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Abstract. Natural language generation (NLG) tasks have received sig-
nificant research attention in recent years. For tackling various NLG
tasks, the Transformer [27] is now consensus to be employed as a fun-
damental building block. In the literature, there are three main Trans-
former variants for NLG: full Transformer, Encoder-Only (only using
the encoder part of the Transformer), and Decoder-Only (only using the
decoder part). A natural question to ask is: which architecture is the
best choice. According to previous studies, when the amount of train-
ing dataset is sufficient, using the full Transformer is the priority choice
for NLG tasks. However, for the insufficient training dataset setting, we
find this is not the case. In this paper, we report experiment results of
applying the three architectures to four different tasks under low-resource
settings. In contrast to the conclusion by previous study, we find that
there are no consistent results indicating which architecture is the best
under low-resource dataset settings. Further, based on the experiment
results, we comment on the architecture selection under the low-resource
dataset consideration.

1 Introduction

Natural language generation (NLG) tasks based on deep learning techniques
have received significant research attention in recent years. The applications of
natural language generation are text summarization [17,31] (generating sum-
marization of a given article), machine translation [8,24] (generating text in a
different language based on the source text), and question generation task [4,29]
(automatically generating questions based on a given context paragraph). Such
NLG applications play important roles for AI applications nowadays.

For NLG, a common practice is to employ the Transformer [27]. The Trans-
former is an encoder-decoder architecture. The encoder contains encoding lay-
ers processing the input iteratively one layer after another, while the decoder
contains decoding layers for text generation. In the literature, there are three
variants of using the Transformer for language generation, which we review them
as follows.
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– Encoder-Decoder (full Transformer): A direct employment of the Transformer
for text generation. In this architecture, input is encoded by the encoder and
the decoder conducts the shifted right [27] operation to predict the next
token. Representatives for such an architecture are BERT2BERT model [24]
and BART model [14].

– Encoder-Only: In this line of work, only the encoder part of the Transformer
is used for text generation. Representatives for such a architecture are BERT-
HLSQG model [4] and BERTGEN model [19]. The main idea is to predict
the next token by iterating over the encoder.

– Decoder-Only: In this line of work, only the decoder part of the Transformer
is used. A well-known representative is GPT-2 model [22]. The idea is to
predict the next token by continuously iterating the Decoder.

Although all three architectures have the own advocators, by our investiga-
tion, the state-of-the-art (SOTA) result of various NLG tasks are based on the
full Transformer architecture. Therefore, the consensus is that when training
dataset is sufficient, the full transformer architecture would be the best choice.

However, their comparison (the three transformer variant architectures) under
low-resource datasets settings remained under-explored. Example scenario for low-
resource text generation setting are matching of medical questions [18], reading
comprehensionofPersian[12],ormachinetranslationfromCherokeetoEnglish [32].

In this paper, we investigate the performance difference of the full Transformer,
Encoder-Only, and Decoder-Only architecture under low-resource dataset setting.
Specifically, in this paper, we mainly explore the research question:

Which architecture will be the best choice for text generation task
under low-resource dataset setting?

Specifically, thispaper reports experiment resultsofapplyingthe threearchitec-
turestofourdifferenttasks(ParaphraseGeneration,MachineTranslation,Question
Generation, and Abstractive Text Summarization). In contrast to the conclusion
drawnbyrichdataset settings,wefindthat therearenoconsistent results indicating
which architecture is the best under low-resource dataset settings.

By experiment observation, we find the following observations for text gen-
eration under low-resource datasets settings.

– First, NLG tasks requiring semantic understanding, such as abstractive text
summarization and question generation, are better to tackle by using the full
Transformer.

– Second, the Encoder-Only architecture shows better performance for a NLG
task requiring only the lexical reformation or rewriting, such as paraphrase
generation.

– Third, the Decoder-Only architecture seems not a good choice when a low-
resource dataset setting is considered.

2 Related Work

In the literature, there are three main Transformer variants for NLG: full Trans-
former, Encoder-Only, and Decoder-Only architectures. The full Transformer’s
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Table 1. The current SOTA research on rich-resource generation tasks.

Task Dataset Architecture SOTA models

Paraphrase Generation Quora Question Pairs Encoder-Decoder [11]

Machine Translation WMT14 German-English Encoder-Decoder [13]

Question Generation SQuAD 1.1 Encoder-Decoder [29]

Abstractive Text Summarization CNN/Daily Mail Encoder-Decoder [15]

representative is the BERT2BERT model [24], the Encoder-Only’s represen-
tative is the BERT-GEN model [19], and the Decoder-Only’s representative
is the GPT-2 model [22]. Three architectures have been employed for various
NLG applications. For evaluating the performance of NLG models, there are
four commonly used benchmark tasks: Paraphrase Generation, Machine Trans-
lation, Question Generation, and Abstractive Text Summarization. We find that
although the models have the own advocators and the SOTA results of the four
tasks are mainly the full Transformer. Please refer to Table 1, from which one
can see the SOTA performance of the tasks are the full Transformer. In fact, the
general consensus of selecting NLG architecture is to use the full Transformer.

The works [1,24] compare the performance of the full Transformer and
Decoder-Only architecture. The study [24] is to replace the weights of full Trans-
former with pre-trained checkpoints and compare them with GPT-2. [1] is to
pre-train the full transformer with the information of the relevant task and com-
pare it with GPT-2. The conclusions made by the two studies indicate that the
full Transformer is the winner.

However, we would like to note that the existing comparison are based on the
rich training setting. To our best knowledge, the comparison under low-resource
setting is not explored. In this paper, we use the datasets listed in Table 1 to
compare the three architectures under low-resource settings.

With regard to low-resource settings, research investigated by [9] points out
that the amount of so-called low-resource varies for different tasks. For example,
the work in [30] treats 350K as a low-resource for question response generation
tasks. Yet another example is that [6] treats 10K as low-resource on abstractive
text summarization tasks. In order to maintain uniformity and to consider a
more demanding resource situation, we set to take 1K and 3K of the training
data for each task to compare the models.

Note that there are many techniques for addressing low-resource setting, such
as data augmentation [5] or transfer learning [26] for making effective use of low-
resources datasets. We would like to note that the goal of this study to compare
the strengths and weaknesses of the architectures directly trained with the given
insufficient data.

3 Performance Comparison

In this section, we conduct experiments on the mentioned four generation tasks
to observe the performance difference of the compared architectures.
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For a fair comparison, the models are all trained with initial parameters
whose weights are randomly set. Furthermore, we consider two low-resource
dataset setting: 3k and 1k settings; we randomly select 3000 and 1000 instances
from the original datasets as training datasets for simulating the low-resource
dataset setting. We use the original released testing dataset setting for perfor-
mance evaluation. The scores are the average of the three random selected train-
ing sets. We evaluate the performance through the evaluation package released by
[25]. The package includes BLEU 1, BLEU 2, BLEU 3, BLEU 4 [21], METEOR
[2] and ROUGE [16] evaluation scripts.

3.1 Model Setup

We built the Encoder-Decoder, Encoder-Only, and Decoder-Only architectures
based on the PyTorch version of BERT 1, and initialized all weights randomly for
training each task. All tasks use the BERT-Base Cased vocabulary (28996 words)
and follow the [27] settings, with the hidden dimension set to 512, attention heads
set to 8, and a feed-forward layer set to 2048.

Note that we adjust the layers of the compared models to have a fair com-
parison. This is because if the architectures are using the same number of layers,
there will be significant difference of the total number of parameters for the
architecture, bringing the concern of unfair comparison. Therefore, we adjust
the number of layers of the implemented architectures to enable a match/close
parameter numbers. We set the Encoder-Decoder to have one layer only (an
encoder layer and a decoder layer). On the other hands, the number of layers of
Encoder-Only and Decoder-Only is set to 7. The total number of parameters of
each implemented model is near 52M.

The dropout probability between transformer layers was set to 0.1. The
Adamax optimizer is applied during training with an initial learning rate of
5e-5. The batch size for the update is set at 50. The Epoch is set to 60 for
Encoder-Only and 100 for Decoder-Only and Encoder-Decoder. All of our mod-
els are trained by using two TITAN RTX GPUs.

3.2 Paraphrase Generation

Paraphrase Generation is a task that take a source sentence to generate a sen-
tence with different syntax structure but the same semantic meaning. We use
GLUE-QQP dataset [28] to compare the model performance.

GLUE-QQP: A collection of question pairs collected from the community
question-answering website Quora are tagged with either 0 or 1, with 1 meaning
the two sentences are semantically identical, and 0 the other way around. In the
dataset, there are 134,378 instances labeled as 1. We set the maximum length
of a source sentence to 105 and a target sentence to 97.

Results. Table 2 shows GLUE-QQP validation results. We see Encoder-Only
show the best performing results on both 1K and 3K. We think this is related to
1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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the characteristic of the paraphrase generation task. Since paraphrase generation
is mainly about swapping or grammatical changes to the words, Encoder-Only
learns one token at a time, so it can effectively catch the points that need to be
changed.

3.3 Machine Translation

Machine Translation task, which translates the source text of one language into
the text of another language. We conduct our comparisons on WMT14 German-
English Newstest2014 [3].

WMT14 German-English Newstest 2014: There are 4.5M sentence pairs
in the original datasets. We set the goal to translate German to English. We set
the maximum length of German sentence to 234 and English sentence to 124.

Results. Table 3 shows WMT14 German-English Newstest 2014 test results. We
see Encoder-Decoder obtains the best scores on both BLEU 3 and BLEU 4. We
think that machine translation tasks requires deep understanding of grammatical
differences between different languages. Under this task characteristic, the full
Transformer is a better fit, where the encoder takes charge of understanding the
source language and the decoder responses for target language generation.

Table 2. GLUE-QQP evaluation results

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L

1K

Encoder-Decoder 32.17 17.65 11.23 7.25 12.76 33.18

Encoder-Only 33.00 18.31 11.85 8.10 13.29 33.36

Decoder-Only 25.45 13.94 8.83 5.72 12.18 30.50

3K

Encoder-Decoder 39.18 24.43 16.90 12.18 17.08 39.34

Encoder-Only 44.70 28.74 19.96 14.47 20.81 44.82

Decoder-Only 41.55 26.94 18.79 13.56 19.81 43.01

Table 3. WMT14 German-English Newstest 2014 test results

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L

1K

Encoder-Decoder 19.27 5.13 1.26 0.40 5.51 17.03

Encoder-Only 19.31 4.63 0.78 0.19 5.60 16.18

Decoder-Only 18.81 4.84 1.18 0.37 5.51 16.67

3K

Encoder-Decoder 20.45 5.85 1.80 0.66 6.64 18.01

Encoder-Only 18.67 5.02 1.20 0.34 6.24 16.51

Decoder-Only 21.32 6.05 1.76 0.63 6.69 18.12
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3.4 Question Generation

Question generation task, which takes a context text and an answer phase as
input and generates a question corresponding to the given answer phase. We
evaluate the performance on SQuAD 73K [7]. The SQuAD contains 536 articles
with 100K questions (and the corresponding answers) about these articles.

SQuAD 73K: Based on the setting by [7], SQuAD 73k [23] is divided into the
training data with a training set (80%), a development set (10%) and a test set
(10%). We set the maximum length of the context to 422, question to 50 and
answer to 15.

Results. Table 4 shows SQuAD 73K test results. The best results were obtained
by Encoder-Decoder in both 1k and 3k experiment setting. We think that the
question generation task needs to understand the context and the answer before
the relevant questions can be generated. A conclusion similar to the language
translation is that for understanding paragraph level information, the Encoder-
Decoder is the most suitable.

Table 4. SQuAD 73K test results

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L

1K

Encoder-Decoder 24.18 8.66 4.34 2.42 6.89 25.71

Encoder-Only 16.21 3.78 0.99 0.19 5.52 20.67

Decoder-Only 21.15 6.81 3.15 1.45 6.30 23.50

3K

Encoder-Decoder 24.71 9.25 4.78 2.78 7.01 25.55

Encoder-Only 11.26 3.19 1.11 0.42 5.43 15.18

Decoder-Only 19.61 6.93 3.31 1.57 6.15 22.49

Table 5. CNN/DailyMail test results

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L

1K

Encoder-Decoder 12.64 3.67 1.03 0.42 3.83 12.11

Encoder-Only 13.98 2.25 0.21 0.03 4.18 11.18

Decoder-Only 2.53 0.64 0.17 0.06 2.42 8.75

3K

Encoder-Decoder 15.50 4.46 1.31 0.51 5.21 13.37

Encoder-Only 4.94 0.64 0.1 0.03 2.66 7.84

Decoder-Only 2.04 0.52 0.18 0.08 2.04 7.73
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3.5 Abstractive Text Summarization

Abstractive Text Summarization task, whose goal is to take an article to gener-
ate a coherent and semantically correct abstract. We evaluate our model perfor-
mance on CNN/DailyMail [10,20].

CNN/DailyMail: The corpus has 286,817 training pairs, 13,368 validation
pairs and 11,487 test pairs. We set the maximum length of the article to 435 and
corresponded abstract to 73.

Results. Table 5 shows CNN/DailyMail test results. Encoder-Decoder still gets
the best scores on both 1K and 3K ROUGE-L. We think that the abstractive text
summarization task still requires understanding the context of the article in order
to generate a relevant summary. Therefore, the Encoder-Decoder architecture is
again a best fit for the abstractive text summarization task.

3.6 Result Discussion

Based on the experimental results, we think that the full Transformer can effi-
ciently leverage the bidirectional information captured by the encoder compo-
nent and leverage the auto-regressive capability of the decoder component for
coherent text generation, which is suitable for text generation tasks requiring
semantic understanding. On the other hand, Encoder-Only can generate the
next word that may appear by using bidirectional information, but it cannot be
utilized and generated efficiently. However, it provides excellent performance in
lexical reformation or rewriting tasks, such as paraphrase generation. Decoder-
Only can only use the previous information to generate the next word that may
appear, but it cannot use the previous information to do the action of mutual
consideration, so it is inferior to the full Transformer in tasks that require para-
graph level semantic understanding.

4 Conclusion

In this paper, we conduct experiments to compare three main NLG architec-
tures to see which one is more effective for each task under low-resource setting
scenario. Different to the previous conclusion (the full Transformer always a win-
ner) on rich dataset setting, we find Encoder-Only architecture will be good for
tasks requiring only text reformation or rewriting, such as paraphrase genera-
tion. However, if a NLG task requires understanding paragraph level semantic,
the full Transformer is still the best choice.

Acknowledgments. This work is partially supported by MOST 110-2218-E-005-008-
MBK, TWISC project, Taiwan.
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