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1 Introduction

Guaranteeing safety of civil structures and their occupants against earthquakes has
been a major concern of researchers and engineers for many years. A contemporary
approach for obtaining satisfactory level of safety is to use structural control in order
to grant to buildings the ability to bear such unwanted dynamic phenomena [9].
Generally speaking, physical realization of structural control is done by actuators
that apply forces to the vibrating structure in real time. There are many types of
such actuators, and each one imposes different design constraints on the control law
[1, 13, 15, 18]. A famous type of devices, known to be effective in many applications,
is the controlled hydraulic damper. It is a type of semi-active device [9, 11] whose
operation principle resembles that of viscous fluid damper [3]. The difference
though is the presence of a valves system that dictates the flow of the fluid through
the hydraulic damper’s orifices [13]. The valves are adjusted electromechanically,
leading to different damping’s properties. Closing the valve increases the damping
and vice versa when it opens. Incorporation of such dampers into a controller
allows it to adjust the damping to a preferred value during the structure’s dynamic
response in real time. This kind of devices has been implemented in several full-
scale structures [10, 13, 14].

Many control devices manifest highly nonlinear behavior. The problem is that
taking into account such nonlinear complexities during the controller design can
establish a significant hurdle for the control designer. A work-around solution is
to separate between the system’s and the damper’s dynamics [21]. This allows for
the nonlinear properties of the device to be considered separately from the system’s
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controller. The latter is designed to generate control signals, mostly optimal by some
sense, that are tracked by the device’s controller. A dilemma that naturally emerges
in such situation is what to do when the system’s controller instructs a signal which
is not feasible by the device’s limitations. A simple and popular approach in such
a case is to use arbitrary clipping [14, 16, 17, 22]. However, the arbitrary clipping
of the control trajectory distorts it and therefore raises a theoretical question on
its contribution to the controlled plant. This issue spurs formulation of optimal
control designs that can account for semi-active devices’ limitations and reduce
the need of arbitrary clipping [4–8]. The present study suggests a new method for
the computation of optimal feedback for a plant controlled by multiple semi-active
controlled hydraulic dampers and subjected to external, a priori known deterministic
excitation input.

2 Background

2.1 The Plant Model

The characteristics of civil structures, in conjunction with common engineering
assumptions, allow to model them by linear approaches, such as dynamic linear
models. Consider a model of an excited structure with lumped masses, linear
damping, linear stiffness, and a controller comprised of multiple actuators. The
equations of motion in the structure’s degrees of freedom (DOFs) are given by the
following second-order initial value problem [19]:

Mz̈(t) + Cd ż(t) + Kz(t) = �w(t) + e(t); z(0), ż(0),∀t ∈]0, tf [ (1)

This is a linear time invariant (LTI) model, in whichM > 0,Cd ≥ 0, andK > 0 are
symmetric mass, damping, and stiffness matrices, respectively,1 z : R → R

nz is a
smooth vector function, which represents the DOF displacements,w : R → R

nw is a
vector function of the control forces that are generated by the actuators,� ∈ R

nz×nw

is an input matrix that describes how the control force inputs affect the structure’s
DOF, and e : R → R

nz is a vector function that describes the external excitation
force inputs. Here, z(t) is the intersection of z at t . That is, here, z(t) is used to
signify a specific vector in R

nz , obtained at a given t , whereas z refers to the entire
trajectory over ]0, tf [.

When dealing control theory, state-space representation is much more convenient
than (1). Hence, transforming it to the state-space form yields

ẋ(t) =Ax(t) + Bw(t) + g(t); x(0),∀t ∈]0, tf [ (2)

1 Recall that M > 0, K > 0 iff zT Mz > 0, zT Kz > 0 for all z ∈ R
nz , z �= 0 and Cd ≥ 0 iff

zT Cdz ≥ 0 for all z ∈ R
nz .
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where

x(t) �
[
z(t)
ż(t)

]
; A �

[
0 I

−M−1K −M−1Cd

]
∈ R

n×n

B �
[

0
M−1�

]
∈ R

n×nw ; g(t) �
[

0
e(t)

]

n = 2nz.
Let the control devices, embedded in the structure, be semi-active. Even though

such actuators have many advantages, which is why they garner attention frommany
researchers, they impose some constraints on the synthesized control. Basically, the
semi-active dampers set limits on the control force—wi , as follows:

1. wi is always opposed to the relative velocity of the damper’s anchors. This
assures that the damper only consumes mechanical energy from the structure.

2. Physical considerations inhibit the device from generating a control force when
the relative velocity in the damper is zero. In other words, wi must vanish when
there is no motion in the damper.

3. For some semi-active dampers, there is some minimal amount of damping that
the device provides during its motion, even in off-state, i.e., when no damping
effort is exerted.

In addition to these three semi-active constraints, which are related to the traits of
semi-active dampers, many practical implementations require the control force to
be bounded.

In order to include these constraints in a control problem, they should be
quantified. Assume that the relative velocity of the damper’s anchors can be
represented as linear combination of the state variables, i.e., as cix for some
cT
i ∈ R

n, and that a linear viscous damping is valid to the given problem [20].
Then, the above limitations are expressed by the following constraints:

C1: wi(t)cix(t) ≤ 0
C2: cix(t) = 0 → wi(t) = 0
C3: |wi(t)| ≥ wi,min(t, x(t)) ≥ 0
C4: wi,max ≥ |wi(t)|
for all t ∈ [0, tf ] and for some wi,min : R × R

n → [0, wi,max]. Note that the lower
bound must satisfy wi,min(t, x(t)) = 0 whenever cix(t) = 0; otherwise C2 and C3
might contradict.

In this work, constraints C1–C4 are adapted to the traits of a certain type of
controlled hydraulic dampers. A control design must account for these constraints,
especially when the optimal control design is sought. Otherwise, the design’s
relevancy to a constrained problem is dubious. The problem is that the inclusion of
such constraints into optimal control design problem can turn it into a very nontrivial
problem. A method that can be used to tackle such a problem is explained below.



208 I. Halperin et al.

2.2 Krotov’s Method: A Global Method of Successive
Improvements of Control

Krotov’s method is aimed at numerically solving optimal control problems. How-
ever, its utilization depends on the successful formulation of a function’s sequence
with special properties. If such a sequence can be found, it allows to compute
a candidate optimum of the addressed optimal control problem. This subsection
describes elements from Krotov’s theory, relevant to the addressed problem.

Let

ẋ(t) = f(t, x(t),u(t)); x(0),∀t ∈]0, tf [ (3)

be a state equation, 𝒰 ⊆ {R → R
nu} be the set of admissible control trajectories,

and 𝒳 ⊆ {R → R
n} be the set of state trajectories that are reachable from 𝒰

and x(0). The term admissible process refers to the state and control trajectories
(x ∈ 𝒳,u ∈ 𝒰) which satisfy (3). The goal is to find an admissible process that
minimizes the following performance index:

J (x,u) =
tf∫
0

l(t, x(t),u(t))d t + lf (x(t)) (4)

Definition 1 (Improving Sequence) Let {(xk,uk)} be a sequence of admissible
processes, and assume that infx∈𝒳

u∈𝒰
J (x,u) exists. If

J (xk,uk) ≥ J (xk+1,uk+1) (5)

for all k = 1, 2, . . . and

lim
k→∞ J (xk,uk) = inf

x∈𝒳
u∈𝒰

J (x,u) (6)

then {(xk,uk)} is said to be an improving sequence.

Such a sequence is the outcome of Krotov’s method. In order to obtain the improving
sequence, the method successively improves admissible processes, as follows [12].

Theorem 1 Let (xk,uk) be a given admissible process and q be some smooth
function, and define s and sf as

s(t, ξ, ν) �qt (t, ξ) + qx(t, ξ)f(t, ξ, ν) + l(t, ξ, ν) (7)

sf (ξ) �lf (ξ) − q(tf , ξ) (8)

where ξ ∈ R
n and ν ∈ R

nu are some vectors.
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If q grants to s and sf the next property:

s(t, xk(t),uk(t)) = max
ξ∈𝒳(t)

s(t, ξ,uk(t))

sf (xk(tf )) = max
ξ∈𝒳(tf )

sf (ξ)
(9)

and if û is a control feedback which satisfies

û(t, ξ) = arg min
ν∈𝒰(t)

s(t, ξ, ν); ∀t ∈ [0, tf ] (10)

then xk+1, which solves

ẋk+1(t) = f(t, xk+1(t), û(t, xk+1(t))); xk+1(0) = x(0),∀t ∈]0, tf [ (11)

and the control trajectory uk+1(t) = û(t, xk+1(t)) satisfy (5).

It follows from this theorem that if for a prescribed (xk,uk), one can find q

such that (9) holds, then it is possible to find an improved admissible process—
(xk+1,uk+1). Such q is denoted as improving function. Solving this problem over
and over yields an improving sequence and hence leads to the solution of the
optimization problem. In his work, Krotov showed that if, at some point, the
processes stop changing, then the obtained process satisfies Pontryagin’s minimum
principle.

Generally speaking, the iterative procedure is summarized in the following
algorithm. Its initialization requires to compute some initial admissible process—
(x0,u0). Afterward, the following steps are iterated for k = {0, 1, 2, . . .} until
convergence is attained:

1. Find qk that grants sk and sf,k the next property:

sk(t, xk(t),uk(t)) = max
ξ∈𝒳(t)

sk(t, ξ,uk(t))

sf,k(xk(tf )) = max
ξ∈𝒳(tf )

sf,k(ξ)

at a given (xk,uk) and for all t in [0, tf ]. Here, sk and sf,k are the functions
obtained by substituting qk into (7) and (8).

2. Find a minimizing feedback

ûk+1(t, x(t)) = arg min
ν∈𝒰(t)

sk(t, x(t), ν)

for all t in [0, tf ]
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3. Propagate into the next improved state and control processes, by solving

ẋk+1(t) =f
(
t, xk+1(t), ûk+1(t, xk+1(t))

)

and setting

uk+1(t) =ûk+1(t, xk+1(t))

As it can be seen from the above, the use of Krotov’s method requires to formulate a
sequence of improving functions—{qk}. In general, the search for these improving
functions can be a significant challenge. As of this writing, there is no known unified
method for their formulation, and they usually differ from one optimal control
problem to another.

3 Main Results

Consider a structure equipped with a set of controlled hydraulic dampers and
subjected to an a priori known external excitation—g : R → R

n. It is assumed
that the control forces follow a linear viscous damping law and that each device
features merely two control phases—on or off. In many works, (2) is used for
modeling such a system in conjunction with a set of limitations, reflecting the
constraints induced by the nature of the semi-active dampers. In this study, however,
a bilinear representation is used, allowing to account for the system’s dynamics and
constraints C1–C4. It will be shown that the alternative representation is equivalent
to that based on (2).

Consider the bilinear state-space equation:

ẋ(t) =
(
A −

nu∑
i=1

biui(t)ci

)
x(t) + g(t); x(0),∀t ∈]0, tf [ (12)

where nu = nw; cT
i ∈ R

n is constructed such that cix is the relative velocity of the
damper’s anchors, positive when the damper elongates, and ui is a control trajectory
that satisfies ui(t) ∈ 𝒰i (t, x), where 𝒰i (x) is the set of control trajectories, which
are admissible in the i-th device . 𝒰i (t, x) is the set of admissible values at some
time—t . It is defined by

𝒰i (t, x) =
{ {di,Di}, Di |cix(t)| ≤ wi,max

di, otherwise
(13)

Here, Di ≥ di ≥ 0 are the damper’s on/off gains. Physically, they are the
maximal and minimal viscous damping coefficients of the i-th control device,
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respectively. When the valve is opened, the device provides a minimal damping
force—wi,min(t, x(t)) = di |cix(t)|.

The following proposition shows that the suggested representation accords to a
model, governed by (2) with constraints C1–C4.

Proposition 1 If (x,u) is an admissible process by means of (12) and (13), and if
di |cix(t)| < wi,max is met, then (x, (−uicix)

nu

i=1) is an admissible process by means
of (2) with constraints C1–C4.

Proof Let (x,u) be an admissible process by means of (12) and (13), and let

ŵi(x(t), t) � −ui(t)cix(t) (14)

It follows that

ŵi(x(t), t)cix(t) = −ui(t)(cix(t))2 ≤ 0 (15)

i.e., C1 is satisfied. The compliance of ŵi with C2 is straightforward from its
definition. C3 is satisfied because

|ŵi(x(t), t)| = ui(t)|cix(t)| ≥ di |cix(t)| = wi,min(t, x(t))

C4 is satisfied by the hypothesis. Hence, (x, ŵ(x)) is admissible by means of (2)
with constraints C1–C4. 
�
Therefore, assuming that the problem is defined with large enough wi,max , repre-
sentations (2) and (12) are interchangeable.

The next definition formally states the addressed optimal control problem.

Definition 2 (CBQR) The continuous-time bilinear quadratic regulator (CBQR)
control problem is a search for an optimal and admissible process (x∗,u∗) that
minimizes the quadratic performance index:

J (x,u) =1

2

tf∫
0

x(t)T Qx(t) +
nu∑
i=1

ui(t)
2rid t + 1

2
x(t)T Hx(t) (16)

where 0 ≤ Q,H ∈ R
n×n, and ri > 0 for i = 1, . . . , nu. An admissible process is a

pair (x,u) which satisfies (12) and ui ∈ 𝒰i (x) for i = 1, . . . , nu.

From physical viewpoint, the performance index weighs the states’ response against
the time-varying damping gains. Smaller values of (ri)

nu

i=1 will produce a control law
which tends to produce more frequent closed-valve pulses.

The CBQR problem will be solved here by Krotov’s method. To this end, a class
of improving functions and minimizing feedback, which suit to the CBQR problem
are formulated in the next lemmas.
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Lemma 1 Let q(t, ξ) = 1
2ξ

T P(t)ξ + p(t)T ξ, where ξ ∈ R
n, P : R → R

n×n is a
continuous, piecewise smooth and symmetric, matrix function, and p : R → R

n is a
continuous and piecewise smooth, vector function.

Let vi(t, ξ) � bT
i (P(t)ξ+p(t))ciξ

ri
. The vector of control laws, (ûi)

nu

i=1, which
minimizes s(t, x(t),u(t)) over {u(t) ∈ 𝒰(t, x)}, is given by

ûi (t, x(t)) =
{

di, Di |cix(t)| > wi,max

arg min
νi∈{di ,Di }

(νi − vi(t, x(t)))2 , otherwise (17)

Proof The partial derivatives of q are

qt (t, ξ) = 1

2
ξT Ṗ(t)ξ + ṗ(t)T ξ; qx(t, ξ) = ξT P(t) + p(t)T (18)

Let ν ∈ R
nu . By explicitly writing (7) and rearranging, we obtain

s(t, x(t), ν) =qt (t, x(t)) + qx(t, x(t))f(t, x(t), ν)

+ 1

2

(
x(t)T Qx(t) +

nu∑
i=1

ν2i ri

)
(19)

=1

2
x(t)T

(
Ṗ(t) + P(t)A + AT P(t) + Q

)
x(t)

+ x(t)T (ṗ(t) + AT p(t) + P(t)g(t)) + p(t)T g(t)

+ 1

2

nu∑
i=1

riν
2
i − 2riνivi(t, x(t))

(20)

where vi was defined in the lemma. Completing the squares leads to

s(t, x(t), ν) =1

2
x(t)T

(
Ṗ(t) + P(t)A + AT P(t) + Q

)
x(t)

+ x(t)T (ṗ(t) + AT p(t) + P(t)g(t)) + p(t)T g(t)

+ 1

2

nu∑
i=1

ri(νi − vi(t, x(t)))2 − rivi(t, x(t))2

=f2(t, x(t)) + 1

2

nu∑
i=1

ri (νi − vi(t, x(t)))2

where f2 : R×R
n → R is some function that is independent of νi . It follows that a

minimum of s(t, x(t), ν) over {ν|ν ∈ 𝒰(t, x)} is the minimum of the quadratic sum
with relation to each {νi |νi ∈ 𝒰i (t, x)}, independently. Thereby, the admissible
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minimum is attained at νi = argminνi∈𝒰i (t,x) (νi − vi(t, x(t)))2 for each device.
This fact is reflected by (17).

Lemma 2 Let (xk,uk) be a given admissible process, and let Pk and pk be the
solutions of

Ṗk(t) = − Pk(t)(A − Bdiag(uk(t))C)

− (A − Bdiag(uk(t))C)T Pk(t) − Q
; Pk(tf ) = H (21)

and

ṗk(t) = − (A − Bdiag(uk(t))C)T pk(t) − Pk(t)g(t); pk(tf ) = 0 (22)

then

qk(t, ξ) =1

2
ξT Pk(t)ξ + pk(t)

T ξ

grants sk and sf,k the property:

sk(t, xk(t),uk(t)) = max
ξ∈𝒳(t)

sk(t, ξ,uk(t))

sf,k(xk(tf )) = max
ξ∈𝒳(tf )

sf,k(ξ)

and thus is an improving function.

Proof Substituting qk into (8) yields

sf,k(x(tf )) = 1

2
x(tf )T Hx(tf ) −

(
1

2
x(tf )T Pk(tf )x(tf ) + pk(tf )T x(tf )

)
= 0

for all x(tf ) ∈ 𝒳(tf ). Hence, sf,k(x(tf )) ≤ sf,k(xk(tf )).
By substituting vi into (20) and then reordering terms, sk(t, x(t),uk(t)) becomes

sk(t, x(t),uk(t)) = 1

2
x(t)T

(
Ṗk(t) + Pk(t) (A − Bdiag(uk(t))C)

+ (A − Bdiag(uk(t))C)T Pk(t) + Q
)
x(t)

+ x(t)T
(
ṗk(t) + (A − Bdiag(uk(t))C)T pk(t) + Pk(t)g(t)

)

+ pk(t)
T g(t) + 1

2

nu∑
i=1

ui,k(t)
2ri
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As Ṗk(t) and ṗk(t) satisfy (21) and (22), we have

sk(t, x(t),uk(t)) =1

2
x(t)T 0x(t) + x(t)T 0 + pk(t)

T g(t)

=pk(t)
T g(t) + 1

2

nu∑
i=1

ui,k(t)
2ri

Since sk(t, x(t),uk(t)) = sk(t, xk(t),uk(t)), it is obvious that

sk(t, x(t),uk(t))) ≤ sk(t, xk(t),uk(t))

for all x(t).

It can be seen that, if g = 0, then pk(t) = 0, and the problem reduces to the free
vibrations case that is described in [2].

By putting together Sect. 2.2 and the above two lemmas, the sequences {qk} and
{(xk,uk)} can be computed where the second one is an improving sequence. As J

is nonnegative, it has an infimum and {(xk,uk)} gets arbitrarily close to a candidate
optimum.

The resulting algorithm is summarized in Algorithm 1. Its output is an arbitrary
approximation for P∗ and p∗, which define the optimal control law. It should be
noted that, seemingly, the use of absolute value in step (8) of the iterations stage
is theoretically unnecessary. However, it is needed due to practical considerations.
Sometimes, numerical computation errors may cause the algorithm to lose its
monotonicity when J starts converging.

4 Numerical Example

This section demonstrates the seismic response of a controlled structure whose
control trajectories are calculated by the suggested method. The simulations were
carried out numerically by MATLAB computational framework.

The model that is used here is the same one suggested by Spencer et al. [19] as
a control benchmark problem for seismically excited buildings, except for slight
modifications. Here, its response was simulated to El-Centro horizontal ground
acceleration input [3]. Peak ground acceleration was set to 0.3 g.

Nine controlled on/off hydraulic dampers are assumed to be embedded in the
structure. The model’s and the control devices’ configuration are shown in Fig. 1. In
this figure, zi is the i-th DOF and wi is the control force in the adjacent device. The
devices are numbered from 1 to 9 in an increasing order, starting from the device
mounted in the first floor.
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Algorithm 1 CBQR: Algorithm for successive improvement of control process

1: Input: A, B =
[
b1 b2 . . .

]
, C =

[
c1 c2 . . .

]
, g, (di )

nu
i=1, (Di)

nu
i=1, (wi,max)

nu
i=1, x(0), Q ≥ 0,

(ri |ri > 0)nu
i=1, H ≥ 0.

2: Initialization:

(1) Select a convergence tolerance - ε > 0.
(2) Solve:

ẋ0(t) =(A − Bdiag((di )
nu
i=1)C)x0(t) + g(t); x(0)

and set u0(t) ≡ (di )
nu
i=1. Solve

Ṗ0(t) = − P0(t)(A − Bdiag(u0(t)))C) − (A − Bdiag(u0(t)))C)T P0(t) − Q; P0(tf ) = H

ṗ0(t) = − (A − Bdiag(u0(t)))C)T p0(t) − P0(t)g(t); p0(tf ) = 0

(3) Compute: J0(x0, u0) = 1
2

tf∫
0
x0(t)T Qx0(t) + ∑nu

i=1 ui,0(t)
2rid t

3: for k = {0, 1, 2, . . .} do
4: Propagate to the improved process by solving:

ẋk+1(t) =(A − Bdiag(ûk+1(t, xk+1(t)))C)xk+1(t) + g(t); xk+1(0) = x(0)

where vi,k(t, x(t)) � bT
i

(Pk(t)x(t) + pk(t))cix(t)/ri and

ûi,k+1(t, x(t)) =
⎧⎨
⎩

di , Di |cix(t)| > wi,max

arg min
νi∈{di ,Di }

(
νi − vi,k(t, x(t))

)2
, otherwise

5: Set uk+1(t) = ûk+1(t, xk+1(t)).
6: Solve:

Ṗk+1(t) = − Pk+1(t)(A − Bdiag(uk+1(t))C) − (A − Bdiag(uk+1(t))C)T Pk+1(t) − Q

ṗk+1(t) = − (
A − Bdiag(uk+1(t))C

)T pk+1(t) − Pk+1(t)g(t)

for Pk+1(tf ) = H and pk+1(tf ) = 0.
7: Compute:

J (xk+1, uk+1) =1

2

tf∫
0

xk+1(t)
T Qxk+1(t) +

nu∑
i=1

ui,k+1(t)
2rid t

8: If |J (xk, uk) − J (xk+1, uk+1)| < ε, stop iterating, otherwise—continue.
9: end for
10: return Pk+1, pk+1.
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Fig. 1 Evaluation model and dampers configuration

State-space model was formulated according to (2). The external excitation is

e = γT z̈g , where γ = [
1 1 . . . 1

]T ∈ R
21 and z̈g is the earthquake input.

The response of three cases was analyzed:

Case 1: There are no control devices.
Case 2: The control law is the clipped optimal control law [13].
Case 3: The control law is a CBQR one.
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The clipped optimal control logic, which was used in case 1, is based on the
prevalent LQR control law. The clipping logic is described in previous studies [13].

In accordance with (14), each control force wi is associated with an equivalent
damping gain—ui . Identical properties were set for all the devices. The on/off gains
were defined as D = 5 × 106 kg/s and d = 2 × 105 kg/s. The maximal allowable
control force was set to wmax = 20 × 103 kN.

The i-th rows in the observation matrix C ∈ R
9×42 are ci . The state weighting

matrix Q for cases 1 and 2 was chosen such that

x(t)T Qx(t) = 5 × 1018
(

z1(t)
2 + z2(t)

2 +
21∑
i=3

(zi(t) − zi−1(t))
2

)

Such a weighting accounts for the inter-story drifts in the structure, which is a
common evaluation quantity in seismic practice [19]. It can be obtained here by
lettingQ = 5×1018NT N, whereN ∈ R

n×n is defined by (N)i,i = 1 for 1 ≤ i ≤ 21,
(N)i+1,i = −1 for 2 ≤ i ≤ 20, and (N)i,j = 0 in the other elements. Unlike
the states’ weighting, which has the same meaning in cases 1 and 2, the control
weighting for case 1 has different interpretation than that of case 2. In the LQR
method, which underpins case 1, the control weighting relates to the control forces,
whereas in case 2 the CBQR control weighting relates to the equivalent damping
gains. It means that case 1 and case 2 have completely different design goals.
Hence, in order to create a common comparison basis, case 1 control weighting was
chosen such that the Euclidean norm ‖(uc1

i )
nu

i=1‖ will be approximately the same
as ‖(uc2

i )
nu

i=1‖. To this end, (rc1
i )9i=1 = (1, 1, . . . , 1) × 4.7 × 105 and (rc2

i )9i=1 =
(1, 1, . . . , 1) × 10−4 were set for cases 1 and 2, respectively.

The initial state vector was set to zero.
Figure 2 shows the progress of the performance index during 9 design iterations.

A dramatic improvement can be seen after the first iteration. Practically, the
algorithm converged after the second one. Figure 3 shows the inter-story drifts of
the 10th floor during the first 10 s of the response. It can be seen that cases 2 and
3 present pretty close performance with a slight advantage in favor of case 3. The
peak inter-story drifts throughout the building are given in Fig. 4. It can be seen that
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Fig. 2 Performance index values in each iteration
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Fig. 3 Inter-story drifts in the 10th floor
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Fig. 4 Peak inter-story drifts throughout the structure
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case 3 attained additional improvement, compared to case 2. The control policies of
cases 2 and 3 resulted with different control signals. Figure 5 shows the first 10 s of
the control signal u1, synthesized by each control law for the first device, located in
the first floor. The variations in the signal express the valve’s open/close commands
in this device, generated in effort to regulate the vibrations. Figure 6 shows the form
of control force w1, generated during the first 10 s in the same device. The sharp
changes reflect moments when the valve’s state was switched in the device.
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Fig. 5 Control signal u1 in (a) case 2 and (b) case 3
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