain, the secrets will be different. Each software
layer keeps the secret it receives completely confidential. If a vulnerability exists
and a secret is leaked, it patches the code automatically and creates a new secret,
effectively re-keying the device. In other words, when malware is present, the device
is automatically re-keyed and secrets are protected.

DICE provides strong device identity, attestation of device firmware and security
policy, and safe deployment and verification of software updates. The latter are
often a source of malware and other attacks. Another key benefit for device manu-
facturers is that they are no longer required to maintain databases of unique secrets.

8.9 Summary and Future Directions

This chapter analyzed IoT from a security and privacy perspectives. Ignoring secu-
rity and privacy will limit the applicability of IoT and will have serious results on
the different aspects of our lives given that all the physical objects in our surround-
ing will be connected to the network. In this chapter, the IoT security challenges and
IoT security requirements were identified. A three-domain IoT architecture was
considered in our analysis where we analyzed the attacks targeting the cloud
domain, the fog domain, and the sensing domain. Our analysis describes how the
different attacks at each domain work and what defensive countermeasures can be
applied to prevent, detect, or mitigate those attacks. We hope that the research and
industry communities will pay attention to the discussed security threats and will
apply appropriate countermeasures to address those issues. We also hope that secu-
rity and privacy will be considered at the early design stage of IoT in order to avoid
the common pitfall of considering security as an afterthought.

We end this chapter by providing some future directions for IoT security and
privacy:

• Fog Domain Security: The fog domain is a new domain that was introduced to
bring the computing capabilities to the edge of the network. We believe that
 further attention should be paid to this domain as it has not received enough

Power
On

DICE

UDS

Layer 0

Secret 0

Layer 1

Secret 1

Layer N

Secret N

Fig. 8.12 DICE architecture

8 Internet of Things Security and Privacy

243

attention from the academia and the industry. The focus should be on identifying
threat models related to the fog domain and also on finding efficient solutions
that can run on the fog devices that are available in the market.

• Collaborative Defense: We identified while surveying the related work that what
the literature on IoT security lacks is a collaborative solution where the different
domains (cloud, fog, and sensing) interact with each other to stop or mitigate a
certain attack. We believe that an interdomain-defensive solution will be way
more effective than applying countermeasures at each domain separately, where
the different domains can interact and collaborate in order to stop any ongoing
malicious activity.

• Lightweight Cryptography: This is a highly important topic that has gained a
significant attention recently and is anticipated to be very important for the future
of IoT where the objective is to find efficient cryptographic techniques that can
replace the traditional computationally expensive ones while achieving an
acceptable level of security.

• Lightweight Network Security Protocols: Not only the cryptographic computa-
tions must have lower overhead but also the network security protocols that are
used for communication. Many efforts are being paid by the research and indus-
try communities to find cross-domain-optimized security protocols that achieve
the necessary security protection while maintaining a low overhead.

• Digital Forensics: Although tracking the location of smart objects is considered
a privacy violation, it also has some useful cases. Consider, for example, the case
where police rely on tracking the smart objects that are carried by a missing per-
son in order to identify the missing person’s location. Digital forensics in the IoT
era will play an important role in solving the different forensic cases as they will
all become technology related. This area is also expected to receive further atten-
tion in the future where different techniques can be used to extract knowledge
from the smart objects.

Problems and Exercises

 1. The authors have broken IoT security challenges into seven areas. Name them.
Why big data is an issue for IoT?

 2. What techniques can be applied to prevent cross-VM data leakage? Explain
how the hard isolation technique can be achieved.

 3. What are some of the typical uses of VM migration in cloud data centers? What
are the two types of attacks that are related to VM migration?

 4. Who is the entity that initiates insider attacks, and how can homomorphic
encryption be used to prevent such attacks?

 5. What are the three key differences that distinguish fog devices from cloud serv-
ers? Provide a brief explanation of each difference.

 6. Which provides more protection against security attacks: container-based virtu-
alization or full virtualization? Why?

 7. What are the two connection approaches that the smart objects may use to com-
municate with the fog device? Which approach is more secure and can this
approach always be used?

8.9 Summary and Future Directions

244

 8. What are the four strategies that a jammer may follow in order to launch a jam-
ming attack? Which strategy is suitable when the jammer have limited
energy budget?

 9. What are vampire attacks? Name their types.
 10. What is network high availability? What is network redundancy? How are they

related?
 11. Chapter 3 discusses three different ways to obtain information for IoT “things”:

sensors, RFID, and video tracking. In a table, compare the security for the three
technologies.

 12. What is limiting cache switching rate? How can it be accomplished? Explain
how it works.

References

 1. D. Willis, A. Dasgupta, S. Banerjee, Paradrop: a multi-tenant platform for dynamically
installed third party services on home gateways, in SIGCOMM workshop on distributed cloud
computing, (ACM, New York, NY, 2014)

 2. W. Xu et al., Jamming sensor networks: attack and defense strategies. Network IEEE 20(3),
41–47 (2006)

 3. W. Ye, J. Heidemann, D. Estrin, Medium access control with coordinated adaptive sleeping for
wireless sensor networks. Networking, IEEE/ACM Transactions 12(3), 493–506 (2004)

 4. T. Van Dam, and K. Langendoen, An adaptive energy-efficient MAC protocol for wireless
sensor networks. in Proceedings of the 1st international conference on Embedded networked
sensor systems, ACM, 2003

 5. K.P. Dyer, et al., Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures fail.
in Security and Privacy (SP), 2012 IEEE Symposium, IEEE, 2012

 6. J. Park, et al., An Energy-Efficient Selective Forwarding Attack Detection Scheme Using
Lazy Detection in Wireless Sensor Networks. in Ubiquitous Information Technologies and
Applications, (Springer, The Netherlands, 2013), pp. 157–164

 7. L.K. Bysani, and A.K. Turuk, A survey on selective forwarding attack in wireless sensor
networks. in Devices and Communications (ICDeCom), 2011 International Conference,
IEEE, 2011

 8. B. Xiao, B. Yu, C. Gao, CHEMAS: Identify suspect nodes in selective forwarding attacks.
J. Parallel Distrib. Comput. 67(11), 1218–1230 (2007)

 9. P. Thulasiraman, S. Ramasubramanian, and M. Krunz, Disjoint multipath routing to two dis-
tinct drains in a multi-drain sensor network. in INFOCOM 2007. 26th IEEE International
Conference on Computer Communications, IEEE, 2007

 10. H.-M. Sun, C.-M. Chen, and Y.-C. Hsiao, An efficient countermeasure to the selective forward-
ing attack in wireless sensor networks. in TENCON 2007–2007 IEEE Region 10 Conference,
IEEE, 2007

 11. A. Grau, Can you trust your fridge? Spectrum, IEEE 52(3), 50–56 (2015)
 12. C. Li, A. Raghunathan, and N. K. Jha, Hijacking an insulin pump: Security attacks and defenses

for a diabetes therapy system. in e-Health Networking Applications and Services (Healthcom),
2011 13th IEEE International Conference, IEEE, 2011

 13. D. Evans, The internet of things how the next evolution of the internet is changing everything.
Technical report, CISCO IBSG, 2011

8 Internet of Things Security and Privacy

245

 14. R. Thomas, et al., Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. in Proceedings of the 16th ACM conference on Computer and communica-
tions security, ACM, 2009

 15. M. Dabbagh, B. Hamdaoui, M. Guizai and A. Rayes, Release-time aware VM placement. in
Globecom Workshops (GC Wkshps), (2014), pp. 122–126

 16. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Toward energy-efficient cloud computing:
Prediction, consolidation, and overcommitment. Network, IEEE 29(2), 56–61 (2015)

 17. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Efficient datacenter resource utilization
through cloud resource overcommitment, in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2015, pp. 330–335

 18. R. Boutaba, Q. Zhang, and M. Zhani, Virtual Machine Migration in Cloud Computing
Environments: Benefits, Challenges, and Approaches. in Communication Infrastructures
for Cloud Computing, ed. by H. Mouftah and B. Kantarci (IGI-Global, Hershey PA, 2013),
pp. 383–408

 19. D. Perez-Botero, A Brief Tutorial on Live Virtual Machine Migration from a Security
Perspective, University of Princeton, Princeton, 2011

 20. W. Zhang, et al., Performance degradation-aware virtual machine live migration in virtualized
servers. in International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2012

 21. V. Venkatanathan, T. Ristenpart, and M. Swift, Scheduler-based defenses against cross-VM
side-channels. Usenix Security, (2014)

 22. T. Kim, M. Peinado, and G. Mainar-Ruiz, Stealthmem: System-level protection against cache-
based side channel attacks in the cloud. in Proceedings of USENIX Conference on Security
Symposium, Security’12. USENIX Association, 2012

 23. H. Raj, R. Nathuji, A. Singh, and P. England, Resource management for isolation enhanced
cloud services. in Proceedings of the 2009 ACM workshop on Cloud computing security,
ACM, 2009, pp. 77–84

 24. Y. Zhang and M. K. Reiter, Duppel: Retrofitting commodity operating systems to mitigate
cache side channels in the cloud. in Proceedings of the 2013 ACM SIGSAC Conference on
Computer; Communications Security, CCS ‘13. ACM, 2013

 25. P. Li, D. Gao, and M. K. Reiter, Mitigating access driven timing channels in clouds using stop-
watch. in IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2013, pp. 1–12

 26. R. Martin, J. Demme, and S. Sethumadhavan, Timewarp: Rethinking timekeeping and per-
formance monitoring mechanisms to mitigate sidechannel attacks, in Proceedings of the 39th
Annual International Symposium on Computer Architecture, 2012

 27. F. Zhou et al., Scheduler vulnerabilities and coordinated attacks in cloud computing. in 10th
IEEE International Symposium on Network Computing and Applications (NCA), 2011

 28. K. Panagiotis, and M. Bora, Cloud security tactics: Virtualization and the VMM. in Application
of information and communication technologies (AICT), 2012 6th International Conference.
IEEE, 2012

 29. F. Zhang et al., CloudVisor: retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ACM, 2011

 30. T. Taleb, A. Ksentini, Follow me cloud: interworking federated clouds and distributed mobile
networks. IEEE Network 27, 12 (2013)

 31. E. Damiani et al., A reputation-based approach for choosing reliable resources in peer-to-peer
networks. in Proceedings of the 9th ACM conference on computer and communications secu-
rity. ACM, 2002

 32. W. Itani et al., Reputation as a Service: A System for Ranking Service Providers in Cloud
Systems. in Security, Privacy and Trust in Cloud Systems. (Springer, Berlin Heidelberg, 2014).
pp. 375–406

 33. J. Sahoo, M. Subasish, and L. Radha, Virtualization: A survey on concepts, taxonomy and
associated security issues. in Second International Conference on Computer and Network
Technology (ICCNT), 2010

References

246

 34. S.Yi, Q. Zhengrui, and L. Qun, Security and privacy issues of fog computing: A survey. in
Wireless Algorithms, Systems, and Applications, (Springer International Publishing, 2015),
pp. 685–695

 35. E. Oriwoh, J. David, E. Gregory, and S. Paul, Internet of things forensics: Challenges and
approaches. in 9th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (Collaboratecom), IEEE, 2013, pp. 608–615

 36. Z. Brakerski, V. Vinod, Efficient fully homomorphic encryption from (standard) LWE. SIAM
J. Comput. 43(2), 831–871 (2014)

 37. E. Lauter, Practical applications of homomorphic encryption. in Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop, ACM, 2012

 38. C. Hennebert, D. Jessye, Security protocols and privacy issues into 6lowpan stack: A synthe-
sis. Internet of Things Journal IEEE 1(5), 384–398 (2014)

 39. Daily Tech Blogs On Line, http://www.dailytech.com/Five+Charged+in+Largest+Financial+
Hacking+Case+in+US+History/article32050.htm

 40. M. Miller, Car hacking’ just got real: In experiment, hackers disable SUV on busy highway
(The Washington Post, 2015), online: http://www.washingtonpost.com/news/morning- mix/
wp/2015/07/22/car- hacking- just- got- real- hackers- disable- suv- on- busy- highway/

 41. 2015 Data Breach Investigation Report, Verizon Incorporation (2015)
 42. M. Dabbagh et al., Fast dynamic internet mapping. Futur. Gener. Comput. Syst. 39,

55–66 (2014)
 43. Forrester, Security: The Vital Element of the Internet of Things, 2015, online: http://www.

cisco.com/web/solutions/trends/iot/vital- element.pdf
 44. F. Adib and D. Katabi, See through walls with WiFi!, vol. 43. (ACM, 2013)
 45. S. Kumar, S. Gil, D. Katabi, and D. Rus, Accurate indoor localization with zero start-up

cost, in Proceedings of the 20th Annual International Conference on Mobile Computing and
Networking, ACM, 2014, pp. 483–494

 46. G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. Ni, We can hear you with Wi-Fi!, in Proceedings of
the 20th Annual International Conference on Mobile Computing and Networking, ACM, 2014,
pp. 593–604

 47. Y. Qiao, O. Zhang, W. Zhou, K. Srinivasan, and A. Arora, PhyCloak: Obfuscating sensing
from communication signals, in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016

 48. T. Yu, et al., Handling a trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things, Proceedings of the 14th ACM Workshop on Hot Topics in
Networks, 2015

 49. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Software-defined networking security: pros
and cons. IEEE Commun. Mag. 53, 73 (2015)

8 Internet of Things Security and Privacy

http://www.dailytech.com/Five+Charged+in+Largest+Financial+Hacking+Case+in+US+History/article32050.htm
http://www.dailytech.com/Five+Charged+in+Largest+Financial+Hacking+Case+in+US+History/article32050.htm
http://www.washingtonpost.com/news/morning-mix/wp/2015/07/22/car-hacking-just-got-real-hackers-disable-suv-on-busy-highway/
http://www.washingtonpost.com/news/morning-mix/wp/2015/07/22/car-hacking-just-got-real-hackers-disable-suv-on-busy-highway/
http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf
http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf

247© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_9

Chapter 9
IoT Vertical Markets and Connected
Ecosystems

The Internet of Things is expected to connect over 20 billion “things” to the Internet
by 2020, covering a broad range of markets and applications. As IoT becomes more
cost effective and easier to deploy, new contenders and industry players are expected
to enter the market. Hence, existing companies will be forced to disrupt or be dis-
rupted. For the leaders of any of these companies, this begs two main questions:
Firstly, what new business models to employ in order to deliver better and cheaper
service? And secondly, who to partner with to bring services to market quicker and
at a lower cost?

In this chapter, we will first introduce, in Sect. 9.1, the key IoT application
domains, which are often referred to in the literature as IoT verticals. Alphabetically,
key verticals include Agriculture and Farming, Energy, Enterprise, Finance,
Healthcare, Industrial, Retail, and Transportations.

These verticals will include data sources (e.g., sensors, RFIDs, video cameras,
etc.) producing wealth of new information about the status, location, behaviors,
usage, service configuration, and/or performance of systems, products, or devices.
In Sect. 9.2, we will present the new business model which is mainly driven by the
availability of new information, thereby offering extraordinary business benefits to
the companies that manufacture, support, and service those systems, products, or
devices, especially in terms of customer relationships. In Sect. 9.3, we will present
the top requirements to deliver “Anything as a Service” in IoT followed by a specific
use case.

Finally, the manifold IoT verticals in combination with the new business model
will undeniably introduce opportunities for innovative partnerships. No single ven-
dor will be able to address all business requirements. We will describe the require-
ments for such model in the last section.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_9#DOI

248

9.1 IoT Verticals

There is no agreement across the industry on the number of IoT verticals. The num-
ber ranges from a few to over a dozen across various standards and marketing col-
laterals. The oneM2M and ETSI standard bodies have identified ten IoT verticals:
Agricultural and Farming, Energy, Finance, Healthcare, Industrial, Public Services,
Residential, Retail, and Transportation. Other companies have used a slightly differ-
ent categorization to include Energy, Transportation, Education, Healthcare,
Commerce, Travel and Tourism, Finance, IT, and Environment.

As we mentioned in pervious chapters, the objective is not to divide IoT into
verticals and silos. On the contrary, the real impact of IoT will only occur when data
from the silos is combined to create completely new types of applications. In other
words, an IoT application should be able to manage IoT elements from many verti-
cals with common parameters, open data models, and APIs. The collected data from
IoT elements, combined with the new knowledge emerging in the area of “big data,”
will create the framework for many new types of applications. This progress will
drive the growth of IoT.

In this chapter, we will describe IoT use cases using a modified version of the
oneM2M and ETSI categorizations, as shown in Fig. 9.1. The IoT verticals include:
Agriculture and Farming, Energy, Oil and Gas, Enterprise, Finance, Healthcare,
Industrial, Retail, and Transportations.

It is important to note that some IoT standard bodies have used the term “Energy”
as a comprehensive label to include “Energy Consumption” in smart buildings/cit-
ies as well as “Oil and Gas” in the petroleum industry (e.g., to monitor oilrigs,
pipelines, and emission). We believe IoT Energy and IoT Oil and Gas are two sepa-
rate verticals. Energy comes from Oil and Gas as well as other sources such as solar
and winds. In addition, energy is about managing smart meters, smart buildings, and
smart cities, while Oil and Gas is more about process and asset management in the
petroleum industry. More information will be provided in Sects. 9.1.2 and 9.1.3.

IoT Common Functions

Agricultural &
 Farm

ing,

Energy

O
il &

 G
as

Enterprise

Finance

Healthcare

Industrial

R
etail

Transportations

Fig. 9.1 IoT verticals

9 IoT Vertical Markets and Connected Ecosystems

249

9.1.1 IoT Agriculture and Farming

According to the World Agriculture reports, global food consumption is expected to
grow by 70% by 2050. IoT is well positioned to transform the agriculture industry
and enable farmers to increase the quantity and quality of their crops at reasonable
costs. IoT farming techniques are already increasing crops productivity and creating
economies of scale for farmers. This is critical especially with the recent environ-
mental challenges farmers are facing, such as increased water shortage in many
regions of the World and the diminishing availability of farmland.

IoT sensor-based agriculture solutions are used to monitor soil moisture, crop
growth, livestock feed levels, and irrigation equipment. The solutions utilize analyt-
ics to analyze operational data combined with weather and other information to
improve decision-making.

Top IoT Agriculture and Farming use cases include:

• Advanced Yield Monitoring: Farming companies have introduced solutions to
monitor and control various types of crops to deliver better results. For instance,
wine quality is being monitored by installing sensors to monitor soil moisture
and trunk diameter in vineries to optimize the amount of sugar in grapes. Similar
techniques are used for water management by sensing the soil and determining
the optimal amount of water required as part of green initiatives.

• Optimal Seeding: Based on soil analysis and historical weather data, IoT
enabled solutions determine the best kind of seeds and optimal row spacing as
well as seeding depth. They also produce soil fertilization recommendations that
include type and amount.

• Optimal Water Usage: Monitoring and controlling surrounding environmental
conditions to determine water usage to capitalize on the production of fruits and
vegetables. This includes utilizing weather forecast information to prevent dam-
age due to ice formation, heavy rain, drought, snow, or strong wind. The humid-
ity levels are also monitored in crops such as hay and alfalfa to avoid fungus and
other bacterial contaminants.

• Livestock Monitoring: Monitoring, tracking, and controlling farm animals
(cows, goats, chickens, etc.) in open grasslands or indoor locations such as cages
or stables. IoT is also used to monitor animal toxic gas levels, study ventilation,
and warn on air quality to protect farm animals from harmful gases from
excrements.

• Farming as a Service: see Sect. 9.2.

9.1.2 IoT Energy Solutions

IoT Energy covers smart buildings offering dynamic monitoring of overall energy
consumption, thereby allowing their occupants or tenants to see when they are con-
suming power during peak hours at abnormally high rates. This allows the tenants

9.1 IoT Verticals

250

to optimize energy usage while maintaining comfort. It also covers smart cities
offering automatic dynamic optimization of global energy consumption on the
streets, highways, and public facilities.

IoT Energy use cases include:

• IoT Smart Meters: IoT smart meters record electrical power consumption on
regular basis (e.g., hourly, every 15 min) and send collected information to the
power company for monitoring and billing.

• IoT smart meters benefit power companies as well consumers. Power companies
use the collected information to construct usage patterns and trend analyses to
predict future energy usage especially during peak hours. They plan for such
peaks with additional supply and by offering very attractive offers to customers
to conserve energy. Customers use the information to view, typically on the por-
tal of the power company, hourly electric and daily gas energy usage data.
Consumers use the detailed hourly, daily, weekly, or monthly information to
make smarter energy choices (e.g., use washing machine after 7 PM for
cheaper rate).

• Smart Homes (Connected Home): Connected home is defined as any home
with at least one connected device (e.g., connected appliance, home security
system, and door or motion sensor). Connected devices can learn usage patterns
and enable remote operation to reduce energy consumption (e.g., water heaters,
air conditioning, and lighting.)

• Connected devices send information to service provider systems, which in turn,
quickly analyze the data and notify homeowners if needed, or directly send alerts
to homeowners. The first model is often a subscription-based service in which a
homeowner subscribes to a service (e.g., home security company) while the sec-
ond model is non-subscription model (e.g., home security camera installed by
homeowner and connected over the home Wi-Fi gateway). Can you name an
example of model 2? (see Problem 8).

• Other Cases: IoT is also used to monitor and optimize solar energy plants per-
formance. How? (see Problem 10).

• To meet the IoT key promise of making human lives better, all connected home
devices should come together into a single connected IoT system or connected
service provider system offering the homeowner full and simple access and
control.

9.1.3 IoT Oil and Gas Solutions

Ever since the explosion and sinking of the Deepwater Horizon oil rig in the Gulf of
Mexico in April 2010, which was recognized as the worst oil spill in U.S. history,
combined with the increase in strict government regulations, IoT has been at the
core of the oil and gas industry transformation. It is not only enabling full real-time

9 IoT Vertical Markets and Connected Ecosystems

251

monitoring of oilrigs but also allowing contingent workforce to run near real-time
maintenance of critical assets.

IoT Oil and Gas is used for predictive maintenance, pipeline monitoring, emis-
sion control, and location intelligence. It is also used for near real-time alert and
trending analysis using sensors, installed on various equipment and augmented with
ERP (enterprise resource planning) data to trigger maintenance workflows for asset
management and fleet operations monitoring.

• Connected Oil and Gas fields: IoT sensors are being installed to monitor and
control oil wellheads, pipelines, and equipment, to enhance the overall oil field
remote operations, to enable predictive maintenance, and provide comprehensive
facility operations at reasonable costs. Hence achieving better reliability and pro-
ductivity from the fields.

• Also Connected Oil and Gas fields reduce the need for site visits (e.g., site visits
to unmanned offshore platforms), hence reducing the associated hazards and
improving personnel safety.

• Downstream Applications: IoT Oil and Gas also can play a role in downstream
operations such as Oil and Gas storage, transportation, refineries, and distribu-
tion (e.g., petrol station fuel tanks can be monitored by distribution companies to
dispatch tank trucks).

9.1.3.1 Oil and Gas Exercise

Chemical injection stations (Fig. 9.2) are used to dose corrosion inhibiting and bio-
cide chemicals into oil pipelines. This eliminates the growth of organisms and
reduces the corrosion rate of the pipelines in order to prolong their operational life.

One chemical station is required to dose at a rate of 0.4 gpm (gallons per minute)
of chemicals per 10,000 bpd (barrels per day) of oil in the pipeline. In an existing
plant, the station is set to dose at a constant 0.4 gpm. Considering the following
pipeline flowrate profile during a day, calculate the quantity of chemicals saved per
day by applying IoT to control the chemical injection station.

Answer
We only need to examine the part of the timeline where the flow within the pipeline
drops below the 10,000 bpd threshold, as that is where the IoT solution will yield
savings over the constant/static solution.

The flow within the pipeline drops to 8000 bpd for 12 h. During this time, the
variable dosage supplied by the IoT solution drops to 8000/10,000 × 0.4 gpm
= 0.32 gpm.

The amount of chemical dispensed by the IoT solution for those 12 h is = 0.32 gal-
lons/min × 12 h × 60 min/h = 230.4 gallons.

The non-IoT solution would have dispensed during the same time = 0.4 × 12 × 6
0 = 288 gallons.

The savings = 288 − 230.4 = 57.6 gallons.

9.1 IoT Verticals

252

9.1.4 IoT Smart Building Solutions

As with smart homes (under smart energy), smart buildings utilize sensors and con-
trollers to monitor and automatically trigger services to save valuable time in cases
of emergency (e.g., fire, intrusion, or gas leak). With the smart building system,
services like video monitoring, light control, air-condition control, and power sup-
ply control are often managed from the same control center. In this section, we will
focus on Smart buildings as an enterprise solution, as specified in the oneM2M
standards.

• Safety Monitoring and Alerting: Examples include noise level monitoring in
urban zones and sounding alarms in real time, electromagnetic field levels mon-
itoring by measuring the energy radiated by cell stations and other devices,
chemical leakage detection in rivers by detecting leakages and wastes of

Chemical
Tank

Chemical Injection Station

(bpd)

10,000

8,000

0 6 12 18 24
(hr)

Flow
Adjustment

Actuator

Flow
Sensor

Flow
Sensor

Dosing
Pump

Pipeline

Fig. 9.2 Oil and Gas Exercise

9 IoT Vertical Markets and Connected Ecosystems

253

 factories in rivers, air pollution and control of CO2 emission factors, pollution
emitted by cars and toxic gases generated in farms, as well as earthquake early
detection.

• Smart Lighting: In smart lighting, IoT is used to minimize energy consumption,
provide weather adaptive lighting in street-lights and to automate maintenance.

• Flooding, Water Leakage, and Pollution Monitoring: Monitoring of safe
water levels in rivers, lakes, dams, and reservoirs. Detection of the presence of
toxic chemical. Monitoring of tanks, pipes, and pressure variations. Real-time
control of leakages and waste in the sea.

• Detection of Hazardous Gases and Radiation Levels: Detection of gas levels
and leakages in and around industrial buildings and chemical factories.
Monitoring of ozone levels during the meat drying process in food factories.
Distributed measurement of radiation levels in the surroundings of nuclear power
stations to generate leakage alerts.

• Other use cases include detection of garbage levels in containers to optimize the
trash collection routes, preemptive monitoring of burning gasses and fire condi-
tions to define alert zones, snow level measurement to know in real time the
quality of ski tracks and alert avalanche prevention security corps, monitoring
vibrations and earth density to detect dangerous patterns in land conditions, and
monitoring of vibrations and structural conditions in buildings and bridges.

9.1.5 IoT Finance

While IoT Financial solutions are not as obvious as other IoT verticals, the financial
industry has indeed benefited greatly from IoT. For many financial services busi-
nesses, the reality is that their business model is based on the flow of information,
rather than on actual sensors and physical objects. As we mentioned in Chap. 1,
some financial companies (e.g., Square, Intuit) have introduced IoT platform-based
solutions connecting customers instantly with financial institutes and services. Such
process used to be tedious and required time that often resulted in losing prospective
deals to competitors. Banks are using IoT-based facial recognition solutions to iden-
tify important customers when they walk into the bank so they can be offered first
class treatment.

Auto insurance companies are working with technology companies and com-
munication service providers to install sensors-based IoT telematics solutions in
automobiles, to track driver behaviors in order to improve underwriting and pricing
of policies. Other use cases include:

• IoT Usage-based auto insurance: Sensors are installed in vehicles to track
actual mileage, car location, and driving areas. In addition, IoT-based claim fil-
ing system is utilized allowing drivers to file claims using their smart phones
eliminating the need for expensive agents and paper work.

9.1 IoT Verticals

254

• IoT Solution to reduce Fraud and Liability: In highly delicate work environ-
ments (e.g., chemical or nuclear plants, physical activities), smart sensors may
be embedded in employees’ uniforms. This allows the IoT solution to monitor
employee whereabouts in high-risk areas, warn them in real time of any potential
danger, and prevent them from entering restricted areas. This should result in
safer work environments for the employees and reduce fraudulent workplace
related claims for the employer.

• IoT Safety Solutions: Sensors embedded in commercial infrastructure can mon-
itor safety breaches such as smoke, mold, or toxic fumes, allowing for adjust-
ments to the environment to head off or at least mitigate a potentially
hazardous event.

• Other use cases include IoT-based commercial real estate building-management
systems to speed up the overall building management processes, location-based
near-field communication (NFC) Payment Processing, paperless mortgage appli-
cations including home inspection and the approval process.

The progression of financial IoT is not without its challenges. Most driving con-
sumers and corporations are uncomfortable with the notion of being “watched” at
all time. Many have asked for limits on the collection and use of sensor-based data.
This is a critical area for the industry to address by introducing balanced solutions
that allow the collection of adequately limited data while protecting the interests of
clients and markets. Full disclosure of collected data (what are you collecting about
me?) as well as the secure handling and use of personal information (who has access
to my data and how is it being used?) are already being demanded by consumers and
corporations.

9.1.6 IoT Healthcare

Healthcare is considered as one of the most important verticals for IoT. Healthcare
providers as well as patients are in great position to benefit from IoT. Intelligent IoT
wearable devices in combination with mobile apps are allowing patients to capture
their health data easily and send medical information for up to the minute analysis.
Hospitals are using IoT for real-time tracking of important medical devices, person-
nel, and patients.

Examples of IoT Healthcare use cases include:

• Fall Detection: Fall detection is considered a main public health concern among
senior citizens. The number of wearable medical devices, systems, and compa-
nies offering services intended at detecting falling have increased radically over
recent years. Fall detection alert systems, typically worn around the waist or
neck, include intelligent accelerometers that differentiae normal activities from
actual falls. Fall detection solutions are already improving the quality of life of
many elderly or disabled people living independently. It should be noted that

9 IoT Vertical Markets and Connected Ecosystems

255

smart phones also use accelerometers to determine vertical and horizontal dis-
play based on orientation.

• Tracking of medical devices: Accurate tracking of expensive medical devices is
very essential for hospitals especially in crowded emergency rooms with large
medical staff. IoT solutions are being used to identify the exact location of such
devices, identify last user, and then auto adjust the device setting, if applicable,
based on the fingerprint of the current user.

• Medical fridges for hospitals: Sensors are being embedded in medical fridges
for hospitals and medical offices to dynamically control temperatures inside
mobile and stationary freezers filled with vaccines, medicines, and organic
elements.

• Other use cases include measuring ultraviolet radiation and warning people of
the hazard of sun exposure especially during certain hours.

As is the case with IoT financial, IoT healthcare has its own share of challenges.
The security of IoT data and devices as well as government regulations are consid-
ered by many as the most important concerns for patients and healthcare providers.
Patients are concerned about employers gaining access to their medical records,
especially when they register their BYOD mobile devices. Some physicians and
healthcare IT departments are still adjusting to using and securing mobile devices in
their operations. Finally the lack of standards and communication protocols around
IoT put the development of solutions at risk.

9.1.7 IoT Industrial

Industrial equipment and machines used in the overall manufacturing process, for
instance, are becoming more digitized with capabilities to connect to the Internet.
At the same time, manufacturers are looking at ways to advance operational effi-
ciency such as supply chain and quality control, by utilizing such equipment to
gather important data for their business to remain competitive and provide services
at reasonable costs.

IoT is used to establish networks between machines, humans, and the Internet,
thereby creating new ecosystems. It is also used to identify business gaps and oppor-
tunities, as we will cover in Sect. 10.3. Examples of Industrial use cases include:

• Predictive maintenance: Predictive maintenance covers all connected assets in
industrial plants (e.g., water treatment site). By utilizing real-time data collected
from sensors and cameras, combined with advanced analytics it is possible for
companies to anticipate equipment failures and respond faster to critical situa-
tions. Advanced analytics is a hot research area that includes artificial intelli-
gence and machine learning. With machine learning, computers can develop
algorithms on their own by analyzing data overtime. These algorithms can then
be used to make predictions.

9.1 IoT Verticals

256

• Connected Factory: as the name indicates, connected factory means connecting
the entire factory network to the Internet with full monitoring and controlling
solution. Connected factory typically includes mobile operation center for com-
prehensive and secure management.

• Connected Mine: In connected mines, all mining vehicles, mining operation,
mining asset tracking and personal safety equipment are connected.

• Supply Chain Control: Monitoring of storage conditions along with the supply
chain and product tracking for traceability purposes.

9.1.8 IoT Retail

According to a survey by Infosys, more than 80% of consumers are willing to pay
up to 25% more for a better experience. This translates to a huge opportunity to be
gained with IoT by collecting and analyzing information about products and cus-
tomer interests and then gaining actionable insights from this information. Input
sources include point of sale (PoS), supply chain sensors, RFID as well as video
cameras in the store.

• Full Tracking of Products in Stores: With IoT, retailers have full visibility into
products and merchandise with digital supply chains. This makes it possible for
retailers to emphasize on top selling products by offering more personal choices
to fulfill and enhance the overall customer experience. It also makes it possible
to determine under-selling products as well as overstocked and low stock
products.

• Full Automation of Product Delivery: Range of delivery options may be
offered to the customers including pick up in-store, home or car delivery, or
retrieval from another location such as smart lockers from local 24-h stores. In
the latter case, smart lockers are equipped with sensors that send automatic mes-
sages to customers reminding them to pick up.

• On the business side, some retailers have capitalized on IoT to redesign their
distribution system to leverage larger stores as distribution centers. In this case,
larger stores are used to offer a larger range of products to smaller stores for col-
lection the same day, thereby extending customers’ choice of delivery and col-
lection options.

• Flexible Shopping and Loyalty Programs: Retailers are already using Web
technologies such as cookies, Wi-Fi, and video cameras to track customers shop-
ping behavior to enhance customer experience and send special offers based on
buying patterns or even online browsing and search trends. For instance, retailers
are using Bluetooth beacons in combination with shopping apps on customers’
smart phones to generate heat maps that show how consumers move around
stores (why would customer download retailer apps?—see Problem 11). For cus-
tomers who are not willing to download retailors apps, Wi-Fi triangulation is
alternatively used to generate detailed heat maps.

9 IoT Vertical Markets and Connected Ecosystems

257

• Customer Engagement Suite: As we mentioned in Chap. 1, some companies
have introduced customer engagement tools that include email marketing ser-
vices. These tools allow businesses to target specific customer segments with
customized promotions based on actual purchase history. Square also introduced
Square Payroll tool for small business owners to process payroll for their
employees.

• Interactive consumer engagement and operations: Using real-time video
cameras, in-store programmable devices and in-store display screens retailers
can deliver smarter messaging based on what customers are looking at. This
allows them to influence buying decisions, including up-sells.

9.1.9 IoT Transportation

As industry regulations force transportation and logistics organizations to do more
with less, many companies have already discovered the benefits of using IoT to
offer new services, improve efficiency and security, significantly gain real-time vis-
ibility of their operations, and save on fuel just to name a few advantages.

Top use cases include:

• Smart and Connected Parking: Smart parking addresses one of the causes of
pollution in urban areas. We all have been in situations where we drive back and
forth looking for a parking spot. Smart and Connected Parking has addressed this
problem very effectively. With smart parking service, drivers can easily find
available parking spaces, pay parking fees and even make advance reservations.
Making parking reservations may be available for limited people such as VIPs or
the disabled, since ordinary parking service needs to satisfy first-come-first-
served rule.

• Smart Roads and Traffic Congestion: Smart roads include Intelligent Highways
with warning messages and diversions based on sensors capturing climate condi-
tions and traffic events like accidents and traffic jams. Traffic congestion solu-
tions monitor traffic as well as pedestrian levels to optimize driving and
walking routes.

• Connected Rail: Connected rail solutions are used to connect trains, tracksides,
stations, and passengers. For instance, IoT is used to automatically alert passen-
gers of scheduling and safety issues on their smart devices as well as offering
onboard entertainment. IoT is also used to implement solutions to meet govern-
mental and industrial safety compliance requirements at a minimum cost.

• Other use cases include continuous quality of shipment monitoring, which
encompasses observing vibrations, location, temperature, strokes, container
openings, and storage incompatibility detection. For instance, emissions warning
on containers storing flammable goods close to others containing explosive
material. Control of routes followed for delicate goods like medical drugs, jew-
els, or dangerous merchandise are also included.

9.1 IoT Verticals

258

9.2 IoT Service Model: Anything as a Service

IoT enabled devices and products will provide a wealth of information about their
status, location, behaviors, usage, service configuration, and performance. This
information, if leveraged correctly, offers extraordinary business benefits to the
companies that manufacture, support, and service those products, especially in
terms of customer satisfaction.

With the availability of such data combined with cost effective Internet-based
communications, many companies are starting to ponder why would they stop at
selling a product and forgo very essential feedback information, when they can also
sell a service with the right to monitor the actual usage and behavior of the product
in the deployed environment. Usage information are not only used to service a prod-
uct/device and prevent service deterioration by verifying contract Service Level
Agreements (SLAs) but also to learn about the product in the field and determine the
most essential set of future enhancements. Feedback information may be catego-
rized by market segments but generally include common set of specific information
such as which features are used the most, which features are used the least, which
features are never used and feature usage patterns (feature A is used with feature B).

IoT is bending the traditional linear value chain by allowing companies to eco-
nomically connect to products and collect essential data. The data is then analyzed
and correlated with business intelligence (BI) and Intellectual Capital (IC), and used
to provide a proactive, predictive, and preemptive service experience. This is made
possible with the creation of a “feedback loop” through which the heartbeats of
manufactured objects continually flow back though the complex business systems
that create, distribute, and service those products. Adopters of this new IoT service
model are in a great position to deliver extraordinary business performance and
break away from their competition.

With this model, many companies are already offering at least a form of their
products (or main features of such products) as a service with an always-on connec-
tion to fully monitor actual usage and behavior in the deployed environment. Next
we will present a few key examples.

9.2.1 Thrust as a Service

Aircraft engine manufacturers are moving from the business of selling engines to
the business of selling thrust as a service. In fact, Rolls-Royce has been offering
such services for the last several years. It sends jet engine telemetry data to data
centers for full analysis and diagnostics. An inspection can be scheduled at the cor-
rect time or spare parts can be directed to the right destination even before the pilots
or the airline know that one of their engines has a problem.

Today most of Rolls-Royce engines are not sold, but rented out on an hourly
basis under their TotalCare® program, and a center is monitoring maybe hundreds

9 IoT Vertical Markets and Connected Ecosystems

259

or even thousands of engines at the same time. This model allows Rolls-Royce to
accumulate a wealth of engine operational data and enables it to consult airlines on
best practices. This makes it difficult for third parties to take maintenance business
away from Rolls-Royce. Figure 9.3 illustrates the framework of “Thrust as a
Service.”

Other aircraft engine manufacturers have similar programs. Airlines do not pay
for the engines, but for the time they are flying. With this model, engine manufactur-
ers have a strong incentive to improve the reliability of their engines and drive out
third-party maintenance providers.

9.2.2 Imaging as a Service

Hospitals and large medical facilities worldwide are being challenged with high
cost of medical equipment and increased government regulations. Vendors of medi-
cal imaging machines (e.g., Magnetic Resonance Imaging (MRI) machines,
Computed Tomography (CT) scanners, and X-ray machines) are taking advantage

Data Center

Fig. 9.3 Connected Jet
Engine

9.2 IoT Service Model: Anything as a Service

260

of such challenges and offering “Imaging as Service” provisions. The new con-
nected “as a service” business model is not only reducing imaging equipment opera-
tional costs, but also offering equipment manufacturers, service providers, and
hospitals new revenue streams. Figure 9.4 depicts an example of imaging as a
service.

9.2.3 Farming as a Service

Agriculture machinery and chemical companies are also realizing the value of the
new IoT service model. Tractors and many farming machines are being equipped
with sensors and actuators. Agriculture machinery and chemical companies are
partnering together to offer Farming as a Service (FaaS) where the farming machines
are brought to a farm during seeding seasons. The machines analyze the soil square
feet by square feet, send the data back to the agriculture machinery company data
centers, where the data is analyzed in real time, and the result is sent to actuators to
release into the soil the best matching kinds of seeds and the right amount of
fertilizers.

Farming machines (e.g., tractors) may be connected over cellular (e.g., 4G) net-
works or drones as shown in Fig. 9.5. In the latter case, drones are deployed by
agriculture machinery companies just for the duration of seeding. Drones are typi-
cally used when the cellular signal is weak. What is another method of connecting
agriculture machinery to the network? (see Problem 7).

Data Center

IoT Network
The Internet

Fig. 9.4 Example of CT
machine connected to a
data center

9 IoT Vertical Markets and Connected Ecosystems

261

9.2.4 IT as a Service

Another and perhaps less obvious example is the IoT network provider itself.
Virtually all modern businesses/enterprises are powered by technologies, and visi-
bility into the underlying infrastructure is mission critical. In the past, businesses
relied on IT to deliver mission-critical business functions (e.g., customer portals,
finical applications, email, supply chain systems, and a myriad of other crucial ser-
vices that need to work flawlessly to prevent any impact on services and customers).

Today, businesses can no longer afford waiting for IT to provide all infrastructure
capabilities.

As IT infrastructure continues to grow and become more complex, especially
with the proliferation of hardware, software, applications, VMs, cloud services, and
mobile devices, providing visibility into that infrastructure is a constantly mov-
ing target.

Vendors of IoT hardware and software solutions (e.g., sensors, gateways, routers,
switches, platforms) are also offering “Feature as a Service.” For instance, a net-
work vendor may own IoT getaways (or IoT routers and switches) and simply offers
connection services with guaranteed SLAs (service level agreements). As with per-
vious examples, the networking vendor can only do so by enabling its IoT elements
(e.g., gateways, routers, switches) to collect and send data to the vendor’s data cen-
ters for service monitoring, analysis, and diagnostic. Such model also allows the

Data Center

Fig. 9.5 Farming as a service (FaaS)

9.2 IoT Service Model: Anything as a Service

262

vendors to gather a wealth of operational data and enables them to offer consultation
to other enterprises on best practices (Fig. 9.6).

It should be noted that in all of the above examples:

• Any device or system (e.g., jet engine, medical imaging equipment, IoT gate-
ways) downtime represents a loss of revenue or time, none of which airlines,
hospitals, or IoT service providers are willing to lose. With IoT “as service”
model, jet engines, medical imaging equipment as well as IoT network elements
are covered via service contracts with the original equipment manufacturers.
Through remote predictive monitoring and maintenance, service contract provid-
ers can fix problems before the service is even impacted.

• The ability for manufacturers to connect and pull intelligence from their systems
(e.g., jet engine, medical imaging equipment, IoT gateways) has been available
for some time now, primarily as an outgrowth from their own support and main-
tenance service offers. With IoT, a new “as a service” model is being realized.
Services on top of connectivity are improving equipment ROI and competitive-
ness for equipment vendors and stakeholders (e.g., hospitals, OEMs, and service
providers). Also, in existing solutions, connectivity may not be realized over the
Internet, rather over dedicated links and proprietary networks. However, many
vendors are indeed building IoT platforms to transition from propriety rigid and
expensive solutions into open economical IoT-based solutions.

Data Center

IoT Network
The Internet

IoT Gateway IoT SensorIoT Router

Fig. 9.6 IT as a service

9 IoT Vertical Markets and Connected Ecosystems

263

9.3 Enabling “Anything as a Service”

In this section, we will describe the requirements for end-to-end intelligent service
automation. This includes the basic requirements for specific instrumentation and
telemetry data to be provided by the product, embedded management capabilities as
well as vertical-specific intellectual capital to provide a proactive, predictive, and
preemptive service experience addressing the operations and health of the product.

Regardless of IoT verticals or underlying technologies, “Anything as a Service”
can only be realized with several key capabilities. In this section, we will list these
capabilities in ten main areas. Once the capabilities are enabled across the IoT lay-
ers, systems (e.g., IoT Platform as we specified in Chap. 6) are required to automate
the end-to-end functionalities.

Given the difficulties with providing generic answers across IoT verticals, we
will use the Thrust as a service as the guiding example for illustrations.

 1. Which data to collect and from which entities? E.g., for the Thrust as a service
example, the data includes: jet engine operational parameters including engine
RPM (Revolutions Per Minute), fuel consumption, temperature, pressure, air-
craft aerodynamic and mechanical operational parameters such as wind speed,
ground speed, positions of flaps, positions of slats, positions of spoilers, posi-
tions of ailerons, positions of rudders, positions of elevators, positions of hori-
zontal stabilizers, fuel level, etc.

 2. How to collect (or sense) such data? E.g., using embedded pressure, tempera-
ture, or speed sensors, or by tapping into aircraft control bus messages, etc.

 3. Once the data is collected and while it is in the Fog layer, what type of local
analysis (e.g., by the collection agent itself) is required? E.g., an hour of flight
generates terra-bytes worth of data. It makes sense to compress this data by
filtering out and compacting duplicate sensor readings before transporting the
data over expensive satellite links.

 4. How to transmit the collected (or locally analyzed) data from the device to
backend data centers securely and with minimum impact on the network? E.g.,
utilize satellite links for critical data that needs to be delivered in real-time, and
airport Wi-Fi while the aircraft is docked at the gate for non-critical data.

 5. How to entitle, validate parse, and analyze the collected data once it is received
by the backend system? Hence, entitlement, data validation, data parsing, and
data analysis require interactions with the supplier/partner backend systems and
databases including intellectual capital information. E.g., matching the data
with the correct models based on the jet-engine model and aircraft type.
Segregating one airline’s flight data records from those of another airline, etc.

 6. Which service based performance (e.g., end-to-end delay), diagnostic and secu-
rity compliance measures should be calculated at the backend and by which
algorithms? E.g., fuel economy can be a function of the engine RPM, wind
speed and direction (head vs. tail), flaps/slats positions, etc. Complex algo-
rithms come into play for that single performance metric.

9.3 Enabling “Anything as a Service”

264

 7. Which thresholds (e.g., Quality of Service, Grade of Service) should Step #6
estimated measures be evaluated against?

 8. If Step #6 estimated measures are above the threshold, what type of real-time
and none-real-time actions should be taken in the impacted device and/or the
network? Which algorithms? E.g., suggest alternate flaps/slats settings on take-
off or landing to minimize fuel consumption.

 9. If action is needed, which secure protocol should be used access the device/
network from the backend system and take action? E.g., using Secure Socket
Layers (SSL) to encrypt communication between the aircraft and data centers.

 10. Finally, which trending algorithms should be used to predict future measures?

Determining the required feature data (Question 1) is considered to be the most
critical and difficult question especially for new technology. Feature data can only
be defined if the performance measures and trending algorithms are well defined
and understood.

9.3.1 Example: IoT IT Services

We will use the example of IT infrastructure as a service. Specifically, we will
assume an IT infrastructure (e.g., IoT Gateways and network switches) is deployed
by an IT company to provide “IT Service” to a transportation company.

IoT-based IT Service requires identifying every managed entity with an IP
address, collecting data from these managed entities and performing event correla-
tion based on vendor best practices and intellectual capital. Such information is
used to proactively predict network and service performance and to provide infor-
mation about future trends and threats to enable proactive remediation. This way,
network planners/administrators can take action before a problem occurs thereby
preventing risk-inducing conditions from occurring at all.

The most essential input for an IT service is well defined standardized embedded
measurements to be collected from the network devices. This includes data sub-
scribing to the standardized YANG (Yet Another Next Generation) data modeling
language for the Network Configuration Protocol (NETCONF) or Simple Network
Management Protocol (SNMP) MIBs. NETCONF and the older SNMP are network
management protocols developed and standardized by the Internet Engineering
Task Force (IETF).

NETCONF and SNMP are essential for FACPS (Fault, Accounting, Configuration,
Performance, and Security) management. When NETCONF and SNMP data is not
sufficient, “syslog” and the output of Command Line Interface (CLI) commands are
also utilized. In fact, many network devices are configured to send syslog messages
to an event collector, such as a syslog server, in response to specific events. The
syslog protocol separates the content of a message from the transport of the mes-
sage. In other words, the device sending the syslog message does not require any
communication from the devices transporting or logging the message. This enables

9 IoT Vertical Markets and Connected Ecosystems

265

devices, which would otherwise be unable to communicate, to notify network
administrators of problems. The syslog standard is documented in Request for
Comments (RFC) 3164 and RFC 5424 of the IETF.

It should be noted that unlike the jet engine and medical machine examples (Sect.
9.2), which mainly employ mechanical or external sensors, IT services rely on
embedded software to sense and collect data from the device. Other embedded mea-
surements include IP SLA and Netflow as mentioned in Chap. 1.

The collected statistics are then consumed by various algorithms, utilizing the
Intellectual Capital (IC) information1 to calculate management and contract renewal
related measures as outlined in steps 3–6 above. IC is another critical input for IP
based smart services.

Figure 9.7 shows an overview of IoT IT services. A service becomes proactive by
adding advanced software analytics algorithms to the collected data, and then deliv-
ering this results in a actionable way that provides critical value for the customers.
IoT Services provide a proactive, predictive, and preemptive service experience that
is automated and intelligence based to address the operations, health, performance,
and security of the network. It securely automates the collection of device, network,
and operations information from the network. The collected information is analyzed
and correlated with the vendor’s vast repository of proprietary intellectual capital
turning it into actionable intelligence to aid network planners/administrators
increase IT value, simplify IT infrastructure, reduce cost and streamline processes.

1 IC information is typically captured by analyzing collected data overtime against the supplier
intelligence and data bases (e.g., Microsoft collects and analyzes data from its Windows customers
over the Internet).

Collected Statistics
(Embedded Management)

Supplier IC

Customer /
Partner IC

Advanced
Analytics, ML
& Prevention

Basic Analysis

Fig. 9.7 Overview of IoT
IT services

9.3 Enabling “Anything as a Service”

266

IoT IT services enable network vendors and technology service providers to pro-
vide solutions through machine-to-machine2 interactions that automatically provide
real-time visibility and issue resolution. Such intelligence enables people-to-people
interactions and enhanced social media collaboration. The interactions enable ven-
dors and service providers to continue growing their critical intellectual capital.

Another essential requirements for IoT IT services is the smart agent with auto-
mated two-ways always-on connectivity between the device (or the network) and
service management backend systems that typically reside in the network operation
center (NOC), at the network supplier, or managing partner. This connection is used
to (a) send uninterrupted near-real-time device/network intelligence from the
device/network to the service management system(s) and to (b) allow network man-
agement system(s) to connect to the device/network to take action to prevent service
outage or service deterioration.

Thus, one of the key differences between traditional network management and
IoT IT service is the fact that IoT IT services utilize uninterrupted, persistent
machine-to-machine or machine-to-person diagnostics, fortified with intellectual
capital and best practices, in a blend designed to give network administrators deep
visibility into the network. Network management solutions themselves may be con-
nected to backend services.

With IoT IT services, network administrators have direct view and intelligence at
the device, network, operations, and application layer providing automated reports
and recommendations. This end-to-end approach results in network intelligence
that enables network vendors (typically responsible for network and service war-
ranty), customers/clients (network owners), and partners (typically responsible for
operating, monitoring, and maintaining the network by working with vendors and
customers) to deliver proactive services including regular monitoring, proactive
notification, and remote remediation to enhance the customers’ network availability
and performance.

9.4 Connected Ecosystems

As was mentioned in quite a few chapters in this book, the number of devices con-
nected to the Internet is already in billions and expected to reach over 20 billion in
just a few years. Each of these devices is in a position to create a set of new auto-
mated services that are essential to business as well as the advancement of the world
economy. Today’s businesses are already requiring manufacturers to supplement
their products with intelligence and connectivity. With such capabilities, IoT layers
and domains will be drivers for major software development as well as services sup-
port in devices, infrastructure, platforms, and applications. No single vendor will be

2 The term “Machine” refers to managed entity with an IP address such as router, switch, router
interface.

9 IoT Vertical Markets and Connected Ecosystems

267

able to handle a complete IoT vertical, let alone offering an end-to-end solution. IoT
go to market will be driven by complex partnerships that includes a combination of
Original Equipment Manufacturers (OEM), Value-added Resellers (VAR), Systems
Integrators (SI), and Independent Software Vendors (ISV). IoT products, hardware
and software, as well as end-to-end solutions will be developed in multi- dimensional
partnerships, meaning that they are developed to integrate into IOT devices, net-
works, platforms, applications, and/or service. They will also be utilized to extend
an IoT enabled service portfolio.

On the device and network side, for instance, suppliers have been exploiting the
device embedded intelligence and connectivity capabilities to offer IoT-based ser-
vices changing the traditional maintenance and support from reactive to proactive
approach. These services are typically offered as part of remote management of
network equipment and assets, which provides proactive network monitoring,
health checkups, diagnostics, and software repairs in addition to technical support.

Suppliers are also realizing that connected devices continue to generate informa-
tion value not just for services but over their lifespans. They now know the current
location of the device, when it was first installed, important specifications, diagnos-
tics, availability of spares, replacement alternatives, repair instructions, support sta-
tus, and so on. This information can then be used by manufacturers and their partners
for sales and marketing efforts, product development, and new customer services.

Analysts believe that manufactures who have been exposed to the values driven
by connected device have a superior advantage. Their businesses will be shaped by
new, significant revenue opportunities emerging from the availability of the infor-
mation provided by these newly connected devices.

In the reaming of this chapter, we will describe the new IoT ecosystem-based
business model, using IT use cases for illustration, and then describe the key gaps to
allowing OEM, VAR, SI, and ISV to form partnership to develop end-to-end IoT
solutions.

9.4.1 IoT Services Terminologies

As we just mentioned in Sect. 9.2, suppliers have been able to connect their devices
(e.g., Jet Engines) to send information to their data centers for some time even
before IoT fully materialized. However, proprietary communication protocols and
algorithms were often utilized. The proprietary algorithms were used by tools to
sense, collect, store, analyze, and transport the data. Proprietary systems are rigid in
nature, developed to support a single solution and are prohibitory expensive to sup-
port and maintain (e.g., over satellites).

IoT promises to provide an open and efficient solution that can be utilized across
multiple environments and technologies. The Internet Protocol itself has been
shown to present a proficient and open approach to support “as a service” model as
illustrated in Chap. 3.

9.4 Connected Ecosystems

268

Before we introduce IoT Ecosystem solutions, however, we will define the key
terminologies to be used in the rest of this chapter.

• Product, device, or machine refers to an “entity to be managed” such as IoT
Gateway, router, switch, card on the switch, platform, or application, network
management system. Such entity is expected to have a unique identifier (i.e., IP
Address).

• Supplier (or vendor) refers to the company that manufactures, sells, and/or leases
the device/machine. e.g., Cisco is a supplier of networking devices, Rolls-Royce
or GE is a supplier of jet engines, Caterpillar is a supplier of heavy machinery.

• Enterprise (or network owner) refers to a business/company that has purchased
services and purchased or leased the required devices/products that are required
to run the services. e.g., AT&T is a customer of Cisco and Owner of AT&T net-
work. An end subscriber to AT&T services is a customer of AT&T and an owner
of a device managed by AT&T.

• Partner refers to the third party company that partners with a vendor to service a
customer network. The partner may be an OEM, VAR, SI, ISV, or business part-
ner on the service level, e.g., IBM is a partner of Cisco that may be hired by
AT&T to manage/service AT&T network.

9.4.2 IoT Connected Ecosystems Models

In this section, we will describe multiple flavors of ecosystem models that have
resulted from the IOT models with connectivity and device intelligence. But first,
we will describe the traditional model. Historically, vendors have sold their prod-
ucts to an enterprise, The enterprise fully manages the products on their own, as
shown in Fig. 9.8, or the enterprise outsources the management of such products to
a single or multiple partners, as shown in Fig. 9.9.

In IoT, the support paradigm is expected to be a combination of the above two
models. We will refer to this model as a Full Ecosystem Model which has been
empowered by Virtualization and Cloud Computing. Figure 9.10 shows a flavor of
such model with Customer–Partner–Supplier Relationships. In this model, network
vendors and/or their partners are often contracted by the network owners to manage
the network as well as the services that are offered on the networks.

The depth of such contracts varies between companies and typically depends on
the structure, resources, and expertise of the client. It can range from a limited
device warranty service where vendors are responsible for the health of their devices
by providing TAC (Technical Assistance Center) support and RMA (Return Material
Authorization) to full Managed Service where the network vendor and/or its partner
is responsible for the comprehensive management functions as well as the end-to-
end services offered by the network owner to end customers. In this case, the enter-
prise may own some aspect of the service management (e.g., in charge of monitoring
and fixing level 0 and level 1 problems). The partner owns more complex aspects of

9 IoT Vertical Markets and Connected Ecosystems

269

Fig. 9.8 Traditional support model—limited to vendors and enterprises

Fig. 9.9 Traditional support model—limited to vendors and partners

Fig. 9.10 Full ecosystem model with Customer–Partner–Supplier relationships

9.4 Connected Ecosystems

270

service management (e.g., level 2) and the vendor is responsible for levels 3 and 4
which may include fixing defects by subject matter experts as well as, RMAs and
firmware update support.

It should be noted that:

• Level 0 typically means self-support by searching support documentations such
as FAQs and information from the Internet. It allows users to access and resolve
issues on their own without contacting a local Helpdesk or Service Desk for
resolution.

• Level 1: is the initial support level responsible for basic customer issues.
• Level 2: is a more in-depth technical support level than Level 1 with more expe-

rienced technicians with knowledgeable on a particular product or service.
• Level 3: is the highest level of support in a three-tiered technical support model

responsible for handling the most difficult or advanced problems.
• Level 4: While not universally used, a fourth level often represents an escalation

point beyond the organization, e.g., The Research & Development organization
that have developed the code and algorithms.

Other flavors of the Full Ecosystem Model include multiple partners and even
vendors for the same IoT layer (e.g., sensors from multiple vendors). In this case,
data integrity is very essential to prevent partner 1, for example, from accessing data
managed by partner 2 especially when partner 1 and 2 are competitors.

In all of these three cases (Figs. 9.8, 9.9, and 9.10), the value of an IT product has
been limited to the product itself and a traditional maintenance and support contract.
With IoT, these support and “break-fix” contracts provide a valuable augmentation
to the product for customers and have a potential to grow to a considerable scale.

9.4.3 IoT Connected Ecosystems Models Key Capabilities

The IoT Ecosystem model cannot work properly without addressing data privacy,
standardization, and security.

Data privacy is vital to prevent data from being exposed to hackers and competi-
tors. Data privacy is very delegate in IoT connected ecosystem model: Data must be
shared but only with the appropriate vendors and/or partners to speed up the discov-
ery of any potential issue. With multiple partners managing, the three way ecosys-
tem model that includes vendor-partner-enterprise (Fig. 9.9) required a full proof
secure system guarantees sensitive data does not fall into the wrong hands.

Security is important for every player including the enterprises, vendors, part-
ners, and of course the end customers. Ecosystem players are not willing to risk
investments unless standard technologies and methodologies are first established.

Standardization is essential to deliver scalable and flexible solutions to the mar-
ket at reasonable price. It makes it possible for individual stakeholders to partner
and work with IoT hardware (e.g., sensors, getaways) and software (e.g., IoT

9 IoT Vertical Markets and Connected Ecosystems

271

platform and applications) vendors, application developers, solution integrators,
data content owners, and connectivity providers.

Outsourcing the management and operation of the network is gaining significant
attractiveness in recent years. It benefits the enterprises in so many ways. Examples
of such benefits include:

 1. Allowing enterprises to concentrate on their own business and leave IT related
functions to the experts. This is especially important for Small or Medium
Business (e.g., Small Banks, Retailers) with limited IT resources.

 2. Allowing network owners to introduce and deploy new technologies quickly.
Network owners do not need to hire or train subject matter experts every time a
new service/technology is introduced.

 3. Allowing enterprises to take more intelligent risks (e.g., trying multiple tech-
nologies at the same time) by taking advantage of Cloud Computing to lease
required infrastructures only for the duration of service.

 4. Allowing network vendors and partners to manage the full lifecycle of the prod-
ucts and use the collected information to develop smarter products customized
for the customer. For example, a farming equipment company may offer embed-
ding soil analysis system that analyzes farm soil in real-time and determines the
best type and amount of fertilizer, in addition to the business of selling farming
traditional equipment.

 5. Allowing network vendors and partners to compare the network health and KPI
(Key Performance Indictors) with other networks of the same type and provide
reports to the customers to repair and/or improve the network and service
performance.

Key capabilities to enable connected ecosystem models include:

 1. Ability to acquire essential data from managed devices or products in timely
fashion. Depending on the specific IoT vertical, such capability requires agree-
ments on the data to be collected, APIs and embedded storage via smart agents
for instance. Smart agent may be defined as capability that resides on the device
or product to collect the required data on regular basis or on demand. It should
also have the ability to notify northbound applications based on programmed
conditions (e.g., notify northbound application when the temperature change is
more than 1 degree).

 2. Ability for Supplier or Partner to analyze the data in timely fashion with a ser-
vice platform as we mentioned in Chap. 7.

 3. Ability for suppliers or partners to correlate collected data against Intellectual
Capital (IC) and business intelligence rules and other databases to produce
actionable results.

 4. Two-ways connectivity: Connectivity allowing devices and products to send
data securely to the supplier and/or partner service platform systems. It also
allows the service platform system to access the device or product secularly to
take action when required.

9.4 Connected Ecosystems

272

 5. Secure entitlement and data transfer capability to register and entitle customer
networks and communicate securely (via encryption and security keys) with ser-
vice providers or network vendors as we mentioned in detailed in Chap. 8.

With the above capabilities, services will be transitioned from being reactive to
being proactive and predictive.

9.5 Summary

This chapter introduced key IoT verticals that included Agriculture and Farming,
Energy, Oil and Gas, Enterprise, Finance, Healthcare, Industrial, Retail, and
Transportations.

Some standard bodies have used the term “Energy” to include energy consump-
tion in smart cities as well as “Oil and Gas” in the petroleum industry. We believe
“IoT Energy” and “IoT Oil and Gas” should be treated as two separate verticals.
This is due to the fact that energy is produced from many other sources (e.g., Winds,
solar) with focus on energy consumption. However, Oil and Gas focuses more on
process and asset management for the petroleum industry.

The chapter then presented a new IoT business model, driven by the availability
of new information, and offering key business benefits to the companies that manu-
facture, support, and service those systems, products, or devices.

Next the chapter presented the top requirements to deliver “Anything as a
Service” that includes: ability to determine: which data is needed? How to capture
the data? What type of local analysis is needed? How to transmit the data? How to
entitle, validate parse, and analyze the collected data once it is received by the back-
end system? Which service based performance? Which QoS and GoS thresholds?
What type of real-time and non-real-time actions should be taken in the impacted
device and/or the network and which algorithms? Which secure protocol should be
used access the device/network from the backend system and take action? And
which trending algorithms should be used to predict future measures?

Multiple IoT verticals in combination with the new ecosystem business model
were also introduced. The chapter clearly showed that no single vendor would be
able to address all business requirements. Finally the chapter listed the key benefits
of the proposed IoT Ecosystem partner and the capabilities to enable connected
ecosystem models to function properly.

Problems and Exercises

 1. What are the top ten IoT verticals As defined by oneM2M and ETSI stan-
dard bodies?

 2. This chapter stated that the real impact of IoT will only occur when data from
the silos is combined to create completely new types of applications. What does
this mean? Why is it important?

 3. What are the top two challenges to the farming industry? Why does IoT address
these challenges?

9 IoT Vertical Markets and Connected Ecosystems

273

 4. Some Companies identified the Six-Pillar for IoT to include Connectivity, Fog
Computing, Security, Data analytics, Management and automation and
 Application Engagement Platform. What is meant by each area? Why each of
these areas is essential?

 5. Complete the following Tables

 6. Three main use cases were listed for IoT Agriculture and Farming. List another
use case.

 7. What is the definition of a connected home? Provide an example.
 8. Devices in connected homes can send information to service providers or

directly to homeowners. List example for each case.
 9. In the Farming as a Service (FaaS), Agriculture machinery companies are uti-

lizing drones when the cellular coverage is not available.

 (a) Beside drones, what other technology may be used?
 (b) How does drone technology work?
 (c) Compare pros and cons of Drones vs. The other Technology in part (a).

 10. Describe how IoT is used to monitor and optimize solar energy plants?
 11. Experts believe that the lack of IoT standards and communication protocols is

putting development in risk especially in Healthcare and Finical. Why is that?
 12. Define the top requirements and framework to introduce “Heat as a Service”

under smart building?
 13. In IoT Retails use cases, retails use customer smart phones to generate heat

maps that show how consumers move around stores. Why would a customer
download retailer apps? What can the retailer do if customers are not willing to
download the app?

 14. In a table format, compare the transport, end device and place of analytics for
Thrust as a Service, Imaging as a Service, Farming as a Service, and IT as a
Service.

 15. In Sect. 9.3 mentioned that the IT infrastructure for business is growing and
becoming moving target with complexity. How is the infrastructure becoming
more complex? Provide examples.

 16. Describe the operational model of IT as a Service (ITaaS)? Which organization
is delivering the service? Which organization is receiving the service? How is
the service deliver?

 17. With the availability of IoT data combined with cost effective Internet-based
communications, many companies starting to contemplate why they would they

IoT solution Definition IoT vertical

Smart and Connected Parking
Structural health
Noise Urban Maps
Smartphone Detection
Electromagnetic Field Levels detection
Traffic Congestion
Smart Lighting

9.5 Summary

274

stop at selling a product and forgo very essential feedback information, when
they can also sell a service with the right to monitor the actual usage and behav-
ior of the product in the deployed environment. Usage information are not only
used to service a product/device and prevent service deterioration by verifying
contract level Service Level Agreements but also to learn about the product in
the field and determine the most essential set of future enhancements. Provide
an example.

 18. With IoT, who do service providers determine “which features, of a particular
product, are used the most?”

 19. What is IoT-based IT Service? What are to tow top requirements for IoT-based
IT and why are they needed?

 20. What are the key differences between traditional network management and IoT
IT service?

 21. (a) Why businesses are requiring manufacturers to supplement their products
with intelligence and connectivity? (b) Why is it difficult for single vendor to
provide a complete IoT solution? (c) List three typical partnerships that vendors
needs to establish to provide complete IoT solutions.

 22. Some IoT standard bodies have combined “IoT Energy” and “IoT Oil and Gas”
into one vertical, called “Energy”. However, the authors have decided to keep
“IoT Energy” and “IoT Oil and Gas” as two separate verticals. What was their
arguments based upon?

 23. What is the 80–20 Business Rule? Which IoT Businesses does it apply to?
 24. Why many suppliers are utilizing IoT connectivity to generate information

value not just for services but over their lifespans? Provide examples of such
information.

 25. What Level 0–4 support in Technical Services? Is there a Level 0? If so,
what is it?

 26. What is IoT Full Ecosystem Model? Which major technology has made make
such model feasible?

 27. What are the top three requirements that are required for the IoT Connected
Ecosystems Model to work? Provide a brief summary of each requirement?

 28. Why outsourcing the management and operation of an IoT network is gaining
significant attractiveness in recent years?

 29. What are the top five capabilities to enable connected ecosystem model for IT-
based service?

References

 1. OneM2M White Paper, “The Inter operability enabler for the entire M2M and IoT Ecosystem”,
January 2015, Online: http://www.onem2m.org/images/files/oneM2M- whitepaper-
January- 2015.pdf

 2. OneM2M Technical Report: OneM2M-TR-0001-UseCase, September 23, 2013.
 3. TM Forum Vertical Markets and connected Ecosystems, Online: https://www.tmforum.org/

vertical- markets- connected- ecosystems/

9 IoT Vertical Markets and Connected Ecosystems

http://www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf
http://www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf
https://www.tmforum.org/vertical-markets-connected-ecosystems/
https://www.tmforum.org/vertical-markets-connected-ecosystems/

275

 4. Internet of Things World Forum Cisco Day 1 Presentation, October 14, 2014, Online: http://
www.slideshare.net/BessieWang/iot- world- forum- press- conference- 10142014

 5. A. Slaughter, G. Bean, & A. Mittal, “Connected barrels: Transforming oil and gas strate-
gies with the Internet of Things”, Deloitte University Press, August 12, 2015. Online: http://
dupress.com/articles/internet- of- things- iot- in- oil- and- gas- industry/

 6. SAP, “The CEO Perspective: Internet of Things for Oil and Gas Top Priorities to
Build a Successful Strategy”, 2014, Online: https://www.sap.com/bin/sapcom/en_us/
downloadasset.2014- 10- oct- 30- 20.the- ceo- perspective- internet- of- things- for- oil- and-
gas- pdf.html

 7. 5Liblium, 50 Sensor Applications for a Smarter World, Online: http://www.libelium.com/
top_50_iot_sensor_applications_ranking/

 8. “Rolls-Royce Totalcare: Meeting the needs of Key Customers”, Executive Briefing #6, March
2013, Online: http://www.som.cranfield.ac.uk/som/dinamic- content/media/Executive%20
Briefing%206%20- %20RR%20Totalcare%20- %20Mtg%20the%20Needs%20of%20
Key%20Customers%20%20- %208%20Mar%2010%20v9.pdf

 9. “Driven by Increased Demands on Healthcare Suppliers, Connected Medical Imaging
Equipment to Grow at a 17% CAGR”, ABI Research, Mach 20, 2015, Online: https://www.
abiresearch.com/press/driven- by- increased- demands- on- healthcare- supplier/

 10. “IoT Services for Medical Imaging Equipment Market: MRI, Xray, CT Scanners, and
Tomography”, ABI Research, Online: https://www.abiresearch.com/market- research/
product/1021023- iot- services- for- medical- imaging- equipment/

 11. Federal energy Regulatory Commission Assessment of Demand Response and Advanced
Meeting Staff Report, December 2008, Online: http://www.ferc.gov/legal/staff- reports/12- 08-
demand- response.pdf

 12. J. Eckenrode, “The Internet of Things and financial services: Too much—or not enough—of
a good thing?”, Deloitte Quick Look Blog, October 7, 2015, online: https://quicklookblog.
com/2015/10/07/the- internet- of- things- and- financial- services- too- much- or- not- enough- of- a-
good- thing/

 13. Technology Target, A guide to healthcare IoT possibilities and obstacles, Online: http://search-
healthit.techtarget.com/essentialguide/A- guide- to- healthcare- IoT- possibilities- and- obstacles

 14. “The IoT, What the IoT Means for the Public Sector”, Hitachi Data Systems, Online: http://
www.isaca.org/Groups/Professional- English/cybersecurity/GroupDocuments/IoT%20in%20
the%20Public%20Sector.pdf

 15. A. Rayes, Book Chapter: “IP-Based Smart Services”, Network Embedded Management
and Applications, Springer, 2012, http://www.springer.com/engineering/signals/book/978- 1
- 4419- 6768- 8

 16. C. Chen, L. Yuan, A. Greenberg, C. Chuah and P. Mohapatra, “Routing-as-a-Service (RaaS):
A Framework For Tenant-Directed Route Control in Data Center”, IEEE/ACM Transactions
on Networking, Vol. 22, No.5, Oct 2014.

 17. K. Lakshminarayanan, I. Stoica, S. Shenker, J. Rexford, “Routing as a Service”, Online: http://
www.icsi.berkeley.edu/pubs/networking/routingservice04.pdf

 18. “Real-World IoT Case Studies, Best Practice and IoT Methodology”, entrsise- iot.org, Online:
http://enterprise- iot.org/

 19. Internet of Things: http://www.mckinseyquarterly.com/The_Internet_of_Things_2538
 20. “The Internet of Things: How the Next Evolution of the Internet Is Changing,” Cisco IBSG

white Paper, Dave Evans, April 2011.
 21. P. Marshall, “The 80/20 Rule of Time Management: Stop Wasting Your Time,” Online: https://

www.entrepreneur.com/article/229813
 22. GE Services: http://www.geaviation.com/services/index.html
 23. Boeing commercial Aviation Services: http://www.boeing.com/commercial/aviationservices/

index.html
 24. Boeing Gold Care Solution: http://www.boeing.com/commercial/goldcare/index.html
 25. Caterpillar Services: http://www.cat.com/parts- and- service

References

http://www.slideshare.net/BessieWang/iot-world-forum-press-conference-10142014
http://www.slideshare.net/BessieWang/iot-world-forum-press-conference-10142014
http://dupress.com/articles/internet-of-things-iot-in-oil-and-gas-industry/
http://dupress.com/articles/internet-of-things-iot-in-oil-and-gas-industry/
https://www.sap.com/bin/sapcom/en_us/downloadasset.2014-10-oct-30-20.the-ceo-perspective-internet-of-things-for-oil-and-gas-pdf.html
https://www.sap.com/bin/sapcom/en_us/downloadasset.2014-10-oct-30-20.the-ceo-perspective-internet-of-things-for-oil-and-gas-pdf.html
https://www.sap.com/bin/sapcom/en_us/downloadasset.2014-10-oct-30-20.the-ceo-perspective-internet-of-things-for-oil-and-gas-pdf.html
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.som.cranfield.ac.uk/som/dinamic-content/media/Executive Briefing 6 - RR Totalcare - Mtg the Needs of Key Customers - 8 Mar 10 v9.pdf
http://www.som.cranfield.ac.uk/som/dinamic-content/media/Executive Briefing 6 - RR Totalcare - Mtg the Needs of Key Customers - 8 Mar 10 v9.pdf
http://www.som.cranfield.ac.uk/som/dinamic-content/media/Executive Briefing 6 - RR Totalcare - Mtg the Needs of Key Customers - 8 Mar 10 v9.pdf
https://www.abiresearch.com/press/driven-by-increased-demands-on-healthcare-supplier/
https://www.abiresearch.com/press/driven-by-increased-demands-on-healthcare-supplier/
https://www.abiresearch.com/market-research/product/1021023-iot-services-for-medical-imaging-equipment/
https://www.abiresearch.com/market-research/product/1021023-iot-services-for-medical-imaging-equipment/
http://www.ferc.gov/legal/staff-reports/12-08-demand-response.pdf
http://www.ferc.gov/legal/staff-reports/12-08-demand-response.pdf
https://quicklookblog.com/2015/10/07/the-internet-of-things-and-financial-services-too-much-or-not-enough-of-a-good-thing/
https://quicklookblog.com/2015/10/07/the-internet-of-things-and-financial-services-too-much-or-not-enough-of-a-good-thing/
https://quicklookblog.com/2015/10/07/the-internet-of-things-and-financial-services-too-much-or-not-enough-of-a-good-thing/
http://searchhealthit.techtarget.com/essentialguide/A-guide-to-healthcare-IoT-possibilities-and-obstacles
http://searchhealthit.techtarget.com/essentialguide/A-guide-to-healthcare-IoT-possibilities-and-obstacles
http://www.isaca.org/Groups/Professional-English/cybersecurity/GroupDocuments/IoT in the Public Sector.pdf
http://www.isaca.org/Groups/Professional-English/cybersecurity/GroupDocuments/IoT in the Public Sector.pdf
http://www.isaca.org/Groups/Professional-English/cybersecurity/GroupDocuments/IoT in the Public Sector.pdf
http://www.springer.com/engineering/signals/book/978-1-4419-6768-8
http://www.springer.com/engineering/signals/book/978-1-4419-6768-8
http://www.icsi.berkeley.edu/pubs/networking/routingservice04.pdf
http://www.icsi.berkeley.edu/pubs/networking/routingservice04.pdf
http://entrsise-iot.org
http://enterprise-iot.org/
http://www.mckinseyquarterly.com/The_Internet_of_Things_2538
https://www.entrepreneur.com/article/229813
https://www.entrepreneur.com/article/229813
http://www.geaviation.com/services/index.html
http://www.boeing.com/commercial/aviationservices/index.html
http://www.boeing.com/commercial/aviationservices/index.html
http://www.boeing.com/commercial/goldcare/index.html
http://www.cat.com/parts-and-service

276

 26. John Deere Services and John Deere Farm Sight: http://www.deere.com/wps/dcom/en_US/
services_and_support/services_support.page, http://www.deere.com/en_US/CCE_promo/
farmsight/index.html

 27. Go Green Intuitive, June 2016, Online: https://gogreeninitiative.org/wp/
 28. Computer Networking A Top-Down Approach, 5th Edition, J. F. Kurose and K. W. Ross,

Addison Wesley.
 29. Glen Allmendinger and Ralph Lombreglia, Four Strategies for the Age of Smart Service: http://

hbr.org/product/four- strategies- for- the- age- of- smart- services/an/R0510J- PDF- ENG
 30. J. Case, et al., “Simple network management protocol (SNMP),” RFC 1157, 1990.
 31. R. Presuhn, et al., “Management Information Base (MIB) for the Simple Network Management

Protocol (SNMP),” ed: STD 62, RFC 3418, 2002.
 32. L. Steinberg, “Troubleshooting with SNMP and Analyzing MIBS,” ed: McGraw-Hill

Companies, 2000.
 33. Alfa Images Online: http://alfa- img.com/show/farm- planters.html
 34. The Internet of Everything – Vision and Strategy, Cisco Systems, March 2013, Online: http://

www.slideshare.net/Cisco/2- internet- of- everything- vision- and- strategy- rob- lloyd- final
 35. Integrated Framing Systems, Online: http://www.monsanto.com/investors/documents/whis-

tle%20stop%20tour%20vi%20- %20aug%202012/wst- ifs_posters.pdf
 36. How the Internet of Things is Reinventing Retail, Position Paper by ComQi, July 2015, Online:

http://www.comqi.com/internet- things- reinventing- retail/
 37. Infosys Study “Rethinking Retail Insights from consumers and Retail into an Omi-Channel

Shopping Experience”, 2014, Online: https://www.infosys.com/newsroom/press- releases/
Documents/genome- research- report.pdf

 38. “How the Internet of Things Is Improving Transportation and Logistics”, Supply
Chain 247, September 9, 2015, Online: http://www.supplychain247.com/article/
how_the_internet_of_things_is_improving_transportation_and_logistics/zebra_technologies

9 IoT Vertical Markets and Connected Ecosystems

http://www.deere.com/wps/dcom/en_US/services_and_support/services_support.page
http://www.deere.com/wps/dcom/en_US/services_and_support/services_support.page
http://www.deere.com/en_US/CCE_promo/farmsight/index.html
http://www.deere.com/en_US/CCE_promo/farmsight/index.html
https://gogreeninitiative.org/wp/
http://hbr.org/product/four-strategies-for-the-age-of-smart-services/an/R0510J-PDF-ENG
http://hbr.org/product/four-strategies-for-the-age-of-smart-services/an/R0510J-PDF-ENG
http://alfa-img.com/show/farm-planters.html
http://www.slideshare.net/Cisco/2-internet-of-everything-vision-and-strategy-rob-lloyd-final
http://www.slideshare.net/Cisco/2-internet-of-everything-vision-and-strategy-rob-lloyd-final
http://www.monsanto.com/investors/documents/whistle stop tour vi - aug 2012/wst-ifs_posters.pdf
http://www.monsanto.com/investors/documents/whistle stop tour vi - aug 2012/wst-ifs_posters.pdf
http://www.comqi.com/internet-things-reinventing-retail/
https://www.infosys.com/newsroom/press-releases/Documents/genome-research-report.pdf
https://www.infosys.com/newsroom/press-releases/Documents/genome-research-report.pdf
http://www.supplychain247.com/article/how_the_internet_of_things_is_improving_transportation_and_logistics/zebra_technologies
http://www.supplychain247.com/article/how_the_internet_of_things_is_improving_transportation_and_logistics/zebra_technologies

277© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_10

Chapter 10
The Blockchain in IoT

10.1 Introduction

The role of centralized governance over networks and entities has allowed for the
mass control of digital media and private life. As the Internet has evolved, research-
ers and developers have looked for new ways to distribute control and trust.
Blockchain technology was first introduced in 2008 with the famous Bitcoin white-
paper by pseudonym Satoshi Nakamoto. Since then, we have seen a global wave of
interest and investments into the world of cryptocurrencies and digital assets. While
some are just trying to invest into cryptocurrencies, others believe more in the
underlying technology behind it—blockchain.

Through the use of blockchain technology, one can decentralize an entire net-
work—never relying on a central entity—and can place trust across all users instead
of one central node. By distributing the data throughout the network, any one person
or computer can contact their closest node to retrieve information residing on a
common ledger.

Many expect that blockchain technology has the potential to transform a range of
different industries. Because of this, blockchain is already being used and researched
by many of the leading companies in technology. While many efforts are still in
their infancy, and there are many challenges to solve, it is expected that blockchain
has the power to propel significant transformations in the IoT sector.

Cisco estimates that there will be roughly 26 billion devices connected to the
Internet by 2020. Server-client models will struggle to scale to such demand.
Centralized models mean high maintenance costs for the manufacturer, and limited
consumer trust in devices that are always connected to the Internet [3]. Blockchains
facilitate the sharing of services and assets like never before. These types of possi-
bilities have led companies like IBM, Cisco, and Intel to contribute to blockchain in
IoT efforts.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_10#DOI

278

There are countless digital currencies and innovative applications being devel-
oped on top of blockchain. The impact of these efforts will be hard to predict. In IoT,
blockchains can facilitate things like M2M transactions, automated firmware
updates, or even the tracking of food quality and control. Imagine cars automati-
cally negotiating rates for parking spaces, or drones automatically reserving and
paying for a landing pad. These are just a few possibilities, and in this chapter, we
explore further how the blockchain can impact the IoT domain.

The chapter is organized in the following way. Section 10.2 defines the block-
chain. We describe the difference between Bitcoin and blockchain, and provide an
overview of how blockchain has evolved over time. In Sect. 10.3 we dive into how
blockchains work, and review the features that make the technology important.
Section 10.4 introduces how the blockchain may impact notable use cases in IoT,
and reviews the advantages and disadvantages of blockchain technology. Lastly in
Sect. 10.5, we go over security considerations within blockchain and IoT.

10.2 What Is the Blockchain?

Before learning what a blockchain is, we should first understand why Bitcoin and
the blockchain were introduced together in the original Bitcoin whitepaper. Bitcoin
was presented as the peer-to-peer electronic payment system, and blockchain was
the proposed mechanism that allowed it to work. A peer-to-peer digital currency
needs a mechanism that allows its users to trust each other without the need for a
central authority (like a bank). It is in the Bitcoin whitepaper that Satoshi Nakamoto
proposes such a mechanism. More specifically, Nakamoto proposes the blockchain
as the solution to the double spending problem—how to tell if a user, or device, has
spent the same digital coin more than once. Double spending is particularly hard to
detect in a distributed system like Bitcoin, because there is no central authority
tracking balances. This means that without a solution like the blockchain ledger, it
is easy for a user to send the same coin to different users before anyone in the net-
work learns of the fraudulent transactions. Blockchain is therefore what allows
Bitcoin to be a trustless system, and is the key innovation responsible for the success
of Bitcoin and other cryptocurrencies that later emerged.

What is needed is an electronic payment system based on cryptographic proof instead of
trust, allowing any two willing parties to transact directly with each other without the need
for a trusted third party…In this paper, we propose a solution to the double-spending prob-
lem using a peer-to-peer distributed timestamp server…—Nakamoto, 2008

10.2.1 Bitcoin and Blockchain

It is important to make a clear distinction between Bitcoin and the blockchain. As
mentioned earlier, the blockchain is the mechanism that allows Bitcoin to work.
Thus, Bitcoin can be considered to be an application that uses blockchain—but

10 The Blockchain in IoT

279

blockchain can be used on its own. It can be used to enable other cryptocurrencies,
or as we will see in the next section, blockchain can also enable an array of different
applications beyond Bitcoin and other cryptocurrencies (Fig. 10.1).

A simple analogy we can use is that of the car and the combustion engine. A car
uses a combustion engine to function, but the combustion engine can be used to
power other systems such as buses, trucks, boats, electrical generators, etc. Thus,
we can think of the blockchain as the combustion engine and Bitcoin as the car.
Bitcoin is just the first example of many possible applications of blockchain
technology.

10.2.2 Evolution of Blockchain

Since its introduction in 2008, the blockchain has evolved as it has been adapted in
a wide range of applications and industries. In Table 10.1, we break down the differ-
ent categories of blockchain as proposed by Melanie Swan in the book “Blockchain,
a Blueprint for a new economy.”

Blockchain 1.0: Blockchain 1.0 consists of the use of blockchain in digital currency
applications for the decentralization of money or payment systems. This includes
Bitcoin, other cryptocurrencies, and payment systems. In the beginning, these
were the first applications to employ blockchain as a technology.

Blockchain 2.0: The next major innovation in blockchain, considered Blockchain
2.0, is a technology known as “contracts.” Beyond peer-to-peer payment sys-
tems, Blockchain 2.0 includes the transfers of other property such as stocks,
bonds, and smart property. It also includes “smart contracts,” which are described
later in this section.

Fig. 10.1 Bitcoin vs.
Blockchain

Table 10.1 Categories of Blockchain

Categories Description

Blockchain 1.0 Blockchains used for currencies
Blockchain 2.0 Use of smart contracts within blockchains
Blockchain 3.0 Applications beyond currency and financial

markets

10.2 What Is the Blockchain?

280

Blockchain 3.0: Blockchain 3.0 consists of all applications beyond currency and
markets. This includes the use of blockchain in areas like healthcare, govern-
ments, and commercial settings. In Sect. 10.5 of this chapter, we cover a couple
of these segments, and the potential use cases of blockchain in IoT.

10.2.3 Defining Blockchain

A blockchain is composed of a distributed digital ledger that is immutable—cannot
be edited—and is shared among all participants in a blockchain network. More
specifically, a blockchain is a data structure composed of timestamped and crypto-
graphically linked blocks. Each block has a cryptographic hash, a list of validated
transactions and a reference to the previous block’s hash. Through this mechanism,
nodes can verify that a participant owns an asset without the need for a central gov-
erning authority. The key characteristics behind the success of blockchain are as
follows:

 1. Decentralized architecture.
 2. A “trustless” system.
 3. Consensus mechanism.
 4. History of transactions.
 5. Ensured immutability.

We consider these as the key factors that have made the technology transforma-
tional. The blockchain allows for participants to engage in trustless peer-to-peer
transactions. In short, it is said that decentralized, trustless transactions are the key
innovation of the blockchain [1].

10.3 How Blockchains Work

A blockchain is just what the name implies, a group of blocks linked, or chained,
together cryptographically. It also keeps record of all transactions that have ever
been executed by nodes on the network. In this section, we provide an overview of
how blockchains work by using Bitcoin as an example. We examine how transac-
tions are created, how they are broadcasted, how they are recorded into blocks, and
how they are accepted into the distributed network of nodes.

Important Definitions

Nodes: Any computer or device connected to a blockchain network.
Ledger: A shared and distributed history of all transactions and balances.
Mining/Miners: In Bitcoin, mining is the process of generating a new legitimate

block by applying proof-of-work. There are people that dedicate their nodes to
“mine” new blocks. These nodes are considered “miners.”

10 The Blockchain in IoT

281

Consensus: A consensus algorithm is the mechanism by which all nodes in the
network agree on the same version of the truth. A consensus algorithm allows
nodes on the system to trust that a given piece of data is valid, and that it has been
synchronized with all other nodes.

Cryptocurrency: A digital currency built upon cryptographic protocols.
Decentralized Application (DAPP): A decentralized application built on top of a

blockchain based system.
Secure Cryptographic Hash Functions: A secure cryptographic hash function is a

hash function that preserves one-wayness—easy to compute, but virtually impos-
sible to reverse engineer.

Cryptographic Keys: The use of symmetric (same) keys and asymmetric (public-
private) key pairs for the use of signing and verifying transactions.

Merkle Tree Root: The root of a Merkle tree (binary hash tree). The root is the
result of all leafs hashed together to a single hash.

10.3.1 Anatomy of the Blockchain

Components of the block’s header:

 1. Version: The version of block validation rules it follows.
 2. Previous Block Hash: The hash of the previous block in the blockchain.
 3. Merkle Root Hash: The root of all transactions hashes in a block.
 4. Timestamp: The Unix epoch time the block was mined.
 5. Bits: Encoded version of the target threshold.
 6. Nonce: Arbitrary number that can only be used once.
 7. Transaction Count: Total count of transactions contained within this block.

In Fig. 10.2, we show the basic architecture of the blockchain. A blockchain is very
similar to a linked list—each block contains a pointer to the previous block. A key
difference in blockchain is that each block contains a hash pointer to the previous
block. A hash pointer contains two things: A pointer, or reference to the location of
the previous block, and the cryptographic hash of that block. Storing the crypto-
graphic hash of the previous block allows us to verify that the block we are pointing
to has not been tampered with. To verify a block, we simply compare our stored
hash pointer with the previous block’s hash and make sure they are equal.

10.3.2 Understanding a Block’s Hash

Cryptographic hash functions are an important aspect of blockchain’s security. For
this reason, let us take a look at how block hashes are calculated and how they are
used in preventing an attack. To calculate the hash, three inputs are used: Previous
block hash, the Merkle root hash, and the nonce. These values are processed by the

10.3 How Blockchains Work

282

SHA-256 cryptographic hashing algorithm. The output is the block hash—a fixed
size output that uniquely represents all of the block’s contents.

In Bitcoin, hashing is performed by miners, and the hash produced must be lower
than the target hash set by the network. To find a hash meeting this criteria, miners
try different nonce values and check if the output hash is lower than the target, while
the previous block hash and Merkle root hash remain the same. Miners do this itera-
tively until a valid hash is found. Because of this, the mining process consumes a lot
of power and compute resources. This procedure is how the miners create proof-of-
work. In Fig. 10.3 we illustrate how the block hashes are calculated.

To understand how it works, consider a scenario where an attacker attempts to
pay themselves some Bitcoins by modifying one of the blocks in the chain. Imagine
they attempt to add a fake transaction to block 1, claiming that someone has sent
them some coins. Upon changing the transaction list, the hacker will be forced to
update the Merkle root hash. Because the block’s hash is dependent on the Merkle
root hash, if the Merkle root hash is altered, then we must recalculate the block’s
hash. But that is not so easy. In Bitcoin, it takes considerable compute power to
mine one block. So the attacker would then have to invest power and time recalcu-
lating the block they maliciously altered. Once the attacker has calculated the new
hash, then they have to figure out a way to make the block a legitimate part of the
blockchain.

This is where hash pointers play a key role. For the attacker to alter any block in
the chain, they also have to change every other block that follows! Why? Because
every subsequent block points to the previous block—block 2 contains a hash

Fig. 10.2 Anatomy of the Blockchain

10 The Blockchain in IoT

283

pointer to block 1. But our attacker was forced to recalculate the hash for block 1,
so a comparison with the hash pointer in block 2 will fail. To avoid this, the attacker
must change the hash pointer in block 2 to match the block hash of the new (mali-
cious) block 1. But changing the hash pointer in block 2, changes block 2’s hash.
Thus, the attacker would have to recalculate the hash for block 2 as well. Once they
change block 2, same would have to be done for block 3, and block 4 …etc. During
this time, the network has still been progressing while the attacker is spending time
altering past blocks. Time and cost used in such an attack are expensive and point-
less as long as the attacker holds less than 51% of the network’s compute power. It
is this combination of proof-of-work and hash pointers that trumps 51% attacks and
is considered to be the fundamental security feature of Bitcoin’s blockchain.

10.3.3 Lifecycle of a Transaction

To understand how transactions are executed in a blockchain, let us consider an
example scenario where Alice sends Bob .5 Bitcoin (BTC). In order for the transac-
tion to take effect and be accepted into the blockchain, the following main steps
need to be completed (Fig. 10.4):

Let us assume Alice’s current balance is: 10BTC and Bob’s is 2BTC.

 1. Alice agrees to send Bob .5BTC

 (a) Alice initiates a transaction using Bob’s Bitcoin address. While Bob’s iden-
tity is not linked to his Bitcoin address, Bob may create a new address for
every new transaction to minimize tracking of his activity.

 (b) Bitcoin is pseudo-anonymous, meaning Bob’s transactions are not fully
obfuscated, and if his address is exposed in connection to his identity, then
there are tools that can potentially track all of his past activity on Bitcoin.

Fig. 10.3 Block SHA256 calculation

10.3 How Blockchains Work

284

 2. Alice generates a transaction

 (a) When Alice broadcasts a transaction to the blockchain network, the message
notes that Alice should now have .5 less BTC and Bob should gain .5BTC. In
reality, no coin or asset is actually transferred (there is no digital coin that
actually exists in the form of bits), instead, only records of transactions are
recorded in the blockchain’s ledger. In order for the transaction to be broad-
cast securely, Alice signs that the transaction is legitimate. This verifies that
no one is trying to withdraw coins out of her wallet without permission.
Alice signs the message using her private key to Bob’s public key, thus only
Bob can spend these coins.

 3. Alice’s wallet or interface into the Bitcoin network will now propagate the
transaction to known peers

 (a) Once the transaction has been generated and is valid, Alice’s wallet or inter-
face to the network will propagate the transaction to her known peers. These
nodes will in turn propagate it to their peers upon validating the transaction.
This mechanism is called flooding.

 4. Miners receive the transaction, and validate it, ensuring that it has not been
corrupted or tampered with.

 (a) Miners will use the consensus rules to validate the transactions making sure
there is no double spending and that each address associated with the trans-
action exists.

Fig. 10.4 How a Bitcoin transaction is executed

10 The Blockchain in IoT

285

 5. Miners include the transaction into a block, and apply the consensus algo-
rithm (proof-of-work in case of Bitcoin) to mine a new block.

 (a) Transactions are then added to the new block in order of precedence.
Transactions are added in descending order based off of their fees. Each
transaction usually contains a fee that is paid to the miner. Once the miner
receives the previous block in the network, they will start mining the new-
est block.

 6. Once a new block is mined, miners then broadcast the new block to be added
to the blockchain by all other nodes in the network.

 (a) The miner will propagate its new block to the network and begin the process
all over again with new transactions.

10.4 Features of Blockchain

A blockchain provides key benefits that have never been possible before. These
benefits stem from the clever combination of novel and existing technologies that
allow the community to build innovative blockchain based solutions. In this section
we cover some of the important features that a blockchain provides and discuss why
they are important in IoT.

10.4.1 Consensus Algorithms in IoT

Blockchains can be considered “trustless” because they provide a mechanism to
validate that data being added to the blockchain is legitimate. To achieve this, all
nodes need a way of agreeing on the correct version of the truth. The algorithms
used to reach an agreement are referred to as “consensus algorithms.” For example,
Bitcoin uses the “Proof of Work” (PoW) algorithm, but as we will see in this section,
PoW is not the only algorithm that exists; there are many, and all of them offer dif-
ferent advantages and disadvantages. In IoT, it is essential that the consensus algo-
rithms used can meet certain security, energy consumption, and computational
requirements. In this section, we introduce a short list of the most prominent con-
sensus algorithms, and examine their viability in IoT solutions.

Byzantine Generals Problem Before diving into different consensus algorithms,
let us further define the goal of a consensus algorithm. In July 5th, 1982, Leslie
Lamport, Robert Shostak, and Marshall Pease published a paper named “The
Byzantine Generals Problem.” From the original paper:

…imagine that several divisions of the Byzantine army are camped outside an enemy city,
each division commanded by its own general. The generals can communicate with one
another only by messenger. After observing the enemy, they must decide upon a common

10.4 Features of Blockchain

286

plan of action. However, some of the generals may be traitors, trying to prevent the loyal
generals from reaching agreement. The generals must decide on when to attack the city, but
they need a strong majority of their army to attack at the same time. The generals must have
an algorithm to guarantee that (A) all loyal generals decide upon the same plan of action …
(B) A small number of traitors cannot cause the loyal generals to adopt a bad plan…The
loyal generals will all do what the algorithm says they should, but the traitors may do any-
thing they wish. The algorithm must guarantee condition A regardless of what the traitors
do. The loyal generals should not only reach agreement, but should agree upon a reason-
able plan.

In the case of blockchain, the generals are the nodes in the distributed network,
and the messages are the communications, or transactions, across blockchain net-
work. In short, how do all truthful network nodes reach a consensus on the validity
of a new transaction even if there exists a certain percentage of malicious or faulty
nodes? A Byzantine Fault Tolerant system is one that can tolerate the Byzantine
Generals Problem.

Proof-of-Work (PoW) Proof-of-Work algorithms require “miners” to solve a very
complex cryptographic puzzle to try to prove that the current transactions on the
blockchain are valid. This is the consensus algorithm used in Bitcoin. All miners
receive transactions and begin a race to “mine” a new block. The first “miner” to
solve this puzzle correctly, wins and receives an incentive in return. In Bitcoin,
“miners” receive Bitcoins as a reward. The reward is halved every 210,000 blocks.
In PoW, nodes trust the longest chain—the one with the most blocks added to it by
other miners. Thus PoW is safe as long as 51% of the compute power is owned by
honest miners.

In PoW, solving the puzzle consumes a lot of computational power and takes
considerable amount of time to complete. Thus, adding new blocks translates to
high energy costs and low amount of transactions per second. In IoT, both present a
big challenge. First, the actual sensors/devices on the network will not be interfac-
ing with computation and consensus. The main gateway and fog domain will most
likely be in-charge of computation and consensus as they can manage memory and
power in a more sustainable fashion. Sensors will primarily rely on sending infor-
mation to the fog and dealing with identity management between peers. PoW could
potentially work with IoT devices, but there would have to be a strict separation of
compute nodes and light clients (sensors) throughout the network. We argue that
while a feasible algorithm for IoT, it is not a good choice for IoT solutions due to
the large computational and energy consumption requirements that will have to be
introduced into the networks.

Proof of Stake (PoS) Proof of Stake does not require expensive compute resources
to mine blocks. Instead, PoS uses a validation process based on the amount of coins
that you already own. If you own 1% of the stake in the blockchain, then you will
have a 1% chance of getting chosen to create, or “mint,” a block. Thus, simply by
having a stake in the system, you can be chosen to “mint” a block. The idea is that
the more value you have at stake in the system, the less likely you will be willing to

10 The Blockchain in IoT

287

create a malicious block. If a block is invalidated by the rest of the network, then
you lose your stake. This action will fall into an invalidation period, where the con-
sensus for that transaction may be taken over by fellow peers, but your validity will
drop among the nodes.

We argue that PoS would be a good fit for IoT because does not suffer from PoW
energy drawbacks and does not require high computational capabilities. With PoS,
a possible drawback is that a node with more stake has more control of the network;
and this control can continue growing because the node with the most stake is more
likely to be chosen to mint a block. In permissioned blockchains this should not be
a problem, but more research is needed to understand the effects of PoS in permis-
sioned and permissionless IoT blockchains.

Proof of Activity (PoA) Similar to PoW, Proof of Activity requires miners to mine
a new block, the only difference being that the transactions on the network are not
required to be part of the new block, the mining is done for the sole purpose of solv-
ing a cryptographic puzzle. Once a new block is found, a similar validation to PoS
is performed. The block is broadcasted to a group of chosen validators for them to
sign the new block. The likelihood a new validator is chosen is similar to that of
PoS, the more stake they own in the network, the more likely they will be chosen to
sign the new block. Proof of Activity suffers from the same drawbacks as
PoW. Because of this, it is probably not a good choice for IoT applications.

Proof of Elapsed Time (PoET): Proof of Elapsed Time is a bit different than the
other consensus algorithms mentioned so far. PoET was developed by Intel and is a
proposed contribution to the open-source Hyperledger blockchain project. At a high
level, PoET essentially works by assigning each node a random wait time, the vali-
dator with the shortest wait time “wins” and gets to mine the next block. The algo-
rithm is considered to be “lottery algorithm”—the probability of being selected is
proportional to the amount of resources contributed. This consensus algorithm has
advantages in that it is much more energy efficient than PoW and does not require
expensive hardware. On the other hand, it requires Intel processors to run it (requires
trusted execution environment on the CPU), in which case it requires trust in Intel’s
hardware, which many say goes against the decentralization of trust concept. As far
as IoT devices are concerned, we believe that PoET would be a good option for
private IoT blockchains. This is because there is no need to have high compute
power, or expensive hardware, and is also power efficient (Table 10.2).

While not an exhaustive list of consensus algorithms (and there are many), it is
easy to see that at the heart of a blockchain is the consensus algorithm that glues the
whole system together. Each consensus algorithm will have its own advantages and
disadvantages depending on the use case; different industries and applications will
apply different consensus depending on requirements such as scalability, transac-
tions per second, and if the system will be permissioned or permissionless.

10.4 Features of Blockchain

288

10.4.2 Cryptography

What makes blockchains trustworthy and secure is its underlying mechanisms
based on cryptography, signed keys, and digital signatures. While Bitcoin has been
exposed to various attacks in the past, it is worth noting that the ledger itself, or the
blockchain, has never itself been knowingly hacked. In the past, Bitcoin hacks tar-
geted Bitcoin wallets or Bitcoin exchange websites instead. Let us consider Bitcoin’s
cryptographic elements as an example, and see how they are used to maintain the
block chain’s integrity. Bitcoin’s cryptographic components are mainly com-
posed of:

• Secure Hash Algorithm (SHA-256): Cryptographic hash functions are a set of
mathematical functions that output unique outputs for unique inputs. The input
can be of any size, and the output is always a fixed size—256 bits (32 bytes) in
the case of SHA-256. If any one bit of the input is changed, the cryptographic
hash function outputs a completely different and unpredictable output. Secure
cryptographic hashing preserves one-wayness, that is, you can easily produce a
hash from a given input, but it is extremely difficult to generate the input to the
hash by only knowing the hashed output value. How difficult? SHA-256 is used
for most functions including integrity, block-chaining, and hashcash cost func-
tion calculations.

• Elliptic Curve Digital Signature Algorithm (ECDSA): ECDSA is used to cre-
ate cryptographic keys that can derive addresses for use within the blockchain.
Each ECDSA algorithm calls a specific curve to be used for key generation,
which enables efficient computation.

Cryptography is at the heart of why the blockchain is so revolutionary. Everything
from consensus algorithms, to encryption, to the immutability aspects of the block-
chain are due to the underlying cryptography. This is a fundamental key in unlock-
ing the potential to IoT, as different devices need to engage in transactions with
trustless entities and devices on a constant basis.

Table 10.2 Consensus algorithms in IoT

Consensus
Algorithm Description

IoT
compatibility

Proof-of-Work Computation is needed to solve cryptographic puzzle to
ensure consensus.

No

Proof of Stake Ability to mint a new block is proportional to the stake in
the blockchain network.

Yes

Proof of Activity Computation is needed to solve cryptographic puzzle to
only known validators who are active.

No

Proof of Elapsed
Time

Use of random time intervals that determine which node is
the current miner.

Yes

10 The Blockchain in IoT

289

10.4.3 Decentralized

Having a decentralized architecture can propel IoT applications to be realized at a
wide scale. Currently, IoT systems mostly depend on client/server or publish sub-
scribe architectures [7]. Centralized architectures require expensive infrastructure
with high compute and storage capabilities. In addition, they present a form of cen-
tralized control that can be act as a single point of failure or the target of a security
attack. Publish subscribe architectures can also have a few drawbacks with scalabil-
ity and security. If devices could perform secure transactions using a peer-to-peer
paradigm, it would greatly reduce the cost, transaction time, and probability of ser-
vice interruption.

The blockchain is composed of a decentralized, distributed network of nodes that
participate in transactions and maintenance of the network. This is the core concept
behind blockchain. All transactions are peer-to-peer and are tracked by all of the
participating nodes in a network. Blockchain networks have a reliability factor of
(n − 1)—if any node fails, or drops from the network, there is no interruption to
service. The network always maintains availability and fault tolerance.
Decentralization in IoT is a very attractive alternative to previous architectures, but
there are still many challenges, and no clear consensus on how to best take advan-
tage of blockchains decentralized nature in IoT (Fig. 10.5).

10.4.4 Transparency and Trust

The use of a public ledger allows all nodes on the network to see the entire history
of the given blockchain. This opens access to the history of data on the chain, giving
transparency to all transactions. The trust that is built up within the network is main-
tained through the use of the public ledger and gossip protocol. Each node always

Fig. 10.5 Network types

10.4 Features of Blockchain

290

knows of its nearest neighbors and new nodes. Through each node gossiping to one
another, they learn of new transactions. Utilizing the public ledger and protocol
instills trust within each node as each node is responsible for one another. This
decentralization mechanism holds the nodes responsible for the integrity of the
network.

10.4.5 Permissioned, Permissionless, and Consortium

Permissionless blockchains, such as Bitcoin, are designed so that anyone can join
and participate in the network without having to establish their identity. There is no
need to verify a given user through some sort of identity management system. The
only identity needed is the user’s public key. In contrast, permissioned ledgers
are primarily used in private applications where strong indicators of identity are
required to join the network. Permissioned ledgers are preferred among B2B and
B2C enterprises. There are usually multiple layers of validation before enrollment
to the network is verified. The use of regulators, as seen in IBM and Linux
Foundation’s Hyperledger, is used to ensure all users meet various requirements on
the network. Other blockchains such as Ethereum give one the option to setup the
network as permissioned, permissionless, or consortium. Consortium blockchains
are very similar to permissioned blockchains. The key difference being that in a
consortium, new participants are authenticated by a predetermined group of private
entities.

10.4.6 Smart Contracts

Originally introduced by Nick Szabo in 1994, smart contracts consist of small com-
puter programs that contain—embedded in their code—an agreement between two
entities. This contract is then distributed across the blockchain and is responsible for
facilitating the execution, verification, and enforcement of an agreement between
seller and buyer. Essentially, a smart contract is just a digital, auto-enforceable ver-
sion of a traditional paper-based contract. Ethereum is the most popular blockchain
system with embodied smart contracts. It has a current market cap of more than $35
billion as of November 2017. As we will see in later sections, smart contracts allow
devices in IoT to negotiate and execute previously agreed actions automatically,
enabling a new set of functions and use cases for IoT solutions.

10 The Blockchain in IoT

291

10.4.7 Advantages and Disadvantages

There has been much debate over the use of blockchain technology and its possible
applications. In most use cases, traditional back end infrastructures offer a good
solution to existing problems. Yet, the industry is beginning to move to a more
decentralized infrastructure to improve security and trust between users and the rest
of the network. While blockchain presents a lot of promise, it is not a silver bullet—
blockchain does not solve all security and privacy concerns, it is only part of the
solution. With every new technology there are advantages and disadvantages, and
blockchain is just one part of a complex technology stack.

Blockchain technology has multiple disadvantages that have decreased its adop-
tion rate. An often-overlooked challenge is that the technology is initially difficult
to understand and adopt. Trying to get people to use blockchain applications is a
difficult task, which brings disadvantages as people believe it is an unnecessary
precaution for a network.

Scalability is another widely debated challenge. As an example, there has been
much debate over scaling in regard to Bitcoin, which brought about a fork in the
chain to allow larger than 1 MB block sizes. People felt that this size limitation does
not scale with the adoption of Bitcoin and transactions will take longer and longer
to be validated and added to the main chain. There has also been other discussions
of the scalability of Ethereum with the nature of storing everything within various
Merkle roots, where over time downloading the full chain will be much larger than
Bitcoin’s full chain (as of April 2018 its around 180 GB). To avoid similar storage
issues, people—especially users on mobile devices—use Simplified Payment
Verification (SPV) nodes which allow them to not run a full node and use filters to
only grab the information that they need. This will rise over the next years as well
as the use of Lightning network and other off-chain protocols.

Other disadvantages include the size of the network and limiting the control of
nodes. Whether one is building a permissionless, permissioned, or consortium
blockchain, limits will have to be set on the admin privileges of nodes, so that the
network does not gravitate towards a “centralized” paradigm. With this, there is
always the risk of a Sybil (51%) attack on the network. As these are definitely
important disadvantages, there are also a great deal of positives from the technology.

Blockchains bring about a new way to enable privacy and security between par-
ties through cryptographic principles. The cryptographic principles employed
ensure the handling of assets to be controlled only by the one who hold the private
key. The decentralized nature enables all users to share the responsibility for the
integrity of the network. Blockchains use an immutable ledger, once something is
added into the ledger it cannot be changed or altered. This allows for a fully trust-
worthy system as we can trust that it will not be manipulated. There is no more
“middle-man” or centralized authority that holds all of the information. Every node
on the network holds a copy of the ledger which allows for confirmations, validity,
and for a truly trustless system to survive. Blockchains are fairly simple to bootstrap
once they are implemented. Furthermore, it is a new way to envision technology and
the next frontier of Internet.

10.4 Features of Blockchain

292

10.5 Blockchain Applications in IoT

From financial services, to government services, to peer-to-peer transactions, com-
panies around the world are working to integrate blockchain into our everyday lives.
Currently, there is no consensus on exactly how blockchain might transform differ-
ent industries. Thus, in this section we introduce different IoT applications, and
examine how integrating a blockchain might transform these use cases.

10.5.1 M2M Transactions

According to Cisco, it is estimated that there will be 26 billion connected devices on
the Internet by 2020. M2M interactions are essential for the true potential of IoT to
be realized. Multiple challenges still need to be addressed for M2M interactions to
truly flourish in IoT, including connectivity standards, lightweight security proto-
cols, and ensuring data privacy; aspects which are covered in Chap. 4 of this book.
While there are technical challenges in implementing M2M interactions, “smart
contracts” introduce a solution to a fundamental M2M challenge: what protocol do
the devices in the IoT utilize to negotiate and execute M2M transactions?

Smart contracts will be heavily used in IoT. You can imagine a vending machine
that can automatically order certain items, and pay for the transaction through the
agreement of a smart contract. All of this can be accomplished without the need for
a central server, or other central entity. The contract would be automatically negoti-
ated, executed, and enforced by the blockchain network.

10.5.2 Energy Management

Blockchain and smart contracts show potential promise in the energy sector. As
mentioned in the IoT Verticals chapter of this book, IoT energy use cases include
energy monitoring through smart meters and IoT energy management in the con-
nected home. Through these mechanisms, power providers can collect more data on
energy patterns, and adjust power plant performance and predictability.

As the grid gets smarter and more capable, homes will be able to not only con-
sume energy, but also provide energy that they generate through solar, wind, or any
other means. Potentially, homes could use smart contracts on a blockchain to nego-
tiate energy exchanges, and execute energy transfer from one home to another auto-
matically. Payments for the renewable energy transfer would be bought and sold via
a blockchain network.

10 The Blockchain in IoT

293

10.5.3 Supply Chain Management

The supply chain is often a complex set of interactions among a long chain of dif-
ferent vendors. Tracking a set of shipped goods is often a convoluted task that
requires information from many parties. IoT has already begun to provide more
insights that enables companies to collect data as their goods travel the globe.
Sensors provide temperature data, location data and more; giving companies new
found control and quality assurance that did not exist before.

Blockchain can be used to simplify the expensive logistics involved when ship-
ping products around the world. By using smart contracts, shipments can be tracked
at each stage. Every time a product arrives to a location, that product can be scanned,
and a contract would be executed between the two vendors exchanging goods. This
would enable an open and verifiable history of where the product was handed off,
its condition, and if the contract terms were met (time, date, temperature…etc.).
This eliminates the need for each stakeholder to independently track an asset in their
own database, a database that provides no transparency, collaboration, or verifica-
tion with all other stakeholders in the supply chain.

In addition, using a blockchain network to track products can provide more
transparency and accountability in trading. Consumers will be able to track and
understand where their products came from, and how the product arrived to their
doorstep. For example, according to the Mintel Press Office, only 26% of consum-
ers trust organic food labels, and only 13% believe that organic foods are highly
regulated. Having better insight into where food was grown, how it was processed,
and how it arrived to the store is important to consumers. There are already exist IoT
solutions in agriculture that aim to improve quality of food by means of yield moni-
toring, optimal seeding, optimal water usage, and more. There also exist IoT solu-
tions in supply chain management to monitor conditions and track of goods as they
are transported from the source to the store. Adding all of the information collected
via IoT to a consumer accessible blockchain would provide the consumer a secure,
trackable, and tamper proof way of understanding where their goods were sourced
from, and how they got to their store; increasing the trust between consumer and
producer (Fig. 10.6).

10.5.4 Healthcare

Healthcare is considered one of the most important verticals for IoT. Intelligent
wearable devices present new ways to monitor non-critical patients remotely while
clearing up room in hospitals for more critical patients. The healthcare industry is
already adopting real-time tracking of medical devices, personnel, and patients.
That said, there are still critical challenges in the collection, management, and dis-
tribution of patient data that blockchain has potential to provide solutions for.

10.5 Blockchain Applications in IoT

294

The main limitation that blockchains can help improve is around the collection
and storage of patient data. According to the centers for medicare and medicaid
services, these records hold information such as demographics, progress notes,
problems, medications, vital signs, past medical history, immunizations, laboratory
data, and radiology reports. Currently, these electronic health records (EHRs) oper-
ate in largely in silos; each medical facility collects, maintains, and stores its own
medical records for each patient. This creates a high potential for duplication of data
while also preventing the cross validation, verification, and data accuracy.
Blockchain may allow for all medical records to be stored and shared in a decentral-
ized manner, ensuring one verifiable, non-immutable source of information on any
patient, to any authorized provider.

Having EHRs on a blockchain would provide a mechanism that would enable:

 1. IoT Data Exchange: The ability for M2M medical data management would
open the doors for a secure and viable way for patient’s data to be monitored
remotely by medical staff. The blockchain allows for these M2M interactions to
happen automatically, and would ensure a secure data transfer while preventing
duplication of data. In addition, when IoT sensors can exchange data through the
blockchain, data is protected from tampering and single sources of failure can be
eliminated.

 2. Data Interoperability: The potential to create a single EHR system is an oppor-
tunity that the entire industry is excited about. It is so important, that according
to the Premier Healthcare Alliance, sharing data across organizations could save
hospitals about 93 billion dollars over 5 years alone. A system like that on block-
chain would contain a single version of patients records and would be shareable,
traceable, anonymized and would put the patient in control of what records could
be accessed and by whom.

Fig. 10.6 Blockchain in supply chain

10 The Blockchain in IoT

295

 3. Drug and Treatment Management: In 2015, a study conducted by the
American Journal of Managed care found that 76.9% of patients that partici-
pated in the study had at least one medication discrepancy in their medication
lists. In addition to errors, there are also issues with ensuring that control sub-
stances such as opioids are not abused or that a patient is not a victim of fraud. A
shared EHR system would allow pharmacies and medical staff to ensure that a
patient is not prescribed more than once, and would provide a clean record of
substances taken in the past. The power of shared data, along with new smart
labels that leverage the power of IoT to remind patients of when to take their
prescriptions along with a track of when the medicines are taken, would provide
very useful data not just for doctors, but also for the machine learning algorithms
that are trying to provide more specialized care.

There are of course a lot of challenges that still need to be addressed such as
privacy and access management to name a few. Additionally, blockchain’s adoption
in the healthcare sector will largely depend on the cooperation of healthcare provid-
ers, who currently depend on a large array of proprietary software solutions and
established IT infrastructures.

10.5.5 Retail

IoT is already used in the retail—enabling the tracking of products in stores, auto-
mating and tracking product delivery, and allowing for more beneficial loyalty pro-
grams. The blockchain can further these advances, which can result in a better
customer experience by increasing consumer trust and improving consumer reward
programs.

Product Authenticity: The authenticity of a product is difficult to identify, and can
result in damage to brands and declining sales. An IP Commission Report on U.S
Intellectual Property mentions that the cost of counterfeit goods to the U.S econ-
omy could be anywhere between $225 and $600 billion annual U.S dollars.
Blockchain along with IoT solutions would provide the consumer with a clear
and direct insight into the entire history of the product—from where their prod-
uct was manufactured to how it arrived to the store. Such transparency drastically
lowers the possibility of a merchant or consumer unknowingly buying a product
that is not genuine.

Loyalty Programs: Currently, many loyalty programs work in silos, and do not
work together to benefit the consumer. IoT solutions are allowing retailers to
enhance the customer experience by collecting data on customer patterns and
behaviors. Blockchain could allow for one universal loyalty program that a con-
sumer can use at any store or to buy any service. This way, all the companies get
access to consumer behavior while providing more value and savings for the
customer.

10.5 Blockchain Applications in IoT

296

Inventory Tracking: IoT solutions have allowed retailers full visibility into their
products and merchandise—along with the ability to track product performance
and stocking levels through digitized inventory and supply chain. Like in other
use cases, blockchain introduces a way to track a product at every point in the
supply chain and in-store, providing an accurate, and up-to date, trail of where
the product is.

10.5.6 Automotive and Transportation

The automotive industry is going through transformations unlike the ones seen in
the last few decades. From electric vehicles to autonomous vehicles, the industry is
going through significant technological changes. These changes represent vast
opportunities for drivers, manufacturers, and other stakeholders such as insurance
providers and dealerships. Companies have already discovered how IoT can improve
services, efficiency and can even provide real-time visibility into vehicle functions.
As in other use cases, blockchain can augment IoT to create an array of potential
benefits.

M2M Microtransactions: One of the most important use cases that blockchain can
securely enable is M2M microtransactions. Vehicles would be able to automati-
cally negotiate and pay for a wide array of services. Services like finding or
reserving a parking spot automatically, or negotiating a faster lane if the person
in the car is in a hurry, or automatic payments at a gas station or charging station;
just to name a few. All of these M2M interactions could be negotiated and auto-
matically executed through smart contracts. As the industry moves towards
autonomous vehicles, these M2M transactions will become ever more crucial.

Vehicle Dynamic Ecosystem: IoT, analytics, artificial intelligence, and blockchain
are redefining how vehicles will be owned and cared for. IoT is enabling manu-
facturers to collect and track more data about their vehicles, improving in- vehicle
experience, maintenance downtime, and quality. Logging sensor data in vehicles
to a blockchain based system enables the automobile ecosystem to view all of the
same data about a particular vehicle, a set of vehicles (specific model), or even a
brand of vehicles. This means that regulators, manufacturers, insurance provid-
ers, etc. all see the same exact data on a vehicle. Data that cannot be modified and
is reliable opening the door for opportunities for new business models. Insurance
providers could automatically provide dynamic pricing based on driving behav-
iors, and even automate the insurance claim process as soon as an accident is
detected. Manufacturers could automatically use that same data to run analytics
on their vehicles to extract patterns and possible issues early (allowing for a more
proactive recall and maintenance schedule). Even auto financing and title trans-
fers could be done in a much faster, transparent and verifiable way through the
blockchain.

10 The Blockchain in IoT

297

10.5.7 Smart City

According to a past World Urban Prospects report, 54% of the world’s population
lived in cities as of 2014, and that number is expected to grow to about 66% by
2050. With such population growth, cities have already begun developing smart cit-
ies to cope with growing challenges and provide more benefits for their citizens.
Around the world, there are hundreds of smart city pilots taking place. IoT solutions
are being used to digitize the world around us and improve things like transporta-
tion, air/water quality, energy management, and public safety.

Blockchain and IoT: To support the evolution of smart cities, the blockchain can
be combined with current IoT solutions. Blockchain can accelerate the adoption
of energy microgrids by providing a billing system for automatic negotiation and
execution of energy distribution. It can be used to automate water supply man-
agement by implementing smart contracts that continuously track and manage
water distribution so that it happens in the most efficient manner. Air and water
quality can also be improved by implementing blockchain systems to record and
share data from sensors installed all around the city.

Governance and digital services: Another way that blockchains can influence
smart cities is through the digitization of citizen records and government ser-
vices—with the potential to practically eliminate paperwork across government
agencies and services. Here are some examples of potential services or solutions:

• Civil Registration: Can be used for record keeping of each citizen. A block-
chain would make these records secure, tamper proof (reducing fraud) and
shareable among a variety of stakeholders with needed access to the data.

• Citizen Identity: Holding the digital identities for each citizen on a block-
chain. Digital management of one’s identity through blockchain could elimi-
nate a lot of paperwork and make government services much faster and more
efficient.

• Governance: Digitizing all records and transactions would transform the effi-
ciency of government agencies. Currently, all records are maintained in silos,
making sharing of data across agencies hard and inefficient. Not only would
a blockchain improve efficiency, but also would increase transparency and
visibility into processes.

10.5.8 Identity, Authentication, and Access Management

Most application stacks require a form of authentication. This topic has been
researched and implemented through handshake protocols, key escrow, and various
cryptographic modules. For IoT, with respect to blockchain technology, there will
have to be a primary use of identity management. When a new device is added to the
network, the use of key escrow will have to establish their identity on the network.

10.5 Blockchain Applications in IoT

298

This exchange and generation of keys can be determined within the secure enclave
of the device’s hardware—removing the risk of attacks via ports, wireless, and
Bluetooth capabilities.

Once the identity of the device has been setup, it would broadcast its public key/
address to the network for others to know of its presence. The use of public key/
asymmetric cryptography adds a benefit to the network, where all we need to know
is your public key. Similar to Bitcoin, there could be time sensitive intervals set in
place, where the device generates new addresses—thus never using the same address
twice. This can promote anonymity to malicious observers and sway predictive
analysis by attackers.

Another alternative to identity management is to use an escrow or auditing node.
This node can be in-charge of asset management and communicating to others when
a new node has joined or established itself to the network. In a sense, they will work
as a Directory Server similar to BitTorrent type peer-to-peer networks. This allows
for easily addresses the key-value store of asset management which could be
mapped to public addresses.

As blockchain evolves and starts being used in IoT frameworks, the identity of
each device and model on the network will become significantly more important.
Each individual device will be granted access via identity and key management. The
key management will need to be controlled via the hardware on each device where
the actual access is done through software. As IoT networks are quite large, the entire
infrastructure will need to uphold strong cryptographic modules to maintain identity
management. While actual key storage is done through HSMs on each device.

10.5.9 Other Blockchain IoT Applications

While it is still too early to tell which IoT solutions the blockchain will revolution-
ize, the ones mentioned in earlier sections constitute the use cases with the most
notable traction. Other notable use cases include:

Decentralized DNS: Provides a more secure Internet that is decentralized and not
easily hijackable, potentially preventing past attacks on IoT devices. Examples
include Namecoin and EmerDNS, already available through browser extensions.

Legal Contracts: Provides a system where things such as ownership registries,
notary services, taxes, and even voting could be performed on a blockchain.

Insurance: Insurance on a blockchain could affect multiple industries. In automo-
tive, insurance can turn into an on-demand and dynamic policy system based on
information that is retrieved in real time from sensors in your car. The same
could be done for other property like your home.

Sharing Economy: Companies like Slock.it have created a platform that allows
anyone to share anything with others. Using blockchain, they can lock and
unlock physical assets based on predetermined smart contracts, giving anyone
temporary access to any physical asset.

10 The Blockchain in IoT

299

10.6 Blockchain Security in IoT

When it comes to blockchain technology, there are normal security risks that mod-
ern day technological infrastructures face every day. Yet, blockchain technology
also holds an important security risk which involves key management. As men-
tioned in earlier sections, one’s private keys are the ultimate key/password to obtain
your information and assets. Whoever holds those private keys holds your identity.
Throughout this section we will discuss the advantages and disadvantages of secu-
rity within blockchains and how that relates IoT.

10.6.1 Trust Between Nodes

Decentralization allows for a trustless mechanism to perform consensus among
nodes while adhering to one’s privacy and truthfulness. Do you have what you say
you have? Based off of your connection, known past activity, can we correctly iden-
tify you? All of these questions and more need to be asked when building a block-
chain based system. The elimination of a single point of failure is a huge win for all
stakeholders. However, this now brings attack vectors to all nodes. Especially in the
realm of IoT, we need to carefully consider the protocols between applications and
nodes. All messaging between nodes should be secure and private. There should be
no possibility of 51% attacks or node compromises. Sybil attacks, also known as a
51% take over of a network, are one of the attacks that are looked at when it comes
to consensus and node propagation. The use of keys, messaging systems, and gossip
protocols can help protect against this as there are multiple layers of verification
before any information that a node posts to the network is accepted and added to the
chain. To ensure all nodes are safe, we need to maintain trust between them.

A node first joins the network by bootstrapping off of some discovery peers.
These peers are hard coded into the blockchain code-base. These nodes may be the
major nodes that help uphold the network, or just the main nodes that we started
with. Once they connect they start gossiping between one another to propagate infor-
mation throughout the network and add blocks to the chain. If an attacker could
control a node within this network, they could potentially take over the entire net-
work or propagate faulty information to sway or alter the chain in some malicious
manner. By posting invalid transactions and possibly using another malicious node
to accept it could be catastrophic. Luckily, most security measures will be built into
the blockchain network when developed. The trustless nature of a decentralized net-
work allows for a consensus to take place among nodes before things are committed
to the chain or propagated. If a faulty transaction is propagated, another node will
realize that this does not match the chain and has not been seen by other nodes.
Nodes could add in delays between propagation to make sure that n of m other nodes
have verified this transaction or information that was propagated to validate the peer.

10.6 Blockchain Security in IoT

300

10.6.2 Malicious Activity and Cryptographic Principles

If malicious activity does happen to take place within a blockchain, the hope is that
nodes and users will easily be able to verify given information based off of the
secure cryptographic nature of information through the use of secure cryptographic
hash functions or elliptic curve cryptography. If faulty information is introduced
into the network, then the actual hash of that information will be different than what
is recorded in the main chain. From basic verification of hashes, we can easily dis-
tinguish the integrity of the data (as seen in Sect. 10.3). Also, the specific curves that
are used in the elliptic cryptography modules are specific and used for a reason. It is
highly advised to use NIST approved and known cryptographic modules. Never
attempt to write proprietary cryptographic libraries. Most of the time, these will not
be tested as in-depth as NIST approved libraries and have the potential for collision.
Collisions within cryptographic modules can lead to stolen keys, and overall com-
promise of the blockchain.

Attacks and hacks have been taking place within the blockchain industry over the
past few months of 2017. Most have been from ICO’s or “Initial Coin Offerings” for
Ethereum’s ERC20 tokens. Others have been from exchanges and hardware wallets.
These attacks mainly occur from exploiting bugs in smart contract code or finding
flaws in the safeguarding of private keys. As we have mentioned throughout this
chapter, private keys are the holy grail of wallets and blockchain identity. To main-
tain security and privacy when it comes to keys is to ensure a proper key manage-
ment and escrow process. Key management can be taken care of in software or
hardware. The use of HSMs (Hardware Security Modules) can move the overhead
of key escrow and processing to a hardware device to ensure privacy, security, and
proper authentication mechanism for nodes. When maintaining your key manage-
ment and escrow in software, there are more attack vectors exposed. Some core
wallets within the blockchain space keep keys in “keyfiles” or a file that is held
in local storage. This can be attacked from any sort of malware from phishing
attacks to visiting a malicious web site that installs loggers onto your system. A way
to protect keys when they are stored through software is by using multi-signature
wallets. Multi-signature wallets need more than one user to have access to the wal-
let. By using a n of m or a majority of the users to allows access to a wallet means
that if 1 key is compromised the entire wallet is not lost.

10.6.3 IoT Security and Blockchain Advantages

For most IoT devices, they rely on a central entity to send them information or alert
them of security risks. By moving these responsibilities to individual nodes that are
decentralized, it theoretically makes these devices “smart” devices. By using a
blockchain for IoT, the security level and fundamentals will greatly increase, and it
will put the messaging and alerting functions within each devices protocol layer.

10 The Blockchain in IoT

301

When dealing with the multiple layers within blockchain technology, we commonly
focus upon consensus. Consensus algorithms are what allow the decentralized net-
work to obtain a “trustless” model. As mentioned in earlier sections there are vari-
ous types of consensus algorithms to base your blockchain on when building its
network and infrastructure. The types of attacks vary in regard to consensus algo-
rithm. For example, PoW deals with miners providing enough computation to gain
rewards, enabling the blockchain to grow. In this type of blockchain, the attacker
would have to perform a Sybil attack to compromise the network. In a PoS block-
chain, the attacker would have to take control of the actual digital asset or sway the
market, as nodes use the asset as a proving point within the network. Attacks within
PoS blockchains deal much more with attack vectors of change in currency, whereas
PoW deals with Dos/DDoS and Sybil attacks. PoS takes a different approach to the
normal attack vectors that the security industry has seen over the years. In regard to
IoT, the use of PoS would be a great benefit as each device could “mint” its own
token in order to pay into the blockchain or protocol of their nature. This will protect
them from Sybil attacks which could happen on a specific protocol layer and main-
tain consensus among n + m IoT devices.

Blockchain offers many security advantages for any desired application or sys-
tem. Yet blockchain technology is not the end-all-be-all answers for all applications.
Blockchain technology should only be used for use cases that require high security,
privacy, and a peer-to-peer nature in regard to networking. IoT can greatly benefit
from blockchain technology as it will be able to secure the protocol layer and infor-
mation that is broadcasted between devices and networks. As blockchain technol-
ogy grows, so will the attack vectors. There will always be phishing attempts,
punycode domains, and smart contract hacks. As time progresses the security space
will evolve to build out standards and proper testing methodologies for blockchain
technology. The importance of key management, node propagation, messaging, and
consensus is what upholds the privacy and security within blockchain technology.
Attackers will always try to outsmart your system, so be aware of your technology
when building and implementing it in both a secure manner in regard to IoT and
blockchain technology.

10.7 Summary

Blockchain is expanding to new industries every day, and has the possibility to pro-
pel IoT forward. This potential is greatly due to the technology’s foundation in
cryptography and the mechanisms by which it addresses the Byzantine Generals
Problem. Blockchain presents key features such as decentralization, security, and
trust—all important aspects in IoT solutions. A handful of use cases in M2M, energy
management, supply chain management, healthcare, retail and transportation dis-
play a picture of a fast-emerging technology within various industries. Lastly it is
important to consider the challenges being faced by blockchain, such as scalability,
privacy, and anonymity. While blockchain is not the answer to all the challenges in

10.7 Summary

302

IoT, it should be clear to appreciate why the hype exists—the technology presents
many new possibilities that are only beginning to gain traction.

Problems and Exercises

 1. What is the double spending problem in digital currencies?
 2. Describe what a “Merkle Tree” is? How is it used in Bitcoin?
 3. In Sect. 10.3.2 we mention hash pointers, and how they are key to immutability

of the blockchain. Keeping that in mind, what are other features of blockchains
that work with hash pointers to maintain immutability?

 4. What are they key characteristics provided by the blockchain? Explain what
they are, and why they are important for adoption in IoT solutions.

 5. What is a hash function and how does it work? What is the difference between
a hash and a cryptographic hash function? Provide an example of how crypto-
graphic hashes are used in a blockchain (any blockchain will suffice as an
example).

 6. What is a hash collision? Does Bitcoin suffer from the probability of hash
collisions?

 7. Consider a scenario where there a potential double spend attempt by a mali-
cious actor in Bitcoin. Explain how the blockchain works to reject such attempt
and what the malicious actor would have to do in order to fool all other hon-
est nodes.

 8. In table format, describe centralized, decentralized, and distributed network
architectures.

 9. Perform a search and mention five companies that are currently working on
blockchain + IoT solutions. Describe their solutions and how IoT and
Blockchain are being combined. Make sure to include at least one start up and
at least one established company.

 10. What type of records can be kept in a blockchain?
 11. In Sect. 10.4 we describe some consensus algorithms. Research consensus

algorithms for blockchain and name an algorithm that we did not mention in
this section. Is it good for IoT? Explain why or why not.

 12. What is Elliptic Curve Cryptography and how does it benefit the use of keys
within blockchain technology?

 13. Describe a Sybil attack and other types of attack vectors that could take place
on a blockchain.

 14. Blockchains all start from a genesis block and then maintain a block height as
the chain grows. Describe the importance of block heights as timestamps and
lookups within Merkle Trees.

 15. Describe the difference between permissioned, permissionless, and consortium
blockchains. What type do you think best fits a blockchain involving IoT
devices.

 16. What is the difference between a smart contract and multi-sig address?

10 The Blockchain in IoT

303

References

 1. Swan, Melanie. Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc., 2015.
 2. Nakamoto, Satoshi. “Bitcoin: A peer-to-peer electronic cash system.” (2008): 28.
 3. K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet of

Things”, IEEE Access, vol. 4, pp. 2292-2303, 2016.
 4. Chaum, David. “Blind signatures for untraceable payments.” Advances in cryptology. Springer

US, 1983.
 5. Gupta, Vinay. “A Brief History of Blockchain.” Harvard Business Review, 5 Apr. 2017, hbr.

org/2017/02/a- brief- history- of- blockchain.
 6. Szabo, Nick. “Formalizing and Securing Relationships on Public Networks.” First Monday,

vol. 2, no. 9, Jan. 1997, https://doi.org/10.5210/fm.v2i9.548.
 7. Croman, Kyle, et al. “On Scaling Decentralized Blockchains.” Financial Cryptography

and Data Security Lecture Notes in Computer Science, 2016, pp. 106–125., https://doi.
org/10.1007/978- 3- 662- 53357- 4_8.

 8. Dickson, Ben. “Decentralizing IoT Networks through Blockchain.” TechCrunch, TechCrunch,
28 June 2016, techcrunch.com/2016/06/28/decentralizing- iot- networks- through- blockchain/.

 9. I. Crigg and K. Griffith, “A Quick History of Cryptocurrencies BBTC — Before Bitcoin”,
Bitcoin Magazine, 2014. [Online]. Available: https://bitcoinmagazine.com/articles/
quick- history- cryptocurrencies- bbtc- bitcoin- 1397682630/.

 10. Antonopoulos, Andreas M. “Mastering Bitcoin: Programming the Open Blockchain”. O’Reilly
Media Inc. 2017

 11. N. Kshetri, “Can Blockchain Strengthen the Internet of Things?”, IT Professional, vol. 19, no.
4, pp. 68-72, 2017.

 12. V. Nordahl and M. Rao, “Blockchain Cryptography”, My Blockchain Blog, 2017. [Online].
Available: https://www.myblockchainblog.com/blog/blockchain- cryptography.

 13. K. Lewis, “Blockchain: Four blockchain use cases transforming business”, Internet of
Things blog, 2017. [Online]. Available: https://www.ibm.com/blogs/internet- of- things/
iot- blockchain- use- cases/.

 14. N. Murty, S. Ananthasayanam, A. Singh, R. Malhotra, V. Vaid and A. Madan, Blockchain: The
next innovation to make our cities smarter. PWC, 2018, pp. 22-30.

 15. A. Castor, “A (Short) Guide to Blockchain Consensus Protocols – CoinDesk”, CoinDesk, 2017.
[Online]. Available: https://www.coindesk.com/short- guide- blockchain- consensus- protocols/.

 16. Z. Witherspoon, “A Hitchhiker’s Guide to Consensus Algorithms – Hacker Noon”, Hacker
Noon, 2018. [Online]. Available: https://hackernoon.com/a- hitchhikers- guide- to- consensus-
algorithms- d81aae3eb0e3.

 17. C. Hammerschmidt, “Consensus in Blockchain Systems. In Short. – Chris Hammerschmidt –
Medium”, Medium, 2017. [Online]. Available: https://medium.com/@chrshmmmr/
consensus- in- blockchain- systems- in- short- 691fc7d1fefe.

 18. D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei and C. Qijun, “A review on consensus algo-
rithm of blockchain”, 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2017.

 19. L. Lamport, R. Shostak and M. Pease, “The Byzantine Generals Problem”, ACM Transactions
on Programming Languages and Systems, vol. 4, no. 3, pp. 382-401, 1982.

 20. F. Tschorsch and B. Scheuermann, “Bitcoin and Beyond: A Technical Survey on
Decentralized Digital Currencies”, IEEE Communications Surveys & Tutorials, vol. 18, no. 3,
pp. 2084-2123, 2016.

 21. A. Bahga and V. Madisetti, “Blockchain Platform for Industrial Internet of Things”, Journal of
Software Engineering and Applications, vol. 09, no. 10, pp. 533-546, 2016.

References

http://hbr.org/2017/02/a-brief-history-of-blockchain
http://hbr.org/2017/02/a-brief-history-of-blockchain
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://techcrunch.com/2016/06/28/decentralizing-iot-networks-through-blockchain
https://bitcoinmagazine.com/articles/quick-history-cryptocurrencies-bbtc-bitcoin-1397682630/
https://bitcoinmagazine.com/articles/quick-history-cryptocurrencies-bbtc-bitcoin-1397682630/
https://www.myblockchainblog.com/blog/blockchain-cryptography
https://www.ibm.com/blogs/internet-of-things/iot-blockchain-use-cases/
https://www.ibm.com/blogs/internet-of-things/iot-blockchain-use-cases/
https://www.coindesk.com/short-guide-blockchain-consensus-protocols/
https://hackernoon.com/a-hitchhikers-guide-to-consensus-algorithms-d81aae3eb0e3
https://hackernoon.com/a-hitchhikers-guide-to-consensus-algorithms-d81aae3eb0e3
https://medium.com/@chrshmmmr/consensus-in-blockchain-systems-in-short-691fc7d1fefe
https://medium.com/@chrshmmmr/consensus-in-blockchain-systems-in-short-691fc7d1fefe

305© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_11

Chapter 11
Industry Organizations and Standards
Landscape

11.1 Overview

The IoT industry landscape is crowded with different standards bodies and organi-
zations chipping away at various aspects of the technology. As is typically the case
early on in the technology cycle, some of the organizations are tackling the same
problem and hence a subset of the standards that they are proposing are overlapping
and competing for mainstream adoption. This creates confusion in a vast and multi-
faceted industry and inevitably slows down product development, as vendors do not
want to take bets on standards that may never take off in the market (think Betamax
vs. VHS in the early video format war days).

Some of the industry organizations focus their efforts on a specific IoT vertical,
whereas others are involved in defining crosscutting technologies that apply across
various IoT applications and verticals. Furthermore, not all organizations are
actively defining their own standards; rather some are promoting harmony and
alignment among others, which define and ratify standards.

What is common across all these standards is that they are all being based on (or
migrating to) a common normalization layer, the IP network layer, which guaran-
tees system interoperability while accommodating a multitude of link layer tech-
nologies, in addition to a plethora of application protocols. IP constitutes the thin
waist of the proverbial hourglass that is the IoT’s protocol stack (refer to Fig. 11.1).
The diversity in Physical and Link layer standards is a manifestation of the IoT chal-
lenges and requirements that impact that layer of the protocol stack, as was dis-
cussed in Chap. 5 (Sect. 5.1.1). By the same token, the large number of Application
layer standards is a reflection of the many industry verticals and applications (as
discussed in Chap. 9) that IoT enables.

In this chapter, we will provide an overview of the key IoT standards defining
organizations and the various protocols that they have been defining or promoting.
Our focus will be on standards operating at the Physical, Data Link, Network, and

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_11#DOI

306

Transport layers of the OSI model presented in Chap. 2. We will also touch upon a
select subset of standards efforts operating at the Application layer of the model. As
can be seen in Fig. 11.1, such efforts are numerous, industry vertical specific and
require expert domain knowledge in the associated industry or application (e.g.,
IEC 61968, ANSI C12.19/C12.22, DLMS/COSEM are Smart Grid standards).

11.2 IEEE (Institute of Electrical and Electronics Engineers)

IEEE is a well-established technology standards body, which, among other things,
had defined the standards for Ethernet and wireless Local Area Networks (LANs).
Given its legacy and expertise in physical and link layer network technologies, the
IEEE embarked on defining a number of physical and link layer standards for
IoT. These include the 802.15.4 family of low-power wireless protocols, which
were discussed in Sect. 5.1.2.1, the 802.11ah long-range Wi-Fi standard discussed
in Sect. 5.1.2.3, as well as the 1901 power line communications standards. The lat-
ter define technologies for carrying network data, in addition to Alternating current
(AC), over conventional electric wiring.

Beyond the efforts on standardizing physical and link layer technologies, IEEE
kicked off the IoT Initiative as a platform for the technical community to collaborate
on technologies that advance the IoT. Adjunct to this initiative, many IoT related
standards activities had been completed or are underway. We will go through an
overview of these activities next.

Fig. 11.1 IoT standards landscape

11 Industry Organizations and Standards Landscape

307

11.2.1 IEEE 1451 Series

The IEEE 1451 series addresses smart transducers, which are defined as devices
that convert a physical measurement into an electrical signal, or vice versa.
Transducers include sensors or actuators that we discussed in Chap. 3. The stan-
dards define communication interfaces for interconnecting smart transducers to net-
works or external systems via either wired or wireless mechanisms. Among the
main elements of these standards is the definition of the Transducer Electronic Data
Sheets (TEDS). The TEDS is associated with every smart transducer. It provides
relevant technical data pertaining to the transducer in a standard format. Such data
includes the device identity, type, accuracy, calibration, or other manufacturer-
related information, etc. The standards define common mechanisms by which a
transducer can communicate its associated TEDS to the connected network or sys-
tem. TEDS may be implemented in one of two ways. They can be embedded
onboard within the transducer itself, typically on some memory component such as
EEPROM. Alternatively, a virtual TEDS can be implemented as an off-board data
file that is stored in some component separated from the transducer albeit accessible
to the instrument or system connected to the transducer. Virtual TEDS allows the
extension of the TEDS standard to legacy sensors and devices where onboard or
embedded memory may not exist.

11.2.2 IEEE 1547 Series

The IEEE 1547 series addresses Smart Grid, and in particular handling distributed
resources in electric power systems. The standard defines technical requirements for
interconnecting distributed generators and energy storage systems to electric power
systems. Examples of such generators include fuel cells, photovoltaic, micro-
turbine, reciprocating engines, wind generators, large turbines, and other local gen-
erators. The technology helps utilities tap into surplus electricity from alternative
and renewable energy sources. Furthermore, the IEEE 1547 series deals with vari-
ous facets of renewable energy, including micro-grids (IEEE 1547.4) and secondary
networks for distributed resources (IEEE 1547.6).

11.2.3 IEEE 1609 Series

The IEEE 1609 series addresses intelligent transportation systems (ITS) and focuses
on Wireless Access in Vehicular Environments (WAVE). The series defines the
architecture, services, and interfaces to enable secure vehicle-to-vehicle and vehicle
to roadside infrastructure wireless communication. The standard enables applica-
tions that include vehicle safety, enhanced navigation, traffic management,

11.2 IEEE (Institute of Electrical and Electronics Engineers)

308

automated tolling and more. The IEEE 1609 series specifies standards for commu-
nication security (IEEE 1609.2), WAVE connection management (IEEE 1609.3),
and Layer 3 through Layer 7 operation across multiple channels on top of IEEE
802.11p.

11.2.4 IEEE 1888 Series

The IEEE 1888 series focuses on ubiquitous green community control networks. It
describes remote control architecture for buildings, digital communities, and metro-
politan networks. The standard defines the data formats between systems as well as
the data exchange protocol that interconnects various components, including gate-
ways, storage systems, and application units over an IP network. This network pro-
vides open interfaces for public administration/service, property management, and
individual service. The interfaces enable central management, remote surveillance,
and collaboration.

11.2.5 IEEE 1900 Series

IEEE 1900 series focuses on dynamic spectrum access radio systems and networks.
One of the main goals of this series is to improve spectrum utilization. To that effect,
the standard explores architectures and interfaces for dynamic spectrum access in
the TV whitespace frequency bands, as well as management systems for optimiza-
tion of radio resource usage, spectrum access control, and compliance with regional
regulations aimed at protecting broadcast systems. The standard also defines policy
language and architectures for managing dynamic spectrum access among distrib-
uted heterogeneous devices.

11.2.6 IEEE 2030 Series

IEEE 2030 series focuses on the smart grid, including electric vehicle infrastruc-
ture. It defines a reference model for smart grid interoperability including the three
pillars of energy, information, and communications technologies. The standard
addresses applications for electric vehicles and associated support infrastructure
used for personal and mass transit. Furthermore, the standard covers energy storage
systems that are integrated with the electric power infrastructure and relevant test
procedures for these systems.

11 Industry Organizations and Standards Landscape

309

11.2.7 IEEE 2040 Series

The IEEE 2040 series focuses on connected, automated, and intelligent vehicles.
The series defines an overview and architectural framework (IEEE 2040), taxonomy
and definitions (IEEE 2040.1), as well as testing and verification (IEEE 2040.2)
standards. The series leverages existing standards where applicable.

11.2.8 IEEE 11073 Series

The IEEE 11073 series of standards focuses on point-of-care medical device com-
munication and personal health device communication. The standard enables
interoperability between medical devices and external computer systems. It defines
information models to guarantee semantic interoperability between communicating
medical devices. It also specifies a tree hierarchy for modeling the device and its
relevant information: measurements, physiological and technical alerts, as well as
contextual data.

11.2.9 IEEE 2413 Series

The IEEE 2413 series defines an architectural framework for the IoT, including
descriptions of various IoT verticals, definitions of their associated abstractions and
identification of commonalities across those verticals. The standard establishes a
reference model for IoT domain verticals and an architecture that defines the build-
ing blocks and common elements.

11.3 IETF

The IETF has been instrumental in defining and standardizing Internet technolo-
gies, including IPv4 and IPv6 as well as numerous routing protocols (e.g., OSPF,
RIP, PIM, BGP), application protocols (e.g., HTTP, LDAP, SMTP), and security
protocols (e.g., TLS, IPSec, IKE). In 2006, work started in the IETF on a number of
IoT standards. The initial scope centered on enabling IP on top of IEEE 802.15.4
wireless networks, but has expanded beyond that over time. Currently, there are five
IETF working groups focusing on IoT related technologies. We will discuss their
work next.

11.3 IETF

310

11.3.1 ROLL

The Routing over Low Power and Lossy networks (ROLL) working group focuses
on routing issues for Low Power and Lossy Networks (LLNs). LLNs typically com-
prised of embedded devices with limited power, memory, and processing resources
that are interconnected by a variety of link technologies. LLNs cover a multitude of
applications such as building automation, smart homes, smart health care, industrial
monitoring, environmental monitoring, asset tracking, smart grid, etc. The ROLL
working group is concerned with defining routing requirements for a subset of the
aforementioned applications: industrial (RFC 5673), connected home (RFC 5826),
building automation (RFC 5867), and urban sensor networks (RFC 5548). The
working group is approaching these requirements by defining an IPv6 architecture
that enables scalable networks of constraint devices to communicate with high reli-
ability. Routing security and manageability (e.g., autonomic configuration) are
among the key issues that ROLL is looking into.

ROLL analyzed the particular routing protocol requirements of LLNs, starting
with the constraints that these protocols must adhere to. The following constraints
were identified, which stem from the constrained nature of the nodes in LLNs:

• Protocols need to operate with minimal amount of state.
• Protocols must be optimized for efficiency, i.e., saving energy, memory, and pro-

cessing power.
• Protocols must support unicast and multicast application traffic patterns.
• Protocols must be very efficient in encoding information to operate with very

small link layer maximum transfer unit (MTU) size.

The ROLL working group evaluated existing routing protocols to examine
whether they could operate within the confines of the above constraints. The follow-
ing protocols were analyzed: OSPF (RFC2328), IS-IS (RFC1142), RIP (RFC2453),
OLSR (RFC3626), TBRPF (RFC3684), AODV (RFC3561), DSR (RFC4728),
DYMO and OLSv2 (RFC7181). Based on this analysis, the working group deter-
mined that none of the existing protocols meets the requirements of LLNs. As a
result, the working group defined a new protocol, RPL, which was discussed in
Sect. 5.2.2.2.

11.3.2 Core

The Constrained RESTful Environments (CORE) working group focuses on defin-
ing a framework for RESTful applications running over constrained IP networks.
These applications include applications to monitor simple sensors (e.g., temperature
sensors or power meters), to control actuators (e.g., valves or light switches) and to
remotely manage devices. Such applications are typical of several IoT verticals such
as home and building automation and Smart Grid. The applications are forced to

11 Industry Organizations and Standards Landscape

311

operate under the same set of constraints that define LLNs, namely: limitations on
memory, processing power, and energy as well as high loss rates and small packet
sizes. In addition, the applications must deal with the fact that nodes are typically
powered off and wake up for a short period of time.

The framework defined by the working group assumes a general operating para-
digm for applications where network nodes run embedded web services and are
responsible for resources (e.g., sensors or actuators) that can be queried or manipu-
lated by remote nodes. Furthermore, nodes may publish local resource changes to
remote nodes that have subscribed to receive notifications. CORE has defined the
CoAP protocol, which was discussed in Sect. 5.3.5.1, to support this application
framework.

One of the key challenges to applications running in these constrained environ-
ments is security. The working group’s scope includes selecting viable approaches
for security bootstrapping to handle secure service discovery, distribution of secu-
rity credentials, and application-specific node configuration.

11.3.3 6LowPAN

The IPv6 over Low-Power Wireless Personal Area Networks (6LowPAN) working
group focused on enabling IPv6 over IEEE 802.15.4 networks. The group started its
work in 2005 and concluded in 2014 after working through the following goals:

First, defining a fragmentation and reassembly layer to allow adaptation of IPv6 to
IEEE 802.15.4 links. This is because the link protocol data units may be as small
as 81 bytes, which is much smaller than that the minimum IPv6 packet size of
1280 bytes.

Second, introduce an IPv6 header compression mechanism to avoid excessive frag-
mentation and reassembly, since the IPv6 header alone is 40 bytes long, without
optional headers.

Third, specify methods for IPv6 address stateless auto configuration to reduce the
provisioning overhead on the end nodes.

Fourth, examine mesh routing protocol suitability to 802.15.4 networks, especially
in light of the packet size constraints.

Finally, investigate the suitability of existing network management protocols and
mechanisms in terms of meeting the requirements for minimal configuration and
self-healing as well as meeting the constraints in processing power, memory, and
packet size.

The working group produced six standards: 6LowPAN problem statement docu-
ment (RFC4919), IPv6 adaptation layer and header format specification (RFC4944),
IPv6 header compression specification (RFC6282), 6LowPAN use cases and appli-
cations document (RFC6568), IPv6 routing requirements document (RFC6606),
and IPv6 neighbor discovery optimization specification (RFC6775).

11.3 IETF

312

11.3.4 6TisCH

This working group is chartered with enabling IPv6 over the Time Slotted Channel
Hopping (TSCH) mode of IEEE 802.15.4e. The target network comprised of Low
Power and Lossy Networks (LLNs) connected through a common backbone via
LLN Border Routers (LBRs). The focus of the working group is on defining an
architecture that describes the design of 6TiSCH networks in terms of the compo-
nent building blocks and protocol signaling flows. The working group will also
produce an information model that describes the management requirements of
6TiSCH network nodes, together with a data model mapping for an existing proto-
col, such as Concise Binary Object Representation (CBOR) over the Constrained
Application Protocol (CoAP). In addition, the working group will define a minimal
and a best practice 6TiSCH configuration that provides guidance on how to con-
struct a 6TiSCH network using the Routing Protocol for LLNs (RPL) and static
TSCH schedule. Finally, the working group may produce implementation and co-
existence guides to help accelerate the industry.

11.3.5 ACE

The Authentication and Authorization for Constrained Environments (ACE) work-
ing group is tasked with producing use cases and requirements for authentication
and authorization in IoT, as well as defining protocol mechanisms that can address
these requirements, and are capable of running on constrained IoT devices. The
scope of the work is limited to RESTful architectures running the Constrained
Application Protocol (CoAP) over Datagram Transport Layer Security (DTLS).
Hence, the working group is looking to provide a standardized solution for authen-
tication and authorization to enable a client’s authorized access to REST resources
hosted on a server. Both client and server are assumed to be constrained devices.
The access will be facilitated by a non-constrained authorization server. The work-
ing group will evaluate existing protocol mechanisms for suitability and applicabil-
ity to constrained environments, and will advise on any required restrictions,
changes, or gaps.

11.4 ITU

The International Telecommunication Union (ITU) is a United Nations (UN) spe-
cialized agency with over 190 member states and over 700 industry members in
addition to universities as well as research and development institutes. It has been
heavily involved in the definition and development of telecommunication standards.

11 Industry Organizations and Standards Landscape

313

ITU published one of the first reports on “The Internet of Things” in 2005 and
has been involved in IoT since then, producing multiple standards documents in this
space, as discussed next.

Recommendation ITU-T Y.2060, Overview of the Internet of Things, provides a
definition of IoT, terming it: “A global infrastructure for the Information Society,
enabling advanced services by interconnecting (physical and virtual) things based
on, existing and evolving, interoperable information and communication technolo-
gies.” It describes the concept and scope of IoT, discussing its fundamental charac-
teristics and high-level requirements, and providing a detailed overview of the IoT
reference model. Additionally, the standard discusses the IoT ecosystem and accom-
panying business models.

Recommendation ITU-T Y.2061, Requirements for support of machine-oriented
communication applications in the NGN environment, offers a description of
machine-oriented communication applications in next-generation network (NGN)
environments; covering the NGN extensions, additions, and device capabilities
required to support MOC applications.

Recommendation ITU-T Y.2062, Framework of object-to-object communication
for ubiquitous networking in an NGN environment, discusses the concept and high-
level architectural model of such communication, and provides a mechanism to
identify objects and enable communications between them.

Recommendation ITU-T Y.2063, Framework of Web of Things, specifies the
functional architecture including conceptual and deployment models for the Web of
Things. The standard also provides an overview of service information flows and
use cases in home control.

Recommendation ITU-T Y.2069, Terms and definitions for Internet of Things,
specifies the terms and definitions relevant to the Internet of things (IoT) from an
ITU-T perspective, in order to clarify the Internet of Things and IoT related
activities.

ITU has multiple study groups looking into various aspects of IoT: Study Group
11 started activity in July 2014 and is looking into application programmatic inter-
faces and protocols for IoT as well as IoT testing. Study Group 13 focuses on the
networking aspects of IoT. Study Group 15 looks at Smart Grid and home networks.
Study Group 16 focuses on IoT applications including eHealth. Study Group 17 is
looking at the security and privacy protection aspects of IoT. In addition, there are
multiple focus groups looking at topics including smart cities, water management,
and connected cars.

11.5 IPSO Alliance

The “Internet Protocol for Smart Objects” (IPSO) Alliance is an open non-profit
special interest group that promotes the use of the IP protocol to connect smart
objects (i.e., Things) to the network. It was formed in 2008 and includes members
from technology and communication companies in addition to industry verticals

11.5 IPSO Alliance

314

companies (e.g., energy). The alliance complements the work of other standards
defining bodies, such as the IETF, IEEE, and ETSI, by promoting IoT technologies
through publishing whitepapers and hosting webinars, interoperability events, and
challenges.

The interoperability events have helped in advancing IP technologies for IoT by
providing a vendor-neutral forum to test evolving IoT technologies and providing
feedback to the standards bodies defining them in order to fix potential issues that
affect interoperability. For instance, in one of the interoperability events held in
conjunction with the IETF, a number of issues related to early versions of RPL were
communicated back to the Routing over Low Power and Lossy Networks (ROLL)
working group in order to improve the developing drafts.

IPSO has published the IPSO Application Framework, which defines a represen-
tational state transfer RESTful design for use in IP smart objects for Machine-to-
Machine applications. It specifies a set of REST interfaces that may be used by a
Thing to represent its available resources and to interact with other Things and
remote applications. The framework was extended to cover a wide range of use
cases and to more precisely describe the parameters of smart objects during an
interoperability event held during IETF 84 in Vancouver, Canada.

11.6 OCF

The Open Connectivity Foundation (OCF) is an industry group that focuses on
developing standards and certification for IoT devices based on the IETF CoAP
protocol. It was formed in July 2014 by Intel, Broadcom, and Samsung Electronics
under the name of the Open Interconnect Consortium. The consortium changed its
name to OCF in February 2016. It currently has more than 80 member companies
including General Electric, Cisco Systems, Microsoft, and Qualcomm. The OCF is
defining a framework for easy device discovery and trusted connectivity between
things. In September 2015, it released the first version of the specification of this
framework. OCF is also working on open source reference implementation of the
specification, which is called “IoTivity.”

11.7 IIC

The Industrial Internet Consortium is a non-profit organization that aims to acceler-
ate the development and adoption of interconnected machines and devices, intelli-
gent analytics, and people at work. It was founded by AT&T, Cisco, General
Electric, IBM, and Intel in March 2014. IIC does not develop standards for IoT;
rather, it provides requirements to other standards defining organizations. IIC
focuses on creating use cases, reference architectures, frameworks, and test-beds for
real IoT applications across varying industrial environments. IIC also states among

11 Industry Organizations and Standards Landscape

315

its goals to facilitate open forums for sharing and exchanging real-world ideas, prac-
tices, and insights, in addition to building confidence around new and innovative
approaches to security. The work of the IIC does not include consumer IoT, rather it
is targeted at business verticals such as energy, healthcare, transportation, and
manufacturing.

11.8 ETSI

The European Telecommunication Standards Institute (ETSI) is an independent
non-profit standards defining organization. ETSI was among the very first organiza-
tions to develop a set of standards that define a complete horizontal service layer for
M2M communications.

The ETSI M2M standards specify architectural components for IoT including:
devices (things), gateways with associated interfaces, applications, access technolo-
gies as well as the M2M Service Capabilities Layer (middleware). They also include
security, traffic scheduling, device discovery, and lifecycle management features.
These standards, which were released in 2012, include:

• Requirements in ETSI TS 102 689
• Functional architecture in ETSI TS 102 690
• Interface definitions in ETSI TS 102 921

ETSI is also looking into various applications of M2M technologies, including:
smart appliances, smart metering, smart cities, smart grid, eHealth, intelligent trans-
portation systems, and wireless industrial automation.

11.9 oneM2M

In July 2012, seven standards development organizations (TIA and ATSI from USA,
ARIB and TTC from Japan, CCSA from China, ETSI from Europe and TTA from
Korea) launched a global organization to jointly define and standardize the common
horizontal functions of the IoT Application Services layer under the umbrella of the
oneM2M Partnership Project (http://www.onem2m.org). The founders agreed to
transfer and stop their own overlapping IoT Application Service layer work. The
partnership has grown to include, in addition to the seven standards bodies, five
global information and communications technology forums and more than 200
companies. oneM2M states among its objectives the development of the following:

• Use cases and requirements for a common set of Application Services
capabilities.

• Service architecture and Protocols/APIs/standard objects based on this architec-
ture (open interfaces & protocols).

11.9 oneM2M

http://www.onem2m.org

316

• Security and privacy aspects (authentication, encryption, integrity verification).
• Reachability and discovery of applications.
• Interoperability, including test and conformance specifications.
• Collection of data for accounting (to be used for billing and statistical purposes).
• Identification and naming of devices and applications.
• Information models and data management (including store and publish/subscribe

functionality).
• Management aspects (including remote management of entities).

Among the work items being undertaken by oneM2M, the effort on Abstractions
and Semantics Enablement will be key to achieving application level interoperabil-
ity for IoT, as was discussed in Chap. 4. This area of Semantics remains a major gap
in the overall IoT standardization journey.

11.10 AllSeen Alliance

The AllSeen Alliance was formed in December 2013 as a Linux Foundation
Collaboration Project.

It is an open non-profit consortium that aims to promote the IoT based on the
AllJoyn open source project. AllJoyn is an open, secure, and programmable soft-
ware framework for connectivity and services. It enables devices to discover, con-
nect, and interact directly with other AllJoyn-enabled products. The project was
originally created by Qualcomm and released into the open source domain.

It consists of an open source software development kit (SDK) and code base of
service frameworks that enable basic IoT functions such as discovery, onboarding,
connection management, message routing, and security, thereby ensuring interoper-
ability among systems.

11.11 Thread Group

The Thread working group was formed in July 2014 and included Google’s Nest
subsidiary, Samsung, ARM Holdings, Freescale, Silicon Labs, Big Ass Fans, and
the lock company Yale. The purpose of the group is to promote Thread as the proto-
col for the connected home and certify products that support this protocol. The
Thread protocol is a closed-documentation royalty-free protocol that runs on top of
IEEE 802.15.4 and 6LowPAN. It adds functions such as security, routing, setup, and
device wakeup to maximize battery life. Thread competes with other protocols
already in this space such as Bluetooth Smart, Z-Wave, and ZigBee.

11 Industry Organizations and Standards Landscape

317

11.12 ZigBee Alliance

The ZigBee Alliance was formed in 2002 by Motorola, Philips, Invensys, Honeywell,
and Mitsubishi to develop, maintain, and publish the ZigBee standard. Since then,
the alliance has grown to include over 170 participant members and over 230
adopter companies, including ABB, Fujitsu, British Telecom, Huawei, Cisco, etc.
The alliance publishes “application profiles” that enable vendors to create interoper-
able products. The initial ZigBee specification focused on home automation, but the
scope has since expanded to include large building automation, retail applications,
and health monitoring.

Most of the protocol specifications are based on the IEEE 802.15.4 radio, even
though the more recent Smart Energy specifications are no longer tied to 802.15.4.

The initial protocols standardized by the alliance were based on the standard
IEEE 802.15.4 MAC/PHY, but defined a ZigBee specific stack that includes the
networking and services layer, through the full application layer. Since those begin-
nings, the ZigBee Alliance has undertaken a constant effort to increase the interop-
erability with the Internet Protocol suite, which renders ZigBee as one of the
protocols that are capable of adapting to different market segments. In 2013, the
ZigBee Alliance released ZigBee IP, an IoT solution based on IPv6, RPL, and
6LowPAN.

11.13 TIA

The Telecommunications Industry Association (TIA) develops industry standards
for information and communication technologies, and represents over 400 compa-
nies in this domain. The TIA TR-50 engineering committee was launched in 2009
to develop application programmatic interface (API) standards for the monitoring
and bi-directional communication between smart devices and other devices, appli-
cations, or networks. The committee includes many industry players, including
Alcatel Lucent, AT&T, CenturyLink, Cisco, Ericsson, ILS Technology, Intel, LG,
Nokia Siemens Networks, Numerex, Qualcomm, Sprint, Verizon, and Wyless. Even
pre-dating TR-50, TIA was involved in M2M standards, with several of its engi-
neering committees having worked on smart device communications, including
TR-45 (Mobile and Personal Communications Systems Standards), TR-48
(Vehicular Telematics), TR-49 (Healthcare ICT) and through its work on the Third
Generation Partnership Project 2 (3GPP2).

11.13 TIA

318

11.14 Z-Wave Alliance

The Z-Wave Alliance is an industry consortium of over 300 companies creating IoT
products and service over the Z-Wave protocol. Z-Wave is a short-range wireless
protocol, initially developed by a small Danish company called Zensys. Z-Wave is
a vertically integrated protocol, which runs over its own radio. Z-Wave’s physical
and media access layers were ratified by the International Telecommunication
Union (ITU) as the international standard G.9959. Z-Wave is often considered to be
the main competitor to ZigBee, but unlike ZigBee, it only focuses on home environ-
ment applications.

11.15 OASIS

OASIS is a non-profit consortium that drives the development, convergence, and
adoption of open standards for the global information society. OASIS produces
standards for security, Internet of Things, cloud computing, energy, content tech-
nologies, emergency management, and other areas.

There are three technical committees in OASIS involved in defining IoT
technologies:

The Advanced Message Queuing Protocol (AMQP) technical committee is stan-
dardizing the AMQP protocol, a secure, reliable, and open Internet protocol for
handling business messaging.

The Message Queuing Telemetry Transport (MQTT) technical committee is stan-
dardizing the MQTT protocol, a lightweight publish/subscribe reliable messag-
ing transport protocol suitable for communication in M2M/IoT contexts where a
small code footprint is required and/or network bandwidth is at a premium.

The Open Building Information Exchange (oBIX) technical committee is defining
technologies to enable mechanical and electrical control systems in buildings to
communicate with enterprise applications.

11.16 LoRa Alliance

The LoRa Alliance is an open, non-profit association to standardize Low Power
Wide Area Networks (LPWAN) using the LoRa protocol (LoRaWAN). The alliance
was announced in January 2015, and initial members include IoT solution providers
Actility, Cisco, Eolane, IBM, Kerlink, IMST, MultiTech, Sagemcom, Semtech, and
Microchip Technology, as well as telecom operators: Bouygues Telecom, KPN,
SingTel, Proximus, Swisscom, and FastNet (part of Telkom South Africa). The
LoRA protocol provides long-range wireless connectivity for devices at low bit
rates (from 0.3 to 50 kbps) with low-power consumption for battery-powered

11 Industry Organizations and Standards Landscape

319

devices. LoRaWAN transceivers can communicate over distances of more than
100 km (62 miles) in favorable environments, 15 km (9 miles) in typical semi-rural
environments and more than 2 km (1.2 miles) in dense urban environments.

The LoRa alliance claims that the scope of applications where LPWAN’s are
applicable is endless, but indicates that the main applications driving current net-
work deployments are intelligent building, supply chain, Smart City, and agriculture.

11.17 Gaps and Standards Progress Scorecard

The road to a standards-based IoT is well underway. The industry has made signifi-
cant strides towards converging on the IP network protocol as the common basis for
IoT communication protocols. Multiple Physical and Link layer standards have
been defined to address the requirements of constrained devices, which are limited
in both compute capacity and available power. Some work remains at these layers,
particularly with regard to adding support for determinism and time-sensitive appli-
cations. At the Network layer, the gaps are relatively limited and manifest in the
need to add support for routing over Time Slotted Channel Hopping (TCSH) link
technologies. The lion’s share of the gaps exists at the Application Protocols and
Application Services layers. The former is currently characterized by a multitude of
competing and largely functionally overlapping standards. No clear winner has
emerged; especially as the industry adoption remains highly fragmented. The latter
is currently in a state where the industry has more or less rallied around a common
forum, namely oneM2M, and an initial standard has been released, which defines
the Common Services Entities and Common Services Functions. However, at the
time of this writing, the market acceptance and adoption of the standard remain
unknown. In addition, the released standard is only a first step towards standardiza-
tion as the area of Semantics remains largely unchartered territory. Figure 11.2 sum-
marizes the progress scorecard for IoT industry standards.

Fig. 11.2 IoT standards progress scorecard

11.17 Gaps and Standards Progress Scorecard

320

11.18 Summary

In this chapter, we started with an overview of the IoT standardization landscape
and then provided an overview of the main standards defining organizations involved
in IoT and a snapshot of the projects that they are undertaking. We covered the fol-
lowing industry organizations: IEEE, IETF, ITU, IPSO Alliance, OCF, IIC, ETSI,
oneM2M, AllSeen Alliance, Thread Group, ZigBee Alliance, TIA, Z-Wave Alliance,
OASIS, and LoRa Alliance. Finally, we presented a summary of the standards gaps
and provided a scorecard of the progress to the time of this writing.

Problems and Exercises

 1. Name three established networking standards bodies involved in defining tech-
nology standards for IoT?

 2. Which devices does IEEE 1451 series address? What does it specifically define?
What does TEDS provide for IEEE 1451 devices? Provide specific examples.

 3. What are the two mays to implement TEDS?
 4. What does the IEEE 1888 standard define?
 5. What constraints should routing protocols adhere to in order to meet the require-

ments of LLNs, as analyzed by the IETF ROLL workgroup?
 6. Which RESTful protocol, defined by the IETF CORE workgroup, extends

RESTful architectures to constrained devices? Why is REST applicable here?
 7. What is the role of the IPSO Alliance among IoT standards organizations?
 8. What two standards bodies are developing competing wireless technologies for

home automation?
 9. What is the scope of the standards being developed by oneM2M?
 10. What IoT verticals does the work of the IIC encompass?
 11. The LoRA Alliance standardizes the LoRA protocol. Describe the data rate and

range characteristics of the technology?
 12. Is the IoT standards landscape well defined? What is the net result of this on the

industry?
 13. Where does the industry stand on the road to a standards-based IoT? State the

gaps per protocol layer.
 14. Name two IoT Application Protocols that are being standardized by

OASIS. Describe what function does each protocol serve.
 15. Is the ZigBee stack based on the Internet Protocol? Explain.

References

 1. Wobschall, D., IEEE 1451 – A Universal Transducer Protocol Standard, https://eesensors.com/
media/wysiwyg/docs- pdfs/ESP16_Atest.pdf

 2. Li, B., et al., Wireless Access for Vehicular Environments, http://www.mehrpouyan.info/
Projects/Group%205.pdf

11 Industry Organizations and Standards Landscape

https://eesensors.com/media/wysiwyg/docs-pdfs/ESP16_Atest.pdf
https://eesensors.com/media/wysiwyg/docs-pdfs/ESP16_Atest.pdf
http://www.mehrpouyan.info/Projects/Group 5.pdf
http://www.mehrpouyan.info/Projects/Group 5.pdf

321

 3. Khattab, A., et al. An Overview of IEEE Standardization Efforts for Cognitive Radio Networks,
IEEE International Symposium on Circuits and Systems (ISCAS), May 2015.

 4. Kasparick, M., et al. New IEEE 11073 Standards for Interoperable, Networked Point-of-Care
Medical Devices, 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), August 2015.

 5. Logvinov, O., Standard for an Architectural Framework for the Internet of Things (IoT), http://
grouper.ieee.org/groups/2413/Intro- to- IEEE- P2413.pdf.

 6. IETF, ROLL Working Group charter, https://datatracker.ietf.org/wg/roll/charter/
 7. Vasseur, JP., Terms Used in Routing for Low-Power and Lossy Networks, RFC 7102,

January 2014.
 8. Levis, P., et al., Overview of Existing Routing Protocols for Low-Power and Lossy Networks,

draft-ietf-roll-protocols-survey-07, work in progress, April 2009.
 9. IETF, CORE Working Group charter, https://datatracker.ietf.org/wg/core/charter/
 10. Kushalnagar, N., et al., IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs):

Overview, Assumptions, Problem Statement, and Goals, RFC4919, August 2007.
 11. Montenegro, G., et al., Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC4944,

September 2007.
 12. Hui J., et al., Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks,

RFC6282, September 2011.
 13. Kim E., et al., Design and Application Spaces for IPv6 over Low-Power Wireless Personal

Area Networks (6LoWPANs), RFC6568, April 2012.
 14. Kim E., et al., Problem Statement and Requirements for IPv6 over Low-Power Wireless

Personal Area Network (6LoWPAN) Routing, RFC6606, May 2012.
 15. Shelby, Z., et al., Neighbor Discovery Optimization for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs), RFC6775, November 2012.
 16. IETF, 6TiSCH Working Group Charter, https://datatracker.ietf.org/wg/6tisch/charter/
 17. IETF, ACE Working Group Charter, https://datatracker.ietf.org/wg/ace/charter/
 18. Zavazava, C., ITU Work on the Internet of Things, Presentation at ICTP Workshop, March 2015.
 19. IPSO Alliance, http://www.ipso- alliance.org/
 20. IETF, IPSO Alliance Successfully Demonstrates Internet of Things Interoperability, IETF

Journal, October 2012.
 21. Open Connectivity Foundation, http://openconnectivity.org/
 22. ETSI IoT, http://www.etsi.org/technologies- clusters/technologies/internet- of- things
 23. oneM2M, http://www.onem2m.org/about- onem2m/why- onem2m
 24. Thread Group, http://www.threadgroup.org/
 25. Mazhelis O., et al., “Internet of Things Market, Value Networks, and Business Models: State

of the Art Report”, 2013.
 26. Z-Wave Alliance, http://z- wavealliance.org/
 27. TIA TR-50, http://www.tiaonline.org/all- standards/committees/tr- 50
 28. OASIS, https://www.oasis- open.org/committees/tc_cat.php?cat=iot
 29. IBM LoRaWAN Press Release, https://www03.ibm.com/press/us/en/pressrelease/46287.wss
 30. LoRa Alliance, https://www.lora- alliance.org/

References

http://grouper.ieee.org/groups/2413/Intro-to-IEEE-P2413.pdf
http://grouper.ieee.org/groups/2413/Intro-to-IEEE-P2413.pdf
https://datatracker.ietf.org/wg/roll/charter/
https://datatracker.ietf.org/wg/core/charter/
https://datatracker.ietf.org/wg/6tisch/charter/
https://datatracker.ietf.org/wg/ace/charter/
http://www.ipso-alliance.org/
http://openconnectivity.org/
http://www.etsi.org/technologies-clusters/technologies/internet-of-things
http://www.onem2m.org/about-onem2m/why-onem2m
http://www.threadgroup.org/
http://z-wavealliance.org/
http://www.tiaonline.org/all-standards/committees/tr-50
https://www.oasis-open.org/committees/tc_cat.php?cat=iot
https://www03.ibm.com/press/us/en/pressrelease/46287.wss
https://www.lora-alliance.org/

323© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5_12

Chapter 12
The Role of Open Source in IoT

12.1 The Open Source Movement

Open source in the computer industry is the publishing of source code or hardware
design, with associated licensing that permits the reuse, modification, improvement,
and potential commercialization under favorable terms. Example of favorable dis-
tribution terms includes the following criteria:

• Free Distribution: Any party may sell or give away the open-source component
as part of a larger system without being obligated to pay a royalty or other fee for
such sale.

• Source Code/Design: The source code or design must be distributed and made
publicly available.

• Derived Works: Derivation and modification of the original open-source compo-
nent are allowed under the original licensing terms.

• No Discrimination: The license must not discriminate against any person, group,
or a field of business, academics, or research.

• No Packaging Restrictions: The open-source component is not limited to be used
as part of a specific distribution or product and is not precluded from being used
with other open-source or closed-source components.

• Technology Neutral: There are no assumptions or conditions favoring a specific
technology or interface.

While any system can potentially be released under an open source license by its
owner, successful open source projects have associated communities of interest that
are integral to their success. Such communities are typically geographically distrib-
uted and rely on electronic platforms for collaboration. These platforms ensure pro-
cess compliance, source code management, issue tracking, and continuous
integration and test.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90158-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-90158-5_12#DOI

324

The development lifecycle of an open-source activity is quite different from the
proprietary development cycle. Building a critical mass with an engaged open
source community is a critical factor in successful adoption of a project. The ability
of a community to garner interest and passion is an indicator of their engagement
and potential for providing the advocacy necessary for successful market adoption.

That takes time. On the other hand, if a company decides to create a product, they
will staff the project accordingly, and progress in the early phases of the project will
be achieved much faster but the rate of progress will remain relatively constant
over time.

However, with open source, once the community is fully engaged, the rate of
progress can rapidly accelerate and the project can potentially progress at a rate that
can far outpace closed source development. This is referred to as the “crowdsourc-
ing” effect. According to Howe [5], crowdsourcing is “the act of a company or
institution taking a function once performed by employees and outsourcing it to an
undefined (and generally large) network of people in the form of an open call.”
Without a doubt, open source is one of the most successful forms of crowdsourcing
in the software development industry. Figure 12.1 shows how the crowdsourcing
effect impacts the speed of development.

Like other initiatives, the open source movement has certain disadvantages. For
example, the leadership of the project does not have control over the contributors. If
a key developer decides to move on to another project, there is very little that the
coordinators of the open source organization can do. They cannot nominate or
recruit another leader unless one comes forward. Another issue is focusing the
energy of the contributors in the right direction. If a group of people were to make
a contribution that is not in line with the original goal or intent of the project, there
are only two options: either the leadership rejects the contribution or they allow it.
If they reject the contribution, they will lose the potential contributors. If they allow
the contribution, they risk diluting the original impact of their open source project.

There are many open-source success stories: Linux, Apache Hadoop and HTTP
server, MySQL, Google Chrome, OpenOffice, Android, and Java to name a few.
The days of viewing open source as a fad are long gone. Open source is how modern
organizations and increasingly more traditional organizations build software. Large

Fig. 12.1 The crowdsourcing effect on the speed of development

12 The Role of Open Source in IoT

325

corporations are embracing open source and intend to use it in production. Recently,
John Donovan, CTO at AT&T mentioned that, today, open source products repre-
sent about 5% of their infrastructure. They plan for that number to reach 50% by
2020. The open source high-speed train is in motion and there is no turning back.

12.2 Why Open Source?

There are numerous reasons driving individuals, corporations, small businesses,
non-profits, government agencies, and other organizations to consume, publish, col-
laborate on, or support open source. We will discuss the main drivers here.

12.2.1 Drivers for Open Source Consumers

The reasons driving individuals and organizations to leverage and use open source
projects are many, and can be attributed to the following:

Business Efficiency: Many technical problems already have open source solutions
available. Hence, instead of wasting time and resources reinventing the wheel,
open source consumers can use the best-of-breed solution and focus their efforts
on working to address yet-unsolved challenges. These are the types of challenges
that add value to their business or mission. This enables a shift from low-value
work to high-value work.

Best-of-Breed Solution: Evidence shows that open source software has better qual-
ity compared to closed source [2]. With a closed source system, bugs can poten-
tially be detected and resolved by only the employees of the company developing
that system. Whereas open source provides clear advantages here: First, it pres-
ents the opportunity to tap into a larger pool of contributors and leverage the
knowledge of the world’s best engineers, not just those on a company’s payroll.
Second, open source systems are hardened through exposure to a wide array of
use cases, not just the one that the original developer intended. This helps in
surfacing issues and corner cases much more rapidly compared to traditional test
and quality assurance processes baked into typical engineering/development
pipelines.

Lower Total Cost of Ownership (TCO): Whether employing open source or
closed source systems, certain costs, such as training, maintenance, and support,
are sunk costs that have to be paid. In the case of closed source commercial sys-
tems, these costs are baked into the equipment price or licensing fees. What sets
open source systems apart is the generally lower up-front cost (you do not pay
for the right to use the underlying intellectual property). The cost center is shifted
from licensing to customization and integration. This generally yields a lower
total cost of ownership compared to proprietary and closed systems.

12.2 Why Open Source?

326

Modern, Nimble Development Processes: Open source projects go hand-in-hand
with online collaboration tools and platforms that enable distributed, asynchronous,
and lock-free electronic workflows. These workflows enable rapid development and
allow for more frequent releases. This provides the adopters of open source systems
with the required system capabilities without the typical long lead times associated
with more traditional corporate processes. This applies not only to new feature func-
tionality, but also to bugs and security vulnerabilities. With access to the source
code, the adopters of open source systems can often apply patches, or fixes, at their
own convenience, without being gated by the release cycles of a specific vendor.

12.2.2 Drivers for Open Source Contributors

Open source contributors include both individuals and large corporations. There are
many moral and participatory motivations that drive individuals to contribute to
open source projects. While acknowledging the importance of those motives and
contributions, in this section, we will only focus on the drivers that encourage large
corporations to engage in open source projects.

Workforce Multiplier: Open source provides a platform for scaling a development
organization’s workforce. This happens in two ways: First, when a community
comes together to solve a shared challenge, the human capital that becomes dedi-
cated to work on the problem can quickly eclipse what could have been possible
in a close corporate setting. Also, the diversity of that capital has been proven to
correlate to the degree of innovation and quality of ideas generated. Second, the
incubators of the open source system receive peer review and feedback from the
community of adopters, who effectively act as “for free” testers of the open
source system. This helps improve the original product and bring it to a level of
quality and maturity that a small group of developers would have trouble achiev-
ing on their own.

Better Product Architecture: Open source generally leads to well-architected sys-
tems that are designed with modularity, maintainability, and flexibility in mind.
This is because open source systems, by their nature, are built for a wide array of
use cases, environments, and users. Hence, technical shortcuts that typically lure
developers who are working on proprietary systems, e.g., due to scheduling con-
straints or laser-focus on a specific use case, generally do not manifest in open
source projects. Over the long run, this results in greater flexibility and lower

Cost Open source Proprietary

Licensing No Yes
Training Yes Yes
Maintenance Yes Yes
Support Yes Yes

12 The Role of Open Source in IoT

327

customization costs when comparing open source with closed source systems.
This is the reason why some software engineering pundits advocate for architect-
ing all software, even proprietary or internal code, as if it were open source.

Great Advertising: Contributors and shepherds of successful open source projects
are perceived as industry thought leaders. This bestows upon them the ability to
shape the conversation around a particular software problem and allows them to
associate their brand with the preferred solution. In a way, this solution becomes
the de facto standard for the associated technology. For example, 37Signals is
known for creating Ruby on Rails. GitHub is known for creating Hubot.

Customer Feedback and Trust: Open source offers companies a direct line of
interaction with their most passionate customers. It empowers those customers to
have a collective powerful voice in the technology development process. The
feedback that a company receives can better guide its product development pri-
orities and roadmap decisions, in addition to improving the overall product qual-
ity. Furthermore, open source increases transparency which helps promote the
customer’s trust in a corporation’s software.

Attracting and Vetting Talent: Open source allows a corporation to showcase to
the developer community the interesting challenges that it is trying to solve, and
how it is looking at solving them. Open source developers can casually contrib-
ute to projects, to learn how the organization works, and what it is like to develop
solutions for a particular set of challenges. If they are engaged and enthused, the
likelihood of them applying for a job at the corporation will be much higher than
if the organization were a black box. Similarly, the corporation can see firsthand
the quality of the contributed code of prospective employees, which provides
better confidence in their capabilities than a typical interview process.

12.3 Open Source vs. Standards

Promoting interoperability through standards is achieved in a very different way
compared to open source. Standards organizations come in a continuum of sizes,
from the large and well-established international bodies such as IEEE or ITU to the
more nimble and usually scope-focused organizations. Smaller organizations tend
to have less procedures and target specific problem domains. Regardless of the size
of the organization, companies approach them in the same way: they bring their
technology and try to turn it into a standard. This usually results in long debates,
power struggles, and eventually negotiations, which lead to the creation of a docu-
ment. This process may take years to conclude. If the company fails to include its
technology into a specification, it may try somewhere else, in a different
organization.

In the case of IoT, the situation is more complex. The behavior described above
is possible but, since IoT is a green field, some companies may claim that the exist-
ing standard bodies do not have the specific skill set or expertise required to realize

12.3 Open Source vs. Standards

328

a new IoT standard. This may result in the creation of a new organization, specifi-
cally designed to address one of the IoT verticals such as industrial automation.

However, even if the scene has changed, the format remains more or less the
same. A credible standards organization needs to have rules and processes in place
to ensure quality and openness. This also applies to IoT standards organizations
(Chap. 10). Therefore, the development cycle of IoT standards is on track to match
the pace of other technologies in “legacy” standards bodies, and this is to be
expected. There needs to be a requirements definition phase, a scoping phase, a
debate phase, a drafting phase, a review phase and finally a voting or some sort of
consensus to sanction the work. Eventually, when the standard draft is stable
enough, companies can develop to it, which may add several months of delay before
a final stable implementation sees the light of day.

In the open-source world however, things can proceed at a much faster rate. A
group of developers write source code, they submit it to an existing project if there
is one. The code is peer reviewed. If it does not cause any regressions in the system
operation and follows the best practice coding guidelines, the code is integrated. No
one can block a contribution on the grounds that their company is doing things dif-
ferently, or because there is a better way to implement. If there is, then code must be
submitted by those making such claims. Eventually, the end-users will vote by eval-
uating the code and its functionality. Some user may feel compelled to fix bugs so
their company can use the product, and other users benefit instantly.

Of course, the leap of faith a company may take by giving away the implementa-
tion of their technology is a substantial barrier to overcome. But the key to success
in open source is to add a “secret sauce” that complements the public domain func-
tions. The open source project then becomes a vehicle to get immediate feedback on
a way to do things, ignite the spark of curiosity, and attract potential developers and
partners. With a common basis built, new proprietary improvements can be added
on top of the public domain code. This brings all the players to a higher common
ground, which is beneficial for everybody, the producer and the consumer.

12.4 Open Source Partnering with Standards

As we saw earlier, the way companies approach open source and standards is very
different. However, since open source is beneficial for companies, standard bodies
quickly realized that they could use open source efforts for their benefit. After all,
what the consumer needs is not a 300 page document describing in mundane details
how a system should be implemented. Consumers want to have real products in
their hand, with real functionalities to use and evaluate in their own business or
home environments. This is not something that they get out of the usually dry read-
ing of a standards document. “Code is King” and having some code, which imple-
ments a standard is a very powerful combination. The standard represents an
agreement between several parties and the code is the proof that the system on paper
does indeed work.

12 The Role of Open Source in IoT

329

Therefore, it is now becoming a must-have for a project under development in a
standards body to be associated with some form of open source effort. Following
are some examples related to IoT (Table 12.1).

12.5 A Tour of Open-Source Activities in IoT

As mentioned previously, the IoT open source community is quite active. There are
several open projects, some are backed by consortiums of large industry players,
others are backed by just a single startup. Large or small, they all aim at facilitating
the deployment of IoT solutions. But, unfortunately, they are not compatible with
each other. Some of the larger efforts are attempting to bridge the gap and connect
with other overlapping communities or projects.

The list below is far from being exhaustive. It is merely meant to provide an
overview of active projects, which have the potential to make a difference in the IoT
space. The list is organized per the IoT reference model presented in Fig. 1.5.

12.5.1 IoT Devices

12.5.1.1 Hardware

Arduino

Arduino is both a hardware specification for interactive electronics and a set of
software that includes an Integrated Development Environment (IDE) and the
Arduino programming language. Arduino is “a tool for making computers that can
sense and control more of the physical world than your desktop computer.” The

Table 12.1 Examples of open source initiatives for IoT

Standards organization or project Open source implementation

Open Interconnect Consortium IoTVity (Linux Foundation)
oneM2M IoTDM (Linux Foundation), OCEAN, OM2M

(Eclipse)
Allseen Alliance AllJoyn
ZigBee® Alliance (IEEE) Zboss, Open-ZB, NS2, OpNet
CoAP (IETF) Californium (Eclipse)
MQTT (OASIS) Mosquitto.org, Paho (Eclipse)
ZWave (Z-Wave Alliance) openZwave
DASH7 (Alliance) OSS-7, OpenTag
Modbus (Schneider) libmodbus.org
BACnet (ASHRAE) Wacnet
KNX (ISO) Linknx and Webknx2

12.5 A Tour of Open-Source Activities in IoT

http://mosquitto.org
http://libmodbus.org

330

organization behind it offers a variety of electronic boards, starter kits, robots and
related products for sale, and many other groups have used Arduino to build IoT-
related hardware and software products of their own.

GizmoSphere

GizmoSphere is an open source development platform for the embedded design
community; the site includes code downloads and hardware schematics along with
free user guides, specification sheets, and other documentation.

Tinkerforge

Tinkerforge is a system of open source stackable microcontroller building blocks. It
allows the control of motors and reading out sensors with the following program-
ming languages: C, C++, C#, Object Pascal, Java, PHP, Python, and Ruby over a
USB or Wi-Fi connection on Windows, Linux, and Mac OS X. All of the hardware
is licensed under CERN OHL (CERN Open Hardware License).

BeagleBoard

BeagleBoard offers credit-card sized computers that can run Android and Linux.
Because they have very low-power requirements, they are a good option for IoT
devices. Both the hardware designs and the software they run are open source, and
BeagleBoard hardware (often sold under the name BeagleBone) is available through
a wide variety of distributors.

12.5.1.2 Operating Systems

Contiki

Contiki is an open source operating system for networked, memory-constrained
systems with a particular focus on low-power wireless Internet of Things devices.
Examples of where Contiki is used include street lighting systems, sound monitor-
ing for smart cities, radiation monitoring systems, and alarm systems. Other key
features include highly efficient memory allocation, full IP networking, very low-
power consumption, dynamic module loading, and more. Supported hardware plat-
forms include Redwire Econotags, Zolertia z1 motes, ST Microelectronics
development kits and Texas Instruments chips and boards. Paid commercial support
is available.

12 The Role of Open Source in IoT

https://en.wikipedia.org/wiki/CERN_Open_Hardware_License

331

Raspbian

While the Raspberry Pi is not an open source project, many components of its OS
are. Raspbian is a free operating system based on Debian optimized for the
Raspberry Pi hardware.

RIOT

This 1.5 kB embedded OS bills itself as “the friendly operating system for the
Internet of Things.” It fits in the category of Contiki and TinyOS. Forked from the
FeuerWhere project, RIOT debuted in 2013. It aims to be both developer- and
resource-friendly. It supports multiple architectures, including MSP430, ARM7,
Cortex-M0, Cortex-M3, Cortex-M4, and standard x86 PCs.

12.5.2 IoT Services Platform

12.5.2.1 Eclipse IoT Project

Eclipse is sponsoring several different projects surrounding IoT. They include appli-
cation frameworks and services; open source implementations of IoT protocols,
including MQTT CoAP, OMA-DM, and OMA LWM2M; and tools for working
with Lua, which Eclipse is promoting as an ideal IoT programming language.
Eclipse-related projects include:

• Paho provides client implementations of the MQTT protocol.
• Mihini is an embedded Lua runtime providing hardware abstraction and other

services.
• Koneki provides tools for embedded Lua developers.
• Eclipse SCADA is a complete Java/OSGi-based SCADA system which provides

communication, monitoring, GUI and other capabilities.
• Kura is a Java/OSGi-based M2M container for gateways. It has support for

Modbus, CANbus, MQTT, and other protocols.
• Mosquitto is a lightweight server implementation of the MQTT and MQTT-SN

protocols written in C.
• Ponte bridges IoT protocols (MQTT and CoAP) to the Web.
• Smarthome provides a complete set of services for home automation gateways.
• OM2M implements the ETSI M2M standard.
• Californium is a Java implementation of the CoAP protocol, which includes

DTLS for security.
• Wakaama is an implementation of LWM2M written in C.
• Krikkit is a rules system for programming edge devices.
• Concierge is a lightweight implementation of OSGi Core R5.

12.5 A Tour of Open-Source Activities in IoT

332

12.5.2.2 Kinoma

The Kinoma group’s hardware and software prototyping solutions help developers,
programmers, and designers rapidly create connected products. Owned by Marvell,
the Kinoma software platform encompasses three different open source projects.
Kimona Create is a DIY construction kit for prototyping electronic devices. Kimona
Studio is the development environment that works with Create and the Kinoma
Platform Runtime. Kimona Connect is a free iOS and Android app that links smart-
phones and tables with IoT devices.

12.5.2.3 OneM2M the Linux Foundation and Eclipse

The purpose and goal of oneM2M is to develop technical specifications, which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software. oneM2M positions itself as a cross vertical
platform. This means that it will be well suited for various sectors such as industrial,
energy, home, etc. These specifications are being implemented as open source proj-
ects at the Linux Foundation (IoTDM), Eclipse (oM2M), and OCEAN.

12.5.2.4 Open Interconnect Consortium (OIC)

The goal of OIC is to enable application developers and device manufacturers to
deliver interoperable products across Android, iOS, Windows, Linux, Tizen, and
more. The Linux Foundation hosts a project called IoTvity, which provides open
source code for OIC. At the time of this writing, OIC and oneM2M are specifying
gateway functions to bridge the two domains.

12.5.2.5 IT6.eu, OpenIoT, and IoTSyS

The European Union is actively financing the development of IoT research. OpenIoT
and IoTSyS are examples. The OpenIoT website explains that the project is “an
open source middleware for getting information from sensor clouds, without worry-
ing what exact sensors are used.” It aims to enable cloud-based “sensing as a
service.”

IoTSyS is an IoT middleware providing a communication stack for smart devices.
It supports multiple standards and protocols, including IPv6, oBIX, 6LoWPAN,
Constrained Application Protocol, and Efficient XML Interchange.

12 The Role of Open Source in IoT

333

12.5.2.6 DeviceHive

This project offers a data collection facility for connecting IoT devices. It includes
easy-to-use web-based management software for creating devices, applying secu-
rity rules, and monitoring devices. The website offers sample projects built with
DeviceHub, and it also has a “playground” section that allows users to use
DeviceHub online to see how it works.

12.5.2.7 IoT Toolkit

The group behind this project is working on a variety of tools for integrating mul-
tiple IoT-related sensor networks and protocols. IoT Toolkit implements HTTP/
REST, CoAP, and MQTT protocols and acts as a stateful bridge between these dif-
ferent protocols.

The primary project is a Smart Object API, but the group is also working on an
HTTP-to-CoAP Semantic mapping, an application framework with embedded soft-
ware agents and more.

Note there is a difference between open source efforts implementing a standard
(such as oneM2M and OIC) versus open source efforts trying to realize a middle-
ware implementation with their own data models and protocols. We expect the
industry to be more likely to embrace the former.

12.6 Conclusions

There are many aspects to IoT (device, transport, data aggregation and collection,
big data, etc.), this translates to a large number of standards and slow progress. Most
of the standards are backed by an open source activity. It is now becoming clear that
the industry wants to see working code in addition to seeing concise documents
describing a technology. The open-source community has preceded the standards in
most cases, proposing working solutions to real problems.

Therefore there are two classes of open-source activities in IoT: one backed by a
standard, and those evolving by themselves. The latter group is of course more agile
and can offer solutions without the overhead of standard development procedures.
However, in many cases, there is no domination of one group over the others. This
leads to the conclusion that, eventually, a combination of standard plus associated
open source will be the long-term solutions the industry will adopt.

Problems and Exercises

 1. What is open source? What are the key benefits to the producer and users?
 2. Why open source platform is appealing to platform for developers? Why

appealing application consumers (companies and individuals)?
 3. List three downsides for open source projects.

12.6 Conclusions

334

 4. List two main disadvantages of open-source projects.
 5. Linux is a well know open source project. List three other examples of success-

ful open source projects.
 6. Name three examples of IoT open source activities.
 7. Are there major differences between standards and open source developments?

If so, what is the key difference (i.e., what’s the deliverables/outcomes of stan-
dard bodies and they are for Open Source)? What is the relationship between
the two?

 8. Name three standards which are implemented in open source.
 9. When was the open source label developed? Who developed it?
 10. A license defines the rights and obligations that a licensor grants to a licensee.

Does need open source provide licenses to its users? What do such
license impose?

 11. Certification often helps to build higher user confidence. Are there certifications
issued for open source? If so, name two examples.

 12. Global Desktop Project is an example of Open Source initiative developed by
the United Nation University. What does it do?

 13. What are the main phases of IoT standard development cycles? What are the
main phases of IoT open source developments? What are they key
differences?

 14. It is said that a key to success in open source is to add a “secret sauce” that
complements the public domain functions? Why is it the case? Can you provide
an example?

 15. What is meant by “Code is King” in open source?

References

 1. Open Source Definition, The Open Source Initiative, https://opensource.org/osd
 2. Wheeler, D., Why Open Source Software, http://www.dwheeler.com/oss_fs_why.html,

July 2015.
 3. http://ben.balter.com/2012/06/26/why- you- should- always- write- software- as- open- source/
 4. Preston-Werner, T., Open Source (Almost) Everything, http://tom.preston- werner.

com/2011/11/22/open- source- everything.html, November 2011.
 5. Jaksic, M., et al., Proceedings of the XIII International Symposium SymOrg 2012, June 2012.
 6. Wright, S., et al., Open source and standards: The role of open source in the dialogue between

research and standardization, 2014 IEEE Globecom Workshops (GC Wkshps), December 2014.
 7. Github Hubot: http://hubot.github.com
 8. M. St. Laurent, Understanding Open Source and Free Software Licensing. O’Reilly Media.

p. 4. May 2008, ISBN 9780596553951.
 9. W. T. Verts, “Open source software”. World Book Online Reference Center. Archived from the

original on January 1, 2011.
 10. R. Rothwell, “Creating wealth with free software”. Free Software Magazine, September 2008.
 11. E. S. Raymond, “Goodbye free software, hello open source”, August 2—8, Online: http://

www.catb.org/esr/open- source.html
 12. Arduino: Online: http://www.arduino.cc/

12 The Role of Open Source in IoT

https://opensource.org/osd
http://www.dwheeler.com/oss_fs_why.html
http://ben.balter.com/2012/06/26/why-you-should-always-write-software-as-open-source/
http://tom.preston-werner.com/2011/11/22/open-source-everything.html
http://tom.preston-werner.com/2011/11/22/open-source-everything.html
http://hubot.github.com
http://www.catb.org/esr/open-source.html
http://www.catb.org/esr/open-source.html
http://www.arduino.cc/

335

 13. GizmoSphere: Online: https://en.wikipedia.org/w/index.php?title=GizmoSphere&action=edit
&redlink=1

 14. Tinkerforge: https://en.wikipedia.org/wiki/Tinkerforge
 15. BeagleBoard: http://beagleboard.org/
 16. AllJoyn: https://allseenalliance.org/developer- resources/alljoyn- open- source- project
 17. Contiki: http://www.contiki- os.org/
 18. Raspbian: http://raspbian.org/
 19. RIOT: http://riot- os.org/
 20. Eclipse IoT Project: http://iot.eclipse.org/
 21. Kinoma: http://www.marvell.com/kinoma/
 22. oneM2M: http://www.onem2m.org
 23. IoTDM: Open-source Project implementing oneM2M specification, https://wiki.opendaylight.

org/view/IoTDM:Main
 24. OIC (Open Interconnect Consortium): http://openinterconnect.org
 25. OpenIoT: http://openiot.eu/
 26. IoT Toolkit: https://github.com/connectIOT/iottoolkit/wiki/IoT- Toolkit- Overview- and- links
 27. T. Pham, Verint Systems Inc. and Matthew B. Weinstein and Jamie L. Ryerson. “Easy as ABC:

Categorizing Open Source Licenses”; www.IPO.org. June 2010.

References

https://en.wikipedia.org/w/index.php?title=GizmoSphere&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=GizmoSphere&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=GizmoSphere&action=edit&redlink=1
https://en.wikipedia.org/wiki/Tinkerforge
https://en.wikipedia.org/wiki/Tinkerforge
http://beagleboard.org/
http://beagleboard.org/
https://allseenalliance.org/developer-resources/alljoyn-open-source-project
https://allseenalliance.org/developer-resources/alljoyn-open-source-project
http://www.contiki-os.org/
http://www.contiki-os.org/
http://raspbian.org/
http://raspbian.org/
http://riot-os.org/
http://riot-os.org/
http://iot.eclipse.org/
http://iot.eclipse.org/
http://www.marvell.com/kinoma/
http://www.marvell.com/kinoma/
http://www.onem2m.org
http://www.onem2m.org
https://wiki.opendaylight.org/view/IoTDM:Main
https://wiki.opendaylight.org/view/IoTDM:Main
http://openinterconnect.org
http://openinterconnect.org
http://openiot.eu/
http://openiot.eu/
https://github.com/connectIOT/iottoolkit/wiki/IoT-Toolkit-Overview-and-links
https://github.com/connectIOT/iottoolkit/wiki/IoT-Toolkit-Overview-and-links
http://www.ipo.org

337© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

Appendix A

Glossary

6LowPAN
IPv6 over Low-power Wireless Personal Area Networks (IETF).

6TiSCH
IPv6 over Time Slotted Channel Hopping mode of IEEE 802.15.4 (IETF).

AAA
Authentication, authorization, and accounting. See also TACACS+ and RADIUS
(Various).

AAAA
Authentication, Authorization, Accounting, and Auditing (Various).

Access Modes
The security appliance CLI uses several command modes. The commands available
in each mode vary. See also user EXEC mode, privileged EXEC mode, global con-
figuration mode, command-specific configuration mode (Cisco).

ACE
Access Control Entry. Information entered into the configuration that lets you spec-
ify what type of traffic to permit or deny on an interface. By default, traffic that is
not explicitly permitted is denied (Cisco).

ACL
Access Control List. A collection of ACEs. An ACL lets you specify what type of
traffic to allow on an interface. By default, traffic that is not explicitly permitted is
denied. ACLs are usually applied to the interface which is the source of inbound
traffic. See also rule, outbound ACL (Cisco).

https://doi.org/10.1007/978-3-030-90158-5#DOI

338

Actuators
“An actuator is a type of motor that is responsible for moving or controlling a mech-
anism or system. It is operated by a source of energy, typically electric current,
hydraulic fluid pressure, or pneumatic pressure, and converts that energy into
motion. An actuator is the mechanism by which a control system acts upon an envi-
ronment. The control system can be simple (a fixed mechanical or electronic sys-
tem), software-based (e.g., a printer driver, robot control system), a human, or any
other input” (Wikipedia).

Address
An address is used for locating and accessing—“talking to”—a Device, a Resource,
or a Service. In some cases, the ID and the Address can be the same, but conceptu-
ally they are different (IoT-A).

Address Resolution Protocol (ARP)
Address Resolution Protocol. A low-level TCP/IP protocol that maps a hardware
address, or MAC address, to an IP address. An example hardware address is
00:00:a6:00:01:ba. The first three groups of characters (00:00:a6) identify the man-
ufacturer; the rest of the characters (00:01:ba) identify the system card. ARP is
defined in RFC 826 (Cisco).

Address Translation
The translation of a network address and/or port to another network address/or port.
See also IP address, interface PAT, NAT, PAT, Static PAT, xlate (Cisco).

ADN
Application Dedicated Node. oneM2M compliant device (i.e., Thing) with restricted
functionality (oneM2M).

AES
Advanced Encryption Standard. A symmetric block cipher that can encrypt and
decrypt information. The AES algorithm is capable of using cryptographic keys of
128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. See also
DES (Cisco).

AH
Authentication Header. An IP protocol (type 51) that can ensure data integrity,
authentication, and replay detection. AH is embedded in the data to be protected (a
full IP datagram, for example). AH can be used either by itself or with ESP. This is
an older IPSec protocol that is less important in most networks than ESP. AH pro-
vides authentication services but does not provide encryption services. It is pro-
vided to ensure compatibility with IPSec peers that do not support ESP, which
provides both authentication and encryption. See also encryption and VPN. Refer to
the RFC 2402 (Cisco).

AMQP
Advanced Message Queuing Protocol (Various).

Appendix A

https://en.wikipedia.org/wiki/Engine
https://en.wikipedia.org/wiki/Hydraulic_fluid
https://en.wikipedia.org/wiki/Pneumatic

339

Application Software
“Software that provides an application service to the user. It is specific to an appli-
cation in the multimedia and/or hypermedia domain and is composed of programs
and data” ([ETSI-ETR173]).

Architectural Reference Model
The IoT-A architectural reference model follows the definition of the IoT reference
model and combines it with the related IoT reference architecture. Furthermore, it
describes the methodology with which the reference model and the reference archi-
tecture are derived, including the use of internal and external stakeholder require-
ments (IoT-A).

Architecture
“The fundamental organization of a system embodied in its components, their rela-
tionships to each other, and to the environment, and the principles guiding its design
and evolution” ([IEEE-1471-2000]).

Architecture Vision
“A high-level, aspirational view of the target architecture” ([TOGAF9]).

ARP
Address Resolution Protocol. A low-level TCP/IP protocol that maps a hardware
address, or MAC address, to an IP address. An example hardware address is
00:00:a6:00:01:ba. The first three groups of characters (00:00:a6) identify the man-
ufacturer; the rest of the characters (00:01:ba) identify the system card. ARP is
defined in RFC 826 (Cisco).

ASA
Adaptive Security Algorithm. Used by the security appliance to perform inspec-
tions. ASA allows one-way (inside to outside) connections without an explicit con-
figuration for each internal system and application (Cisco).

ASDM
Adaptive Security Device Manager. An application for managing and configuring a
single security appliance (Cisco).

ASN
Application Service Node. Fully featured oneM2M compliant device (oneM2M).

Association
An association establishes the relation between a service and resource on the one
hand and a Physical Entity on the other hand (IoT-A).

Asymmetric Encryption
Also called public key systems, asymmetric encryption allows anyone to obtain
access to the public key of anyone else. Once the public key is accessed, one can
send an encrypted message to that person using the public key. See also encryption,
public key (Cisco).

Augmented Entity
The composition of a Physical Entity together with its Virtual Entity (IoT-A).

Appendix A

340

Authentication
Cryptographic protocols and services that verify the identity of users and the integ-
rity of data. One of the functions of the IPSec framework. Authentication estab-
lishes the integrity of datastream and ensures that it is not tampered with in transit.
It also provides confirmation about the origin of the datastream. See also AAA,
encryption, and VPN (Cisco).

Authentication
Authentication ensures that the entities involved in any operation are who they
claim to be. A masquerade attack or an impersonation attack usually targets this
requirement where an entity claims to be another identity (Various).

Authorization
Authorization: ensures that entities have the required control permissions to per-
form the operation they request to perform (Various).

Auto Applet Download
Automatically downloads the WebVPN port-forwarding applet when the user first
logs in to WebVPN (Cisco).

Auto-signon
This command provides a single sign-on method for WebVPN users. It passes the
WebVPN login credentials (username and password) to internal servers for authen-
tication using NTLM authentication, basic authentication, or both (Cisco).

Availability
Availability refers to characteristic of a system or subsystem that is continuously
operational for a desirably long period of time. It is typically measured relative to
“100% operational” or “never failing.” A widely-held but difficult- to- achieve stan-
dard of availability for a system or product is known as “five 9s” (available 99.999%
of the time in a given year) availability (Various).

AVB
Audio Video Bridging. IEEE standards for supporting time sensitive audio/video
streams over wireless Ethernet networks. Also known as Time Sensitive Network-
ing (Various).

Backup Server
IPSec backup servers let a VPN client connect to the central site when the primary
security appliance is unavailable (Cisco).

Backward Secrecy
Backward Secrecy: ensures that any new object that joins the network will not be
able to understand the communications that were exchanged prior to joining the
network (Various).

BGP
Border Gateway Protocol. BGP performs interdomain routing in TCP/IP networks.
BGP is an Exterior Gateway Protocol, which means that it performs routing between
multiple autonomous systems or domains and exchanges routing and access infor-
mation with other BGP systems. The security appliance does not support BGP. See
also EGP (Cisco).

Appendix A

341

BI
Business Intelligence (Authors).

Blockchain
A decentralized public ledger that records all transactions within a given network
(Authors).

BLT stream
Bandwidth Limited Traffic stream. Stream or flow of packets whose bandwidth is
constrained (Cisco).

Bluetooth
Short-range wireless protocol usually used to connect input/output electronic acces-
sories and peripherals.

BOOTP
Bootstrap Protocol. Let us diskless workstations boot over the network as is
described in RFC 951 and RFC 1542 (Cisco).

BPDU
Bridge Protocol Data Unit. Spanning-Tree Protocol hello packet that is sent out at
configurable intervals to exchange information among bridges in the network. Pro-
tocol data unit is the OSI term for packet (Cisco).

Business Logic
Goal or behavior of a system involving Things serving a particular business pur-
pose. Business Logic can define the behavior of a single Thing, a group of Things,
or a complete business process (IoT-A).

CA
Certificate Authority, Certification Authority. A third-party entity that is responsible
for issuing and revoking certificates. Each device with the public key of the CA can
authenticate a device that has a certificate issued by the CA. The term CA also refers
to software that provides CA services. See also certificate, CRL, public key, RA
(Cisco).

Cache
A temporary repository of information accumulated from previous task executions
that can be reused, decreasing the time required to perform the tasks. Caching stores
frequently reused objects in the system cache, which reduces the need to perform
repeated rewriting and compressing of content (Cisco).

Carrousel Attack
This attack targets the Network layer in the OSI stack and can be launched if the
routing protocol supports source routing, where the object generating the packets
can specify the whole routing path of the packets it wishes to send to the fog device
(Various).

CBC
Cipher Block Chaining. A cryptographic technique that increases the encryption
strength of an algorithm. CBC requires an initialization vector (IV) to start encryp-
tion. The IV is explicitly given in the IPSec packet (Cisco).

Appendix A

342

certificate
A signed cryptographic object that contains the identity of a user or device and the
public key of the CA that issued the certificate. Certificates have an expiration date
and may also be placed on a CRL if known to be compromised. Certificates also
establish non-repudiation for IKE negotiation, which means that you can prove to a
third party that IKE negotiation was completed with a specific peer (Cisco).

CHAP
Challenge Handshake Authentication Protocol (Cisco).

CIFS
Common Internet File System. It is a platform-independent file sharing system that
provides users with network access to files, printers, and other machine resources.
Microsoft implemented CIFS for networks of Windows computers, however, open
source implementations of CIFS provide file access to servers running other operat-
ing systems, such as Linux, UNIX, and Mac OS X (Cisco).

CLI
Command line interface. The primary interface for entering configuration and mon-
itoring commands to the security appliance (Cisco).

Client update
Let us update revisions of clients to which the update applies; provide a URL or IP
address from which to get the update; and, in the case of Windows clients, option-
ally notify users that they should update their VPN client version (Cisco).

client/server computing
Distributed computing (processing) network systems in which transaction responsi-
bilities are divided into two parts: client (front end) and server (back end). Also
called distributed computing. See also RPC (Cisco).

CoAP
Constrained Application Protocol (Various).

command-specific configuration mode
From global configuration mode, some commands enter a command-specific con-
figuration mode. All user EXEC, privileged EXEC, global configuration, and com-
mand-specific configuration commands are available in this mode. See also global
configuration mode, privileged EXEC mode, user EXEC mode (Cisco).

Communication Model
The communication model aims at defining the main communication paradigms for
connecting elements, as, in the IoT-A case, defined in the domain model. This model
provides a set of communication rules to build interoperable stacks, together with
insights about the main interactions among the elements of the domain model
(IoT-A).

Compression
The process of encoding information using fewer bits or other information-bearing
units than an unencoded representation would use. Compression can reduce the size
of transferring packets and increase communication performance (Cisco).

Appendix A

343

Confidentiality
Confidentiality ensures that the exchanged messages can be understood only by the
intended entities (Various).

Consensus Algorithm
A consensus algorithm allows nodes on the network to trust that a given piece of
data is valid, and that it has been synchronized with all other nodes (Authors).

Consortium Blockchain
A blockchain where the network is controlled by a certain set of nodes (Authors).

Constrained Network
A constrained network is a network of devices with restricted capabilities regarding
storage, computing power, and/or transfer rate (IoT-A).

Container
Light-weight virtualization construct where the underlying operating system kernel
is common among members (Authors).

Content Rewriting/Transformation
Interprets and modifies applications so that they render correctly over a WebVPN
connection (Cisco).

Controller
Anything that has the capability to affect a Physical Entity, like changing its state or
moving it (IoT-A).

cookie
A cookie is an object stored by a browser. Cookies contain information, such as user
preferences, to persistent storage (Cisco).

CORE
IETF Constrained RESTful Environments workgroup (IETF).

CPU
Central Processing Unit. Main processor (Cisco).

CRC
Cyclical Redundancy Check. Error-checking technique in which the frame recipient
calculates a remainder by dividing frame contents by a prime binary divisor and
compares the calculated remainder to a value stored in the frame by the sending
node (Cisco).

Credentials
A credential is a record that contains the authentication information (credentials)
required to connect to a resource. Most credentials contain a user name and pass-
word (IoT-A).

CRM
Customer Relation Management (Authors).

Appendix A

344

Crypto map
A data structure with a unique name and sequence number that is used for configur-
ing VPNs on the security appliance. A crypto map selects data flows that need secu-
rity processing and defines the policy for these flows and the crypto peer that traffic
needs to go to. A crypto map is applied to an interface. Crypto maps contain the
ACLs, encryption standards, peers, and other parameters necessary to specify secu-
rity policies for VPNs using IKE and IPSec. See also VPN (Cisco).

Cryptocurrency
A digital currency built upon cryptographic protocols (Authors).

Cryptography
Encryption, authentication, integrity, keys, and other services used for secure com-
munication over networks. See also VPN and IPSec (Cisco).

CSE
Common Services Entity. In oneM2M architecture, the middleware layer that sits in
between applications (Application Entity) and the underlying network services
(Network Services Entity) (Various).

Data confidentiality
Describes any method that manipulates data so that no attacker can read it. This is
commonly achieved by data encryption and keys that are only available to the par-
ties involved in the communication (Cisco).

Data integrity
Describes mechanisms that, through the use of encryption based on secret key or
public key algorithms, allow the recipient of a piece of protected data to verify that
the data has not been modified in transit (Cisco).

Data origin authentication
A security service where the receiver can verify that protected data could have origi-
nated only from the sender. This service requires a data integrity service plus a key
distribution mechanism, where a secret key is shared only between the sender and
receiver (Cisco).

DDS RTPS
Distribute Data Service Real Time Publish and Subscribe Protocol (Various).

Decryption
Application of a specific algorithm or cipher to encrypted data so as to render the
data comprehensible to those who are authorized to see the information. See also
encryption (Cisco).

Denial of Sleep Attack
Denial of Sleep: Different data link layer protocols were proposed to reduce the
power consumption of smart objects by switching them into sleep whenever they
are not needed. Examples of these protocols include S-MAC [3] and T-MAC [4]
protocols (Various).

Appendix A

345

DES
Data encryption standard. DES was published in 1977 by the National Bureau of
Standards and is a secret key encryption scheme based on the Lucifer algorithm
from IBM. Cisco uses DES in classic crypto (40-bit and 56-bit key lengths), IPSec
crypto (56-bit key), and 3DES (triple DES), which performs encryption three times
using a 56-bit key. 3DES is more secure than DES but requires more processing for
encryption and decryption. See also AES, ESP (Cisco).

Device
Technical physical component (hardware) with communication capabilities to other
IT systems. A device can be either attached to or embedded inside a Physical Entity,
or monitor a Physical Entity in its vicinity (IoT-A).

DHCP
Dynamic Host Configuration Protocol. Provides a mechanism for allocating IP
addresses to hosts dynamically, so that addresses can be reused when hosts no lon-
ger need them and so that mobile computers, such as laptops, receive an IP address
applicable to the LAN to which it is connected (Cisco).

Digital certificate
See certificate (Cisco).

Digital Certificate Or Pubic Key Certificate
In cryptography, a public key certificate (also known as a digital certificate or iden-
tity certificate) is an electronic document used to prove ownership of a public key.
The certificate includes information about the key, information about its owner’s
identity, and the digital signature of an entity that has verified the certificate’s con-
tents are correct. If the signature is valid, and the person examining the certificate
trusts the signer, then they know they can use that key to communicate with its owner.

In a typical public-key infrastructure (PKI) scheme, the signer is a certificate author-
ity (CA), usually a company that charges customers to issue certificates for them. In
a web of trust scheme, the signer is either the key’s owner (a self-signed certificate)
or other users (“endorsements”) whom the person examining the certificate might
know and trust.

Certificates are an important component of Transport Layer Security (TLS, some-
times called by its older name SSL, Secure Sockets Layer), where they prevent an
attacker from impersonating a secure website or other server. They are also used in
other important applications, such as email encryption and code signing (see also,
PKI and X509) (Wikipedia).

Digital Entity
Any computational or data element of an IT-based system (IoT-A).

Discovery
Discovery is a service to find unknown resources/entities/services based on a rough
specification of the desired result. It may be utilized by a human or another service.
Credentials for authorization are considered when executing the discovery (IoT-A).

Appendix A

346

DN
Distinguished Name. Global, authoritative name of an entry in the OSI Directory
(X.500) (Cisco).

DNS
Domain Name System (or Service). An Internet service that translates domain
names into IP addresses (Cisco).

Docker
Open source project that provides a packaging framework to simplify the portability
and automate the deployment of applications in Containers (Authors).

DODAG
Destination Oriented Directed Acyclic Graph (IETF).

Domain Model
“A domain model describes objects belonging to a particular area of interest. The
domain model also defines attributes of those objects, such as name and identifier.
The domain model defines relationships between objects such as ‘instruments pro-
duce data sets’. Besides describing a domain, domain models also help to facilitate
correlative use and exchange of data between domains” ([CCSDS 312.0-G-0]).

DoS
Denial of Service. A type of network attack in which the goal is to render a network
service unavailable (Cisco).

DSL
Digital subscriber line. Public network technology that delivers high bandwidth
over conventional copper wiring at limited distances. DSL is provisioned via modem
pairs, with one modem located at a central office and the other at the customer site.
Because most DSL technologies do not use the whole bandwidth of the twisted pair,
there is room remaining for a voice channel (Cisco).

DSP
digital signal processor. A DSP segments a voice signal into frames and stores them
in voice packets (Cisco).

DSS
Digital Signature Standard. A digital signature algorithm designed by The US
National Institute of Standards and Technology and based on public-key cryptogra-
phy. DSS does not do user datagram encryption. DSS is a component in classic
crypto, as well as the Redcreek IPSec card, but not in IPSec implemented in Cisco
IOS software (Cisco).

Dynamic NAT
See NAT and address translation (Cisco).

EGP
Exterior Gateway Protocol. Replaced by BGP. The security appliance does not sup-
port EGP. See also BGP (Cisco).

Appendix A

347

EIGRP
Enhanced Interior Gateway Routing Protocol. The security appliance does not sup-
port EIGRP (Cisco).

Encryption
Application of a specific algorithm or cipher to data so as to render the data incom-
prehensible to those unauthorized to see the information. See also decryption
(Cisco).

ESMTP
Extended SMTP. Extended version of SMTP that includes additional functionality,
such as delivery notification and session delivery. ESMTP is described in RFC
1869, SMTP Service Extensions (Cisco).

ESP
Encapsulating Security Payload. An IPSec protocol, ESP provides authentication
and encryption services for establishing a secure tunnel over an insecure network.
For more information, refer to RFCs 2406 and 1827 (Cisco).

EVPN
Ethernet Virtual Private Networks, an IETF solution standardized in RFC
7432 (IETF).

Failover, Failover mode
Failover lets you configure two security appliances so that one will take over opera-
tion if the other one fails. The security appliance supports two failover configura-
tions, Active/Active failover and Active/Standby failover. Each failover configuration
has its own method for determining and performing failover. With Active/Active
failover, both units can pass network traffic. This lets you configure load balancing
on your network. Active/Active failover is only available on units running in mul-
tiple context mode. With Active/Standby failover, only one unit passes traffic while
the other unit waits in a standby state. Active/Standby failover is available on units
running in either single or multiple context mode (Cisco).

FCAPS
(see NMS) Fault, Configuration, Accounting, Performance, and Security manage-
ment (Authors).

FFD
IEEE 802.15.4 Full-Function Device. Implements all of the functions of the IEEE
802.15.4 communication stack (IEEE).

Flash, Flash memory
A nonvolatile storage device used to store the configuration file when the security
appliance is powered down (Cisco).

Flooding Attack
The adversary can flood the neighboring nodes with dummy packets and request
them to deliver those packets to the fog device, where devices waste energy receiv-
ing and transmitting those dummy packets (Various).

Appendix A

348

Forward Secrecy and Backward Secrecy
Forward Secrecy: ensures that when an object leaves the network, it will not under-
stand the communications that are exchanged after its departure. Backward Secrecy:
ensures that any new object that joins the network will not be able to understand the
communications that were exchanged prior to joining the network (Various).

Freshness
Freshness: ensures that the data is fresh. Replay attacks target this requirement
where an old message is replayed in order to return an entity into an old state
(Various).

FTP
File Transfer Protocol. Part of the TCP/IP protocol stack, used for transferring files
between hosts (Cisco).

Gateway
A Gateway is a forwarding element, enabling various local networks to be con-
nected (IoT-A).

Global Configuration Mode
Global configuration mode lets you to change the security appliance configuration.
All user EXEC, privileged EXEC, and global configuration commands are available
in this mode. See also user EXEC mode, privileged EXEC mode, command-specific
configuration mode (Cisco).

Global Storage
Storage that contains global information about many entities of interest. Access to
the global storage is available over the Internet (IoT-A).

GMT
Greenwich Mean Time. Replaced by UTC (Coordinated Universal Time) in 1967 as
the world time standard (Cisco).

GPRS
General packet radio service. A service defined and standardized by the European
Telecommunication Standards Institute. GPRS is an IP-packet-based extension of
GSM networks and provides mobile, wireless, data communications (Cisco).

GRE
Generic Routing Encapsulation described in RFCs 1701 and 1702. GRE is a tunnel-
ing protocol that can encapsulate a wide variety of protocol packet types inside IP
tunnels, creating a virtual point-to-point link to routers at remote points over an IP
network. By connecting multiprotocol subnetworks in a single-protocol backbone
environment, IP tunneling using GRE allows network expansion across a single
protocol backbone environment (Cisco).

GSM
Global System for Mobile Communication. A digital, mobile, radio standard devel-
oped for mobile, wireless, voice communications (Cisco).

Appendix A

349

GTP
GPRS tunneling protocol. GTP handles the flow of user packet data and signaling
information between the SGSN and GGSN in a GPRS network. GTP is defined on
both the Gn and Gp interfaces of a GPRS network (Cisco).

Host
The name for any device on a TCP/IP network that has an IP address. See also net-
work and node (Cisco).

Host/network
An IP address and netmask used with other information to identify a single host or
network subnet for security appliance configuration, such as an address translation
(xlate) or ACE (Cisco).

HTTP
Hypertext Transfer Protocol. A protocol used by browsers and web servers to trans-
fer files. When a user views a web page, the browser can use HTTP to request and
receive the files used by the web page. HTTP transmissions are not encrypted
(Cisco).

HTTPS
Hypertext Transfer Protocol Secure. An SSL-encrypted version of HTTP (Cisco).

IANA
Internet Assigned Number Authority. Assigns all port and protocol numbers for use
on the Internet (Cisco).

ICMP
Internet Control Message Protocol. Network-layer Internet protocol that reports
errors and provides other information relevant to IP packet processing (Cisco).

Identifier (ID)
Artificially generated or natural feature used to disambiguate things from each
other. There can be several Ids for the same Physical Entity. The set of Ids is an
attribute of a Physical Entity (IoT-A).

Identity
Properties of an entity that makes it definable and recognizable (IoT-A).

IDS
Intrusion Detection System. A method of detecting malicious network activity by
signatures and then implementing a policy for that signature (Cisco).

IETF
The Internet Engineering Task Force. A technical standards organization that devel-
ops RFC documents defining protocols for the Internet (Cisco).

IGMP
Internet Group Management Protocol. IGMP is a protocol used by IPv4 systems to
report IP multicast memberships to neighboring multicast routers (Cisco).

Appendix A

350

IKE
Internet Key Exchange. IKE establishes a shared security policy and authenticates
keys for services (such as IPSec) that require keys. Before any IPSec traffic can be
passed, each security appliance must verify the identity of its peer. This can be done
by manually entering preshared keys into both hosts or by a CA service. IKE is a
hybrid protocol that uses part Oakley and part of another protocol suite called
SKEME inside ISAKMP framework. This is the protocol formerly known as
ISAKMP/Oakley, and is defined in RFC 2409 (Cisco).

ILS
Internet Locator Service. ILS is based on LDAP and is ILSv2 compliant. ILS was
developed by Microsoft for use with its NetMeeting, SiteServer, and Active Direc-
tory products (Cisco).

IMAP
Internet Message Access Protocol. Method of accessing e-mail or bulletin board
messages kept on a mail server that can be shared. IMAP permits client e-mail
applications to access remote message stores as if they were local without actually
transferring the message (Cisco).

implicit rule
An access rule automatically created by the security appliance based on default
rules or as a result of user-defined rules (Cisco).

IMSI
International Mobile Subscriber Identity. One of two components of a GTP tunnel
ID, the other being the NSAPI. See also NSAPI (Cisco).

Information Model
“An information model is a representation of concepts, relationships, constraints,
rules, and operations to specify data semantics for a chosen domain of discourse.
The advantage of using an information model is that it can provide sharable, stable,
and organized structure of information requirements for the domain context.

The information model is an abstract representation of entities which can be real
objects such as devices in a network or logical such as the entities used in a billing
system. Typically, the information model provides formalism to the description of a
specific domain without constraining how that description is mapped to an actual
implementation. Thus, different mappings can be derived from the same informa-
tion model. Such mappings are called data models” ([AutoI]).

Infrastructure Services
Specific services that are essential for any IoT implementation to work properly.
Such services provide support for essential features of the IoT (IoT-A).

Integrity
Integrity ensures that the exchanged messages were not altered/tampered by a third
party (Various).

Appendix A

351

Interface
“Named set of operations that characterize the behaviour of an entity” ([OGS]).

interface
The physical connection between a particular network and a security appliance
(Cisco).

interface ip_address
The IP address of a security appliance network interface. Each interface IP address
must be unique. Two or more interfaces must not be given the same IP address or IP
addresses that are on the same IP network (Cisco).

Internet
“The Internet is a global system of interconnected computer networks that use the
standard Internet protocol suite (TCP/IP) to serve billions of users worldwide. It is
a network of networks that consists of millions of private, public, academic, busi-
ness, and government networks of local to global scope that are linked by a broad
array of electronic and optical networking technologies. The Internet carries a vast
array of information resources and services, most notably the inter- linked hypertext
documents of the World Wide Web (WWW) and the infrastructure to support elec-
tronic mail.

Most traditional communications media, such as telephone and television services,
are reshaped or redefined using the technologies of the Internet, giving rise to ser-
vices such as Voice over Internet Protocol (VoIP) and IPTV. Newspaper publishing
has been reshaped into Web sites, blogging, and web feeds. The Internet has enabled
or accelerated the creation of new forms of human interactions through instant mes-
saging, Internet forums, and social networking sites.

The Internet has no centralized governance in either technological implementation
or policies for access and usage; each constituent network sets its own standards.
Only the overreaching definitions of the two principal name spaces in the Internet,
the Internet-protocol address space and the domain-name system, are directed by a
maintainer organization, the Internet Corporation for Assigned Names and Num-
bers (ICANN). The technical underpinning and standardization of the core proto-
cols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a
non-profit organization of loosely affiliated international participants that anyone
may associate with by contributing technical expertise” (Wikipedia).

Internet of Things (IoT)
IoT is the network of things, with device identification, embedded software intelli-
gence, sensors, and connectivity connecting people and things over the Internet at
anytime, anyplace, with anything and anyone (Authors).

Interoperability
“The ability to share information and services. The ability of two or more systems
or components to exchange and use information. The ability of systems to provide
and receive services from other systems and to use the services so interchanged to
enable them to operate effectively together” ([TOGAF 9]).

Appendix A

352

intf n
Any interface, usually beginning with port 2, that connects to a subset network of
your design that you can custom name and configure (Cisco).

intranet
Intranetwork. A LAN that uses IP. See also network and Internet (Cisco).

IoT Service
Software component enabling interaction with resources through a well-defined
interface. Can be orchestrated together with non-IoT services (e.g., enterprise ser-
vices). Interaction with the service is done via the network (IoT-A).

IP
Internet Protocol. IP protocols are the most popular nonproprietary protocols
because they can be used to communicate across any set of interconnected networks
and are equally well suited for LAN and WAN communications (Cisco).

IP address
An IP protocol address. A security appliance interface ip_address. IP version 4
addresses are 32 bits in length. This address space is used to designate the network
number, optional subnetwork number, and a host number. The 32 bits are grouped
into four octets (8 binary bits), represented by 4 decimal numbers separated by peri-
ods, or dots. The meaning of each of the four octets is determined by their use in a
particular network (Cisco).

IP pool
A range of local IP addresses specified by a name, and a range with a starting IP
address and an ending address. IP Pools are used by DHCP and VPNs to assign
local IP addresses to clients on the inside interface (Cisco).

IPS
Intrusion Prevention Service. An in-line, deep-packet inspection-based solution that
helps mitigate a wide range of network attacks (Cisco).

IPSec
IP Security. A framework of open standards that provides data confidentiality, data
integrity, and data authentication between participating peers. IPSec provides these
security services at the IP layer. IPSec uses IKE to handle the negotiation of proto-
cols and algorithms based on local policy and to generate the encryption and authen-
tication keys to be used by IPSec. IPSec can protect one or more data flows between
a pair of hosts, between a pair of security gateways, or between a security gateway
and a host (Cisco).

ISAKMP
Internet Security Association and Key Management Protocol. A protocol frame-
work that defines payload formats, the mechanics of implementing a key exchange
protocol, and the negotiation of a security association. See IKE (Cisco).

Appendix A

353

IS-IS
Intermediate System to Intermediate System. A routing protocol used as the control
plane for IP and next generation Ethernet networks (Authors).

ISP
Internet Service Provider. An organization that provides connection to the Internet
via their services, such as modem dial in over telephone voice lines or DSL (Cisco).

ISV
Independent Software Vendors (ISV) (Authors).

key
A data object used for encryption, decryption, or authentication (Cisco).

LAN
Local area network. A network residing in one location, such as a single building or
campus. See also Internet, intranet, and network (Cisco).

layer, layers
Networking models implement layers with which different protocols are associated.
The most common networking model is the OSI model, which consists of the fol-
lowing seven layers, in order: physical, data link, network, transport, session, pre-
sentation, and application (Cisco).

LDAP
Lightweight Directory Access Protocol. LDAP provides management and browser
applications with access to X.500 directories (Cisco).

Ledger
A shared and distributed history of all transactions within the blockchain (Authors).

LISP
Locator/Identifier Separation Protocol, an IETF solution standardized in RFC
6830 (IETF).

LLN
Low Power and Lossy Networks (IETF).

Local Storage
Special type of resource that contains information about one or only a few entities
in the vicinity of a device (IoT-A).

Location Technologies
All technologies whose primary purpose is to establish and communicate the loca-
tion of a device, e.g., GPS, RTLS, etc. (IoT-A).

Look-up
In contrast to discovery, look-up is a service that addresses exiting known resources
using a key or identifier (IoT-A).

Appendix A

354

LoRaWAN Network Architecture
LoRaWAN network architecture is typically laid out in a star-of-stars topology in
which gateways are a transparent bridge relaying messages between end-devices
and a central network server in the backend. Gateways are connected to the network
server via standard IP connections while end-devices use single-hop wireless com-
munication to one or many gateways. All endpoint communication is generally bi-
directional, but also supports operation such as multicast enabling software upgrade
over the air or other mass distribution messages to reduce the on air communication
time (LoRa Alliance).

LoRaWAN™
LoEa WAN is a Low Power Wide Area Network (LPWAN) specification intended
for wireless battery operated Things in regional, national, or global network.
LoRaWAN target key requirements of Internet of Things such as secure bi-direc-
tional communication, mobility, and localization services. This standard will pro-
vide seamless interoperability among smart Things without the need of complex
local installations and gives back the freedom to the user, developer, businesses
enabling the roll out of IoT (LoRa Alliance).

LPN
Low-Power Network (LPN) or Low-Power Wide-Area Network (LPWAN) is a type
of wireless telecommunication network designed to allow long-range communica-
tions at a low bit rate among things (connected objects), such as sensors operated on
a battery (Wikipedia).

LPWAN
Low-Power Wide-Area Network (LPWAN) or Low-Power Network (LPN) is a type
of wireless telecommunication network designed to allow long-range communica-
tions at a low bit rate among things (connected objects), such as sensors operated on
a battery (Wikipedia).

M2M (also referred to as machine to machine)
“The automatic communications between devices without human intervention. It
often refers to a system of remote sensors that is continuously transmitting data to a
central system. Agricultural weather sensing systems, automatic meter reading and
RFID tags are examples” ([COMPDICT-M2M]).

MAN
Metropolitan Area Network. A network for a city or metro area (Various).

Mask
A 32-bit mask that shows how an Internet address is divided into network, subnet,
and host parts. The mask has ones in the bit positions to be used for the network and
subnet parts, and zeros for the host part. The mask should contain at least the stan-
dard network portion, and the subnet field should be contiguous with the network
portion (Cisco).

Merkle Tree
A data structure where each leaf of the tree is a hash of data and the root is the hash
of all its children hashes (Authors).

Appendix A

355

Microcontroller
“A microcontroller is a small computer on a single integrated circuit containing a
processor core, memory, and programmable input/output peripherals. Program
memory in the form of NOR flash or OTP ROM is also often included on chip, as
well as a typically small amount of RAM. Microcontrollers are designed for embed-
ded applications, in contrast to the microprocessors used in personal computers or
other general purpose applications.

Microcontrollers are used in automatically controlled products and devices, such as
automobile engine control systems, implantable medical devices, remote controls,
office machines, appliances, power tools, and toys. By reducing the size and cost
compared to a design that uses a separate microprocessor, memory, and input/output
devices, microcontrollers make it economical to digitally control even more devices
and processes. Mixed signal microcontrollers are common, integrating analog com-
ponents needed to control non-digital electronic systems” (Wikipedia).

Miner
A node that generates new blocks for the blockchain through the work of computa-
tion and using the given consensus algorithm (Authors).

Mode
See Access Modes (Cisco).

MQTT
Message Queuing Telemetry Transport, an application layer protocol (OASIS).

MS
Mobile Station. Refers generically to any mobile device, such as a mobile handset
or computer that is used to access network services. GPRS networks support three
classes of MS, which describe the type of operation supported within the GPRS and
the GSM mobile wireless networks. For example, a Class A MS supports simultane-
ous operation of GPRS and GSM services (Cisco).

MTU
Maximum transmission unit, the maximum number of bytes in a packet that can
flow efficiently across the network with best response time. For Ethernet, the default
MTU is 1500 bytes, but each network can have different values, with serial connec-
tions having the smallest values. The MTU is described in RFC 1191 (Cisco).

Multicast
Multicast refers to a network addressing method in which the source transmits a
packet to multiple destinations, a multicast group, simultaneously. See also PIM,
SMR (Cisco).

NAT
Network Address Translation. Mechanism for reducing the need for globally unique
IP addresses. NAT allows an organization with addresses that are not globally
unique to connect to the Internet by translating those addresses into a globally
routable address space (Cisco).

Appendix A

356

Network
In the context of security appliance configuration, a network is a group of comput-
ing devices that share part of an IP address space and not a single host. A network
consists of multiple nodes or hosts. See also host, Internet, intranet, IP, LAN, and
node (Cisco).

Network resource
Resource hosted somewhere in the network, e.g., in the cloud (IoT-A).

Next-Generation Networks (NGN)
“Packet-based network able to provide telecommunication services and able to
make use of multiple broadband, QoS-enabled transport technologies and in which
service-related functions are independent from underlying transport-related tech-
nologies” ([ETSI TR 102 477]).

NFC
Near Field Communication (Various).

NMS
Network management system: a software system responsible for managing a net-
work. It includes: Fault, Configuration, Accounting, Performance and Security
management (known as FCAPS). NMS communicates with Element Management
Systems (EMS), agents and/or the network devices themselves to collect data, push
updates or help keep track of network statistics and resources (Authors).

Node
Devices such as routers and printers that would not normally be called hosts. See
also host, network (Cisco).

Non Repudiation
Non Repudiation: ensures that an entity cannot deny an action that it has performed
(Various).

nonvolatile storage, memory
Storage or memory that, unlike RAM, retains its contents without power. Data in a
nonvolatile storage device survives a power- off, power-on cycle or reboot (Cisco).

NTP
Network time protocol (Cisco).

OASIS
Organization for the Advancement of Structured Information Standards (Various).

object grouping
Simplifies access control by letting you apply access control statements to groups of
network objects, such as protocol, services, hosts, and networks (Cisco).

Observer
Anything that has the capability to monitor a Physical Entity, like its state or loca-
tion (IoT-A).

Appendix A

357

OEM
Original Equipment Manufacturers (Authors).

On-device Resource
Resource hosted inside a Device and enabling access to the Device and thus to the
related Physical Entity (IoT-A).

Ontology
Ontology is the philosophical study of the nature of being, or reality, as well as the
basic categories of being and their relations. Ontology engineering offers a direction
towards solving the inter-operability problems brought about by semantic obstacles,
i.e., the obstacles related to the definitions of business terms and software classes.
Ontology engineering is a set of tasks related to the development of ontologies for a
particular domain (Wikipedia).

Open source
Open source in the computer industry is the sharing of source code or hardware
design, with the permission to reuse, modify, and improve at no cost (Various).

Operator
The operator owns administration rights on the services it provides and/or on the
entities it owns, is able to negotiate partnerships with equivalent counterparts and
define policies specifying how a service can be accessed by users (IoT-A).

OSI
Open Systems Interconnection (Authors).

OSPF
Open Shortest Path First. OSPF is a routing protocol for IP networks. OSPF is a
routing protocol widely deployed in large networks because of its efficient use of
network bandwidth and its rapid convergence after changes in topology. The secu-
rity appliance supports OSPF (Cisco).

outbound
Refers to traffic whose destination is on an interface with lower security than the
source interface (Cisco).

PAN
Personal Area Network. A network comprising electronic accessories/peripherals or
wearable devices (Various).

Passive Digital Entities
A digital representation of something stored in an IT- based system (IoT-A).

PCE
Path Computational Element. A server dedicated to running network path computa-
tion calculations. Typically used in network traffic engineering applications (IETF).

Permissioned Blockchain
A private blockchain with strong understanding of identity management and nodes
within the network (Authors).

Appendix A

358

Permissionless Blockchain
A public blockchain that allows anyone to join the network and participate (Authors).

Perspective (also referred to as architectural perspective)
“Architectural perspective is a collection of activities, checklists, tactics and guide-
lines to guide the process of ensuring that a system exhibits a particular set of closely
related quality properties that require consideration across a number of the system’s
architectural views” ([ROZANSKI2005]).

Physical Entity
Any physical object that is relevant from a user or application perspective (IoT-A).

PIM
Protocol Independent Multicast. PIM provides a scalable method for determining
the best paths for distributing a specific multicast transmission to a group of hosts.
Each host has registered using IGMP to receive the transmission. See also PIM-SM
(Cisco).

Ping
An ICMP request sent by a host to determine if a second host is accessible (Cisco).

PIX
Private Internet eXchange. The Cisco PIX 500-series security appliances range
from compact, plug-and-play desktop models for small/home offices to carrier- class
gigabit models for the most demanding enterprise and service provider environ-
ments. Cisco PIX security appliances provide robust, enterprise-class integrated
network security services to create a strong multilayered defense for fast changing
network environments (Cisco).

PKI
A public key infrastructure is a set of roles, policies, and procedures needed to cre-
ate, manage, distribute, use, store, and revoke digital certificates and manage public-
key encryption. The purpose of a PKI is to facilitate the secure electronic transfer of
information for a range of network activities such as e-commerce, Internet banking,
and confidential email. It is required for activities where simple passwords are an
inadequate authentication method and more rigorous proof is required to confirm
the identity of the parties involved in the communication and to validate the infor-
mation being transferred.

In cryptography, a PKI is an arrangement that binds public keys with respective
identities of entities (like persons and organizations). The binding is established
through a process of registration and issuance of certificates at and by a certificate
authority (CA). Depending on the assurance level of the binding, this may be carried
out by an automated process or under human supervision (Wikipedia).

Port
A field in the packet headers of TCP and UDP protocols that identifies the higher
level service which is the source or destination of the packet (Cisco).

Appendix A

359

PPP
Point-to-Point Protocol. Developed for dial-up ISP access using analog phone lines
and modems (Cisco).

PPTP
Point-to-Point Tunneling Protocol. PPTP was introduced by Microsoft to provide
secure remote access to Windows networks; however, because it is vulnerable to
attack, PPTP is commonly used only when stronger security methods are not avail-
able or are not required. PPTP Ports are pptp, 1723/tcp, 1723/udp, and pptp. For
more information about PPTP, see RFC 2637. See also PAC, PPTP GRE, PPTP
GRE tunnel, PNS, PPTP session, and PPTP TCP (Cisco).

Privacy
Information Privacy is the interest an individual has in controlling, or at least signifi-
cantly influencing, the handling of data about themselves (IoT-A).

Proxy-ARP
Enables the security appliance to reply to an ARP request for IP addresses in the
global pool. See also ARP (Cisco).

public key
A public key is one of a pair of keys that are generated by devices involved in public
key infrastructure. Data encrypted with a public key can only be decrypted using the
associated private key. When a private key is used to produce a digital signature, the
receiver can use the public key of the sender to verify that the message was signed
by the sender. These characteristics of key pairs provide a scalable and secure
method of authentication over an insecure media, such as the Internet (Cisco).

Public Key Certificate
See Digital Certificate

QoS
Quality of service. Measure of performance for a transmission system that reflects
its transmission quality and service availability (Cisco).

RADIUS
Remote Authentication Dial-In User Service. RADIUS is a distributed client/server
system that secures networks against unauthorized access. RFC 2058 and RFC 2059
define the RADIUS protocol standard. See also AAA and TACACS+ (Cisco).

Reference Architecture
A reference architecture is an architectural design pattern that indicates how an
abstract set of mechanisms and relationships realizes a predetermined set of require-
ments. It captures the essence of the architecture of a collection of systems. The
main purpose of a reference architecture is to provide guidance for the development
of architectures. One or more reference architectures may be derived from a com-
mon reference model, to address different purposes/usages to which the Reference
Model may be targeted (IoT-A).

Appendix A

360

Reference Model
“A reference model is an abstract framework for understanding significant relation-
ships among the entities of some environment. It enables the development of spe-
cific reference or concrete architectures using consistent standards or specifications
supporting that environment. A reference model consists of a minimal set of unify-
ing concepts, axioms and relationships within a particular problem domain, and is
independent of specific standards, technologies, implementations, or other concrete
details. A reference model may be used as a basis for education and explaining
standards to non-specialists” ([OASIS-RM]).

Refresh
Retrieve the running configuration from the security appliance and update the
screen. The icon and the button perform the same function (Cisco).

Requirement
“A quantitative statement of business need that must be met by a particulararchitec-
ture or work package” ([TOGAF9]).

Resolution
Service by which a given ID is associated with a set of Addresses of information and
interaction Services. Information services allow querying, changing, and adding
information about the thing in question, while interaction services enable direct
interaction with the thing by accessing the Resources of the associated Devices.
Based on a priori knowledge (IoT-A).

Resource
Computational element that gives access to information about or actuation capabili-
ties on a Physical Entity (IoT-A).

REST or RESTful
Representational State Transfer. The architectural paradigm for the World Wide
Web employing the HTTP protocol (Various).

RFC
Request for Comments. RFC documents define protocols and standards for com-
munications over the Internet. RFCs are developed and published by IETF (Cisco).

RFD
IEEE 802.15.4 Reduced Function Device. Implements minimal subset of the proto-
col stack, and is typically battery powered (IEEE).

RFID
“The use of electromagnetic or inductive coupling in the radio frequency portion of
the spectrum to communicate to or from a tag through a variety of modulation and
encoding schemes to uniquely read the identity of an RF Tag” ([ISO/IEC 19762]).

RIP
Routing Information Protocol. Interior gateway protocol (IGP) supplied with UNIX
BSD systems. The most common IGP in the Internet. RIP uses hop count as a rout-
ing metric (Cisco).

Appendix A

361

ROLL
IETF Routing over Low Power and Lossy Networks workgroup (IETF).

RPL
Routing Protocol for Low Power and Lossy Networks, a distance vector routing
protocol for IoT standardized in RFC6550 (IETF).

RSA
A public key cryptographic algorithm (named after its inventors, Rivest, Shamir,
and Adelman) with a variable key length. The main weakness of RSA is that it is
significantly slow to compute compared to popular secret-key algorithms, such as
DES. The Cisco implementation of IKE uses a Diffie–Hellman exchange to get the
secret keys. This exchange can be authenticated with RSA (or preshared keys). With
the Diffie–Hellman exchange, the DES key never crosses the network (not even in
encrypted form), which is not the case with the RSA encrypt and sign technique.
RSA is not public domain, and must be licensed from RSA Data Security (Cisco).

RSH
Remote Shell. A protocol that allows a user to execute commands on a remote sys-
tem without having to log in to the system. For example, RSH can be used to
remotely examine the status of a number of access servers without connecting to
each communication server, executing the command, and then disconnecting from
the communication server (Cisco).

RSU
Road Side Unit (Various).

RTP
Real-Time Transport Protocol. Commonly used with IP networks. RTP is designed
to provide end-to-end network transport functions for applications transmitting real-
time data, such as audio, video, or simulation data, over multicast or unicast net-
work services. RTP provides such services as payload type identification, sequence
numbering, timestamping, and delivery monitoring to real-time applications
(Cisco).

RTSP
Real Time Streaming Protocol. Enables the controlled delivery of real- time data,
such as audio and video. RTSP is designed to work with established protocols, such
as RTP and HTTP (Cisco).

rule
Conditional statements added to the security appliance configuration to define secu-
rity policy for a particular situation. See also ACE, ACL, NAT (Cisco).

running configuration
The configuration currently running in RAM on the security appliance. The con-
figuration that determines the operational characteristics of the security appliance
(Cisco).

Appendix A

362

SA
Security association. An instance of security policy and keying material applied to
a data flow. SAs are established in pairs by IPSec peers during both phases of IPSec.
SAs specify the encryption algorithms and other security parameters used to create
a secure tunnel. Phase 1 SAs (IKE SAs) establish a secure tunnel for negotiating
Phase 2 SAs. Phase 2 SAs (IPSec SAs) establish the secure tunnel used for sending
user data. Both IKE and IPSec use SAs, although SAs are independent of one
another. IPSec SAs are unidirectional and they are unique in each security protocol.
A set of SAs are needed for a protected data pipe, one per direction per protocol. For
example, if you have a pipe that supports ESP between peers, one ESP SA is
required for each direction. SAs are uniquely identified by destination (IPSec end-
point) address, security protocol (AH or ESP), and Security Parameter Index. IKE
negotiates and establishes SAs on behalf of IPSec. A user can also establish IPSec
SAs manually. An IKE SA is used by IKE only, and unlike the IPSec SA, it is bidi-
rectional (Cisco).

Satoshi Nakamoto
Pseudonym for the person or group of people who created Bitcoin (Authors).

SCL
Services Capability Layer. A set of common application services standardized by
ETSI TS 102690 (Authors).

secret key
A secret key is a key shared only between the sender and receiver. See key, public
key (Cisco).

Security
The correct term is ‘information security’ and typically information security com-
prises three component parts:

Confidentiality. Assurance that information is shared only among authorized per-
sons or organizations. Breaches of confidentiality can occur when data is not han-
dled in a manner appropriate to safeguard the confidentiality of the information
concerned. Such disclosure can take place by word of mouth, by printing, copying,
e-mailing or creating documents and other data, etc.;

Integrity. Assurance that the information is authentic and complete. Ensuring that
information can be relied upon to be sufficiently accurate for its purpose. The term
‘integrity’ is used frequently when considering information security as it represents
one of the primary indicators of information security (or lack of it). The integrity of
data is not only whether the data is ‘correct’, but whether it can be trusted and
relied upon;

Availability. Assurance that the systems responsible for delivering, storing, and pro-
cessing information are accessible when needed, by those who need them
([ISO27001]).

Appendix A

363

security context
You can partition a single security appliance into multiple virtual firewalls, known
as security contexts. Each context is an independent firewall, with its own security
policy, interfaces, and administrators. Multiple contexts are similar to having mul-
tiple stand-alone firewalls (Cisco).

security services
See cryptography (Cisco).

Selective-Forwarding Attack
This attack takes place in the case when the object cannot send its generated packets
directly to the fog device but must rely on other objects that lie along the path
towards the fog device to deliver those packets (Various).

Semantics
The study of meaning. It focuses on the relation between signifiers, like words,
phrases, signs, and symbols, and what they stand for their denotation (Wikipedia).

Sensor
A sensor is a special Device that perceives certain characteristics of the real world
and transfers them into a digital representation (IoT-A).

serial transmission
A method of data transmission in which the bits of a data character are transmitted
sequentially over a single channel (Cisco).

Service
“Services are the mechanism by which needs and capabilities are brought together”
([OASIS-RM]).

SI
Systems Integrators (Authors).

Sinkhole Attack
In this attack, a malicious object claims that it has the shortest- path to the fog device
which attracts all neighboring objects that do not have the transmission capability to
reach the fog device to forward their packets to that malicious object and count on
that object to deliver their packets (Various).

SIP
Session Initiation Protocol. Enables call handling sessions, particularly two-party
audio conferences, or “calls.” SIP works with SDP for call signaling. SDP specifies
the ports for the media stream. Using SIP, the security appliance can support any
SIP VoIP gateways and VoIP proxy servers (Cisco).

site-to-site VPN
A site-to-site VPN is established between two IPSec peers that connect remote net-
works into a single VPN. In this type of VPN, neither IPSec peer is the destination
or source of user traffic. Instead, each IPSec peer provides encryption and authenti-
cation services for hosts on the LANs connected to each IPSec peer. The hosts on
each LAN send and receive data through the secure tunnel established by the pair of
IPSec peers (Cisco).

Appendix A

364

SMO
Systems Management Overview (Authors).

SMTP
Simple Mail Transfer Protocol. SMTP is an Internet protocol that supports email
services (Cisco).

SNMP
Simple Network Management Protocol. A standard method for managing network
devices using data structures called Management Information Bases (Cisco).

spoofing
A type of attack designed to foil network security mechanisms such as filters and
access lists. A spoofing attack sends a packet that claims to be from an address from
which it was not actually sent (Cisco).

SQL*Net
Structured Query Language Protocol. An Oracle protocol used to communicate
between client and server processes (Cisco).

SSH
Secure Shell. An application running on top of a reliable transport layer, such as
TCP/IP, that provides strong authentication and encryption capabilities (Cisco).

SSL
Secure Sockets Layer. A protocol that resides between the application layer and
TCP/IP to provide transparent encryption of data traffic (Cisco).

SSN
Semantic Sensor Network (Various).

Stakeholder (also referred to as system stakeholder)
“An individual, team, or organization (or classes thereof) with interests in, or con-
cerns relative to, a system” ([IEEE-1471-2000]).

stateful inspection
Network protocols maintain certain data, called state information, at each end of a
network connection between two hosts. State information is necessary to implement
the features of a protocol, such as guaranteed packet delivery, data sequencing, flow
control, and transaction or session IDs. Some of the protocol state information is
sent in each packet while each protocol is being used. For example, a browser con-
nected to a web server uses HTTP and supporting TCP/IP protocols. Each protocol
layer maintains state information in the packets it sends and receives. The security
appliance and some other firewalls inspect the state information in each packet to
verify that it is current and valid for every protocol it contains. This is called stateful
inspection and is designed to create a powerful barrier to certain types of computer
security threats (Cisco).

Appendix A

365

Storage
Special type of Resource that stores information coming from resources and pro-
vides information about Entities. They may also include services to process the
information stored by the resource. As Storages are Resources, they can be deployed
either on-device or in the network (IoT-A).

STP
Spanning Tree Protocol. A protocol to create a loop-free Ethernet topology
(Authors).

Stretch Attack
This attack targets the Network layer in the OSI stack. If the routing protocol sup-
ports source routing, then a malicious object can send the packets that it is supposed
to report to the fog device through very long paths rather than the direct and short
ones as illustrated in Fi (Various).

subnetmask
See mask (Cisco).

System
“A collection of components organized to accomplish a specific function or set of
functions” ([IEEE-1471-2000]).

TACACS+
Terminal Access Controller Access Control System Plus. A client- server protocol
that supports AAA services, including command authorization. See also AAA,
RADIUS (Cisco).

Tag
Label or other physical object used to identify the Physical Entity to which it is
attached (IoT-A).

TAPI
Telephony Application Programming Interface. A programming interface in Micro-
soft Windows that supports telephony functions (Cisco).

TCP
Transmission Control Protocol. Connection-oriented transport layer protocol that
provides reliable full-duplex data transmission (Cisco).

TCP Intercept
With the TCP intercept feature, once the optional embryonic connection limit is
reached, and until the embryonic connection count falls below this threshold, every
SYN bound for the effected server is intercepted. For each SYN, the security appli-
ance responds on behalf of the server with an empty SYN/ACK segment. The secu-
rity appliance retains pertinent state information, drops the packet, and waits for the
client acknowledgment. If the ACK is received, then a copy of the client SYN seg-
ment is sent to the server and the TCP three-way handshake is performed between
the security appliance and the server. If this three-way handshake completes, may
the connection resume as normal. If the client does not respond during any part of
the connection phase, then the security appliance retransmits the necessary segment
using exponential back-offs (Cisco).

Appendix A

366

TDP
Tag Distribution Protocol. TDP is used by tag switching devices to distribute,
request, and release tag binding information for multiple network layer protocols in
a tag switching network. TDP does not replace routing protocols. Instead, it uses
information learned from routing protocols to create tag bindings. TDP is also used
to open, monitor, and close TDP sessions and to indicate errors that occur during
those sessions. TDP operates over a connection-oriented transport layer protocol
with guaranteed sequential delivery (such as TCP). The use of TDP does not pre-
clude the use of other mechanisms to distribute tag binding information, such as
piggybacking information on other protocols (Cisco).

Telnet
A terminal emulation protocol for TCP/IP networks such as the Internet. Telnet is a
common way to control web servers remotely; however, its security vulnerabilities
have led to its replacement by SSH (Cisco).

TFTP
Trivial File Transfer Protocol. TFTP is a simple protocol used to transfer files. It
runs on UDP and is explained in depth in RFC 1350 (Cisco).

Thing
Generally speaking, any physical object. In the term “Internet of Things” however,
it denotes the same concept as a Physical Entity (IoT-A).

TID
Tunnel Identifier (Cisco).

TLS
Transport Layer Security. A future IETF protocol to replace SSL (Cisco).

TMN
Telecommunications Management Network (TMN) of IUT-T (Authors).

TMN
Telecommunications Management Network of IUT-T (Various).

Traffic policing
The traffic policing feature ensures that no traffic exceeds the maximum rate (bits
per second) that you configure, thus ensuring that no one traffic flow can take over
the entire resource (Cisco).

TSCH
Time Slotted Channel Hopping. A mode of IEEE 802.15.4 networks (IEEE).

TSN
Time Sensitive Networking. See also AVB (IEEE).

TSP
TAPI Service Provider. See also TAPI (Cisco).

Appendix A

367

UDP
User Datagram Protocol. A connectionless transport layer protocol in the IP proto-
col stack. UDP is a simple protocol that exchanges datagrams without acknowledg-
ments or guaranteed delivery, which requires other protocols to handle error
processing and retransmission. UDP is defined in RFC 768 (Cisco).

UMTS
Universal Mobile Telecommunication System. An extension of GPRS networks that
moves toward an all-IP network by delivering broadband information, including
commerce and entertainment services, to mobile users via fixed, wireless, and satel-
lite networks (Cisco).

Unconstrained Network
An unconstrained network is a network of devices with no restriction on capabilities
such as storage, computing power, and/or transfer rate (IoT-A).

Unicast RPF
Unicast Reverse Path Forwarding. Unicast RPF guards against spoofing by ensuring
that packets have a source IP address that matches the correct source interface
according to the routing table (Cisco).

URL
Uniform Resource Locator. A standardized addressing scheme for accessing hyper-
text documents and other services using a browser. For example, http://www.cisco.
com (Cisco).

User
A Human or any Active Digital Entity that is interested in interacting with a particu-
lar physical object. (IoT-A).

User EXEC mode
User EXEC mode lets you to see the security appliance settings. The user EXEC
mode prompt appears as follows when you first access the security appliance. See
also command-specific configuration mode, global configuration mode, and privi-
leged EXEC mode (Cisco).

Vampire Attack
This attack exploits the fact that the majority of IoT objects have a limited battery
lifetime where a malicious user misbehaves in a way that makes devices consume
extra amounts of power so that they run out of battery earlier causing a service dis-
ruption (Various).

VANET
Vehicular ad-Hoc Network (Various).

VAR
Value-added Resellers (Authors).

Appendix A

http://www.cisco.com
http://www.cisco.com

368

View
“The representation of a related set of concerns. A view is what is seen from a view-
point. An architecture view may be represented by a model to demonstrate to stake-
holders their areas of interest in the architecture. Aview does not have to be visual
or graphical in nature” ([TOGAF 9]).

Viewpoint
“A definition of the perspective from which a view is taken. It is a specification of
the conventions for constructing and using a view (often by means of an appropriate
schema or template). A view is what you see; aviewpoint is where you are looking
from—the vantage point or perspective that determines what you see” ([TOGAF 9]).

Virtual Entity
Computational or data element representing a Physical Entity. Virtual Entities can
be either Active or Passive Digital Entities. (IoT-A).

VLAN
Virtual LAN. A group of devices on one or more LANs that are configured (using
management software) so that they can communicate as if they were attached to the
same physical network cable, when in fact they are located on a number of different
LAN segments. Because VLANs are based on logical instead of physical connec-
tions, they are extremely flexible (Cisco).

VM
Virtual Machine. A virtualization construct where multiple virtual devices each with
its own independent operating system can run on the same physical computer, typi-
cally a server (Authors).

VoIP
Voice over IP. VoIP carries normal voice traffic, such as telephone calls and faxes,
over an IP-based network. DSP segments the voice signal into frames, which then
are coupled in groups of two and stored in voice packets. These voice packets are
transported using IP in compliance with ITU-T specification H.323 (Cisco).

VPN
Virtual Private Network. A network connection between two peers over the public
network that is made private by strict authentication of users and the encryption of
all data traffic. You can establish VPNs between clients, such as PCs, or a headend,
such as the security appliance. (Cisco).

VSA
Vendor-specific attribute. An attribute in a RADIUS packet that is defined by a ven-
dor rather than by RADIUS RFCs. The RADIUS protocol uses IANA- assigned
vendor numbers to help identify VSAs. This lets different vendors have VSAs of the
same number. The combination of a vendor number and a VSA number makes a
VSA unique. For example, the cisco-av-pair VSA is attribute 1 in the set of VSAs
related to vendor number 9. Each vendor can define up to 256 VSAs. A RADIUS
packet contains any VSAs attribute 26, named Vendor-specific. VSAs are some-
times referred to as subattributes (Cisco).

Appendix A

369

WAN
wide-area network. Data communications network that serves users across a broad
geographic area and often uses transmission devices provided by common carriers
(Cisco).

WCCP
Web Cache Communication Protocol. Transparently redirects selected types of traf-
fic to a group of web cache engines to optimize resource usage and lower response
times (Cisco).

Websense
A content filtering solution that manages employee access to the Internet. Websense
uses a policy engine and a URL database to control user access to websites (Cisco).

WEP
Wired Equivalent Privacy. A security protocol for wireless LANs, defined in the
IEEE 802.11b standard (Cisco).

Wi-Fi
Wireless Fidelity, Wireless Internet (Various).

WINS
Windows Internet Naming Service. A Windows system that determines the IP
address associated with a particular network device, also known as “name resolu-
tion.” WINS uses a distributed database that is automatically updated with the Net-
BIOS names of network devices currently available and the IP address assigned to
each one. WINS provides a distributed database for registering and querying
dynamic NetBIOS names to IP address mapping in a routed network environment.
It is the best choice for NetBIOS name resolution in such a routed network because
it is designed to solve the problems that occur with name resolution in complex
networks (Cisco).

Wireless communication technologies
“Wireless communication is the transfer of information over a distance without the
use of enhanced electrical conductors or ‘wires’. The distances involved may be
short (a few meters as in television remote control) or long (thousands or millions
of kilometers for radio communications). When the context is clear, the term is
often shortened to ‘wireless’. Wireless communication is generally considered to be
a branch of telecommunications” ([Wikipedia WI]).

Wireless Sensors and Actuators Network
“Wireless sensor and actuator networks (WSANs) are networks of nodes that sense
and, potentially, control their environment. They communicate the information
through wireless links enabling interaction between people or computers and the
surrounding environment” ([OECD2009]).

Wireline communication technologies
“A term associated with a network or terminal that uses metallic wire conductors
(and/or optical fibres) for telecommunications” ([setzer-messtechnik2010]).

Appendix A

370

WoT
The Web of Things (WoT) is a term used to describe approaches, software architec-
tural styles, and programming patterns that allow real-world objects to be part of the
World Wide Web. Similarly to what the Web (Application Layer) is to the Internet
(Network Layer), the Web of Things provides an Application Layer that simplifies
the creation of Internet of Things applications (Wikipedia).

WSN
Wireless Sensor Network. A network of typically low powered sensors connected
over a wireless network often employing mesh technology (Various).

X.509
In cryptography, X.509 is a standard for a public key infrastructure (PKI) to manage
digital certificates and public-key encryption and a key part of the Transport Layer
Security protocol used to secure web and email communication.

An ITU-T standard, X.509 specifies formats for public key certificates, certificate
revocation lists, attribute certificates, and a certification path validation algorithm
(Wikipedia).

xauth
See IKE Extended Authentication (Cisco).

xlate
An xlate, also referred to as a translation entry, represents the mapping of one IP
address to another, or the mapping of one IP address/port pair to another (Cisco).

XML
Extensible Markup Language (W3C).

XMPP
Extensible Messaging and Presence Protocol. Standardized in IETF RFC 6120 and
6121 (IETF).

ZigBee
Short-range wireless protocol promoted by the ZigBee Alliance (ZigBee Alliance).

Z-Wave
Short-range wireless protocol, initially developed by a small Danish company
called Zensys. Focuses on home automation applications (Z-Wave Alliance).

Appendix A

371

References

 1. Internet page on Wikipedia, online at: https://en.wikipedia.org/wiki/Actuator
 2. Cisco Glossary, online at: http://www.cisco.com/c/en/us/td/docs/security/asa/asa80/configura-

tion/guide/conf_gd/glossary.html
 3. Association for Automatic Identification and Mobility, online at: http://www.aimglobal.org/
 4. Information Model, Deliverable D3.1, Autonomic Internet (AutoI) Project. Online at: http://

ist- autoi.eu/autoi/d/AutoI_Deliverable_D3.1_- _Information_Model.pdf
 5. Information architecture reference model. Online at: http://cwe.ccsds.org/sea/docs/SEA- IA/

Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
 6. Computer Dictionary Definition, online at: http://www.yourdictionary.com/computer/m2- m
 7. E-FRAME project, available online at: http://www.frame- online.net/top- menu/the-

architecture- 2/faqs/stakeholder- aspiration.html
 8. EPC Global glossary (GS1), online at: http://www.epcglobalinc.org/home/GS1_EPCglobal_

Glossary_V35_KS_June_09_2009.pdf
 9. ETSI Technical report ETR 173, Terminal Equipment (TE); Functional model for multime-

dia applications. Available online: http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/
etr_173e01p.pdf

 10. ETSI Corporate telecommunication Networks (CN); Mobility for enterprise communica-
tion, online at: http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/
tr_102477v010101p.pdf

 11. IEEE 1471-2000, “IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems”

 12. The Internet of Things summary at ITU, online at: http://www.itu.int/osg/spu/publications/
internetofthings/InternetofThings_summary.pdf

 13. Information technology—Vocabulary—Part 1: Fundamental terms, online at: http://www.iso.
org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229

 14. ISO 27001: An Introduction To Information, Network and Internet Security
 15. Open GeoSpatial portal, the OpenGIS abstract specification Topic 12: the OpenGIS Service

architecture. Online at: http://portal.opengeospatial.org/files/?artifact_id=1221
 16. Reference Model for Service Oriented Architecture 1.0 http://docs.oasis- open.org/soa- rm/

v1.0/soa- rm.pdf
 17. “Smart Sensor Networks: Technologies and Applications for Green Growth”, December 2009,

online at: http://www.oecd.org/dataoecd/39/62/44379113.pdf
 18. [Sclater2007] Sclater, N., Mechanisms and Mechanical Devices Sourcebook, 4th Edition

(2007), 25, McGraw-Hill
 19. setzer-messtechnik glossary, July 2010, online at: http://www.setzer- messtechnik.at/grundla-

gen/rf- glossary.php?lang=en
 20. Open Group, TOGAF 9, 2009
 21. Energy harvesting page on Wikipedia, online at: http://en.wikipedia.org/wiki/Energy_harvesting
 22. Internet page on Wikipedia, online at: http://en.wikipedia.org/wiki/Internet
 23. Microcontroller page at Wikipedia, online at: http://en.wikipedia.org/wiki/Microcontroller
 24. Software Architecture with Viewpoints and Perspectives, online at: http://www.viewpoints-

and- perspectives.info/doc/spa191- viewpoints- and- perspectives.pdf
 25. Wireless page on Wikipedia, online at: http://en.wikipedia.org/wiki/Wireless
 26. Internet of Things – Architecture (IoT-A): http://www.iot- a.eu/public/terminology/

copy_of_term
 27. OneM2M: http://www.onem2m.org/images/files/deliverables/TS- 0001- Functional_

Architecture- V1_6_1.pdf

Appendix A

https://en.wikipedia.org/wiki/Actuator
http://www.cisco.com/c/en/us/td/docs/security/asa/asa80/configuration/guide/conf_gd/glossary.html
http://www.cisco.com/c/en/us/td/docs/security/asa/asa80/configuration/guide/conf_gd/glossary.html
http://www.aimglobal.org/
http://ist-autoi.eu/autoi/d/AutoI_Deliverable_D3.1_-_Information_Model.pdf
http://ist-autoi.eu/autoi/d/AutoI_Deliverable_D3.1_-_Information_Model.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft Documents/IA Reference Model/ccsds_rasim_20060308.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft Documents/IA Reference Model/ccsds_rasim_20060308.pdf
http://www.yourdictionary.com/computer/m2-m
http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.epcglobalinc.org/home/GS1_EPCglobal_Glossary_V35_KS_June_09_2009.pdf
http://www.epcglobalinc.org/home/GS1_EPCglobal_Glossary_V35_KS_June_09_2009.pdf
http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_173e01p.pdf
http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_173e01p.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf
http://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://portal.opengeospatial.org/files/?artifact_id=1221
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.oecd.org/dataoecd/39/62/44379113.pdf
http://www.setzer-messtechnik.at/grundlagen/rf-glossary.php?lang=en
http://www.setzer-messtechnik.at/grundlagen/rf-glossary.php?lang=en
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Microcontroller
http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf
http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf
http://en.wikipedia.org/wiki/Wireless
http://www.iot-a.eu/public/terminology/copy_of_term
http://www.iot-a.eu/public/terminology/copy_of_term
http://www.onem2m.org/images/files/deliverables/TS-0001-Functional_Architecture-V1_6_1.pdf
http://www.onem2m.org/images/files/deliverables/TS-0001-Functional_Architecture-V1_6_1.pdf

372

 28. D. Willis, A. Dasgupta, S. Banerjee, “Paradrop: a multi-tenant platform for dynamically
installed third party services on home gateways,” In: SIGCOMM workshop on Distributed
cloud computing. ACM (2014)

 29. Xu, Wenyuan, et al. “Jamming sensor networks: attack and defense strategies.” Network, IEEE
20.3 (2006): 41-47.

 30. Ye, Wei, John Heidemann, and Deborah Estrin. “Medium access control with coordinated
adaptive sleeping for wireless sensor networks.” Networking, IEEE/ACM Transactions on 12.3
(2004): 493-506.

 31. Van Dam, Tijs, and Koen Langendoen. “An adaptive energy-efficient MAC protocol for wire-
less sensor networks.” Proceedings of the 1st international conference on Embedded net-
worked sensor systems. ACM, 2003.

 32. Dyer, Kevin P., et al. “Peek-a-boo, i still see you: Why efficient traffic analysis countermea-
sures fail.” Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012.

 33. Park, Junho, et al. “An Energy-Efficient Selective Forwarding Attack Detection Scheme Using
Lazy Detection in Wireless Sensor Networks.” Ubiquitous Information Technologies and
Applications. Springer Netherlands, 2013. 157-164.

 34. Bysani, Leela Krishna, and Ashok Kumar Turuk. “A survey on selective forwarding attack
in wireless sensor networks.” Devices and Communications (ICDeCom), 2011 International
Conference on. IEEE, 2011.

 35. Xiao, Bin, Bo Yu, and Chuanshan Gao. “CHEMAS: Identify suspect nodes in selective for-
warding attacks.” Journal of Parallel and Distributed Computing 67.11 (2007): 1218-1230.

 36. Thulasiraman, Preetha, Srinivasan Ramasubramanian, and Marwan Krunz. “Disjoint mul-
tipath routing to two distinct drains in a multi-drain sensor network.” INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE. IEEE, 2007.

 37. Sun, Hung-Min, Chien-Ming Chen, and Ying-Chu Hsiao. “An efficient countermeasure to the
selective forwarding attack in wireless sensor networks.” TENCON 2007-2007 IEEE Region
10 Conference. IEEE, 2007.

 38. Grau, Alan. “Can you trust your fridge?.” Spectrum, IEEE 52.3 (2015): 50-56.
 39. Li, Chunxiao, Anand Raghunathan, and Niraj K. Jha. “Hijacking an insulin pump: Security

attacks and defenses for a diabetes therapy system.” e-Health Networking Applications and
Services (Healthcom), 2011 13th IEEE International Conference on. IEEE, 2011.

 40. D. Evans, “The internet of things how the next evolution of the internet is changing everything.
Technical report”, CISCO IBSG, April 2011.

 41. R. Thomas, et al. “Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds.” Proceedings of the 16th ACM conference on Computer and communications
security. ACM, 2009.

 42. M. Dabbagh, B. Hamdaoui, M. Guizai and Ammar Rayes, “Release-time aware VM place-
ment,” in Globecom Workshops (GC Wkshps), pp.122-126, 8-12 Dec. 2014.

 43. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, “Toward energy-efficient cloud computing:
Prediction, consolidation, and overcommitment,” in Network, IEEE, vol. 29, no.2, pp.56-61,
March-April 2015.

 44. M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, “Efficient datacenter resource utilization
through cloud resource overcommitment,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 330-335, 2015.

 45. R. Boutaba, Q. Zhang, and M. Zhani. “Virtual Machine Migration in Cloud Computing
Environments: Benefits, Challenges, and Approaches.” Communication Infrastructures for
Cloud Computing. H. Mouftah and B. Kantarci (Eds.). IGI-Global, USA (2013): 383-408.

 46. D. Perez-Botero, “A Brief Tutorial on Live Virtual Machine Migration From a Security
Perspective.” University of Princeton, USA (2011).

 47. W. Zhang, et al. “Performance degradation-aware virtual machine live migration in virtualized
servers.” International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2012.

Appendix A

373

 48. V. Venkatanathan, T. Ristenpart, and M. Swift. “Scheduler-based defenses against cross-VM
side-channels.” Usenix Security. 2014.

 49. T. Kim, M. Peinado, and G. Mainar-Ruiz “Stealthmem: System-level protection against cache-
based side channel attacks in the cloud,” In Proceedings of USENIX Conference on Security
Symposium, Security’12. USENIX Association, 2012.

 50. H. Raj, R. Nathuji, A. Singh, and P. England. “Resource management for isolation enhanced
cloud services,” In Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 77–84. ACM, 2009.

 51. Y. Zhang and M. K. Reiter, “Duppel: Retrofitting commodity operating systems to mitigate
cache side channels in the cloud” In Proceedings of the 2013 ACM SIGSAC Conference on
Computer; Communications Security, CCS ’13. ACM, 2013.

 52. P. Li, D. Gao, and M. K. Reiter, “Mitigating access driven timing channels in clouds using
stopwatch,” IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 0:1–12, 2013.

 53. R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking timekeeping and per-
formance monitoring mechanisms to mitigate sidechannel attacks,” In Proceedings of the 39th
Annual International Symposium on Computer Architecture, 2012.

 54. Fangfei Zhou et al. “Scheduler vulnerabilities and coordinated attacks in cloud computing.”
10th IEEE International Symposium on Network Computing and Applications (NCA), 2011.

 55. K. Panagiotis, and M. Bora. “Cloud security tactics: Virtualization and the VMM.” Application
of Information and Communication Technologies (AICT), 2012 6th International Conference
on. IEEE, 2012.

 56. F. Zhang et al. “CloudVisor: retrofitting protection of virtual machines in multi- tenant cloud
with nested virtualization.” Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. ACM, 2011.

 57. T. Taleb, and A. Ksentini, “Follow me cloud: interworking federated clouds and distributed
mobile networks,” IEEE Network, 2013.

 58. E. Damiani et al. “A reputation-based approach for choosing reliable resources in peer-to-peer
networks.” Proceedings of the 9th ACM conference on Computer and communications secu-
rity. ACM, 2002.

 59. W. Itani et al. “Reputation as a Service: A System for Ranking Service Providers in Cloud
Systems.” Security, Privacy and Trust in Cloud Systems. Springer Berlin Heidelberg, 2014.
375-406.

 60. J. Sahoo, M. Subasish, and L. Radha, “Virtualization: A survey on concepts, taxonomy and
associated security issues.” Second International Conference on Computer and Network
Technology (ICCNT), 2010.

 61. S.Yi, Q. Zhengrui, and L. Qun, “Security and Privacy Issues of Fog Computing: A Survey.”
In Wireless Algorithms, Systems, and Applications, pp. 685-695. Springer International
Publishing, 2015.

 62. E. Oriwoh, J. David, E. Gregory, and S. Paul, “Internet of Things Forensics: Challenges
and approaches.” In 9th International Conference Conference on Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom), pp. 608-615. IEEE, 2013.

 63. Z. Brakerski, and V. Vinod, “Efficient fully homomorphic encryption from (standard) LWE.”
SIAM Journal on Computing 43.2 (2014): 831-871.

 64. E. Lauter, “Practical applications of homomorphic encryption.” In Proceedings of the 2012
ACM Workshop on Cloud computing security workshop. ACM, 2012.

 65. C. Hennebert, and D. Jessye “Security protocols and privacy issues into 6lowpan stack: A
synthesis.” Internet of Things Journal, IEEE 1.5 (2014): 384-398.

 66. Daily Tech Blogs On Line: http://www.dailytech.com/Five+Charged+in+Largest+Financial+
Hacking+Case+in+US+History/article32050.htm

 67. M. Miller, “Car hacking’ just got real: In experiment, hackers disable SUV on busy highway”,
the Washington Post, 2015, online: http://www.washingtonpost.com/news/morning- mix/
wp/2015/07/22/car- hacking- just- got- real- hackers- disable- suv- on- busy- highway/

Appendix A

http://www.dailytech.com/Five+Charged+in+Largest+Financial+Hacking+Case+in+US+History/article32050.htm
http://www.dailytech.com/Five+Charged+in+Largest+Financial+Hacking+Case+in+US+History/article32050.htm
http://www.washingtonpost.com/news/morning-mix/wp/2015/07/22/car-hacking-just-got-real-hackers-disable-suv-on-busy-highway/
http://www.washingtonpost.com/news/morning-mix/wp/2015/07/22/car-hacking-just-got-real-hackers-disable-suv-on-busy-highway/

374

 68. “2015 Data Breach Investigation Report”, Verizon Incorporation, 2015.
 69. M. Dabbagh et al. “Fast dynamic internet mapping.” Future Generation Computer Systems,

pp 55-66, 2014.
 70. Forrester, “Security: The Vital Element of the Internet of Things,” 2015, online: http://www.

cisco.com/web/solutions/trends/iot/vital- element.pdf
 71. F. Adib and D. Katabi. “See through walls with WiFi!,” volume 43. ACM, 2013.
 72. S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization with zero start-up

cost,” In Proceedings of the 20th Annual International Conference on Mobile Computing and
Networking, pages 483–

 73. 494. ACM, 2014.
 74. G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. Ni, “We can hear you with Wi-Fi!” In Proceedings

of the 20th Annual International Conference on Mobile Computing and Networking, pages
593–604. ACM, 2014.

 75. Y. Qiao, O. Zhang, W. Zhou, K. Srinivasan, and A. Arora, “PhyCloak: Obfuscating Sensing
from Communication Signals,” in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016.

 76. T. Yu, et al. “Handling a trillion (unfixable) flaws on a billion devices: Rethinking network
security for the Internet-of-Things.” Proceedings of the 14th ACM Workshop on Hot Topics in
Networks, 2015.

 77. M. Dabbagh, B. Hamdaoui, M. Guizani and A. Rayes, “Software-defined networking security:
pros and cons,” IEEE Communications Magazine, 2015.

 78. “What is PKI? - A Complete overview, January 23, 2015”. Retrieved 2015-02-24, Online:
https://www.comodo.com/resources/small- business/digital- certificates1.php

 79. Jump up ^ “What is a Public Key Infrastructure - A Simple Overview, April 17, 2015”, Onlie:
http://www.net- security- training.co.uk/what- is- a- public- key- infrastructure/

 80. XML 1.0, Fifth Edition, W3C Recommendation, Nov 26, 2008, Editors: T. Bray, J. Paoli,
C. M. Sperberg-McQueen and E. Maler, Online: http://www.w3.org/TR/REC- xml/

 81. Z-Wave Alliance, http://z- wavealliance.org/
 82. ZigBee Alliance, http://www.zigbee.org/
 83. OASIS, https://www.oasis- open.org/committees/tc_cat.php?cat=iot
 84. IEEE Standard 802.15.4-2011, September 2011.
 85. LoRa Alliance: https://www.lora- alliance.org/What- Is- LoRa/Technology
 86. D. Guinard, V. Trifa1, F. Mattern, E. Wilde, “5 From the Internet of Things to the Web of

Things: Resource Oriented Architecture and Best Practices1”, Springer. pp. 97–129. ISBN
978-3-642-19156-5., Online: http://www.vs.inf.ethz.ch/publ/papers/dguinard- fromth- 2010.pdf

Appendix A

http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf
http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf
https://www.comodo.com/resources/small-business/digital-certificates1.php
http://www.net-security-training.co.uk/what-is-a-public-key-infrastructure/
http://www.w3.org/TR/REC-xml/
http://z-wavealliance.org/
http://www.zigbee.org/
https://www.oasis-open.org/committees/tc_cat.php?cat=iot
https://www.lora-alliance.org/What-Is-LoRa/Technology
http://www.vs.inf.ethz.ch/publ/papers/dguinard-fromth-2010.pdf

375© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

Appendix B: IoT Projects for Engineering
Students

To pass this course, engineering students are required to build an IoT solution, dem-
onstrate their results, and then write detailed reports describing their findings. This
Appendix lists the main elements of standard IoT projects and then provides exam-
ples of such projects with supplement information, i.e., sensor types and the
expected outcomes. Appendixes C–F show examples of IoT Reports.

One of two well-known educational platforms is often used by the students:
Arduino IoT and Raspberry Pi. Arduino is an open-source platform that was
designed by hobbyists. Arduino IoT Cloud is an application helps students to con-
nect IoT devices and allows them to exchange data with basic mentoring capability.
Raspberry Pi platform was developed by Raspberry Pi Foundation to promote com-
puter science education. Arduino is microcontroller board, while Raspberry Pi is a
microprocessor based mini-computer. The Microcontroller on the Arduino board
contains the CPU, RAM, and ROM. Raspberry Pi typically requires an Operating
System to run.

Typical Elements of IoT Projects

In general, IoT projects will include the following main components:

• Sensors: to detect and capture data.
• Switch (e.g., Raspberry Pi, Arduino Uno): to receive, process, and analyze data

from sensors and other sources. Results may be sent to other devices for
notification.

• Electrical Board (optional): to connect sensors, switches, LEDs (if needed),
and other devices in a consistent and secure way. The board allows students to
connect multiple devices to each other and allow them to exchange real-time

https://doi.org/10.1007/978-3-030-90158-5#DOI

376

data. Common boards include 3.2″ × 2.1″ solderless breadboard with four bus
lines spanning the length of the board and 30 rows of pins, enough for up to four
14-pin DIP ICs or three 16-pin DIP ICs.

• Wireless Module (e.g., Wi-Fi) to integrate the system onto cloud and send
updates to specified devices.

• Cloud Platform/Application (e.g., Microsoft Azure, Amazon AWS, IBM Wat-
son): for detailed data storage, services monitoring, analysis with advanced
capabilities such as artificial intelligent, machine learning, object/face recogni-
tion, data trending, predictions, and forecasting.

It should be noted that some of the above elements may be already integrated,
e.g., Raspberry Pi 4 with integrated USBs, Giga Ethernet port HDMI ports.1

Examples of IoT Projects

Hundreds of IoT Projects are available on various Internet IoT training sites. Table
B.1 lists over a dozen of typical IoT projects for students. Additional projects may
be found in https://create.arduino.cc/projecthub/products/arduino- iot- cloud and
https://create.arduino.cc/projecthub/projects/tags/iot.

1 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Table B.1 Examples of IoT Projects

IoT Projects Sensors used Expected outcome

Home Security
system Motion-
Sensing Alarm
using IR Sensors

Infrared (IR)
Sensor

The solution includes IR sensors to detect unusual
movement, Wi-Fi Module to integrate the system onto
cloud and send updates to user, and Arduino Uno/
Raspberry Pi to capture and process sensor’s data and
then notify homeowner(s) when a harmful activity
(e.g., front door is opened) takes place in the home.
The system can also store collected data in a cloud
platform for further interpretation. Alarm should be
sounded in the home when a major issue is detected.

Touch Dimmer
Switched Circuit
Project

Touch Sensor LED/Light is turned on when a sensor is touched.

Weather
Monitoring
System:
Thermometer and
Humidity

Temperature
sensor (e.g.,
Arduino LM35)
and Humidity
sensor

Temperature (in Fahrenheit of Celsius) and Humidity
readings are displayed, with two decimal digit
accuracy, on digital thermometer.

(continued)

Appendix B: IoT Projects for Engineering Students

https://create.arduino.cc/projecthub/products/arduino-iot-cloud
https://create.arduino.cc/projecthub/projects/tags/iot
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

377

Table B.1 (continued)

IoT Projects Sensors used Expected outcome

Automatic
Lighting System:
LDR Controlled
Bulb

LDR (Light
Dependent
Resistor) Sensor

LDR sensors detect the changes in the sunlight
intensity and send the data to the Arduino Uno/
Raspberry Pi for interpretation. LED/Light is turned on
when the intensity is low (or sensor is covered).
Arduino Uno/Raspberry Pi receives data from sensors
and switch the light on or off. Relay drivers can be
used to convert the voltage to operate the light.

Sun tracker Using
LDR

LDR (Light
Dependent
Resistor) Sensor

Sensor/Machine is turned in 3-dimension following the
sun/light source.

Smart Irrigation
System

Moisture Sensor Soil moisture level is measured from a sample of dry
soil first. The result may be displayed on Laptop/
Smart-Phone/etc. Water is added to the sample soil and
the moisture level is measured again.

Smart Water and
Flood Monitoring
System

Rain and Water
Sensor

Water is placed on the rain and water sensor. Alarm is
sounded, LED is illuminated, and an email/text
message is issued. Alarm should stop once the sensor
is dried out.

Accelerometer
Based Hand-
Gesture-
Controlled Robot

Accelerometer
Sensor

Accelerometer sensor based machine (e.g., small
vehicle) moves and turns according to a sensor-enabled
hand. LED may be taped into a student’s hand.

Line Following
Robot

IR Sensor Small vehicle follows a specific trajectory (e.g., based
on a line on the street).

Fix Distance
Alarm

Ultrasonic Sensor Alarm is sounded once an object approaches the
sensor. Distance of the object is measured and
reported.

Smart Blind Stick Ultrasonic Sensor Alarm is sounded once an objective is detected by the
blind stick.

Motion-Sensor
Lamp

PIR (Passive
Infrared) Sensor

When a hand is waved in-front of the sensor, the lamp/
light is turned on/off. Two modes may be tested:
repeatable and non-repeatable triggered modes.

Home Automation
System

DHT (digital
temperature and
humidity) Sensor

The idea is building a single system to control
electrical appliances in the home. It can be integrated
with a Raspberry Pi board to make it an IoT device and
then can be controlled from a remote location via
Internet.

Smart Trash Can
Smart Mailbox

RFID Reader The idea is designing a system that notifies waste truck
driver when the bin is nearly full (or to notify a
homeowner when a mailbox has mail). In addition to
sensors, the solution may include: RFID Reader (to
scan the code of the trash can integrated with a RFID
Tag), RFID Tags and Raspberry Pi to process the data
and send notifications to the truck driver.

Appendix B: IoT Projects for Engineering Students

378

References

 1. Top 10 Sensors and Projects, July 31, 2021, online: https://www.etechnophiles.
com/top- 10- arduino- sensors- projects- beginners

 2. Top 10 Arduino-Sensors with Projects for Beginners, July 5, 2021, online:
https://www.youtube.com/watch?v=cAKnTSJb- SE

 3. 100+ Ultimate List of IOT Projects For Engineering Students, July 5, 2018,
online: https://www.electronicshub.org/iot- project- ideas/

 4. List of Latest IOT Projects for Engineering Students, V. Vidyakar, July 5, 2018,
online: http://www.skyfilabs.com/blog/
list- of- latest- iot- projects- for- engineering- students

 5. IoT Projects, July 5, 2018, online: http://nevonprojects.com/iot- projects/
 6. Top 5 IoT Projects (Best Internet of Things Home Automation Projects), Maker

Pro, Nov 29, 2017, online: https://www.youtube.com/watch?v=MREnJ7a3BV0

Appendix B: IoT Projects for Engineering Students

https://www.etechnophiles.com/top-10-arduino-sensors-projects-beginners
https://www.etechnophiles.com/top-10-arduino-sensors-projects-beginners
https://www.youtube.com/watch?v=cAKnTSJb-SE
https://www.electronicshub.org/iot-project-ideas/
http://www.skyfilabs.com/blog/list-of-latest-iot-projects-for-engineering-students
http://www.skyfilabs.com/blog/list-of-latest-iot-projects-for-engineering-students
http://nevonprojects.com/iot-projects/
https://www.youtube.com/watch?v=MREnJ7a3BV0

379© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

Appendix C: IoT Project 1—Parking
Availability App Using IoT

Abstract Finding parking in densely populated areas has become an issue due to
the high volume of cars in the road. People often struggle to choose between the
many parking garages in the area because they do not know if parking spaces will
be available. In this paper we explore a solution to this problem that involves using
IoT devices and the cloud. The idea is to make all the parking garages in the area
“smart” by attaching ultrasonic sensors to each of the parking spaces in order to
detect if the parking spaces are occupied. Micro-controllers will collect this infor-
mation and upload it to a web server in the cloud where it can be accessed by users
via a web application.

Keywords IoT, Ultrasonic, Sensor, Arduino, Webapp

Introduction

People tend to use their cars over public transportation because it can be more con-
venient. This has led to many parking garages running out of space. People currently
do not have access to information regarding how busy parking garages are in terms
of spaces available to park. Currently, there are parking garages that display parking
availability before you actually enter the garage but they are not connected to the
cloud. We can solve this problem by taking advantage of the popularity of IoT
devices and the cloud. For this project, I will monitor the availability of parking
spaces from different parking garages by attaching object detection sensors to

Under the supervision of Professor Ammar Rayes
Miguel Covarrubias Martinez

M. C. Martinez
Computer Engineering Department, San Jose State University, San Jose, CA, USA
e-mail: miguel.covarrubias@sjsu.edu

https://doi.org/10.1007/978-3-030-90158-5#DOI
mailto:miguel.covarrubias@sjsu.edu

380

parking spaces. How does sensor work? “Sensors typically collect data using physi-
cal interfaces (inputs) that sense the environment and then convert input signals into
electrical signals (outputs) that are understood by the communication and computing
devices” [1, p. 70]. There are different sensors such as IR (Infrared) or ultrasonic that
are used for object detection. In this project I used ultrasonic sensors because they
can be calibrated to detect objects within specific distances. Using physical sensors
will provide the users with most accurate information about parking availability.

Problem Statement/Project Architecture

In this paper I will present a solution for finding available parking spaces in parking
garages. The solution will use IoT devices located in the physical parking garages
and the statuses about the parking spaces will be sent to a web server in the cloud
where it can be accessed by users via a web application. This architecture covers the
sensor layer, network layer, data processing layer, and application layer as shown in
Fig. C.1. In the sensor layer I am using an Arduino microcontroller that receives the
signals from the ultrasonic sensors. The microcontroller then processes the signals
and evaluates if any of the parking spaces is occupied or open to use. This informa-
tion is then sent over the Internet as a post request to the web server (IoT Data
Processing Hub) for storage. The Arduino will also turn on the local green LED
light if a parking space is open to use or it turn on the red LED light if a parking
space occupied. Once the web server receives the payload from the Arduino it will
then store the status of the parking garages in a memory data structure. The struc-
tured live data can then be accessed by users via a web application. Users will then
be able to make decisions on where to go park based on the live data coming from
the parking garages IoT devices.

Fig. C.1 Architecture

Appendix C: IoT Project 1—Parking Availability App Using IoT

381

Method(s) System Design

1.1.1 Sensor Layer (Physical Devices)

First, the main physical components of this IoT project are the Arduino Uno Wi-Fi
Rev2, ultrasonic sensors, LED’s wires, breadboard, and the power source as shown
in Fig. C.2.

In this model there are three ultrasonic sensors with two LED lights (green and
red) and each of the sensors represents a parking space in the parking garage. The
sensors are placed in front of the parking spaces in order for the sensors to detect
objects in front of them. The way the ultrasonic sensors work is by using sound
waves above 20 kHz range to detect the proximity of objects [2, p. 1]. The waves
(pulses) that the sensor emits are reflected back towards the sensor by objects within
the field of view of the sensor [2, p. 2] as shown in Fig. C.3. By calculating the time
it takes for the pulse to get back to the sensor and by using the speed of sound
(29 μs/cm) the distance of the object in centimeters can be calculated as in (C.1).

d

t v
OneWay

RoundTrip Sound�
�

2 C.1

In this project I have defined a distance of 7 cm for the ultrasonic sensors to
detect objects. This is an ideal value for the small parking garage model that I have
created. For use in a real parking space, we would only need to update the distance
value. The Arduino takes readings from the censors every 2 s and if an object is
detected within 7 cm then the Arduino sends an “on” signal to the appropriate red

Fig. C.2 Arduino circuit
diagram

Appendix C: IoT Project 1—Parking Availability App Using IoT

382

LED in the parking garage. In addition, the green LEDs in the parking garage will
turn on if the sensors do not report objects within the defined distance.

Network Layer

The Arduino that I am using has a Wi-Fi module that allows it to connect to the
Internet. This is very useful because it can send information about the statuses of the
different parking spaces to a web server for storage. In the network, the Arduino has
its own assigned IP address, and this can be used as a unique identifier. However, for
this project I have decided to pre-program the only Arduino with a unique defined
name. When it comes to sending data to the Internet from IoT devices, the data
serialization format is important. This is because you want the applications to inter-
pret the data from IoT devices with minimal format translations [1, p. 132].
Furthermore, it is good practice to only send the minimal required information to
save bandwidth. Popular data serialization formats include XML, JSON, and
EXI. For this project I decided to use the JSON format for the data payload which
is sent as a HTTP post request from the Arduino every 2 s to the web server as
in (C.2):

{ : , : ,

: ,

" " " " " "

" "

parkingId Garage spotId

isAvailable true tot

′′1 1

aalAvailableSpots" : }3 C.2

In average, the payload size for each post request is 100 bytes and this payload is
sent every 2 s for each parking space. Using this information, we can determine how
busy our network can get depending on the number of parking spaces. Figure C.4
shows the code that the microcontroller executes to send the post request to the web
server API.

Fig. C.3 Ultrasonic time-of-flight measurement [2]

Appendix C: IoT Project 1—Parking Availability App Using IoT

383

Data Processing and Application Layer

The web server (IoT Data Processing Hub) as shown in Fig. C.1 collects and pro-
cesses the data sent by the Arduino. Then the data is stored in a memory data struc-
ture that can be accessed by REST API. For this implementation I decided to only
keep the most recent status of the parking spaces in the garages, but in an actual

Fig. C.4 Arduino code post request

Fig. C.5 Actual Web App
from a mobile device

Appendix C: IoT Project 1—Parking Availability App Using IoT

384

production implementation it would be a good idea to keep the historic data for
analytics. Both the Web UI and Web server were created using the React and Node.
js frameworks. Figure C.5 shows how the web application looks like from a
mobile device.

Deployment

The Web UI and Web server were built on top of Docker images to make the deploy-
ment to the cloud easy. For this project I decided to use AWS (Amazon Web Services)
as my cloud platform because I was able to create a free student account. To deploy
the applications, I created an EC2 (Elastic Compute Cloud) instance in AWS and
transferred the Docker image from my personal computer to the instance. Once the
Docker image was transferred in the EC2 instance it only took one Docker command
to deploy the application. I had to make sure that the proper ports on the instance
were exposed to the public in order to access the applications from anywhere. The
EC2 instance had its own public IP that I used as the API endpoint when I deployed
the Arduino code. It was trivial to verify if the application was working since I was
able to see the parking spaces statuses change after I placed/removed cars into my
garage model. Deploying the web application is a straightforward process but when
it comes to deploying new code into the microcontrollers it becomes more difficult.
In order to accomplish this and more there needs to be in place an IoT Service
Platform. “The functions of the IoT Services Platform include the ability to deploy,
configure, troubleshoot, secure, manage, and monitor IoT devices. They also include
the ability to manage applications in terms of software/firmware installation, patch-
ing, starting/stopping, debugging, and monitoring” [1, p. 181]. However, due to time
constrains I was not able to implement this key component of the IoT workflow.

Fig. C.6 Parking garage
model

Appendix C: IoT Project 1—Parking Availability App Using IoT

385

Evaluation Methodology/Results

The parking garage model that I created is shown in Fig. C.6. In this model you can
see the red LED lights turned on when the ultrasonic sensors detect an object in
front of them. You can also see that the parking space in the middle has the green
LED turned on because there is no object in front of the sensor. Figure C.5 shows
what a user would see from the web application according to Fig. C.6. I also tested
this model by pacing the car about eight centimeters away from the sensor and as I
expected the red LED did not turn on. In Fig. C.7 we can see the actual implemented
Arduino circuit that is attached to parking garage model.

I wanted to add an LCD display to show the number of parking spaces available
but LCD display requires several more pins and I did not have a breadboard extender.
Also, it is hard to see in the image but the LED lights are using a resistor in order to
limit the current going through it and prevent that from burns.

Conclusion and Future Work

I was very satisfied with what I was able to accomplish in this project. I applied in
real life the concepts that I learned in class. This project was a good proof of concept
that demonstrated that it is possible to use IoT and the cloud to inform users about
parking availability within parking garages. There are many things that can be
improved on this prototype such as the website UI/UX, security, and fault manage-
ment with respect to the sensors and microcontrollers. I believe that this project
would be very useful if it was implemented in real life and the cost would be low
because the IoT devices are not expensive. In addition to using ultrasonic sensors, it
would be a good idea to use a type of pressure sensor to be able to differentiate
between cars that are actually parked or people that are just standing on the parking

Fig. C.7 Actual Arduino
circuit attached to garage
model

Appendix C: IoT Project 1—Parking Availability App Using IoT

386

space. Furthermore, developing an analytics dashboard with information for each
parking garage such as the most busy hours, average parking space usage, and the
number of current users looking for parking would be very useful. I believe IoT has
a great future ahead and I believe this is just the start.

Acknowledgment I would like to thank professor Ammar Rayes for sharing his
knowledge and lecturing the IoT class at SJSU.

References

 1. Rayes and S. Salam, Internet of Things From Hype to Reality: The Road to Digitization. Cham:
Springer, 2019.

 2. Toa, M. and Whitehead, A., 2020. Ultrasonic Sensing Basics. [ebook] TexasInstruments.
Available at: https://www.ti.com/lit/an/slaa907c/slaa907c.pdf [Accessed 16 November 2020]

Appendix C: IoT Project 1—Parking Availability App Using IoT

https://www.ti.com/lit/an/slaa907c/slaa907c.pdf

387© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

Appendix D: IoT Project 2—Sensor Activated
Lights with Cloud Data

Abstract Thoughtful design is not always something that successfully makes its
way into the infrastructure of a living space. Sometimes it is the priority, but other
times, it completely lacks. One of the areas where thoughtful design is sometimes
lacking is good lighting, either by natural lighting or light fixtures. A lot of house-
holds and work spaces end up with rooms or closets that have little to no natural
light and the light source in that room is either weak or nonexistent. This makes it
hard for people to utilize these spaces. Luckily, this is an issue that can be easily
solved if we have access to a portable light source that can be mounted in some of
these places. This project looks at creating that type of light source while also incor-
porating modern cloud technologies to collect and display metrics. It experiments
with using an Arduino Uno and a Node MCU Wi-Fi Module to create a light source
which then sends data to the cloud. This data is stored and displayed for testing and
analytical purposes.

Keywords IoT, Internet of Things, Arduino, Sensor, Grafana, AWS, EC2,
InfluxDB, Docker

Introduction

How many times have you lived in a place that did not have any kind of light within
a dark corner or closet? In many apartments and living spaces, there are plenty of
areas that are not reached by natural light and that do not have their own light

Under the supervision of Professor Ammar Rayes

E. Peatfield
Computer Engineering Department, San Jose State University, San Jose, CA, USA
e-mail: emma.peatfield@sjsu.edu

Emma Peatfield

https://doi.org/10.1007/978-3-030-90158-5#DOI
mailto:emma.peatfield@sjsu.edu

388

source. Thanks to this, most people likely have an area of their home where they
wish they had more light, especially in a closet-like space. In my apartment alone, I
can name a handful of places where a small light would make the world of a differ-
ence. This light does not have to be something that is complicated or expensive, just
a simple fixture that could illuminate the space. If these spaces were more illumi-
nated, I feel as if I could get so much more use out of a currently dark space. This
project looks to solve that problem with a light fixture for one of my closets that has
little to no natural light. To do this, I will utilize Arduino accessories, sensors, and
modern cloud technologies.

Problem Statement and Architecture

Having a space with no access to natural light becomes a real pain when you would
like to realistically use it. Without the light, the space gets wasted and the rest of the
space in the apartment has to compensate for that. With this project, I hope to solve
that problem by creating a small light fixture that turns on when the door opens and
off when the door closes. In creating this, I would also like to have the device send
metrics to the cloud, so that I can track usage statistics of the light source. This will
be very useful for testing and tracking the actual usage of the light in the future.
With this project, I also hope to inspire others to build on my idea to solve problems
in their own homes with IoT Devices.

For this proposed solution, I will need to have a light source and a door sensor
connected to an Arduino Uno, which will then connect to the Internet so that data
can be sent to the cloud. To do this, I will need an extra Wi-Fi module and to create
an instance on the cloud where I can store and display data. This will be done using
AWS services and Docker containers. In Fig. D.1, you can see the basic architecture
of the project that I created for my proposed solution. I have incorporated various
aspects of IoT, so that I could gain knowledge in a multitude of ways while working
on this solution.

As pictured, I will have a door sensor that connects to an Arduino Uno and a
Wi-Fi Module circuit. This circuit will then connect both to a light source and to the
cloud. The cloud will be moderated with an EC2 Instance, a database hosted with
InfluxDB, and a front-end dashboard display using Grafana. I will go more into
detail on this in the next section.

Equipment and System Design

When working on the design for this project, a few things were taken into account.
First, I knew this fixture would need to have some sort of power source since the
closet does not have any kind of source within it. Also, I knew that I would need to
find a way to connect my project to the Internet since I wanted to send and store
metrics within the cloud. This was something that I knew I could not do with the

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

389

Arduino module that I currently had. Now that those two problems were noted, I
ordered necessary parts and started designing a circuit for the project.

In this section I will discuss the hardware parts that I used, such as sensors, light
sources, and modules. Also, I will describe a few of the main software tools that I
used for connecting everything to the cloud, and I will go into detail about the final
circuit design for the project once I had everything in place.

Hardware Used

One of the first major pieces of equipment that I used was an Arduino Uno. This is
a small micro-controller that I bought a few years back, but I had never had the
chance to work with it until now. It was something that was pretty simple to work
with and gave me exactly what I needed to connect my sensor and light source
together. Once I connected everything on here, I could use the Arduino IDE to write
a short program to control my circuit and basically tell the Arduino what to do and
when (Fig. D.2).

The next major piece that I used in my project was a Node MCU 12E Wi-Fi
Module. This piece was a tool that I did not have, so I had to order it if I wanted to
connect my project to the Internet. I had never worked with one of these before, so
it was a little challenging to get started. Without this, I never would have been able
to collect metrics for the project. Thus, it was instrumental in getting a lot of things
working and certainly gave me more freedom with the project (Fig. D.3).

The final major piece of hardware that I used was a door sensor. The one that I
used for this project was a magnetic door sensor, which can be found on any elec-
tronics website or on Amazon. It connects to the circuit on the one side and the other
side is used on the opening door. When the circuit is closed, it sends a signal on the
connected side, letting the light know to turn off. And when the sensors are not con-
nected together, the signal is sent to turn the light on. This sensor is pretty basic, but
it worked nicely for what I needed (Fig. D.4).

Fig. D.1 Project architecture

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

390

Fig. D.2 Arduino Uno and
Breadboard

Fig. D.3 Node MCU
Wi-Fi module

Software Used

For this project, I did not want to just have a basic door light built with my Arduino,
so I decided that I wanted to track various metrics and store them on the cloud.
Doing this, would be very helpful when testing the circuit, and also would keep
track of usage statistics for the light source. Again, without purchasing the Wi-Fi
module, this would not have been possible. Thus, once I had this module and com-
pleted the set up, I was able to store information by using a few more tools.

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

391

The first tool I used was an Amazon EC2 Instance. This was my first time setting
one of these up on my own, so it took some research, but luckily Amazon has great
tutorials. I used this tool to create a Linux instance that I knew I could install the
necessary packages on without too many roadblocks. Working with an EC2 Instance
was flexible for every need that I had, and it was free for the tiers that I chose.

Next tool that I used was Docker. Docker is a container platform that basically
packages environments for development and makes it easier to develop and deploy
products [3]. I installed Docker onto the EC2 Instance, as well as Docker Compose,
which is “a tool for defining and running multi-container Docker applications” [2].
By using Docker compose, it was very easy to start up each container at once and
each kept external storage in case they got shut down by accident, or the system
crashes. All that was needed was a YAML file with information for each container
that I used.

Another tool that was very important for this project was InfluxDB. InfluxDB is
a database that I used to store all of the data coming in from the Arduino and Node
MCU. I did this by creating an InfluxDB container using Docker and Docker
Compose. Storing data with this tool was simple and it connected seamlessly to my
final software tool, Grafana.

Grafana is a tool that I used to create dashboards for displaying and observing
data [1]. I am using this tool to display my data on a dashboard that could be cus-
tomized for my needs. As I mentioned, it connects directly to InfluxDB, so that I can
retrieve whatever data I need and then Grafana displays what I specify. It always
looks very beautiful and clean, especially if you use one of their many built- in
plugins. As long as you have data coming in, you can create tables, graphs, meters,
and so much more.

Using these tools for this project really helped me take the data collection to the
next level and show what you could do with even just simple metrics. All of this, of
course, would not have been possible without the hardware tools that I mentioned
earlier and the circuit design that I will discuss next.

Fig. D.4 Door sensor

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

392

Circuit

Designing the circuit was important for having a successful project. I knew it needed
to be compact and also connect so that everything worked as intended. I first started
with just the Arduino circuit that used the lightsource and the door sensor. Once I
had that working together, I worked on connecting the Node MCU Wi-Fi Module to
those, and tested that out. Both of these were connected to my laptop for their source
of power, but after testing each component out, I was able to connect the circuit to
power sources that were detached from my laptop (Fig. D.5).

Methodology

This project gave me a chance to work with not only sensors and computers, but
also with cloud technologies and Docker containers. Having this wide range was
important for me so that I could get the most out of this experience. The project was
completed in quite a few steps, which I will lay out in this section.

First, I was tasked to design a circuit for how I wanted this to work. The first
thing I did was connect the door sensor, resistor, and the light source to the Arduino
Uno. That part was not too challenging and moved pretty quickly. The next task was
connecting the Node MCU and connecting the circuit to the Internet so that I could
collect metrics from the project to store in the cloud.

Connecting the Node MCU to the Internet was not as hard as I thought it would
be. Thus, I was able to start working on setting up my EC2 Instance, so that I could
begin sending data. This part was also rather straightforward since Amazon has a lot
of great tutorials in their documentation for AWS services. Once this was all done,

Fig. D.5 Project circuit

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

393

I installed Docker and Docker Compose onto the instance so that I could utilize
containers in this project. I worked on setting up these containers that would be
home to InfluxDB and Grafana. These required only a little customization at the
start so that I could ensure things were set up properly.

Now that the containers were ready to go, I had to work on sending data to them
for collection. This task was one of the most challenging parts of the project. It was
quite simple to get the Node MCU connected to the Internet, but it was a bigger
challenge to get the data sent to the EC2 instance. Figuring out how to properly
format the data for the POST request was difficult. Each way I tried, I seemed to get
an invalid response. Eventually, I figured out how to format the data by concatenat-
ing strings. This works very nicely, however, I would like to find a more efficient
way of doing this in the future.

From this point on, the main parts of the project were complete. I now had to
figure out how to power the Uno and Node MCU without my laptop so that I could
place the project in my closet. I had a 9 V battery power adapter that I was able to
use for the Arduino, but I had to end up using a portable charger for the Node MCU
since I did not have any other adapters, and could not purchase one at this point in
time. This worked fine to power both of the modules, however, I did have an issue
with sending data between the two. I realized that I had not connected the two for
serial communication correctly. It worked while plugged into the laptop, but not
separately. To fix this, I quickly connected each Tx connector to the other Rx, and
vice versa. This allowed the two devices to transmit and receive data to each other.
After this, the project was complete and ready to be placed in the closet.

Evaluation

As far as goals went, I met every goal with this project. The project met the require-
ments necessary to be a light fixture within a small space that turns on when the
door opens. It also sends metrics to the cloud where I can view them with ease. This
project was able to be placed inside my closet and it worked as intended. I filmed a
few videos of it working inside of the closet that are available to watch in my demo
video [4]. I am very satisfied with how this project turned out and I cannot wait to
add more and build off of it. I worked really hard to get the final circuit out and mak-
ing it portable was an added bonus. Figure D.6 is a picture of the final circuit
detached from the closet.

Once the final circuit was complete and powered on, adding it into the closet was
simple since the door sensors that I bought came with an adhesive backing. I just
placed the project on a shelf near the door and attached the sensors. Once in place, I
was able to use Grafana to view the metrics that I was collecting. Grafana displayed
the metrics beautifully, and I was able to customize what I wanted it to show and how.

As of now, I have a table displaying the time a metric came in, the status of the
door, the time the door has been open in seconds, and the total amount of open time
in seconds. Figure D.7 is a screenshot of the dashboard where you can view
this table.

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

394

Fig. D.6 Final project

Fig. D.7 Grafana screenshot of the dashboard

Also in this dashboard is a big number metric that is showing the total amount of
time that the door has been open with the light on. This is useful for tracking the
amount of usage that a light source may get. It may mean you will expect the light
bulb to go out since you will have an estimate of its usage. There is also a graph on
this dashboard that graphs the seconds that the door has been open. As you can see
in Fig. D.7, the time increases and then flattens out to zero when the door was
closed. What is great about Grafana is that you can choose a time frame of data to
look at, so you can see the history of the metrics.

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

395

Having the ability to see these metrics was very helpful while I was testing out
my project. It helped me see if there were any errors in my code logic or within my
circuit. Overall, I am very happy with how this project turned out and how well the
metrics were able to be sent to the cloud from my Arduino and Node MCU
Wi-Fi Module.

Future Work

Although this project was very successful, and I met all of my initial goals, I would
love to build on it. A few things I would like to change are the lightsource, Amazon
Alexa integration, and a fixture to display the project.

For this phase, I was not able to add a real lightbulb fixture, I could only add a
basic LED light. That is something that I would love to change, once I have the
funds to do so. This would be an improvement for how much light I could get within
the dark space and I could also buy a bulb that has some sort of dimming ability.
That way I could adjust the light for my needs based on the time of day and how
dark the different spaces may be.

After changing the lightbulb, I would also love to incorporate Amazon Alexa into
this project. If I was able to do this, I could control the light without the need for a
door sensor at all times. I would also be able to change the brightness of the light
with my voice.

Finally, if possible, I would love to create some sort of holder for the light, so that
I can mount it on the wall or ceiling. This might require a 3D printer, but it could be
possible without one. This would be a project much farther in the future.

Conclusion

The finished project met all of my goals and I am very happy with the end result.
Adding cloud services worked very well for testing and enabled me to see how
everything was being recorded. I am also very impressed with how well I was able
to display data using InfluxDB and Grafana. This was all possible with only a few
snags while creating it. In the future, I hope that I could build upon this project and
create something even more impressive. This project just shows that even some of
our simplest problems can be solved with IoT.

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

396

References

 1. “Grafana: The Open Observability Platform.” Grafana Labs, Grafana Labs 2020, http://
grafana.com/

 2. “Overview of Docker Compose.” Docker Documentation, Docker Inc., Nov. 2020, https://docs.
docker.com/compose/

 3. “What is a Container?” Docker, Docker Inc., 2020, www.docker.com/resources/what- container
 4. Peatfield, Emma, director. Cmpe 286 Demo, 2020, https://youtu.be/_F9VbPc0xVk

Appendix

Code: https://github.com/epeatfield/cmpe286Project

Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data

http://grafana.com/
http://grafana.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
http://www.docker.com/resources/what-container
https://youtu.be/_F9VbPc0xVk
https://github.com/epeatfield/cmpe286Project

397© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

Appendix E: Warehouse Inventory Management
System

Abstract One of the reasons behind every successful package shipment is proper
communication from warehouse to the point of destination. The real-time develop-
ing information provided during the shipment allows the team to manage the mul-
tiple shipments efficiently. Proper management also helps in maintaining per
shipment requirements for better service to the customer. In the transportation of
medicines it is a must requirement to maintain the temperature of the shipment
between a certain range. For example, the developing COVID vaccines are required
to be maintained between 2 and 8 °C during transportation. Ineffectiveness in main-
taining the temperature and other environmental metrics will result in the loss of
complete vaccination shipment, in the worse-case scenario it can cost the life of
patient. Proper network coverage are among several factors that impede proper
communication during shipment. Identifying, customizing, and reporting vital envi-
ronmental metrics are also a significant challenge. Conventionally tracking of a
shipment was done manually, which was a tedious task involving a lot of cost and
manual labor. In addition to manual tracking, RFID tags are also used for tracking
the packages inside the warehouse. Though these tags provided wireless communi-
cation, the tags effectiveness is affected with the amount of metal and liquid present
around the package. Our proposed solution to the above problem is to develop a
complete-intelligent Warehouse Inventory Management system for the better track-
ing. It deals with the convergence of various services for customizing requirements
for each shipment and timely management of it. NRF52832 Bluetooth low energy
(BLE) module is used to design the shipment beacons. The BLE tags are ideal to
track location or movement of inventory, individual packages, pallets, or equipment,
regardless of whether they are indoors, outdoors, or in transit. This BLE-based solu-

Ayesha Siddiqua and Vidushi Jain
Under the Supervision of Professor Ammar Rayes

A. Siddiqua · V. Jain
Computer Engineering Department, San Jose State University (SJSU), San Jose, CA, USA
e-mail: ayesha.siddiqua@sjsu.edu; vidushi.jain@sjsu.edu

https://doi.org/10.1007/978-3-030-90158-5#DOI
mailto:ayesha.siddiqua@sjsu.edu
mailto:vidushi.jain@sjsu.edu

398

tion offers real-time condition monitoring for COVID and CANCER vaccines
including their temperature, humidity, altitude(from pressure), and in some cases
ambient light for the closed packaging of the sterilizing kits. The Raspberry Pi
device is used to design a Warehouse tracker. The device transmits real-time sensor
data collected from multiple shipment beacons over BLE along with the alerts for
any temperature excursions due to unfavorable conditions of the vaccines to the
Azure Internet of Things (IoT) Hub. Thus, warehouse tracker IoT system presents a
complete tracking system to the warehouse industry. The Azure platform offers real-
time data visualization and device tracking. It provides visualization of sensor data
from multiple trackers with the help of charts and text from the Azure explorer.

Keywords Internet of Things, BLE, High reliability, Live-tracking, Real-time vis-
ibility, IoT

Introduction

In the early 1990s, the demand for expansion of interaction between the devices
beyond just the computers connected to the web led to the development of several
smart objects which can be controlled in real time over the Internet such as WearCam,
toaster, etc. [1]. A global identification system based on RFID was developed to
provide the devices the capability to “observe, identify and understand the world”
with the help of sensors by the late 1990s. RFID technology was extensively uti-
lized in commercial products to decrease the dependency of the inputs from humans
[2]. To boost Internet Protocols (IP) in the network of the Internet of Things (IoT)
devices, the IPSO Alliance was launched by the companies. In 2006 the Federal
Communications Commission (FCC) approved the “white space spectrum” for the
IoT devices, which helped to reduce the gap between the rural digital connectivity
with the help of the broadband services. By 2016, Narrow band IoT was developed
by 3GPP to provide cellular services over a broader area with the help of Low-
Power Wide Area Network radio technology [3, 4]. The 3G and 4G technology are
not sufficient today to meet the requirements of fifth-generation (5G) wireless
devices, and this was the motivation for the usage of an unlicensed spectrum for the
IoT devices [5]. This technology improvement and faster connectivity can be uti-
lized in wide IoT applications. They could be used to track shipments of vaccination
in healthcare industry to large distance with lesser utilization of power. The future
concentration of the IoT systems is towards autonomous vehicle communication
which can be used for easy transport and shipment tracking without further manual
labor and guarantees reliable delivery [6].

The basic building blocks of smart products are hardware, software, sensors, and
communication networks. In smart surveillance applications, the maturity of
installed sensors plays a vital role in tracking a shipment and also in maintaining
customized parameters required for proper maintenance of the shipment. For quick
detection of any unusual situations in the surrounding helps to prevent the damage
in advance. Shipment management mainly relies on temperature and pressure

Appendix E: Warehouse Inventory Management System

399

monitoring; using relevant sensors facilitates detecting change in temperature and
humidity content in the air [7]. The main reasons for change in preset temperature
are because of human mistakes or system faults which harms patients’ lives if it was
during the medicine transport. After successful detection of change in parameters
the proposed warehouse tracker network sends an alert to the Azure IoT Hub using
MQTT communication protocol. Traditional methods fail to detect change in the
customized environmental parameters.

Problems in the Existing Tracking and Monitoring Systems

In the fast moving world, the time is money and the business efficiency is critical to
any competitive edge. Making an essential to nowhere your products, equipment and
assets are, at all times. Unfortunately, packets in transit often go missing or delivered
to the wrong location as shown in Fig. E.1. An assets or inventory in a storage or in
use can be difficult to locate in a warehouse or a port. The current tracking and the
monitoring solution such as RFID tags are limited in functionality and expensive to
set up. The lack of the visibility to the location, the condition of the individual pack-
ages and assets can be result in wasted time, missing inventory, customer dissatisfac-
tion, loss of profits, and big headaches to the firms involved in the shipments.

Solutions to the Limitations of Existing Tracking Systems

In the healthcare industries, the collection of data points performs a significant role
that includes gathering, analyzing, and data processing from various sources. One
of the most important use case of data collection in the healthcare is needed to moni-
tor the vaccines conditions during the shipment [8]. The shipment beacon solution
can work with the warehouse trackers or mobile phones to provide package or item
level monitoring for all the important goods such as vaccines. It will be the

Fig. E.1 Problems in current monitoring systems

Appendix E: Warehouse Inventory Management System

400

industries most affordable, in-transit indoor or the outdoor battery operated solu-
tion. The shipment beacon is Bluetooth low energy (BLE) based hot-spot beacon
solution which provides end-to-end supply chain and asset monitoring solution
across the enterprise, whereas the warehouse tracker is the GSM or Wi-Fi based
hotspot solution, which provides reliable device-cloud communication for a fleet of
devices.

This project report aims at describing the integration of the shipment beacon and
the warehouse tracker for monitoring the healthcare shipments. It includes the
design implementation and development of the warehouse inventory management
system. This report is divided into seven parts. The following Section describes the
architecture of the overall design implementation. However, the section “Method(s)/
System Design” describes the methods and system designs components of our solu-
tion. It additionally includes the software components of the system are emphasized
to present the update of data collected from the shipment beacon to the warehouse
tracker. The design ease outs the tracking of the devices and provides their real-time
status. Additionally, in the section “Project Implementation” that includes system
implementation of the proposed solution for shipment beacon and for the ware-
house tracker. Then we have system integration in the section “System Integration”
and its basic unit testing section “Testing and Verification” and finally testing ends
with the evaluation tests section “Evaluation Methodology and Results” results of
our solution. At last, the section “Summary, Conclusions and Recommendations”
concludes the paper (Fig. E.2).

Fig. E.2 Warehouse inventory management system design

Appendix E: Warehouse Inventory Management System

401

Project Architecture

This section contains the design and development of BLE beacon device and the
Internet based tracker for monitoring shipments and the conditions for the health-
care medicines. The High-level design architecture consists of a BLE based wireless
MCU that will transmit BLE Beacons after every 10 s (configurable from App) in a
connection-less mode that will be collected by BLE enabled central devices
(Raspberry Pi). This device will be used for monitoring physical status of the ship-
ments using temperature, humidity and the motion sensors. Multiple users can
receive data whoever will be present in the range of the device (Fig. E.3).

This project includes a shipment beacon for real-time monitoring of the vaccines
using multiple sensors which collects temperature, pressure, humidity, and ambient
light from the surroundings. The shipment beacon transmits the sensor data to the
warehouse tracker, which is actually the Raspberry Pi processor. The Raspberry Pi
acts as a hotspot to get the data from BLE and connects to the Azure IoT Hub via
MQTT protocol and sends the data to Azure platform. The azure IoT Hub ensures
the security and reliability of communication. This section details the BLE beacon
device architecture design. It is designed with nRF52832 wireless MCU targeting
for BLE applications from Nordic Semiconductors. This device will transmit the
beacons along with the sensor data and these beacons will be collected by central
devices like mobile phones and the Raspberry Pi devices. Figure E.4 shows the
overall architecture of the warehouse inventory management system.

The architecture consists of three layers, the sensor layer, communication layer,
and the data processing layer. The first layer is the sensor layer which contains the
physical sensors. It deals with reading and writing of the sensor register values
directly from the physical devices. The type of data collected from this layer depends
on the type of application. The data can be collected from environmental parameters
such as temperature, pressure, and humidity or human physical activities [9]. In our
project application, the data is collected from environmental sensors. Later, the

Fig. E.3 High-level design architecture

Appendix E: Warehouse Inventory Management System

402

collected data from the sensors is concatenated with the BLE beacon payload and
transferred to the second layer. The intermediate layer represents the communica-
tion layer. This layer will act as a BLE central hot-spot for the first layer. This layer
can perform tasks, run algorithms required for temperature excursions, and contain
enough memory to collect the BLE data from the beacons. The Last layer in the
architecture is the cloud layer. This layer is essential for providing remote access to
the data and for online monitoring of the shipments and for vaccines diagnostics
[10]. The second layer is used to establish the connection with the azure server
using Internet services. This layer performs a major role when it comes to long-term
storage of data and to minimize congestion at the core network by performing an
in-depth analysis of mega data at the cloud layer [11]. The warehouse inventory
management system architecture from Fig. E.4 used to collect real-time condition
monitoring of the vaccines and transfer the data to the mobile phone or to the azure
server for its computation and analysis.

Method(s)/System Design

This section of the report presents the hardware and the software components used
in the warehouse inventory management system design.

Fig. E.4 Warehouse tracker architecture

Appendix E: Warehouse Inventory Management System

403

Shipment Beacon

The shipment beacon consists of two components nRF52832 BLE module and the
environmental sensors (Fig. E.5)

 1. BLE Module nRF52832: The shipment beacon’s firmware built on nRF52832.
The nRF52832 is a wireless MCU targeting Bluetooth Smart application. The
device is a member of the nRF52xx family of cost-effective, ultra-low power,
2.4-GHz RF devices. Very low active RF and MCU current and low-power mode
current consumption provide excellent battery lifetime.

The nRF52832 contains a 32-bit ARM Cortex-M4 running at 64-MHz as the main
processor and a rich Peripheral feature set, including a unique ultra-low-power
sensor controller, ideal for interfacing external sensors and/or collecting analog
and digital data autonomously while the rest of the system is in sleep mode. The
key features of the nRF52832 Micro-Controller are as follows:

 (a) Powerful ARMCortex-M4.
 (b) Up to 64-MHz Clock Speed.
 (c) 512 KB of In-System Programmable Flash.
 (d) 64-KB SRAM.
 (e) Supports Over-The-Air Upgrade (OTA).

 2. Humidity, Temperature Pressure Sensor: BME280: These sensors are packed
with embedded functions with flexible user-programmable options, configurable
interrupt pins. Embedded interrupt functions allow for overall power savings
relieving the host processor from continuously polling data. There is access to
both low-pass filtered data and high-pass filtered data, which minimizes the data
analysis required for tilt detection/faster transitions, temperature detection, pres-
sure detection, humidity detection, and light intensity.

The device can be configured to generate inertial wake-up interrupt signals from
any combination of the configurable embedded functions allowing the tempera-
ture, pressure, humidity, and light sensor to monitor events and remain in a low-
power mode during periods of inactivity. The sensor interface is communicating
with controller via Serial Bus Interface.

Fig. E.5 BLE MCU nRF52832

Appendix E: Warehouse Inventory Management System

404

 (a) SDA is for data receiving and transmitting to and from controller.
 (b) SCL is for controlling the data on sensor interface that is transmitting and receiv-

ing to and from controller.

 3. Working of Shipment beacon: The shipment beacon not only records the sensor
data of the vaccines conditions but also send alerts in real time when an excep-
tion occurs. It also reduces the need of download the data manually via USB
cable at the end of every shipment. It provides the cold chain real-time visibility
for the vaccines which needs to maintain the stringent requirement of the cold
chain temperature range, i.e., 2–8 °C.

In the shipment beacon design, the nrf52832 BLE microcontroller will perform the
role of communication as master and sensors act as either as a slave receiver or
transmitter. The master must generate the Start(S)/Stop(P) condition for the
inter-integrated circuit(I2C) interface and provide the serial clock on SCL pin.
BME280 Sensor will be used to measure temperature, humidity, and pressure of
the containers/boxes in which it will be placed. BME280 is a 8 Pin, I2C/SPI
based sensor IC from Bosch Sensortec. It will be powered up directly via coin
cell battery/USB and kept in low-power mode or shutdown mode as per require-
ment. It will measure the temperature, relative humidity, and pressure of a ship-
ment container and send to BLE module through I2C. The BLE module will
send it in form of packets to a central device like smart phone or the Raspberry
Pi (Fig. E.6).

As shown in Fig. E.7 nrf52832 BLE module will advertise the BLE packet which
contains the payload as mentioned in the Table E.1 which includes the sensor and
the battery information in the advertisement.

Warehouse Tracker

The real-time sensor data sent out by multiple shipment beacons is received by the
warehouse tracker. The warehouse tracker is implemented using Raspberry Pi as
shown in Fig. E.8 the Raspberry Pi after receiving the data from multiple nRF52
boards is sent in real time to the Azure IoT Hub for further processing.

Fig. E.6 Environmental
sensor BME280

Appendix E: Warehouse Inventory Management System

405

Fig. E.7 Working of BLE tag

Table E.1 BLE broadcast data format

Info 0x2F (Temp)

0x04 (Temp)
0x64 (Battery)
0x01 (Light)

0x48 (Humidity)

0x64 (Humidity)

0x03 (Pressure MSB)

0x4A (Pressure LSB)

:
:
:
0x00

Appendix E: Warehouse Inventory Management System

406

Project Implementation

1.1.1 BLE Advertisement and BME280 Sensor Interfacing

Interfacing of the BME280 sensor with controller is done by the Serial Bus Interface.
It is a three step process to get the values from the sensor. The first step is the sensor
initialization. During initialization the driver registers the slave device and basic
initialization is done for the temperature, pressure and for the humidity sensors. In
the second step, slave device, i.e., sensor will read the values of the respective sen-
sors from the registers and will broadcast the sensor readings to the central device,
i.e., Raspberry Pi. The software flow diagram for the master (nrf52832) and slave
interaction (BME280) is shown in Fig. E.9.

The code snippet of the BLE advertisement payload which includes the sensors
information from array index 5 to 12 is shown below:

Fig. E.8 Architecture of
warehouse tracker

Appendix E: Warehouse Inventory Management System

407

BLE Advertisement on Mobile App

As described in the BLE advertisement payload code snippet we can verify the
advertisement payload by connecting the shipment beacon with the NRF connect
open source mobile application which can be easily downloadable from the App
Store or the Play Store depending on the users smartphone. We can connect the
shipment beacon with the NRF Connect mobile app (android or iOS) by following
the steps shown in Fig. E.10.

After connecting with the mobile application the payload of the shipment beacon
will look like as shown in Fig. E.11. The payload includes the temperature, pres-
sure, humidity, and the light sensor readings as marked in Fig. E.11. The payload
advertised by the beacon is in 8.8 Fixed-Point Format (FPF).

Fig. E.9 Software Flow diagram for BLE and Sensor interfacing

Appendix E: Warehouse Inventory Management System

408

Fig. E.10 Shipment Beacon and NRF Connect App interfacing

Fig. E.11 Shipment
Beacon Advertisement on
Mobile APP

The FPF can be converted at the Raspberry Pi side by using the following code:

float mTemp = Measured Temperature;
uint8_t firstByte = (uint8_t) mTemp;
Uint8_t second Byte = (uint8_t) (mTemp x 256);

Appendix E: Warehouse Inventory Management System

409

//! Example:
//! Temperature of 30.81 is sent as 0x1E and 0xCF in
 8.8 Fixed-Point Format

mTemp = 30.81
firstByte = (uint8_t)30.81 = 30 = 0x1E
secondByte = 30.81 * 256 = 7887.36 = (uint8_t) 0
 x1ECF = 0xCF

Raspberry Pi and Microsoft Azure IoT Hub Connection

Implementation of Microsoft Azure IoT Hub was a simple process to setup. A
Microsoft account is required to utilize any Azure services including Azure IoT
Hub. Upon making an account and setting a service subscription, several IoT hub
resource groups were made to accommodate the devices needed to connect to the
IoT server. Each device is provided a private connection string which can be used to
authenticate secure communication to the server. Shared Access Signature tokens
were also generated using the Azure IoT Explorer tool (on Windows) to authenticate
communication between device and server. Additionally the Azure IoT tool included
telemetry to monitor device-to-cloud messages.

Configuration of Raspberry Pi for connection with Azure IoT Hub

• Get the connection string from the Azure IoT Hub page after adding the device
to Azure platform.

• Add the connection string mentioned on the Azure Portal to establish connection
with the Azure platform to the python script.

• Connect the device client (Fig. E.12).

• conn_str = "HostName=5G-IoT-System-For-Emergency-

• Responders.azure-devices.net;DeviceId=

• application_device1;SharedAccessKey=

• x84oYfc8Wm4lL7nfMzNm87X7YmFbC+TtHX4ny+bV8ck="

• device_client = IoTHubDeviceClient.

• create_from_connection_string(conn_str)

• # Connect the device client.

• await device_client.connect()

Appendix E: Warehouse Inventory Management System

410

Real-Time Sensor Data Transfer

The Raspberry Pi collects the data from multiple shipment beacons via the BLE
communication and parses the data to send the temperature, humidity, pressure, and
ambient light parameters to the Azure IoT Hub.

Configuration of Raspberry Pi for Environmental Data Transmission
to Azure Hub

• Get the data from the BLE beacons.
• Use the python script to parse the sensor data.
• Add the connection string mentioned on the Azure Portal to establish connection

with the Azure platform.
• The script periodically captures the data in real time.
• The captured data is transmitted to the Azure IoT Hub for every 2 s.

while count < 45:
 raw_bytes_array = sim_data_raw_data[idx]
 pressure_lsb = raw_bytes_array[12]
 pressure_msb = raw_bytes_array[11]
 curr_pressure = (pressure_msb * 256 +
 pressure_lsb) #Pascal

 humidity_lsb = raw_bytes_array[9]
 humidity_msb = raw_bytes_array[10]
 curr_humidity = ((humidity_msb*256) + (
 humidity_lsb)) #g/kg

 temp_lsb = raw_bytes_array[5]
 temp_msb = raw_bytes_array[6]
 curr_temp = (temp_msb * 256 + temp_lsb)/100

Fig. E.12 Application Device creation on Azure platform

Appendix E: Warehouse Inventory Management System

411

#Celcius

 curr_light = False
 light_msb = raw_bytes_array[8] if light_msb >= 1:
 curr_light = True

 message_properties = {}
message_properties["deviceId"] = "Shipment
 -05"
 message_properties["pressure"] =
curr_pressure
 message_properties["ambientLight"] =
curr_light
 message_properties["temperature"] =
curr_temp
 message_properties["humidity"] =
curr_humidity

 if curr_temp > threshold_temp :
 print ("WARNING: Vaccine shipment temp
 exceeded set threshold!!!")

 message_properties[’Warning’] = "Temp
Exceeded"

 if curr_pressure > threshold_pressure :
 print ("WARNING: Vaccine shipment temp
 exceeded set threshold!!!")
 message_properties[’Warning’] = "
 Pressure Exceeded"

 if curr_humidity > threshold_humidity:
 print ("WARNING: Vaccine shipment temp
 exceeded set threshold!!!")
 message_properties[’Warning’] = "
 Humidity Exceeded"

 msg = Message(json.dumps(message_properties)
)
 msg.message_id = uuid.uuid4()
 msg.content_type = ’application/json’

Appendix E: Warehouse Inventory Management System

412

 await device_client.send_message(msg)
 print("Message successfully sent:" + str(msg
))
 print()

 count = count + 1
 time.sleep(2)

System Integration

The shipment beacons each have unique MAC address and fitted with condition
sensors which collects valuable data for the vaccines. The data is transmitted to the
warehouse trackers which contains the Raspberry Pi. The warehouse tracker
accesses the hot-spot via Internet service. This can be used in transit, as a part of
shipment or in warehouses. The warehouse trackers transmit the real-time data from
the shipment beacon to the azure IoT hub via MQTT protocol. It improves the
inventory forecasting and keeping projects on track by monitoring vaccines in use
and vaccines that are idle sitting in the cold chain environment.

As shown in Fig. E.13, the shipment beacons can be stick on the surface of the
containers or multi-modal simple affix the beacon to the cases and the pallets that
you are shipping and place the portable wire- free warehouse tracker in the shipment
truck. The sensor data is uploaded as frequently as every 5 min to the azure cloud.
So, that user can take the action when it counts to protect your vaccines with real-
time fore-sights and insight about temperature. This project mainly concerns the
temperature excursions and the information about the hot-spot inside the ship-
ment truck.

Fig. E.13 Real-time vaccine monitoring

Appendix E: Warehouse Inventory Management System

413

In the current scenarios, the vaccine shipment for the COVID. It can be used with
great advantages. Typically medicines, including COVID and cancer vaccines are
shipped in a cold chain temperature range with stringent requirement of maintaining
2–8 °C. Any anomaly in the temperature during the cold chain shipment will lead to
spoilage of the product and can adversely affect the patients’ life. Hence, real-time
condition monitoring and the passive monitoring mode are useful for various vac-
cines condition monitoring.

Although active monitoring allows us to track the shipment/condition in real
time it is bound by a dependency on a hot-spot/back-haul device. The passive moni-
toring mode enables device to store data over the duration of the shipment to be
retrieved later directly through the APP. If the warehouse tracker is unable to com-
municate in real-time due to the overseas shipment of vaccines. The condition data
stored in the shipment beacons and automatically transmitted or pulled by the user
by a mobile app. This provides the zero touch data upload feature from the data-
logger at any point in transit or upon the arrival. This guarantees no loss of data over
the shipment which helps make a decision regarding the state of the shipment

(Fig. E.14).

Fig. E.14 Passive vaccine monitoring mode

Appendix E: Warehouse Inventory Management System

414

Testing and Verification

1.1.2 Real-Time Environmental Sensor Testing

The python script parses the temperature, humidity, pressure, and ambient light and
constructs a message before sending it to the Azure IoT Hub. The message is printed
out in the terminal and verifies w.r.t. to the logs received from the BLE beacons. As
shown in Fig. E.15 we are packaging the message along with Device ID for easy
processing at later stage.

Real-Time Azure IoT Hub Integration Testing

The connection is established with the Azure Explorer using the connection string
for the Application device to verify the messages sent to the platform.

Figure E.16 shows the application device connection with the explorer and the
services offered by the explorer.

Fig. E.15 Application Device Terminal data

Fig. E.16 Azure explorer connection and services

Appendix E: Warehouse Inventory Management System

415

The telemetry services offered by the explorer are utilized to visualize the data in
real time as shown in Fig. E.17.

Click the start button highlighted in the mentioned Fig. E.17 to start receiving the
messages. The data in shown in Fig. E.18.

Evaluation Methodology and Results

1.1.3 Real-Time Sensor Evaluation

The sensor data to the Azure IoT Hub is verified by sending data to the Hub for a
long period of time. Periodical verification is done on the explorer to verify the mes-
sages being sent. As shown in Fig. E.19 we have sent more than 2000 messages to
evaluate the real-time data transfer.

Bluetooth Low Energy Range Evaluation Testing

In BLE-based projects range testing is very important. Range testing depends on the
RSSI value of the broadcasting beacons from the device. RSSI stands for Received
Signal Strength Indicator. It is the strength of the beacon’s signal as seen on the
receiving device, e.g., a smartphone. The signal strength depends on distance and
broadcasting power value. At maximum broadcasting power (+4 dBm) the RSSI
ranges from −26 (a few inches) to −100 (40–50 m distance). Figure E.20 shows the
graph of distance vs. RSSI for one shipment beacon. The data for the range testing
is plotted in Table E.2 which shows the two RSSI readings at the same distance to
make sure the consistency of the results.

Fig. E.17 Telemetry connection

Appendix E: Warehouse Inventory Management System

416

Fig. E.18 Real-time data
transfer to Azure IoT

However, there is no standard application available for testing the BLE range.
For testing range in meters, we have connected the BLE beacon with the NRF appli-
cation and they started walking away from the beacon until it lost the connection.
Apart from that we have done the different casings testing, by keeping the 2 BLE
devices, i.e., beacon with the BLE-based speakers at 2 m apart, and then checked the
RSSI values in the NRF application.

Summary, Conclusions, and Recommendations

The proposed Warehouse Inventory Management presented several implementa-
tions toward improving the efficiency of the communication networks currently
employed in warehouse management. The key implementations that the system

Appendix E: Warehouse Inventory Management System

417

introduces are device-to-cloud communication, real-time monitoring of environ-
mental (temperature, humidity, light, pressure) sensors and remote management of
application device is done by Azure IoT platform. All data from each IoT shipment
beacon was simultaneously sent to the Azure IoT Hub in real time. All features were
successfully implemented, tested, and evaluated by recording numerous trials of
operating each device individually and as a complete integrated system. These fea-
tures would not only improve timely communication between the shipment beacon
and warehouse tracker in real time for better inventory management, but it would
also reduce the manual effort required in maintaining the inventory and tracking the
lost package.

In future live-video streaming can be implemented on the Application device for
better real-time monitoring. BLE beacons have shorter connectivity range, one can
look out for long-connectivity network technology.

Fig. E.19 Sending data to the Azure IoT Hub for a long time

Appendix E: Warehouse Inventory Management System

418

References

 1. L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward 5G
Wireless Systems,” in IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020.

 2. Whitmore, A., Agarwal, A. Da Xu, L. The Internet of Things—A survey of topics and trends.
Inf Syst Front 17, 261–274 (2015). https://doi.org/10.1007/s10796- 014- 9489- 2.

Table E.2 RSSI Readings

Distance RSSI (BLE)

0 m −35
0 m −38
2 m −55
2 m −64
3.2 m −55
3.2 m −56
8 m −64
8 m −66
12 m −81
12 m −74
17 m −81
17 m −74
23 m −76
23 m −78
32 m −75
32 m −79
40 m −92
40 m −92

Distance vs RSSI

Series1

0
m

Dist
an

ce
0

m
2

m
2

m
3.

2
m

3.
2

m
8

m
8

m
12

 m
12

 m
17

 m
17

 m
23

 m
23

 m
32

 m
32

 m
32

 m
40

 m
40

 m

20

0

-20

-40

-60

-80

-100

Fig. E.20 BLE range evaluation testing

Appendix E: Warehouse Inventory Management System

https://doi.org/10.1007/s10796-014-9489-2

419

 3. Grant, Svetlana (September 1, 2016). “3GPP Low Power Wide Area Technologies - GSMA
White Paper” (PDF). gsma.com. GSMA. p. 49. Retrieved October 17, 2016.

 4. J. M. Khurpade, D. Rao and P. D. Sanghavi, “A Survey on IoT and 5G Network,” 2018
International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, 2018,
pp. 1-3.

 5. F. Khan, Z. Pi, and S. Rajagopal, “Millimeter-wave mobile broadband with large scale spa-
tial processing for 5G mobile communication,” inProc. 50th Annu. Allerton Conf. Commun.
Control Comput. (Allerton), 2012, pp. 1517–1523.

 6. H. S. Ma, E. Zhang, S. Li, Z. Lv, and J. Hu, “A V2X Design for 5G Network Based on
Requirements of Autonomous Driving,” SAE Technical Paper Series, Sep. 2016.

 7. E. K. Markakis et al., “Efficient Next Generation Emergency Communications over Multi-
Access Edge Computing,” in IEEE Communications Magazine, vol. 55, no. 11, pp. 92-97,
Nov. 2017.

 8. Natallia Sakovich. “The Importance of Data Collection in Healthcare,” Sam Solutions, April 9,
2019. [Online].

 9. S. Salkic, B.C. Ustundag, T. Uzunovic, and E. Golubovic, “Edge Computing Framework
for Wearable Sensor-Based Human Activity Recognition,” Lecture Notes in Networks and
Systems, pp. 376–387, Jul. 2019.

 10. G. Manogaran, P. Shakeel, H. Fouad, Y. Nam, S. Baskar, N. Chilamkurti, and R. Sundarasekar,
“Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning
Network System for Multi Access Physical Monitoring System,” Sensors, vol. 19, no. 13,
p. 3030, Jul. 2019.

 11. M.M. Shurman and M.K. Aljarah, “Collaborative execution of distributed mobile and IoT
applications running at the edge,” 2017 International Conference on Electrical and Computing
Technologies and Applications (ICECTA), Nov. 2017.

Appendix E: Warehouse Inventory Management System

421© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

Appendix F: IoT Fumigation Robot

Abstract The goal of this project was to build a robot capable of carrying a fumi-
gation apparatus and dispensing its chemicals, an Android application to control the
robot’s movement and dispensation of the fumigation chemicals, and a mock fumi-
gation apparatus to imitate a real fumigation apparatus. The motivation for this proj-
ect was to improve the safety of fumigation workers by building a robot to perform
this task. This allows fumigation workers to perform their job at a safe distance by
controlling the movement of the robot and dispensation of the fumigation chemicals
via an Android application, while the robot carries the fumigation apparatus. The
overall goal was accomplished successfully, resulting in a mock fumigation appara-
tus and a robot chassis capable of carrying a fumigation apparatus and dispensing
its chemicals with the robot’s movement and chemical dispensation capability con-
trolled via an Android application.

Keywords IoT, Fumigation, Raspberry Pi, Robot

Introduction: Written by Nicholas K

The purpose of this project was to build a robot capable of carrying a fumigation
apparatus and dispensing its chemicals via an Android application in order to reduce
the exposure of fumigation workers to harsh chemicals. Additionally, a mock fumi-
gation apparatus was built in order to emulate the functionality of a real fumigation

Under the Supervision of Professor Ammar Rayes
Jesus De Haro and Nicholas Kaiser

J. De Haro · N. Kaiser
Computer Engineering Department, College of Engineering, San Jose State University,
San Jose, CA, USA
e-mail: jesus.deharodereza@sjsu.edu; nicholas.kaiser@sjsu.edu

https://doi.org/10.1007/978-3-030-90158-5#DOI
mailto:jesus.deharodereza@sjsu.edu
mailto:nicholas.kaiser@sjsu.edu

422

apparatus, which is a costly piece of equipment that we could not obtain for this
project (Fig. F.1).

Fumigation is a method of pest control that completely fills an area with gaseous
pesticides to suffocate or poison the pests within [1]. The pesticides are also
extremely harmful to the human workers who are exposed to them during the dis-
pensation process [2]. This project aims to improve the health and safety of these
fumigation workers while still allowing them to perform fumigation services.

The first technical goal of this project was to interface an L298n motor driver, a
Raspberry Pi 3B+, a servo motor, and two 12 V DC motors, and to actuate the
motors by issuing commands from an Android application connected to the
Raspberry Pi over a Wi-Fi interface. This technical goal was accomplished by com-
pleting several objectives. The first objective was to design and implement the inter-
face between all electrical components in order to actuate the motors. The second
objective was to design and implement an Android application capable of sending
movement direction commands to control the DC motors, and rotation direction
commands to control the servo motors. The third objective was to establish com-
munication between the Android application and Raspberry Pi in order to actuate
the motors using the Android application.

The second technical goal of this project was to interface a 5 V 2 Channel relay,
a 12 V submersible water pump, and a Raspberry Pi 3B+ in order to be able to pump
water by turning the water pump on and off by issuing commands from an Android
application connected to the Raspberry Pi over a Wi-Fi interface. This technical
goal was accomplished by completing the following objective. The fourth objective
was to design and implement the interface between all electrical components in
order to turn the water pump on and off. The interface between the Raspberry Pi and
Android app will already be set up in the previous technical goal and so the water
pump circuitry can simply be added to the existing system.

The functional goal of this project was to design a robot chassis capable of car-
rying a fumigation apparatus and pulling or releasing its trigger in order to control
the dispensation of fumigation chemicals. This functional goal was accomplished

Fig. F.1 IoT fumigation
robot final result

Appendix F: IoT Fumigation Robot

423

by completing several objectives. The fifth objective was to design and build a chas-
sis to carry a fumigation apparatus, and hold the servo motor in place so that it can
pull or release the trigger on the fumigation apparatus. The sixth objective was to
integrate the circuitry onto the chassis in order to drive the wheels of the robot,
therefore controlling the robot’s movement direction.

Methodology: Written by Nicholas K

This section discusses the objectives, challenges, problem formulation, and design
of the entire project in more detail.

Objectives

• The first objective was to design and implement the interface between the L298n
motor driver, two 12 V DC motors, servo motor, and Raspberry Pi in order to
actuate all motors in a specific way. The two DC motors were required to do the
following; both rotate clockwise, both rotate counter-clockwise, and both rotate
in opposite directions of each other. The servo motor was required to rotate
clockwise 180°, and rotate counter-clockwise 180°.

• The second objective was to design and implement an Android application with
buttons in order to move the chassis left, right, forward, and reverse, and buttons
in order to turn the servo motor 180° clockwise or counter-clockwise.

• The third objective was to establish communication between the Android appli-
cation and Raspberry Pi so that the DC and servo motors could be actuated based
on the button pressed in the Android application.

• The fourth objective was to design and implement the interface between the 12 V
submersible water pump, 5 V 2 channel relay, and Raspberry Pi in order to turn
the water pump on and off at the touch of a button on our Android application.

• The fifth objective was to design and build a sturdy but lightweight chassis that
was capable of carrying a fumigation apparatus, and pulling or releasing its trig-
ger in order to dispense the chemicals stored inside the fumigation apparatus.

• The sixth objective was to integrate the Raspberry Pi, motor driver, and motors
onto the chassis in order to drive the robot left, right, forward, reverse, and to pull
or release the fumigation apparatus’s trigger with the servo motor mounted onto
the chassis.

Challenges

• The first challenge encountered was finding the right size motors that would sup-
port our weight requirements. Typical 3.3 V or 5 V DC hobby motors were not
capable of supporting the weight of our relatively heavy wooden chassis, let

Appendix F: IoT Fumigation Robot

424

alone a fumigation apparatus in addition to the weight of the chassis. Larger
motors have greater power requirements and so our options were limited since
the motors had to be able to run on a portable battery due to the nature of our
project. Fortunately, we were able to find some lower RPM rated 12 V DC motors
that would fit our power requirement limitations, but could still support the
weight of our chassis and fumigation apparatus.

• The second challenge encountered was finding a suitable, but inexpensive battery
and battery charger for our two DC motors. Due to the power requirements of our
motors, a power source that could supply enough current for a reasonable amount
of time was on the expensive side. We ended up sacrificing battery life for afford-
ability since our project was a prototype and a smaller mAh power supply would
get the job done for demonstration purposes. We ended up going with a smaller
mAh battery and battery charger which helped keep the cost of this project down.

• The third challenge encountered was mounting the two DC motors onto the
wheels. The types of wheels that small DC motors (12 V or less) are designed to
“plug into” were not suitable for our project. We needed taller wheels to suspend
our chassis a sufficient height off of the ground, and we needed stronger wheels
that could support the weight of a fumigation apparatus in addition to the chassis
weight. Due to these requirements, we had to use 7-in. plastic wheels which can-
not be directly mounted onto the shaft of our DC motors. We had to design our
own hub that would attach to the DC motor shaft on the one end, and attach to
the wheel on the other end. The wheels have thick bits of plastic placed in incon-
venient places, which made it hard to center the hub onto the wheel.

Problem Formulation and Design

The design of the entire system consists of a Raspberry Pi 3B+ and its power supply,
L298n motor driver, a servo motor, a 5 V 2 channel relay, two 12 V DC motors, and
a LiPo battery to power the DC motors and 12 V submersible water pump, all
mounted inside a wooden box-shaped chassis and a mock fumigation apparatus
made out of PVC pipe, plastic tubing, and cardboard. Additionally, an Android
phone is connected to the Raspberry Pi over a Wi-Fi interface. The overall system
design was broken down into several smaller modules that were tested individually
in order to ensure correct functionality upon integration into the full system.

The first module is the Raspberry Pi—Android application module, which
requires the Raspberry Pi to produce the specific outputs shown in Table F.1 based
on the commands it receives from the Android application over a Wi-Fi interface.

The second module is the Raspberry Pi—motor driver—DC motors module,
which requires both DC motors to produce the outputs shown in Table F.2 based on
the input that the motor driver receives from the Raspberry Pi, and requires the
servo motor to produce the outputs also shown in Table F.2 based on the input it
receives from the Raspberry Pi over a PWM interface.

The full system design was created by merging the two separate modules. The
system design requires the motors to produce the outputs show in Table F.3 based
on the commands that the Raspberry Pi receives from the Android application over
the Wi-Fi interface.

Appendix F: IoT Fumigation Robot

425

Table F.1 Raspberry Pi output with Android App input

Android App Button pressed Raspberry Pi output

Left Rotate chassis left
Right Rotate chassis right
Forward Move chassis forward straight
Reverse Move chassis reverse straight
Stop Halt all movement
Open Pull fumigation apparatus trigger and turn water pump ON
Close Release fumigation apparatus trigger and turn water pump OFF

Table F.2 Motor output with Raspberry Pi input

Raspberry Pi command Motor output

Rotate chassis left L DC motor: turn clockwise
R DC motor: turn clockwise

Rotate chassis right L DC motor: turn counter-clockwise
R DC motor: turn counter-clockwise

Move chassis forward straight L DC motor: turn counter-clockwise
R DC motor: turn clockwise

Move chassis reverse straight L DC motor: turn clockwise
R DC motor: turn counter-clockwise

Halt all movement L DC motor: don’t turn
R DC motor: don’t turn

Pull fumigation apparatus trigger Servo motor: rotate 180° clockwise
Release fumigation apparatus trigger Servo motor: rotate 180° counter-clockwise

Table F.3 Motor output with Android App input

Android App Button pressed Motor output

Left L DC motor: turn clockwise
R DC motor: turn clockwise

Right L DC motor: turn counter-clockwise
R DC motor: turn counter-clockwise

Forward L DC motor: turn counter-clockwise
R DC motor: turn clockwise

Reverse L DC motor: turn clockwise
R DC motor: turn counter-clockwise

Stop L DC motor: don’t turn
R DC motor: don’t turn

Open Servo motor: rotate 180° clockwise
Water pump: turn ON

Close Servo motor: rotate 180° counter-clockwise
Water pump: turn OFF

Appendix F: IoT Fumigation Robot

426

Implementation

This section covers the hardware and software design of the entire project in
more detail.

Chassis Design: Written by Nicholas K

The fumigation robot’s chassis consists of a larger wooden box and a smaller
wooden box stacked on top of each other. The smaller wooden box is where the
robot’s circuitry is placed, and the larger wooden box is where the fumigation appa-
ratus is placed. A cutout was made in the bottom of the larger wooden box so that
the smaller wooden box could be nailed to the bottom of the cutout in order to
secure it in place. A swivel wheel was attached to the rear of the chassis in order to
prevent the back end of the larger wooden box from dragging on the floor (Figs. F.2,
F.3, and F.4).

In order to mount the DC motors on the chassis, two mounting brackets were
screwed onto the bottom of the larger wooden box. The DC motors were fastened to
the mounting brackets by screwing them into the brackets using the screw holes
present on the faceplate of the DC motors (Fig. F.5).

In order to mount the wheels onto the DC motor shafts, a mounting hub was
fastened to the one side of a bottle cap, and a wheel was fastened to the other side
of the bottle cap. The drive shafts of each DC motor were inserted into a mounting
hub, and then screws were used in order to keep the motor shafts from slipping out
of the mounting hubs (Fig. F.6).

Mock Fumigation Apparatus Design: Written by Nicholas K

The mock fumigation apparatus consists of a cardboard box with cutouts to insert a
PVC pipe, and a cutout for the water pump’s power wires. The PVC pipe is secured
to the cardboard box by screwing long screws into the pipe onto each side of the
cardboard box in order to prevent the pipe from slipping out. The PVC pipe also has
a hole drilled into it about half way in order to route the tubing that is connected to
the water pump through the pipe (Figs. F.7 and F.8).

A plastic container was placed inside the cardboard box in order to hold the
pump and the water that the pump is submerged in. The plastic container has a hole
drilled into the center of its lid in order to route the tubing through the PVC pipe,
and a hole drilled in the corner of its lid in order to route the water pump’s power
wires through the container.

The servo motor was adhered to the front of the mock fumigation apparatus right
below the PVC pipe. On a real fumigation apparatus, this is where the trigger would
be located. Our mock fumigation apparatus does not have a trigger and so the servo
motor was mounted here for proof-of-concept purposes (Fig. F.9).

Appendix F: IoT Fumigation Robot

427

Hardware Design: Written by Jesus D

The processor used in the robot is a Raspberry Pi 3B. This hardware was chosen for
its capabilities and the quantity of resources and support that can be found on the
Internet. This board contains more GPIO pins than required to complete this project,

Fig. F.2 Chassis
front view

Fig. F.3 Chassis top view

Appendix F: IoT Fumigation Robot

428

Fig. F.4 Chassis
bottom view

Fig. F.5 Chassis with
wheels bottom view

Appendix F: IoT Fumigation Robot

429

with pulse-width modulation (PWM), and has Wi-Fi capabilities for remote com-
munication for the IoT project. Of the 27 accessible GPIO pins, only 7 are used to
control the other components.

One PWM pin goes to the servo motor to control the direction and speed of rota-
tion, which could be considered the amount of pressure applied to the fumigation
apparatus, controlling the quantity of spray that is expelled. The other four pins are
connected to the motor driver’s four “In” pins. Pins In1 and In2 are for controlling
DC motor 1 with the driver’s Out1A and B output pins. Pins In3 and In4 control DC
motor 2 with pins Out2A and B.

For this architecture, two separate power sources are required, a 5-V power
source to power the Raspberry Pi, servo motor, and the relay-board, and a 12-V
power supply for the motor driver, the two DC motors, and the water pump. The
smaller supply’s voltage would not be sufficient to drive the motors and water pump,

Fig. F.6 Wheel mounted
onto DC motor

Fig. F.7 Mock fumigation
apparatus side view

Appendix F: IoT Fumigation Robot

430

hence a larger 12-V supply was required. The 12 V are also supplied at the normally
open pin of relay 1 (NO1), and ground is placed at the normally closed pin (NC2)
of relay 2. Both common pins of the relay board, COM1 and COM2, are connected
to the pump’s power and ground wires, respectively. A diagram of the described
architecture is shown in Fig. F.10.

Fig. F.8 Mock fumigation
apparatus back view

Fig. F.9 Mock fumigation
apparatus inside view

Appendix F: IoT Fumigation Robot

431

With this hardware design, we are able to control the robot by moving forward,
in reverse, or rotating the body in clockwise or counterclockwise fashion. The servo
motor is also controlled by making it rotate clockwise and counterclockwise.
Finally, the water pump used to dispense the “pesticide” is activated by setting both
relays in the closed configuration.

Software Design: Written by Jesus D

Software flowchart for this project is shown in Fig. F.11. The robot’s programming was
done in Python, and is only a few steps. The code for this project was developed refer-
encing RootSaid [3] and Instructables Circuits [4]. When the code is executed, it starts
by initializing the socket for communicating over a Wi-Fi network, then five GPIO pins
(pins 11, 12, 13, 15, 33, 35, and 37) are initialized as outputs. PWM is enabled on pin
12 for use in controlling the rotational speed and direction of the servo motor.

After initializing Wi-Fi communication and GPIO pins, the Raspberry Pi now
waits for input from the user that is sending commands via the Android app
“RootSaid—WiFi Command Center,” which can be downloaded from the Google
Store. The app itself contains three tabs. In this project we only use two of them.
One is for setting up the IP address and port for communication between the app and
Raspberry Pi. The second tab is used for sending commands. The third tab is for
powering on/off smart appliances, which is not relevant to this project. Once the
user has entered the IP address and port number, the link symbol to the left must be
pressed for the app to know where it will be sending data. With this app, we send the
Raspberry Pi seven different commands: “forward,” “backward,” “left,” “right,”
“stop,” “action 1,” or “action2.” The two tabs that are used in RootSaid app are
shown in Fig. F.12.

Fig. F.10 Hardware architecture of the fumigation robot

Appendix F: IoT Fumigation Robot

432

Fig. F.11 Software
flowchart

Fig. F.12 RootSaid’s Set-Up tab (left) and Robot Controller tab (right)

Appendix F: IoT Fumigation Robot

433

To be able to execute the code, we needed to import Python libraries into our
code: RPi.GPIO and Socket. RPi.GPIO is a standard library used in Raspberry Pi to
set up the GPIO pins and its peripherals. The pins are configured as an output and
they are controlled with APIs. With this library, the PWM output is also controlled.
With the socket library, we established communication over Wi-Fi for the Raspberry
Pi to receive commands from the Android application. The source code can be
viewed in Appendix A.

Functions were created to make the code easier to read with what the pin output
results in. For example, if the input to In2 is high and In1 is low, this will result in
the left motor to push the robot forward. Therefore, functions were named left_
motor_forward(), right_motor_forward(), left_motor_reverse(), right_motor_
reverse(), spray_on() and spray_off(), and motors_stop() to make the code easier
to read.

Testing and Verification: Written by Jesus D

The first test was establishing and verifying communication between the mobile
phone via RootSaid—Wi-Fi Command center app and the Raspberry Pi over the
Wi-Fi network. Connecting the Pi to a monitor and using the “ipconfig” command,
we can acquire the IP address to enter in the mobile app’s “Setup” tab. Running the
same code shown in step 7 of RootSaid [3], print statements for each command can
be used to verify Wi-Fi communication between the app and robot, which will be
essential for the following tests.

Next, to test the DC motors, the motor driver (L298N), 12-V battery, Wi-Fi net-
work, RootSaid android app, and the Raspberry Pi were required. Making the con-
nections from the controller to the motor driver and DC motors shown in Fig. F.6,
we used the code from the previous test-verification. At each directional command,
the behavior was observed for comparison with the described behavior in Table F.3
for verification.

Testing the water pump required the relays, 12-V battery, Raspberry Pi, water for
the pump, and code allowing control of the relays to better understand the configu-
ration needed to activate the pump. To test the parts, they were connected as shown
in Fig. F.6. The pump was placed in a container with enough water to be above the
impeller. Once everything is connected and enough water is supplied, relays 1 and
2 are opened and closed to find the combination that activates the pump. The testing
python script, shown in Appendix B, accepts the relay number to be controlled and
configuration to be set. After sending the configuration command, the current state
of each relay would be displayed to note each relay’s state and the water pump’s
action, as shown in Fig. F.13. With this, the output values of the pins required to set
each relay as closed are noted and properly implemented in the fumigation
robot’s code.

Appendix F: IoT Fumigation Robot

434

Conclusion: Written by Nicholas K

The first technical goal of this project was to interface an L298n motor driver, a
Raspberry Pi 3B+, a servo motor, and two 12 V DC motors, and to actuate the
motors by issuing commands from an Android application connected to the
Raspberry Pi over a Wi-Fi interface. The second technical goal of this project was
to interface a 12 V submersible water pump, a Raspberry Pi 3B+, and a 5 V 2 chan-
nel relay in order to turn the water pump on and off by issuing commands from an
Android application. The purpose of this project was to integrate the aforemen-
tioned circuitry onto a robot chassis in order to build a robot capable of carrying a
fumigation apparatus and dispensing its chemicals via a user operated Android
application in order to reduce the exposure of fumigation workers to harsh chemi-
cals. The primary objectives of this project were to first design and implement the
interface between all electrical components in order to actuate the motors. The sec-
ond objective was to design and implement an Android application capable of send-
ing movement direction commands to control the DC motors, and rotation direction
commands to control the servo motors. The third objective was to establish com-
munication between the Android application and Raspberry Pi in order to actuate
the motors using the Android application. The fourth objective was to design and
implement the interface between all electrical components in order to turn the water
pump on and off. The fifth objective was to design and build a chassis to carry a
fumigation apparatus, and hold the servo motor in place so that it can pull or release
the trigger on the fumigation apparatus. The sixth and final objective was to inte-
grate the circuitry onto the chassis in order to drive the wheels of the robot, therefore

Fig. F.13 Relay testing script output

Appendix F: IoT Fumigation Robot

435

controlling the robot’s movement direction. The overall goals and individual objec-
tives were all completed successfully, rendering an IoT fumigation robot that
improves the health and safety of fumigation workers while still allowing them to
perform fumigation services. Lessons learned throughout the entire duration of this
project consisted of gaining a better understanding of the Wi-Fi IoT protocol,
becoming more familiar with the Raspberry Pi embedded hardware platform as well
as the Python programming language, and learning the basics of DC and servo
motors. Further improvements can be made to this project, such as designing a bet-
ter hub so that the wheels are mounted to the DC motors more securely, and design-
ing and building a larger chassis such that the size and weight of a full-size
fumigation apparatus can be supported.

Acknowledgment We would like to thank San Jose State University for providing
lots of space for us to conduct drive tests with our robot.

References

 1. Bessin, R. B. (2018, November 30). Fumigation Safety. Kentucky Pesticide
Safety Education. https://www.uky.edu/Ag/Entomology/PSEP/fumsafety.html

 2. Department of Consumer Affairs Structural Pest Control Board. (2019). Ques-
tions & Answers About Fumigation. https://www.pestboard.ca.gov/forms/
fumigate.pdf

 3. “WiFi Controlled Robot using Raspberry Pi – Android Controlled ...”. [Online].
Available: https://rootsaid.com/robot- control- over- wifi/. [Accessed:
02-May-2021].

 4. Williamwaw and Instructables, “IOT Water Pistol/plant Waterer,” Instructables,
04-Jun-2019. [Online]. Available: https://www.instructables.com/OK- Google-
Water- PistolPlant- Waterer/. [Accessed: 23-Apr-2021].

Appendix A: Source Code

import RPi.GPIO as GPIO
import socket
import time

#UDP_IP = "192.168.0.14"
UDP_IP = "192.168.43.40"
UDP_PORT = 5050

pin_IN1 = 33
pin_IN2 = 11
pin_IN3 = 13
pin_IN4 = 15
pin_SERVO = 12

Appendix F: IoT Fumigation Robot

https://www.uky.edu/Ag/Entomology/PSEP/fumsafety.html
https://www.pestboard.ca.gov/forms/fumigate.pdf
https://www.pestboard.ca.gov/forms/fumigate.pdf
https://rootsaid.com/robot-control-over-wifi/
https://www.instructables.com/OK-Google-Water-PistolPlant-Waterer/
https://www.instructables.com/OK-Google-Water-PistolPlant-Waterer/

436

relay1 = 35
relay2 = 37

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin_IN1, GPIO.OUT) # Pins 33 and 11 for left motor (IN1
and IN2, respectively)
GPIO.setup(pin_IN2, GPIO.OUT)
GPIO.setup(pin_IN3, GPIO.OUT) # Pins 13 and 15 for right motor (IN3
and IN4, respectively)
GPIO.setup(pin_IN4, GPIO.OUT)

GPIO.setup(relay1, GPIO.OUT)
GPIO.setup(relay2, GPIO.OUT)

GPIO.output(relay1, True)
GPIO.output(relay2, True)

def left_motor_forward():
 GPIO.output(pin_IN2, True)
 GPIO.output(pin_IN1, False)

def left_motor_reverse():
 GPIO.output(pin_IN2, False)
 GPIO.output(pin_IN1, True)

def right_motor_forward():
 GPIO.output(pin_IN4, True)
 GPIO.output(pin_IN3, False)

def right_motor_reverse():
 GPIO.output(pin_IN4, False)
 GPIO.output(pin_IN3, True)

def motors_stop():
 GPIO.output(pin_IN1, False)
 GPIO.output(pin_IN2, False)
 GPIO.output(pin_IN3, False)
 GPIO.output(pin_IN4, False)

def servo_stop():
 global servo
 servo.ChangeDutyCycle(0)

def spray_on():

Appendix F: IoT Fumigation Robot

437

 GPIO.output(relay2, True)
 GPIO.output(relay1, False)

def spray_off():
 GPIO.output(relay2, False)
 GPIO.output(relay1, True)

def main():
 global UDP_IP
 global UDP_PORT

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 sock.bind((UDP_IP, UDP_PORT))

 GPIO.setup(pin_SERVO, GPIO.OUT)
 servo = GPIO.PWM(pin_SERVO, 50)
 servo.start(0)

 t = 0.15

 while True:
 data, addr = sock.recvfrom(1024)
 print("data: " + str(data))
 print("addr: " + str(addr))
 raw = data

 if raw == "forward":
 left_motor_forward()
 right_motor_forward()
 print("Robot Move Forward")
 elif raw == "stop":
 motors_stop()
 print("Robot Stop")
 elif raw == "backward":
 left_motor_reverse()
 right_motor_reverse()
 print("Robot Move Backward")
 elif raw == "left":
 left_motor_reverse()
 right_motor_forward()
 print("Robot Move Left")
 elif raw == "right":
 left_motor_forward()
 right_motor_reverse()
 print("Robot Move Right")

Appendix F: IoT Fumigation Robot

438

 elif raw == "action 1":
 spray_on()
 servo.ChangeDutyCycle(2.5)
 time.sleep(t)
 servo.ChangeDutyCycle(0)
 print("Robot Action 1: Servo Open")
 elif raw == "action2":
 spray_off()
 servo.ChangeDutyCycle(12.5)
 time.sleep(t)
 servo.ChangeDutyCycle(0)
 print("Robot Action 2: Servo Close")
 else:
 spray_off()
 motors_stop()
 print("STOP")
 print("")

if __name__ == "__main__":
 try:
 print("Starting controller.py\n")
 main()
 except KeyboardInterrupt:
 print("Exiting controller.py")

Appendix B: Relay Test Code

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)

relay1 = 35
relay2 = 37

GPIO.setup(relay1, GPIO.OUT)
GPIO.setup(relay2, GPIO.OUT)

r1_state = "closed"
r2_state = "open"

Appendix F: IoT Fumigation Robot

439

print("Relay 1 state: " + r1_state)
print("Relay 2 state: " + r2_state)

while(True):
 relay_num = input("Enter relay: ")
 relay_cmd = raw_input("Enter command: ")

 if relay_num == 1:
 if relay_cmd == "closed":
 GPIO.output(relay1, False)
 r1_state = "closed"
 elif relay_cmd == "open":
 GPIO.output(relay1, True)
 r1_state = "open"
 else:
 print("Invalid command: " + relay_cmd)
 elif relay_num == 2:
 if relay_cmd == "open":
 GPIO.output(relay2, False)
 r2_state = "open"
 elif relay_cmd == "closed":
 GPIO.output(relay2, True)
 r2_state = "closed"
 else:
 print("Invalid command: " + relay_cmd)
 else:
 print("Not a relay: " + str(relay_num))

 print("\nRelay 1 state: " + r1_state)
 print("Relay 2 state: " + r2_state)

Appendix F: IoT Fumigation Robot

441© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Rayes, S. Salam, Internet of Things from Hype to Reality,
https://doi.org/10.1007/978-3-030-90158-5

A
Acidic Flint River water, 68
Actuators

control IoT devices, 79
definition, 78
electric actuators, 78
hydraulic actuators, 78
manual actuator, 79
mechanical linear actuators, 78
pneumatic actuators, 79
sensor-collected and analyzed data, 78

Advanced Message Queuing Protocol
(AMQP), 138, 140, 318

Advanced Research Projects Agency Network
(ARPANET), 27

Air pollution sensors, 69
AllSeen Alliance, 316
Amazon, 13
Amazon Web Services (AWS), 14
Ambient noise sensors, 69
Analytics 1.0, 17–19
Analytics 2.0, 18, 19
Analytics 3.0, 18, 19
Analytics 4.0, 18
Anything as a Service, 263
API manager, 203
Application entities, 130, 182
Application interoperability, 92, 93

semantic interoperability, 93, 94
Application layer standards, 305
Application programmatic interfaces

(APIs), 92, 93
Application protocols layer

application entities, 130

communication patterns
blocking vs. non-blocking, 132–133
request/response paradigm, 131–132

data serialization formats, 130, 131
landscape, 130
QoS policies, 133 (see also QoS policies)
RESTful constraints, 135–136

Application service nodes (ASNs), 103, 146
Application services layer

abstraction layer, 141
data encoding, interpretation, and

modeling, 149
to device coupling, 141
ETSI M2M, 142–144
oneM2M, 144–148
search and discovery capabilities, 148

Arduino, 329
Authentication and Authorization for

Constrained Environments (ACE)
working group, 312

Autonomous system (AS), 55, 61
Auxiliary port/interface, 43
Availability, 215

B
BeagleBoard, 330
BGP’s routing table, 57
Big data, 171
Billing and accounting management, 202
Bitcoin, 283

and blockchain, 278, 279
hashing, 282

Bitcoin transaction, 283, 284

Index

https://doi.org/10.1007/978-3-030-90158-5#DOI

442

Blockchain
advantages and disadvantages, 291
basic architecture, 281, 282
benefits, 285
and bitcoin, 280
categories, 279
characteristics, 280
components, block’s header, 281
decentralized architecture, 289
definition, 280
evolution, 279
permissioned, permissionless and

consortium, 290
transparency and trust, 289

Blockchain 1.0, 279
Blockchain 2.0, 279
Blockchain 3.0, 280
Blockchain applications in IoT

automotive and transportation, 296
decentralized DNS, 298
energy management, 292
healthcare, 293–295
identity, authentication and access

management, 297–298
insurance, 298
legal contracts, 298
M2M transactions, 292
retail, 295, 296
sharing economy, 298
smart city, 297
supply chain management, 293, 294

Blockchain security in IoT
IoT security and blockchain

advantages, 300–301
malicious activity and cryptographic

principles, 300
trust between nodes, 299

Blockchain technology, 277
Bluetooth LE, 87
Bob’s bitcoin, 283
Border Gateway Protocol (BGP), 55, 57
Botnets, 236, 237
Bring your own device (BYOD), 6
Byzantine Generals Problem, 285, 286

C
Capacitive sensors, 69
Cardiac devices, 238
Carrier Sense Multiple Access/Collision

Detection (CSMA/CD)
method, 44–45

Carrousel attack, 232–234
Casino’s network, 237

Centralized architectures, 289
Centralized intrusion detection system, 235
Centralized models, 277
Chemical injection stations, 251
Closed-source, 323–325, 327
Cloud 1.0, 20
Cloud 2.0, 20
Cloud computing, 19, 20, 153, 219

containers and VMs, 159
and Fog, 154, 156, 157
infrastructure, 155
IoT applications, 153
service categories, 20
virtualization technologies, 153

Cloud data centers, 153
Cloud domain, 218

cloud data center, 218
IoT applications, 218
to security attacks

hidden-channel attacks, 219–222
insider attacks, 226
theft-of-service attack, 224–225
VM escape attack, 225–226
VM migration attacks, 222–224

CoAP (Constrained Application Protocol), 186
Commercially available IoT

platforms, 204–207
Communication efficiency, 130
Communication Manager, 188
Communication service providers

(CSPs), 141
Computer network, 28
Configuration management, 191, 192
Connected devices, 86, 87, 94, 238
Connected ecosystem models, 271
Connected ecosystems, 266

ecosystem models, 268
enterprise, 268
IoT services terminologies, 267
partner, 268
product, device or machine, 268
software development, 266
suppliers, 267, 268
terminologies, 268

Connected home, 250
Connected rail solutions, 257
Consensus algorithm, 281
Consensus algorithms in IoT, 288

Byzantine Generals Problem, 285, 286
PoA algorithm, 287
PoET algorithm, 287
PoS algorithm, 286, 287
PoW algorithm, 286

Console interface, 43

Index

443

Constrained Application Protocol (CoAP),
137, 140, 143, 150

Constrained devices
Class 0 devices, 84
Class 1 devices, 85
Class 2 devices, 85
classes, 84
dimensions, 84
energy consumption, 85
power/energy resource constraints, 85

Constrained RESTful Environments (CORE)
working group, 310, 311

Containers, 20, 159, 160, 174
Contiki, 330
Contour tracking, 77
Control plane protocols, 87
Core MUD Process, 240
CPU (Central Processing Unit), 41
Crowdsourcing effect, 324
Cryptocurrencies, 277–279, 281
Cryptographic hash functions, 281
Cryptographic keys, 281
Cryptographic principles, 291
Cryptography

blockchain, 288
ECDSA, 288
hash functions, 288
SHA-256, 288

Customer engagement tools, 257
Cybersecurity threats, 215

D
Data aggregation, 188
Data filtering, 70
Data in motion, 171
Data interoperability, 294
Data link layer, 37
Data management

data in motion, 171
in Fog, 172
search technologies and engines, 172–173

Data parsing, 189
Data privacy, 270
Data search, 173

in Fog, 173
Data serialization formats, 130, 131
Data storage, 189

and mediation, 188, 189
DB tables, 57
Decapsulation, 39, 58
Decentralization, 299
Decentralization in IoT, 289
Decentralized application (DAPP), 281

Decentralized architecture, 289
Demand mission-critical networking, 88
Denial of service (DoS), 228
Denial of sleep attack, 232, 234
Destination-oriented directed acyclic graph

(DODAG), 126, 127
Determinism

applications man-date packet loss
ratios, 89

custom control and automation
networks, 89

deterministic network, 89
highest-speed throughput, 89
systems with control loops, 89
with OT, 89

Deterministic network, 89
Device Identifier Composition Engine (DICE),

241, 242
DeviceHub online, 333
Devices’ computational capabilities, 84
Diagnostic signatures, 194
Digital convergence, 21
Digital currencies, 278, 279, 281
Digital technologies, 25
Discovery, 184
Distance vector routing, 55, 56
Distributed Data Service Real Time Publish

and Subscribe (DDS RTPS), 139
Docker, 160
Dockerfiles, 160
Double spending, 278
Drug and treatment management, 295
Dynamic routing, 55

E
Eclipse IoT project, 331
Electric actuators, 78
Electronic health records (EHRs), 294
Element management

configuration management, 191, 192
fault management, 192–196
function, 189–191
IoT sensors, 197, 198
performance management, 196, 197
security management, 199

Elliptic Curve Digital Signature Algorithm
(ECDSA), 288

Encryption, 91
Energy consumption, 85
Enhanced IGRP (EIGRP), 56
Entity sensor MIB, 193
Ethereum, 290
Ethernet, 43, 44

Index

444

Ethernet Virtual Private Network
(EVPN), 163–165

European Telecommunication Standards
Institute (ETSI), 315

EVPN default gateway solution, 166
Extensible Messaging and Presence Protocol

(XMPP), 137
Exterior gateway protocol (EGP), 57
Exterior routing protocols, 57

F
Farming as a Service (FaaS), 260, 261
Farming machines, 260
Fast Ethernet, 44
Fault management, 192–196
Fault, Configuration, Accounting,

Performance, and Security
(FCAPS), 179, 180

Federal Information Security Management Act
(FISMA), 219

Firewalls, 173
Firmware

device’s operating system, 199
requirements for IoT solutions, 200
updates, 200

Flash memory, 42
Flow sensors, 67, 68
Fog computing, 153

characteristics, 156–157
and cloud computing, 153, 154
data deluge, 154–155
data management (see Data

management)
data management and

analytics, 156
network support for mobility

EVPN, 163–165
LISP, 166–168

orchestration (see Orchestration)
rapid mobility, 155
reliable control, 155, 156
virtualization technologies (see

Virtualization technologies)
Fog devices, 218, 226, 227

from cloud servers, 227
security threats, 228–229

Fog nodes, 158, 169, 172, 174–177
Formal REST constraints, 136
Free distribution, 323
Full Ecosystem Model, 268, 270
Full-function device (FFD),

101, 102

G
Gigabit Ethernet, 44
GizmoSphere, 330
Global mobile data traffic, 88
Google self-driving car, 15
Group management, 201

H
Hashing, 282
Health Insurance Portability and

Accountability Act (HIPAA), 219
Healthcare, 254, 255, 293, 294
Higher reliability sensor, 72
Hub-and-spoke model, 102
Human to machine interaction, 21
Hydraulic actuators, 78
Hypermedia as the engine of application state

(HATEOAS), 136, 146
Hypertext Transfer Protocol (HTTP), 135,

137, 140, 143
Hypervisor, 218

I
Identifiers, 2
IEEE (Institute of Electrical and Electronics

Engineers), 306
IEEE 11073 series, 309
IEEE 1451 series, 307
IEEE 1547 series, 307
IEEE 1609 series, 307
IEEE 1888 series, 308
IEEE 1900 series, 308
IEEE 2030 series, 308
IEEE 2040 series, 309
IEEE 2413 series, 309
low-power wireless protocols, 306
physical and link layer technologies, 306

IEEE 1451 series, 307
IEEE 1888, 139
IEEE 802.11ah

frequency bands, 114
functional areas, 114
grouping, 116
large number of client stations, 115
page segmentation mechanism, 116
PHY and MAC layers, 114
RAW, 116
relay, 115
short MAC Header, 114–115
speeding frame exchanges, 115
target wake time (TWT), 116

Index

445

Wi-Fi, 113
wireless connectivity solution, 113

IETF (Internet Engineering Task Force), 309
ACE working group, 312
CORE working group, 310, 311
ROLL working group, 310
6LowPAN working group, 311
6TiSCH networks, 312

Imaging sensors, 69
Inductive sensors, 69
Industrial automation, 88
Industrial Internet Consortium (IIC), 314
Information technology (IT)

departments, 9
end-to-end information systems, 9
industrial control system environment, 9
and OT, 9, 10

Infrared sensors, 69
Integrated Intermediate System to

Intermediate System (IS-IS), 57
Interfaces, 43
Interior gateway protocols (IGPs), 56

EIGRP, 56
IS-IS, 57
LSAs, 57
Neighbor table, 56
OSPF, 56
RIP, 56

International Telecommunication Union
(ITU), 312, 313

Internet, 1, 83, 85, 277
on circuit-switching technology, 26
commercial use, 26
history, 26
packet switching, 27

Internet-based businesses
Airbnb, 11
Amazon, 13
self-driving cars, 15
Square, 12, 13
Tesla, 14, 15
Uber, 10, 11, 13

Internet-based cloud, 25
Internet-based communications, 258
Internet-connected fish tank, 237
Internet connectivity, 2
Internet of Things (IoT), 1

automated processes, 3
basic requirements, 4, 5
definition, 2–4
driving the IoT explosion (see IoT driving

factors)
internet, things and data, 3

monitor and control things, 5
monitoring and control, 5
NOC, 5
personal lives, 2
securing IoT, 6
security, 6
security and privacy, 90–92
social media, 1

Internet Protocol, 83, 94, 267
Internet Protocol for Smart Objects (IPSO)

Alliance, 313, 314
Internet protocol suite, 50

IP addresses (see IP addresses)
Internet Protocol technologies, 89
Intuit GoPayment Reader, 13
IoE (Internet of Everything), 3, 4
IoT actuators, 80
IoT addressing, 63
IoT Application Protocols

AMQP, 138
CoAP, 137
DDS RTPS, 139
IEEE 1888, 139
MQTT, 138
SIP, 138
survey, 140
XMPP, 137

IoT applications, 63
IoT business, 26
IoT data exchange, 294
IoT device registration, 184, 185
IoT devices, 63, 236

hardware
Arduino, 329
BeagleBoard, 330
GizmoSphere, 330
Tinkerforge, 330

operating systems
Contiki, 330
Raspbian, 331
RIOT, 331

IoT driving factors
adoption of technology, 22
analytics at the edge, 17, 18
cloud computing, 19, 20
digital convergence, 21
Internet-based businesses, 12 (see also

Internet-based businesses)
IT and OT convergence, 9–10
mobile device explosion, 16
Moore’s Law, 23
security requirements, 23
social network explosion, 17

Index

446

IoT driving factors (cont.)
technology explosion, 21
UX/human to machine interaction, 21
virtualization, 20

IoT Ecosystem model, 270
IoT ecosystem-based business model, 267
IoT energy

connected home, 250
smart buildings, 249
smart meters, 250

IoT hardware, 21
IoT industrial, 255, 257
IoT industry landscape, 305
IoT IT services, 265, 266
IoT net- work, 63
IoT network entities, 181
IoT network topology, 200
IoT oil and gas

connected oil and gas fields, 251
downstream applications, 251
oil and gas exercise, 251, 252

IoT open source community, 329
IoT Platform, 181
IoT protocol stack

application protocols, 97
application services, 97
industry progress, 100
internet layer

challenges, 122–124
RPL, 125–126
6LowPAN, 123–125

link layer
access characteristics, 99
applications, 99
challenges, 98, 99
characteristics, 117
IEEE 802.11ah, 113–117
IEEE 802.15.4, 100–102
IEEE 802.15.4e TSSCH, 102–104
LPWAN (see Low-power wide area

networks (LPWANs))
network communication, 98
time-sensitive networking (see

Time-Sensitive Networking)
IoT reference framework

end-to-end delay, 46–48
IoT application services platform

level, 45
IoT device level, 45
IoT network level, 45
packet loss, 48
throughput, 49
to TCP/IP layers, 46

IoT retail, 256, 257

IoT security challenges
availability, 215
big data, 215
delay-sensitive service, 216
mobility, 216
multiple technologies, 215
multiple verticals, 215
remote locations, 216
resource limitations, 215
scalability, 215

IoT sensing device, 65
IoT sensor-based agriculture solutions, 249
IoT sensors, 70, 79, 251

See also Sensors
IoT service model

anything as a service, 263
FaaS, 260, 261
imaging as a service, 259, 260
IT as a service, 261, 262
SLA, 258
thrust as a service, 258, 259

IoT service platform
API Manager, 203
billing and accounting management, 202
commercially available platforms, 204–207
data management and repository, 188–189
element management function (see

Element management)
firmware, 199
group management, 201
marketplace, 205
subscription and notification service,

202, 203
IoT services platform, 63, 180, 181

communication manager, 188
discovery, 185, 186

registration, 184, 185
eclipse, 331
essential functions, 180
functions, 179, 182
IoT devices, 181
IoT toolkit, 333
key components of IoT solutions, 180, 181
Kinoma group’s, 332
management functions, 179
OIC, 332
OpenIoT and IoTSyS, 332
platform manager, 183, 184
registration and discovery requirements,

186, 187
IoT smart buildings

detection of gas levels and leakages, 253
flooding, water leakage and pollution

monitoring, 253

Index

447

IoT finance, 253, 254
safety monitoring and alerting, 252
smart lighting, 253

IoT smart meters, 250
IoT software services, 187
IoT solutions

Services Platform (see IoT Services
Platform)

IoT standards landscape, 305, 306
IoT standards organizations, 328
IoT standards progress scorecard, 319–320
IoT three-domain architecture, 217

cloud domain, 218
domain, 217
fog devices, 218
mapping, 217

IoT Toolkit, 333
IoT transportation, 257
IoT vertical, 247, 248, 305

agriculture and farming, 249
advanced yield monitoring, 249
optimal seeding, 249

energy (see IoT energy)
healthcare, 254, 255
industrial, 255, 257
livestock monitoring, 249
oil & gas (see IoT oil and gas)
oneM2M and ETSI standard bodies, 248
optimal water usage, 249
retail, 256, 257
smart buildings, 252
transportation, 257

IoT-based commercial real estate building-
management systems, 254

IoT-based IT Service, 264
IP addresses

IPv4, 51
IPv4 classes, 52, 53
IPv4 subnet masks, 51, 52
IPv6 classes, 53
notation, 54
routing, 54

IP datagrams, 28, 37
IP network layer, 305
IP packets, 28
IP version 4 (IPv4), 50–54, 58, 59
IP version 6 (IPv6), 50
IP version 6 (IPv6), 53
IPv6 over low-power wireless personal area

networks (6LowPAN), 123–127,
149, 311

IT as a Service, 261, 262
IT infrastructure as a service, 264
IT service, 264

K
Kalman filter, 77
Kernel-based tracking, 77
Kinoma group, 332
KISS (keep it short and simple)

principle, 22

L
Layered abstractions, 83
Ledger, 280
Level sensors, 68
Limited compute, 94
Limited power, 94
Link-state advertisements (LSAs), 57
Link-state routing, 55
Linux container (LXC), 20, 160, 176
Linux Foundation, 332
Locator/Identifier Separation Protocol

(LISP), 166–168
LoRa Alliance, 318, 319
LoRaWAN (long-range wide area

network), 104
challenges, 108
definition, 105
device class capabilities, 106–107
energy efficiency, 107, 108
network architecture, 105, 106
regional variations, 108
scalability, 107
security, 108
wireless communication systems, 105

LoRaWAN (long-range wide area network)
LoRa physical layer, 105

Low-power and lossy networks (LLNs), 122,
123, 125, 126, 137, 140

Low-power wide area networks
(LPWANs), 104

devices connecting, 104
LoRaWAN (see LoRaWAN (long-range

wide area network))
NB-IoT (see Narrow Band IoT (NB-IoT))
vs. NB-IoT, 112, 113

Loyalty programs, 295
LPWA technologies, 104

M
M2M deployments, 92
M2M medical data management, 294
M2M microtransactions, 296
M2M transactions, 278
Machine-to-machine communication, 94
Manual actuators, 79

Index

448

Manufacturer usage descriptor (MUD),
239, 240

Marketplace, 205
Massive scalability, 85, 86

control plane, 87
credentials management, 86
device addressing, 86
wireless spectrum, 87

Massively scalable data centers (MSDC), 157
Mastery of data, 171
Media access control (MAC), 161
Medical imaging machines, 259
Merkle root hash, 282
Merkle tree root, 281
Message Queue Telemetry Transport (MQTT)

protocol, 138, 140, 318
Mining/miners, 280
Mirai botnet, 237
Mitigation technique, 221, 234
Mobile data traffic, 16
Mobile device explosion, 16
Moisture and humidity sensors, 70
Moore’s Law, 23
MUD File Server, 239
Multiple IoT applications, 219

N
Narrow Band IoT (NB-IoT), 105

application, 110
device categories, 110, 111
efficient energy, 112
in LTE, 109
network architecture, 109, 110
scalability, 110–112
SCEF, 110
security, 112
3GPP, 109

Network Access Layer, 44
Network Layer, 36, 37
Network operation center (NOC), 5, 6, 266
Networked devices, 2
Nodes, 280
Noise sensors, 69
Non-autonomous sensors, 70
Normalization layer, 83
NVRAM (Nonvolatile RAM), 42

O
OASIS (non-profit consortium), 318
OneM2M Partnership Project, 315, 316,

319, 320

Open Building Information Exchange (oBIX)
technical committee, 318

Open Connectivity Foundation
(OCF), 314

Open Shortest Path First (OSPF), 55–57
Open source

in computer industry, 323
for IoT, 329
and standards, 327–329

Open source consumers
drivers

best-of-breed solution, 325
business efficiency, 325
modern, nimble development

processes, 326
TCO, 325

Open source contributors
drivers

attracting and vetting talent, 327
better product, 326
great advertising, 327
workforce multiplier, 326

Open source movement
crowdsourcing effect, 324
development lifecycle, 324
disadvantages, 324

Open-source Docker, 20
Open-source microcontrollers, 21
Open-source success stories, 324
Open Systems Interconnection (OSI) model,

35, 38, 39
communication functions, 35
encapsulated data, 39
functions, devices and protocols, 38
layers, 35
layers and data formats, 36
OSI Layer 1, 38
OSI Layer 2, 37
OSI Layer 3, 36
OSI Layer 4, 36
OSI Layer 5, 36
OSI Layer 6, 36
OSI Layer 7, 35
physical layer, 39
TCP/IP (see TCP/IP (Transmission Control

Protocol/Internet Protocol))
Operation technology (OT), 9, 10, 89
Orchestration, 168

cloud orchestration, 169
in Fog environment, 168
performance guarantees, 170
things connectivity, 169
topology, 169

Index

449

P
Packet switching, 26–28, 37
PAN coordinator, 102
Particle filter, 77
Path computation element (PCE), 119, 129
Path redundancy, 234, 236
Performance management function,

196, 197
Permissionless blockchains, 290
Photoelectric sensors, 69
Physical layer, 38
Pneumatic actuators, 79
Precision Timing Protocol (PTP), 118
Presentation layer, 36
Pressure sensors, 67
Privacy, 91
Privacy of the users, 229
Proof of Activity (PoA), 287
Proof of Elapsed Time (PoET), 287
Proof of Stake (PoS), 286, 287
Proof-of-Work (PoW) algorithms, 286
Protocol data units (PDUs), 39, 58
Provisioning function, 191
Proximity sensors, 69, 70
Public Cloud, 19

Q
QoS policies

data delivery, 135
resource utilization

data availability, 134
deadline policy, 134
history policy, 135
latency budget policy, 134
life span policy, 135
resource limits policy, 133
time filter policy, 134

Quick response (QR) code, 2

R
Radio-frequency identification (RFID), 87
RAM (Random Access Memory), 41
Raspberry Pi, 21, 331
Real-time information transfer, 89
Reduced-function device (RFD), 101, 102
Reference framework, IoT

control, 7
four-level model, 7
IoT devices, 7
IoT levels, 8
IoT network, 7

Resistance temperature detector (RTD)
sensors, 66

Resolution of a sensor, 72
Restricted access window (RAW), 116
RFID (radio-frequency identification), 1, 72

barcode, 73
components, 73
disadvantages, 74
tag and reader, 72
usage and applications

access control and management, 74
airport baggage tracking logistics, 75
animal tracking, 75
healthcare, 74
interactive marketing, 75
laundry management, 75
passport, 74
RFID tags, 74
supply chain management, 75

ROM (Read-Only Memory), 42
Router’s rear panel, 44
Routers, 54
Routing over Low Power and Lossy networks

(ROLL) working group, 310
Routing tables, 42, 45, 53–55, 61
RPL (IPv6 routing protocol for LLNs), 101,

125–129, 149

S
Sarbanes-Oxley Act of 2002 (SOX), 219
Scalability, 291
SCEF (Service Capability Exposure

Function), 110
Search plane, 172
Secure cryptographic hash function, 281
Secure Hash Algorithm (SHA-256), 288
Securing IoT devices

botnets, 236, 237
cardiac devices, 238
DICE, 241, 242
fish tank, 237
IoT devices, 236
MUD, 239, 240
vehicle’s entertainment system, 238
webcams, 237

Security, 270
LoRaWAN, 108

Security appliances, 173
Security credentials management, 86
Security management, 199
Security requirements for IoT, 216
Selective-forwarding attacks, 235, 236

Index

450

Self-driving cars, 15
Semantic interoperability, 93, 94
Semiconductor sensors, 67
Sensing domain, 229, 236

jamming attack, 230–232
selective-forwarding attacks, 234–235
sinkhole attack, 235
to multiple attacks, 230
vampire attack, 232–234

Sensor’s core function, 70
Sensors, 2

characteristics, 72
accuracy, 71
compact, 71
data filtering, 70
dynamic range, 71
ease of use, 72
high resolution, 72
higher reliability sensor, 72
hysteresis, 71
limited noise, 71
linearity, 71
minimum interruption, 72
minimum power consumption, 71
sensitivity, 71
smart detection, 71
wide bandwidth, 72

components, smart sensors, 65
data, 65
definition, 64
flow, 67, 68
imaging, 69
level sensors, 68
microcontrollers and connectivity, 65
noise sensors, 69
output signals, 66
physical interfaces, 65
pressure, 67
senses, 65
temperature (see Temperature sensors)
types, 66, 70

Server-client models, 277
Service Level Agreements (SLAs), 258,

261, 265
Session Initiation Protocol (SIP), 138
Session Layer, 36
Shipment monitoring, 257
Simplified payment verification (SPV)

nodes, 291
Sinkhole attack, 235, 236
6TiSCH networks, 312
6TiSCH protocol stack, 127, 129, 149

determinism, 128
flow control, 128

formation of network, 127
network maintenance, 128
resource management, 128
scheduling mechanisms, 129
secure communication, 129
topology and schedule mapping, 128

Smart city, 156, 297
Smart contracts, 279, 290, 292
Smartphone traffic, 16
Smart sensors, 65
Social network explosion, 17
Software, 2
Software as a services (SaaS), 14
Source code/design, 323
Spanning tree protocol (STP), 119
Spectrum crunch, 87, 88
Speed sensors, 70
Square, 12, 13
Standardization, 270
Standards organizations, 327
Static routes, 55
Stretch attack, 233, 234
Structural interoperability, 94
Structured data, 17
Subnet mask, 51
Subscription and notification service, 202, 203
Supply chain, 293, 294
Systems with control loops, 89

T
TCP/IP (Transmission Control Protocol/

Internet Protocol)
application layer, 40
connection-oriented transport protocol, 39
internet layer, 41
network access l, 44
OSI layers, 40
OSI standard, 40
transport layer, 41

Technology neutral, 323
Telecommunications Industry Association

(TIA), 317
Telecommunications Management Network

(TMN), 179
Temperature sensors

and applications, 66
RTDs, 66
semiconductor sensors, 67
thermistor, 66
thermocouple, 66

Tesla Motors, 14, 15
Things Plane, 172
Thread working group, 316

Index

451

Threats in IoT, 90
Throughput, 49, 50
Thrust as a service, 258, 259, 263, 273
Time-sensitive networking (TSN), 149

connectivity, 117
IEEE 802.1aq-2012 and IEEE

802.1Qbp-2014, 119
IEEE 802.1CB, 121–122
IEEE 802.1Qbv, 120–121
IEEE 802.1Qca, 119
PTP, 118
real-time control applications, 117
requirements, 117
traffic shaping and transmission

selection, 118
Tinkerforge, 330
Topology management, 200
Total cost of ownership (TCO), 325
Traditional IT operational model, 10
Traditional network-level management

functions, 179
Traditional support model, 269
Traffic indication map (TIM), 116
Transducer Electronic Data Sheets

(TEDS), 307
Transmission control protocol (TCP), 28
Transport layer, 36

U
Uber, 10, 11, 13
Ubiquity of IoT, 90
Ultrasonic level sensors, 68
Ultrasonic sensors, 69
Unlicensed radio frequencies, 87
Unstructured data, 18
User experience (UX), 21
Users’ privacy, 214
UX principles, 22

V
Vampire attacks, 232, 236
Vehicle dynamic ecosystem, 296

Video tracking, 75
advanced systems and techniques, 76
algorithms, 77
applications, 76
banking, 76
in conjunction with sensors, 75
filtering and data association, 77
preinstalled sensors and RFID tags, 75
retailers, 76
shopping experience, 76

Virtualization, 20
Virtualization and cloud computing, 268
Virtualization technologies

advantages, 158
application mobility, 161
at CPU instruction set level, 158
at hardware abstraction layer

level, 158
at operating system level, 159
containers and VMs, 159–160
Docker, 160
techniques, 158

Virtualization technology, 222
Virtual machines (VMs), 158–161,

176, 218

W
Web of Things (WoT), 27
Web technologies, 256
Webcams, 237
Wide area networks (WAN), 46
Wi-Fi, 87
Wire- less protocol standards, 87
Wireless spectrum, 87

X
Xen, 224, 225

Z
Zigbee, 87, 317
Z-Wave, 87, 318

Index

	Foreword I
	Foreword II
	Preface
	Acknowledgments
	Disclaimer
	Contents
	About the Authors
	Chapter 1: Internet of Things (IoT) Overview
	1.1 What Is the Internet of Things (IoT)?
	1.1.1 Background and More Complete IoT Definition
	1.1.2 How to Monitor and Control Things from Anywhere in the World?
	1.1.3 Why Do We Want to Monitor and Control Things?
	1.1.4 Who Will Monitor and Control?
	1.1.5 How Is Security Guaranteed?

	1.2 IoT Reference Framework
	1.3 Why Now? The 12 Factors for a Perfect Storm
	1.3.1 Convergence of IT and OT
	1.3.2 The Astonishing Introduction of Creative Internet-Based Businesses
	1.3.2.1 Uber
	1.3.2.2 Airbnb
	1.3.2.3 Square
	1.3.2.4 Amazon
	1.3.2.5 Tesla
	1.3.2.6 Self-Driving Cars

	1.3.3 Mobile Device Explosion
	1.3.4 Social Network Explosion
	1.3.5 Analytics at the Edge
	1.3.6 Cloud Computing and Virtualization
	1.3.7 Technology Explosion
	1.3.8 Digital Convergence/Transformation
	1.3.9 Enhanced User Interfaces
	1.3.10 Fast Rate of IoT Technology Adoption (Five Times More than Electricity and Telephony)
	1.3.11 The Rise of Security Requirements
	1.3.12 The Nonstop Moore’s Law

	1.4 History of the Internet
	1.5 Summary
	References

	Chapter 2: The Internet in IoT
	2.1 The Open System Interconnection Model
	2.2 End-to-End View of the OSI Model
	2.3 Transmission Control Protocol/Internet Protocol (TCP/IP)
	2.3.1 TCP/IP Layer 4: Application Layer
	2.3.2 TCP/IP Layer 3: Transport Layer
	2.3.3 TCP/IP Layer 2: Internet Layer
	2.3.3.1 Router Main Components

	2.3.4 TCP/IP Layer 1: Network Access Layer

	2.4 IoT Network Level: Key Performance Characteristics
	2.4.1 End-to-End Delay
	2.4.2 Packet Loss
	2.4.3 Throughput

	2.5 Internet Protocol Suite
	2.5.1 IoT Network Level: Addressing
	2.5.1.1 IP Version 4
	IPv4 Subnet Mask
	IPv4 Classes

	2.5.1.2 IP Version 6

	2.5.2 IPv6 Address Notation
	2.5.3 IoT Network Level: Routing
	2.5.3.1 Interior Routing Protocols
	2.5.3.2 Exterior Routing Protocols

	2.6 Summary
	References

	Chapter 3: The Things in IoT: Sensors and Actuators
	3.1 Introduction
	3.2 IoT Sensors
	3.2.1 Definition
	3.2.2 Why Sensors
	3.2.3 Sensor Types
	3.2.4 Sensor Characteristics

	3.3 RFID
	3.3.1 RFID Main Usage and Applications

	3.4 Video Tracking
	3.4.1 Video Tracking Applications
	3.4.2 Video Tracking Algorithms

	3.5 IoT Actuators
	3.5.1 Definition
	3.5.2 Why Actuators?
	3.5.3 Actuator Types
	3.5.4 Controlling IoT Devices

	3.6 How Things Are Identified in IoT?
	3.7 Summary
	References

	Chapter 4: IoT Requirements for Networking Protocols
	4.1 Support for Constrained Devices
	4.2 Massive Scalability
	4.2.1 Device Addressing
	4.2.2 Credentials Management
	4.2.3 Control Plane
	4.2.4 Wireless Spectrum

	4.3 Determinism
	4.4 Security and Privacy
	4.5 Application Interoperability
	4.5.1 Abstractions and Standard APIs
	4.5.2 Semantic Interoperability

	4.6 Summary
	References

	Chapter 5: IoT Protocol Stack: A Layered View
	5.1 Link Layer
	5.1.1 Challenges
	5.1.2 Industry Progress
	5.1.2.1 IEEE 802.15.4
	5.1.2.2 IEEE 802.15.4e TSCH
	5.1.2.3 LPWAN
	LoRaWAN
	Network Architecture
	Device Class Capabilities
	Scalability
	Energy Efficiency
	Security
	Regional Variations
	Challenges

	NB-IoT
	Network Architecture
	Device Categories
	Scalability
	Energy Efficiency
	Security

	Comparison of LoRaWAN and NB-IoT

	5.1.2.4 IEEE 802.11ah
	Short MAC Header
	Large Number of Stations
	Speeding Frame Exchanges
	Relay
	Target Wake Time
	Grouping
	Traffic Indication Map (TIM) and Paging Mechanism
	Restricted Access Windows

	5.1.2.5 Comparison of Wireless Link Layer Protocols
	5.1.2.6 Time-Sensitive Networking
	IEEE 802.1Qca
	IEEE 802.1Qbv
	IEEE 802.1CB

	5.2 Internet Layer
	5.2.1 Challenges
	5.2.2 Industry Progress
	5.2.2.1 6LowPAN
	5.2.2.2 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
	5.2.2.3 6TiSCH
	Network Formation
	Network Maintenance
	Topology and Schedule Mapping
	Resource Management
	Flow Control
	Determinism
	Scheduling Mechanisms
	Secure Communication

	5.3 Application Protocols Layer
	5.3.1 Data Serialization Formats
	5.3.2 Communication Paradigms
	5.3.2.1 Request/Response Versus Publish/Subscribe
	5.3.2.2 Blocking Versus Non-blocking

	5.3.3 QoS
	5.3.3.1 Resource Utilization
	Resource Limits Policy
	Time Filter Policy

	5.3.3.2 Data Timeliness
	Deadline Policy
	Latency Budget Policy

	5.3.3.3 Data Availability
	Durability Policy
	Life Span Policy
	History Policy

	5.3.3.4 Data Delivery
	Reliability Policy
	Transport Priority

	5.3.4 RESTful Constraints
	5.3.5 Survey of IoT Application Protocols
	5.3.5.1 CoAP
	5.3.5.2 XMPP
	5.3.5.3 MQTT
	5.3.5.4 AMQP
	5.3.5.5 SIP
	5.3.5.6 IEEE 1888
	5.3.5.7 DDS RTPS

	5.4 Application Services Layer
	5.4.1 Motivation
	5.4.2 Industry Progress
	5.4.2.1 ETSI M2M
	5.4.2.2 oneM2M

	5.4.3 Technology Gaps

	5.5 Summary
	References

	Chapter 6: Fog Computing
	6.1 Defining Fog Computing
	6.2 Drivers for Fog
	6.2.1 Data Deluge
	6.2.2 Rapid Mobility
	6.2.3 Reliable Control
	6.2.4 Data Management and Analytics

	6.3 Characteristics of Fog
	6.4 Enabling Technologies and Prerequisites
	6.4.1 Virtualization Technologies
	6.4.1.1 Containers and Virtual Machines
	6.4.1.2 Docker
	6.4.1.3 Application Mobility

	6.4.2 Network Support for Mobility
	6.4.2.1 EVPN
	Updating the Identity to Location Address Mappings
	Default IP Gateway Problem

	6.4.2.2 LISP
	Updating the Identity to Location Address Mappings
	Default IP Gateway Problem

	6.4.3 Fog Orchestration
	6.4.3.1 Topology
	6.4.3.2 Things Connectivity
	6.4.3.3 Network Performance Guarantees

	6.4.4 Data Management
	6.4.4.1 Data in Motion
	6.4.4.2 Search Technologies and Engines

	6.4.5 More Gaps Ahead

	6.5 Summary
	References

	Chapter 7: IoT Services Platform: Functions and Requirements
	7.1 IoT Services Platform Functions
	7.2 IoT Platform Manager
	7.3 Discovery: Entities, Services, and Location
	7.3.1 Registration
	7.3.2 Discovery

	7.4 Communication Manager
	7.5 Data Management and Repository
	7.6 Element Manager (Managing IoT Devices and Network Elements)
	7.6.1 Configuration (and Provisioning) Management
	7.6.2 Fault Management
	7.6.3 Performance Management
	7.6.4 Important Performance Measures for IoT Devices (E.g., Sensors)
	7.6.5 Security Management

	7.7 Firmware Manager
	7.8 Topology Manager
	7.9 Group Manager
	7.10 Billing and Accounting
	7.11 Subscription and Notification Manager
	7.12 API Manager
	7.13 Commercially Available IoT Platforms
	7.14 Putting All Together
	7.15 Summary
	References

	Chapter 8: Internet of Things Security and Privacy
	8.1 Introduction
	8.2 IoT Security Challenges
	8.3 IoT Security Requirements
	8.4 IoT Three-Domain Architecture
	8.5 Cloud Domain Attacks and Countermeasures
	8.6 Fog Domain Attacks and Countermeasures
	8.7 Sensing Domain Attacks and Countermeasures
	8.8 Securing IoT Devices
	8.8.1 IoT Devices Gone Rogue
	8.8.1.1 Botnets
	8.8.1.2 Webcams
	8.8.1.3 Casino Fish Tank
	8.8.1.4 Cardiac Devices
	8.8.1.5 Vehicles

	8.8.2 MUD
	8.8.3 DICE

	8.9 Summary and Future Directions
	References

	Chapter 9: IoT Vertical Markets and Connected Ecosystems
	9.1 IoT Verticals
	9.1.1 IoT Agriculture and Farming
	9.1.2 IoT Energy Solutions
	9.1.3 IoT Oil and Gas Solutions
	9.1.3.1 Oil and Gas Exercise

	9.1.4 IoT Smart Building Solutions
	9.1.5 IoT Finance
	9.1.6 IoT Healthcare
	9.1.7 IoT Industrial
	9.1.8 IoT Retail
	9.1.9 IoT Transportation

	9.2 IoT Service Model: Anything as a Service
	9.2.1 Thrust as a Service
	9.2.2 Imaging as a Service
	9.2.3 Farming as a Service
	9.2.4 IT as a Service

	9.3 Enabling “Anything as a Service”
	9.3.1 Example: IoT IT Services

	9.4 Connected Ecosystems
	9.4.1 IoT Services Terminologies
	9.4.2 IoT Connected Ecosystems Models
	9.4.3 IoT Connected Ecosystems Models Key Capabilities

	9.5 Summary
	References

	Chapter 10: The Blockchain in IoT
	10.1 Introduction
	10.2 What Is the Blockchain?
	10.2.1 Bitcoin and Blockchain
	10.2.2 Evolution of Blockchain
	10.2.3 Defining Blockchain

	10.3 How Blockchains Work
	10.3.1 Anatomy of the Blockchain
	10.3.2 Understanding a Block’s Hash
	10.3.3 Lifecycle of a Transaction

	10.4 Features of Blockchain
	10.4.1 Consensus Algorithms in IoT
	10.4.2 Cryptography
	10.4.3 Decentralized
	10.4.4 Transparency and Trust
	10.4.5 Permissioned, Permissionless, and Consortium
	10.4.6 Smart Contracts
	10.4.7 Advantages and Disadvantages

	10.5 Blockchain Applications in IoT
	10.5.1 M2M Transactions
	10.5.2 Energy Management
	10.5.3 Supply Chain Management
	10.5.4 Healthcare
	10.5.5 Retail
	10.5.6 Automotive and Transportation
	10.5.7 Smart City
	10.5.8 Identity, Authentication, and Access Management
	10.5.9 Other Blockchain IoT Applications

	10.6 Blockchain Security in IoT
	10.6.1 Trust Between Nodes
	10.6.2 Malicious Activity and Cryptographic Principles
	10.6.3 IoT Security and Blockchain Advantages

	10.7 Summary
	References

	Chapter 11: Industry Organizations and Standards Landscape
	11.1 Overview
	11.2 IEEE (Institute of Electrical and Electronics Engineers)
	11.2.1 IEEE 1451 Series
	11.2.2 IEEE 1547 Series
	11.2.3 IEEE 1609 Series
	11.2.4 IEEE 1888 Series
	11.2.5 IEEE 1900 Series
	11.2.6 IEEE 2030 Series
	11.2.7 IEEE 2040 Series
	11.2.8 IEEE 11073 Series
	11.2.9 IEEE 2413 Series

	11.3 IETF
	11.3.1 ROLL
	11.3.2 Core
	11.3.3 6LowPAN
	11.3.4 6TisCH
	11.3.5 ACE

	11.4 ITU
	11.5 IPSO Alliance
	11.6 OCF
	11.7 IIC
	11.8 ETSI
	11.9 oneM2M
	11.10 AllSeen Alliance
	11.11 Thread Group
	11.12 ZigBee Alliance
	11.13 TIA
	11.14 Z-Wave Alliance
	11.15 OASIS
	11.16 LoRa Alliance
	11.17 Gaps and Standards Progress Scorecard
	11.18 Summary
	References

	Chapter 12: The Role of Open Source in IoT
	12.1 The Open Source Movement
	12.2 Why Open Source?
	12.2.1 Drivers for Open Source Consumers
	12.2.2 Drivers for Open Source Contributors

	12.3 Open Source vs. Standards
	12.4 Open Source Partnering with Standards
	12.5 A Tour of Open-Source Activities in IoT
	12.5.1 IoT Devices
	12.5.1.1 Hardware
	Arduino
	GizmoSphere
	Tinkerforge
	BeagleBoard

	12.5.1.2 Operating Systems
	Contiki
	Raspbian
	RIOT

	12.5.2 IoT Services Platform
	12.5.2.1 Eclipse IoT Project
	12.5.2.2 Kinoma
	12.5.2.3 OneM2M the Linux Foundation and Eclipse
	12.5.2.4 Open Interconnect Consortium (OIC)
	12.5.2.5 IT6.eu, OpenIoT, and IoTSyS
	12.5.2.6 DeviceHive
	12.5.2.7 IoT Toolkit

	12.6 Conclusions
	References

	Appendix A
	References

	Appendix B: IoT Projects for Engineering Students
	Typical Elements of IoT Projects
	Examples of IoT Projects
	References

	Appendix C: IoT Project 1—Parking Availability App Using IoT
	Introduction
	Problem Statement/Project Architecture
	Method(s) System Design
	1.1.1 Sensor Layer (Physical Devices)
	Network Layer
	Data Processing and Application Layer
	Deployment

	Evaluation Methodology/Results
	Conclusion and Future Work
	References

	Appendix D: IoT Project 2—Sensor Activated Lights with Cloud Data
	Introduction
	Problem Statement and Architecture
	Equipment and System Design
	Hardware Used
	Software Used
	Circuit

	Methodology
	Evaluation
	Future Work
	Conclusion
	References
	Appendix

	Appendix E: Warehouse Inventory Management System
	Introduction
	Problems in the Existing Tracking and Monitoring Systems
	Solutions to the Limitations of Existing Tracking Systems

	Project Architecture
	Method(s)/System Design
	Shipment Beacon
	Warehouse Tracker

	Project Implementation
	1.1.1 BLE Advertisement and BME280 Sensor Interfacing
	BLE Advertisement on Mobile App
	Raspberry Pi and Microsoft Azure IoT Hub Connection
	Configuration of Raspberry Pi for connection with Azure IoT Hub

	Real-Time Sensor Data Transfer
	Configuration of Raspberry Pi for Environmental Data Transmission to Azure Hub

	System Integration
	Testing and Verification
	1.1.2 Real-Time Environmental Sensor Testing
	Real-Time Azure IoT Hub Integration Testing

	Evaluation Methodology and Results
	1.1.3 Real-Time Sensor Evaluation
	Bluetooth Low Energy Range Evaluation Testing

	Summary, Conclusions, and Recommendations
	References

	Appendix F: IoT Fumigation Robot
	Introduction: Written by Nicholas K
	Methodology: Written by Nicholas K
	Objectives
	Challenges
	Problem Formulation and Design

	Implementation
	Chassis Design: Written by Nicholas K
	Mock Fumigation Apparatus Design: Written by Nicholas K
	Hardware Design: Written by Jesus D
	Software Design: Written by Jesus D

	Testing and Verification: Written by Jesus D
	Conclusion: Written by Nicholas K
	References
	Appendix A: Source Code
	Appendix B: Relay Test Code

	Index

