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Preface

From plant to animal species, development is a complex and dynamic process
involving the cross talk among genes, maternal effects, epigenetic mechanisms,
and environmental circumstances. Such interactions shape the individual’s life
history trajectories, influencing key traits like growth, reproduction, and senescence.
These effects are not limited to a single generation, but can also be passed on future
generations in what we call transgenerational effects. This book will illustrate how
and why early life experience shapes biodiversity and how this diversity translates
into different Darwinian fitness outcomes. To this end, we have recruited scientists
with different backgrounds and research interests, and spanning different taxa. The
resultant chapters represent a rich series of topics related to developmental plasticity
and early life experience, with emergent and interconnected themes. The book kicks
off focusing on the evolutionary meaning of developmental strategies, and on how
and why early life experience generates diversity. In Chap. 1, “More than fifty shades
of epigenetics for the study of early in life effects in medicine, ecology and evolu-
tion,” Danchin (i) points out the central role of epigenetics, as a transgenerational
form of biological memory, in driving the early life effects and their consequences in
eco-evolutionary dynamics, and (ii) proposes an inclusive understanding of epige-
netics (inclusive evolutionary synthesis), incorporating all the processes of parent–
offspring resemblance that are not engraved into the DNA sequence. Staying on the
subject of transgenerational inheritance, in Chap. 2, “For better or worse: benefits
and costs of transgenerational plasticity and the transhormesis hypothesis,”
Costantini proposes the transhormesis hypothesis, whereby the molecular memory
generated by hormetic priming of the parents to low-moderate doses of environ-
mental stressors during sensitive windows of life is being transmitted to their
offspring, so that they are better prepared to withstand anthropogenic challenges.
In Chap. 3, “Adaptive meaning of early life experience in species that go through
metamorphosis,” Koyama et al. focus on the adaptive meaning of one particular
widespread mode of development called metamorphosis. They review (i) the ways in
which various insect species adjust the timing of metamorphosis and the morpho-
genetic processes during metamorphosis depending on their environment during the
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juvenile stage and discuss (ii) the adaptive significance and the endocrine basis of
these plastic responses. The second theme of the book is dedicated to address some
of the most relevant endogenous molecular mechanisms linking the consequences of
early life environmental conditions and adult performance. In Chap. 4, “Early-life
stress drives the molecular mechanisms shaping the adult phenotype,” Huber et al.
provide an overview of studies on the long-lasting effects of exposure to early life
stress on the adult phenotype. They focus on the actions of elevated developmental
glucocorticoid hormones in shaping adult physiological stress responses and in
organizing key cellular and molecular mechanisms underlying the evolution of life
histories, including oxidative stress, telomere dynamics, and epigenetic processes.
The authors draw particular attention to the accumulating recent evidence showing
that exposure to certain early life stressors can promote adaptive coping mechanisms
of stress resilience to later life challenges, thus potentially ameliorating fitness
outcomes. They finally emphasize the need of future research to determine the key
features acting as relevant modulators of the biological embedding of early life stress
leading to a distant memory in stress vulnerability vs resilience. In Chap. 5, “Envi-
ronmental conditions in early life, host defenses and disease in late life,” Sorci and
Faivre provide an overview of the possible environmental features experienced in
early life that can affect immunological defense strategies and the appearance of a
disease at late age. In particular, they draw a parallel between the developmental
origin of health and disease hypothesis and what they call the immune origin of
health and disease hypothesis. In so doing, they postulate that early environmentally
driven shaping of the immune system sets a program that might account for future
susceptibility to infection and immune-mediated diseases, ultimately affecting
organismal fitness. In Chap. 6, “Early life nutrition and the programming of the
phenotype,” Buchanan et al. have highlighted the multitude of ways in which early
life diet can impact on development, with consequences for adult phenotype and
ultimately fitness. They also highlight that we know a vast amount about how diet
impacts development, but that such knowledge is limited to a few study organisms.
Thus, any inferences rarely allow for interpretation of the adaptive significance of
such diet effects in mediating developmental trade-offs or the impacts on fitness in
wild animals. In the third and final theme of the book, relying on examples of how
early life stressors affect the way organisms respond to the ongoing and future
environmental challenges of the Anthropocene, this book takes a novel approach
to specifically address the adaptive meaning of early life experience. The new
challenges for wildlife created by humans provide a natural laboratory to study in
real time the interplay of a myriad of processes both of natural and human-driven
origin. In Chap. 7, “Adaptive and maladaptive consequences of larval stressors for
metamorphic and postmetamorphic traits and fitness,” Stoks et al. also focus on taxa
that go through metamorphosis, but addressing how stressors encountered in the
larval stage affect phenotypic development, and eventually carry over across meta-
morphosis and shape the adult fitness. They also (i) show that stress exposure of
larvae may also change tolerance to stressors encountered in the adult stage and
(ii) illustrate the largely unexplored effects of larval stressors on the (post-) meta-
morphic body composition, which may have the potential to scale up and change
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biotic interactions and nutrient fluxes across ecosystems. In Chap. 8, “Plastic aliens:
developmental plasticity and the spread of invasive species,” Cordeschi et al. explore
the relevance of biological invasions in the Anthropocene. They tackle this topic
making the point that developmental plasticity can shape the ideal invader. Devel-
opmental plasticity is predicted to promote the capacity of species to invade novel
habitats, by favoring the optimal match between individual phenotypes and the new
environment, during the early steps of an invasion. In addition, Cordeschi et al. point
out that the study of biological invasions has also great potential to provide an
excellent natural laboratory to investigate the adaptive meaning of development
strategies, early life experience, and predictive power of environmental (mis)-
matching models. Finally, in Chap. 9, “Consequences of developmental exposure
to pollution: importance of stress-coping mechanisms,” Angelier focuses on the
impact of pollutants on biodiversity, highlighting how developmental exposure to a
chemical or physical pollutant may disrupt stress-coping mechanisms with detri-
mental consequences later in life. Angelier also emphasizes (i) the need for more
research on the cumulative and interactive effects of physical and chemical pollut-
ants on stress-coping mechanisms and performance, (ii) the relevance of early life
hormesis in adjusting the functioning and the flexibility of stress-coping mechanisms
to a polluted environment, and (iii) the need to assess whether selection acts on
stress-coping mechanisms and favors specific stress-coping traits that are beneficial
in a polluted world. Although the book is not exhaustive, by relying on specific
examples, we have attempted to tackle a holistic and multidisciplinary approach,
from the evolution of tempo and mode of development, the molecular mechanisms
fine-tuning developmental trajectories, to the (mal)adaptive consequences of devel-
opmental plasticity for organisms facing the emerging, fast-growing challenges of
the Anthropocene. As never before, we urgently need to pave the way for addressing
the challenges that Anthropogenic changes pose to biodiversity on Earth. Probably
one of the most relevant take-home messages of this book is that we need to
centralize research efforts in integrating concepts and theory of developmental
plasticity with environmental sciences at the individual, population, and community
levels with the goal to predict whether plasticity will favor adaptation to the
Anthropogenic world. It is our hope that readers will find these chapters interesting
and stimulating new frontiers of research. We are heartily grateful to the authors of
the various chapters for committing to the writing of this book especially in light of
the current challenging times due to the global pandemic of coronavirus disease
2019, and for sharing their expertise and experiences.

Paris, France David Costantini
Vienna, Austria Valeria Marasco
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Part I
Evolutionary Meaning of Development:

How and Why Early Life Experience
Generate Diversity



Chapter 1
More than Fifty Shades of Epigenetics
for the Study of Early in Life Effects
in Medicine, Ecology, and Evolution

Etienne Danchin

Abstract After being coined by Conrad Waddington in the context of development,
today the term epigenetics focuses on the molecular machinery beyond genes.
Epigenetics is central to early in life effects and their consequences in
eco-evolutionary dynamics. I review the two historical understandings of epige-
netics, i.e. its Developmental and Evolutionary understandings, both concerning the
molecular mechanisms occurring within an organisms’ lifetime. Although I unify
them under a generic definition, these understandings are not suitable for studies at
the intergenerational level. To fill this gap, I propose an inclusive understanding of
epigenetics incorporating all the processes of parent–offspring resemblance that are
not engraved into the DNA sequence. By integrating all mechanisms of phenotypic
variation beyond the DNA sequence, this new understanding fully corresponds to
the etymological meaning of the term “above, or beyond the gene.” By integrating
knowledge at all levels, this broader understanding of epigenetics should help
transferring all the knowledge at the infra-individual level into the study of processes
unfolding at the supra-individual level to build a continuum from molecules to
ecology and evolution. Concepts of inheritance and early in life effects should
play a major role in building such a continuum. Classifying more than 50 definitions
of epigenetics in four groups using the actual terms of the definitions reveals
interesting discrepancies between definitions and ultimate scientific goals. Finally,
I present some examples of how a clear vision of the various understandings of
epigenetics may influence biology and argue that epigenetics now needs to percolate
in ecology and evolution.

E. Danchin (*)
Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), CNRS, Université de
Toulouse, IRD, Toulouse Cedex 9, France
e-mail: etienne.danchin@univ-tlse3.fr

© Springer Nature Switzerland AG 2022
D. Costantini, V. Marasco (eds.), Development Strategies and Biodiversity,
Fascinating Life Sciences, https://doi.org/10.1007/978-3-030-90131-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90131-8_1&domain=pdf
mailto:etienne.danchin@univ-tlse3.fr
https://doi.org/10.1007/978-3-030-90131-8_1#DOI


1.1 Introduction

The term early in life effects qualifies instances when environmental factors acting
on organisms during their early development are the most efficient in deeply and
lastingly affecting the resulting adult’s phenotype. One goal of this chapter is to
present and discuss the current knowledge on the molecular mechanisms responsible
for these effects. Today, it is relatively well accepted that epigenetic change consti-
tutes the major molecular process underlying all phenotypic plasticity and accom-
modation changes that mediate early in life effects. This is either implicit or explicit
in most if not all the chapters of this book. However, different authors have different
understandings of the term epigenetics (see below and Jablonka and Lamb 2002) and
do not necessarily incorporate into this concept the same range of molecular
mechanisms. Although this diversity of meanings and spans of the epigenetic
concept constitutes its richness, a bit like this is the case for the biological concepts
of fitness or information, it is nonetheless necessary to clarify the various under-
standings of this concept to avoid misunderstandings on its role in early in life
effects. In this chapter, I adopt an historical perspective to identify the two major
categories of understandings of the term epigenetics. I further propose two comple-
mentary understandings, one of which might be particularly useful for
eco-evolutionary approaches, and one stressing the unifying deep molecular nature
of all epigenetic processes.

The term epigenetics has a long history during which its general meaning
changed. In biology, the term was popularized by Conrad Waddington in the context
of genetic assimilation (see glossary and Waddington 1939, 1942). Note, however,
that at that time the term genetic was not DNA sequence based and meant anything
inherited (see Glossary). For Waddington, the term epigenetics highlighted the role
of epigenesis (development) in phenotype formation. It encompassed all the causal
processes of development occurring beyond the sole effect of genes (see also
Jablonka and Lamb 2002; Van Speybroeck 2002; Haig 2004; Felsenfeld 2014;
Nicoglou and Merlin 2017). For Waddington the term epigenetics had the potential
to reconcile epigenesis, genetics, and evolution (Richards 2006; Nicoglou 2018). At
that time, it did not necessarily focus on molecular mechanisms. Since that era, the
meaning of the term epigenetics has gradually moved away from the original
Waddingtonian motivation to become more and more molecular (Jablonka and
Lamb 2002; Richards 2006; Bird 2007; Table 2 in Skinner et al. 2010) with a
meaning now equivalent to “epi (above and by extension beyond)–genetics.”

This trend accelerated with the development of high throughput sequencing at the
turn of the millennium. These fantastic technological developments made it clear
that the complexity of living organisms could not be fully explained by the sole
information encoded into the DNA sequence of coding genes (Jablonka et al. 1998;
Maher 2008; review in Danchin et al. 2019b). It appeared that even the most refined
description of genetic variation could not fully explain the measured inheritance of
the concerned trait in populational or epidemiological studies. This fostered a debate
about the existence of missing heritability and its causes (Maher 2008; Danchin
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2013; Bourrat et al. 2017; Bourrat and Lu 2017). As a consequence, today, many
authors agree that the idea that inheritance mainly, if not exclusively, rests on the
transmission of DNA sequence (i.e., the sequencic vision of inheritance, see Glos-
sary), needs to be revisited and extended (e.g., Muller 2007; Pigliucci 2007;
Pigliucci 2009; Helanterä and Uller 2010; Pigliucci and Müller 2010, reviews in
Danchin et al. 2011; Bonduriansky 2012; Mesoudi et al. 2013; Laland et al. 2015;
Huneman and Whalsh 2017; Lu and Bourrat 2017; Merlin and Riboli-Sasco 2017;
Muller 2017; Uller and Helanterä 2017; Wang et al. 2017; Bonduriansky and Day
2018; Danchin et al. 2019b).

Today, a generic definition is that epigenetics encompasses the various molecular
bearers of information that are independent from that engraved into the DNA
sequence of nucleotides (Heard and Martienssen 2014). It usually includes three
categories of mechanisms, namely (i) chemical change in the DNA (methylation,
acetylation), (ii) histone modifications and substitutions, and (iii) the evermore
prominent role of small non-coding RNAs (Brinkman and Stunnenberg 2008; Khalil
and Wahlestedt 2008; Skinner et al. 2010; Mazzio and Soliman 2012; Chen et al.
2016b; Tollefsbol 2017; Wang et al. 2017; Danchin et al. 2019b).

Furthermore, the history of epigenetics interacts with that of non-genetic inher-
itance, which encompasses all inclusively heritable information that is not encoded
into the DNA but that nonetheless participates to parent–offspring resemblance,
i.e. to heredity. This field, that emerged as a central domain of evolutionary biology
during the last decades, plays a major role in the study of early in life effects as many
forms of biological memory—beyond DNA sequence—participate to these effects,
and need to be incorporated into our analysis of heredity.

In this context, while the molecular basis of epigenetics is relatively well inves-
tigated, their ecological and evolutionary implications are less explored despite
Waddington’s and followers’ claims about their evolutionary importance (e.g.,
Waddington 1953b, 1959). Usually epigenetic processes are viewed as having
evolved with multicellularity for cell differentiation (Willbanks et al. 2016). How-
ever, epigenetic processes are probably much more ancient because they exist in
bacteria and unicellular eukaryotes (Jablonka and Lamb 2005) where they play a role
in adaptation to the environment (Brooks et al. 2011), and possibly in immunity
against the most common parasite of those organisms, namely pieces of DNA
(Jablonka and Lamb 2005).

Here, I review the various understandings of the term epigenetics with a historical
and conceptual perspective. In doing so, I briefly describe how epigenetic states
often constitute a transgenerational form of biological memory that can play a major
role in adaptation to environmental change and more generally in biology, particu-
larly when activated early in life (see also a suit of reviews among which Jablonka
and Lamb 1989, 1995, 2005; Jablonka et al. 1998; Jablonka and Raz 2009; Wang
et al. 2017; Bonduriansky and Day 2018; Danchin et al. 2019b). I then propose a
generic definition of epigenetics centered on its most basic characteristics. Based on
previous observations that the meaning of epigenetics often covers a broader spec-
trum of processes (Jablonka and Lamb 2002), I finally propose a third understanding
(the inclusive understanding) of epigenetics that places early in life effects at the
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heart of evolutionary processes and that should be particularly relevant to ecological
and evolutionary studies. I argue that epigenetics needs to become an important
theme of research in all domains of biology. Using an objective methodology, I then
classify a sample of more than 50 published definitions of epigenetics into the
developmental (itself with two sub-categories) and the evolutionary understanding
of epigenetics. I also define a category encompassing all ambiguous definitions
making it impossible to attribute them to one of the two classical categories. I finally
discuss some of the applications of the new proposed understanding of epigenetics.

1.2 The Developmental Understanding of Epigenetics

Although almost all cells within a multicellular organism have the same sequencic
information, they nonetheless exhibit contrasting phenotypes, such as neurons, bone,
liver, skin, or lung cells. For instance, a human body contains about 200 different cell
types. Furthermore, these characteristics are highly stable as differentiated cells
almost exclusively produce daughter cells of the same type, thus generating lineages
of same-type-cells. This raises the enigma of how such cell differentiation can occur.
When, in the 1930s, Waddington used and defined the adjective epigenetic, his
purpose was to answer that specific question.

In the 1950s, David Nanney (Nanney 1958) proposed a theoretical hypothesis. He
suggested that the same genotype could be associated with different phenotypes
because of the activity of mitotically stable “epigenetic control systems” regulating
gene expression, a phenomenon today called “cellular memory,” which is central to
development and life. Nanney thought that most epigenetic control systems were
situated in the cytoplasm, while today, we know that such variation in gene expres-
sion among cell lineages results from factors acting mainly, but not exclusively,
within the nucleus.

The 1960s and 1970s saw a further connection between molecular epigenetics
and cellular differentiation with the documentation of the link between chromatin
state (heterochromatin and euchromatin) and gene expression, and the discovery of
how the DNA is structured in nucleosomes. In 1975, two teams independently
proposed that chemical modifications of the DNA (such as DNA methylation)
may associate with gene expression (Riggs 1975; Pugh and Holliday 1978). For
them, the DNA methylation patterns were “heritable” (i.e., copied in mitosis),
potentially explaining cellular memory. The connection with epigenetics appeared
a few years later in Holliday’s paper on carcinogenesis (Holliday 1979). Pugh and
Holliday had previously commented the debate on whether carcinogenesis has a
mutational or epigenetic basis (Pugh and Holliday 1978). They suggested that “the
methylated state of particular DNA sequences could stably control gene expression”
as during development. Therefore, changes in gene expression following a mutation
may not result from a mutation per se, but from the resulting epigenetic changes that
in turn provoke a stable change in gene expression (Pugh and Holliday 1978).
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The study of histone modifications and DNA methylation only converged in the
1990s (Deichmann 2016), and Holliday also specified his definition of epigenetics,
including (i) changes in gene expression among differentiated cells and (ii) the
transmission of these changes during mitosis (and possibly meiosis (Holliday
1994)). Finally, a general definition of epigenetics at the molecular and cellular
level emerged as “the study of mitotically and/or meiotically heritable changes in
gene function that cannot be explained by changes in DNA sequence” (p. 1 in Russo
et al. 1996) [Note, however, that at that time, they used the term “meiotically
heritable change”, while it is now known that this is not always the case (Heard
and Martienssen 2014), making the term “meiotic” rather inappropriate as epigenetic
information may bypass meiosis]. That definition had three major features: (1) cel-
lular memory enabled through mitotic and/or meiotic cell divisions; (2) the effect
produced on gene expression; (3) changes do not involve DNA sequence mutations.
Today, that definition still constitutes a generic template to most definitions of
epigenetics.

However, the reference to cellular memory currently tends to loosen. For
instance, with histone chemical modifications and the role of small non-coding
RNAs, the term epigenetics has been used to refer to any modification other than
change in DNA sequence affecting gene expression, whether those modifications are
stable or not during cellular divisions. Thus, while cellular memory is central for
development, it is sometimes considered as secondary for epigenetics, leading to
incorporate into epigenetics any temporary variation that is not of sequencic origin.

In conclusion, the developmental understanding of epigenetics focuses on infra-
individual processes (see Glossary) and traditionally mainly concerns complex
multicellular organisms, although today the field also incorporates unicellular organ-
isms. In this understanding, epigenetics refers to chromatin modification, DNA
methylation, acetylation and other histone chemical modifications, small
non-coding RNAs and the way they stably influence gene expression. Today, this
understanding of epigenetics mostly looks at molecular marks and signals that affect
cellular phenotypes within an organism, thus neglecting physiological aspects, such
as metabolism and physico-chemical reactions at higher levels of organization (cell,
tissue, and organism).

1.3 The Evolutionary Understanding of Epigenetics

The second major understanding of epigenetics is “the evolutionary understanding”
that integrates epigenetics into the study of inheritance and evolution. Its premises
are to be found in evolutionary developmental biology (Evo-Devo). However,
although the initial goal of Evo-Devo was to integrate the role of development as a
major component of adaptation and evolution, it never achieved that goal because it
mainly reduced the Evo part to the accounting of the sequencic information into the
study of development. In this sense, Evo-Devo is an important part of the Modern
Synthesis of Evolution.
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The evolutionary understanding of epigenetics really emerged following the
discovery that some recently acquired plastic responses can persist
intergenerationally, correlatively with epigenetic marks, implying that some epige-
netic marks can somehow percolate across generations and participate to heredity.
Historically, the concept of epigenetic inheritance states that some chromatin mod-
ifications affecting gene expression can be highly stable not only across mitosis, but
also across the reproduction of multicellular organisms, potentially being maintained
across many generations (Holliday 1994; Russo et al. 1996; Skinner 2011b). In
effect, some epigenetic marks persist across generations of cells during development
of multicellular organisms. This is why mother and daughter cells are of the same
type (such mitotic stability is sometimes called “heritability,” e.g., Skinner 2011b).
The link with inheritance clearly emerged following the discovery that these strin-
gent properties of persistence at the infra-individual level sometimes percolate across
generations and thus participate to inheritance of multicellular organisms (reviews
Mameli 2004, sometimes, surprisingly, over more than 80 generations Vastenhouw
et al. 2006; Bonduriansky and Day 2009; Danchin and Wagner 2010; Pigliucci and
Müller 2010; Danchin et al. 2011; Bonduriansky 2012; Danchin 2013; or 25 gener-
ations Devanapally et al. 2015; Chen et al. 2016a; Wang et al. 2017; Danchin et al.
2019b). Therefore, the focus of many biologists progressively shifted from the study
of epigenetics in development to the role of epigenetics in evolution. This second
understanding rests on the same mechanisms as the developmental understanding,
but differs from it mainly in its ultimate target, namely inheritance and evolution
rather than development.

Today, it is becoming more and more accepted that transgenerational epigenetic
states can participate to parent–offspring resemblance (i.e., to heredity), in a form of
epigenetic intergenerational inheritance, with all its evolutionary implications
(Danchin et al. 2011; Grossniklaus et al. 2013; recent reviews in Jablonka 2013;
Norouzitallab et al. 2014; Singh et al. 2014; Szyf 2014; Bohacek and Mansuy 2015;
Wang et al. 2017; Danchin et al. 2019a, b). Evidence keeps on accruing at a fast pace
(Devanapally et al. 2015; Sharma 2015; Szyf 2015; Tricker 2015; Chen et al. 2016a;
Sharma et al. 2016), fostering the emergence of a new domain of epigenetics
studying the role of epigenetics in heredity and evolution. Consequently, the main-
stream vision of evolution (i.e., the Modern Synthesis of Evolution) that mainly, if
not exclusively, considers DNA sequence variation as the sole source of heritable
variation (i.e., parent–offspring resemblance), needs to be revised in order to incor-
porate the epigenetic source of heritable variation (Pennisi 2008; Pigliucci and
Müller 2010; Laland et al. 2014, 2015).

In this context, more and more studies now focus on mechanisms of epigenetic
inheritance and their potential evolutionary consequences (e.g., West-Eberhard
2003; Bonduriansky and Day 2009; Bonduriansky 2012; Geoghegan and Spencer
2012; Grossniklaus et al. 2013). An increasing number of authors, among which Eva
Jablonka and collaborators, started to call for an evolutionary understanding of
epigenetics (Jablonka and Lamb 1989, 1995, 2005; Jablonka and Raz 2009;
Pigliucci and Müller 2010; Jablonka and Lamm 2011; Jablonka 2013; Huneman
and Whalsh 2017). In this context, Jablonka and followers claim that epigenetic
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transmission across generations of organisms challenges the traditional evolutionary
theory, and calls for an Extended Evolutionary Synthesis (Pigliucci and Müller
2010; Laland et al. 2015).

To sum up, the evolutionary understanding of epigenetics, beautifully illustrated
in Jablonka’s work, although mainly relying on the infra-individual developmental
approaches nonetheless goes beyond the lifecycle of individual organisms by tack-
ling issues linked to epigenetic stability. In doing so, it sets the stage for the study of
the consequences of epigenetics in evolution. However, this evolutionary under-
standing does not explicitly incorporate the wealth of populational concepts coming
from disciplines, such as behavioral ecology, population dynamics, population and
quantitative genetics into epigenetic studies (Danchin and Pocheville 2014). In other
words, the evolutionary understanding of epigenetics has not really tackled the
question of how epigenetic stability quantitatively translates into epigenetic inheri-
tance, and its consequences at the supra-individual level (see Glossary). Further-
more, by focusing on the molecular basis of epigenetics (belonging to the infra-
individual level approach), the evolutionary understanding of epigenetics may
ignore non-molecular transmission modes, such as cultural and ecological inheri-
tance. While the idea that epigenetic states can be passed on across generations
emerged from the epigenetic literature, the extent to which this participates to
inclusive heritability (see Glossary) and evolution has not been explicitly investi-
gated yet. Such questions are particularly relevant to evaluate the evolutionary
potential of epigenetic inheritance, and, more generally, how natural populations
respond to selection. This suggests that we still need a more ambitious definition of
epigenetics.

1.4 The Deep Nature of Epigenetics Under These Two
Understandings

These two modern understandings of epigenetics rest on the same set of three major
molecular mechanisms, namely (1) chemical change in the DNA (methylation,
acetylation), (2) histone modifications, and (3) the role of small non-coding RNAs.
While the two first processes directly produce changes in the DNA packaging within
the cell nucleus, the third one constitutes more a media allowing part of an organism
to affect gene expression within other parts of the body (soma and/or germline), thus
mimicking hormones (Danchin et al. 2019a).
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1.4.1 The Four Major Timescales of DNA Packaging
Affecting Gene Expression

In effect, altogether, these processes modify the closing or opening of the chromatin
(that is the packaging of the DNA molecule) of specific portions of the genome,
which in turn affects the accessibility of the DNA sequence to the molecular
machinery of gene expression. In other words, they change the 3D structure of the
DNA. The resulting changes in gene expression are active at four very different time
scales ranging from seconds up to hundreds and potentially thousands of generations
or more, and that, as far as we know, are orthogonal to the three types of molecular
mechanisms summarized in the previous paragraph. These contrasted timescales are:

• On the short-term, these processes fine-tune gene expression to accompany
everyday cell metabolism in a transitory way.

• On the mid-term, they affect gene expression up to over the whole life of an
organism in order to allow cell differentiation (development), as well as acclima-
tion to current environmental conditions (plasticity). This is also the main time-
scale of early in life effects.

• On the long-term, they participate to inheritance in multicellular organisms, a
process that emerges from some of the mid-term epigenetic processes including
early in life effects.

• On the very long term of hundreds and thousands of generations, they may also
facilitate the sequencic engraving of the corresponding adaptations (Danchin
et al. 2019b).

Today, we still do not know the mechanisms responsible for such big differences
in stability. The developmental and the evolutionary understandings of epigenetics
only concern mid- and long-term processes, respectively, in that they both stress the
importance of the stability of changes in DNA packaging. These two understandings
thus mainly differ in their temporal scales. The developmental understanding focuses
on intra-individual processes at the mid-term scale, while the evolutionary under-
standing concerns the larger timescale of transgenerational processes.

1.4.2 A Parallel with the Study of Proteins

Concerning the information carried out by the DNA molecule, there is an interesting
parallel to be drawn with the study of proteins. After spending much energy in
studying protein amino acid sequences, it appeared that their functional properties
mostly result from their general shape. The latter is indeed influenced by the
sequence of amino acids (called the primary structure), but also by the way the
amino acid chain folds into a spiral (secondary structure), and at a larger scale by the
way that spiral folds into its 3D shape (tertiary structure). Although the sequence of
amino acids strongly influences protein shape, other factors determine the final 3D
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structure of the resulting protein, and thus their biological function. In particular,
environmental stresses can affect proteins’ 3D shape, so that a given amino acid
chain can lead to different shapes, some that are biologically functional and others
that are not. Prion diseases are disorders that result from protein misfolding follow-
ing environmental stress. These diseases result from the capacity of prions to serve as
the ill-folding template for similar proteins leading to the propagation of their ill
shape and their accumulation. Chaperon proteins—specific proteins that help
maintaining other proteins in their functional shape—protect against such disorders,
particularly after specific stresses such as heat shocks.

The same holds for DNA, in which the sequence provides some information, but
the 3D structure ensures that information is used at the right place and at right time.
Thus, ignoring the 3D structure of the DNA—which is the essence of the sequencic
vision of DNA information—cannot allow us to understand life in all its complexity,
and would be comparable to only studying protein amino acid sequences to under-
stand their functions, which would lead us to misunderstand a good deal of their
basic roles in life.

Nonetheless, as I do here and in my previous papers, I recommend to clearly
separate the sequencic from the 3D components of the information carried out by the
DNA molecule because they have drastically different properties and therefore play
contrasting but complementary roles in evolution (Danchin et al. 2019a). The central
point is that we should not forget the importance of these two components, genetics
and epigenetics, in accommodation, inheritance, adaptation, and evolution.

1.4.3 Epigenetics: The Science of the 3D or Even 4D
Structure of DNA

The above two main understandings of epigenetics are unified by the fact that they
stress the importance of the 3D structure of the DNA molecule in metabolism,
development, and evolution, beyond its sequencic information. A unifying definition
of epigenetics can thus be that it is the science of DNA 3D structure that is stable
enough to persist across mitosis or generations.

In fact, we can go beyond that 3D definition by incorporating the temporal
dynamics of gene expression as a major fourth dimension of epigenetics. Indeed,
the translation of mRNAs into proteins is strongly regulated by a range of factors,
some of which are under environmental control.

A first factor involves synonymous codons. The genetic code is redundant in the
sense that many amino acids can be coded by several “synonymous” codons.
However, for a given organism, one of these codons is predominantly used to encode
a given amino acid, the other codons being much rarer (this is the codon usage bias,
Frumkin et al. 2018; Yang et al. 2019). Rare synonymous codons significantly affect
the function of the concerned protein in slowing down, or even stopping prema-
turely, the translation of mRNA into protein in the ribosomes (Yang et al. 2019).
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Rare codons can also influence the resulting folding of proteins, hence affecting their
biological function. As a result, the protein is not produced at the right time to fulfill
its function. For example, in Escherichia coli, disruption of the kinetics of synthesis
of a highly expressed protein induced by a rare synonymous codon can decrease the
efficiency of translation and reduce the bacterium’s fitness (Frumkin et al. 2018).
Thus, although synonymous codons code for the same protein sequence, the dynam-
ics of protein synthesis may affect their biological function, thus introducing another
source of phenotypic variation. This highlights the importance of the kinetics of
protein synthesis and the fact that different kinetics generate variation due not to the
3D shape of the DNA, but to the fourth dimension of the dynamics of protein
synthesis.

Furthermore, the regulation and efficiency of the translation of mRNAs into
protein is also strongly influenced by numerous environmentally induced modifica-
tions of mRNAs or tRNAs that, by affecting the initiation of translation and the
dynamics of codon–anticodon interactions, accelerate, stop, or slow down protein
synthesis, thus affecting the phenotype [for modifications of tRNAs or mRNA, see
Leppek et al. (2018); Ranjan and Leidel (2019), respectively]. The resulting varia-
tions in kinetics can affect the phenotype and, in particular, the health of organisms.

Many of such changes are influenced by environmental stresses (Leppek et al.
2018; Ranjan and Leidel 2019), and participate to phenotypic plasticity, producing
variation in functional gene expression that is independent of sequencic variation. If
these effects are transmitted during mitosis or between generations of multicellular
organisms, they would belong to epigenetics. I do not know papers reporting the
transmission of mRNA translation regulatory states during mitosis or between
generations. However, this absence may only reveal the fact that these processes
have been described too recently. The large international project on the dynamics of
genome conformation in space and time (3D and 4D) might show that some of these
processes are transmitted either in mitosis or across generations (Dekker et al. 2017).

Anticipating such discoveries, I propose a more complete definition focusing on
the functional nature of epigenetics, which would be the science of the 3D, or even
4D, structure of the DNA that is stable enough to persist across mitosis or gener-
ations of multicellular organisms beyond sequencic. This definition of course
includes all the 3D aspects related to the shape of nucleic acids within chromatin,
but also all the components of the dynamics of gene expression itself, which, via its
effects on the efficiency of gene translation, can influence phenotypic fitness.

This unified vision of epigenetics is in fact at the heart of several non-genetic
inheritance systems. It is also at the heart of the study of early in life effects and of
precision (or individualized) medicine. We can even envision the chromatin as a
kind of gigantic prion as not only the DNA sequence is transmitted but also a
significant part of its 4D structure.

This unified vision of epigenetics claims that the sequencic vision of life, by
focusing only on sequence information, has made us blind to the information
encoded into the 3D and 4D structure of the DNA. The sequencic vision of
inheritance in effect led us to discard part of inheritance processes on the sole
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basis of the fact that it is not engraved into the DNA sequence (Danchin et al. 2011;
Danchin 2013).

1.5 The Inclusive Understanding of Epigenetics

The above-unified definition of epigenetics constitutes a step forward toward the
integration of epigenetics within the Extended Evolutionary Synthesis (e.g.,
Pigliucci 2007; Pigliucci and Müller 2010; Huneman and Whalsh 2017; Muller
2017; Bonduriansky and Day 2018). However, I think that this constitutes only a
first step in the necessary modernization of the Modern Synthesis of Evolution (see,
for instance, Danchin et al. 2019a). I now discuss the necessity to go farther by
transposing concepts of epigenetics into eco-evolutionary studies, and vice versa,
which implies the use of a fourth understanding of epigenetics based on a general-
ized meaning of epigenetics, integrating all forms of non-genetic inheritance into the
study of eco-evolutionary dynamics. Such a definition puts early in life effects at the
center of the concept of epigenetics. In doing so, I follow and amplify the approach
of previous authors such as Jablonka and Lamb who had already observed that “the
examination of recent books and articles with epigenetics in their titles show that the
scope of the subject is far less narrow than some current definitions suggest”
(Jablonka and Lamb 2002). My aim here is to confirm this state of affairs by fully
endorsing the implicit and more or less unacknowledged existence of this very
general vision of epigenetics, which proves to be particularly well suited to medical,
ecological, and evolutionary studies.

1.5.1 Injecting Eco-Evolutionary Concepts into Epigenetics

The scale change from infra- to supra-individual biology that I have been advocating
implies injecting processes relevant at the scale of individuals, populations, and
ecosystems into the definition of epigenetics. For that goal, a populational concept
such as inclusive heritability (with its sequencic and non-sequencic components, the
latter including early in life effects) is particularly relevant for several reasons
(Danchin and Pocheville 2014; Pocheville and Danchin 2015).

First, when Darwin talked of heredity (see Glossary and Danchin and Wagner
2010; Danchin et al. 2011, 2019a) in saying that, “Any variation which is not
inherited is unimportant for us” (p. 12 in Darwin 1859), he had an all-inclusive
vision of inheritance, and claimed that what we now call inclusive heritability is
central to evolution by natural selection. In modern language, the above quote can be
rephrased in “for a trait to evolve by selection (whether natural, artificial or drift) it
must be inclusively heritable, i.e. offspring must resemble their parents.” This
statement is independent from the mechanisms underlying resemblance. What
matters is that a value of a trait be stable transgenerationally. Thus, the concept of
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heritability is keystone in any evolutionary synthesis, and initially (i.e., at the time of
Darwin) incorporated what we now call epigenetic inheritance alongside with many
other processes that we are currently rediscovering, such as cultural and ecological
inheritance.

Second, the fact that the concept of ‘heritability’ has been used (see Table 1.1)
both in infra- and supra-individual approaches suggests that it has some relevance to
both domains (Danchin and Pocheville 2014; Pocheville and Danchin 2015).
Although historically developed at the population level (supra-individual), the
concept of heritability thus appears to have some relevance to study the molecular
basis of parent–offspring resemblance (infra-individual). In this sense, the concept of
heritability (including its epigenetic component, as well as all other processes of
parent–offspring resemblance) has the potential to bridge the infra- and supra-
individual approaches, the latter concerning ecologists, as well as population and
evolutionary biologists (Danchin and Pocheville 2014; Pocheville and Danchin
2015).

Third, confronting the sequencic and populational approaches of heritability
revealed an inconvenient but interesting discrepancy between these two approaches.
At the sequencic level, the most fine-grained descriptions of within-population
genetic variation [sometimes involving millions of Single Nucleotide Polymor-
phisms (SNPs) in what is usually called Genome Wide Association Studies or
GWAS] led to estimates of genetic heritability that were surprisingly low relative
to the estimates calculated for the same trait at the populational level in ecology or
epidemiology (i.e., the supra-individual level). This recurrent formidable discrep-
ancy, which has been dubbed “missing heritability” (Maher 2008), raised consider-
able debates. To illustrate the intensity of the ongoing debates, while the expression
“missing heritability” first appeared in 2008, searching for that term produced 1849
hits on the web of knowledge, and 19,100 hits in Google Scholar (Fig. 1.1). Missing
heritability strongly suggests that the weight of non-genetic inheritance might be
much higher than usually anticipated as the observed discrepancy may be partly
because populational estimates of heritability in effect capture a good deal of
non-genetic inheritance effects (Danchin 2013, Bourrat et al. 2017, Bourrat and Lu
2017).

Fourth, a striking characteristic of many identified mechanisms of non-genetic
inheritance (reviews in Mameli 2004; Danchin et al. 2004, 2011, 2019b;
Bonduriansky and Day 2009; Danchin and Wagner 2010; Pigliucci and Müller
2010; Bonduriansky 2012; Danchin 2013; Wang et al. 2017) is that they involve
molecular processes classically viewed as developmental processes. For instance,
epigenetics constitutes a major developmental hub in that resemblance involves
transmitted epigenetic changes (which in turn can affect the stability of the DNA
sequence, Danchin et al. 2019b). Similarly, social learning is a developmental
process potentially leading to cultural transmission and parent–offspring resem-
blance under some specific conditions (Danchin et al. 2018). This underlines the
existence of a continuum between infra- and supra-individual processes.

Fifth, many non-genetic processes of inheritance result from strong early in life
effects, to the point that it might well be that the earlier in life an effect occurs, the
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Table 1.1 From more than fifty to five shades of epigenetic gray to only five shades. A list of more
than 50 definitions of epigenetics from the literature, including two new definitions. This constitutes a
small subsample of existing definitions (others can be found in Jablonka and Lamb 2002). All texts in
the definition column are quotes. The classification is based only on the terms found in the definition of
epigenetics, independently form the context and goals of the concerned study. Definitions are grouped
according to the method described in the text, and chronologically within groups. Terms like
“heritable,” “inheritance,” “stable,” or “perpetuate” often appear in definitions without specifying
the timescale of the stability. Under the first understanding of along-asexual-cell-lineages, the defini-
tion should be classified as “Developmental definitions 2.” Under the second understanding of along-
generations-of-sexually-reproducing-organisms, it would be classified as “Evolutionary.” All such
ambiguous definitions are grouped under the Ambiguous group, and ambiguous term is underlined.
Legend of shades of gray: D1 in grayish white: Group of Developmental definitions 1; D2 in light
gray: Group of Developmental definitions 2; A in light gray: Group of Ambiguous definitions; E in
dark gray: Group 2 of Evolutionary definitions; I in black: Group of Inclusive definitions

(continued)
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Table 1.1 (continued)
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more likely it will be transmitted to subsequent generations and hence participate to
inclusive heritability. This is, however, an entirely unexplored domain of the study
of early in life effects.

All these characteristics make heritability (here understood in its inclusive mean-
ing) particularly suitable for bridging properties at the infra-individual level with
supra-individual processes (Danchin and Pocheville 2014; Pocheville and Danchin
2015). As epigenetics has emerged as a major mechanism of inheritance contributing
to heritability, I now propose a definition of epigenetics that incorporates all the
dimensions of inheritance beyond sequencic, which I call the inclusive understand-
ing of epigenetics, with the goal of facilitating the merging with concepts used by
ecologists and evolutionary biologists.

1.5.2 An Inclusive Definition of Epigenetics

In this context, an inclusive definition of epigenetics explicitly designed to help
integrating the infra- with supra-individual levels could be all the information
bearers and processes of phenotypic variation (often generated by environmentally
driven variation in gene expression) that participate to parent–offspring

Table 1.1 (continued)
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resemblance (i.e. that are inclusively heritable) and that are not due to DNA
nucleotidic sequence variation in the germline.

This understanding is much broader than the two previous ones. It incorporates
the three classical molecular mechanisms of (i) chemical DNA modifications,
(ii) histone modifications, and (iii) the role of micro RNAs (Chen et al. 2016b;
Tollefsbol 2017; Wang et al. 2017; Danchin et al. 2019a, b). It also incorporates all
heritable processes of phenotypic variation usually ignored in this context, such as
prions and chaperon molecules that constitute other forms of molecular memory
(Halfmann and Lindquist 2010; Lindquist 2011; Halfmann et al. 2012; Saibil 2013;
Manjrekar 2017; Newby et al. 2017), cytoplasmic inheritance (reviewed in
Bonduriansky and Day 2018), parental effects (review in Danchin et al. 2011),
ecological inheritance (Odling-Smee 1988, 2010; Odling-Smee et al. 2003;
Odling-Smee and Laland 2011), cultural inheritance (van Schaik et al. 2003; Krutzen
et al. 2005; Whiten et al. 2005; Whiten 2011, 2017; Whitehead 2017; Danchin et al.
2018), as well as the inheritance of the microbiota (Fellous et al. 2011).

This all-inclusive understanding encompasses all the processes that can produce
intergenerationally persistent phenotypic variation, and thus parent–offspring resem-
blance. In this sense, it matches the classical view that epigenetics encompasses any
process involved in heredity be it genetic or non-genetic. This understanding should
stimulate the study of the role of epigenetic variation in medicine, ecology, and
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evolution, as non-genetic inheritance and early in life effects are likely to affect
strongly the fate of populations at all timescales. Bridging “infra-individual
approaches” (molecular biology, development, physiology, neurobiology, to which
the two previous understandings belong) with “supra-individual approaches”
(behavior, demography, population genetics, ecology, and evolution) is in itself a
big challenge. As a matter of fact, we need to acknowledge that there is an
unnecessarily sharp border between these vast domains of biology (Danchin and
Pocheville 2014; Pocheville and Danchin 2015), with the effect of forbidding any
integration along the continuum from molecules to ecosystems. My goal is to make
this border more permeable by unifying development and physiology with popula-
tion dynamics in an ecological and evolutionary perspective to allow infra-individual
studies to meet evolution (Danchin and Pocheville 2014; Pocheville and Danchin
2015). In this way, my hope is that it can help building bridges toward the Inclusive
Evolutionary Synthesis, which I briefly describe in the next section.

1.5.3 We Need an Inclusive Rather than Only an Extended
Evolutionary Synthesis

Adopting this fourth understanding of epigenetics can help going beyond the simple
extension of the Modern Synthesis of Evolution (called the Extended Evolutionary
Synthesis) that in effect only incorporates epigenetics in its developmental and
evolutionary understandings (Pigliucci 2007, 2009; Pigliucci and Müller 2010;
Danchin et al. 2011; Mesoudi et al. 2013; Laland et al. 2015; Muller 2017;
Bonduriansky and Day 2018; Lu and Bourrat 2018), thus forbidding us from
integrating all known mechanisms of inheritance into an “Inclusive Evolutionary
Synthesis” (see Glossary; Danchin 2013; Cortez et al. 2017; Pocheville and Danchin
2017; Burunat 2019; Danchin et al. 2019a, b).

The inclusive understanding of epigenetics that I propose here, aims at
connecting all fields of biology for a broader synthesis going beyond the sole
sequencic component of inheritance to integrate all dimensions of heredity. All
domains of biology are concerned as “Nothing in Biology Makes Sense Except in
the Light of Evolution” (Dobzhansky 1973). Only such an integrative synthesis can
allow us to understand and predict dynamical processes of interaction among
individuals within populations, communities, and ecosystems at the ecological and
evolutionary scales. I have qualified this ambitious new synthesis with the word
Inclusive (Danchin and Wagner 2010; Danchin 2013; Danchin et al. 2011, 2019a, b)
instead of Extended for the same reason as those that lead me to propose an inclusive
definition of epigenetics. In effect, just adding one of the identified mechanisms of
non-genetic inheritance (most likely epigenetics because of its molecular nature)
would fully justify the word “extended,” while the word “inclusive” would demand
the inclusion of all known dimensions of inheritance. The expression Inclusive
Evolutionary Synthesis thus flags that “all-inclusive” ambition in order to
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incorporate all known processes of inheritance into the evolutionary theory of the
twenty-first century. In other words, if we are to modernize the Modern Synthesis,
we should do it thoroughly.

Finally, it is important to restate that, as Einstein did not invalidate Newton, the
Inclusive Evolutionary Synthesis that we are currently building does not invalidate
the current Modern Synthesis, but rather builds on it and broadens it in order to
incorporate all processes of inheritance and hopefully all major characteristics of life
into a unifying conception of biology.

1.6 A Practical Taxonomy of Epigenetics

I now propose a straightforward and easy to use classification of definitions that I
suggest may help clarifying concepts of epigenetics for the various fields of biology
in everyday research. With that goal, I purposely focus on the actual words of
definitions, while ignoring the actual context in which the authors of these defini-
tions worked. The resulting taxonomy is partly orthogonal and partly overlapping
with the understandings developed above. This is a provocative approach revealing
interesting discrepancies between the definition used and the actual goal of the
approach of the corresponding research teams.

1.6.1 Principles of the Classification

Table 1.1 proposes a five-level classification only focusing on the current meaning of
the terms of the definition itself and independently from the context in which each
definition was produced and used. Group D1 are developmental definitions that do
not specify that the concerned phenotypic variation among cells is transmitted during
mitosis. Such definitions thus incorporate transitory changes in gene expression that
participate to everyday cell metabolism. Group D2 are developmental definitions
that incorporate the necessity that the epigenetic states are transmitted across cell
generations (i.e., through mitosis). Groups D1 and D2 make a meta-group of
developmental definitions, the latter being more complete. Group A encompasses
definitions that are ambiguous because they do not specify whether the stability of
epigenetic stages only concerns mitosis (in which case they would belong to the D2
category), or also implies a stability during the reproduction of multicellular organ-
isms (in which case they would belong to group E). In Table 1.1, I underline the term
(s) that is(are) ambiguous. Group E definitions add the criterion of stability of
epigenetic marks across reproduction of multicellular organisms. This implies that
epigenetic marks either can escape the waves of demethylation re-methylation
occurring at meiosis and fertilization, or be reconstructed at every generation. I
avoid the term “meiotic” because there are fascinating examples in which epigenetic
information does not persist through meiosis but is added de novo later during

22 E. Danchin



gamete maturation. For instance, the transmission of acquired diabetes (Type II
diabetes) to offspring involves specific small non-coding RNAs injected into matur-
ing sperm cells during their transfer through the epididymis (Chen et al. 2016a;
Sharma et al. 2016). Group I correspond to the inclusive understanding of epige-
netics proposed above. It is much broader than other definitions, and is particularly
suited for ecologists to integrate all inclusively heritable causes of phenotypic
variation be they genetic or not.

1.6.2 Applying this Taxonomy

Applying this logic to a sample of definitions highlights interesting discrepancies
between the definition used and the ultimate goal of the corresponding studies
(Table 1.1). All classifications have their pros and cons. To be efficient, however,
a classification should be straightforward and minimize ambiguity. However, min-
imizing ambiguity often does not eliminate all ambiguities, as in the classification of
Table 1.1, where ambiguities lie in the frequent use of the concept of heritability
without specifying the time scale involved. The term heritability comes from
evolutionary ecology and quantifies the statistical link between phenotypic similarity
and the degree of kinship between pairs of individuals, usually measured as the
coefficient of genetic relatedness. Nonetheless, the same term (as well as other terms
such as inheritance, heredity, phenotypic stability, or perpetuation of variation) often
qualifies cellular stability or memory, i.e. the fact that within a multicellular organ-
ism a cell of a given phenotype mitotically produces daughter cells of the same
phenotype (Skinner 2011a). In itself, transposing the concept of heritability to cell
lineages is not problematic when the term is qualified with a term such as “mitoti-
cally” or “meiotically” because this specifies the time scale of the concerned
stability. However, using these terms without such qualifications makes them
ambiguous (concerned definitions make a specific category in Table 1.1 where the
ambiguous terms are underlined).

The discrepancies between the above historically driven parts and Table 1.1 stem
from the fact when discussing the understandings above, I gave more weight to the
scientific, conceptual, and historical context, while the classification reported in
Table 1.1 is based only on the actual terms of the definition and nothing else. The
resulting discrepancies suggest that scientists often adopt definitions that are not the
most suitable for their specific approach, potentially generating some ambiguities. It
is thus central for ecologists to adopt a definition of epigenetics that is adapted to
their level of analysis, namely that of individuals within populations and ecosystems.
I thus suggest that ecologists should use the inclusive definition of epigenetics
proposed above.
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1.6.3 Potential Applications

What can the above definitions of epigenetics bring to the different domains of
biology? First, the fact that terms change significance according to the scientific
domain is not problematic as long as the adopted definition is appropriate to the
scientific questions. My goal here was to stress the plurality of concepts of epige-
netics, in order to clarify their uses, hopefully leading scientists to use an appropriate
definition in view of their specific approach.

Second, we all have engraved in our brains a sequencic vision of inheritance. We
need to fight against this prejudice to integrate the multidimensionality of inclusively
heritable sources of variation beyond and in interaction with sequencic. In other
words, after observing that a trait is heritable, we should not limit ourselves to the
sole exploration of DNA sequence variation and explore other inclusively heritable
sources of parent–offspring resemblance.

Third, adopting an inclusive understanding of epigenetics would help avoiding
that the new evolutionary synthesis gets trapped into a purely molecular vision of
inheritance, hence ignoring important processes such as cultural inheritance that can
affect many behavioral and non-behavioral traits, such as obesity and diabetes
(Avital and Jablonka 2000; Danchin et al. 2019a, b). In effect, inheritance also
implies mechanisms, such as cultural inheritance (a major form of early in life
effects) that mainly involves learning, a process that emerges at the scale of the
brain rather than at the sole molecular level. This statement is true, despite the fact
that it is highly likely that a high proportion of non-genetic processes of inheritance
have some kind of epigenetic basis (Danchin et al. 2019b), as this is the case, for
instance, of learning (Miller and Sweatt 2007).

Fourth, accepting the inclusive understanding of epigenetics has many conse-
quences for the study of early in life effects, as some of them become inclusively
heritable after their acquisition before reproduction (among others see the many
examples reviewed in Wang et al. 2017; Danchin et al. 2019b). When early in life
effects produce parent–offspring resemblance, the risk is high that they are consid-
ered as genetic, because most of the time we do not witness the initial stress that
initiated the effect and triggered inclusively heritable variation, which can only be of
a non-sequencic nature, probably often implying some variation in epigenetic states.
Qualifying them of genetic origin may trap generations of researchers into purely
sequencic studies. For instance, we now know that the strong heritability of
ill-parental behavior in mammals including humans is due to the fact that the
mothers’ behavior constitutes a component of their pups’ environment that triggers
the emergence of epigenetic marks leading their daughters to reconstruct the same
ill-parental behavior when adults (Denenberg and Whimbey 1963; Francis et al.
1999; Champagne 2008, 2020; Curley et al. 2008). More generally, parents in any
species providing parental care constitute a major early in life component of their
offspring environment affecting their epigenetic marks and interacting with other
types of information carried out by the germline in shaping the phenotype in a
heritable way (Champagne 2020). This reasoning can be generalized to any species

24 E. Danchin



as even parents of species without parental care can shape their offspring phenotype
through non-sequencic information in their gamete. Such parental effects can be
viewed as very early in life effects. This poses that plastic responses to environmen-
tal changes can be transmitted to offspring through pathways involving early in life
effects for at least several generations, in a way that can perfectly mimic genetic
transmission when tested over a single or even a few generations (Danchin 2013).
The knowledge about the mechanisms underlying these effects opens fantastic
research avenue to define therapies to cure such ill behavior in order to stop the
vicious circle generated by this form of epigenetic inheritance in humans.

Fifth, similarly, the inclusive understanding of epigenetics has many conse-
quences for the study of adaptation. For instance, transposons that strongly interact
with epigenetics can participate to adaptation by translating phenotypic adaptation
into genetic variability, in a form of genetic assimilation (Rey et al. 2016; see also
Danchin et al. 2019b; Pimpinelli and Piacentini 2020). Furthermore, all in all the
non-genetic part of inclusively heritable information vastly expands the range of the
sources of heritable variation (e.g., genetic, epigenetic, cultural, ecological,
microbiota, prions etc.) on which selection can act. It implies that many of the
adaptations we observe in nature may be inherited at least partly through other
bearers than the DNA sequence, one of which being epigenetics in its evolutionary
understanding. Furthermore, the fact that the various inheritance systems are
suspected to influence each other (Danchin et al. 2019b) makes an inclusive
approach even more necessary, and adopting such an approach represents a consid-
erable paradigm change for ecologists in particular because it fully changes the
potential bearers of adaptation, which is at the heart of all eco-evolutionary
approaches.

Sixth, such mechanisms can strongly affect the design of conservation actions in
the context of global change with its series of directional environmental changes
(e.g., steadily increasing temperature). For instance, epigenetic variation in itself
should be considered as a component of biodiversity in a way that is similar to
sequencic variation (Rey et al. 2020). The same holds for cultural variation. Several
authors have recently argued that we should also account for cultural variation in
conservation that is made inclusively heritable by social learning (Brakes et al.
2019). For instance, after reintroduction into a habitat that remained unoccupied
for years, migratory ungulates took quite some time to rediscover migration routes
and wintering grounds (Jesmer et al. 2018). This implies that the loss of ancient
cultural knowledge adds further threats of extinction during the initial phase of
reintroduction when organisms build a new knowledge about their environment. In
other words, we should integrate all the dimensions of inclusive epigenetics into
conservation in order to protect natural populations properly.

To sum up, the inclusive understanding of epigenetics teaches us that the varia-
tion underlying many heritable traits (which are called genetic traits for that sole
reason) might be of a non-sequencic nature. This is particularly true for all inherited
early in life effects. Furthermore, the existence of epigenetically mediated inheri-
tance often involving early in life effects probably considerably increases the
adaptive capacities of populations to global change. The fact that epigenetic states
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constitute a hub in most if not all plastic responses (Danchin et al. 2019b), and that
some of these epigenetic states can be transmitted across generations may reinforce
adaptive virtuous circles or extinction vortexes.

1.7 Conclusions

The large variety of understandings of epigenetics stems from the fact that epigenetic
processes are ubiquitous in all aspects of living organisms, a high proportion of them
involving some kind of early in life effects. Therefore, it is necessary to adopt a
definition of epigenetics that is relevant to the type of research question. To fit within
this philosophy, here I propose and recommend the use of an inclusive understand-
ing of epigenetics that is particularly relevant to medical, ecological, and evolution-
ary studies, in part because that understanding can naturally encapsulate all types of
early in life effects. Furthermore, this broader vision of epigenetics is likely to help
bridging concepts of epigenetics at the infra-individual biology with those of supra-
individual biology including behavioral, populational, functional, and evolutionary
ecology, as well as medicine. To me, the merging, or full integration, of all
sub-disciplines of biology into an inclusive biology studying all processes within a
continuum from molecules to ecosystems constitutes the current major ambition for
biology. The implementation of such an Inclusive Evolutionary Synthesis that I
advocate here will occur only if members of all disciplines of biology are able to
listen to and respect the approaches of the other disciplines, which often proves to be
difficult. Furthermore, the adoption of this broader vision of life is likely to greatly
help understanding and predicting the consequences of climate change at the various
scales of individual accommodation, population dynamics and adaptation, food
webs, ecosystem and biodiversity dynamics. I am convinced that only such an
inclusive theoretical framework incorporating all available knowledge at all scales
of living systems, from molecular to ecological interactions can allow us to achieve
such an ambitious and demanding goal for the future of humanity on planet Earth.
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Glossary

Extended Evolutionary Synthesis A trend in evolutionary science, that took
momentum at the turn of the twenty-first century and that puts more emphasis
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on the role of development, environmental factors, as well as some non-genetic
forms of inheritance in the evolutionary processes (mainly if not exclusively
epigenetics in its developmental and evolutionary understandings: Pennisi 2008;
Pigliucci and Müller 2010; Laland et al. 2015; Lu and Bourrat 2017).

Genetic Here, I use this term in its most common modern sense of sequencic,
i.e. information encoded in the DNA sequence of nucleotides. Note that this
meaning is highly reductionist relative to the initial meaning that encompassed
everything that participates to heredity.

Genetic assimilation A process by which a phenotype initially induced by a
specific environmental factor, becomes genetically determined through selection.
Note that, at the time of Waddington, the term genetic meant anything that is
inherited. In particular, Waddington’s experiments did not show that the initially
plastic trait became encoded into the DNA sequence, but rather, that it lost its
plasticity and became inclusively heritable (Danchin et al. 2019b).

Heredity Patterns of parent–offspring resemblance. It is widely accepted in biology
that heredity results from parents transmitting information to their offspring,
though the nature of this information is still at the heart of a hot debate (e.g.,
Sarkar 1996; Godfrey-Smith 2000; Maynard Smith 2000; Pocheville 2018;
Danchin et al. 2019b).

Heritability Usually, this term quantifies the part of phenotypic variation that is
inherited genetically, either additively (narrow sense heritability) or total (broad
sense heritability). It is measured at the level of a population. It quantifies parent–
offspring resemblance at play in quantitative genetics. Today heritability is
usually associated to variation in DNA nucleotidic sequence alone (Danchin
and Wagner 2010; Danchin et al. 2011). For more details, see (Bourrat 2015).
In Table 1.1, I also point at the transposition of this term to depict the persistence
of cell characteristics along cell lineages of multicellular organisms.

Inclusive Evolutionary Synthesis The evolutionary synthesis ambitioning to
incorporate all known dimensions of inheritance into a single theoretical frame-
work. It incorporates the inclusive understanding of epigenetics that I
develop here.

Inclusive heritability Statistical term quantifying the degree of parent–offspring
resemblance, whatever the mechanisms responsible for it (whether sequencic or
not, Danchin and Wagner 2010; Danchin et al. 2011). It is the heredity of
difference, whatever the underlying mechanism. Often in this book chapter, I
use the term heritability in the meaning of inclusive heritability, because histor-
ically it was the initial meaning of this term. Inclusive heritability is the corner
stone of evolution through natural selection and drift.

Infra-individual processes Biological processes occurring within an organism
during its lifetime, including gene expression, cell functioning, physiology,
neurobiology, as opposed to supra-individual processes. Corresponds to what
Mayr (1961) called functional biology.

Inheritance The set of mechanisms producing parent–offspring resemblance.
Intergenerational epigenetic inheritance The set of epigenetic mechanisms that

produce resemblance between two successive generations.
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Modern Synthesis (of evolution) A trend in evolution, first coined by Julian
Huxley in 1942, that brought together Darwinism, Mendelism, and population
genetics in order to provide a powerful account of the mechanisms of evolution.
Also called Neo-Darwinism although these two terms often cover different
approaches. In this trend, the focus is mainly on genes (today understood as
sequencic). A purpose of the extended or inclusive syntheses is to extend it
beyond the gene.

Non-genetic inheritance Mechanisms of inclusively heritable variation that do not
result from variation in the DNA sequence (Danchin and Wagner 2010; Danchin
et al. 2011). Equivalent to non-sequencic inheritance.

Sequencic Term that was first casually used by Hervé Philippe in a discussion to
depict the pervasive trend among biologists and the grand public to reduce
inherited information to the sole information encoded into the DNA sequence
of nucleotides. It can replace the term genocentrism that I used before that is
ambiguous because of the many understandings of all the terms of the “gene”
family (genetics, genomics. . .).

Supra-individual processes Interactions occurring among individuals within
populations, communities, and ecosystems. These integrate transgenerational
processes such as heredity. This is the domain of ecology and evolution. Corre-
sponds to what Mayr (1961) called evolutionary biology.

Transgenerational epigenetic inheritance The set of epigenetic mechanisms that
produces resemblance across multiple (�2) generations of organisms.
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Chapter 2
For Better or Worse: Benefits and Costs
of Transgenerational Plasticity
and the Transhormesis Hypothesis

David Costantini

Abstract Adaptive transgenerational effects are not easily explainable with strin-
gent principles of genetic inheritance. For example, in environments that change
rapidly, selection of given genotypes in one generation may be too slow to occur as
in species with long generation times. Organisms can respond phenotypically to such
changes. Phenotypic plasticity is one mechanism through which organisms rapidly
respond and maintain reproductive fitness under variable conditions. This type of
environmentally-induced phenotypic variation transmitted across generations is
called transgenerational plasticity. In this book chapter, I discuss the key theoretical
and mechanistic aspects that make a biological process called hormesis one relevant
source of transgenerational plasticity. To this end, I propose the transhormesis
hypothesis, whereby hormetic priming of the parents is transmitted to their offspring
so that they are better prepared to withstand future challenges. I discuss the
transhormesis hypothesis in the framework of environmental toxicology to highlight
the role of transhormesis in favouring adaptability or adaptation of species to
environmental changes in the Anthropocene. Finally, I critically appraise our current
knowledge of environmental hormesis, highlighting key future directions for the
field.

2.1 Introduction

Heredity lies in our genes. This almost dogmatic idea is one pillar of modern
evolutionary theory. Genetic adaptation (change in gene frequencies across gener-
ations) is a fundamental mechanism of biological evolution that enables organisms
to respond to gradual environmental changes, that occur over many generations, so
that they adjust their phenotype to the prevailing environmental conditions. This
gene-centred view of evolution does not, however, explain inheritance in all its
complexity (Danchin et al. 2019). The genetic information is very stable, with low
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estimated rates of change (Ness et al. 2012; Ségurel et al. 2014). This stability
constrains adaptability under several contexts. For example, in fast changing envi-
ronments, genetic selection in one generation may be either maladaptive in the next
generation or too slow to occur as in species with long generation times. Organisms
can, however, respond phenotypically to such changes, and the new phenotype may
later become genetically encoded by natural selection (genetic assimilation). These
transgenerational effects are not easily explainable with stringent principles of
genetic inheritance, rather they would invoke the co-participation of Lamarckian
mechanisms in shaping phenotypes (Danchin et al. 2019).

Phenotypic plasticity is one main source of phenotypic evolution. It refers to the
ability of a single genotype to express different phenotypes in response to variability
in environmental circumstances (Beaman et al. 2016). Phenotypic plasticity refers to
all sorts of environmentally-induced phenotypic variation, which can be reversible
or irreversible, adaptive or maladaptive, active or passive, and continuously or
discontinuously variable (Stearns 1992; West-Eberhard 2003). We can recognize
two broad categories of within-generation phenotypic plasticity: developmental
plasticity induced by the pre- and/or post-natal environmental conditions that organ-
isms experience, and reversible plasticity that occurs within reproductively mature
organisms. These types of phenotypic plasticity are not necessarily mutually exclu-
sive. They are probably linked, possibly to provide a ‘fail-safe’ to counteract the
maladaptive effects of one type of plasticity. Beaman et al. (2016) suggested that
acclimation (one type of reversible plasticity) might reduce the costs of develop-
mental plasticity, when there is a mismatch between environmental conditions
experienced during development and in adulthood. The advantage of the interaction
between developmental plasticity and acclimation would lie in matching phenotypes
not only to mean environmental conditions, but also to their potential for change
(at least within given limits of magnitude and rapidity).

Plasticity is not expressed only within a single generation. It can actually be
transmitted by parents to offspring. This type of environmentally-induced pheno-
typic variation transmitted across generations is called transgenerational plasticity.
To date, its mechanistic aspects, long-term stability, and potential fitness benefits and
costs remain largely ununderstood. In this book chapter, I discuss the key theoretical
and mechanistic aspects that make a biological process called hormesis one relevant
source of transgenerational plasticity. To this end, I propose the transhormesis
hypothesis and put it in the framework of environmental toxicology to highlight
the role of transhormesis in favouring adaptability or adaptation of species to
environmental changes in the Anthropocene. Finally, I critically appraise our current
knowledge of environmental hormesis, highlighting key future directions for the
field.
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2.2 Transgenerational Plasticity

Transgenerational plasticity occurs when the environment experienced by a parent
influences the development, the adult phenotype, and/or the fitness of their offspring.
A simplified conceptual framework to illustrate how transgenerational plasticity is
transmitted across generations is as follows: parents (F0) experience a certain
number of environmental stimuli, decode them, and pass cues to their offspring
(F1) either directly by parental care or through the egg, the spermatozoon, or the
placenta. F1 offspring merge parental cues with those they experience themselves
from the environment in order to orchestrate their development. Thus, F1 offspring
may pass a combination of cues to the next generation (F2) later in life. In other
words, F2 offspring might receive cues by both F0 and F1. A number of factors will
determine whether transgenerational information will be advantageous. For exam-
ple, parental experience early in life might be relevant for their offspring if there is a
certain degree of matching between their development environment and that of their
offspring (environmental autocorrelation, Frankenhuis et al. 2019). Also, the tem-
poral window during which offspring receive the cue is very important (Fawcett
and Frankenhuis 2015); cues received earlier in development appear to have a
stronger phenotypic effect than those received later in development (e.g.,
epiphenotype hypothesis, DeWitt et al. 1998; Bell and Hellmann 2019).

Whether the experiences of one generation can influence the fitness of future
generations is a controversial topic. A main question is whether such effects are
important for long-term evolutionary processes because they might be transient and
washed away within a generation. Bell and Hellmann (2019) identify a number of
potential multigenerational outcomes of a cue experienced by the F0 generation; for
example, effects may persist for more than one generation or do not persist until F2,
bouncing back to the original phenotype. Even if a phenotype is not expressed, this
does not necessarily mean that the transgenerational information faded out. It might
still be present in a given generation (e.g., silent carriers of epigenetic information;
Bell and Hellmann 2019), but it will be expressed only in the next one.

Transgenerational plasticity can be maladaptive under a scenario of environmen-
tal mismatch. For example, if parents experience a novel stressor that offspring will
not experience, the cue they will transmit might induce phenotypic adjustments that
will be costly to maintain in absence of that particular stressor. Although the
environmental mismatch paradigm is plausible in all-or-nothing scenarios (e.g.,
presence or absence of a toxicant), it does not make clear predictions for circum-
stances where a stressor can occur at different intensities along a linear gradient (e.g.,
stress level). Here I make the point that the hormesis paradigm would foster our
capacity to explain certain types of transgenerational outcomes (transhormesis
hypothesis).
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2.3 Hormesis

The term hormesis, coined for the first time by Chester Southam and John Ehrlich
(1943), is currently used in at least three different ways. The first relates to its
original use in describing a situation in which the response to an environmental
stressor is biphasic, with low intensities eliciting a stimulatory or beneficial response,
and high intensities causing inhibition or toxicity (Costantini et al. 2010; Mattson
and Calabrese 2010). For example, growth and biomass of Solanum melongenawere
increased by exposure to low concentrations of cadmium, but were inhibited at
higher cadmium concentrations (Siddhu et al. 2008). Fecundity of spined soldier
bugs Podisus maculiventris was increased by acute exposure to low concentrations
of the pesticide imidacloprid as compared to controls or to bugs exposed to high
concentrations (Rix and Cutler 2020).

The second use of the term hormesis is the priming or conditioning effect,
whereby exposure to a low level of a stressor results in the organism being better
able to cope with exposure to that stressor (or, potentially, to a different one) when
encountered on subsequent occasions (Calabrese et al. 2007; Costantini et al. 2010,
2012, 2014). For example, hormetic priming to some types of pesticides can increase
tolerance later in life or increase expression of life-history traits, such as number of
offspring generated or longevity (Suwanchaichinda and Brattsten 2001, 2002; Boyer
et al. 2006; Poupardin et al. 2008; Rix and Cutler 2018).

A third emerging use of the term hormesis relates to a prolonged exposure of the
organism to a given stressor that elicits a stimulatory or beneficial response only if
the dose of such stressor is moderate. For example, continuous exposure to low
concentrations of imidacloprid increased fecundity of green peach aphids (Myzus
persicae) as compared to controls or to aphids exposed to high concentrations
(Ayyanath et al. 2013). This type of hormesis needs to be distinguished from
acclimation, which, conversely from hormesis, is a reversible process, i.e., the
organism’s status bounces back to that expressed prior to exposure to the environ-
mental stimulus.

In recent times, there has been growing interest in understanding whether any
effects of hormetic priming carry over to the next generations and, if yes, which
circumstances favour transgenerational hormesis. In the following paragraph, I
discuss studies that provide evidence for the idea that I refer to as the transhormesis
hypothesis.

2.4 The Transhormesis Hypothesis

Exposure to an environmental stressor is not an all-or-nothing scenario because
stressors occur in different intensities. Thus, it might not be correct to estimate pros
and cons of exposure to a low-intensity stressor by extrapolation of the data from
exposure to the same but, high-intensity, stressor. For example, conditioning or
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priming of stress responses early in life may induce (almost) irreversible phenotypic
adjustments that may carry fitness benefits providing the stressor is then encountered
in the adult environment (Fig. 2.1). There might be a cost of phenotypic adjustment
if there is no subsequent exposure to that stressor in adulthood. This may occur when
the early life environment does not match the conditions experienced in adulthood
(Costantini et al. 2014). Hormetic conditioning may also occur in adulthood, but the
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Fig. 2.1 The potential effects of exposure to a stressor during development on subsequent
Darwinian fitness. The solid lines show the fitness consequences when various levels of the stressor
are encountered in adulthood for individuals that previously encountered moderate (solid blue line,
hormetic priming) or high (solid red line) intensity of the same stressor earlier in life (this early life
pre-exposure is not shown). The hormetic priming during development will increase fitness at all
levels of subsequent exposure, but, as compared to individuals that did not experience any stress
early in life (dashed black line), will carry a cost if the stressor is not subsequently encountered or
encountered at a very low level. Early life high stress will have costs for fitness at all levels of
subsequent exposure as compared to hormetic priming and to low (solid red line) or even high
(dashed red line) levels of subsequent exposure as compared to individuals that did not experience
any stress early in life (dashed black line)
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stimulatory effects are of smaller magnitude as compared to those induced by
conditioning during sensitive windows of development (Mattson and Calabrese
2010).

Here I propose the transhormesis hypothesis, whereby hormetic priming of the
parents is transmitted to their offspring so that they are better prepared to withstand
future challenges. This hypothesis contrasts the widespread all-or-nothing scenarios,
which do not take into account the continuous nature of stressors nor the importance
of their intensity. A growing number of studies are providing evidence for
transgenerational hormetic effects. The benefits of an acquired phenotypic resistance
or tolerance and its transmission across several generations were observed in a
number of systems, including exposure to heat stress (Whittle et al. 2009; called
transgenerational acclimation by the authors, Donelson et al. 2012), pesticides
(Ayyanath et al. 2013; Rix and Cutler 2018), ionizing radiation (Byrne et al.
2014), or other stressors (Kishimoto et al. 2017). In the following paragraph, I
discuss the role of transhormesis in environmental toxicology.

2.5 Transhormesis in the Context of Environmental
Toxicology

There is ample evidence to suggest that exposure to low doses of some toxicants,
such as pesticides (including DDT), metals, or ionic liquids, may induce hormetic
effects (e.g., Heinz et al. 2012; Cutler 2013; Liu et al. 2020; Yu et al. 2020). One of
the earliest papers was that of Sun (1945), who observed that bean aphids (Aphis
rumicis) exposed to low concentrations of rotenone produced more offspring than
control aphids or than aphids exposed to high concentrations. The question then is
whether such hormetic effects are limited to one generation or carry over to next
generations.

Surges in population size growth of several insect species at rates higher than
expected were observed many times following pesticide usage (e.g., Chelliah and
Heinrichs 1980; Morse and Zareh 1991). Selection of resistant genotypes is one
important evolutionary mechanism through which insects become resistant to a
certain pesticide (Hawkins et al. 2019). We have, however, evidence that acquisition
of phenotypic resistance is also important. Within this context, hormesis might play
an important role because breakdown of pesticides in agricultural fields can expose
organisms to low concentrations of these chemicals during sensitive windows of
their life cycle. Several experimental studies found that exposure of parents to low
sublethal concentrations of certain types of pesticides may increase resistance of next
generations.

Ayyanath et al. (2013) found that continuous exposure to sublethal concentra-
tions of the insecticide imidacloprid (class of neonicotinoids) induced
transgenerational hormesis in the green peach aphid, Myzus persicae. After four
generations, aphids exposed to low concentrations of imidacloprid had higher
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fecundity compared to control aphids or to those exposed to higher concentrations.
The results of this experiment also provided two additional relevant patterns.
Intermediate generations had lower fecundity (Ayyanath et al. 2013), indicating a
potential fitness cost of transhormesis that was later compensated by subsequent
generations. There was also a shift to a higher peak hormetic concentration from F0
to F1 (Ayyanath et al. 2013), indicating that the hormetic zone might evolve across
generations (Fig. 2.2).

The occurrence of transgenerational trade-offs has also been observed in other
study systems. For example, Chen et al. (2020) found that nymphs of the brown
citrus aphid (Toxoptera citricida) exposed to a sublethal concentration of
imidacloprid had a development duration slightly longer than controls, but also a
better survival and fecundity (Chen et al. 2020).

Transhormesis can also foster cross-resistance. For example, hormetic priming to
imidacloprid could increase survival of aphids when being later exposed to a
combination of food and of water stress (Rix et al. 2016). However, this is not a
general pattern. Rix and Cutler (2018) show that exposure of aphids to a hormetic
concentration of imidacloprid reduced mortality of their offspring exposed to higher
concentrations of imidacloprid after multiple generations of exposure. However, the
hormetic concentration of imidacloprid did not prime offspring to better resist
exposure to spirotetramat, which is an insecticide with a different mode of action.
Similarly, embryonic exposure of wood frogs to carbaryl (AChE-inhibitor) increased
resistance to carbaryl itself, malathion (AChE-inhibitor), and cypermethrin (Na+

channel interferer), but not to chlorpyrifos (AChE-inhibitor) or to permethrin (Na+

channel interferer; Hua et al. 2014a; see also Hua et al. 2013). These results
demonstrate that pesticides may induce cross-tolerance that is not restricted to
pesticides with the same mode of action, but it is unclear why cross-tolerance does
not always occur.

Evidence for hormesis induced by pesticides has also been found in plants
(Cedergreen 2008; Brito et al. 2017). For example, Belz (2020) found that exposure
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Fig. 2.2 The peak hormetic concentration or magnitude of a given pollutant or other environmental
stressor may shift across generations, indicating potential of the hormetic zone (stimulatory area
under the curve) to evolve
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of PSII target-site resistant plants of Chenopodium album to the herbicide
metamitron stimulated their reproduction and increased tolerance of their offspring
to metamitron

Duration of exposure to pesticides might be important in determining a role of
hormetic priming in fostering tolerance. Where exposure early in life to a given
pesticide is prolonged, selection might favour constitutive expression of traits that
come at a cost for plasticity (induced tolerance). Thus, protective traits are kept
upregulated to some degree. This scenario is suggested by an experiment on wood
frogs (Lithobates sylvaticus) located close to or far from agricultural fields: exposure
of amphibian embryos and hatchlings to sublethal concentrations of the insecticide
carbaryl increased tolerance later in life only in individuals from populations that
were far (and thus less exposed to it) from agricultural fields (Hua et al. 2014b).

Examples of transhormesis have also been observed for other pollutants. For
example, Kishimoto et al. (2017) found that F1 descendants from Caenorhabditis
elegans parents stressed with arsenite showed enhanced resistance to oxidative stress
compared with those from control parents. These beneficial effects were also evident
in the F2 generation, but they gradually declined and almost disappeared in F3
generations. Transhormesis is not limited to pollutants, but it also applies to other
relevant human-induced effects on the environment. For example, offspring of
parents exposed to high pCO2 had greater settlement and survivorship immediately
following release, retained survivorship benefits during 1 and 6 months of continued
exposure, and further displayed growth benefits to at least 1-month post release
(Putnam et al. 2020).

The question then is which conditions make hormesis ecologically and evolu-
tionary possible. In the following paragraph, I discuss a recent modelling paper that
illustrates some of the key attributes of transhormesis.

2.6 Modelling Transhormesis

Simulation models allow to formalize concepts, and to define the most essential
aspects of a given process/mechanism. Costantini and Borremans (2019) proposed
some mathematical simulations to establish the hypothetical conditions that make
priming (or conditioning) hormesis ecologically and evolutionary possible. In par-
ticular, as main attributes, they identified the (i) degree of stress predictability during
early and late life stages (stress match probability), (ii) role of hormesis potential of
given genetic variants, and (iii) impact of trade-offs between the benefits and costs of
having hormesis potential on the reproductive fitness.

The simulations suggest that, in most situations, the benefits of individuals with
hormesis potential emerge if stress conditions do not change too often. In other
words, if there is a low probability that stress conditions remain the same, the
benefits of early life priming never exceed the costs of stress (even for high benefit
values) for individuals with a (epi)genetic variant that promotes hormesis (Fig. 2.3).
Having hormesis potential and maintaining the functions associated with it (e.g.,
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resources required to maintain a molecular ‘memory’) are therefore costly for the
individual if hormesis is not being expressed owing to a strong environmental
mismatch. This cost would explain why natural selection favours system designs
that require hormetic priming in order to work effectively.

The main attributes identified by Costantini and Borremans (2019) that are
relevant for the evolution and maintenance of hormesis are supported by literature.
For example, Rodriguez et al. (2012) show that there are genetic variants with
stronger hormesis potential for heat stress, and Costantini et al. (2014) show that
hormetic priming to heat stress may be costly under mismatch between early in life
and adult environmental conditions (i.e., low degree of stress predictability). How-
ever, there is need of well-defined experiments that, relying on these theoretical
considerations, validate or refine these models using empirical data about
transgenerational effects of toxicants or of other environmental stressors.

2.7 Perspectives and Future Directions

In this chapter, I have encouraged careful consideration of hormesis in promoting
transgenerational effects to advance the discipline theoretically and experimentally.
In the context of environmental toxicology, it is unclear yet whether any hormetic
priming (or conditioning) effect is restricted to the conditioning toxicant, if any
effects become stronger under multigenerational exposure, or if toxicant-resistant
states remain without renewed exposure to the agent. Also, for those studies that test
a prolonged exposure to a hormetic dose, it is important to tease apart effects of
hormesis from those of acclimation. One way to distinguish hormesis from accli-
mation is to look at reversibility of trait expression: hormesis induces (almost)

Fig. 2.3 Mean final proportion of individuals with hormetic potential in the population for a range
of stress match probabilities, under different combinations of mild stress cost values during youth
and hormetic potential benefit values in the case of mild youth stress followed by adult stress.
Benefit values shown in decreasing order from top (green line) to bottom (blue line). The horizontal
line indicates the transition where the reproductive fitness of individuals with hormetic potential is
higher than that of individuals with no hormetic potential. Models include 30 generations, and the
proportion of individuals with hormetic potential in the population at the end of the 30th generation
is used as a proxy for their reproductive fitness (i.e. evolutionary success). Reproduced from
Costantini and Borremans (2019)
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irreversible traits, while traits expressed under acclimation would change rapidly
when the environmental conditions also change.

We should not lose sight of the complexity of a phenotype. Traits differ in
capacity for plasticity or acclimation; traits can be fixed (skeletal size, but not in
all taxa) or dynamic. Thus, traits might differ in their transgenerational pattern if
their hormetic response differs, e.g., if it is induced at different doses of the agent or
at different time windows of development. Also, we need to pay special attention to
the synergistic and antagonistic effects owing to exposure to multiple anthropogenic
stressors.

It is important to consider the within and among-species variation in life-history
trajectories. Multigenerational hormetic treatment may result in a more heteroge-
neous population if offspring differ in their response (e.g., tolerance) to a same
concentration of a given toxicant (Belz and Sinkkonen 2016; Rix and Cutler 2018).
For example, effects of six toxicants (IAA, parthenin, HHCB, 4-tert-octylphenol,
glyphosate, and pelargonic acid) among fast-growing individuals of Lactuca sativa
usually started at higher doses compared to the population mean, while the opposite
was found among slow-growing individuals (Belz et al. 2018). Very low toxin
exposures tended to homogenize plant populations due to selective effects, while
higher, but still hormetic doses tended to heterogenize plant populations (Belz et al.
2018). In other words, transhormesis may increase or reduce variation in body size of
a given population within the limitations imposed by the costs of allocating
resources to growth. This transhormetic effect on body size can have several
ecological consequences because body size may affect a number of fitness-related
traits, such as competition, nutritional needs, reproduction, and survival. Thus,
transhormesis has strong potential to affect life-history trajectories.

Transhormesis might also play a relevant role in competition among species, e.g.,
when one species develops a stronger hormetic-induced tolerance to a given stressor
than another one with which shares a similar ecological niche. For example, when
exposed for seven generations to the insecticide nitenpyram, silverleaf whitefly
(Bemisia tabaci) developed six-fold resistance to nitenpyram, and 3.1- and five-
fold cross-resistance to imidacloprid and acetamiprid, respectively; by contrast,
glasshouse whitefly (Trialeurodes vaporariorum) developed lower resistance to
the nitenpyram and very low cross-resistance to imidacloprid (Liang et al. 2012).
The higher adaptable nature of the silverleaf whitefly, when exposed to low doses of
insecticides, might provide a selective advantage in the competition with glasshouse
whitefly for exploiting crops.

We also know little about how effects of early in life environmental stimuli
interact with parental age in determining resilience of offspring to later life stress
exposure. Parental age is very important because work done on organisms ranging
from invertebrates to vertebrates showed that offspring produced by older parents
may show some degree of impairment in body function (Fox and Dingle 1994; Tarín
et al. 2005; Bouwhuis et al. 2010; Rodríguez-Graña et al. 2010). It might be
insightful to test whether the effect of early life priming offsets any detrimental
effects of parental age on the offspring.
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Finally, when we look at stability of the environment across generations, it is
important to consider the longevity of animals because this trait is linked to the
generation time and to the trade-off in the allocation of resources between somatic
and germline functions.

2.8 Conclusions

There is now growing evidence that hormetic priming might play a significant role in
driving transgenerational effects and adaptability of organisms to stressful circum-
stances. However, we have yet to clarify the extent to which transhormesis can last
and have fitness consequences under different circumstances (e.g., different expo-
sure scenarios in terms of types of toxicants and concentrations), and for co-specific
populations and species. These issues could be addressed by the types of experi-
mental setting outlined here and by prior work (Costantini and Borremans 2019) that
would make the transhormesis hypothesis testable.
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Chapter 3
Adaptive Meaning of Early Life Experience
in Species that Go Through Metamorphosis

Takashi Koyama, Catarina Nunes, Hesper Khong, and Yuichiro Suzuki

Abstract Many animals have complex life cycles in which juvenile and adult stages
are separated by metamorphosis. Metamorphosis is a time of reprogramming, and
early experiences can impact this reprogramming phase in many ways that are
adaptive. Here we review the ways in which various insect species adjust the timing
of metamorphosis and the morphogenetic processes during metamorphosis
depending on their environment during the juvenile stage. Specifically, we focus
on the various intrinsic and extrinsic cues that impact the growth of the whole body
and individual body parts and provide examples of seasonal polyphenisms. We
discuss the adaptive significance of these plastic responses to the environment and
summarize our current understanding of the endocrine basis of developmental
plasticity. We show that life history modularity and developmental modularity
both facilitate integration of early environmental cues in the development of adult
phenotypes.

3.1 Overview

3.1.1 Introduction

Many animals have complex life cycles where the juvenile and adult stages display
distinct phenotypes. In these organisms, the juvenile and adult stages are typically
separated by the process of metamorphosis, which is characterized by dramatic
changes in morphology, behavior, and physiology. Metamorphosis is a successful
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life history strategy that has evolved independently multiple times within the animal
kingdom, including marine invertebrates, fishes, amphibians, and insects. By
allowing juvenile and adult stages to exploit different habitats and/or food resources,
metamorphosis enables each species to fine-tune the juvenile and adult development
and physiology to maximize survival and fitness (Moran 1994).

Most aquatic species undergo metamorphosis, where juveniles hatch as swim-
ming larvae, undergo metamorphosis, and transform into adults with distinct mor-
phologies (Hadfield 2000). In many cases, the larval stage of these marine species is
adapted for dispersal. Once the larvae find appropriate substrates, they settle and
undergo metamorphosis (Fusetani 2004; Swanson et al. 2004; Lau et al. 2005;
Whalan et al. 2015). The adults typically occupy the benthic environment, assisted
by traits that allow them to adapt to this new habitat. Particularly dramatic changes in
morphology and behavior are seen among the aquatic invertebrate species, such as
cnidarians, mollusks, annelids, crustaceans, echinoderms, and tunicates, where a
freely swimming larva eventually settles to become a more sessile—or in some
cases, a completely sessile—adult. Aquatic vertebrate species, such as fishes and
amphibians, also undergo metamorphosis. In the case of amphibians, metamorphosis
can involve a transition from the aquatic to the terrestrial habitat with dramatic
changes in both morphology and physiology that allow them to adapt to life on land
(Brown and Cai 2007). Among terrestrial animals, perhaps the most striking and
dramatic transformations are observed in insects.

At the cellular level, metamorphosis involves dramatic increase in cell prolifer-
ation, cell death, and tissue morphogenesis. Some species, such as echinoderms, take
metamorphosis to the extreme where most of the larval tissues are replaced by new
tissues that originate from a small rudiment within the larva (Chino et al. 1994).
Similarly, in fruit flies, the entire adult body wall and appendages derive from set
aside clusters of cells called imaginal discs and histoblasts that are located within the
larval body but do not contribute to the larval morphology (Madhavan and
Schneiderman 1977). In other species, cellular turnover is less drastic although the
morphological change can be equally spectacular (Svácha 1992; Tanaka and Truman
2005). Because metamorphosis is a time of cellular reprogramming and major
morphological changes, it has been molded by natural selection in unique ways to
accommodate distinct life history strategies.

In many metamorphic species, the environment encountered during their juvenile
development often alters the adult phenotype. In these species, cues from the
environment are often used to fine-tune the metamorphic transformation. By flexibly
modifying the final adult morphology, organisms can ensure that their adult mor-
phology and behavior are maximally adapted to the particular environment they
occupy. This ability to adjust the developmental trajectories in organisms with
complex life cycles is called developmental plasticity. Developmental plasticity
plays a particularly important role in terrestrial animals where abiotic conditions
can change dramatically from one season to the next. Recent studies in insects have
begun to identify the mechanisms underlying developmental plasticity. In this
chapter, we discuss the adaptive significance of developmental plasticity in different
species of insects and the mechanisms underlying this process.
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3.1.2 Metamorphosis Is the Time for Reprogramming

Although in amphibians and many marine invertebrates, metamorphosis is an
ancestral developmental strategy, in insects, metamorphosis is a derived trait that
evolved after land colonization (Bradley et al. 2009). The life history of the earliest
insects was most likely similar to that of current wingless orders, such as Zygentoma
(silverfish) (Grimaldi and Engel 2005). Typically, these insects are classified as
ametabolous insects. Ametabolous insects undergo direct development where their
external morphology remains essentially unchanged throughout their development
(Fig. 3.1a) (Erezyilmaz 2006). The first major morphological innovation that paved
the way for insect diversification and radiation was the evolution of flight ability,
which eventually facilitated the evolution of incomplete metamorphosis or
hemimetaboly (Kukalova-Peck 1978; Truman and Riddiford 2002; Belles 2019;
Truman 2019). Phylogenetic and paleontological data indicate that the evolution of
wings and hemimetaboly coincided during early Devonian and that the two events
are likely linked (Carpenter 1992; Truman and Riddiford 1999; Misof et al. 2014). In
hemimetabolous insects, the immature juvenile stages, nymphs, resemble the adult

Fig. 3.1 Life history
strategies in insects. (a–d)
Different life history
strategies, represented by
silverfish (a), grasshoppers
(b), thrips (c), and
hornworms (d)
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but lack functional wings and genitalia (Fig. 3.1b). The nymphs and adults usually
share the same habitat and food resources, which can lead to potential competition
between nymphal growth and adult reproduction. Some hemimetabolous insects
evolved strategies to mitigate this competition. For example, aquatic nymphs and
adults of dragonflies and mayflies explore very different ecological niches, and
thrips and some hemipterans show a quiescent stage between the juvenile and
adult stages so that the two do not coexist at the same time in the same niches
(neometaboly, Fig. 3.1c). However, the complete separation of life stages into
independent modules, with the capacity to evolve and adapt independently, only
became possible in the early Carboniferous period when complete metamorphosis,
or holometaboly, evolved (Truman and Riddiford 1999, 2019; Rainford et al. 2014).
The holometabolous larvae never have external rudiments of wings or genitalia
because they usually develop from internal groups of undifferentiated or partially
differentiated cells called the imaginal cells or imaginal primordia (Sehnal et al.
1996; Truman and Riddiford 2002; Tanaka and Truman 2005). The radically
different morphologies of larvae and adults are separated by a transitional,
non-feeding and usually immotile stage called pupa (Fig. 3.1d).

The evolution of complete metamorphosis is thought to be a key innovation that
facilitated the rapid adaptive radiation of insects (Yang 2001). The evolution of
reprogramming of external and internal structures allowed larvae and adults to
explore different niches and food resources. During metamorphosis, adult append-
ages, such as wings, legs, eyes, antennae, and genitalia, and internal organs, such as
intestine and trachea, develop from imaginal cells and primordia. At the same time,
larval tissues are eliminated by programmed cell death and autophagy during
metamorphosis (Tanaka and Truman 2005). Because of this dynamic
reprogramming at metamorphosis, holometabolan insects undergo dramatic mor-
phological changes and develop into adults that are highly adapted for reproduction
and migration. In addition, holometabolan adults typically do not further grow once
emerged, presumably because the gland necessary for molting degenerates (Kamsoi
and Belles 2020; Jeng et al. 2021). Thus, adult size is essentially determined at the
end of the larval stage. Accordingly, metamorphosis is a reprogramming process that
separates growth and reproduction in holometabolous insects.

3.1.3 How the Larval Environment Impacts Metamorphosis

The larval environment can impact metamorphosis in two broad ways. First, the
larval environment can impact the timing of metamorphosis and alter the size of the
adult organism and the phenology of life history traits, such as the timing of
reproduction and diapause. Because adults do not grow in size, larval growth and
metamorphic timing are directly related to the adult size: if larvae are induced to
undergo metamorphosis earlier, the adults will be substantially smaller than if they
had a longer feeding period. Given that size has important impacts on both survival
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and reproduction of adults, larval environments can have important fitness conse-
quences (Honěk 1993; Blanckenhorn 2000).

Alternatively, the larval environment can also influence developmental plasticity
at metamorphosis, leading to two or more distinct adult morphologies. When these
phenotypes are adapted to the particular environment that the adult insect encoun-
ters, the plastic developmental response is called a polyphenism (Moran 1992).
Polyphenisms are regulated by a switch-like mechanism that generates discontinu-
ous phenotypic responses to environmental changes (Nijhout 1999, 2003a). The
sensitive period for insects occurs during the larval stage when a variety of environ-
mental cues are sensed by the growing insect. The larval stage often lasts a long time
and is well suited to collect information about the environmental condition. The
cumulative environmental information is integrated by the neuroendocrine system,
which alters development during metamorphosis.

A summary of the two ways by which the larval environment influences adult
morphologies is shown in Fig. 3.2. In both cases, the larval environment is sensed in
a cumulative manner. These inputs are then integrated by neuroendocrine centers
that produce signals that travel to target tissues at the onset of, or during, metamor-
phosis to initiate the reprogramming of tissues. In cases where the larval environ-
ment impacts the timing of metamorphosis, the final adult size is altered (Fig. 3.2a).
In polyphenisms, the reprogramming leads to distinct morphologies (Fig. 3.2b).
These are not mutually exclusive, however, as larval environment impacts both the
timing of metamorphosis and adult morphogenesis in most species.

Fig. 3.2 Impacts of the larval environment on adult morphologies. Environmental changes
encountered during the larval stage can impact adult morphology by shifting the timing of
metamorphosis (a) or by altering the developmental trajectory during metamorphosis, an adaptive
strategy called polyphenism (adapted from Nijhout 1999) (b). ESP ¼ Environmental sensitive
period; R ¼ reprogramming
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3.2 Whole Body Growth and Timing of Metamorphosis

3.2.1 Adaptive Significance of Body Size and Metamorphic
Timing

A key consequence of altering the timing of metamorphosis is a change in adult body
size. Adult body size has major impacts on survival and fitness of an organism.
Within a given species, larger females tend to have higher fecundity (Honěk 1993;
van Uitregt et al. 2012). The number of ovarioles scales positively with body size
and in many cases, ovariole number is determined by resources available to the
growing larva (Honěk 1993). In fact, ovariole number is partially influenced by the
nutrition-sensitive insulin signaling pathway (Green and Extavour 2012). In addi-
tion, larger body sizes protect adults from desiccation and accumulate more
resources that enhance survival and performance (Lighton et al. 1994). In males,
larger body size tends to lead to higher reproductive fitness by shortening the
copulation duration or increasing winning probability in male–male competition
(Parker and Simmons 1994). There are also many forces that prevent organisms from
becoming too large (Blanckenhorn 2000; Berger et al. 2006). For example, longer
larval stage needed for a larger adult body size can increase predation, parasitization,
and starvation risks. Energetic costs are higher for larger species as well
(Blanckenhorn et al. 1995; Blanckenhorn 2000).

Within a particular species, life history strategies must adapt to the local season-
ality. In many species, developmental time is maximized to ensure full use of the
growth period available to a given population. In univoltine species, this leads to
what is known as the “converse of Bergmann’s rule” in which body size decreases
with increasing latitude (Park 1949; Masaki 1967; Mousseau and Roff 1989).
Species with many generations in one year follow Bergmann’s rule, or more
precisely James’ rule, in which organisms attain larger body sizes at higher latitudes
(James 1970; Blanckenhorn and Demont 2004). In species with a mix of univoltine
and multivoltine populations, a sawtooth like pattern emerges (Roff 1980; Mousseau
and Roff 1989). In addition to latitudinal differences, adaptations of body size and
developmental time are also observed along an altitudinal gradient (Berner et al.
2004; Berner and Blanckenhorn 2006). For example, along an altitudinal gradient,
higher elevation may constrain the growth period, leading to a more rapid growth
rate and a smaller body size. Thus, the timing of metamorphosis and body size is
shaped by selection imposed by both the environment and life history strategies. The
mechanisms underlying such intraspecific variations are not yet well understood.
However, species-specific mechanisms of body size determination have been well
documented and species-specific adaptations to feeding ecologies have also been
elucidated. The remainder of this section discusses these findings.
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3.2.2 Mediators of Metamorphic Timing and Growth

3.2.2.1 Prothoracicotropic Hormone

Although many aspects of insect metamorphosis are still to be uncovered, precisely
regulated endocrine signals that are sensitive to intrinsic and extrinsic stimuli play
salient roles in the regulation of metamorphosis (Fig. 3.3) (Nijhout 1998). The
fundamental knowledge of the endocrine control of metamorphosis was established
by Sir Vincent B. Wigglesworth in the 1930s (Wigglesworth 1934b, 1954).
Wigglesworth demonstrated the presence of humoral factors that control metamor-
phosis in the kissing bug Rhodnius prolixus using the classical heterochronic
parabiosis, a technique used to physically connect living animals of different ages
(Wigglesworth 1934b). The structures and basic functions of each of these factors
were subsequently identified as prothoracicotropic hormone (PTTH, originally
called brain hormone) (Wigglesworth 1934b), 20-hydroxyecdysone (20E, originally
called molting hormone) (Fukuda 1941; Williams 1947), and juvenile hormone (JH,

Fig. 3.3 Insect endocrine system. Top panel, brief scheme of endocrine organs that are involved in
developmental hormone biosynthesis during larval stages, for lepidopterans (adapted from Nunes
et al. 2020). Bottom, fluctuation of ecdysone and JH throughoutManduca sexta development (after
Riddiford et al. 2003)
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originally called “inhibitory hormone” and later considered as “status quo hor-
mone”) (Wigglesworth 1934b).

The first experiments that demonstrated the involvement of the insect brain in the
regulation of metamorphosis were conducted by Stephan Kopeć, using the gipsy
moth Lymantria dispar (Kopeć 1922). Using classical ligation experiments that
separate the developing body into anterior and posterior parts, Kopeć demonstrated
that the anterior part (where the brain is located) was needed for a larva to molt into
a pupa (Kopeć 1922). Later studies by Wigglesworth reached similar conclusions by
showing that parabiosis of non-molting (decapitated, brainless) and molting
(un-decapitated) juveniles of R. prolixus leads to signs of simultaneous molting
(Wigglesworth 1934b). Implantation of various compartments of the brain into
juveniles led Wigglesworth to determine the source of this brain hormone as the
anterocentral portion of the brain.

It took 70 years after the work of Kopeć for the brain hormone, later designated as
PTTH (Truman 1972), to be identified through classical biochemistry approaches
using millions of heads of the silkworm, Bombyx mori (Kataoka et al. 1991). Since
then, many studies have focused on the understanding of the mechanisms triggering
PTTH secretion and mode of action. Pioneer work by Wigglesworth demonstrated
that the distention of the intestinal tract in R. prolixus was the most important factor
determining the timing of PTTH release in this species (Wigglesworth 1933).
Although multiple smaller blood meals are insufficient to induce molting, artificially
increasing distention by blocking the anus with paraffin is sufficient to decrease the
volume of the blood meal required to trigger PTTH secretion (Wigglesworth 1933).
Later, this process was shown to be controlled by abdominal stretch receptors not
only in R. prolixus (Wigglesworth 1933) but also in insects that have a continuous
rather than an episodic feeding habit, such as the milkweed bugOncopeltus fasciatus
(Nijhout 1979). However, in other insects, the conditions that influence PTTH
secretion are still not completely understood. Furthermore, PTTH secretion also
seems to be a gated phenomenon, as it occurs only during a specific time of the day
and when critical criteria are met, such as size or weight (Nijhout and Williams
1974a; Nijhout 1981). The fact that PTTH secretion is gated suggests that molting
and metamorphosis are influenced by the circadian clock (Truman and Riddiford
1974).

Once the conditions that trigger PTTH secretion are met, this hormone is released
from specific neurosecretory cells in the brain (Fig. 3.3, top panels) (Steel and
Vafopoulou 2006) and binds to its receptor Torso, which is specifically expressed
in the prothoracic gland at the larval stage (Rewitz et al. 2009). After binding to its
receptor, PTTH stimulates the secretion of the molting hormone, ecdysone, from the
prothoracic gland.

3.2.2.2 Ecdysteroids

The endocrine pathway regulating molting was elucidated by the work of Carroll
Milton Williams using the silkworm, Hyalophora cecropia. His work demonstrated
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that in ligated animals, the posterior part could molt when the brain and prothoracic
glands were co-transplanted, which led him to suggest that two endocrine factors
from these two organs were required for molting (Williams 1948). This molting
factor from the prothoracic gland was first purified by Butenandt and Karlson from
B. mori pupae (Butenandt and Karlson 1954). They purified two very similar
molting hormones, α-ecdysone and β-ecdysone.

α-ecdysone, now known as ecdysone, is a biologically less active hormone
produced in the prothoracic gland. Once secreted, it is converted by peripheral
tissues into the more biologically active form, β-ecdysone or 20-hydroxyecdysone
(20E) (Fig. 3.3) (Gilbert and Goodman 1981). The prothoracic gland secretes
ecdysone prior to each molt in response to PTTH stimulation. After secretion and
conversion, 20E binds to the functional ecdysone receptor heterodimeric complex,
Ecdysone Receptor (EcR) and Ultraspiracle (Usp), the homologue of the mammalian
Retinoid X Receptor (Thummel 2001). This complex activates the transcription of a
series of ecdysone response genes (Nijhout 1998; Thummel 2001).

Until the penultimate larval/nymphal instar, the ecdysteroid titer has a relatively
simple profile, with a single large peak that triggers the molt to the next juvenile
instar (Granger and Bollenbacher 1981; Gilbert et al. 1996; Nijhout 1998). However,
in several holometabolan species, the pupal molt is generally preceded by a few
peaks of ecdysteroids (Fig. 3.3, bottom panel), as is the molt from nymph to adult in
hemimetabolans (Granger and Bollenbacher 1981; Gilbert et al. 1996; Nijhout
1998). Specifically, at least two pulses of ecdysteroids precede pupation. The first
small peak, usually designated by “commitment,” “wandering,” or
“reprogramming” peak, induces a series of changes that switch the developmental
fate of the epidermis from a larval to a pupal program (Truman et al. 1974; Riddiford
1978, 2015). This ensures that the following peak will trigger the formation of the
pupa or the adult, depending on the group of insects (Gilbert et al. 1996; Nijhout
1998). In addition to triggering commitment in epidermal cells, this ecdysteroid peak
also triggers a set of behavioral alterations, particularly in holometabolans, the most
dramatic of which are the engagement in wandering behavior, the cessation of the
feeding period and the induction of a gut purge. The second, much larger peak,
induces apolysis and the metamorphic molt (Fig. 3.3, bottom panels). Overall, the
switch from juvenile to pupal or adult programs during the last juvenile molt requires
the secretion and action of ecdysteroids. However, another necessary condition must
be met: the absence of JH, as will be discussed next.

3.2.2.3 Juvenile Hormone

Using R. prolixus, Wigglesworth showed that decapitated third and fourth instar
nymphs undergo precocious metamorphosis instead of waiting until the fifth instar to
metamorphose (Wigglesworth 1934b). In contrast, transplantation of fourth instar
corpora allata (CA) into final fifth instar nymphs triggered supernumerary juvenile
molts, leading to the development of a sixth instar nymph with undeveloped
functional wings and genitalia. Based on this evidence, Wigglesworth suggested
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the existence of an anti-metamorphic hormone produced by the CA, that he desig-
nated “juvenile hormone” (JH), due to its capacity to maintain juvenile features and
inhibit adult development (Wigglesworth 1934a, 1936).

JH is a sesquiterpenoid hormone involved in several aspects of development and
reproduction, including regulation of metamorphosis (Riddiford 2012), caste deter-
mination (Wheeler and Nijhout 1981), diapause (Yin and Chippendale 1974), and
ovarian development (Bloch et al. 2000). For larval/nymphal stages, it is generally
assumed that JH defines the nature of molts. High concentrations of JH cause larval–
larval or nymphal–nymphal molts in Holometabola and Hemimetabola, respec-
tively, whereas low concentrations of JH are required to trigger pupation in
Holometabola and adult molts in Hemimetabola (Gilbert et al. 1996; Nijhout
1998). Although much is still unknown regarding the molecular mechanisms
through which JH regulates metamorphosis (Riddiford 2008), in dipterans this
hormone functions through the intracellular receptors Methoprene tolerant (Met)
and Germ cell expressed (Gce) but only through Met in many hemi- and
holometabolans (Konopova and Jindra 2007; Jindra et al. 2015). After binding to
the receptors, JH activates the expression of the transcription factor Krüppel homo-
log 1 (Kr-h1) (Minakuchi et al. 2008), which ultimately induces the expression of a
set of JH-sensitive downstream genes (Minakuchi et al. 2008, 2009).

In hemimetabolous insects, JH levels drop at the end of the last nymphal instar to
allow for the formation of the adult. JH is cleared from the hemolymph at the last
larval stage in Holometabola, but it increases again during the prepupal (wandering)
peak of ecdysteroids (Fig. 3.3, bottom panel) (Gilbert et al. 1996). This redeploy-
ment ensures that tissues undergo a pupal molt instead of an adult molt directly and
that cell patterning for adult structures is not switched on by the high levels of 20E
characteristic of this stage (Truman and Riddiford 2007; Urena et al. 2016).

JH is necessary to prevent precocious metamorphosis until insects attain species-
specific size before metamorphosis (Nijhout 1998; Riddiford 2012; Jindra et al.
2013). Providing exogenous JH to final instar larvae often induces supernumerary
molts. Consistently, surgical removal of the corpora allata (called allatectomy) from
penultimate instar larvae often induces precocious metamorphosis and produces
miniature adults in many holometabolous species (Fukuda 1944; Suzuki et al.
2013). However, depletion of JH by various techniques in a wide range of species
fails to induce precocious metamorphosis in very young larvae (Fukuda 1944). For
example, in B. mori, whereas allatectomy using penultimate fourth or third instar
larvae induces precocious metamorphosis, the same procedure on second instar
larvae fails to induce precocious metamorphosis (Fukuda 1944). Instead, second
instar allatectomized larvae molt to the third instar, and then undergo metamorphosis
(Fukuda 1944). Similarly, neck-ligation, which separates the source organ of JH
corpora allata from the rest of the body, induces precocious pupation during the third
instar but not during the second instar (Bounhiol 1938). Furthermore, null mutant
larvae of JH biosynthesis genes or JH signaling components, such as JH receptor
Met, do not induce any signs of pupal characteristics during the first and second
instars (Tan et al. 2005; Daimon et al. 2015). These studies show that although JH is
necessary to maintain larval features after several larval molts, these characteristics
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seem to be maintained independently of JH during early nymphal/larval instars
(Smykal et al. 2014; Daimon et al. 2015).

In contrast, larval tissues of very young instar larvae seem to have the ability to
show pupal characteristics. Classic transplantation experiments suggest that when
the epidermis of first instar larvae of the wax moth Galleria mellonella is
transplanted into the last instar larvae, the integument produces pupal cuticles at
the time the host metamorphoses (Piepho 1938a, b) suggesting that as long as the
host larva’s humoral condition is appropriate, the implants have the ability to be
pupally committed and to undergo metamorphosis. Moreover, very young larvae
seem to either lack a humoral factor necessary to become pupae or have a secondary
humoral factor that inhibits larval-pupal metamorphosis. A recent study using
B. mori showed that the epidermis of neonate larvae produces pupal and adult
cuticles when transplanted host animals undergo larval-pupal and pupal-adult
molts, respectively. In addition, the authors showed that implantation of the epider-
mis of JH receptor Met mutant larvae into the penultimate instar wild type larvae that
retain high JH concentrations, the epidermis can produce pupal cuticle (Inui and
Daimon 2017). Thus, the authors proposed that the epidermis from very young
larvae can show pupal characteristics when it is exposed to the hemolymph
containing a humoral factor(s) that appears only in late larval stages. Importantly,
JH seems to block the action of this humoral factor(s) to postpone the timing of
metamorphosis until developing larvae reach a certain size. This unidentified factor
is now known as competence factor, which, alongside with ecdysone, JH and PTTH,
seems to play an essential role in the determination of the timing of metamorphosis
in some insects.

3.2.2.4 Insulin/Insulin-Like Signaling/TOR Signaling Pathways

Body size is a complex trait that is modulated by many genetic and environmental
factors. Rearing insects on low quality food or restricted amounts of nutrients leads
to the production of drastically smaller body sizes (Davidowitz et al. 2004; Nash and
Chapman 2014). In insects, as well as in other taxa including mammals, the key
mediator of nutritional inputs is the Insulin/Insulin-like signaling (IIS) and target of
rapamycin (TOR) signaling pathways (Britton et al. 2002; Ikeya et al. 2002;
Wullschleger et al. 2006).

The IIS pathway regulates growth rate in most, if not all insects. Much of our
understanding of IIS comes from work done on Drosophila melanogaster (Koyama
et al. 2020). Eight Drosophila Insulin and Insulin-like peptides (DILPs) have been
identified, and the number of ILPs can be quite large depending on the species
(Nässel and Broeck 2016). Only one of the eight DILPs, DILP7, appears to have
homologues in other species. Although ILPs can be secreted from various tissues
(Brogiolo et al. 2001), the primary production site appears to be the neurosecretory
cells in the brain, the insulin-producing cells (IPCs), which are also the source of
ILPs in other species (Nässel and Broeck 2016; Koyama et al. 2020). Although
DILPs produced by other tissues also play a critical role in regulating body size by

3 Adaptive Meaning of Early Life Experience in Species that Go Through. . . 61



mediating inter-organ communication (see next section), we focus on the main
nutrient-dependent regulation of the IIS pathway in this section.

Briefly, IIS pathway is activated by the intake of sugars or amino acids, which
leads to the production of ILPs (Park et al. 2014). In adults, this link appears to be
direct: adult IPCs are able to sense glucose in a cell autonomous manner (Kreneisz
et al. 2010). In contrast, in larvae, nutrient sensing appears to be indirect with amino
acids being sensed in the fat bodies and sugars being sensed in the corpora cardiaca
(see next section for more details) (Colombani et al. 2003; Geminard et al. 2009;
Kim and Neufeld 2015). These remote sensors then secrete factors that relay the
nutrient-dependent signals to the IPCs (Nässel and Broeck 2016). The IPCs secrete
DILPs, which travel to target tissues where they bind to the Insulin receptor (InR), a
receptor tyrosine kinase that activates a signal transduction cascade (reviewed in
Koyama et al. 2020). Activated InR phosphorylates the homolog of the mammalian
Insulin Receptor substrate (IRS), Chico. Chico then activates
phosphatidylinositide3-kinase (PI3K), which converts phosphatidylinositol (4,5)-
biphosphate (PIP2) into the second messenger phosphatidylinositol (1,4,5)-
triphosphate (PIP3). Phosphatase and tensin phosphatase (PTEN) catalyzes the
reverse reaction. PIP3 activates protein kinase B/Akt, which phosphorylates the
forkhead transcription factor Forkhead box O (FoxO). Phosphorylated FoxO leaves
the nucleus and moves to the cytoplasm (reviewed in Koyama et al. 2020).

Another critical regulator of nutrient-dependent cell signaling is the TOR path-
way, which is primarily sensitive to amino acids (Wullschleger et al. 2006). The
TOR pathway begins with the activation of the small GTPase RHEB (Ras homo-
logue enriched in the brain) in response to amino acids. RHEB then activates TOR
kinase (Saucedo et al. 2003; Zhang et al. 2003). TOR kinase phosphorylates the
ribosomal protein S6 kinase (S6K) and 4E-Binding Protein (4EBP), a translational
repressor, which becomes inactivated when phosphorylated (Miron et al. 2003). The
TOR signaling pathway appears to interact with IIS pathway in a complex manner
and likely regulated in a tissue- and stage-specific manner (Oldham and Hafen 2003;
Dong and Pan 2004; Wullschleger et al. 2006).

Mutating components of the IIS/TOR pathways alters the larval growth rate and
ultimately alters the final adult body size by changing the cell size and the total cell
count. Ablation of IPCs leads to growth retardation of larvae (Rulifson et al. 2002).
These cells produce DILP2, whose overexpression can cause overgrowth of the
body (Brogiolo et al. 2001). When InR or Chico is mutated, the resulting adult is
reduced in size and has smaller and fewer cells (Bohni et al. 1999; Brogiolo et al.
2001), whereas PTEN mutant larvae develop into larger flies (Oldham et al. 2002).
At the whole organism level, IIS regulates the growth rate and its impairment leads
to a reduced growth rate and a longer growth period (Shingleton et al. 2005).
Downregulation of TOR signaling in the fat body also leads to reduced growth
rates (Colombani et al. 2003). Downregulation of IIS/TOR signaling pathways has
been shown to slow growth rates in other insects (Hatem et al. 2015; Al Baki et al.
2018; Scieuzo et al. 2018).

Although growth rate can alter the final body size, the timing of growth cessation
is another key variable that impacts the final adult body size. Ecdysteroids terminate
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the growth phase by initiating the metamorphic transition, the cessation of feeding
and the clearing of the gut (Truman 1972; Nijhout 1976). When the production of
ecdysteroids, or response to ecdysteroids, is altered, the timing of metamorphosis is
affected, either by truncating or delaying metamorphic entry. By changing the timing
of metamorphosis, the feeding period is altered, consequently also impacting the
final larval body size. As ecdysteroids are involved in metamorphic transition of
virtually all holometabolous insects, ecdysteroids likely also regulate the termination
of the growth period. Together, insulin and ecdysteroid signaling account for the
growth rate and the final termination of growth period. As will be discussed below,
these two signaling pathways appear to interact, but the extent to which these
pathways influence each other largely depends on the species studied and the extent
to which JH modulates the production and release of the other two hormones.

3.2.2.5 Interorgan Communication that Coordinates Growth

Animals sense changes in both external and internal conditions and adjust their
developmental program accordingly. If the environment is unfavorable (for exam-
ple, if food or oxygen supply is scarce), developing larvae often grow slower.
However, this decrease in growth rate is accompanied by an extension in the
duration of feeding period to ensure that impact on their final body size is minimized.
These external and internal fluctuations are often sensed by specific organs/cells,
which in turn signal to the whole body to adjust developmental programs via
endocrine pathways. This inter-organ communication allows organisms to adapt to
changes in extrinsic and intrinsic conditions by orchestrating development and
physiology of the rest of the body.

One of the central organs sensing nutritional conditions in developing insects is
the fat body, an insect’s organ functionally homologous to mammalian adipose and
hepatic tissues. The fat body is also the primary energy and nutrition storage tissue. It
also acts as a central endocrine organ, releasing a number of endocrine factors into
circulation in response to the intracellular nutritional condition in D. melanogaster
(Colombani et al. 2003). When intracellular nutrition level is sufficient, the fat body
releases endocrine signals so-called fat body-derived factors to regulate DILP
secretion from the IPCs in the brain (Britton and Edgar 1998; Colombani et al.
2003; Geminard et al. 2009). In response to intracellular amino acid concentrations
via the TOR pathway, this tissue releases a number of signaling molecules, such as
Growth-blocking peptide (GBP) 1 and GBP2 (Koyama and Mirth 2016), Stunted
(Sun) (Delanoue et al. 2016), and the TNF-alpha homolog Eiger (Agrawal et al.
2016) (Fig. 3.4). These factors have the capacity to control transcription and
secretion of DILPs, acting both directly and indirectly on the IPCs. Sun and Eiger
act directly on the IPCs by binding to the receptors Methuselah and Grindelwald,
respectively (Agrawal et al. 2016; Delanoue et al. 2016). In contrast, GBP1 and
GBP2 can act either directly via the receptor Mthl10 on the IPCs (Sung et al. 2017)
or activate EGF-receptor in neurons that directly contact with these neurosecretory
cells (Meschi et al. 2019).
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Sugar and/or lipid concentrations are also sensed in the fat body, resulting in the
production of other factors that have the capacity to remotely regulate DILP trans-
lation and secretion (Fig. 3.4). The neuropeptide CCHamide-2 (CCHa2) is a
TOR-dependent peptide that is primarily sensitive to internal sugar concentrations
(Sano et al. 2015). CCHa2 acts directly on the IPCs via its receptor CCHa2-R,
stimulating DILP secretion and growth. The leptin-like factor Unpaired-2 (Upd2)
also regulates DILP secretion in response to dietary sugar and lipids (Rajan and
Perrimon 2012). Upd2 indirectly regulates DILP secretion by binding to the recep-
tor, Domeless, expressed in GABAergic neurons adjacent to the IPCs. This binding
results in the relief of the inhibitory activity of these neurons, ultimately positively
regulating the secretion of DILPs.

Besides these fat body-derived factors that control DILP transcription and secre-
tion in the IPCs, the fat body also produces factors that modulate insulin signaling
activity in the whole body. For example, both acid-labile subunit (ALS) and
imaginal morphogenesis protein-late 2 (ImpL2) bind DILPs in the circulating

Fig. 3.4 Integration of environmental and internal cues for growth regulation via inter-organ
communication in Drosophila larvae. Top panel, diagram of larval organs necessary for growth
regulation. Bottom panel, inter-organ communications that regulate insulin, PTTH, and ecdysone
production
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hemolymph, antagonizing their activity as a mechanism to fine-tune insulin signal-
ing systemically (Arquier et al. 2008; Honegger et al. 2008; Droujinine and Perrimon
2016; Nässel and Broeck 2016). The fat body also produces one of the DILPs,
DILP6, upon the cessation of feeding to promote growth, both in prepupal and pupal
stages and under starvation conditions in larvae and adults (Okamoto et al. 2009;
Slaidina et al. 2009). DILP6 acts as a molecular switch between the promotion of
energy storage and growth (Okamoto et al. 2009; Slaidina et al. 2009), regulating
both directly and indirectly the secretion of brain-derived DILPs (Bai et al. 2012).

The fat body also senses another crucial environmental factor for growth, oxygen
concentration (Fig. 3.4). Similar to nutrition, hypoxia causes reduced growth rate
and delayed metamorphosis inD. melanogaster. The fat body senses internal oxygen
concentrations and controls DILP secretion from the IPCs through an unidentified
humoral factor(s) (Texada et al. 2019). In contrast to TOR-dependent regulation of
the majority of nutrition-dependent fat body-derived factors, hypoxia controls DILP
secretion through a factor(s), whose expression is dependent on the hypoxia-
inducible factor 1α (HIF-1α). This HIF-1α-dependent regulation is likely even
more effective than regulation of nutrition- and TOR-dependent DILP secretion
(Texada et al. 2019). In Manduca sexta, oxygen concentration is thought to act as
a cue for achieving a specific size known as the critical weight (see below) (Callier
and Nijhout 2011). It is not clear whether the fat body mediates this critical weight
achievement in this species.

In addition to the fat body, the intestine also senses nutritional conditions in
insects. D. melanogaster larval enterocytes in the gut respond to dietary nutrients
and produce Hedgehog (Hh) to regulate ecdysone production in the prothoracic
gland as well as to act on the fat body to reduce growth rate (Rodenfels et al. 2014)
(Fig. 3.4). Nutritional information is also sensed in the enteroendocrine cells of the
gut in insects. In D. melanogaster, these cells produce one of the ligands of
transforming growth factor-β (TGF-β), Activin, in high concentrations of dietary
sugar during the larval stage (Song et al. 2017). Once secreted, Activin acts on the fat
body and affects adipokinetic hormone (AKH) signaling, which mobilizes stored
nutrition in this tissue. However, it is not clear whether this mobilization of nutrients
in larval stages affects adult life history.

In addition to the fat body and intestine, at least in M. sexta and Tribolium
castaneum, developing musculature is used as a proxy of larval size to regulate the
timing to be the last larval instar. In M. sexta, mass of the musculature becomes
above certain threshold that correlates with the attainment of threshold size, the
developmental checkpoint that occurs in the penultimate larval instar (He et al.
2020). Once larvae attain this developmental checkpoint, they molt to the final larval
instar after the following larval–larval molt (He et al. 2020). This larval musculature
mass correlates with the amount of the TGF-β ligand, Myoglianin (Fig. 3.4). In
T. castaneum, knockdown of myoglianin by RNAi results in failure to undergo
metamorphosis and myoglianin knocked down larvae repeat supernumerary molts
permanently. This occurs presumably due to disrupted signaling communication
between the muscle and rest of the body necessary for threshold size attainment
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(He et al. 2020). Therefore, the amount of muscle tissues appears to affect the final
body size, similarly to the fat body-derived factors.

3.2.3 Effects of Nutrition on Body Size and Developmental
Timing

Because the pupa does not feed and the adult typically does not molt, the size at
which the larva stops feeding and enters metamorphosis dictates the adult size.
Larval growth is regulated by three parameters: the growth rate, decision to undergo
metamorphosis, and interval between this decision point and the secretion of ecdy-
sone, which ceases growth (Nijhout et al. 2006). Growth rate is an important
component of larval growth and has important consequences on the final larval
size. Nutritional intake can drastically alter the growth rate although additional
factors, such as temperature, humidity and presence of predators, can also have
large impacts on growth rates (Davidowitz et al. 2003; van Uitregt et al. 2012).

The timing of metamorphic entry is determined by a series of developmental
events. Although the mechanism of metamorphic entry varies drastically between
species, in many cases it involves some sort of size sensing events during which the
larval size is assessed. In the tobacco hornworm, M. sexta, which has served as a
major model for body size determination, three distinct size assessment checkpoints
have been identified: the threshold size (or threshold weight), the minimum viable
weight, and the critical weight. The threshold size is the size at which the larva
decides to enter the final larval instar (Nijhout 1975). If the larva has not attained the
threshold size, it will undergo an extra larval molt(s) before entering the final instar.
The minimum viable weight is the size at which starvation still permits the larva to
survive to metamorphosis; starvation below this weight leads to death (Mirth et al.
2005; Mirth and Riddiford 2007; Callier and Nijhout 2013; Xu et al. 2020). The
critical weight is the weight above which starvation no longer delays metamorphosis
(Nijhout and Williams 1974b). When larvae are starved above the minimum viable
weight and below the critical weight, the onset of metamorphosis is delayed. Note
that the minimum viable weight and critical weight are experimentally defined—that
is, they are identified by starving the larvae. The critical weight is not a fixed
measure, but rather a function of the weight and size of the animal at the time of
the previous molt. The threshold size, in contrast, can be detected without starving
larvae (He et al. 2020).

The cessation of growth is typically marked by entry into the prepupal phase. At
this point in development, the larva typically clears its gut in preparation for
remodeling the gut. From this point onward, the larva no longer feeds, and the
final size of the adult is set. The period between the time of critical weight attainment
and cessation of feeding is called the terminal growth period, which marks the final
phase of larval growth (Davidowitz and Helm 2014).

66 T. Koyama et al.



While growth rate can certainly influence the final adult body size, metamorphic
timing is regulated in principle by the three size checkpoints. Therefore, we focus
mostly on how larval feeding environments impact the checkpoints and the timing of
metamorphosis. M. sexta has served as an important model for identifying major
checkpoints involved in growth regulation. It turns out, however, that the mecha-
nisms involved in growth regulation—in particular the decision to stop growing—
are diverse and adapted to feeding ecology of different species. Here, we will attempt
to synthesize the current knowledge into three different categories to make sense of
the diversity of size regulators. These adaptive strategies mitigate trade-offs between
reproductive output and survival and appear to have evolved in response to specific
feeding ecologies of particular insects.

3.2.3.1 Body Size Check Determination in Insects with Abundant Food
Source

The first strategy involves maximizing growth at the expense of developmental
speed. Such species tend to have abundant food sources and will feed until they
attain a particular size threshold. Starvation below this threshold delays development
and triggers the larva to search for food. Because food sources are abundant, the
larvae will eventually find food and resume growth until the size threshold is
reached.

Such a strategy is observed in M. sexta. Threshold size in this species appears to
be attained at the end of the fourth instar (Nijhout 1975; He et al. 2020). If the larva
has not attained the threshold size, it will delay entry into the final instar by inserting
an extra larval instar (Kingsolver 2007). This has considerable impact on the final
size as the addition of a larval instar adds additional time to feed and grow. The
threshold size in this species can shift through artificial selection for larger or small
body sizes (Grunert et al. 2015) and appears to be correlated with the attainment of a
particular muscle size (He et al. 2020).

Once the larvae have attained the threshold size and molt into the final instar, JH
plays a prominent role in determining the timing of metamorphosis. High levels of
JH present at the onset of the final instar have been shown to delay the attainment of
the minimum viable weight (Xu et al. 2020). Once the larvae have fed enough, JH
levels drop and ecdysteroid biosynthesis genes are activated at minimum viable
weight (Xu et al. 2020). This basal ecdysteroid biosynthesis is sufficient to promote
eventual metamorphic entry under starvation conditions; however, starvation delays
the timing of metamorphic onset because starvation decreases ecdysteroid biosyn-
thesis rate by inhibiting ecdysone biosynthesis gene expression (Nijhout 1976;
Callier and Nijhout 2011, 2013; Xu et al. 2020). In normally feeding larvae, the
timing of critical weight attainment appears to be correlated with the onset of
clearing of JH from the hemolymph (Nijhout and Williams 1974a; Suzuki et al.
2013). Because JH is not cleared until critical weight has been attained, the presence
of low amounts of JH prevents the onset of metamorphosis by inhibiting PTTH
production from the brain (Nijhout and Williams 1974a; Browder et al. 2001; Suzuki
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et al. 2013). Thus, in this species, starvation delays the onset of metamorphosis and
ensures that the larva becomes as large as possible before metamorphosis.

3.2.3.2 Body Size Check Determination in Insects with Ephemeral Food
Source

The second strategy involves maximizing developmental speed at the expense of
body size. Species with this strategy tend to have rapid life cycles with the goal of
reproducing as quickly as possible. Such life history strategies are seen among
species that have ephemeral food sources and cannot afford to delay metamorphosis
when food runs out. D. melanogaster, whose rapid life cycle has led to their
prominence as a genetic model system, uses this strategy to develop as quickly as
possible. In this species, the life cycle is already rapid under normal feeding
conditions, but development speeds up even more when food is removed so that
they can successfully survive to pupation (Beadle et al. 1938; Stieper et al. 2008;
Koyama et al. 2014). Interestingly, selection for a rapid life cycle appears to have led
to the convergence of the minimum viable weight and the critical weight, thus at no
time in their development can larvae be starved to delay metamorphosis without
killing them (Mirth et al. 2005). In this species, therefore, size is no longer a key
factor in the decision to undergo metamorphosis. Instead, once larvae have eaten
enough to survive metamorphosis, larval development progresses in a clock-like
fashion, ensuring that larvae enter metamorphosis without any delays (Ohhara et al.
2017).

In this species, metamorphic timing is regulated by a nutrient-sensitive process
that modulates ecdysteroid production. Ecdysteroid biosynthesis genes are activated
at the minimum viable weight/critical weight checkpoint (Koyama et al. 2014;
Ohhara et al. 2017). Several studies indicate that altering IIS/TOR signaling in the
prothoracic glands could alter the production of ecdysteroids and hence the mini-
mum viable weight/critical weight checkpoint (Caldwell et al. 2005; Mirth et al.
2005; Layalle et al. 2008; Koyama et al. 2014; Ohhara et al. 2017). When IIS/TOR
signaling is inhibited in the prothoracic glands, ecdysteroid biosynthesis is delayed
and the minimum viable weight/critical weight checkpoint shifts to a larger size.
Once ecdysteroidogenesis begins, TOR signaling becomes dispensable and starva-
tion can no longer inhibit ecdysteroid biosynthesis, leading to the loss of develop-
mental delays. Instead, a timer-like mechanism takes over, allowing the prothoracic
glands to dictate the timing of metamorphosis regardless of the body size (Ohhara
et al. 2017). JH levels are barely detectable during the early portion of the final instar
and do not delay the timing of minimum viable weight as it does in M. sexta
(Xu et al. 2020).
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3.2.3.3 “Bail Out” Strategy

Finally, there are species that appear to use a combination of these two strategies. In
such species, as long as food is available, they will continue to feed until a size
threshold is reached. However, once starved, they initiate a clock-like mechanism to
initiate metamorphosis as soon as possible. This mechanism is called the “bail-out”
mechanism and can be seen as enjoying the benefits of both of the aforementioned
strategies. This strategy ensures that the larvae grow as large as they can when food
is abundant; but when their food runs out, they switch to developing as quickly as
they can. Such life history strategies are observed among species with food that is
provisioned by their parent. Dung beetles provide their offspring with dung balls,
which can be variable in size. If the unlucky offspring ends up with a tiny dung ball,
it has no option but to metamorphose once the food runs out. In such cases, the larvae
will “bail-out” and initiate metamorphosis quickly (Shafiei et al. 2001). In contrast, a
lucky larva provisioned with a large dung ball will continue to eat until it has reached
a large body size. Similar bail-out type strategies have been documented in beetles,
such as the longicorn beetle Psacothea hilaris (Nagamine et al. 2016), and hyme-
nopterans, such as Osmia lignaria (Helm et al. 2017). In the flour beetle
T. castaneum, prolonged feeding on low quality diet can also lead to the eventual
metamorphosis of the larvae in sub-threshold size animals, potentially reflecting a
bail-out type strategy in this species as well (Chafino et al. 2019).

The solitary bee O. lignaria has been used to probe the mechanism underlying
this strategy (Helm et al. 2017). In this species, the mechanism underlying meta-
morphosis appears to involve a combination of the two mechanisms described
above. JH appears to delay the onset of metamorphosis when food is abundant
(Helm et al. 2017), presumably by delaying the attainment of the minimum viable
weight. However, once food is removed, or if JH is depleted chemically, the larvae
quickly initiate metamorphosis in a clock-like fashion. Regardless of the weight
attained, larvae will always initiate metamorphosis within 24 h of removal of food
(Helm et al. 2017). Thus, in this species, a timer-like mechanism is activated by
starvation, presumably by shutting off JH. The timer is similar to that of
D. melanogaster where ecdysteroid biosynthesis is activated and becomes
nutrient-independent although studies on Halloween genes are needed to support
this notion. Although starvation can induce the timer at any point in the final instar of
O. lignaria, in other species, starvation cannot induce a timer until a certain size
checkpoint, indicating that the timer is not necessarily triggered by starvation in all
species that use a bail-out strategy (Nagamine et al. 2016).

3.2.3.4 JH Mediates Distinct Feeding Ecology of Insects

A summary of the strategies used is shown in Fig. 3.5a. Some species prioritize
developmental speed over adult body size whereas others prioritize adult body size
at the expense of developmental time. Others have evolved strategies to balance the
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Fig. 3.5 Trade-offs between survival and reproductive outputs shape body size. (a) Three distinct
strategies for mediating trade-offs between reproduction (favored by larger body size ¼ denoted by
the fork and knife) and survival (favored by faster development ¼ denoted by the clock). Each of
these strategies is adapted to the particular feeding ecology of the species. JH mediates the trade-offs
and determines the degree to which attainment of a larger body size predominates over faster
development. (b, c) A model depicting fitness costs arising from having different body sizes. The
larger the body size, the higher reproductive output and therefore reduced fitness costs (represented
by the dark blue reproductive output line). However, a higher body size comes at the cost of having
to grow for a longer period of time (represented by the red survival/larval duration line). The
optimum body size is where the fitness costs from reproduction and developmental time are
minimized. (b) Populations encountering ephemeral food sources have higher survival/larval
duration costs because longer developmental time risks death (dotted red line). These populations
have lower optimal body size (Optimum 1). In populations with abundant food supply, the survival/
larval duration line shifts to the right, accompanied by an increased role of JH during the larval stage
(solid red line). Such populations have higher optimal body size (Optimum 2). (c) In addition to the
shift in the survival/larval duration line, each species has its own reproductive output line. In the
case of D. melanogaster, this line is shifted to the left such that the optimum body size is very small
(light blue). In M. sexta, the two lines cross at a much higher body size, leading to the very large
adult body size
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two trade-offs. These distinct strategies arise through changes in the relative impor-
tance of a developmental timer and nutrient sensitivities in determining the meta-
morphic timing. The presence of JH appears to mediate the two processes by
favoring a nutrient-sensitive mechanism that prioritizes body size over speed
(Suzuki et al. 2013; Hatem et al. 2015; Nijhout 2015).

More generally, we propose that different species have evolved optimal strategies
to maximize reproduction while reducing fitness costs of a longer life span
(Fig. 3.5b,c). Graphically, this can be represented using a model similar to the
supply and demand model of economics. In this model, the X-axis represents the
body size of the adult and the Y-axis represents fitness costs. In this plot, the fitness
costs incurred from limited resources in the body decrease as the adult body size
increases (represented by the reproductive output line); however, the cost of length-
ening the larval growth period increases with increasing adult body size (represented
by the survival line). The size at which the two lines meet represents the optimal
body size for a given species. Depending on the strategy favored, the survival line
can shift (dotted line in Fig. 3.5b), thus increasing or decreasing the optimal body
size. Depending on the species, reproductive output line will also shift, thus the
optimal body size can differ vastly (Fig. 3.5c). We propose that the role of JH during
the larval stage becomes more prominent toward the right side of the graph and that
JH plays a critical role in mediating the life history trade-offs between developmen-
tal time and reproduction.

3.2.4 Effects of Tissue Regeneration on Developmental
Timing

As seen in other animals, many insects have genetic programs that allow them to
alter their physiology and development for regeneration to cope with injury or
abnormal tissue growth (Suzuki et al. 2019). In response to injury, developmental
processes need to be adjusted to permit sufficient time for regeneration. Insufficient
coordination between developmental time and regeneration potentially causes organ
malformation, compromising organ structure and function.

Classical studies on several cockroach species, including Blattella germanica,
show that leg amputation during the juvenile (nymphal) stages induces developmen-
tal delay during nymphal development (O’Farrell and Stock 1954; Stock and
O’Farrell 1954; Kunkel 1977). Similar phenomenon is also observed in holometab-
olous insects. In the wax moth, Galleria mellonella, partial removal of the develop-
ing adult wing leads to developmental delay at larval stages (Madhavan and
Schneiderman 1969; Malá et al. 1987). In the fruit fly D. melanogaster, injury in
developing larval organs also extends the duration of larval development (Bourgin
et al. 1956; Stieper et al. 2008; Hackney and Cherbas 2014; Gontijo and Garelli
2018). Interestingly in the Mediterranean flour moth Ephestia kuehniella, implanta-
tion of a small fragment of developing wings into host larvae induces developmental
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delays (Rahn 1972), suggesting that injured developing organs secrete a factor that
changes developmental timing.

In D. melanogaster, this injury- or abnormal growth-dependent developmental
delay in metamorphosis is primarily mediated by the relaxin-like peptide DILP8, that
is produced in abnormally growing discs (Colombani et al. 2012; Garelli et al. 2012).
Injury- or abnormally growing disc-derived DILP8 induces a developmental delay
through the G-protein coupled receptor Lgr3, expressed in a pair of bilateral pars
intercerebralis (PIL) neurons. These Lgr3 positive neurons inhibit secretion of
PTTH by synapsing upon the PTTH producing neurons (Colombani et al. 2015;
Garelli et al. 2015; Vallejo et al. 2015; Jaszczak et al. 2016). This inhibition of PTTH
secretion results in reduction of ecdysone production from the prothoracic gland
through the PTTH receptor Torso, which in turn results in delays in the timing of
metamorphosis. Thus, this developmental checkpoint couples sufficient tissue
growth with developmental timing.

In addition, this signaling pathway coordinates the size of all paired discs.
Elimination of DILP8 or Lgr3 enhances asymmetric growth in paired organs (Garelli
et al. 2012, 2015; Colombani et al. 2015), suggesting that the primary function of
DILP8-Lgr3 signaling is likely a coordination of symmetric growth (Garelli et al.
2012). This asymmetric growth in DILP8 or Lgr3 mutants is likely due to lack of
communication between a normally developing organ and an organ with small
deviations in growth (Gontijo and Garelli 2018). If DILP8-Lgr3 signaling is normal
and one of the developing organs shows any developmental error, this organ is
expected to produce DILP8. In this case, the counterpart of this organ responds to
DILP8 and slows down its growth as well as delaying the timing of metamorphosis.
This delay is necessary for the abnormally developing organ to catch up with the
counterpart. If DILP8-Lgr3 signaling is compromised, the abnormally growing
organ fails to alter developmental timing and ends up being either smaller or larger
than its counterpart, which exhibits the expected normal size. In normal larval
development, the transcription factors of the Hippo pathway, Yorkie and Scalloped,
are proposed to regulate the expression of dilp8 (Boone et al. 2016). The Hippo
pathway is known to regulate cell growth and proliferation through changes in
cytoskeleton network and cell-to-cell contact (Bosveld et al. 2012; Pan et al. 2016,
2018). As such, this regulation of dilp8 expression by Hippo pathway transcription
factors seems to couple dilp8’s functions in regulation of developmental timing and
reduction of fluctuating asymmetry. Accordingly, this Hippo signaling-induced
dilp8 expression couples developmental timing and organ growth perturbation by
changing the timing of ecdysone secretion via the PTTH-prothoracic gland axis.

3.3 Mediators of Tissue Plasticity

Growth and re-patterning of tissues are regulated by many signaling pathways that
modulate cell proliferation and growth. In insects, ecdysteroids, JH and IIS play
important roles in regulating tissue growth during adult tissue formation and
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morphogenesis. In many species, these endocrine factors are also used to mediate
environmental cues. In this section, we review how these factors regulate normal
adult tissue formation and morphogenesis.

In many holometabolous insects, adult morphogenesis of most tissues begins
during the final larval instar. A handful of structures, such as wing imaginal discs,
form during embryogenesis, but these early-forming imaginal discs are thought to be
derived traits that arose independently several times within the Holometabola
(Svácha 1992; Truman and Riddiford 1999). Growth of the late-forming adult
tissues, which consist of several undifferentiated cells and do not proliferate actively
until certain developmental stage, begins early in the final instar. In M. sexta, for
example, leg and eye primordia begin to proliferate soon after the larvae begin to
feed (MacWhinnie et al. 2005; Allee et al. 2006; Truman et al. 2006; Truman and
Riddiford 2007; Truman 2019). At the onset of the final instar, JH suppresses
proliferation. This morphostatic action of JH is nutrient dependent as JH prevents
imaginal cells from proliferating only under starvation (Truman et al. 2006; Koyama
et al. 2008). Once the larvae start feeding, the IIS pathway can effectively override
the morphostatic action of JH and allows imaginal cells to proliferate (MacWhinnie
et al. 2005; Koyama et al. 2008). This initial growth does not require inputs from
ecdysteroids (Truman et al. 2006).

Later in the instar, ecdysteroids play prominent roles in promoting growth of
these imaginal tissues. Studies on lepidopteran imaginal discs have shown that both
ecdysteroids and Bombyxin—the lepidopteran insulin-like hormone—are required
for disc growth (Nijhout and Grunert 2002; Nijhout et al. 2007). Although
Bombyxin has no effect on growth of isolated discs cultured in vitro, it can act
synergistically with 20E to promote imaginal disc growth (Nijhout et al. 2007).
Interestingly, however, the hormones appear to have distinct effects on individual
cells: ecdysteroids stimulate cell proliferation, DNA synthesis, and protein synthesis,
whereas insulin promotes growth of each cell and protein synthesis (Nijhout et al.
2018).

The IIS pathway also plays an important role in regulating scaling relation-
ships between tissue size and the whole body size. By modulating the expression
of InR expression in various tissues, Shingleton et al. (2005) demonstrated that body
size is only affected up to pupariation. In contrast, tissue growth continues to be
sensitive to InR post feeding until early pupal development. Furthermore, certain
tissues are more sensitive to InR modulation than others. For example, the size of the
genitalia is robust to InR modulation, whereas wings are much more sensitive to InR
expression (Shingleton et al. 2005). Thus, tissue specific sensitivity to the IIS
pathway can lead to exaggerated tissue growth. These differential responses to the
IIS pathway are mediated by the expression of FoxO, which is inhibited by the IIS
pathway (Tang et al. 2011). Because the IIS pathway is sensitive to nutritional
environment, this pathway provides a mechanism by which larval nutrition can
impact the adult morphology in a tissue specific manner as discussed below. Finally,
the IIS pathway impacts organ size in distinct ways at different levels of the IIS
activity. Severe reduction of IIS activity leads to smaller organ sizes through
reduction in both cell size and cell number, whereas modest reduction of IIS activity
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leads to smaller organ size primarily through a reduction in cell size (Shingleton
et al. 2005).

3.4 Tissue Growth Polyphenisms

Many insects produce altered adult morphologies that result from exaggerated tissue
growth during metamorphosis. Phenotypic plasticity of trait sizes can manifest in
two different ways: the scaling relationship between the trait size and the body size
can be linear or discontinuous (Emlen and Nijhout 2000). In some cases, exagger-
ated traits can scale linearly and serve as an honest signal for the quality of mates.
Size of horns of some beetle species, such as the rhinoceros beetle Trypoxylus
dichotomus, and eyestalk lengths of stalk-eyed flies (Diopsidae) are influenced by
larval nutrition and can scale linearly with body size (David et al. 1998; Knell et al.
1999; Johns et al. 2014). In contrast, when the scaling relationship is discontinuous
such that two or more distinct trait size classes are observed, the trait is said to be
polyphenic. Such polyphenisms typically exhibit a reduction or absence of the trait
at smaller body sizes and a large trait size at larger body sizes. These alternative
morphologies often represent adaptations to alternative reproductive strategies, such
as male–male combat vs sneaking (Gross 1996).

Local tissue growth can be broken down into two components, growth and
patterning. Certain regulators, such as hormones, impact whole tissue growth by
promoting overall tissue growth (Koyama et al. 2013). In contrast, local tissue
patterning is often a consequence of both endocrine factors and local growth factors,
such as morphogens, that promote growth and proliferation within a particular tissue.
Some of these environmentally sensitive adult traits develop from cells that begin to
proliferate at the end of the larval stage. A classic example is the dung beetle horn,
which is absent from the larval body. In these cases, cells within the larval epidermis
become specified to form the adult trait. Such specification is typically regulated by
hormones, presumably through the influence of JH and/or ecdysteroids. Environ-
mental conditions can impact these hormones and affect the trait specification
process. Thus, adults may lack the trait altogether under certain endocrine conditions
(Fig. 3.6).

Other traits develop from existing larval structures and become exaggerated
during metamorphosis. For example, the impressively large stag beetle mandibles
arise from dramatic growth of the modest larval mandibles. Again, endocrine factors
play a role in regulating the growth of these structures. Because the initial specifi-
cation and differentiation step has already occurred during the embryonic stage, the
adults will always have a set of mandibles; however, the amount of growth that
occurs during metamorphosis is dependent upon the larval environmental inputs.

Below, we discuss several examples of developmental plasticity during meta-
morphosis and discuss both the adaptive significance of these traits and the devel-
opmental basis of these tissue size polyphenisms. We have grouped them according
to the scaling relationship between the size of the trait and body size. In some cases,
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the relationship is sigmoidal, such that there is a discontinuous scaling relationship
between the trait and body size (Fig. 3.7b right). In other cases, the trait scales
linearly with body size (Fig. 3.7b, left). Finally, in other cases, the trait size can be
influenced by the environment independently of the whole body size such that the
alternative morphs do not depend on body size (Fig. 3.7c). We have grouped this
latter case under the category of insects that have overlapping allometries.

3.4.1 Insects that Exhibit Sigmoidal Allometries

3.4.1.1 Adaptive Significance

Many dung beetle species have evolved horns on either the head or the thorax
(Emlen 2008). In some species, these horns serve as weapons in male–male com-
petition for courtship and thus are often present only on males although females of
some species also have horns (Moczek and Emlen 2000; Emlen 2008). However, not
all males have horns: small males lack these structures, whereas males above a
certain threshold size have large horns (Emlen 1997b). As it turns out, not having
horns is not a bad thing: small males can often “sneak” by the larger males and mate
with females (Emlen 1997a; Moczek and Emlen 2000). Because small males are
favored to have no horns whereas large males are favored to have large horns, these

Fig. 3.6 Regulation of tissue allometry. Nutrition impacts both whole body growth and tissue
specific growth by modulating the endocrine system. Whole body growth phase: During the feeding
period, these endocrine signals primarily regulate whole body growth by stimulating cell prolifer-
ation and growth. Tissue growth phase: During metamorphosis, either overlapping or distinct sets of
endocrine signals regulate (1) the specification of adult tissues, (2) the localized proliferation and
growth of these tissues, and (3) the patterning of these tissues. In some cases, different environ-
mental inputs can modulate these processes to generate divergent adult phenotypes
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two morphs are maintained by selection (Emlen 1997a). Whether the beetles develop
horns or not is determined by the amount of maternally provisioned dung balls
(Emlen 1994, 1997b; Moczek 1998). Thus, larval diet determines the morph and the
reproductive strategy of the adults.

3.4.1.2 Developmental Regulation

Beetle horns can develop either on the thorax or on the head, depending on the
species (Emlen 2008). The regulation of head horn polyphenism has been best
elucidated in Onthophagus taurus. In O. taurus, two hormone sensitive periods
have been found. One hormone sensitive period occurs during the feeding period and

Fig. 3.7 Modularization of tissues facilitates increased uncoupling of trait sizes from body growth.
Top row shows the scaling relationship between trait size and whole body size. Middle row shows
potential underlying mechanisms that give rise to the particular scaling relationship. Bottom row
shows the growth of a hypothetical organism with the cells indicated by dots. The connections
between these circles reflect the degree of integration. (a) Without modularization, the trait size
(gray dots) will scale with the size of the rest of the body (black dots). In this case, the same
endocrine signal regulates the growth of the body and the trait. (b) In the earliest stages of adult
tissue modularization, tissue growth becomes exaggerated with respect to the growth of the rest of
the body. Often the sizes of these traits serve as honest signals for the overall condition of the
organism. Whether a linear (b, left) or a sigmoidal (b, right) scaling relationship is observed
depends largely on the complexity of signals that regulate tissue growth. If multiple signaling
pathways are used, a sigmoidal allometry emerges. (c) As tissues become more developmentally
uncoupled from the growth of the whole body, their response to the environment becomes localized
and independent of the size of the body. This happens if the growth of the trait and growth of the
whole body are independently regulated
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corresponds to the specification of horns. If ecdysteroids are absent during this stage,
cells in the epidermis are specified to form a horn; in the presence of ecdysteroids,
cells do not contribute to a horn (Emlen and Nijhout 1999). During this sensitive
period, JH also impacts the horn threshold: if JH is high during this sensitive period,
the body size at which horns appear shifts to a larger body size (Emlen and Nijhout
2001).

A second hormone sensitive period occurs after the cessation of feeding (Emlen
and Nijhout 1999). This is a JH-sensitive period during which topical application of
JH leads to the production of large horns in small adults that normally would have
had no horns. Thus, JH can rescue horn production even when cells were previously
specified to contribute to a hornless phenotype (Emlen and Nijhout 1999). These
studies illustrate the importance of the developmental context during which hor-
mones act. JH during the feeding period shifts the threshold size at which horns are
induced, whereas once the larvae have ceased feeding, JH promotes the formation of
horns.

Given that nutrition impacts horn size, an obvious endocrine signaling that
impacts horn size is the IIS pathway. Interestingly, knockdown of InR in
O. taurus fails to influence the horn size-body size allometry (Casasa and Moczek
2018). Knockdown of FoxO, however, leads to a more linear horn size-body size
allometry, indicating that FoxO is responsible for the sigmoidal shape of the
allometric relationship. Thus, horn growth of O. taurus is a complex trait regulated
by at least three distinct endocrine signals. Such complex regulation of trait growth
likely leads to the sigmoidal shape of the allometries (Fig. 3.7b right). It is worth
noting that the role of FoxO is not conserved across all horns. For example,
knockdown of FoxO has minimal impact on the body-thoracic horn scaling rela-
tionship of O. nigriventris (Snell-Rood and Moczek 2012).

3.4.2 Insects with Linear Allometries

3.4.2.1 Adaptive Significance

The adult rhinoceros beetles develop spectacular thoracic and head horns that are
used for male–male fights and securing mates (Emlen 2008; Johns et al. 2014;
McCullough et al. 2014). The size of the horns scales linearly with the body size,
providing an honest signal for the quality of the males (Emlen et al. 2012). These
horns arise de novo during metamorphosis, and the horns exhibit heightened sensi-
tivity to larval nutritional environment, compared to other body parts (Johns et al.
2014). Many other beetle species also exhibit exaggerated mandibles that allow
males to engage in combat with conspecific males (Emlen and Nijhout 2000). Like
the rhinoceros beetle horns, these mandibles scale linearly with body size and serve
as reliable signals of the larval nutritional status. Although these dramatically
enlarged mandibles develop from pre-existing mandibles, the exaggerated growth
occurs during metamorphosis and reflects the amount of food a larva was able to
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assimilate. Thus, in all of these examples, larval nutritional environment influences
adult reproductive fitness.

3.4.2.2 Developmental Regulation

The rhinoceros beetles have exaggerated horns that scale hyperallometrically with
body size. In contrast to dung beetles where knockdown of InR has no influence on
horn size allometry (Casasa and Moczek 2018), horns of the rhinoceros beetle
Trypoxylus dichotomus are regulated directly by InR: removal of InR leads to a
drastic reduction of horn sizes (Emlen et al. 2012). Because IIS responds directly to
nutrients, it is thought that the heightened sensitivity of the horns to insulin provides
an honest and exaggerated reflection of the amount of nutrition the larvae had
consumed (Emlen et al. 2012). Moreover, JH does not appear to play a major role
in regulating the scaling relationship between horns and body size of T. dichotomus
(Zinna et al. 2016).

The males of broad-horned flour beetle Gnatocerus cornutus also exhibit
hyperallometry: the males have disproportionately large mandibles as weapons for
male–male combat (Okada et al. 2006). The exaggerated growth of mandibles is also
mediated by IIS pathway. The expression of one of the ILP genes, ILP2, in the fat
body correlates with the size of the larvae and its knockdown leads to a clear
reduction in mandible size, leading to an isometric relationship between mandibular
and body sizes (Okada et al. 2019). In contrast, topical application of the JH analog
leads to the enlargement of the mandibles as well as the head and the prothorax
(Okada et al. 2012). Whether or not nutritional status influences the size of the
mandibles in this species is not known.

In the stag beetle Cyclommatus metallifer, the mandible size depends on the body
size. In this species, however, JH also plays a prominent role in regulating the size of
the mandibles. The JH-sensitive period in the post-feeding period determines the size
of the mandibles: males with higher JH titers grow larger mandibles (Gotoh et al.
2011, 2014). Whether or not IIS plays a role in regulating the size of mandibles in
this species is not known.

A comparison of the processes underlying the development of exaggerated traits
demonstrates that although hormones are always involved, they have distinct effects
on the final adult morphology. When adult traits and body size are regulated by the
same hormonal signals, the scaling relationship is likely to be linear (Fig. 3.7b, left).
Differential expression of receptors/timing of sensitive periods, or changes in the
downstream effectors, can alter the slope of these linear scaling relationships. In
contrast, when more than one hormonal mechanism influences body and trait size in
different ways, the scaling relationships can adopt a more sigmoidal shape
(Fig. 3.7b, right).
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3.4.3 Insects with Overlapping Allometries

3.4.3.1 Adaptive Significance

Species exhibiting wing length polyphenism can have fully formed wings
(macropter or alate) or develop into flightless morphs, with reduced wings
(brachypter) or no wings (apter). The persistence of the two morphs reflects trade-
offs associated with flight capability and reproduction. Macropterous insects have
reduced reproductive outputs relative to brachypterous insects because of energetic
costs necessary to construct and maintain wings and flight muscles (Roff 1986).
More research needs to be conducted on male specific fitness costs (mate detection,
attractiveness, etc.), but orthopteran and planthopper macropters appear to be less
fecund than their flightless counterparts (Roff 1986; Zera and Denno 1997). The
fully functional macropterous forms, however, can escape deteriorating environ-
ments and colonize new areas with their flight-capabilities (Roff 1986; Denno et al.
1991; Zera and Denno 1997). Thus, the production of macropters is typically
density-dependent and further induced by insufficient or inadequate resources
although this is certainly not the rule. For example, in a few cricket species,
brachypters develop when they lack resources necessary for macropter production
(Zera and Denno 1997).

3.4.3.2 Developmental Regulation

Wing polyphenisms are influenced by exposure to various environmental cues, such
as population density, host plant condition, temperature, and photoperiod during the
nymphal stages (Denno and Roderick 1990; Zera and Denno 1997). JH signaling,
ecdysteroid signaling, and IIS pathways appear to respond to these cues and influ-
ence the growth of wings. In the crickets and planthoppers, topical application of JH
and removal of JH leads to higher proportion of brachypters and chemical ablation of
the corpora allata, the source of JH, leads to higher proportion of macropters
(Iwanaga and Tojo 1986; Zera and Tiebel 1988; Ayoade et al. 1996). Moreover, in
the migratory planthopper Nilaparvata lugens, reduction in the expression of gene
encoding a JH degradation enzyme, JH epoxide hydrolase, causes the formation of
brachyperous morphs in a predominantly macropterous strain (Zhao et al. 2017). In
G. rubens, the activity of another JH degradation enzyme, JH esterase (JHE), is
elevated in the presumptive macropterous nymphs. Subsequent studies on artificially
selected lines of G. firmus demonstrated that crickets selected for longer wings have
elevated levels of JHE compared to those selected for shorter wings (Zera and Huang
1999). Although direct evidence of the role of ecdysteroids on wing dimorphism is
lacking, presumptive brachypterous morphs have lower ecdysteroid titers during the
wing morph determination period compared to the presumptive macropterous
nymphs (Zera et al. 1989). Recent studies have demonstrated that the IIS pathway
plays a critical role in the determination of wing morphs of N. lugens. The two
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insulin receptors identified in this species appear to play antagonistic roles: InR1 is
necessary for macropter development, whereas knockdown of InR2 leads to
macropter development. InR1 appears to act in the canonical IIS pathway, while
InR2 acts to antagonize the canonical IIS (Xu et al. 2015). These studies demonstrate
that JH signaling, ecdysteroid signaling, and IIS are involved in regulating wing
growth.

3.4.4 Modularity Facilitates Environmental Sensitivity
of Trait Sizes

As discussed above, polyphenisms are regulated by tissue specific responses to
endocrine regulators. Developmental modularity of these tissues facilitates the
localized fine-tuning of adult morphogenesis and patterning during metamorphosis.
At the molecular level, developmental plasticity of tissues can arise as a consequence
of (1) changes in the number of local receptors, (2) heterochronic shifts in the timing
of receptors, or (3) expression of a unique set of endocrine response genes.
Depending on the degree of developmental dissociation of the trait from the rest of
the organism, the trait may reflect the size and condition of the body. Some traits are
developmentally integrated with the whole body and can serve as an honest signal of
the organism’s overall condition and fitness at the time of metamorphosis (Fig. 3.7a,
bottom row). In other cases, the trait development may barely reflect the condition of
body (Fig. 3.7c, bottom row). These differences reflect the degree to which the trait
undergoes morphogenesis independently of the rest of the body.

3.4.5 Butterfly Color Polyphenisms

We end our discussion with size-independent polyphenisms, specifically focusing on
butterfly wing color polyphenisms because it has been well documented. A discus-
sion of how larval environment impacts adult fitness would be incomplete without
exploring its role and effects in butterflies.

3.4.5.1 Adaptive Significance

Seasonal polyphenisms of butterfly wings include some of the most spectacular
examples of polyphenisms. Many species of butterflies belonging to the fam-
ily Nymphalidae show wing color polyphenisms in which the coloration of the
entire wing or the size of eyespots can respond in an environmentally sensitive
manner. For example, in the European map butterfly, Araschnia levana, the wings of
the summer morph are mostly black with a white band whereas the spring morph is
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mostly red with disjointed black bands. These alternative morphs arise as a conse-
quence of the photoperiod and temperature that the larvae experience (Koch and
Bückmann 1987). It has been proposed that the black summer form is a derived
morph that arose in response to selection for crypsis whereas the red ancestral morph
may advertise their distastefulness or mimic other distasteful species (Fric et al.
2004).

Butterfly eyespots originally evolved as 4–5 units on the ventral hindwings and
were later co-opted onto forewing and dorsal wing surfaces (Oliver et al. 2012).
Numerous proposals for the functions of eyespots on butterflies center around
predator–prey interactions or sexual signaling (Kodandaramaiah 2011; Monteiro
2015). The deflection hypothesis suggests that eyespots deflect attacks to non-vital
body parts by capturing the attention of predators to the wing margin. According to
the intimidation hypothesis, large eyespots that consist of vibrant colors may imitate
eyes that serve to deter predators (Ho et al. 2016). In some species, eyespots appear
to be involved in sexual selection. For example, Bicyclus anynana appear to have a
preference for mates with UV-reflective eyespot “pupils” found in larger eyespots
(Robertson and Monteiro, 2005; Prudic et al. 2011).

In the Nymphalidae family, many species have ventral eyespots that express
adaptive phenotypic plasticity in response to their environment (Brakefield and
Larsen 1984). For instance, B. anynana in hot/wet seasons have conspicuous ventral
eyespots and a transverse band, while in cool/dry seasons, they have small eyespots
with no band (Brakefield et al. 1998; Windig et al. 1994). The large eyespots of the
hot/wet-season morph help deflect attacks of invertebrate predators, or naive verte-
brate predators toward the wing margins, whereas the reduced eyespots of the cool/
dry-season morph are thought to be helpful with camouflage against predation
(Lyytinen et al. 2004).

3.4.5.2 Developmental Regulation

Wing color polyphenism described above are all regulated by fluctuating titers of
ecdysteroids. In A. levana, the coloration of the wings is dependent upon the
presence of 20E during the pupal sensitive period (Koch and Bückmann 1987).
Although only two morphs are observed, injection of 20E or intermediate environ-
mental conditions can lead to the development of intermediate morphs (Nijhout
2003b). Similarly, wing color polyphenisms of the common buckeye butterfly,
Junonia coenia is also dependent upon ecdysteroid levels during the pupal sensitive
period (Rountree and Nijhout 1995). When larvae develop under short day/cool
conditions, reddish brown wings develop as a consequence of having low circulating
levels of ecdysteroids. In contrast, when larvae develop at longer/higher tempera-
tures, the ecdysteroid levels are elevated and a light brown morph develops
(Rountree and Nijhout 1995).

The size of the eyespots in B. anynana is also regulated by 20E titers. During the
wandering stages of larval development, 20E titers are higher in larvae reared at a
high rearing temperature (leading to the wet-season morph) than those reared at a
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low temperature (leading to the dry-season morph) (Monteiro 2015). This elevated
20E titer is accompanied by increased expression of the Ecdysone receptor, EcR, in
the presumptive eyespots of wing discs (Monteiro et al. 2015). Injections of 20E into
early pupae of the cool dry-season form yield butterflies with enlarged ventral
eyespots, similar to that of the hot wet-season form (Brakefield et al. 1998).

3.4.6 Impact of Juvenile Immune Activation on Adult
Phenotypes

In insects, similarly to other organisms, the activation of an immune response is a
costly process that requires the allocation of energy resources (Lochmiller and
Deerenberg 2000; Read and Allen 2000; Ardia et al. 2012). In fact, the outcome of
an infection depends on the ability of an organism to deviate resources from other
biological processes, such as growth and reproduction, to fuel an immune response
(Eisenreich et al. 2013; Galenza et al. 2016). Contrary to vertebrates, where the
balance between metabolism and the immune response depends on a complex
communication between different organs devoted to either immunity or energy
storage, in insects these two processes are centralized in the fat body (Arrese and
Soulages 2010). In D. melanogaster, the transcription factor MEF2 was shown to be
involved in the coordination of immunity and metabolism in the fat body (Clark et al.
2013). Under conditions of high nutrition availability and in the absence of pathogen
exposure, MEF2 promotes lipogenesis and glycogenesis. However, when flies are
infected, MEF2 is unphosphorylated and shifts the fat body activity from energy
storage to the release of antimicrobial peptides (AMPs) (Clark et al. 2013).

ILPs are one of the most important regulators of growth and metabolism (Gronke
et al. 2010; Gronke and Partridge 2010). Because the immune response has an
impact on energy stores, an association between these hormones and the immune
system would be predictable. In fact, in D. melanogaster, infection with the intra-
cellular bacterial pathogen Mycobacterium marinum, leads to decreased Akt activa-
tion, facilitating the expression of the negative regulator of the IIS pathway, FoxO
(Dionne et al. 2006). This results in a consequent progressive loss of energy stores
and higher mortality due to the lack of energetic resources to fuel the immune
response (Dionne et al. 2006). This was the first time the IIS pathway and immunity
were connected in insects although direct evidence that the immune system impacts
growth came later. In insects, sensing of microbe associated patterns leads to the
activation of two canonical pathways: Toll or Imd (Lemaitre and Hoffmann 2007).
DiAngelo demonstrated that activation of the Toll in the larval fat body suppresses
IIS, leading to a reduction in body size and a developmental delay (DiAngelo et al.
2009). Later it was demonstrated that activation of Toll signaling impacts IIS
activation by targeting DILP6 (Suzawa et al. 2019) and causing the inhibition of
Akt by PDK1 (Roth et al. 2018). As such, the reduction of growth caused by Toll
signaling activation can be rescued by restoring Akt activity locally in the larval fat

82 T. Koyama et al.



body or by restoring DILP6 levels (Roth et al. 2018; Suzawa et al. 2019). This
reduction in larval growth further impacts adult life, as reduced IIS caused by Toll
activation in the larval fat body results in adults with smaller wing size (Suzawa et al.
2019).

Besides affecting adult size through interaction with the IIS, activation of the
immune system during juvenile stages also impacts traits such as behavior, repro-
ductive investment, and adult immunity. In the field crickets, Gryllus integer,
exposure to pathogens during early juvenile stages influenced the lack of repeatabil-
ity of boldness/aggressive behaviors in the adult stage, as measured by the insect’s
willingness to be exposed in a novel environment (DiRienzo et al. 2015). This might
be because early pathogen exposure predicts future environmental instability, in
which higher behavioral plasticity would be advantageous (DiRienzo et al. 2015). In
another species of field crickets, Teleogryllus oceanicus, males with restricted access
to food and that are exposed to pathogens prior to maturity face a resource allocation
trade-off, decreasing sperm quality in the adult stage (Simmons 2011). This
decreased investment in reproduction after an immune challenge has been thor-
oughly described (Folstad and Karter 1992) and, in insects, this is generally accepted
to be the consequence of the association between JH and immunity (Schwenke et al.
2016; Schwenke and Lazzaro 2017; Nunes et al. 2020). However, in none of these
cases was the immune response of the adults influenced by the early activation of
immunity (Simmons 2011; DiRienzo et al. 2015). Studies on Gryllus campestris
demonstrated that injection of lipopolysaccharide, a component of bacterial cell
walls, into nymphs led to increased hemolymph bactericidal activity, as well as an
increased expression of prophenoloxidase in adult crickets, which suggests this long-
term induction of immunity as a strategy to deal with future infections (Jacot et al.
2005). Importantly, this sustained immune activity until adulthood comes at a cost,
resulting in a lasting reduction in metabolic function, as seen by reduced hemolymph
protein concentration that can have further impacts on host’s fitness (Jacot et al.
2005).

In summary, immune activation and pathogen exposure during immature stages
in insects impacts growth, generating smaller adults. Furthermore, in some cases,
this can also be reflected on other aspects of adult life, such as reproduction and
behavior that can impact the insect’s adaptation to novel environments and condi-
tions of scarcity.

3.5 Conclusions

Environmental influences during the immature stage have major influences on adult
phenotypes. Metamorphosis facilitates the adaptive fine-tuning of the adult pheno-
types by uncoupling the development of juvenile and adult stages. Thus,
modularization of life history stages offers ways to integrate environmental cue
and alter adult phenotypes in adaptive ways. Moreover, we see that developmental
modularity facilitates the evolution of polyphenisms. Because developmental
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plasticity is thought to promote phenotypic diversification, adaptation and speciation
(West-Eberhard 2003, 2005), studies on how organisms’ juvenile experience
impacts adult phenotypes will have important consequences for understanding
how organisms evolve in changing environments.
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Chapter 4
Early-Life Stress Drives the Molecular
Mechanisms Shaping the Adult Phenotype

Susanne Huber, David Costantini, Cecilia Houdelier, and Valeria Marasco

Abstract Exposure to challenging experiences during development, such as
reduced parental care and food availability, can have profound effects on the adult
phenotype with far-ranging consequences for individual performance. Traditionally,
such early-life adversities have been assumed to lead to detrimental consequences
for health and survival. Growing empirical evidence, however, pin point that early-
life stress exposure can also promote adaptive coping mechanisms of resistance and
resilience, and have beneficial long-lasting effects. Developmental timing, type, and
severity of early-life stress exposure are hypothesized to be key features underlying
subsequent phenotypic outcomes. In this book chapter, we provide an overview of
the main molecular mechanisms and signals that may be driving the emergence of
subsequent stress vulnerability or resilience. We focus on the actions of glucocorti-
coid hormones in shaping adult physiological stress responses, and in organizing key
cellular and molecular mechanisms underlying senescence and life-history evolu-
tion, including telomeres, oxidative stress, and epigenetics. Finally, we critically
appraise and identify gaps in our current knowledge and provide directions for future
research.
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4.1 Introduction

The responses of an organism to early-life environmental conditions can have long-
term effects on morphology, physiology, and behavior, potentially persisting for the
whole lifespan and beyond one generation (Monaghan 2008). Organisms are cur-
rently exposed to growing environmental pressures including increased urbaniza-
tion, habitat fragmentation, and climate changes due to global warming (Loarie
et al. 2009; Bellard et al. 2012). Understanding how these challenges influence
individual’s life history trajectories, and over what life stage effects are most likely
to result in long-lasting phenotypic changes is a major research priority (Romero
et al. 2015; Slavich 2016).

Animals evolved endogenous systems to appropriately respond to stressful con-
ditions and return to homeostasis as fast as possible. In vertebrates, stress responses
involve a highly conserved suite of molecular, physiological, and behavioral
changes that are essential for promoting immediate survival strategies (Wingfield
et al. 1998; Sapolsky 2000). But here the inevitable question—what is “stress”?
Hans Selye, the “father of stress,” once said, “Everybody knows what stress is, but
nobody really knows what it is” (Selye 1973). The scientific definition of “stress”
continues to be hotly debated. This is mainly due to the difficulties in rigorously
defining the stimuli causing stress exposure (“stressors”), the emergency responses
activated by these stimuli, and the pathological consequences associated with
overstimulation of the emergency responses (Mcewen and Wingfield 2003; Romero
et al. 2009). In this book chapter, we use the term “stress” to broadly refer to the
activation of conserved stress response systems, i.e., neuroendocrine, endocrine, and
metabolic responses to noxious stimuli, or stressors, to maintain or recover physio-
logical homeostasis. We refer to “early-life stress” to indicate different kinds of
challenges or adversities sexually immature/developing individuals might be
exposed to, including, but not limited to, nutritional restrictions, limited parental
resources, social competition, predation pressures, extreme temperatures, or pollut-
ants (Romero et al. 2015; Sapolsky 2015).

Epidemiological evidence showed substantial links between various forms of
early-life stressors, including intrauterine growth restriction, harsh socio-economic
conditions, and increased propensity to the emergence of adult-diseased phenotypes
(Barker et al. 1990, 1993; Cottrell and Seckl 2009). A notorious example is the study
of the long-term effects of the Dutch Hunger winter in 1944–1945 (in which daily
rations were limited up to 1000 kilocalories per day). Individuals exposed to the
famine during the pre- and peri-natal period had increased risk to develop obesity,
diabetes, and coronary heart disease in adulthood (Ravelli et al. 1999; Roseboom
et al. 2001; Painter et al. 2005, 2006). Moreover, individuals exposed to prenatal
stressors were found to be at increased risk of neurodevelopmental and behavioral
health issues, such as depression, schizophrenia, and autism spectrum disorder
(Khashan et al. 2008; Kinney et al. 2008; Markham and Koenig 2011). These studies
contributed enormously to the foundation of the Developmental Origins of Health
and Disease (DOHaD)” hypothesis (originally termed “Fetal Origins of Adult
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Disease”—Hales et al. 1991). DOHaD postulates that adverse conditions experi-
enced during the pre- and early post-natal period lead to subsequent increased
morbidity and mortality. There is, however, a growing body of empirical work on
a range of taxa, especially within the fields of eco-devo research, suggesting that
developmental stress can also result in long-lasting phenotypic adaptations that may
promote resilience, thus increase capability to cope with subsequent stressors
(reviews: Monaghan 2008; Sih 2011; Langenhof and Komdeur 2018). These studies
challenge the predominantly biased negative connotation of early-life stress on
fitness outcomes and open empirical plausibility through which certain stressors
might optimize individual coping strategies depending on future environmental
circumstances (Gluckman et al. 2005, 2007).

We still have a poor understanding of the endogenous mechanisms through which
exposure to developmental stress might lead to positive or negative fitness outcomes.
Two key aspects in this context are: Which processes embed early-life experiences
into molecular changes and signals? Which are the main molecular mechanisms
regulating such organizational effects and how do they alter subsequent stress
vulnerability and resilience? Endocrine systems are undoubtedly excellent candi-
dates as modulators of developmental plasticity. Hormones influence a large number
of processes across the entire lifespan and their pleiotropic effects can mediate
variation in life histories. The influence of hormones on phenotypic traits is known
to be particularly powerful during early development when they exert organizational
effects on physiology or anatomy with long-lasting consequences on subsequent
adult behaviors and lifestyles (Arnold 2009; Nugent et al. 2012). Glucocorticoid
hormones, controlled by the Hypothalamic–Pituitary–Adrenal (or Interrenal) axis
(HPA axis), are key mediators of the vertebrate stress response and fundamental
candidates linking coping behaviors to environmental challenges, such as inclement
weather and food availability (Sapolsky 1992; de Bruijn and Romero 2018). Thus,
changes in the functioning of the HPA axis, for instance through a re-setting of HPA
axis sensitivity during ontogeny, are thought to be a key mechanism underlying the
links between early-life adversity and long-term health and adult-disease risk
(Welberg and Seckl 2001; Seckl 2004; Meaney et al. 2007; Cottrell and Seckl
2009; Harris and Seckl 2011). Although other hormones have also substantial effects
on the phenotype programming (e.g., sex steroids and thyroid hormones), we
purposely focus on glucocorticoids because (i) we have a larger body of experimen-
tal work in both laboratory and wild settings, and (ii) emerging evidence suggests a
role of these hormones in organizing important cellular mechanisms underlying
senescence and life-history evolution, such as telomere dynamics and oxidative
stress (Price et al. 2013; Angelier et al. 2018; Ridout et al. 2018). Telomeres shorten
with age in many studied organisms with steep declines often being observed during
early development (Heidinger et al. 2012; Angelier et al. 2018). Importantly,
telomere length and rates of telomere shortening appear to be in some circumstances
good predictors of individual’s quality and subsequent longevity (Cawthon et al.
2003; Heidinger et al. 2012; Wilbourn et al. 2018). Moreover, telomeres are
influenced by various developmental stressors associated with changes in growth
trajectories or parental care (Boonekamp et al. 2014; Marchetto et al. 2016;
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Monaghan and Ozanne 2018), and exposure to environmental stressors that cause
oxidative stress fosters telomere attrition (Hau et al. 2015; Reichert and Stier 2017;
Casagrande and Hau 2019). Thus, telomere length and dynamics have been consid-
ered to act as biomarkers of “biological age” and of exposure to environmental
challenges. Oxidative stress refers to any changes in cellular oxidative status, which
involve oxidation products (oxidative damage), nonenzymatic and enzymatic anti-
oxidants, or repair mechanisms, which may potentially impinge on fitness-related
metrics or on molecular mechanisms driving senescence, such as telomere length
(Costantini 2019). Measurements of telomere dynamics and oxidative status markers
have usually been used to trace the effects of challenging developmental conditions.
However, they might also be important modulators of cellular signalling, thus they
could potentially orchestrate some of the programming effects of early-life stress.

In this book chapter, we focus on the three inter-linked key endogenous mech-
anisms that could orchestrate the organizational effects of early-life stress: HPA axis
functioning, telomere dynamics and oxidative stress, and epigenetic changes. We
focus on mammals and birds in particular due to the larger body of literature, but the
mechanisms and theories we discussed are valid across all vertebrate taxa.

4.2 Roles of Developmental System, Timing,
and Stressor Type

Early-life stress experiments in animals allow for well-directed environmental
manipulations during specific phases of pre- and/or post-natal development.
Although the effects of early-life stress are examined in numerous different species
including livestock and nonhuman primates (e.g., Abbott et al. 2008; Reynolds et al.
2010), most of the experimental studies use rodents as model systems. This is
primarily due to feasibility as rodents are easy to house and handle together with
much lower costs compared to primates.

As mammals depend upon the mother during prenatal development and also need
intensive postnatal maternal care for normal development, early-life stress para-
digms are typically based upon manipulations of maternal physiology and behavior.
By cross-fostering of pups to control mothers or nursery rear it can be established
whether the found effects are caused by particular pre- and/or postnatal events
(Glover et al. 2010). In prenatal models, maternal stress or glucocorticoid adminis-
tration is transferred via the placenta from mother to the developing fetus (Seckl
2001). In rats and mice, prenatal stress is typically imposed by restraint of the
pregnant dam or administration of exogenous glucocorticoids during pregnancy.
The mother is the key figure of early postnatal development in mammals as well. In
postnatal stress models, stress experienced by the offspring is typically caused by
manipulations of maternal behavior. In rodents, for instance, maternal care not only
involves lactation but also offering of an adequate nest and specific behaviors, such
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as nursing, licking, and grooming, that provide important sensory input to the pups.
Postnatal stress paradigms therefore most often involve prevention or disturbance of
maternal care via temporary maternal separation from the offspring or allocating the
dam with insufficient nesting material. Accordingly, the most common approaches
of postnatal stress exposure are the maternal separation model and providing limiting
nesting material. Importantly, maternal separation protocols vary greatly among
studies depending on the frequency and duration of the separation episode as well
as the specific age for separation. A review on the different experimental maternal
separation protocols is beyond the scope of the present chapter. However, as a
general rule, the greater is the frequency and duration of the separation episodes
the greater the severity of the stress exposure (Parker and Maestripieri 2011).

More recently, birds have been employed as study systems to assess how early-
life stress shapes an individual’s life history strategy within different
eco-physiological contexts. Being egg-laying species, they offer the possibility to
experimentally tease out pre- versus post-natal effects. In addition the reduced
physiological intimacy between the developing bird and the mother as compared
to mammals allows minimizing potential compensatory effects of the parents on the
growing offspring (Love and Williams 2008; Spencer et al. 2009; Henriksen et al.
2011; Schoech et al. 2011; Marasco et al. 2012; Zimmer et al. 2013). One of the
mostly used prenatal stress paradigms in birds is direct glucocorticoid injection in the
yolk of the fertile egg soon after laying. Work in different species found that
maternally derived yolk glucocorticoids reflect female condition and the environ-
ment to which females are exposed to at reproduction and during egg formation
(Hayward and Wingfield 2004; Saino et al. 2005). Postnatal stress paradigms in the
avian literature are in general more varied than in mammalian models. Apart from
direct glucocorticoid treatment that is generally accomplished through oral dosing
(Spencer et al. 2009), implants (Hayward and Wingfield 2004), or dermal patches
(Wada and Breuner 2008), researchers have also used manipulations of brood size,
sibling competition, ectoparasites exposure, predator cues, and food availability
(reviewed by Schoech et al. 2011; Crino and Breuner 2015) as a way to increase
stress levels in a developing bird within ecologically relevant contexts. Importantly,
in highly precocial birds, such as domestic chickens and quails in which eggs are
artificially incubated in the lab and no maternal care is provided to the chicks, the
effects of postnatal stressors can be assessed excluding the possibility that parents
would compensate for them as known to happen in rodent models.

Early stress paradigms are various, using different types of stressors with different
intensity/duration and at different developmental stages. In this context, the com-
parisons of stress effects using direct hormonal administration of glucocorticoids or
indirect manipulations of developmental stress exposure (e.g., changes in food
availability and/or parental care) are often discussed. As argued in Crino and
Breuner (2015), direct glucocorticoid treatment offers high control of the amount
of stress applied and influences one component of a complex internal system. On the
other side, indirect manipulations offer less experimental control as they alter
multiple components of a complex pathway (regulation of energy availability) but
are likely to be a better representation of naturally relevant conditions. For example,
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as a direct glucocorticoid injection in the yolk, exposing laying females to environ-
mental stressors can induce an increase of corticosterone levels in their eggs, but
higher variations among differing egg hormonal contents can also occur in relation
to individual sensitivity of females to stressors or the matching between stressor
timing and egg formation (Henriksen et al. 2011). However, when using indirect
paradigms, other egg components could be modulated by the individual stress levels
of the females, including yolk androgens/gestagens levels or albumin/yolk mass that
influence embryo’s development and take part in the general mechanisms involved
in prenatal programming effects (Guibert et al. 2011; Henriksen et al. 2011). Today,
direct and indirect stress protocols are considered complementary methods, each one
exploring different facets of early-stress processes. Comparing and interpreting
results from studies that used direct versus indirect manipulations of stress exposure
are useful but not straightforward due to multiple factors differing among them,
including species and population life-histories, housing conditions, duration/inten-
sity/timing of the specific stress paradigms. Despite not always possible, performing
studies exploring the phenotypic effects induced by different stressor types can
improve result interpretation (Crino and Breuner 2015).

The developmental timing in which stress exposure is experienced is another
determining factor for its long-term effects. In their recent review, Berghänel et al.
(2017), for instance, showed that the timing of prenatal maternal stress across
mammal species determines growth trajectories in the offspring. Only if offspring
were exposed to prenatal stress early in pregnancy, accelerated growth patterns
probably as part of a faster life history strategy have been found (e.g., Dmitriew
2011; Schöpper et al. 2012; Berghänel et al. 2016), whereas prenatal stress in later
pregnancy was rather associated with reduced pre- and post-natal growth (e.g.,
Merlot et al. 2013; Rooke et al. 2015). In addition, it has often been reported that
prenatal stressors lead to different effects on stress physiology, brain, and behavior
compared to postnatal stressors (e.g., Macri and Wuerbel 2006; Lupien et al. 2009;
Marasco et al. 2012, 2016; Zimmer et al. 2013; Andersen 2015). The stage in which
stress exposure occurs is tightly interconnected with the severity of adversity and the
degree of development at birth. It is generally held that the earlier stress exposure
takes place and/or the longer its duration, the more severe would be its long-term
phenotypic consequences (Lindstrom 1999; Monaghan 2008; Lupien et al. 2009;
Danese and McEwen 2012). For example, in the Japanese quail exposure to prenatal
stress had stronger effects than postnatal stress in terms of long-term changes in
physiological stress reactivity and stress-related behaviors (Zimmer et al. 2013,
2017), as well as transcriptome profiles in the brain (Marasco et al. 2016). However,
postnatal stressors can also lead to long-lasting phenotypic changes in various
species, both birds and mammals (e.g., Liu et al. 1997; Spencer and Verhulst
2007; Banerjee et al. 2012). These contrasting effects may be explained by inter-
species temporal differences in the brain development along the precocial-altricial
spectrum. In precocial species that produce relatively mature offspring at birth/
hatching, maximal brain growth, and neuroendocrine maturation take place in
utero/ovo. By contrast, in altricial species producing immature offspring at birth/
hatching, brain developmental processes are comparatively delayed with substantial
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brain growth occurring during postnatal developmental stages. In addition, in line with
the “developmental hypothesis” (Schwabl 1999), the timecourse of HPA axis respon-
siveness can markedly differ depending on the mode of development, thus on the
capacity of the young animal to cope with and avoid stressors across the different stages
of postnatal growth. For instance, in several studied bird and mammalian species,
adrenocortical capacity to respond to stressors develops much earlier in precocial
juveniles compared to altricial juveniles (reviewed by Brown and Spencer 2013).

4.3 Potential Life-Long Mechanisms of Early-Life Stress
for Adverse or Positive Organismal Outcomes

4.3.1 Reprogramming of the HPA Axis

Glucocorticoid hormones, controlled by the Hypothalamic–Pituitary–Adrenal axis
(HPA axis), are one of the major components of the stress response (Sapolsky 1992;
Stratakis and Chrousos 1995; Wingfield et al. 1998; Sapolsky et al. 2000)—see Box
4.1 for a description of the principal systems regulating the stress response. Contrary
to adrenaline and noradrenaline, glucocorticoids can easily cross the blood–brain
barrier and bind to corticosteroid receptors in the brain (mainly glucocorticoid
receptors and mineralocorticoid receptors) to influence brain function and cellular
energetic signalling (Reul and Dekloet 1985; Datson et al. 2001). Hence, glucocor-
ticoid hormones are thought to be ideal candidates for mediating the long-lasting
changes of early-life stress.

Box 4.1 The Stress Response
All vertebrate species elicit highly conserved, relatively nonspecific, behav-
ioral, and physiological changes upon exposure to stressors. Within seconds to
hours upon the perception of stressful cues, two endocrine systems are acti-
vated, one involving catecholamines, such as adrenaline (acting within sec-
onds) from the adrenal medulla, and the other involving glucocorticoids
(acting within minutes) secreted from the adrenal cortex (Stratakis and
Chrousos 1995). The fastest component of the stress response, best known
as the “fight or flight response” triggers a variety of physiological changes,
including increased cardiovascular tone and respiration rate prompting the
body for immediate reactions and muscular action (Cannon 1929). As shown
in the Fig. 4.1, within minutes upon perception of a stressor, two neuropep-
tides from the paraventricular nucleus of the hypothalamus, corticotrophin-
releasing hormone (CRH) and arginine vasopressin (AVP), act synergistically
to stimulate the secretion of adrenocorticotropic hormone (ACTH) from
corticotroph cells in the anterior pituitary gland. ACTH is then transported

(continued)
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Box 4.1 (continued)
via the systemic circulation to the adrenal cortex, where it stimulates the
production and secretion of glucocorticoids (corticosterone in majority of
amphibians, reptiles, and birds, and cortisol in majority of mammals—Harvey
et al. 1984). The increased glucocorticoids in the circulation initiate an array of
metabolic and behavioral effects that stimulate hepatic gluconeogenesis,
inhibit glucose uptake by peripheral tissues and suppress inflammation and
several immune reactions to maintain body homeostasis (Munck et al. 1984).
The HPA axis is tightly regulated over time via negative feedback loops
(indicated in the figure below by the sign �) on mineralocorticoid receptors
(MR) and glucocorticoid receptors (GR) in the brain and anterior pituitary.
Under acute stress conditions, feedback mechanisms operate efficiently and
the effects of elevated glucocorticoids are only short-term (within hours). In
the brain, MR have a higher affinity than GR for glucocorticoids. Therefore, at
basal concentrations of glucocorticoids, MR are occupied whereas GR remain
largely unoccupied. During acute stress, there is increased occupation of
GR. Hippocampal and hypothalamic MR are thought to be primarily involved
in feedback regulation during basal secretion, while GR become important
during stressful conditions (de Kloet et al. 1998; Matthews 2002; McEwen
2007). Under chronic stressful conditions, feedback mechanisms are impaired
causing prolonged activation of the HPA axis, with potential detrimental
consequences on brain functioning and body processes (Sapolsky 1996).
Chronic stress may also reduce activity of the HPA axis under given circum-
stances. For example, chronically stressed female starlings had lower baseline
corticosterone concentrations and lower reproductive success than unstressed
females (Cyr and Romero 2007).

Substantial body of work shows that a variety of adversities are consistently
associated with long-lasting changes in the functioning of the HPA axis and long-
term health diseases (Welberg and Seckl 2001; Seckl 2004; Meaney et al. 2007;
Cottrell and Seckl 2009; Harris and Seckl 2011). The general assumption is that
early-life stress leads to a hyper-responsive stress phenotype with exaggerated
circulating glucocorticoids, enhanced anxiety, and depression-like behaviors
(reviews: Maniam et al. 2014; Agorastos et al. 2019). For instance, studies in rodents
reported reduced glucocorticoid receptor levels in the hippocampus, attenuated
negative feedback, and increased glucocorticoid response to stress in terms of both
peak levels and duration of the response (Henry et al. 1994; Barbazanges et al. 1996;
Szuran et al. 2000; Green et al. 2011; Bingham et al. 2013). Studies in rats and
primates further showed that high glucocorticoid exposure during prenatal life
caused elevated basal glucocorticoid levels later in life (Levitt et al. 1996; Welberg
et al. 2001; de Vries et al. 2007) although other studies found unaffected basal
glucocorticoid levels (review: van Bodegom et al. 2017). Increased adult stress
reactivity in response to different stress-related treatments have also been
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experimentally demonstrated in some studied bird species, such as captive zebra
finches, domestic chickens, and Japanese quails (e.g., Hayward and Wingfield 2004;
Spencer et al. 2009; Banerjee et al. 2012; Haussmann et al. 2012) though, as in
mammals, results are quite variable (Henriksen et al. 2011).

Fig. 4.1 Hypothalamic–Pituitary–Adrenal (HPA) axis. Figure reproduced from Boonstra (2004)
with permission of Oxford University Press
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It has been suggested that early-life adversity merely constraints development and
leads to underperforming adult phenotypes whatever the environmental conditions.
In ecological studies, this idea refers to the “silver spoon hypothesis” (Grafen 1988;
van de Pol and Verhulst 2006; Monaghan 2008;—Fig. 4.2a). In support of this
hypothesis, there are studies conducted in various species including mammals and
birds highlighting associations between early-life adversities and reduced fitness-
related proxies, including shortened lifespans and reduced reproductive performance
(Metcalfe and Monaghan 2001; Spencer et al. 2010; Monaghan et al. 2012; Tung
et al. 2016). Could we then conclude that the optimal early-life experience should
always be one of low stress exposure? Researchers noted, to their surprise, that
exposure to early-life stress can at times, or for some individuals, have beneficial,
rather than negative effects, such as increased growth rates or better reproductive
performance (e.g., Schöpper et al. 2012; Dantzer et al. 2013; Crino et al. 2014). From
an evolutionary perspective, adjusting the responsiveness to stressful events in
response to early-life adversities by programming of the HPA axis could be adaptive
if this would lead to phenotypes better able to cope with environmental conditions
that are more likely to be experienced later life. This view is the basic concept of the
“environmental matching hypothesis” (sometimes also termed as “predictive adap-
tive response”—Gluckman and Hanson 2007; Gluckman et al. 2007; Horton 2005;
Fig. 4.2b). According to this hypothesis, the developing organism responds to
environmental signals by a lasting alteration of physiological regulatory circuits,
most notably the HPA axis, in order to be better adapted to its current and expected
future environment. A heightened HPA response and increased anxiety, for instance,
while usually considered maladaptive, can be highly adaptive in an environmental
context characterized by adversity and unpredictability. A mismatch between envi-
ronmental conditions experienced in early development and later life, however, is
suggested maladaptive and may increase the risk of earlier mortality (Gluckman
et al. 2007, 2010; Horton 2005). In line with this, individuals with a history of
childhood adversity exhibited a dampened HPA axis in response to acute stress in
adulthood (Elzinga et al. 2008), whereas a mismatch between childhood and adult
environments was found to increase the vulnerability to psychopathology (Nederhof

Fig. 4.2 Diagram of (a) silver spoon, (b) environmental matching, and (c) inoculation models.
Panels a and b are redrawn from Pigeon et al. (2019)
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and Schmidt 2012; Fine et al. 2014). In addition, although in humans and primates,
an increased risk to develop psychopathology after early-life exposure to traumatic
stress has been reported, some studies also found a higher degree of resilience in
terms of active coping with stressful conditions experienced in later life (Lyons and
Parker 2007; Zozulya et al. 2008). Evidence for the match/mismatch hypothesis also
comes from rodent studies. In rodents as in mammals in general, the mother plays a
central role in the context of early-life programming because the environmental cues
predictive of the future environment are primarily transferred to the offspring via the
maternal physiology and behavior. In rats and mice specifically, the amount of
licking and grooming represents an important cue. In accordance with this hypoth-
esis, Champagne (2008) and Bagot et al. (2009) showed that adult offspring of
mothers providing only a low amount of licking and grooming exhibited poor
cognitive performance (low LG mothers) in a low-stress context. But under stressful
conditions, cognitive performance of adult offspring of low LG mothers was supe-
rior to the performance of adult offspring that had received a high amount of licking
and grooming and showed impaired cognitive performance in such a high-stress
context (Champagne 2008; Bagot et al. 2009). Developmental programming effects
associated with environmental matching cues might be enhanced when similar
stressors are experienced across multiple developmental life stages within the
same individuals. Some evidence for this comes from a study in the Japanese quail
in which birds exposed to both pre- and post-natal stress-related treatments (prenatal
corticosterone injection and unpredictable food availability, respectively) were more
explorative and risk-taking in a novel (presumably stressful) environment, compared
to the birds that were exposed to stress only as embryos or as chicks (Zimmer et al.
2013). One of the main criticisms about the studies conducted so far in support of the
existence of predictive adaptive responses is that the vast majority of the work has
been carried out in captive animals and humans, and often exposed to artificial or
extreme stressors that may hardly represent evolutionary relevant conditions (see
Berghänel et al. 2016 for a discussion on this aspect).

Indeed the actual severity of early-life adversity is likely to be an important
contributory factor regulating subsequent stress resilience. Suggestions for this
comes from research in humans highlighting that a history of some early-adversity
can foster subsequent resilience compared to individuals with a high history of
adversity but also to people with no history of adversity. For instance, moderately
stressful events during childhood had been associated with decreased cardiovascular
responses to stressful laboratory tests (Boyce et al. 1995), lower levels of anxiety
(Edge et al. 2009), diminished cortisol activity (Elzinga et al. 2008; Gunnar et al.
2009), lower post-traumatic stress symptoms and distress (Seery et al. 2010).
Research in mammalian laboratory models supported and extended these findings.
For instance, short-term exposure to certain early-life stressors (intermittent social
and/or maternal separations, high-demand foraging conditions) in rats and squirrel
monkeys has been shown to attenuate anxiety-like behavior and diminish HPA axis
reactivity compared to individuals raised under less stressful conditions (Parker and
Maestripieri 2011). Individuals with an enhanced efficiency of the negative feedback
would be able to bring glucocorticoids faster back to baseline levels upon exposure

4 Early-Life Stress Drives the Molecular Mechanisms Shaping the Adult Phenotype 109



to challenging events and, therefore, have reduced probability to suffer from poten-
tial harmful effects of chronic glucocorticoid exposure (Taff et al. 2018; Zimmer
et al. 2019). Taken together, these findings suggest nonlinear associations, probably
U- or J-shaped associations, between early-life stress and later life resilience (Parker
and Maestripieri 2011; Russo et al. 2012).

Little is known about the mechanisms that promote the development of stress
resilience. As early handling in rodents is known to increase maternal licking and
grooming (Liu et al. 1997), it was first hypothesized that the development of stress
resilience was predominantly maternally mediated (maternal mediation hypothe-
sis—Caldji et al. 2000; Plotsky and Meaney 1993). However, seminal experiments
by Parker and colleagues in squirrel monkeys, a model in which brief intermittent
maternal separation stress does not lead to changes in maternal behavior, demon-
strate that it is stress exposure per se, rather than maternal care, to have a key role
(Parker et al. 2006). These studies supported the alternative “stress-inoculation
hypothesis” (Fig. 4.2c), which is based on the notion that mild-to-moderate stress
exposure is necessary for the development of appropriate emotion regulation and
subsequent stress resilience (Parker and Maestripieri 2011; Romeo 2015). This
concept is related to that of “hormesis,” a type of dose–response relationship with
low dose inhibition and high dose stimulation of organism performance (see Chap. 2
in this book), which might complement the inoculation model.

In the inoculation model, resilience arises from intermittent exposure to early-life
stressors that are not overwhelming, but just challenging enough to transiently
activate the HPA axis (Parker et al. 2005, 2006). The mechanisms leading to a
resilient phenotype are likely to involve life-long changes in the brain and pituitary
gland, which might be associated with increases in glucocorticoid and/or mineralo-
corticoid receptors (Zimmer and Spencer 2014; Sapolsky 2015; Marasco et al.
2016). Glucocorticoid receptor signalling has a key role in the regulation of HPA
axis negative feedback (Cornelius et al. 2018; Dickens et al. 2009). The
immunophilin FKBP5, a glucocorticoid receptor cofactor with inhibitory effect on
glucocorticoid activity, is associated with individual differences in HPA axis nega-
tive feedback efficiency (Touma et al. 2011; Häusl et al. 2021) as well as altered risks
of anxiety and post-traumatic stress disorder (Touma et al. 2011; Hariri and Holmes
2015). A recent study performed by Zimmer et al. (2021) in wild house sparrows
(Passer domesticus) showed that reduced mRNA expression of FKBP5 in the
hypothalamus was associated with higher HPA axis flexibility (i.e., within-
individual, rapid and reversible change in HPA regulation in response to challenges)
and improved stress coping capacities in terms of exploratory disposition,
neophobia, and body mass maintenance. Although FKBP5 is sensitive to early-life
conditions (review: Zimmer et al. 2020), whether this marker could capture long-
term changes in physiological stress resilience and fitness outputs remains to be
tested, offering a very exciting question to address in future research.
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4.3.2 Telomere Dynamics and Oxidative Stress

There is considerable evidence across a wide range of vertebrate taxa that dynamics
in telomere length and oxidative stress are two key cellular mechanisms that affect
organism performance (Monaghan et al. 2018; Costantini 2019). Given the profound
and long-lasting effects of glucocorticoids on physiological homeostasis and their
properties to translate environmental stimuli into molecular responses, some authors
suggested that they might be key molecular links between environmental quality and
both telomere dynamics and oxidative stress (Costantini et al. 2011; Angelier et al.
2018). However, these hypotheses have been poorly explored so far in the context of
early-life phenotypic programming.

In 2013, Marasco et al. (2013) provided experimental evidence for a role of early-
life exposure to glucocorticoids in affecting some aspects of adult oxidative status.
Marasco et al. (2013) used an experimental setting including four groups: pre- and
postnatal untreated birds; prenatal corticosterone-treated and postnatal untreated
birds; prenatal untreated and postnatal corticosterone-treated birds; pre- and postna-
tal corticosterone-treated birds. The manipulation of prenatal stress levels involved
the injection of eggs of Japanese quail (Coturnix japonica) with 8.5 ng of cortico-
sterone dissolved in peanut oil. The postnatal stress treatment involved the admin-
istration to chicks of one mealworm (Tenebrio molitor) per day injected with 45 μg
(between 5 and 15 days of age) or 90 μg (between 16 and 19 days of age) of
corticosterone dissolved in peanut oil. Both pre- and post-natal treatments with
corticosterone were chosen in order to increase corticosterone within the
age-specific physiological ranges of the study species. The effects of the experiment
were then tested on four markers of oxidative status, analyzed in red blood cells
collected at 64 days of age and in the brain (cerebellum and midbrain) at 69–73 days
of age (Marasco et al. 2013). In red blood cells, there was no effect on the antioxidant
enzyme superoxide dismutase nor on the marker of oxidative damage protein
carbonyls. The activity of the antioxidant enzyme glutathione peroxidase was higher
in all the corticosterone-treated birds than in controls, but there was an additive effect
in birds that experienced both the pre- and post-natal treatment. Finally, a marker of
nonenzymatic antioxidant capacity was lower in corticosterone-treated birds than in
controls. All the markers of oxidative status were not affected in the midbrain; by
contrast, in the cerebellum the glutathione peroxidase was marginally higher in the
three corticosterone-treated groups and the nonenzymatic antioxidant capacity was
lower in the birds that experienced both the pre- and the post-natal treatment than
those that experienced only one of the two treatments. Overall, this experimental
work suggested that increased exposure to corticosterone in ovo influenced the adult
oxidative phenotype, possibly through direct effects on cell metabolism, gene
expression, or growth rate. Importantly, the nature of effects depended on the
interaction between pre- and post-natal environments, suggesting a certain degree
of plasticity in the regulation of oxidative status and providing some support to the
environmental matching paradigm, at least for certain aspects of oxidative status.
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These interactive effects of early-life challenges on oxidative status were later
shown using unpredictable food supply (which generally leads to increases in
plasma corticosterone—e.g., Pravosudov et al. 2001; Marasco et al. 2018) in another
precocial bird species, the gray partridge (Perdix perdix) (Homberger et al. 2013).
Birds had higher blood antioxidant capacity when they experienced no stress in both
the pre- and post-natal stages of life, and had lower antioxidants when experienced
food stress only after hatching. By contrast, the production of free radicals in blood
was not influenced by the stress regime, suggesting that trophic stress affected only
some aspects of the antioxidant machinery. It is important to highlight that alter-
ations of the HPA axis activity are one effect of unpredictable food supply (e.g.,
Lynn et al. 2003; Wingfield 2003). Thus, the results from Homberger et al. (2013)
strengthen the hypothesis of Marasco et al. (2013) that the adult oxidative status will
depend to some degree on the precocial exposure to different amounts of glucocor-
ticoids. However, it appears to give more support to the silver spoon model because
antioxidant capacity was preserved only when birds did not experience any stress
both in early- and in adult-life.

It is unknown if these long-term effects on oxidative status have any fitness
consequences. The strategy of depositing glucocorticoids into the eggs may be
adaptive if any physiological costs for the chicks are lower than the benefits. This
may be especially true for chickens and quail, as well as for other precocial species.
Compared with altricial chicks, precocial chicks leave the nest soon after hatching
and rely less on maternal care. Therefore, they have to be programmed to survive
almost on their own very soon in life. Glucocorticoids may be important promoters
of survival because they enhance fear and vigilance behaviors, so allowing precocial
chicks to avoid predators or to stay close to their siblings (Hayward and Wingfield
2004; Janczak et al. 2007). Moreover, chickens and quail are short-lived species;
therefore, they might have been programmed to prioritize investment in growth and
reproduction at the expense of investment in protection against oxidative stress.
Although these are still almost unexplored questions, a few studies suggested that
the link between early-life exposure to glucocorticoids and oxidative status might be
relevant for later fitness outcomes and for adjusting the phenotype to environmental
challenges of the Anthropocene. Zimmer and Spencer (2015) showed that pre-natal
experimental exposure to glucocorticoids may be associated with a higher cost of
reproduction in terms of oxidative stress in the Japanese quail. Using the brown
trout, Birnie-Gauvin et al. (2017) evaluated the short-term (2 weeks) and long-term
(4 months over winter) effects of exogenous cortisol manipulations (as well as
relevant shams and controls) on the oxidative status of wild juveniles. Cortisol
caused an increase of the antioxidant glutathione in red blood cells over a
two-week period and appeared to reduce glutathione over winter (Birnie-Gauvin
et al. 2017). By contrast, cortisol treatment did not affect the ratio between reduced
and oxidized glutathione nor a marker of antioxidant capacity. Importantly, over
winter survival in the stream was associated with low levels of glutathione,
suggesting that oxidative stress might be a mechanism by which elevated early-life
exposure to cortisol causes negative physiological consequences (Birnie-Gauvin
et al. 2017). Flores et al. (2019) evaluated the effect of traffic noise (traffic noise
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group vs. rural noise group) on baseline levels of corticosterone and stress responses
in chicks of the Japanese quail. They observed (i) similar baseline levels of cortico-
sterone in both experimental groups, (ii) a trend towards higher stress response in the
traffic noise group, (iii) higher levels in red blood cells of the key intracellular
antioxidant glutathione in the traffic noise group, and (iv) a negative effect of stress
response on glutathione in the traffic noise treatment.

As compared to research on the link between early-life stress and oxidative status,
much less is known for the long-term effects of early-life stress on adult pattern of
change in telomere length. This is particularly unfortunate because in the majority of
vertebrates studied so far, the highest rates of telomere shortening are observed
during early development (Heidinger et al. 2012; Monaghan and Ozanne 2018).
Studies in wild birds, including European shags (Phalacrocorax aristotelis) and
great tits (Parus major), demonstrated that experimental exposure to corticosterone
during early postnatal development fostered developmental telomere shortening
(Herborn et al. 2014; Casagrande et al. 2020). However, a recent study in wild
yellow-legged gulls showed that pre-natal corticosterone exposure led to telomere
elongation and upregulated telomerase activity in the juveniles (Noguera et al.
2020). Many factors could explain differences among studies, such as the develop-
mental timing in which stress exposure was experienced and the time in which
telomere measurements were made. The severity of the stress exposure is likely to be
especially important. An experimental study in the domestic chicken (Gallus
domesticus) performed by Haussmann and collaborators (2012) showed that only
very high prenatal glucocorticoid exposure increased developmental telomere loss,
while a low prenatal corticosterone exposure had no effect (Haussmann et al. 2012).
Importantly, in the latter study, only the high prenatal corticosterone exposed birds
showed clear signs of HPA axis hyper-responsiveness compared to the other two
treatment groups (Haussmann et al. 2012). It is thus possible that modest or brief
activations of the HPA axis during development may trigger telomere repair mech-
anisms including up-regulated telomerase activity, while more severe or chronic
stress exposure downregulate telomerase activity. Plausibility for such nonlinear
inoculation-like effects comes from studies in rodents showing that a brief exposure
to certain environmental stressors can rapidly increase telomerase activity (Beery
et al. 2012; Epel and Lithgow 2014). We need more ecologically relevant experi-
mental designs to further explore the links between early-life exposure to different
amounts of glucocorticoids, telomeres, and oxidative status. We also suggest explor-
ing if glucocorticoid-induced effects are associated with changes in mitochondrial
metabolism (Casagrande et al. 2020). This is particularly intriguing because, on one
side, mitochondria are one main source of prooxidant generation in organisms, and,
on the other side, they produce the molecule ATP, which provides energy for growth
and development.
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4.3.3 Epigenetic Mechanisms Regulated by Glucocorticoids

Rapidly growing evidence suggests that the underlying mechanisms through which
early-life conditions are biologically embedded and may exert lifelong effects,
involve epigenetic processes (see Chap. 1 for a comprehensive review about the
understandings of the term “epigenetics” and related molecular mechanisms). This is
because the epigenome regulates gene expression in a cell and tissue-specific
manner. Thus, without modifying the genome itself, the epigenetic machinery
determines the actual phenotypic outcome by regulating what is transcribed from
the genome. Second, the epigenome is responsive to environmental influences,
providing the biological basis for the interplay between environmental cues and
the genome. Epigenetic remodelling caused by early-life experiences, therefore,
serves as an ideal mechanism for developmental plasticity. Third, epigenetic mod-
ifications are stable and steadily transferred from one cell generation to the next. In
this way, the epigenome facilitates long-lasting modifications of gene expression
patterns caused by early-life environmental signals and, therefore, from an evolu-
tionary perspective, provides a means to “fine-tune” the phenotype to forecast future
conditions. Indeed, numerous studies have shown that early-life experiences can
induce epigenetic modifications that cause persistent changes in gene expression
patterns and thus exert long-term effects on phenotypic outcomes. Although identi-
fying epigenetic modifications associated with any phenotypic outcome alone does
not imply causality, numerous studies have provided strong evidence for a functional
relationship through the analyses of mRNA expression (e.g., McGowan et al. 2009;
Labonte et al. 2012).

Genes regulating the HPA axis are prime candidates for investigating how early-
life stress can be biologically embedded by epigenetic modifications. Accordingly,
one of the most renowned examples of epigenetic programming examined the effects
of maternal care on epigenetic remodeling of genes involved in HPA axis function.
This series of studies byWeaver, Meaney, Szyf, and colleagues demonstrated in rats,
how natural differences in maternal behavior can lead to epigenetic programming
inducing life-long changes in offspring behavior and physiology (Weaver et al.
2004; Meaney and Szyf 2005). The authors demonstrated that high levels of
maternal licking and grooming during the first week of life resulted in higher
mRNA expression of the glucocorticoid receptor gene in the offspring hippocampus
caused by lower DNA methylation and higher histone acetylation of the glucocor-
ticoid receptor promoter exon 17. The methylation difference was located at the
binding site of the transcription factor nerve growth factor inducible A (NGFI-A),
where in offspring of low licking mothers, methylation levels are high, impeding
transcription factor binding and thus glucocorticoid receptor gene expression. The
alteration of DNA methylation in response to maternal licking and grooming
remained stable into adulthood, leading to life-long changes in HPA axis function
of the offspring. In offspring of high licking mothers, higher hippocampal glucocor-
ticoid receptor expression increased negative feedback sensitivity of the HPA axis,
which ultimately resulted in lower endocrine and behavioral responses to stress and
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reduced fearfulness in the presence of a stressor such as a novel environment. Cross-
fostering experiments (offspring of high LG mothers were fostered by low LG
mothers and vice versa) demonstrated that indeed the differences in maternal care
caused the epigenetic modifications and thus determined the offspring phenotype.
This research provided strong evidence for a causality between early-life epigenetic
programming and phenotypic outcome in adulthood as the epigenetic alterations
induced by maternal behavior and its effects on gene expression and stress response
in the offspring could be reversed in adulthood by central infusion of either methi-
onine, affecting DNA methylation, or a histone deacetylase inhibitor, affecting
histone acetylation (Weaver et al. 2004, 2006). In addition, these findings were
also extended to humans. McGowan et al. (2009), for instance, showed that meth-
ylation of the human homologue of the hippocampal glucocorticoid receptor
promotor region was increased and mRNA expression reduced in suicide victims
that had a history of childhood abuse.

Genes, however, do not act independently. Even though the candidate gene
approach is valuable as it has first shed light into the epigenetic mechanisms
underlying programming effects of early-life experiences, the impact of early-life
experiences is broader, involving numerous genes in a tissue-specific manner (e.g.,
Marasco et al. 2016). The advent of epigenome-wide association studies and
transcriptomics now facilitates a more realistic analysis of epigenetic modifications
induced by early-life experiences on the basis of the whole genome rather than a
limited set of candidate genes. Interestingly, a recent study by Taff et al. (2019) on
free-living female tree swallows (Tachycineta bicolor) showed associations between
differentially methylated regions across the genome with stress resilience to han-
dling (i.e., the ability to terminate the glucocorticoid stress response through nega-
tive feedback). The latter study thus indicates that global methylation patterns may
predict stress coping abilities and possibly fitness consequences in natural settings,
and might act as a useful biomarker of stress resilience. Taff et al. (2019) hypoth-
esized that the differentially methylated regions identified in their study in relation to
stress physiology might be due to early-life programming effects. At least to a certain
extent, support for this explanation comes from a study showing that zebra finches
raised in broods of different sizes (thus likely experiencing different early-life stress
exposure levels due to changes in food availability and sibling competition) showed
consistent hypo- or hypermethylation across the genome (Sheldon et al. 2018).
Future experimental studies are, however, needed in order to determine whether
large-scale regulation of methylation patterns in early-life is a causal driver of
subsequent stress reactivity and coping abilities.

4.4 Conclusions and Future Directions

A large body of evidence from epidemiological and animal experiments clearly
shows that exposure to early-life stress can have a remarkable influence on adult
lifestyle and health outcomes. Detailed studies carried out in model organisms
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demonstrated that the HPA axis is likely to be a key physiological system underlying
the programming effects of early-life adversity (Fig. 4.3). However, there has been
increasing recognition that such effects operate at multiple biological scales and
encompass more pervasive cellular and molecular changes. Current evidence sug-
gests that measurements of telomere dynamics, oxidative status, and transcriptome/
epigenetic networks are relevant mechanisms and markers to trace the long-lasting
effects of early-life experience on performance and fitness-related proxies. However,
whether these markers can be considered as main modulatory signals orchestrating
some of the programming effects of early-life stress remains to be determined.
Carefully designed experiments, for instance, manipulating an organism’s oxidative
status during growth (e.g., by increasing generation of pro-oxidants or decreasing
antioxidants along a low-high stress severity gradient) is now within reach in most
ecological settings (Koch and Hill 2017) and would be very useful in this context. In
addition, the ongoing advances in “omics” approaches constitute an exciting oppor-
tunity to characterize, and potentially manipulate, conserved transcriptome pathways
and epigenetic mechanisms influenced by a particular level of stress exposure and to
identify target brain structures in which such changes effectively operate and lead to
long-term differences in stress susceptibility versus resilience.

The studies reviewed throughout this chapter clearly highlight that early-life
stress does not necessarily lead to undesired adverse outcomes in adulthood.

Fig. 4.3 Conceptual model of early-life stress programming. Exposure to stress during pre- and
post-natal stages of development leads to increased exposure to glucocorticoid hormones. Elevated
developmental glucocorticoids can lead to long-lasting changes in the Hypothalamic–Pituitary–
Adrenal (or Interrenal) axis (HPA axis) activity (likely to play a central role in the shaping of
phenotypic trajectories) and other molecular mechanisms underlying aging and life-history evolu-
tion including transcriptome and epigenenome regulation, oxidative status, and telomere dynamics.
The phenotypic effects of early-life stress depend on an organism’s genetic background and on its
trans-generational history, as well as on the developmental timing in which stress exposure occurs
and specific features of the challenge/s (type, frequency, intensity, and duration). Interactive effects
among these factors would determine subsequent resilience or vulnerability to later life challenges,
and thus explain inter-individual variation in organismal and fitness outcomes of stressed-exposed
phenotypes
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While extreme and/or prolonged stressors do often impair brain development,
increase susceptibility to later life morbidities, and lower survival prospect of an
organism, newer research suggest that milder forms of stress exposure, such as brief
maternal separation or moderate physiological elevation of developmental gluco-
corticoids, can instead increase the range of tolerable stress for the organism and
potentially ameliorate later life performance and delay aging processes. Yet, we have
limited experimental data that explicitly manipulated the severity of stress exposure
of differing types of early-life challenges and examined subsequent changes in
relevant molecular/physiological pathways and fitness outcomes. Plus, stressor
type and severity are likely to be interconnected with other biological features
which need to be carefully considered when planning experiments, especially
developmental timing of stress exposure, species-specific developmental strategies,
and the later life environmental conditions experienced throughout an organism’s
lifecycle (Fig. 4.3). Another aspect often overlooked in experimental planning is that
a considerable inter-individual variability in the ontogeny of the stress response is
merely attributable to genetic predisposition factors or to the trans-generational
history of the study population (McIlwrick et al. 2016; McCormick et al. 2017—
Fig. 4.3). As a consequence, similar or even the same early-life challenge could have
major negative consequences for one individual or population, and have negligible
or even positive effects in another. Understanding the relative contribution of all
these factors on the biological embedding of early-life stress is a critical step forward
in order to better define how just the right type and magnitude of stress inoculation
can promote resilience processes and potentially shape phenotypes with better suited
coping mechanisms to maximize fitness outputs.
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Chapter 5
Environmental Conditions in Early Life,
Host Defenses, and Disease in Late Life

Gabriele Sorci and Bruno Faivre

Abstract Immunity is an essential function for host homeostasis through its action
on the control of pathogenic organisms and malignant cells. Immune defenses also
require a finely-tuned regulation to avoid collateral damage due to overreacting
responses and self-attack. Because of its central role for organismal fitness, the
expression of immune traits has been proposed to mediate the negative covariation
(trade-offs) between life history traits. These trade-offs can involve traits that are
expressed at the same age or at different ages (early vs. late life traits). The
magnitude of the trade-offs (as well as the sign of the covariation between early
and late life traits) has a strong environmental modulation. Early environmental
conditions experienced during key stages of the development of the organism have
the potential to induce long-term carry-over effects on the whole suite of life history
traits, defense strategies against pathogens and longevity, through immune-mediated
mechanisms. Here, we provide an overview of the possible environmental features
experienced in early life that can affect defense strategies and disease at late age. Our
review stresses the complexity of the synergetic effects linking environmental traits,
the activation and education of the immune system, defense strategies, the expres-
sion of age-dependent life history traits, susceptibilities to infection, and immuno-
pathology. At the current stage of knowledge, context-dependent effects seem
ubiquitous, preventing to have general and consistent predictions on how the n-
dimensional environment will affect pattern of disease at late age, through early-
immune modulation. Perhaps due to our “simpler” environment and a better knowl-
edge of the functioning of the immune system and its regulation, studies on humans
have more consistently showed that early exposure to some environmental traits
(e.g., low diversity of environmental microorganisms) is indeed associated with
dysregulated immune functions and increased susceptibility to infection and inflam-
matory diseases at late age.
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5.1 Introduction

Environmental conditions experienced in early life, which include the prenatal
environment, have profound consequences for the development of the phenotype
and organismal fitness (Lindström 1999; Monaghan 2008). In humans, early effects
of environmental conditions on health and disease have been recognized since a few
decades and led to the “developmental origin of health and disease” (DOHaD)
hypothesis (McMillen and Robinson 2005). The DOHaD hypothesis posits that
early exposure to nutritional stress (including in utero exposure) sets a series of
epigenetic alterations that subsequently affect the risk of disease during adulthood.
In agreement with the hypothesis, several epidemiological studies on human cohorts
have reported associations between poor fetal and early postnatal nutrition and the
risk of type 2 diabetes and cardiovascular diseases (Hales et al. 1991; Barker et al.
1993; Hales and Barker 2013). For instance, children born from women who
experienced the Dutch famine during “hunger winter” of the World War II, when
becoming adults, were found to have increased risk of suffering from metabolic
disorders (Ravelli et al. 1976).

In nature, free-living species are exposed to a multitude of environmental
stressors that, in addition to the amount of trophic resources, can also include high
burden of pathogens and parasites, high density of competitors or predators, or
unsuitable thermal conditions. These and many other environmental factors can
shape the whole suite of life history traits that characterize the individual pace of
life (early vs. late age at maturity, high vs. low investment into early reproduction,
high vs. low investment into somatic maintenance), through direct effects on the
developmental program. Reduced food availability during prenatal and early post-
natal life can have instantaneous effects by stunting growth rate and delayed effects
depending on the amount of compensatory growth that might follow the initial food
restriction (Ozanne and Hales 2004; Criscuolo et al. 2008; Lee et al. 2016). What-
ever the underlying mechanisms, considering the long-term fitness consequences of
early environmental conditions is primordial for our understanding of the evolution
of life history traits and aging (Cooper and Kruuk 2018).

Developmental plasticity refers to the capacity of the organism to respond to
changes in the environmental conditions encountered during critical stages of
development (Barker 2004). However, this capacity is also constrained by canaliza-
tion, which limits the range of the possible phenotypic values (Flatt 2005). With this
respect, the immune system stands out as one of the most plastic physiological
functions whose maturation and “education” tightly depend on input from the
environment (Rook 2013; Martin et al. 2021). As any body function, the immune
system requires metabolic resources, both at its steady state and especially so when
the immune response is induced following an infection (Straub et al. 2010; Bajgar
et al. 2015). Therefore, any environmental factor that shape the amount of energy
organisms can afford to acquire is likely to determine how much of this energy can
be allocated to the immune function. This is essentially similar to the general
mechanism underlying the principle of resource allocation (Stearns 1992); assuming
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that the pool of available energy is limited and that several functions compete for this
restricted amount of resources, poor environmental conditions experienced during
early life can set a limit to the development of immune organs, cells, signaling
molecules, etc. Environmentally (resource) driven immune impairment can of course
alter the organismal capacity to face an infection and as such affect infection-induced
mortality and/or reproductive success (McKay et al. 2016). For instance, weaning
Wistar rats raised under a protein-reduced diet have lower eosinophil counts,
reduced numbers of mast and goblet cells, and lower amount of specific antibodies
against the nematode Trichinella spiralis; and nematodes infecting protein-deprived
rats persist for longer and have higher fecundities (Vila et al. 2018). Therefore, when
organisms live in poor environments, reduced immune capacity to fight off patho-
gens and parasites can result in compromised fitness.

However, considering that an enhanced immune response, due to abundant
resources, is always associated to improved host fitness might reveal misleading.
Indeed, although the main function of the immune system is to combat infection, this
goal has to be achieved while avoiding attacking host cells and organs (Sell 2001;
Bergstrom and Antia 2006; Sorci et al. 2013). Actually, fitness costs associated with
immune dysfunctioning can be due to both impaired and overreacting immune
responses (Sorci et al. 2017). Therefore, food-supplementation can also induce
immune-associated costs, if the immune response is not properly regulated or the
associated damage is not repaired (Stahlschmidt et al. 2015). For instance, food-
supplemented domestic canaries (Serinus canaria) are better able to limit pathogen
proliferation when infected with the haemosporidian Plasmodium relictum, but they
suffer from a reduction in red blood cell number, possibly due to an exacerbated
immune response (Cornet et al. 2014). In addition to this, when hosts are able to
gather large amount of resources, they might also provide good environmental
conditions to parasites. Infection dynamics and parasite virulence may vary
depending on whether the immune system and the infecting parasite rely on different
types of resources or share the same resources (Cressler et al. 2014; Pike et al. 2019).
Actually, the finding that host nutritional status has different effects on host defense
and parasite burden in different host-parasite systems is a relatively common obser-
vation (Cressler et al. 2014). For instance, food-restricted fruit flies (Drosophila
melanogaster) have poorer survival prospects compared to ad libitum fed flies when
infected with Listeria monocytogenes, a better survival when infected by Salmonella
typhimurium, and similar survival when infected by Enterococcus faecalis (Ayres
and Schneider 2009) (Fig. 5.1). The effect of a variable amount of resources can
actually involve both a modulation of resistance and tolerance to the infection
(Budischak and Cressler 2018). Therefore, understanding how the host nutritional
status affects its long-term fitness in the face of an infection requires disentangling
the complex network of synergistic effects between immune protection, immunopa-
thology, and parasite fitness. This illustrates that environmentally-driven control of
the immune response is not merely a matter of quantity (Ramirez-Orozco et al.
2018), and that the regulation of the immune function, as well as the effect on the
exploitation strategies implemented by specific pathogens are key for host homeo-
stasis and fitness (Fig. 5.2).
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Fig. 5.1 Fruit flies raised under a standard diet or a 50% reduced diet show different survival
prospects upon infection with different bacterial pathogens. Food restricted flies (red curves) have
poorer survival when infected with Listeria monocytogenes, better survival when infected with
Salmonella typhimurium and similar survival when infected with Enterococcus faecalis compared
to flies fed a standard diet (blue curves). Survival curves schematically redrawn from Ayres and
Schneider (2009) for illustrative purposes. Drosophila melanogaster (Image credit: Rolf Dietrich
Brecher, https://upload.wikimedia.org/wikipedia/commons/0/03/Drosophila_melanogaster_%E2%
99%80_%2838978426500%29.jpg, CC-BY-2.0, https://creativecommons.org/licenses/by/2.0/)
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Fig. 5.2 Schematic representation of key immune steps during a vertebrate host lifespan. At birth,
the host is colonized by commensal and mutualistic microorganisms with auxiliary functions.
During the ontogeny, the host will also encounter pathogens potentially representing a threat for
health and homeostasis. Upon recognition by PRRs, the host mounts an immune response involv-
ing, among others, the expansion of T- and B-cells. This response is instrumental to keep pathogen
proliferation under control and clear the infection. Benefits of the immune response involve host
resistance, costs occur if the immune response induces collateral damage. To minimize this
collateral damage, several immune pathways ensure the regulation of the immune response. A
finely-tuned immune regulation can confer a benefit in terms of maintenance of host homeostasis in
the face of the infection (tolerance), but can also incur a cost in terms of increased susceptibility to
infection. Resistance and tolerance might therefore trade against each other. As the host ages, naïve
T cells get exhausted and the involution of the thymus prevents their replacement. In addition to
this, age induces a shift towards low-grade inflammatory status characterized by an overproduction
of pro-inflammatory cytokines and markers. The exhaustion of naïve T cells and a pro-inflammatory
status result in increased susceptibility to infectious diseases and immunopathology at old age
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Interestingly, although endogenous mechanisms of immune tolerance allow the
host to regulate immunity, environmental factors play a fundamental role in
instructing the immune system to (i) discriminate between harmless antigens and
dangerous pathogens, and (ii) down-regulate potentially harmful inflammatory
responses. Exposure to environmental microbial diversity, which constitutes the
community of commensal organisms that colonize epithelia, provides such “educa-
tional” function (Schroeder and Backhed 2016; Brown and Clarke 2017). Therefore,
variation in environmental exposure to commensal microorganisms during early life
can have long-lasting effects on the host capacity to deal with infection and avoid
disease, as shown in humans and model systems (O’Sullivan et al. 2013; Arrieta
et al. 2014; Gensollen et al. 2016; Kemp et al. 2021). This adds an additional layer of
complexity in the relationship between early environmental conditions and the
functioning of the immune system.

Immune tolerance is a very important function, because lack of immune tolerance
can produce devastating effects in terms of immunopathology and autoimmune
damage, both in the presence or in the absence of an infection (Kim et al. 2007;
Shin et al. 2016). However, the immune system also plays a role in another concept
that has emerged during the last decade and that refers to the organismal capacity to
tolerate the infection. Tolerance to infection is the strategy that minimizes the fitness
cost of the infection, independently of the actual pathogen load (Ayres and
Schneider 2012). Although immune tolerance and tolerance to the infection are
not synonymous terms, in many instances, a regulated immune response improves
tolerance to the infection (Allard et al. 2018). For instance, the expression of the
transcription factor Gata3, which mediates the Th2 immune response, has been
shown to increase tolerance to helminth parasites in male field voles (Microtus
agrestis) (Jackson et al. 2014). As such, if the environmentally-driven education
of the immune system improves immune tolerance, it can also allow hosts to better
facing the cost inflicted by an infection, when such a cost mostly arises by exacer-
bated inflammation (Graham et al. 2005).

Understanding the fitness consequences of environmental modulation (sensu
lato) of the immune response also requires taking into account the age-associated
changes that occur during the individual lifespan. Immunity and infection (both risk
and cost) are known to change from birth to aging, usually in a non-linear way.
Moreover, while environmental factors shaping immune functioning can affect the
infectious risk at any given age, they can also produce delayed effects that can
possibly appear from days to years after the exposure to the particular environmental
condition, depending on the life cycle of the organism (Guivier et al. 2018). Such
delayed effects have the potential to decouple the effect of the current environment
on the emergence of immune-associated disorders, susceptibility to infection, and
fitness costs. Therefore, past history of infection can have positive or negative long-
term consequences on host fitness. On the one hand, previous exposure can shape the
host capacity to resist and/or tolerate infection with other pathogens, depending on
the amount of cross-reactivity and immune tolerance induced by pathogen encounter
during early life. On the other hand, activation of the inflammatory response during
early life might also increase mortality at late age, suggesting that exposure to
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inflammatory stimuli when young might advance the onset of actuarial senescence
and accelerate its rate (Finch and Crimmins 2004).

Temporal variation of environmental conditions at the scale of the individual
lifespan is another key feature that has been suggested to play a role on the adaptive
nature of carry-over effects of early environmental conditions. If we admit that the
environment varies at the spatial scale, and therefore some individuals will experi-
ence better perinatal conditions than others, would this initial difference persist
independently of the suite of environmental conditions that individuals are going
to encounter during their subsequent life? To this respect, at least two scenarios can
be put forward (Fig. 5.3). Favorable initial environmental conditions might give a
permanent benefit whatever the environment encountered in future life (i.e., the
silver spoon effect) (Grafen 1988). Alternatively, early environmental conditions
may predispose the organism to express phenotypic traits conferring maximum
fitness under these very specific conditions. Therefore, fitness might vary depending
on whether early and late environmental conditions do or do not match (the
environmental matching hypothesis) (Gluckman et al. 2005). Assessing if early
and late environments match requires considering a multidimensional space that
can be described by an n-variable vector. Each entry in the vector refers to one
particular environmental trait that can vary over time independently, or in associa-
tion with the other environmental descriptors. For instance, from an individual
perspective, environmental conditions can improve over time because more trophic
resources are available, but over the same time, the abundance of parasites and

Silver spoon effect
Fi

tn
es

s

Fi
tn

es
s

Good prenatal (or early)
environmental condi ons

Poor prenatal (or early)
environmental condi ons

Improving gradient of postnatal (or
adult) environmental condi ons

Improving gradient of postnatal (or
adult) environmental condi ons

Poor prenatal (or early)
environmental condi ons

Good prenatal (or early)
environmental condi ons

Matching environment hypothesis

Fig. 5.3 Environmental conditions experienced during early and late life may have additive or
interactive fitness effects. Additive effects of early and late environments imply that individuals
born in good environments maintain a selective advantage whatever the quality of the environment
experienced in late life, the so-called silver spoon effect. If early and late environments have
interactive effects, organismal fitness is maximized when there is a match between the two,
whatever their quality. According to the matching environment hypothesis, individuals born in
poor environments might achieve higher fitness than individuals born in good environments,
provided that they encounter the same conditions at adulthood. This might work if early poor
conditions preadapt individuals to the conditions encountered later on [but see Wells (2007) for a
critical discussion of the matching environment hypothesis]. For the sake of simplicity, only two
early environments are represented. Adapted from Pigeon et al. (2019)
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pathogens can also increase. Based on the criterion used to describe environmental
quality, we might therefore draw different conclusions. The relative importance of
the silver spoon effect and the environmental matching hypothesis likely depend on
how we define environmental variation. For instance, early exposure to some
antigenic stimulation predisposes the immune system to rapidly respond if the
same epitopes are encountered subsequently during life (a form of matching envi-
ronment). Therefore, if the infectious environment is stable over time, immune
memory confers a selective benefit. On the contrary, if new pathogens emerge and
the host has no past experience, immune memory has no benefit.

Despite the complexity of the interactions and synergistic effects that shape how
the immune response changes during the individual lifespan, the immune system is
an excellent candidate that has to be taken into account if we wish to understand the
role played by early environmental conditions as drivers of long-term health and
disease risk. The concern about the impact that the unprecedented environmental
changes due to human activities might have on biodiversity and human well-being
should therefore also focus on any potential effect of such environmental changes on
immune-driven diseases. The aim of this chapter is to review how environmental
conditions experienced during early life (including parental effects) shape the
development of the immune system and how this affects defense strategies during
the entire lifespan, including susceptibility to infectious diseases, and inflammatory
disorders (Fig. 5.4). As mentioned above, both short- and long-term effects of
immune defenses are likely to arise from complex interactions between protection
towards infectious diseases (resistance), tolerance to them, and avoidance of
immune-associated damage. In the light of the current anthropogenic environmental
changes, it seems primordial to identify the environmental features likely to have an
impact on immune traits if these modulate the risk of infectious diseases. Before
directly addressing the core question of the environmental drivers of immune
development and the associated short- and long-term benefits and costs, we will
briefly introduce the main features of the immune system, what we know about the
link between age and susceptibility to infectious diseases, and how the investment
into immune defenses affects host defense strategies (resistance and tolerance)
across ages. Although our approach has an evolutionary ecology root, we acknowl-
edge that the study of the immune response in non-model, wild species is still in its
infancy. We therefore combined evidence coming from natural systems with those
gathered using laboratory or domestic species and humans.

5.2 The Immune System Over the Lifespan

There is little doubt that the immune system represents one of the most vital
functions. Given the pervasive threat of pathogens and parasites, hosts with impaired
immune defenses pay tremendous fitness costs, essentially in terms of reduced
survival prospect. Even seemingly harmless commensal microorganisms might
represent a danger for immunocompromised hosts (Ledergerber et al. 1999), because
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the permanent dialog between the immune system and the myriad of commensal
species that colonize the host is essential to avoid their proliferation and/or the
colonization of vital organs. Keeping track of invading microorganisms is not the
only role of the immune system, since its patrolling function also serves other
manifold tasks, including the suppression of malignant cells (Schreiber et al. 2011).

A detailed description of the immune system is obviously well beyond the scope
of this chapter; nevertheless, it might be useful for the understanding of the
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Fig. 5.4 Schematic representation of the complex interactions between early environmental con-
ditions and age-dependent expression of key life history and immune traits. Several perinatal
environmental features (that also include the environment experienced by the parents and how
this affects parental investment into reproduction and immunity) have the potential to shape the
phenotype of the offspring and the microbiota they harbor (a sort of extended phenotype), with
instantaneous (early age) and delayed (adulthood and late age) effects. Unidirectional arrows
indicate causality links; bidirectional arrows indicate potential trade-offs
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following sections to remind some basic notions of how the immune system works
and what are its main features. The key feature of the immune system is to recognize
and attack structures that are considered as a danger for the homeostasis of the
organism. Although the immune system has the capacity to discriminate between the
self and non-self, which allows the immune response to target potentially harmful
invaders, this notion was extended to include the capacity to recognize alarm signals,
even when the danger comes from cells and tissues of the host (Matzinger 2002).
Both models, the self/non-self and the danger model, are based on essentially the
same rationale. Pathogens express conserved structures (pathogen-associated molec-
ular patterns, PAMPs) that are recognized by pattern recognition receptors (PRRs)
expressed by immune cells (e.g., Toll-like receptors). Similarly, injured, stressed,
necrotic cells produce alarm signals (danger-associated molecular patterns, DAMPs)
that are also recognized by PRRs and trigger the immune response.

Triggering the immune response therefore always starts when the organism
deviates from homeostasis because of internal (danger) or external (infection)
reasons. This requires first recognizing an intruder/danger, then producing a suitable
set of effectors that possibly clear the infection or eliminate the danger, and finally
recover the homeostasis. These three stages and the transitions between them are
orchestrated by numerous signaling molecules that recruit, activate, regulate, shut-
down immune cells. Therefore, although it might still be useful to distinguish
between innate and adaptive immunity, it is more and more clear that these different
arms of the immune system are tightly interconnected and can only work in concert
(Palm and Medzhitov 2009; Iwasaki and Medzhitov 2015).

The process of resolution of the immune response is a particularly important one
because it ensures that immune functions go back to their steady state, once the
“danger” sensu lato is over. Failure to mount an appropriate immune response
because of the inability to recognize the danger or the inability to produce the
right effectors can incur costs due to pathogen proliferation; failure to resolve the
response and return to a steady state can produce immune damage (Channappanavar
and Perlman 2017).

How the immune system develops through the ontogeny has attracted consider-
able attention from immunologists (Marchant and Kollmann 2015; Georgountzou
and Papadopoulos 2017), and also from evolutionary ecologists interested in how
environmental conditions affect the outcome of host–parasite interactions
(e.g. Adamo et al. 2016). Again, we will not cover all the aspects describing how
the immune system matures (from newborns to young adults) and then declines in
senescing individuals. However, it seems important to recall that each developmen-
tal stage is characterized by specific immune steps that confer age-specific suscep-
tibility/protection patterns (to infection and immune diseases) to the host. During the
early stages of the organismal ontogeny, the immune system goes through important
steps that allow generating the diversity of clonal lineages of immune cells through
positive and negative selection occurring in the thymus (Zerrahn et al. 1997). This
establishes the receptor diversity of naïve T cells (TCRs) that allow binding foreign
antigenic epitopes, while deleting clones binding to the self. Interestingly, the
thymus is an immune organ with a striking pattern of age-dependent involution.
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Thymic involution is a conserved phenomenon across vertebrates. The evolution of
thymic involution might appear puzzling because age-associated shrinking of the
thymus reduces the output of new lineages of naïve T cells. Since the number of
naïve clones of T cells declines as the exposure to a diversity of antigenic epitopes
increases with age, the depletion of naïve T cells is considered to be one of the major
causes of impaired immunity and associated diseases in the elderly (Albright and
Albright 2003; Palmer et al. 2018). A possible solution to this paradox refers to the
idea that organisms might prioritize different functions during different develop-
mental stages as to maximize fitness. Once a certain amount of TCR diversity has
built up, it might be worth to re-allocate limiting resources from the generation of
additional T-cell receptors to other functions (e.g., reproduction) (Metcalf et al.
2020).

Although it was thought that newborns and young infants have an “immature”
immune system, current evidence suggests that they rather express different immune
responses compared to adults and elderly (Debock and Flamand 2014). For instance,
they appear to have a less effective immune memory and a highly regulated innate
response (MacGillivray and Kollmann 2014). Both findings can be tentatively linked
to the environmental conditions faced by newborns and young individuals since
immune memory builds up following environmental exposure to microbial antigens,
and a regulated innate immunity allows the colonization of commensals bacteria
without the induction of harmful inflammation.

As many physiological functions, properties of the immune system show
non-linear changes with age. In particular, there is accumulating evidence showing
that above a certain age, several immune traits exhibit a series of functional changes
that have been collectively called immunosenescence (Nikolich-Zugich 2018).
Although immunosenescence includes a large diversity of age-associated modifica-
tions in the immune response, the most prominent ones are probably due to the
exhaustion of naïve T cells and a skewed immune profile towards a low-grade
pro-inflammatory status (Nikolich-Zugich 2018). Such chronic inflammation of
the elderly (inflammaging) is actually pointed as a one of the etiologies of
age-associated degenerative diseases (Franceschi and Campisi 2014).

Changes in immune functioning from early to late age are mirrored by a similar
age-associated susceptibility to infectious diseases (Miller and Gay 1997). In
humans, incidence and severity of several infectious diseases across ages have a
U- or J-shaped function, with young and old individuals being the most susceptible
to the disease and middle-aged adults suffering less, both in terms of incidence and
morbidity (Glynn and Moss 2020). However, in other systems, susceptibility to
disease has been shown to decrease with age. For instance, daphnia (Daphnia
magna) infected with the bacterium Pasteuria ramosa become less susceptible to
the infection as they age (Izhar and Ben-Ami 2015).

While the correspondence between the age-associated pattern of variation
between immune functioning and susceptibility of infectious diseases is suggestive
of the importance of immune defenses in terms of protection towards pathogens and
parasites, it should be made clear that such a macroscopic observation hides more
subtle phenomena. For instance, morbidity and mortality due to infectious diseases
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can be engendered by fundamentally different processes, such as pathogen prolifer-
ation and the associated damage, and/or damage associated with a poorly regulated
immune response. Overreacting inflammatory responses such as cytokine storms are
actually responsible for high fatality rate in several infections, as for instance shown
during the SARS-CoV-2 pandemic (Mangalmurti and Hunter 2020). Age-associated
morbidity and mortality might therefore reflect substantially different defense strat-
egies such as resistance and tolerance.

5.3 Strategies of Defense

Although immunity is a central component of the defense towards infection, hosts
can implement several strategies that do not necessarily rely on the immune system.
Actually, the first line of defense is simply avoiding to be infected and this can be
achieved through behavioral responses to a series of environmental stimuli. Humans
have evolved an aversion towards rotten food and other potential sources of food-
borne infection (Curtis et al. 2004), and although disgust has a cultural component in
human societies, animals do also avoid food items that are perceived as risky
(de Brooke 2019). Avoidance of infected conspecifics is also a widespread defense
strategy that is not restricted to humans or non-human primates (Townsend et al.
2020). Obviously, avoidance cannot provide a full protection against infection for
several reasons. For instance, many pathogens and parasites do not alter the behavior
or the physiology of their hosts in such a way that one can reliably assess the
infectious status of conspecifics, and when reliable cues are not available, the costs
associated with avoidance (reduced mating opportunity, social interactions, etc.)
might easily outweigh the benefits.

When we cannot avoid being infected, the immune system comes into play. The
immune response that is triggered by an infectious insult aims at limiting the
proliferation of the pathogen or killing/expelling the parasite, hopefully resulting
in the clearance of the infection. The host capacity to keep parasite proliferation
under control and clear the infection is referred to as resistance. Therefore, according
to this definition, while resistance indicates how good the host is to control pathogen
proliferation, it does not tell us whether resistant hosts have a better fitness that
susceptible ones. That resistance improves fitness is nevertheless implicitly assumed
in many studies, based on the observation that host fitness generally declines as long
as pathogen/parasite burden increases (e.g., Mackinnon and Read 2004). Assessing
the precise relationship that exists between parasite burden and fitness (or health)
allows going a step further. Indeed, on the one hand, individuals that differ in their
capacity to control the infection (i.e., have different resistance) might nevertheless
have similar survival prospects and reproductive output (especially when the infec-
tion involves pathogens with low virulence). On the other hand, individuals with
similar resistance (carrying similar parasite burden) might have substantially differ-
ent health status (fitness). Individuals that have the capacity to limit the fitness
(health) cost associated with the infection are more tolerant (can carry high parasite

5 Environmental Conditions in Early Life, Host Defenses, and Disease in Late . . . 137



burden while still minimizing the fitness cost) (Råberg et al. 2007). Resistance and
tolerance are therefore two distinct but still important defense strategies that can be
adopted in response to an infection (Råberg et al. 2009; Sorci 2013). Although
resistance and tolerance can evolve independently from each other, they might also
be linked if tolerance involves the down-regulation of immunity. Mice with a
knocked-out cyclooxygenase pathway (which is the target of nonsteroidal anti-
inflammatory drugs) experience less severe symptoms when infected with the
influenza A virus compared to wild-type mice (improved tolerance), despite having
higher viral titers in the lungs (reduced resistance) (Carey et al. 2005). With this
respect, it is very important to understand how resistance and tolerance to infection
can vary with age, since as mentioned above, the immune system goes through
substantial changes during ontogeny (from birth to aging) (Table 5.1). If improved

Table 5.1 Defense strategies and the associated costs and benefits over the lifespan

Defense
strategy Mechanisms Benefits Costs Age-dependent effects

Avoidance Cognitive per-
ception of infec-
tious danger
(food items,
conspecific)

Limiting the
risk to con-
tract an
infection

Missing opportunities
to feed, mate
Reduced social inter-
actions, cooperative
behaviors

Perception of danger
can vary with age,
depending on experi-
ence
Priorities might also
change with age and
the strength of the cost
of missing mating
opportunities increases
as the risk of extrinsic
mortality increases

Resistance Immune
response

Limiting
pathogen
proliferation
Clearing the
infection

Energetic cost of
mounting the immune
response
Collateral damage if
the immune response is
misdirected or
overreacting

Immune memory
builds up during the
ontogeny and then
declines as T-cell
clones get exhausted
Thymic involution
Chronic low-grade
inflammation at old
age

Tolerance Immune regula-
tion
Repair of dam-
aged tissues
Renewal of cells
destroyed dur-
ing the infection
Detoxification
of toxins pro-
duced during
the infection

Limiting the
health/fit-
ness
reduction

Energetic costs of
repair/renewal/detoxi-
fication
Immune regulation can
impair the effective-
ness of the immune
response to clear the
infection
Persistent infections

Reduced capacity to
repair/renew damaged
tissues and destroyed
cells at old age
Chronic low-grade
inflammation at old
age
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tolerance involves a down-regulated immune functioning, senescing individuals
might be expected to be less resistant but more tolerant to infection. Therefore, the
relative importance of defense strategies may vary during the lifespan, from a
resistant-oriented one at young age to a tolerant-oriented one at late age. Recently,
this hypothesis has been tested in malaria-infected mice. Contrary to the prediction,
this study found that mice at the onset of aging have both reduced resistance and
tolerance to malaria infection compared to young individuals, suggesting that aging
might involve a general deterioration of different components of defense (Sorci et al.
2021).

5.4 Trade-Offs Between Immunity, Defense Strategies,
and Age-Dependent Disease

Life history theory tells us that investment into a given trait comes at the expense of
investment into other functions. This resource allocation principle has been at the
core of our understanding of the constraints or trade-offs that limit the expression of
phenotypic traits. Although individuals might genetically differ in their resource
allocation rule, environmental conditions obviously play a major role in how and
when resources can be invested to a given function. The immune system is an
extremely plastic function that rapidly responds to the environment and actually
needs environmental input to properly function. Therefore, we expect that immune
functioning should trade-against other individual physiological functions and life
history traits according to the environmental conditions experienced and the resource
allocation rule (Ardia et al. 2011; Keehen et al. 2021). Such trade-offs can involve
traits that are expressed during the entire individual lifespan, from growth rate to
early reproduction and longevity (Zuk and Stoehr 2002; Metcalf et al. 2020).

Phenotypic and genetic trade-offs between traits expressed at early and late ages
determine why individuals age. Aging is a pervasive phenomenon in nature that is
not restricted to humans or domestic animals (Nussey et al. 2013). Ample evidence
has been accumulating showing that high investment into traits that are expressed at
early ages induces an impaired expression of traits that are expressed at late age
(Lemaître et al. 2015). Can investment into immunity contribute to explain such
trade-offs? There have been several hypotheses that have been put forward to this
respect. What makes the analysis of the effect of the immune system on the
age-dependent expression of life history traits difficult is the complexity of the
interactions between different environmental and intrinsic factors. To give an exam-
ple of this complexity, mounting an appropriate immune response requires sufficient
metabolic resources to produce the effectors which depend on food quantity and
quality that individual acquire from the environment, but also requires the environ-
mental input that educate the immune system to make the fundamental distinction
between dangerous and harmless antigens. Therefore, immune protection at early
age can shape further investment into late age life history traits following many
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different pathways, and causal links (Fig. 5.4). To this respect, of particular interest
is the permanent dialog that exists between the immune system and the huge
diversity of environmental microbes that colonize the host’s body, the microbiota.
Commensal bacteria that live on the skin and on the mucosal layer of the
oro-intestinal, respiratory, genital tracts play essential auxiliary functions that
range from the metabolism to the regulation of the immune response (Cho and
Blaser 2012; Gensollen et al. 2016; Schroeder and Backhed 2016; Ganal-Vonarburg
et al. 2020). Although some exposure to microbial agents occurs prenatally (in the
womb of mammals), the microbiota is mostly acquired during the early postnatal
life, first during the delivery in mammals and then through the exposure to the
environmental microbial diversity. During this stage of environmental acquisition of
the microbiota, that can last for months or years in human infants, the immune
system has to learn how to let such commensal fauna to establish while (i) avoiding
overwhelming colonization and (ii) discriminating dangerous invaders. The modu-
lation of the immune response is therefore an environmental factor that can have
instantaneous but also delayed effects on host life histories. Epidemiological evi-
dence suggests that the composition of the gut microbiota changes in the elderly in
humans and correlates with age-associated pathologies (Claesson et al. 2012;
O’Toole and Jeffery 2015). These findings have been corroborated by studies on
animal models (Langille et al. 2014). Therefore, how the microbiota changes during
the ontogeny might contribute to shape the trade-offs between life history traits and
the susceptibility to infectious and non-infectious diseases during aging (Stiemsma
and Michels 2018). To what extent these effects are mediated by the interactions
between commensal and pathogenic organisms, and the host immune response is
currently one of the topics at the forefront of research.

Investment into the immune function can also shape life history traits across
generations. Such intergenerational trade-offs can take several forms. For instance,
maternal transfer of antibodies in utero or in ovo, plus the provisioning of milk with
IgA is supposed to provide protection to the offspring towards the prevailing
pathogens to which the mother has been exposed (Navarini et al. 2010). As men-
tioned above, immune memory is built over time when individuals come across a
variety of antigenic stimulations; therefore, newborns essentially lack immune
memory. The transfer of maternal antibodies allows buffering the lack of immune
memory of offspring. Maternal transfer of antibodies establishes a causal link
between the maternal environment and the offspring phenotype. Transgenerational
immunity is not a phenomenon restricted to vertebrates, since it has been shown to
operate in insects and other invertebrates as well (albeit involving different immune
effectors) (Roth et al. 2018).
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5.5 Environmental Modulation of Early Immunity
and Carry-Over Effects on Defense Strategies
and Age-Associated Diseases

By now, it should be clear that the early activation of the immune response has the
potential to have long-lasting effects on infection, health and fitness traits expressed
at later ages, and that these effects can both be fitness-debilitating or fitness-
enhancing. Here, we wish to give a short overview of the environmental factors
likely to modulate the sign and strength of the relationship between early immunity
and late infection/disease. Many environmental factors might actually be considered
as good candidates for such a role. However, given their recognized potential as
drivers of human-induced biodiversity loss at the global scale, we suggest that
changes in resource availability, temperature, contaminant exposure, and infectious
risk should be given priority. Changes in resource availability and infectious risk are
tightly linked to the destruction of natural habitats, climate changes are exposing an
ever-increasing number of species to novel thermal niches, and toxic wastes circulate
in an unprecedented manner in all earth compartments (aquatic, terrestrial, atmo-
spheric). Given the pervasiveness of these human-induced environmental changes, it
seems primordial to understand if and how they can shape or alter the trade-off
between defense against infection and other crucial life history traits at different life
stages.

5.5.1 Trophic Resources

Given that maintaining the immune system and mounting an immune response
requires energy, it is straightforward to expect that the availability of trophic
resources (both quantity and quality) should modulate its expression. However, as
already mentioned, the link between food availability and immune traits might reveal
more complex than expected with some immune components that can even be
up-regulated following food shortage. Adamo et al. (2016) conducted an experiment
where caterpillars (fifth instar) of the moth Manduca sexta were exposed to three
food treatments (high nutrition, low nutrition, and absent nutrition). While the food
treatment had clear effects on energy-related traits (lipid, glucose), with insects in the
high nutrition having the highest values and insects in the no nutrition the lowest
ones, immune traits did not consistently vary among experimental groups, and
caterpillars in the absent nutrition group even had higher levels of the total
phenoloxidase activity. Interestingly, when looking at the expression of
constitutive vs. inducible responses, the results showed that caterpillars in the no
food group had up-regulated expression of four genes at the constitutive level. Upon
stimulation of the immune response, absent nutrition insects failed to up-regulate
immune genes.
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Diet composition, in addition to the amount of food ingested, has also been shown
to potentially shape immune functioning at early age. Choline is a nutrient that is
involved in the synthesis of several essential biomolecules (phospholipids, lipopro-
teins, neurotransmitters). In mammals, offspring can get choline from maternal milk
either as esterified (phosphatidylcholine) or unesterified (free choline) form. Phos-
phatidylcholine and free choline have different biochemical properties and metabo-
lism. To investigate if different availability of the two forms of choline affects early
immune function, Lewis et al. (2016) supplemented female rats with either free
choline or phosphatidylcholine, and then explored how maternal nutritional status
affected the immunity of the offspring. Offspring feeding from phosphatidylcholine-
fed dams were found to produce higher amounts of several pro-inflammatory
cytokines (IL-2, IL-6, IFN-γ) upon stimulation of splenocytes. Although these
results neatly show that some micronutrients can drive the immune response towards
a Th1 polarization, in an energy-independent way (rats from the two groups have
similar body mass), they do not tell us to what extent this improves rat fitness at the
short- or long-term. In agreement with these findings, a meta-analysis has reported
intergenerational effects of parental diet on offspring immunity, including
up-regulation of pro-inflammatory markers and down-regulation of anti-
inflammatory effectors (Grueber et al. 2018). Given that all the studies included in
the meta-analysis involved experimental design where offspring were fed control
diets, this finding indicates a pervasive inheritance of nutrition-dependent immune
functioning. Interestingly, such environmentally-driven inheritance seems to consis-
tently skew offspring immune function towards a pro-inflammatory status, favoring
offspring resistance, possibly at the expense of tolerance.

Given the complexity of the synergistic effects linking diet and immunity,
ranging from the very direct effects of metabolic resources on immune cells and
tissues to the indirect effect through the gut microbiota (Narayan et al. 2015; Knutie
2019; Ganal-Vonarburg et al. 2020), two key questions are particularly challenging
to address. First, do the observed responses have an adaptive value? In other terms,
to what extent immune adjustments that follow a change in the nutritional status of
the host reflect the cost of an inappropriate diet or are they adaptive plastic responses
allowing the organism to make the best of a bad job? Second, what are the long-term
consequences of these early plastic adjustments? If these responses are adaptive, do
they confer an immediate benefit with possible negative effects at later stages?

As already mentioned above, inferring the adaptive nature of diet-induced
immune adjustment is particularly challenging, since up- or down-regulation might
provide better protection or increased susceptibility depending on the pathogens
likely to infect the host. For instance, in the experiment described above, Manduca
sexta caterpillars in the high nutrition group had better survival prospect when
infected with gram� and gram+ bacteria (Serratia marcescens and Bacillus cereus),
but similar survival when infected with the fungus (Beauveria bassiana), compared
to the low nutrition group. Whether these differences in infection-induced mortality
are due to immune-driven resistance and/or tolerance is, however, unclear. Whatever
the underlying mechanisms, it seems clear that any selective benefit of nutritional
modulation of the immune response will depend on the most prevalent pathogen
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these caterpillars are likely to encounter and are therefore context-dependent. More-
over, the effect of resource availability on immune protection and susceptibility to
infection should also be weighed by the concomitant effect that diet may have on
other crucial life history traits such as growth, development time, or age at first
reproduction.

What about the long-term immune-mediated effects of early diet? Arthropods are
particularly prone for such studies, because of their relatively short lifespan.
Kangassalo et al. (2018) exposed pupae of the greater wax moth (Galleria
mellonella) to high or low diet and investigated the effect of these early-diet
manipulation on pupae and adult immune functioning and life history traits. They
found that the immune response (encapsulation rate) decreased between pupae and
adults, but the rate of decline was much more pronounced in adults produced by
larvae in the high diet group (and especially so in males). These results were
accompanied by a concomitant lengthening of egg-to-adult developmental time
and a reduction of adult body mass in the low diet group. Therefore, while poor
early diet overall induced a fitness cost, male moths that experienced poor diet as
pupae had better encapsulation response compared to moths from the high diet.
Again, inferring the adaptive value of this long-term enhancement of immune
response in poorly fed moths is far from easy. A possible explanation is that poor
diet might be associated with environments with high infectious risk. In this case,
there might be a reward from investing more into the immune function in poor
environments. However, this rests on the assumption that poor diet correlates with
increased risk of pathogen encounter over the whole moth life, which still has to be
investigated. An alternative explanation might be that insects in the high diet group
invested more in other life history traits (reducing developmental time and increasing
body mass) at the expense of late immunity. This would imply that under good
trophic conditions, investment into immune defenses might not be the favored
strategic decision.

Early diet can also have consistent or idiosyncratic effects on different aspects of
host defenses at the adult stage, and hosts might adopt different strategic defenses
depending on the type of parasite/pathogen they are exposed to. The Cuban tree frog
(Osteophilus septentrionalis) is the host of the gut nematode Aplectana
hamatospicula. The nematode penetrates the host through the skin and then estab-
lishes in the intestine. Knutie et al. (2017) fed tadpoles of the Cuban tree frog with
two food regimes (conspecifics or algae). After the metamorphosis, frogs from the
food treatments were exposed to the nematode. Early diet affected both resistance
and tolerance during adulthood, although the effect was idiosyncratic when
decomposing resistance into the two major stages of the infection (penetration and
establishment) (Fig. 5.5). Frogs that received an algae-based diet when tadpoles were
more susceptible to the worm penetration, but once the worms had succeeded to
enter the host the probability to establish in the gut was lower in frogs from the algae-
based diet. Therefore, early diet affected resistance at the adult stage but the sign of
the effect was different depending on the stage of infection. Frogs from algae-fed
tadpoles also had a higher antibody-mediated immune response. Nevertheless, they
were less tolerant in terms of infection-induced changes in body mass. Interestingly,
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all these long-term effects on immunity, resistance, and tolerance were independent
from changes in the microbiota. Although diet had an effect on the microbiota, this
was restricted to tadpoles, since there was no permanent change in the microbiota of
adult frogs according to the tadpole food treatment.

Extreme environmental conditions can obviously impose strong priority rules,
and immunity might be one of the functions that is shut down under very unfavor-
able conditions. To illustrate this, Muturi et al. (2011) exposed larvae of the
mosquito Aedes aegypti to several environmental conditions that included a
suboptimal food treatment and a starvation group. Emerging adult females were
fed with blood containing the Sindbis virus. When looking at the expression of two
genes encoding for antimicrobial peptides (cecropin and defensin) at the larval stage,
starvation consistently induced a down-regulation of both genes. However, larvae in
the suboptimal food group had an up-regulated expression of cecropin. At the adult
stage, females that were exposed to starvation during the larval period had an
up-regulated expression of defensin. Despite these nutritional-dependent immune
adjustments, adult females from both the suboptimal food and starvation groups had
higher susceptibility to Sindbis virus infection compared to the control group and

Fig. 5.5 Tadpole diet has carry-over effects on adult resistance, immunity, and tolerance to the
infection in the Cuban treefrog. Tadpoles were fed with two food types (algae or conspecifics), after
metamorphosis, frogs were exposed to the nematode Aplectana hamatospicula. (a) Frogs from
algae-fed tadpoles had a lower resistance in terms of their capacity to avoid worm penetration (blue
dots), but once the worm had penetrated the skin, they were more likely to avoid their establishment
in the gut (red dots). (b) Frogs from algae-fed tadpoles mounted a higher antibody response upon
infection with the nematode compared to conspecific-fed tadpoles. (c) Frogs from algae-fed
tadpoles were less tolerant to the infection (steeper slope between change in body mass and
infection burden) compared to conspecific-fed tadpoles. Redrawn and adapted for illustrative
purposes from Knutie et al. (2017). Cuban tree frog (Image credit: Judy Gallagher, https://www.
flickr.com/photos/52450054@N04/49766607846/, CC BY 2.0, https://creativecommons.org/
licenses/by/2.0/)
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had a higher vector competence (higher capacity to spread the infection). As for the
wax moth, suboptimal diet and starvation were consistently associated with
increased development time, reduced adult female survival and body size. Therefore,
while depleted food resources have consistent effects on the major life history traits,
the immune modulation and the associated capacity to deal with an infectious threat
appear to be stage-dependent.

5.5.2 Thermal Environment

Temperature is among the major components of climate change and ongoing thermal
modifications are likely to impact biodiversity through the alteration of many
biological processes and traits. Immune defenses and the outcome of host–parasites
interactions should be explicitly integrated in mechanistic and trait-based approaches
assessing species vulnerability to global change (Pacifici et al. 2015). The effect of
temperature on immunity and its development is straightforward for ectotherms
given that their internal temperature fluctuates with the thermal environment and
affects all physiological processes and pathways. Indeed, insects can exploit the
variation of their thermal environment to adjust their body temperature for optimal
defenses against pathogens (Catalan et al. 2012). However, different physiological
functions might have conflicting thermal optima, suggesting that preferred temper-
atures may vary according to the current priorities. As an illustration of the possible
conflicting temperature optima between immune functions, Silva and Elliot (2016)
found that when velvet bean caterpillars (Anticarsia gemmatalis) were reared under
temperatures ranging from 20 �C to 32 �C, the expression of immune traits was
increased (melanization), decreased (number of hemocytes), or did not vary (encap-
sulation) over the temperature range. Nevertheless, the fitness cost paid upon
infection with Anticarsia gemmatalis multiple nucleopolyhedrovirus increased
with rearing temperature as larval survival was reduced at high temperature. This
suggests that in addition to the possible involvement of the immune system, high
temperature negatively affects other physiological functions, resulting in deteriorat-
ing survival prospects.

An excellent example illustrating the need to have an integrative view of thermal
preferences in infected animals comes from behavioral fever. As mentioned above,
ectotherms can adjust their body temperature by altering their thermoregulatory
behavior. For instance, lizards can bask to reach their thermal preference. Interest-
ingly, this preference is altered following an infection. As for endotherms that
produce a febrile response when facing a viral or bacterial infection, lizards have
been shown to produce a so-called behavioral fever when infected (Vaughn et al.
1974). The adaptive nature of this variable thermal preference is manifold. Increas-
ing body temperature can provide a thermal environment that deviates from the
optimal temperature for pathogen proliferation (a direct defense mechanism). In
addition to this direct effect, fever can also enhance several immune functions as
shown in humans (Evans et al. 2015). If hyperthermia has beneficial effects in terms
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of protection towards infectious diseases, why not always maintaining higher tem-
peratures? Raising body temperature is associated with substantial metabolic cost,
since an increase of 1 �C has been estimated to induce around 10% increase in
metabolic rate (Evans et al. 2015). Moreover, as stated above, not all physiological
functions perform the best at the same temperature and pathogens differ in their
optimal temperature. Therefore, maintaining consistently high temperature would be
more costly than raise the temperature only when needed. To this respect, we can
easily draw a parallel between hyperthermia and the inducible immune response.
Although constitutive immune defenses provide a sort of baseline level, inducible
defenses are only deployed when the organism faces an infection.

As mammals, birds have an endogenous control of the body temperature. How-
ever, during the embryo development birds are exposed to environmental tempera-
tures since egg temperature strongly depends on external temperature and parental
incubating activity. Interestingly, egg temperature has been shown to have an effect
on the immune response of the nestlings across a number of species. For instance,
studying 22 bird species, Arriero et al. (2013) found that eggs incubated at higher
temperatures produced hatchlings with better innate immunity. Experimentally
incubating eggs at warmer temperatures also resulted in nestlings with better
immune response in the wood duck (Aix sponsa) and the American robin (Turdus
migratorius) (DuRant et al. 2012, Merrill et al. 2020).

Temperatures experienced during development have been reported to have carry-
over effects on some immune traits (but not all) expressed during adulthood. Pieris
napi butterflies emerging from larvae kept at 25 �C (corresponding to the upper
value experienced by the species in the southern part of its distribution range) have a
lower number of hemocytes compared to adults emerging from caterpillars kept at
17 �C (the mean temperature in the region where the experimental population was
derived from) (Bauerfeind and Fischer 2014). However, prophenoloxidase (another
important immune effector of insects) did not differ between thermal treatments.

Temperatures experienced during development are not necessarily the same of
those experienced at other stages of life, and therefore any carry-over effect of
developmental temperature may also depend on the temperature experienced later
on. To address this question, Zhang et al. (2018) incubated zebrafish (Danio rerio)
eggs at three temperatures (24, 28, and 32 �C), and upon hatching, fish from each
temperature were distributed to one of the same three temperatures, in a fully-
factorial design. Fish were then treated with an endotoxin (bacterial LPS) that can
induce a potentially fatal septic-like syndrome. The findings revealed that prenatal
(incubation) and postnatal (rearing) temperatures had different effects on fish mor-
tality after LPS exposure. While mortality was the highest for fish that hatched from
eggs incubated at the colder temperature (24 �C), within each incubation tempera-
ture, mortality increased with the rearing water temperature. Interestingly, the fact of
experiencing the same temperature during the incubation and the post-hatching life
never resulted in the highest survival (whatever the temperatures) (Fig. 5.6). This
suggests that shifting from one thermal regime to another across life stages does not
inflict an additional fitness penalty compared to homogenous temperature. In other
terms, matching thermal environments across life stages is not associated with better
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fitness prospects in this particular system. Nevertheless, these findings indicate that
temperatures experienced during different life stages can have idiosyncratic effects
on fitness.

The previous example shows the importance of fluctuations in temperature
experienced across life. Actually, temperatures fluctuate at a much smaller time
scale and organisms usually face daily temperature fluctuations whose amplitude
depends on habitat type and geographic region. However, experimental work has
mostly neglected this daily variation in temperature and individuals are usually
exposed to fixed values, representing mean temperatures. This might give unreliable
results if organismal performance responds differently to fluctuation patterns occur-
ring around low or high temperatures. In agreement with this view, Paaijmans et al.
(2010) found that mosquitoes (Anopheles stephensi) raised either under a constant or
a fluctuating temperature regime differed both in terms of their capacity to spread the
agent of the rodent malaria (Plasmodium chabaudi) and their survival. Interestingly,
the effect of the daily fluctuation depended on the mean around which temperatures
were allowed to vary. Mosquitoes raised under a fluctuating regime around a low
temperature (16 �C) harbored higher parasite numbers compared to mosquitoes
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Fig. 5.6 Antagonistic effects of pre- and post-hatching temperature on LPS-induced mortality in
zebrafish. Within each post-hatching temperature, larvae from eggs experiencing the lowest tem-
perature had the highest septic-like mortality (blue bars) and mortality decreased as egg temperature
increased (dotted curves). Within each pre-hatching temperature, larval mortality increased as long
as they experienced warmer temperatures in their post-hatching environment (blue, yellow, and red
lines). Therefore, contrary to the expectation of the matching environment hypothesis, mortality is
minimized for high pre-hatching (32 �C) and low post-hatching (24�) temperatures. Redrawn and
adapted from Zhang et al. (2018). Zebrafish (Image credit: Ffish.asia, https://upload.wikimedia.org/
wikipedia/commons/2/2c/Zebradanio-P1219668.jpg, CC BY 4.0, https://creativecommons.org/
licenses/by/4.0/)
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raised under a constant 16 �C temperature. On the contrary, at higher temperature
(26 �C) daily fluctuations reduced parasite burden compared to constant temperature.
These results are particularly important if we want to have better predictive tools to
forecast the effect of global warming on the risk of emerging infectious diseases.
Many questions remain however unresolved, including the carry-over effect of
temperature fluctuation across early and late stages of parasite vectors. Another
aspect that deserves more attention is to uncover whether improved vectorial capac-
ity for one pathogen (e.g., a protozoan) under certain thermal conditions is traded-
against the vectorial capacity for another pathogen (e.g., a virus).

5.5.3 Pollutions and Contaminants

During the last century, we have been witnessing an ever-increasing production
(among others) of pesticides in intensive farming, drugs for human and animal
health, and toxic wastes from industrial activities. As a consequence, contaminants
(sensu lato) circulate now within virtually each compartment of the biosphere.
Contrary to trophic resources and temperature, for which we can reasonably expect
optimal values corresponding to maximum organismal fitness, once a concentration
threshold is reached pollutants are expected to be associated with a negative fitness
outcome. Beside contaminants, other types of pollution are also pervasive, as
artificial light at night or noise, and may interfere with organismal performance
through alteration of their physiological functions. The field of immunotoxicology
has expanded during the last decade with the aim of uncovering if (and how)
organisms can cope with these abiotic agents at different stages of their life.

Interpreting how pollutants affect the immune system can be particularly chal-
lenging because pollutants can i) directly impair the immune response; ii) damage
host cells and tissues producing DAMPs that stimulate the immune response; or iii)
be toxic to invading pathogens (which indirectly also affect the expression of the
immune response). Functional responses, for instance in terms of the organismal
capacity to deal with a controlled infection, are therefore needed to have an insight
on the immune-mediated fitness consequences of contaminant exposure. Along this
line, larvae of Chironomus riparius exposed to tributyltin, an organic pesticide used
to protect wood, were found to have reduced hemocyte number while phenoloxidase
activity was not affected by the pollutant (Lilley et al. 2012). However, life history
traits such as development time and survival were consistently impaired in larvae
exposed to the tributylin. Galleria mellonella caterpillars provided with food
containing three different doses of nickel covering the range of concentration
observed in polluted areas, had an improved encapsulation response for the two
highest doses and higher phenoloxidase activity for the two lowest doses when
compared to controls. However, this early up-regulation of the immune response did
not provide any selective benefit since upon infection with the fungus Beauveria
bassiana, larvae exposed to the highest dose of nickel suffered the highest mortality
rate (Dubovskiy et al. 2011).
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A set of two experimental studies on the Xenopus laevis provide an interesting
insight into the influence of contaminants on immune function across life stages
(Robert et al. 2018, 2019). Three weeks-old tadpoles were exposed to a mixture of
23 chemicals associated to unconventional gas and oil extraction (e.g., benzene,
toluene) with three doses encompassing the exposure levels found in dense-drilling
regions. After a three-week treatment, tadpoles were infected with the Frog virus
3. Infected tadpoles exposed to the highest pollutant dose suffered the highest
mortality and harbored the highest viremia. Pollutants had a general down-regulating
effect on the expression of pro-inflammatory cytokines in both kidneys and spleens,
suggesting that the increased viremia and mortality might stem from a pollutant-
associated immune suppression. Interestingly, there was a carry-over effect of early
exposure to pollutants since when tadpoles were allowed to metamorphose and adult
frogs were infected with the virus, they also paid a substantial cost in terms of
increased viremia and infection-induced mortality. These findings therefore suggest
that contaminants might enhance the susceptibility to infection with carry-over
effects across life stages.

5.5.4 Early Infection with Pathogens and Parasites

Every host undergoes a permanent exposure to a diversity of microbial stimulations
that range from harmless (mutualistic and commensal) to pathogenic interactions.
Upon exposure to this wide range of stimuli, the immune system might or might not
adopt the appropriate response and this obviously has fitness consequences both on
the short- and long-term. As already mentioned in the previous sections, the first
dichotomous branching decision the immune system has to take is between harmless
and dangerous stimuli. Aggressive response to harmless stimuli can produce devas-
tating autoimmunity as shown by several human diseases, weak responses to
dangerous pathogens can result in overwhelming pathogen proliferation. Even
when the immune system can reliably target dangerous stimuli, it still has to finely
tune the intensity of the response as to avoid immunopathology. The combined
effects and the finely-tuned balance between activation, regulation and memory are
therefore essential features of an effective immune response.

Antigenic stimulation in early life contributes to shape the repertoire of “mem-
ory” cell lineages that can be mobilized upon future exposure to the same or similar
antigens. The idea that immunity has memory was initially restricted to vertebrates
(and their antibody producing B-cells). However, during the last decades evidence is
mounting showing that the “simpler” immune system of invertebrates has the
capacity to memorize previous antigenic exposure (Critchlow et al. 2019). This
phenomenon has been called immune priming and its rationale is essentially iden-
tical to vaccination (Trauer and Hilker 2013; Tate et al. 2017). Early exposure to a
diversity of antigens sets the memory that allows a rapid response if the same
(or close enough) antigens are encountered again at later life stages. Therefore,
immune memory provides a benefit as long as the individual likely encounters the
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same pathogens during its lifespan. For instance, when Anopheles gambiae larvae
are infected with the bacterium Escherichia coli, they produce a response that
confers a protection when the adult mosquitoes are subsequently re-infected with
E. coli (Brown et al. 2019). Adult mosquitoes emerging from infected larvae had an
up-regulated expression of several immune functions and harbored lower bacter-
emia. Interestingly, infection at the larval stage conferred some cross-protection,
since even adults emerging from larvae infected with Enterobacter sp. and Staph-
ylococcus aureus were protected against subsequent infection with E. coli.

Benefits of immune memory are obvious for vertebrates, which have specific
memory B-lymphocytes. C57BL/6 mice infected with mousepox virus (ECTV) may
suffer from severe mortality and previous exposure to vaccinia virus (another
orthopoxvirus) confers protection towards ECTV-induced mortality. This protection
can also arise from the maternal transfer of memory immune effectors, since females
treated with the vaccinia virus produce offspring that are protected if they are
infected with ECTV when adults (Navarini et al. 2010). These results illustrate
how the absence of exposure to infection during early life can have long-term
negative fitness effects by maintaining susceptibility to novel pathogens.

Cross-reactivity is an important associated benefit of immune priming and “vac-
cination.” Indeed, as shown above, if different pathogens share similar antigenic
epitopes, exposure to one of them can confer a (partial) protection even when the
host encounters other pathogens. However, under certain circumstances, early infec-
tion (exposure) can also enhance the risk of contracting other infectious diseases. For
instance, although bacterial infection of Anopheles larvae protected towards bacterial
infection occurring at the adult stage, mosquitoes emerging from infected larvae had
increased susceptibility to the infection with the protozoan Plasmodium yoelii
(Brown et al. 2019). On the same line, Sadd and Schmid-Hempel (2009) showed
that when queens of the terrestrial bombus (Bombus terrestris) are infected with the
bacterium Arthrobacter globiformis, they produce workers that are protected from
bacterial infections but are more susceptible to infection with Crithidia bombi
(a protozoan parasite). The reasons for these conflicting effects are manifold. For
instance, in vertebrates, antigen-presenting cells may express different MHC mole-
cules that bind to specific pathogen epitopes. Therefore, depending on the type of
MHC molecules expressed, individuals might be resistant to some pathogens and
susceptible to others (Loiseau et al. 2008), a form of antagonistic pleiotropy. More
generally, signaling molecules that orchestrate the immune response (such as cyto-
kines and chemokines) are known to have synergistic or inhibitory effects (Sorci
et al. 2017). For instance, activation of the Th1 response following viral (intracel-
lular) infection is characterized by the production of Th1 cytokines (IL1-β, IFN-γ)
that have inhibitory effects on Th2 cytokines (IL-4, IL-5, IL-13), and vice versa.
Accordingly, previous infection with a helminth parasite can enhance subsequent
infectious risk with microparasite by polarizing the immune response (Ezenwa and
Jolles 2011).

Early infection may also have effects on fitness related traits expressed at late age
that do not necessarily involve increased (or decreased) susceptibility to infection.
Infection during early life can have long-term effects on neuronal development and
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several behavioral traits (Bilbo and Schwarz 2012; Grindstaff 2016). For instance,
great tit nestlings (Parus major) raised in nests with hen fleas (Ceratophyllus
gallinae) produce shorter songs once adults which has negative fitness consequences
both in terms of intra- (male-male competition) and inter-sexual (female choice)
selection (Bischoff et al. 2009).

Similarly, it has been suggested that early infection and the associated activation
of the inflammatory response might predispose individuals to higher risk of inflam-
matory diseases at later ages, potentially resulting in increased adult mortality (Finch
and Crimmins 2004). This hypothesis stemmed from the finding of positive within-
cohort correlation between early and late mortality in pre-industrial human
populations (Finch and Crimmins 2004). Although subsequent studies using other
human populations failed to reproduce these results, the hypothesis stimulated
further experimental work conducted under controlled laboratory conditions,
allowing to better inferring the possible causal link between early infection and
actuarial senescence (Fig. 5.7). In agreement with the hypothesis, Khan et al. (2017)
showed that Tenebrio molitor beetles facing an early inflammatory insult had higher
age-dependent mortality risk and an accelerated actuarial senescence. Interestingly,
the age-dependent increase in mortality was presumably due to an overreacting
immune response, since beetles treated with RNAi inhibiting phenoloxidase had a
better survival prospects. Similarly, laboratory mice infected with the gut nematode
Heligmosomoides polygyrus at young age have accelerated mortality at old age
compared to sham-infected individuals (Guivier et al. 2018). Heligmosomoides
polygyrus does not induce any direct mortality in lab mice (unless high infective
doses are used), and the infection is naturally cleared by the host after few weeks/
months (depending on the host genetic background). Therefore, the increased
mortality at late age does not arise because of a direct effect of the parasite (at that
moment, the infection has been cleared since longtime) but indeed reflects a carry-
over, negative consequence of early infection. Even seemingly benign parasites that
do not exert any direct mortality cost can nevertheless incur delayed fitness costs on
their hosts through early immune-mediated effects. Uncovering the generality of
these delayed costs clearly requires further work, since not all studies have reported
evidence for such accelerated senescence in early-infected individuals. For instance,
lab mice infected with Plasmodium yoelii when young had similar values of inflam-
matory markers (CRP) at old age, similar reproductive output and similar
age-dependent survival to control mice (Lippens et al. 2018).

5.6 Conclusion and Future Directions

Evidence supporting the view that environmental conditions experienced during
early life have long-lasting effects on individual performance has been accumulating
during the last decades. Virtually every aspect describing the environment faced at
young age, from trophic resources to the infectious risk, has the potential to
permanently shape future life history traits and fitness. This occurs through
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interactions between environmental features and physiological functions that
undergo a developmental/maturation phase during ontogeny. Here, we focused on
one of such functions, the immune system, because it meets all the requirements to
mediate environmentally-driven trade-offs over the whole individual lifespan. To
this respect, we tentatively draw a parallel between the DOHaD hypothesis and what
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Fig. 5.7 Effect of early infection on actuarial senescence. We report survival curves of controls and
individuals that had been exposed to an infectious insult in early life. (a) Tenebrio molitor that were
infected with Staphylococcus aureus in early life have shorter lifespan than controls. (b) Similarly,
laboratory mice infected with the nematode Heligmosomoides polygyrus at young age have reduced
longevity. Here, the increase in mortality occurs once the infection has been cleared, showing that
the accelerated actuarial senescence is a delayed cost of early infection, rather than a direct effect of
parasite exploitation. (c) On the contrary, laboratory mice infected with the protozoan Plasmodium
yoelii at early age have similar survival prospect of control individuals and age at the same rate. The
three panels are redrawn and adapted from Khan et al. (2017), Guivier et al. (2018), and Lippens
et al. (2018), respectively. In each of these studies, several experimental groups were tested. Here,
we only present control and early infected groups, for illustrative purposes. Tenebrio molitor (Image
credit: Stanislav Snäll, https://naturforskaren.se/species/3187f49c-3838-4afa-b39d-b44e9287fcaf,
CC BY 3.0, https://creativecommons.org/licenses/by/3.0/); Staphylococcus aureus (Image credit:
National Institutes of Health, https://commons.wikimedia.org/wiki/File:Neutrophil_MRSA_II.jpg,
public domain); house mouse (Image credit: National Institutes of Health, https://upload.wikimedia.
org/wikipedia/commons/8/8f/Mouse_white_background.jpg, Public Domain); Heligmosomoides
polygyrus (© Joel Bowron, with kind permission); Plasmodium yoelii (© Hilary Hurd, with kind
permission)
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we might call the Immune Origin of Health and Disease (IOHaD) hypothesis. We
postulated that early environmentally-driven shaping of the immune system sets a
program that might account for future susceptibility to infection and immune-
mediated diseases, ultimately affecting organismal fitness. We identified some key
environmental traits likely to play such a role and discussed some of the evidence
that has been published so far on the immune-mediated carry-over effects on
infection, disease, and fitness. Overall, the take-home message seems to be that the
complexity of the network of interactive effects between environment, immunity,
defense strategies, disease, and fitness-linked traits over the individual lifespan
prevents having a unique general prediction of how early effects of the environment
on the immune system shape late age fitness. Context-dependent effects seem
instead ubiquitous. Similarly, idiosyncratic effects of different environmental factors
make impossible to unambiguously predict how early environment will shape
immune-mediated health and disease in late life. On the one hand, this might appear
as a disappointing conclusion, but on the other hand, it might stimulate further work
trying to better elucidate these complex interactions and possibly making sense of
the tremendous variation that is commonly reported in studies focusing on
environmentally-driven immune effects over ages. A first step in this direction
might be to use quantitative analytic tools (e.g. meta-analysis) to uncover subtle
patterns that might not be easily spotted when using a qualitative perspective
approach, as done here. A further development of theoretical models might also
help to have more refined predictions on how and when we should expect early
environmental conditions to increase or decrease investment into immune defenses
according to the prevailing infectious risk and the possible late-life effects. Building
such models is certainly not an easy task because of the intertwined links between
multiple biotic and abiotic compartments with different age-dependent dynamical
properties. To this respect, for the sake of simplicity, we only considered isolated
environmental traits that have been reported to have an effect on immunity during
development (e.g., food, temperature, infection). However, it is clear that environ-
mental conditions are better described by interactive rather than additive effects. For
instance, raising temperature can have a direct effect on organismal physiology and
indirect effects through the alteration of other environmental compartments (e.g.,
quality and quantity of available resources, presence and abundance of vectors/
pathogens/parasites, diversity, and abundance of competing species). Although
experimental work is needed to infer the causality of effects, the reductionist
approach associated with laboratory experiments might result in overly simplistic
environments that are never encountered in natural conditions. This further impairs
the reliability of our current predictive power. Future work should also explicitly
consider how the effect of environmental conditions depends on the host genetic
background. On the one hand, assuming that all genotypes will equally respond to
environmental challenges seems unrealistic. On the other hand, testing for genotype
x environment interactions across different life stages is a daunting task in most
natural systems.

We are witnessing dramatic and unprecedented environmental changes induced
by human activities. Given their impact on biodiversity, it is important to better
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understand how environmental changes affect infectious risk through immune-
mediated pathways. As wildlife species, human populations have also experienced
profound changes in their environment during the last century. The increase in urban
lifestyle that is occurring worldwide, associated with sedentary habits and increased
consumption of processed food with high fat and sugar contents has rapidly pro-
duced a set of novel environments compared to the prevailing conditions experi-
enced by humans during their evolutionary history. This mismatch is actually
recognized as one of the principal reasons for the emergence of
non-communicable disease epidemics that include obesity, diabetes, and immune-
associated pathologies (Sorci et al. 2016). Improved sanitation, food security,
medical interventions, economic development that occurred during the twentieth
century have resulted in a considerable lengthening of human lifespan (although
huge disparities still exist between populations depending on their socio-economic
status). Lifespan lengthening has, nevertheless, also opened the window for human
pathologies that are expressed at ages where the strength of natural selection is too
weak to operate. Many of these diseases have an immune-related etiology, and often
the causal link with the immune system can be traced back to our infancy. For
instance, it is now well established that limited exposure to the environmental
diversity of commensal microorganisms that colonize our body during infancy can
have permanent effects on the risk to suffer from immune disorders (e.g., allergies,
metabolic syndromes, inflammatory diseases; Ege et al. 2011; Hanski et al. 2012).
Therefore, while the study of early environmental conditions on the immune-
mediated health/disease trajectories in wildlife species is still in its infancy and the
available results provide somehow mixed results, human studies have delivered
more consistent findings. Of course, wildlife species, overall, face more complex
environmental conditions compared to humans. One of the next challenges will be to
uncover whether such complexity provides a buffer protecting towards immune-
mediated pathologies and whether wildlife exposed to anthropic activities will suffer
from fitness-debilitating immune-driven pathologies as long as their environment
changes.
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Chapter 6
Early Life Nutrition and the Programming
of the Phenotype

Katherine L. Buchanan, Alizée Meillère, and Tim S. Jessop

Abstract Early developmental nutrition profoundly influences phenotypic trajecto-
ries and affects adult morphology, physiology, behaviour, longevity and fitness
across taxa. During early life, the interplay amongst quantitative (e.g., caloric
intake), qualitative (macro- and micronutrient balance) and temporal (nutrient
restrictions, predictability) aspects of early diet imposes constraints, as animals
seek to balance their nutritional demands to optimise their development. The phys-
iological mechanisms controlling food intake are established during early develop-
ment, and environmental conditions at this time may play a role in determining long-
term fitness. For vertebrates, the physiological axis regulating food intake interacts
with the physiological response to environmental stressors and this may induce long-
term programming of feeding behaviour and the adult phenotype. The diverse
phenotypic and fitness consequences across ontogeny are dependent on both the
magnitude and duration of ‘non-optimal’ nutrition during early development, as well
as the degree of developmental plasticity in trait development. During early devel-
opment, nutrition directly, or indirectly, affects cellular proliferation, migration, and
differentiation. At this time, the capacity for compensation for periods of nutritional
restriction is reduced and there are critical developmental windows of increased
susceptibility, with potential for irreversible phenotypic plasticity. Such trait-specific
critical windows for nutritional sensitivity may have adaptive explanations,
favouring early life plasticity in relation to both environmental cues and environ-
mental predictability. Whether responses to nutritional deficiencies represent devel-
opmental constraints or adaptive responses for future environmental conditions is in
many cases unclear. Furthermore, transgenerational impacts of early life diet are
documented in a small range of species, but the ecological and evolutionary rele-
vance of these effects and capacity for selection on the underlying mechanisms
remain uncertain. Future research that seeks to better detail the mechanistic under-
standing of how complex nutritional trade-offs alter developmental trajectories to
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specifically influence fitness offers considerable potential to benefit humans and
animals, across diverse environmental settings.

6.1 Introduction

The 18thC French lawyer and gastronome Anthelme Brillat-Savarin famously once
wrote, ‘Dis-moi ce que tu manges, je te dirai ce que tu es.’: Tell me what you eat and
I will tell you what you are (Brillat-Savarin 1826). The concept that environmental
influences such as diet determine our current state and body composition, develop-
mental processes, rates of senescence, and ultimately our survival and reproduction,
is far from new. However, the objective quantification of the complex, multidimensional
reaction norms relating diet to development has only started in much more recent years
(West-Eberhard 2003; Partridge et al. 2005; Simpson and Raubenheimer 2012). From
the perspective of biomedical science, the recognition of the important role diet plays in
determining adult health and disease susceptibility (Gluckman and Hanson 2006) has
grown in tandem with the increased health and economic burden associated with
increased rates of obesity in the developed world (Simpson and Raubenheimer 2012).
Examining why people choose the burger over the salad has ultimately provided
important insights into how selection on physiological and developmental processes
has driven dietary intake (Simpson and Raubenheimer 2012).

By definition, any book chapter addressing the complex interactions between the
early nutritional landscape and adult phenotype has to pick some robust highlights,
whilst drawing conclusions about the broader relevance. Humans are of course the
best-studied, but least controlled study organism, and yet an array of early dietary
influences have been documented to affect adult phenotype, including absolute
caloric intake, macro and micronutrient content, the variability and predictability
in food availability, as well as the severity and duration of any restrictions (Langley-
Evans 2015). Comparative experiments have addressed some of the underlying
effects through careful manipulations demonstrating the direct impact of early life
diet on developmental rates and patterns, growth rates and morphology, and subse-
quent physiology and behaviour (Gilbert 2001; McMillen and Robinson 2005;
Pechenik 2006; Dmitriew 2011; Moran et al. 2021). Evolutionary ecologists have
employed an array of model organisms to address how when and why early nutrition
as a key environmental variable drives phenotypic plasticity (Rion and Kawecki
2007; Van Buskirk and Steiner 2009; Kasomovic 2013). This has led to studies
quantifying the potential for adaptive physiological responses to early life diet and
the impacts on individual fitness, in part driven by considerable interest in the effects
of caloric restriction on ageing (English and Uller 2016; Simpson et al. 2017; Cooper
and Kruuk 2018). Understanding the proximate effects of early nutrition on devel-
opment, behaviour, and cognition has also provided important insights into the
drivers for how dietary intake shapes adaptive development in wild animals (Crespi
and Unkefer 2014). Early life diet can determine dietary choices in later life, thereby
reinforcing the effects of early developmental programming (Monaghan 2008).
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Furthermore, in the last 20 years, recognising the transgenerational impacts of diet
on developmental patterns across generations has attracted interest in understanding
the underlying selective mechanisms (Bateson et al. 2004).

The literature documenting the impacts of nutrition on growth and development is
vast; this literature draws from aquaculture, agricultural production, biomedicine,
through to animal physiology and then conceptually further into ecology and
evolutionary biology. Here, we make minimal use of the biomedical literature,
focusing on insights drawn from evolutionary ecology. In seeking to draw some
general conclusions about how selection impacts the interactions between early
nutrition and development, we focus on studies of nutritional manipulations during
early development using wild animal models that have sought to quantify adaptive
responses. Nutrition can vary along multiple axes and here we refer to caloric
restriction as undernutrition—i.e., a shortfall in the required energetic supply at a
given time in development. This is in contrast to malnutrition, which is a shortfall in
some aspect of the balance of nutrient content of the diet which optimizes develop-
ment. Experimental manipulations of dietary or nutritional restriction can impact on
both caloric intake and nutritional content, whereas dietary manipulations to restrict
specific nutritional components can target the specific impact of particular essential
micro and macronutrients. Furthermore, studies of dietary or nutritional stresswhich
manipulate the temporal availability of food and its predictability, by definition can
address whether and how the animal deviates from an optimum developmental
trajectory, as well as the physiological control mechanisms which mediate the
impact. Where possible, we have differentiated between these different approaches
to manipulating early nutrition. However, it would be reasonable to note that the
published literatures uses some of these terms interchangeably. We aim to briefly
review the impact of early nutrition on development, behaviour, senescence, repro-
duction and longevity, and the potential for transgenerational impacts of nutrition to
identify targets for selection. We focus primarily on vertebrates, with an avian
emphasis, whilst drawing on relevant insights from the invertebrate literature,
where the shorter generation times have allowed effective experimental manipula-
tions. In the first part of this review, we address the proximate mechanisms under-
lying the impact of nutrition on development. We highlight the impact of early diet
on developing morphology and physiology, which interact to influence the drivers
for future nutritional intake. We discuss selection to optimise macronutrient intake
and the role of micronutrients. In the second part of the chapter, we address the
implications of nutritional change for developmental plasticity. We seek to identify
whether there are consistent critical and sensitive windows when animals may be
more vulnerable to the effects of nutritional restriction and, what developmental
factors might determine such susceptibility. Plasticity driven by early nutrition
comes in many forms and here we discuss the evidence for selection on its
metabolically-driven consequences. Finally, in the third part of the chapter, we
discuss the transgenerational impacts of early life diet. In assessing the evidence
for adaptive programming through early nutritional experience, we discuss the
ultimate consequences of early life diet for individual fitness and where adaptive
phenotypic changes may occur.
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6.2 Proximate Mechanisms Affecting Development
and Phenotype

6.2.1 Effects of Developmental Diet on Adult Morphology

In arthropods, both caloric restriction and restrictions to diet quality lead to altered
development rates, adult body sizes and condition (Nylin and Gotthard 1998; Boggs
and Niitepold 2016). Drosophila melanogaster has been a model organism for the
study of early nutrition on development for over 100 years, including determining
the impacts of caloric restriction, suboptimal diets, and the predictability of nutri-
tional availability (Flatt 2020; Rehman and Varghese 2021). For example, caloric
restriction during early larval development causes reduced adult weight, faster
development and reduced fecundity, but in doing so produces adaptive changes
including increased fat deposition and starvation resistance in adult flies (Rehman
and Varghese 2021). Because larger animals tend to have relatively greater repro-
ductive capacity (Blanckenhorn 2000), early life diet can determine fecundity,
moderated by complex sex-specific relationships between fitness and body size
(e.g., Gray and Eckhardt 2001; Kaspi et al. 2002; Boggs and Freeman 2005;
Kasomovic 2013; Johnson et al. 2014). The impact of diet on fitness can result
from changes to growth rates and adjustments in allocating limited resources (Nylin
and Gotthard 1998) or development times (Fig. 6.1). Faster growth rates are pre-
sumed desirable, but may come with associated physiological costs (Metcalfe and
Monaghan 2001), as well as increased risks of predation or parasitism (Nylin and
Gotthard 1998), which may change dietary preferences (Hawlena and Schmitz
2010). In some species, there is some evidence that the degree of plasticity varies
with resource predictability (Leimar et al. 1994). Adaptive trade-offs include mor-
phological trade-offs; for example the body size of both male and female Mormon
fritillaries (Speyeria mormonia) is reduced under larval dietary restriction (Boggs
and Niitepold 2016). However, head size is conserved, suggesting that morphology
of feeding apparatus, sensory systems or neural function may be protected. A range
of experimental nutritional stressors impacts spiderling growth in wolf spiders
(Pardosa prativaga), although compensatory growth allows attainment of adult
size, driven by phenological pressures (Jesperen and Toft 2003), albeit with possible
costs in later life (Metcalfe and Monaghan 2001).

Larval diet is also fundamentally important for determining adult morphology in
anurans, which also show a high degree of phenotypic plasticity (Kupferberg 1997).
Diet quality and absolute food intake affect tadpole body size (Kupferberg 1997;
Alvarez and Nicieza 2002). But this is thought to be partly because of the role that
dietary protein levels play in determining thyroid function, which plays an important
role in determining the onset of metamorphosis (Kupferberg 1997). In songbirds, the
zebra finch (Taeniopygia guttata) has been used as a model for determining the
effects of nutritional restriction on growth, development and physiology (Spencer
et al. 2003; Zann and Cash 2008; Kriengwatana et al. 2014). Both direct (Spencer
et al. 2003) and indirect (Verhulst et al. 2006) nutritional restriction during early
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nestling life causes a reduction in growth rates. Several studies have attempted to
identify the sensitive developmental windows by temporally partitioning the effects
of diet during different periods of early development using the zebra finch as a model
(Criscuolo et al. 2008; Krause et al. 2009). During the nestling period restricted
caloric or protein intake causes reduced growth in mass, tarsus and wing length, with
compensatory growth occurring when dietary quality is increased, such that body
mass and tarsus length are usually indistinguishable from control birds as adults
(Criscuolo et al. 2008; Honarmand et al. 2010). In contrast, adult skeletal size
seemed to be largely resistant to periods of dietary restrictions in early life (Spencer

Fig. 6.1 Variation in the quality of nutritional intake can affect rates of (a) growth or (b)
development, whilst dietary quality varies in multi-dimensions. (a) Dietary quality affects the
speed of growth, such that individuals consuming a higher quality diet grow more quickly and
may reach a larger body size and/or produce more offspring. (b) Diet quality affects development
rate, with higher quality dietary intake enabling faster development. In both scenarios higher diet
quality leads to increased fitness. Whilst it seems likely that these mechanisms are not mutually
exclusive, the general impact of these effects at the population level will depend in part on the
seasonal window available for development and reproduction
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et al. 2003; Honarmand et al. 2010; Kriengwatana and MacDougall-Shackleton
2015), suggesting strategic allocation of available resources occurs. Body composi-
tion was unaffected by nutritional restriction in early life in song sparrows
(Melospiza melodia) (Schmidt et al. 2012). However, fledgling and adult body
composition were affected by early life dietary restriction in zebra finches
(Kriengwatana and MacDougall-Shackleton 2015), reducing mass and lean mass,
but not body fat stores. Such outcomes may serve to buffer the effects of temporary
caloric restriction, similarly to the effects seen in adult birds exposed to
unpredictable food availability (Witter et al. 1995). The potential for adaptive
programming from early life conditions has also been tested, to address whether
individuals reared under challenging conditions fare better when meeting these
conditions again as adults. For example, zebra finches exposed to reduced dietary
protein early in life tend to lose more mass during a short nutritional restriction as
adults (Krause et al. 2009), although the adaptive significance of this response is
unclear.

In mammals, embryonic growth is dependent on maternal supply of nutrients
through the placenta and compromised maternal nutrition at this stage leads to
complex trade-offs in resource allocation, mediated by placental mechanisms
which control allocation. Studies of maternal diet in rodents confirm that either
caloric excess or restriction lead to a predisposition to adiposity, neural inflamma-
tion, altered HPA function, metabolism and hyperphagia in their adult offspring
(Schenk et al. 2008; Lumeng and Saltiel 2011). In mice (Mus musculus), restricted
maternal protein levels during pregnancy lead to a reduction in maternal body and
placental weight early in pregnancy, but with embryonic skeletal and brain devel-
opment less affected, and buffered during periods of compromised maternal nutri-
tion (Gonzalez et al. 2016). This study also suggests that the junctional zone of the
placenta serves as a sensor for maternal nutrition (Gonzalez et al. 2016). Postnatal
skeletal growth rates in rats are reduced under protein restriction, such that individ-
uals grow for a longer time, but still attain smaller adult skeletal sizes (Reichling and
German 2000). Interestingly, whilst organ sizes were buffered from the effects of
protein restriction, relative eye and brain mass were larger for protein-restricted
individuals suggesting adaptive reallocation of resources (Reichling and German
2000). Indeed, there is a vast literature on the impacts of poor pre- and postnatal
nutrition on mammalian growth, morphology and condition within the biomedical
literature, which is beyond the scope of this current review.

Ontogenetic allometry refers to the relative growth rates of different body parts
during early development, influenced by genetic and environmental factors, whilst
there are numerous examples of how nutrition can impact adult phenotype, partic-
ularly in invertebrates (Nijhout and McKenna 2019). Wing loading in Mormon
fritillaries is significantly reduced in both sexes by larval food restriction, whilst
aspect ratio is conserved (Boggs and Niitepold 2016), suggesting that larval dietary
restriction results in changes to body allometry, which maintain the ability to
disperse and feed effectively. Alterations to wing size in response to larval dietary
restriction have been shown in other Lepidopteran species, including the speckled
wood butterfly (Pararge aegeria) (females only) (Pellegroms et al. 2009) and the
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long distant migrant monarch butterfly (Danaus plexippus) (Johnson et al. 2014),
with implications for migration success. Adult insects do not grow, so any diet
impacts on morphology can only occur during larval stages. The impact of nutri-
tional restriction on development may be characterised by a series of trade-off
‘decisions’ concerning resource allocation and yet we know rather little about the
flexibility in resource allocation, particularly in vertebrates. There are two ways in
which nutrition can potentially influence organism allometry (Nijhout and German
2012). Organism allometry might be directly altered through nutritional resource
allocation, impacting on the growth rate of different parts of the body relative to each
other. Alternatively, nutrition may indirectly influence the underlying tissue or
organ-specific mechanisms, such as growth factors, developmental hormones or
receptor expression and placement (Nijhout and German 2012). Parts of the devel-
oping body compete for resources, although the extent to which this occurs is poorly
understood particularly in vertebrates (Gawne et al. 2020). Endothermic vertebrates
(and some ectotherms (Frydlova et al. 2020)) show determinate growth (Sebens
1987), meaning the potential for nutrition to impact on allometric relationships
throughout life is reduced in comparison with most poikilothermic vertebrates.
The inherent trade-offs in body components are determined according to the timing
of development and nutritional restriction (Nijhout and Emlen 1998). However,
theoretical predictions suggest that nutritional limitations may benefit trade-offs
between cellular demands during ontogeny (Gawne et al. 2020). Consumptive
competition occurs when cells take up limited resources (metabolic fuels or charged
molecules) at different rates, resulting in differences in cellular competitive abilities
and theoretically tissue growth rates (Gawne et al. 2020). Such processes are thought
to underlie differences in cellular recruitment from such diverse functions as neuro-
nal competition and consequent memory formation in mice (Han et al. 2007), to
competitive allocation of limited resources allocated to the formation of wing
morphology in Diptera (Ferreira and Milán 2015) or Lepidoptera (Nijhout and
Emlen 1998).

6.2.2 Effects of Developmental Diet on Adult Behaviour

Poor nutritional conditions in early life are hypothesised to have long-term effects on
adult behaviour by altering neural development or function, adaptively reallocating
resources and reprograming development to maximize fitness despite such chal-
lenges (Buchanan et al. 2013). Changes to the nutritional environment alter the cost-
benefit trade-off of survival and reproduction (see Sect. 6.4.2) resulting in changes to
sexual signalling in arthropods, fish and birds (Candolin 2000; Hunt et al. 2004).
Male field crickets (Teleogryllus commodus) reared on high-protein diets invest
more in calling behaviour and consequently show reduced survival (Hunt et al.
2004). However, in decorated crickets (Gryllodes sigillatus) male calling is affected
by both juvenile and adult diet, whilst the exact nature of how diet impacts on trade-
offs between reproductive investment and survival varies between the sexes
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(Houslay et al. 2015). In songbirds, nutritional restriction during early life has been
hypothesised to result in compromised adult song production due to the historical
window for neural development which may compromise signal production (Nowicki
et al. 2002). This hypothesis has been extensively tested experimentally (Buchanan
et al. 2004; Schmidt et al. 2013; Kriengwatana et al. 2014), particularly in the zebra
finch in relation to song learning (Bell et al. 2018) and production (Kriengwatana
et al. 2014), but also in a range of other songbird species (Schmidt et al. 2014;
Yamada and Soma 2016; Magoolagan et al. 2018). As predicted in the original
hypothesis (Nowicki et al. 2002), there is evidence that the direct effects of devel-
opmental stress on song development are mediated through altered neural develop-
ment within the song control nuclei, affected directly or indirectly through
corticosterone (Buchanan et al. 2004; MacDonald et al. 2006; Newman et al.
2010; Honarmand et al. 2016; but see Buyannemekh et al. 2020).

Nutrition affects acoustic signalling outside of a developmental context. Aside
from avian song learning, there is considerable evidence that nutrition affects song
output around the time of production (Grieg-Smith 1982; Ritschard and Brumm
2012), but much less evidence that diet affects song structure, once established
(Ritschard and Brumm 2012; Yamada and Soma 2016). Dietary antioxidant intake
has been reported to enhance undirected song activity in the zebra finch, during a
period of decreasing song rates due to reduced photoperiod (Casagrande et al. 2016).
Male European starlings (Sturnus vulgaris) sing less, using shorter, simpler songs
when exposed to unpredictable food supply, but this effect seems to be in part
mediated through the buffering of increased male body mass (Buchanan et al. 2003).
Such results suggest that juvenile diet-related alterations to adult signal production
are not purely mediated by energetic restriction, but strategic reallocations (Hunt
et al. 2004). Indeed, a recent meta-analysis considering multiple types of behavioural
sexual signals confirms that individuals invest more in sexual signalling when they
are in better condition (Dougherty 2021). In terms of the effects of nutritional stress
on female song preferences, in the European starling there is some evidence that
exposure to unpredictable food supplied affects auditory discrimination in females
(Farrell et al. 2016). However, nutritional restriction during the nestling phase does
not impact female song preferences in zebra finches (Woodgate et al. 2011).

Nutritional supply during early development can affect other cognitive traits,
including spatial memory (Buchanan et al. 2013). For honey bees (Apis mellifera),
pollen contains a range of essential nutrients, and access to pollen during the larval
phase affects the ability of adult workers to subsequently convey accurate informa-
tion about the location of food sources to other colony members (Scofield and
Mattila 2015); however, the exact mechanism for this effect is unknown. Young
rats maintained on a high-fat and sugar diet show reduced BDNF levels, hippocam-
pal growth, and subsequent performance in spatial memory tests, after only one
month of dietary treatment (Molteni et al. 2002), with some studies suggesting that
an even shorter dietary exposure (days) to such diets may have long-term implica-
tions for cognitive function, due to inflammatory responses within the brain (Spencer
et al. 2017). Choline, a B-complex vitamin with an amino acid like structure, is an
essential nutrient and is particularly important during early development for effective
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neural growth (Zeisel 2006) and arguably adult learning and memory (Meck and
Williams 2003). Prenatal dietary supply of choline chloride to rats through maternal
diet has been shown to increase subsequent spatial memory performance (Meck et al.
1988), and the mechanism is thought to involve changes in DNA methylation within
stem cells controlling the proliferation of neural tissue (Zeisel 2006). However, the
biological relevance is unclear, given choline intake may rarely be limited in
the wild.

In birds, there has been specific interest in susceptibility of the hippocampus and
spatial memory tasks to dietary restriction in food caching birds and there is
considerable evidence that physiological stress affects hippocampal development,
as well as learning and memory (Buchanan et al. 2013). Dietary stress during early
development affects hippocampal growth/volume and spatial memory in Western
scrub jays (Aphelocoma californica) (Pravosudov et al. 2005), whilst in the chicken
chronic food stress reduces neurogenesis, but not hippocampal volume (Robertson
et al. 2017). In songbirds, studies of the effects of early diet on spatial memory
appear to show that early life diet can both enhance and hamper performance in
spatial memory tasks (Brust et al. 2014; Farrell et al. 2015; Kriengwatana et al.
2015). For example, zebra finches subject to dietary restriction in early life show
impaired exploratory behaviour only when exhibiting compensatory growth (Krause
and Naguib 2011). This suggests that it may be vital to determine both the ecolog-
ically relevant dietary stressor and the behaviourally relevant task to determine
whether early life diet is relevant for long-term fitness.

Experimental manipulations of micronutrient availability during early develop-
ment in birds suggest there may be functional links between early life diet and the
expression of neophobia, boldness and consequent survival (Arnold et al. 2007;
Noguera et al. 2015; Richardson et al. 2019). There is some indication that taurine
supply, an essential amino acid that varies with the invertebrate content of nestling
diet, may affect the ability to remember the location of food sources (Arnold et al.
2007). However, for many of these studies the responses are sex-specific and both
the direction of impact and the window of dietary sensitivity are variable, making it
difficult to reach any general conclusions. Although not explicitly focused on early
development, a recent relevant meta-analysis assessed the impact of compromised
nutrition on behaviour and concluded that experimental reductions in nutritional
conditions lead to a substantial increase in risk taking behaviours, across wide
taxonomic groups (Moran et al. 2021). Despite high heterogeneity in the reported
effect sizes across studies, stronger effects of nutrition on behaviour were found
when experimental nutritional interventions were imposed in early life stages, or
prolonged across life stages (Moran et al. 2021), suggesting early windows of
behavioural programming do exist across species. Such behavioural adjustments
are seen as adaptive, from the perspective of maximising the chance of survival
during nutritional shortages.
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6.2.3 Effects of Developmental Diet on Adult Physiology

6.2.3.1 Ontogeny of Control of Food Intake

The potential for diet to cause longer-term metabolic programming surely depends
on the physiological responses to hunger and satiety and how these physiological
responses develop. The ontogeny and neuropeptide mechanisms are best quantified
in rodents (Dallman et al. 1993), with much less understanding in non-model
organisms (Crespi et al. 2013; Boswell and Dunn 2017). Food intake is controlled

Fig. 6.2 In vertebrates, the hypothalamic-adipose axis regulates energy storage and nutritional
status and embeds into the hypothalamic-pituitary (HPA) axis, which regulates energy release
during basal and stressful conditions. The hypothalamus contains a number of nuclei that develop
to regulate feeding behaviour, including the arcuate nucleus of the hypothalamus (Arc), which
integrates peripheral information on body condition, balancing energy reserves with dietary intake.
Arc is largely conserved across vertebrates in terms of its structure and neuropeptide expression.
The paraventricular (PVN) nucleus is largely regarded as a satiety centre. Neuronal signals from the
PVN stimulate the pituitary and regulate energy expenditure, which feeds back through the
autonomic nervous system (black arrows) to adipose tissue. The HPA axis controls the response
to environmental perturbations, stimulating the adrenal cortex to produce glucocorticoid
(GC) hormones (e.g., cortisol, corticosterone), in response to adrenocorticotropic hormone
(ACTH). GCs stimulate the release of energy from adipose tissue. Leptin production from the
peripheral adipocytes reduces food intake (anorexigenic) and under acute stress, leptin attenuates
the stress response. GCs also generate negative feedback effects on the hypothalamus. Receptors in
Arc stimulate release of appetite-regulating neuropeptides in response to leptin, although neuro-
peptide function differs between vertebrate groups. Under nutritional restriction the gastric tissues
release a range of peptides including ghrelin which increases feeding behaviour (orexigenic). These
peptidergic hormones travel in the bloodstream to activate various targets within the CNS. The
gastro-intestinal tract contains mechanoreceptors and chemoreceptors which feed signal back to the
higher brain areas through the autonomic nervous system to regulate food intake. Green lines are
stimulatory and red dotted lines are inhibitory. Ontogenetic development of these complex net-
works offers a target for developmental programming
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by the integration of both central and peripheral mechanisms generated by the gut,
liver and brain (Tachibana and Tsutsui 2016). Neuroanatomical localisation of the
neural centres controlling hunger are broadly conserved in vertebrates, with funda-
mental differences in the neuropeptides used (Crespi and Unkefer 2014; Tachibana
and Tsutsui 2016), but may form the basis for developmental programming
(Fig. 6.2). In early life, vertebrate food intake is controlled by internal drive to
feed, which is unresponsive to external conditions and has evolved to maximise
growth rates and survival chances (Crespi and Unkefer 2014). There is then a
developmental switch in control of both hunger and metabolism, as hypothalamic
neurons reorganise and become sensitive to signals from the gut and the body’s
periphery (Dobbing and Sands 1979; Grove et al. 2003; Tachibana and Tsutsui
2016). Interestingly, the response to external stressors also changes around this time.
During early vertebrate life stages, the hypothalamic-pituitary-adrenal (HPA) axis is
hyporesponsive. However, maturation of hypothalamic sensitivity to hunger and
appetite signals coincides with the maturation of the HPA axis stress response, which
then plays a crucial role in determining the future organismal responses to nutritional
content and availability (Crespi and Unkefer 2014) (Fig. 6.2). Any proximate
mechanisms for HPA axis programming by early life diet may therefore rely on
specific sensitive windows relating to neural development. Specifically, this would
be when the HPA axis through the hypothalamus embeds into the developing
melanocortin system, neurons that express a range of neuropeptides directly or
indirectly involved in the regulation of food intake, e.g., neuropeptide Y (NPY),
agouti-related peptide (AGRP) and proopiomelanocortin (POMC) (Schwartz et al.
2000; Grove et al. 2005; Breton 2013; Tachibana and Tsutsui 2016). These complex
neurophysiological networks then set the basis for controlling adult appetite,
foraging and food intake, in association with the circadian rhythms in baseline
glucocorticoid concentrations (Sapolsky et al. 2000). In mammals, the secretion of
adipocyte-derived leptin is directly affected by the nutritional environment
(Fig. 6.2), whilst this hormone plays an important role in determining projections
from Arc to other hypothalamus regions (Simerly 2008; Friedman 2009; Breton
2013). Therefore, it seems possible that at least for mammals, leptin may play a
crucial role in mediating the development of hypothalamic control over food intake
and the subsequent hypothalamic responses to food supply (Simerly 2008; Bale et al.
2010; Dietrich and Horvath 2013). However, neuronal circuits within Arc in adult
rats show substantial plasticity, suggesting that intake may be more likely to respond
to immediate conditions and perhaps reducing the potential for long-term program-
ming by early diet (Dietrich and Horvath 2013).

Comparatively, the ontogeny of control of food intake is understood to variable
degrees in non-model organisms. It is not well understood in fish (Hou and Fuiman
2020) or altricial birds (Boswell and Dunn 2015, 2017). The precocial chicken
(Gallus gallus) is the best-studied avian system, with 9-day-old chicks somewhat
responsive to leptin (Cassy et al. 2004), but the ontogeny of food control is not well
quantified even in precocial birds. In some mammalian species that are precocial but
have longer gestation periods (non-human primates and sheep), hypothalamic reg-
ulation of food intake develops before birth (Crespi and Unkefer 2014).

6 Early Life Nutrition and the Programming of the Phenotype 171



Environmental factors play an important part in programming food intake in later life
in anurans (Hu et al. 2008) birds (Kitaysky et al. 2006) and mammals (Meaney 2001;
Shin et al. 2012). In anurans, the intriguing reformation of the gut and radical dietary
change which occurs across metamorphosis has driven extensive research into the
control of food intake (Crespi and Unkefer 2014). Like other vertebrates, in anurans,
the anorexigenic controls that the hypothalamus exerts are absent in the tadpole stage
and develop at metamorphosis and coincidentally with the onset of leptin production
(Bender et al. 2018). In addition, there is interesting comparative evidence that
selection during these larval feeding stages has fundamental implications for adult
morphology (Bardua et al. 2021).

Identifying the mechanisms affecting developmental change and sensitive win-
dows is therefore enormously challenging. In birds, several studies have shown the
involvement of corticosterone and testosterone in controlling begging behaviour and
food intake, in taxonomically diverse groups such as seabirds and songbirds
(Kitaysky et al. 2001b; Goodship and Buchanan 2006). Identification of mammalian
leptin as a crucial hormone regulating satiety (Zhang et al. 1994) was followed by its
identification in anurans, fish and eventually, after a 20-year search, in birds
(Friedman-Einat and Eyal Seroussi 2019). However, although leptin clearly plays
a central role in regulating food intake in adult mammals, its role in non-mammalian
vertebrates is much less clear (Boswell and Dunn 2015; Friedman-Einat and Eyal
Seroussi 2019). Similarly, whilst ghrelin plays an essential role in mammals com-
municating nutritional state to the brain, driving food consumption and food hoard-
ing, in birds the response can be quite variable (Boswell and Dunn 2015; Tachibana
and Tsutsui 2016). Ghrelin levels, however, are associated with body fat stores and
migratory restlessness in garden warblers (Sylvia borin) (Goymann et al. 2017).
These fundamental differences between how food intake is regulated between adult
birds and mammals have been suggested to have their evolutionary origins in the
differences of metabolic demands and perhaps the high metabolic demands of flight
(Boswell and Dunn 2015).

6.2.3.2 Physiological Consequences of Intake Rates

The adaptive setting of nutritional intake is important as either dietary restriction or
caloric excess in rodent maternal diets leads to an increased risk of adiposity, neural
inflammation, altered HPA function, metabolism and hyperphagia in their adult
offspring (Schenk et al. 2008; Lumeng and Saltiel 2011) (Fig. 6.3). Central to the
physiological mechanisms mediating these effects in vertebrates is thought to be the
early programming of the sensitivity of the HPA axis by early life experiences
(Levine 2005; Meaney et al. 2007; Crespi et al. 2013). The HPA axis
(HP-interrenal axis in amphibians and fish) operates at a ‘baseline level’, responding
to environmental challenges through the release of corticotropin-releasing hormone
(CRH) from the hypothalamus, adrenocorticotropic hormone (ACTH) from the
pituitary, stimulating the production of glucocorticoids by the adrenal glands
(Sapolsky et al. 2000). This results in complex physiological interplay resulting in
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increased cerebral blood flow, appetite suppression, the mobilisation of stored
energy reserves through gluconeogenesis, raising blood sugar levels (Sapolsky
et al. 2000). Whilst, short-term responses to environmental challenges tend to result
in increased energy mobilisation, the strength and duration depend on prior experi-
ence, with the repeated demonstration of the impact of early life conditions on HPA
axis sensitivity (Levine 1967; Matthews 2002; Meaney et al. 2007). Rats exposed to
prenatal stress (maternal stress, which is not always dietary stress) demonstrate a
hyper-responsive HPA axis with attenuated shutdown, resulting in chronically
elevated glucocorticoid levels (Matthews 2002; Levine 2005). Short-term food
restriction results in activation of the HPA axis in birds (Lynn et al. 2003) and
mammals (Diaz-Munoz et al. 2000). However, some restrictions are more predict-
able (e.g., diurnal or seasonal changes in food availability), generating periods of
adaptive adjustment in foraging, mass and HPA function (Wingfield et al. 1998). In
contrast, the adaptive regulation hypothesis suggests that animals cope with
unpredictable food availability, by decreasing their energetic demands and
protecting stored energy reserves (Witter et al. 1995; Fauchald et al. 2004), as well
as attenuating their HPA response. However, unpredictable food supplies can lead to
increased glucocorticoid production, or alterations to HPA axis function, in accor-
dance with the chronic stress hypothesis (Clinchy et al. 2004; Fokidis et al. 2012).

Fig. 6.3 The drivers for food regulation, metabolism and the impact of early life experience on
adult physiology and behaviour are best understood in the rodent model. Similar effects have been
detected when manipulating either maternal or early neonate diet. Nutritional supply and content act
to determine dietary quality, which in early life impacts to organise metabolic pathways and the
physiological response to stress. The impact of nutrition on development starts in early development
when the initial state, determined by the initial food supply, affects communication between the
brainstem and gut, including the production of peripheral hormones. This communication starts to
determine hypothalamic development, which in turn takes over as the integrator of gut-brain signals
and the primary regulator of food intake around weaning. Stress responsiveness also develops with
age, allowing for pups to maximise intake during the neonatal period. After weaning, the stress
response plays an adaptive role in mediating between risk and foraging to allow independent
offspring to balance energy requirements with risky behaviours. The hypothalamic architecture
will also determine appetite and metabolism, which has long-term implications for adult energetic
demands. The period of transition from food intake regulated primarily by the gut and brainstem to
intake regulated by hypothalamic nuclei may represent a developmental window during which
metabolic programming can occur
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These competing theories are relevant for understanding the potential for adaptive
HPA programming for adult environmental conditions. In nestling altricial birds, it
seems that prolonged dietary restriction during early development can result in
chronic elevations of baseline glucocorticoid production in later life (Kitaysky
et al. 2001a; Kriengwatana et al. 2014) (but not always, see Spencer et al. 2003).
It seems therefore that whilst early life conditions do have the potential for long-term
adaptive programming for adverse conditions (Spencer et al. 2009), not all changes
to dietary intake cause long-term changes in HPA axis function.

The effects of early nutritional conditions on adult metabolism have attracted
enormous attention in terms of attempts to explain metabolic syndromes in later life,
as well as to identify risk factors for a range of human health conditions (McMillen
and Robinson 2005). Proposed mechanisms for the well-documented metabolic
programming from rodent studies (Fig. 6.3) include alterations to HPA axis sensi-
tivity, insulin regulation and resistance, kidney, cardiac and vascular development
and function, as well as appetite regulation, with epigenetic mechanisms attracting
increasing interest (McMillen and Robinson 2005). However, comparative evidence
for the long-term effects of early life diet on adult metabolism is mixed. In mammals,
although caloric restriction reduces metabolic rate during restriction and impacts
body mass and composition, the long-term impact on metabolism is highly variable,
depending on individual mass and the severity and duration of nutritional restrictions
(Heilbronn and Ravussin 2003). Whether a nutritional challenge impacts adult
metabolism may depend on the developmental processes taking part in different
tissues during this critical window (Hales and Barker 1992). In fish, early nutrition
affects growth, as well as nutrient uptake and metabolism (Hou and Fuiman 2020)
and the duration of the larval and embryonic periods, which have a high potential for
metabolic plasticity and programming, compared to the juvenile phase (Hou and
Fuiman 2020). However, no studies have experimentally demonstrated the long-
term impact of early life diet on adult fish metabolism. An interesting study on the
impacts of predation on dietary intake in grasshoppers concluded that the increased
metabolic demands under high predation risk drive changes in dietary preferences,
with consequences for nutrient turnover within the environment (Hawlena and
Schmitz 2010). In altricial songbirds, food restriction in the nestling phase results
in increased metabolic rates in adult female (but not male) song sparrows (Schmidt
et al. 2012) and zebra finches (Careau et al. 2014). Caloric restriction also reduces
inter-individual variation in individual behaviour and physiology by canalising the
developmental process to produce less variable phenotypes (Careau et al. 2014).
However, zebra finches raised in larger broods have increased standard metabolic
rate independent of mass as adults (Verhulst et al. 2006), perhaps suggesting that
other aspects (e.g., growth rates, thermal environment, competition) of developmen-
tal conditions play an important role in determining adult metabolism, in addition to
caloric intake. Dietary protein during nestling development has also been shown to
affect growth rates and nestling resting metabolic rate (RMR), with low dietary
protein resulting in elevated nestling RMR (Criscuolo et al. 2008). However, in this
study adult RMR was only affected by dietary protein levels if they experienced a
dietary treatment which required catch up compensatory growth (Criscuolo et al.
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2008), suggesting the process of compensating for a bad start in life may contribute
to adult metabolism. Together, these avian studies suggest that compensatory growth
may be particularly important in determining adult metabolism (Verhulst et al. 2006;
Criscuolo et al. 2008), but both mechanisms and consequences are unclear.

6.2.4 Nutritional Balance, Diet Composition, and Optimising
Development

The relationship between diet and fitness relies on the concept of nutrient balance
meeting current demands and the interaction of the animal with its environment
(Simpson and Raubenheimer 2012). The integrated framework of nutritional geom-
etry was first developed in the early 1990s to explain the how and why nutrition
impacts development and the adult state (Simpson and Raubenheimer 2012). It
considers the nutritional regulatory systems which are most relevant for fitness-
related traits such as macronutrients, e.g. proteins, carbohydrates and lipids or
essential minerals such as calcium or phosphorus (Maklakov et al. 2008; South
et al. 2011). This framework has been useful in identifying the likely drivers that
explain outcomes which may optimise health and fitness (Hunt et al. 2004; Simpson
et al. 2015). The framework addresses the nutritional constraints of optimising intake
when food comes in packaged units comprising relative proportions of required
macronutrient components, such as protein and carbohydrate. Therefore, optimising
dietary intake depends on their relative proportions and the amount eaten across
development (Fig. 6.4). Instead of maximising the intake of multiple nutrients,
individuals discriminate to optimise the ratio which best supports development
(Simpson and Raubenheimer 2012). The nutritional framework for an animal’s
optimal dietary intake therefore has to be multidimensional. Whilst complex, the
last 30 years have seen considerable gains in identifying the nature of these dimen-
sions (Harrison et al. 2014). The nutritional geometry framework has repeatedly
identified macronutrients such as proteins, lipids and carbohydrates as powerful
drivers controlling developmental processes (Raubenheimer 1993; Raubenheimer
and Simpson 1993). The field of nutritional geometry developed from a comple-
mentary conceptual framework of ecological stoichiometry (the study of energy
balances and multiple chemical elements in living systems (Elser 2006). This
approach generally models the stoichiometric flow of individual chemical elements
through biological systems and their reorganisation (Sterner and Elser 2002). The
importance of macronutrients in driving development is also supported by the
approach of ecological stoichiometry, which confirms that nitrogen, carbon and
phosphorus are pivotal for determining fundamental ecological processes (Anderson
and Pond 2000; Elser et al. 2000). These two approaches confirm the essential
importance of balanced nutritional intake for optimising development, longevity
and fitness.
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In insects, a raft of no choice experiments has demonstrated that diet composition
optimises the development of particular traits over others and which nutritional
components are important (e.g., Simpson et al. 2004; Lee et al. 2008; Fanson and
Taylor 2012; Lee et al. 2013; Sentinella et al. 2013). However, the rates of con-
sumption of the different nutritional components drive not only physiological
processes and development, but also future dietary choice (Lee et al. 2012).
Allowing animals to actively choose a particular diet has allowed for experimental
demonstration of diet optimisation over time in a context dependent manner (e.g.,
Lee et al. 2008; Fanson and Taylor 2012), as well as demonstration of selection on

Fig. 6.4 (a) The nutrient space of a hypothetical animal consuming nutritional components, here
protein and carbohydrate. In order to balance nutritional intake, animals regulate the relative intake
of key nutritional components, such as protein and carbohydrate. Here, the optimal intake rate for
this cricket is 1 unit of carbohydrate for each unit of protein. Whilst some foods may offer the
optimum composition for balanced intake, available food may not have a balanced composition and
have, for example, a higher ratio of carbohydrate: protein (Food A) or a higher ratio of protein:
carbohydrate (Food B) than is optimal. Animals optimise their intake by switching between the
available food options. When offered a choice of Food A and B, the animal will seek to balance
intake by switching (red line). But if the animal has only a choice of Food A or Food C, then the
animal cannot optimise intake and must utilise ‘rules of compromise’ to balance the over or under
consumption of key nutritional components. It is important to recognise that the nutritional
landscape is multidimensional and varies not only in protein:carbohydrate but also in many
nutritional components. (b) The rules of compromise used by animals can be deduced by keeping
discrete groups of animals on different food sources (dotted lines) of the different nutritional
compositions. The resulting intake rates show patterns such as the vertical line (open circles)—
maximise protein intake, or the horizontal line (filled circles)—maximise carbohydrate intake.
Alternatively, (shaded circles) show an asymmetrical response that differs according to the level
of surplus consumption. Such approaches are useful for understanding the nutritional drivers for
optimal development and, therefore, related nutritional costs of compromise. Adapted with permis-
sion from Simpson and Raubenheimer (2012)

176 K. L. Buchanan et al.



fitness parameters, such as lifetime egg production (Lee et al. 2008). Caterpillars are
vulnerable to poor body condition from either low-protein or carbohydrate intake,
before metamorphosis. Early instar caterpillars (Spodoptera litura) raised on
low-protein diets adaptively increase their protein intake when available, increasing
their chances of successful metamorphosis and survival (Lee et al. 2012). Such
adaptive changes in dietary intake may be sex specific. For example, in
D. melanogaster, longevity is reduced by increased protein intake, a relationship
repeatedly demonstrated across broad taxonomic groups (Simpson et al. 2017).
Indeed, bacterial infection causes a shift to a more carbohydrate diet in
D. melanogaster, an adaptive dietary shift which appears to increase immunity and
survival (Ponton et al. 2020). In choice experiments, adult male D. melanogaster opt
for the same protein to carbohydrate ratio as experienced in early development, but
no effect of early developmental diet is seen on female dietary choice (Davies et al.
2018). This sex-dependent programming of dietary intake may be due to differences
in the energy demands of the sexes and trade-offs with longevity (Davies et al.
2018).

In any discussion of the impact of early life diet on adult phenotype, it would be
remiss not to mention the importance of the microbiome for development and fitness
(Suzuki 2017). The bacterial community of the gut determines host metabolism,
digestion and nutrient uptake in interaction with the host immune system, but
equally is affected by the dietary choices made by organisms (Tremaroli and
Backhed 2012; Lindsay et al. 2019). Thus the relationship between host microbiota
and development is a labile relationship which may change to enable optimisation of
nutrient uptake or constrain developmental processes. The rapid development of
low-cost sequencing techniques has driven exciting new research in this field to
quantify these complex interactions, and this is a rapidly changing and exciting field
of research. For example, alterations in the mouse microbiome in infancy can
interact with early life nutrition to induce metabolic changes that promote long-
lasting obesity (Cox et al. 2014). Quantifying the interactions between diet, host
microbial community, metabolism and growth seems likely to reveal some funda-
mental insights into the factors determining plasticity in development (Lindsay et al.
2019).

6.2.4.1 Micronutrients as Limitations

Aside from optimising the broad-scale ratio of macronutritional components, the
availability of various essential micronutrients can have long-term effects on growth
and development, as well as long-term fitness (Harrison et al. 2011). But whilst
numerous micronutrients (e.g., magnesium, phosphorus, zinc) are essential for
growth, development and reproduction, whether these have any biological relevance
depends on the likelihood of dietary restriction. Iron is the most commonly restricted
micronutrient in human populations and essential for normal neural development
during early life, as deficiency can lead to compromised neural growth and cognitive
function. In human populations approximately 30-50% of pregnancies are thought to
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be affected (Rao and Georgieff 2007), resulting in routine dietary supplementation
during early pregnancy to protect foetal development. Identification of the sensitive
window for neural development from iron depletion is now being addressed in
mammals using knockout models, with reversible repletion of iron to identify the
period of vulnerability (Fretham et al. 2012). Such techniques will be invaluable for
addressing vulnerability in other taxonomic groups. Aside from purely addressing
limitations, micronutrient intake must be balanced, and an interesting example of the
effects of exceeding optimal intake levels is the impact of excess sodium intake due
to road run-offs on butterflies. Ecologically relevant increases in sodium levels in
milkweed plants affected the growth and development of both monarch (Danaus
plexippus) and cabbage white butterflies (Pieris rapae) (Snell-Rood et al. 2014).
Consistently, increased sodium intake led to increased muscle mass in males across
these two species and increased neural development in female butterflies (Snell-
Rood et al. 2014), suggesting that this may lead to differences in behaviour and
ecology.

Antioxidants have received substantial interest in recent years, in terms of their
potential to limit oxidative stress and mediate fundamental life-history trade-offs
(Catoni et al. 2008; Monaghan et al. 2009). Whilst carotenoids have attracted most
attention and been shown to affect adult sexual traits and immune function (Blount
et al. 2003a, b), a variety of other nutritionally limited antioxidants are potentially
important, including Vitamin C, Vitamin E, anthocyanins and polyphenolic antiox-
idants (Catoni et al. 2008). In terms of their relevance to development, their main
benefit may lie in offsetting any oxidative stress costs of rapid growth. Vitamins C
and E have been reported to improve growth rates in young mammals, fish and birds
(e.g., Cromwell et al. 1970; Sealey and Gatlin 2002; de Ayala et al. 2006; Catoni
et al. 2008), but whether the long-term effects of oxidative stress are mediated is
mostly unknown. In zebra finches, a short period of food restriction in early life
affects adult circulating levels of antioxidants, suggesting that the uptake or trans-
portability of dietary challenged birds is somehow compromised during develop-
ment (Blount et al. 2003a), but the mechanism for this effect is unclear. As
mentioned above, one possibility is that nutritional restriction in early life causes
long term changes to the gut microbiota, which alter digestive function and absorp-
tion of key nutrients. In humans, there are clear links between early life nutrition and
the establishment of the subsequent microbiota, with consequences for health in later
life (Forgie et al. 2020; Ratsika et al. 2021). The establishment of particular
microbial communities is dependent on diet, determines the capacity to metabolize
macronutrients and it seems likely that this plays an important long term role in
determining uptake of a range of nutrients, such as ellagitannins which are metab-
olized to urolithins, both of which have antioxidant potential (Hullar and Fu 2014).
Growth rates are implicated as mediators of oxidative stress, as faster growing zebra
finches have reduced antioxidant capacity after a period of compensatory growth
(Alonso-Alvarez et al. 2007). Consistent with the hypothesis that dietary antioxi-
dants play an important role in mediating the trade-offs during growth and devel-
opment, in both red winged blackbirds (Agelaius phoeniceus) (Hall et al. 2010) and
European seabass (Dicentrarchus labrax) (Costantini et al. 2018) increases in
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antioxidant availability allow compensatory growth. However, antioxidant supple-
mentation experiments often do not demonstrate any impact on longevity, in part
because dietary supplementation sometimes results in a shift in the production of
endogenous antioxidants in laboratory studies (Selman et al. 2006; Monaghan et al.
2009). The relevance of dietary antioxidants in mediating long-term changes to
phenotype and fitness trade-offs in wild animals therefore remains unclear and an
active area of research (Catoni et al. 2008).

6.3 Developmental Plasticity: Phenotypic Consequences
of Nutritional Vulnerability

Environmental factors strongly influence how animals procure, compose, and pro-
vide the nutrition needed for offspring development (Monaghan 2008; Boggs 2009;
Wilkin et al. 2009; Georgieff et al. 2015; Howells et al. 2017). In particular, climate
and habitat variation can produce extreme temporal (e.g., prey densities for preda-
tors) or spatial (e.g., forage supply and composition for herbivores) differences in the
food quality and quantity available to offspring (Madsen and Shine 2000; Coudrain
et al. 2016; Pollock et al. 2017). Additionally, offspring can also experience variable
early life nutrition due to parental food provisioning biases or kin competition—
common behaviours in nature (Drent and Daan 1980; Kacelnik et al. 1995; Lessells
2002). For example, adult male albatross (Diomedea exulans) provide more food to
male than female chicks, contributing to sex-specific life-history differences
(Weimerskirch et al. 2000). Similarly, first, born killifish (Nothobranchius rachovii)
can better monopolise parental food resources better than their subsequent siblings to
create considerable differences in early life nutritional experiences largely invariant
to the external environment (Schrader and Travis 2012).

Thus, the diet of the young, influenced by environmental or parental circum-
stances, can result in episodes of compromised nutrition, suboptimal for normal
development. Exposures to under- or overnutrition- (i.e., nutritional stressors) are
notable for their often extraordinary capacity to induce diverse, amplified and often
life-long phenotypic consequences (Langley-Evans 2009; Beldade et al. 2011;
Gluckman et al. 2011; Moczek et al. 2011; Nijhout 2015). The magnitude and
duration of ‘non-optimal’ nutrition in early development are both important for
determining the diverse phenotypic and fitness consequences across ontogeny
(Regan et al. 2020). However, the specific timing of nutritional stressors within
early development is also crucial for determining impact, which is especially
important for understanding variation in their mechanistic and evolutionary conse-
quences (Fawcett and Frankenhuis 2015; English and Barreaux 2020) As early life is
replete with molecular and cellular processes responsible for the unprecedented rate
of developmental growth and change, organisms are highly responsive and suscep-
tible to environmental stimuli (West-Eberhard 2003). Indeed, exposures to nutri-
tional variation can induce a multitude of departures from optimal developmental
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trajectories that mediate how individuals express life-history traits, succumb to
non-communicable diseases and ultimately explain prolific differences in their
fitness (Hu et al. 2008; Monaghan 2008; Faulk and Dolinoy 2011; Moczek et al.
2011; Lucassen et al. 2013; Langley-Evans 2015; English and Barreaux 2020). This
section describes how interactions between early life nutrition and developmental
timing can induce multiple modes of developmental plasticity, that range from
heightened irreversible and reversible phenotypic consequences to the expression
of more subtle forms of plasticity buffering normal phenotypic trajectories (Fig. 6.5).

6.3.1 The Basic Mechanics of Nutritional Influences
on Developmental Plasticity

Why does early diet profoundly influence the attributes of later life traits, whilst adult
diet does not? In part, this is because early life nutrition is considered one of the most
potent and complex environmental stimuli to induce developmental plasticity (Rice

Fig. 6.5 This schematic depicts how early life nutrition, one of the most potent and complex
environmental stimuli, can induce complex variation in developmental plasticity in animals. This is
because different regimes of early life macro and micronutrients can act on critical and sensitive
developmental windows (CSW) to induce complex phenotypic consequences (i.e., abnormal
phenotypic trajectories as represented by arrows) across ontogeny. Although nutritional stressors
can produce diverse developmental consequences, studies typically report several common pheno-
typic response outcomes across including (a) irreversible developmental plasticity that comprises
strong and long-lasting phenotypic consequences; (b) carry-over effects that see phenotypic
consequences of early life nutrition expressed at later periods within or between life stages; (c)
reversible developmental plasticity where the effects of nutrition act on developmental windows
that induce initially strong, but reversible phenotypic plasticity and (d) phenotypic buffering and
instability type responses which are when nutritional stressors are attenuated by developmental
systems that have some degree of buffering capacity (i.e., reduced sensitivity) or instead produce
developmental instability, observed as inflated phenotypic variance, consistent with fluctuating
asymmetry
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and Barone 2000; Georgieff et al. 2015; Mueller 2018). As such, nutritional expe-
riences in early life can produce particularly strong and potentially permanent
phenotypic consequences (Nowicki et al. 2002; Schulz 2010; Fawcett and
Frankenhuis 2015; Frankenhuis and Walasek 2020). In developmental biology,
critical and sensitive windows are terms used to describe transient periods in
which environmental factors induce stronger or long-lasting phenotypic responses
at key developmental stages (Rice and Barone 2000; Georgieff et al. 2015; Mueller
2018). Additionally, because of functional differences, critical and sensitive win-
dows can confer different modes of plasticity that see the induction of irreversible or
reversible phenotypic consequences expressed across one or more life stages (Rice
and Barone 2000; Piersma and Drent 2003). However, designating critical or
sensitive periods in early life ultimately hinges on the interplay between attributes
of the nutritional experience and how an individual’s cellular and molecular pro-
cesses regulate tissue and organ-specific developmental trajectories (Michel and
Tyler 2005; Thomas and Johnson 2008; Panchanathan and Frankenhuis 2016). For
example, moderate levels of caloric restriction versus reduced methyl donors or
micronutrients in early development are associated with major differences in how
molecular-based critical windows (i.e., epigenetic mechanisms) trigger developmen-
tal plasticity and later life consequences (Ramos-Lopez et al. 2019).

The nutritional environment, either by way of perturbations to nutrient signalling
or to the direct supply of energy and nutrients, provides cues that affect critical or
sensitive periods in cellular proliferation, migration and differentiation needed for
normal development (Rice and Barone 2000; Fretham et al. 2012). Furthermore,
critical and sensitive windows are often underpinned by nutritional modification of
epigenetic factors, either inherited or directly induced, which provides an important
molecular basis for phenotypic plasticity to arise in early development within and
across generations (Langley-Evans 2009; Faulk and Dolinoy 2011). Indeed the
perinatal epigenome, established during cellular differentiation, is extremely sus-
ceptible to variation in the nutritional environment (Morisson et al. 2017).

At least mechanistically, because critical or sensitive periods in cellular or
molecular processes often diminish after early development, so does the capacity
for the nutritional variation to induce heightened and potentially long-lasting plas-
ticity in later life (Clinchy et al. 2004; McGowan et al. 2008; Monaghan 2008; Faulk
and Dolinoy 2011; Georgieff et al. 2015). A simple demonstration of this principle is
that in D. melanogaster, the larval diet governs adult trait sizes that are otherwise
unresponsive to the adult diet (Poças et al. 2020). It is important to recognise that
within the literature, some observations of nutritionally evoked developmental
plasticity are commonly drawn from nutritional extremes and pathological settings
(e.g., famine), where the ecological or evolutionary relevance is less clear. Here, it is
logical to expect that the capacity to observe discreet phenotypic outcomes (e.g.,
reversible or permanent plasticity) is reinforced by a subset of more extreme under-
or over-nutrition scenarios (Lucas 1991; Langley-Evans 2009; Simpson and
Raubenheimer 2012). However, similar to all non-lethal environmental mediators,
the degree of induced developmental plasticity, even to the same stimuli, can result
in considerable heterogeneity in reaction norms of plasticity among and within
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individuals (Van Buskirk and Steiner 2009). Also unclear is the ecological relevance
of temporal aspects of onset. For example, do sudden changes in food availability
provide a greater challenge for developing organisms than a gradual decline?

Indeed, the ability of nutrition to affect sensitive or critical developmental
periods, or in the absence of such windows, to promote plasticity is highly variable
among species, individuals and even between similar traits within or among indi-
viduals during development (Panchanathan and Frankenhuis 2016). For example,
repeat exposures to nutritional stressors across zebra finches early life indicate how
trait-specific critical periods lead to different chronologies in developmental plastic-
ity responses for growth, body composition and immune function (Kriengwatana
et al. 2013). Ultimately, however, nutritional effects on developmental critical or
sensitive windows provide a major basis to the substantial phenotypic variation
observed among individuals or cohorts, all without any genetic underpinning.

6.3.2 Early Life Nutrition, Critical Windows, and Irreversible
Developmental Plasticity

For decades, it has been recognised that aberrant early life nutritional experiences
that coincided with specific tissue or organ development periods can produce strong
and long-lasting phenotypic consequences (Colombo 1982; Rice and Barone 2000;
Hensch 2004). These phenotypic outcomes are consistent with how environmental
processes affect critical developmental windows (Mueller 2018). In essence, a
critical window reflects time-sensitive interactions among genetic, environmental,
epigenetic and developmental processes that cause phenotypes to permanently
deviate from normal developmental trajectories (Burggren 2020). Importantly, the
onset, duration and endpoint of critical periods are regulated by developmental
molecular processes that constrain further plasticity to subsequent dietary variation
(Dehorter and Del Pino 2020). For example, it is understood that the onset and length
of critical windows that influence neural plasticity in response to nutritional stimuli
can be governed by the maturation of GABAergic interneurons (Neuringer et al.
1986; Marín 2016).

However, critical periods also possess many other attributes that ultimately affect
how environmental interactions invoke phenotypic consequences arising in devel-
opment (Burggren 2020). For instance, critical periods vary in timing of onset,
duration, number per trait, and sensitivity across organs and environmental stimuli
(Rice and Barone 2000; Mueller 2018; Burggren 2020). Nevertheless, critical
windows allow nutritional stimuli to elicit multiple modes of irreversible phenotypic
plasticity (Bornstein 1989; Lucas 1991; Gluckman and Hanson 2004; Langley-
Evans 2009).

Interactions between early life nutrition and critical windows can cause individ-
uals to express either ‘immediate’ (Fig. 6.5b) or ‘deferred’ (Fig. 6.5c) modes of
irreversible phenotypic plasticity (Lucas 1991; Rice and Barone 2000; Pechenik

182 K. L. Buchanan et al.



2006; McGowan et al. 2008; Li et al. 2010; Moore and Martin 2019). For example,
some nutritional programming consequences create interactions between early life
nutrition and tissue or organ-specific critical windows to result in immediate and
permanent phenotypic modification (Moczek et al. 2011; Lee et al. 2012; Nijhout
2015). Such consequences are especially common in species with direct develop-
ment (Allen and Marshall 2013; Burggren 2020). For instance, optimal neural
differentiation requires a disproportionate amount of energy delivered to the brain
and a tightly scheduled supply of essential nutrients (see Sect. 6.2.4) (Isler and Van
Schaik 2006; Georgieff et al. 2015). Hence, periods of whole organism undernutri-
tion that coincide with critical periods of neural differentiation can result in imme-
diate and irreversible life-long cognitive and behavioural consequences for many
species (Bateson and Horn 1994; Fisher et al. 2002).

Similarly, the broad-scale evidence across animals that overnutrition acting on
critical periods in early development accelerates early somatic growth and results in
larger body size at maturity is another good example of immediate onset and
irreversible developmental plasticity (Deeming 2004; Monaghan 2008; Ferreira
and Milán 2015; Koyama and Mirth 2018). Indeed, such developmental responses
can be pronounced in governing an individual’s growth rate. For instance, individual
growth trajectories in water pythons (Liasis fuscus) show more than tenfold variation
and are more determined by prey availability in early life than any corresponding
later life prey intake (Madsen and Shine 2000). Additionally, better early life
nutrition, via faster developmental growth rates, can substantially increase female
roe deer (Capreolus capreolus) body size and allow for greater fecundity (Douhard
et al. 2014). Such studies highlight both the permanency and magnitude of early life
nutritional effects on animal phenotypes.

Rather than obvious developmental effects occurring during the nutritional stress,
nutritional stressors can also produce deferred irreversible phenotypic consequences
when coinciding with critical developmental windows (Pechenik 2006; Moore and
Martin 2019). Deferred responses, often termed carry-over or latent effects are not
expressed until later periods within or between life stages (O’Connor et al. 2014).
Thus, carry-over effects are predicated on a clear transitional period that segregates
the environmental impact on development from the lagged effects on phenotypic or
fitness consequences (Ryo et al. 2019). Intuitively, latent effects resulting from
developmental nutrition are widely reported in species with complex life cycles
(e.g., taxa with indirect life cycles and demonstrate metamorphosis (Pechenik et al.
1998; Pechenik 2006). Nutritional carry-over effects have been reported to have later
life phenotypic consequences in insects (Fuentealba and Bauce 2012; Vantaux et al.
2016), fish (Smith and Shima 2011; Goldstein and Sponaugle 2020), frogs (Warne
and Crespi 2015) and marine invertebrates (Marshall and Morgan 2011; Marshall
et al. 2016). A specific example includes how early life nutrition in female honey
bees regulates a polyphenism that produces different female castes (Cridge et al.
2015). Larvae provisioned with a nutrient-rich diet (i.e., royal jelly) develop into
queens, whilst those fed a nutrient-poor diet (i.e., worker jelly) develop into workers.
Although larvae are fed, the subsequent pupal phase is not, and thus dietary-induced
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changes in phenotype are carried over to be expressed in the adult stage (Buttstedt
et al. 2016).

Species with direct development can also experience nutritionally induced carry-
over effects (Cooper and Kruuk 2018); studies of birds (Lindström 1999), reptiles
(Madsen and Shine 2000) and mammals (Lindström 1999; Gaillard et al. 2003;
Descamps et al. 2008) report this type of nutritionally mediated developmental
plasticity (Cooper and Kruuk 2018). Of course, in humans, foetal nutritional pro-
gramming produces very well-documented carry-over effects, exacerbated by life-
style risk, to see the emergence of later-life health and disease issues (Hanson and
Gluckman 2014). Most noticeably, poor foetal malnutrition is strongly associated
with higher risk of coronary artery disease, cancer, Type II diabetes and multiple
psychiatric issues in human adults (Calkins and Devaskar 2011).

6.3.3 Early Life Nutrition, Sensitive Windows, and Reversible
Phenotypic Plasticity

The observation that the nutritional environment affects critical developmental
periods to induce irreversible plasticity is common but not universal (Bornstein
1989; Fawcett and Frankenhuis 2015; Burggren 2020). As critical developmental
windows are brief episodes nested within relatively longer developmental durations,
brief exposure to aberrant environmental conditions may allow individuals to restore
normal developmental trajectories without lingering phenotypic consequences when
optimal conditions are restored (Burggren 2020). In the context of developmental
plasticity, such responses are consistent with the effects of nutrition acting on
sensitive windows that induce initially strong but reversible phenotypic plasticity
(Johnson 2005; Armstrong et al. 2006; Burggren 2020). Thus, sensitive windows are
expected to preside over longer developmental durations than critical periods and
may provide more frequent episodes of nutritionally induced developmental plas-
ticity (Fagiolini et al. 2009; Faulk and Dolinoy 2011; Georgieff et al. 2015).

A good general example of reversible developmental plasticity (Fig. 6.5c) is catch
up or compensatory growth, a response that allows for faster than optimal growth in
individuals subjected to early life nutritional restriction (Metcalfe and Monaghan
2001; Hector and Nakagawa 2012). Indeed, this response is widely observed in
animal taxa, including arthropods (De Block and Stoks 2008; Hoshizaki 2019), fish
(Auer et al. 2010; Al-Chokhachy et al. 2019), amphibians (Capellan and Nicieza
2007; Hector et al. 2012), reptiles (Bjorndal et al. 2003; Radder et al. 2007), birds
(Bize et al. 2006; Fisher et al. 2006) and mammals (Berghänel et al. 2017;
Heissenberger et al. 2020).

Similarly, transient macronutrient alteration in young altricial birds through
excluding starch can alter genetic programming to reduce the expression of intestinal
disaccharidases (Brzęk et al. 2009). However, this developmental impairment of
enzymatic function can be completely reversed in subsequent life stages to allow for
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normal digestion (Brzęk et al. 2011). Indeed, there are many notable examples of a
partial or full reversal of nutritionally modified phenotypes at the molecular and
cellular level in both invertebrates and vertebrates. Like all forms of plasticity, it is
expected that reversible plasticity is associated with costs imposed by the need to
transition the modified phenotype back within the normal range of phenotypes,
especially in stochastic environments capable of inducing on-going plasticity in
phenotypes (Burggren 2018, 2020). However, such costs may be trivial for species
where individuals are exposed to nutritional stressors that occur over brief periods
relative to their life span and thus avoid fitness costs due to phenotype-environment
mismatches (Ghalambor et al. 2007; Murren et al. 2015).

6.3.4 Evolution of Sensitive Windows of Developmental
Plasticity: A Nutritional Perspective

Both critical and sensitive windows are remarkable for allowing nutritional stressors
to induce the phenotypic consequences of large magnitude and possible permanency
at discreet periods during early life. These windows of hyper-plasticity likely arise as
by-products of mechanisms or constraints unique to developmental processes (Dufty
et al. 2002; Frankenhuis and Fraley 2017). However, critical windows can exhibit
differences in sensitivity across life and occur without developmental constraints,
implying an evolutionary basis (Panchanathan and Frankenhuis 2016; English and
Barreaux 2020; Frankenhuis and Walasek 2020). Two general adaptive reasons are
advocated for the evolution of critical windows. The first sits under the notion of
predictive adaptive responses that posits individuals significantly adjust their phe-
notype in response to early life external environmental experiences to promote
developmental trajectories that maybe strongly correlated to later life external
environments and thus favoured by natural selection (West-Eberhard 2003;
Gluckman et al. 2005; Ghalambor et al. 2007). Alternatively, because most envi-
ronmental stressors affect the physiological state directly, they effectively modify
the internal environment of developing animals. This allows the timing of critical
windows to such environmental exposures with periods of hyper-plasticity allowing
developmental trajectories in life-history traits to maximise fitness across future
physiologically correlated life stages (Dufty et al. 2002; English et al. 2016).

Beyond these general adaptive reasons, other theories and predictive models have
been recently developed to explicitly explain why natural selection would favour
critical windows to be far more prevalent in early, rather than later, life
(Panchanathan and Frankenhuis 2016; English and Barreaux 2020; Frankenhuis
and Walasek 2020). In particular, Frankenhuis and Fraley advocate several adaptive
reasons that favour the evolution of critical periods in early development
(Frankenhuis and Fraley 2017). First, through increased frequency or changes in
their relative strength, environmental cues are more likely to be present at some life
stages than others. Consequently, if some environmental cues are more important in
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early life, they could select for enhanced developmental plasticity (Frankenhuis and
Walasek 2020). Second, because the information value of environmental cues
changes across the lifespan, natural selection should favour critical windows of
plasticity to coincide with environmental cues that provide the most reliable infor-
mation concerning conditions (Stamps and Krishnan 2017). Exposure to, and hence
the experience of, environmental cues in early life is unprecedented. Thus aligning
the onset of critical windows in early life could maximise the information value of
many types of environmental cues for informing periods of increased plasticity
(Frankenhuis and Walasek 2020). Third, even if environmental cues provide similar
information across ontogeny, they do not elicit similar fitness consequences, with
early life stages often most vulnerable (Fawcett and Frankenhuis 2015). Thus,
critical windows of phenotypic plasticity in early life stages that most benefit fitness
may provide targets for selection. Fourth, across ontogeny, the costs of plasticity
(e.g., trade-offs between reproduction and survival) are variable. Selection could
again favour enhanced early development plasticity periods to minimise these costs
(Fawcett and Frankenhuis 2015; Frankenhuis and Walasek 2020).

6.3.5 Other Modes of Developmental Plasticity Under
Nutritional Stress

Although often a potent mediator of developmental plasticity, nutritional stress also
prompts animals to use an extraordinary array of mechanisms to ameliorate their life-
long phenotypic consequences (Rion and Kawecki 2007). This is because develop-
mental systems retain some buffering capacity (e.g., canalisation) and hence robust-
ness to limit the effects of environmentally induced plasticity, causing substantial
departures from normal phenotypic trajectories (Fig. 6.5e) (Waddington 1942;
Nijhout and Davidowitz 2003; Klingenberg 2019). Indeed, most organisms utilise
a combination of plasticity (i.e., a steep reaction norm) and canalisation in their
phenotypic responses (i.e., flat reaction norm) to environmental variation during
development (Flatt 2005; Van Buskirk and Steiner 2009). The attenuation or absence
of strong plasticity to environmental variation entails functional changes to the
emergence, duration and sensitivity of critical or sensitive windows in early devel-
opment. Additionally, the evolutionary loss of plasticity (i.e., genetic canalisation)
may result in some species simply lacking the adaptive capacity to mount phenotypic
responses to environmental variation (Flatt 2005). Developmental canalisation limits
the phenotype’s sensitivity to environmental and genetic perturbations (Stearns and
Kawecki 1994; Nijhout and Davidowitz 2003; Boonekamp et al. 2018). However,
there is clear evidence that stressors still mediate some degree of developmental
instability, observed as inflated phenotypic variance, consistent with fluctuating
asymmetry (Hoffmann and Woods 2001).

Nutritional stressors commonly can induce these alternative forms of develop-
mental phenotypic responses in nature. For example, starvation resistance is
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common in species that exist in environments where food availability tends to
unpredictably fluctuate (McCue 2010; Lee and Jang 2014). Starvation resistance is
effectively a suite of selected and induced mechanisms that focus on molecular,
physiological and behavioural processes that serve to buffer the consequences of
nutrient and energy deprivation on survival, and if experienced in early life, also
minimise disruption to normal developmental trajectories (Rion and Kawecki 2007).
Metabolic flexibility, specifically the ability of individuals to reduce their basal
metabolic rate, is a key starvation resistance mechanism by which species can
slow their pace of life to match their energy or nutrient intake during periods of
undernutrition and conserve target developmental trajectories (Auer et al. 2015).
Similarly, whilst reduced body size is a common outcome of early life nutrient
limitation, it is evident that many species do not reduce their brains isometrically
with the rest of their body (Maurange and Lanet 2014). This neural buffering
phenomenon suggests an adaptive strategy to prevent nutritionally imposed pheno-
typic plasticity from affecting normal CNS development (e.g., cell size and compo-
sition) essential to brain function (Maurange and Lanet 2014).

Additionally, some species are evolutionarily constrained (i.e., lack genetic
variation) in their capacity to mount developmental plasticity. For instance, dietary
specialists (i.e., an absence of dietary switching across ontogeny) can show remark-
ably limited plasticity in their digestive physiology responses to early life episodes of
dietary variation. For example, nestling zebra finches, dietary seed specialists,
cannot increase activity of intestinal carbohydrases (sucrase and maltase) to enhance
digestion of higher carbohydrate diets (Brzęk et al. 2010). Humans unlike other
mammals cannot synthesise ascorbic acid, due to a mutation causing gulonolactone
oxidase deficiency, the final enzyme in the pathway leading to the production of
Vitamin C, essential for building collagen and without Vitamin C supplementation
in the diet humans develop disorders such as scurvy (Gilbert 2001).

Nutritionally-induced developmental instability has been inferred by measuring
either fluctuating asymmetry or coefficients of phenotypic variability of one or more
traits, but the evidence is inconsistent within the literature (Fig. 6.5d) (Bubliy et al.
2001; Hoffmann 2003). For example, nutritional restriction in early development has
been associated or directly related with increased fluctuating asymmetry in one or
more traits of birds, mammals and arthropods (Swaddle and Witter 1994; Badyaev
et al. 2000; Sillanpää et al. 2010). But many studies do not report an effect of
nutritional restriction on developmental instability, even though they may report a
strong overall effect on developmental growth, trait size or shape (Stige et al. 2004;
Hoffmann et al. 2005; Gonzalez et al. 2014). This absence of developmental
instability due to nutritional stressors could arise for multiple reasons, including
that such errors in development may accumulate in late ontogeny; or that mecha-
nisms responsible for developmental buffering are sufficiently robust or non-costly
to limit phenotypic noise under these stressful conditions (Milton et al. 2003;
Gonzalez et al. 2014).
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6.4 Ultimate Impact: Effects on Fitness and Targets
for Selection

Knowledge of how variation in early life environmental conditions impact the fitness
of wild animals is important for predicting the demographic consequences of
environmental variation. As detailed throughout this chapter, the early life nutri-
tional environment is known to shape an individual’s phenotype profoundly. How-
ever, from an evolutionary perspective, our understanding of the ultimate causes of
such phenotypic changes and associated fitness effects remains limited. This final
section summarises theoretical and empirical knowledge of how variation in early
life nutritional conditions impacts fitness. Advances in understanding these ultimate
effects of early life nutrition are increasingly recognised for their importance to
public health management of human populations and predicting how wild animals,
via cohort induced demographic or evolutionary consequences, respond to later life
environments (Descamps et al. 2008; Langley-Evans 2015). This section addresses
the relationships between early life nutrition and longevity, fitness trade-offs, adap-
tive responses, and transgenerational impacts.

6.4.1 Nutritional Intake and Longevity

The impact of nutrition on longevity has been a major area of research for nearly a
century, because of the discovery in the 1930s that nutritional restriction after
weaning prolongs lifespan in laboratory rats (McCay et al. 1935). Since this first
report, dietary restriction (i.e., a reduction of food intake without malnutrition) at
adulthood has been linked to increased lifespan across a wide range of distantly
related organisms, ranging from yeast to mammals (Masoro 2005; Fontana et al.
2010; Nakagawa et al. 2012). Since this life-extension effect is consistent across
taxonomic groups, it is often assumed that the response to dietary restriction and its
underlying mechanisms are evolutionary conserved (Templeman and Murphy 2018;
Moatt et al. 2020). The mechanisms underpinning this effect are still poorly under-
stood. However, they may involve changes to nutrient sensing, insulin regulating
pathways to regulate repair, as well as oxidative damage by free radicals generated
through the digestion and uptake of nutrients, impacting on cellular and organismal
ageing (Sohal and Weindruch 1996). It is also worth noting that dietary manipula-
tions which alter intake rates through temporal availability, but not absolute caloric
intake can also have have positive organismal effects, improving longevity, poten-
tially through impacts on nutrient sensing pathways (Marasco et al. 2018; Longo
et al. 2021).

Although the effects of adult dietary restriction on ageing are now well
recognised, our understanding of how early life nutrition influences longevity is
much more limited. Arthropods have been widely used model systems for ageing
research, but the relationship between developmental diet and lifespan appears
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complex, with inconsistent results reported across studies. Studies investigating how
dietary restriction during development influences adult lifespan indeed found both
positive (e.g., Joy et al. 2010; May et al. 2015; Hooper et al. 2017; Stefana et al.
2017; Krittika et al. 2019) and negative (e.g., Boggs and Freeman 2005; Runagall-
McNaull et al. 2015) effects, as well as no effect (e.g., Tu and Tatar 2003; Zajitschek
et al. 2009; Davies et al. 2018) or sex-specific effects (e.g., Hunt et al. 2004; Adler
et al. 2013; Kelly et al. 2014; Houslay et al. 2015; Duxbury and Chapman 2020).
These inconsistent results may in part be due to the use of different type of nutritional
manipulations (e.g., calories restriction or change in macronutrient balance, such as
change in the protein to carbohydrate ratio) across studies. For instance, restriction of
both yeast and sugar at the larval stage increases adult lifespan in D. melanogaster
(May et al. 2015), whereas restriction of yeast only has no effect on adult longevity
in the same species (Tu and Tatar 2003). The ratio of protein to carbohydrate (i.e.,
yeast to sugar), not calories per se, in the adult diet is particularly important in
determining adult longevity in Drosophila (Lee et al. 2008). It is thus likely also to
influence the effects of developmental diet on longevity. For that matter, there is now
growing recognition that increased longevity resulting from dietary restriction is
more likely driven by variation in macronutrient content rather than calories in
insects and other taxa (Nakagawa et al. 2012; Moatt et al. 2020).

A meta-analysis of experimental studies manipulating early developmental diet
(either prenatally or early during postnatal development) only found weak evidence
that early life nutrition affects longevity across taxa (English and Uller 2016), with
inconsistent patterns reported across studies depending on taxonomic group and
timing of nutritional manipulation. Although the authors did not detect any overall
impact, the effects of early diet restriction appear more pronounced in vertebrates
than in invertebrates and prenatal dietary restriction usually has an opposite effect to
early postnatal manipulation, shortening lifespan (English and Uller 2016).

In mammals, laboratory experiments on model species have shown that protein
restriction during gestation, through manipulation of the diet of pregnant mothers, is
associated with shortened lifespan (Jennings et al. 1999; Sayer et al. 2001; Ozanne
and Hales 2004; Langley-Evans and Sculley 2006), while the opposite is observed
when restriction happens shortly after birth, during lactation (Jennings et al. 1999;
Ozanne and Hales 2004). For example, in both laboratory rats and mice, exposure to
a maternal low-protein diet in utero, but to a control diet during suckling induces
rapid postnatal growth and reduced longevity in male offspring. Conversely, males
that are only protein-restricted during the lactation period exhibit slowed neonatal
growth and increased lifespan (Jennings et al. 1999; Ozanne and Hales 2004).
Interestingly, these males not only live longer than controls and prenatal-restricted
males, but are also protected from the life-shortening effects of a fattening diet after
weaning (Ozanne and Hales 2004). Further investigations suggest that the mecha-
nisms that could underlie the effects of protein restriction during development on
longevity include the alteration of major metabolic pathways such as insulin resis-
tance and antioxidant capacity (Martin-Gronert et al. 2008), changes in the level of
oxidative damage, including telomere shortening (Jennings et al. 1999; Tarry-
Adkins et al. 2007), and epigenetic modifications (Chen et al. 2010). Overall, rodent
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models have highlighted that nutritional restriction might have quite divergent
effects depending on when malnutrition is experienced. Protein restriction during
early postnatal development might act in a similar manner as dietary restriction in
adulthood (i.e., hormetic response, Tarry-Adkins et al. 2007), leading to beneficial
effects on longevity, while protein restriction during gestation may permanently
program the structure and function of the organism, which may have maladaptive
consequences leading to increased susceptibility to metabolic disease and decreased
longevity (see Sect. 6.4.3).

Unfortunately, given the practical difficulties in measuring long-term fitness
effects of developmental conditions in the wild, studies testing for the association
between early nutrition and senescence have almost exclusively been conducted
under controlled laboratory conditions and in few short-lived animal models. As
such, the impact of developmental nutrition on longevity remains virtually unknown
in wild vertebrates. Relevant to this, two recent meta-analyses of published studies
looking across species challenged the widely accepted causal relationship between
dietary restriction and longevity (Nakagawa et al. 2012; English and Uller 2016).
Together, these studies suggest that the accepted paradigm of dietary restriction
prolonging lifespan may have little ecological relevance when animals are subject to
the pressures of finding food, optimising dietary intake and avoiding predators, and
consequently may be an artefact of benign laboratory conditions (Nakagawa et al.
2012; English and Uller 2016) (but see Mautz et al. 2019; Moatt et al. 2020). Wild
organisms are selected to maximise reproductive success, not longevity, and thus the
ultimate impact of early nutrition on longevity is likely due to trade-offs between
fertility and mortality.

6.4.2 Nutrition-Mediated Trade-Offs Between Longevity
and Reproduction

The impact of early life nutrition on long-term fitness appears complex, because it
affects the resources available for growth, reproduction and somatic maintenance
(Van Noordwijk and de Jong 1986). As such, nutritional restriction during develop-
ment is expected to influence life-history strategies and long-term fitness owing to
trade-offs in resource allocation (Clark et al. 2015). When food resources are
abundant, developing individuals are expected to increase investment across several
traits and thus afford to allocate resources to both reproduction and somatic main-
tenance simultaneously. Many empirical studies have reported a positive relation-
ship between condition-dependent investment in sexually selected traits and
longevity across taxa (see meta-analysis by Jennions et al. 2001), suggesting that
individuals in good condition can maintain high reproductive performances, whilst
avoiding accelerated ageing. Although studies investigating how early life nutrition
per se might influence this relationship are scarce, a study in the fall field cricket
(Gryllus pennsylvanicus) showed that males reared on a high-quality diet both invest
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more in sexual signalling and have a longer lifespan than males reared on a
low-quality diet (Judge et al. 2008). However, this pattern is not observed in another
closely related species, the black field cricket (Teleogryllus commodus) (Hunt et al.
2004). While female black field crickets reared on a high-protein diet also exhibit a
longer lifespan than those reared on a low-protein diet, higher dietary protein levels
lead to trade-offs between reproduction and survival in males, which exhibit reduced
lifespan due to the costly investment they make in sexual display during early
adulthood (Hunt et al. 2004). These cricket species show life-history differences
that may explain adaptive investment in signalling (Judge et al. 2008). Regardless,
the theory under which high-condition individuals are better able to tolerate sexual
signalling costs than low-condition individuals (presumption of the handicap-
signalling hypothesis; Zahavi 1975) is not always upheld, and trade-offs between
reproduction and somatic maintenance may lead to accelerated ageing under high
food availability (Hunt et al. 2004). Aside from the effects of early nutrition on
sexual signaling, it is possible that early nutrition affects the strength of sexual
selection by affecting mate choice, however evidence for direct effects of early life
diet on adult mate preferences is limited. Whilst female black field crickets raised on
high protein diets are more sexually responsive than those on low protein diets (Hunt
et al. 2005), such effects were not mirrored in similar dietary experiments with fall
field crickets (Judge et al. 2014). Furthermore, female zebra finches raised under
nutritional restriction do not differ in their song preferences from females raised on
an ad lib food supply (Woodgate et al. 2011). Therefore, whether early life diet has
long term, consistent effects on adult mate choice preferences, remains largely
unclear.

Individuals with access to abundant resources during development may indeed
adopt a life-history strategy that maximises early life performances at the expense of
late life performances (‘live fast, die young’ strategy) (Metcalfe and Monaghan
2003). By investing heavily in rapid growth and costly reproductive traits, such
individuals may achieve higher reproductive performances in early adulthood, but
suffer higher rates of somatic damage and reduced longevity. On the other hand,
individuals with access to limited resources during development may experience
slower growth, delayed reproduction and increased lifespan. For instance, studies
using rodent models have shown that protein restriction during early postnatal life
(lactation) leads to delayed sexual maturation (Leonhardt et al. 2003; Zambrano et al.
2005; Guzman et al. 2006) and increased longevity (Jennings et al. 1999; Ozanne
and Hales 2004). In arthropods, a valuable demonstration of how early life nutrition
may shape life-history strategies comes from an experimental study in the neriid fly
(Telostylinus angusticollis) where males reared on a nutrient-poor larval diet expe-
rience slower development, reach their reproductive peak later in life and live longer
than males reared on a nutrient-rich larval diet (Hooper et al. 2017). Although these
individuals do not achieve an overall higher mating success than males reared on a
poor larval diet, accelerated development and earlier reproduction may provide a
substantial fitness advantage in natural populations given the high larval and adult
extrinsic mortality risk (Hooper et al. 2017). Although these individuals do not
achieve an overall higher mating success compared to males reared on a poor larval
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diet, accelerated development and earlier reproduction may provide a substantial
fitness advantage in natural populations given the high larval and adult extrinsic
mortality risk in the wild (Hooper et al. 2017). Interestingly, these effects of
developmental nutrition on life-history strategies have also been shown to occur in
females, with similar findings reported in female collared flycatchers (Ficedula
albicollis) in the wild (Spagopoulou et al. 2020). Although the authors did not
manipulate early nutrition per se, using brood size manipulations they showed that
females raised under good natal conditions exhibit increased early life reproduction
at the expense of accelerated ageing (Spagopoulou et al. 2020). In support of such
trade-offs, there is robust evidence that compensatory growth in early life is associ-
ated with reduced long-term fitness (Metcalfe and Monaghan 2001; Hector and
Nakagawa 2012).

Individuals that develop in poor nutritional conditions may not be able to bear the
costs associated with accelerated growth and developmental rate or reproduction
(Metcalfe and Monaghan 2003). In this case, deferring reproduction and allocating
available nutrients to somatic maintenance is often considered to reflect an adaptive
resource allocation strategy to increase the chance of surviving challenging period of
nutritional deficit (where chances of successful reproduction are low) and reproduce
when conditions improve (Shanley and Kirkwood 2000; Partridge et al. 2005).
However, poor nutrition during development is not always associated with increased
lifespan (Boggs and Freeman 2005; Kasumovic et al. 2009; Runagall-McNaull et al.
2015). For instance, this pattern is not observed in semelparous males of the redback
spider (Latrodectus hasselti), which only have a single opportunity to mate
(Kasumovic et al. 2009): although dietary restriction also leads to increased devel-
opment time, slower growth and reduced body size (Kasumovic and Andrade 2006),
it does not result in increased longevity in this species (Kasumovic et al. 2009). Male
redbacks do not feed after maturity and thus only depend on resources acquired and
stored as juveniles (Kasumovic et al. 2009). Because they only reproduce once
before death, investment of the limited developmental resources into
reproduction-related traits should be favoured by selection over investment towards
an unnecessary organismal maintenance (Kasumovic 2013). This highlights that
species-specific life history and reproductive biology are determinants governing
early life nutrition-mediated trade-offs between survival and reproduction. Preser-
vation of reproductive potential over somatic maintenance when developmental
resources are limited has also been shown in a butterfly species, the mormon fritillary
(Speyeria mormonia) (Boggs and Freeman 2005), and in a bird species, the zebra
finch (Birkhead et al. 1999).

Similarly, the ultimate impact of early life nutrition may depend on several other
factors. First, the conditions experienced beyond development, both in terms of
nutritional environment and social context, are likely critical in governing the long-
term fitness effects of early life nutrition. Although scarce, some studies have
addressed this question by manipulating developmental diets as well as adult food
resources and/or adult reproductive opportunities or competitive context. For
instance, May et al. (2015) showed that poor larval diet is associated with extended
longevity in virgin fruit flies, but the lifespan of mated flies, regardless of their
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mating frequencies, is not affected by early life diet (May et al. 2015), indicating that
adult reproductive opportunities may mediate the effect of developmental diet on
lifespan. Developmental diet also affects patterns of reproduction depending on the
adult reproductive environment, with females raised on a poor larval diet having
higher reproduction than those raised on a rich diet, either early in life when singly
mated or during mid-life when continuously mated (May et al. 2015). More recently,
Aw et al. (2018) demonstrated that early life diet of Drosophilia alters the fitness
landscape for different mitochondrial haplotypes, driven by changes in larval devel-
opment, probably due to changes in microbiome. These fascinating results suggest
that the mitochondrial haplotype can be under selection and that early diet plays an
important role in mediating this.

6.4.3 Early Life Nutrition: Adaptive Response
or Developmental Constraints?

Are phenotypic changes induced by early life nutritional conditions adaptive or a
consequence of developmental constraints imposed by resource availability? Several
hypotheses linking early life environmental conditions and fitness outcomes have
been proposed (Monaghan 2008). The first ‘adaptive’ explanation is that develop-
mental plasticity induced by early life conditions has immediate (‘thrifty phenotype
hypothesis’; Hales and Barker 1992, 2001) or long-term (‘predictive adaptive
response (PAR) hypothesis’; (Gluckman et al. 2005) adaptive advantages. The
‘thrifty phenotype hypothesis’ proposes that restricted nutritional availability during
development causes permanent metabolic changes that enhance early survival in
poor nutritional environments (Hales and Barker 1992, 2001). This phenotype has
low fat stores and thrives on reduced food availability and has an immediate adaptive
advantage (maximising chance of survival during early life nutritional deficit), with
possible maladaptive consequences for health later in life if nutritional conditions
improve. It has later been suggested, with the ‘predictive adaptive response hypoth-
esis’, that rather than providing a necessarily immediate advantage, phenotypic
changes induced by early life nutritional information are thought to confer a long-
term fitness advantage in an anticipated adult environment (Bateson et al. 2004;
Gluckman et al. 2005). Under these two environmental matching hypotheses (Mon-
aghan 2008), reproductive performance and survival are expected to be maximised
when later-life nutritional conditions match those encountered during development.

Not discounting some notable examples (e.g., Haywood and Perrins 1992;
Saastamoinen et al. 2010), general support for the idea that early life nutritional
environments indeed match those in later life to increase fitness remains limited
(Wells 2007; Uller et al. 2013; Hopwood et al. 2014; Pigeon et al. 2017). Indeed,
phenotypic changes can often become maladaptive and lead to fitness costs when
developmental and later life nutritional environments are mismatched (Hales and
Barker 1992; Gluckman et al. 2005). Thus an offspring’s phenotypic response to
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early life nutrition may often instead represent an adaptive basis to developmental
resource allocation (i.e., constraints) more so than any predictive basis for future
environmental selection (Uller et al. 2013). Furthermore, it seems intuitive to suggest
that in long-lived animals and humans, early life environmental conditions may not
reliably predict future environments sufficiently well to justify an adaptive advan-
tage (Wells 2007). However, it is important to acknowledge that broader support for
these predictive matching hypotheses remain constrained by a limited number of
studies that have directly manipulated developmental and adult diets simultaneously
and measured the fitness consequences of dietary matching or mismatching.

An alternative to these environmental matching adaptive explanations is the
‘silver spoon effect’ hypothesis (Grafen 1988). This theory predicts that good
early nutritional conditions confer a lasting fitness advantage over individuals
exposed to poor early conditions (a ‘silver spoon’ effect; Monaghan 2008). Impor-
tantly, fitness advantages arising from silver spoon effects are predicted to persist in
individuals regardless of subsequent adult nutritional conditions (Monaghan 2008).
There is abundant empirical support for silver spoon effects induced by early life
nutrition across a broad range of taxa (Madsen and Shine 2000; Van De Pol et al.
2006; Hopwood et al. 2014; Roberts et al. 2014; Cooper and Kruuk 2018;
Spagopoulou et al. 2020). For example, in the zebra finch (Briga et al. 2017),
humans (Hayward et al. 2013) and ungulates (Pigeon et al. 2017), good early life
nutrition benefits later life fitness components, such as longevity or lifetime repro-
ductive success.

There is also evidence that the silver spoon effect may favour different compo-
nents of adult fitness. For example, in a recent meta-analysis high-quality early life
nutrition produced an overall positive effect for reproductive-related fitness, but not
for survival across 14 vertebrate species (Cooper and Kruuk 2018). To some extent,
general support for the fitness benefits of the silver spoon effect is constrained by an
absence of a large number of studies or that many studies only report the conse-
quence of early life nutritional effects on early- or mid-life performance attributes.
Furthermore, recent studies also suggest that a central tenet of silver spoon effects in
which benefits to adult fitness are invariant to later life environmental variation is
possibly an oversimplification (Pigeon et al. 2019). As extreme environmental
variation encountered in later life can better influence, or at least attenuate the effects
of early life nutrition on, adult fitness (Pigeon et al. 2019).

6.4.4 Transgenerational Impacts of Diet

Throughout this chapter, we have summarised the multi-facetted ways in which
early life nutrition impacts development from the perspective of evolutionary ecol-
ogy, whilst studiously neglecting much of the biomedical literature which has driven
much of this research (e.g., Gluckman and Hanson 2006; Dietrich and Horvath
2013). Evidence, from both experimental studies in animal models and epidemio-
logical studies in humans, indicates that nutrition experienced during early
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development, and in particular during embryonic life, can have profound and lasting
effects on the structures and functions of an organism, thereby ‘programming’ the
adult phenotype and health status (Langley-Evans 2015). In both human populations
and animal models, developmental programming effects of parental nutrition have
been primarily investigated in relation to metabolic disturbance, showing that poor
parental diet leads to obesity and insulin sensitivity both in the offspring and across
generations (Li et al. 2011; Lumey et al. 2015; Masuyama et al. 2015; Jimenez-
Chillaron et al. 2016; Zambrano et al. 2016). Under nutrition during foetal devel-
opment has been associated with heightened risk of a range of conditions, including
elevated blood glucose levels, blood pressure, visceral fat deposition and cholesterol
levels, together referred to as the ‘metabolic syndrome’ (McMillen and Robinson
2005) (Fig. 6.3). These conditions are associated with increased adult risk of
impaired glucose tolerance (Hales et al. 1991), type-2 diabetes (Hales and Barker
1992) and cardiovascular disease (Barker et al. 1993). Indeed, prenatal maternal
stress, undernutrition and maternal diets high in fat, all lead to increased risk of
offspring obesity in later life (Levin 2006). But aside from within generation effects,
over the last 20 years, mounting evidence indicates that parental diet not only
influences offspring development and life-long susceptibility to later-life disease,
but that these effects can persist across generations in both humans and animal
models (Aiken and Ozanne 2014; Vickers 2014).

In humans, evidence for foetal programming and intergenerational effects of diet
mostly comes from studies investigating exposure to severe famines (Painter et al.
2008; Schulz 2010; Li et al. 2011). The classic example of the Dutch famine
(1944–1945) has demonstrated association of prenatal nutritional restriction with
various adult metabolic dysfunction and cognitive disorders, depending on the
timing of exposure to undernutrition during gestation (Roseboom et al. 2011).
Furthermore, poor health in later life resulting from prenatal exposure to this famine
was found to persist in the next generation (Painter et al. 2008), suggesting epige-
netic mechanisms may be involved. Compared with their unexposed same sex
siblings, individuals exposed prenatally to the Dutch famine conditions showed
reduced DNA methylation of the imprinted insulin-like growth factor 2 gene,
60 years later (Heijmans et al. 2008). This effect was only seen around conception
and suggests that very early embryonic development is maximally sensitive to
programming effects (Heijmans et al. 2008). Similar impacts of foetal exposure to
famine on the adult risk of developing characteristics of the metabolic syndrome
have been reported in association with foetal exposure to famine in China (Li et al.
2011) and the Ukraine (Lumey et al. 2015), suggesting the diet-mediated
compromised prenatal development effects on adult health is a robust phenomenon.
However, the adaptive significance and the relevance of timing still remain subjects
of intense debate (Boyce et al. 2020).

A limitation of epidemiological studies is that they only indicate correlational
inference and are fraught with cultural confounds. Experimental studies addressing
the transgenerational effects of early life diet have used animal models (particularly
Drosophila, nematodes and rodents) to address how and when parental diet might
induce developmental programming in their offspring. In Drosophila, parental diet
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quality affects offspring development rate (Valtonen et al. 2012), whilst parent
dietary sugar content affects body sugar content of F2 offspring (Buescher et al.
2013). Nematodes have proven an efficient model system, with their rapid genera-
tion times and simple but plastic dietary requirements, cultured in isogenic lines
allowing separation of genetic and environmental influences (Serobyan and Sommer
2017). A network of insulin-like genes has been demonstrated to signal maternal diet
to C. elegans offspring, whilst broad conservation of these genes suggests the same
functional network may operate in vertebrates (Hibshman et al. 2016). These
proximate mechanisms may underlie the adverse impact on health, fitness and
longevity effects seen when developmental and adult environments are mismatched
(Bateson et al. 2004). Meanwhile, rodent models have used different types of
maternal dietary manipulations to assess transgenerational impacts of diet (Vickers
2014), including low-protein or low-calorie diets (e.g., see Martínez et al. 2014;
Radford et al. 2014; Aiken et al. 2015; Zambrano et al. 2005) and high-fat or
obesogenic diets (Gniuli et al. 2008; Pentinat et al. 2010). The responses to maternal
overnutrition in sheep (Shasa et al. 2015) and maternal dietary restriction in guinea
pigs (Bertram et al. 2008) during the prenatal period both demonstrate the potential
transgenerational impact of diet on metabolic syndromes, characterised by elevated
glucose levels, basal cortisol levels, altered HPA axis function over F1 and F2
generations. F2 (but not F1) guinea pigs also showed reduced hippocampal volume,
suggesting the potential for transgenerational impacts on behaviour (Bertram et al.
2008). However, true transgenerational transmission of phenotype involves demon-
strating an impact of maternal diet across more than two generations to control for
maternal effects, and convincing experimental vertebrate examples are currently rare
(Aiken and Ozanne 2014; Vickers 2014).

Suggested mechanisms for the transgenerational effects of diet include structural
effects on tissues and organs, epigenetic programming of gene expression, which
mediate neuroendocrine effects or accelerated cellular ageing (Vickers 2014; Aiken
et al. 2015). Certainly, there is ample evidence of the impact of maternal nutrition in
mammals on HPA function in their offspring (Meaney et al. 2007). In mammals,
neuroendocrine mechanisms serve not only to influence metabolism within a gen-
eration (Grove et al. 2005), but also mediate metabolic programming across gener-
ations through influencing hypothalamic development (Levin 2006; Meaney et al.
2007), possibly through the action of leptin (Simerly 2008). Interestingly for mice,
nutritional cues around birth influence insulin resistance and adult body length
independent of fat deposition, suggesting that somatic growth is determined by
heritable epigenetic factors, rather than absolute resource levels (Dunn and Bale
2009). Finally, maternal choline deficiency has been associated with changes to
offspring DNA methylation and is suggested as a dietary micronutrient which may
mediate epigenetic effects, although the biological relevance of such effects is
unclear (Anderson et al. 2012).
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6.5 Conclusions

Throughout this chapter, we have highlighted the multitude of ways in which early
life diet can impact on development, with consequences for adult phenotype and
ultimately fitness. However, the devil is in the detail, because the effects of any
dietary change on development depend on the timing, severity, duration, predict-
ability, caloric and nutrient content, as well as the taxon-specific capacity to com-
pensate. Carefully designed experimental studies of model organisms using
controlled dietary manipulations have allowed for teasing apart the physiological
pathways underlying the effects of diet on development. We now know a vast
amount about how diet impacts development in a few study organisms. However,
such inferences rarely allow for interpretation of the adaptive significance of such
effects in mediating developmental trade-offs or the impacts on fitness in wild
animals (Simpson et al. 2015). Amid such complexity, conceptual frameworks
such as nutritional geometry provide a basis for examining the commonalities.
Identifying critical or sensitive windows of developmental susceptibility to dietary
change seem likely to rely on a sound understanding of the ontogeny of the
mechanisms controlling food intake, metabolism and the responses to non-optimal
nutritional supplies (Frankenhuis and Walasek 2020). Whilst general patterns of
development are understood, for non-model organisms, there are important gaps in
our understanding. Mechanistically, the growth in ‘omics’ approaches for identify-
ing common gene pathways may form the basis for understanding commonalities in
physiological drivers or constraints. Integrating transcriptomics with metabolomic
approaches may provide important insights into the relevant metabolic pathways.
Most promisingly, on-going advances in these areas are likely to be key in helping
ameliorate the ultimate consequences of nutritional impacts on animal fitness that
can translate into immense and costly public human health (Tilman and Clark 2014)
or cohort related impacts in animal populations. For example, therapeutic, lifestyle
or animal management related actions that seek to optimise the early life nutritional
environment have great potential for increasing human population health or attenu-
ating the actions of global change that compromise domestic or wild animal
populations (Monaghan 2008; Tilman and Clark 2014).
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Chapter 7
Adaptive and Maladaptive Consequences
of Larval Stressors for Metamorphic
and Postmetamorphic Traits and Fitness

Robby Stoks, Lizanne Janssens, Vienna Delnat, Janne Swaegers,
Nedim Tüzün, and Julie Verheyen

Abstract We synthesized how stressors encountered in the larval stage affect larval
growth and development rates, metamorphic traits and eventually carry over across
metamorphosis and shape the adult fitness. We mostly refer to case studies on semi-
aquatic insects and amphibians, two groups of animals that abruptly switch from an
aquatic to a terrestrial habitat during metamorphosis. We focus on two global
change-related stressors, warming and pesticide exposure, that are especially rele-
vant in the aquatic habitats occupied by the larvae of semi-aquatic insects and
amphibians. Results from our literature review support the traditional view that
metamorphosis is not a new beginning and that larval exposure to stressors affects
larval growth and development rates and thereby the key metamorphic traits age and
size at metamorphosis, eventually affecting adult fitness. While these responses were
mostly maladaptive, also cases of likely adaptive responses were identified. We
discussed several ‘alternative’ mechanisms, not mediated through age and size at
metamorphosis, that may link larval stressors to adult performance and fitness,
including changes in (post-)metamorphic morphology, physiology, gene expression
and the gut microbiome. These alternative coupling mechanisms are still
understudied and some still need proof of evidence. We summarized the evidence
that the implications of carry-over effects across metamorphosis go further than
direct fitness consequences of a given larval stressor as these may also change
tolerance to stressors encountered in the adult stage. We end by illustrating that
the largely unexplored effects of larval stressors on the (post-)metamorphic body
composition may have the potential to scale up and change biotic interactions and
nutrient fluxes across ecosystems.
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7.1 Introduction

Many species show a complex life cycle, which can be broadly defined as a cycle
where an individual encounters an abrupt ontogenetic transformation of its phenotype
(morphology, physiology and behaviour), usually associated with a switch in habitat
(Wilbur 1980). Metamorphosis has been considered as a solution to allow life stages to
optimally realize their different key functions and to adapt to the intrinsic selective
factors of their habitat (Werner 1988; Moran 1994; Rolff et al. 2019). Metamorphosis
has fascinated researchers for long time, particularly, whether it can be seen as a new
beginning or instead that environmental factors experienced in the larval stage carry
over to shape adult fitness (Pechenik 2006). The emerging pattern is that both
decoupling and carry-over effects among life stages are present (Rolff et al. 2019).

Arguably, the most studied metamorphic traits are age and size or mass at
metamorphosis (hereafter, we will use ‘size’ to refer to both size and body mass).
The age at metamorphosis determines the available time in the adult stage to find a
mate and reproduce before the reproductive season ends. An earlier metamorphosis
in animals that switch habitats may also imply an escape from larval stressors, such
as pond desiccation and larval predators. The size at metamorphosis is another
important determinant of adult fitness. For example, in two Rana frog species,
individuals that metamorphosed at a larger size survived better in the terrestrial
stage (Altwegg and Reyer 2003), and Lestes damselflies that emerged at a larger
mass had a higher lifetime mating success (De Block and Stoks 2005). Given the
importance of these metamorphic traits for adult fitness, many studies even used
these as fitness proxies to assess the impact of larval stressors on adult fitness. These
traits are being driven by two independent biological rates in the larval stage:
development rates and growth rates. Development rate refers to the differentiation
of the soma and the rate at which organisms go through developmental stages, which
is primarily driven by DNA replication. Instead, growth rate is the rate of increase in
mass over time and is primarily driven by protein synthesis (van der Have and de
Jong 1996). Both rates can be fully decoupled. For example, under time stress larvae
of the damselfly Lestes viridis increased development rate but not growth rate
(Janssens and Stoks 2018).

We here broadly review how environmental factors encountered in the larval
stage affect larval growth and development rates, to what extent this has adaptive or
maladaptive consequences for the metamorphic traits, and eventually across meta-
morphosis shape the adult fitness. In addition, we pay attention to alternative
mechanisms, not mediated through age and size at metamorphosis, linking larval
stressors to fitness across metamorphosis. We broaden the topic of effects of
stressors encountered during the larval stage by discussing how such larval stressors
may shape the response to adult stressors, thereby creating stressor interaction
effects across metamorphosis. Finally, we extend the carry-over effects of larval
stressors onto individual fitness toward consequences for biotic interactions and
nutrient fluxes across metamorphosis. Throughout this chapter, we mostly refer to
case studies on two groups of animals that abruptly switch from an aquatic to a
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terrestrial habitat during metamorphosis: semi-aquatic insects (such as midges,
mosquitoes, mayflies and odonates) and amphibians. In both groups, the larval
stage is entirely dedicated to growth, while the adult stage is also dedicated to
reproduction and dispersal (Wilbur 1980). To illustrate the key patterns and mech-
anisms, we mainly focus on two global change-related stressors, warming and
pesticide exposure, that are especially relevant in the aquatic habitats occupied by
the larvae of semi-aquatic insects and amphibians (Woodward et al. 2010; Schulz
et al. 2021).

7.2 Larval and (Post)Metamorphic Responses to Larval
Exposure to Pesticides and Warming

We searched the literature for empirical studies testing for effects of pesticide
exposure and warming on metamorphic traits (age and size at metamorphosis) in
semi-aquatic insects and amphibians. Within this set of studies, we also extracted,
when available, effects on larval growth rates, other larval traits, and post-
metamorphic traits. All this information is compiled in Table 7.1.

For the effects of pesticide exposure on metamorphic traits in semi-aquatic
insects and amphibians, the following search terms were used in Web of Science:
“pesticide and metamorphosis/emergence”. This resulted in 472 empirical studies, of
which 64 included data on age and size or mass at metamorphosis (see Table 7.1).
Among those studies looking at larval growth, more than half (59%) found a
negative effect on growth rate, while only one study reported an increase in growth
rate when exposed to a pesticide (Wood and Welch 2015) (Fig. 7.1a). Decreases in
growth rates can be explained as an energetic cost of being exposed to the pesticide.
Pesticide exposure may both reduce energy uptake through reduced foraging (e.g.,
Teplitsky et al. 2005; Brunelli et al. 2009; Wood and Welch 2015) and increase
energy expenditure because of increased investment in detoxification and repair
processes (e.g., Monteiro et al. 2019).

For age at metamorphosis, both an earlier and a delayed metamorphosis have
been reported after larval pesticide exposure, but the studies reporting a delayed
metamorphosis are more than two times as frequent (Fig. 7.1a). Shortening the
aquatic larval stage and metamorphosing earlier into the terrestrial stage could be
an adaptive strategy to reduce the time spent in the unfavourable, polluted habitat.
Instead, delayed metamorphosis could be a direct energetic cost of being exposed to
the pesticide, or an adaptive strategy to prolong the larval feeding period, thereby
trying to offset the reduced energy budgets to avoid metamorphosis at a smaller size
and the associated adult fitness costs. In line with the latter idea, three studies on
Chironomus midges (Rodrigues et al. 2015a, b; Monteiro et al. 2019) observed a
slower larval growth and a delayed metamorphosis in response to pesticide expo-
sure, while there was no difference in mass at metamorphosis. Moreover, the single
study on chironomids reporting no pesticide effect on age at metamorphosis
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Fig. 7.1 Summary overview of response patterns in semi-aquatic insects and amphibians to larval
exposure to (a) pesticides and (b) warming for a set of life-history traits: larval growth rate, and the
two key metamorphic traits (age and size at metamorphosis). The percentages are based on the
studies listed in Table 7.1
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(Callaghan et al. 2001) showed a decrease in female body mass. A similar pattern of
a prolongation of the larval stage that was associated with no reduction of mass at
metamorphosis has been observed in damselflies (Campero et al. 2008a; Bots et al.
2010; Debecker et al. 2016) and in frogs (Williams and Semlitsch 2010; Gahl et al.
2011).

In almost half of the studies that quantified size at metamorphosis, this trait was
affected by the pesticide treatment in the larval stage (Fig. 7.1a). Both decreases and
increases in size at metamorphosis were reported, although decreases were much
more frequent. This indicates that compensatory mechanisms are most often absent
or not strong enough. Becoming larger after pesticide exposure might seem coun-
terintuitive, but can be caused by high pesticide concentrations that eliminate part of
the experimental populations, leading to a higher food abundance for the survivors,
which might explain a positive effect on size (e.g., Relyea 2009; Adelizzi et al.
2019). At lethal concentrations, also survival selection may play a role, whereby the
weaker, more sensitive individuals are removed from the experiment, and only the
strongest, most tolerant individuals, will remain. Alternatively, low pesticide con-
centrations can have a stimulating, hormetic effect (Costantini et al. 2010; Chap. 2 of
this book) on traits, such as activity and food intake (Janssens and Stoks 2013a)
leading to an increased energy uptake, which may cause a larger size. Finally, a
higher adult size after larval pesticide exposure can also be due to the prolongation of
the larval stage (see above) to maximize food intake and growth, whereby animals
overcompensated, eventually resulting in a larger size in comparison with the control
animals (e.g., Boone 2008).

For the effects of warming on metamorphic traits in semi-aquatic insects and
amphibians, the following (combinations of) search terms were used: “warming/
temperature and metamorphosis/emergence/eclosion”. We limited our overview to
studies that compared a control temperature that was explicitly indicated to be the
ambient environmental temperature with a treatment with maximum 5 �C warming,
the upper level of predicted warming by 2100 under worst-case scenario RCP 8.5 by
IPCC (2013). We identified 24 such studies on the effects of warming on metamor-
phic traits in amphibians and semi-aquatic insects. While all studies looked for
effects of warming on age and size at metamorphosis, only 14 focused on larval
growth rate. From these 14 studies, more than half (64%) found a warming-induced
increase in larval growth rate, and only two studies reported a warming-induced
decrease in growth rate [in Swedish populations of the damselfly Ischnura elegans
(Debecker et al. 2017); in tadpoles of Pseudacris ornata (Harkey and Semlitsch
1988)] (Fig. 7.1b). These findings support the idea that many populations in tem-
perate regions are living at ambient temperatures that are below their thermal
optimum, hence that mild warming may increase their performance (Deutsch et al.
2008). Higher growth rates under warming are expected when food intake increases
more under warming than metabolism (Lemoine and Burkepile 2012). For age at
metamorphosis, most studies (86%) reported a decrease (earlier metamorphosis),
while none of them found an increase (Fig. 7.1b). This indicates in general a faster
larval development under mild warming, as was also found for growth rate. The
increases in development rates were apparently often stronger than the increases in
growth rates under warming as more than half of the studies (57%) reported
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decreases in size at metamorphosis under warming (Fig. 7.1b). This confirms the
temperature-size rule (Atkinson 1994; Sheridan and Bickford 2011). In contrast, four
studies (14%) found no warming effects on age at metamorphosis (Fig. 7.1b), which
might be linked to a strategy to avoid a shorter larval growth period and possible
fitness costs caused by metamorphosis at a smaller size. In line with this, warming
did not affect age and size at metamorphosis in three of these four studies (Rueda
et al. 1990; Li et al. 2011; Muturi et al. 2012). In the fourth study (Harkey and
Semlitsch 1988), Pseudacris tadpoles compensated their lower larval growth rate
under warming by not shortening the larval period (age at metamorphosis was not
affected), even resulting in a higher mass at metamorphosis. However, in this case
other costs linked to fitness arose. For example, warming reduced larval survival and
adult longevity and increased the number of deformities in the adult stage (Harkey
and Semlitsch 1988). Possibly, survival selection in the larval stage also played a
role, thereby removing all weaker (hence, those more sensitive to warming) indi-
viduals. This might also have been the case in Aedesmosquitoes, where warming did
not affect age, yet increased mass at metamorphosis (Rueda et al. 1990). Intrigu-
ingly, in one study on Chironomus midges (Sankarperumal and Pandian 1991)
warming did accelerate larval development and larval growth rate and also increased
mass at metamorphosis and larval survival until metamorphosis.

In several cases we observed that pesticide exposure and warming affected the
metamorphic traits in a context-dependent way, indicating that too broad general-
izations may be misleading. In some cases, the pesticide-induced changes in meta-
morphic traits were, for example, only present when the pesticide exposure was
combined with an additional larval stressor, such as predation risk (Teplitsky et al.
2005), competition (Relyea and Diecks 2008; Distel and Boone 2010) or time stress
(Boone and James 2003). For food stress this even resulted in opposite responses to
the pesticide in age at metamorphosis depending on whether food was ad libitum or
not (Janssens and Stoks 2013b; Janssens et al. 2014). Another parameter determin-
ing the response is the sex with two studies showing that only the males responded
with a delayed metamorphosis to larval pesticide exposure (Rodrigues et al. 2015a;
Op de Beeck et al. 2016). This may be linked to sex-specific life history strategies.

7.3 Coupling of Traits Across Metamorphosis

According to the adaptive decoupling hypothesis, metamorphosis allows the inde-
pendent evolution of larval and adult traits to match their key function and habitat by
breaking up genetic correlations among the traits between life stages (Moran 1994).
Few studies directly studied genetic correlations across metamorphosis, and these
showed mixed results (Collet and Fellous 2019). For example, genetic correlations
for size-related traits were as strong within the tadpole and frog stages as between
these stages. However, there were no genetic correlations across metamorphosis
between locomotory traits in the Pacific tree frog Hyla regilla (Watkins 2001). In the
wood frog Lithobates [Rana] sylvaticus genetic correlations for size-related traits
were stronger within the tadpole and frog stages than across metamorphosis,
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suggesting some degree of decoupling during metamorphosis (Goedert and
Calsbeek 2019). Also the underlying molecular mechanisms of the (de)coupling
across life stages are still poorly studied (Collet and Fellous 2019). From Drosophila
studies we know that both cold and heat tolerance are polygenic traits in both life
stages that can have no genetic correlation across stages, suggesting distinct genes
code for cold and for heat tolerance in larvae and in adults (Freda et al. 2017, 2019).
Similarly, of two melanin-related genes one affected larval and the other adult
melanization in a butterfly (Saenko et al. 2012). In a rare study on immune genes,
mixed evidence of decoupling was found for two genes coding for defensive
antimicrobial peptides: transcription of Diptericin was controlled by the same
genetic factors in larvae and adults, while transcription of Drosomycin had no shared
genetic control in larvae and adults (Fellous and Lazzaro 2011). Interestingly, also
traits that are unrelated at first sight may be genetically coupled across metamor-
phosis. For example, allelic variation in the ‘for’ gene not only codes for different
levels of foraging activity in the larval stage but also for different dispersal tenden-
cies in the adult stage (Edelsparre et al. 2014).

In the context of whether larval stressors shape adult traits, basically a case of
phenotypic plasticity, phenotypic correlations across metamorphosis are more rele-
vant than genetic correlations. Nevertheless, genetic correlations may also mirror
phenotypic correlations. While size-related traits typically show positive phenotypic
correlations across metamorphosis, this is less obvious for other traits. The few
studies that tested whether performance traits are phenotypically correlated across
metamorphosis showed no consistent pattern. For example, Watkins (2001) showed
tadpole swimming speed and frog jump distance to be positively correlated in the
Pacific tree frog H. regilla. Yet, swimming performance in tadpoles was shown to be
unrelated to jumping performance in froglets in the common frog R. temporaria
(Johansson et al. 2010). Notably, while decreasing the water level in the tadpole
stage (mimicking the time stress imposed by a drying pond) increased the locomo-
tory performance of tadpoles, it negatively affected the one of the froglets.

Behavioural phenotypic trait correlations across metamorphosis have received
increasing attention, especially within the context of consistency of inter-individual
differences in behaviour (personality) and in suites of behavioural correlations
(behavioural syndromes). A recent review revealed that behavioural correlations
across metamorphosis are often reported for hemimetabolous insects that undergo
complete metamorphosis, but not for holometabolous insects that undergo partial
metamorphosis, suggesting behavioural uncoupling across metamorphosis is linked
to drastic internal reorganization (Amat et al. 2018). For example, the field cricket
Gryllus integer had a consistent rank-order for boldness behaviour across metamor-
phosis (Niemelä et al. 2012), while neither activity nor social behaviour did correlate
across metamorphosis in Drosophila melanogaster (Anderson et al. 2016). The
limited literature on behavioural coupling across metamorphosis in anurans revealed
mixed evidence: activity and exploration behaviours in the lake frog Rana ridibunda
(Wilson and Krause 2012a) and boldness behaviour in the spotted salamander
Ambystoma maculatum (Koenig and Ousterhout 2018) were consistent across larval
and juvenile stages, while boldness and exploration showed no phenotypic correla-
tion across metamorphosis in R. temporaria (Brodin et al. 2013b). Ecological
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conditions experienced early in life are assumed to play a role in behavioural
coupling across metamorphosis (Wilson and Krause 2012b). In a unique study
with wood butterfly Pararge aegeria populations originating from rural and urban
areas, larval activity and boldness were correlated with adult exploration behaviour
only in males originating from the harsher urban environments, suggesting that
behavioural trait integration across metamorphosis may depend on ecological con-
ditions, and that such patterns can further be sex-specific (Kaiser et al. 2018). While
stressors are known to alter the coupling among behavioural traits within the
exposed life stage (e.g., contaminants: Brodin et al. 2013a; time stress: Tüzün
et al. 2021), it remains to be tested whether early-life (e.g., larval) stressors affect
trait coupling across life stages or within the adult stage. Given that trait integration
in general (Laughlin and Messier 2015), and specifically among behavioural traits
(Sih et al. 2004), has been hypothesized to be adaptive, such carry-over effect of
larval stressors would be a novel mechanism linking larval stressors to adult fitness.

7.4 Carry-Over Effects of Larval Stressors on Adult Fitness

Effects of early-life conditions are well known to cross metamorphosis and to impact
adult fitness (Harrison et al. 2011; Moore and Martin 2019). We identified 13 studies
that recorded not only effects of the larval stressors pesticide exposure and warming
on metamorphic traits but also on adult fitness (Table 7.1). Of these, seven studies
reported a negative effect on fitness, and only one study showed a positive effect of
warming on adult survival (Harkey and Semlitsch 1988). The diverse nature of larval
stressors, together with taxa-specific responses to such stressors, makes it challeng-
ing to extract general patterns.

A common consequence of exposure to pollutants in the larval stage is decreased
survival during metamorphosis, suggesting metamorphosis to be a survival bottle-
neck in contaminated environments (Table 7.1). For example, exposure to the metal
zinc during the larval stage resulted in increased mortality during and after meta-
morphosis in the damselfly I. elegans (Debecker et al. 2017) and during metamor-
phosis in the mayfly Neocloeon triangulifer (Wesner et al. 2014). Intriguingly,
neither study reported an increased mortality in the larval stage. Similarly, work
on the American toad Bufo americanus revealed increased mortality during meta-
morphosis due to exposure to mercury during the larval stage (Bergeron et al. 2011).
While less studied, carry-over effects of larval exposure to pollutants on adult fitness
traits often showed negative consequences long after the exposure ended (Table 7.1).
Exposure to pollutants early in life reduced lifespan (Debecker et al. 2017) and
lifetime mating success (Tüzün and Stoks 2017) in adult damselflies, whereas
exposure to copper during the larval stage lowered fecundity in the mosquito
Aedes aegypti (Perez and Noriega 2014). Interestingly, larval exposure to a stressor
may also have unexpected positive effects on adult fitness components. This was
shown by a trend for a higher adult cold resistance in Enallagma cyathigerum
damselflies that were exposed to a pesticide as larvae, possibly due to a pesticide-
induced elevation in heat shock protein levels (Janssens and Stoks 2013b).
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Surprisingly, little work has been done on carry-over effects of warming in the
larval stage on adult fitness-related traits (Table 7.1). The often-observed smaller
size at metamorphosis under warming (reflecting the temperature-size rule, Atkinson
1994; Sheridan and Bickford 2011, Table 7.1) may have negative consequences on
adult fitness by reducing adult longevity (Reisen 1995) and fecundity. Yet, warming
may also negatively affect other fitness-related traits not directly related to size. For
example, males of the dragonfly Pachydiplax longipennis produced more wing
coloration (an intrasexually selected trait that is more advantageous under cooler
conditions) when reared under warmer conditions, suggesting this to be a
non-adaptive, potentially even maladaptive, response (Lis et al. 2020). Larval
exposure of the damselfly L. viridis to a higher mean temperature reduced their
mass-corrected cold tolerance as adults (Stoks and De Block 2011). In an outdoor
mesocosm experiment, 4 �C warming above the ambient temperature in the larval
stage resulted in male I. elegans damselflies to have a reduced flight performance
(a key trait for obtaining mates, foraging and avoiding predation) due to reduced
muscle mass, despite no change in mass at metamorphosis (Tüzün et al. 2018).
Similarly, a laboratory experiment with the damselfly I. elegans revealed reduced
flight performance in adults that were exposed to high temperatures as larvae
(Arambourou et al. 2017). The effects of warming in the larval stage on flight
performance may, however, be complex. A higher larval temperature positively
influenced the ability to take off flight, but negatively influenced the ability to
sustain flight in the wood tiger moth Arctia plantaginis (Galarza et al. 2019).
Importantly, carry-over effects of thermal stress may depend on the life stage in
which stress was experienced (Kingsolver and Buckley 2020; Ma et al. 2021). For
example, thermal stress imposed in the third, but not in the first, larval instar reduced
egg production in the diamondback moth Plutella xylostella (Zhang et al. 2015).

Aside from pollution and warming, other larval stressors have been linked to
fitness consequences in the adult stage. For example, alterations in larval diet have
been shown to shape sexual selection on size (in the leaf-footed cactus bug Narnia
femorata: Gillespie et al. 2014) and male chemical signalling (in the butterfly
Heliconius melpomene: Darragh et al. 2019), and to reduce lifetime mating success
(in the damselfly L. viridis: De Block and Stoks 2005) and early-life fecundity (in the
butterfly Bicyclus anynana: Saastamoinen et al. 2010). Similarly, accelerated larval
development in response to time stress resulted in reduced lifespan and mating
success in damselflies (L. viridis: De Block and Stoks 2005; Janssens and Stoks
2018; C. puella: Tüzün and Stoks 2018). Negative effects of larval food stress,
however, may be overcome by adult compensatory feeding. For example, food stress
during the final larval instar of the damselfly I. verticalis affected development rate
and adult size, yet fecundity was only determined by adult food stress (Richardson
and Baker 1997).

Importantly, evidence emerged that carry-over effects of larval stressors can alter
fitness in a sex-specific manner. Exposure to the pesticide propiconazole during the
larval stage negatively affected male (testis size, spermatogenesis) but not female
reproductive traits (oocytes) after metamorphosis in the frog Xenopus tropicalis
(Svanholm et al. 2021). In a study conducted under semi-natural conditions, food
stress during the larval stage reduced reproductive performance of both sexes in the
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Glanville fritillary butterflyMelitaea cinxia, yet for the females this was mediated by
a reduced pupal mass, while in males this was thought to be mediated by reduced
territorial behaviour (Rosa and Saastamoinen 2017). Finally, in a semi-natural study
with the damselfly C. puella, larval exposure to the pesticide esfenvalerate reduced
female but not male lifetime mating success (Tüzün and Stoks 2017), whereas time
stress in the larval stage reduced male but not female lifetime mating success (Tüzün
and Stoks 2018).

7.5 Alternative Mechanisms Coupling Larval Stressors
to Fitness Across Metamorphosis

While it is traditionally assumed that larval stressors are carried over to adult fitness
through their effects on age and size at metamorphosis, there is accumulating
evidence this is not always the case. An early demonstration of this phenomenon
was a study showing that larval food stress and larval time stress did negatively
affect adult fitness in the damselfly L. viridis but not entirely through effects on age
and mass at metamorphosis (De Block and Stoks 2005). A recent meta-analysis
revealed this may be rather common in amphibians: while fitness measures, such as
survival, reproduction and the prevalence of abnormalities, were negatively affected
by altered environments (agriculture, mining and urbanization), age and mass at
metamorphosis were largely unaffected (Sievers et al. 2018; but see Edge et al.
2016). This generated a surge of follow-up studies trying to unravel the nature of
these carry-over effects that are not mediated through the traditionally studied
metamorphic traits. We here give an overview of several types of mechanisms
underlying such carry-over effects, and at the same time discuss potential mecha-
nisms for an uncoupling of larval stressors and adult fitness.

One alternative way how larval stressors may shape adult fitness is through
changes in morphology. For example, our overview in Table 7.1 shows that larval
exposure to pesticides or warming may cause malformations in the adult stage,
increases in wing asymmetry, changes in wing shape and reductions in flight muscle
mass. All of these can be expected to reduce mobility in the adult stage, thereby
reducing escape, foraging and mating performance. Stressor-induced increases in
asymmetry may, however, not always bridge metamorphosis. The combination of
larval food stress and pesticide stress caused more leg asymmetry in larvae but no
longer in adults of the damselfly C. puella and neither was the wing asymmetry
affected (Campero et al. 2008b). This was explained by metamorphosis itself being
stressful and causing a strong increase in asymmetry. Effects of global change
factors in the larval stage may also change morphology in such a way that it increases
adult performance. For example, rearing of caterpillars on milkweed under elevated
CO2 levels resulted in adults with more elongated wings that are more suitable for
elongated flight, hence migration (Decker et al. 2018). In the same study it was
shown that parasite infection in the larval stage, however, resulted in rounder wings
that are less suitable for sustained flight. Next to this, exposure to larval stressors
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may cause a disturbed development of adult organs, such as gonads, thereby
impairing reproduction. For example, chronic exposure to the pesticide roundup in
tadpoles of Rana pipiens resulted in gonadal abnormalities, including cases of
intersex (Howe et al. 2004). The phenomenon whereby larval stressors negatively
affect the morphology of adult organs is likely general as the development of many
organs begins before metamorphosis (e.g., Švácha 1992).

One other important set of mechanisms that may generate carry-over effects on
fitness not captured by age and size at metamorphosis operates through changes in
the physiology. Best studied in this context is the negative effect of larval stressors
on the adult energy budget, which on its turn may negatively affect adult fitness. For
example, several studies that exposed larvae to a pesticide demonstrated a lower fat
content in the adult stage (Table 7.1). Furthermore, larval stressors have been shown
to reduce the adult investment in immune function. For example, exposure of larvae
to time stress and to predation risk caused adults of the damselfly L. viridis to emerge
with a lower activity of the enzyme phenoloxidase that plays a key role in defence
against pathogens (Stoks et al. 2006). Similarly, larval exposure of the damselfly
C. puella to UV resulted in a reduced encapsulation response, a key component of
the invertebrate immune response, in the adult stage (Debecker et al. 2015). One
other, largely unexplored, but potentially important physiological/molecular mech-
anism that may link larval stressors to adult fitness is oxidative damage to bio-
molecules. Oxidative damage occurs when Reactive Oxygen Species (ROS) are not
fully balanced by antioxidant defences and thereby generate damage to biomole-
cules, such as lipids, proteins and DNA (Costantini 2008). This imbalance can be the
result of an increased ROS production and/or a decreased antioxidant defence as has
been shown, for example, in response to pollutants and to predation risk (Janssens
and Stoks 2017). Similarly, larval life history responses demanding an increase in
metabolic rate, such as an increase in growth and development rates under time
stress, can lead to increased oxidative damage (Gomez-Mestre et al. 2013; Janssens
and Stoks 2018; Tüzün et al. 2020). Notably, in animals with a complex life cycle,
stressors experienced in the larval stage can cause oxidative damage after metamor-
phosis (Janssens and Stoks 2018; Burraco et al. 2020). This eventually has been
shown to result in a shorter adult lifespan (Janssens and Stoks 2018). Besides direct
effects of increased oxidative damage on adult life-history traits, there may also be
indirect costs because of increased investment of energy in antioxidant defence and
repair, and changes in nutrient allocation and time budgets (Selman et al. 2012;
Costantini 2014). In addition, direct costs of oxidative damage to biomolecules,
especially proteins, may result in less performant muscles. For example, a higher
level of oxidative damage to proteins has been associated with reduced swimming
speed in larvae of the damselfly C. puella. (Janssens and Stoks 2014). This may
potentially contribute to how larval stressors may reduce adult flight performance as
observed in damselflies after larval exposure to warming (Arambourou et al. 2017;
Tüzün et al. 2018). Despite some case studies illustrating the role of oxidative
damage as mechanism coupling the larval and adult stage, metamorphosis may
potentially reset oxidative damage. This has been suggested by the decrease in
lipid peroxidation during metamorphosis in frogs (Gaupale et al. 2012). A similar
pattern might be expected in insects where during metamorphosis larval tissues are
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destructed and remodelled and adult tissues are generated (Consoulas et al. 2000).
The underlying mechanisms remain unclear, but it is possible that during metamor-
phosis cells with a high level of oxidative damage may be eliminated and/or
oxidative damage may be reduced through activation of repair mechanisms (Geiger
et al. 2012; Selman et al. 2012).

One salient new insight in carry-over effects across metamorphosis is that larval
stressors may affect gene expression in the adult stage. Studies on this are, however,
still rare. For example, 3-day exposure of tadpoles of the green frog Lithobates
clamitans to carbaryl caused months later changes in mRNA expression in the adult
brain for proteins with functional roles in the control of cell growth and signal
transduction, indicating long-lasting effects across metamorphosis on brain devel-
opment (Boone et al. 2013). In another study it was shown that the food stress
imposed on larvae of the ladybeetle Cryptolaemus montrouzieri resulted in higher
expression levels of genes encoding immune- and antioxidant-related enzymes when
exposed to starvation and pesticide conditions in adult life (Xie et al. 2015). When
different genes underlie traits in larvae and adults, this may explain why environ-
mental factors shaping a larval trait not necessarily affect the adult trait. This was
likely the reason why rearing larvae of the wood tiger moth Arctia plantaginis under
9 �C warming resulted in a lower melanization of both the larval and adult bodies,
while the wing melanization was not affected (Galarza et al. 2019). Moreover, the
uncoupling of larval and wing melanization could be driven by the fact that in insects
adult structures, such as wings and legs, derive from separate clumps of cells
(imaginal disks) and that differences in timing of induction of different imaginal
disks thus may cause independent development of body parts (Whitman and
Agrawal 2009). Next to gene expression, larval stressors may also affect
pre-mRNA splicing of genes and thereby affect adult performance. The few studies
on this topic support this idea. For example, rearing of larvae of the fall armyworm
moth Spodoptera frugiperda under food stress resulted in alternative splicing of the
flight muscle gene troponin-t to form protein isoforms that were associated with
reduced muscle performance and energy consumption, independently from the
muscle mass (Marden et al. 2008).

One specific way how larval stressors may shape adult gene expression is through
epigenetic mechanisms, i.e., through molecules that modify DNA accessibility to
enzymes and therefore can up- or downregulate gene expression (McCaw et al.
2020). Epigenetic mechanisms are considered as a mediator of the interaction
between the environment, the genome and development (McCaw et al. 2020;
Chap. 1 of this book). Indeed, epigenetic mechanisms are environmentally sensitive
and have the capacity to be stable, thereby allowing organisms to adapt to environ-
mental changes and mediate environmental memory across life stages (D’Urso and
Brickner 2014). For example, in the three-spined sticklebackGasterosteus aculeatus
the effects of early-life exposure to warming in larvae affected temperature accli-
mation in adults through DNA methylation (Metzger and Schulte 2018). In this
study, it was found that 25% of the differentially methylated regions associated with
variation in larval developmental temperature were also differentially methylated in
response to temperature acclimation in adults. In rodents and humans, exposure to
endocrine disruptors in early-life has been shown to alter, respectively, reproduction
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and disease susceptibility in adults through epigenetic modifications (Mirbahai and
Chipman 2014). In amphibians, exposure to stress hormones early in development
can cause changes in behaviour and physiology of the adult and is likely mediated
through epigenetic molecules (Denver 2021).

Another promising candidate mechanism linking larval stressors to adult fitness
are changes in the gut microbiome. Evidence is accumulating that the gut
microbiome may have a large influence on the phenotype of its host and its tolerance
to stressors (Hammer and Moran 2019; Lynch and Hsiao 2019). Both warming (e.g.,
Bestion et al. 2017) and toxicants (e.g., Fong et al. 2019) can induce changes in the
gut microbiome that may harm or benefit the host, also with respect to its tolerance
(e.g., Fong et al. 2019). The gut microbiome composition may differ before and after
metamorphosis. For example, the relative abundance of gut microbial taxa showed
distinctive differences between larvae, metamorphic animals and juveniles in wood
frogs (Lithobates [Rana] sylvaticus), green frogs (L. clamitans) and bullfrogs
(L. catesbeianus) (Warne et al. 2017). Similarly, larvae, pupae and adults of the
mosquito Anopheles gambiae showed distinctive gut community structures (Wang
et al. 2011). Possible explanations for these shifts in microbiome composition are the
obligate fasting that larval amphibians and semi-aquatic insects undergo during
metamorphosis (Warne et al. 2017), and ontogenetic shifts in diet (Kohl et al.
2014; Kohl and Carey 2016). The restructuring of the gut microbiota during meta-
morphosis may be important and has been suggested to determine survival during
metamorphosis in the giant spiny frog Paa spinosa (Long et al. 2020). Nevertheless,
changes in gut microbiomes during early life can shape metabolism and immunity of
adult animals (Arrieta et al. 2014; Cox et al. 2014). For example, early-life disruption
of the microbiota of tadpoles of the Cuban tree frog Osteopilus septentrionalis by
using antibiotics resulted in a lower adult resistance to parasites (Knutie et al. 2017).
Notably, this carry-over effect occurred despite no changes in the adult gut
microbiome, suggesting it was mediated by effects on immune system development
caused by dysbiosis of the tadpole gut microbiome. In a companion study on the
same frog species, early-life exposure to the herbicide atrazine reduced the tolerance
to a chytrid fungus but did not affect the gut microbiome of tadpoles and adults,
indicating the effect of atrazine on infection risk was not mediated by host-associated
microbiota (Knutie et al. 2018). However, host-associated microbes did seem
important in host resistance to the fungus because the early-life microbiota, likely
by playing a role during immune system development, predicted adult infection risk.

7.6 Interactions Between Stressors Across Metamorphosis

Larval stressors can also impact the response to adult stressors. Although the
research on this topic is rather limited, interactions between responses to stressors
across metamorphosis have been shown in several species, including anurans and
insects. In Table 7.2, six studies investigating the combined impact of larval and
adult stressors on adult life history and physiology are summarized. These studies
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Table 7.2 Overview of studies investigating interactions between larval and adult stressors in
semi-aquatic insects and amphibians

Order
Larval
stressor

Adult
stressor Interaction type

Response
variable References

Anura Pesticide
mixture

Fungal expo-
sure (Bd)

Additive Survival Buck et al.
(2015)

Pesticide
mixture

Fungal expo-
sure (Bd)

Synergism Bd load Buck et al.
(2015)

Anura Fungicide Fungal expo-
sure (Bd)

Synergism Survival Rohr et al.
(2017)

Fungicide Fungal expo-
sure (Bd)

Synergism Bd load Rohr et al.
(2017)

Diptera Temperature Plasmodium
infection

Antagonism at
37 �C and 39 �C;
synergism at
40 �C

Percentage
oocyst
positive

Raghavendra
et al. (2010)

Temperature Plasmodium
infection

Antagonism Oocyst plas-
modium
load

Raghavendra
et al. (2010)

Diptera Insecticide Temperature Synergism Survival Tran et al.
(2020)

Lepidoptera Food stress Food stress Synergism at low
and medium adult
temperature;
additive at high
adult temperature

Body mass Karl et al.
(2011)

Food stress Food stress Synergism at low
adult tempera-
ture; additive at
medium and high
adult temperature

Fat content Karl et al.
(2011)

Food stress Food stress Additive Haemocytes Karl et al.
(2011)

Food stress Food stress Additive at low
and medium adult
temperature;
antagonism at
high adult
temperature

PO activity Karl et al.
(2011)

Food stress Temperature
stress

Additive at low
temperature; syn-
ergism at high
temperature

Body mass Karl et al.
(2011)

Food stress Temperature
stress

Synergism Fat content Karl et al.
(2011)

Food stress Temperature
stress

Antagonism Haemocytes Karl et al.
(2011)

Food stress Temperature
stress

Antagonism at
low temperature,
synergism at high
temperature

PO activity Karl et al.
(2011)

(continued)
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used as larval stressors pesticide exposure, food stress and temperature, while the
adult stressors were pathogen infections, food stress and temperature. In most cases
(41%) reported in Table 7.2, the larval and adult stressors magnified each other’s
negative effects, so-called synergistic interaction effects. Yet, also antagonistic
interactions (33%) whereby, for example, the upregulation of a defence mechanism
to an adult stressor is lower after exposure to a larval stressor, may negatively impact
fitness. We here provide a more detailed description of all studies of Table 7.2,
thereby discussing the underlying mechanisms.

When exposed to a pesticide as tadpoles, anurans showed a synergistic increase in
fungal load when infected with a chytrid fungus after metamorphosis (Buck et al.
2015; Rohr et al. 2017), which for the Cuban tree frog O. septentrionalis even
resulted in a synergistic increase in mortality (Rohr et al. 2017). Interestingly, in
mosquitoes, the opposite pattern was observed between larval temperature stress and
adult plasmodium infection, hereby the plasmodium load was lower in animals
exposed to the high temperature as larvae (Raghavendra et al. 2010). The reason
for this different stressor interaction type could be that pesticide exposure typically
reduces the immune response (Janssens et al. 2014; Brandt et al. 2020) leading to a
higher sensitivity to pathogens, while higher temperatures are often linked to higher
enzymatic activities including those related to the immune defence (Wojda 2017). In
damselflies, larval pesticide exposure followed by adult heat exposure resulted in
antagonistic interactions especially in traits linked to defence, whereby the heat-
induced increase in Hsp70 levels was smaller in adults previously exposed to the
pesticide (Janssens et al. 2014). These antagonistic interactions are most likely the
result of energetic constraints, whereby exposure to the larval stressor already asked
a profound energy investment in defence, leading little additional energy to be
invested in defence against the adult stressor. Similarly, the pesticide-induced
reduction in phenoloxidase activity was stronger in heat-exposed adults, which
again can be seen as a physiological, energetic cost of the stress exposure (Janssens

Table 7.2 (continued)

Order
Larval
stressor

Adult
stressor Interaction type

Response
variable References

Odonata Insecticide Heat wave Antagonism Fat content Janssens et al.
(2014)

Insecticide Heat wave Antagonism Hsp70 Janssens et al.
(2014)

Insecticide Heat wave Synergism PO activity Janssens et al.
(2014)

Food stress Heat wave Additive Fat content Janssens et al.
(2014)

Food stress Heat wave Antagonism Hsp70 Janssens et al.
(2014)

Food stress Heat wave Antagonism PO activity Janssens et al.
(2014)
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et al. 2014). In mosquitoes, the interaction between larval pesticide exposure and a
higher adult temperature even resulted in a synergistic increase in mortality (Tran
et al. 2020). Besides pesticide stress, also suboptimal larval food conditions are
shown to interact with adult stressors. For example, in the butterfly Bicyclus anynana
a temperature-dependent synergistic interaction between larval and adult food stress
was shown on body mass and fat content, whereby the two food stressors enhanced
each other especially at low and intermediate temperatures (Karl et al. 2011). In the
same study also the interaction between larval food stress and adult temperature was
investigated whereby for body mass, fat content and phenoloxidase activity syner-
gistic interactions were found between larval food stress and adult temperature
stress.

7.7 Consequences of Carry-Over Effects of Larval
Exposure to Stressors for Biotic Interactions
and Nutrient Fluxes Across Metamorphosis

Stressors experienced during the larval stage may, by changing the age, body mass
and body composition at metamorphosis, not only affect the adult fitness but also
biotic interactions and nutrient fluxes across metamorphosis. In case of semi-aquatic
insects and amphibians, this may cause carry-over effects of stressors in the aquatic
larval environment into the receiving terrestrial environment (e.g., Paetzold et al.
2011; reviewed in Schindler and Smits 2017). Two important aspects of the body
composition at metamorphosis that can be important for their nutritional quality as
food for terrestrial consumers are the stoichiometric composition (elemental com-
position, mainly of carbon, nitrogen and phosphorus) and the content of polyunsat-
urated fatty acids (PUFAs) (Schindler and Smits 2017). Particularly for semi-aquatic
insects, but also for amphibians, it is well-known that they transport aquatic-derived
materials of high nutritional quality (stoichiometric composition: Schindler and
Smits 2017; high PUFA content: Martin-Creuzburg et al. 2017; Twining et al.
2018b; Fritz et al. 2019) to terrestrial ecosystems and are therefore ecologically
very important fluxes, called aquatic subsidies (Schindler and Smits 2017). Terres-
trial consumers, both vertebrates (e.g., birds and bats) and invertebrates (e.g.,
spiders) depend on these aquatic subsidies for their high PUFA content that plays
an important physiological role going from immune function to neural development
(Twining et al. 2016a). This is especially true because terrestrial consumers synthe-
size long-chain omega-3 PUFAs (LC-PUFAs) at a low efficiency (e.g., in Tree
Swallows: Twining et al. 2018a) and have low levels of the needed precursor
omega-3 PUFA alpha-linolenic acid (Twining et al. 2016b). PUFA derived from
semi-aquatic insects may therefore be important for the fitness of terrestrial con-
sumers. For example, Tigrosa wolf spiders living in wetlands where they can
consume aquatic subsidies had higher levels of aquatically derived LC-PUFAs and
a better immune function than spiders living in uplands (Fritz et al. 2017).

7 Adaptive and Maladaptive Consequences of Larval Stressors for Metamorphic. . . 253



By changing the age at metamorphosis, larval stressors, such as warming and
contaminants (Table 7.1), may cause critical changes in the timing of these fluxes.
This may result in temporal mismatches with terrestrial consumers relying on these
aquatic subsidies (O’Gorman 2016), eventually leading to altered growth and
development rates in terrestrial predators (e.g., in spiders: Marczak and Richardson
2008). Larval stressors may also change the quality of these fluxes both by affecting
the stoichiometric content and the PUFA content at and after metamorphosis. For
example, in a natural study with experimental pond systems, mild 4 �C warming
resulted in decreased body phosphorus content in emergent frogs (Rana temporaria:
Norlin et al. 2016). As a special case of changes in body composition, contaminants
to which larvae were exposed may cross metamorphosis and end up in the adult
bodies (Al-Jaibachi et al. 2018; Bundschuh et al. 2019; Previšić et al. 2021). In semi-
aquatic insects and amphibians, this may cause transfer of contaminants across
ecosystem boundaries. For example, the Chinese mantis (Tenodera aridifolia
sinensis) accumulated arsenic after feeding on mosquito (Culex tarsalis) adults
that were exposed to arsenic as larvae (Mogren et al. 2013). Similarly, terrestrial
spiders have been shown to accumulate persistent bioaccumulative polychlorinated
biphenyls (Walters et al. 2008), methyl mercury (Tweedy et al. 2013), mercury
(Pennuto and Smith 2015), and metals (Kraus et al. 2014) through feeding on semi-
aquatic insects exposed to these contaminants.

In addition, larval stressors may reduce the quantity of aquatic subsidies by
negatively impacting larval survival and emergence success, hence by reducing
the numbers and biomass of emerging semi-aquatic insects and amphibians. For
example, the numbers and biomass of emerging semi-aquatic insects decreased with
increasing levels of trace metals (Kraus et al. 2014) and of the pesticide bifenthrin
(Rogers et al. 2016). Contaminant-induced reductions in the quantity of aquatic
subsidies have been shown to negatively affect terrestrial predators. These negative
effects included declines of insectivorous birds (Manning and Sullivan 2021),
lowered spider species abundance and richness (Graf et al. 2019), spider population
declines (Paetzold et al. 2011) and spider community structure shifts (Paetzold et al.
2011; Graf et al. 2019), even while numbers of available terrestrial prey organisms
remained the same (Paetzold et al. 2011). Furthermore, when aquatic subsidies are
scarce, this may cause terrestrial predators, such as spiders, to switch to terrestrial
prey, such as grasshoppers, thereby impacting herbivory (e.g., Graf et al. 2017).

7.8 Conclusions and Future Directions

Results from our literature review, mainly based on semi-aquatic insects and
amphibians, provide ample evidence for the idea that early life stressors are an
important source of phenotypic diversity. Moreover, they support the traditional
view whereby larval exposure to stressors, i.e., pesticides and warming, affects larval
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growth and development rates and thereby the key metamorphic traits age and size at
metamorphosis, eventually resulting in effects on adult fitness. While these
responses were mostly maladaptive, also cases of likely adaptive responses were
identified. As such our overview matches a more general recent meta-analysis
concluding that environmental stressors encountered during early life may nega-
tively affect the adult phenotype and performance, but may also be neutral and even
positive (Eyck et al. 2019). In their meta-analysis, there was large variation in the
responses and little of this variation could be explained (Eyck et al. 2019). In line
with this, we documented several cases of context-dependency whereby the (post)-
metamorphic response critically depended on factors, such as sex, population of
origin and timing of exposure to the larval stressor.

In addition, we also identified several ‘alternative’ mechanisms that may link
larval stressors to adult performance and fitness, including changes in (post-)
metamorphic morphology, physiology, gene expression and the gut microbiome.
These alternative coupling mechanisms are still understudied and some still need
proof of evidence. Most likely, several of the ‘traditional’ and ‘alternative’ mecha-
nisms co-occur together, yet we currently do not know their relative importance in
shaping adult fitness and to what extent age and size at metamorphosis are good
proxies for adult fitness. This asks for studies that in an integrated way assess
multiple mechanisms. Such studies would bring crucial insights not only into the
coupling but also in the observed cases of uncoupling between larval and adult life
stages. One fruitful avenue for further research would be to integrate in such research
programs also a modelling component, as illustrated by a dynamic energy budget
model that captured the fate of acquired and stored nutrients across metamorphosis
(Llandres et al. 2015).

Whatever the coupling mechanism, the emerging view of the here synthesized
studies is that metamorphosis is not a new beginning (Pechenik 2006) and that most
often larval stressors affect metamorphic traits that have the potential to translate into
a changed adult fitness. Moreover, there is, admittedly still limited, evidence that the
implications of carry-over effects across metamorphosis go further than direct fitness
consequences of that larval stressor and may also imply changed tolerance to
stressors encountered in the adult stage. In general, this implies that to fully
understand whether and how animals respond to adult stressors we need to know
their larval history of exposure to stressors. For the same reason, this also means that
a large part of the variation in adult fitness can only be understood when knowing
previous exposure to fitness. Moreover, we have documented that the largely
unexplored effects of larval stressors on the (post-)metamorphic body composition
may go beyond effects for that individual and have the potential to scale up and
change biotic interactions and nutrient fluxes across ecosystems.
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Chapter 8
Plastic Aliens: Developmental Plasticity
and the Spread of Invasive Species

Giulia Cordeschi, David Costantini, and Daniele Canestrelli

Abstract Biological invasions are one of the worst threats to biodiversity conser-
vation, ecosystem services and functionality, and human health. However, of the
high number of organisms that are transported and introduced outside their native
range, only a subset of them can survive, establish and spread in the novel area,
becoming invasive. What determines the ability of an alien animal species to become
invasive? There is an increasing awareness that the answer to this longstanding and
crucial question is highly multifactorial, with some factors already well-discerned,
and some not yet elucidated. In this book chapter, we focus on developmental
plasticity, the permanent change in the developmental trajectory adopted by an
organism in response to gene–environment interactions. Developmental plasticity
is an important adaptive response to the obvious variability of biotic and abiotic
environmental conditions over time. Yet, it can also promote the invasion of novel
habitats, by favouring the optimal match between individual phenotypes and the new
environment, during the early steps of an invasion. By relying on the available
literature and focusing on animal invasions, we analyse the adaptive advantages
conferred by developmental plasticity (i) in dealing with the new biotic and abiotic
environment during the stage of introduction, (ii) in terms of reproductive rate and
population growth, two crucial processes for overcoming the stages of establishment
and (iii) in dispersal traits promoting the spread in the new environment. We
conclude that, although acknowledged in previous literature, the actual contribution
of developmental plasticity to the shaping of the ideal invader might have been
underrated.
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8.1 Biological Invasion

Biological invasion is a process characterised by the spread of a species outside of its
native range (Richardson and Pyšek 2006). It is considered one of the worst threats
to biodiversity conservation, ecosystem stability and functions, and a wide range of
ecosystem services (Prentis et al. 2008). Following its introduction in a non-native
area, an alien species is considered invasive if it spreads in the new environments and
has serious negative ecological and economic consequences (Lockwood et al. 2013;
see Glossary).

A non-native species must pass through three stages before inflicting ecological
and economic damages (Lockwood et al. 2013) and be considered invasive. First, an
alien species is a group of individuals transported to a new area during the first stage
of the introduction. Then, these individuals must be able to establish a self-sustaining
population in the new environment, otherwise they will face extinction. Following a
successful establishment, the new non-native population may remain scarcely abun-
dant and limited in distribution over the area (e.g., Andreone et al. 2016), or it may
grow, triggering the spread stage. Typically, only when the new population reaches
the last stage and becomes widely distributed and abundant it can be defined as
invasive (see Glossary). It is at this stage that the alien species can cause environ-
mental and economic damages. However, at each stage of the process, the invasion
may fail (Hui and Richardson 2017; Blackburn et al. 2011). The invasion success
depends on several biotic and abiotic factors, such as the invasive propagule
pressure, the biological and ecological traits of the invader, the degree of matching
between pre-existing abiotic conditions of the native habitat and those of the invaded
ecosystem, and the interactions between the invading organism and the native
species (Richardson and Pyšek 2006). Eventually, only a tiny percentage
(ca. 10%) of the population of an introduced species becomes established, and
even a smaller proportion of individuals (ca. 10%) becomes invasive (The tens
rule, Williamson and Fitter 1996).

The outcomes of an invasion can be observed and evaluated at the individual,
population, community or ecosystem level. The arrival of an invader may have
several individual-level impacts that can alter several phenotypic traits of native
species in response to novel predatory or competitive interactions (Parker et al.
1999). One example comes from the interaction between the Fire ant (Solenopsis
invicta), a widely diffused invasive species, and the native eastern fence lizard
(Sceloporus undulatus) in the United States of America. The invasive fire ants use
to attack lizards, get close to their mound, swarm onto the lizard’s body, and stitch
the soft skin under the dorsal scales. Lizards can escape or shake off the ants with a
body-twitch behaviour. Lizards with a long time of coexistence with the fire ants flee
and body-twitch more often when attacked, and have longer hind limbs, making
their reactions more efficient (Langkilde 2009). Thus, the invasive fire ant worked as
a selective pressure, driving morphological and behavioural modifications of lizards.

Invasive species may cause changes in abundance, distribution, structure, or
population growth rate of native species (Parker et al. 1999). They may also trigger
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local extinction of one or more native species, as often seen on islands and other
isolated biogeographic contexts (Lockwood et al. 2013). One example is the intro-
duction of the Nile perch (Lates niloticus) into Lake Victoria in 1950s. Thanks to the
peculiar and distinctive characteristics of the Lake Victoria, it has been the evolu-
tionary cradle for the origin of more than 400 species of cichlid fishes (Greenwood
1981; Witte et al. 1992; Seehausen 2000). The introduction of a novel predator, like
the Nile perch, led to (i) changes in the community composition, (ii) the complete
extinction of half of the native cichlid species (Witte et al. 1992), and (iii) severe
damages and losses to the local economy (Baskin 1992).

In fact, invasive alien species can dramatically impact ecosystem processes that
are critical to human well-being. Ecosystem changes may cause the loss of agricul-
tural and fishery products and even the disruption of ecosystem services, such as
climate stabilisation, availability of drinking water and pollination (Pejchar and
Mooney 2009). For example, the zebra mussel (Dreissena polymorpha), introduced
in various aquatic environments due to its filter-feeding capacities, caused severe
ecological and economic damages, such as coating boats and docks and clogging
water supply outlets of municipalities and hydroelectric plants (Kovalak et al. 1993).

What makes an introduced alien species a successful invader? Following the
seminal book by Charles S. Elton (1958) The ecology of invasions by animals and
plants, the number of studies on biological invasions has increased exponentially in
the last 60 years (Richardson and Pyšek 2008), and many studies have sought to
answer the question of why successful invaders are so successful. Baker (1965,
1974) identified several traits describing what he defined as the “ideal weed”,
arguing that species showing these traits are more likely to be invasive than species
that show them to a lesser extent. In Baker’s view, traits promoting invasiveness
include the ability to reproduce both asexually and sexually, rapid growth from seed
to sexual maturity and, in particular, high adaptability to environmental stress along
with high tolerance to environmental heterogeneity. Later studies on plants have
identified other characteristics associated with reproductive potential, vegetative
reproduction, dispersal, life-form and competitiveness as essential features of a
successful invader (Forcella et al. 1986; Noble 1989; Roy 1990; Pysek et al. 1995;
Rejmanek 1995; Thompson et al. 1995; Crawley et al. 1996; Reichard and Hamilton
1997; Pysek and Richardson 2007).

In this book chapter, we point out that the stages of growth and development are
critical windows during which much of the future invasion capabilities are deter-
mined. We will focus mainly on two features proposed to describe the ideal invader:
developmental plasticity and growth rate. Phenotypic plasticity can be broadly
defined as the ability of a genotype to produce different phenotypes in response to
environmental changes (West-Eberhard 1989; Agrawal 2001; DeWitt and Scheiner
2004; Pigliucci et al. 2006). Although initially applied only to morphological traits
(Schlichting and Pigliucci 1998), it is now increasingly recognised that other traits
(e.g., physiology, behaviour, life-history) can also be modified in response to an
environmental stimulus (Whitman and Ananthakrishnan 2009). Phenotypic plastic-
ity is closely tied to development conditions, since early life is a temporal window
during which the phenotype is very sensitive to environmental stimuli. The term
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developmental plasticity refers specifically to those phenotypic changes that occur
during development to adjust the phenotype to the prevailing environmental condi-
tions (Davis and Wund 2016; West-Eberhard 2005).

The idea that developmental plasticity plays a role in the success of an invasion
goes back to Baker’s studies (Baker 1965). In the last 30 years, the number of
scientific studies on the role of developmental plasticity in biological invasions has
dramatically increased (Box 8.1, Fig. 8.1), particularly on invasive plant species
(Daehler 2003; Richardson and Pyšek 2006; Funk 2008; Hulme 2008; Lande 2015).
For example, Davidson et al. (2011) proposed a meta-analysis that shows that
invasive plant species exhibit a higher degree of phenotypic plasticity than closely
related non-invasive species. In contrast, the number of studies on animal develop-
ment strategies is still limited and strongly taxonomic biased towards the inverte-
brates (Fig. 8.2).

Fig. 8.1 Number of studies on developmental plasticity in the biological invasion process
published from 1983 to 2020

Fig. 8.2 Number of studies on developmental plasticity in invasive animal species
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Box 8.1 Literature Survey
We conducted a literature search on Scopus for the terms (Plasticity) AND
(Invasive OR alien OR invasion OR colonising OR invasiveness OR
non-native) AND (development OR developmental OR growth) AND NOT
(cancer) in titles, abstracts or keywords. The initial search yielded more than
1400 studies and after a refinement with subject area, source and keywords and
a revision of the abstracts for the exclusion of all studies not referring to plants
or animals, we reach 739 studies.

From the results of the inquiry, it emerges clearly that the interest in the
study of developmental plasticity in the biological invasion process has grown
much in recent years, going from less than 10 studies per year from 1983 until
2003 to 61 in 2020 (Fig. 8.1). The studies on plants are far more represented,
being almost twice those on animal species. By looking at studies on animal
taxa, a disproportion is well evident, with studies on insects and fish standing
out for their number (Fig. 8.2).

Fostering our understanding of the traits that make an invader successful is
necessary to improve our ability to manage invasions and their negative conse-
quences for ecosystems (Mooney and Hobbs 2000). By relying on the available
literature, we aim to address two main questions: (1) does developmental plasticity
confer an adaptive advantage to alien animal species in the invasion process? (2) can
early-life conditions in the origin environment prime individuals to be successful
invaders?

8.2 The Good of Being Plastic

8.2.1 Introduction into a New Environment

Developmental plasticity may be advantageous when it allows a genotype to main-
tain or increase the Darwinian fitness across multiple environments (Bradshaw 1965;
Baker 1974; Sultan 1987, 1995; Schlichting and Pigliucci 1998; Pigliucci 2001;
Ghalambor et al. 2007). When the effective population size is small (which is usual
in the early stages of an invasion process), adaptation by natural selection might take
too long to occur, and alleles that have a selective advantage might even be lost by
genetic drift (Wright 1931; Li 1978). However, plasticity enables organisms to
adjust to the new conditions rapidly, even within a given generation, and the
resulting phenotype may later become genetically encoded by ‘genetic assimilation’
(Baldwin 1896; Baker 1974; Robinson and Dukas 1999; Pigliucci 2001; Schlichting
2004; see Glossary). Thus, plasticity satisfies the crucial first step in adaptation to
new environments, reducing the cost of directional selection and providing enough
time for a population to become established (Pigliucci 2001; Ghalambor et al. 2007).
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Thus, plasticity not only reduces the probability of extinction in new environments
but also allows populations to move from one adaptive peak to another (Robinson
and Dukas 1999; Pigliucci and Murren 2003; Price et al. 2003; West-Eberhard 2003;
Schlichting 2004; Amarillo-Suarez and Fox 2006).

Developmental plasticity has been studied widely in plants (Fig. 8.1). Plants show
dramatic effects on growth and development as a reaction to environmental condi-
tions, and are also more easily cloned and grew in alternative environments than
other organisms. Thus, much of our current knowledge on developmental plasticity
comes from plant studies documenting the range of phenotypes that individual
genotypes can produce in response to a wide range of environmental conditions
(Sultan 2000). Richards et al. (2006) described three primary scenarios regarding the
importance of developmental plasticity in plant invasions and the role of plasticity in
maintaining fitness across different environments: (1) a Jack-of-all-trades situation,
where through the plasticity of morphological or physiological traits, the invader is
better able to maintain fitness in a variety of environments; (2) a Master-of-some
situation, in which phenotypic plasticity allows the invader to take advantage of
favourable environments; (3) a Jack-and-master that combines some of both of Jack-
of-all-trades and of Master-of-some situations. Each scenario makes different pre-
dictions about the shape of the reaction norms (see Glossary) of invaders relative to
that of the respective controls. Although this framework has been applied almost
exclusively to plant species, it is possible to identify those same scenarios in
invasions of animal species (Knop and Reusser 2012). The harlequin bugMurgantia
histrionica, native to Central America, dispersed across most continental United
States of America (Ludwig and Kok 1998; Zahn et al. 2008). In environments with
lower temperatures, harlequin bugs develop into an adult phenotype with a higher
percentage of dark colouration than individuals who have grown in warmer envi-
ronments, thus maintaining the correct thermoregulation (Sibilia et al. 2018). This
phenotypic response may be highly beneficial to harlequin bugs in colder
environments, as darker-coloured individuals can subsequently engage in thermally
dependent behaviours, such as feeding and reproduction (Sibilia et al. 2018).
Temperature-associated traits and their plasticity can be influenced by developmen-
tal exposure to different thermal regimes (Bowler and Terblanche 2008), especially
in ectothermic organisms that rely on ambient temperatures to modulate growth and
metabolic rates (Beitinger et al. 2000; Ward et al. 2010; Rivera et al. 2021). Plasticity
in thermal traits has been shown to improve the fitness of several invasive species,
such as Ceratitis capitata (Mediterranean fruit fly) and Ceratitis rosa (Natal fruit fly)
(Nyamukondiwa et al. 2013), the slug Arion lusitanicus (Donnelly et al. 2012), and
species of collembolan springtails (Pogonognathus and Isotomurus spp.; Chown
et al. 2007; Slabber et al. 2007), conferring the ability to spread in environments with
different climatic conditions.
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8.2.2 The New Biotic Environment

The establishment of a non-native species is determined by its ability to adapt not
only to the abiotic characteristics of an invaded habitat, but also by its ability to cope
with novel interspecific interactions (Dzialowski et al. 2003). Carry-over effects may
be an important mechanism for invasive species experiencing new predatory or
competitive environments (Garcia et al. 2017). Garcia et al. (2017) found morpho-
logical plasticity in American bullfrog (Lithobates catesbeianus) tadpoles exposed
as embryos to different predation risk environments. In a high-risk scenario, bullfrog
embryos exhibited a developmental carry-over response, hatching into larvae that
grew 10% longer compared to individuals conditioned to lower risk environments.
Although this developmental strategy entails a reduction in developmental rate and a
longer time until metamorphosis, it increased both the swim and the escape perfor-
mances. Thus, early life carry-over effects appear to improve the antipredator
response of bullfrogs, potentially boosting invasion success.

There are also circumstances when, compared to local species, an invader species
experiences less stringent allocation trade-offs. This is the case where the predation
risk on invaders is low. The enemy release hypothesis (Keane and Crawley 2002)
predicts that escape from co-evolved, specialist natural enemies (including parasites
and pathogens) can facilitate the success of a species introduced into a novel area.
Typically, alien species have fewer parasites and pathogens in the introduced range
than in the native one (Müller-Schärer et al. 2004). Enemy escape should be
accompanied by relaxed selection on defensive traits (Lahti et al. 2009). When
those defensive traits are involved in trade-offs with other traits from an energetic
point of view, a straightforward prediction is that enemy escape should allow the
invasive species to allocate more metabolic resources to growth or reproduction
(Mlynarek et al. 2017). For example, the Asian tiger mosquito (Aedes albopictus)
shows a reduced infection load by its gut parasite Ascogregarina taiwanensis in the
invaded site. As a consequence, they develop faster and attain sexual maturation
earlier than the native mosquito Ochlerotatus triseriatus (Aliabadi and Juliano
2002). Studies on developmental plasticity in relation to different predation or
competition pressures are, however, scarce. Experimental manipulations of these
pressures would provide more direct evidence for the importance of developmental
strategies for the invasiveness of a given species (Sakai et al. 2001). One relevant
example lies with the red-eared slider turtle (Trachemys scripta elegans). This
species is native to the Mississippi River Valley of the United States of America,
with a broad distribution between Texas in the south and Illinois in the north (Ernst
and Lovich 2009). The red-eared slider turtle is the most widespread invasive turtle
species in the world, introduced mainly through pet trade in all continents but
Antarctica. The introduction of the red-eared slider turtle had negative consequences
for native turtle species: in Europe, it negatively impacts the European Pond turtles
(Emys orbicularis) and the Spanish terrapin (Mauremys leprosa) through exploit-
ative and interference competition (Cadi and Joly 2003, 2004; Polo-Cavia et al.
2009a, b, 2011). Pearson et al. (2015) found that red-eared slider turtles are better
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competitors than the native red-bellied turtles (Pseudemys rubriventris), and such a
superior competition capacity was linked to developmental strategy. They manipu-
lated the intensity of competition of juveniles by altering turtle density and species
composition in order to have low resource (higher density) and high resource (low
density) scenarios. Under low food scenarios, red-eared slider turtles ingested more
food, gained mass faster, and maintained body condition compared to red-bellied
turtles, which exhibited a decline in body condition. When housed with conspecifics,
red-eared slider turtles grew slower than when housed with mixed-species groups,
suggesting that red-eared slider turtles rely on a fast developmental pace only when
competing with other species (Pearson et al. 2015).

8.2.3 Plasticity in Traits Increasing Population Growth Rate

If the invasion propagule is able to survive to the conditions encountered in the new
environment, the next step towards a self-sustaining population is reproduction and
population growth (Blackburn et al. 2011). The reproductive rate can be increased by
an increase in fecundity, an earlier age at first reproduction, a lengthening of the
reproductive period, or a decrease in the peak reproductive age (Cole 1954;
Lewontin 1965). Classically, successful colonisers are characterised by strategies
that imply the ability to exploit the low density in the new environment during the
expansion phases (Sakai et al. 2001). Kolar and Lodge (2001) have identified
common features to successful colonisers in the different taxa r-selected life histo-
ries, including the use of the pioneer habitat, short generation time, high fertility, and
high growth rate. Intriguingly, these life-history traits often differ between native
populations and invasive populations within a single species (Phillips et al. 2010). In
1960s, the vendace (Coregonus albula) was translocated and introduced in Lake
Inari, northern Finland, where it reached a high population density in the second half
of the 1980s (Bøhn and Amundsen 1998). From the lake Inari, the species migrated
downstream into the Pasvik River system where it was observed for the first time in
1988 (Amundsen et al. 1999). Substantial differences in life-history traits were
observed by comparing the Lake Inari (source) and the downstream lake (colonist)
populations. The colonist population consisted of small-sized individuals who
reached maturity earlier in life than the source population, emphasising the impor-
tance of developmental strategies in increasing invasion success. Moreover, the
annual mortality rates were much higher in the colonist than in the source population
(Amundsen et al. 2012). Life-history theory predicts a trade-off in the allocation of
resources among life-history traits because resources occur in limited supply, and
traits compete for them (Stearns 1992). Relative to the source population, the
colonist population displayed an r-selected strategy, characterised by a rapid life-
history development, which came at a cost in terms of reduced longevity, a typical
“live fast and die young” strategy (Amundsen et al. 2012). During the pioneer phase
of introduction and establishment of invasion, with low density and interspecific
competition, resource allocation in early reproduction and high fecundity can be
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expected to trade-off with body size or survival (Davis 2005; Burton et al. 2010). In
contrast, the source population may display more K-selected traits, such as higher
age and body size at maturity and lower mortality, characteristics of later succession
stages and saturated communities (Amundsen et al. 2012). Plasticity in the life-
history strategy of a species is an important factor that contributes to determine the
success of an invader (Rosecchi et al. 2001).

8.2.4 Plasticity in Traits Associated with Dispersal

Once a self-sustaining population is established, the last crucial stage of the invasion
process is the spread (Phillips et al. 2010). Populations spread through a combination
of demographic growth and dispersal. Developmental plasticity in dispersal traits
may promote the continued spread of a newly established species beyond its point of
introduction (Sakai et al. 2001). In insects, for example, the developmental temper-
ature has strong effects on traits that govern dispersal, such as wing size and shape
that influence the flight performance and the dispersal distance (Fraimout et al.
2018). The spotted-wing drosophila (Drosophila suzukii) is a particularly successful
invader that has colonised more than 20 countries across Europe, South and North
America in less than a decade. Native to Asia, the spotted-wing drosophila was
introduced unintentionally through the transport of small fruits with which the
species is closely associated. It is now considered one of the most important
agricultural pest species throughout its invasive range. Given its remarkable plastic-
ity in development, adult phenotypic traits and behaviour, this species successfully
moved from unintentional introduction sites, becoming invasive in subtropical,
temperate and boreal regions (Little et al. 2020). The exposure to different climatic
conditions during developmental stages, eggs and larvae, confers to this species not
only plasticity in development time and greater cold tolerance in adult flies, but also
plasticity in wing shape and size. Fraimout et al. (2018) show that colder tempera-
tures during development result in an adult with larger wings and narrower proximal
sections, and a slightly broader wingtip, with consequences on flight performance.
Cold reared spotted-wing drosophila could disperse faster and further compared with
flies reared in warmer temperatures, potentially boosting the range expansion pro-
cess in temperate and boreal regions (Little et al. 2020). In cane toads (Rhinella
marina) some of the traits that made it one of the most successful invaders, as
spontaneous activity and snout-urostyle length, are influenced by a mixture of
genetic differences, environmental responses and genotype � environment interac-
tions (Llewelyn et al. 2010; Stuart et al. 2019; Kelehear and Shine 2020). Moreover,
Kelehear and Shine (2020) suggest a trade-off between dispersal and reproduction.
Indeed, individuals at an expanding range edge exhibit enhancing dispersal traits,
longer legs and narrower heads, but reduced reproductive investments (lower
gonad mass).
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8.3 Evolution of Plasticity During Invasion Process

Two main hypotheses have been proposed for the role of developmental plasticity in
biological invasions. First, invasive species may be more plastic than non-invasive
or native ones (Baker 1965; Marshall and Jain 1968; Williams et al. 1995; Durand
and Goldstein 2001; McDowell 2002). Second, populations in the introduced range
may evolve more remarkable plasticity than populations of the same species in the
native range (Kaufman and Smouse 2001; Sexton et al. 2002; Parker et al. 2003). In
fact, rapid evolutionary change appears to be common in invasive species (Brown
and Marshall 1981; Thompson 1998; Mooney and Cleland 2001; Sakai et al. 2001;
Lee 2002; Bossdorf et al. 2005), and rapid evolution of plasticity could play an
essential role in explaining their success (Richards et al. 2006). Rohner and Moczek
(2020) show that the dung beetles (Onthophagus taurus) rapidly evolved clinal
population differentiation, and suggest that post-introduction evolution of develop-
mental plasticity contributed to a significant degree to the successful invasion of
North America by this species. Using a common garden rearing experiment, they
tested four invasive populations collected along a latitudinal cline in the United
States of America and one population from Italy, the ancestral range. The F1
offspring were raised in two temperature treatments that mimic local soil tempera-
tures at a depth of 20 cm in the breeding season of the most southern (27 �C) and the
most northern population (19 �C). They found a clinal variation in development time
and body size that strongly depends on rearing temperature. This indicates that there
was no genetic selection that decreased mean development time and body size.
Instead, this phenotypic variation was the expression of thermal plasticity. More-
over, northern populations evolved reduced wing loading, which is predicted to yield
enhanced lift at cool temperatures, and the clinal variation was more pronounced at
cooler rearing temperatures, suggesting latitudinal differentiation in thermal
plasticity.

8.4 Conclusion and Future Directions

Being plastic may reduce the extinction risk during the invasion process, since it
allows individuals to develop phenotypes that best match the new environmental
conditions, or that allow them to outcompete local species (Sultan 2000; Pfennig
et al. 2010; Forsman 2015). During biological invasions, developmental plasticity
may confer the ability to maintain fitness in a wide variety of environments, such as
the case of the harlequin bug, allowing the invader to establish a reproductive
population and to overcome the introduction stage. In the two successive stages of
invasion (establishment and spread), population growth and dispersal determine the
success of an invasive species (Phillips et al. 2010). The ability to modify the
allocation of energy between reproductive and dispersal traits at the expense of traits
that are not strictly related to fitness during the invasion, as in the case of traits
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associated with defence from enemies, can make a successful invader (Phillips et al.
2010; Mlynarek et al. 2017). Developmental plasticity in life-history traits, as seen in
the case of sand gobies, or in traits associated with dispersal, as the drosophila wing,
increases the chances that a population of an alien species can grow and spread, thus
becoming invasive.

Studies addressing the adaptive role of developmental plasticity in invasive
species have mainly been focused on plants, thus we urge the need for more studies
in other groups in order to best characterise the role of developmental plasticity in
driving invasion processes. It will be important to compare populations from the
invasive and the native range of the invasive species (home-and-away comparison),
and populations of local species that might be affected by the invader, using for
example common garden experiments (Richards et al. 2006). However, we also
point out the importance of characterising the population invasion history, before
investigating the evolution of plasticity relying on inter-population comparisons
(Phillips et al. 2010). This is because developmental plasticity may decrease through
genetic assimilation across time, which might hide any relevant environmentally-
induced phenotypic variation (Pigliucci et al. 2006; West-Eberhard 2003). This point
is well exemplified by the colonisation of different islands in Australia by island tiger
snakes (Notechis scutatus). By comparing populations isolated on islands from less
than 30 years ago to more than 9000 years ago exposed to selection for increased
head size (i.e., ability to ingest large prey), it was shown that larger head size is
achieved by plasticity in young populations, while in older populations it is achieved
by genetic canalisation (Aubret and Shine 2009).

In conclusion, while we have emphasised the importance of developmental
plasticity in biological invasions, the opposite is also true: the study of biological
invasions has great potential to provide an excellent natural laboratory to investigate
the adaptive meaning of development strategies and early-life experience. Identify-
ing and analysing data on the role of developmental plasticity in the early stages of
the invasion process will also enable us to highlight fundamental processes taking
part in shaping local biodiversity patterns.

Glossary

Alien species species that are introduced, accidentally or intentionally, outside of
their natural geographic range.

Invasive species they are plants, animals, pathogens and other organisms that are
non-native to an ecosystem, and in which they spread triggering economic or
environmental harms or adversely affecting human health.

Genetic assimilation it is a process whereby environmentally-induced phenotypic
variation becomes constitutively produced (i.e., no longer requires the environ-
mental signal for expression).
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Reaction norm it is a graphical representation of the set of phenotypes that a single
genotype produces in response to different environments or treatments; individ-
uals show plasticity if their reaction norm is nonhorizontal.
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Chapter 9
Consequences of Developmental Exposure
to Pollution: Importance of Stress-Coping
Mechanisms

Frédéric Angelier

Abstract Environmental pollution is a global phenomenon that affects all conti-
nents and dozens of types of pollutants with highly different properties can be found
on Earth. These pollutants may result in detrimental environmental conditions with
clear negative effects on fitness, but they can also induce more pernicious and subtle
effects by triggering maladaptive responses to environmental conditions. Impor-
tantly, the impact of pollutants on organismal systems is often also exacerbated
during the developmental stage. Indeed, developmental conditions are known to
affect the ontogeny of multiple integrative organismal systems, and notably
the ontogeny of stress-coping mechanisms. These mechanisms involve cognition,
the fight or flight response and the HPA axis; they are crucial to consider in the
context of pollution because they govern the ability of the individual to adjust to the
environmental perturbations that may arise from physical pollutants. In addition,
they may also be disrupted by chemical pollutants, resulting in a maladaptive
response to environmental conditions and in pathologies. In this chapter, we first
provide an example of how developmental exposure to a chemical pollutant (lead,
Pb) may disrupt stress-coping mechanisms with detrimental consequences later in
life. Then, we illustrate the impact of physical pollutants on performance by focusing
on the example of noise pollution. We especially aim to highlight the importance of
stress-coping mechanisms and their flexibility in determining the ability of individ-
uals to cope with noise pollution. Finally, we propose several avenues of research to
better understand how wild species may adapt to this polluted world. We emphasize
(1) the importance of considering the cumulative and interactive effects of physical
and chemical pollutants on stress-coping mechanisms and performance; (2) the
potential importance of priming hormesis in adjusting the functioning and the
flexibility of stress-coping mechanisms to a polluted environment; (3) the need to
consider microevolution to assess whether selection acts on stress-coping mecha-
nisms and favors specific stress-coping traits that are beneficial in a polluted world.
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9.1 A Polluted World

9.1.1 Human Population Growth, Human Activities,
and Global Pollution

Since the establishment of human societies, human activities have been associated
with multiple types of pollution and notably with the release of multiple pollutants
into the environment (Sauvé and Desrosiers 2014). This phenomenon increased to
unprecedented rates during the industrial revolution (18th century) and it has accel-
erated since that period with the development of new technologies, energies, and
agricultural processes (Vane et al. 2011; Hayes et al. 2017). Despite the development
of several environmentally friendly policies, pollution is intrinsically and tightly
linked to the social and economic needs of the worldwide human population.
Therefore, it is expected that this coming century will be associated with an ongoing
release of pollutants in the environment as the human population is expected to reach
11 billion by 2100 (Bradshaw and Brook 2014).

Importantly, environmental pollution is a global phenomenon that affects all
continents and all ecosystems, although some geographical areas or biotopes are
obviously affected to a greater extent than others (Wang et al. 2020). This global
contamination mainly results from two concomitant factors. Firstly, humans have
settled in all continents and human activities are virtually present everywhere on
Earth, and even beyond with the recent multiplication of orbital space debris.
Secondly, several pollutants can be transported from their area of emission to
other areas through biotic (e.g., transfer of pollutants from one area to another
through living organisms, Carbery et al. 2018) and abiotic processes (e.g., global
atmospheric and ocean circulations, Zhang et al. 2019). For example, some pollut-
ants have been found sometimes at very high concentrations in remote areas that
were thought to be pristine (e.g., the Himalayas, or Polar areas, Wang et al. 2019).
Initially, this pollution was restricted to specific locations, but the exponential
growth of human populations, urban sprawl, the expansion of human activities to
many habitats, and the global circulation of pollutants have led to a global contam-
ination of Earth ecosystems (Bernhardt et al. 2017).

Historically, the detrimental effects of contaminants on non-target species have
usually been discovered several years after their use and after the occurrence of
specific health problems in humans or drastic population declines in wild species.
The best example probably comes from DDT, which was used against mosquitoes
worldwide. DDT appeared to affect the reproduction of birds by causing
egg-thinning (Cooke 1973). The use of DDT has also been recognized as an
important endocrine disruptor in humans, and it has been associated with develop-
mental issues and with the occurrence of multiple pathologies in humans including
cancer (reviewed in Hayes et al. 2017). Following these scientific studies and
discoveries, strict regulations were set up and DDT was banned in most countries
in the 70s. DDT is an excellent example of the delay that often exists between the
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commercial use of a molecule and the gathering of robust data to assess the threat it
may represent to human health and ecosystems (Sauvé and Desrosiers 2014).

Indeed, the exponential rise of the human population and the development of
new technologies and industrial and agricultural processes is currently associated
with the production and the release of hundreds of these so-called emerging
pollutants into the environment (Sauvé and Desrosiers 2014). These molecules
aim to replace older molecules that are no longer effective or that are associated
with environmental and health concerns and so are progressively being banned by
environmental and health agencies. It is now acknowledged that specific research
efforts must be carried out to evaluate how humans and wildlife are exposed to
these contaminants (the notion of “exposome,” Karlsson et al. 2021), to understand
their properties which lead to potential interactions with organisms (Pourchet et al.
2020), and to assess the health and environmental issues that are related to these
emerging compounds (Dulio et al. 2018). Importantly, other factors may exacer-
bate current pollution and its effect on human health, so that it is now essential to
study how other perturbations may affect the exposome and potentially exacerbate
the impact of contaminants on biodiversity and humans (Karlsson et al. 2021). For
example, it is predicted that climate change and heat waves will amplify the
negative effects of the emission of air pollutants on human health in cities (Harlan
and Ruddell 2011).

9.1.2 A Wide Variety of Pollutants

Because of the complexity and multiple sources of pollution, it would understand-
ably be unrealistic to draw up a comprehensive description of this polluted world.
Two wide types of pollutants can however be described: (1) chemical pollutants,
which include the release of specific compounds or particles in the environment.
These pollutants can be transferred to the environment and can contaminate wild
organisms through ingestion, inhalation or cutaneous exposure with associated
potential health issues. These pollutants are those focused on earlier in this chapter.
They include numerous molecules that are used by humans for multiple activities
and that have been released in the environment, sometimes for decades. The most
ubiquitous of these organic pollutants belong to the following classes:
polychlorinated biphenyls, halogenated hydrocarbons, estrogen analogues,
phthalates, dioxins, perfluorinated compounds, and brominated flame retardants
(Manzetti et al. 2014). Chemical pollutants also include inorganic molecules (i.e.,
trace elements) that are naturally present in the environment and are even necessary
to allow most living organisms to function (e.g., Fe, Cu, Zn). Human activities are,
however, associated with important releases of these trace elements and their
environmental concentrations may then reach an upper threshold that is associated
with significant toxicological effects. Other trace elements have key detrimental
effects on living organisms, even at very low environmental doses (e.g., Pb, Cd, As).
Importantly, these inorganic pollutants are persistent in the environment and are not
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bio-degradable. This wide variety of inorganic and organic molecules is associated
with different chemical and biological properties (e.g., half-life, toxicity,
bioaccumulation and biotransformation potentials) that determine the toxicological
threat that they represent for the environment and human health; (2) non-chemical or
physical pollutants, which are associated with the modification of an individual’s
environment and with an alteration of environmental cues (Halfwerk and
Slabbekoorn 2015). This pollution includes, for example, noise pollution, light
pollution or electromagnetic pollution which are all known to create unreliable
environmental cues that affect wildlife (Dominoni et al. 2020a, b), and to be
associated with health issues in humans (e.g., Goines and Hagler 2007). As for
chemical pollution, this physical pollution is complex because it is diverse in nature
and intensity and it depends on the emitting sources of pollution. For example, noise
and light pollution can vary according to the frequency (noise, Slabbekoorn 2019) or
the spectrum (light, Gaston et al. 2012), the intensity, and the duration of the
pollution. Indeed, the characteristics of physical pollutants are important determi-
nants on their impact on the physiology and the behavior of vertebrates. For
example, recent studies have suggested that the intensity and the spectrum of light
can modulate the impact of light pollution on circadian rhythms of wild birds
(Ulgezen et al. 2019).

9.1.3 How Can Pollutants Affect Vertebrates?

Historically, toxicological studies have focused on the detrimental effects that
chemical and physical pollutants can have on the performance of vertebrates.
These studies have aimed to link these pollutants with the occurrence of morbid
pathologies in humans (cardiovascular diseases, metabolic syndromes, cancer, neu-
rodegenerative diseases, psychological disorders, e.g., Turner et al. 2017) and they
have relied on large-scale epidemiological surveys or on toxicological laboratory
experiments in animal models (e.g., Zou et al. 2009). Similarly, ecological and
ecotoxicological studies have intended to determine the impact of these pollutants
on wild vertebrates (Saaristo et al. 2018). Although experimental ecological studies
are very rare for ethical and logistical reasons, correlative studies have demonstrated
that some legacy or emerging chemical pollutants are associated with reduced
survival or reproductive performance (e.g., Goutte et al. 2014, 2018; Sebastiano
et al. 2020). Regarding physical pollutants, such as noise or light pollution, epide-
miological studies and laboratory experiments have demonstrated that these pollut-
ants can also be associated with pathologies in humans (sleep disorders,
cardiovascular diseases, psychological disorders, retinal degeneration, Contín et al.
2016), and field studies on wild vertebrates have also demonstrated that noise and
light pollution can alter the reproductive performance of animals and induce disor-
ders that could be associated with reduced longevity (e.g., sleep disorders, oxidative
stress; e.g., Ouyang et al. 2017; Dominoni and Nelson 2018). Beyond these strong
effects of pollutants on the health of humans and wild vertebrates, pollutants can also
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have more subtle and pernicious effects. The rest of this chapter will focus on these
sublethal effects and will specifically endeavor to evaluate how they can affect the
ability of individuals to fulfill their seasonal and life cycles in a polluted
environment.

Several modes of actions of pollutants may result in reduced performance in wild
vertebrates. Firstly, pollutants may well of course affect the environment itself and
result in detrimental environmental conditions. These conditions will subsequently
constrain the individuals in terms of resources and they will therefore lead to poor
performance during some or even all life-history stages (Fig. 9.1). For example, the
release of systemic insecticides in agroecosystems may drastically reduce the quan-
tity of insects in the environment (Cardoso et al. 2020), leading to reduced food
abundance for all the insectivorous species, and therefore to poor reproductive and
survival performance (Stanton et al. 2018). By drastically affecting environmental
conditions, pollutants may also induce maladaptive responses, especially if the
pollutants induce environmental conditions that are not within the range of environ-
mental conditions the species has been selected for (Sih et al. 2011). For example,
artificial light at night may totally disrupt circadian rhythms and lead to reproduction

Fig. 9.1 Theoretical influence of chemical and physical pollutants on the functioning of verte-
brates. Chemical pollutants are expected to have a strong impact on integrative and response
systems through a direct disruption of key central organismal systems (“organismal disrupting
pollutant”). Physical pollutants are expected to have a strong impact on environmental conditions
and on the perception of the environment (“sensory pollutant,” Halfwerk and Slabbekoorn 2015).
Chemical pollutants could also affect the environment itself and could also affect sensory systems.
Similarly, physical pollutants can also affect the organismal systems (integrative and response
systems) through indirect effects (phenotypic plasticity and environmentally driven physiological
and neurobiological changes)
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impairment in some vertebrates, as recently demonstrated in the Australian budger-
igar, Melopsittacus undulatus (Malek and Haim 2019). Secondly, pollutants may
also induce more pernicious and subtle effects by triggering maladaptive responses
to environmental conditions that are within the range of environmental conditions
the species has been selected for (Fig. 9.1). Specifically, pollutants could affect the
different steps that govern the individual response to environmental cues: (1) the
perception of the environmental conditions; (2) the processing of the information by
integrative systems; (3) the organismal response to the environmental cues. Classi-
cally, chemical pollutants are known to disrupt central organismal systems (Crisp
et al. 1998). In the context of these subtle non-lethal effects, they are therefore likely
to affect the processing of the information and the organismal response to the
environment through their impact on integrative systems (brain and neurological
effects, endocrine disruption). They can also affect the environment itself, notably if
these chemical pollutants have an effect on other compartments of the ecosystem
(e.g., food abundance). The impact of physical pollutants on wild vertebrates is more
likely to be mediated through a direct modification of the environment (e.g., noise or
light) and through an effect on the perception of the environmental conditions
(indeed they are often called “sensory pollutants,” Halfwerk and Slabbekoorn
2015; Dominoni et al. 2020a, b). Physical pollutants may also indirectly affect the
functioning of the integrative and response systems through phenotypic adjustments,
particularly if they occur during the ontogenetic phases of these systems.

9.1.4 Importance of the Developmental Period

In this context, specific attention should be paid to the developmental stage because
the ontogeny of multiple integrative organismal systems is mainly determined during
this stage (Minelli 2003). As explained earlier, these systems are crucial to process
the perceived information and to proceed with a phenotypic response. During
development, the plasticity of all these systems is set up and developmental condi-
tions orientate these systems toward a specific function that can usually only be
modified to a limited extent during the post-developmental period (de Graaf-Peters
and Hadders-Algra 2006). For example, brain structures are mainly determined
during the prenatal and postnatal developmental periods. Brain development is
under control of gene expression during that period, but prenatal and postnatal
environmental conditions also play a crucial role in brain development because
they establish and refine neural organization in specific ways that aim to adjust the
structure and the functioning of the brain to the conditions in which the organism
will live (reviewed in Stiles and Jernigan 2010). Therefore, developmental condi-
tions may have a strong incidence on the ability of individuals to cope with
pollutants, or more generally with perturbations, later in life.

In addition, the impact of pollutants on organismal systems is often also exacer-
bated during the developmental stage. For example, brain development is very
vulnerable to pollutants in early life compared to later stages of life (Grandjean
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and Landrigan 2014). Indeed, previous experiments have shown that urban air
pollution and fine particles result in altered brain development during the prenatal
and postnatal periods and this was associated with cognitive issues, reduced
neurogenesis and neuropathologies in mice (Allen et al. 2014; Sunyer and Dadvand
2019; Patten et al. 2020). Because of this sensitivity, strict regulations are set up for
pregnant women and children in humans, especially regarding the exposure to
chemical pollutants. This suggests that the impact of pollutants on the development
of key integrative systems may then represent a lifetime burden for the organism
with permanent detrimental effects.

9.2 The Relevance to Focus on Stress-Coping Mechanisms
in the Context of Pollution

When focusing on the impact of pollutants on wildlife, it is undoubtedly crucial to
focus on stress-coping mechanisms because (1) they are required to adjust to the
environmental perturbations that may arise from physical pollutants (e.g., noise or
light pollution); (2) they may be disrupted by chemical pollutants, resulting in a
maladaptive response to environmental conditions and in pathologies. However,
surprisingly, stress-coping behavioral and physiological mechanisms have been
relatively overlooked in comparison with other organismal systems and
endocrine axes.

9.2.1 Stress-Coping Mechanisms: From Behavior
to Endocrine Mechanisms

When individuals encounter and/or perceive challenging environmental conditions,
a suite of behavioral and physiological changes are activated to allow the organism
to maintain a homeostatic state (i.e., the concept of allostasis, McEwen and
Wingfield 2003; Romero et al. 2000). These behavioral and physiological responses
to perturbations have often been used to define specific coping styles
(proactive vs. reactive, Koolhaas et al. 1999). Firstly, this stress response involves
the immediate behavioral fight or flight response, which is associated with the
sympathetic branch of the autonomic nervous system and the release of catechol-
amines (Wingfield 2003). This response is typically associated with a rapid increase
of heart and respiratory rates, and a vasodilatation of the vessels that supply oxygen
to the organs necessary to cope with the stressor (e.g., muscle). It is also associated
with the vasoconstriction of the vessels that supply oxygen to facultative functions
(not necessary for immediate survival, e.g., digestive organs), and with a rapid
conversion of glycogen to glucose to supply the brain and the muscles with energy
(McCarty 2016a, b). This response mainly translates into contrasted coping
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behavioral strategies (e.g., propensity to adopt an escape behavior). Secondly, this
stress response also involves the Hypothalamus-Pituitary-Adrenal (HPA) axis and
the regulation of circulating glucocorticoid levels (cortisol or corticosterone,
Wingfield 2013). Increased circulating levels of these hormones will in turn modu-
late the functioning of several organismal systems, such as immunity, metabolism,
and reproduction. It will therefore redirect resources from specific functions (e.g.,
reproduction) toward functions that are essential to immediate survival (Sapolsky
et al. 2000). This physiological stress response is thought to prepare the organism to
cope with the stressor in case it persists for an extended period of time (the
preparative hypothesis, Romero 2002). Importantly, the physiological stress systems
also involve the termination of the stress response that allows the organism to avoid
the detrimental effect of chronic stress (e.g., Zimmer et al. 2019). Overall, the fight or
flight response plays an important role in mobilizing immediate adaptive resources
of the body, and the HPA stress response provides for more enduring adjustments to
prolonged stress (Frankenhaeuser 1986). Another important way to cope with stress
is the development of cognitive processes that are linked to learning and memory
(the cognitive buffer hypothesis, Sol 2009). Firstly, learning and memory may help
individuals to avoid stressful situations by adjusting their behavior or their physiol-
ogy. Secondly, they may also help individuals to elicit a stress response that is well
adjusted to the stressful situation, and which optimize its benefits (Ursin and Eriksen
2004).

9.2.2 Stress-Coping Mechanisms: The Target of Pollutants

In the context of a polluted world that can affect the life cycle and the seasonal
routines of organisms, it is logical to specifically study these mechanisms (Jacobs
and Wingfield 2000). They can be the target of the pollutants themselves: pollutants
may alter the functioning of these stress-coping mechanisms, leading therefore to
maladapted responses to specific environmental conditions (Wingfield and Mukai
2009). This is typically the case for chemical pollutants that disrupt the functioning
of physiological systems (e.g., endocrine disruptor chemicals). Indeed, there is
increasing evidence that many pollutants can have sublethal effects on vertebrates
and can disrupt endocrine and neurological functions, including the HPA axis and
the autonomic nervous system (Harvey 2016; Yaglova et al. 2017; Di Lorenzo et al.
2020). In addition, pollutants also seem to detrimentally affect cognition and the
development of the brain, therefore impairing learning and memory in humans
(Sunyer et al. 2015; Clifford et al. 2016) and wildlife (Jacquin et al. 2020) with
potential consequences on their ability to cope with stressors (the cognitive buffer
hypothesis, Sol 2009). All these disruptions may impact the stress response in its
globality (fight or flight response, HPA axis, and cognition) with potential important
fitness costs for wild vertebrates (reduced survival and reduced reproductive perfor-
mance), and serious pathologies for humans.
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9.2.3 Stress-Coping Mechanisms: How to Adjust to a Polluted
Habitat

Stress-coping mechanisms will determine the response of the organism to the
environmental changes that will be associated with the pollutants. As detailed
earlier, pollutants may affect not only the functioning of the stress-coping mecha-
nisms (see Sect. 9.1.3), but also the environment or the perception of the environ-
ment by individuals (Halfwerk and Slabbekoorn 2015; Dominoni et al. 2020a, b).
Poor environmental conditions will activate the stress-coping mechanisms and will
lead to phenotypic responses that will be associated with fitness costs and benefits
(Wingfield et al. 1998; Wingfield 2013). This stress response aims to help the
organism cope with the stressor and it should theoretically allow the organism to
cope with the pollutant (Wingfield et al. 1998; Angelier and Wingfield 2013;
Schoenle et al. 2018). Individuals may appropriately cope with their new polluted
habitat by adopting fresh life-history strategies and by learning how to avoid or cope
with the new environmental conditions. The pollutants may, however, induce
environmental changes that are incompatible with the requirements of the individual
even when the stress response is activated (Angelier and Wingfield 2013). In that
scenario, the stress response may lead to the dispersal and the colonization of an
alternative habitat (unpolluted). If such dispersal is not possible (there is no appro-
priate habitat within the dispersal range of the individual), the ineffective stress
response will result in null fitness (so no reproduction before death, Fig. 9.2).

When the pollutant affects the perception of the environment, it may lead to
inappropriate environmental cues (Halfwerk and Slabbekoorn 2015). In this case,
there might be a mismatch between the stress response and the actual environmental
conditions, thus the degree of activation of the stress-coping mechanisms will be
inappropriate to cope with the actual environmental conditions (Fig. 9.2). As
extensively reviewed by Dominoni et al. (2020a, b), these inappropriate environ-
mental cues may result from masking effects of pollutants. In terms of stress
response, this inappropriate perception of the environmental situation will translate
into a heightened or dampened stress response relative to the optimal stress response.
Because the stress response is associated with fitness costs and benefits, this
mismatch will respectively increase and decrease these fitness costs and benefits
and will jeopardize the persistence of the individual in this polluted habitat (Angelier
and Wingfield 2013).

9.2.4 Flexibility of Stress-Coping Mechanisms: Importance
of the Developmental Period

These stress-coping mechanisms and coping styles are often tightly linked to
individual performance and fitness in wild vertebrates. They are indeed thought to
mediate life-history trade-offs, and as a consequence, to govern the decisions that
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individuals will adopt when facing specific environmental conditions (Angelier and
Wingfield 2013; Taff and Vitousek 2016). In that respect, their study appears
relevant to assess whether pollutants lead to maladaptive life-history strategies
through their alteration. Importantly, most of these stress-coping mechanisms are
heritable and at least partly repeatable, suggesting that they can be under selection
and may play a key role in the ability of species to persist in polluted environments.
Despite this heritability, these mechanisms are still flexible to some extent and it has
been convincingly demonstrated that individuals are able to modulate their stress
responses according to their individual state and the environmental conditions they
encounter (Wingfield and Sapolsky 2003; Taff and Vitousek 2016). Importantly, this
flexibility is certainly crucial in the context of a polluted world because the ability of
individuals to adjust their stress response to a wide range of environmental condi-
tions may allow them to complete their life cycle despite the pollution (Saaristo et al.
2018).

The flexibility of these mechanisms is certainly genetically determined and under
selection (Hau et al. 2016), but importantly, there is also very strong evidence that
prenatal and postnatal developmental conditions can have a strong impact on the

Fig. 9.2 Impact of pollutants on the ability of individuals to adjust the functioning of their stress-
coping mechanisms to the environment. Pollutants may primarily disrupt the functioning of these
mechanisms by altering their ontogeny during the developmental period, although they can also
disrupt them during adulthood. This disruption may reduce the flexibility of these adaptive stress-
coping mechanisms and/or may lead to maladaptive responses to environmental stressors with
maladaptive life-history decisions, altered performance, and reduced fitness
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ontogeny of these systems and on their flexibility later in life (Taff and Vitousek
2016). During the developmental period, the ontogeny of multiple systems—includ-
ing neurological pathways and endocrine axis—is indeed modulated by variations in
hormonal levels (Groothuis and Schwabl 2008). For example, there is strong evi-
dence that glucocorticoids are important mediators of ontogenetic transitions in
vertebrates and that exposure to glucocorticoids during the developmental period
can have important long-lasting effects on the phenotype and life-history strategies
(Wada 2008; Marasco et al. 2012; Hau et al. 2016; Dupont et al. 2019). This means
that pollutants, as endocrine disruptors, may affect the exposure of the embryo or the
offspring to hormones with a potentially strong impact on the ontogeny of these
systems, and possibly on their functioning and flexibility later in life (Fig. 9.2). This
impact could be mediated by the occurrence of physical and chemical pollutants that
alter daily and seasonal endocrine cycles, but also by chemical endocrine disruptors
that may affect the degree of exposure of the developing organism to specific
hormones (Fig. 9.2).

9.3 Influence of Chemical Pollutants on Stress-Coping
Mechanisms: The Example of Lead (Pb)

The Anthropocene is associated with a large panel of anthropogenic activities and
the related release of chemical pollutants in the environment. This paragraph aims to
illustrate the potential disrupting effects of such pollutants on stress-coping mecha-
nisms by focusing on the historical example of lead (Pb), a well-studied pollutant
that is of primary concern for humans, wildlife, and the environment (Levin et al.
2021).

9.3.1 Developmental Impact of Exposure to Lead
on Stress-Coping Mechanisms

A large number of studies have focused on the impact of lead exposure on the
development of organismal functions (Fig. 9.3a), mainly because lead has been a
major concern in child development for decades (Shefa and Héroux 2017). As a
result, a great deal of data come from epidemiological studies on human populations.
For example, studies of cohorts of children have convincingly shown that lead
exposure during development is associated with cognitive disorders (e.g., Kim
et al. 2013), increased cortisol secretion in response to stress (e.g., Gump et al.
2008), increased blood pressure (Zhang et al. 2012), and altered brain structure
(Marshall et al. 2020).

In animal models, developmental exposure to lead has been associated with the
development of cardiovascular issues, such as hypertension (Shvachiy et al. 2020;
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Chen et al. 2021). Little data is, however, available on the impact of lead exposure on
the sympathetic branch of the autonomic nervous system and the release of cate-
cholamines because most studies have focused on cardiovascular pathologies rather
than the fight or flight stress response itself. However, in humans, exposure to lead
results in increased heart rate and arterial pressure (Lai et al. 2002), and this could be
mediated by a direct effect of lead on the secretion of catecholamines (Carmignani
et al. 2000). In addition, developmental lead exposure was associated with a reduced
escape behavior in zebrafish larvae, suggesting that lead may affect the fight or flight
response (Rice et al. 2011).

Developmental exposure to lead has been reported to have strong effects on
several endocrine mechanisms (Doumouchtsis et al. 2009), including the HPA
axis. In animal models, exposure to lead results in an increased secretion of cortisol
levels (HPA axis) in developing rats (Vyskočil et al. 1990). Importantly, exposure to
lead can affect several components of the HPA axis. For example, lead seems to
affect not only the secretion of glucocorticoids by the adrenals, but also the gluco-
corticoid receptors binding (Sobolewski et al. 2018), and the negative feedback
system (Rossi-George et al. 2009). Exposure to lead during the developmental
period has permanent effects on the HPA axis even when individuals are no longer
exposed to lead after the developmental period (Cory-Slechta et al. 2004), and this
can lead to psychosocial pathologies (Haider et al. 2013). More specifically, in rats,
exposure to lead during the prenatal period results in a modified stress response later
in life (Virgolini et al. 2008), suggesting that exposure to lead might disrupt this

Fig. 9.3 Impact of lead on vertebrates. (a) Biomedical studies have demonstrated that develop-
mental exposure to lead is associated with the alteration of the ontogeny of several stress-coping
mechanisms, including brain development and the HPA endocrine axis. Such disruption is associ-
ated with the occurrence of multiple pathologies in children and adults. (b) Ecotoxicological studies
have reported that lead contamination is associated with a disruption of the HPA axis and with an
increased sensitivity of this endocrine axis to stressors. This modification has been related to a
reduced reproductive investment, and as a result to an increased survival in some wild birds. This
suggests that exposure to lead may alter life-history strategies in wild vertebrates
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stress-coping mechanism and potentially lead to maladaptive behavioral and phys-
iological stress responses (Rossi-George et al. 2011).

Prenatal or postnatal exposure to lead has also been associated with a permanent
reduction of memory (Shvachiy et al. 2020) and with learning and cognitive
impairments in rats and mice (Rodrigues et al. 1996; Kuhlmann et al. 1997; Morgan
et al. 2001). Experimental studies have shown that lead has a strong toxic effect on
the development of the brain during the prenatal and the postnatal stages (Toscano
and Guilarte 2005; Verstraeten et al. 2008), notably by inducing cell apoptosis in the
brain and by resulting in a reduced number of cognition-related proteins (Hossain
et al. 2016). Interestingly, similar effects have been found in animal fish and bird
models and developmental exposure to lead has been experimentally shown to alter
brain structures and to induce cognitive deficit and learning impairments (Xu et al.
2016; Goodchild et al. 2021).

Overall, these studies clearly demonstrate that developmental exposure to lead
can affect a wide range of stress-coping mechanisms. Because these epidemiological
and biomedical studies aim primarily to understand the pathologies that are linked to
developmental exposure to lead, they do not necessarily allow us to assess how
exposure to lead may disrupt the ability of individuals to cope with environmental
daily and seasonal challenges (Fig. 9.3a). However, they provide crucial information
to reliably test how lead functionally affects stress-coping mechanisms, and there-
fore to understand its potential impact on the ability of organisms to adapt to a
changing world.

9.3.2 Wildlife, Exposure to Lead, and Fitness Consequences?

In the wild, several studies have reported that vertebrates can be exposed and
contaminated by lead. Such contamination usually occurs because vertebrates
exploit some habitats that are polluted by current or past human activities, such as
industrial sites (e.g., Scheifler et al. 2006; Fritsch et al. 2012), urbanized areas (e.g.,
Bichet et al. 2013; Orłowski et al. 2014), or landfills (e.g., de la Casa-Resino et al.
2014). Most data come from urban ecotoxicological studies because cities are
characterized by a global lead contamination of the environment, the animals and
the humans (Levin et al. 2021). In bird species, lead seems to accumulate in the renal
area, the liver, and the brain (Torimoto et al. 2021), suggesting that it may have
important effects on cognition (brain) and glucocorticoid regulation by the adrenal
glands. Because of the difficulty in studying cognition, the fight or flight response
and the release of catecholamines in wild animals, no data is to our knowledge
available regarding these stress-coping mechanisms in wild vertebrates (but see
Grunst et al. 2020 for problem solving tasks). However, a few studies have examined
the impact of lead contamination on the HPA axis of wild birds (Chatelain et al.
2018). In white storks, Baos et al. (2006) found that blood lead levels were positively
correlated with stress-induced corticosterone levels (but not baseline corticosterone
levels), suggesting that lead may increase the secretion of glucocorticoids in
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response to stressors (Fig. 9.3b). Supporting this result further, Meillère et al. (2016)
found that in blackbirds feather lead levels were positively correlated with feather
corticosterone levels, a proxy of stress-induced corticosterone levels in birds
(Bortolotti et al. 2008).

Although the impact of lead on survival has rarely been assessed in wild verte-
brates, several studies have suggested that lead and other trace elements may impair
reproductive performance (Janssens et al. 2003; Eeva et al. 2009, but see Eeva et al.
2014), even at a rather low level of contamination (Chatelain et al. 2021). Interest-
ingly, two recent correlative studies support the idea that the disruption of stress-
coping mechanisms by lead may result in drastic changes in life-history strategies
(Guo et al. 2018; Fritsch et al. 2019; Fig. 9.3b). Further supporting this idea, another
recent study of an urban songbird found that exposure to lead was clearly associated
with a change in territoriality and aggressive behavior, two variables that are tightly
linked to life-history strategy (McClelland et al. 2019). In blackbirds, blood lead
levels were associated with increased longevity, but with reduced reproductive
performance. Overall, lead contamination resulted in reduced lifetime reproductive
success in that species (Fritsch et al. 2019). Due to the lack of experimental data,
strong evidence is required to conclude that exposure to lead may induce maladap-
tive stress-coping strategies with detrimental fitness consequences. However, this
correlational field data suggests that exposure to lead may lead to maladaptive stress-
coping strategies and reduced fitness (Fritsch et al. 2019) through its disrupting
effect on major stress endocrine axes (e.g., Baos et al. 2006; Meillère et al. 2016).
Future studies should experimentally test whether exposure to lead affects life-
history strategies and lifetime reproductive success through changes in the function-
ing of stress-coping mechanisms, such as the regulation of glucocorticoids (Eeva
et al. 2006).

9.4 Influence of Physical Pollutants on Stress-Coping
Mechanisms: The Example of Noise Pollution

In addition to the release of chemical pollutants in the environment, human activities
are also associated with other types of pollutants, such as light and noise pollution.
Here, the intention is to illustrate the impact of such pollutants on performance by
focusing specifically on the example of noise pollution, a physical pollutant of global
concern for human health and wildlife (Goines and Hagler 2007; Slabbekoorn
2019). We also aim to highlight the importance of stress-coping mechanisms in
determining the ability of individuals to cope with such pollutants.
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9.4.1 What Are the Effects of Noise Pollution
on Performance?

In humans, there is evidence that noise pollution is associated with pathologies, often
it seems related to chronic stress. For example, noise pollution has been associated
with sleep disorders, more specifically reduced sleep duration and fragmented sleep
(reviewed in Halperin 2014). In addition, noise pollution can increase blood pres-
sure, lead to hypertension, and result in a higher risk of cardiovascular failure and
stroke (reviewed in Stansfeld and Matheson 2003; Münzel and Daiber 2018). All
these health concerns are intrinsically linked to stress regulation because of the clear
interconnection between sleep, cardiovascular pathologies, and chronic stress.
Indeed, noise pollution activates stress-coping mechanisms and is associated with
the release of catecholamines (Borrell et al. 1980) and glucocorticoids (reviewed in
Münzel et al. 2021). Animal studies have supported this idea that chronic stress
could mediate the detrimental effect of noise pollution on health. They have shown
that exposure to noise alters metabolism and impairs immunity and reproduction
(Kight and Swaddle 2011), three systems that are functionally related to chronic
stress (Dickens and Romero 2013).

Noise pollution is also linked to cognitive deficits in humans and laboratory
animals. For example, noise pollution has been associated with learning impairments
and reduced memory abilities (Stansfeld and Matheson 2003), and with the devel-
opment of cognitive pathologies in old age (e.g., dementia, Paul et al. 2019). These
effects seem to be at least partly mediated by a direct impact of noise on some brain
structures (e.g., hippocampus) that could be linked to stress (Cheng et al. 2011).
Indeed, cognition is functionally linked to stress (Lupien et al. 2007; Sandi 2013),
and there is increasing evidence that cognitive impairments may be mediated by an
effect of noise pollution on stress-coping mechanisms (Jafari et al. 2020). In wild
animals, noise pollution has been shown to induce a state of chronic stress in
multiple species with reduced body condition, and elevated circulating levels of
glucocorticoids (e.g., Tennessen et al. 2014; Kleist et al. 2018; Zollinger et al. 2019;
Mills et al. 2020). Importantly, experimental studies have demonstrated that noise
pollution can impair memory and spatial learning (Osbrink et al. 2021), reproduc-
tion, and survival (Schroeder et al. 2012; Blickley et al. 2012; Kight and Swaddle
2011; Halfwerk and Slabbekoorn 2013; de Jong et al. 2020), further emphasizing the
detrimental impact of noise pollution on performance.

Importantly, all these detrimental effects of noise pollution on health seem
exacerbated during the developmental period (Gupta et al. 2018). For example,
epidemiological studies have suggested that noise pollution impairs cognitive devel-
opment with non-reversible effects in children (Stansfeld et al. 2005; Klatte et al.
2013). Experimental studies have also shown that exposure to noise during devel-
opment affects neurogenesis and the ontogeny of spatial memory (Kim et al. 2006).
In developing wild animals, noise pollution often translates in altered growth, high
oxidative damages, and elevated levels of glucocorticoids through direct effects on
the developing individuals (e.g., Meillère et al. 2015a; Raap et al. 2017; Injaian et al.
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2018a, b), although these effects may also be partly mediated by indirect effects on
parental behavior and parental foraging efficiency (e.g., Luo et al. 2015; Meillère
et al. 2015b; Nedelec et al. 2017). Our current knowledge of the long-term conse-
quences of developmental exposure to noise pollution remains limited because of the
lack of experimental and correlational data (Stansfeld and Clark 2015). However,
noise exposure seems to translate into developmental stress (e.g., elevated levels of
glucocorticoids), and it is well-known that such stress has detrimental long-lasting
consequences on multiple physiological and behavioral systems (Welberg and Seckl
2001; Cottrell 2009; Spencer 2017).

9.4.2 Importance of Stress-Coping Mechanisms to Adjust
to Noise Pollution

Noise pollution is intrinsically linked to stress-coping mechanisms because sounds
are used by vertebrates to assess their environment and any potential stressor.
Indeed, the auditory system is functionally connected to stress-coping integrative
systems, such as the autonomic nervous and the neuroendocrine systems, which
govern the fight or flight response and the HPA system (Westman and Walters
1981). Because the activation of stress-coping mechanisms is not only associated
with fitness benefits, but also fitness costs (Wingfield 2003, 2013), their degree of
activation must be appropriate and adjusted to the environmental situation in order to
optimize organismal fitness (Wingfield and Sapolsky 2003; Angelier and Wingfield
2013). In that sense, noise pollution can represent an important challenge because it
can alter the direction or the intensity of the link that exists between the perceived
environmental conditions and the threat that they actually represent (the concept of
“sensory pollution,” Halfwerk and Slabbekoorn 2015). For example, in most spe-
cies, noise pollution may represent a stressful situation either because it produces
sounds of high intensity that are perceived as stressors themselves (known as
misleading effects, Dominoni et al. 2020a, b) or because it can create a background
noise that reduces the ability of the individual to perceive or detect some potential
threats (masking or distracting effects, Dominoni et al. 2020a, b). Overall, noise
pollution is expected to trigger an activation of stress-coping mechanisms. If these
mechanisms are associated with dispersal, the organism will be able to escape the
noisy area and will resume its normal daily and seasonal routine. This strategy will,
however, be associated with some costs because the organism will have left an
environment that appeared, but was not, in fact, detrimental. If these mechanisms do
not activate dispersal or if dispersal is not an option (either because the organism has
a limited dispersal capacity or because noise pollution is general), their activation
will not help to cope with the perceived stressful situation (i.e., noise pollution) and it
will lead to a state of chronic stress. This state of chronic stress will in turn lead to
poor performance and to pathologies, as described earlier.
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To cope with such pollution, individuals need to adjust the functioning of these
stress-coping mechanisms to the noisy environment. In other words, the degree of
activation of these mechanisms needs to be modulated according to the costs and
benefits they provide to the organism (Angelier and Wingfield 2013). In this context,
the flexibility of these mechanisms—habituation and sensitization—is certainly a
key variable to consider when focusing on the ability to adjust to stressors in general,
and noise pollution in particular (Radley et al. 2015; Blumstein 2016). There is
indeed evidence that such flexibility is present in animals. For example, repeated
experimental exposure to noise was associated with a progressive reduction of the
catecholamine and corticosterone stress response in adult rats (de Boer et al. 1988).
Similarly, fish reduce their behavioral stress response when exposed to repeated
noise stress (Neo et al. 2018). This flexibility may even predict the ability of species
to cope with a noisy environment or not (Lowry et al. 2013; Møller 2013). For
example, urban birds have been shown to habituate to human disturbance and noise,
and as a result, to dampen their behavioral stress response in cities (reduced flight
initiation distance, Blumstein 2013). However, flexibility also seems limited under
some circumstances, and this may limit the ability of the organism to adjust to noise
pollution. For example, recent studies have found that the activation of stress-coping
mechanisms are not necessarily modulated according to repeated exposure to noise
pollution in adult wild animals (behavioral and physiological stress responses,
Injaian et al. 2018c; Mills et al. 2020).

The determinants of this flexibility are complex and linked to the survival
optimization system (SOS), which involves integrative systems (central nervous
and endocrine systems), and cognitive appraisal and learning systems (Mobbs
et al. 2015). The plasticity of this SOS is certainly species-specific and genetically
determined, but there is also evidence that it can vary between populations or
individuals (Vincze et al. 2016; Grunst et al. 2021), and be affected by previous
life experience (McCarty 2016a, b) and notably by early life. Cognition, learning
abilities, brain structure, and the ontogeny of most integrative systems (endocrine
and nervous systems) are indeed affected by developmental conditions, develop-
mental stress (Welberg and Seckl 2001; McGowan and Matthews 2018), and more
specifically noise pollution. For example, the ontogeny of the HPA axis is affected
by exposure to noise pollution with a lower sensitivity of this axis to stress (i.e.,
reduced secretion of corticosterone in response to stress) in several (Kleist et al.
2018), but not all circumstances (Crino et al. 2013; Angelier et al. 2016). There is
very little data to test if early-life exposure to noise pollution represents a constraint
or if it orientates the SOS toward a functioning that will help the organism to cope
with noise pollution later in life (Mariette et al. 2021). Current data suggest that
developmental exposure to noise is associated with impaired learning and cognitive
abilities (Osbrink et al. 2021), suggesting that early-life exposure to noise pollution
may indeed reduce the flexibility of the SOS later in life. However, developmental
exposure to noise pollution also seems to reduce the sensitivity of the HPA axis to
stress (Kleist et al. 2018), and this may allow the organism to better cope with a
stressful noisy environment later in life (e.g., Tennessen et al. 2018). Additional field
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and experimental studies are definitely needed to better assess whether adaptive
developmental programming occurs in the context of noise pollution.

9.5 Perspectives and Future Research Needs

9.5.1 Cumulative and Interactive Effects of Pollutants
on Stress-Coping Mechanisms

The impact of these pollutants on human health and wildlife is now being increas-
ingly studied and the current literature allows scientists and decision makers to
assess, at least partly, the risk that each single pollutant represents to humans and
biodiversity. Similarly, an increasing number of studies are investigating the impact
of the characteristics of a given pollutant on the functioning of vertebrate organismal
systems (e.g., the intensity of pollution). However, in the real world these pollutants
often covary, and vertebrates are constantly exposed to a combination of them
(Karlsson et al. 2021). In this context, there is an important gap in our understanding
of the interactive and cumulative effects of these different types of pollutants on
living organisms (Vermeulen et al. 2020), especially when referring to stress-coping
mechanisms.

Firstly, it is important to understand if the co-occurrence of chemical pollutants
and physical pollutants during the developmental period alters stress-coping mech-
anisms in a complex manner (cumulative, synergic or antagonist effects). Although
data is currently lacking in this regard, a few studies suggest that such interactive
effects may occur during the development. For example, Cory-Slechta and collab-
orators have reported that developmental exposure to lead and to developmental
stress could indeed have interactive effects on multiple stress-coping mechanisms in
rodents (i.e., catecholamines, HPA axis, Cory-Slechta et al. 2004, 2008; Rossi-
George et al. 2009) with potential consequences in terms of performance and
pathologies later in life (Virgolini et al. 2006).

Secondly, it is also crucial to understand if exposure to a specific pollutant alters
the ability of the organism to cope with an additional pollutant. There is indeed
evidence that chemical pollutants may disrupt stress-coping mechanisms, and there-
fore alter the ability of the organism to cope with stress. When the stress-coping
mechanisms are not fully solicited, the deleterious impact of such chemical pollut-
ants on fitness might remain limited, even if significant (Fig. 9.4). However, other
additional pollutants may alter environmental conditions and their perception by the
organism (e.g., physical pollutants). To cope with these pollutants, stress-coping
mechanisms are crucial, and their disruption by a chemical pollutant may lead to
ineffective and maladaptive responses. In that scenario, the occurrence of a second
pollutant may exacerbate the detrimental impact of the first pollutant on health and
performance (Fig. 9.4). To the best of our knowledge, there is no data to assess the
pertinence of this hypothesis. A few studies have examined the impact of the
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combination of two pollutants on human health or the performance of wild animals
(e.g., Ferraro et al. 2020; Dominoni et al. 2020b), but none of these studies have
focused on the importance of stress-coping mechanisms per se. For example, lead
pollution and noise pollution occur simultaneously in the urban environment, but
their potential interactive or cumulative effects on stress-coping mechanisms, human
health, and wildlife have to the best of our knowledge never been investigated. We
have previously described the importance of cognition and learning in determining
the ability of individuals to adjust to noise pollution through habituation and through
a better assessment of the costs that noise pollution may entail. However, we have
also described the cognitive impairment that results from lead contamination during

Fig. 9.4 Potential interactive effects of pollutants on stress-coping mechanisms and performance.
In this diagram, three scenarios are described and they represent either an absence of pollutant (a),
the occurrence of one pollutant (e.g., Pb) that disrupts stress-coping mechanisms (b), the occurrence
of two pollutants (e.g., Pb and noise) that, respectively, disrupt stress-coping mechanisms and
induce a stressful environmental situation (c). While stress-coping mechanisms are effective to
optimize performance when pollutants are absent (a), a chemical pollutant (e.g., Pb) could disrupt
stress-coping mechanisms (e.g., the HPA axis) and lead to a non-optimal stress response, and
therefore to a reduced fitness (b). The co-occurrence of a chemical (Pb) and a physical (noise)
pollutant could have dramatic effect on fitness, if lead alters the ability of the organismal stress
response to cope with noise (c)
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the developmental period. Therefore, taken together, these results suggest that
exposure to lead may alter the ability of urban individuals to cope with noise
pollution through its impact on cognitive processes. Similarly, there is good evi-
dence that exposure to lead can alter the integrative systems that govern the response
to stress (fight or flight response and HPA axis), and more particularly it can result in
an increased activation of these mechanisms in response to stress. However, a
reduced sensitivity to stress may be required to cope with noise pollution to avoid
the fitness costs of an overstimulation of stress-coping mechanisms in a context of
stressful exposure to noise. Therefore, the impact of lead on these mechanisms may
reduce the ability of individuals to adjust to noise pollution. Overall, this suggests
that lead pollution could theoretically exacerbate the detrimental impact of noise
pollution on health and performance.

Future experimental studies should now explicitly test this hypothesis of
cumulative and interactive effects of pollutants on stress-coping mechanisms
and fitness. They should specifically examine how the combination of multiple
and various pollutants (physical and chemical pollutants) may interact and affect
stress-coping mechanisms, individual performance, and health in humans and
wild vertebrates.

9.5.2 Hormesis: An Overlooked Mechanism in Wild
Vertebrates

This chapter has emphasized the importance of the developmental period to under-
stand not only the impact of pollutants on performance, but also the ability of the
organism to adjust to pollutants later in life. Most studies have reported that exposure
to chemical pollutants is associated with health issues and reduced fitness, mainly
because of the toxicological effects of the pollutants on organismal systems. As a
result, the general agreement is that exposure to chemical pollutants will lead to
pathologies, to disrupted stress-coping mechanisms, and to a lower ability to cope
with pollutants later in life. However, exposure to chemical pollutants may counter-
intuitively improve the response of the organism to pollutants or stressors later in life
by modifying the functioning of organismal systems (see Calabrese 2005 in the
context of toxicology; see also Chap. 2). A few studies have shown that such dose-
dependent responses to inorganic contaminants can occur in vertebrates. For exam-
ple, Heinz et al. (2010) showed that prenatal exposure to low doses of methylmer-
cury was associated with benefits in terms of hatching success in a bird species.
Similarly, exposure to low levels of lead was associated with increased red blood
cells production, while this effect was reversed at high concentrations (i.e., reduced
RBC production, Iavicoli et al. 2003). Recently, it has been shown that exposure to a
low dose of a mixture of chemical pollutants improved performance in terms of
neurobehavioral tests in the rat (Tsatsakis et al. 2019).
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In that context, specific attention should be given to the hormesis concept because
it is thought to enhance phenotypic plasticity (Costantini et al. 2010), especially
during the ontogeny of organismal systems. Indeed, priming hormesis suggests that
developmental exposure to a mild stressor could improve the ability of the organism
to cope with subsequent exposure to higher levels of that stressor (Costantini 2014a).
Because central stress-coping mechanisms govern the response to multiple stressors,
priming hormesis may even improve the ability of the individual to cope with other
types of stressors. Although there is some evidence that exposure to mild challeng-
ing conditions early in life may be associated with better fitness (reviewed in
Costantini et al. 2010), little data is available to test whether this effect is mediated
by ontogenetic modifications of the functioning of stress-coping mechanisms in
vertebrates. Priming hormesis has been extensively studied in the context of immu-
nity and resistance to oxidative stress (Costantini 2014b), but much less in the
context of the ontogeny of stress-coping mechanisms (i.e., the HPA axis, the fight
or flight stress response). However, glucocorticoids are, for example, potential
mediators of priming hormetic effects (Li et al. 2019) because (1) environmental
conditions are known to influence the exposure of the developing organism to
glucocorticoids and (2) developmental exposure to glucocorticoids often leads to
dose-dependent effects on stress-coping mechanisms (Schoech et al. 2011; Crino
and Breuner 2015; Eyck et al. 2019). For example, chronic exposure to glucocorti-
coids has been linked with cognitive impairment, while cognition may be in contrast
improved in response to a temporary surge of circulating levels of glucocorticoids
(de Kloet et al. 1999; Lupien et al. 2005). Future studies now need to examine
whether contaminants induce dose-dependent effects on stress-coping mechanisms
in vertebrates, and whether these effects are adaptive.

9.5.3 Microevolution

Finally, the ability of vertebrate populations to cope with a polluted world is not only
determined by phenotypic plasticity, but also by evolutionary processes (Swaddle
et al. 2015). Selection can drive the fate of vertebrate populations exposed to
pollutants by favoring specific stress-coping strategies that are beneficial in response
to pollutants. Support for such selective process comes from invertebrates with short
generation times, such as mosquitoes that have become resistant to insecticides
(Hemingway et al. 2002). In vertebrates, longer generation times may constrain
the ability of most vertebrate species to adapt to pollutants, especially when these
pollutants cannot be apparated to naturally occurring stressors or chemicals
(Hawkins et al. 2019).

In some circumstances, microevolution may lead to resistance to pollutants in
vertebrates. For example, resistance to pesticides has recently evolved in sea lam-
preys, an invasive fish (Christie et al. 2019). Recently, it has also been suggested that
artificial light at night and noise pollution may represent a strong evolutionary driver
to adapt to urbanization (Swaddle et al. 2015; Miranda 2017; Hopkins et al. 2018).
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The importance of stress-coping mechanisms has rarely been highlighted in this
context of adaptation to pollutants. However, and importantly, stress-coping mech-
anisms often show large inter-specific and inter-individual variabilities (e.g.,
Cockrem 2007; Moller 2010; Tablado et al. 2021), and as a result, they are also
the target of microevolution processes (Guindre-Parker 2018). Indeed, comparative
studies have shown that urbanization may select specific coping styles in vertebrates
(Sadoul et al. 2021; Tablado et al. 2021; but see Iglesias-Carrasco et al. 2020). As
explained earlier in this chapter, stress-coping mechanisms can be the target of
pollutants. They also mediate the response of the organism to pollution, especially
when pollutants can be apparated to stressors (Sect. 9.2). Therefore, stress-coping
mechanisms may be key determinants of selective processes and may determine the
ability of species to evolve resistance and adaptation to pollutants. Importantly,
microevolution can probably select specific phenotypes in terms of stress-coping
mechanisms but it can probably also act on developmental plasticity. In other words,
selection may favor individuals that are able to mitigate the detrimental impact of
pollutants on their development, either by resisting or by avoiding the pollutant, or
by selecting developmental strategies that allow individuals to cope better with the
pollutants later in life.

To the best of our knowledge, no study has, however, examined whether adap-
tation to pollutants is mediated by selective processes acting on these stress-coping
mechanisms. Therefore, we believe that studying how stress-coping mechanisms
evolve in response to pollutants (chemical and physical) represents a promising
avenue of research to understand how some species (and not others) may adapt to our
polluted world.
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