
Hand Gesture Input Interface of IntelligentBox
Using Leap Motion Controller and Its

Application Example

Takumi Takeshita1, Kosuke Kaneko2, and Yoshihiro Okada1,3(B)

1 Graduate School of ISEE, Kyushu University Library, Kyushu University, Fukuoka, Japan
okada@inf.kyushu-u.ac.jp

2 AiRIMaQ, Kyushu University Library, Kyushu University, Fukuoka, Japan
3 ICER (Innovation Center for Educational Resources), Kyushu University Library, Kyushu

University, Fukuoka, Japan

Abstract. In this paper, the authors introduce hand gesture input interface of
IntelligentBox and show its application example. IntelligentBox is a component-
based constructive 3D graphics software development system. One of its applica-
tion fields is VR (Virtual Reality). VR applications should support various types
of VR peripherals, e.g., HMD (Head Mounted Display), data-gloves and so on.
IntelligetBox supports most of them with its dedicated software components. As a
hand gesture input interface, IntelligentBox supports data gloves. However, Leap
Motion Controller is more portable than data-gloves because data-gloves request
the user to wear them on his/her hands although Leap Motion controller does
not so. Therefore, the authors added new functionality to support Leap Motion
Controller for the hand gesture input interface of InelligentBox. In this paper, the
authors show an animation system using Leap Motion Controller as one of the
applications developed using IntelligentBox.

1 Introduction

In recent years, VR (Virtual Reality) technologies have made remarkable progress and
VR applications have become widespread. To develop VR applications, we need any
development systems. Our research group has already proposed IntelligentBox [1] that
is a component-based constructive 3D graphics software development system. This sys-
tem can be used as a development system for VR applications [2–6] because it supports
various VR peripherals. As a hand gesture input interface, IntelligentBox supports data-
gloves. However, Leap Motion Controller is more useful because it is a non-touch hand
gesture input interface and cheaper than data-gloves. Therefore, we added new function-
ality that supports Leap Motion Controller in IntelligentBox. In this paper, we explain
the functionality and how it works as a hand gesture input interface for IntelligentBox.
As an application example, we introduce one animation system.

The remainder of this paper is organized as follows: Sect. 2 describes related work.
In this section, we also explain the essential mechanism of IntelligentBox and the detail
of LeapMotion Controller. Section 3 introduces a hand gesture input interface of Intelli-
gentBox and its animation system using LeapMotion Controller. Then, we discuss some
problems in Sect. 4. Finally, we conclude the paper in Sect. 5.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Barolli (Ed.): BWCCA 2021, LNNS 346, pp. 139–147, 2022.
https://doi.org/10.1007/978-3-030-90072-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90072-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-90072-4_14


140 T. Takeshita et al.

2 Related Work

Our research purpose of IntelligentBox is to propose a software architecture that makes
it easier to develop 3D graphics applications including VR applications. Its related
works are 3D graphics toolkit systems and programming libraries like Open Inventor
[7], Coin3D [8] and 3D Widget [9]. Open Inventor is an OpenGL based object-oriented
programming library. Coin3D is also library very similar to Open Inventor. 3D Widget
is a Widget-based toolkit system for the 3D GUI development. Some of them provide an
authoring tool that enables to design 3D graphics contents. Even using such authoring
tools, it is not easy to develop 3D graphics applications because developers have to
write text-based programs for that. For the development of 3D graphics games, there are
several popular game engines, e.g., Unity 3D [10] and Unreal Engine [11]. These game
engines have very powerful functionalities. However, they request developers to make
any text-based programs.

Our research system IntelligentBox and its web version (WebIB) provide various
3D software components called boxes represented as visible, manually operable, and
reusable functional objects. Furthermore, they provide a dynamic data linkage mecha-
nism called slot connection as described in the next section. These features make it easier
for even end-users to develop 3D graphics applications including web 3D contents with-
out writing any text-based programs. This is the main difference of IntelligentBox and
WebIB from the others. In this paper, especially we propose the hand gesture input
interface for making IntelligentBox more useful.

2.1 Essential Mechanism of IntelligentBox

This subsection explains the essential mechanism of IntelligentBox that is a data-linkage
mechanism called slot-connection. Figure 1 illustrates a data linkage example among
boxes. Each box has multiple slots those are internal variables of the Box related to
its functionality. Its one slot can be connected to one of the slots of the other box. This
connection is called a slot connection. The slot connection is carried out by three standard
messages, i.e., a set message, a gimme (give me) message and an update message,
when there is a parent-child relationship between two boxes. These messages have the
following formats:

(1) Parent box set <slotname> <value>.
(2) Parent box gimme <slotname>.
(3) Child box update.

A <value> in a format (1) represents any value, and a <slotname> in formats (1)
and (2) represents a user-selected slot of the parent box that receives these twomessages.
A set message writes a child box slot value into its parent box slot. A gimme message
reads a parent box slot value and sets it into its child box slot. Update messages are
issued from a parent box to all of its child boxes to tell them that the parent box slot
value has changed. By these three messages, the two slots of a child box and its parent
box are connected and their two functionalities are combined.



Hand Gesture Input Interface of IntelligentBox 141

Fig. 1. Standard messages between boxes.

2.2 Leap Motion Controller

Figure 2 shows the image of Leap Motion Controller. It is an input interface that can
capture hand and finger movements. The software development kit (SDK) is available
for C, C#, C++, Java, JavaScript, Python, and Objective-C (currently only Leap C and
official C# are supported). They also provide plug-ins that can be used with Unity and
Unreal, as well as an application that converts the hand into a cursor on the screen for
manipulation [12]. In addition, when the Leap Motion Controller is connected to a PC,
it automatically sets up a WebSocket server with port number 6437 on localhost and
performs socket communication to output a json data. Users can implement their own
applications by communicating with it and getting the json data from it.

Fig. 2. Leap Motion Controller.



142 T. Takeshita et al.

The Leap Motion SDK can acquire not only the coordinates of the palm of the hand
and the tips of the fingers, but also the coordinates of their bones. In this research, we
used this function to obtain the angle of the finger.

3 Hand Gesture Input Interface of IntelligentBox Using Leap
Motion Controller

As one of the applications of IntelligentBox using LeapMotion Controller, we developed
a real-time animation system shown in Fig. 3. This application is very similar to our
previous animation system [13, 14]. The differences between them are interface devices.
The previous system’s interface is a data-glove.

Fig. 3. Component-structure of an animation system of IntelligentBox.

3.1 Implementation of the Input Interface

In order to implement the interface, we had to do some verification and programming.
The language used for the programming was C++. The following is a description of the
process.

3.1.1 Measurement of Finger Joint Angles

First of all, it was necessary to obtain the angle of the joint using LeapMotion Controller,
however the function to obtain the angle of the joint is not implemented in theSDK library
of Leap Motion. We implemented it using the function to get the coordinates of the tip
of the bone. The implementation is as follows:

The 3D coordinates A, B, and C of the three points are received in the form of
vectors, and

−→
BA,

−→
BC are obtained from them, and the angle (=θ) is obtained using the

inner product formula, as shown in the following equation.

−→
BA · −→

BC =
∣
∣
∣
−→
BA

∣
∣
∣ ×

∣
∣
∣
−→
BC

∣
∣
∣ × cos θ



Hand Gesture Input Interface of IntelligentBox 143

cos θ =
−→
BA · −→

BC
∣
∣
∣
−→
BA

∣
∣
∣ ×

∣
∣
∣
−→
BC

∣
∣
∣

θ = cos−1(cos θ)

The angle obtained by this formula such as π/2 to π cannot be used as it is. In
addition, since the range of angle varies from joint to joint, we measured the maximum
and minimum angle of each joint (Table 1).

Table 1. Maximum and minimum values of each joint.

3.1.2 Conversion of Finger Angles to Skeletal Joint Angles

As shown in Fig. 4, the finger joints of the hand and their corresponding skeletal joints
were determined. The angle of movement of each was also determined. In this paper,
finger joints [8, 9] (little finger) were not assigned to the skeleton. In order to convert the
obtained finger joint angles to skeletal joint angles, the following calculations are made.

Fig. 4. The left figure shows the numbers of finger joints. The right figure shows the assignment
of the finger joints to the skeleton, here the finger joint numbers are red, and the skeletal joint
numbers are white.

First, if the angle that had been acquired is larger than the previously set maximum
angle or smaller than the previously set minimum angle, correct it to the maximum angle



144 T. Takeshita et al.

and minimum angle, respectively. The angle of the finger joint (a) is corrected to the
angle of the skeletal joint b(0-range)) using the following formula.

b = a − min

max − min
× range

Since we want the fingers to be open with all the joints extended, that is, the angle
of each joint of the skeleton is zero, we can further transform it using the following
equation.

c = −b + range

Since each joint has a parent-child relationship, we get the original (unbent) vector
to the child of the joint to be bent. Specifically, we use the rotation formula for vectors
in the plane to get the vectors.

−→v2 =
(

cos θ −sin θ

sin θ cos θ

)

−→v1
The coordinates of the child are determined by adding the vector obtained from this

equation to the coordinates of the parent.

3.1.3 Ground Contact

In order to prevent the toes from going down into the underground when the waist of
the skeleton model goes down, the system corrects the positions of the knees. For this
contact constraint, we use 2-link Inverse Kinematics shown in Fig. 5. In this figure, P0,
P1 and P2 mean the base of thigh, the knee and the toe. See the paper [14] for its detail.

Fig. 5. Ground contact constraint using 2-link Inverse Kinematics.

3.2 Demonstration

Figure 6 shows the actual movement of the skeleton using the LeapMotion Controller on
themotion generation system. Figure 7 shows how the skeletonmoves on IntelligentBox.
From these figures, it can be seen that when the fingers are bent, the corresponding joints
of the skeleton are also bent, and theLeapMotionController is able to control the skeleton
model on IntelligentBox.



Hand Gesture Input Interface of IntelligentBox 145

Fig. 6. Poses of the skeleton on the motion generation system, the left knee is going up (left), and
the lower legs contact with the ground and the right arm is going up (right).

Fig. 7. The poses of the skeleton on IntelligentBox, a jump pose (left) and a sitting pose (right).

4 Discussion

4.1 Misrecognition of Leap Motion Controller

In our experiments, joints corresponding to different fingers sometimes moved when the
fingers were bent, such as the middle finger being assigned to the ring finger. This is due
to the fact that the Leap Motion Controller assigns IDs to fingers in the order in which
they are recognized.

To solve this problem, we are now considering a new method of assigning IDs to
fingers. We need to modify the program so that it first gets the finger type and then
assigns it to the appropriate finger, instead of assigning the joint positions in the order
of finger recognition, starting with the thumb.

4.2 Recognition Accuracy of Leap Motion Controller

There were times when I thought I was bending my finger joints firmly in reality, but
the Leap Motion Controller did not recognize it, and the fingers did not bend on the
screen, or conversely, the skeletal joints on the screen were bent even though I was
not bending my fingers. This could simply be due to the Leap Motion Controller not



146 T. Takeshita et al.

correctly recognizing the position of the finger bones, or the program’s maximum and
minimum angle settings are too low and the finger angles are not well converted to the
skeletal joint angles. To solve this problem, the user can clean the infrared surface of
the Leap Motion Controller, adjust the position of the hand so that the Leap Motion
Controller can read it easily, or adjust the maximum and minimum angles of the finger
joints to make the movement as expected. In some cases, the tracking was lost in the
middle of the process, or the skeleton moved suddenly by recognizing different parts as
finger bones, or it did not stop steadily. To solve this problem, I felt it was necessary
to set an upper limit on the speed so that the joints of the skeleton would move slowly
instead of instantaneously, to stabilize the movement by not moving the joints if there is
no change in angle beyond a certain level, and to determine the next coordinates based
on the average of several frames, and to stabilize the movement by not moving the joint
if the angle did not change beyond a certain point.

5 Conclusion

In this research, we developed a system to apply the skeletal movements of the Leap
Motion Controller input to IntelligentBox via the motion generation system in order to
enable the Leap Motion Controller to be used with IntelligentBox.

Although there are still many issues to be solved, such as the accuracy of the move-
ments and the range ofmotion described in Sec. 4, we believe that the results in this paper
are promising for the future development of applications using Leap Motion Controller
on IntelligentBox.

Acknowledgements. This research was partially supported by the project grant from the Kyushu
University Education Innovation Initiative.

References

1. Okada, Y., Tanaka, Y.: IntelligentBox: a constructive visual software development system for
interactive 3D graphic applications. In: Proceedings of Computer Animation 1995, pp. 114–
125 (1995)

2. Okada, Y.: 3D visual component-based approach for immersive collaborative virtual environ-
ments. In: Proceedings of the 2003 ACM SIGMM Workshop on Experiential Telepresence,
ETP 2003, pp. 84–90 (2003)

3. Okada, Y.: IntelligentBox as component based development system for body action 3D
games. In: ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology (ACE 2005), pp. 454–457 (2005)

4. Okada, Y., Ogata, T., Matsuguma, H.: Component-based approach for prototyping of Tai Chi-
based physical therapy game and its performance evaluations. ACM Comput. Entertainment
14(1), 4:1–4:20 (2016)

5. Okada, Y., Kaneko, K., Fujibuchi, T.: IntelligentBox based training system for operation of
radiation therapy devices. In: Barolli, L., Poniszewska-Maranda, A., Enokido, T. (eds.) CISIS
2020. AISC, vol. 1194, pp. 188–198. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-50454-0_18

https://doi.org/10.1007/978-3-030-50454-0_18


Hand Gesture Input Interface of IntelligentBox 147

6. Yu, B., Shi, W., Okada, Y.: Action input interface of IntelligentBox using 360-degree VR
camera and OpenPose for multi-persons’ collaborative VR Applications. In: Barolli, L., Yim,
K., Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278, pp. 747–757. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79725-6_75

7. Open Inventor. http://oss.sgi.com/projects/inventor/
8. Coin3D. http://www.coin3d.org/
9. 3D Widget. http://www.viewpoint.com/widgets/
10. Unity3D. https://unity.com/
11. Unreal Engine. https://www.unrealengine.com/
12. Ultraleap. https://www.ultraleap.com/product/leap-motion-controller/
13. Okada, Y.: Real-time motion generation of articulated figures using puppet/marionette

metaphor for interactive animation systems. In: Proceedings of the 3rd IASTED Interna-
tional Conference on Visualization, Imaging, and Image Processing (VIIP03), pp. 13–18.
ACTA Press (2003)

14. Okada, Y.: Real-time character animation using puppet metaphor. In: Nakatsu, R., Hoshino,
J. (eds.) Entertainment Computing. ITIFIP, vol. 112, pp. 101–108. Springer, Boston (2003).
https://doi.org/10.1007/978-0-387-35660-0_12

https://doi.org/10.1007/978-3-030-79725-6_75
http://oss.sgi.com/projects/inventor/
http://www.coin3d.org/
http://www.viewpoint.com/widgets/
https://unity.com/
https://www.unrealengine.com/
https://www.ultraleap.com/product/leap-motion-controller/
https://doi.org/10.1007/978-0-387-35660-0_12

	Hand Gesture Input Interface of IntelligentBox Using Leap Motion Controller and Its Application Example
	1 Introduction
	2 Related Work
	2.1 Essential Mechanism of IntelligentBox
	2.2 Leap Motion Controller

	3 Hand Gesture Input Interface of IntelligentBox Using Leap Motion Controller
	3.1 Implementation of the Input Interface
	3.2 Demonstration

	4 Discussion
	4.1 Misrecognition of Leap Motion Controller
	4.2 Recognition Accuracy of Leap Motion Controller

	5 Conclusion
	References




