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Preface

In the title of a 1756 paper read before the Academy of Berlin and published later,1

Leonhard Euler coined the syntagma Calculus of Variations, shortly after receiving
a letter by Joseph-Louis Lagrange, dated August 12, 1755. In his correspondence,
the younger Italian mathematician, born in Turin as Giuseppe Luigi Lagrangia,
indicated a method for the determination of minima and maxima of functionals,
a method bringing to what we commonly call the Euler-Lagrange equations.

Lagrange had been inspired by Euler’s 1744 paper dealing with the isoperimetric
problem.2 Euler’s view on the topic had been influenced by Newton’s geometric
approach. From his side, Lagrange derived anew Euler’s results not resting on
geometric intuition, simplifying them, and offering a more general view. Then,
he wrote to Euler a first letter, which remained unanswered. He insisted. Euler
answered a second letter, the one received in August: “Your solution to the
isoperimetric problem,” he wrote, “leaves nothing to be desired.” His answer was
sufficient to secure Lagrange a teaching position (as a substitute of the lecturer in
mathematics) at the Royal School of Artillery in Turin, on September 26, 1755. It
was the starting point of a brilliant career that would bring him first to the Academy
of Berlin in 1766, under the auspices of Euler himself and d’Alembert, with a
subsequent move in 1787 to the Académie des Sciences in Paris.

In his letter, Euler also wrote that “the importance of the matter has led me to
outline, with the aid of your light, an analytical solution to which I will give no
publicity until you yourself have published the whole of your research, so that I
do not take away any part of the glory that is due to you.” Euler was a leading
mathematician. Lagrange was 19 years old.

However, these ideas did not emerge ex nihilo. Optimal problems interested even
ancient Greeks (Hero and Pappus of Alessandria in the first century), although
they did not have even rough tools of infinitesimal calculus. Isaac Newton, Jacob

1 Euler L., Elementa calculi variationum, Novi comment. acad. sc. Petrop., 10 (1764), 1766, 51–93.
2 Euler L., Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive
solution problematis isoperimetrici latissimo sensu accepti, 1744, Lausanne.
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vi Preface

Bernoulli, and Pierre de Fermat, among others, had analogous interests. Lagrange’s
main merit was perhaps to recognize that Euler’s 1744 results could imply a (say)
new type of differential calculus, and he opened its construction, although rigor in
the matter began to be clear later, after Karl Weierstrass’ and Carl Gustav Jacobi’s
work, so in the nineteenth century. They found sufficient conditions for an extremum
of a functional. More specifically, Weierstrass introduced the concept of a field
of extremals, the excess function, a style renowned for rigor, and criticized the
Dirichlet principle showing that not necessarily a variational problem with energy
bounded from below has a minimum.3

Between 1900 and 1904, David Hilbert addressed new light on the issue: he
proved that the Dirichlet principle is a way to find existence of a curve of minimum
length connecting two points on a surface and solved the Laplace equation with
boundary conditions in the plane.4 Also, in formulating his 19th and 20th problems
in the list discussed first in the 1900 International Congress of Mathematicians in
Paris,5 Hilbert opened a new program in calculus of variations, which has grown as
a prominent sector of mathematical analysis per se. In his 1910 book on this matter,
Jacques Hadamard wrote, in fact, that it was “a first chapter of functional calculus,
whose development will without doubt be one of the first tasks in the analysis of the
future.”6

Also, Hilbert considered the calculus of variations at the core of analysis—with
a role similar to that of the alphabet for reading and writing—and placed (in a
sense) mechanics within calculus of variations.7 That view portrayed the calculus of
variations as a field with theoretical and aesthetic motivations per se.8 However, and
at variance in a sense, besides specific problems such as the isoperimetric or fastest
descent ones, the former dating back to Dido’s trick leading to the foundation of
Carthage, according to the Roman historian Pompeius Trogus, calculus of variations
essentially grabs the roots of its interest beyond pure mathematics on our common
belief that nature minimizes energy at constant entropy and maximizes entropy at
constant energy, a belief not falsified so far by common experiments. Already Pierre

3 Weierstrass K., Vorlesungen über Variationsrechnung, Math. Werke, Bd. 7., 1927, Akademische
Verlagsgesellschaft, Leipzig.
4 Hilbert D. (1900), Über das Dirichletsche Prinzip, Jahresberich des Deutschen Mathematicker-
Vereinigung, 59, 1900, 161–186.
Hilbert D., Über das Dirichletsche Prinzip, Mathematische Annalen, 59, 1904, 161–186.
5 19th Problem: Are the solutions of regular problems in calculus of variations always analytics?.
20th Problem: Do variational problems with certain boundary conditions admit solutions?
6 Hadamard J., Leçons sur le calcul des variationsç, Tome I (seul paru). La variation première et
les conditions du premier ordre. Les conditions de l’extremum libre, edited by M. Fréchet, Cours
du Collège de France, 1910, Librairie Scientifique A. Hermann et Fils.
7 Giaquinta M., Hilbert e il calcolo delle variazioni, Le Matematiche, LV, 2000, 47–58.
8 In his treatise, Jacques Hadamard had a view of this type, also pursued later by Gilbert Ames
Bliss with his 1946 treatise Lectures on Calculus of Variations, where he exposed systematically
essential results known at that times.
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de Fermat believed that nature operates by means and ways that are “easiest and
fastest.”

Problems requiring recourse to calculus of variations techniques to be tackled
emerge in several sectors, even in social sciences, but—I repeat—above all in
mechanics (be it classical, quantum, or relativistic), condensed matter physics, and
chemistry, among others. The technological need of objects with some optimal
properties—for example, shape, strength, and conductivity—under some constraints
or need of optimal control of processes further motivates in engineering the interest
for techniques pertaining to the calculus of variations.

Looking at mechanics from a theoretical side, we realize that the motion of
a three-dimensional rigid body can be viewed as a geodetic curve (the one with
minimal length) over the special orthogonal group, while incompressible perfect
fluids move along geodetic paths over the special group of diffeomorphisms. We
can also aim at controlling optimally the motion of certain systems, be them multi-
rigid-bodies with flexible mutual constraints or continua suffering distributed strain,
as, for example, rods are. We may ask to find the minimal energy of an atom,
a molecule, a thin film, or we may tackle optimality questions connected with
chemical reactions, or we aim at printing and connecting microstructures, in order
to obtain an artifact with some optimized properties, what we call a metamaterial.
Also, we may be interested in optimal transportation of mass, charges, and their like.

Energy minimization characterizes equilibrium configurations. When coupled
with appropriate monotonicity conditions mimicking irreversible behavior, such
a minimization procedure may allow us to describe classes of (rate-independent)
dissipative processes, such as plastic flows, damage, some phase transitions, or
nucleation and grow of fractures, by adapting Ennio De Giorgi’s construction of
minimizing movements. The idea is to partition the time interval into finitely many
sub-intervals, presuming to go from the state at instant tk to the one at tk+1 by
minimizing some functional onto an appropriate function class. For example, in
fracture processes, a crack path can be viewed as coinciding with the jump set of
special bounded variation functions (SBV) or the support of varifolds.9 The two
possibilities are not equivalent: when we choose just deformations in SBV, imposing
that they are one-to-one and preserve almost everywhere the orientation of volumes
outside the jump set, we are thinking essentially about fractures that open or undergo
relative slip between their margins, while when we make use of varifolds, we may
describe fractures which have a portion of the margins in contact, although no
material bonds intervene between them.

This and other examples of phenomena suggesting recourse to a variational
view to be described open often-challenging analytical problems. Tackling them
drives the evolution of this rich sector of mathematical analysis, possibly indicating

9 SBV is a class of functions with derivative a measure having absolutely continuous component
with respect to the Lebesgue volume n-dimensional measure, and a nonsingular part concentrated
over aHn−1-measurable set, withHn−1 the (n−1)-dimensional Hausdorff measure. Varifolds are
vector-valued measures admitting a generalized notion of curvature.
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connections with other sectors, as it happened in the analysis of parabolic partial
differential equations, now connected with calculus of variations in the optimal
transportation theory.

Already a beginner in mathematical analysis knows the way of finding minima,
maxima, and stationary points of a differentiable real function on [a, b] ⊂ R through
the evaluation of zeros for the first derivative and the analysis of second derivative,
when available. The classical approach to calculus of variations has been the proper
extension of that standard method to functions defined on functional spaces rather
than just on Rn. The derivative becomes a variation obtained through appropriate
test functions. The Euler-Lagrange equations determine necessary conditions for a
function u to be an extremal for a functional F with values given, for example, by

F(u) :=
∫
�

F(x, u(x),Du(x)) dμ(x),

where F is a scalar density assumed to be differentiable with respect to its entries,
and μ a volume measure over �, a smooth open set in Rn. When F is convex and
the pertinent Euler-Lagrange equations admit unique solution u, we are sure that
F attains its minimum value at u. Otherwise, once proving existence of solutions
for the Euler-Lagrange equations, we should evaluate the second variation of F
over them. When � is an interval in R, the pertinent Euler-Lagrange equations
have ordinary character, with pertinent boundary data, and we do not always find
conditions assuring existence of their solutions. Beyond one-dimensional ground
space, the Euler-Lagrange equations are partial, with pertinent difficulties.

Around the end of nineteenth century, Bernhard Riemann suggested to reverse
the view on minimization of functionals along a path already used (in a sense
implicitly) by Carl Friedrich Gauss and William Thompson Lord (1st Baron) Kelvin.
If, with X a topological space from now on, we are able to find a minimum for

F : X→ R ∪ {∞}

by looking just at minimizing sequences, we have, in turn, a solution of the pertinent
Euler-Lagrange equations in some sense, that is, depending on the regularity showed
by the minimum. This is (roughly) what we call direct method in calculus of
variations, explored by many scholars, starting from David Hilbert, who formulated
related questions in his 1900 program, which has already been mentioned.

Such an approach emerges from what we do on functions on R. In fact, to prove
that a continuous real function defined on a compact setK ∈ Rn attains its minimum
value, first we take a minimizing sequence

{
xj
}

such that

f (xj )→ inf
x∈K f (x)

as j → ∞. In K there exists a converging subsequence {xj } and the continuity of
f implies limj→∞ f (xj ) = f (x). Although working on minimizing sequences is
a key idea, the version of this procedure in infinite-dimensional spaces cannot be
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reached straight away. In fact, consider, for example, F to be such that, for u ∈
L2(�, dμ), whenever ‖uj → u‖L2 as j → +∞, F(uj ) → F(u), that is, F is
strongly continuous. If we choose K to be now the unit ball

K :=
{
u ∈ L2(�, dμ) : ‖u‖L2 ≤ 1

}

as a putative set for finding the minimum of F, although K is closed and bounded,
we do not necessarily find a convergent subsequence

{
uj
}

in K . If we look at
weak convergence, we find that every sequence in K has a weakly convergent
subsequence. However, F is not necessarily weakly continuous. In other words, the
more we relax the notion of convergence, the less likely F is continuous on the
pertinent sequences. Things may be adjusted when F is such that

lim inf
j→∞ F(uj ) ≥ F(u)

as uj ⇀ u. In this case, we say thatF is weakly lower semicontinuous—remarkably,
Leonida Tonelli established first in 1920 necessary and sufficient conditions of lower
semicontinuity for a functional defined on a one-dimensional space. Thus, if F is
lower semicontinuous, for

{
uj
}

a minimizing sequence in the sense that

F(uj )→ inf {F(u) : u ∈ C} =: γ,

there exists a subsequence
{
uj
}

such that uj ⇀ u, so that

γ = lim
j→∞F(uj ) ≥ F(u) ≥ γ,

that is, F(u) = γ . Instead of thinking in sequential terms (convergence of sequences
being not necessarily weak), we can speak of lower semicontinuity for a functional
F : X→ R ∪ {+∞}, if for any t ∈ R the set

Ft := {u ∈ X : F(u) > t}

is open. A functional lower semicontinuous in this topological sense is also so
in sequential terms. The opposite is true if every point of X admits a countable
fundamental system of neighborhoods.

In analyzing a functional class in terms of the direct method, a key point is to
have at disposal a lower semicontinuity result. In the academic year 1968/1969, in
the unpublished notes of a course held in Rome at the “Istituto Nazionale di Alta
Matematica,” Ennio De Giorgi presented the first proof of the (sequential) lower
semicontinuity of the functional

F(u, v) =
∫
�

F(x, u(x), v(x)) dx,
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with respect to strong convergence of u and weak convergence of v, under
assumption that the density F(x, s, ξ) is jointly continuous with respect to the three
variables entering it and convex in ξ (e.g., the Lp norm is a lower semicontinuous
functional). Such a result opened new paths in calculus of variations. In the
subsequent body of semicontinuity theorems, obtained under various assumptions,
a specific result involving the Dirichlet functional,

F(u) = 1

2

∫
�

|Du|2 dx,

in which we take u as a map with values on a finite-dimensional differentiable
manifoldM not embedded into a linear space, and assumed to be Riemannian and
complete, plays a role in the general model-building framework for the mechanics
of complex materials, a format in which descriptors of the material microstructure
are manifold-valued maps.

Another idea pertaining to calculus of variations, which emerges as a useful
(at time essential) tool for justifying rigorously some mechanical models, is the
notion of �-convergence, also due to De Giorgi. Such a notion of convergence may
decisively help in analyses that aim at justifying schemes involving dimensional
reduction from thick material layers to thin films or the passage from a discrete
(atomic-scale) representation of matter to a continuum view.

A sketch of the idea goes as follows: Imagine having a sequence of functionals
and a companion sequence of minimizers. A question is to find conditions assuring
that the limiting function is a minimum for the limiting functional, if any. Consider,
in fact, functionals Fε : Xε → R ∪ {∞} and a sequence {minFε(uε) : uε ∈ Xε},
which we assume to be equi-coercive, that is, there exists a pre-compact minimizing
sequence such that Fε(uε) ≤ infFε + o(1), and also uε → u0, as ε → 0, with
u0 solution to {minF0(u0) : u0 ∈ X0}. We call F0 the �-limit of Fε when two
conditions are satisfied: (i) for every u ∈ X0 and every uε → u we have

F(u) ≤ lim inf
ε→0

Fε(uε);

(ii) there exists a sequence ūε → u0 for every u0 ∈ X0 such that

infF0 ≥ lim sup
ε→0

infFε.

�-convergence and equi-coerciveness imply convergence of minimum problems.
Again, the choice of convergence is crucial: a weaker convergence, with many

converging sequences, makes equi-coerciveness easier to fulfill, but at the same time
makes the lim inf inequality more difficult to hold. Often, an appropriate choice is
strong convergence in Lp spaces. Connected with the selection of convergence is
the companion choice of energy scaling to assure equi-coerciveness.

Analytical problems in calculus of variations are manifold and faceted. They
exceed largely the brief incomplete sketch above. Also, besides purely analytical
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questions, when we look at the world around us with the aim of interpreting it qual-
itatively and quantitatively, we meet recurrently phenomena offering themselves as
a playground for calculus of variations or suggesting further analytical problems in
a fruitful mathematical field.

This miscellany offers a partial, although variegate, view on problems in mechan-
ics that can be well-analyzed by means of variational techniques. Topics range
from topology optimization to identification of material properties, optimal control,
plastic flows, gradient polyconvexity, obstacle problems, quasi-monotonicity, and
waves. These chapters offer results opening views on further possible research
work. Also, they are examples of how foundational knowledge and command of
appropriate mathematical techniques may address us towards applications going out
of the rut and indicating, as such, possible new scientific and technological paths.

Preliminary versions of these chapters have been included in a special issue of
the Journal of Optimization Theory and Applications (vol. 184, issue 1, 2020, 1–
314) on Calculus of Variations in Mechanics and Related Fields. For some of the
original papers, type and amount of variations leading to the new versions have
been so extended to justify changes in the titles and, when appropriate, in the list of
authors.

I thank the former editor-in-chief of the Journal of Optimization Theory and
Applications, Prof. Franco Giannessi, who promoted that special issue; his succes-
sor, Prof. Tamás Terlaky, who gave permission to print modified versions of the
papers; and all staff at Birkhäuser’s and Springer’s offices who supported and pushed
ahead the whole project.

Firenze, Italy Paolo Maria Mariano

The original version of this book was revised: Revised book has been uploaded to Springerlink.
The correction to this book is available at https://doi.org/10.1007/978-3-030-90051-9_12.

https://doi.org/10.1007/978-3-030-90051-9_12
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Numerical Study of Microstructures in
Multiwell Problems in Linear Elasticity

Sergio Conti and Georg Dolzmann

1 Introduction

The mathematical analysis of diffusionless phase transformations in elastic solids,
in particular austenite–martensite transformations, has inspired a lot of research
starting from the seminal papers [5, 6, 13] and subsequently also led to a new
approach to the variational modelling in nonlinear plasticity starting in [10, 28].
Mechanically, these systems are characterized by the spontaneous formation of
finely oscillating microstructures, which are difficult to study numerically. From the
viewpoint of analysis, the challenges are related to questions of lower semicontinu-
ity in the vector-valued calculus of variations and to the notion of quasiconvexity
in the sense of Morrey [27]. The analytical investigations also inspired the search
for efficient algorithms for the numerical solution of the corresponding variational
problems. The key observation that establishes the link between microstructures
experimentally observed in elasto-plastic materials, and the mathematical descrip-
tion in nonlinear elasto-plasticity is that the lack of quasiconvexity in the variational
formulation may lead to oscillating minimizing sequences, which are hard to capture
with numerical schemes based on energy minimization with descent methods and
hard to resolve explicitly in mesh-based numerical approximations. Whereas the
details of the microstructure can often be ignored, its presence is crucial in order to
understand macroscopic material properties, such as the energetics and the stress–
strain response.
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2 S. Conti and G. Dolzmann

One of the main tools used in the mathematical analysis both from the analytical
and the numerical point of view is the concept of relaxation [19], which transforms
a variational problem I that fails to be lower semicontinuous into an associated
variational problem I rel that is lower semicontinuous in the appropriate topology.
The relaxed variational problem I rel is defined so that minimizing sequences for
I converge to minimizers of I rel, and, vice versa, minimizers of I rel are limits
of minimizing sequences for I . Therefore, a study of the minimizers of I rel

permits to understand the asymptotic behavior of minimizing sequences of I and
to efficiently study the effective macroscopic material behavior without resolving
the details of the microstructure. This approach is, however, only useful if one can
characterize I rel explicitly, which typically involves finding an explicit formula for
the quasiconvex envelope of the energy density entering I , see Sect. 2 for the precise
definition.

In [16], we presented our approach to the numerical approximation of relaxed
variational problems in the framework of nonlinear elasto-plasticity with a focus
on microstructures in single-slip finite elasto-plasticity. In this chapter, we focus
on the implementation of variational problems in the context of linear elasticity,
and we verify the excellent performance of the proposed scheme in the context of
variational models related to austenite–martensite transformations for which some
relaxed variational problems have been characterized analytically. In Sect. 2, we
introduce the relevant notions of convexity, state preliminary results, and describe
common strategies that are useful in the search for relaxed variational models. A
detailed description of the available results and an illustration of the approaches
described in Sect. 2 are contained in Sect. 3. The algorithm itself is briefly described
in Sect. 4, and results from numerical experiments are presented in Sect. 5.

Notation We denote the space real n × n-matrices by R
n×n and the space of

symmetric matrices by R
n×n
sym and define the orthogonal projection πn : Rn×n →

R
n×n
sym by F 
→ πn(F ) = (F + FT )/2. We denote by 〈F,G〉 = trFTG the scalar

product in R
n×n and use the same for its subspace R

n×n
sym .

2 Fundamental Notions of Convexity and Relaxed Energy
Densities

The theory of relaxation is based on the notion of quasiconvexity which, despite
of its importance in the vector-valued calculus of variations, is poorly understood.
Therefore, other notions of convexity, which provide necessary and sufficient
conditions for quasiconvexity, play an important role in the mathematical analysis.
We first introduce these notions, and then we sketch two widely used ideas to
characterize relaxed energies.
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2.1 Notions of Convexity and Their Relations

In this chapter, we focus on models for elastic behavior under the assumption
that the elastic response is governed by linear elasticity. Therefore, we recall the
fundamental notions of convexity in this setting. The relation with the classical
notions in nonlinear elasticity [19] is established through the concatenation with
the projection onto symmetric matrices. More precisely, a function f : Rn×n

sym → R

is said to be symmetric rank-one convex (quasiconvex, polyconvex) if the function
f̂ : Rn×n → R given by F 
→ f (πn(F )) is rank-one convex (quasiconvex,
polyconvex), see [9] for a detailed discussion of this and related concepts. This
identification induces the following definitions.

Definition 1 Two matrices ε, η ∈ R
n×n
sym are said to be (symmetrically) compatible

if there exist a, b ∈ R
n with

ε − η = 1

2
(a ⊗ b + b ⊗ a) =: a � b ,

where (a ⊗ b)ij = aibj for i, j = 1, . . . , n.

Lemma 1 ([24, Lemma 4.1]) A matrix ε ∈ R
n×n
sym , ε �= 0, can be written in the

form ε = a � b with a, b ∈ R
n, if and only if either

(a) ε has rank one or
(b) ε has rank two and its nonzero eigenvalues have opposite sign.

Definition 2 Suppose that f : Rn×n
sym → R is given. Then,

1. f is said to be symmetric rank-one convex if for all symmetrically compatible ε,
η ∈ R

n×n
sym and all λ ∈ [0, 1], the inequality

f (λε + (1− λ)η) ≤ λf (ε)+ (1− λ)f (η)

holds.
2. f is said to be symmetric quasiconvex if for all ε ∈ R

n×n
sym and all test functions

φ ∈ C∞c ((0, 1)n;Rn), the inequality

∫
(0,1)n

f (ε)dx ≤
∫
(0,1)n

f (ε + πn(∇φ))dx

holds.
3. f is said to be symmetric polyconvex if there exists a convex function g :

R
τ(n) → R such that for all ξ ∈ R

n×n, the identity

f (πn(ξ)) = g(M(ξ))
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holds, where M ∈ R
τ(n) denotes the vector of all minors of ξ . For example,

for n = 2, we have τ(2) = 5 and M(ξ) = (ξ, det ξ), and for n = 3, we have
τ(3) = 19 and M(ξ) = (ξ, cof ξ, det ξ).

Remark 1 For every function f : Rn×n
sym → R, the implications

f convex ⇒ f symmetric polyconvex ⇒ f symmetric quasiconvex

⇒ f symmetric rank-one convex

hold. The definition of quasiconvexity does not depend on the domain of integration,
and the cube (0, 1)n can be replaced by any open domain with Ln(∂Ω) = 0, see [7].

Remark 2 Since our applications concern two-dimensional models, we note that
there are in this case significant differences between linear and nonlinear elasticity.
In fact, the determinant is a null-Lagrangian or polyaffine, but the map F 
→ detF
(seen as a map from R

n×n
sym to R) is not symmetric quasiconvex. In fact, det(π2(ξ)) =

det ξ − 1
2 (ξ12 − ξ21)

2, and for any φ ∈ C∞c ((0, 1)2;R2),

∫
(0,1)2

det
(1

2
(∇φ + (∇φ)T )

)
dx =

∫
(0,1)2

[
det∇φ − 1

2
(∂1φ

(2) − ∂2φ
(1))2
]
dx .

These formulas also show that F 
→ − detF is symmetric polyconvex. In general,
the quasiconvex functions presented in [31] fail to be symmetric quasiconvex,
see [9] for a detailed discussion and proofs.

Remark 3 One can show that a function f : R2×2
sym → R is symmetric polyconvex if

and only if there exists a convex function g : R2×2
sym × R → R nonincreasing in its

second argument with f (ε) = g(ε, det ε), see [9, Theorem 4.1].

Definition 3 Suppose that f : Rn×n
sym → R is given. The symmetric rank-one convex

(quasiconvex, polyconvex) envelope of f is defined by

f̃ = sup{g ≤ f : g symmetric rank-one convex (quasiconvex, polyconvex)} .

One uses the notation f̃ = f rc, f̃ = f qc, and f̃ = f pc in each of the three cases.
The convex envelope of f is denoted by f ∗∗.

In view of Remark 1, the polyconvex envelope is a lower bound and the rank-one
convex envelope is an upper bound for the quasiconvex envelope of a finite-valued
function, respectively, f pc ≤ f qc ≤ f rc. The quasiconvex envelope is also referred
to as the relaxation, the relaxed or the macroscopic energy density. In practice, it is
a difficult problem to find an explicit formula for the relaxation, and this has been
achieved only in a few special cases, see, for example, [11, 17, 23, 24, 30].
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2.2 Strategies for the Characterization of Relaxed Energies

Since symmetric rank-one convexity is a necessary condition and since symmet-
ric polyconvexity is a sufficient condition for symmetric quasiconvexity, most
approaches for the characterization of the relaxed energy density f qc are based
on upper bounds inspired by symmetric rank-one convexity and lower bounds
inspired by symmetric polyconvexity. In view of the organization of the necessary
calculations involved in the characterization of a relaxed energy, one can envision
two strategies.

2.2.1 Construction of an Upper Bound and a Matching Lower Bound

The common approach consists in first finding by explicit constructions an upper
bound for the relaxation and then verifying that this upper bound is at the same time
a lower bound. More precisely, this can be achieved by calculating by successive
relaxation along symmetric rank-one lines an upper bound for the symmetric rank-
one convex envelope and by showing that this bound is symmetric polyconvex. To
implement this scheme, one defines a sequence of functions f (k) for k ∈ N0 in the
following way: set

f (0) : Rn×n
sym → R, ε 
→ f (0)(ε) = f (ε)

and inductively f (k+1) : Rn×n
sym → R for k ∈ N0 by

f (k+1)(ε) = inf{λf (k)(ξ)+ (1− λ)f (k)(η) :
λ ∈ [0, 1], ξ, η compatible, ε = λξ + (1− λ)η} .

Then, f (k) ≥ Wrc for all k. If one can find a closed expression for small k, then one
can check, for example, based on Remark 3, whether f (k) is symmetric polyconvex.
If this is the case, then f rc = f qc = f pc and a characterization has been found.

We illustrate this approach in Sect. 3.3 for the compatible and the incompatible
case of the two-well problem in two dimensions.

2.2.2 Construction of a Lower Bound and a Matching Upper Bound

In some applications, the translation method, which originates in the theory of
homogenization and of optimal bounds, has been applied successfully as an
alternative to the polyconvexity of the lower bound. A general discussion of the
translation methods and various examples can be found in [20], where it is also
shown that in some cases the translation method can provide better lower bounds
than polyconvexity.
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The translation method considers that for a (symmetric) quasiconvex function q
the inequality f − q ≥ (f − q)∗∗, which leads to the bound

f ≥ (f − q)∗∗ + q .

The right-hand side is (symmetric) quasiconvex as the sum of a convex and a
(symmetric) quasiconvex function and by construction a lower bound for f qc. Since
this function is a lower bound for all q (symmetric) quasiconvex, one can try to
find an optimal q, which may depend on a specific argument as well. One of the
main difficulties is a lack of a good description of all (symmetric) quasiconvex
functions. In applications, one considers a subset of this set which consists of all
null-Lagrangians and all quadratic (symmetric) rank-one convex functions. As null-
Lagrangians are linear combinations of minors [18, 19], and no nontrivial minor
can be written in terms of the symmetric part of the matrix alone, no nontrivial
null-Lagrangians exist [9], and one has only (symmetric) quadratic rank-one convex
functions as a standard choice for the translation method. We illustrate this approach
in Sect. 3.1.3 following [12] for the two-well problem in two dimensions, where the
function q(ε) = − det(ε) is chosen as symmetric rank-one convex translation.

2.2.3 Concept of the Algorithm

Our algorithm addresses the approximation problem by providing an upper bound
for the symmetric rank-one convex envelope of the energy. Given suitable growth
conditions that are often met in problems in elasticity, successive relaxation along
symmetric rank-one lines is known to converge to the symmetric rank-one convex
envelope [25, Eq. (5.15)–(5.16)], see also [19, Th. 6.10].

Proposition 1 Suppose that f : Rn×n
sym → R is given and that there exists a

symmetric rank-one convex function m : Rn×n
sym → R with m ≤ f on R

n×n
sym . Define

the function f (k), k ∈ N0, as in Sect. 2.2.1. Then, limk→∞ f (k) = f rc.

Proof By definition, f (k+1) ≤ f (k). Let g := infk f (k) = limk→∞ f (k), where
the limit is interpreted pointwise. If h is a symmetric rank-one convex function and
h ≤ f , then (by induction) h ≤ f (k) for all k. In particular, m ≤ g and g is
real-valued. By the same argument, f rc ≤ g. Furthermore, from its definition, one
checks that g is symmetric rank-one convex, therefore g ≤ f rc.

3 The N -Well Problem in Linear Elasticity

A model problem that arises, for example, in models for materials undergoing solid-
to-solid phase transformations concerns the N -well problem in linear elasticity,
where N ∈ N is the number of phases in the low-temperature phase. We use this
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model in order to illustrate the general concepts described in Sect. 2.2 and to verify
the efficiency of the proposed algorithm for relaxation in the linearized setting,
see [8] for details of the modelling. The relaxation of this stored energy has attracted
a lot of attention and was first investigated for two phases in the context of optimal
bounds in homogenization and later in the context of relaxation of energies, see [1–
4, 22, 26]. The special case of two phases in R

n×n with equal elastic moduli was
investigated in [24, 30] based, in a first step, on the characterization of the relaxation
with fixed volume fractions and then, in a second step, on the minimization in the
volume fractions. We mention that even in the two-dimensional case, no general
results are available for more than two phases. However, if the elastic moduli are
equal and the transformation strains are pairwise strain compatible, then the relaxed
energy coincides with the convex envelope, see [8, Result 12.1, p. 215]. Moreover,
three phases in two dimensions were investigated based on a tensor of geometric
parameters in [21, 29], and bounds in the three-dimensional setting were derived
in [32]. In more general situations, the algorithm described in this chapter offers a
unique opportunity to investigate the structure of the phase diagram.

To fix notation, suppose that an elastic material undergoes a phase transformation
in the solid state and that the low temperature phase has N different phases which
are characterized by the symmetric stress-free transformation strains ε�i ∈ R

n×n
sym

and the elastic moduli αi , symmetric and positive definite tensors of fourth order. If
the minimum of the energy in ε�i is denoted by wi , then the free energy for the ith
phase is given by

Wi(ε) = 1

2
〈αi(ε − ε�i ), ε − ε�i 〉 + wi,

and the system is governed by the minimum of these energies,

W(ε) = min
i=1,...,N

Wi(εi).

3.1 Chenchiah–Bhattacharya Relaxation Result in Two
Dimensions

Since we present numerical simulations with the implementation of our algorithm
for two phases in two dimensions only, we recall the main results in [12] in the case
of cubic elasticity in two dimensions using the same notation for the convenience
of the reader. Here, cubic elasticity refers to the situation that the elastic behavior
of the material depends on three parameters, the bulk modulus κ , the diagonal shear
modulus μ, and the off-diagonal shear modulus η. The theoretical results are used
to evaluate the efficiency of the proposed algorithm.
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3.1.1 Definitions in the Two-Dimensional Case

The orthogonal projections Λh, Λd , Λo : R2×2
sym → R

2×2
sym onto the associated linear

spaces are defined by

Λhε = ε11 + ε22

2
(e1 ⊗ e1 + e2 ⊗ e2) , R(Λh) = span{e1 ⊗ e1 + e2 ⊗ e2} ,

Λdε = ε11 − ε22

2
(e1 ⊗ e1 − e2 ⊗ e2) , R(Λd) = span{e1 ⊗ e1 − e2 ⊗ e2} ,

Λoε = ε12(e1 ⊗ e2 + e2 ⊗ e1) , R(Λo) = span{e1 ⊗ e2 + e2 ⊗ e1} ,

whereR denotes the range of the operators and e1, e2 the standard basis in R
2. Thus,

Λh +Λd +Λo = Id is the identity on R
2×2
sym , and the elastic tensor α = α(κ, μ, η)

can be viewed as a mapping

α : R2×2
sym → R

2×2
sym , ε 
→ (2κΛh + 2μΛd + 2ηΛo)ε . (1)

We assume κ, μ, η > 0. Finally, denote by T : Rn×n
sym → R

n×n
sym the mapping

ε 
→ T ε = ε − (trε)Id = (−Λh +Λd +Λo)(ε) ,

which represents the quadratic form −2 det(·), that is, for a symmetric matrix ε,
T ε = −cof ε and 〈T ε, ε〉 = −2 det ε.

3.1.2 Minimization with Fixed Volume Fractions

The translation method has close connections to the theory of homogenization, and
the adaption of the method is based on the idea that one tries in a first step to find the
minimal energy under the assumption that the energies W1 and W2 are used on fixed
volume fractions λ1 and λ2, respectively. In view of Remark 1, we fix Ω = (0, 1)2.
The subsets of Ω , on which one uses W1 and W2, are defined by a phase function
χ ∈ L∞(Ω; {0, 1}2) with χ1χ2 = 0 and χ1 + χ2 = 1, that is, the subset on which
Wi is used is given by χi = 1 and χi+1 = 0, where one computes indices modulo
2. The average of χ on Ω is denoted by 〈χ〉 ∈ R

2, and we assume 〈χ〉 �∈ {e1, e2}.
Fix ε ∈ R

2×2
sym . The task is to find for fixed λ ∈ [0, 1]2 with λ1 + λ2 = 1 the density

(formula (1.6) in [12])

Wλ(ε) = inf〈χ〉=λ inf
u|∂Ω=εx

∫
(0,1)2

2∑
i=1

χi(x)Wi(ε(x))dx ,

where ε = 1
2 (∇u + ∇uT ). This is achieved by providing a lower bound based

on a suitable translation of the energy with the determinant and a construction
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which shows that the lower bound can be (asymptotically) realized by admissible
microstructures.

3.1.3 The Lower Bound Based on Translation with the Determinant

In order to obtain the lower bound, one first rewrites the integral in the definition of
Wλ(ε) as

∫
(0,1)2

2∑
i=1

χi(x)[(Wi + β det)(ε)− β det ε]dx

=
2∑
i=1

〈χi〉 · 1

〈χi〉
∫
{χi=1}

(Wi + β det)(ε)dx − β

∫
(0,1)2

det ε dx .

For β ≥ 0, the function ε 
→ −β det ε is symmetric polyconvex, so that the last term
is not smaller than −β det ε. If β is additionally chosen so that Wi +β det is convex
for both i = 1 and i = 2, then one can apply Jensen’s inequality in the first term.
Letting εi = 〈χiε〉/〈χi〉, and using that the boundary data imply λ1ε1 + λ2ε2 = ε̄,
one obtains (formula (3.2) in [12])

Wλ(ε) ≥ max
β≥0

W1,2+β det convex

min
ε1,ε2∈R2×2

sym
λ1ε1+λ2ε2=ε

2∑
i=1

λi(Wi + β det)(εi)− β det(ε). (2)

We first determine the set of admissible β. First, we need β ≥ 0. As Wi + β det is a
polynomial of degree two, it is convex if and only if its quadratic part

1

2
〈αiε, ε〉 + β det ε = 1

2
〈αiε, ε〉 − 1

2
β〈T ε, ε〉

is positive semidefinite. Equivalently, the operator

Si(β) := αi − βT = (2κi + β)Λh + (2μi − β)Λd + (2ηi − β)Λo

needs to be positive definite for i = 1 and i = 2. Recalling that Λh, Λd , and Λo

are orthogonal projections onto orthogonal subspaces, this is the same as 0 ≤ β ≤
γ := γ (α1, α2) := min{2μ1, 2μ2, 2η1, 2η2}.

We then minimize in εi . The expression in (2) is a maximum in β of

Wλ(β, ε) = min
ε1,ε2∈R2×2

sym
λ1ε1+λ2ε2=ε

λ1W1(ε1)+ λ2W2(ε2)+ βλ1λ2 det(ε2 − ε1) .
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Writing ε1 = ε̄ − λ2ε̂ and ε2 = ε̄ + λ1ε̂, we obtain with ε̂ as independent variable

Wλ(β, ε) = min
ε̂∈R2×2

sym

λ1W1(ε̄ − λ2ε̂)+ λ2W2(ε̄ + λ1ε̂)+ βλ1λ2 det(ε̂),

which can be rewritten, expanding the various terms, as

λ1W1(ε̄)+λ2W2(ε̄)+λ1λ2〈α2(ε̄−ε�2 )−α1(ε̄−ε�1 ), ε̂〉+
λ1λ2

2
〈(λ2α1+λ1α2−βT )ε̂, ε̂〉.

We minimize in ε̂. The coefficient of the quadratic term is λ2S1 + λ1S2 and hence
strictly positive definite for β ∈ [0, γ ). In this range, the minimizer is

ε̂ = Δε∗(β, ε) = (λ2α1 + λ1α2 − βT )−1(Δ(αε�)− (Δα)ε), (3)

where we write briefly Δ(x) = x2 − x1, and one finds the optimal decomposition
for ε as ε = λ1ε

∗
1 (β, ε)+ λ2ε

∗
2 (β, ε) with (formula (3.9) in [12])

ε∗1 (β, ε) = ε̄ − λ2Δε
∗ = (λ2α1 + λ1α2 − βT )−1((α2 − βT )ε − λ2Δ(αε

�)) ,
(4a)

ε∗2 (β, ε) = ε̄ + λ1Δε
∗ = (λ2α1 + λ1α2 − βT )−1((α1 − βT )ε + λ1Δ(αε

�))
(4b)

and therefore an explicit formula for Wλ(β, ε). In particular, (3) implies that
Δε∗(β, ε) is equal to zero on [0, γ (α1, α2)) if it has a zero in this interval since
the matrix which depends on β is invertible on the entire interval.

It remains to maximizeWλ in β since one seeks the maximum of all lower bounds
at fixed volume fractions. The important observation [12, Lemma 3.5] is that the
map

[0, γ (α1, α2)) � β 
→ Wλ(β, ε)

satisfies for Δε∗(β, ε) �= 0

∂Wλ

∂β
(β, ε) = λ1λ2 det(Δε∗(β, ε)) , ∂2Wλ

∂β2 (β, ε) < 0

and is therefore strictly concave. Moreover,

∂2Wλ

∂β2 (β, ε) = λ1λ2
∂

∂β
det(Δε∗(β, ε)) < 0,

and the map β 
→ − det(Δε∗(β, ε)) is strictly increasing, that is, ∂βWλ(·, ε) has at
most one zero. If Δε∗(β, ε) = 0, then by (3), the function Wλ(·, ε) is constant.
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These observations lead to the four different regimes for the maximization of
Wλ(·, ε) with Regime 0 being the case with Δε∗ = 0. Here, Wλ(·, ε) is constant,
and one may choose β = 0. The function ∂βWλ(·, ε) has no zero, and the maximum
is attained in a boundary point if the value of the strictly increasing function
− det(Δε∗(β, ε)) at β = 0 is positive, Regime I, or if its value at β = γ (α1, α2)

is negative, Regime III. In Regime I, ∂βWλ is negative, and the maximum is
attained at β = 0, in Regime III, ∂βWλ is positive and the minimum is attained
at β = γ (α1, α2). In the remaining case, Regime II, there exists exactly one zero
βII , which provides a maximum for Wλ(·, ε). The situation is summarized in [12,
Theorem 2.1]. Define

β∗(ε) =

⎧⎪⎪⎨
⎪⎪⎩

0 if − det(Δε∗(·, ε)) ≡ 0 Regime 0 ,
0 if − det(Δε∗(0, ε)) > 0 Regime I ,
γ (α1, α2) if − det(Δε∗(γ (α1, α2), ε)) < 0 Regime III ,
βII otherwise Regime II ,

and the corresponding matrices

(λ2α1 + λ1α2 − β∗(ε)T )ε∗1 (β∗(ε), ε) = (α2 − β∗(ε)T )ε − λ2(α2ε
�
2 − α1ε

�
1 ) ,

(λ2α1 + λ1α2 − β∗T (ε))ε∗2 (β∗(ε), ε) = (α1 − β∗(ε)T )ε + λ1(α2ε
�
2 − α1ε

�
1 ) .

Note that the matrix on the left-hand side may not be invertible for β∗(ε) =
γ (α1, α2). With this notation in place, the expression for the relaxation at fixed
volume fractions is given by

Wλ(ε) =
2∑
i=1

λiWi(ε
∗
i (β

∗(ε), ε))+ β∗(ε)λ1λ2 det(ε∗2 (β∗(ε), ε)− ε∗1 (β∗(ε), ε)),

and a lower bound for the relaxation can be obtained by minimization in λ. It
remains to verify that this lower bound is optimal in the sense that it can be realized
by microstructures with the given volume fractions. Since the optimal strains ε∗i
are compatible in Regimes 0, I, and II, this has to be shown in Regime III and is
accomplished in [12] with an explicit construction based on second-order laminates.
For β = γ = γ (α1, α2), at least one of the translated energies Wi + γ det is not
strictly convex, and after relabeling the energies we may assume that this is true for
W1+γ det. Therefore, there exists a nontrivial element εn in the kernel of α1−γ T ,
and from α1 > 0 and γ > 0, we obtain det εn = − 1

2 〈T εn, εn〉 < 0. Since in this
regime det(Δε∗) > 0, the function z 
→ det(Δε∗ + zεn) = 0 has two distinct roots
z1 < 0 < z2. Furthermore, the map z 
→ (W1 + γ det)(Δε∗ + zεn) is affine.

We decompose ε∗1 along the direction εn into a convex combination of two
matrices, see Fig. 1,

εI = ε∗1 − t1εn , εII = ε∗1 − t2εn
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Fig. 1 Sketch of the
second-order laminate
constructed in Sect. 3.1 for
regime III. The dashed line is
the (typically not rank one)
decomposition of ε̄ into ε∗1
and ε∗2 and the arrow the
direction of εn, along which
W1 is affine

ε

εII

εI
ε∗
2εA

ε∗
1

εn

with t1t2 < 0. To do so, we seek εI in such a way that it is rank one connected to
ε∗2 ,

det(εI − ε∗2 ) = det(ε∗1 − t1εn − ε∗2 ) = det(Δε∗ + t1εn),

and hence t1 = w1 ∈ {z1, z2}. The matrix εII is constructed in such a way that it
is rank one connected to a convex combination with weight ρ of εI and ε∗2 , εA =
ρεI + (1− ρ)ε∗2 ,

det(εII − (ρεI + (1− ρ)ε∗2 ) = (1− ρ)2 det
(
Δε∗ + t2 − ρt1

1− ρ
εn

)
= 0 .

Therefore, (t2 − ρt1)/(1− ρ) = w2 ∈ {z1, z2} \ {w1} and

w2 = t2 − ρt1

1− ρ
⇔ t2 = ρw1 + (1− ρ)w2 .

These rank-one directions are not parallel. Since ε = λ1ε
∗
1 + λ2ε

∗
2 , we need to

determine ρ ∈ (0, 1) and μ ∈ (0, 1) in such a way that

ε = μεA + (1− μ)εII = μ(1− ρ)ε∗2 + (μρ + (1− μ))ε∗1 − (μρt1 + (1− μ)t2)εn .

Thus, λ2 = μ(1− ρ), λ1 = μρ + 1− μ = 1− λ2,

μρw1 + (1− μ)(ρw1 + (1− ρ)w2) = ρw1 + (1− μ)(1− ρ)w2 = 0 ,

and hence

1− μ = − ρ

1− ρ
· w1

w2
.

We now find

λ1 = μρ + 1− μ = ρ
[
1+ ρ

1− ρ
· w1

w2

]
− ρ

1− ρ
· w1

w2
= ρ
[
1− w1

w2

]
,
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and then

ρ = λ1 · w2

w2 − w1
,

w1

w2
= ρ − λ1

ρ
, 1− μ = λ1 − ρ

1− ρ
, μ = 1− λ1

1− ρ
.

Note that ρ ∈ (0, λ1). Finally,

t1 = w1 , t2 = ρw1 + (1− ρ)w2 = w2

(
ρ · ρ − λ1

ρ
+ 1− ρ

)
= w2(1− λ1),

and since w1w2 < 0, ε∗1 is a convex combination of two matrices with weights

−t1
t2 − t1

= λ1 − ρ

λ1(1− ρ)
,

t2

t2 − t1
= (1− λ1)ρ

λ1(1− ρ)
.

For w1 = z2 and w2 = z1, this is exactly the construction reported in [12], which
contains a typo in the definition of ρ after [12, Lemma 3.12].

It remains to verify that this second-order laminate coincides with the lower
bound on the energy obtained through translation [12, Proof of Theorem 3.10]. By
definition,

f (2) ≤ λ1 − ρ

1− ρ
W1(ε

II )+ λ2

1− ρ
(ρW1(ε

I )+ (1− ρ)W2(ε
∗
2 ))

= λ1

[ λ1 − ρ

λ1(1− ρ)
(W1 + γ det)(εII )+ λ2ρ

λ1(1− ρ)
(W1 + γ det)(εI )

]

+ λ2W2(ε
∗
2 )− γ

[λ1 − ρ

1− ρ
det(εII )+ λ2ρ

1− ρ
det(εI )

]
.

The translated energy W1 + γ det is affine along the direction εn, and the first
expression in the square brackets is equal to (W1 + γ det)(ε∗1 ). Moreover, the
determinant is affine along rank-one directions, and hence

det(ε) = λ1 − ρ

1− ρ
det(εII )+ 1− λ1

1− ρ
((1− ρ) det(ε∗2 )+ ρ det(εI ))

=
[λ1 − ρ

1− ρ
det(εII )+ λ2ρ

1− ρ
det(εI )

]
+ λ2 det(ε∗2 ) .

These identities lead to

f (2) ≤ λ1W(ε∗1 )+ γ λ1 det(ε∗1 )+ λ2W(ε∗2 )+ γ λ2 det(ε∗2 )− γ det(ε) .

The same calculation that leads starting with (2) to the formula for Wλ,β implies
that the right-hand side is equal to the translated energy. We remark that the same
type of laminate is identified by the numerical simulation, see Sect. 5 below.
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3.2 Kohn’s Relaxation Result with Equal Moduli

Kohn [24] discusses a derivation based both on Fourier analysis and on a translation
approach with quadratic functions under the assumption that both phases have the
same elastic moduli. Let W be given by

W(ξ) = min{W1(ξ),W2(ξ)},

where each phase is a quadratic function of the linear stain ξ ,

Wi(ξ) = 1

2
〈α(ξ − ε�i ), ξ − ε�i 〉 + wi , i = 1, 2 .

Here, ε�i are the eigenstrains of the two phases and wi their free energies. Fix
θ ∈ [0, 1], the volume fraction of phase one described by W1, see Sect. 3.1.2 for
a detailed discussion. The fact that the two phases have the same elastic moduli
permits to use Fourier transformation in the definition of the quasiconvex envelope.
Using this approach, Kohn [24] has shown that the relaxation Qθ with fixed volume
fraction θ is

QθW(ξ) = θW1(ξ)+ (1− θ)W2(ξ)− θ(1− θ)

2
g

with

g = max|k|=1

∣∣πα1/2V (k)α
1/2(ε�1 − ε�2 )

∣∣2 , (5)

where πV denotes the orthogonal projection onto the subspace V ⊂ R
n×n, and

where for k ∈ R
n, k �= 0, the subspace V (k) is given by

V (k) = {k ⊗ v + v ⊗ k, v ∈ R
n} .

An optimization in θ leads to an explicit formula for the relaxed energy.

Theorem 1 ([24, Theorem 3.5]) The symmetric quasiconvex relaxation of the two-
well energy with equal elastic moduli in n dimensions is given for strains ξ ∈ R

n×n
sym

by the following formulas with g defined in (5):

1. if ξ satisfies W1(ξ)−W2(ξ)− g
2 ≥ 0, then the optimal value of θ is zero and

Wqc(ξ) = W2(ξ) ;

2. if ξ satisfies W1(ξ)−W2(ξ)+ g
2 ≤ 0, then the optimal value of θ is one and

Wqc(ξ) = W1(ξ) ;
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3. otherwise, if |W1(ξ)−W2(ξ)| ≤ g
2 , then the optimal value of θ is

θ∗ = 1

g

(
W2(ξ)−W1(ξ)+ g

2

)
,

and the value of the relaxed energy is

Wqc(ξ) = W2(ξ)− 1

2g

(
W2(ξ)−W1(ξ)+ g

2

)2
.

If εT1 and εT2 are compatible, then Wqc equals the convex envelope of W [24,
Sec. 4]; otherwise, Wqc is not convex and one obtains a closed formula if g can be
calculated explicitly. This is the case for isotropic elasticity,

αξ = κ(tr ξ)Id+ 2μξD , ξD = ξ − 1

n
(tr ξ)Id

with bulk modulus κ and shear modulus μ. For n = 2, this corresponds to α =
2κΛh + 2μΛd + 2μΛo. If ε�1 − ε�2 = η0Id, then [24, Prop. 4.4]

g = cη2
0 with c = κ2n3

κn+ 2(n− 1)μ
. (6)

In two dimensions, formulas depending on the eigenvalues η1 and η2 of η = ε�1 −ε�1
are available [24, Prop. 4.5]. If η1η2 ≤ 0, then ε�1 and ε�2 are compatible, and

g = |α1/2(ε�1 − ε�2 )|2 = (κ − μ)(η1 + η2)
2 + 2μ(η2

1 + η2
2) . (7)

Otherwise, ε�1 and ε�2 are incompatible and

g = μ2

κ + μ

( κ
μ
|η1 + η2| + |η1 − η2|

)2
.

3.3 Examples

We illustrate the calculation of relaxed energies in two prototypical cases with α1 =
α2 = Id, that is, using the notation of [12], for

κ1 = κ2 = μ1 = μ2 = η1 = η2 = 1

2
.

In this case, γ (α1, α2) = 1. We fix the average ε and discuss briefly both the
compatible and the incompatible cases.
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3.3.1 The Compatible Case with ε�
1 = diag(1,−1) and ε�

2 = diag(−1, 1)

We use this case to illustrate the general strategy formulated in Sect. 2.2.1 and
provide a closed formula for f (1) based on the geometry in the subspace of diagonal
matrices, see Fig. 2, and then compare the result with the formulas due to Kohn and
Chenchiah and Bhattacharya, respectively. The key observation is that Λdε

�
i = ε�i

for i = 1, 2, so that the energy can be written as

W(ε) = min
{1

2
|ε − ε�1 |2,

1

2
|ε − ε�2 |2

}

= 1

2
min
{|Λdε − ε�1 |2, |Λdε − ε�2 |2

}+ 1

2
|(Λh +Λo)ε|2 = f1(Λdε)+ f2(ε) ,

that is, as the sum of the nonconvex function f1, which depends only on the
projection Λd of ε, and the convex function f2, which depends only on the other
two. The image of Λd , which is the direction Δε� = ε�2 − ε�1 , is a symmetric rank-

ε11

ε22
ε11 − ε22 = −2

ε11 − ε22 = 2

ε11 − ε22 = 0

Δε∗

ε�
1

ε�
2 (ε11, ε22)

ε∗
2 = ε�

2 + Λhε

ε∗
1 = ε�

1 + Λhε

Λhε

Fig. 2 Construction of the relaxation of the two-well problem in the compatible case shown in the
plane of all diagonal matrices: the level sets of the functions W1 and W2 in the definition of the
energy W are the families of circles centered at ε�1 and ε�2 , respectively. Along the line through
Λhε with direction Δε�, the energy Wi is minimal in matrix ε∗i , and the function W̃ constructed
as a candidate for Wrc is constant along this line with W̃ (ε) = Wi(ε

∗
i )
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one direction. Therefore, Wrc is not larger than f ∗∗1 + f2. As the latter function is
convex, we obtain that all envelopes of W coincide with f ∗∗1 + f2. The geometry
is illustrated in Fig. 2 in the set of symmetric matrices and shows three different
regions: for ε11 − ε22 ≥ 2, W = W1 is convex, for ε11 − ε22 ≤ −2, W = W2 is
convex, and for −2 ≤ ε11− ε22 ≤ 2, the energy fails to be convex. The level sets of
the energiesW1 andW2 are circles centered at ε�1 and ε�2 , and the energy is minimal
in the two points on the line t 
→ ε + tΔε�, which are tangential to these circles.
This construction leads for −2 ≤ ε11 − ε22 ≤ 2 to

ε∗i = ε�i +Λhε +Λoε , Wi(ε
∗
i ) =

1

2
|Λhε|2 + 1

2
|Λoε|2 ,

a convex function. One obtains

Wqc(ε) =
⎧⎨
⎩

W1(ε), if ε11 − ε22 ≥ 2 ,
Wi(Λhε + ε�i +Λoε), if − 2 ≤ ε11 − ε22 ≤ 2 ,

W2(ε), if ε11 − ε22 ≤ −2 .

Being the sum of the convex functions f ∗∗1 and f2, this is convex and continuous.
Finally, we compare with the formulas in [24] and [12]. According to (7), g =

|ε�1 − ε�2 |2 = 8, and the relaxed energy is given for

|W1(ε)−W2(ε)| ≤ g

2
⇔ |〈ε, ε�1 − ε�2 〉| ≤ 4 ⇔ |ε11 − ε22| ≤ 2

by Kohn’s formula

W2(ε)− 1

2g
(W2(ε)−W1(ε)+ g

2
)2

= 1

2
|ε|2 − 1

2

〈 ε�1 − ε�2
‖ε�1 − ε�2 ‖

, ε
〉2 = 1

2
|Λhε|2 + 1

2
|Λoε|2 .

Using the notation in [12], α1 = α2 = Id, Δα = 0, Δ(αε�) = diag(−2, 2), γ = 1,
and for β ∈ [0, γ ), the optimal ε∗i for the translated energy are given by

ε∗1 = ε − λ2

1− β
diag(−2, 2) , ε∗2 = ε + λ1

1− β
diag(−2, 2) .

A short calculation leads to

λ1W1(ε
∗
1 )+ λ2W2(ε

∗
2 ) =

1

2
|ε|2 + 4

λ1λ2

(1− β)2
(λ1 + λ2)+ 1+ (λ2 − λ1)〈ε, εT1 〉

+ 2
λ1λ2

1− β
〈diag(−2, 2), ε�1 〉
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and

βλ1λ2 det(ε∗2 − ε∗1 ) = βλ1λ2 det
( λ1

1− β
diag(−2, 2)+ λ2

1− β
diag(−2, 2)

)

= βλ1λ2
1

(1− β)2
det(diag(−2, 2)) = − 4βλ1λ2

(1− β)2
,

so that we obtain an explicit formula for the relaxed energy,

Wλ(β, ε) = 1

2
|ε|2 − 4λ1λ2

1− β
+ 1+ (λ2 − λ1)〈ε, ε�1 〉 .

One needs to compute first the maximum in β ∈ [0, 1) and then the minimum in
λ1 + λ2 = 1 to obtain the relaxed energy. The maximum in β is attained at β = 0,
which means that in this situation the translation does not help to identify good
constructions or microstructures. We find

λ1 = 1

2
+ 1

4
(ε11 − ε22),

and λ1 is an admissible choice as long as |ε11 − ε22| ≤ 2. All three expressions for
the relaxed energy are equal.

3.3.2 The Incompatible Case with ε�
1 = −Id and ε�

2 = Id

To find an upper bound, we construct as in the compatible case the approximation
f (1). Fix ε ∈ R

2×2
sym , a ∈ S

1, and consider the symmetric rank-one line t 
→ ε+ta⊗a
with parameters t1 < 0 < t2, that is,

ε = t2

t2 − t1
(ε + t1a ⊗ a)− t1

t2 − t1
(ε + t2a ⊗ a),

and find the minimum of

t2

t2 − t1
W1(ε + t1a ⊗ a)− t1

t2 − t1
W2(ε + t2a ⊗ a)

= |ε|2
2
+ 1+ t2 + t1

t2 − t1
tr ε + 2t1t2

t2 − t1
− 1

2
t1t2 ,

in a, t1, and t2. This expression is in fact independent of a and needs to be minimized
in t1 ≤ 0 ≤ t2. Since minimization along a symmetric rank-one line corresponds to
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a convexification along this line, the derivatives of the energies corresponding to the
parameters t1 and t2 must coincide

〈ε − ε�1 + t1a ⊗ a, a ⊗ a〉 = 〈ε − ε�2 + t2a ⊗ a, a ⊗ a〉 ,

which gives t2 = t1+2. Inserting in the previous expression yields t1 = −(tr ε+1),
and recalling that |ε|2 + 2 det ε = (tr ε)2,

f (1)(ε) = − det ε + 1

2
.

The choice of t1 is admissible if t1 = −(tr ε + 1) ≤ 0 and t2 = − tr ε + 1 ≥ 0, and
this leads to the restriction | tr ε| ≤ 1. We compute

W1(ε) = 1

2
|ε|2 − 〈ε, ε�1 〉 +

1

2
|ε�1 |2 =

1

2
|ε|2 + tr ε + 1,

which, for tr ε = −1, is the same as 1
2 |ε|2 − 1

2 (tr ε)
2 + 1

2 . Therefore, f (1) is
continuous. In view of Remark 3, we represent f (1) as

f (1)(ε) = − det ε +
⎧⎨
⎩

1
2 (tr ε)

2 + tr ε + 1, if tr ε ≤ −1 ,
1
2 , if − 1 ≤ tr ε ≤ 1 ,

1
2 (tr ε)

2 − tr ε + 1, if tr ε ≤ −1 .

Therefore, f (1) is a convex function of ε and det ε which is nonincreasing in det ε
and therefore symmetric polyconvex.

Also, in this case, we compare with [24] and [12]. According to (6) with κ =
μ = 1/2, the parameter g is given by c = 1 and g = η2

0c = 4, and relaxation is
present for |W1(ε)−W2(ε)| ≤ g/2, that is, for | tr ε| ≤ 1. The relaxed energy is

W
qc
K (ε) = W2(ε)− 1

2g
(W2(ε)−W1(ε)+ g

2
)2 = 1

2
|ε|2 − 1

2
(tr ε)2 + 1

2
.

To compare with the results in [12], recall Δ(αε�) = 2Id, Δα = 0, and the
translations are strictly convex for 0 ≤ β < γ (α1, α2) = 1. The fourth-order tensor
for the computation of the optimal strains is

(λ2α1 + λ1α2 − βT )−1 = 1

1+ β
Λh + 1

1− β
Λd + 1

1− β
Λo .

Invertibility is lost for β = γ (α1, α2). The optimal strains are (see (4a)–(4b))

ε∗1 (β, ε) = ε − 2λ2

1+ β
Id , ε∗2 (β, ε) = ε + 2λ1

1+ β
Id .
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Following the same calculations as in the compatible case, one finds

Wλ(β, ε) = 1

2
|ε|2 − 4λ1λ2

1+ β
+ (λ2 − λ1)〈ε, ε�1 〉 + 1 .

The maximum is attained at β = γ = 1 with

Wλ(ε) = 1

2
|ε|2 − 2λ1λ2 + (λ2 − λ1)〈ε, ε�1 〉 + 1 .

Since λ2 = 1−λ1, the optimal value for λ1 is λ1 = 1/2+(1/2)〈ε, ε�1 〉. This value is
admissible if−1 ≤ tr ε ≤ 1, otherwise λ1 ∈ {0, 1}, and no microstructure is formed.
We also note that the derivative of the function Wλ(β, ε) is given by (formula (3.13)
in [12])

∂

∂β
Wλ(β, 0) = −λ1λ2φ(Δε

∗(β, 0)) = λ1λ2 det(Δε∗(β, 0)) = 4λ1λ2

(1+ β)2
.

This expression has a limit as β → γ (α1, α2) and ε is in Regime III since

φ(Δε∗(γ (α1, α2), ε)) = − det(Δε∗(γ (α1, α2), ε)) < 0 .

4 Numerical Relaxation

We employ a numerical algorithm for the determination of lamination convex
envelopes that was first presented in [15], and that has been successfully applied
to the geometrically nonlinear two-well problem [14], to microstructure in nematic
elastomers [15] and to models in finite crystal plasticity [16]. Whereas all these
applications to finite elasticity and plasticity were based on a version of the
algorithm that incorporates SO(2)-invariance, in the present study, we developed
a version adapted to geometrically linear elasticity, which incorporates invariance
under linearized rotations. We first present the key ideas of the algorithm.

The rank-one convex envelope f rc is approximated numerically using Propo-
sition 1. In the numerical implementation, a small bound k on the largest order
of lamination is used, such as k = 3. If one can verify that f (k−1) = f (k), then
automatically also f rc = f (k−1). Each f (h), h = 1, . . . , k, is determined by
computing the optimal laminate of order h. In turn, laminates are determined by
a mixture of a global search, with careful storage of information from previous
searches, and a local optimization, which is fast and is performed using the Polak–
Ribière conjugate gradient algorithm. The global search, which aims at producing
good starting points for the local optimization, is the crucial part of the algorithm.
It is based on the idea of storing information on laminates once it has been acquired
and of transferring this information to neighboring parts of phase space. This
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permits to obtain good starting conditions for the local optimization also in regions
of phase space where the energy is locally rank-one convex and leads to substantially
more accurate results than if one were to use random initial conditions, as was
demonstrated for a model problem in [15].

Information about the laminates is stored using a hierarchical structure in phase
space, which automatically refines in the regions which are explored during the
numerical study. This makes crucial use of the variational nature of the problem,
which permits to easily compare the quality of two laminates with the same
barycenter. Specifically, whenever a good laminate is available for some strain ε,
then the program rounds it to some εδ , projecting each of the components of ε onto
δZ for some fixed small δ and then checks if a node for εδ is present and generates it
if not. If the node is not present, the new laminate is stored; if the node was already
present, and a laminate of the same order was already stored, then the energies of
the two are compared; and if the old one has a higher energy than the new one, then
it is replaced.

If a good laminate for a strain ε is required, then the algorithm rounds to εδ and
then tries to locate it in the data structure. If it is not present, it is searched at higher
level virtual grids, composed of cells represented by matrices of the form 2iδZ, up
to some maximum level. The local optimization is then performed starting with the
best initial condition that has been found and the result stored.

Periodically, during the optimization, a systematic improvement of the stored
data on laminates is performed. This consists of four steps, which are performed
for each node for which information has been stored. In each step, the old laminate
is replaced by the new one, if the energy of the new one is smaller. First, a local
search is started starting from a few random values of the lamination parameters.
Second, a local search is started starting from the values of the neighboring cells.
Here, neighboring is interpreted in three senses: cells at the same scale which share
at least a vertex with the one considered, cells at the next smaller scale which are
contained in the one considered, and the cell at the next higher scale which contains
the one considered. Third, the algorithm takes the optimal first-order laminate λδε1+
(1−λ)δε2 stored at this cell and tries to improve it with laminates centered in ε1 and
ε2, automatically generating higher order laminates.

This data improvement step is rather time consuming, and in practice it is
convenient to store the result on disk for later use. It permits to obtain a good
approximation of laminates also in regions where the energy is locally (but not
globally) rank-one convex, since microstructures are transferred from neighboring
regions. The fact that no new grid elements are created guarantees that memory
storage (and run time) does not explode during the improvement procedure. The
transfer of information between one virtual grid and those at higher and lower levels
leads to a very rapid transfer of information over large distances in phase space and
also over regions that are not populated at the lower levels. We refer to [15] for
further details on this algorithm.

Our numerical code has in all cases we investigated reported that the second-
order lamination convex envelope f (2) is rank-one convex, and in particular no
matrices have been found where laminates of order three or higher are needed.
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5 Numerical Results

As a first verification of the proposed algorithm, we investigated the special
situations discussed in Sect. 3.3. The algorithm computes correctly the relaxed
energies and finds optimal first-order laminates in both situations, see Fig. 3 for the
simulation in the incompatible case.

In view of the discussion in Sect. 3, we identify a situation in which second-
order laminates are needed for the relaxation at fixed volume fraction and use our
algorithm to investigate whether the full relaxation, which also involves the min-
imization in the volume fractions, requires second-order laminates. The chemical
energy wi of the ith phase is of no importance if the minimization is carried out at
fixed volume fractions since it contributes a constant energy λ1w1+λ2w2. However,
this expression is an affine translation if the minimization in λ is included, and
therefore we fix in the following w1 = w2 = 0.

F11 = F22

F12 = F21

Fig. 3 Numerical phase diagram in the plane of matrices of the form

(
x y

y x

)
for the model with

equal moduli discussed in Sect. 3.3, which is the same as the model of Sect. 5 with the parameters
in (8). The relaxed energy coincides with the unrelaxed energy for | tr ε| ≥ 1 and can be obtained
with a first-order laminated for | tr ε| < 1. The bullets mark the two minima of the energy
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We choose two materials with positive moduli and elasticity tensors α1 =
α(κ1, μ1, η1) and α2 = α(κ2, μ2, η2). In a first set of computations, we assume

κ1 = κ2 = 1

2
, μ1 = μ2 = 1

2
, η1 = η2 = 1

2
, w1 = w2 = 0 , (8)

corresponding to the simpler, equal-moduli case analyzed by Kohn and discussed in
Sect. 3.2. In a second set of computations, we use different elastic moduli,

κ1 = κ2 = 1

2
, μ1 = μ2 = 1

2
,

1

10
= η2 < η1 = 1 , w1 = w2 = 0 . (9)

Figure 4 shows a typical numerical phase diagram that can be obtained with the
algorithm. We represent areas in which the relaxed and the unrelaxed energies

F11 = F22

F12 = F21

Fig. 4 Numerical phase diagram with the parameters in (9) in the plane of matrices of the form(
x y

y x

)
. The two larger dots mark the transformation strains, ε�1,2 = ±Id. Three distinct regions

emerge in which the relaxed energy coincides with the energy (blue area) in which it can be
calculated with first-order (green area) and second-order (red area) laminates, respectively. The

solid lines indicate the laminates computed numerically for the matrices 0 and

(
0.6 0.6
0.6 0.6

)
. They

are contained, within numerical precision, in this plane. The optimal laminate in the region in which
second-order laminates emerge is supported on three points as predicted in [12], see Sect. 3.3
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coincide with blue dots, regions in which the relaxed energy is obtained with first-
order laminates with green dots, and regions with second-order laminates with red
dots, respectively. Optimal laminates of first and second order are shown as well.
The numerical results are in prefect agreement with the theory developed in [12]
and allow us to make predictions about the full relaxation of the energy, not only the
relaxation at fixed volume fractions.

Figure 5 shows a different cut through the three-dimensional space R
2×2
sym ,(

x y

y x + 0.5

)
. The general structure of the phase diagram is similar, showing

stability on a scale which is smaller than the distance between the two minima of
the energy.

The effect of the relaxation with first- and second-order laminates, that is,
numerical approximations of the functions f (1) and f (2), is demonstrated in Fig. 6.
The line plotted in this figure corresponds to the y = 0 line in Fig. 4. The curve for
first-order laminates is not symmetric since η1 �= η2, and symmetry is recovered for
second-order laminates. Figure 7 shows a different cut through phase space.

F11 = F22 − 0.5

F12 = F21

Fig. 5 Phase diagram in the plane

(
x y

y x + 0.5

)
, and decomposition of the matrix

(
0 0
0 0.5

)
, for

the parameters in (9). The laminate turns out to be, to numerical precision, completely supported
in the plane displayed in the picture
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F12 = F21 = 0
W

t−2 −1.5 −1 −0.5 .5 1 1.5 2

0.5

1

1.5

Fig. 6 Numerical approximation of the relaxed energy with parameters as in Eq. (9) with first-
order (green curve) and second-order (red curve) laminates, along the rank-two line F = diag(t, t).
The blue curve represents the unrelaxed energy

F12 = F21 = 0.4
W

t−2 −1.5 −1 −0.5 .5 1 1.5 2

0.5

1

1.5

Fig. 7 Numerical approximation of the relaxed energy with parameters as in Eq. (9) with first-

order (green curve) and second-order (red curve) laminates, along the rank-two line

(
t 0.4

0.4 t

)
.

The blue curve represents the unrelaxed energy

We finally consider the macroscopic mechanical response of the system, in
the sense of a stress–strain curve. We focus for simplicity on the rank-one line
diag(t, 0). In Fig. 8, we show the response for the equal-moduli case. The full
relaxation is obtained with first-order laminates, which make the stress–strain
monotone. Figure 9 shows the corresponding result for the case of unequal moduli.
We see that the first lamination convex envelope f (1) still has a non-monotone
dependence of strain on t . Indeed, in this case, second-order laminates are needed
to obtain the relaxation of the energy. This is also apparent from the corresponding
plots of the energies, which are shown in Fig. 10.



26 S. Conti and G. Dolzmann

σ

t−2 −1.5 −1 −0.5 .5 1 1.5 2

−0.5

0.5

1

Fig. 8 Numerical approximation of the stress–strain curve for a uniaxial deformation along
F = te1 ⊗ e1 and the material parameters of Eq. (8). The blue curve corresponds to the unrelaxed
energy and the green one to the first lamination convex envelope which for this curve to numerical
precision coincides with the relaxed energy

σ

t−2 −1.5 −1 −0.5 .5 1 1.5 2

−0.5

0.5

1

Fig. 9 Numerical approximation of the stress–strain curve for a uniaxial deformation along F =
te1⊗e1 and the material parameters of Eq. (9). The blue curve corresponds to the unrelaxed energy,
the green one to the first lamination convex envelope, and the red one to the second lamination
convex envelope, which to numerical precision coincides with the relaxed energy

F12 = F21 = F22 = 0
W

t−2 −1.5 −1 −0.5 .5 1 1.5 2

0.5

1

1.5

Fig. 10 Energy along the same line as Fig. 9
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6 Conclusions

We presented an extension of the algorithm for the numerical computation of
relaxed energies to the case if linear elasticity. As in the case of nonlinear elasticity,
we obtained numerical phase diagrams that allow excellent predictions about the
structure of the relaxed energy in situations in which analytical formulas are not
available.

At variance with explicit numerical relaxation formulas, our approach does not
depend on the details of the functional form of the energy chosen. In particular, it
would immediately apply to non-quadratic energies, to problems with three or more
wells, or to situations where the different minima do not have the same energy. An
extension to three dimensions would be very interesting but is probably challenging,
as the local minimization along rank-one lines involves more dimensions, and in
particular the phase space, in which one has to store good laminates, would have six
instead of three dimensions.

This algorithm also offers a unique opportunity for an integration with a finite
element simulation and thus an efficient simulation of relaxed variational problems
in solid mechanics.
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Surface Shear Waves in a Functionally
Graded Half-Space

Andrey Sarychev, Alexander Shuvalov, and Marco Spadini

1 Introduction

The paper deals with the problem of solvability of the bi-parametric Sturm-Liouville
equation on a half-line with the Neumann initial condition and the condition of
vanishing at infinity. In the physical context, this is formally a problem of existence
of time-harmonic surface shear waves propagating with a given frequency ω and
the tangential wave number k along the traction-free boundary of a functionally
graded semi-infinite medium with continuously depth-dependent density and shear
modulus. Surface acoustic waves are relevant to various fields of physics and
applications [7]. The model of functionally graded media implies the materials with
a continuous spatial variation of their properties which occurs for natural reasons or
is purposely manufactured in order to realize a desired physical behavior [6, 15].

It is known that the boundary-value problem in hand does not admit a solution for
a generic couple (ω, k) ; in fact, solutions may exist on a certain a union of a number
of eigencurves ω (k) [3, Ch.6], which are referred to as dispersion branches in the
context of physics. The purpose of the present paper is to study the conditions for
existence of the surface shear waves and in particular to characterize the admissible
(ω, k) pairs.

The situation is elementary when ρ (y) and μ (y) are constant (in fact, then the
shear surface wave does not exist). There is ample literature regarding the case of
ρ (y) and μ (y) being periodic functions, see [18] and bibliography therein. Much
work on the shear surface waves has been done for the settings where ρ (y) and
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μ (y) are constant everywhere below a finite depth or they are described by one
of those particular functions of y which render the shear-wave equation explicitly
solvable; another well-elaborated approach is related to the WKB asymptotic
expansion restricted to high ω and k, see, e.g., [1, 19, 20]. In contrast to the above
settings, we address the general case where ω, k may take any values, and ρ (y) and
μ (y) are arbitrary continuous functions for y ≥ 0.

The paper is organized as follows. Section 2 describes the problem setting.
Section 3 contains the auxiliary results. In Sect. 4 we formulate the corresponding
parametric Sturm-Liouville problem on a half-line and introduce the assumptions
on the material coefficients ρ (y) , μ (y). Section 5 presents the formulations of the
main results which are the criteria for non-existence of surface waves (Theorem 5.1),
for the existence of N(k) surface-wave solutions with N(k) → ∞ as k → ∞
(Theorem 5.2), and for an interesting possibility of the existence of infinite number
of solutions N(k) = ∞ for any given k (Theorem 5.3). The criteria for these
three options are specified in terms of explicit conditions on the functions ρ (y)
and μ (y). Section 6 provides the proofs of the above theorems. Sections 7 and 8
contain research outlooks and conclusions.

2 Mathematical Setting of the Problem

Consider an elastically isotropic half-space a density ρ and a shear modulus μ.
Let the axis Y be orthogonal to the planar half-space boundary and directed into
its depth. The axis X may be taken along an arbitrary orientation in the boundary
plane (if the medium is elastically monoclinic, then XY is supposed to be a plane of
crystallographic symmetry).

The vector equation of 2D linear isotropic elastodynamics in the absence of
sources splits into two independent equations, one of which is a scalar equation

∂x
(
μ∂xû

)+ ∂y
(
μ∂yû

) = ρ∂tt û, (1)

describing the shear acoustic wave with a mechanical displacement û (x, y, t)
induced in the direction orthogonal to the plane XY.

We assume the half-space to be made of functionally graded material, so that ρ
and μ depend on one coordinate y (further assumptions are introduced in Sects. 3
and 4). Under this condition, we seek the solution of (1) in the form

û (x, y, t) = u (y) ei(kx−ωt), (2)

where ω and k are real positive frequency and wave number. Then Eq. (1) reduces
to the ordinary second-order differential equation

(
μ (y) u′ (y)

)′ + (ω2ρ (y)− k2μ (y)
)
u (y) = 0. (3)
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The sought non-zero function u (y) is supposed to satisfy the Neumann boundary
condition at the half-space surface y = 0:

u′ (y) |y=0 = 0, (4)

which implies that the half-space surface is mechanically unloaded. Aiming at
finding the shear surface waves in the given medium, we supplement (4) with the
condition of decay at infinite depth:

lim
y→∞ u (y) = 0. (5)

As it was mentioned in the Introduction, the boundary-value problem (3)–(5)
admits the surface-wave solutions only for the particular values of the parameters
ω and k, which form curves (dispersion branches) in the ωk-plane. Moreover,
the functions ρ (y) and μ (y) allowing existence of the shear surface waves are
also restricted by certain conditions. Our goal is to infer these conditions and to
characterize the corresponding set of dispersion branches ω (k).

3 Second-Order Linear Ordinary Differential Equation
on a Half-Line: Auxiliary Results

3.1 Second-Order Linear Equation

Equation (3) is a particular type of the second-order linear differential equation

(
μ(y)u′(y)

)′ + γ (y)u = 0 (6)

defined on a half-line [0,+∞[.
Assumption 3.1 We assume from now on that the function μ(s) ≥ μ > 0 on
[0,+∞[, is continuous on [0,+∞[ and admits a finite limit lim

s→∞μ(s) = μ∞ > 0.

The following substitution of the independent variable

τ(y) =
∫ y

0
(μ(s))−1 ds (7)

is invertible (τ(y) is strictly growing) and satisfies the relation: d
dτ
= μ d

dy
.

By Assumption 3.1, the functions μ(s), (μ(s))−1 are both bounded on [0,+∞[
and therefore the function τ(y) and its inverse y(τ) are Lipschitzian. Besides,∫ +∞

0 (μ(s))−1 ds = ∞, i.e., τ(y) is Lipschitzian homeomorphism of [0,+∞[ onto
[0,+∞[.



34 A. Sarychev et al.

This substitution transforms (6) into the standard form

d2ū

dτ 2
+ γ̄ (τ )ū(τ ) = 0, (8)

where ū(τ ) = u(y(τ)) and γ̄ (τ ) = μ(y(τ))γ (y(τ )).
Another form of (6) is its representation as a system of first-order differential

equations for the variables u(y), w(y) = μ(y)u′(y):

u′(y) = w(y)

μ(y)
, w′(y) = −γ (y)u(y), (9)

or in the matrix form

Z′(y) = dZ

dy
= C(y)Z(y), (10)

Z =
(
w

u

)
, C(y) =

(
0 −γ (y)

(μ(y))−1 0

)
. (11)

Performing substitution (7), we transform (10) into the system for the function
Z̄(τ ) = Z(y(τ))

dZ̄

dτ
= C̄(τ )Z̄(τ ), C̄(τ ) =

(
0 −γ̄ (τ )
1 0

)
. (12)

We concentrate for a moment on the asymptotic properties of the solutions
of (6), (8), (10), (12) at infinity.

3.2 Asymptotic Properties of Solutions for y → +∞

The matrix of the coefficients C(y) of the system (10) for each y is traceless, hence,
by the Liouville formula, the Wronskian of a fundamental system of solutions is
constant in y. This precludes a possibility of having two independent solutions
which would both tend to zero at infinity.

Important characteristics of the asymptotics of the system at infinity are deter-
mined by the limit of the coefficient matrix for y →+∞ (if it exists):

C∞ = lim
y→+∞C(y) =

(
0 −γ∞

(μ∞)−1 0

)
,

where μ∞ = limy→+∞ μ(y), γ∞ = limy→+∞ γ (y).
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Whenever detC∞ = γ∞(μ∞)−1 > 0, or, equivalently, γ∞ > 0, the eigenvalues
of C∞ are purely imaginary and one can conclude (see Proposition 3.2 below) the
non-existence of a solution of system (10) with limy→+∞ u(y) = 0. If on the
contrary detC∞ < 0, then the eigenvalues of C∞ are real numbers of opposite signs
and the existence of a solution of (10) with limy→∞ u(y) = 0 is guaranteed under
some additional conditions on the function γ (y). Note that det C̄∞ = μ2∞ detC∞
and therefore a similar conclusion holds for the solutions of system (12).

Let us introduce linear space G of the coefficients γ (y) of Eq. (6) as a space of
functions γ (y) = γ∞ + β(y), with γ∞ being a constant and β(y) a continuous
function on [0,+∞[ such that:

lim
y→+∞β(y) = 0, (13)

∫ +∞

0
|β(y)|dy <∞. (14)

Evidently limy→∞ γ (y) = γ∞.
Introduce in G the norm

‖γ (·)‖01 = |γ∞| + ‖β(·)‖C0 + ‖β(·)‖L1 . (15)

For each y0 ∈ [0,+∞[ we introduce a subset G−(y0) ⊂ G consisting of the
functions γ (y) = γ∞ + β(y), for which γ∞ < 0 and γ∞ + β(y) < 0 on [y0,+∞[.
Similarly, for each y0 ∈ [0,+∞[ we define G+(y0) ⊂ G consisting of the functions
γ (y) = γ∞ + β(y), for which γ∞ > 0 and γ∞ + β(y) > 0 on [y0,+∞[. Both
G−(y0) and G+(y0) are open subsets of G in the above introduced norm. It is easy
to verify that substitution (7) transforms the space G into itself and transforms the
sets G−(y0),G+(y0) into G−(τ (y0)),G+(τ (y0)), correspondingly.

The first classical result concerns the so-called non-elliptic case for Eq. (8),
where the coefficient γ̄ (·) ∈ G−(τ0).

Proposition 3.1 (See [5, §6.12]) Consider the equation

u′′(τ )+ γ̄ (τ )u = u′′(τ )+
(
−λ2 + β(τ)

)
u = 0, λ > 0. (16)

Assume β(τ) to be continuous and to satisfy (13). Then there exist two solutions
uλ(τ), u−λ(τ ) of Eq. (16) and τ0 ≥ 0 such that ∀τ ≥ τ0:

c′2 exp

[
λτ − d ′1

∫ τ

τ0

|β(θ)| dθ
]
≤ uλ(τ) ≤ c′1 exp

[
λτ + d ′1

∫ τ

τ0

|β(θ)| dθ
]
, (17)

c2 exp

[
−λτ − d1

∫ τ

τ0

|β(θ)| dθ
]
≤ u−λ(τ ) ≤ c1 exp

[
−λτ + d1

∫ τ

τ0

|β(θ)| dθ
]
,

(18)

where c1, c2, d1, c
′
1, c

′
2, d

′
1 are constant.
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Corollary 3.1 (See [14, §XI.9]) Assume the assumptions of Proposition 3.1 to
hold and β(·) to satisfy (14). Then the solutions uλ, u−λ satisfy

uλ ∼ u′λ
λ
∼ eλτ , u−λ ∼ −

u′−λ
λ
∼ e−λτ

as τ →+∞.

Corollary 3.2 For each γ̃ (·) sufficiently close to γ̄ (·) in the norm (15) the equation

u′′(τ )+ γ̃ (τ )u(τ ) = 0

has a decaying solution.

Next we pass on to the elliptic case (see [14, §XI.8]; Corollary 8.1), where the
coefficient γ̄ (·) ∈ G+(y0).

Proposition 3.2 Consider the equation

u′′(τ )+ γ̄ (τ )u = u′′(τ )+
(
λ2 + β(τ)

)
u = 0, λ > 0 (19)

with γ̄ (·) ∈ G+(y0). Then for any real a, b there is a unique solution of
equation (19) with the asymptotics

u(τ) = (a + o(1)) cos λτ + (b + o(1)) sin λτ, (20)

u′(τ ) = (−λa + o(1)) sin λτ + (λb + o(1)) cos λτ,

as τ →+∞.

3.3 Prüfer’s Angle Coordinate

We consider Prüfer’s coordinates (see [3, 14]):

r = (u2 + μ2u′2)
1
2 = (u2 + w2)

1
2 , ϕ = Arctg

u

w
, (21)

where again w = μu′. For the vector-function Z introduced in (11), we denote
ϕ by Arg Z (the choice of a continuous branch is done in a standard way). In
coordinates (21) system (6) takes the form:

r ′ =
(
μ−1(y)− γ (y)

)
r sinϕ cosϕ, ϕ′ = γ (y) sin2 ϕ + μ−1(y) cos2 ϕ; (22)

note that the second equation is decoupled from the first one.
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We list some facts concerning the evolution of Arg Z(y). Recall that μ(y) in
Eqs. (6) and (22) meets Assumption 3.1.

Proposition 3.3

i) If γ (y) ≥ 0 (respectively, γ (y) > 0) on an interval, then for a solution Z(y)
of (9) Prüfer’s angle variable ϕ = Arg Z is non-decreasing (increasing) on the
interval.

ii) If γ (y) < 0 on an interval I , then the first and the third quadrants—Arg Z ∈
]0, π/2[ and Arg Z ∈]π, 3π/2[—are invariant for system (9) on I .

iii) For any γ (y) there is a kind of weakened monotonicity for ArgZ: if ArgZ(ỹ) >
mπ , then Arg Z(y) > mπ for any y > ỹ.

Property i) follows from (22). So does property ii) since, according to (22),
ϕ′(πm) > 0 and ϕ′(π/2 + πm) < 0 for negative γ . Property iii) follows from
the fact that in (22) ϕ′(mπ) = μ−1(mπ) > 0.

3.4 Oscillatory Equations

Second-order linear differential equation is called oscillatory [14, §XI.5] on
[0,+∞[ when its every solution has infinite number of zeros on [0,+∞[, or
equivalently the set of zeros of any solution has no upper limit, or equivalently for
every solution its Prüfer’s coordinate Arg Z (see the previous Subsection) satisfies

lim sup
y→+∞

Arg Z(y) = +∞.

An obvious example of oscillatory equation is (19) (cf. Proposition 3.2).
We are interested in the conditions under which Eq. (19) with vanishing λ or, the

same, Eq. (8) are oscillatory. The result can be found in [14, §XI.5], [13, Ch.2,§6];
we formulate it for Eq. (8).

Proposition 3.4 Let γ̄ (·) in Eq. (8) be continuous of bounded variation on every
interval [0, T ]. Let γ̄ (τ ) > 0 on some interval [τ0,+∞[, and

∫ +∞

τ0

(γ̄ (τ ))1/2 dτ = +∞, (23)

∫ T

τ0

(γ̄ (τ ))−1 |dγ (τ)| = o

(∫ T

τ0

(γ̄ (τ ))1/2 dτ

)
, as T →+∞. (24)

Then Eq. (8) is oscillatory.

Below we deal with the functions γ̄ (τ ) which tend to 0 as τ → +∞. In the
following Proposition we describe some classes of such functions which satisfy
conditions (23), (24).
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Proposition 3.5 Positive function γ̄ (τ ), τ ∈ [1,+∞] satisfies conditions (23)–
(24), whenever any of the following conditions hold:

1. γ̄ (τ ) is monotonously decreasing and there exist c > 0, δ ∈]0, 2[, τ0 ≥ 1 such
that

γ̄ (τ ) ≥ c

τ 2−δ , ∀τ ∈ [τ0,+∞[; (25)

2. function γ̄ (τ ) is continuously differentiable on [1,+∞[ , satisfies (25) and

γ̄ ′(τ ) = o
(
(γ̄ (τ ))3/2

)
, as τ →+∞. (26)

Indeed, if the condition 1. holds, then (23) immediately follows from (25). Under
the same condition we have |dγ̄ (τ )| = −dγ̄ (τ ), and hence

∫ T

τ0

(γ̄ (τ ))−1 |dγ (τ)| = ln γ̄ (τ0)− ln γ̄ (T ) ≤

≤ ln γ̄ (τ0)− ln
c

T 2−δ = ln γ̄ (τ0)− ln c + (2− δ) ln T ,

while by (25)

∫ T

τ0

(γ̄ (τ ))1/2 dτ ≥ c1/2
∫ T

τ0

dτ

τ 1−δ/2 = c1/2
(
T δ/2 − τ

δ/2
0

)
,

wherefrom (24) follows. A typical example of the function which satisfies the
condition 1. would be γ̄ (τ ) = c

τ 2−δ with c > 0, δ ∈ (0, 2).
Condition (26) appears in [14, §XI , Corollary 5.3 ]; once it is satisfied, one gets

|dγ̄ (τ )| = o
(
(γ̄ (τ ))3/2dτ

)
⇒ |dγ̄ (τ )|

γ̄ (τ )
= o
(
(γ̄ (τ ))1/2dτ

)
,

wherefrom (24) follows.
An example of a nonmonotonous function which satisfies the condition 2 of

Proposition 3.4 could be γ̄ (τ ) = a(τ)

τ 2−δ , where a′(τ ) = cos τ
τ 1−δ/4 and an additive

constant a0 in the expression a(τ) = a0 +
∫ τ

1
cos ξ
ξ1−δ/4 dξ is chosen in such a way that

a(τ) > 0 and limτ→+∞ a(τ) = a∞ > 0, so that (23) holds. Non-monotonicity of
γ̄ (τ ) = a(τ)

τ 2−δ , as well as condition (26) for it, can be checked by direct computation.
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3.5 Hamiltonian Form

The system (10) can be given the following Hamiltonian form

u′ = ∂H

∂w
= w

μ(y)
, w′ = −∂H

∂u
= −γ (y)u (27)

with the Hamiltonian

H = 1

2

(
w2

μ(y)
+ γ (y)u2

)
.

We denote by
−→
h the (Hamiltonian) vector field at the right-hand side of (27).

As it is well known, Eq. (6) follows from a variational principle, i.e., (6) is
the Euler-Lagrange equation which represents necessary minimality condition for
a variational problem

∫ +∞

0
μ(y)

(
u′(y)

)2 − γ (y) (u(y))2 dy → min

with appropriate boundary conditions. The Hamiltonian form of the minimality
condition for the variational problem is precisely (27).

For Prüfer’s angle ϕ = Arctan
(
u
w

)
, there holds

ϕ′ = −w′u+ wu′

u2 + w2
= γ u2 + w2/μ

u2 + w2
= 2H

u2 + w2
.

The last equation is equivalent to the differential equations (22) for Prüfer’s
coordinate ϕ.

Remark 3.1 A simple but useful (see [2]) computation is provided by the derivation
of u(y)w(y) along the trajectories of Hamiltonian system (27):

d

dy
(uw) = ∂−→

h
(uw) =

(
∂−→
h
u
)
w + u

(
∂−→
h
w
)
= −γ u2 + w2

μ
, (28)

wherefrom it follows, among other things, that uw is non-decreasing (respectively
increasing) on the intervals where γ (y) ≤ 0 (respectively γ (y) < 0).

Proposition 3.3 and Remark 3.1 allow us to arrive at a conclusion on qualitative
behavior of solutions on an interval where γ (τ) < 0 in (16). According to
Proposition 3.1, there is a decaying solution along which (according to Remark 3.1)
uw grows. Hence the solution approaches the origin either in the second or in the
fourth quadrants where uw < 0.
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Proposition 3.6 Let γ̄ (τ ) meet the assumptions of Proposition 3.1 with γ̄ (τ ) < 0
for τ ∈ [τ0,+∞[. Then the decaying solutions ±u(τ) of (16) correspond to the
solutions±Z(τ) of (9) with Arg Z(τ) ∈ [π/2, π ] and Arg (−Z)(τ) ∈ [3π/2, 2π ] for
τ ∈ [τ0,+∞[.

Other solutions which start in the same quadrants escape to either the first or the
third quadrant, which, according to Proposition 3.3, are invariant for (16) whenever
γ (τ) < 0. According to Remark 3.1, the product uw (positive in these quadrants)
grows along the respective trajectories, which tend to infinity.

3.6 Sturmian Properties of Trajectories

We provide few results from the Sturm theory. First result is classical [3, 13], [14,
Ch. X,XI] and follows directly from the second equation (22).

Proposition 3.7 (Comparison Result) Consider a pair of second-order equa-
tions

(
μ(y)u′(y)

)′ + γ (y)u = 0,
(
μ(y)u′(y)

)′ + γ̃ (y)u(y) = 0, (29)

where μ(y) meets Assumption 3.1 and

γ̃ (y) ≥ γ (y), ∀y ∈ [y0,+∞[.

If for y1 ≥ y0 and a pair of vector solutions Z =
(
w

u

)
, Z̃ =

(
w̃

ũ

)
of the first

and the second equations (29)

Arg Z̃(y1) = Arg Z(y1),

then

∀y ≥ y1 : Arg Z̃(y) ≥ Arg Z(y)

and

∀y ∈ [y0, y1] : Arg Z̃(y) ≤ Arg Z(y). (30)

We provide analogue of the comparison result (in particular, of relation (30)) for
the decaying solutions of (29) at y1 = +∞ with a (short) proof.
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Proposition 3.8 (Comparison Result for Decaying Solutions on a Half-Line)
Consider the pair of second-order equations (29) with the coefficient μ(y) meeting
Assumption 3.1 and with γ (y), γ̃ (y) belonging to G−(y0). Let

0 > γ̃ (y) ≥ γ (y), ∀y ∈ [y0,+∞[. (31)

If (in the notation of Proposition 3.7) Z, Z̃ are the decaying solutions of equa-
tions (29),

Arg Z̃(y) ≤ Arg Z(y), ∀y ≥ y0. (32)

Proof Without loss of generality, we may assume μ(y) ≡ 1; otherwise we perform
substitution (7) of the independent variable which preserves relation (31) for the
coefficients.

By (31) and (28), the functions uw and ũw̃ are increasing on [y0,+∞[. As
long as the limits of these functions at +∞ are null, we conclude that (uw)(y) <
0, (ũw̃)(y) < 0 on [y0,+∞[ and then without loss of generality we may assume
that u(y), ũ(y) are positive, while w(y), w̃(y) are negative on [y0,+∞[.

Denote γ̃ (y)−γ (y) by�γ (y) and represent the second one of the equations (29)
as

ũ′′ + γ (y)ũ = −�γ (y)ũ; (33)

�γ (y) > 0 by (31).
Applying the integral form of the Lagrange identity (or Green’s formula, see [14,

§XI.2]) to the respective vector solutions Z =
(
w

u

)
, Z̃ =

(
w̃

ũ

)
of Eqs. (29), of

which the second one is written as (33), we conclude:

∀y ≥ y0 : (uw̃ − wũ)|+∞y =
∫ +∞

y

−�γ (s)ũ(s)u(s)ds < 0.

Given that (uw̃ − wũ) vanishes at +∞, we obtain:

∀y ≥ y0 : −u(y)w̃(y)+ w(y)ũ(y) =
∫ +∞

y

−�γ (s)ũ(s)u(s)ds < 0. (34)

Dividing the inequality in (34) by the positive value w(y)w̃(y), we get

∀y ≥ y0 : ũ(y)

w̃(y)
≤ u(y)

w(y)
,

wherefrom (32) follows. ��



42 A. Sarychev et al.

We establish the continuous dependence of decaying solutions on the coefficient
γ (·) in ‖ · ‖01-norm.

Proposition 3.9 (Continuous Dependence of Decaying Solutions on the Right-
Hand Side) Consider Eqs. (29). Let γ (·) = −λ2 + β(·) ∈ G−y0

for some y0 ∈
[0,+∞[. Then, for any γ̃ (·) = −λ̃2 + β̃(·) sufficiently close to γ (·) in ‖ · ‖01-
norm:

i) both Eqs. (29) possess the decaying vector solutions Z(·), Z̃(·) with Arg Z,
Arg Z̃ ∈ [π/2, π ];

ii) for each y ∈ [y0,+∞[
∣∣∣Arg Z̃(y)− Arg Z(y)

∣∣∣→ 0, as ‖γ̃ (·)− γ (·)‖01 → 0.

Proof Again one may proceed under the assumption μ(y) ≡ 1.

i) Any γ̃ (·) sufficiently close to γ (·) in ‖ · ‖01-norm belongs to G−y0
, which is open

with respect to the norm. The existence of the decaying solutions Z(y), Z̃(y)
follows from Corollary 3.2. Since both γ and γ̃ are negative on [y0,+∞[, we
conclude by Proposition 3.6 that Arg Z(y) and Arg Z̃(y) lie in [π/2, π ] for y ∈
[y0,+∞[. This implies that for s ∈ [y0,+∞[ w(s), w̃(s) are negative, while
u(s), ũ(τ ) are positive and by (9) decrease.

ii) Recall that �γ (·) = γ̃ (·)−γ (·). Invoking the equality in (34) and dividing it by
−u(y)ũ(y), we get

w̃(y)

ũ(y)
− w(y)

u(y)
=
∫ +∞

y

�γ (s)
ũ(s)

ũ(y)

u(s)

u(y)
ds =

∫ +∞

y

�γ (s)ν(s)ν̃(s)dτ,

(35)
where ν(s) = ũ(s)

ũ(y)
, ν̃(s) = u(s)

u(y)
are the solutions of the first and second

equation (29), which are normalized by the condition: ν(y) = ν̃(y) = 1.

By the aforesaid ν(s), ν̃(s) decrease; hence

ν(s) ≤ 1, ν̃(s) ≤ 1, for s ≥ y. (36)

According to Proposition 3.1, there exist c1, d1 > 0, s0 > y such that

ν(s) ≤ c1exp

(
−λs + d1

∫ s

s0

|β(σ)|dσ
)
, ∀s > s0. (37)

From the proof of the Proposition (see [5, §6.12, §2.6]), it follows that one can
choose any c1 > 1, a sufficiently large d1 in (37) and then choose s0 such that
d1 sups≥s0 |β(s)| < λ. The same holds for the second one of equations (29).

For each γ̃ from a small neighborhood of γ in ‖ · ‖01-norm, λ̃ and λ as well
as supτ≥τ0

|β(τ)| and supτ≥τ0
|β̃(τ )| are close. Thus, one can choose common

c1, d1, τ0 for all the equations with the coefficient γ̃ from the neighborhood.
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Besides, there is a common upper bound B for the corresponding norms ‖β̃(·)‖L1 .
Then, by (36) and (37),

∣∣∣∣
∫ +∞

y

�γ (s)ν(s)ν̃(s)ds

∣∣∣∣ ≤
∫ s0

y

|�γ (s)| ds + c2
1e

2d1B

∫ ∞

s0

e−λs |�γ (s)| ds
(38)

with the right-hand side tending to 0 as ‖�γ (s)‖01 → 0.
Note that Arg Z = Arccot w(y)

u(y)
, Arg Z̃ = Arccot w̃(y)

ũ(y)
and since the function

z 
→ Arccot z is Lipschitzian with constant 1, it follows that

∣∣∣Arg Z(y)− Arg Z̃(y)
∣∣∣ =
∣∣∣∣Arccot

w(y)

u(y)
− Arccot

w̃(y)

ũ(y)

∣∣∣∣ ≤
∣∣∣∣w(y)u(y)

− w̃(y)

ũ(y)

∣∣∣∣
and then, by (35) and (38), the left-hand side tends to 0 as ‖�γ (τ)‖01 → 0. ��

4 Existence of Surface Shear Waves and Parametric
Sturm-Liouville Problem

We come back to Eq. (3) and simplify the notations putting � = ω2, K = k2,
A = (K,�),

γA(y) = �ρ(y)−Kμ(y), (39)

thus arriving at the equation

(μ(y)u′)′(y)+ γA(y)u(y) = 0 (40)

with the vector parameter A.
We are interested in the solutions, which satisfy simultaneously the condition

at infinity (5) and the traction-free boundary condition (4). In other words, we are
dealing with parametric Sturm-Liouville problem on a half-line for Eq. (40) with
the boundary conditions (4)–(5) and the parameters �,K .

Let us introduce the vector-function a(y) = (ρ(y), μ(y)), which characterizes
our medium.

Assumption 4.1 (Positivity, Lipschitz Continuity, and Limit at Infinity) The
function a(y) = (ρ(y), μ(y)) is Lipschitz continuous on [0,+∞[; its components
admit positive values. There exists a finite limit

lim
y→+∞ a(y) = a∞, a∞ = (ρ∞, μ∞) , ρ∞ > 0, μ∞ > 0.
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It follows immediately that ρ(y), μ(y) are bounded from below by positive
constants on [0,+∞[.
Assumption 4.2 (Integral Boundedness) The function

â(y) = (ρ̂(y), μ̂(y)) = a(y)− a(+∞) = (ρ(y)− ρ∞, μ(y)− μ∞)

is integrable on [0,+∞[: ∫∞0
∣∣ρ̂(y)∣∣+ ∣∣μ̂(y)∣∣ dy <∞.

We consider the ratio μ(y)
ρ(y)

, which may be given a physical meaning of the
squared “local” phase velocity of the shear wave at the depth y. By our assumptions,
μ(y)
ρ(y)

is bounded positive function on [0,+∞[ and limy→∞ μ(y)
ρ(y)

= μ∞
ρ∞ .

The following assumption states that this function attains either local maximum
or local minimum at infinity.

Assumption 4.3 (Sign Permanence at Infinity) There exists an interval ]ȳ,+∞[
such that either

μ(y)

ρ(y)
<
μ∞
ρ∞

, ∀y ∈]ȳ,+∞[, (41)

or

μ(y)

ρ(y)
>
μ∞
ρ∞

, ∀y ∈]ȳ,+∞[. (42)

Graphs (a) and (b) in Fig. 1 provide examples of the functions μ(y)
ρ(y)

which
satisfy (41) or (42) correspondingly; graph 1c at the same Figure does not satisfy
any of the two conditions.

The vector of parameters A = (K,�) have positive components. Assump-
tions 4.1–4.2 imply the following properties of the function γA(y) defined by (39).

Lemma 4.1 Under Assumptions 4.1 and 4.2, for any A ∈ R2+ and γA(·) defined
by (39) there holds:

1. γA(y)− γA(+∞)
y→+∞−−−−→ 0;

2.
∫∞

0 |γA(y)− γA(+∞)|dy <∞;
3. if γA(y) admits positive values, then so does γA′(y) with any A′ sufficiently close

to A;
4. for each A = (K,�) with �

K
<

μ∞
ρ∞ , there exists an interval [y−,+∞[ on which

γA(y) < 0.

The proofs of 1.–4. are elementary and we just sketch the last one. By hypothesis
�ρ∞ − Kμ∞ < 0 and by Assumption 4.1, γA(y) = �ρ(y) − Kμ(y) < 0 for y
from some neighborhood [y−,+∞[ of the infinity.
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y

μ(y)/ρ(y)

μ∞/ρ∞

μ0/ρ0

(a)

y

μ(y)/ρ(y)

μ∞/ρ∞

μ0/ρ0

(b)

y

μ(y)/ρ(y)

μ∞/ρ∞

μ0/ρ0

(c)

Fig. 1 Graphs of μ(y)
ρ(y)

with different types of behavior at infinity

Performing the substitution of the independent variable

y 
→ τ(y) =
∫ y

0
(μ(s))−1 ds

(cf. (7)) we bring Eq. (40) to the form:

d2ū

dτ 2 + γ̄A(τ )ū(τ ) = 0, (43)
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where

γ̄A(τ ) = �ρ̄(τ)−Kμ̄(τ), (44)

ρ̄(τ ) = μ(y(τ))ρ(y(τ )), μ̄(τ ) = (μ(y(τ)))2, ū(τ ) = u(y(τ)), (45)

and y(τ) is the inverse function. Note that μ̄(0) = μ(0), ρ̄(0) = ρ(0) and

μ̄(+∞) = μ∞, ρ̄(+∞) = ρ∞, γ̄A(+∞) = �μ∞ρ∞ −Kμ2∞.

We wish to check that Assumptions 4.1–4.3 remain valid after this substitution.

Proposition 4.1 Let Assumptions 4.1–4.3 hold for the functions ρ(y), μ(y). Then
the same Assumptions hold (after an appropriate change of notation) for the
functions ρ̄(τ ), μ̄(τ ).

Proof By Assumption 4.1, τ(y) defined by (7) is Lipschitzian homeomorphism
of [0,+∞[ onto itself. Hence the functions μ̄, ρ̄ defined by (45) are bounded,
Lipschitzian and have finite limits at infinity, i.e., Assumption 4.1 is valid for them.

By (43), (45)

∫ +∞

0
|ρ̄(τ )− ρ̄(+∞)| dτ =

∫ +∞

0
|ρ(y(τ))μ(y(τ))− ρ∞μ∞| dτ =

=
∫ +∞

0
|ρ(y)μ(y)− ρ∞μ∞| (μ(y))−1dy ≤

∫ +∞

0
|ρ(y)− ρ∞|dy +

+
∫ +∞

0
ρ∞|μ(y)− μ∞|(μ(y))−1dy < +∞

by Assumption 4.2 and since (μ(y))−1 is bounded on [0,+∞[. Similar reasoning
can be used for μ̄(τ ).

By (45), μ̄(τ (y))
ρ̄(τ (y))

= μ(y)
ρ(y)

and hence if either (41) or (42) holds for ρ(y), μ(y)
on ]ȳ,∞[, then the same property holds for μ̄(τ (y)), ρ̄(τ (y)) on the interval
]τ(ȳ),∞[. ��

It is obvious that the statements of Lemma 4.1 are valid for γ̄A(τ ).
Key information for our treatment is provided by the limit-case equation, which

corresponds to the vectors of parameters A∞ = (K∞,�∞) = (βρ∞, βμ∞), β >

0. For such choice of parameters

γA∞(y) = �∞ρ(y)−K∞μ(y) = β(μ∞(ρ∞+ρ̂(y))−ρ∞(μ∞+μ̂(y)) = βγ̂∞(y),

where

γ̂∞(y) = μ∞ρ̂(y)− ρ∞μ̂(y) (46)
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satisfies

lim
y→∞ γ̂∞(y) = 0.

We call

(μ(y)u′)′ + βγ̂∞(y)u = 0 (47)

the limit-case equation.
The following fact is easy to verify.

Remark 4.1 If (41) (respectively (42)) holds, then γ̂∞(y) is positive (respectively
negative) on the corresponding interval ]ȳ,+∞[.

5 Results

We formulate here main results of the paper; the proofs are provided in the next
Section. Our first result establishes non-existence of solutions whenever (42) holds
for all y ≥ 0.

Theorem 5.1 Let assumptions 4.1–4.2 hold and (42) hold for all y ≥ 0 (cf. the
graph (a) in Fig. 2). Then there are no admissible values of parameters K,� for
which solutions of (40)–(4)–(5) exist.

If (42) does not hold on a subinterval of [0,+∞[, then one can guarantee exis-
tence of solutions at least for sufficiently largeK,�. We put μ̌

ρ̌
= miny∈[0,+∞[ μ(y)ρ(y)

.

Theorem 5.2 Let Assumptions 4.1–4.2–4.3 hold and moreover μ(y)
ρ(y)

<
μ∞
ρ∞ be

fulfilled for y in a non-null subinterval of [0,+∞[. Then for each N = 1, 2, . . .
there exist K1 < K2 < · · · such that ∀K > KN there are at least N values

�j ∈
]
μ̌

ρ̌
K,

μ∞
ρ∞K

[
, j = 1, . . . , N , such that the solution of (40)–(4)–(5) exists for

each (K,�j ).

Remark 5.1 The graphs (a) and (b) in Fig. 1 meet assumptions of the Theorem.

Finally, there is a case in which for each K > 0 one finds a numerable set of

�j ∈
]
μ̌

ρ̌
K,

μ∞
ρ∞K

[
such that the solution exists for (K,�j ). It happens when the

limit-case Eq. (47) is oscillatory (see Sect. 3.4).

Theorem 5.3 Let assumptions 4.1–4.2 and (41) hold and the limit-case equa-
tion (47) be oscillatory.

Then for each K > 0 there exists a numerable set of �m ∈
]
μ̌

ρ̌
K,

μ∞
ρ∞K

[
, m =

1, . . . , such that:

i) for Am = (K,�m) the solution of (40)–(4)–(5) exists;
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ii) �m increase with m and accumulate (only) to �̄ = μ∞
ρ∞K;

iii) for the vector solutions Z(y;Am) there holds

Arg Z(y;Am) ∈ [(m− 1/2) π,mπ ] for y sufficiently large.

Remark 5.2 Assumptions 4.1–4.2 together with (41) hold for the graph (a) in Fig. 1,
but the conditions which guarantee oscillatory property for the limit-case equation
(such as (23) and (24)) can hardly be identified graphically.

5.1 Homogeneous Substrate Example

Consider a particular case in which the properties of the medium become depth-
independent starting from some depth. For the model under discussion, this means
such that μ(y) and ρ(y) are constant: μ(y) ≡ μs, ρ(y) ≡ ρs on [ys,+∞[ (as an
example see the graph (b) in Fig. 2.

y

μ(y)/ρ(y)

μ0/ρ0

μ∞/ρ∞

(a)

y

μ(y)/ρ(y)

μ0/ρ0

ys

μ∞/ρ∞

(b)

Fig. 2 (a) The graph illustrates Theorem 5.1. (b) The functions ρ(y) and μ(y) in the homoge-
neous substrate example become constant when y ≥ ys
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We denote as = (ρs, μs). Then, a∞ = limy→∞ a(y) = as and
â(y) = a(y)− a∞ vanishes on [ys,+∞[. If

∀y ∈ [0,+∞[: μ(y)
ρ(y)

≥ μs

ρs
,

then the assumptions of Theorem 5.1 are met and solutions of (40)–(4)–(5) do not
exist. If μ(y)

ρ(y)
<

μs
ρs

on some non-null subinterval of [0,+∞[, then the assumptions
of Theorem 5.2 are met and hence its claim holds.

6 Proofs

Since substitution (7) transforms parametric equation (40) into its standard
form (43) and Assumptions 4.1–4.3 are maintained under (7), there is no loss
of generality in taking μ(y) ≡ 1 in (40).

The proof of Theorem 5.1 is easy. Pick some A = (K,�) with positive
components. There are two options: μ∞

ρ∞ ≤ �
K

or μ∞
ρ∞ > �

K
.

In the first case the coefficient γA(y) in Eq. (40) is non-negative on some interval
[y0,+∞[. Then, by Proposition 3.2, there exists a fundamental system of solutions
of the form (20) and hence none of the solutions of (40) tend to the origin as y →
+∞.

If otherwise �
K

<
μ∞
ρ∞ ≤ μ(y)

ρ(y)
∀y ∈ [0,+∞[, then γA(y) < 0 on [0,+∞[.

By (28), for a solution Z(y,A) =
(
w

u

)
there holds d

dy
(u(y)w(y)) > 0. This

enters in contradiction with the boundary conditions (4)–(5), according to which
u(0)w(0) = 0 and limy→+∞ (u(y)w(y)) = 0.

Proof (of Theorem 5.3) We start with a sketch of the proof.
Take a vector of parameters A∞ = (K̄, �̄) collinear to a∞ = (ρ∞, μ∞) and

consider its perturbation A∞,s = (K̄, �̄ − s). It is immediate to see that for each
s > 0 equation (40) with A = A∞,s and the coefficient

γA∞,s (y) = γA∞(y)− sρ(y) = −sρ∞ + (�̄− s)ρ̂(y)− K̄μ̂(y) (48)

meets the assumptions of Proposition 3.1, and hence the equation

u′′ + γA∞,s̄
(y)u = 0 (49)

possesses a decaying solution Z+(y,A∞,s ).
Next we consider the solutions Z0(y,A∞,s ) of the same equation with the

boundary condition (4). The goal is to detect the values s > 0, for which the
solutions Z0(y,A∞,s ) and Z+(y,A∞,s ) meet at some intermediate point ȳ ∈
[0,+∞[, i.e., admit at ȳ the same value (mod π ). In such a case they (or their
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opposites) can be concatenated into solutions of (40)–(4)–(5). The possibility of
such meeting follows from Propositions 3.7 and 3.8, according to which the vectors
Z0(ȳ, A∞,s) and Z+(ȳ, A∞,s) taken for a sufficiently large ȳ ∈ [0,+∞[ rotate in
opposite directions as s grows from some s̄ > 0.

Increasing ȳ if necessary, one can assume that γA∞,s (y) < 0 on (ȳ,+∞[
and Arg Z+(ȳ, A∞,s) ∈]π/2, π [ for ∀s ≥ s̄. On the other hand, for small s >

0, Arg Z0(ȳ, A∞,s ) is close to Arg Z0(ȳ, A∞), which, due to the oscillation
property of the limit-case equation, tends to +∞ as ȳ → +∞. Therefore, for each
natural m one can find (again increasing ȳ when necessary) small s̄ > 0 such that
ArgZ0(ȳ, A∞,s̄ ) > πm. As s will grow from s̄ to �̄, ArgZ0(ȳ, A∞,s̄ )will decrease
from the value greater than πm to the value less than π and during this evolution it
becomes equal (mod π ) to Arg Z+(ȳ, A∞,s ) for m distinct values of s.

Now we provide the detailed proofs of the statements i)–iii) of the Theorem.

i) Pick K̄ > 0 and take �̄ = μ∞
ρ∞ K̄ , so that A∞ = (K̄, �̄) is collinear with

a∞. Consider the limit-case equation (47) with the parameter A∞ and choose
the solution Z0(·;A∞) which satisfies the boundary condition (4). As long as
Eq. (47) is oscillatory, Arg Z0(y;A∞) tends to infinity as y → +∞. Hence,
for each natural m ∃ym ∈ [0,+∞[ such that Arg Z0(ym;A∞) > πm.

By the continuity of the trajectories of (40) with respect to the parameter A,
one can find s̄ > 0 such that for any s ∈]0, s̄] and for A∞,s = (K̄, �̄− s) there
holds Arg Z0(ym;A∞,s) > πm. For the function γA∞,s̄

(y) defined by (48)
one can find ȳ ≥ ym such that γA∞,s̄

(y) < 0 on [ȳ,+∞[. It follows from
Remark 3.3iii) that Arg Z0(ȳ;A∞,s̄ ) > πm.

The second-order equation (49) for s = s̄ meets the assumptions of Proposi-
tion 3.1 and hence has the decaying solution Z+(y;A∞,s̄ ). By Proposition 3.6,
there holds:

∀y ≥ ȳ : Arg Z+(y;A∞,s̄ ) ∈ ]π/2, π [ (mod π).

Letting s grow from s̄ towards �̄, we note that the values of γA∞,s (y) = γA∞
(y)− sρ(y) on [0,+∞[ diminish; in particular, γA∞,s (y) < 0 for y ∈ [ȳ,+∞[
for all s ≥ s̄. According to Proposition 3.7, the function s → Arg Z0(ȳ;A∞,s )

decreases monotonously from the value Arg Z0(ȳ;A∞,s̄ ) > πm to the value
Arg Z0(ȳ;A∞,�̄) ∈ ]0, π [.

Consider now the decaying solutions Z+(y;A∞,s ). Proposition 3.8 implies
that for chosen ȳ Arg Z+(ȳ;A∞,s ) grows with the growth of s while remaining
(mod π) in the interval ]π/2, π [. During this evolution there occur (at least) m
values of sj , j = 1, . . . , m, for which

Arg Z+(ȳ;A∞,sj ) = Arg Z0(ȳ;A∞,sj )− πn (n-integer).
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Then the concatenations

Z(y;A∞,sj ) =
{
Z0(y;A∞,sj ), y ≤ ȳ,

(−1)nZ+(y;A∞,sj ), y ≥ ȳ,
(50)

are the decaying solutions of the corresponding equations

u′′ + ((�̄− sj )ρ(y)− K̄μ(y)
)
u = 0,

and (50) satisfies the boundary condition (4)–(5).
ii) Let �̃ ∈]0, �̄) be a limit point of �n = �̄− sn, n = 1, . . .. Then �̃ = �̄− s̃ <

�̄.
Consider γA∞,s̃

. There exists ỹ, such that γA∞,s̃
< 0 on [ỹ,+∞[. Pick the

decaying solution Z+(y;A∞,s̃ ). According to the aforesaid ∀y ∈ [ỹ,+∞[:
Arg Z+(y;A∞,s̃ ) ∈]π/2, π [ (mod π).

Consider the solution Z0(y;A∞,s̃ ) which meets the initial condition (4). If
Arg Z+(ỹ;A∞,s̃ ) �= Arg Z0(ỹ;A∞,s̃ ) (mod π), then the inequality holds for
values of s close to s̃, and in particular for all sn but a finite number of them,
and this results in a contradiction.

Let Arg Z0(ỹ;A∞,s̃ ) − Arg Z+(ỹ;A∞,s̃ ) = πm. Since the function
Arg Z0(ỹ;A∞,s )− Arg Z+(ỹ;A∞,s) decreases with the growth of s, one
concludes:

Arg Z+(ỹ;A∞,s) �= Arg Z0(ỹ;A∞,s) (mod π)

for all s �= s̃ from a sufficiently small neighborhood of s̃ and hence for all sn
but a finite number of them, which leads us to the same contradiction.

iii) By the construction provided in i), for each natural m, there exist Am =
(K̄,�m) and the decaying solution Z(y,Am) of (40)–(4)–(5), which converges
to the origin in such a way that Arg Z(y,Am) ∈ [π(m − 1/2), πm] for
sufficiently large y.

To prove its uniqueness, we assume on the contrary that there exists another
A′ = (K̄,�′) and a decaying solution of (40)–(4)–(5) such that for y ∈ [y0,+∞[
γAm(y) < 0, γA′(y) < 0 and both ArgZ(y,A′) and ArgZ(y,Am) belong to [π(m−
1/2), πm] for y ∈ [y0,+∞[.

Let, for example, �′ > �m. Then γAm(y) < γA′(y) and hence Arg Z(y0, Am) <

Arg Z(y0, A
′). This enters in contradiction with the result of Proposition 3.8. ��

Proof (of Theorem 5.2) Let us pick K̄ > 0 and take �̄ = �̄ = μ∞
ρ∞ K̄ , so that

A∞ = (K̄, �̄) is collinear with a∞. By assumptions of the Theorem, the function
γA∞(y) admits positive values on some non-null subinterval ]c, c[⊂ [0,+∞[. The
same holds true for γβA∞ with βA∞ = (βK̄, β�̄), β > 0.
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Our proof can be accomplished along the lines of the proof of Theorem 5.3 if one
proves that for each N there exists βN > 0, for which the solution Z0(y, βNA∞)
with initial condition (4) satisfies Arg Z0(c, βNA∞) > πN .

Consider the equation

u′′(y)+ γβA∞(y)u = u′′(y)+ βγA∞(y)u = 0

on the interval [0, c]. It is known [3, §A.3, §A.5] that the number of zeros of the
solution u(y, γβA∞(·)), or, the same, the increment of Prüfer’s angle

Arg Z(y, γβA∞(·))− Arg Z(0, γβA∞(·)),

grows as

π−1β
1/2

∫ y

0

(
max(γA∞(η), 0)

)1/2
dη +O(β

1/3) (51)

as β → +∞. Hence choosing sufficiently large β > 0, we can get a solu-
tion Z0(y;βA∞) satisfying the boundary condition (4) with the property that
Arg Z0(c;βA∞) > Nπ . Proposition 3.3 yields Z0(y;βA∞) > Nπ , ∀y > c.

The rest of the proof follows the proof of Theorem 5.3. One can also conclude
from (51) that N(k) ∼ k as k → ∞, where N(k) is the number of surface-wave
solutions with a given wave number k = K1/2. ��

7 Research Outlooks

The present study can be extended to various models which differ both mathemati-
cally and physically.

For one, it appears interesting to study the cases in which ρ(y) and μ(y)

have various types of asymptotic behavior at infinity, e.g., they may be seen as
asymptotically periodic, that is, as perturbations of the periodic functions with the
perturbing terms asymptotically vanishing at infinity.

Another modification of the model, which is of particular practical relevance,
corresponds to a stack of perfectly welded layers, so that the variation of the mate-
rial properties across the structure is discontinuous (more specifically, piecewise
continuous; in particular, piecewise constant in the case of homogeneous layers).
While extending Theorem 5.1 onto this case is straightforward, the generalization
of the complete formulation of Theorem 5.2 and particularly of Theorem 5.3 is a
more subtle matter which calls for an additional study. One of the relevant issues is
an extension of the classical results on the oscillation and asymptotic integration of
second-order differential equations, which are cited in Sects. 3.2–3.6 and employed
later on, onto the case of the equations with discontinuous coefficients. This may
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require developing the averaging-type results for the discontinuously heterogeneous
media.

A similar problem may be posed with respect to another form of the wave differ-
ential equation. For instance, the torsional acoustic wave in a radially heterogeneous
(functionally graded or discretely layered) rod is described in cylindrical coordinates
by the equation which is different from (3) in that it has a regular singular point at
the axis r = 0. This point is tantamount to the infinite depth of the half-space
in rectangular coordinates, so that the surface torsional wave is supposed to decay
away from the rod’s cylindrical surface towards the axis.

Coming back to the half-space case, one more option is to alter the boundary
condition. Such a modification, being mathematically straightforward, is noteworthy
for it enables considering a different physics, namely the electromagnetic waves
of the so-called TE or TM polarization. The Maxwell equations admitting these
wave solutions can be cast to the same form as Eq. (3), in which the mechanical
displacement u(y) is to be replaced with electric or magnetic field, ρ (y) with
inverse magnetic permeability or inverse dielectric permittivity, and μ (y) with
dielectric permittivity or magnetic permeability, respectively, for the TE or TM
waves. At the same time, the boundary condition at the half-space surface y = 0 can
no longer be of a homogeneous type (cf. Eq. (4)) since, by contrast to sound, light
does propagate in vacuum. Therefore, the surface electromagnetic wave must stay
continuous at the boundary y = 0 and decay in the both directions away from it.
The continuity condition may be suitably formulated in terms of the appropriately
defined electromagnetic impedance (see [11]), in which terms the essence of the
surface-wave existence considerations does not much differ from the present case
of shear acoustic waves.

Further generalization of the problem of existence of surface acoustic waves in
heterogeneous media can certainly be due to augmenting the number of unknowns
and/or the number of variables. The former option implies passing from a scalar
differential equation to a vector one, which may describe acoustic waves in
anisotropic elastic media or else the waves of miscellaneous coupled-field nature
(e.g., acoustoelectric, acoustomagnetic, thermoacoustic waves, etc.) The analytical
results on the existence of vector-type surface waves in a spatially heterogeneous
(aperiodic) half-space are basically confined to certain particular settings, such
as the case of an arbitrarily heterogenous material of finite depth lying on a
homogeneous substrate (see [17] for a background), the case of the Rayleigh
dispersion branch in a functionally graded anisotropic half-space at high ω and k
(validating the WKB asymptotics, see [16] and the bibliography therein), or else
the special cases of spatial dependence of the material coefficients which allow for
an explicit solution of the underlying wave equation [10, 12]. A different line of
attack of the “vector wave” problem in its general formulation, can be extending the
present paper’s methods via engaging the results on the asymptotic integration of the
linear systems of ordinary differential equations together with the multidimensional
Sturmian theory (see [2]).

Finally, the most far-reaching variant of the surface-wave problem in a half-space
is concerned with the material model which permits spatial variation of properties
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in more than one coordinate and hence leads to the wave equation in the PDE
form. This form of the surface-wave problem has been amply dealt with in the
canonical case of periodicity, which is broadly relevant to physical acoustics, and
in the framework of the high-frequency asymptotic ray method, which is commonly
used in seismic and fluid mechanics [4, 8, 9]. The treatment of the surface-wave
problem in its general formulation remains to be a challenging task with plenty of
room for further mathematical advances.

8 Conclusions

The present study has dealt with the bi-parametric Sturm-Liouville problem describ-
ing shear acoustic waves propagating with (non-zero) frequency ω and wave number
k in a functionally graded half-space semi-bounded in the depth coordinate y and
infinite in others. The density ρ(y) and shear modulus μ(y), which appear in
the coefficients of the homogeneous wave equation, are assumed to be arbitrary
(aperiodic) continuous functions of y with a finite limit at y → ∞. We provided
criteria for non-existence/existence of surface-wave solutions in terms of the relation
between the ratio ρ(y)

μ(y)
and its limit value ρ∞

μ∞ at y → ∞. If ρ(y)
μ(y)

≥ ρ∞
μ∞ for all y,

then there are no surface waves. If, otherwise, there exists an interval ]y1, y2[ where
ρ(y)
μ(y)

<
ρ∞
μ∞ , then the surface waves do exist for any k greater than some k0 > 0,

and the number N(k) of solutions grows with the growth of k. An apparently most
interesting result is a possibility of existence of an infinite number of solutions
for any given k. For this to occur, the requirement μ(y)

ρ(y)
<

μ∞
ρ∞ for all sufficiently

large y must be supplemented by a condition on the functions ρ(y), μ(y), which
guarantees the so-called oscillatory property to the particular limit-case second-
order equation (47).

A remark is in order that we have not elaborated on the properties of the
dispersion spectrum ω (k) associated with the solutions of the problem. It may be
expected that this spectrum consists of disjoint dispersion curves as it is in the case
of periodic ρ (y) and μ (y) (see [17]). However, this has to be confirmed by analysis
to be carried out elsewhere.
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Modeling of Microstructures in a
Cosserat Continuum Using Relaxed
Energies: Analytical and Numerical
Aspects

Muhammad Sabeel Khan and Klaus Hackl

1 Introduction

This paper focuses on the treatment of a non-quasiconvex, and therefore ill-posed
variational model for granular materials arises as a consequence of the particle
counter rotations at the microscale. In continuum mechanics non-quasiconvex
potentials may arise due to various reasons, e.g., in the case of strain-softening
plasticity [34, 42] they can be caused by non-monotone constitutive behavior, in
the case of single slip plasticity they can be due to single slip constraints on the
deformation of crystal in association with cross-hardening [22, 23], for twinning
induced plasticity they stem from multi-phase energy potentials corresponding to
different martensitic variants [8, 12, 32, 35, 38].

So far, different approaches have been discussed in the literature to treat
non-quasiconvex variational problems. One possibility is to use regularization
techniques which are based on a gradient-type enhancement of the original non-
quasiconvex energy function in (5). But the regularization method has its own
limitations as far as the physical properties of the unrelaxed problems are concerned.

Contrary to this is the method of relaxation which is a more effective and natural
way to deal with non-quasiconvex energies. There are two ways to relax the original
non-quasiconvex energy minimization problem (5). Either to enlarge the space
of admissible deformations

(
W 1,p∈(1,∞) (Ω,Rn)

)
to the space of parametrized

measures [8, 53, 74] or to replace the original non-quasiconvex energy with its
relaxed energy envelope. The methodology of constructing a relaxed minimization
problem by using parametrized measures is discussed by Carstensen and Roubíček
[13, 14], Nicolaides and Walkington [46, 47], Pedregal [51–53], and Roubíček [55–
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57]. The references which suggest to replace the non-quasiconvex energy with its
corresponding relaxed energy function are found in Carstensen et al. [15], Conti
and Ortiz [22], Conti and Theil [23], Hackl and Heinen [35], Govindjee et al. [32],
Miehe and Gürses [34]. Numerical schemes for calculating relaxed envelopes have
been worked out by Aranda and Pedregal [4], Bartels [10], Carstensen et al. [16],
Carstensen and Plechac [12], Carstensen and Roubíček [14], Chipot [19], Chipot
and Collins [20], Collins et al. [21], Dolzmann and Walkington [30], Pedregal [52],
and Roubíček [56]. For a detailed discussion on the methods of relaxation the reader
is referred to the work by Dacorogna [25], Ball [7] and the references therein.

Exact analytical results for the relaxed energy are known only for few variational
problems in the literature so far. For example, the work of DeSimone and Dolzmann
[29] where they give an exact envelope of the relaxed energy potential for the
free energy of the nematic elastomers undergoing a transition from isotropic to
nematic-phase. Dret and Raoult [44] compute an exact quasiconvex envelope for
the Saint Venant-Kirchhoff stored energy function expressed in terms of singular
values. Some analytical examples of quasiconvex envelopes are also mentioned
by Raoult in [54] for different models in nonlinear elasticity. Kohn and Strang
[39, 40] gave an exact formula (see Theorem 1.1 in [39]) for the relaxed energy
for a variational problem which has its emergence from the shape optimization
problems for electrical conduction. Another exact relaxed result is given by Conti
and Theil in [23] for the incremental variational problem for rate-independent single
slip elastoplasticity. Conti and Ortiz [22] determine an exact analytical expression
for the relaxed energy in single crystal plasticity with a non-convex constraint on
the deformation of the crystal requiring all material points must deform via single
slip. They extended their analytical expression in [24] to the case of crystal plasticity
with arbitrary hardening features. Kohn and Vogelius studied the inverse problem of
applied potential tomography and come up with an analytical formula [41] for the
relaxed energy by using results from homogenization. In a similar manner but this
time with the use of Fourier analysis Kohn presents in Theorem 3.1 of [38] an exact
analytical expression for a two-well energy function with application to solid-solid
phase transitions.

In this paper, we provide an exact relaxation for the non-quasiconvex energy
which arises during our study on the rotational microstructures in granular materials.
Due to a large number of industrial applications and their use in everyday life gran-
ular materials have been studied extensively throughout the past years. Numerous
investigations have been performed in order to model the mechanical behavior of
these materials [2, 3, 18, 31, 48–50, 59–61, 63, 65, 66]. In this work, the focus is to
consider the counter rotations of granular particles at the microscale and to develop
a mechanical model that can predict the formation of distinct deformation patterns
that are related to the microstructures in these materials. For an overview on the
experimental observations of such patterns the reader is referred to the book by
Aranson and Tsimring [5]. For this purpose the continuum description of granular
materials is used, specifically the theory of Cosserat continuum.

The present work is organized as follows. In Sect. 2, the intergranular kinematics
is discussed and an interaction energy potential contributing to the strain energy of
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the material is proposed. In Sect. 3, a relaxed variational model for granular mate-
rials is presented where we state and prove a theorem on the explicit computation
of the relaxed envelope. Employing this result, the exact relaxed energy is derived
where all the material regimes are explicitly characterized. In Sect. 4, numerical
results demonstrating on the properties of computed relaxed potential are presented.
In Sect. 5, application to various continuum problems is shown. Finally in Sect. 6
conclusions are drawn.

2 Intergranular Interactions and Counter Rotations

Intergranular interactions and particle counter rotations in a granular medium
subjected to deformation are intriguing and experimentally well recognized [48,
59] phenomenon that contribute in the development of material microstructures
[9, 60, 64]. Because of intricate nature of particle rotations and complex behavior
of granular materials under deformation it is therefore difficult to understand the
intergranular cohesive interactions completely. In literature almost no comprehen-
sive study appears which discuss the intergranular interactions and the arising
phenomenon in detail that can truly justify the naturally observed microstructural
patterns in deforming granular materials. Although the particle rotations at the
microscale have been considered by a number of authors, see, e.g., [1, 17, 18, 49, 60,
64], the essence of their counter rotations especially their interactions in observing
the formation of distinct deformation patterns is not well understood. It is therefore
our aim to reconsider the intergranular kinematics of counter-rotating particles at
microscale and to develop an interaction energy potential for a granular medium
that arises as a consequence of these particle counter rotations.

Here, we develop an interaction energy potential that takes into account the inter-
granular kinematics at the continuum scale and define two new material parameters
as a suitable measure for the observation of microstructural phases of granular mate-
rials. In this spirit, consider the granular material where two neighboring particles
are in contact with each other as shown in Fig. 1. These particle interactions lead
to two important modes of deformations called translational and microrotational
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Particle
counter-
rotation

Fig. 1 Schematic of a granular medium subjected to shear with phenomenon of particle counter
rotations
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motions of the particles which can play a crucial role in the dissipation of the
material energy [1, 49] at the continuum scale and therefore contribute to the
material strain energy. These independent translational and rotational motions of
the granules at the microscale are interlinked with a suitable deformation measure
analogous to the concept used in the theory of generalized continuum. Consider now
that at the continuum scale the translational motion of the two interacting particles
is represented by the vector field {ui ei} : Rd 
→ R

d and the rotational motion
is represented by a field vector analogous to the microrotational vector {ϕi ei} :
R
d 
→ R

d of the Cosserat continuum. Associated with these deformation field
vectors are the strain measures. Corresponding to translational and microrotational
vector field these measures are the deformation tensor

[
uj,i ei ⊗ ej

] : Rd 
→ R
d×d

and
[
ϕj,i ei ⊗ ej

] : Rd 
→ R
d×d , respectively. The symmetric part of uj,i ei ⊗ ej is

the classical strain tensor εij ei⊗ej . An investigation of the rotating phenomenon of

the interacting particles reveals that the macroscopic shear

(
εij − 1

d
εkk δij

)
ei⊗ej

influence the microrotational deformation ϕj,i ei ⊗ ej of the granular particles.
This leads us to suggest a proportionality relation between the gradient of the
microrotational vector field and the macroscopic shear strain which in mathematical
terms is given by

√√√√√
d∑

i,j=1

(
ϕj,i
)2 ∝

√√√√√
d∑

i,j=1

(
εij − 1

d
εkk δij

)2

, (1)

where d is the dimension of the problem under consideration. This proportionality
relation is solved with the introduction of the length scale parameter β with the
dimension of the inverse of a length. Thus we can write

√√√√√
d∑

i,j=1

(
ϕj,i
)2 = β

√√√√√
d∑

i,j=1

(
εij − 1

d
εkk δij

)2

. (2)

Equation (2) is indeed the simplest possible assumption taking into account such
an intergranular relationship. More complex forms can be envisioned, but we will
demonstrate in the sequel that the present one already leads to a very intricate
kinetics.

This brief but comprehensive discussion on intergranular kinematics enables us
to propose an interaction energy potential that will contribute to the material strain
energy function. This interaction energy potential is stated as

I = α

⎛
⎝ d∑
i,j=1

(
ϕj,i
)2 − β2

d∑
i,j=1

(
εij − 1

d
εkk δij

)2
⎞
⎠

2

, (3)
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where Einstein’s summation convention is assumed. In tensorial notation it takes the
following form

I = α
(
‖∇ϕ‖2 − β

2 ‖sym dev∇u‖2
)2

, (4)

where α and β are non-negative material constants, α is the interaction modulus
having information regarding frictional effect in the interacting particles and β is
related to the particle size having information regarding intrinsic length scale in
Cosserat continuum. The proposed interaction energy potential not only bridges
the gap between microstructural properties and the macroscopic behavior of the
material but also enables us to characterize different microstructural regimes in
granular materials.

3 A Relaxed Variational Model for Granular Materials

3.1 Variational Model

The mechanical response of granular materials can be computed from variational
models defined within the context of Cosserat continuum theory. Let Ω be a
bounded domain with Lipschitz boundary ∂Ω and u : Ω ⊂ R

d 
→ R
d be

the displacement vector field where d being the dimension of the problem under
consideration, Φ : Ω ⊂ R

d 
→ so(d) := {
R ∈M

d×d | RT = −R} be the
microrotations such that the micromotions of the particles are collected in the vector
field ϕ = axl(Φ) : Ω ⊂ R

d 
→ R
d , then the deformed configuration of these

materials can be completely determined from the following minimization problem

inf
u,Φ,ϕ

{
I (u,Φ,ϕ) ; (u,Φ,ϕ) ∈ W1,p

(
Ω,Rd

)
×W1,p(Ω, so (d) )×W1,p

(
Ω,Rd

)}
, (5)

along with the prescribed boundary conditions u|∂Ωu = u◦ and ϕ|∂Ωϕ = ϕ◦. Here
W 1,p is the space of admissible deformations (also known as Sobolev space) with
p ∈ (1,∞) related to the growth of the energy function W . The integral functional
I is defined as

I (u,Φ,ϕ) =
∫
Ω

W (∇u,Φ,∇ϕ) dV − � (u,ϕ) , (6)

where the potential � takes the contribution of external forces b, external couples m,
traction forces tu, and traction moments tϕ such that

� (u,ϕ) =
∫
Ω

(b · u+m · ϕ) dV +
∫
∂Ωu

tu · u dS +
∫
∂Ωϕ

tϕ · ϕ dS. (7)
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In reality, the deformation of granular media is a dissipative process which should
not be discussed in terms of energies and displacements. In this sense, our model
only covers the initiation of material microstructures. For a full description of
extended time-intervals, the variables u,Φ,ϕ would have to be replaced by their
corresponding velocities and the energy W by a dissipation function. An exposition
of this procedure in the case of rigid elasticity can be found in [67–69].

Within the framework of generalized elasticity the mechanical response of gran-
ular materials can be determined with the specification of an energy potential that
depends, in an independent way, on the particle displacement and microrotations. It
is therefore possible to replace the energy potential W in the integral functional (6)
by the following Cosserat energy function

Wcsrt (∇u,Φ,∇ϕ) = 1

2
e (u,ϕ) : C : e (u,ϕ) + 1

2
κ (ϕ) : C : κ (ϕ) , (8)

which do not only depend on the gradients of the macro and micromotions of the
particles but also on a relative macro-rotational deformation tensor Φ that associates
the macro-deformation with the micro-deformation of the particles. Here, e = ∇u−
Φ is the Cosserat deformation strain tensor, κ = ∇ϕ is the rotational deformation
strain tensor, C and C are the fourth order constitutive tensors of elastic constants.

The earlier discussion in Sect. 2 on the intergranular interactions and counter
rotations of the particles leads us to introduce an enhanced energy potential for the
granular materials. In this spirit, the interaction energy potential (4) is integrated
with the Cosserat energy function (8) to model the microstructures of the granular
materials. This enables us to define a new enhanced energy potential for the granular
materials in a Cosserat medium which is given by

W (∇u,Φ,∇ϕ) = Wcsrt (∇u,Φ,∇ϕ)︸ ︷︷ ︸
Cosserat energy function

+ α
(
‖∇ϕ‖2 − β

2 ‖dev sym∇u‖2
)2

︸ ︷︷ ︸
Interaction energy potential

.

(9)

In an isotropic elastic Cosserat medium the enhanced energy potential (9) takes the
form

W (∇u,Φ,∇ϕ) =
(
λ

2
+ μ

d

) (
tr ε
)2 + μ ‖dev ε‖2 + μc ‖asy∇u−Φ‖2 + λ

2
(tr κ)2

+ μ ‖sym κ‖2 + μc ‖asy κ‖2 + α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2
.

(10)

Here, λ, μ, μc, λ̄, μ̄, μ̄c are the Cosserat material constants.
The non-convexity and hence the non-quasiconvexity of the energy potential (10)

along some chosen strain paths can be seen from Fig. 2. Such non-quasiconvex
energy potential when enters in (6) will lead to work with non-quasiconvex energy
minimization problem whose general analytical solutions are always of interest. But,
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Fig. 2 Unrelaxed energy (10) curve for E = 2.0× 102 (MPa), ν = 0.3, μc = 1.0× 10−2 (MPa),
λ = 1.15 × 102 (N), μ = 7.69 × 101 (N), μc = 1.00 × 101 (N), α = 1.0 × 101 (N mm2) and
β = 1.20× 102 (mm−1)

the solutions to such non-quasiconvex energy minimization problems do not exist in
general, which is highly due to fine scale oscillations of the gradients of minimizing
deformations. Here, in this case, the non-existence of these solutions is due to the
possible displacement and microrotation field fluctuations at fine scales. The fine
scale oscillations of the minimizing displacement and microrotation field variables
will lead to the development of internal structures in the material. Formation of such
microstructures can be extended microstructures [6, 33] which is distributed through
the material domain or the localized microstructures [11, 27] which appear in the
form of narrow shearing bands. Moreover, the existence of the unique minimizing
translational and microrotational deformations are not guaranteed in this situation.

Thus to avoid these problems and to resolve the internal structures of the materi-
als in consideration it is therefore necessary to compute a quasiconvex (relaxed)
energy potential W rel. The relaxed potential when entered in the minimization
problem (5) now assures the ellipticity of the resulting boundary value problem,
since it satisfies the Legendre-Hadamard condition (see definition by Ball and
Dacorogna [7, 25]). The study by Morrey [45], Dacorogna [25, 26] gives sufficient
justification for the relation of Legendre-Hadamard (ellipticity) condition with the
constitutive description of a related mechanical problem.

If possible to compute the exact relaxed envelope of the corresponding non-
quasiconvex energy in the energy minimization problem (5) one does not only
guarantee general solutions of the associated energy minimization problem but also
can predict on the formation of both the extended and localized microstructures in
the materials. It is worth mentioning that, in this case, we enable to compute an
exact relaxed (quasiconvex) energy envelope corresponding to the non-quasiconvex
energy potential in (10).

Since quasiconvex envelopes possess only degenerate ellipticity, only existence
of minimizers can be guaranteed, no uniqueness. For numerical purposes it is
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therefore advantageous to add a very small strongly elliptic regularization term.
This does not alter the character of the calculated solutions.

3.2 Computation of Relaxed Energy Envelope

In this section, we present our main result concerning the solutions of non-quasi-
convex energy minimization problem in (5). In this respect, we compute an exact
quasiconvex envelope of the energy function in (10). For other cases where it was
possible to construct exact relaxed envelopes corresponding to energy minimization
problems addressing different mechanical aspects the reader is referred to the work
by Conti and Theil [23], Conti and Ortiz [22], Conti et al. [24], DeSimone and
Dolzmann [29], Dret and Raoult [44], Kohn [38], Kohn and Strang [39, 40], Kohn
and Vogelius [41], Raoult [54]. The quasiconvex envelope which here termed as the
relaxed energy Wrel is thus stated as

Theorem 1 Assume d = 3, λ, μ, μc, λ̄, μ̄, μ̄c, α, β ≥ 0, μ◦ = min {μ̄, μ̄c}. Let

f = μ◦ s + μc + α
(
s − β2 c

)2
, h =

{
(μ̄− μ̄c) ‖sym κ‖2 if μ̄ ≥ μ̄c

(μ̄c − μ̄) ‖asy κ‖2 otherwise

and define g by

g = min
s,c; c≥‖dev ε‖2,

s≥(‖sym κ‖2+‖asy κ‖2)
f (s, c) .

(11)

Then, the quasiconvex envelope of the Cosserat strain energy defined in (10) is given
by

Wrel =
(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u−Φ‖2 + λ

2
(tr κ)2 + h

+ g
(
‖sym κ‖2 , ‖asy κ‖2 , ‖dev ε‖2

)
. (12)

Proof Consider the rank-one line κ t = κ + t a⊗ b; a,b ∈ R
d , t ∈ R, then

W (e, κ t ) =
(
λ

2
+ μ

d

) (
tr ε
)2 + μ ‖dev ε‖2 + μc ‖asy∇u−Φ‖2 + λ

2
(tr κ)2

+ μ ‖sym κ t‖2 + μc ‖asy κ t‖2 + α
(
‖sym κ t‖2 + ‖asy κ t‖2 − β2 ‖dev ε‖2

)2
.

(13)

Now, for any s ≥ ‖κ‖2 we can select t− < t ≤ 0 such that ‖κ t‖2 = s . A
lamination in this direction gives
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Wrc ≤
(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy∇u−Φ‖2 + λ

2
(tr κ)2 + h

+ min
s≥‖sym κ‖2+‖asy κ‖2

{
μ◦ s + μ ‖dev ε‖2 + α

(
s − β2 ‖dev ε‖2

)2
}
.

(14)

Here, rc in the superscript stands for rank-one convex envelope. Working along the
rank-one line et = e + t c⊗ d; c,d ∈ R

d and following the arguments above,
we obtain

Wrc ≤
(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy∇u−Φ‖2 + λ

2
(tr κ)2 + h

+ min
c≥‖dev ε‖2

{
μ◦
(
‖sym κ‖2 + ‖asy κ‖2

)
+ μc

+ α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 c

)2
}
.

(15)

Hence the upper bound is proved. The lower bound is based on Lemma 1 below and
on the fact that, for h1 : [0,∞)d 
→ R

d convex and non-decreasing in each variable
and h2 : Rd×d 
→ R

d component-wise convex, the function h1 ◦ h2 is convex. This
completes the proof.

Lemma 1 Let f : [0,∞)2 
→ [0,∞) be convex. Then the function g defined by

g(x) = inf
s1≥x1,s2≥x2

f (s) (16)

is convex and non-decreasing in each variable.

Proof Fix x′, x′′, λ ∈ (0, 1). For any ε > 0 there are s′, s′′ such that x′ ≤ s′,
x′′ ≤ s′′, and

f (s′) ≤ g(x′)+ ε, f (s′′) ≤ g(x′′)+ ε. (17)

Then λs′ + (1− λ)s′′ ≥ λx′ + (1− λ)x′′, and since f is convex we obtain

g(λx′ + (1− λ)x′′) ≤ f (λs′ + (1− λ)s′′) ≤ λf (s′)+ (1− λ)f (s′′)

≤ λg(x′)+ (1− λ)g(x′′)+ ε. (18)

Therefore g is convex. Monotonicity is clear from the definition.

To compute the exact relaxed envelope in (12) one needs to solve the minimization
problem (11). The stationarity conditions to this minimization problem are as
follows
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Fig. 3 A Couette shear cell where the two arrows indicate the shearing direction of the inner
and outer boundaries of the annular domain. In the inset the microstructure pattern due to
microrotational motions of the particles is shown

3.2.1 Stationarity Conditions

(1). for s = ‖sym κ‖2 + ‖asy κ‖2
and c ≥ ‖dev ε‖2 : ∂g

∂c
= 0,

∂g

∂s
≥ 0,

(19a)

(2). for s = ‖sym κ‖2 + ‖asy κ‖2
and c = ‖dev ε‖2 : ∂g

∂c
≥ 0,

∂g

∂s
≥ 0,

(19b)

(3). for c = ‖dev ε‖2
and s ≥ ‖sym κ‖2 + ‖asy κ‖2 : ∂g

∂s
= 0,

∂g

∂c
≥ 0.

(19c)

On the basis of these three stationarity conditions the material energy can be
characterized into the following three phases

3.2.2 Material Regime with Rotational Microstructure (Phase 1)

This phase is corresponding to the material regime where there are microstructures
due to the microrotations (which are in fact the rotational degrees of freedom
assembled in the microrotational vector field ϕ) of the continuum particles. A
schematic representation of such microstructure is given in Fig. 3. The enhanced
energy potential (10) is non-convex in this microstructural phase. It is observed
that whenever the norm of the curvature strain tensor is dominating over the norm
of the macroscopic shear strain tensor for some specific choice of the material
parameters μ, α, and β, the material experiences a microstructure in microrotations.
This microstructural material phase is characterized by the following inequality

‖κ‖2 ≥ β2 ‖dev ε‖2 + μ

2αβ2 . (20)
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It is important to note the effect of shear modulus μ, internal length scale (e.g.,
the diameter of particles) β and the coherency interaction modulus or frictional
modulus α in conjunction with the curvature and macroscopic shear strains which
plays very crucial role in the observation of this internal structural phase of the
material. Using the first stationarity condition (19a) the minimizers of the problem
in (11) are obtained as

s = ‖sym κ‖2+‖asy κ‖2 , c = 1

β2

(
‖sym κ‖2 + ‖asy κ‖2

)
− μ

2αβ4
. (21)

Thus, the scalar convex function g is given by

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
μ− μc + μ◦ + μ

β2

)
‖sym κ‖2 +

(
μ◦ + μ

β2

)
‖asy κ‖2 − μ2

4αβ4 if μ̄ ≥ μ̄c

(
μ◦ + μ

β2

)
‖sym κ‖2 +

(
μc − μ+ μ◦ + μ

β2

)
‖asy κ‖2 − μ2

4αβ4 if μ̄ < μ̄c.

(22)

The relaxed energy of the material in this phase is obtained as

Wrel
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u− E · ϕ‖2 − μ2

4αβ4

if μ̄ ≥ μ̄c,

+ λ̄
2
(tr κ)2 + (μ̄− μ̄c) ‖sym κ‖2 +

(
μ◦ + μ

β2

)
‖κ‖2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u− E · ϕ‖2 − μ2

4αβ4

if μ̄ < μ̄c

+ λ̄
2
(tr κ)2 − (μ̄− μ̄c) ‖asy κ‖2 +

(
μ◦ + μ

β2

)
‖κ‖2 .

(23)

3.2.3 Material Regime with No Microstructure (Phase 2)

This phase is connected with the material regime where there is no internal structure
in the material. The second stationarity condition (19b) clearly shows that the

minimizers of the functional in (11) are
(
‖sym κ‖2 + ‖asy κ‖2

)
and ‖dev ε‖2,

respectively. This indicates that the original energy potential in (10) is convex in
this material phase. The criteria for the recognition of this material phase are given
by the following inequality relation

β2 ‖dev ε‖2 − μ◦
2α
≤ ‖κ‖2 ≤ β2 ‖dev ε‖2 + μ

2αβ2 . (24)
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The function g in this phase is given by

g = μ ‖sym κ‖2 + μc ‖asy κ‖2 + μ ‖dev ε‖2

+ α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2
. (25)

The relaxed energy potential in this phase is thus the original energy potential (10)
itself and we write

Wrel
2 =

(
λ

2
+ μ

d

)(
tr ε
)2 + μ ‖dev ε‖2 + μc ‖asy∇u− E · ϕ‖2 + λ

2

(
tr κ
)2

+ μ ‖sym κ‖2 + μc ‖asy κ‖2 + α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2
.

(26)

3.2.4 Material Regime with Translational Microstructure (Phase 3)

This phase constitutes an unexpected outcome of the theory presented. It consists of
laminates formed by alternating displacements as, for example, formed by phase-
transforming materials. It would be interesting to see whether such structures can
be observed experimentally.

The phase is related to the material regime where there is a microstructure in
translational motions (which are in fact the displacement degrees of freedom of the
continuum particles and are assembled in the displacement vector field u) of the
continuum particles. A schematic representation of such microstructure formation
is shown in Fig. 4. The enhanced energy potential (10) thus becomes non-convex in
this phase. Using the third stationarity condition (19c) it is observed that the norm
of the macroscopic shear strain tensor is dominating over the norm of the rotational
strain tensor. The material is said to be in this phase whenever the following criteria
is satisfied

β2 ‖dev ε‖2 − μ◦
2α
≥ ‖κ‖2 . (27)

It is important to note the effect the coherency modulus α and the Cosserat material
modulus μ◦ in the characterization of this microstructural phase. The minimizers of
the functional in (11) are obtained after solving the third stationarity condition (19c)
which are given as

c = ‖dev ε‖2 and s = β2 ‖dev ε‖2 − μ◦
2α
. (28)

Thus minimum potential g in (11) takes the following form
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Fig. 4 A rectangular specimen under shear. In the inset the microstructure pattern formed due to
the translational motions of the continuum particles is shown

g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
μ− μc

) ‖sym κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ2◦

4α
if μ̄ ≥ μ̄c

(
μc − μ

) ‖asy κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ2◦

4α
if μ̄ < μ̄c.

(29)

Hence the relaxed energy potential in this phase is obtained as

Wrel
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u− E · ϕ‖2 + λ̄

2
(tr κ)2

if μ̄ ≥ μ̄c

+(μ̄− μ̄c) ‖sym κ‖2 +
(
μ◦β

2 + μ
)
‖dev ε‖2 − μ◦2

4α
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u− E · ϕ‖2 + λ̄

2
(tr κ)2

if μ̄ < μ̄c

− (μ̄− μ̄c) ‖asy κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ◦2

4α
.

(30)

3.2.5 Relaxed Energy

The total relaxed energy thus comprises all the three energies in each of the phase
and it acquires finally the following form
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Wrel =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wrel
1 if ‖κ‖2 ≥ β

2 ‖dev ε‖2 + μ

2αβ2

Wrel
2 if − μ◦

2α
≤ ‖κ‖2 − β

2 ‖dev ε‖2 ≤ μ

2αβ2

Wrel
3 if ‖κ‖2 ≤ β2 ‖dev ε‖2 − μ◦

2α
,

(31)

where Wrel
1 , Wrel

2 , and Wrel
3 are explicitly given as in (23), (26), and (30),

respectively. The computation of this analytical expression for the relaxed energy
corresponding to non-quasiconvex energy function in (10) thus enable us to
predict all microstructural features of the material which are carried safely from
the microscopic to macroscopic computational scale. Hence we have extracted
all possible information regarding the development of microstructural regimes in
the granular materials pertinent to observing its macro-mechanical behavior. For
practical applications it is now more efficient and effective to reformulate the
original non-quasiconvex problem in (5) to a relaxed energy minimization problem
using this relaxed potential.

3.2.6 Nonlinear Constitutive Relations

The proposed granular material model is completed with the formulation of
constitutive relations between stress and strain tensors in a Cosserat medium. The
constitutive structure of the proposed theory thus comprises of three phases (as
discussed above) where in each phase the force-stress are explicitly related to the
Cosserat strain tensors according to the following formulas:

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(
λ

2
+ μ

d

) (
tr ε
)

I+ 2μc
(

asy ∇u−Φ
)
, (Phase 1)

⎧⎨
⎩
λ
(

tr ε
)

I + 2μ ε + 2μc
(

asy ∇u−Φ
)

− 4α β2
(
‖κ‖2 − β2 ‖dev ε‖2

) (
dev ε

)
,

(Phase 2)

λ
(

tr ε
)

I + 2μ ε + 2μ◦β2
(

dev ε
) + 2μc

(
asy ∇u−Φ

)
. (Phase 3)

(32)

The couple stress tensor is related to the curvature strain tensors by the following
formulas:
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μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩
λ̄
(

tr κ
)

I+ 2 (μ̄− μ̄c)
(

sym κ
)+ 2

(
μ◦ + μ

β2

)
κ if μ̄ ≥ μ̄c,

λ̄
(

tr κ
)

I− 2 (μ̄− μ̄c)
(

asy κ
)+ 2

(
μ◦ + μ

β2

)
κ if μ̄ < μ̄c.

(Phase 1)

{
λ̄
(

tr κ
)

I + 2 μ̄
(

sym κ
) + 2 μ̄c

(
asy κ

)
+ 4α

(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)
κ

(Phase 2)

{
λ̄
(

tr κ
)

I + 2 (μ̄− μ̄c)
(

sym κ
)

if μ̄ ≥ μ̄c,

λ̄
(

tr κ
)

I − 2 (μ̄− μ̄c)
(

asy κ
)

if μ̄ < μ̄c.
(Phase 3)

(33)

4 Numerical Results

Based on one-dimensional numerical computations the mechanical response of the
material is analyzed along some chosen macroscopic strain paths. A simple shear
and a tension-compression tests are briefly presented to observe the development
of microstructures which is characterized by the activation of different material
regimes as discussed in the Sect. 3.2.

4.1 A Simple Shear Test

Consider a two-dimensional domain Ω = (0, X1)× (0, X2) where (X1, X2) ∈ R
2.

We choose the macroscopic strain paths as follows

ε = γ

2
(e1 ⊗ e2 + e2 ⊗ e1) ,

e = γ e2 ⊗ e1 + ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) ,

ωe =
(γ

2
+ ϕ3

)
(e2 ⊗ e1 − e1 ⊗ e2) ,

κ = b (e1 ⊗ e3 + e2 ⊗ e3) .

(34)

Here, γ is the macroscopic shear, ϕ3 is the material microrotational degree of
freedom, and b is some fixed curvature. We assume that ϕ3 linearly depends on
both of the material coordinates X1 and X2 such that ϕ3 = b(X1 + X2). In this

analysis we take b = π

6
and calculate ϕ3 for all those material points which lies

on the line X1 + X2 = 1. Other than Lame’s constants λ = νE

(1+ ν)(1− 2ν)
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Table 1 Material parameters for the analytical computations in a simple shear test

Parameter Numerical value Units Parameter Numerical value Units

E 2.0× 102 (MPa) λ λ (N)

μc 1.0× 10−1 (MPa) μ μ (N)

ν 0.3 (—) μc μc (N)

α 5.0× 10−1 (N mm2) β 1.0× 101 (mm−1)
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Fig. 5 (a) Relaxed and unrelaxed stress-strain curve in different material regimes; (b) Relaxed
and unrelaxed curve for the Cosserat coupled modulus μc = 0.1; (c) Relaxed and unrelaxed curve
for the Cosserat coupled modulus μc = 1.0; and (d) Relaxed and unrelaxed curve for the Cosserat
coupled modulus μc = 10.0

and μ = E

2(1+ ν)
there are eight additional material parameters that are pertinent

to the material microstructures and are described in Table 1. Initially the material
experiences a rotational microstructure. Upon further loading it enters a regime
without microstructure. Further, upon increasing the load it changes its state to
a translational microstructure. It is observed that all three phases of the material
structure coexist. In Fig. 5a, the constitutive response of the material is shown,
where it is observed that the non-monotone stress-strain curve is replaced by
its energetically equivalent Maxwell line corresponding to a uniformly vanishing
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stress. This regime corresponds to a rotational microstructure. In the microstructure
free material regime a nonlinear constitutive response is seen. Whereas, in the
material regime with translational microstructure, we observe a linear constitutive
response in this one-dimensional analysis. The corresponding non-convex and
relaxed energy plots are shown in Fig. 5b. In Fig. 5c and d, the relaxed and unrelaxed
energy is plotted for two different values of the Cosserat modulus μc = 1.0 and
μc = 10.0, respectively. These figures demonstrate that not only the particle size in
granular material effects the development of microstructures but also the Cosserat
shear modulus does have influence in the development of material microstructures
in granular materials.

4.2 A Tension-Compression Test

In this example the material behavior in a plane strain tension-compression test
is investigated. The macroscopic strain tensors for this analysis take the following
form

ε = δ e1 ⊗ e1,

e = δ e1 ⊗ e1 + ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) ,

ωe = ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) .

(35)

Here δ is the macroscopic stretch. The Cosserat rotational strain tensor κ is taken to
be the same as mentioned in the previous test. Moreover, the microrotational degree
of freedom, ϕ3 at each material point is calculated according to a similar assumption
as in the case of the simple shear test. The material parameters are chosen as
described in Table 2. It is observed that all the three phases of material structure
coexist in this case. The constitutive behavior in the material microstructural and
non-microstructural regimes is shown in Fig. 6a where contrary to the case of
the shear test it is observed that the stress does not vanish in the regime where
the material displays a rotational microstructure. Here, the non-monotone stress-
strain curve is replaced by a monotone one. This is due to the non-constant slope
of the relaxed energy envelope in the globally non-convex range of the unrelaxed
energy potential, as seen in the magnified inset in Fig. 6b. Moreover, the properties

Table 2 Material parameters for the analytical computations in a tension-compression test

Parameter Numerical value Units Parameter Numerical value Units

E 2.0× 102 (MPa) λ 1.15× 102 (N)

μc 1.0× 10−2 (MPa) μ 7.69× 101 (N)

ν 0.3 (—) μc 1.00× 101 (N)

α 1.0× 10−1 (N mm2) β 1.20× 102 (mm−1)
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Fig. 6 (a) Relaxed and unrelaxed stress-strain curve in different regimes of the material; (b)
Relaxed and unrelaxed energy curve in different material regimes; (c) Unrelaxed energy curves
for varying values of the material parameter α; (d) Relaxed energy curves for varying values of the
material parameter α; (e) Unrelaxed energy curves for varying values of the material parameter β;
and, (f) Relaxed energy curves for varying values of the material parameter β

of unrelaxed and relaxed energy envelope are studied for different values of the
interaction modulus α and the material parameter β related to particle size. A two-
well energy structure is seen in Fig. 6c for three different values of the interaction
modulus. Both wells have the same local minimum. In Fig. 6c, it is observed that
by varying the interaction modulus the local minima of the energy envelope do not
change. The computed relaxed energy is plotted in Fig. 6d where it is seen that by
varying the interaction modulus the global minima of all the three energy curves
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do not change. The influence of the particle size on the material strain energy is
observed in Fig. 6e and f. It is seen that the particle size does not only influence the
range of local non-convexity of the energy potential but also its global non-convexity
range. It is important to note that the local maxima of the energy potential do not
change with the varying particle size. This is contrary to the case seen in Fig. 6c.
Moreover, the local and global minima of the potential are shifted and get lower
values with increased value of the material parameter β, as seen in Fig. 6e and f.

5 Finite Element Results

In the absence of body force b and body couple m the system of linear and angular
momentum weak-balance equations are solved numerically using a finite element
discretization of the material domain. Here we present numerical experiments to
demonstrate on the important features of the exact quasiconvex energy envelopes.
The computations are performed to simulate granular material behavior in a Couette
shear cell, under compression and in indentation. The geometry of the model is
reduced to two dimensions thereby allowing to compute three degrees of freedom
at each point of the material domain. Two of them are the displacements u1 and
u2 and third is the microrotation ϕ3. In the computations these degrees of freedom
are approximated on each node of an element Ωe using biquadratic interpolation
functions. A plain strain assumption is used in all the three cases in consideration.

5.1 Extended Microstructure in a Couette Shear Cell

Couette shear cells have been used to analyze the shear flows in granular materials
in a number of numerical and experimental studies. For an overview on the
comparison between numerical and experimental results obtained in a granular
Couette shear the reader is referred to the paper by Lätzel et al. [43]. These
investigations provide a clear evidence on the formation of different microstructural
patterns in granular materials under shear deformation. These appear as a result
of localized deformations near the rotating cylinder in a Couette annular geometry
[28, 36, 58, 71, 72]. These investigations have shown that under intense shearing
different deformation patterns develop. The formation depends upon the interactions
of the granular particles at microscale. The kinematic of these particle rotations
is shown in Fig. 7c where two possible kind of particle rotations, namely counter
rotations and identical rotations can be seen.
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60 mm

1 mm

20 mm

(a) a (b) b (c) c

Fig. 7 (a) Geometry of two circular rotating cylinders, (b) Reduced Couette geometry and
boundary conditions, (c) Kinematics of particle rotations: a schematic of a rotating particle chain
exhibiting different sense of rotation

Here, we are able to perform a numerical experiment to show that all material
regimes introduced above may occur simultaneously. For this purpose, a Couette
annular geometry is taken into consideration to observe the formation of microstruc-
ture using the proposed theory. The granular material is confined between two
concentric rigid circular cylinders as shown in Fig. 7a. The cylinders are subjected
to rotations in opposite direction. Due to symmetry we model only the first quadrant.
The width of the annulus is taken to be 20 mm. The inner circular boundary is
at a radius of 10 mm from the origin of the annulus. The circular boundaries are
supposed to rotate in opposite direction. The boundary conditions for the numerical
simulation using the proposed model uses fixed displacement along the circular
boundaries whereas a small microrotation is prescribed at the boundaries.

Our intension with this study is to observe the development of microstructural
phases within the annular domain subjected to rotational deformation. The both
rotational and translational microstructures develop as shown in Fig. 8. In Fig. 8a
the material exhibits a rotational microstructure. In Fig. 8b–d, it is shown that for
particular parameters as listed in Table 3, all the material phases coexist. Moreover,
the deformed configurations in Fig. 8 indicate that decreasing the value of β causes
the material to behave more softly. Also with decrease in particle size, rotational
microstructures are more pronounced.

5.2 Localized Deformations in Granular Materials

Localization of deformation has been observed both numerically [27, 70] and
experimentally [37, 62] in a number of physical situations. Our emphasis with this
study is to show that it is possible to observe this phenomenon with the application
of exact relaxed potentials. To illustrate on the formation of these localized
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Fig. 8 Couette shear cell: (a) coexistence of areas with no microstructure (red) and rotational
microstructure (blue), (b–d) coexistence of areas with translational microstructure (red), no
microstructure (green) and rotational microstructure (purple)

Table 3 Material parameters for the shear test in a Couette geometry

Figure E ν μc α β μ μc

– (MPa) – (MPa) (N mm2) (mm−1) (N) (N)

8a 2.0× 102 0.3 2.0× 100 2.0× 105 5.8× 10−1 8.0× 101 5.0× 101

8b 2.0× 102 0.3 2.0× 102 2.0× 105 5.8× 10−1 8.0× 101 5.0× 101

8c 2.0× 102 0.3 2.0× 102 2.0× 105 4.0× 10−1 8.0× 101 5.0× 101

8d 2.0× 102 0.3 2.0× 102 2.0× 105 2.0× 10−1 8.0× 101 5.0× 101

deformation bands a tension-compression test performed on a rectangular specimen
is presented. The formation of microstructural zones in the specimen clearly predicts
the localized deformation mechanism observed by Kaus and Podladchikov [37].
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5.2.1 A Rectangular Specimen in Compression

In this example, a rectangular specimen of a granular material is considered with
a small imperfection in the form of a weak element at the center of the specimen
as shown in Fig. 9. The material parameters used for the simulation are given in
Table 4. The geometry and boundary conditions are shown in Fig. 9, where the
vertical displacements on both top and bottom of the specimen are constrained.
The material points are allowed to move horizontally at both the top and bottom
boundary of the specimen except the point at the left lower corner of the specimen
which is fixed in both the horizontal and vertical direction. Additionally a frictional
boundary condition is used where a microrotation of the continuum points is allowed
at both the top and bottom boundary of the specimen. A maximum displacement of
−34.8 cm is applied at the top boundary in vertical direction. We consider 1000
loading steps with a load step size of 4.35× 10−3.

Two different mesh sizes for discretizing the specimen into finite elements are
used in the analysis, see Fig. 10. It is observed that microstructure in the material
develops in zones where material failure may possibly occur. The red color zone
is corresponding to the material phase exhibiting translational microstructure. The
width of the microstructural band is not affected by mesh size. This is highly due
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Fig. 9 (a) Geometry and boundary conditions of the rectangular specimen with weak element.
(b) Selected lines along the width of the microstructural zone

Table 4 Material parameters for the specimen with introduced imperfection in compression

– E ν μc α β μ μc

– (MPa) – (MPa) (N mm2) (mm−1) (N) (N)

Mesh 2.0× 105 0.3 2.0× 101 5.0× 101 1.5 7.0 2.0× 101

Weak element 2.0× 103 0.3 2.0× 101 1.0× 103 1.5 3.0× 102 4.0
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Fig. 10 Rectangular specimen in compression, deformed configuration and material phases. First
column: coarse mesh consisting of 765 elements. Second column: fine mesh consisting of 4214
elements
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Fig. 11 Distribution of Cosserat rotation ϕ3 (a) and (b), strains ε11 (c), torsion κ13 (d), stress σ12
(e) and couple stress μ23 (f) along the width of microstructural zones

to the properties of the exact relaxed potentials. The behavior of selected variables
across the zones exhibiting microstructure is depicted in Fig. 11

5.2.2 Indentation Test

The significance of observing the mechanical response of a granular medium
subjected to indentation is evident from the load bearing capacity problems in
geotechnical engineering. Particle rotations have always played an important role
in load bearing capacity problems and are therefore of keen interest to many
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researchers [5, 9, 64] where Cosserat continuum was used to describe the behavior
of granular medium subjected to indentation.

In this example we study the microstructure formation in a granular medium
under indentation with the application of relaxation theory within the framework of
Cosserat continuum. A plain strain assumption is used in this analysis. A body of
dimensions 200×100 cm2 is subjected to indentation by a flat rigid indenter with a
dimension of 50×5 cm2 as shown in Fig. 12. The geometry of the granular medium
is discretized into 2560 finite elements whereas the geometry of the indenter is
discretized into 250 finite elements. The indenter can only move in vertical direction
and this constraint is applied by fixing the horizontal degrees of freedom of all the
nodal points of indenter. Both the horizontal and vertical degrees of freedom on the
right and left boundary of the granular medium are fixed. The continuum points
can move only in horizontal direction at the base of the granular medium which is
ensured by fixing the vertical degrees of freedom. The punching of the indenter is
controlled by the applied vertical displacements, where a maximum displacement
of 3.76 cm is applied at the top nodes of the indenter mesh in 1390 loading steps
with a step size of 1.4×10−3. The material parameters used for the indenter and the
granular medium are shown in Table 5. A large number of experiments have been
performed on the granular foundations subjected to indentation revealing similar
bands of localized deformations as shown in this investigation. Also numerical
simulation using a finite element scheme for the Cosserat continuum by Walsh
and Tordesillas [73] has shown such kind of microstructure formation. We show
a numerical solution where the development of microstructure has been predicted
in the localized zones around the indenter. The nucleation and the evolution of
the microstructural zone can be observed as the indenter moves downward into
the material domain. The zone developed beneath the indenter is corresponding
to translational microstructure. The results in Fig. 13 are in accordance to the
generalized Prandtl’s solution of a rigid flat punch problem and is in agreement
with the experimental investigation [73].

Fig. 12 Geometry of the
granular medium under
indentation along with the
prescribed boundary
conditions

200 cm

100 cm

50 cm

Table 5 Material parameters for the indentation test on a granular medium

– E ν μc α β μ μc

– ( N
cm2 ) – ( N

cm2 ) (N cm2) (cm−1) (N) (N)

Granular medium 2.0× 104 0.3 2.0 5.0× 104 0.5 7.0× 103 2.0× 102

Indenter 2.0× 1012 0.3 2.0 5.0× 103 0.5 7.0× 103 2.0× 102
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Fig. 13 Microstructure development beneath indenter in a granular foundation
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6 Conclusion

In nature granular materials exhibit distinct patterns under deformation. The forma-
tion of these patterns is strongly influenced by counter rotations of the interacting
particle at the microscale. In this article, we study the counter rotations of the
particles and the formation of rotational microstructures in granular materials.

By employing the direct methods in the calculus of variations it turns out to
be possible to derive an exact quasiconvex envelope of the energy potential. It
is worth mentioning that there are no further assumptions necessary to derive
this quasiconvex envelope. The computed relaxed potential yields all the possible
displacement and microrotation field fluctuations as minimizers. Hence, by doing
so we do not only resolve the issues concerning related non-quasiconvex variational
problem but also guarantee the existence and uniqueness of energy minimizers.
Moreover, the independence of these minimizers on the discretization of the spatial
domain is ensured. We conclude with the result that the granular material behavior
can be divided into three different regimes. Two of the material regimes are
exhibiting microstructures in rotational and translational motions of the particles,
respectively, and the third one is corresponding to the case where there is no internal
structure of the deformation field.

The proposed model is analyzed numerically employing material point and finite
element calculations. Moreover, it has been shown that all possible phases can
coexist in a specific material body at the same instant in time.

Acknowledgments The first author gratefully acknowledges the funding by Higher Education
Commission (HEC) of Pakistan and highly appreciate the support by Deutscher Akademischer
Austausch Dienst (DAAD) for this research work. The second author gratefully acknowledges
the funding by the German Research Foundation (DFG) in the framework of Project C4 of the
Collaborative Research Center “Interaction Modeling in Mechanized Tunneling” (SFB 837).

References

1. Alonso-Marroquín, F., Vardoulakis, I., Herrmann, H.J., Weatherley, D., Mora, P.: Effect of
rolling on dissipation in fault gouges. Phys. Rev. E 74, 301–306 (2006). https://doi.org/10.
1103/PhysRevE.74.031306

2. Alsaleh, M.I., Voyiadjis, G.Z., Alshibli, K.A.: Modeling strain localization in granular
materials using micropolar theory: mathematical formulations. Int. J. Numer. Anal. Meth.
Goemech. 30, 1501–1524 (2006). https://doi.org/10.1002/nag.533

3. Alshibli, K.A., Alsaleh, M.I., Voyiadjis, G.Z.: Modelling strain localization in granular
materials using micropolar theory: numerical implementation and verification. Int. J. Numer.
Anal. Meth. Goemech. 30, 1525–1544 (2006). https://doi.org/10.1002/nag.534

4. Aranda, E., Pedregal, P.: Numerical approximation of non-homogeneous, non-convex
vector variational problems. Numer. Math. 89, 425–444 (2001). https://doi.org/10.1007/
s002110100294

5. Aranson, I., Tsimring, L.: Granular Patterns. Oxford University Press, Oxford (2009)
6. Bagnold, R.A.: The Physics of Blown Sand and Desert Dunes. Methuen, London (1941)

https://doi.org/10.1103/PhysRevE.74.031306
https://doi.org/10.1103/PhysRevE.74.031306
https://doi.org/10.1002/nag.533
https://doi.org/10.1002/nag.534
https://doi.org/10.1007/s002110100294
https://doi.org/10.1007/s002110100294


84 M. Sabeel Khan and K. Hackl

7. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration.
Mech. Anal. 63, 337–403 (1976). https://doi.org/10.1007/BF00279992

8. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech.
Anal. 100, 13–52 (1987). https://doi.org/10.1007/bf00281246

9. Bardet, J.P.: Observation on the effects of particle rotations on the failure of idealized granular
materials. Mech. Mater. 8, 159–182 (1994). https://doi.org/10.1016/0167-6636(94)00006-9

10. Bartels, S.: Numerical analysis of some non-convex variational problems. PhD thesis,
Christian-Alberechts-Universität, Kiel (2001)

11. Bauer, E., Huang, W.: Numerical investigation of strain localization in a hypoplastic Cosserat
material under shearing. In: Desai (ed.) Proceedings of the 10th International Conference
on Computer Methods and Advances in Geomechanics, pp. 525–528. Taylor & Francis,
Routledge (2001)
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14. Carstensen, C., Roubíček, T.: Numerical approximation of young measures in non-convex vari-
ational problems. Numer. Math. 84, 395–415 (2000). https://doi.org/10.1007/s002119900122

15. Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstructures in finite-strain
plasticity. Proc. R. Soc. Lond. A 458, 299–317 (2002). https://doi.org/10.1098/rspa.2001.0864

16. Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-
slip crystal plastictiy. Contin. Mech. Thermodyn. 20, 275–301 (2008). https://doi.org/10.1007/
s00161-008-0082-0

17. Chang, C.S., Hicher, P.Y.: An elasto-plastic model for granular materials with microstructural
consideration. Int. J. Solids Struct. 42, 4258–4277 (2005). https://doi.org/10.1016/j.ijsolstr.
2004.09.021

18. Chang, C.S., Ma, L.: Elastic material constants for isotropic granular
solids with particle rotation. Int. J. Solids Struct. 29, 1001–1018 (1992).
https://doi.org/10.1016/0020-7683(92)90071-Z

19. Chipot, M.: The appearance of microstructures in problems with incompatible wells
and their numerical approach. Numer. Math. 83, 325–352 (1999). https://doi.org/10.1007/
s002110050452

20. Chipot, M., Collins, C.: Numerical approximation in variational problems with potential wells.
SIAM J. Numer. Anal. 29, 1002–1019 (1992). https://doi.org/10.1137/0729061

21. Collins, C., Kinderlehrer, D., Luskin, M.: Numerical approximation of the solution of a
variational problem with a double well potential. SIAM J. Numer. Anal. 28, 321–332 (1991).
https://doi.org/10.1137/0728018

22. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals.
Arch. Ration. Mech. Anal. 176, 103–147 (2005). https://doi.org/10.1007/s00205-004-0353-2

23. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178,
125–148 (2005). https://doi.org/10.1007/s00205-005-0371-8

24. Conti, S., Hauret, P., Ortiz, M.: Concurrent multiscale computing of deformation microstruc-
ture by relaxation and local enrichment with application to single-crystal plasticity. Multiscale
Model. Simul. 6, 135–157 (2007). https://doi.org/10.1137/060662332

25. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)
26. Dacorogna, B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions

in any dimension. Discrete Contin. Dynam. Syst. Ser. B. 1, 257–263 (2001). https://doi.org/10.
3934/dcdsb.2001.1.257

27. de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat-continuum. Eng.
Comput. 8, 317–332 (1991). https://doi.org/10.1108/eb023842

28. Debrégeas, G., Tabuteau, H., di Meglio, J.-M.: Deformation and flow of a two-dimensional
foam under continuous shear. Phys. Rev. Lett. 87, 178305 (2001). https://doi.org/10.1103/
PhysRevLett.87.178305

https://doi.org/10.1007/BF00279992
https://doi.org/10.1007/bf00281246
https://doi.org/10.1016/0167-6636(94)00006-9
https://doi.org/10.1090/S0025-5718-97-00849-1
https://doi.org/10.1090/S0025-5718-97-00849-1
https://doi.org/10.1007/s002119900122
https://doi.org/10.1098/rspa.2001.0864
https://doi.org/10.1007/s00161-008-0082-0
https://doi.org/10.1007/s00161-008-0082-0
https://doi.org/10.1016/j.ijsolstr.2004.09.021
https://doi.org/10.1016/j.ijsolstr.2004.09.021
https://doi.org/10.1016/0020-7683(92)90071-Z
https://doi.org/10.1007/s002110050452
https://doi.org/10.1007/s002110050452
https://doi.org/10.1137/0729061
https://doi.org/10.1137/0728018
https://doi.org/10.1007/s00205-004-0353-2
https://doi.org/10.1007/s00205-005-0371-8
https://doi.org/10.1137/060662332
https://doi.org/10.3934/dcdsb.2001.1.257
https://doi.org/10.3934/dcdsb.2001.1.257
https://doi.org/10.1108/eb023842
https://doi.org/10.1103/PhysRevLett.87.178305
https://doi.org/10.1103/PhysRevLett.87.178305


Modeling of Microstructures in a Cosserat Continuum 85

29. DeSimone, A., Dolzmann, G.: Macroscopic response of nematic elastomers via relaxation of a
class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161, 181–204 (2002). https://doi.
org/10.107/s002050100174

30. Dolzmann, G., Walkington, N.J.: Estimates for numerical approximations of rank one convex
envelopes. Numer. Math. 85, 647–663 (2000). https://doi.org/10.1007/PL00005395

31. Ehlers, W., Volk, W.: On shear band localization phenomena of liquid-saturated granular
elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid
rotations. Mech. Cohes.-Frict. Mat. 2, 301–320 (1997). https://doi.org/10.1002/(SICI)1099-
1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D

32. Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-
compatible lamination for n-variant martensitic phase transformations. Contin. Mech. Therm.
18, 443–453 (2007). https://doi.org/10.1007/s00161-006-0038-1

33. Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Géotechnique 54, 187–201 (2004).
https://doi.org/10.1680/geot.2004.54.3.187

34. Gürses, E., Miehe, C.: On evolving deformation microstructures in non-convex partially
damaged solids. J. Mech. Phys. Solids 59, 1268–1290 (2011). https://doi.org/10.1016/j.jmps.
2011.01.002

35. Hackl, K., Heinen, R.: An upper bound to the free energy of n-variant polycrystalline shape
memory alloys. J. Mech. Phys. Solids. 56, 2832–2843 (2008). https://doi.org/10.1016/j.jmps.
2008.04.005

36. Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular Couette experiment:
a continuous transition. Phy. Rev. Lett. 82(26), 5241–5244 (1999). https://doi.org/10.1103/
PhysRevLett.82.5241

37. Kaus, J.P.K., Podladchikov, Y.Y.: Initiation of localized shear zones in viscoelastic rocks. J.
Geophys. Res. 111, B04412, 1–18 (2006). https://doi.org/10.1029/2005JB003652

38. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3, 193–236
(1991). https://doi.org/10.1007/BF01135336

39. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems I. Commun.
Pure Appl. Math. 39, 113–137 (1986). https://doi.org/10.1002/cpa.3160390107

40. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems II. Commun.
Pure Appl. Math. 39, 139–182 (1986). https://doi.org/10.1002/cpa.3160390202

41. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed
tomography. Commun. Pure Appl. Math. 40, 745–777 (1987). https://doi.org/10.1002/cpa.
3160400605

42. Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress
potentials in a strain-softening elastic-plastic bar. Int. J. Solids Struct. 40, 1369–1391 (2003).
https://doi.org/10.1016/S0020-7683(02)00658-3

43. Lätzel et al.: Comparing simulation and experiment of a 2D granular Couette shear device. Eur.
Phys. J. E 11, 325–333 (2003). https://doi.org/10.1140/epje/i2002-10160-7

44. Le Dret, H., Raoult, A.: The quasiconvex envelope of the Saint Venant-Kirchhoff stored
energy function. Proc. Roy. Soc. Edinb. 125A, 1179–1192 (1995). https://doi.org/10.1017/
S0308210500030456

45. Morrey, C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math.
2, 25–53 (1952). See http://projecteuclid.org/euclid.pjm/1103051941

46. Nicolaides, R.A., Walkington, N.J.: Computation of microstructure utilizing Young measures
representations. In: Rogers, C.A., Rogers, R.A. (eds.) Recent Advances in Adaptive and
Sensory Materials and Their Applications, pp. 131–141. Technomic Publ., Lancaster (1992)

47. Nicolaides, R.A., Walkington, N.J.: Strong convergence of numerical solutions to degenrate
variational problems. Math. Comp. 64, 117–127 (1992). http://www.jstor.org/stable/2153325

48. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of
dilatancy and failure of dense granular soils. Géotechnique 48, 465–481 (1998). https://doi.
org/10.1680/geot.1998.48.4.465

49. Papanicolopulos, S.A., Veveakis, E.: Sliding and rolling dissipation in Cosserat plasticity.
Granul. Matter 13, 197–204 (2011). https://doi.org/10.1007/s10035-011-0253-8

https://doi.org/10.107/s002050100174
https://doi.org/10.107/s002050100174
https://doi.org/10.1007/PL00005395
https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D
https://doi.org/10.1007/s00161-006-0038-1
https://doi.org/10.1680/geot.2004.54.3.187
https://doi.org/10.1016/j.jmps.2011.01.002
https://doi.org/10.1016/j.jmps.2011.01.002
https://doi.org/10.1016/j.jmps.2008.04.005
https://doi.org/10.1016/j.jmps.2008.04.005
https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1029/2005JB003652
https://doi.org/10.1007/BF01135336
https://doi.org/10.1002/cpa.3160390107
https://doi.org/10.1002/cpa.3160390202
https://doi.org/10.1002/cpa.3160400605
https://doi.org/10.1002/cpa.3160400605
https://doi.org/10.1016/S0020-7683(02)00658-3
https://doi.org/10.1140/epje/i2002-10160-7
https://doi.org/10.1017/S0308210500030456
https://doi.org/10.1017/S0308210500030456
http://projecteuclid.org/euclid.pjm/1103051941
http://www.jstor.org/stable/2153325
https://doi.org/10.1680/geot.1998.48.4.465
https://doi.org/10.1680/geot.1998.48.4.465
https://doi.org/10.1007/s10035-011-0253-8


86 M. Sabeel Khan and K. Hackl

50. Pasternak, E., Mühlhaus, H.B.: Cosserat continuum modelling of granulate materials. In: Val-
liappan, S., Khalili, N. (eds.) Computational Mechanics - New Frontiers for New Millennium,
pp. 1189–1194. Elsevier Science, Amsterdam (2001)

51. Pedregal, P.: Numerical approximation of parametrized measures. Numer. Funct. Anal. Optim.
16, 1049–1066 (1995). https://doi.org/10.1080/01630569508816659

52. Pedregal, P.: On numerical analysis of non-convex variational problems. Numer. Math. 74,
325–336 (1996). https://doi.org/10.1007/s002110050219

53. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)
54. Raoult, A.: Quasiconvex envelopes in nonlinear elasticity. In: Schröder, J., Neff, P. (eds.) Poly-,

Quasi- and Rank-one Convexity in Applied Mechanics, pp. 17–51. Springer, Vienna (2010).
https://doi.org/10.1007/978-3-7091-0174-2
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The Polar-Isogeometric Method for the
Simultaneous Optimization of Shape and
Material Properties of Anisotropic Shell
Structures

Christian Fourcade, Paolo Vannucci, Dosso Felix Kpadonou,
and Paul de Nazelle

1 Introduction

It is well known that structural optimization problems can be of different types. For
instance, shape optimization is concerned with the best shape of a structure, e.g. of
a beam[1]; topological optimization considers the optimal distribution of the matter
inside a given volume, for prescribed boundary conditions and applied forces [2,
3]. To these two very classical structural optimization problems, modern materials
and technologies have recently added some new problems, e.g. the one concerning
the optimization of the material properties [4, 5], which is typical of composite
materials. In such problems, the best elastic and/or strength properties are to be
found, [6–11]. An even more recent problem is the search for the best distribution
of the local material properties for a structure whose mechanical characteristics can
vary pointwise, [12–15].
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We consider in the present study a new kind of structural optimization problem:
the simultaneous optimization of the shape and material properties distribution of
an anisotropic shell.

The problem of concern, specifically, is the following one: we consider a
connected planar domain, bounded by one or more non-intersecting closed curves.
We imagine that such a domain defines a plate, with specified boundary conditions
on the border and that this plate is realized using an orthotropic material, whose
elastic properties (moduli and direction of the symmetry axes) can vary pointwise.
The plate is submitted to given forces, on the boundaries and on the field, and the
mass of the plate is known.

We imagine to let evolve the plate into a shell, preserving at least one of the
curves defining the original plate, in such a way to transform it into a shell of
constant thickness with the global constraint that the mass of such a shell can exceed
the mass of the original plate by an a priori fixed amount at most. We want to
determine the shell that ensures the highest stiffness. This means to determine, at
the same time, the optimal shape of the final shell and the optimal distribution of
the elastic properties. In fact, we consider that the elastic properties, defined by the
elastic moduli and by the orientation of the orthotropy axes, can vary pointwise
through the shell. Actually, to be as much as possible close to real-world problems,
we consider the anisotropic shell to be a laminated shell composed by orthotropic
layers whose elastic moduli and orthotropy axes direction can change locally. This is
particularly motivated by the possibility, given by modern technologies of additive
manufacturing, of placing into an isotropic matrix reinforcing fibers varying locally
in quantity and direction.

This new kind of structural optimization problems touches hence at an almost
unexplored aspect of structural mechanics: the relation between geometry and
material distribution in obtaining an optimal structural behavior, topic of very few
studies, see e.g. [16].

The approach that we have used in this paper is an isogeometric-like one. The
word isogeometric refers, usually, to numerical techniques in which the solution, or
a quantity of interest, of a given problem is discretized using the basis functions
describing the exact geometry in an iso-parametric sense. Introduced by T.R.
Hugues [17], these methods were first implemented in the frame of structural and
computational fluid dynamics [18–20].

Extensive research has recently been devoted to the isogeometric method, whose
principle is based on a direct integration of numerical analysis, optimization, and
design process in the same environment. The design variables are the control points
associated with the B-splines or NURBS (Non-Uniform Rational Basis Splines)
functions used to parameterize the shape of the structure and sometimes their
weights [21, 22]. The present research follows previous works done in the same
direction, [23, 24]; the most important innovation presented here is the design of
the anisotropy properties fields jointly to the design of the optimal shell shape, that
is done using the same isogeometric-like technique used for the parameterization
of the shell shape. This technique, developed during the PhD thesis [25], is
contemporary to the first two published studies using jointly polar parameters and



The Polar-Isogeometric Method for Shape and Material Optimization of. . . 91

spline parametrization of the design variables, [26, 27]. However, unlike these
papers, where just the elastic properties are optimized for a fixed geometry, a plate,
in our study the design concerns at the same time the elastic properties and the shell
shape.

The word isogeometric is normally reserved to approaches where the interpola-
tion functions for the elements representing the structure in a finite element approach
are also B-splines or NURBS. This is not the case in our study, where a standard
finite element formulation has been used. However, we precise that in this paper
the structure behavior is defined by the classical Nagdhi’s model (deep shell model
written in curvilinear coordinates), so that the state equations of the optimization
problem are set up on the domains of charts which define the geometry. Since
the three-dimensional structure is parametrized by standard CAD functions, the
Naghdi’s equations are posed on a square or on a triangle and constitute (through the
first and second fundamental forms) an isogeometric-like mechanical interpolation
of the structure. Note moreover that, compared with the current industrial standards,
this approach of the shape optimization is naturally interfaced with CAD software
and allows to simplify the classical optimization process by eliminating the re-
meshing steps and the phases of conversion of geometries (from FEM models
to CAD models) which deteriorate the optimization results and require dedicated
software. For these reasons, we have used the term isogeometric-like to denote our
approach, sometimes, for the sake of shortness, simply reduced to isogeometric,
in the sense specified above, and, in the end, we have called polar-isogeometric
approach the technique presented in this paper, as based, on one side, on the polar
formalism and, on the other side, on an isogeometric-like method.

The paper is organized as follows: Sect. 2 introduces the general mathematical
statement of the optimization problem considered in this study, while Sect. 3 focuses
on the description of the shell model equation governing the behavior of the struc-
ture. Section 4 describes the parameterization used for the geometry in the standard
isogeometric framework. In Sect. 5 we describe the polar formalism technique used
to represent the elastic tensor. The section ends with the parametrization used to
represent these polar parameters; moreover, we introduce some sufficient conditions
to be satisfied by the control points of such parameters in order to ensure the
pointwise satisfaction of the admissibility constraints on the elastic tensor. In Sect. 6
we give the formulation of the optimization problem in the polar-isogeometric
framework. The design variables are the control points driving the geometry and
the polar parameters. Section 7 presents some numerical examples concerning the
optimal design of anisotropic shell structures. The paper ends with a conclusion and
an outlook on possible future developments.

2 Definition of the Optimization Problem

A shell is a three-dimensional elastic body with one dimension (the thickness) small
in regard to its other characteristic dimensions. As such, it can be identified to a finite
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surface, generally chosen to be its middle-surface, denoted in the following by Ω .
We consider here anisotropic shells, like those constituted of composite materials,
and in particular, referring to the recent additive manufacturing technologies of
fiber placement, we focus on shells whose anisotropic elastic properties can vary
pointwise.

Assuming that the shell thickness is constant, we are interested in the optimal
design of both shell geometry and material distribution. Hence, a design is expressed
as a couple (Ω,E), where Ω is a parametric surface embedded in the Euclidean
space E3, and E is the elastic tensor of its constitutive materials which can vary
pointwise on Ω . We consider as optimal design problem the maximization of the
structure stiffness; as well known, [28], this is equivalent to the minimization of
the compliance (the work done by the applied forces) which, in linear elasticity,
is exactly twice the strain energy stored in the structure (Clapeyron’s theorem). So
that, defining the displacement field UΩ,E associated with a given applicant design
(Ω,E) as the solution of the state equation:

find UΩ,E ∈ W such that

aΩ,E(UΩ,E, V ) = lΩ(V ), ∀ V ∈ W,
(1)

where:

• aΩ,E and lΩ (defined in Eq. (25)) are, respectively, the bilinear form associated
with the strain energy and the linear form associated with the work of the applied
loads; these functions are parametrized by the shape Ω and parametrized by the
elastic tensor E,

• and W is the space of virtual displacements which are independent of Ω and E,

the design criteria j takes the form:

j (Ω,E) = aΩ,E(UΩ,E, UΩ,E). (2)

We can thus formalize the maximization of the structure stiffness as the following
optimization problem:

Find (Ω∗,E∗) ∈ ES × EM, such that

j (Ω∗,E∗) ≤ j (Ω,E) ∀(Ω,E) ∈ ES × EM,
(3)

where ES is a shape design space of admissible geometries which takes into
account the regularity constraint, the boundary conditions specified on the geometry,
while EM is a “material design space” which takes into account the admissibility
constraints on the elastic tensor.

Within the isogeometric framework, we will assume that Ω is defined as the
image of a rectangular domain ω ⊂ R

2 throughout a mappingΦ, which is moreover
assumed to be a linear combination
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Φ(ξ1, ξ2) :=
∑
i,j

pijBij,d(ξ
1, ξ2), where (ξ1, ξ2) ∈ ω, (4)

of bivariate B-spline function Bij,d (defined in Sect. 4). We can thus interpret the
control points pij ∈ R

3 of the spline surface Ω as shape optimization variables
and suppose that ES is a subset of a finite dimensional space. On the other hand
we will see in Sect. 5 that the polar formalism allows to parametrize an anisotropic
elastic tensor E with the help of three independent variables which will in turn be
interpolated by a formula of the form

∑
k,l

qklBkl,d(ξ
1, ξ2), where (ξ1, ξ2) ∈ ω, (5)

whose control points qkl ∈ R
3 will be considered as material optimization

variables. To summarize we can say that this framework enables us to formulate
the problem (3) over a finite dimensional space adapted to designers needs and to
handle it with the help of standard optimization methods, such as steepest descent
methods, etc.

There are different shell models in the literature, among others: the Love’s
classical theory [29], generalizing to shells the classical Kirchhoff’s theory for
plates, the Koiter’s model [30] and the Naghdi’s one [31] which is the corresponding
for shells of the Reissner-Mindlin’s [32] model of plates. We have used in our study
the Naghdi’s model, briefly introduced hereafter.

3 Naghdi’s Shell Equations

In the following, unless otherwise specified, Greek indexes range in the set
{1, 2} while Latin indexes in {1, 2, 3}. The Einstein’s summation convention is
systematically used over repeated subscript and superscript. Let a bi-dimensional
domain ω ⊂ R

2 and an injective mapping Φ : ω → E3 of class C2 be given, we
denote Ω := Φ(ω) the image of ω by Φ and we assume that the Jacobian matrix of
Φ is of rank 2 at any point ξ := (ξ1, ξ2) ∈ ω. This means that the vectors

aα := ∂Φ

∂ξα
= Φ,α (6)

are linearly independent, span the tangent space to the surface Ω at Φ(ξ), and that
the unit normal vector

a3 := a1 ∧ a2

‖a1 ∧ a2‖ (7)
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is well defined everywhere. In this context, the Naghdi’s equations are mechanical
equations intending to approach the elastic behavior of the three-dimensional body

Ωt =
{
X ∈ E3 : X = Φ(ξ)+ ξ3a3, (ξ, ξ

3) ∈ ω × [− t
2
,
t

2
]
}
, (8)

by a system of partial differential equations defined on ω. Before writing down an
expression of their weak form (i.e. virtual work principle), let us recall some usual
notations of differential geometry on surfaces.

3.1 Geometric Preliminaries

The geometric elements presented below (first fundamental forms and element of
differential calculous) are of common use in differential geometry on surfaces, they
allow us to formulate the Nagdhi’s equations, which (as a deep shell model) closely
depend on the geometry of the shell’s reference configuration.

3.1.1 First Fundamental Form

The first Fundamental form onΩ is the second-order, symmetric tensor field defined
by the restriction of the scalar product on E3 to the tangent spaces to Ω . Its
components in the so-called covariant basis aα are the entries

aαβ := aα · aβ, (9)

of a symmetric definite positive matrix [a]. Denoting a := det [a] we can define an
infinitesimal area element dA on Ω as

dA := √adξ, (10)

where dξ := dξ1dξ2 is the area element on ω. So that, for instance, the surface
surf(Ω0) of a set Ω0 ⊂ Ω is defined as:

surf(Ω0) =
∫
Ω0

dA =
∫

Φ−1(Ω0)(⊂ω)
√
adξ. (11)

Denoting aαβ the entries of the matrix [a]−1, the dual basis (aα)α=1:2 (called
contravariant basis) of the covariant basis

(
aβ
)
β=1:2 is defined by

aα := aαβaβ. (12)
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This means, for instance, that a vector u having the components uα in the covariant
basis will have the components uβ in the contravariant one and that the following
“change of basis” relationships take place:

uβ = aβαu
α or uα = aαβuβ. (13)

We conclude this paragraph by noticing that if the parametrization of the surface Ω
is normal, the vectors aα are orthogonal and the first fundamental form is diagonal.
For instance, the mapping

(ξ1, ξ2) ∈]0, 2π [×]0, 1[:= ω 
→ (sin ξ1, cos ξ1, ξ2) ∈ E3 (14)

is a parameterization of a unit radius cylinder, whose first fundamental form reduces
to identity; this means that the paper sheet ω can be rolled over the cylinder without
changing the surfaces, lengths, or angles calculated on the flat sheet. This example
also underlines that the first fundamental form itself cannot characterize a surface.

3.1.2 Second Fundamental Form

The second fundamental form is a symmetric second-order tensor filed onΩ , whose
covariant and mixed components are, respectively, defined by

bαβ := aα,β .a3 and bβα = aβσ bσα. (15)

A geometric interpretation of the second fundamental form in terms of curvatures
of the surface Ω is proposed in [33] where it is proved that the curvature of a curve
drawn on the intersection between the surface Ω and a plane containing a3 can be
computed with the help of the covariant components bαβ of the second fundamental
form. We can see that bαβ = 0 if Ω is a plane surface and that b11 = 1 while
b12 = b21 = b22 = 0 for the cylinder defined in the example (14).

3.1.3 Covariant Derivatives

Let be given a vector field w, we denote by wi (resp. wj ) its covariant (resp.
contravariant) coordinates

w = wjaj = wkak where we have adopted the convention a3 := a3. (16)

Letting Γ λ
αβ = aα,β · aλ be the Christoffel’s symbols, the derivative w,α is defined

by

w,α = (wα|β − bαβw3)aα + (w3|β + bσβwσ )a3, (17)
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where the symbol |β denotes the covariant derivative operation with respect to ξβ

defined below:

wα|β = wα,β − wσΓ
σ
α,β,

w3|β = v3,β .
(18)

We can check that the Christoffel symbols Γ λ
αβ are 0 for the cylinder given in

example (14); in this case, the covariant derivatives wα|β reduce to the classical
partial derivatives wα,β .

It should be noticed to conclude that the geometric entities we have defined so
far depend on the chosen parameterization for the surface Ω and that their formal
computation can be very complicated (i.e. only numerically performed); this is
particularly true for spline or Nurbs surfaces.

3.2 Weak Formulation of the Nagdhi’s Equations

The Naghdi’s shell theory, [31] applies to three-dimensional bodies Ωt such as
defined in (8), submitted to the volume forces piai . It is obtained from the three-
dimensional elasticity theory with the help of two a priori hypotheses:

• the first, of mechanical nature, consists to assume that if the thickness t is small
enough, the stresses are approximately two-dimensional and vary linearly along
the thickness (ie. along the a3 axis);

• the second one is geometric and makes the hypothesis that the normal fibers to
the mid-surface Ω are rigid, but they do not have to remain orthogonal to the
deformed configuration of Ω .

The Naghdi’s model accounts for membrane, bending and shearing deformations
of the shell. The unknowns of its linear version are the displacements uiai of the
points located on the mid-surface Ω and the rotation field sαaα of the normals a3,
this means that we assume that the displacement U of a generic pointΦ(ξ)+ξ3sαaα
in Ωt is defined as:

U = uiai + ξ3sαaα. (19)

Denoting, respectively, by u := (u1, u2, u3) and s := (s1, s2) the covariant com-
ponents of displacements and rotations, the Nagdhi’s equations take the following
weak form:
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find a couple [u, s] in an appropriate vector space W such that:∫
ω

Qαβστ γστ (u)γαβ(v)+ Eα3β3γβ3([u, s])γα3([v, r]) √a dξ

+ t2

12

∫
ω

Qαβστχστ ([u, s])χαβ([v, r]) √a dξ

= 1

t

∫
ω

f ivi
√
a dξ for all [v, r] ∈ W,

(20)

where:

• denoting Eijkl the contravariant components of the elastic tensor

E = Eijklai ⊗ aj ⊗ ak ⊗ al , (21)

we set:

Qαβστ := Eαβστ − Eαβ33E33στ

E3333
; (22)

note that when the shell is made of an isotropic material of Lamés coefficients λ
and μ we have:

Eα3β3 = μaαβ and

Qαβστ = 4λμ

λ+ 2μ
aαβaστ + 2μ

(
aασ aβτ + aατ aβσ

)
,

(23)

as usually stated in the literature;
• the functions γαβ(u) = 1

2 (uα|β + uβ|α)− bαβu3 are the covariant components of
the change of metric tensor associated with the displacement field uiai ,

• while γα3([u, s]) := 1
2

(
sα|β + sβ|α − bσα

)
and

χαβ([u, s]) := 1

2

(
sα|β + sβ|α − bσα dσβ(u)− bσβ dσα(u)

)
where:

dλμ(u) := uλ|μ − bλμu3

(24)

are, respectively, the covariant components of the transverse shear and the
Naghdi’s change of curvature tensors associated with the displacements uiai of
the mid-surface and rotations sαaα of the fibers of the shell,

• and at last, f i := ∫ t−t pidξ3, are the contravariant components of the resultant on
the mid-surface of volume forces applied to Ωt ; note that the resulting moments∫ t
−t ξ

3pidξ3 generated on the mid-surface by the volume forces are not taken
into account in this shell model; this limits its mechanical domain of validity to
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shells of moderate curvatures. We can, however, load the free edges by given
linear torques and forces.

The admissible displacements domain is a vector space W made up of test
functions ξ ∈ ω 
→ [v(ξ), r(ξ)] ∈ R

5 satisfying given boundary conditions
defined on some given parts γb ⊂ ∂ω of the boundary of ω. For instance, the shell
is said to be clamped (resp. simply supported) on the boundary Φ(γb) ⊂ ∂Ω if
[v(ξ), r(ξ)] = [0, 0] (resp. v(ξ) = 0) for any ξ ∈ γb, while the boundary Φ(γb) is
said to be a free if the functions v and s may take arbitrary values on γb.

Denoting by a([u, s], [v, r]) (resp. l(v)) the left-hand member (resp. the right-
hand member) of Eq. (20), this equation rewrites as:

a([u, s], [v, r]) = l([v, r]) for all [v, r] ∈ W, (25)

where the mappings

([u, s], [v, r]) ∈ W ×W 
→ a([u, s], [v, r]) ∈ R

and [v, r] ∈ W 
→ l(v) ∈ R

(26)

are, respectively, bilinear and linear on W , they can even be assumed to be
continuous if W is a (closed) subspace of [H 1(ω)]5. M. Bernadou [34] proved that
if (i) the shell is assumed to be clamped on a non-zero part of its perimeter, (ii) the
parametrization Φ of Ω is of class C3 and (iii) the elastics tensor is a continuous
function of ξ ∈ ω, the bilinear form a(., .) is moreover coercive on W . So that
we can use the Lax-Milgram’s Lemma to ensure well-posedness of the variational
equation (25).

At this stage, we have defined a well-posed state equation for the optimization
problem (introduced in Sect. 2), which is parametrized by the first and the second
fundamental form of a shape Φ(ω). To complete its definition we have now to
precise, in the two following Sections, the space ES (resp. EM ) of admissible shapes
(resp. of admissible materials).

4 Parametrization by an “Isogeometric-Like” Approach

In its usual meaning, the isogeometric approach consists to interpolate the state
variables of a Partial differential equation by the functions which are used to
define the geometry on which it is posed in a computer-assisted design environ-
ment (specifying so, to the CAD framework, the “classical” iso-parametric Finite
Elements interpolation methods). The practical value of this approach being to
facilitate the interfacing between geometric modeler and simulation software. In
the previous section we saw that the Nagdhi equations allowed us to parameterize
the shells equations by their shapes, which led us to pose the shape optimization
problem on a shape-independent functional space. The question we need to answer
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Fig. 1 Example of
middle-surface with the
associated control points
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now is to describe the space ES of the admissible shapes and to ensure that the
geometric entities, such as first, second fundament form, Christoffel’s symbols, etc.,
are efficiently calculable. The purpose of this section is to verify that the design
space provided by the CAD’s shape functions, such as Bézier [35], B-spline or
NURBS, is suited to the needs, and that it, moreover, enables the three-dimensional
shell equations to be laid down on the domain of the CAD charts whose geometry
is extremely simple (thus very easy to mesh). So doing, the method proposed
in this paper will be referred to as “Isogeometric-Like” approach tailored to
shape optimization. We are thus interested to three-dimensional surfaces which are
represented by linear combinations of numerical functions, defined on a rectangular
domain ω := I1 × I2

Φ(ξ1, ξ2) :=
∑
i,j

pijBi,d1(ξ
1)Bj,d2(ξ

2) (27)

where, see Fig. 1, the coefficients pij are given points in R
3 which control

the surface and the functions t 
→ Bi,k(t) are B-Splines (piecewise polynomial
functions) defined on an interval I of the real line. The shape optimization problem
is formulated in terms of control points and we can assume that the design space
ES of admissible shapes is a subset of R

3∗N , accounting for given CAD design
constraints. The Nagdhi’s equations being moreover posed on a fixed rectangular
sub-domain of R

2, there is no inconvenience to solve them by a classical F.E.
method. In other words, we solve the discretized equations

a([uh, sh], [vh, rh]) = l([vh, rh]) ∀[vh, rh] ∈ Wh, (28)

posed on a space Wh, made up of locally polynomial functions uh (resp. sh) which
interpolate the admissible déplacements (resp. admissible rotations) on the triangles
of a given triangulation Th of ω. According to the results obtained in the previous
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section, the bilinear form a(., .) (resp. the linear form l(.)) closely depends on
the first and second derivatives of the shell’s chart Φ, which are evaluated on
the numerical integration points of the triangles of Th. Formula (27) shows that
these derivatives explicitly depend on the control points of the surface Ω and that
their computations may be performed with the help of the algorithms classically
implemented in CAD software. Within the shape optimization framework, a status
of optimization variables we will be given to points pij and we will see that the
compliance minimization problem can be handled with the help of a steepest descent
method.

We recall in the next section the definition and the essential properties of the
splines functions [36], these will be furthermore used in Sect. 5 to define a relevant
parameterization of the elasticity tensor.

4.1 Univariate Splines Functions

A univariate spline is a piecewise polynomial function which is a linear combination
of B-splines Bi,d , defined as follows:

• we consider a non-decreasing sequence

Σ = {t0, t1, · · · , tm}, with tk ≤ tk+1, (29)

of real numbers, referred to as knots vector. If they are r knots ti equals τ , we say
that τ is a node of multiplicity r; we adopt moreover the notation:

wi,j (t) =
{

t−ti
ti+j−ti if ti+j < ti

0 otherwise
(30)

• and we define the B-spline Bi,d of degree d associated with the given knot vector
Σ by the Cox-de-Boor recurrence formula:

Bi,0(t) =
{

1 if ti ≤ t < ti+1

0 otherwise
Bi,d(t) = wi,d(t)Bi,d−1(t)+ (1− wi+1,d (t))Bi+1,d−1(t) for d ≥ 1.

(31)

The main properties of a B-spline are listed in the following Proposition, proved
in [37], for instance.

Proposition 4.1 With the above notations, the B-splines
(
Bi,d
)
i=0:m−d−1 are

defined on the real line and satisfy the properties listed below:

1. the function Bi,d(.) is a is a polynomial of degree d over each interval [ti , ti+d [;
2. it is zero outside the interval [ti , ti+d [;
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3. we also have Bi,d(ti) = 0 unless ti = ti+1 = · · · = ti+d < ti+d+1, in which
case Bi,d(ti) = 1;

4. let t ∈]ti , ti+d+1[ be given, we have Bi,d(t) = 1 if and only if x = ti+1 = · · · =
ti+d ;

5. we have 0 < Bi,d(t) ≤ 1 for all t ∈]ti , ti+d ];
6. the family

(
Bi,d(.)

)m−d−1
i=0 satisfies the unit partition property: let [a, b] be an

interval such that td ≤ a and b ≤ tm−d , then

m−d−1∑
i=0

Bi,d(t) = 1, ∀t ∈ [a, b]; (32)

7. the function Bi,d(.) is right-infinitely differentiable on R, its derivative at a point
t being defined by the formula

B ′i,d (t) = d

[
Bi,d−1(t)

ti+d − ti
− Bi+1,d−1(t)

ti+d+1 − ti+1

]
, (33)

with the convention 1
0 := 0, inherited from the formula (30);

8. the function Bi,d is of class Cd−k in the neighborhood of a knot of multiplicity
k. ��

In the sequel, when we will talk about a spline of degree d, we will implicitly set
a := t0, b = tm and assume that the knot vector Σ is defined in such a way that
t0 = · · · = td = a and tm−d = · · · = dm = b. Such a spline will be referred to as
spline clamped at a and b in the meaning that B0,d (a) = Bm−d−1,d (b) = 1.

Remark 4.1 When a = 0, b = 1 and the knot vector Σ is made up of numbers 0
and 1 with the multiplicities d + 1, the recurrence Eq. (31) reduces to

Bi,d(t) = tBi,d−1(t)+ (1− t)Bi+1,d−1(t), ∀t ∈ [0, 1], (34)

so that the B-splines thus defined are the Bernstein polynomials, which make up a
basis of the space of d-degree polynomials (defined on [0, 1]). ��

4.1.1 Spline Curves

This algebraic frame being specified, we are interested in geometric curves whose
parametric representations are defined, from a given family (pi)ni=1 of points in R

3,
by formulas of the form

C(u) :=
n∑
i=0

piBi,d(u), u ∈ [a, b] and n := m− d − 1. (35)
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Such a curve is a Bézier curve if the knot vector satisfies the properties introduced
in Remark 4.1, while it is called spline in the other cases. The practical value of
this parameterization of geometric curves is, see the NURBS book [38], to produce
very effective computational algorithms. For instance, the derivative C′(u) of the
spline (35) is itself a d − 1 degree spline defined by:

C′(u) := d

n−1∑
i=0

pi+1 − pi

ti+p+1 − ti
Bi,d−1(u). (36)

This formula offers an easy access (see, for instance, the algorithm A3.3 in [38])
to geometric entities such as tangents, principal normals, bi-normals, etc. and, as
well, to their derivatives with respect to the curve’s control points. We conclude this
paragraph in noticing that a Bézier representation of a curve is particularly simple to
implement: for instance, writing a third-degree Béziers curve in the following form:

C(u) = [1, u, u2, u3]

⎡
⎢⎢⎣

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
p0

p1

p2

p3

⎤
⎥⎥⎦ , (37)

we see that all the geometric computations become almost analytic.

4.2 Bivariate Spline Functions

Let be given two knot vectors Σα = {tαi
}
i=0:mα

, (α = 1, 2) partitioning the
intervals Iα , we set ω := I1 × I2 and the following functions

(u, v) ∈ ω 
→ Bij,d(u, v)) := Bi,d1(u)Bj,d2(v) ∈ R+
where d is defined as d := (d1, d2)

(38)

will be referred to as bivariate B-splines. They are piecewise polynomial functions
verifying properties analogous to properties 1 to 6 of Proposition 4.1. We specifi-
cally use the unit partition property

∑
i,j

Bij,d(u, v) = 1 ∀(u, v) ∈ ω (39)

in the proofs of Propositions 5.1 and 5.2. The partial derivatives of Bij,d are defined
with the help of formula (33) as
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∂uBij,d(u, v) = B ′i,d1
(u)Bj,d2(v) and

∂vBij,d(u, v) = Bi,d1(u)B
′
j,d2

(v)
(40)

and (see algorithms A3.7, A3.8 of NURBS book) computed by recycling the one-
dimensional algorithms. Property 8) of Proposition 4.1 shows that Bij,d is of class
Cp with p = min(d1 − k1, d2 − k2) in a neighborhood of a couple of knots (t1i , t

2
j )

of multiplicities k1 and k2. In the sequel, we will assume that p ≥ 3.

4.2.1 Spline Surfaces

Given a control polygon (pi,j ) ∈ R
3, the mapping

(ξ1, ξ2) ∈ ω := I1 × I2 
→ Φ(ξ1, ξ2) :=
m1−d1−1∑

i=0

m2−d2−1∑
j=0

pi,jBij,d(ξ
1, ξ2)

(41)
define a surface in E3, which is parametrized by the points pij . We will say that
it is a Bézier patch when elementary functions Bij,d are products of Bernstein
polynomials; we show in Fig. 1 an example of a third order Bézier surface (i.e.
a spline surface defined by knot vectors of the form Σα = {0, 0, 0, 0, 1, 1, 1, 1} and
d = 3).

Remark 4.2

1o) In so far as the splines are assumed to be clamped at the ends of the intervals I1
and I2, the edges of the surface are spline curves whose control points are the
boundary points of the control polygon (pi,j ).

2o) It is an immediate consequence of the unit partition property (39) that spline
surfaces satisfy the affine invariance property, in the meaning that the image
Af ◦Φ of a spline surface Φ by an affine mapping Af remains a spline whose
control points are the image by Af of the control points of the initial spline.

3o) To make Nagdhi’s equations meaningful, we will always assume that the
mapping Φ defined in formula (41) is injective (in this respect, we represent
in Fig. 2 the spline parameterization of the curve which has a double point).
This requirement will be translated into appropriate additional constraints on
the control points in the formulation of the shape optimization problem. ��

5 Anisotropy Representation

An anisotropic material has elastic properties changing with the direction. Such
properties are expressed by the elastic tensor. The main goal when designing such
materials is to set up the optimal distribution of the elastic properties. In the case of
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p

p0 p3 p0 p3

1 p2 p2 p1

a) b)

Fig. 2 Example of spline parameterization of a curve having a double point. The curves shown
in (a) and (b) are splines controlled by the points (pi)i=0:3. We see that the curve in (b), which is
obtained from the curve shown in (a) by switching the roles of p1 and p2, has a double point. This
means that the spline parametrization of the curve in (b) is not injective

optimal design of planar anisotropic structures, it is suitable to make use of the polar
formalism, introduced by Verchery [39] in 1979, to represent a planar elastic tensor
using just invariants and angles. This formalism allows to easily represent rotations
and the constraints on the design variables (the polar variables).

Moreover, the polar formalism allows to split the elastic tensor into its isotropic
and anisotropic parts; hence it offers the possibility to target and explicitly tune
the anisotropy. More details on the polar formalism can be found in [40–42]. For
a complete presentation of anisotropic elasticity and of the polar method and its
applications, the reader can refer to [5].

The polar formalism has successfully been applied to several different optimiza-
tion problems concerning laminated structures, [6–16, 43–49] as well as to some
theoretical problems, [41, 42, 50–58].

As said above, the mechanical properties of concern in this study are condensed
in the elasticity tensor E; this is a fourth-rank tensor whose components satisfy the
minor and major symmetries of the indexes:

Eijkl = Ejikl = Eijlk = Eklij , i, j, k, l = 1, 2, 3. (42)

For the case of a plane tensor, which is of interest in our study, as detailed below,
the independent elastic components reduce then to only 6: E1111, E1112, E1122,
E1212, E1222 and E2222, in the following generically indicated as Eαβλμ.

In the polar formalism, the components Eαβλμ of the plane elastic tensor are
expressed as
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E1111=T0+2T1+R0 cos 4"0+4R1 cos 2"1,

E1112=R0 sin 4"0+2R1 sin 2"1,

E1122=−T0+2T1−R0 cos 4"0,

E1212=T0−R0 cos 4"0,

E1222=−R0 sin 4"0+2R1 sin 2"1,

E2222=T0+2T1+R0 cos 4"0−4R1 cos 2"1.

(43)

In the above equation, T0, T1, R0, and R1 are elastic moduli, while "0 and "1 are
(the polar) angles. In particular, it can be shown that T0 and T1 are the isotropy
invariants while R0, R1, "0 − "1 are the anisotropy invariants. The elasticity is
then represented through intrinsic quantities, tensor invariants, and angles, which
is particularly suitable when working with orientation depending properties, like in
anisotropy. The choice of one of the two polar angles fixes the frame: as "0−"1 is
an invariant, choosing "0 or "1 corresponds to fix a frame and also the value of the
other angle.

It can be shown, see [40], that the polar invariants are linked to the elastic
symmetries. In particular, ordinary orthotropy corresponds to the condition

"0 −"1 = K
π

4
; K = 0, 1. (44)

The value of K is very important in optimization problems; in fact, it has been seen
in several cases that changing K from 0 to 1 or vice versa transforms an optimal
solution into an anti-optimal one (i.e. the best to the worst), [45]. Taking into account
for (44) in (43), we obtain for an orthotropic layer:

E1111("1) =T0 + 2T1 + RK0 cos 4"1 + 4R1 cos 2"1,

E1112("1) =− RK0 sin 4"1 − 2R1 sin 2"1,

E1122("1) =− T0 + 2T1 − RK0 cos 4"1,

E1212("1) =T0 − RK0 cos 4"1,

E1222("1) =RK0 sin 4"1 − 2R1 sin 2"1,

E2222("1) =T0 + 2T1 + RK0 cos 4"1 − 4R1 cos 2"1,

(45)

with

RK0 = (−1)KR0. (46)
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Two other special orthotropies exist: square symmetry (i.e. with elastic properties
periodic of π

2 ), corresponding to the condition R1 = 0 and R0-orthotropy,
corresponding to R0 = 0. For more details on this subject, the reader is referred
to [40, 59].

To summarize, in the polar formalism, the following six parameters define the
elastic tensor in any frame:

• two isotropic invariants T0, T1;
• three anisotropic invariants R0, R1, "0 − "1. For ordinarily orthotropic layers,

these can be replaced by the two quantities RK0 and R1, still representing the
three invariants (indeed K ∈ {0, 1})

• the angle "1, fixing the frame.

We finally remark that isotropy corresponds to R0 = R1 = 0.

5.1 Elastic Assumptions

In this paper, we consider the optimal design of a shell under the following
assumptions: the shell is locally orthotropic everywhere and homogeneous through
the thickness. The design concerns exclusively the anisotropic part of e, for both the
direction and the elastic moduli.

This is a simplified setting, but it corresponds to a real situation, that of a shell
composed by a quasi-homogeneous orthotropic laminate of identical orthotropic
plies, see e.g. [60]. In such a case, the elastic behavior of the laminate is completely
determined by a unique elastic tensor, describing at the same time the extension and
the bending response of the shell, and there is no coupling between extension and
bending. In addition, because the plies are identical, the isotropic part, i.e. the polar
invariants T0 and T1, is everywhere equal to those of the basic layer, so they cannot
be affected by the design process, once the material chosen. We precise, however,
that here we simply address the problem specified hereon, just as a mathematical
problem, regardless of whether or not it corresponds to the above laminate; that is
why we still use the symbol e to denote the stiffness tensor.

We also assume that the through-the-thickness properties Eα3β3 are much less
important for the process at hand than the in-plane ones, so they are simply
considered as constant throughout the design process. This fact is justified for thin
shells, as we assume the shells at hand to be; in addition, this approximation is
consistent with the fact, always confirmed by the numerical results, that the optimal
shell is the one working in a membrane regime, where shear and bending energy
tends to zero; as a consequence, the transversal shear moduli Eα3β3 are inessential
in this context.

Finally, the main consequence of such assumptions for the optimum design of the
shell is that the number of elastic design variables is reduced to only three: RK0 , R1,
and "1: two elastic moduli and the orthotropy direction.
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5.2 Constraints on the Polar Parameters

The polar elastic moduli cannot take arbitrary values, they are submitted to
some constraints that can be of two types, depending upon whether the shell is
homogeneous (i.e. composed by a unique layer) or not (i.e. it is a laminated shell):

• Elastic bounds, see [56], resulting from the positive definiteness of e, [5]:

T1[T0 + RK0 ] > 2R2
1,

T0 > |RK0 |,
R1 ≥ 0.

(47)

Such constraints must be satisfied locally by any elastic homogeneous sheet in a
planar elastic state.

• Geometric bounds: it can be shown, see [41], that laminates composed by
identical layers cannot realize all the possible combinations of the values of
the elastic moduli. We could say, in some words, that laminates form a more
restricted elastic class. Mathematically speaking, this corresponds to the fact
that the bounds on e are not (47) but some other more restrictive ones, called
geometric bounds, because linked to the stacking sequence. For the case of an
orthotropic laminate composed of orthotropic layers, such geometric bounds are

(here, KL,R
K
0
L = (−1)KLRL0 and RL1 are polar variables of the basic layer)

2

(
R1

RL1

)2

− 1 ≤ RK0

RK0
L
,

RK0 ≤ RL0 ,

0 ≤ R1 ≤ RL1 .

(48)

Since Eq. (48) is more restrictive than (47), when the problem concerns the design
of a laminated structure, Eq. (47) must be replaced by Eq. (48), otherwise, one could
obtain some values for the components of E that cannot be realized in practice
through a laminate composed by identical plies.

5.3 Parameterization of the Polar Parameters

We have to recall now that in the problem at hand, the elastic properties can vary
pointwise throughout the shell. This means that the design variables RK0 , R1, and
"1 are actually variable fields defined on Ω (or via the chart Φ, on ω), which
have to satisfy constraints (47) or (48) everywhere. In other words, the problem
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has an infinite dimension and carries an infinite number of constraints. A classical
finite element discretization, like in [12, 14, 15], would yield to a huge number of
design variables and constraints. Following an idea originally introduced in [26],
we propose below a new approach (based on a spline parameterization of the polar
variables) similar to the way in which the shell geometry is parametrized. Just as
in [26], but unlike in [27] (where only the polar angle is described in terms of
spline) we define here a parametrization of the invariants RK0 and R1, described,
like the polar angle, by a spline surface each one, so obtaining a complete spline
parametrization of the elastic tensor e.

As already said, we assume the polar parameters fields to be designed under the
form of Bézier, B-spline or NURBS functions. We concentrate on the parameteri-
zations of the polar moduli RK0 are R1 which are mainly involved in the elastic and
geometric constraints. Indeed, our goal is to define a set of constraints on the control
points ensuring pointwise satisfaction of inequalities (47). Two parameterizations
for R1 are relevant (here, we refer to the elastic bounds (47), but a similar procedure
can be used for the geometric bounds (48)):

• a conformal parameterization for whichR1 is parametrized as the square root of a
positive spline (which is not a spline); the interest of this change of variable being
to simplify the constraints (47) which turn to linear. The disadvantage being that
the elastic coefficients and the constraints are no longer differentiable at R1 = 0;

• a direct parametrization, where R1 is parameterized by a spline but, see Propo-
sition 5.2, the constraints on the control points depend on the number of
control points, this parametrization allows, however, make the elasticity tensor
differentiable with respect to the control points of the polar variables.

The main results of this section, enounced in Propositions 5.1 and 5.2 are conse-
quences of the Proposition 4.1.

5.3.1 Constraints for Conformal Parameterization

In this case, the polar parameters RK0 and R2
1 are parametrized by splines and we

show in Proposition 5.1 that this allows to reduce the non-linear constraints (47) to
linear ones, related to the control points of the square of the polar variable R1.

Proposition 5.1 Let d = (d1, d2) and Σ = (Σ1,Σ2) be two pairs of integers and
knot vectors. Assume that the mappings ξ 
→ R2

1(ξ) ∈ R+ and ξ 
→ RK0 (ξ) are
splines functions, written according to their control points (r2

1 )ij and (rK0 )ij as

R2
1(ξ) =

∑
(i,j)∈I

(r2
1 )ijBij,d(ξ), RK0 (ξ) =

∑
(i,j)∈I

(rK0 )ijBij,d(ξ), (49)

where, setting mα := Card (Σα)− 1, the indexes (i, j) range in the set

I := {0, · · · ,m1 − d1} × {0, · · · ,m2 − d2}. (50)
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If the following inequalities

T1[T0 + (rK0 )ij ] > 2(r2
1 )ij ,

−T0 < (rK0 )ij < T0,

(r2
1 )ij ≥ 0

(51)

are satisfied for all (i, j) ∈ I , the inequalities (47) take place for any ξ ∈ ω.
In an analogous way, for the case of laminate made of identical orthotropic

layers, the constraints for the geometric bounds (48) take the following form:

2
(r2

1 )ij

(RL1 )
2
− 1 ≤ (rK0 )ij

RK0
L
,

(rK0 )ij ≤ RL0 ,

0 ≤ (r2
1 )ij ≤ (RL1 )

2;

∀(i, j) ∈ I (52)

with RK0
L

and RL1 are the polar variables of the basic orthotropic layer, defined in
Sect. 5.2. ��
Proof As T0 and T1 do not depend on ξ , positiveness of B-splines Bij,d(.) and
inequalities (51) entail that

T1

∑
(i,j)∈I

[T0 + (rK0 )ij ]Bij,d(ξ) > 2
∑
(i,j)∈I

(r2
1 )ijBij,d(ξ) ∀ξ ∈ ω. (53)

Property (39) shows that:

∑
(i,j)∈I

T0Bij,d(ξ) = T0, ∀ξ ∈ ω. (54)

Reporting (54) into (53), we see that inequality (47) is satisfied for any ξ ∈ ω. The
other inequalities set out in the Proposition are proved in the same manner. ��
It is worth noting, as the following example shows, that the proposed approach
yields to sufficient but not necessary constraints.

Example 5.1 Let us consider the knot vector Σ = {0, 0, 0, 0, 1, 1, 1, 1} and assume
d = 3. The polynomial basis functions are the classical Bernstein functions

B0,3(t) = (1− t)3, B1,3(t) = 3(1− t)2t, B2,3(t) = 3(1− t)t2, b3,3(t) = t3.

(55)
In this case 0 and 1 are knots of multiplicities 4 and the curve t ∈ [0, 1] 
→ Cp(t)

interpolates these endpoints which are below the horizontal line representing the
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Fig. 3 Example of clamped
B-spline. In this particular
case, the control points:
p0 = −2.0, p1 = 0.25,
p2 = 0.8 and p3 = −2.0 are
not all negative while
Cp(t) < 0 for all t ∈ [0, 1]

p0

Cp

•

•
p1

•
p2

•
p3

z = 0

zero ordinate line. However, as can be noticed on Fig. 3, the control points p1 and
p2 are positives while the value of the spline polynomial is always negative.

5.3.2 Constraints for Direct Parameterization

We now assume that the polar variable R1 is parameterized by a spline, considering
the case of elastic bounds, this new parameterization only affects the inequality
(47)1 and we have the following result, proofed in [25].

Proposition 5.2 Using the notations introduced in Proposition 5.1 and assuming
that the polar moduli ξ 
→ R1(ξ) ∈ R is parameterized by the following spline

R1(ξ) =
∑
(i,j)∈I

(r1)ijBij,d(ξ). (56)

The inequality (47)1 holds for any ξ ∈ ω if the following inequalities :

2[(r1)ij ]2 − T1(T0 + (rK0 )ij )

N
< 0, where N := Card(I ), (57)

are satisfied for all (i, j) ∈ I . ��
The same treatment applied to the geometric bound constraint (48)1 leads to the
following constraints on the control points (r1)ij (resp. (rK0 )ij ) of the R1 (resp. RK0 )
polar variable:

2(
(r1)ij

RL1

)2 − 1

N
(1+ (rK0 )ij

RK0
L
) ≤ 0

0 ≤ (r1)ij ≤ RL1

, ∀(i, j) ∈ I. (58)
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p0 = l0 •

•
p1

•
p2

•p3 = r3

z = 0

•l1

•l2 •
l3 = r0

•
r1

•r2

Fig. 4 Illustration of subdivision on the B-spline curve Cp . The new calculated control points
{li , ri}, i∈ {0, · · · , 3} are both negative

5.3.3 Comments

The above-mentioned polar variables parameterization allows to reduce the number
of design variables, which are now control points of splines. However, Fig. 3 of
the Example 5.1 shows that defining the constraints on the control points can lead
to narrow the design space. Nevertheless, it is possible to use spline modelling
flexibility to introduce the constraints on additional control points to enlarge
the exploration field. More specifically, once the parametrizations of the polar
parameters are set, one can use subdivision (through Casteljau algorithm) see [61]
or knot insertion algorithms to add new more interpolating control points, [36, 62].
This reduces to introduce new control parameters, which are linear combinations
of originals and better adapted to define more accurate constraints. The strategy is
illustrated in the following Example.

Example 5.2 (B-spline Flexibility for the Constraints) Let us return to the Exam-
ple 5.1. Figure 4 shows the spline curve with its initial control points pi and some
news ones li and rj , which are associated with the two splines obtained by inserting
an interpolant knot point at the middle (ξ = 1

2 ). These new control points satisfy the
negativity constraint and then will help to check and better explore the admissible
design.

Subdivision operation is a well known flexibility given by B-spline function.
The idea was first defined for Bézier curves and surfaces with the Casteljau
algorithm; see [61]. This algorithm allows to evaluate a Bezier function at some
given parametric coordinates and also, at the same time, to split or subdivide the
Bézier curve at that specific parametric coordinate. The subdivision technique has
been generalized for B-spline functions by Cox-De-Boor [36, 62].

Hence, one can choose a certain level of subdivision a priori at which the
sufficient constraints will be checked on the new computed control points and then
obtain a better exploration of the design space. ��
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6 Formulating the Shape and Anisotropy Optimization
Algorithm

The resolution of the optimization problem defined in Sect. 2 can now be formalized
with the help of the meta-algorithm 6.1, where:

Algorithm 6.1 Main steps of the optimization algorithm

Input : Initial geometry Φ0 (defined by its control points p0
ij ),

Initial elastic tensor e0 (defined by its control points q0
kl),

Geometric and material constraints.
Output : Optimal shape and optimal elastic tensor defined by they control points.
begin

Initialisation: Meshing Th of the (rectangular) domain ω and definition of the interpolation
space Wh. Concerning the Nagdhi’s equations, displacements and rotations
of the mid-surface are interpolated by Lagrange P2 triangular finite elements
with 6 numerical integration points on each triangle. Enumerating in a vector
U ∈ R

Ndof the degrees of freedom associated with this interpolation space,
we write the bilinear form a(., .) (resp. the linear form l(.)) introduced in (25)
as a(uh, vh) =

〈[KΦ,e]U,V
〉

(resp. l(vh) = 〈FΦ, V 〉), where 〈., .〉 denote the
scalar product on R

Ndof .
Initialize (Φ, e)←− (Φ0, e0).

while ‖∇j (Φ, e)‖ ≥ T ol do
Assembly (on the triangulation Th) of the stiffness matrix

[
KΦ,e

]
and the right hand

member FΦ of the shell’s equations;
Computaion and assembly of partial derivatives

[
∂pij KΦ,e

]
, ∂pij FΦ and

[
∂qklKΦ,e

]
;

Resolution of the state equation [KΦ,e]U = FΦ ;
Computation of the derivatives of the compliance j with respect to the control points,
pij of the shape Φ(ω) and, qkl of the elastic tensor e:

∂pij j (Φ, e) = 〈2∂pij FΦ − [∂pij KΦ,e]U,U
〉

and

∂qkl j (Φ, e) = − 〈[∂qklKΦ,e]U,U
〉 (59)

Update the geometry Φ and the elastic tensor e by modifying their control points in
accordance with the gradient calculated above.

end
end

• the assembly of the stiffness matrix and its derivatives is carried out with the
help of the conventional finite element assembly procedures, where the geometric
entries aα, aαβ . . ., defined in Sect. 3.1, are calculated on the numerical integra-
tion points of each triangle of Th by using the B-spline differentiation algorithms;
for instance, the tangent vectors (6) which write as

aα(ξ1, ξ2) =
∑
(i,j)

pi,j ∂αBij,d(ξ
1, ξ2) (60)



The Polar-Isogeometric Method for Shape and Material Optimization of. . . 113

are computed with the help of formulas (40) and (33);
• computation of the derivatives of the stiffness matrix with respect to the control

points pij is a little more complicated and requires the calculation of the
derivative of the bilinear form a(., .), defined in formulas (20) and (25), with
respect to pij ; it is a symmetric bilinear form which depends on the derivatives
of Φ with respect to the control points; for instance, the derivative of the tangent
vectors aα is the vector whose all components are ∂αBij,d; we refer to [25] for
the literal expression of the derivatives of the other geometric entities;

• the formula (59) defining the derivatives of the compliance j with respect to the
control points (pij ) (resp. qkl) results from the fact that j is written as j :=〈[KΦ,e]U,U

〉
, so that we have:

∂pij j =
〈[∂pij KΦ,e]U,U

〉+ 2
〈[KΦ,e]∂pij U,U

〉
, (61)

for instance; differentiating the state equation [KΦ,e]U = FΦ , we obtain on the
other hand:

[KΦ,e]∂pij U = ∂pij FΦ − [∂pij KΦ,e]U. (62)

The formula (59) is obtained by carrying forward (62) to (61).

Algorithm 6.1 is complemented by the following constraints, which are derived
from design needs and mechanical well-posedness requirements:

• box constraints on shape control points, which reflect the designer’s need for a
shape contained in a given control polygon;

• material constraints are both box and inequality constraints, they are defined,
according to the type of material taken into account, by formulae (51) or (52) for
a conformal representation of the polar variables;

• in the case of the examples described in Sect. 7, we impose box constraints on
the surface A of the shell; this amounts to minimize the compliance of the shell
under mass constraints; note that this surface, which is calculated with the help
of the formula (11), is a differentiable function of the control points pij of the
shape;

The following additional constraints are technical and intend to ensure the conver-
gence of the optimization algorithm:

• to eliminate the singular cases identified in Remark 4.2-3, we assume that the
shape control points vary on lines orthogonal to the initial surface; this condition
is restrictive and must be adapted on a case-by-case basis, it arises from the fact
that the splines describe algebraic surfaces rather than differentiable manifolds;

• as the compliance j is invariant by some affine transformations Af applied to
shape Ω := Φ(ω), in the meaning that:

j (Af ◦Φ, e) = j (Φ, e), (63)
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we will assume that the points controlling the boundary of Ω remain fixed (i.e.
are excluded from the scope of optimization).

After a brief description of the practical formulation and steps of the optimal
design problem in the framework of the polar-isogeometric approach, we give in the
next section some numerical examples.

7 Some Examples

For the numerical resolution of the examples considered in this section, we have
used NLOPT, a free/open-source library for NonLinear OPTimization. It includes
the implementation of numerous optimization algorithms adapted for global and
local optimizations. The library involves different types of algorithms such as,
among others, Moving Asymptote Method (MMA) or COBYLA (Constrained
Optimization by Linear Approximation), which can be gradient-based or derivative-
free. We have used the COBYLA algorithm which appears to yield the best
optimization results among the different algorithms.

As specified in the Introduction, in all the examples, we always start from a shell
in the form of a flat domain with a given uniform distribution of the anisotropic
parameters (e.g. an isotropic distribution). Hence, we begin all the iterations starting
from a plate; during the computation, the plate is more and more transformed into
a shell and at the same time anisotropy changes pointwise. During this process,
the elastic energy, at the beginning entirely stored as bending energy in the plate,
transforms continuously more and more to membrane energy. The ideal situation,
corresponding to the optimal shell, is the one where all the strain energy of the
shell is in the form of membrane energy, i.e. when the bending energy of the shell
vanishes everywhere.

This is the process driving the initial plate to the final stiffest shell, acting
simultaneously upon shape, i.e. geometry, and anisotropy, i.e. elasticity. So, this
process can help to investigate the mutual influence of these two aspects on the
morphogenesis of optimal anisotropic shells.

Material Properties
In the forthcoming examples, the elastic coefficients of the basic material (i.e. of the
basic layer, for the case of a laminate) are:
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E2 = E = 9000× 106 Pa

E1 = E3 = 161× 106 Pa

ν12 = ν23 = ν = 0.26

ν13 = 0.26 and G13 = E

1+ ν

G12 = G23 = 61× 106 Pa.

The polar parameters corresponding to the plane reduced elastic tensor are:

T0 = 1.17× 109 Pa, T1 = 1.16× 109 Pa
RK0 = 1.11× 109 Pa, R1 = 1.11× 109 Pa, and "1 = 0.

We consider up to three different types of optimal design problems, in order to
analyze the incidence of the anisotropy on the shape:

• optimal shape design with an isotropic material (by setting RK0 = R1 = 0);
• optimal shape design with the specified anisotropic material and a fixed material

orientation throughout the shell;
• joint optimal design of the shape and anisotropy, included the material orienta-

tion.

In all the cases, geometric bounds (48) are used in the calculations. The shape is
parameterized by cubic B-spline polynomial of clamped knot vectors and 4 control
points in each coordinate direction. The polar parameters are defined through B-
spline polynomial of degrees d of clamped knot vectors of the form

Σα = {0, · · · , 0︸ ︷︷ ︸
d+1

, 1, · · · , 1︸ ︷︷ ︸
d+1

}, α ∈ {1, 2}.

The geometry is subjected to box constraints on the control points and to a bounded
area constraint of the form

l0 = (1− εtol)A0 ≤ A ≤ u0 = (1+ εtol)A0,

that is, the relative variation of the design area with respect to the initial shell area
A0 is εtol .

In order to tailor efficiently the locally variable elastic properties, it can be
relevant to use an assembling of patches for the parameterization of the polar
parameters. This does not present any additional difficulty since, provided that the
material frame of two adjacent patches is consistent, the continuity on the polar
parameters (if necessary) is easily obtained by equating the control parameters at
the interfaces of the adjacent patches.
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7.1 Optimal Design of a Circular Dome

The first case concerns the design of a circular dome submitted to its own weight and
simply supported at its boundary. The geometry of the initial structure, a circular
plate, and the problem data are represented in Fig. 5 and Table 1. For symmetry
reasons, the optimization is performed on a quarter of the structure and symmetry
conditions are imposed on the elastic displacement.

sym

sym

R

ρ = 1.58× 103Kg/m3

t = 3× 10−2m

R = 1m.

x

y

•
z

Fig. 5 Circular plate geometry and boundary conditions

Table 1 Design problem relative to the circular plate

Geometry & Circular plate of radius R = 1 m

loading: subjected to its own weight

Constraints: • Symmetries with C1 regularity throughout the planes of

symmetry x − z and y − z

• Fix place constraint on the simply supported boundary

• Box constraints

• Bounded area constraints εtol = 0.3

Anisotropy

RK0 , R1 "1

Knots Σα = {0, 0, 0, 0, 1, 1, 1, 1} Σα
"1
= {0, 0, 0, 0, 1, 1, 1, 1}

Constraints • Geometric bounds (52) Bounds on the angle Φ1 ∈ [−π, π ]
Shape Anisotropy

Number of design 12 48

variables
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Fig. 6 Example 1: optimal
shape for isotropic material
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Fig. 7 Example one, shape optimization with isotropic material: evolution of the compliance
through iterations (left) and ratio of the membrane and bending energy to the total strain energy
(right)

7.1.1 First Case: Shape Design with Fixed Isotropic Material

The optimal shape found for the shell is represented in Fig. 6. We have checked
that the optimal structure is a shell whose meridional profile is a catenary. It is well
known that the catenary is the form of equilibrium of an arch of constant thickness
under the action of its own weight in which all the internal actions reduce to a pure
normal force (this result is due to R. Hooke, [63], see also [64] or [65]). Such an
arch shape optimizes also its stiffness, because all the strain energy is stored in the
structure under the form of extension energy, while the bending one is reduced to
zero; this condition, as well known, corresponds to the maximum stiffness.

The optimal shell so obtained is, in the same way, submitted to only membrane
internal actions, so that the bending energy vanishes. Actually, the membrane energy
part for the optimal solution is Em = 98.35%. Figure 7 shows the evolution of the
compliance, i.e. of the strain energy, and the contributions of the membrane and
bending parts to the strain energy, along the optimization procedure. We can remark
the migration of the strain energy from the dominant initial form of bending energy
to the final prevailing form of membrane energy.

7.1.2 Second Case: Anisotropy and Shape Design

The second case that we consider for this example is the joint optimization of the
polar parameters and of the shape. The polar parameters are subjected to geometric
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Fig. 8 Example one, shape
and material optimization:
optimal shape and orthotropy
direction field

R0K (Pa)
1.106e+09
8.29e+8
5.53+8
2.76e+8
0.000e+00

R1 (Pa)
1.106e+09
8.3e+8
5.53e+8
2.77e+8
0.000e+00

Fig. 9 Example one, shape and anisotropy optimization: optimal polar moduli fields

bounds on their control points and are defined as B-spline of degrees d = 3. The
optimal shape and the orthotropy direction are plotted in Fig. 8. Also in this case the
optimal shape is that of a shell with meridional sections in the form of a catenary.
The polar parameters moduli are plotted in Fig. 9. One remarks that these parameters
are not only uniform throughout the structure, but also that both of them take the
highest possible value: the optimal shell is that with the highest possible degree of
anisotropy of the two anisotropic phases. We also remark that the only orthotropy
type is the one with K = 0.

Figure 10 shows the variation of the compliance and once again the migration
of the strain energy from the bending to the membrane form throughout the
optimization: for the optimal design, the membrane part is 93.34% of the total strain
energy (Table 2).

7.2 Optimization of a Conical Shell

As second example, we consider the optimization of a conical shell: the starting
structure is a holed circular plate which is simply supported at its external boundary
and subjected to a uniformly distributed vertical load at its inner circular boundary.
The radius of the circular plate is R = 0.8 m while that of the hole is r = R

3 . The
geometry and conditions are shown in Fig. 11 and Table 3.
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Fig. 10 Example one, shape and material optimization: evolution of the compliance through
iterations (left) and ratio of the membrane and bending energy to the total strain energy (right)

Table 2 Summary of the
global results concerning the
first example

Material

Anisotropic Isotropic

Design Init Final Init Final

Compliance (%) 100 0.174 100 0.167

Em(%) 14.11 93.33 1.82 98.95

edge with constant z-
coordinate, and applied
load

fixed edge simply sup-
ported

sym

sym

Ω1

Ω2

Fig. 11 Example two: geometry and boundary conditions

For symmetry reasons, the optimization is performed on a quarter of the struc-
ture. The geometry is defined by two sub-structures joined together as described
in Fig. 11 and the optimization problem set up is reported in Table 3. The control
points associated with the circular boundary with simply supported condition are
kept fixed while those defining the internal crown, which carries the applied load,
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Table 3 Description of the conical shell design problem

Geometry & Holed circular plate of outer radius R = 0.8 m and inner r = R
3

loading: Loaded at its inner boundary

Constraints: • Symmetries with C1 regularity

throughout the planes of symmetry

• Fix place constraint on the simply supported boundary

• The inner loaded circle remains a circle

• Box constraints

• Bounded area constraints εtol = 3
2

Anisotropy

RK0 , R1 "1

Knots Σα = {0, 0, 0, 1, 1, 1} Σα
"1
= {0, 0, 0, 1, 1, 1}

Constraints • Geometric bounds (52) Bounds on the angle Φ1 ∈ [−π, π ]
Shape Anisotropy

Number of design 25 45

variables

Fig. 12 Example two:
optimal shape for the
isotropic case

are constrained to have the same z-coordinate, i.e. the internal circular boundary can
move rigidly.

7.2.1 First Case: Shape Design with Fixed Isotropic Material

The optimal shape found is plotted in Fig. 12, while the variation of the compliance
and of membrane and bending energy parts during the optimization procedure are
plotted in Fig. 13.

Also in this case we can remark the migration of the strain energy from the
bending to the membrane form: at the end of the calculation, this last is 98.88%
of the whole strain energy.

For this example, the optimal shape is a conical surface, to which corresponds
a strain energy completely stored under the form of membrane energy. The result
shown in Fig. 12 is not exactly a conical surface, but it is close to it. This is due to
the fact that the solution has not yet perfectly converged, which is attested by the
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Fig. 13 Example two, shape optimization with isotropic material: evolution of the compliance
through iterations (left) and ratio of the membrane and bending energy to the total strain energy
(right)

fact that the membrane energy is not 100% of the whole elastic energy stored in the
shell.

7.2.2 Second Case: Shape Design with Fixed Anisotropic Material

We consider now the optimization of the shape made with the anisotropic material
specified in Sect. 7 under the same constraints on the geometry as in the previous
case. In addition, we fix the angle of orthotropy: "1 = π

4 . The optimal shape
so found is shown in Fig. 14. In this case we do not obtain a shell with circular
cross section, but a wrinkled surface, which is the apparent consequence of using a
fixed anisotropic material with a fixed orientation throughout the shell. Unlike in the
previous case, however, the wrinkles have an almost rectilinear profile, closer to a
conical shape than before. We remark also that, as well known, wrinkled membranes
are very stiff structures and it is interesting to notice that when anisotropy enters
the design, the optimal shape becomes a wrinkled surface. Figure 15 shows the
variation of the strain energy and of the membrane and bending parts throughout
optimization. In this case, though the tendency is the same of the previous cases, the
final membrane energy is only 87.3% of the whole strain energy stored in the shell;
the remaining 12.7% is in the form of bending energy, which is due to the presence
of the wrinkles.

7.2.3 Third Case: Shape and Anisotropy Optimal Design

We presently consider the joint optimization of the shape and material properties
for this second example. The parameterization considered for the polar parameters
corresponds to d = 2, thus, considering also the continuity condition between the
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Fig. 14 Example two:
optimal shape for fixed
anisotropic material
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Fig. 15 Example two: optimal shape and material orientation for fixed anisotropic material.
Evolution of the compliance through iterations (left) and ratio of the membrane and bending energy
to the total strain energy (right)

Fig. 16 Example two, shape
and anisotropy optimization:
optimal shape and material
orientation

two patches, there are 15 design variables for each polar parameter. Figure 16 shows
the optimal shape and orthotropy direction. We remark that the optimal shape is,
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Fig. 17 Example two, shape and anisotropy optimization. Distribution of the optimal polar moduli
RK0 and R1

Table 4 Summary of the
different results concerning
the second example (final 1:
final value for the first case,
final 2 for the second one and
final 3 for the third one)

Material

Anisotropic Isotropic

Design Init Final 2 Final 3 Init Final 1

Compliance (%) 100 0.036 0.004 100 0.105

Em(%) 1.74 87.3 97.2 1.65 98.9

like in the first case, a shell close to a conical surface; in particular, in this case the
final surface is closer to a conical one than in the first case. Also, we notice that
the optimal orientation is the same everywhere: the highest elastic modulus is in
the meridional direction, which seems a logical result. Unlike the optimal material
orientation, which is constant throughout the shell, the optimal distribution of the
polar anisotropic moduli RK0 and R1 is not constant, see Fig. 17.

In particular, the field of the parameter RK0 is uniform and almost constant over
all the shell with the presence of only one kind of orthotropy K = 0, while R1
changes, in particular it increases from top to bottom.

We remark also that the optimal material orientation is different from that, fixed
a priori, of the previous case. The consequence of this is the different optimal shape
of the shell that now is not wrinkled.

Figure 18 shows also for this case the variation along iterations of the strain
energy and of its membrane and bending parts. The variation is analogous to that of
the previous cases; in particular, one can notice that the convergence is practically
reached after 60 iterations and at the end the membrane energy amounts to 97.2%
of the whole elastic energy stored in the shell.

The overall results for the three cases considered for this second example are
shown in Table 4. We can remark that the most effective case is the third one, with a
final compliance which is just the 0.004% of the initial one. This shows that acting
simultaneously on the geometry and on the material distribution is advantageous.



124 C. Fourcade et al.

20 40 60 80

0

20

40

60

iter. number

co
m

pl
ia

nc
e

20 40 60 80

0

20

40

60

80

100

iter. number

En
er

gy
(%

)

Membrane
Bending

Fig. 18 Example two: shape and material optimization. Evolution of the compliance through
iterations (left) and ratio of the membrane and bending energy to the total strain energy (right)
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Fig. 19 Example three: geometry, actions, and boundary conditions

7.3 Plate Submitted to a Torsional Load

The last example that we consider is a square plate with a side of 1 m, clamped at
one side and subjected to two equal but opposite loads applied at the free corners.
On the whole, the plate is hence submitted to a torsional action. The geometry of the
plate is sketched in Fig. 19, while in Table 5 we show the data of the problem. The
two concentrated loads producing the torsion of the plate have a value f = 1000 N.
The plate is defined by an assembling of 2 × 2 square plates of length 0.5 m, each
being parameterized through a cubic B-splines with open knot vectors and four
control points in each parametric direction. Finally a C1-regularity is imposed at
the junction of the patches. The design is constrained to preserve the boundary: the
final shape of the optimal shell must have the same boundary of the original square
plate. The orthotropy is initially oriented with an angle "1 = 0 with respect to the
x-axis direction.
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Table 5 Example three: data of the optimum problem

Geometry & Square plate of unit length

loading: Torsion applied through two concentrated loads

Constraints: • C1 regularity constraints between the patches

• Fix place constraint on the boundary

• Box constraints

• Bounded area constraints εtol = 0.2

Anisotropy

RK0 , R1 "1

Knot Σα = {0, 0, 0, 0, 1, 1, 1, 1} Σα
"1
= {0, 0, 0, 0, 1, 1, 1, 1}

Constraints • Geometric bounds (52) Bounds on the angle Φ1 ∈ [−π, π ]
Shape Anisotropy

Number of design 36 49

variables

Fig. 20 Example three: optimal shapes corresponding to the first and second case (from the left)

7.3.1 First Case: Shape Design with Fixed Isotropic Material

As usual, we first consider that the plate is made with the isotropic material obtained
putting RK0 = R1 = 0. Figure 20 shows, on the left, the optimal shape so found.
It is interesting to notice that this shape corresponds with one of the fundamental
vibration modes of the plate when it is simply supported along all its boundary.

7.3.2 Second Case: Shape Design with Fixed Anisotropic Material

Like for the previous example, we consider now the optimal shape design with the
anisotropic material given in Sect. 7 and with the material orientation that is fixed
everywhere to Φ1 = 0. The final optimal shape is shown in Fig. 20, on the right.
Now, the optimal shape has remarkably changed with respect to the previous case:
the waves are more numerous and they decrease going towards the clamped edge.
It is interesting to remark that the greatest curvatures in the shell shape are located
near the loaded corners.
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Fig. 21 Example three,
shape and material
optimization: optimal shape
and material orientation

(a) (b)

Fig. 22 Example three, shape and anisotropy optimization: optimal distribution of the anisotropy
polar parameters. (a) Optimal distribution of RK0 . (b) Optimal distribution of R1

Table 6 Summary of the different results concerning the third example (final 1: final value for the
first case, final 2 for the second one and final 3 for the third one)

Material

Anisotropic Isotropic

Design Init Final 2 Final 3 Init Final 1

Compliance (%) 100 1.000 0.256 100 5.150

Em(%) 3.28 91.71 94.98 16.48 93.05

7.3.3 Third Case: Shape and Anisotropy Optimal Design

Finally, we consider the joint shape and anisotropy optimal design. Figure 21 shows
the optimal shape and material orientation. The optimal shape changes again with
respect to the two previous cases; the optimal distributions of the polar moduli RK0
andR1 are represented in Fig. 22. Like in the previous examples, they are practically
constant throughout the structure and equal to their maximal allowed value. Also in
this case, there is a unique final type of orthotropy, that with K = 0.

Table 6 summarizes the different optimization results for this third example. Like
in the previous example, also in this case the best result is found for the third case,
i.e. when shape and anisotropy are optimized. The optimal shapes so found for this
example are rather unexpected and surprising is their similarity with the vibration
modes of a simply supported plate. To this purpose, it is interesting to remark how
the presence of anisotropy modifies the shape, changing the number of waves in the
shell shape.
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8 Conclusions

In this paper we have proposed a problem in a new field of structural optimization:
the joint optimization of shape and material distribution for a shell-like structure. We
have also proposed to tackle such a kind of problem by an approach that we have
called polar-isogeometric, because it marries two distinct mathematical techniques:
the polar formalism for the representation of plane anisotropy and an isogeometric-
like approach for the parametrization of both the shell shape and the fields of the
polar parameters.

Starting from a flat shape, i.e. from a plate, we have shown through different
examples that the proposed method is able to drive the computation towards the
optimal solution, the one where the elastic energy of the structure tends to be stored
as membrane energy.

The use of the isogeometric approach, which is almost classical in shape design,
has been used also for the parametrization of the variables describing the anisotropy
of the shell. This has been done in order to reduce the number of design variables
that become, in this approach, the control points of the parameterizations. Using
the properties of the spline functions, we have also given a sufficient condition
for ensuring the satisfaction of the bounds on the elastic parameters, to be fulfilled
everywhere in the shell.

This is just one of the first works in this field and of course different improve-
ments can be imagined, we discuss some of them. As a first point, we indicate the
possibility of describing complex shapes using more than one patch. This problem
has already been tackled and partially solved in [25]; the matter is delicate, because
continuity conditions must be specified for the shape and for the elastic parameter
fields. If for the first case, the shape, such conditions are delicate to be written, but
rather well defined, for the second one, the elastic parameters, the definition of such
continuity conditions among the patches is questionable, different possibilities can
be imagined, driving towards different optimal problems.

A second point is the design of laminated shells. This point is rather well solved
for plates and it just needs few amendments to the proposed approach: besides
taking into account for the geometric instead of the elastic bounds, we need to use
a specific procedure for finding a laminate able to have all the properties of the
optimal shell, i.e. orthotropic, quasi-homogeneous and with the optimal distribution
of e everywhere. Such a problem has been already solved satisfactorily for different
problems concerning plates, see e.g. [12, 14, 15, 48], using metaheuristics, e.g.
a genetic algorithm. However, a step further in this direction should be the
introduction in the proposed optimization process of some technological constraints,
e.g. on the trajectories and densities of the reinforcing fibers, using, for instance, the
technique already proposed in [27]. For the case of laminated shells, the use of
quasi-homogeneous laminates is almost essential, because the structure is, at least
in some parts, submitted to extension and bending. To avoid this assumption means,
on the one hand, to introduce separately the polar parameters for extension and
bending, which doubles the number of design variables for the elastic part, and, on
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the other hand, to use some approximation of the feasible domain, because the exact
bounds of the polar parameters for extension and bending, that are not independent,
are still unknown, see [41].

The proposed approach can be used also for other objective functions rather
than compliance. In particular, for buckling loads and vibration frequencies, i.e.
for problems concerning eigenvalues, the proposed method can be applied almost
directly; more difficult is the case of strength, because this is represented by a
local functional; a possible way is that introduced in [12], because the use of
the isogeometric approach used in this paper can be easily adapted to the polar
parameters describing strength in the case of a tensorial strength criterion. A dual
problem of the one considered in this study is the minimization of the mass of a shell
that must have a minimal requirement in terms of stiffness, a problem of interest
especially in aircraft construction.

Finally, the problem considered in this paper has been suggested by industrial
applications: automotive, aeronautics, space, and sport engineering are more and
more interested in the optimal design of composite structures, most of them being
in the form of shells. Thanks to the new technologies of fiber placement, the
possibility of tailoring anisotropy is today a true reality; so, the goal is to dispose of
mathematical methods able to drive the design towards optimal solutions.

However, to our opinion, this approach has a wider interest and significance; in
fact, as already said in the text, this approach allows to investigate the reciprocal
influence of material properties and geometrical shape in the morphogenesis of 2D
space structures; we think, namely to natural forms, like leaves or some skeletal
organisms. This approach could be of interest in trying to investigate how Nature
acts when it can dispose of geometry and material.
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Gradient Polyconvexity and Modeling
of Shape Memory Alloys

Martin Horák, Martin Kružík, Petr Pelech, and Anja Schlömerkemper

1 Introduction

Gradient polyconvex functionals, introduced originally in [10], depend on the gra-
dients of nonlinear minors of the deformation gradient, i.e., they involve not only
the first but also the second spatial derivatives of the deformation field. Materials
having such a broader energy dependence are generally called non-simple [54] and
their idea can be traced back to 1901 when Korteweg [32] considered a gradient
of the density in his model of fluid capillarity. Considering more than only the
first deformation gradient in the description of elastic behavior of solids goes back
to the 1960s and appeared in the work of Toupin [52, 53], and Green and Rivlin
[29]. Such materials are usually called N -grade materials, where N refers to the
highest deformation gradient appearing in the model. This approach has brought
questions on thermodynamical consistency of such models, treated in [13, 22],
for instance. Since then, it has been used and analyzed in many works; see, e.g.,
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[7, 20, 21, 24, 26, 27, 34, 46, 50, 51]. From the material point of view, the more
general energy functionals in higher grade continua lead to an additional force
interaction in a form of an edge traction or the so-called couple-stress or double
force acting on the boundary; see [38, 42, 48, 49].

Mathematically, the presence of higher-order gradients in the model brings
additional compactness properties for the set of admissible functions and ensures
the existence of minimizers. We refer to recent related results on the mathematical
treatment of shape memory materials and solid-to-solid interfaces: [1, 4, 6, 18, 19].
We also refer to [9] for an overview of recent mathematical results in the calculus
of variations. For computational results on NiMnGa see, e.g., [1].

The aim of this contribution (cf. [37]) is to apply a new class of non-simple
material models introduced in [10] (called gradient polyconvex materials) to
evolutionary problems of shape memory alloys and to consider a computational
experiment. The novelty consists in considering only gradients on nonlinear minors
in the stored energy density of the material. It is shown there, and also in Example 2
below, that corresponding deformations do not necessarily have integrable second
weak derivatives. Nevertheless, it is possible to prove existence of an energetic
solution.

The plan of the paper is as follows. We first introduce necessary notation and
tools in Sect. 2. The notion of gradient polyconvexity is thoroughly discussed in
Sect. 3 and the quasistatic evolution in Sect. 4. Finally, in Sect. 5 we consider
a bar made of a specific shape memory material (NiMnGa) and provide first
computational results on the evolution of a solid-to-solid phase transformation in
a tension experiment.

2 Preliminaries

Hyperelasticity is a special area of Cauchy elasticity, where one assumes that the
first Piola-Kirchhoff stress tensor P possesses a potential (called stored energy
density) W : (0,+∞)× R3×3 → (−∞,∞]. In other words,

P(θ, F ) := ∂W(θ, F )

∂F
(1)

on its domain, where F ∈ R3×3 is such that detF > 0 and θ stands for the
absolute temperature. This concept emphasizes that all work done by external loads
on the specimen is stored in it. The principle of frame-indifference requires that W
satisfies, for all F ∈ R3×3 and all proper rotations R ∈ SO(3),

W(θ, F ) = W(θ,RF) = W̃ (θ, F�F) = W̃ (θ, C),

where C := F�F is the right Cauchy-Green strain tensor and W̃ : (0,+∞) ×
R

3×3 → (−∞,∞].
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Additionally, every elastic material is assumed to resist extreme compression,
which is modeled by

W(θ, F )→+∞, if detF ↘ 0. (2)

Let the reference configuration be a bounded Lipshitz domain� ⊂ R3. Deformation
y : �̄→ R3 maps the points in the closure of the reference configuration �̄ to their
positions in the deformation configuration. Solutions to the corresponding elasticity
equations can then be formally found by minimizing the energy functional

I (θ, y) :=
∫
�

W(θ,∇y(x)) dx − �(y) (3)

over the class of admissible deformations. Here, � is a functional on the set of
deformations, expressing (in a simplified way) the work of external loads on the
specimen, and ∇y is the deformation gradient, which quantifies the strain. We only
allow for deformations, which are orientation-preserving, i.e., if a, b, c ∈ R3 satisfy
(a × b) · c > 0, then (Fa × Fb) · Fc > 0 for every F := ∇y(x) and x ∈ �, which
means that detF > 0. This condition can be expressed by extending W by infinity
on matrices with non-positive determinants, i.e.,

W(θ, F ) := +∞, if detF ≤ 0. (4)

In view of (1), (2), and (4), we see that W : (0,+∞) × R3×3 → (−∞,+∞],
is continuous in the sense that if Fk → F in R3×3 for k → +∞, then
limk→+∞W(θ, Fk) = W(θ, F ). Furthermore, W(θ, ·) is differentiable on the set
of matrices with positive determinants.

Relying on the direct method of the calculus of variations, the usual approach
to prove the existence of minimizers is to study (weak) lower semicontinuity of the
functional I on appropriate Banach spaces containing the admissible deformations.
For definiteness, we assume that y 
→ −�(y) is weakly sequentially lower semicon-
tinuous. Thus, the question reduces to a discussion of the assumptions on W . It is
well-known that (2) prevents us from assuming convexity of W . See, e.g., [17] or
the recent review for a detailed exposition of weak lower semicontinuity. Following
earlier work by C.B. Morrey, Jr., [43], J.M. Ball [2] defined a polyconvex stored
energy density W by assuming that there is a convex and lower semicontinuous
function W(θ, ·) : R19 → (−∞,+∞] such that

W(θ, F ) := W(θ, F,CofF, detF) ∀F ∈ R3×3.

Here, CofF denotes the cofactor matrix of F , which, for F being invertible, satisfies
Cramer’s rule:

CofF = (detF)(F−1)�.
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Hence, det CofF = det2 F and because we assume that detF > 0 we have that

F =
( CofF√

det CofF

)−�
,

i.e., we can reconstruct F from CofF . It is well-known that polyconvexity is
satisfied for a large class of constitutive functions and allows for the existence of
minimizers of I under (2) and (4). On the other hand, there are still situations where
polyconvexity cannot be adopted. A prominent example is shape memory alloys,
where W has the so-called multi-well structure; see, e.g., [5, 11, 44]. Namely, there
is a high-temperature phase, called austenite, which is usually of cubic symmetry,
and a low-temperature phase, called martensite, which is less symmetric and exists
in more variants, e.g., in three for the tetragonal structure (NiMnGa) or in twelve
for the monoclinic one (NiTi). We can assume that

W(θ, F ) := min
0≤i≤MWi(θ, F ), (5)

where Wi : (0,+∞) × R3×3 → (−∞,+∞] is the stored energy density of the
i-th variant of martensite if i > 0, and W0 is the stored energy density of the
austenite. For every admissible i, we have Wi(θ, ·) is minimized if and only if
F = RFi for a given matrix Fi ∈ R3×3 and an arbitrary proper rotation R ∈ SO(3).
This means that each variant of the martensite and the austenite is modeled as a
hyperelastic material with its own stored energy density Wi . We also assume that
eachWi(θ, ·) is differentiable on the set of matrices with positive determinants. Thus
the variants can be described independently of each other, i.e., the elastic constants
can be chosen differently. The drawback is obviously the non-smoothness of W ,
however, physically realistic elastic strain values do not occur in the set where W
is not differentiable. We refer, e.g., to [39] for other models of the stored energy
density of shape memory alloys.

Given a deformation gradient F , we need to decide if the corresponding
deformation is in the well of the austenite, or in a martensitic variant. In order to
do so, we define a volume fraction λ(F ) as follows: Let λ : R3×3 → RM+1. Set

λj (F ) := 1

M

(
1− dist(C,Nj (Cj ))∑M

i=0 dist(C,Ni (Ci))

)
∀C = FT F ∈ R3×3, j = 0, . . . ,M,

(6)

where {Ni (Ci)}i are pairwise disjoint neighborhoods of the right Cauchy-Green
strain tensors Ci = F�i Fi , for i ∈ {0, . . . ,M}. Notice that

∑M
j=0 λ

j (F ) = 1 for

every F , which, together with λj ≥ 0, allows us to interpret λ as a volume fraction.
Moreover, note that λ is continuous and frame-indifferent in the sense that

λ(F ) = λ(RF) for every proper rotation R. Volume fractions will play an important
role in the definition of our evolutionary model in Sect. 4.
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Remark 1 Note that this particular choice of λ allows for some elastic behavior
close to the wells SO(3)Fi , i = 0, . . . ,M , since the volume fraction remains
constant on the neighborhoods Ni (Ci), i = 0, . . . ,M .

Let us emphasize that (5) ruins even generalized notions of convexity as,
e.g., rank-one convexity. (We recall that rank-one convex functions are convex
on line segments with endpoints differing by a rank-one matrix and that rank-
one convexity is a necessary condition for polyconvexity; cf. [17], for instance.)
Namely, it is observed (see, e.g., [5, 11]) that there is a proper rotation Rij such
that rank(RijFi − Fj ) = 1. if 0 < i �= j > 0. Hence, generically, W(θ,RijFi) =
W(θ, Fj ) = −wi(θ), but W(θ, F ) > −wi(θ) if F is on the line segment between
RijFi and Fj . Nevertheless, not having a convexity property at hand that implied
existence of minimizers is in accordance with experimental observations for these
alloys.

Indeed, nonexistence of a minimizer corresponds to the formation of microstruc-
ture of strain-states. This is mathematically manifested via a faster and faster
oscillation of deformation gradients in minimizing sequences, driving the functional
I to its infimum. One can then formulate a minimization problem for a lower
semicontinuous envelope of I , the so-called relaxation, see, e.g., [17]. Such a
relaxation yields information of the effective behavior of the material and on the
set of possible microstructures. Thus relaxation is not only an important tool for
mathematical analysis, but also for applications. For numerical considerations it is
a challenging problem, because the relaxation formula is generically not obtained
in a closed form. Further difficulties come from the fact that a sound mathematical
relaxation theory is developed only ifW has p-growth; that is, for some c(θ), c > 1,
p ∈ ]1,+∞[ and all F ∈ R3×3, the inequality

1

c
(|F | − c(θ)) ≤ W(θ, F ) ≤ c(1+ |F |p + c(θ))

is satisfied. This in particular implies that W < +∞. We refer, however, to
[8, 16, 33] for results allowing for infinite energies. Nevertheless, these works
include other assumptions that severely restrict their usage. Let us point out that the
right Cauchy-Green strain tensor F�F maps SO(3)F as well as (O(3)\SO(3))F
to the same point. Here, O(3) are the orthogonal matrices with determinant ±1.
Thus, for example, F 
→ |F�F − I| is minimized on two energy wells, on SO(3)
and also on O(3)\SO(3). However, the latter set is not acceptable in elasticity,
because the corresponding minimizing affine deformation is a mirror reflection.
In order to distinguish between these two wells, it is necessary to incorporate detF
in the model properly.

Besides relaxation, another approach guaranteeing existence of minimizers is to
resort to non-simple materials, i.e., materials, whose stored energy density depends
also on higher-order derivatives. Simple examples are functionals of the form

I (θ, y) :=
∫
�

W(θ,∇y(x))+ ε|∇2y(x)|p dx − �(y),
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where ε > 0. Obviously, the second-gradient term brings additional compactness to
the problem, which allows to require only strong lower semicontinuity of the term

∇y 
→
∫
�

W(θ,∇y(x)) dx

for existence of minimizers.
Here, we follow a different approach suggested in [10], which is a natural

extension of polyconvexity exploiting weak continuity of minors in Sobolev spaces.
Instead of the full second gradient, it is assumed that the stored energy density of
the material depends on the deformation gradient ∇y and on gradients of nonlinear
minors of ∇y, i.e., on ∇[Cof∇y] and on ∇[det∇y]. The corresponding functionals
are then called gradient polyconvex. While we assume convexity of the stored
energy density in the two latter variables, this is not assumed in the ∇y variable.
The advantage is that minimizers are elements of Sobolev spaces W 1,p(�,R3), and
no higher regularity is required.

The following example is inspired by a similar one in [10]. It shows that there are
maps with smooth nonlinear minors whose deformation gradient is not a Sobolev
map. Hence, gradient polyconvex energies are more general than second-gradient
ones.

Example

Let � = ]0, 1[3. For functions f, g : ]0, 1[ → ]0,+∞[ to be specified later, let us
consider the deformation

y(x1, x2, x3) := (x1, x2f (x1), x3g(x1)) .

Then,

∇y(x1, x2, x3) =
⎛
⎝ 1 0 0
x2f

′(x1) f (x1) 0
x3g

′(x1) 0 g(x1)

⎞
⎠ ,

Cof∇y(x1, x2, x3) =
⎛
⎝f (x1)g(x1) −x2f

′(x1)g(x1) −x3f (x1)g
′(x1)

0 g(x1) 0
0 0 f (x1)

⎞
⎠

and

det∇y(x1, x2, x3) = f (x1)g(x1) > 0 .

Finally, the nonzero entries of ∇2y(x1, x2, x3) are

x2f
′′(x1), f ′(x1), x3g

′′(x1), g′(x1). (7)
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Note that we have in particular

|∇2y(x1, x2, x3)| ≥ |x2||f ′′(x1)|.

Any functions f, g such that y ∈ W 1,p(�;R3), Cof∇y ∈ W 1,q (�;R3×3), 0 <

det∇y ∈ W 1,r (�), (det∇y)−s ∈ L1(�) for some p, q, r ≥ 1 and s > 0, but such
that one of the quantities in (7) is not a function in Lp(�) yield a useful example
since then y /∈ W 2,p(�;R3). To be specific, we choose, for 1 > ε > 0,

f (x1) = x1−ε
1 and g(x1) = x1+ε

1 .

Hence

f ′(x1) = (1− ε)x−ε1 , g′(x1) = (1+ ε)xε1,

f ′′(x1) = −ε(1− ε)x−1−ε
1 , g′′(x1) = ε(1+ ε)x−1+ε

1 .

Since x2f
′′(x1) is not integrable, we have ∇2y �∈ L1(�;R3×3×3) and thus y �∈

W 2,1(�;R3). We have only y ∈ W 1,p(�;R3) ∩ L∞(�;R3) for every 1 ≤ p <

1/ε. Moreover, direct computation shows that both Cof∇y and det∇y lie in W 1,∞.
Finally, det∇y = x2

1 > 0 and (det∇y)−s ∈ L1(�) for all 0 < s < 1/2.
Therefore, for any r, q ≥ 1, s > 0, requiring a deformation y : �→ R3 to satisfy

det∇y ∈ W 1,r (�), (det∇y)−s ∈ L1(�) and Cof∇y ∈ W 1,q (�;R3×3) is a weaker
assumption than y ∈ W 2,1(�;R3).

3 Gradient Polyconvexity

We start with a definition of gradient polyconvexity.

Definition 1 (See [10, 36]) Let Ŵ : (0,+∞)×R3×3×R3×3×3×R3 → R∪{+∞}
be a lower semicontinuous function, and let � ⊂ R3 be a bounded open domain.
The functional

J (θ, y) =
∫
�

Ŵ(θ,∇y(x),∇[Cof∇y(x)],∇[det∇y(x)])dx, (8)

defined for any measurable function y : �→ R3 for which the weak derivatives∇y,
∇[Cof∇y], ∇[det∇y] exist and which are integrable, is called gradient polyconvex
if the function Ŵ (F, ·, ·) is convex for every F ∈ R3×3.
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With J defined as in (8) and a functional y 
→ −�(y) expressing the work of
external loads, we set

I (θ, y) := J (θ, y)− �(y). (9)

Besides convexity properties, the results of weak lower semicontinuity of I (θ, ·)
on W 1,p(�;R3), in the case 1 ≤ p < +∞, rely on suitable coercivity properties.
Here we assume that there are numbers q, r > 1 and c, c(θ), s > 0 such that for
every F ∈ R3×3, �1 ∈ R3×3×3, and every �2 ∈ R3

Ŵ (θ, F,�1,�2)

≥
⎧⎨
⎩
c
(|F |p + |CofF |q + (detF)r + (detF)−s + |�1|q + |�2|r

)− c(θ), if detF > 0,

+∞, otherwise.

(10)

The following existence result is taken from [10] where it is stated without the
explicit dependance on θ . For the reader’s convenience, we provide a proof below.

Proposition 1 Let θ > 0 be fixed. Let � ⊂ R3 be a bounded Lipschitz domain, and
let � = �0∪�1 be an H2-measurable partition of � = ∂� with the area of �0 > 0.
Let further −� : W 1,p(�;R3) → R be a weakly lower semicontinuous functional
satisfying, for some C̃ > 0 and 1 ≤ p̄ < p,

�(y) ≤ C̃‖y‖p̄
W 1,p(�;R3)

, for all y ∈ W 1,p(�;R3). (11)

Further, let J , as in (8), be gradient polyconvex on � and such that there is a Ŵ
as in Definition 1 which in addition satisfies (10) for p > 2, q ≥ p

p−1 , r > 1,

s > 0. Moreover, assume that, for some given measurable function y0 : �0 → R3,
the following set

A : = {y ∈ W 1,p(�;R3) : Cof∇y ∈ W 1,q (�;R3×3), det∇y ∈ W 1,r (�),

(det∇y)−s ∈ L1(�), det∇y > 0 a.e. in �, y = y0 on �0
}

is nonempty. If infA I (θ, ·) < ∞ for I from (9), then the functional I has a
minimizer on A.

Proof Our proof closely follows the approach in [10]. Let {yk} ⊂ A be a
minimizing sequence of I . Due to coercivity assumption (10), the bound on the
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loading (11), the Poincaré inequality, and the Dirichlet boundary conditions on �0,
we obtain that

sup
k∈N

(
‖yk‖W 1,p(�;R3) + ‖Cof∇yk‖W 1,q (�;R3×3) + ‖ det∇yk‖W 1,r (�)

+‖(det∇yk)−s‖L1(�)

)
<∞. (12)

Hence, by standard results on weak convergence of minors, see, e.g., [14, Thm. 7.6-
1], there are (not explicitly labeled) subsequences such that

yk ⇀ y in W 1,p(�;R3), Cof∇yk ⇀ Cof∇y in Lq(�;R3×3),

det∇yk ⇀ det∇y in Lr(�)

for k →∞. Moreover, since bounded sets in uniformly convex Sobolev spaces are
weakly sequentially compact,

Cof∇yk ⇀ H in W 1,q (�;R3×3), det∇yk ⇀ D in W 1,r (�) (13)

for someH ∈ W 1,q (�;R3×3) andD ∈ W 1,r (�). Since the weak limit is unique, we
have H = Cof∇y and D = det∇y. By compact embedding, also Cof∇yk → H in
Lq(�;R3×3) and hence we obtain a (not explicitly labeled) subsequence such that,
for k→∞,

Cof∇yk → Cof∇y a.e. in �. (14)

Since, by Cramer’s formula, det(Cof∇y) = (det∇y)2, we have, for k→∞, that

det∇yk → det∇y a.e. in �. (15)

Next we show that y belongs to the set of admissible functions A. Notice that
det∇y ≥ 0 since det∇yk > 0 for any k ∈ N. Further, the conditions (10), (11), (12),
and the Fatou lemma imply that

+∞ > lim inf
k→∞ I (θ, yk)+ �(yk) ≥ lim inf

k→∞

∫
�

1

(det∇yk(x))s dx

≥
∫
�

1

(det∇y(x))s dx.

Hence, inevitably, det∇y > 0 almost everywhere in � and (det∇y)−s ∈ L1(�).
Since the trace operator is continuous, we obtain that y ∈ A.
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By Cramer’s rule, the inverse of the deformation gradient satisfies, for almost all
x ∈ � and k→∞, that

(∇yk(x))−1 = (Cof∇yk(x))�
det∇yk(x) −→ (Cof∇y(x))�

det∇y(x) = (∇y(x))−1. (16)

Notice that, for almost all x ∈ �,

sup
k∈N

|∇yk(x)| = sup
k∈N

det∇yk(x) |((Cof(∇yk(x)))−1))�|

≤ sup
k∈N

3

2
det∇yk(x) |(∇yk(x))−1|2 <∞

because of the pointwise convergence of {det∇yk} and (16).
Due to (16), we have, for almost all x ∈ � and k→∞, that

∇yk(x) = ((Cof(∇yk(x))−1)� det∇yk(x) −→ ((Cof(∇y(x))−1)� det∇y(x)
= ∇y(x),

where we have used that the cofactor of some matrix is invertible whenever the
matrix itself is invertible too. As the Lebesgue measure on � is finite, we get by the
Egoroff theorem, c.f. [23, Thm. 2.22],

∇yk → ∇y in measure. (17)

Since Ŵ (θ, ·) is bounded from below and continuous on matrices with positive
determinants and Ŵ (θ, F, ·, ·) is convex, we may use [23, Cor. 7.9] to conclude,
from (17) and (13), that

∫
�

Ŵ(θ,∇y(x),∇ Cof∇y(x),∇ det∇y(x)) dx

≤ lim inf
k→∞

∫
�

Ŵ(θ,∇yk(x),∇ Cof∇yk(x),∇ det∇yk(x)) dx .

To pass to the limit in the functional −�, we exploit its weak lower semicontinuity.
Therefore, the whole functional I is weakly lower semicontinuous along {yk} ⊂ A
and hence y ∈ A is a minimizer of I (θ, ·).
Remark 2 Note that the pointwise convergence (15) of the determinant, necessary
for obtaining the crucial convergence in (17), was not achieved by compact
embedding, as it was done for Cof∇y in (14). Hence, the coercivity in ∇[det∇y]
is of minor importance and can be relaxed, provided the function Ŵ from (8) does
not depend on its last argument, c.f. [10, Prop. 5.1]. On the other hand, although only
∇[Cof∇y] is necessary for regularizing the whole problem, making the functional
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in (8) dependent also on ∇[det∇y] may be interesting from the applications point
of view.

Let L3 denote the Lebesgue measure in R3. If p > 3 and y ∈ W 1,p(�;R3)

is such that det∇y > 0 almost everywhere in �, then the so-called Ciarlet-Nečas
condition

∫
�

det∇y(x) dx ≤ L3(y(�)), (18)

derived in [15], ensures almost everywhere injectivity of deformations. We also
refer to [28, Sec. 6, Thm.2] and to [3] for other conditions ensuring injectivity of
deformations, requiring, however, a prescribed Dirichlet boundary datum on the
whole ∂�, which is difficult to ensure in a physical lab. If

|∇y|3
det∇y ∈ L

δ(�) (19)

for some δ > 2 and (18) holds, then we even get invertibility everywhere in � due
to [30, Theorem 3.4]. Namely, this then implies that y is an open map. Hence, we
get the following corollary of Proposition 1.

Corollary 1 Let � ⊂ R3 be a bounded Lipschitz domain, and let � = �0 ∪ �1
be an H2-measurable partition of � = ∂� with the area of �0 > 0. Let further
� : W 1,p(�;R3) → R be a weakly upper semicontinuous functional and J as
in (8) be gradient polyconvex on � such that Ŵ satisfies (10). Finally, let p > 6,
q ≥ p

p−1 , r > 1, s > 2p/(p − 6), and assume that, for some given measurable

function y0 : �0 → R3, the following set

A : = {y ∈ W 1,p(�;R3) : Cof∇y ∈ W 1,q (�;R3×3), det∇y ∈ W 1,r (�),

(det∇y)−s ∈ L1(�), det∇y > 0 a.e. in �, y = y0 on �0, (18) holds}

is nonempty. If infA I <∞ for I from (9), then the functional I has a minimizer on
A which is injective everywhere in �.

A simple example of an energy density which satisfies the assumptions of
Proposition 1 and Corollary 1 is

Ŵ (θ, F,�1,�2)

=
⎧⎨
⎩
W(θ, F )+ ε

(|F |p + |CofF |q + (detF)r + (detF)−s + |�1|q + |�2|r
)
, if detF > 0,

+∞, otherwise,

for W defined in (5).
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Remark 3 (Gradient Polyconvex Materials and Smoothness of Stress) Gradient
polyconvex materials enable us to control regularity of the first Piola-Kirchhoff
stress tensor by means of smoothness of the Cauchy stress. Assume that the
Cauchy stress tensor T y : y(�) → R

3×3 is Lipschitz continuous, for instance.
If Cof∇y : � → R

3×3 is Lipschitz continuous too, then the first Piola-Kirchhoff
stress tensor P inherits the Lipschitz continuity from T y because

P(x) := T y(xy)Cof∇y(x),

where xy := y(x). In a similar fashion, one can transfer Hölder continuity of T y to
P via Hölder continuity of x 
→ Cof∇y(x).

4 Evolution

If the loading changes in time or if the boundary condition becomes time-dependent,
then the specimen evolves as well. We consider here the case, in which evolution is
connected with energy dissipation. Experimental evidence shows that considering a
rate-independent dissipation mechanism is a reasonable approximation in a wide
range of rates of external loads. We hence need to define a suitable dissipation
function.

Since we consider a rate-independent processes, this dissipation will be
positively one-homogeneous. We associate the dissipation with the magnitude
of the time derivative of the dissipative variable z ∈ RM+1, where M ∈ N, i.e.,
with |ż|M+1, where | · |M+1 denotes a norm on RM+1 (in our setting, the internal
variable z can be seen as a vector of volume fractions of austenite and M variants
of martensite). Therefore, the specific dissipated energy associated with a change
from state z1 to z2 is postulated as

D(z1, z2) := |z1 − z2|M+1. (20)

Hence, for zi : �→ RM+1, i = 1, 2, the total dissipation reads

D(z1, z2) :=
∫
�

D(z1(x), z2(x)) dx,

and the total D-dissipation of a time-dependent curve z : t ∈ [0, T ] 
→ z(t), where
z(t) : �→ RM+1 is defined as

DissD(z, [s, t]) := sup
{ N∑
j=1

D(z(ti−1), z(ti)) : N ∈ N, s = t0 ≤ . . . ≤ tN = t
}
.
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Let Z denote the set of all admissible states of internal variables z : �→ RM+1

and A be the set of admissible deformations as before. For a given triple (t, y, z) ∈
[0, T ] ×A× Z , we define the total energy of the system by

E(t, θ, y, z) =
{
J (θ, y)− L(t, y), if z = λ(∇y) a.e. in �,
+∞, otherwise,

where L(t, ·) is a functional on deformations expressing time-dependent loading
of the specimen, and λ is defined in (6).

4.1 Energetic Solution

Suppose, that we look for the time evolution of t 
→ y(t) ∈ A and t 
→ z(t) ∈ Z :=
L∞(�,RM+1) during a process on a time interval [0, T ], where T > 0 is the time
horizon. We use the following notion of solution from [25], see also [40, 41].

Definition 2 (Energetic Solution) Let an energy E : [0, T ]×(0,+∞)×A×Z →
R∪ {+∞} and a dissipation distance D : Z ×Z → R∪ {+∞} be given. The set of
admissible configurations is defined as

Q := {(y, z) ∈ A× Z : λ(∇y) = z a.e. in �}.

We say that (y, z) : [0, T ] → Q is an energetic solution to (Q, E,D), if the mapping
t 
→ ∂tE(t, θ, y(t), z(t)) is in L1(0, T ) and if, for all t ∈ [0, T ], the stability
condition

E(t, θ, y(t), z(t)) ≤ E(t, θ, ỹ, z̃)+D(z(t), z̃) ∀(ỹ, z̃) ∈ Q (S)

and the energy balance

E(t, θ, y(t), z(t))+ DissD(z; [s, t]) = E(s, θ, y(s), z(s))

+
∫ t

s

∂tE(a, θ, y(θ), z(θ)) da
(E)

are satisfied for any 0 ≤ s < t ≤ T .

An important role is played by the set of so-called stable states, defined for each
t ∈ [0, T ] as

S(t) := {(y, z) ∈ Q : E(t, θ, y, z) < +∞ and E(t, θ, y, z) ≤ E(t, θ, ỹ, z̃)
+D(z, z̃) ∀(ỹ, z̃) ∈ Q} .
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4.2 Existence of an Energetic Solution

A standard way how to prove the existence of an energetic solution is to construct
time-discrete minimization problems and then to pass to the limit. Before we give
the existence proof we need some auxiliary results. For given N ∈ N and for
0 ≤ k ≤ N , we define the time increments tk := kT /N . Furthermore, we use
the abbreviation q := (y, z) ∈ Q. We assume that there exists an admissible
deformation y0 being compatible with the initial volume fraction z0, i.e., q0 :=
(y0, z0) ∈ S(0). For k = 1, . . . , N , we define a sequence of minimization problems

minimize Ik(θ, y, z) := E(tk, θ, y, z)+D(z, zk−1), (y, z) ∈ Q. (21)

We denote a minimizer of (21), for a given k, as qNk := (yk, zk) ∈ Q for 1 ≤ k ≤ N .
The following lemma shows that a minimizer always exists if the elastic energy is
not identically infinite on Q:

Lemma 1 Let � ⊂ R3 be a bounded Lipschitz domain, and let � = �0 ∪ �1
be an H2-measurable partition of � = ∂� with the area of �0 > 0. Let J , of
the from (8), be gradient polyconvex on � and such that the stored energy density
Ŵ satisfies (10). Moreover, let L ∈ C1[0, T ] ×W 1,p(Ω;R3) be such that, for some
C > 0 and 1 ≤ α < p,

L(t, y) ≤ C‖y‖α
W 1,p , for all t ∈ [0, T ]

and y 
→ −L(t, y) is weakly lower semicontinuous on W 1,p(�;R3) for all t ∈
[0, T ]. Finally, let p > 6, q ≥ p

p−1 , r > 1, s > 2p/(p − 6).
If there is (y, z) ∈ Q such that Ik(y, z) <∞ for Ik from (21), then the functional

Ik has a minimizer qNk = (yk, zk) ∈ Q such that yk is injective everywhere in �.
Moreover, qNk ∈ S(tk) for all 1 ≤ k ≤ N .

Proof Since the discretized problem (21) has a purely static character, we can
follow the proof of Proposition 1. Let {(ykj , zkj )}j∈N ⊂ Q be a minimizing sequence.
As

∇ykj −→ ∇yk strongly in Lp̃(�,R3×3) as j →∞

for every 1 ≤ p̃ < p and λ ∈ C(R3×3,RM+1) is bounded, we obtain that

zkj = λ(∇ykj ) −→ λ(∇yk) strongly in Lp̃(�,RM+1) as j →∞.

Since ‖zkj‖L1(�,RM+1) is uniformly bounded in j , there is a subsequence (not

explicitly relabeled) such that zkj
∗
⇀ μk in Radon measures on �. This shows that

zk := μk = λ(∇yk) and hence qNk = (yk, zk) ∈ Q. Since D(·, zk−1) is convex,
we obtain that qNk is indeed a minimizer of Ik . Moreover, yk is injective everywhere
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by the reasoning used for proving Corollary 1. The stability qNk ∈ S(tk) follows by
standard arguments; see, e.g., [25].

Denoting by B ([0, T ];A) the set of bounded maps t ∈ [0, T ] 
→ y(t) ∈ A,
we have the following result showing the existence of an energetic solution to the
problem (Q, E,D):
Theorem 1 Let θ > 0 be fixed. Let T > 0 and let the assumptions in Lemma 1 be
satisfied. Moreover, let the initial condition be stable, i.e., q0 := (y0, z0) ∈ S(0).
Then there is an energetic solution to (Q, E,D) satisfying q(0) = q0 and such that
y ∈ B ([0, T ];A), z ∈ BV

([0, T ];L1(�;RM+1)
) ∩ L∞(0, T ;Z), and such that

for all t ∈ [0, T ] the identity λ(∇y(t, ·)) = z(t, ·) holds a.e. in �. Moreover, for all
t ∈ [0, T ], the deformation y(t) is injective everywhere in �.

Proof Let qNk := (yk, zk) be the solution of (21), which exists by Lemma 1, and let
qN : [0, T ] → Q be given by

qN(t) :=
{
qNk , if t ∈ [tk, tk+1[ if k = 0, . . . , N − 1,

qNN , if t = T .

Following [25], we get, for some C > 0 and for all N ∈ N, the estimates

‖zN‖BV (0,T ;L1(�;RM+1)) ≤ C, ‖zN‖L∞(0,T ;BV (�;RM+1)) ≤ C, (22a)

‖yN‖L∞(0,T ;W 1,p(�;R3)) ≤ C, (22b)

as well as the following two-sided energy inequality

∫ tk

tk−1

∂tE(a, θ, qNk ) da ≤ E(tk, θ, qNk )+D(zk, zk−1)− E(tk−1, θ, q
N
k−1)

≤
∫ tk

tk−1

∂tE(a, θ, qNk−1) da. (23)

The second inequality in (23) follows since qNk is a minimizer of (21) and by
comparison of its energy with q := qNk−1. The lower estimate is implied by the
stability of qNk−1 ∈ S(tk−1), see Lemma 1, when compared with q̃ := qNk . By this
inequality, the a-priori estimates and a generalized Helly’s selection principle [41,
Cor. 2.8], we get that there is indeed an energetic solution obtained as a limit for
N →∞.

Let us comment more on the two main properties of the minimizer, namely that it
is orientation-preserving and injective everywhere in �. The condition det∇y > 0
a.e. in � follows from the fact that if tj → t , (y(j), z(j)) ∈ S(tj ) and (y(j), z(j)) ⇀
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(y, z) in W 1,p(�;R3)×BV (�;RM+1), then (y, z) ∈ S(t). Indeed, we have z(j) →
z in L1(�;RM+1) in our setting and hence for all (ỹ, z̃) ∈ Q, we get

E(t, θ, y, z) ≤ lim inf
j→∞ E(tj , θ, y(j), z(j)) ≤ lim inf

j→∞ (E(tj , θ, ỹ, z̃)+D(z(j), z̃))

= E(t, θ, ỹ, z̃)+D(z, z̃).

In particular, as E(tj , θ, ỹ, z̃) is finite for some (ỹ, z̃) ∈ Q, we get E(t, θ, y, z) <
+∞ and thus det∇y > 0 a.e. in � in view of (10).

To prove injectivity, we profit again from the fact that quasistatic evolution of
energetic solutions is very close to a purely static problem. In view of (22b), we
obtain, for each t ∈ [0, T ], all necessary convergences that were used in the proof
of Corollary 1 to pass to the limit in the conditions (18) and (19).

5 Computational Experiments

In this section, we demonstrate computational performance of the above model on
a numerical experiment. We will use a St.Venant-Kirchhoff -like form of the stored
energy of each particular phase variant, which allows for an explicit reference to
measured data and can easily be applied to various materials. We consider that
the material can occur in M + 1 stress-free configurations that are determined by
distortion matrices Fi , i = 0, . . . ,M , which are independent of θ , i.e., thermal
expansion is neglected. The austenite well is defined by F0 = I.

The frame-indifferent free energy of particular phase (variant) is considered as
a function of Green strain tensor ε� related to the distortion of this phase(variant).
In the simplest case (cf. [47, Sect. 6.6], or [35], e.g.), one can consider a function
quadratic in terms of ε� of the form (if detF > 0)

W�(F, θ) =
d∑

i,j,k,l=1

ε�ijC�ijklε�kl + d�(θ)+ α((detF)−2 + |∇[CofF ]|2),

ε� = (F�� )−1F�FF−1
� − I

2
, (24)

where C� = {C�ijkl} is the fourth-order tensor of elastic moduli satisfying the usual
symmetry relations depending also on symmetry of the specific phase(variant) � and
d� is some offset. The overall stored energy is assembled as in (5).

The data required for the potential are available for many alloys, except perhaps
the measurements of the elastic tensor C�, which are standardly done (with few
exceptions) only for the austenite so that elastic response of the martensitic variants
has to be extrapolated. The heat capacities c� are usually obtained experimentally,
while the offsets d� are then to be fitted to get the agreement with energetical
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equilibrium between martensite and austenite at a specific temperature. Typically,
heat capacity of austenite is larger than that of martensite, which is just what causes
the shape memory effect.

We performed our computation on a prismatic single crystal of Ni2MnGa in a
specific orientation, mostly (1,0,0). This alloy (or, more precisely, intermetallic)
undergoes a cubic/tetragonal transformation, which is relatively easy to model
because the martensite forms only 3 variants, i.e., M = 3.

Following [12] we describe the variants of martensite by F1 = diag(η2, η1, η1),
F2 = diag(η1, η2, η1) and F3 = diag(η1, η1, η2) where η1 = 0.9512 and η2 =
1.130. The stretch tensor of the austenite is the identity, i.e., F0 = diag(1, 1, 1).
The Euclidean distance between any two variants of the martensite is about 0.253
while the distance between the austenite and any variant of the martensite is 0.147.
The distances here are calculated as the Frobenius norms of the corresponding right
Cauchy-Green strains. Hence, we can define Ni (Ci) = {C ∈ R3×3 : |C−Ci | < εi}
for some εi > 0. Then

dist(C,Ni (Ci)) =
{

0 if |C − Ci | < εi,

|C − Ci | − εi otherwise.

We can take εi = 0.07 for every 0 ≤ i ≤ 3. This formula is then used in (6). As the
elastic moduli are much bigger than the transformation strains, the volume fraction
λ will have one dominant component because ∇y must be pointwise in a small
vicinity of some energy well. Using [5] we can see that the martensitic variants are
rank-one connected with each other while none of them is rank-one connected with
the austenite. Rank-one connection allows for the formation of a planar interface
between two martensitic variants.

We prescribe the dissipation energy density as 0.35 MPa for transformations
between the austenite and any martensitic variant [1] and almost no dissipation is
assumed for transformations among martensitic variants. This can be done by setting
|z|4 := ∑3

i=0 γi |zi | in (20) and taking γ0 = 35 × 104 Pa and γi = 1 Pa if i �= 0.
The equilibrium temperature θ0 of the austenite and the martensite is about 288 K.
The Clausius-Clapeyron constant describing the rate of the increase of the bottoms
of the martensitic wells with respect to the austenite is about 0.2 MPa/K. Therefore,
we can take d�(θ) = 0.2 MPa (θ − 288 K) for � > 0 and d0(θ) = 0.

Elastic moduli of the austenite are taken zero but C0
1111 = 136 GPa, C0

1122 =
C0

2211 = 92 GPa, C0
2323 = C0

2332 = C0
3223 = C0

3232 = 102 GPa.
We consider a simple problem of uniaxial tension of a three-dimensional bar, i.e.,

the horizontal displacements are fixed at the left end and all the nodes at the right end
are loaded by increasing horizontal displacements, while the vertical displacements
at the both ends are prescribed such as the rigid body modes are removed but the bar
is free to deform laterally. In the case the bar is considered as perfectly uniform, the
onset of phase transition from austenite to martensite is reached for all the points at
the same time. This situation can be studied analytically, assuming zero dissipation
for simplicity. First, we know that the only nonzero component of the second Piola-
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Kirchhoff stress tensor S� is S�33 calculated as

S�33 = C33ε
�
33 + C23ε

�
22 + C13ε

�
11. (25)

The condition of zero stress components S�11 and S�22 can be written as

S�11 = C11ε
�
11 + C12ε

�
22 + C13ε

�
33 = 0 (26)

S�22 = C12ε
�
11 + C22ε

�
22 + C23ε

�
33 = 0, (27)

whereCij are components of the stiffness tensor in Voigt notation, i.e.,C12 = C21 =
C2211 = C1122, C22 = C2222, C23 = C23 = C2233 = C3322, etc. Solution of the
above system of two equations is given as

ε�11 = ε�22 (28)

ε�22 = −
C23

C22 + C12
ε�33. (29)

Substituting back to (25) we arrive at

S�33 =
(
C33 − 2

C2
23

C22 + C23

)

︸ ︷︷ ︸
K

ε�33. (30)

The transformation from austenite to the first variant of martensite happens when
the energy of both phases is the same

W0(F ) = W3(F ) (31)

which can be written in terms of strain as

K(ε0
33)

2 = K(ε3
33)

2, (32)

where the strains are calculated as

ε0
33 =

1

2

(
F 2

33 − 1
)

(33)

ε3
33 =

1

2

(
F 2

33

η2
2

− 1

)
. (34)
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Therefore, the critical stretch Fc of the bar at the onset of transformation from
austenite to martensite can be determined as

Fc =
√

2η2
2

η2
2 + 1

(35)

for the given value of η2 = 1.13, the stretch is Fc = 1.059, and the strains are

ε0
33 =

1

2

(
F 2
c − 1

)
= 0.0608 (36)

ε3
33 =

1

2

(
F 2
c

η2
2

− 1

)
= −0.0608. (37)

The solution is represented graphically in Fig. 1.
Moreover, also remaining nonzero components of the strain tensor before and

after transformation can be calculated as

ε0
22 = −

C23

C33 + C23
ε0

33 = −0.608
92

136+ 92
= −0.0245 (38)

ε3
22 = −

C23

C33 + C23
ε1

11 = 0.608
92

136+ 92
= 0.0245 (39)

1 1.059 1.13 1.2
0

2

4

6

F33

W
�

[G
P

a
]

Austenite � = 0
Martensite � = 3

Fig. 1 Uniaxial tension: free energy of particular phase(variant)s, namely W0 and W3 in terms of
F33
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and the stretches in the lateral direction before and after deformation are therefore
given as

F 0
22 =

√
2ε0

22 + 1 = 0.9752 (40)

F 3
22 =

√
2ε3

22 + 1 = 1.0242. (41)

Let us now calculate also the stress at the point of transition from austenite to
martensite. The first Piola-Kirchhoff stresses right before and after the transforma-
tion, i.e., P 0

33 and P 1
33 are calculated as

P 0
33 = FcS

0
33 = Fc

(
C33 − 2

C2
23

C22 + C23

)
ε0

33 (42)

= 1.059

(
136− 2

92

136+ 92

)
0.0608 = 8.705 GPa. (43)

P 3
33 = FcS

3
33 = Fc

(
C33 − 2

C2
23

C22 + C23

)
ε1

33 (44)

= 1.059

(
136− 2

92

136+ 92

)
(−0.0608) = −8.705 GPa. (45)

Interestingly, jump from tension to compression occurs during the transformation,
see Fig. 2 for the dependence of the first Piola-Kirchhoff stress on the stretch.

1 1.059 1.13 1.2
−10

−5

0

5

10

F33

P
33

[G
P
a]

Fig. 2 Uniaxial tension: first Piola-Kirchoff stress—stretch graph
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However, in reality, the material is never homogeneous and uniform but shows
certain variation in material properties. Such a variation can trigger the transfor-
mation from austenite to martensite only in a small part of the bar. Nonetheless,
such a uniaxial state would violate the equilibrium condition as well as the
compatibility condition since the distortion matrices F0 and F3 are not rank-1
connected. Therefore, the bar must deform in a more complex way that is in general
not possible to study analytically. Therefore, we simulate this case by the finite
element method.

The proposed material model enhanced by gradient polyconvexity has been
implemented into a finite element code OOFEM [45]. The implementation of
gradient polyconvexity was based on the so-called micromorphic approach, see [31]
for more details. Thus, in the present example we perform a uniaxial tension test of
a bar with η2 considered as a random variable with a Gaussian distribution, specified
by mean μ = 1.13 and standard deviation parameter σ = 0.01. As expected,
the martensite transformation starts in several separated parts of the bar leading
to violation of uniaxial stress state resulting into bending of the bar. Moreover, since
the variants � = 0 and � = 3 are not rank-1 connected, an interface consisting of the
other two variants of martensite is created. The transformation process is depicted
in Fig. 3 where gradual change from the initial austenite state to the final state of
martensite variant � = 3 is shown.

Fig. 3 Uniaxial tension test: evolution of a austenite-martensite transformation form (a) to (f).
Blue color represents the austenite variant, while the remaining colors represent different variants
of martensite according to the color bar
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Note that the solution was obtained by the Newton-Raphson procedure which
generally leads to a critical point rather than the global minima. Since the present
problem involves several local minima, a more robust technique will be further
implemented into OOFEM to allow development of austenite-martensite laminates
without perturbing material parameters.
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15. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech.

Anal. 97, 171–188 (1987)
16. Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on

the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)
17. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)
18. Davoli, E., Friedrich, M.: Two-well rigidity and multidimensional sharp-interface limits for

solid–solid phase transitions. Calc. Var. PDE 59, 44 (2020)
19. Davoli, E., Friedrich, M.: Two-well linearization for solid-solid phase transitions. Preprint,

arXiv:2005.03892 (2020)



Gradient Polyconvexity and Modeling of Shape Memory Alloys 155

20. Dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics.
J. Elast. 118, 113–125 (2014)

21. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient
materials. Proc. R. Soc. Lond. A 465, 2177–2196 (2009)

22. Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch Ration. Mech.
Anal. 88, 95–133 (1985)

23. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: Lp Spaces. Springer,
New York (2007)

24. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng.
Mech. 135, 117 (2009)

25. Francfort, G., Mielke, A.: Existence results for a class of rate-independent material models
with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

26. Friedrich, M., Kružík, M.: On the passage from nonlinear to linearized viscoelasticity. SIAM
J. Math. Anal. 50, 4426–4456 (2018)

27. Friedrich, M., Kružík, M.: Derivation of von Kármán plate theory in the framework of three-
dimensional viscoelasticity. Arch. Ration. Mech. Anal. 238, 489–540 (2020)
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Placement of an Obstacle for Optimizing
the Fundamental Eigenvalue of
Divergence Form Elliptic Operators

Anisa M. H. Chorwadwala and Souvik Roy

AMS Subject Classifications 35J05, 35J10, 35P15, 49R05, 58J50

1 Introduction

Shape optimization problems deal with finding optimal shapes of certain objects or
structures that optimize some objective cost functional with associated constraints.
Such problems find applications in various fields like aerodynamics, medical
imaging, engineering, and structural design [6, 22, 26, 35]. For example, in the
designing of musical instruments like guitars, one needs to consider the optimal
shape and placement of the hole in relation to the entire instrument to obtain
the optimal frequency, thus enabling better sound output [22]. Another shape
optimization problem arises in the field of medical imaging, where one needs to
determine the shape of inhomogenities inside the object of interest so as to minimize
the Mumford–Shah functional containing the Radon data [26]. The placement of
foreign inclusions inside a disk filled with liquid crystals (LCs) is also a shape
optimization problem, where inclusions of different shapes and symmetries inside a
LC-filled disk could be modeled as obstacles (see [7, 28], and [8]).

A commonly considered shape optimization problem is the optimization of the
Dirichlet eigenvalues of the Laplace operator with a volume constraint. The origin
of such problems dates back to 1800s when Rayleigh conjectured the famous
isoperimetric inequality [31], which was proved by Faber [17] in 1923 and by
Krahn [27] in 1925, independently. Since then, there have been numerous notable
researches on the eigenvalue optimization problems involving various constraints.
For a review of such results, we refer the readers to [4, 5, 23, 29]. In addition,
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an introduction to the problems called “shape optimization problems” and the
motivation to study general shape optimization problems can be found in [11]. For
another mini review of various kinds of mathematical shape optimization problems,
one may also refer to [10].

The shape optimization problem involving the placement of an obstacle inside
a given planar domain was first studied by Hersch [24]. In this chapter, the
optimal configuration for the fundamental Dirichlet eigenvalue for the Laplacian
was characterized for the case, where a circular obstacle is placed inside a disk
(please see also [30]). The result of [24] and [30] was subsequently extended to
higher dimensional Euclidean spaces by the authors in [21, 25]. In [21], the case
of multiple circular obstacles of possibly different sizes was also considered. In all
these results, except in the more general family of domains in [24], the obstacles
were balls in a Euclidean space, and thus only translation of the obstacle/s affected
the eigenvalues. Therefore, these obstacle placement problems reduce to positioning
of the center/s of the obstacle/s inside the outer disk. These results were further
extended from the Euclidean case to all the three space forms in [12] and later
to all rank one symmetric spaces of non-compact type in [15]. These results were
extended to the case of the p-Laplacian in [13]. The mini review article [10] gives a
brief explanation of the difficulties faced in proving these generalizations and about
how the respective authors overcame these difficulties.

The case of obstacles that are not circular was first considered by the authors
in [16]. In this work, it was assumed that the obstacle and the planar domain
possessed a dihedral symmetry, with concentric centers. For such pairs of obstacles
and enclosing domains, they considered a family of punctured domains, where the
obstacle is removed from the enclosing domain. Among this family of punctured
domains, the extremal configurations for the fundamental Dirichlet eigenvalue of
the Laplacian were obtained by rotating the obstacle about its fixed center. The
authors characterize both the minimizing and the maximizing configurations for
the eigenvalue under consideration. The results in [16] motivated the work by
the authors of this chapter in [14], where the planar domain is a disk punctured
by the obstacle with dihedral symmetry, but the centers of the obstacles and the
disk are non-concentric. The extremal configurations of the punctured disk with
respect to rotation of the obstacle about its center were characterized for the
fundamental Dirichlet eigenvalue of the Laplacian. Furthermore, the global extremal
configurations of the punctured disks with respect to the combined rotations of the
obstacle about its center and translations within the disk were also obtained. The
proofs of the results rely mainly on the Hadamard perturbation formula and the
reflection technique as in [34].

In this chapter, we present a generalization of the results obtained in [14]. We start
with a generic second-order elliptic operator in the divergence form and consider the
associated Dirichlet eigenvalue problem. Such divergence form elliptic operators
frequently arise in hybrid imaging, fluid mechanics, and engineering [1, 18, 19, 32,
33]. The coefficients of the elliptic operator are a function of the spatial domain
that is chosen such that the operator is invariant under rotations and translations
in the plane. Our shape optimization problem is to place an obstacle with dihedral
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symmetry to optimize the fundamental eigenvalue. We use the techniques similar to
the ones in [14] to obtain the extremal configurations with respect to rotations of the
obstacle with even order dihedral symmetry and the global extremal configurations
with respect to the rotations and translations of the obstacle in the disk. The crucial
point in the theoretical derivation of the results is the generic Hadamard perturbation
formula, which is different from the one used in [14]. We also provide results of
several numerical simulations using the finite element method and with different
obstacle shapes and coefficient functions. A generalization to domains with non-
smooth boundaries can be made based on the work in [3] and [2].

The chapter is organized as follows: in the next section, we describe our generic
eigenvalue shape optimization problem. Section 3 deals with the proof of a mono-
tonicity property on the boundary of an arbitrary disk using its representation in
polar coordinates with respect to a point different from its center. In addition, some
elementary results regarding the geometries of the obstacle and the disk are proved.
In Sect. 4, we state our main result that describes the extremal configurations for the
fundamental eigenvalue. In Sect. 5, we give a proof of the extremal configurations
for obstacles with even order dihedral symmetry. We further provide a partial result
for obstacles with odd order symmetry. In Sect. 6, we provide a proof for the global
extremal configurations. Section 7 presents some numerical results that validate the
obtained extremal configurations. We end with a section of conclusions.

2 The Eigenvalue Optimization Problem

We now describe the elliptic eigenvalue optimization problem. For this purpose,
we consider a family of domains �t ⊂ R

2 with t ∈ R. Let the fundamental
elliptic eigenvalue corresponding to the domain �t be denoted as λ1(t). Then, the
corresponding optimization problem can be formulated as follows:

min /max
t∈R

λ1(t)

subject to −Lu ≡ −∇ · (a(x)∇u) = λ1(t)u, u > 0, in �t

u(t) = 0, on ∂�t∫
�t

u2(x) dx = 1.

(1)

The coefficient a(x) is chosen such that the following conditions are satisfied:

1. The operator L is invariant under rotations and translations in the plane. For
example, one can choose a(x) as constants, which gives L as a scalar multiple of
the Laplacian. Another choice of a(x) is f (x2

1 + x2
2), which is a radial function.
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2. The operator L is uniformly elliptic, i.e., 〈aξ, ξ 〉 ≥ C‖ξ‖2 for all ξ ∈ R
2 with

C > 0, where 〈, ·, 〉 represents the standard Euclidean inner product and ‖ · ‖
represents the standard norm in R

2.

We remark that for the case a(x) = 1, the operator L reduces to the standard
Laplacian, and the corresponding analysis of (1) done below is already provided
in [14].

In the next sections, we describe a family of admissible domains for the elliptic
eigenvalue optimization problem. We then introduce some definitions to identify
the different important configurations in this family. For the rest of the chapter,
n ∈ N, n ≥ 3.

2.1 The Family of Admissible Domains

Let n be a positive integer, n ≥ 3. Consider the dihedral group Dn generated by a
rotation r of order n and a reflection s of order 2 such that srs = r−1. Here, r is a
rotation by an angle 2π/n. Fix A > 0. Let the obstacle P denote a compact simply
connected subset of the Euclidean plane E

2 satisfying the following assumptions:

Assumption 2.1

(a) The boundary ∂P of P is a simple closed C2 curve in R
2.

(b) The obstacle P possesses a Dn symmetry for some n ≥ 3, n even, i.e., P is
invariant under the action of a dihedral group Dn for some n ≥ 3,

(c) The area of P is A.

As a result of the above conditions, the axes of symmetry of P intersect in a
unique point in the interior of P . We call this point the center o of P . Without loss
of generality, we assume that o is the origin (0, 0) of R2. The axes of symmetry of
P divide R

2 into 2n components. We call each of these 2n components as sectors
and denote them by Si , 1 ≤ i ≤ 2n. We further make the following assumption on
the monotonicity of the boundary ∂P (Fig. 1):

Assumption 2.2

(d) The monotonicity of the boundary ∂P , that is, the distance d(o, x) between the
center o of P and the point x on the boundary ∂P of P , is monotonic as a
function of the argument φ in a sector delimited by two consecutive axes of
symmetry of P .

Assumptions 2.1 and 2.2 imply that P is a star-shaped domain with respect to its
center o.

Definition 2.1 (Incircle and Circumcircle) Let P be a compact simply connected
subset of R2 satisfying Assumptions 2.1 and 2.2 and centered at o. By an incircle
of P we mean the largest circle in R

2 centered at o that fits completely in P and
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o = (0, 0)

P

x1-axis

x2-axis

x0 = (−x0, 0)

B

(a)

o = (0, 0)

P
x1-axis

x2-axis

x0 = (−x0, 0)

B

(b)

Fig. 1 Obstacles P with Dn symmetry. (a) D4 symmetry. (b) D5 symmetry

that is tangent to ∂P in each of its 2n sectors. By a circumcircle of P we mean the
smallest circle in R

2 centered at o that contains P and that is tangent to ∂P in each
of its 2n sectors. Let C1(P ) (respectively, C2(P )) denote the incircle (respectively,
the circumcircle) of P . When the set P is fixed, we will simply refer to the incircle
as C1 and the circumcircle as C2. Please note here that C1(ρ(P )) = C1(P ) and
C2(ρ(P )) = C2(P ) for each ρ ∈ Dn.

Let conv(A) denote the convex hull of a subset A in R
2, and let cl(conv(A))

denote its closure. Clearly, for a compact simply connected subset P of
the Euclidean plane E

2 satisfying Assumptions 2.1 and 2.2, we have P ⊂
cl(conv(C2(P ))), and hence ρ(P ) ⊂ cl(conv(C2(P ))) for each ρ ∈ Dn. We
take an open disk B in R

2 with radius r1 > 0 such that B ⊃ cl(conv(C2(P )))

(Fig. 2).

2.2 The OFF and the ON Positions

Let C1 and C2 denote the incircle and the circumcircle, respectively, of an obstacle
P satisfying Assumptions 2.1 and 2.2. We now define the inner vertex set Vin and
the outer vertex set Vout of P as follows: Vin := ∂P ∩C1 and Vout := ∂P ∩C2. By a
vertex set V we simply mean Vin∪Vout . Elements of Vin (respectively, Vout ) will be
called inner vertices (respectively, outer vertices) of P . Elements of V will simply
be referred to as vertices of P . A radial segment of the incircle C1 of P containing
an inner vertex will be referred to as an inradius of P , and likewise, a radial segment
of the circumcircle C2 of P containing an outer vertex of P will be referred to as a
circumradius of P .
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C1

C2

P

inner vertex

outer vertex

(a)

C1

C2

P

inner vertex

outer vertex

(b)

C1

C2

P

inner vertex

outer vertex

(c)

C1

C2

P

inner vertex

outer vertex

(d)

Fig. 2 Vertices of P . (a) P: square. (b) P: star. (c) P: triangle. (d) P: pentagon

(a) OFF (b) ON (c) OFF (d) ON

Fig. 3 OFF and ON configurations for obstacles having Dn symmetry. (a) OFF. (b) ON. (c) OFF.
(d) ON

As a result of the fundamental eigenvalue λ1 being invariant under isometries of
R
n, without loss of generality, we now make the following set of assumptions:

(a) The centers of B and P are on the x1-axis.
(b) The center of P is at the origin.
(c) The center of B is on the negative x1-axis.

We say that P is in an OFF position with respect to B if an inner vertex of P is
on the negative x1-axis and that P is in an ON position if an outer vertex of P is on
the negative x1-axis (Fig. 3).

We note that, for a given �t , there are either two or no vertices of P lying on
the axis of symmetry, the x1-axis. When n is even, both the vertices are of the same
type: either inner vertices or outer vertices. When n is odd, one of the two vertices
is an inner vertex and the other is an outer vertex. So, alternate characterizations of
the ON and the OFF positions are as follows:
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(a) For n even, P is in an OFF position if two inner vertices lie on the x1-axis and
is in an ON position if two outer vertices lie on the x1-axis,

(b) For n odd, P is in an OFF position if an outer vertex of P is on the positive x1-
axis and is in an ON position if an inner vertex of P is on the positive x1-axis

3 Auxiliary Results

3.1 Boundary Monotonicity Property

In Lemma 3.1, we prove a monotonicity property on the boundary of an arbitrary
disk B using the representation of B in polar coordinates with respect to a point
other than its center.

Lemma 3.1 Let B((−x0, 0), r1) be a disk in R
2 with center at (−x0, 0) and radius

r1 > 0 such that 0 < x0 < r1. Let {reiφ : φ ∈ [0, 2π [, 0 ≤ r < g(φ)} be a
representation B in polar coordinates, where g : [0, 2π ] → [0,∞[ is a C2 map
with g(0) = g(2π). Here, the polar coordinates (r, φ) are measured with respect to
the origin (0, 0) and the positive x1-axis of R2. Then, the distance δ(φ) of a point
g(φ) eiφ on ∂B from (0, 0) is a strictly increasing function of φ in [0, π ] and is a
strictly decreasing function of φ in [π, 2π ].

Proof Let ∂B+ be defined as {g(φ) eiφ ∈ ∂B |φ ∈ [0, π ]} ⊂ ∂B. Similarly, we
define ∂B− as the set {g(φ) eiφ ∈ ∂B : φ ∈ [π, 2π [}. We will prove that δ(φ) is a
strictly increasing function of φ in [0, π ]. The proof for φ ∈ [π, 2π ] is similar.

Let (x1, x2) denote the Cartesian coordinates of a point g(φ) eiφ ∈ ∂B+ as shown
in Fig. 4. Then, x2 ≥ 0 and (x1 + x0)2 + x2

2 = r2
1 . We will first show that the

Euclidean norm of the point (x1, x2) ∈ ∂B+ is a monotonic function of x1 for all
(x1, x2) ∈ ∂B+. Here, x1 ∈ [−x0 − r1,−x0 + r1]. We thus consider ‖(x1, x2)‖ =
d((x1, x2), (0, 0)) subject to (x1+x0)2+x2

2 = r2
1 . Now, ‖(x1, x2)‖ = (x2

1+x2
2)

1
2 =

(x2
1 + r2

1 − (x1 + x0)2)
1
2 = (r2

1 − 2 x1 x
0 − (x0)2)

1
2 =: h(x1) > 0. Therefore,

L = (−x0 − r1, 0) M = (−x0 + r1, 0)o = (0,0)
P

x1-axis

x2-axis

x0 = (−x0, 0)

s = (x1, x2)

δ(φ)

∂B
+

∂B−

B

φφ
L = (−x0 − r1, 0) M = (−x0 + r1, 0)o = (0, 0)

P
x1-axis

x2-axis

x0 = (−x0, 0)

s = (x1, x2)

δ(φ)

∂B+

∂B−

B

φφ

Fig. 4 The distance function δ for the boundary points
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h′(x1) = −x0

h(x1)
< 0 for (x1, x2) ∈ ∂B+. Hence, h is a strictly decreasing function

of x1 for (x1, x2) ∈ ∂B+. We also note that h(x1) = ‖(x1, x2)‖ = |g(φ)| = δ(φ)

for (x1, x2) = g(φ)eiφ ∈ ∂B+, φ ∈ [0, π ].
Next, we show that x1 = x1(φ) is a monotonic decreasing function of φ. We

have x1 = ‖(x1, x2)‖ cosφ = h(x1) cosφ. Hence, cos(φ) = x1
h(x1)

. Consider φ :
] − x0 − r1,−x0 + r1[→]0, π [. Then,

dφ

dx1
= −h(x1)

2 + x0 x1

h(x1)3

1

sinφ
= −h(x1)

2 + x0 x1

x2 h(x1)2
= − r

2
1 − x0 x1 − (x0)2

x2 h(x1)2

= − r
2
1 − x0 (x1 + x0)

x2 h(x1)2
.

Since |x1 + x0| < r1 and 0 < x0 < r1, we get −r2
1 < x0(x0 + x1) < r2

1 . This

implies that
dφ

dx1
< 0 on ] − x0 − r1,−x0 + r1[. Thus, φ as a function of x1 is

strictly decreasing and hence injective on ] − x0 − r1,−x0 + r1[.
Finally, we show that φ :]−x0−r1,−x0+r1[→]0, π [ is surjective. Let θ ∈]0, π [.

Define

x1 = g(θ) cos θ ∈] − x0 − r1,−x0 + r1[.

Hence, φ :] − x0 − r1,−x0 + r1[→]0, π [ is a bijective and strictly decreasing
function of x1. Since the distance function δ(φ) is decreasing with respect to x1, it
is increasing with respect to φ. This proves the lemma. ��

3.2 Properties of a Planar Simply Connected Bounded
Domain K

In this section, we derive some properties associated with a planar simply con-
nected bounded domain K . In polar coordinates, the planar simply connected
bounded domain K can be given by K = {reiφ : φ ∈ [0, 2π [, 0 ≤ r < h(φ)} ⊂
R

2, where h is a positive, bounded, and 2π -periodic function of class C2. Let
v ∈ C∞0 (R2) be a smooth vector field whose restriction to ∂K is given by
v(x1, x2) = (−x2, x1) ∀(x1, x2) ∈ ∂K. This implies v (h(φ) (cosφ, sinφ)) =
h(φ) (− sinφ, cosφ) ∀φ ∈ [0, 2π [. Treating R

2 as the complex plane C, one
can write v as v(ζ ) = iζ ∀ζ = h(φ)eiφ ∈ ∂K, which is equivalent to v(φ) :=
v
(
h(φ)eiφ

) = ih(φ) eiφ ∀φ ∈ R.

Denote by η the unit outward normal vector field to K on ∂K . For α ∈ [0, 2π ],
let zα := {reiα : r ∈ R} denote the line in R

2 corresponding to angle φ = α
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represented in polar coordinates. Clearly, zα = zα+π for each α ∈ [0, 2π ], where
the addition is taken modulo 2π .

We now prove the following auxiliary lemma.

Lemma 3.2 Let K,h, v, η, and zα be as defined above. Then, at any point h(φ)eiφ

of ∂K , we have the following:

(i) η(φ) := η(h(φ)eiφ) = h(φ)eiφ − ih′(φ)eiφ√
h2(φ)+ (h′(φ))2

∀φ ∈ R.

(ii) 〈η, v〉 (φ) := 〈η, v〉 (h(φ)eiφ) = −h(φ)h′(φ)√
h2(φ)+ (h′(φ))2

∀φ ∈ R. Hence, 〈η, v〉
has a constant sign on an interval I ⊂ R iff h is monotonic in I .

(iii) If for some α ∈ [0, 2π [, the domain K is symmetric with respect to the axis zα ,
then, for each θ ∈ [0, π ], 〈η, v〉 (α + θ) = −〈η, v〉 (α − θ).

Proof

(i) Let γ : [0, 2π [→ R
2 be defined as γ (φ) = h(φ)eiφ . That is, γ is a

parametrization of the boundary curve ∂K . Then, the tangent vector field to
the boundary ∂K is given by γ ′(φ) = (h′(φ)+ ih(φ)

)
eiφ. Thus, the outward

unit normal η(φ) to K at a point γ (φ) ∈ ∂K is given by

(
h(φ)− ih′(φ)

)
eiφ

√
h2(φ)+ (h′(φ))2

.

(ii) Therefore, 〈η, v〉 (φ) = h2(φ)
〈
eiφ, ieiφ

〉− h(φ)h′(φ)|ieiφ |2√
h2(φ)+ (h′(φ))2

= − h(φ)h′(φ)√
h2(φ)+ (h′(φ))2

.

(iii) Since K is symmetric with respect to the axis zα , the function h satisfies h(α+
θ) = h(α − θ) for each θ ∈ [0, π ]. Moreover, h′(α − θ) = −h′(α + θ) for
each θ ∈ [0, π ]. Using (ii), we then have 〈η, v〉 (α + θ) = −〈η, v〉 (α − θ).

��
Remark 3.1 We note here that since h is a 2π -periodic function on R, so are the
functions v, η, and 〈v, η〉.

4 The Main Results: Extremal Configurations

We recall here that the obstacle P is a compact and simply connected subset of R2

satisfying Assumptions 2.1 and 2.2 and that B is an open disk in R
2 of radius r1

such that B ⊃ cl(conv(C2(P ))). For t ∈ R, let ρt ∈ SO(2) denote the rotation
in R

2 about the origin o in the anticlockwise direction by an angle t , i.e., for ζ ∈
C ∼= R

2, we have ρtζ := eit ζ . Now, fix t ∈ [0, 2π [. Let �t := B \ ρt (P ) and
F := {�t : t ∈ [0, 2π)}. We now state the following theorem for n even, n ≥ 3,
about the extremal configurations with respect to rotations of the obstacle P .

Theorem 4.1 (Extremal Configurations) The fundamental Dirichlet eigenvalue
λ1(�t ) for �t ∈ F is optimal precisely for those t ∈ [0, 2π [ for which an axis of
symmetry of Pt coincides with a diameter ofB. Among these optimal configurations,



166 A. M. H. Chorwadwala and S. Roy

the maximizing configurations are the ones corresponding to those t ∈ [0, 2π [ for
which Pt is in an ON position with respect to B, and the minimizing configurations
are the ones corresponding to those t ∈ [0, 2π [ for which Pt is in an OFF position
with respect to B.

We next state the result pertaining to the global extremal configurations with
respect to rotations and translations of the obstacle P . For this purpose, let r1

0 and
r2

0 denote the radii of the incircle C1 and the circumcircle C2 of the obstacle P ,
respectively. Let P(d,t) be the obstacle Pt as in Theorem 4.1 with its center o at a
distance d < r1 − r2

0 from the center of B. Please note that in Theorem 4.1, d is
fixed and is always > 0. This is because, for the case d = 0, t 
−→ λ1(�t ) is a
constant map. Since we want to study the behavior of λ1 w.r.t. the translations of the
obstacle too, we now allow d to be 0. Let �(d,t) := B \ P(d,t) for d ∈ [0, r1 − r2

o ),
t ∈ [0, 2π [. Let λ1((d, t)) := λ1(�(d,t)). Let G be defined as {�(d,t) : (d, t) ∈
[0, r1 − r2

0 [×[0, 2π [}. We then have the following theorem.

Theorem 4.2 (Global Extremal Configurations, I.e., Extremal Configurations
w.r.t. the Translations and Rotations of the Obstacle Within B) Fix n ≥ 3,
even or odd. The concentric configuration, i.e., �(0,t), for any t ∈ [0, 2π [, is the
maximizing configuration for λ1((d, t)) over G. At a minimizing configuration for
λ1(d, t) over G, the circumcircle of the obstacle must touch ∂B.

For n even, n ≥ 3, we further have that, at the minimizing configuration over G,
the obstacle must be in an OFF position w.r.t. B.

The concentric configurations are the global maximizing configurations w.r.t. all
the translations and all rotations of the obstacle within B, for n ≥ 3, n even or odd.
The OFF configurations with an outer vertex touching ∂B, i.e., �(r1−r1

0 ,2k
π
n
), k ∈ Z,

are the global minimizing configurations w.r.t. all the translations and rotations of
the obstacle within B, for n ≥ 3, n even.

5 Proofs of Theorem 4.1

In this section, we prove our first main result, viz., Theorem 4.1 for n ≥ 3, n even.
We first show that, for any n ≥ 3, even or odd, the fundamental eigenvalue λ1 of the
operator L for the family of domains under consideration is a function of just one
real variable, which is an even, differentiable, and periodic function of period 2π/n.
The result is shown through equation (6) in Sect. 5.1.4. This helps in identifying the
critical points of λ1. Therefore, in order to determine the extremal configuration/s
for λ1, we study its behavior on the interval [0, π

n
]. The Hadamard perturbation

formula (4) becomes useful in this analysis.
We then prove the result about a sufficient condition for the existence of λ1 in

Proposition 5.1 for n ≥ 3, even or odd. Next, in Proposition 5.2, for n even, n ≥ 3,
we state and prove the necessary conditions for the existence of λ1. In view of
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Eq. (6), Propositions 5.1 and 5.2 imply that, for n even, n ≥ 3, (a) these are the only
critical points for λ1 and that (b) between every pair of consecutive critical points, λ1
is a strictly monotonic function of the argument. Finally, the proof of Theorem 4.1
is a direct consequence of Propositions 5.1 and 5.2 and Eq. (6).

5.1 Sufficient Condition for the Critical Points of λ1(B \ Pt),

t ∈ [0, 2π[

Fix n ≥ 3, even or odd. Let λ1(t) denote the fundamental Dirichlet eigenvalue of
the Laplacian on �t i.e., λ1(t) := λ1(�t ). In this section, we establish a sufficient
condition for the critical points of the C1 function λ1 : R→]0,∞[.

In polar coordinates, the open disk B can be represented as the set
{reiφ : φ ∈ [0, 2π [, 0 ≤ r < g(φ)}, where g : [0, 2π ] → [0,∞[ is a C2 map
with g(0) = g(2π). Here, (r, φ) is measured with respect to the origin o = (0, 0)
of R2. The boundary ∂B of B, then, is given by g(φ) eiφ , 0 ≤ φ < 2π . Let δ(φ)
denote the Euclidean norm of g(φ) eiφ , that is, δ(φ) is the distance of a point
g(φ) eiφ on ∂B from the center o of the obstacle P . Then, by Lemma 3.1, δ is a
strictly increasing function of φ on [0, π ].

5.1.1 The Initial Configuration

We start with the following initial configuration �init of a domain � ∈ F . Let P
and B be as described in Sect. 4. Let �init denote the domain B \ P ∈ F , where
P is in an OFF position with respect to B. Recall that we assumed, without loss of
generality, that (a) the centers of B and P are on the x1-axis, (b) the center of P is at
the origin, and (c) the center of B is on the negative x1-axis. Let x0 := (−x0, 0) be
the center of the disk B, where 0 < x0 < r1. The initial configurations for obstacles
with Dn symmetry are shown in Fig. 5.

We parametrize P in polar coordinates as follows:

P = {reiφ : φ ∈ [0, 2π [, 0 ≤ r < f (φ)}, (2)

Fig. 5 The initial configurations
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where f : [0, 2π ] → [0,∞) is a C2 map with f (0) = f (2π). Because of the initial
configuration assumptions on B \ P , f is an increasing function of φ on ]0, π

n
[ for

n even and is a decreasing function of φ on ]0, π
n
[ for n odd. The condition that the

obstacle P can rotate freely about its center o inside B, that is, ρ(P ) is contained in
B ∀ρ ∈ SO(2), is guaranteed by assuming that the closure of the convex hull of the
circumcircle C2(P ) is contained in B. This gives us the following relation:

f
(π
n

)
= max

0≤φ≤2π
f (φ) < min

0≤φ≤2π
g(φ) = g(0).

5.1.2 Configuration at Time t

Now, fix t ∈ [0, 2π [. We set

Pt := ρt (P ), �t := B \ Pt . (3)

Then, in polar coordinates, we have ∂Pt := {f (φ − t)eiφ |φ ∈ [0, 2π [} (Fig. 6).

5.1.3 Hadamard Perturbation Formula

Let λ1(t) denote the fundamental Dirichlet eigenvalue of the Laplacian on �t , i.e.,
λ1(t) := λ1(Ωt ). Let y1(t) denote the unique positive unit norm principal Dirichlet
eigenfunction for the Laplacian on �t , i.e., y1(t) is the eigenfunction corresponding
to λ1(t) on �t satisfying (1). By Proposition 3.1 in [12], the map t 
−→ λ1(t) is a
C1 map in R from a neighborhood of 0 in R. Then, the derivative λ′1(t) of λ1 at a
point t ∈ R is given by the Hadamard perturbation formula [20]

λ′1(t) = −
∫
x∈∂Pt

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)(x)

∂ηt

∣∣∣∣
2

〈ηt , v〉 (x) d$(x), (4)

where d$ is the line element on ∂Pt , ηt (x) is the outward unit normal vector to �t

at x ∈ ∂�t , and v ∈ C∞0 (�t ) is the deformation vector field defined as

v(ζ ) = ρ(ζ ) iζ, ∀ ζ ∈ C ∼= R
2. (5)

(0, 0)
Pt

∂Pt

Ωt x1-axis

B

t
(0, 0)

Pt

∂Pt

Ωt x1-axis

B

t
(0, 0)
Pt

∂Pt

Ωt
x1-axis

B

t
(0, 0)
Pt

∂Pt

Ωt x1-axis

B

t

Fig. 6 Configuration at time t
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Here, ρ : R2 → [0, 1] is a smooth function with compact support in B such that
ρ ≡ 1 in a neighborhood of cl(conv(C2(P ))).

Remark 5.1 We are interested in the outward unit normal to the domain�t at points
on the boundary ∂Pt := {f (φ)eiφ : φ ∈ [0, 2π [} of the obstacle Pt . Therefore, the
outward unit normal with respect to the domain �t at a point f (φ)eiφ on ∂Pt will
be the negative of the vector field η(f (φ)eiφ), for h = f in Lemma 3.2.

5.1.4 λ1 Is an Even and Periodic Function with Period 2π
n

Recall that n ≥ 3 is a fixed integer, even or odd. Since Pt is invariant under the
action of the dihedral group Dn, it follows that �(t + 2π

n
) = Ωt for each t ∈ R. Let

R0 : R2 → R
2 denote the reflection in R

2 about the x1-axis. That is,R0((x1, x2)) :=
(x1,−x2) ∀(x1, x2) ∈ R

2. Then, we have ρ2π−t = R0◦ρt ◦R0 for each t ∈ R
2. This

gives P2π−t = R0(Pt ) and Ω2π−t = R0(Ωt ). In SO(2,R), ρs+t = ρs ◦ ρt = ρt =
ρt ◦ ρs ∀s, t ∈ R and ρ2π = Id, the identity map. Therefore, we get P−t = R0(Pt )

and �−t = R0(Ωt ) for all t ∈ R. Moreover, since ρ 2π
n
(Pt ) = Pt for all t ∈ R,

Ω 2π
n
+t = Ωt for all t ∈ R. This implies that λ1 : R → (0,∞) is an even and

periodic function with period 2π
n

. Thus, we have

λ1

(
t + 2π

n

)
= λ1(t), and λ1(−t) = λ1(t) ∀ t ∈ R. (6)

Therefore, it suffices to study the behavior of λ1(t) only on the interval
[
0, π

n

]
.

5.1.5 Sufficient Condition for the Critical Points of λ1

The following theorem states a sufficient condition for the critical points of the
function λ1 : R→ (0,∞).

Proposition 5.1 (Sufficient Condition for Critical Points of λ1) Let n ≥ 3 be a
fixed integer, even or odd. For each k = 0, 1, 2, . . . , 2n− 1, λ′1

(
k π
n

) = 0.

Proof Fix k ∈ {0, 1, 2, . . . , 2n − 1}. Let tk := k π
n

. Then, the domain �tk is
symmetric with respect to the x1-axis. The first Dirichlet eigenfunction y1 (tk)

satisfies u◦R0 = u, where R0 ∈ O(2,R) is the reflection about the x1-axis. Clearly,
for each x ∈ ∂Ptk , where η is defined, η(R0(x)) = DR0(η(x)) = R0(η(x)). Note
also that

∂ (y1 (tk) ◦ R0)

∂η
(x) = ∂ (y1 (tk))

∂η
(R0(x)) (7)

for each x on ∂Ptk for which the normal derivative makes sense. By the Hadamard
perturbation formula (4), we have
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λ′1 (tk) =−
∫
∂P+tk

〈a(x)ηt , ηt 〉
∣∣∣∣∂ (y1(tk))

∂ηtk

∣∣∣∣
2

(x)
〈
ηtk , v

〉
(x) d$(x)

−
∫
∂P−tk

〈a(x)ηt , ηt 〉
∣∣∣∣∂ (y1(tk))

∂ηtk

∣∣∣∣
2

(x)
〈
ηtk , v

〉
(x) d$(x),

(8)

where ∂P+tk and ∂P−tk represent the parts of ∂Ptk above the x1-axis and below the
x1-axis, respectively. Therefore, we have

λ′1 (tk) =−
∫
∂P+tk

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(tk)(x)

∂ηtk

∣∣∣∣
2 〈

ηtk , v
〉
(x) d$(x)

−
∫
R0

(
∂P+tk

)〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(tk)(x)

∂ηtk

∣∣∣∣
2 〈

ηtk , v
〉
(x) d$(x).

Using Eq. (7) and property (iii) of Lemma 3.2, we get λ′1 (tk) = 0. Thus, k π
n

,
k ∈ {0, 1, 2, . . . , 2n− 1}, are the critical points of λ1. ��

5.2 The Sectors of �t

Fix n ≥ 3, even or odd. For a fixed t ∈ R and a, b ∈ Z, a < b, let
σ
(
t + aπ

n
, t + bπ

n

)
denote the set

{
r eiφ ∈ R

2 : φ ∈ (t + aπ
n
, t + bπ

n

)
, r ∈ R

}
.

For convenience, we will simply write σ(a,b) to denote σ
(
t + aπ

n
, t + bπ

n

)
. When

we write σ(k,k+1), k ∈ Z, we take addition modulo 2n, that is, k, k + 1 ∈ (Z2n,+).
From Eq. (4), we have

λ′1(t) = −
2n−1∑
k=0

∫
∂Pt∩σ ]t+ kπ

n
,t+ (k+1)π

n
[
〈a(x)ηt , ηt 〉

∣∣∣∣∂y1(t)(x)

∂ηt

∣∣∣∣
2

〈ηt , v〉 (x) d$(x).
(9)

Equation (9) can be written as

λ′1(t) =−
n−1∑
k=0

∫
∂Pt∩σ(k,k+1)

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)(x)

∂ηt

∣∣∣∣
2

〈ηt , v〉 (x) d$(x)

−
2n−1∑
k=n

∫
∂Pt∩σ(k,k+1)

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)(x)

∂ηt

∣∣∣∣
2

〈ηt , v〉 (x) d$(x).
(10)

We now fix a t ∈]0, 2π
n
[ and note the following properties for the sectors

σ(k,k+1):
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x1-axis

φ = t+ (2n− 1)
n π

φ = t

φ
=

t+
π/

nφ
=

t
+
2π

/n

φ =
t+ (n− 1)n π

φ = t + π

φ
=

t+
n
+
1

n
π

φ
=

t+
n
+
2n

π
σ(0,1)

H0
1

σ(2n − 1,2n)
H2n−1

1

σ(n − 1,n) Hn−1
1

Fig. 7 Sectors of �t for n = 4

1. For k = 0, 1, 2, . . . , n − 2, each of the sectors σ(k,k+1) is completely above the
x1-axis.

2. For k = n, . . . , 2n− 2, the sectors σ(k,k+1) are completely below the x1-axis.
3. The sectors σ(n−1,n) and σ(2n−1,2n) are partially above the x1-axis and partially

below it.

These facts are illustrated in Fig. 7.

5.3 A Sector Reflection Technique

Here onward, we fix n ≥ 3, n even. We recall here from Sect. 3.2 that, for α ∈
[0, 2π ], the set zα := {reiα | r ∈ R} denotes the line in R

2 corresponding to angle
φ = α, represented in polar coordinates. Let Rα : R2 → R

2, α ∈ R, denote the
reflection map about the zα-axis. For each t ∈ R, the obstacle Pt is symmetric with
respect to the line z

t+ (k+1)π
n

. We have, for k = 0, 1, 2, . . . , 2n− 1,

R
t+ (k+1)π

n
(∂Pt ∩ σ(k,k+1)) = ∂Pt ∩ σ(k+1,k+2). (11)
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For k = 0, 1, 2, . . . , 2n − 1, let Hk
1 (t) := �t ∩ σ(k,k+1). Now, let H̃ k

1 := cl(�t ) ∩
σ(k,k+1). This implies H̃ k

1 (t) = Hk
1 (t) ∪

(
cl(Hk

1 (t)) ∩ ∂�t

)
.

We consider pairs of consecutive sectors of �t , namely σ(k,k+1) and σ(k+1,k+2)
for each even k such that k = 0, 2 . . . 2n− 2. We now state and prove the following
lemma.

Lemma 5.1 Fix n ≥ 3, n even. For all t ∈]0, π
n
[, we have the following:

R
t+ (k+1)π

n
(Hk

1 (t)) � Hk+1
1 (t) for k = 0, 2, 4, . . . , n− 2. (12)

R
t+ (k+1)π

n
(H̃ k

1 (t)) � H̃ k+1
1 (t) \ ∂B for k = 0, 2, 4, . . . , n− 2. (13)

R
t+ (k+1)π

n
(Hk+1

1 (t)) � Hk
1 (t) for k = n, n+ 2, . . . , 2n− 2. (14)

R
t+ (k+1)π

n
(H̃ k+1

1 (t)) � H̃ k
1 (t) \ ∂B for k = n, n+ 2, . . . , 2n− 2. (15)

Proof We first prove (12)–(13) for k = 0, 2, 4, . . . , n− 4, where the pair of sectors
σ(k,k+1) and σ(k+1,k+2) are completely above the x1-axis. A similar technique can be
used to prove (14)–(15) for k = n, n+2, . . . , 2n−4, where the sectors σ(k,k+1) and
σ(k+1,k+2) are completely below the x1-axis. We then prove (12)–(13) for k = n−2
separately and similarly prove (14)–(15) for k = 2n− 2 separately.

Let β ∈ [0, π
n
] be arbitrary. The line L1 containing the center o and the point

p1 = g
(
t + (k + 1)

π

n
− β
) (

cos(t + (k + 1)
π

n
− β), sin(t + (k + 1)

π

n
− β)

)
∈ ∂B

is reflected about zt+(k+1) π
n

-axis to the line L2 containing o and the point

p2 = g
(
t + (k + 1)

π

n
+ β
) (

cos(t + (k + 1)
π

n
+ β), sin(t + (k + 1)

π

n
+ β)

)
∈ ∂B

(see Fig. 8).
Since Pt is invariant under this reflection and B is star-shaped with respect

to o, to prove (12)–(13), it suffices to show that g
(
t + (k+1)π

n
− β
)

<

g
(
t + (k+1)π

n
+ β
)

for k = 0, 2, 4, . . . , n− 2.

Now, for k = 0, 2, 4, . . . , n − 4,
(
t + kπ

n
, t + (k+2)π

n

)
⊂]0, π [. So,

by Lemma 3.1, g is a strictly increasing function of the argument in(
t + kπ

n
, t + (k+2)π

n

)
for k = 0, 2, 4, . . . , n − 4. Therefore, (12)–(13) for

k = 0, 2, 4, . . . , n− 4 follow from the fact that t + (k+1)π
n

− β < t + (k+1)π
n

+ β.
Next, we consider the case k = n− 2. The sector σ(n−2,n−1) is completely above

the x1-axis, whereas the sector σ(n−1,n) is partially above and partially below the
x1-axis. If the point p2 is above the x1-axis, we have
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Fig. 8 Reflection of sector
Hk

1 about the axis z
t+ (k+1)π

n

φ = t +
k

n
π

φ
=

t+
k
+
1

n
π

φ = t +
k + 2

n
π

Hk
1

Hk+1
1

L1

L2

p2

p1

0 < t + (n− 1)π

n
− β < t + (n− 1)π

n
+ β < π.

Since g is strictly increasing in [0, π ], we have the desired results (12)–(13) in this
case.

Suppose the point p2 is below the x1-axis. Let θ > 0 be the angle between L2
and the positive x1-axis. Then, since ∂B is symmetric with respect to the x1-axis,

we get g
(
t + (n−1)π

n
+ β
)
= g
(
t + (n−1)π

n
+ (β − 2θ)

)
. Now, since β > θ , we

have
(
t + (n−1)π

n
+ (β − 2θ)

)
>
(
t + (n−1)π

n
− β
)

. Clearly,
(
t + (n−1)π

n
− β
)

∈]0, π [. Moreover, by the choice of θ ,
(
t + (n−1)π

n
+ (β − 2θ)

)
∈]0, π [. Since

g is a strictly increasing function of the argument on [0, π ], we have the desired
results (12)–(13) in this case.

For k = 2n − 2, we first note that we can write σ(2n−2,2n−1) as
σ(−2,−1) and σ(2n−1,2n) as σ(−1,0). We also note that the sector σ(−2,−1)
is completely below the x1-axis, whereas the sector σ(−1,0) is partially
above and partially below the x1-axis. The line L3 joining the center o of
Pt to the point p3 = g

(
t − π

n
+ β
) (

cos
(
t − π

n
+ β
)
, sin
(
t − π

n
+ β
)) ∈

∂B is reflected about zt− π
n

to the line L4 joining o to the point p4 =
g
(
t − π

n
− β
) (

cos
(
t − π

n
− β
)
, sin
(
t − π

n
− β
)) ∈ ∂B (see Fig. 9).

Thus, to prove (14, 15), it suffices to show that g
(
t − π

n
+ β
)

<

g
(
t − π

n
− β
)

. Suppose the point p3 is above the x1-axis. Let r > 0 be the angle

between L3 and the positive x1-axis. Then, g
(
t − π

n
+ β
) = g

(
t − π

n
+ (β − 2r)

)
.

Now, r < β implies that
(
t − π

n
+ (β − 2r)

)
>
(
t − π

n
− β
)
. Since g is a strictly

decreasing function of the argument in [π, 2π ], we get the desired results (14), (15)
in this case.
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Fig. 9 Reflection of sector
H−1

1 about the axis zt− π
n

φ = t

φ = t − π/n

φ = t − 2π/n

H−2
1

H−1
1

L3

L4

p3

p4

If the point p3 is below the x1-axis, then 2π >
(
t − π

n
+ β
)
>
(
t − π

n
− β
)
> π ,

and the fact that g is a strictly decreasing function of the argument in [π, 2π ] gives
the desired results (14, 15) in this case. ��

5.4 The Rotating Plane Method

Recall here that n ≥ 3 is a fixed even integer. In order to study the behavior of λ1
as a function of t , we now analyze the two terms appearing on the right-hand side
of (10), which is an expression for λ′1(t). For each φ ∈ [0, π ], by Lemma 3.2, we
have

〈ηt , v〉
(
t + (k + 1)π

n
+ φ

)

= −〈ηt , v〉
(
t + (k + 1)π

n
− φ

)
for k = 0, 2, 4, . . . , n− 2. (16)

In particular, (16) holds for each φ ∈ [0, π
n
]. In other words, if x′ := R

t+ (k+1)π
n

(x),

then by Eq. (11), for each k = 0, 2, 4, . . . , n − 2, x′ ∈ ∂Pt ∩ σ(k+1,k+2) for each
x ∈ ∂Pt ∩ σ(k,k+1), and we have 〈ηt , v〉

(
x′
) = −〈ηt , v〉 (x) ∀ x ∈ ∂Pt ∩ σ(k,k+1).

Thus, for each k = 0, 2, 4, . . . , n− 2, we have the following:

∫
∂Pt∩σ(k,k+1)

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

〈ηt , v〉 (x) d$
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+
∫
∂Pt∩σ(k+1,k+2)

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

〈ηt , v〉 (x) d$

=
∫
∂Pt∩σ(k,k+1)

〈a(x)ηt , ηt 〉
(∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

−
∣∣∣∣∂y1(t)

∂ηt
(x′)
∣∣∣∣
2
)
〈ηt , v〉 (x) d$.

(17)

Now, we know that f is a positive and strictly increasing function of φ in
]t + kπ

n
, t + (k+1)π

n
[ for each k = 0, 2, 4, . . . , n − 2. Thus, applying Lemma 3.2

for ηt = −n, we get

〈ηt , v〉 > 0 on ∂Pt ∩ σ(k,k+1) for each k = 0, 2, 4, . . . , n− 2. (18)

Using a similar argument, we have the following: for each k = n, n+2, . . . , 2n−2,

∫
∂Pt∩σ(k,k+1)

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

〈ηt , v〉 (x) d$

+
∫
∂Pt∩σ(k+1,k+2)

〈a(x)ηt , ηt 〉
∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

〈ηt , v〉 (x) d$

=
∫
∂Pt∩σ(k+1,k+2)

〈a(x)ηt , ηt 〉
(∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

−
∣∣∣∣∂y1(t)

∂ηt
(x′)
∣∣∣∣
2
)
〈ηt , v〉 (x) d$,

(19)

where x′ := R
t+ (k+1)π

n
(x). Then, for each k = n, n + 2, . . . , 2n − 2, x′ ∈ ∂Pt ∩

σ(k,k+1) for each x in ∂Pt ∩ σ(k+1,k+2). We note that the function f is a positive
and strictly increasing function of φ in ]t + (k+2)π

n
, t + (k+1)π

n
[ for each k = n, n+

2, . . . , 2n− 2. Thus, applying Lemma 3.2 for ηt = −n, we get

〈ηt , v〉 > 0 on ∂Pt ∩ σ(k+1,k+2) for each k = n, n+ 2, . . . , 2n− 2. (20)

5.5 Necessary Condition for the Critical Points of λ1

Recall here that n ≥ 3 is a fixed even integer. We finally show that{
kπ
n
| k = 0, 1, . . . n− 1

}
are the only critical points of λ1 and that between every

pair of consecutive critical points of λ1, it is a strictly monotonic function of the
argument. In view of Proposition 5.1 and Eq. (6), it now suffices to study the
behavior of λ1 only on the interval

(
0, π

n

)
.
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Proposition 5.2 (Necessary Condition for Critical Points) Fix n ≥ 3, n even.
For each t ∈]0, π

n
[, λ′1(t) > 0.

Proof Fix t ∈]0, π
n
[. Using (17) and (19), integral (10) can be written as

λ′1(t) = −
∑

0≤k≤n−2
k even

∫
∂Pt∩σ(k,k+1)

〈a(x)ηt , ηt 〉
(∣∣∣∣∂y1(t)(x)

∂ηt

∣∣∣∣
2

−
∣∣∣∣∂y1(t)(x

′)
∂ηt

∣∣∣∣
2
)

〈ηt , v〉 (x) d$(x)

−
∑

n≤k≤2n−2
k even

∫
∂Pt∩σ(k+1,k+2)

〈a(x)ηt , ηt 〉
(∣∣∣∣∂y1(t)(x)

∂ηt

∣∣∣∣
2

−
∣∣∣∣∂y1(t)(x

′)
∂ηt

∣∣∣∣
2
)

〈ηt , v〉 (x) d$(x) (21)

Let H(t) :=
⋃

0≤k≤n−2
k even

Hk
1 (t). Let w(x) := y1(t)(x) − y1(t)(x

′). By Lemma 5.1,

the real-valued function w is well defined on H(t). Moreover, w ≡ 0 on ∂Pt ∩
∂H(t) and also on ∂H(t) ∩ zt+k π

n
for each k = 1, 3, . . . n − 1. That is, w(x) =

0 ∀ x ∈ ∂H(t)
⋂(

∂Pt
⋃

1≤k≤n−1
k odd

z
t+ kπ

n

)
. Moreover, since y1(t) vanishes on ∂B

and is positive inside �(t), and since for each k = 0, 2, . . . n − 2, the reflection of
∂Hk

1 (t) ∩ ∂B about the axis zt+(k+1) π
n

lies completely inside Hk+1
1 (t) ⊂ �(t), we

obtain w(x) < 0 for each x in (∂H(t) ∩ ∂B)\
(⋃

1≤k≤n−1
k odd

z
t+ kπ

n

)
. Now, we claim

that

w(x) < 0 ∀ x ∈ ∂H(t)
⋂ ⋃

0≤k≤n−2
k even

z
t+ kπ

n
. (22)

This is equivalent to saying that for each k, 0 ≤ k ≤ n − 2, k even, w(x) < 0
for all x ∈ ∂Hk

1 (t) ∩ zt+ kπ
n

. Fix a k0 such that 0 ≤ k0 ≤ n − 2, k0 even. Now,
the axis of symmetry z

t+ (k0+1)π
n

divides �t into two unequal components. Let us

denote the smaller component of the two by Ok0(t). Then, we have Ok0(t) :=
�t ∩ σ(−(k0+1+n),k0+1). Now, it can be shown that R

t+ (k0+1)π
n

(
Ok0(t)

) ⊂ �t ∩
(cl(Ok0(t)))

c. Therefore, if we define wk0(x) := y1(t)(x)−y1(t)(x
′), then the real-

valued function wk0 is well defined on Ok0(t). Here, x′ := R
t+ (k0+1)π

n

(x) for x ∈
Ok0(t). Moreover,w ≡ 0 on ∂Pt∩∂Ok0(t) and also on ∂Ok0(t)∩zt+(k0+1) π

n
. That is,

wk0(x) = 0 ∀ x ∈ ∂Ok0(t)
⋂(

∂Pt ∪ zt+ (k0+1)π
n

)
. Moreover, since y1(t) vanishes

on ∂B and is positive inside �t , and since the reflection of ∂Ok0(t) ∩ ∂B about the
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Ok0(t)

x1-axis

φ = t +
k0

n
π

φ
=

t+
k 0
+
1

n
π

φ = t +
k0 + 2

n
π

Fig. 10 Ok0 (t) for n = 4

axis zt+(k0+1) π
n

lies completely inside Ωt , we have the following: wk0(x) < 0 ∀ x ∈(
∂Ok0(t) ∩ ∂B

) \ z
t+ (k0+1)π

n

. Therefore, the non-constant function wk0 satisfies

− ∇ · (a(x)∇wk0) = λ1(t) wk0 in Ok0(t), wk0 ≤ 0 on ∂Ok0(t). (23)

Hence, by the maximum principle, wk0 < 0 in Ok0(t). In particular, wk0 < 0 in
∂H

k0
1 (t) ∩ z

t+ k0π
n

. Now, by definition, w and wk0 coincide in Hk0
1 . Therefore, by

continuity of both w and wk0 , we get w < 0 in ∂Hk0
1 (t) ∩ z

t+ k0π
n

. But k0 such that

0 ≤ k0 ≤ n−2, k0 even, was chosen arbitrarily. This proves our claim (22) (Fig. 10).
Therefore, the non-constant function w satisfies

−∇ · (a(x)∇w) = λ1(t) w in H(t), w ≤ 0, on ∂H(t). (24)

Hence, by the maximum principle, w is non-positive on the whole of H(t).
Therefore, from (24), we have ∇ · (a(x)∇w) ≥ 0 in H(t). Since w achieves
its maximal value zero on

⋃
0≤k≤n−2
k≡0 mod 2

(
∂Pt ∩ σ(k,k+1)

) ⊂ ∂H(t), by the Hopf

maximum principle, one has
∂w

∂ηt
(x)>0 ∀ x ∈ ⋃0≤k≤n−2

k≡0 mod 2

(
∂Pt ∩ σ(k,k+1)

)
; that

is,
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∂y1(t)

∂ηt
(x)− ∂y1(t)

∂ηt
(x′)>0 ∀ x ∈

⋃
0≤k≤n−2
k≡0 mod 2

(
∂Pt ∩ σ(k,k+1)

)
.

Also, by the application of the Hopf maximum principle to problem (1), it follows
that

∂y1(t)

∂ηt
(x) < 0 ∀ x ∈ ∂�t .

Thus,

∣∣∣∣∂y1(t)

∂ηt
(x)

∣∣∣∣
2

−
∣∣∣∣∂y1(t)

∂ηt
(x′)
∣∣∣∣
2

<0 ∀ x ∈
⋃

0≤k≤n−2
k≡0 mod 2

(
∂Pt ∩ σ(k,k+1)

)
. (25)

Now, from (25) and (18), it follows that the first term in (21) is strictly positive.
Similarly, one can prove using (20) that the second term in (21) is also strictly
positive. This proves the proposition for n even. ��

5.6 Proof of Theorem 4.1

Theorem 4.1, for n even, now follows from Propositions 5.1 and 5.2 and Eq. (6).

Remark 5.2 In the proof of Lemma 5.1, we considered two consecutive sectors in
each of the two hemispheres of the disk B determined by the zt -axis. We then took
the reflection of the smaller sector of this pair into the bigger one about the axis
of symmetry separating these two sectors. This was possible because the obstacle
P we consider had a Dn symmetry, where n ≥ 3 was chosen to be even. As a
result, the axes of symmetry of P divide B into even number of sectors in each of
these hemispheres. When n is odd, the axes of symmetry of P divide B into odd
number of sectors in each of the hemispheres. Therefore, unlike the n even case, it
is not possible to find a complete pairing of consecutive sectors within each of the
hemispheres. Thus, the proof for n odd still remains an open question. However,
we provide some numerical evidence that enables us to make a conjecture that
Theorem 4.1 holds true for n odd too.

6 Proof of Theorem 4.2

We now prove our second main result viz., Theorem 4.2. Let d ≥ 0 denote the
distance between the center of the disk and the center of the obstacle P . Let
t ∈ [0, 2π [ denote the angle by which the obstacle is rotated about its center in
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the anticlockwise direction starting from the initial configuration as described in
Sect. 5.1.1. Clearly, λ1 is a function of both d and t . Please note that when d = 0,
the map t 
→ λ1(t) is constant as the domain remains unaltered. In Theorem 4.1, we
have studied the behavior of map t 
→ λ1(t), for a fixed d > 0.

We next analyze the behavior of the map d 
→ λ1(d) for a fixed t ∈ [0, 2π [.
Using similar arguments as in [21, Theorem 2.1], it follows that, for a fixed t ∈
[0, 2π [, the eigenvalue maximizer is the concentric configuration, i.e., when d = 0.
As a corollary of Theorem 2.1 in [21], we have the following proposition:

Proposition 6.1 Fix n ≥ 3, even or odd. Fix t ∈ [0, 2π [. Let x denote the center of
the obstacle Pt . Then, at any maximizing x,

(a) � = B \ Pt has no hyperplane of interior reflection containing x. Moreover, at
any maximizing x, either statement (a) above is true, or else

(b) the circumcircle C2 of Pt intersects the small side of ∂B.

Now, since the disk B enjoys the interior reflection property w.r.t. all secant lines
that are not the diameters of B, as a consequence, we have the following result,
similar to [21].

Corollary 6.1 Fix n ≥ 3, even or odd and t ∈ [0, 2π [. Then, (a) the concentric
configuration, i.e., d = 0, is the only candidate for the maximizer of the map
d 
−→ λ1(d), and (b) at any minimizing configuration of the map d 
−→ λ1(d),
the circumcircle C2 of the obstacle Pt must touch ∂B.

Since L is invariant under the isometries of the domain, it follows that for a fixed
t ∈ [0, 2π [, in order to study the behavior of d 
→ λ1(d), it is enough to translate the
center of the obstacle Pt along the positive x1-axis. Using an analysis similar to that
in [25], it follows that, d 
→ λ1(d) is maximum for d = 0 and is a strictly decreasing
function of d in ]0, r1 − r2

0 [. Now, Corollary 6.1 along with Theorem 4.1 implies
Theorem 4.2 that characterizes the maximizing and the minimizing configurations
over the family of domains G. Applying the idea from [21] to the candidates for
the minimizing configurations over G for n even, n ≥ 3, we get that, at the global
minimizing configurations, w.r.t. both the translations of the obstacle within B as
well as the rotations of the obstacle about its center, the obstacle must be in an OFF
position w.r.t. B with its outer vertex touching ∂B. The global maximizer for n ≥ 3,
even or odd, remains to be the concentric configuration.

7 Numerical Results

In this section, we provide the results of numerical experiments that validate the
main results: Theorems 4.1 and 4.2. For this purpose, we consider two different
sets of obstacles, a square and a pentagon, that have dihedral symmetry of order
n = 4, 5. We also choose two different functions for a(x) so that the operator L
is invariant under translations and rotations: the first one is the constant function
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a(x) = 1 and the second one is a(x) = 0.5+x2+y2. To solve the eigenvalue value
problem (1) in the domain � = B \ P , we use the finite element method with P 1

elements (see e.g., [9, 33]) on a mesh with element size h = 0.018.
In Test Case 1, we consider the square obstacle P with side length 0.5. To validate

Theorem 4.1, we perform rotations of P without any translations, with a fixed value
of d = 0.5. Furthermore, for validation of Theorem 4.2, we shift P along the x-axis
from the point (0,0) to (0.7,0), where it actually touches the boundary of B. The
results are shown in Fig. 11.

The first row in Fig. 11 shows the results for a(x) = 1, and the second row
corresponds to the results for a(x) = 0.5 + x2 + y2. Figure 11a–d and e–d shows
the OFF, intermediate, and ON configurations. The OFF and the ON configurations
are the minimizer and the maximizer for λ1, which is also reflected in Table 1.
Furthermore, we see the global extremal configurations in Fig. 11d–e and i–j.

In Test Case 2, we demonstrate the results for a pentagon-shaped phantom P .
The side length of the pentagon is 0.4. We follow a similar experimental setup as in
the case for the square phantom. The extremal configurations and the values of λ1
are shown in Fig. 12 and Table 2

Fig. 11 Test Case 1: simulations of extremal configurations for a square obstacle. (a) OFF
position. (b) Intermediate Position. (c) ON position. (d) Global maximizer. (e) Global minimizer.
(f) OFF position. (g) Intermediate position. (h) ON position. (i) Global maximizer. (j) Global
minimizer

Table 1 Values of λ1 at
different configurations for a
square obstacle with different
values of a(x)

Configuration λ1(a = 1) λ1(a = 0.5+ x2 + y2)

OFF 9.4137 8.3865

INTERMEDIATE 9.4385 8.4246

ON 9.464 8.4644

GLOBAL MAX 19.118 18.672

GLOBAL MIN 7.7142 6.9886



Placement of an Obstacle for Optimizing the Fundamental Eigenvalue of. . . 181

Fig. 12 Test Case 2: simulations of extremal configurations for a pentagon obstacle. (a) OFF
position. (b) Intermediate Position. (c) ON position. (d) Global maximizer. (e) Global minimizer.
(f) OFF position. (g) Intermediate position. (h) ON position. (i) Global maximizer. (j) Global
minimizer

Table 2 Values of λ1 at
different configurations for a
pentagon-shaped obstacle
with different values of a(x)

Configuration λ1(a = 1) λ1(a = 0.5+ x2 + y2)

OFF 9.0895 8.127

INTERMEDIATE 9.0905 8.1303

ON 9.0915 8.1336

GLOBAL MAX 17.619 17.046

GLOBAL MIN 7.523 6.8521

8 Conclusions

In this chapter, we analyze an obstacle placement problem inside a disk, where
the obstacle is invariant under the action of a dihedral group. We then characterize
the local extremal configurations of the obstacle with respect to the disk for the
fundamental eigenvalue of a general divergence form elliptic operator by rotating
the obstacle, inside the disk about the fixed center of the obstacle. We prove
this result for the case when the obstacle has an even order dihedral symmetry
and formulate conjectures about such configurations for obstacles with odd order
dihedral symmetry. We further characterize the global maximizing and the global
minimizing configurations with respect to the rotations of the obstacle about its
center as well as the translations of the obstacle within the disk. Several numerical
experiments validate our theoretical findings.
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Quasi-Monotonicity Formulas
for Classical Obstacle Problems
with Sobolev Coefficients
and Applications

Matteo Focardi, Francesco Geraci, and Emanuele Spadaro

1 Introduction

The structure of free boundaries for classical obstacle problems has been described
first by Caffarelli for quadratic energies having suitably regular matrix fields, and it
is the resume of his long-term program on the subject (cf. for instance, [3–6] and
the books [7, 17] and [21] for more details and references also on related problems).
Similar results for smooth nonlinear operators can then be obtained via a freezing
argument.

In the last years, such a topic has been investigated in the case in which the
quadratic energy involved has a matrix of coefficients either Lipschitz continuous
(cf. [11]) or belonging to a fractional Sobolev space (cf. [13]), with parameters
suitably related. Let us also mention that obstacle problems for nondegenerate
nonlinear variational energies have been studied in [12] through a linearization
argument and the quoted results in the Lipschitz quadratic case.

The papers [11] and [13] follow the variational approach to free boundary
analysis developed remarkably by Weiss [23] and Monneau [20], which is based
on (quasi-)monotonicity formulas. The extensions of Weiss and Monneau’s mono-
tonicity formulas, obtained in [11] and [13], hinge upon a generalization of Rellich
and Nečas’ inequality due to Payne and Weinberger (cf. [18]). On a technical side,
they involve the differentiation of the matrix field.

The aim of this short note is to extend the range of validity of Weiss and Mon-
neau’s type quasi-monotonicity formulas to classical obstacle problems, involving
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quadratic forms having a matrix of coefficients in a Sobolev space with summability
exponent lager than the space dimension.

The main difference contained in the present note, with respect to the existing
literature, concerns the (quasi-)monotone quantity itself. Indeed, rather than con-
sidering the natural quadratic energy associated with the obstacle problem under
study, we establish quasi-monotonicity for a related constant coefficient quadratic
form. The latter result is obtained thanks to a freezing argument inspired by some
computations in a paper by Monneau (cf. [20, Section 6]) in combination with the
well-known quadratic lower bound on the growth of solutions from free boundary
points (see Sects. 4 and 5 for more details). Such an insight, though elementary, has
been overlooked in the literature and enables us to obtain Weiss and Monneau’s
quasi-monotonicity formulas under mild assumptions (cf. (H1) and (H3) below,
the latter having no role, if the obstacle function is null), since the matrix field is
not differentiated along the derivation process of the quasi-monotonicity formulas.
We stress again that the mentioned quasi-monotonicity formulas are instrumental to
pursue the variational approach for the analysis of the corresponding free boundaries
in classical obstacle problems.

Following the approach developed in [12], by means of Theorem 1, we generalize
the results in [12, Theorem 3.8] there to infer similar results for nondegenerate,
nonlinear classical obstacle problems (cf. Theorem 4 for more details).

To conclude this introduction, we briefly resume the structure of the chapter:
Weiss and Monneau’s quasi-monotonicity formulas, the main results of the chapter,
together with their application to free boundaries, are stated in Sect. 2. Several
preliminaries for the classical obstacle problem under study are collected in
Sect. 3. The mentioned generalizations of Weiss and Monneau’s quasi-monotonicity
formulas are established in Sects. 4 and 5, respectively. Finally, Sect. 6 contains the
proof of the quoted applications to the free boundary stratification for quadratic and
nonlinear problems.

2 Statement of the Main Results

In this section, we state Weiss and Monneau’s type quasi-monotonicity formulas for
the quadratic problem and their application to the free boundary analysis.

We start off with introducing the variational problem related to free boundaries
together with the necessary notations and assumptions in the next section.

2.1 Free Boundary Analysis: Statement

We consider the functional E : W 1,2(�)→ R given by

E(v) :=
∫
�

(〈A(x)∇v(x),∇v(x)〉 + 2h(x)v(x)
)
dx (1)
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and study regularity issues related to its unique minimizer w on the set

Kψ,g :=
{
v ∈ W 1,2(�) : v ≥ ψ Ln-a.e. on �, Tr(v) = g on ∂�

}
.

Here, � ⊂ Rn is a bounded Lipschitz open set, n ≥ 2, ψ ∈ C
1,1
loc (�) and g ∈

H
1/2(∂�) are such that ψ ≤ g Hn−1-a.e. on ∂�, A : �→ Rn×n is a matrix-valued

field and f : �→ R is a function satisfying:

(H1) A ∈ W 1,p(�;Rn×n) with p > n.
(H2) A(x) = (aij (x))i,j=1,...,n is symmetric, continuous and coercive, that is,

aij (x) = aji(x) for all x ∈ � and for all i, j ∈ {1, . . . , n}, and for some
& ≥ 1,

&−1|ξ |2 ≤ 〈A(x)ξ, ξ 〉 ≤ &|ξ |2 (2)

for all x ∈ �, ξ ∈ Rn.
(H3) f := h − div (A∇ψ) > c0 Ln-a.e. on �, for some c0 > 0, and f is Dini-

continuous, namely

∫ 1

0

ωf (t)

t
dt <∞, (3)

where ωf (t) := supx,y∈�, |x−y|≤t |f (x)− f (y)|.
In some instances in place of (H3), we will require the stronger condition.

(H4) f > c0 Ln-a.e. on �, for some c0 > 0, and f is double Dini-continuous, that
is,

∫ 1

0

ωf (r)

r
| log r|a dr <∞, (4)

for some a ≥ 1.

Note that for the zero obstacle problem, i.e. ψ = 0, assumptions (H3) and (H4)
involve only the lower order term h in the integrand and not the matrix field of
coefficients A. Moreover, the positivity condition on f corresponds to the concavity
assumption on the obstacle function in the case of the Laplacian. Elementary
examples show that it is needed to enforce free boundary regularity.

Given the assumptions introduced above, we provide a full free boundary
stratification result.

Theorem 1 Assume (H1)–(H4) to hold, and let w be the (unique) minimizer of E
in (1) on Kψ,g .

Then, w is W 2,p
loc ∩ C1,1−n/p

loc (�), and the free boundary can be decomposed as
∂{w = ψ} ∩ � = Reg(w) ∪ Sing(w), where Reg(w) and Sing(w) are called its
regular and singular parts, respectively. Moreover, Reg(w) ∩ Sing(w) = ∅ and
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(i) if a > 2 in (H4), then Reg(w) is relatively open in ∂{w = ψ} and, for every
point x0 ∈ Reg(w), there exists a radius r = r(x0) > 0 such that ∂{w =
ψ}∩Br(x0) is aC1 (n−1)-dimensional manifold with normal vector absolutely
continuous.
In particular, if f is Hölder continuous, there exists r = r(x0) > 0 such that
∂{w = ψ} ∩Br(x0) is a C1,β (n− 1)-dimensional manifold for some exponent
β ∈]0, 1[.

(ii) if a ≥ 1 in (H4), then Sing(w) = ∪n−1
k=0Sk , with Sk contained in the union of at

most countably many submanifolds of dimension k and class C1.

Remark 1 The fine structure of the set of singular points in the case of the Dirichlet
energy has been the object of intense research in recent years. In particular, a
logarithmic epiperimetric inequality has been established by Colombo, Spolaor and
Velichkov [8], in turn implying a C1,log-regularity of the underlying manifolds in
item (ii) above. Such a modulus of continuity is essentially sharp as shown by
counterexamples due to Figalli and Serra [9]. In the latter paper, the stratification
result is further detailed: singular points are locally contained in a C2 curve in
dimension n = 2 and in C1,1 manifolds (or in countably many C2 manifolds) in
dimension n ≥ 3 up to the presence of anomalous points of higher codimension.

Finally, Figalli et al. [10] have proven that, generically, the singular set has null
Hn−4 measure. In particular, it has codimension 3 inside the free boundary, and in
dimension n ≤ 4 the free boundary is generically a C∞ manifold (in dimension
n = 2, this had been proven by Monneau [20]).

2.2 Quasi-Monotonicity Formulas: Statements

Theorem 1 is a consequence of Weiss and Monneau’s type quasi-monotonicity
formulas that will be stated in this section (cf. Sect. 6 for the proofs). With this
aim, we introduce some notation.

We first reduce ourselves to the zero obstacle problem. Let w be the unique
minimizer of E in (1) over Kψ,g , and define u := w − ψ . Then, u is the unique
minimizer of

E(v) :=
∫
�

(〈A(x)∇v(x),∇v(x)〉 + 2f (x)v(x)
)
dx, (5)

over

Kψ,g :=
{
v ∈ W 1,2(�) : v ≥ 0 Ln-a.e. on �, Tr(v) = g − ψ on ∂�

}
,

where f = h − div (A∇ψ). Clearly, ∂{w = ψ} ∩ � = ∂{u = 0} ∩ � =: �u,
and therefore we shall establish all the results in Theorem 1 for u (notice that
assumptions (H3) and (H4) are formulated exactly in terms of f ).
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Let x0 ∈ �u be any point of the free boundary; then, the affine change of variables

x 
→ x0 + f−1/2(x0)A
1/2(x0)x =: x0 + L(x0) x

leads to

E(u) = f 1− n
2 (x0) det(A1/2(x0))EL(x0)(uL(x0)), (6)

where �L(x0) := L−1(x0) (�− x0), and we have set

EL(x0)(v) :=
∫
�L(x0)

(
〈Cx0∇v,∇v〉 + 2

fL(x0)

f (x0)
v

)
dx, (7)

with

uL(x0)(x) := u
(
x0 + L(x0)x

)
, (8)

fL(x0)(x) := f
(
x0 + L(x0)x

)
,

Cx0(x) := A−1/2(x0)A(x0 + L(x0)x)A
−1/2(x0).

Note that fL(x0)(0) = f (x0) and Cx0(0) = Id. Moreover, the free boundary is
transformed under this map into

�uL(x0)
:= L−1(x0)(�u − x0),

and the energy E in (5) is minimized by u, if and only if EL(x0) in (7) is minimized
by the function uL(x0) in (8).

In addition, writing the Euler–Lagrange equation for uL(x0) in non-divergence
form, we get Ln-a.e. on �L(x0):

cij (x)
∂2uL(x0)

∂xi∂xj
+ divCix0

(x)
∂uL(x0)

∂xi
= fL(x0)(x)

f (x0)
χ{uL(x0)>0}

(using Einstein’s convention) with Cx0 = (cij )i,j=1,...,n. Moreover, we may further
rewrite the latter equation Ln-a.e. on �L(x0) as

�uL(x0) =1+
(fL(x0)(x)

f (x0)
χ{uL(x0)>0} − 1

− (cij (x)− δij
)∂2uL(x0)

∂xi∂xj
− divCix0

(x)
∂uL(x0)

∂xi

)
=: 1+ fx0(x) .

(9)
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Consider next Weiss’ type boundary adjusted energy

"u(x0, r) := 1

rn+2

∫
Br

(|∇uL(x0)|2 + 2uL(x0)

)
dx − 2

rn+3

∫
∂Br

u2
L(x0)

dHn−1 ,

(10)

for x0 ∈ �u. We claim its quasi-monotonicity.

Theorem 2 (Weiss’ Quasi-Monotonicity Formula) Under assumptions (H1)–
(H3), for every compact set K ⊂ �, there exists a positive constant C =
C(n, p,&, c0,K, ‖f ‖L∞ , ‖A‖W 1,p ) > 0 such that for all x0 ∈ K ∩ �u
d

dr

(
"u(x0, r)+ C

∫ r

0

ω(t)

t
dt
)
≥ 2

rn+4

∫
∂Br

(〈∇uL(x0), x〉 − 2uL(x0))
2dHn−1,

(11)

for L1-a.e. r ∈]0, 1
2 dist(K, ∂�)[, where ω(r) := ωf (r)+ r

1− n
p .

In particular, "u(x0, ·) has finite right limit "u(x0, 0+) in zero, and for all r ∈
]0, 1

2 dist(K, ∂�)[,

"u(x0, r)−"u(x0, 0+) ≥ −C
∫ r

0

ω(t)

t
dt. (12)

We recall that Weiss’ original monotonicity formula for the Dirichlet energy
provides an explicit expression for the derivative of"u(x0, ·). Namely, formula (11)
is actually an equality for u, rather than for uL(x0), and ω is null.

Next, we introduce a second quasi-monotonicity formula to analyze a distin-
guished subset of points of the free boundary, that of singular points Sing(u).
Namely, we assume that x0 ∈ �u satisfies

"u(x0, 0+) = "v(0, 1) (13)

for some 2-homogeneous solution v of

�v = 1 on Rn. (14)

Note that, by 2-homogeneity, elementary calculations lead to

"v(0, r) = "v(0, 1) =
∫
B1

v dy, (15)

for all r > 0.

Theorem 3 (Monneau’s Quasi-Monotonicity Formula) Under hypotheses (H1),
(H2) and (H4) with a = 1, ifK ⊂ � is a compact set and (15) holds for x0 ∈ K∩�u,
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then a constant C = C(n, p,&, c0,K, ‖f ‖L∞ , ‖A‖W 1,p ) > 0 exists such that the
function

]
0,

1

2
dist(K, ∂�)

[ � r 
−→ 1

rn+3

∫
∂Br

(uL(x0) − v)2 dx + C

∫ r

0

dt

t

∫ t

0

ω(s)

s
ds

(16)

is nondecreasing, where v is any 2-homogeneus polynomial solution of (14), and ω
is the modulus of continuity provided by Theorem 2.

3 Preliminaries on the Classical Obstacle Problem

Throughout the section, we use the notation introduced in Sect. 2 and adopt Einstein’
summation convention.

The next result has been established by Ural’tseva (cf., for instance, [22, Theorem
2.1]) for general variational inequalities with a penalization method. Our argument
instead follows the approach in [11], inspired by the ideas of Weiss for the Laplacian
in [23]. Let us briefly sketch our arguments. Consider the minimizer u of the energy
E introduced in (5). It turns out that u satisfies a PDE both in the distributional sense
and Ln-a.e. on �, and elliptic regularity then applies to establish the smoothness of
u itself.

Proposition 1 Let u be the minimum of E on Kψ,g . Then,

div(A∇u) = f χ{u>0} (17)

Ln-a.e. on � and inD′(�). Moreover, u ∈ W 2,p
loc ∩ C

1,1− n
p

loc (�).

Proof For the validity of (17), we refer to [12, Proposition 3.2], where the result is
proven in the broader context of variational inequalities (see also [11, Proposition
2.2]).

From this, by taking into account that A ∈ C0,1−n/p
loc (�,Rn×n) in view of Morrey

embedding theorem, Schauder estimates yield u ∈ C
1,1−n/p
loc (�) (cf. [16, Theorem

3.13]).
Next, consider the equation

aij
∂2v

∂xi∂xj
= f χ{u>0} − divAj

∂u

∂xj
=: ϕ, (18)

where Aj denotes the j -column of A. Being ∇u ∈ L∞loc(�,Rn) and being divAj ∈
Lp(�) for all j ∈ {1, . . . , n}, then ϕ ∈ L

p
loc(�). The work [14, Corollary 9.18]

implies the uniqueness of a solution v ∈ W
2,p
loc (�) to (18). By taking into account
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the identity Tr(A∇2v) = div(A∇v)− divAj ∂v
∂xj

, (18) can be rewritten as

div(A∇v)− divAj
∂v

∂xj
= ϕ,

and then we have that u and v are two solutions. Then, by Miranda [19, Theorem
1.I] and (17), we deduce that u = v.

We recall next the standard notations for the coincidence set and for the
corresponding free boundary

&u := {x ∈ � : u(x) = 0} , �u := ∂&u ∩�.

For any point x0 ∈ �u, we introduce the family of rescaled functions

ux0,r (x) :=
u(x0 + rx)

r2

for x ∈ 1
r
(� − {x0}). The existence of C1,γ -limits as r ↓ 0 of the latter family is

standard by noting that the rescaled functions satisfy an appropriate PDE and then
uniform W 2,p estimates.

Proposition 2 ([13, Proposition 4.1]) Let u be the unique minimizer of E overKψ,g
and K ⊂ � a compact set. Then, for every x0 ∈ K ∩�u, and for every R > 0, there
exists a constant C = C(n, p,&,R,K, ‖f ‖L∞ , ‖A‖W 1,p ) > 0 such that, for every
r ∈]0, 1

4R dist(K, ∂�)[,

‖ux0,r‖W 2,p(BR)
≤ C. (19)

In particular, (ux0,r )r is equibounded in C1,γ
loc for γ ∈]0, 1− n/p].

Then, up to extracting a subsequence, the rescaled functions have limits in the C1,γ

topology. The functions arising in this process are called blow-up limits.

Corollary 1 (Existence of Blow-Ups) Let u be the unique minimizer of E over
Kψ,g , and let x0 ∈ �u. Then, for every sequence rk ↓ 0, there exists a subsequence

(rkj )j ⊂ (rk)k such that the rescaled functions (ux0,rkj
)j converge in C

1,γ
loc , γ ∈

]0, 1− n/p[, to some function belonging to C1,1−n/p
loc .

Elementary growth conditions of the solution from free boundary points are
easily deduced from Proposition 2 and the condition p > n. In turn, such properties
will be crucial in the derivation of the quasi-monotonicity formulas.

Proposition 3 Let u be the unique minimizer of E over Kψ,g . Then, for all compact
sets K ⊂ �, a constant C = C(n, p,&,K, ‖f ‖L∞ , ‖A‖W 1,p ) > 0 exists, such that
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for all points x0 ∈ �u ∩K , and for all r ∈ ]0, 1
2 dist(K, ∂�)

[
, it holds

‖u‖L∞(Br (x0)) ≤ C r2 , ‖∇u‖L∞(Br (x0),R
n) ≤ C r (20)

and

‖∇2u‖Lp(Br (x0),R
n×n) ≤ C r

n/p. (21)

Finally, we recall the fundamental quadratic detachment property from free
boundary points that entails non-triviality of blow-up limits. It has been established
by Blank and Hao in [1, Theorem 3.9] under the sole boundedness and measurability
assumptions on the matrix field A, hypotheses clearly weaker than (H1).

Lemma 1 ([1, Theorem 3.9]) There exists a positive constant ϑ , with ϑ =
ϑ(n,&, c0, ‖f ‖L∞), such that for every x0 ∈ �u and r ∈]0, 1

2 dist(x0, ∂�)[, it holds

sup
x∈∂Br (x0)

u(x) ≥ ϑ r2.

4 Weiss’ Quasi-Monotonicity Formula: Proof of Theorem 2

In this section, we prove the quasi-monotonicity of Weiss’ energy "u(x0, ·) defined
in (10). The proof is based on equality (9) and Proposition 3.

Proof of Theorem 2 We analyse separately the volume and the boundary terms
appearing in the definition of the Weiss energy in (10). For the sake of notational
simplicity, we write ux0 in place of uL(x0). In what follows, with C we denote a
constant C = C(n, p,&, c0,K, ‖f ‖L∞ , ‖A‖W 1,p ) > 0 that may vary from line to
line.

We start off with the bulk term. The Coarea formula implies for L1-a.e. r ∈
]0, dist(K, ∂�)[

d

dr

( 1

rn+2

∫
Br

(
|∇ux0 |2 + 2ux0

)
dx
)
=

− n+ 2

rn+3

∫
Br

(
|∇ux0 |2 + 2ux0

)
dx + 1

rn+2

∫
∂Br

(
|∇ux0 |2 + 2ux0

)
dx.

(22)
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We use the divergence theorem together with the following Identities:

|∇ux0 |2 =
1

2
div (∇(u2

x0
))− ux0 �ux0 ,

div
(
|∇ux0 |2

x

r

)
= n− 2

r
|∇ux0 |2 − 2�ux0〈∇ux0 ,

x

r
〉 + 2 div

(
〈∇ux0 ,

x

r
〉∇ux0

)
,

div
(
ux0

x

r

)
= ux0

n

r
+ 〈∇ux0 ,

x

r
〉,

to deal with the first, third and fourth addends in (22), respectively. Hence, we can
rewrite the right-hand side of equality (22) as follows:

d

dr

( 1

rn+2

∫
Br

(
|∇ux0 |2 + 2ux0

)
dx
)

= 2

rn+2

∫
Br

(�ux0 − 1)
(

2
ux0

r
− 〈∇ux0 ,

x

r
〉
)
dx

+ 2

rn+2

∫
∂Br

〈∇ux0 ,
x

r
〉2dHn−1 − 4

rn+2

∫
∂Br

ux0

r
〈∇ux0 ,

x

r
〉dHn−1 . (23)

We consider next the boundary term in the expression of "u. By scaling and a
direct calculation, we get

d

dr

( 2

rn+3

∫
∂Br

u2
x0
dHn−1

)
x=ry= 2

∫
∂B1

d

dr

(
ux0(ry)

r2

)2

dHn−1

= 4
∫
∂B1

ux0(ry)

r4

(
〈∇ux0(ry), y〉 − 2

ux0(ry)

r

)
dHn−1

x=ry= 4

rn+2

∫
∂Br

ux0

r
〈∇ux0 ,

x

r
〉 dHn−1 − 8

rn+2

∫
∂Br

u2
x0

r2
dHn−1 . (24)

Then, by combining together equations (23) and (24) and recalling equation (9), we
obtain

"′u(x0, r) = 2

rn+2

∫
Br

fx0

(
2
ux0

r
− 〈∇ux0 ,

x

r
〉
)
dx

+ 2

rn+2

∫
∂Br

(
〈∇ux0 ,

x

r
〉 − 2

ux0

r

)2
dHn−1

= 2

rn+2

∫
Br\&ux0

fx0

(
2
ux0

r
− 〈∇ux0 ,

x

r
〉
)
dx

+ 2

rn+2

∫
∂Br

(
〈∇ux0 ,

x

r
〉 − 2

ux0

r

)2
dHn−1,
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where in the last equality we used the unilateral obstacle condition to deduce that
&ux0

⊆ {∇ux0 = 0}. Therefore, by the growth of u and ∇u from x0 in (20), we
obtain

"′u(x0, r) ≥ − C

rn+1

∫
Br\&ux0

|fx0 | dx +
2

rn+2

∫
∂Br

(
〈∇ux0 ,

x

r
〉 − 2

ux0

r

)2
dHn−1 .

(25)

Next, note that by (H1) and (H3), and by the very definition of fx0 in (9), it follows
that

1

rn+1

∫
Br\&ux0

|fx0 | dx ≤
ωf (r)

c0 r
+ C

r
n(1+ 1

p
)

∫
Br

|∇2ux0 | dx +
C

rn

∫
Br

|divCx0 | dx .
(26)

By (21), we estimate the second addend on the right-hand side of the last inequality
as follows:

1

r
n(1+ 1

p
)

∫
Br

|∇2ux0 | dx ≤
C

r
n(1+ 1

p
)
‖∇2ux0‖Lp(Br ,Rn×n)(ωnrn)1−

1
p ≤ C r

− n
p ,

(27)

and by Hölder inequality, we get for the third addend

1

rn

∫
Br

|divCx0 | dx ≤
1

rn
‖divCx0‖Lp(Br ,Rn) (ωnrn)1−

1
p ≤ C r

− n
p . (28)

Therefore, we conclude from (25)–(28)

"′u(x0, r) ≥ −C ω(r)

r
+ 2

rn+2

∫
∂Br

(
〈∇ux0 ,

x

r
〉 − 2

ux0

r

)2
dHn−1 ,

where ω(r) := ωf (r)+ r
1− n

p .

Remark 2 Recalling that f is Dini-continuous by (H3), the modulus of continuity
ω provided by Theorem 2 is in turn Dini-continuous as p > n.

Remark 3 More generally, the argument in Theorem 2 works for solutions to
second-order elliptic PDEs in non-divergence form of the type

aij (x) uij + bi(x) ui + c(x) u = f (x)χ{u>0} ,

the only difference with the statement of Theorem 2 being that in this framework

ω(r) := ωf (r)+ r
1− n

p + r2 supBr c (cf. [20, Appendix]).
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5 Monneau’s Quasi-Monotonicity Formula: Proof
of Theorem 3

In this section, we prove Monneau’s quasi-monotonicity formula for the L2 distance
on the boundary of uL(x0) from any 2-homogeneous solution to Eq. (14). As for
Theorem 2, the Proof of Theorem 3 uses equality (9) and Proposition 3.

Proof of Theorem 3 For the sake of notational simplicity, we write ux0 rather than
uL(x0) (as in the Proof of Theorem 2).

Set w := ux0 − v, and then arguing as in (24) and by applying the divergence
theorem, we get

d

dr

(
1

rn+3

∫
∂Br

w2 dHn−1
)
= 2

rn+3

∫
∂Br

w
(
〈∇w, x

r
〉 − 2

w

r

)
dHn−1

= 2

rn+3

∫
Br

div (w∇w) dx − 4

rn+4

∫
∂Br

w2 dHn−1

= 2

rn+3

∫
Br

w�w dx + 2

rn+3

∫
Br

|∇w|2 dx − 4

rn+4

∫
∂Br

w2 dHn−1 . (29)

For what the first term on the right-hand side of (29) is concerned, recall that u ∈
W

2,p
loc (�); thus by locality of the weak derivatives, we have that Ln

({∇ux0 = 0} \
{∇2ux0 = 0}) = 0. Being &ux0

⊆ {∇ux0 = 0}, we conclude that �ux0 = 0 Ln-a.e.
in &ux0

, and therefore in view of (9), we infer

w�w = (ux0 − v)(�ux0 − 1) =
{
(ux0 − v) fx0 Ln-a.e. � \&ux0

v Ln-a.e. &ux0
.

Instead, estimating the second and third terms on the right-hand side of (29) thanks
to (14) yields

1

rn+3

∫
Br

|∇w|2 dx − 2

rn+4

∫
∂Br

w2 dHn−1 = 1

rn+3

∫
Br

(
|∇ux0 |2 + |∇v|2

)
dx

− 2

rn+3

∫
Br

div (ux0∇v) dx +
2

rn+3

∫
Br

ux0 dx −
2

rn+4

∫
∂Br

w2 dHn−1

(15)= 1

r

(
"ux0

(x0, r)−"v(x0, r)
)− 2

rn+4

∫
∂Br

ux0

(
〈∇v, x

r
〉 − 2v

)
dx

(13)= 1

r

(
"ux0

(x0, r)−"ux0
(x0, 0+)

)
.
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Then, (29) can be rewritten as

d

dr

(
1

rn+3

∫
∂Br

w2 dHn−1
)
= 2

r

(
"u(x0, r)−"u(x0, 0+)

)

+ 2

rn+3

∫
Br\&ux0

(ux0 − v)fx0 dx +
2

rn+3

∫
Br∩&ux0

v dx.

Inequality (12) in Theorem 2, the growth of the solution u from free boundary points
in (20), the 2-homogeneity and positivity of v yield the conclusion (cf. (26)–(28)):

d

dr

(
1

rn+3

∫
∂Br

w2 dHn−1
)

≥ −C
r

∫ r

0

ω(t)

t
dt − C

rn+1

∫
Br\&ux0

|fx0 | dx = −
C

r

∫ r

0

ω(t)

t
dt

for some C = C(n, p,&, c0,K, ‖f ‖L∞ , ‖A‖W 1,p ) > 0.

6 Free Boundary Analysis: Proof of Theorem 1

Weiss and Monneau’s quasi-monotonicity formulas proved in Sects. 4 and 5,
respectively, are important tools to deduce regularity of free boundaries for classical
obstacle problems for variational energies, both in the quadratic and in the nonlinear
setting (see [11–13, 20, 23] and [21]).

In this section, we improve upon [11, Theorems 4.12 and 4.14] in the quadratic
case weakening the regularity of the coefficients of the relevant energies. This is
possible thanks to the abovementioned new quasi-monotonicity formulas.

In the ensuing proof, we will highlight only the substantial changes, since the
arguments are essentially those given in [11, 13]. In particular, we remark again that
in the quadratic case, the main differences concern the quasi-monotonicity formulas
established for the quantity "u rather than for the natural candidate related to E.

We follow the variational approach by Weiss [23] and Monneau [20] for the free
boundary analysis in Theorem 1.

Proof of Theorem 1 First, recall that we may establish the conclusions for the
function u = w − ψ introduced in Sect. 3. Given this, the only minor change to
be done to the arguments in [11, Section 4] is related to the freezing of the energy,
where the regularity of the coefficients plays a substantial role. More precisely, in
the current framework for all v ∈ W 1,2(B1), we have

∣∣∣∣
∫
B1

(
A(rx)∇v,∇v〉 + 2f (rx)v

)
dx −

∫
B1

(|∇v|2 + 2v
)
dx

∣∣∣∣
≤ (r

1− n
p + ωf (r))

∫
B1

(|∇v|2 + 2v
)
dx.
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We then describe shortly the route to the conclusion. To begin with, recall that the
quasi-monotonicity formulas established in [11, Section 3] are to be substituted
by those in Sects. 4 and 5. Then, the 2-homogeneity of blow-up limits in [11,
Proposition 4.2] now follows from Theorem 2. The quadratic growth of solutions
from free boundary points contained in [11, Lemma 4.3], which implies non-
degeneracy of blow-up limits, is contained in Lemma 1. The classification of
blow-up limits is performed exactly as in [11, Proposition 4.5]. The conclusions
of [11, Lemma 4.8], a result instrumental for the uniqueness of blow-up limits at
regular points, can be obtained with essentially no difference. The proofs of [11,
Propositions 4.10, 4.11, Theorems 4.12, 4.14] remain unchanged. The theses then
follow at once.

7 Free Boundary Regularity for Nonlinear Obstacle
Problems

We are now ready to apply the main result of the chapter to a nonlinear setting
slightly improving the results in [12, Theorem 3.8] for what the regularity of the
obstacle function ψ is concerned. More precisely, we consider for p > n the
nonlinear classical obstacle problem

inf
v∈Kpψ,g

∫
�

F(x, v(x),∇v(x)) dx, (30)

where

K
p
ψ,g := {v ∈ W 1,p(�) : v ≥ ψLn-a.e. on �,Tr(v) = g on ∂�} (31)

and g ∈ W 1−1/p,p(∂�), ψ ≤ g Hn−1-a.e on ∂� (note that K2
ψ,g = Kψ,g).

Furthermore, we assume that

(H5) F ∈ C2,1
loc (�× R× Rn) satisfies

(i) there are c1, c2 > 0, c3 ≥ 0, q ≥ 0 and φ ∈ L1(�) such that for all
z ∈ R, ξ ∈ Rn and for Ln a.e. x ∈ �,

c1|ξ |p − φ(x) ≤ F(x, z, ξ) ≤ c2|ξ |p + c3|z|q + φ(x) ; (32)

(ii) there are & > 0 and φ2 ∈ L
p

p−1 (�) such that for Ln a.e. x ∈ � and for
all (z, ξ) ∈ R× Rn

|∂zF (x, z, ξ)| ∨ |∇ξF (x, z, ξ)| ≤ &(|z|p−1 + |ξ |p−1)+ φ2(x) ;
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(iii) there is * > 0 such that for all x, y ∈ �, z, ζ ∈ R and ξ ∈ Rn

|∇ξF (x, z, ξ)−∇ξF (y, ζ, ξ)| ≤ *(|x − y| + |z− ζ |)(1+ |ξ |p−1);

(H6) F(x, z, ·) is convex w.r.t. to ξ (uniformly in (x, z)), i.e. there exists ν > 1
such that for all x ∈ �, z ∈ R and ξ, η ∈ Rn,

ν−1(1+ |η|)p−2|ξ |2 ≤ ∇2
ξ F (x, z, η)ξ · ξ ≤ ν(1+ |η|)p−2|ξ |2. (33)

(H7) ψ ∈ W 2,p
loc (�).

Thanks to (H5) and (H7), then

h := −div
(∇ξF (x, ψ,∇ψ))+ ∂zF (x, ψ,∇ψ) ∈ Lploc(�). (34)

Remark 4 In case F = F(x, ξ), the structural conditions imposed on F , i.e.
convexity and (32), imply item (ii) in (H5) (cf. [15, Lemma 5.2]). Therefore, besides
uniform convexity, the only nontrivial assumption on F is (iii) in (H5). In turn, the
latter is clearly satisfied in the autonomous case F = F(ξ).

We refer to [12, Remarks 3.10 and 3.11] for further comments on all the
assumptions above and the subsequent (H8)–(H9).

Theorem 1 and a linearization argument introduced in [12], which we resume
briefly in what follows for the readers’ convenience, imply the ensuing result.

Theorem 4 Let � ⊂ Rn be smooth, bounded and open, and p ∈ (n,∞). Assume
F and ψ satisfy (H5)–(H7) above.

Then, the minimum problem in (31) has (at least) a solution in Kpψ,g , and every

solution belongs to C1,γ
loc (�) for some γ ∈ (0, 1).

Let u ∈ Kpψ,g be a solution. If, moreover, ψ satisfies

(H8) for some constant c0 > 0, we have for Ln a.e. on �

h = −div
(∇ξF (x, ψ,∇ψ))+ ∂zF (x, ψ,∇ψ) ≥ c0 > 0;

(H9) for some α ∈ (0, 1),

div
(∇ξF (·, u,∇ψ)) ∈ C0,α

loc (�),

then the free boundary decomposes as ∂{u = ψ} ∩ � = Reg(u) ∪ Sing(u),
where Reg(u) and Sing(u) are called its regular and singular parts, respectively.
Moreover, Reg(u) ∩ Sing(u) = ∅ and

(i) Reg(u) is relatively open in ∂{u = ψ} and, for every point x0 ∈ Reg(u), there
exist r = r(x0) > 0 and β = β(x0) ∈ (0, 1) such that Reg(u) ∩ Br(x0) is a
C1,β submanifold of dimension n− 1;
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(ii) Sing(u) = ∪n−1
k=0Sk , with Sk contained in the union of at most countably many

submanifolds of dimension k and class C1.

To establish Theorem 4, we use the linearization technique proposed in [12,
Lemma 3.12] to prove that a solution to (30) is also the solution to a classical
obstacle problem (locally in �) of the type discussed in Theorem 1. We highlight
the changes needed with respect to the original proof in [12, Lemma 3.12].

Lemma 2 Let (H5)–(H8) hold true, and let u ∈ W
2,p
loc (�) be a solution of (30).

Then, there exists a symmetric matrix field A : �→ Rn×n such that

div
(
A(x)∇(u−ψ)) = (− div(∇ξF (x, u,∇ψ))+ ∂zF (x, u,∇u)

)
χ{u>ψ} (35)

Ln a.e. in � and inD′(�); with A satisfying

(i) A ∈ W 1,p
loc (�,R

n×n),
(ii) for all K ⊂⊂ �, there is λK ≥ 1 for which

λ−1
K |ξ |2 ≤ A(x)ξ · ξ ≤ λK |ξ |2 for all x ∈ K and for all ξ ∈ Rn. (36)

Proof We first note the inclusion {u = ψ} ⊆ {∇u = ∇ψ}, which follows from the
obstacle condition u ≥ ψ on � and from the regularity of u and ψ . Then, we use
[12, Proposition 3.2, Theorem 3.4 and Corollary 3.5] together with assumption (H8)
to rewrite the Euler–Lagrange equation satisfied by minimizers of (30) as

div
(∇ξF (x, u,∇u)−∇ξF (x, u,∇ψ))
= (− div(∇ξF (x, u,∇ψ))+ ∂zF (x, u,∇u)

)
χ{u>ψ}. (37)

On setting w := u− ψ , for all x in �, we have

∇ξF (x, u(x),∇u(x))− ∇ξF (x, u(x),∇ψ(x))

=
( ∫ 1

0
∇2
ξ F
(
x, u(x),∇ψ(x)+ t∇w(x))dt)∇w(x) =: A(x)∇w(x). (38)

Hence, w satisfies (35) by taking into account (37) and (38).
For what item (i) is concerned, first note that being F ∈ C2,1

loc (�× R× Rn) and

u, ψ ∈ W 2,p
loc (�), p > n, then A ∈ L∞loc(�,Mn×n). Furthermore, by the difference

quotient characterization of Sobolev spaces (cf. [2, Proposition 9.3]), A turns out to
be weakly differentiable with |∇A| ∈ Lploc(�).
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Let now K ⊂ Rn be a compact set; then in view of (33) in (H6), we have for all
x ∈ � and for all ξ ∈ K

ν−1(2p−2 ∧ 1)|ξ |2
∫ 1

0

(
1+ |∇ψ(x)+ t∇w(x)|)p−2

dt

≤ A(x)ξ · ξ =
∫ 1

0
∇2
ξ F
(
x, u(x),∇ψ(x)+ t∇w(x))ξ · ξ dt

≤ ‖∇2
ξ F‖L∞(K×BrK×BrK ,Rn×n)|ξ |

2,

with rK := supK(|u| + |∇ψ | + |∇w|). The upper bound in (36) is then established.
The lower bound in (36) is immediate if p ≥ 2 (which is always the case for n ≥ 2).
Instead, if n = 1, we use that u,ψ ∈ C1,γ

loc (�), for some γ ∈ (0, 1), to conclude. ��
We are ready to prove Theorem 4 as a direct consequence of Theorem 1 and

Lemma 2.

Proof The existence of solutions to (30) follows from the direct method of the
calculus of variations thanks to the convexity of ξ 
→ F(x, z, ξ) and to the growth
conditions (32) (cf. [15, Theorem 4.5]).

The assertion that any minimizer u is W
2,p
loc (�) is a consequence of [12,

Proposition 3.2, Theorem 3.4 and Corollary 3.5] and the standing assumptions
(H5)–(H7) on F . Therefore, we use Lemma 2 to conclude that w = u − ψ is the
minimizer of the quadratic classical obstacle problem

E[v] =
∫
�

(
A(x)∇v(x) · ∇v(x)+ 2f (x) v(x)

)
dx

over Kg−ψ,0, with the matrix field A ∈ W 1,p
loc (�,R

n×n) provided there and with

f := −div(∇ξF (x, u,∇ψ))+ ∂zF (x, u,∇u)

(cf. (35)). In addition, note that ∂{w = 0} ∩� = ∂{u = ψ} ∩�.
We claim that we can apply Theorem 1 locally in �. Indeed, recall first that

{u = ψ} ⊆ {∇u = ∇ψ}, being u ≥ ψ on �. Thus, given �′ ⊂⊂ � and any
ε > 0, the set �′ε := {0 ≤ u − ψ < ε} ∩ {|∇(u − ψ)| < ε} ∩ �′ is open
and such that {u = ψ} ∩ �′ ⊂ �′ε in view of the remark above. Moreover, as
h = −div(∇ξF (x, ψ,∇ψ)) + ∂zF (x, ψ,∇ψ) ≥ c0 > 0 (cf. (H8)), using that
F ∈ C2,1

loc (�× R× Rn), it is easy to infer that

f ≥ h− ‖h− f ‖L∞(�′ε) ≥
c0

2
> 0

holds on �′ε for ε sufficiently small (cf. [12, Theorem 3.8]). Furthermore, f ∈
C

0,α∧γ
loc (�) by hypotheses (H7) and (H9) and being u ∈ C

1,γ
loc (�), for some γ ∈
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(0, 1). Therefore, all the assumptions of Theorem 1 are satisfied on the open set �′ε.
All the conclusions then follow at once on �′ε for every �′ ⊂⊂ � and ε > 0. ��

8 Conclusions

We have established quasi-monotonicity formulas of Weiss and Monneau’s type for
quadratic energies having a matrix of coefficients in W 1,p, p > n, and we have
given an application to the corresponding free boundary analysis for the related
classical obstacle problem both in a quadratic and in a nonlinear setting improving
upon the results first established in [12].

As pointed out in Sect. 1, concerning the quasi-monotonicity formulas, the main
difference with the existing literature is related to the monotone quantity itself.
Indeed, rather than considering the natural quadratic energy E associated with the
obstacle problem under study, we may consider the classical Dirichlet energy thanks
to a normalization. In doing this, we have been inspired by Monneau [20, Section 6].
The advantage of this formulation is that the matrix field A is not differentiated in
deriving the quasi-monotonicity formulas contrary to [11] and [13]. Our additional
insight is elementary but crucial: we further exploit the quadratic growth of solutions
from free boundary points in Proposition 3 to establish quasi-monotonicity. In view
of all of this, we are able to weaken the required regularity assumptions on the
matrix field A (cf. (H1)).

As a consequence, we are able to improve upon [12, Theorem 3.8] and relax
slightly the regularity assumptions on the obstacle function ψ involved in nonde-
generate, nonlinear classical obstacle problems. In particular, the optimal C1,1

loc (�)

regularity of solutions, which was crucial there in order to apply the results of [11],
is no longer needed.
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Optimal Feedback for Structures
Controlled by Hydraulic Semi-active
Dampers

Ido Halperin, Grigory Agranovich, and Yuri Ribakov

1 Introduction

Guaranteeing safety of civil structures and their occupants against earthquakes has
been a major concern of researchers and engineers for many years. A contemporary
approach for obtaining satisfactory level of safety is to use structural control in order
to grant to buildings the ability to bear such unwanted dynamic phenomena [9].
Generally speaking, physical realization of structural control is done by actuators
that apply forces to the vibrating structure in real time. There are many types of
such actuators, and each one imposes different design constraints on the control law
[1, 13, 15, 18]. A famous type of devices, known to be effective in many applications,
is the controlled hydraulic damper. It is a type of semi-active device [9, 11] whose
operation principle resembles that of viscous fluid damper [3]. The difference
though is the presence of a valves system that dictates the flow of the fluid through
the hydraulic damper’s orifices [13]. The valves are adjusted electromechanically,
leading to different damping’s properties. Closing the valve increases the damping
and vice versa when it opens. Incorporation of such dampers into a controller
allows it to adjust the damping to a preferred value during the structure’s dynamic
response in real time. This kind of devices has been implemented in several full-
scale structures [10, 13, 14].

Many control devices manifest highly nonlinear behavior. The problem is that
taking into account such nonlinear complexities during the controller design can
establish a significant hurdle for the control designer. A work-around solution is
to separate between the system’s and the damper’s dynamics [21]. This allows for
the nonlinear properties of the device to be considered separately from the system’s
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controller. The latter is designed to generate control signals, mostly optimal by some
sense, that are tracked by the device’s controller. A dilemma that naturally emerges
in such situation is what to do when the system’s controller instructs a signal which
is not feasible by the device’s limitations. A simple and popular approach in such
a case is to use arbitrary clipping [14, 16, 17, 22]. However, the arbitrary clipping
of the control trajectory distorts it and therefore raises a theoretical question on
its contribution to the controlled plant. This issue spurs formulation of optimal
control designs that can account for semi-active devices’ limitations and reduce
the need of arbitrary clipping [4–8]. The present study suggests a new method for
the computation of optimal feedback for a plant controlled by multiple semi-active
controlled hydraulic dampers and subjected to external, a priori known deterministic
excitation input.

2 Background

2.1 The Plant Model

The characteristics of civil structures, in conjunction with common engineering
assumptions, allow to model them by linear approaches, such as dynamic linear
models. Consider a model of an excited structure with lumped masses, linear
damping, linear stiffness, and a controller comprised of multiple actuators. The
equations of motion in the structure’s degrees of freedom (DOFs) are given by the
following second-order initial value problem [19]:

Mz̈(t)+ Cd ż(t)+Kz(t) = w(t)+ e(t); z(0), ż(0),∀t ∈]0, tf [ (1)

This is a linear time invariant (LTI) model, in which M > 0, Cd ≥ 0, and K > 0 are
symmetric mass, damping, and stiffness matrices, respectively,1 z : R → R

nz is a
smooth vector function, which represents the DOF displacements, w : R→ Rnw is a
vector function of the control forces that are generated by the actuators,  ∈ Rnz×nw
is an input matrix that describes how the control force inputs affect the structure’s
DOF, and e : R → R

nz is a vector function that describes the external excitation
force inputs. Here, z(t) is the intersection of z at t . That is, here, z(t) is used to
signify a specific vector in Rnz , obtained at a given t , whereas z refers to the entire
trajectory over ]0, tf [.

When dealing control theory, state-space representation is much more convenient
than (1). Hence, transforming it to the state-space form yields

ẋ(t) =Ax(t)+ Bw(t)+ g(t); x(0),∀t ∈]0, tf [ (2)

1 Recall that M > 0, K > 0 iff zT Mz > 0, zT Kz > 0 for all z ∈ Rnz , z �= 0 and Cd ≥ 0 iff
zT Cdz ≥ 0 for all z ∈ Rnz .
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where

x(t) �
[

z(t)
ż(t)

]
; A �

[
0 I

−M−1K −M−1Cd

]
∈ Rn×n

B �
[

0
M−1

]
∈ Rn×nw ; g(t) �

[
0

e(t)

]

n = 2nz.
Let the control devices, embedded in the structure, be semi-active. Even though

such actuators have many advantages, which is why they garner attention from many
researchers, they impose some constraints on the synthesized control. Basically, the
semi-active dampers set limits on the control force—wi , as follows:

1. wi is always opposed to the relative velocity of the damper’s anchors. This
assures that the damper only consumes mechanical energy from the structure.

2. Physical considerations inhibit the device from generating a control force when
the relative velocity in the damper is zero. In other words, wi must vanish when
there is no motion in the damper.

3. For some semi-active dampers, there is some minimal amount of damping that
the device provides during its motion, even in off-state, i.e., when no damping
effort is exerted.

In addition to these three semi-active constraints, which are related to the traits of
semi-active dampers, many practical implementations require the control force to
be bounded.

In order to include these constraints in a control problem, they should be
quantified. Assume that the relative velocity of the damper’s anchors can be
represented as linear combination of the state variables, i.e., as cix for some
cTi ∈ Rn, and that a linear viscous damping is valid to the given problem [20].
Then, the above limitations are expressed by the following constraints:

C1: wi(t)cix(t) ≤ 0
C2: cix(t) = 0 → wi(t) = 0
C3: |wi(t)| ≥ wi,min(t, x(t)) ≥ 0
C4: wi,max ≥ |wi(t)|
for all t ∈ [0, tf ] and for some wi,min : R× Rn → [0, wi,max]. Note that the lower
bound must satisfy wi,min(t, x(t)) = 0 whenever cix(t) = 0; otherwise C2 and C3
might contradict.

In this work, constraints C1–C4 are adapted to the traits of a certain type of
controlled hydraulic dampers. A control design must account for these constraints,
especially when the optimal control design is sought. Otherwise, the design’s
relevancy to a constrained problem is dubious. The problem is that the inclusion of
such constraints into optimal control design problem can turn it into a very nontrivial
problem. A method that can be used to tackle such a problem is explained below.
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2.2 Krotov’s Method: A Global Method of Successive
Improvements of Control

Krotov’s method is aimed at numerically solving optimal control problems. How-
ever, its utilization depends on the successful formulation of a function’s sequence
with special properties. If such a sequence can be found, it allows to compute
a candidate optimum of the addressed optimal control problem. This subsection
describes elements from Krotov’s theory, relevant to the addressed problem.

Let

ẋ(t) = f(t, x(t),u(t)); x(0),∀t ∈]0, tf [ (3)

be a state equation, 𝒰 ⊆ {R → R
nu} be the set of admissible control trajectories,

and 𝒳 ⊆ {R → R
n} be the set of state trajectories that are reachable from 𝒰

and x(0). The term admissible process refers to the state and control trajectories
(x ∈ 𝒳,u ∈ 𝒰) which satisfy (3). The goal is to find an admissible process that
minimizes the following performance index:

J (x,u) =
tf∫

0

l(t, x(t),u(t))d t + lf (x(t)) (4)

Definition 1 (Improving Sequence) Let {(xk,uk)} be a sequence of admissible
processes, and assume that infx∈𝒳

u∈𝒰
J (x,u) exists. If

J (xk,uk) ≥ J (xk+1,uk+1) (5)

for all k = 1, 2, . . . and

lim
k→∞ J (xk,uk) = inf

x∈𝒳
u∈𝒰

J (x,u) (6)

then {(xk,uk)} is said to be an improving sequence.

Such a sequence is the outcome of Krotov’s method. In order to obtain the improving
sequence, the method successively improves admissible processes, as follows [12].

Theorem 1 Let (xk,uk) be a given admissible process and q be some smooth
function, and define s and sf as

s(t, ξ, ν) �qt (t, ξ)+ qx(t, ξ)f(t, ξ, ν)+ l(t, ξ, ν) (7)

sf (ξ) �lf (ξ)− q(tf , ξ) (8)

where ξ ∈ Rn and ν ∈ Rnu are some vectors.
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If q grants to s and sf the next property:

s(t, xk(t),uk(t)) = max
ξ∈𝒳(t)

s(t, ξ,uk(t))

sf (xk(tf )) = max
ξ∈𝒳(tf )

sf (ξ)
(9)

and if û is a control feedback which satisfies

û(t, ξ) = arg min
ν∈𝒰(t)

s(t, ξ, ν); ∀t ∈ [0, tf ] (10)

then xk+1, which solves

ẋk+1(t) = f(t, xk+1(t), û(t, xk+1(t))); xk+1(0) = x(0),∀t ∈]0, tf [ (11)

and the control trajectory uk+1(t) = û(t, xk+1(t)) satisfy (5).

It follows from this theorem that if for a prescribed (xk,uk), one can find q

such that (9) holds, then it is possible to find an improved admissible process—
(xk+1,uk+1). Such q is denoted as improving function. Solving this problem over
and over yields an improving sequence and hence leads to the solution of the
optimization problem. In his work, Krotov showed that if, at some point, the
processes stop changing, then the obtained process satisfies Pontryagin’s minimum
principle.

Generally speaking, the iterative procedure is summarized in the following
algorithm. Its initialization requires to compute some initial admissible process—
(x0,u0). Afterward, the following steps are iterated for k = {0, 1, 2, . . .} until
convergence is attained:

1. Find qk that grants sk and sf,k the next property:

sk(t, xk(t),uk(t)) = max
ξ∈𝒳(t)

sk(t, ξ,uk(t))

sf,k(xk(tf )) = max
ξ∈𝒳(tf )

sf,k(ξ)

at a given (xk,uk) and for all t in [0, tf ]. Here, sk and sf,k are the functions
obtained by substituting qk into (7) and (8).

2. Find a minimizing feedback

ûk+1(t, x(t)) = arg min
ν∈𝒰(t)

sk(t, x(t), ν)

for all t in [0, tf ]
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3. Propagate into the next improved state and control processes, by solving

ẋk+1(t) =f
(
t, xk+1(t), ûk+1(t, xk+1(t))

)

and setting

uk+1(t) =ûk+1(t, xk+1(t))

As it can be seen from the above, the use of Krotov’s method requires to formulate a
sequence of improving functions—{qk}. In general, the search for these improving
functions can be a significant challenge. As of this writing, there is no known unified
method for their formulation, and they usually differ from one optimal control
problem to another.

3 Main Results

Consider a structure equipped with a set of controlled hydraulic dampers and
subjected to an a priori known external excitation—g : R → R

n. It is assumed
that the control forces follow a linear viscous damping law and that each device
features merely two control phases—on or off. In many works, (2) is used for
modeling such a system in conjunction with a set of limitations, reflecting the
constraints induced by the nature of the semi-active dampers. In this study, however,
a bilinear representation is used, allowing to account for the system’s dynamics and
constraints C1–C4. It will be shown that the alternative representation is equivalent
to that based on (2).

Consider the bilinear state-space equation:

ẋ(t) =
(

A−
nu∑
i=1

biui(t)ci

)
x(t)+ g(t); x(0),∀t ∈]0, tf [ (12)

where nu = nw; cTi ∈ Rn is constructed such that cix is the relative velocity of the
damper’s anchors, positive when the damper elongates, and ui is a control trajectory
that satisfies ui(t) ∈ 𝒰i (t, x), where 𝒰i (x) is the set of control trajectories, which
are admissible in the i-th device . 𝒰i (t, x) is the set of admissible values at some
time—t . It is defined by

𝒰i (t, x) =
{ {di,Di}, Di |cix(t)| ≤ wi,max

di, otherwise
(13)

Here, Di ≥ di ≥ 0 are the damper’s on/off gains. Physically, they are the
maximal and minimal viscous damping coefficients of the i-th control device,
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respectively. When the valve is opened, the device provides a minimal damping
force—wi,min(t, x(t)) = di |cix(t)|.

The following proposition shows that the suggested representation accords to a
model, governed by (2) with constraints C1–C4.

Proposition 1 If (x,u) is an admissible process by means of (12) and (13), and if
di |cix(t)| < wi,max is met, then (x, (−uicix)nui=1) is an admissible process by means
of (2) with constraints C1–C4.

Proof Let (x,u) be an admissible process by means of (12) and (13), and let

ŵi(x(t), t) � −ui(t)cix(t) (14)

It follows that

ŵi(x(t), t)cix(t) = −ui(t)(cix(t))2 ≤ 0 (15)

i.e., C1 is satisfied. The compliance of ŵi with C2 is straightforward from its
definition. C3 is satisfied because

|ŵi(x(t), t)| = ui(t)|cix(t)| ≥ di |cix(t)| = wi,min(t, x(t))

C4 is satisfied by the hypothesis. Hence, (x, ŵ(x)) is admissible by means of (2)
with constraints C1–C4. ��
Therefore, assuming that the problem is defined with large enough wi,max , repre-
sentations (2) and (12) are interchangeable.

The next definition formally states the addressed optimal control problem.

Definition 2 (CBQR) The continuous-time bilinear quadratic regulator (CBQR)
control problem is a search for an optimal and admissible process (x∗,u∗) that
minimizes the quadratic performance index:

J (x,u) =1

2

tf∫

0

x(t)T Qx(t)+
nu∑
i=1

ui(t)
2rid t + 1

2
x(t)T Hx(t) (16)

where 0 ≤ Q,H ∈ Rn×n, and ri > 0 for i = 1, . . . , nu. An admissible process is a
pair (x,u) which satisfies (12) and ui ∈ 𝒰i (x) for i = 1, . . . , nu.

From physical viewpoint, the performance index weighs the states’ response against
the time-varying damping gains. Smaller values of (ri)

nu
i=1 will produce a control law

which tends to produce more frequent closed-valve pulses.
The CBQR problem will be solved here by Krotov’s method. To this end, a class

of improving functions and minimizing feedback, which suit to the CBQR problem
are formulated in the next lemmas.
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Lemma 1 Let q(t, ξ) = 1
2ξT P(t)ξ + p(t)T ξ, where ξ ∈ Rn, P : R → R

n×n is a
continuous, piecewise smooth and symmetric, matrix function, and p : R→ Rn is a
continuous and piecewise smooth, vector function.

Let vi(t, ξ) � bTi (P(t)ξ+p(t))ciξ
ri

. The vector of control laws, (ûi)
nu
i=1, which

minimizes s(t, x(t),u(t)) over {u(t) ∈ 𝒰(t, x)}, is given by

ûi (t, x(t)) =
{

di, Di |cix(t)| > wi,max

arg min
νi∈{di ,Di }

(νi − vi(t, x(t)))2 , otherwise (17)

Proof The partial derivatives of q are

qt (t, ξ) = 1

2
ξT Ṗ(t)ξ+ ṗ(t)T ξ; qx(t, ξ) = ξT P(t)+ p(t)T (18)

Let ν ∈ Rnu . By explicitly writing (7) and rearranging, we obtain

s(t, x(t), ν) =qt (t, x(t))+ qx(t, x(t))f(t, x(t), ν)

+ 1

2

(
x(t)T Qx(t)+

nu∑
i=1

ν2
i ri

)
(19)

=1

2
x(t)T

(
Ṗ(t)+ P(t)A+ AT P(t)+Q

)
x(t)

+ x(t)T (ṗ(t)+ AT p(t)+ P(t)g(t))+ p(t)T g(t)

+ 1

2

nu∑
i=1

riν
2
i − 2riνivi(t, x(t))

(20)

where vi was defined in the lemma. Completing the squares leads to

s(t, x(t), ν) =1

2
x(t)T

(
Ṗ(t)+ P(t)A+ AT P(t)+Q

)
x(t)

+ x(t)T (ṗ(t)+ AT p(t)+ P(t)g(t))+ p(t)T g(t)

+ 1

2

nu∑
i=1

ri(νi − vi(t, x(t)))2 − rivi(t, x(t))2

=f2(t, x(t))+ 1

2

nu∑
i=1

ri (νi − vi(t, x(t)))2

where f2 : R×Rn → R is some function that is independent of νi . It follows that a
minimum of s(t, x(t), ν) over {ν|ν ∈ 𝒰(t, x)} is the minimum of the quadratic sum
with relation to each {νi |νi ∈ 𝒰i (t, x)}, independently. Thereby, the admissible
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minimum is attained at νi = arg minνi∈𝒰i (t,x) (νi − vi(t, x(t)))2 for each device.
This fact is reflected by (17).

Lemma 2 Let (xk,uk) be a given admissible process, and let Pk and pk be the
solutions of

Ṗk(t) =− Pk(t)(A− B diag(uk(t))C)

− (A− B diag(uk(t))C)T Pk(t)−Q
; Pk(tf ) = H (21)

and

ṗk(t) =− (A− B diag(uk(t))C)T pk(t)− Pk(t)g(t); pk(tf ) = 0 (22)

then

qk(t, ξ) =1

2
ξT Pk(t)ξ+ pk(t)T ξ

grants sk and sf,k the property:

sk(t, xk(t),uk(t)) = max
ξ∈𝒳(t)

sk(t, ξ,uk(t))

sf,k(xk(tf )) = max
ξ∈𝒳(tf )

sf,k(ξ)

and thus is an improving function.

Proof Substituting qk into (8) yields

sf,k(x(tf )) = 1

2
x(tf )T Hx(tf )−

(
1

2
x(tf )T Pk(tf )x(tf )+ pk(tf )T x(tf )

)
= 0

for all x(tf ) ∈ 𝒳(tf ). Hence, sf,k(x(tf )) ≤ sf,k(xk(tf )).
By substituting vi into (20) and then reordering terms, sk(t, x(t),uk(t)) becomes

sk(t, x(t),uk(t)) = 1

2
x(t)T

(
Ṗk(t)+ Pk(t) (A− B diag(uk(t))C)

+ (A− B diag(uk(t))C)T Pk(t)+Q
)

x(t)

+ x(t)T
(

ṗk(t)+ (A− B diag(uk(t))C)T pk(t)+ Pk(t)g(t)
)

+ pk(t)T g(t)+ 1

2

nu∑
i=1

ui,k(t)
2ri



214 I. Halperin et al.

As Ṗk(t) and ṗk(t) satisfy (21) and (22), we have

sk(t, x(t),uk(t)) =1

2
x(t)T 0x(t)+ x(t)T 0+ pk(t)T g(t)

=pk(t)T g(t)+ 1

2

nu∑
i=1

ui,k(t)
2ri

Since sk(t, x(t),uk(t)) = sk(t, xk(t),uk(t)), it is obvious that

sk(t, x(t),uk(t))) ≤ sk(t, xk(t),uk(t))

for all x(t).

It can be seen that, if g = 0, then pk(t) = 0, and the problem reduces to the free
vibrations case that is described in [2].

By putting together Sect. 2.2 and the above two lemmas, the sequences {qk} and
{(xk,uk)} can be computed where the second one is an improving sequence. As J
is nonnegative, it has an infimum and {(xk,uk)} gets arbitrarily close to a candidate
optimum.

The resulting algorithm is summarized in Algorithm 1. Its output is an arbitrary
approximation for P∗ and p∗, which define the optimal control law. It should be
noted that, seemingly, the use of absolute value in step (8) of the iterations stage
is theoretically unnecessary. However, it is needed due to practical considerations.
Sometimes, numerical computation errors may cause the algorithm to lose its
monotonicity when J starts converging.

4 Numerical Example

This section demonstrates the seismic response of a controlled structure whose
control trajectories are calculated by the suggested method. The simulations were
carried out numerically by MATLAB computational framework.

The model that is used here is the same one suggested by Spencer et al. [19] as
a control benchmark problem for seismically excited buildings, except for slight
modifications. Here, its response was simulated to El-Centro horizontal ground
acceleration input [3]. Peak ground acceleration was set to 0.3 g.

Nine controlled on/off hydraulic dampers are assumed to be embedded in the
structure. The model’s and the control devices’ configuration are shown in Fig. 1. In
this figure, zi is the i-th DOF and wi is the control force in the adjacent device. The
devices are numbered from 1 to 9 in an increasing order, starting from the device
mounted in the first floor.
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Algorithm 1 CBQR: Algorithm for successive improvement of control process

1: Input: A, B =
[
b1 b2 . . .

]
, C =

[
c1 c2 . . .

]
, g, (di )

nu
i=1, (Di)

nu
i=1, (wi,max)

nu
i=1, x(0), Q ≥ 0,

(ri |ri > 0)nu
i=1, H ≥ 0.

2: Initialization:

(1) Select a convergence tolerance - ε > 0.
(2) Solve:

ẋ0(t) =(A− B diag((di )
nu
i=1)C)x0(t)+ g(t); x(0)

and set u0(t) ≡ (di )
nu
i=1. Solve

Ṗ0(t) =− P0(t)(A− B diag(u0(t)))C)− (A− B diag(u0(t)))C)
T P0(t)−Q; P0(tf ) = H

ṗ0(t) =− (A− B diag(u0(t)))C)
T p0(t)− P0(t)g(t); p0(tf ) = 0

(3) Compute: J0(x0, u0) = 1
2

tf∫
0

x0(t)
T Qx0(t)+

∑nu
i=1 ui,0(t)

2rid t

3: for k = {0, 1, 2, . . .} do
4: Propagate to the improved process by solving:

ẋk+1(t) =(A− B diag(ûk+1(t, xk+1(t)))C)xk+1(t)+ g(t); xk+1(0) = x(0)

where vi,k(t, x(t)) � bT
i
(Pk(t)x(t)+ pk(t))cix(t)/ri and

ûi,k+1(t, x(t)) =
⎧⎨
⎩

di , Di |cix(t)| > wi,max

arg min
νi∈{di ,Di }

(
νi − vi,k(t, x(t))

)2
, otherwise

5: Set uk+1(t) = ûk+1(t, xk+1(t)).
6: Solve:

Ṗk+1(t) =− Pk+1(t)(A− B diag(uk+1(t))C)− (A− B diag(uk+1(t))C)
T Pk+1(t)−Q

ṗk+1(t) =−
(
A− B diag(uk+1(t))C

)T pk+1(t)− Pk+1(t)g(t)

for Pk+1(tf ) = H and pk+1(tf ) = 0.
7: Compute:

J (xk+1, uk+1) =1

2

tf∫

0

xk+1(t)
T Qxk+1(t)+

nu∑
i=1

ui,k+1(t)
2rid t

8: If |J (xk, uk)− J (xk+1, uk+1)| < ε, stop iterating, otherwise—continue.
9: end for

10: return Pk+1, pk+1.
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Fig. 1 Evaluation model and dampers configuration

State-space model was formulated according to (2). The external excitation is

e = γT z̈g , where γ = [1 1 . . . 1
]T ∈ R21 and z̈g is the earthquake input.

The response of three cases was analyzed:

Case 1: There are no control devices.
Case 2: The control law is the clipped optimal control law [13].
Case 3: The control law is a CBQR one.
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The clipped optimal control logic, which was used in case 1, is based on the
prevalent LQR control law. The clipping logic is described in previous studies [13].

In accordance with (14), each control force wi is associated with an equivalent
damping gain—ui . Identical properties were set for all the devices. The on/off gains
were defined as D = 5 × 106 kg/s and d = 2 × 105 kg/s. The maximal allowable
control force was set to wmax = 20× 103 kN.

The i-th rows in the observation matrix C ∈ R9×42 are ci . The state weighting
matrix Q for cases 1 and 2 was chosen such that

x(t)T Qx(t) = 5× 1018

(
z1(t)

2 + z2(t)
2 +

21∑
i=3

(zi(t)− zi−1(t))
2

)

Such a weighting accounts for the inter-story drifts in the structure, which is a
common evaluation quantity in seismic practice [19]. It can be obtained here by
letting Q = 5×1018NT N, where N ∈ Rn×n is defined by (N)i,i = 1 for 1 ≤ i ≤ 21,
(N)i+1,i = −1 for 2 ≤ i ≤ 20, and (N)i,j = 0 in the other elements. Unlike
the states’ weighting, which has the same meaning in cases 1 and 2, the control
weighting for case 1 has different interpretation than that of case 2. In the LQR
method, which underpins case 1, the control weighting relates to the control forces,
whereas in case 2 the CBQR control weighting relates to the equivalent damping
gains. It means that case 1 and case 2 have completely different design goals.
Hence, in order to create a common comparison basis, case 1 control weighting was
chosen such that the Euclidean norm ‖(uc1i )nui=1‖ will be approximately the same
as ‖(uc2i )nui=1‖. To this end, (rc1i )

9
i=1 = (1, 1, . . . , 1) × 4.7 × 105 and (rc2i )

9
i=1 =

(1, 1, . . . , 1)× 10−4 were set for cases 1 and 2, respectively.
The initial state vector was set to zero.
Figure 2 shows the progress of the performance index during 9 design iterations.

A dramatic improvement can be seen after the first iteration. Practically, the
algorithm converged after the second one. Figure 3 shows the inter-story drifts of
the 10th floor during the first 10 s of the response. It can be seen that cases 2 and
3 present pretty close performance with a slight advantage in favor of case 3. The
peak inter-story drifts throughout the building are given in Fig. 4. It can be seen that
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01
6

Fig. 2 Performance index values in each iteration
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Fig. 3 Inter-story drifts in the 10th floor

0 0.5 1 1.5 2
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case 3 attained additional improvement, compared to case 2. The control policies of
cases 2 and 3 resulted with different control signals. Figure 5 shows the first 10 s of
the control signal u1, synthesized by each control law for the first device, located in
the first floor. The variations in the signal express the valve’s open/close commands
in this device, generated in effort to regulate the vibrations. Figure 6 shows the form
of control force w1, generated during the first 10 s in the same device. The sharp
changes reflect moments when the valve’s state was switched in the device.
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Fig. 5 Control signal u1 in (a) case 2 and (b) case 3
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Multi-Displacement Requirement in a
Topology Optimization Algorithm Based
on Non-uniform Rational Basis Spline
Hyper-Surfaces

Marco Montemurro, Thibaut Rodriguez, Paul Le Texier, and Jérôme Pailhès

1 Introduction

During the last 30 years, Topology Optimization (TO) has obtained an increasing
attention to such an extent that, today, it constitutes an important field of research in
both academic and industrial communities. Generally speaking, TO for structural
applications aims at determining the best distribution of the material in a given
domain to satisfy the design requirements (DRs) of the problem at hand. To this
end, a significant amount of studies has been devoted to the development of suitable
algorithms for TO. Since the first pioneering works, using the so-called homogeni-
sation method [1–3] for shape optimization problems in structural mechanics,
important steps forwards have been done. For instance, the Evolutionary Structural
Optimization (ESO) method, introduced in [4], is based on the combination of a
metaheuristic algorithm and the Finite Element (FE) method. An extension of the
ESO method is the well-known Bi-directional Evolutionary Structural Optimization
(BESO) [5]. Later, the BESO approach has been reformulated in [6, 7], by adding
features to obtain mesh-independent results, without checker-board pattern and
by introducing a sensitivity number averaging method to make easy convergence.
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Although new meta-heuristic-based methods are increasingly developed in the
literature to deal with TO problems, the density-based approaches [1, 8, 9], and
the Level-Set Method (LSM) [10, 11], are the most popular and well-established
techniques.

In the framework of the LSM, the topology descriptor is represented by a level-
set function (LSF), whose sign can be conventionally associated to solid or void
zones, while the zero value represents the boundary of the optimized structure [12].
It is noteworthy that the LSM makes use of the mesh of the FE model only to assess
the physical responses involved in the problem formulation. A detailed discussion of
the LSM for TO is available in [10, 11]. Often, the LSF is parametrized on the design
domain by using dedicated basis functions, which can be of different mathematical
nature. The most commonly employed basis functions for TO problems are either
Radial Basis Functions, Spectral Parametrization Functions, and Non-Uniform
Rational Basis Spline (NURBS) entities. A wide discussion on this topic can be
found in [13].

Due to their efficiency and robustness, pioneering density-based methods for
TO [1, 8, 9] are still widely studied and employed in both scientific and industrial
communities. In these methodologies, the topological variable is represented by
a fictitious density function, taking values in the interval [0, 1], which is affected
to each element of the mesh of the FE model to penalize the constitutive tensors
used to describe the physical behaviour of the structure. Lower and upper bounds
of the density function correspond to “void” and “solid” phases, respectively. In
this background, to force convergence towards well-defined topology boundary,
elements characterized by intermediate values of the density function are penalized
during optimization. The Solid Isotropic Material with Penalization (SIMP) scheme
is the most common penalty approach used for TO [8]. The success of the SIMP
method is due to its efficiency and compactness [9]: several applications of this
method can be found in the literature [8]. Moreover, commercial software for
TO, like OptiStruct® [14] and TOSCA® [15], running in Altair-Hyperworks® and
Abaqus® environments, respectively, make use of the SIMP approach. Several
research works make use of the SIMP method to deal with various optimization
problems: compliance minimization, mass minimization, maximization of the first
buckling load or of the first natural frequency, etc. [8]. Nevertheless, two main draw-
backs affect the SIMP method. Firstly, the element-wise description of the topology
does not allow obtaining a smooth topology compatible with computer-aided design
(CAD) software. Accordingly, a time-consuming CAD reconstruction/reassembly
phase must be performed to post-process the results. Secondly, to overcome
the well-known checker-board and mesh dependence effects characterizing the
SIMP approach, problem-dependent distance-based filters [8] or projection methods
[16, 17] must be introduced. Moreover, when the problem formulation includes
several DRs (especially those involving local responses, like failure criteria, local
displacements, damage phenomena, etc.), the optimization constraints on the CAD
reassembled geometry are often not met.



Multi-Displacement Requirement in a NURBS-Based SIMP Algorithm 225

To overcome the aforementioned issues, NURBS entities have been coupled
to the SIMP method. To this end, a general approach has been developed at the
I2M laboratory in Bordeaux [18, 19], which is referred to as NURBS-based SIMP
method in the following. Unlike the classical SIMP approach, the NURBS-based
SIMP method separates the pseudo-density field, describing the topology of the
continuum, from the mesh of the FE model. More precisely, if the dimension of
the TO problem is D, a NURBS hyper-surface of dimension D + 1 is needed
as a topology descriptor. This entity is used to describe the pseudo-density field,
which is projected onto the mesh of the FE model in order to penalize the element
stiffness matrix according to the SIMP method. In this background, the optimisation
variables are both the density at the control points (CPs) and the associated weights
of the NURBS entity. The use of NURBS entities to describe the topology makes
the CAD reconstruction phase a straightforward task for both 2D [20] and 3D [21]
TO problems. More details on the NURBS-based SIMP method are available in
[18, 19, 22–27]. Further research works make use of the isogeometric analysis
(IGA) approach in the framework of TO in order to fully exploit the advantages
related to NURBS entities. In particular, in [28] the IGA approach is coupled
to trimmed spline surfaces to represent topology changes during the optimization
process. Moreover, recently, the Moving Morphable Component (MMC) [29] and
the Moving Morphable Void (MMV) [30] approaches have been proposed for TO
problems.

Regarding the integration of a DR on structural displacements in TO problems,
this DR is often implemented as a constraint in the volume (or mass) minimization
problem. For example, the SIMP method associated with a design space adjustment
technique to consider multi-displacement constraints is used in [31]. However, the
resulting optimized topologies are strongly mesh-dependent and problem-dependent
because the whole process is based on a sort of “repairing algorithm” (i.e. a heuristic
procedure) whose tuning parameters must be changed according to the DRs of the
problem at hand. Mesh-dependent optimized topologies occur also in the analyses
presented in [32, 33], which make use of the SIMP method for solving TO problems
involving requirements on mass/volume and structural displacement as well.

In [34], the element independent nodal density (EIND) method is applied to TO
problems involving a global formulation of the structural displacement constraint.
In this work, the maximum displacement occurring in the structure is approximated
through the p-norm operator and its gradient is evaluated thanks to the adjoint
method. The advantage of the formulation proposed in [34] is that the user does
not need to know a-priori the location where the maximum displacement occurs.
Conversely, since a local DR is transformed into a global one due to the introduction
of the p-norm function, the main drawback of such an approach is that the overall
topology is modified, at each iteration, instead of producing only local modifications
in order to satisfy the constraint on the structural displacement. The independent
continuous mapping (ICM) method is used in [35], where the constraint on the
local displacement is integrated in the TO of multi-material structures with the aim
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of minimizing the structural weight. However, only 2D problems are considered
in [35] and only the displacements of the loaded regions are included in the
problem formulation. A Bi-level Programming Approach for truss TO problems
subject to local displacement DR is presented in [36]. Of course, the DR on
the structural displacement is often integrated in design problems dealing with
compliant mechanisms, firstly introduced in [37]. Compliant mechanisms have also
been analysed in the framework of either robust density-based algorithms for TO,
by adding a suitable filtering technique [38], or within the LSM [39]. An alternative
approach using meta-heuristics for designing compliant mechanisms is proposed in
[31]. The integration of requirements on multiple displacements into the problem
formulation is discussed in [40], as well.

In this work, the theoretical formulation and numerical framework proposed in
[24] to include requirements on structural displacements in the NURBS-based SIMP
method is here extended to the case of multi-displacement DRs. As discussed in
[24], the analytic form of the generic structural displacement requirement (and of
its gradient) for both loaded and non-loaded regions of the design domain is derived
by exploiting the main properties of NURBS entities and the adjoint method. The
multi-displacement DR can be integrated into the problem formulation as either
objective function or constraint function. In particular, the formulation of such a
requirement in the framework of NURBS hyper-surfaces takes advantage of the
local support property of the NURBS blending functions [41], which establishes an
implicit relationship among the pseudo-densities of adjacent elements. Thanks to
this property there is no need of introducing problem-dependent filtering schemes,
unlike the classical SIMP method. Moreover, the optimized topology boundary
is expressed as a native CAD entity which can be directly imported into a CAD
software and exploited for Additive Layer Manufacturing (ALM) production, via a
STEP-NC (STandard for the Exchange of Product model data compliant Numerical
Control) model [42]. The effectiveness of the proposed approach is tested on both
2D and 3D benchmark problems taken from the literature and by comparing the
results to those provided by commercial software.

The chapter is organized as follows. In Sect. 2, the theoretical background of
the NURBS hyper-surfaces is briefly recalled. Section 3 presents the problem
formulation in the framework of the NURBS-based SIMP method for TO including
the multi-displacement DRs, together with its gradient. The effectiveness of the
proposed formulation is tested on both 2D and 3D benchmark problems in Sect. 4.
Moreover, the influence of the NURBS blending functions discrete parameters on
the optimized topology is also investigated. Finally, Sect. 5 ends the paper with some
conclusions and prospects.

Notation
Upper-case bold letters and symbols are used to indicate tensors and matrices, while
lower-case bold letters and symbols indicate column vectors. + (· · · ) denotes the
cardinality of the generic quantity (· · · ), i.e. the number of elements belonging to a
generic set, vector, array, etc.
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2 Fundamentals of NURBS Hyper-Surfaces

The fundamentals of NURBS hyper-surfaces are briefly recalled here below. Curves
and surfaces formulæ, widely discussed in [41], can be easily deduced from
the following relations. A NURBS hyper-surface is a polynomial-based function,
defined over a parametric space (domain), taking values in the NURBS space (co-
domain). Therefore, if N is the dimension of the parametric space and M is the
dimension of the NURBS space, a NURBS entity is defined as h : RN −→ RM . For
example, one scalar parameter (N = 1) can describe both a plane curve (M = 2)
and a 3D curve (M = 3). In the case of a surface, two scalar parameters are
needed (N = 2) together with, of course, three physical coordinates M = 3. The
mathematical formula of a generic NURBS hyper-surface is

h(u1, . . . , uN) =
n1∑
i1=0

· · ·
nN∑
iN=0

Ri1,...,iN (ζ1, . . . , ζN )Pi1,...,iN , (1)

where Ri1,...,iN (ζ1, . . . , ζN ) are the piece-wise rational basis functions, which are
related to the standard NURBS blending functions Nik,pk (ζk), k = 1, . . . , N by
means of the relationship

Ri1,...,iN (ζ1, . . . , ζN ) = ωi1,...,iN
∏N
k=1 Nik,pk (ζk)∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1,...,jN

∏N
k=1 Njk,pk (ζk)

] . (2)

In Eqs. (1) and (2) , h(ζ1, . . . , ζN ) is aM-dimension vector-valued rational function,
(ζ1, . . . , ζN ) are scalar dimensionless parameters defined in the interval [0, 1],
whilst Pi1,...,iN are the CPs. The j -th CP coordinate (X(j)

i1,...,iN
) is stored in the array

X(j) ∈ R(n1+1)×···×(nN+1). The explicit expression of CPs coordinates in RM is:

Pi1,...,iN = {X(1)
i1,...,iN

, . . . , X
(M)
i1,...,iN

},

X(j) ∈ R(n1+1)×···×(nN+1), j = 1, . . . ,M.

(3)

For NURBS surfaces, PT
i1,i2

= {X(1)
i1,i2

, X
(2)
i1,i2

, X
(3)
i1,i2
} and each coordinate is

arranged in a matrix defined in R(n1+1)×(n2+1). The CPs layout is referred as control
polygon for NURBS curves, control net for surfaces and control hyper-net otherwise
[41]. The overall number of CPs constituting the hyper-net is:

nCP :=
N∏
i=1

(ni + 1). (4)
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The generic CP does not actually belong to the NURBS entity but it affects the
NURBS shape by means of its coordinates. A suitable weight ωi1,...,iN is related
to the respective CP Pi1,...,iN . The higher the weight, the more the NURBS entity
is attracted towards the CP. For each parametric direction ζk, k = 1, . . . , N , the
NURBS blending functions are of degree pk and can be defined in a recursive way
as

Nik,0(ζk) =
{

1, if v(k)ik ≤ ζk < v
(k)
ik+1,

0, otherwise,
(5)

Nik,q(ζk) =
ζk − v

(k)
ik

v
(k)
ik+q − v

(k)
ik

Nik,q−1(ζk)+

+ v
(k)
ik+q+1 − ζk

v
(k)
ik+q+1 − v

(k)
ik+1

Nik+1,q−1(ζk), q = 1, . . . , pk,

(6)

where each constitutive blending function is defined on the knot vector

v(k)
T = {0, . . . , 0︸ ︷︷ ︸

pk+1

, v
(k)
pk+1, . . . , v

(k)
mk−pk−1, 1, . . . , 1︸ ︷︷ ︸

pk+1

}, (7)

whose dimension is mk + 1, with

mk = nk + pk + 1. (8)

Each knot vector v(k) is a non-decreasing sequence of real numbers that can be inter-
preted as a discrete collection of values of the related dimensionless parameter uk .
The NURBS blending functions are characterized by several interesting properties:
the interested reader is addressed to [41] for a deeper insight into the matter. Here,
only the local support property is recalled because it is of paramount importance for
the NURBS-based SIMP method for TO [18, 19]:

Ri1,...,iN (u1, . . . , uN) �= 0

if (u1, . . . , uN) ∈
[
v
(1)
i1
, v

(1)
i1+p1+1

[
× · · · ×

[
v
(N)
iN

, v
(N)
iN+pN+1

[
.

(9)

The above formula means that each CP (and the respective weight) affects only a
precise zone of the parametric space, which is denoted as local support or influence
zone.
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3 The NURBS-Based SIMP Method for Topology
Optimization

3.1 Generalities

The details of the formulation of the SIMP method in the NURBS hyper-surfaces
framework are given in [18, 19]. The main features of the method are briefly recalled
here only for 3D TO problems for a fruitful understanding of the study. Consider the
compact Euclidean spaceD ⊂ R3 in a Cartesian orthogonal frame O(x1, x2, x3):

D := {xT = (x1, x2, x3) ∈ R3 : x1 ∈ [0, a1], x2 ∈ [0, a2], x3 ∈ [0, a3]}, (10)

where aj , j = 1, 2, 3 is the reference length of the domain along the j -th axis.
Without loss of generality, the mathematical formulation is here limited, for the
sake of clarity, to the problem of minimizing the compliance of a structure subject
to an inequality constraint on the volume. This problem can be mathematically
well-posed through several techniques, widely discussed in [8]. The aim of TO
is to search for the best distribution of a given “heterogeneous material” (i.e. the
definition of void and material zones) satisfying the requirements of the problem at
hand.

Consider the equilibrium equation (static case) of the FE model in the case of
zero Dirichlet’s boundary conditions (BCs) and non-zero Neumann’s BCs:

Ku = f, u, f ∈ RNDOF, K ∈ RNDOF×NDOF, (11)

where NDOF is the overall number of unknown degrees of freedom (DOFs), K is
the stiffness matrix of the FE model, while f and u are the vectors of the external
generalized nodal forces and displacements, respectively. It is noteworthy that, in
the case of zero Dirichlet’s BCs, the compliance of the structure is defined as:

c := fTu. (12)

In this case, the compliance coincides with the work of external forces (which equals
the work of internal forces of the FE model). In the SIMP approach, the material
domain � ⊆ D is identified by means of a pseudo-density function ρ(x) ∈ [0, 1]
for x ∈ D: ρ(x) = 0 denotes the void phase, whereas ρ(x) = 1 identifies the solid
phase. The density field affects the element stiffness matrix and, accordingly, the
global stiffness matrix of the FE model as follows:

K :=
Ne∑
e=1

ραe LT
eK0

eLe =
Ne∑
e=1

LT
eKeLe,

K0
e,Ke ∈ RNe

DOF×Ne
DOF, Le ∈ RNe

DOF×NDOF,

(13)
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where ρe is the fictitious density computed at the centroid of the generic element
e, whilst α ≥ 1 is a suitable parameter that aims at penalizing the intermediate
densities between 0 and 1, in agreement with the classic SIMP approach (α = 3 in
this study). Ne is the total number of elements and Ne

DOF is the number of DOFs of
the generic element. In Eq. (13), K0

e and Ke are the non-penalized and the penalized
stiffness matrices of element e, expressed in the global reference frame of the FE
model, whilst Le is the connectivity matrix of element e defined as:

ue = Leu, (14)

where ue ∈ RNe
DOF is the vector of nodal displacements for element e. In the context

of the NURBS-based SIMP method, the pseudo-density field for a TO problem of
dimension D is represented through a NURBS hyper-surface of dimension D + 1.
Therefore, for a 3D problem a 4D entity is needed and the pseudo-density field is
defined as:

ρ(ζ1, ζ2, ζ3) =
n1∑
i1=0

n2∑
i2=0

n3∑
i3=0

Ri1,i2,i3(ζ1, ζ2, ζ3)ρi1,i2,i3 . (15)

In Eq. (15), ρ(ζ1, ζ2, ζ3) constitutes the fourth coordinate of the array h of Eq. (1),
while Ri1,i2,i3(ζ1, ζ2, ζ3) are the NURBS rational basis functions of Eq. (2). The
dimensionless parameter ζj can be related to the Cartesian coordinates as follows:

ζj = xj

aj
, j = 1, 2, 3. (16)

As discussed in Sect. 2, different parameters affect the shape of a NURBS entity.
Among them, the pseudo-density at CPs and the associated weights are referred
to as design variables in the following and are collected in the vectors ξ1 and ξ2,
respectively, defined as:

ξT
1 := (ρ0,0,0, · · · , ρn1,n2,n3

)
, ξT

2 := (ω0,0,0, · · · , ωn1,n2,n3

)
, ξ1, ξ2 ∈ RnCP .

(17)
According to the above formula, in the most general case, the overall number of
design variables is nvar = 2nCP. Thus, the classic TO problem of compliance
minimization subject to an inequality constraint on the volume can be formulated
as:

min
ξ1,ξ2

c

cref
, s.t. :

⎧⎪⎪⎨
⎪⎪⎩

Ku = f,
V

Vref
− γ ≤ 0,

ξ1k ∈ [ρmin, ρmax], ξ2k ∈ [ωmin, ωmax],
∀k = 1, . . . , nCP.

(18)

In Eq. (18), Vref is a reference volume, V is the volume of the material domain
�, while γ is the volume fraction. ρmin and ρmax are the lower and upper bounds
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on the pseudo-density at each CP, while ωmin and ωmax are the bounds on the
generic weight. It is noteworthy that the lower bound of the pseudo-density is strictly
positive to prevent any singularity for the solution of the equilibrium problem.
The objective function is divided by a reference compliance, cref, to obtain a
dimensionless value.

The volume of the material domain appearing in Eq. (18) is defined as:

V :=
Ne∑
e=1

ρeVe, (19)

where Ve is the volume of element e. Moreover, in Eq. (18), the linear index k has
been introduced for the sake of compactness. The relation between k and ij , (j =
1, 2, 3) is:

k := 1+ i1 + i2(n1 + 1)+ i3(n1 + 1)(n2 + 1). (20)

The other parameters involved in the definition of the NURBS entity (i.e. degrees,
knot-vector components and number of CPs) are kept constant and their value is set
a-priori at the beginning of the TO analysis.

The computation of the derivatives of both objective and constraint functions
with respect to the design variables is needed to solve problem (18) through
a deterministic algorithm. This task is achieved by exploiting the local support
property of Eq. (9). For instance, the general expressions of the derivatives of both
the compliance and the volume [18, 19] read

∂c

∂ξik
= −α

∑
e∈Sk

ce

ρe

∂ρe

∂ξik
, i = 1, 2, k = 1, · · · , nCP, (21)

∂V

∂ξik
=
∑
e∈Sk

Ve
∂ρe

∂ξik
, i = 1, 2, k = 1, · · · , nCP, (22)

where ce is the compliance of the generic element, whilst Sk is the discretized

version of the local support of Eq. (9), while
∂ρe

∂ξik
reads

∂ρe

∂ξik
=
⎧⎨
⎩
Rek, if i = 1,
Rek

ξ2k
(ξ1k − ρe) , if i = 2.

(23)

The scalar quantity Rek appearing in Eq. (23) is the NURBS rational basis function
of Eq. (2) evaluated at the element centroid.

The NURBS-based SIMP approach is characterized by the following advantages:
(1) the number of design variables is unrelated to the number of elements; (2) the
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optimized topology is unrelated to the quality of the mesh of the FE model; (3) the
local support property implicitly ensures a filtering effect, i.e. each CP (with the
related weight) affects only those elements whose centroid falls in the local support
Sk . This fact is equivalent to the definition of an explicit filter in classic SIMP
approaches, which is introduced to avoid numerical artefacts (such as the well-
known “checker-board effect”). For a deeper insight in the NURBS-based SIMP
method, the reader is addressed to [18, 19].

3.2 Formulation of the Structural Displacement Requirement

Let u be the solution of Eq. (11). Let Id := {i ∈ N | 1 ≤ i ≤ NDOF}, with +Id =
Nd < NDOF, be the set collecting the Nd indices of the DOFs on which a
constraint is imposed. Let index τ denotes the position, in u, of the component of
the displacement along the xj axis of the generic point P , which corresponds to the
DOF numbered τ in the global frame of the FE model. It is convenient to introduce
the vector aτ ∈ RNDOF , whose components are all equal to zero, except the one in
position τ which takes a unit value, i.e.

ar :=
{

0, if r �= τ,

1, if r = τ.
(24)

In this background, the DOF at position 1 ≤ τ ≤ NDOF can be expressed as:

uτ := aT
τ u, τ ∈ Id . (25)

Let uτ,ref > 0 be a suitable reference value of the DOF of index τ . Therefore, the
multi-displacement DR can be expressed as:

g1τ := uτ

uτ,ref
− 1 ≤ 0,∀τ ∈ Id ,

g2τ := − uτ

uτ,ref
− 1 ≤ 0,∀τ ∈ Id .

(26)

The TO problem can be formulated as a Constrained Non-Linear Programming
Problem (CNLPP), where the multi-displacement DR of Eq. (26) is integrated as
a constraint function. The following two CNLPPs are considered in this study:

min
ξ1,ξ2

V

Vref
, s.t. :

⎧⎪⎪⎨
⎪⎪⎩

Ku = f,
gjτ ≤ 0, j = 1, 2, ∀τ ∈ Id ,
ξ1k ∈ [ρmin, ρmax], ξ2k ∈ [ωmin, ωmax],
∀k = 1, . . . , nCP.

(27)
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min
ξ1,ξ2

c

cref
, s.t. :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ku = f,
V

Vref
− γ ≤ 0,

gjτ ≤ 0, j = 1, 2, ∀τ ∈ Id ,
ξ1k ∈ [ρmin, ρmax], ξ2k ∈ [ωmin, ωmax],
∀k = 1, . . . , nCP.

(28)

Of course, problem (28) is well-posed if and only if the set Id does not include all
the DOFs where external forces are applied (otherwise it constitutes a measure of
the compliance of the continuum, giving, thus, a redundant information because the
compliance is already integrated as objective function in the problem formulation).

In order to solve problems (27) and (28) by means of a suitable deterministic
algorithm, the gradient of the physical responses with respect to the design variables
ξ1 and ξ2 must be computed. The gradient of the compliance and that of the
volume are given in Eqs. (21) and (22), respectively. Conversely, the derivation of
the analytical expression of the gradient of the multi-displacement DR needs the use
of the NURBS local support property of Eq. (9) and the use of the adjoint method
[43]. To this end, consider the following proposition.

Proposition 3.1 Consider a deformable isotropic medium subject to given BCs.
Under the hypothesis that the vector of the external forces f does not depend on the

pseudo-density field, i.e.
∂f
∂ξik

= 0, (i = 1, 2, k = 1, . . . , nCP) the gradient of the

multi-displacement constraint of Eq. (26) reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂g1τ

∂ξik
=
∑
e∈Sk

α

ρe

∂ρe

∂ξik
ηT
τefe,

Kητ = −
1

uτ,ref
aτ ,

∂g2τ

∂ξik
= −∂g1τ

∂ξik
,

i = 1, 2, k = 1, . . . , nCP, ∀τ ∈ Id ,

(29)

where fe and ητe are defined as:

fe := Keue, (30)

ητe := Leητ . (31)

Remark 3.1 The second formula in Eq. (29) represents the so-called adjoint system,
whose solution is the adjoint vector ητ .

The proof of Proposition 3.1 is provided here below.
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Proof Inasmuch as Eq. (11) holds, the first multi-displacement constraint of
Eq. (26) can be written as:

g1τ = uτ

uτ,ref
− 1+ ηT

τ (Ku− f) , (32)

where ητ �= 0 is the arbitrary adjoint vector. Under the hypothesis that
∂f
∂ξik

= 0,

and by considering Eq. (25), by differentiating Eq. (32) one gets:

∂g1τ

∂ξik
=
(

1

uτ,ref
aT
τ + ηT

τ K
)

∂u
∂ξik

+ ηT
τ

∂K
∂ξik

u. (33)

The adjoint vector ητ is chosen in such a way that the term multiplying
∂u
∂ξik

vanishes from Eq. (33), i.e. ητ is the solution of the following adjoint system

Kητ = −
1

uτ,ref
aτ . (34)

Accordingly, Eq. (33) simplifies to:

∂g1τ

∂ξik
= ηT

τ

∂K
∂ξik

u. (35)

The above formula can be further simplified by considering the expression of matrix
K of Eq. (13) as well as the expressions of vectors ue, fe, and ητe provided in
Eqs. (14), (30), and (31), respectively:

∂g1τ

∂ξik
= ηT

τ

Ne∑
e=1

α

ρe

∂ρe

∂ξik
ραe LT

eK0
eLeu =

∑
e∈Sk

α

ρe

∂ρe

∂ξik
ηT
τefe. (36)

Of course, the gradient of g2τ is equal to the opposite of the gradient of g1τ . This
last statement concludes the proof.

4 Numerical Results

In this section, the effectiveness of the proposed method is proven through 2D and
3D benchmark problems. For each case, the pseudo-density field and the optimum
geometry are shown. For each CNLPP, lower and upper bounds of design variables
are set as: ρmin = 10−3, ρmax = 1; ωmin = 0.5, ρmax = 10. Moreover, the non-
trivial knot-vector’s components in Eq. (7) have been uniformly distributed in the
interval [0, 1] for both 2D and 3D problems.
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Table 1 GC-MMA
algorithm parameters

Parameter Value

move 0.1

albefa 0.1

Stop criterion Value

Maximum n. of function evaluations 100× nvar

Maximum n. of iterationsa 100 / 200

Tolerance on objective function 10−6

Tolerance on constraints 10−6

Tolerance on input variables change 10−6

Tolerance on Karush–Kuhn–Tucker norm 10−6

a
The maximum number of iterations varies depending on
the problem formulation.

The results presented in this section are obtained by means of the Python version
of the code SANTO (SIMP And NUBRS for Topology Optimization) developed at
the I2M laboratory in Bordeaux [18, 19]. This version exhibits an easily operable
code, with a structure adapted to work with any FE code. In this study, the
FE commercial code ANSYS is utilized to build the FE models and assess the
mechanical responses of the structure, i.e. structural displacements and compliance.
Moreover, the Globally-Convergent Method of Moving Asymptotes (GC-MMA)
algorithm [44] has been used to perform the solution search for each CNLPP. The
parameters tuning the behaviour of the GC-MMA algorithm as well as the user-
defined convergence criteria are listed in Table 1.

Post-processing operations are performed in ParaView® environment for the
visualization of the optimized geometry for 2D and 3D cases, and Catia V5® for
obtaining the CAD model in 2D cases.

As far as numerical tests are concerned, the following aspects are considered:
(1) the influence of the geometric entity, i.e. B-spline or NURBS, used to describe
the pseudo-density field on the optimized topology is studied for 2D and 3D cases;
(2) the sensitivity of the optimized topology to the integer parameters involved in
the definition of the NURBS entity, i.e. blending functions degree and CPs number,
is investigated; (3) different TO problems are carried out to show the versatility of
the NURBS-based SIMP approach in 2D and 3D cases; (4) for some benchmarks,
results are compared to those provided by the classic SIMP method implemented
within the TOSCA module [15] of the commercial FE software ABAQUS/CAE®.

4.1 2D Benchmark Problems

4.1.1 Description of 2D Benchmark Problems

The proposed 2D benchmark problems have been chosen to give an idea of the
capabilities of the NURBS-based SIMP approach when dealing with different
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CNLPPs. Depending on the problem formulation, the reference volume Vref is the
overall volume of the considered structure. cref is the compliance evaluated for the
starting solution and uτ,ref is the reference value of the displacement at the point of
interest P along the xj axis.

The first benchmark problem (BK1-2D) is illustrated in Fig. 1a and deals with
a 2D cantilever plate made of a material with a linear elastic isotropic behaviour
(E = 110000 MPa and ν = 0.33) with the following size: a1 = 240 mm, a2 = 160
mm and a thickness t = 2 mm. The structure is clamped at x1 = 0 mm and a point
force FA = 500 N, is applied at point A (as shown in Fig. 1a) along the x2 axis. The
FE model is made of 60 × 40 PLANE182 elements (plane stress hypothesis with
thickness, 4 nodes, 2 DOFs per node).

For BK1-2D the CNLPP formulation of Eq. (27) is enhanced by adding a
symmetry constraint: the optimized topology must be symmetric with respect to
the plane x2 = a2/2. Moreover, an extensive numerical campaign of tests has been
performed on BK1-2D. The aim of this campaign is to study the sensitivity of the
optimized topology to the integer parameters involved in the definition of B-spline
and NURBS entities.

The second benchmark problem (BK2-2D), taken from [6], deals with the
topology optimization of a 2D roller support, as shown in Fig. 1b. The geometry of
BK2-2D is characterized by the following dimensions: a1 = 100 mm, a2 = 50 mm,
t = 1 mm. The constitutive material has a linear elastic isotropic behaviour with
the following properties: E = 1000 MPa and ν = 0.33. As illustrated in Fig. 1b,
the force is applied at point C along the x2 axis and its value is FC = 100 N. The
structure is clamped at x1 = x2 = 0 mm, whilst u2 = 0 at point (x1 = 100, x2 = 0)
mm. The FE model is made of 100 × 100 PLANE182 elements (plane stress
hypothesis). In this case, three Non-Design Regions (NDRs) are considered in the
neighbourhood of the zones where BCs are applied (grey colour in Fig. 1b). The
three NDRs are defined as follows:

Fig. 1 Geometry and boundary conditions for benchmarks problems (a) BK1-2D and (b) BK2-2D
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• NDR1 = {(x1, x2) | x1 ∈ [0, 3] mm, x2 ∈ [0, 3] mm};
• NDR2 = {(x1, x2) | x1 ∈ [47, 53] mm, x2 ∈ [47, 50] mm};
• NDR3 = {(x1, x2) | x1 ∈ [97, 100] mm, x2 ∈ [0, 3] mm}.
CNLPPs of Eqs. (18) and (28) are considered for BK2-2D. The displacement is
measured at point D along the x1 axis and a symmetry constraint with respect to

plane x1 = a1

2
is added to the problem formulation.

The third benchmark problem (BK3-2D) deals with the topology optimization of
a 2D square domain, as shown in Fig. 2. The geometry of BK3-2D is characterized
by the following dimensions: a1 = a2 = 100 mm, t = 1 mm. The constitutive
material has a linear elastic isotropic behaviour with the following properties: E =
72000 MPa and ν = 0.33. As shown in Fig. 2, the force is applied at point P along
the x2 axis and its value is FP = 1000 N. The structure is subject to the following
BCs: u1 = 0 at x1 = x2 = 0 mm (point M) and at x1 = x2 = 100 mm (point
O), u2 = 0 at (x1 = 0, x2 = 100) mm (point N). The FE model is made of 50 ×
50 PLANE182 elements (plane stress hypothesis). In this case, four Non-Design
Regions (NDRs) made of four elements are considered around points M, N, O, and
P, as illustrated through grey colour in Fig. 2. CNLPPs of Eqs. (18) and (28) are
considered for BK3-2D. The reference value of the displacement is measured at
points N and O along x1 and x2 axes, respectively.

Fig. 2 Geometry and
boundary conditions for
benchmark problem BK3-2D
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4.1.2 Sensitivity of the Optimized Topology to the B-Spline and NURBS
Entities Integer Parameters

Problem (27) is solved for BK1-2D for several values of blending functions degrees
pj , (j = 1, 2) and numbers of CPs nCP. The maximum number of iterations is
Nmax

iter = 100. The reference value of the displacement for problem (27) is uA2,ref =
0.2 mm. Degrees and number of CPs are chosen as follows:

• pj = 2, 3, 4;
• nCP = (n1 + 1)× (n2 + 1) = 30× 20, 40× 30, 50× 36.

The ratio of CPs to FE mesh elements number Ne is given in Table 2 along x1
and x2 axes. Results are provided in terms of volume fraction V/Vref and number of
iterations Niter for B-spline and NURBS entities in Figs. 3 and 4, respectively. For
each solution the requirement on the displacement is always satisfied. In each case,
Vref = 76800 mm3 which corresponds to the volume of the whole domain.

The following remarks can be inferred from the analysis of results.

1. The greater the number of CPs (for a given degree) or the smaller the degree (for
a given number of CPs) the smaller the objective function value.

2. The CPs number and basis functions degree along each direction affect the size of
the local support, see Eq. (9). As far as this point is concerned, the same remarks
as in [18, 19] can be made: the higher the degree, the greater the local support,
thus each CP affects a wider region of the mesh during optimization. The higher
the degree, the worse the solution in terms of objective function because thinner
topological branches disappear due to the local support size. Conversely, the
higher the degree, the smoother the topology boundary after CAD reconstruction.
In the same way, the higher the number of CPs, the smaller the local support.
Therefore, as a general rule, a high number of CPs and a small degree should
be considered if performances are of paramount importance. High degree and/or
small number of CPs should be considered if the smoothness of the boundary
is privileged and if small topological branches must be avoided (especially for
manufacturing purposes). As discussed in [22], the local support of the NURBS
blending functions constitutes an implicit filter zone which enforces a minimum
length scale in the final optimized topologies.

Table 2 Sensitivity analysis
for benchmark
BK1-2D—ratio of the CPs
number to the elements
number

Mesh and control net x1-axis x2-axis Total

Ne 60 40 2400

nCP 30 20 600

nCP/Ne 50% 50% 25%

nCP 40 30 1200

nCP/Ne 67% 75% 50%

nCP 50 36 1800

nCP/Ne 83% 90% 75%
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(a) 1 = 2 = 2, CP = 600,

ref
= 0.388, iter = 44

(b) 1 = 2 = 2, CP = 1200,

ref
= 0.356, iter = 90

(c) 1 = 2 = 2, CP = 1800,

ref
= 0.339, iter = 43

(d) 1 = 2 = 3, CP = 600,

ref
= 0.411, iter = 67

(e) 1 = 2 = 3, CP = 1200,

ref
= 0.367, iter = 51

(f) 1 = 2 = 3, CP = 1800,

ref
= 0.350, iter = 62

(g) 1 = 2 = 4, CP = 600,

ref
= 0.425, iter = 55

(h) 1 = 2 = 4, CP = 1200,

ref
= 0.379, iter = 100

(i) 1 = 2 = 4, CP = 1800,

ref
= 0.360, iter = 41

(j) Density color-map

Fig. 3 Sensitivity analysis for benchmark BK1-2D—B-Spline solutions. (a) p1 = p2 = 2, nCP =
600,

V

Vref
= 0.388, Niter = 44. (b) p1 = p2 = 2, nCP = 1200,

V

Vref
= 0.356, Niter = 90. (c)

p1 = p2 = 2, nCP = 1800,
V

Vref
= 0.339,Niter = 43. (d) p1 = p2 = 3, nCP = 600,

V

Vref
= 0.411,

Niter = 67. (e) p1 = p2 = 3, nCP = 1200,
V

Vref
= 0.367, Niter = 51. (f) p1 = p2 = 3,

nCP = 1800,
V

Vref
= 0.350, Niter = 62. (g) p1 = p2 = 4, nCP = 600,

V

Vref
= 0.425, Niter = 55.

(h) p1 = p2 = 4, nCP = 1200,
V

Vref
= 0.379, Niter = 100. (i) p1 = p2 = 4, nCP = 1800,

V

Vref
= 0.360, Niter = 41. (j) Density colour-map
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(a) 1 = 2 = 2, CP = 600,

ref
= 0.345, iter = 100

(b) 1 = 2 = 2, CP = 1200,

ref
= 0.322, iter = 100

(c) 1 = 2 = 2, CP = 1800,

ref
= 0.312, iter = 100

(d) 1 = 2 = 3, CP = 600,

ref
= 0.360, iter = 100

(e) 1 = 2 = 3, CP = 1200,

ref
= 0.329, iter = 77

(f) 1 = 2 = 3, CP = 1800,

ref
= 0.319, iter = 75

(g) 1 = 2 = 4, CP = 600,

ref
= 0.376, iter = 100

(h) 1 = 2 = 4, CP = 1200,

ref
= 0.338, iter = 89

(i) 1 = 2 = 4, CP = 1800,

ref
= 0.325, iter = 78

(j) Density color-map

Fig. 4 Sensitivity analysis for benchmark BK1-2D—NURBS solutions. (a) p1 = p2 = 2, nCP =
600,

V

Vref
= 0.345, Niter = 100. (b) p1 = p2 = 2, nCP = 1200,

V

Vref
= 0.322, Niter = 100.

(c) p1 = p2 = 2, nCP = 1800,
V

Vref
= 0.312, Niter = 100. (d) p1 = p2 = 3, nCP = 600,

V

Vref
= 0.360, Niter = 100. (e) p1 = p2 = 3, nCP = 1200,

V

Vref
= 0.329, Niter = 77. (f)

p1 = p2 = 3, nCP = 1800,
V

Vref
= 0.319,Niter = 75. (g) p1 = p2 = 4, nCP = 600,

V

Vref
= 0.376,

Niter = 100. (h) p1 = p2 = 4, nCP = 1200,
V

Vref
= 0.338, Niter = 89. (i) p1 = p2 = 4,

nCP = 1800,
V

Vref
= 0.325, Niter = 78. (j) Density color-map
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Fig. 5 CAD model of the optimized topology, for BK1-2D, obtained with a B-spline surface (a)–
(b) and a NURBS surface (c)–(d), for the same integer parameters: (n1+ 1)× (n2+ 1) = 50× 36
and p1 = p2 = 2

3. Fig. 5 illustrates the outstanding advantage provided by the NURBS-based SIMP
method. It consists in the possibility to export a CAD-compatible entity in order
to rebuild in a straightforward way the boundary of the optimized 2D structure.
This task can be achieved by evaluating a threshold value for the density
function meeting the optimization constraint, i.e. the displacement constraint
(this operation is automatically done by the SANTO algorithm at the end of the
optimization process).

4. Optimized topologies obtained using NURBS surfaces are characterized by
values of the objective function lower than those resulting from B-spline surfaces
when considering the same number of CPs and the same degrees, as shown in
Fig. 6a. In particular, from the analysis of Figs. 3 and 4, it appears that NURBS
topologies are smoother than B-spline ones for each case.

5. Fig. 6 shows the projected and the reconstructed volume fraction for both

B-spline and NURBS solutions. The projected volume fraction
V

Vref
is that

evaluated by means of the formula in Eq. (19), whilst the reconstructed volume
fraction is the true volume fraction obtained after CAD reconstruction. As it
can be easily inferred from Fig. 6a, b, the true volume fraction is always lower
than the projected one since the threshold plane is evaluated in order to meet
the requirement on the displacement, after the cutting operation. In fact, as a
post-processing operation, the threshold value of the pseudo-density field ρth is
evaluated by means of the secant method to satisfy the DR on the displacement:
the value of this constraint before and after CAD reconstruction is shown in
Fig. 6c, d, respectively.

4.1.3 Comparison Between SIMP and NURBS-Based SIMP Methods

The benchmark problem BK1-2D has been solved by using the TOSCA® module of
the commercial FE software ABAQUS/CAE® in order to compare results provided
by the classical SIMP method and those proposed in this work.
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Fig. 6 BK1-2D—projected and reconstructed volume fraction of (a) B-spline and (b) NURBS
solutions—displacement value after reconstruction for (c) B-spline and (d) NURBS solutions

Problem (27) has been run with SIMP method under identical BCs and load.
The FE model is made of 60 × 40 CPS4 elements (plane stress hypothesis with
thickness), with 4 nodes and 2 DOFs per node. A minimum dimension of the
topological branches is set as additional constraint in order to satisfy the minimum
length scale of the implicit TO filter behind the NURBS-based SIMP method (as
detailed in [22]), when considering a NURBS surface with (n1 + 1) × (n2 + 1) =
50 × 36 CPs and p1 = p2 = 2. Following the procedure detailed in [22], the
minimum length scale is 5 mm and this corresponds to the minimum member
size requirement to be imposed in TOSCA®. A symmetry condition is added with
respect to the plane located at x2 = a2/2, thus the design variables number is
reduced to 1200.

The topology and the material distribution of the optimized solution are given
in Fig. 7. At a first glance, the optimized topology of Fig. 7a is quite different from
those illustrated in Figs. 3 and 4 for (n1+1)× (n2+1) = 50×36 configuration and
p1 = p2 = 2. Instead of two thin branches, the TOSCA® solution is characterized
by two coarse branches and four thinner branches connecting them to the outer
boundary of the structure. As far as the pseudo-density field is concerned, the
solution provided by TOSCA is characterized by the well-known checker-board
effect in the region where the transition between the two thick branches and the four
smaller ones occurs. Moreover, from Fig. 7, it is evident that the optimized topology
provided by TOSCA does not satisfy the requirement on the minimum length scale
(the four thinner branches have a thickness lower than 5 mm).
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Fig. 7 Solution for Benchmark BK1-2D provided by SIMP method implemented in TOSCA®—
(a) Optimized topology and (b) corresponding density distribution in FE model

The projected volume fraction provided by TOSCA® is
V

Vref
= 0.310 at the final

iteration Niter = 58. When looking at the results of Fig. 6a, all B-spline and NURBS
solutions produce higher values of the projected volume fraction. However, due to
the checker-board pattern affecting the optimized solution provided by TOSCA, the
reconstructed volume fraction is higher than the projected one. The import of the
reconstructed topology in a CAD software (Catia V5® in this case) confirms this
fact: the reconstructed optimized topology found by TOSCA is characterized by
V

Vref
= 0.386 which is considerably higher than that characterizing both B-spline

and NURBS optimized topologies (see Fig. 6). Finally, the whole optimization
process requires a computational time (CT) of approximately 20 and 30 min for
B-spline and NURBS solutions, respectively, when four cores of a machine with
an Intel Xeon E5-2697v2 processor (2.70–3.50 GHz) are dedicated to the ANSYS
solver. Conversely, about 15 min are required for the optimization performed by
TOSCA.

4.1.4 Effect of the Structural Displacement Requirement on a Non-loaded
Region

The benchmark problem BK2-2D is used to show the influence of the displacement
requirement over a non-loaded region on the final optimized topology. To this
purpose, both problems (18) and (28) are solved for BK2-2D. In both cases, the
CNLPP is solved by using: (a) a B-spline surface characterized by nCP = 80 × 80
CPs and pj = 2, 4, and (b) a NURBS surface characterized by nCP = 60× 60 CPs
and pj = 2, 4. The maximum number of iterations is Nmax

iter = 200.
Firstly, problem (18) is solved by considering a volume fraction γ = 0.3 (with

Vref = 5000 mm3). The optimized topology, for both B-spline and NURBS surfaces,
is illustrated in Fig. 8: in the caption of each figure, the values of compliance, volume
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(a) = 2, = 137.51 Nmm,
ref

= 0.3,

D1 = 1.48 mm, iter = 183

(b) = 4, = 141.23 Nmm,
ref

= 0.3,

D1 = 1.47 mm, iter = 200

(c) = 2, = 132.81 Nmm,
ref

= 0.3,

D1 = 1.44 mm, iter = 200
(d) = 4, = 132.95 Nmm,

ref
= 0.3,

D1 = 1.44 mm, iter = 200

(e) Density color-map

Fig. 8 BK2-2D—optimized solutions of problem (18) when using (a), (b) a B-spline surface and
(c), (d) a NURBS surface

fraction, displacement at point D along x1 axis and number of iterations to achieve
convergence are also reported.

Secondly, problem (28) is solved by considering the same requirement on the
volume fraction γ as in problem (18) and by setting a suitable reference value for
displacement at point D along x1 axis, i.e. uD1,ref = 1 mm. The optimized topologies
for both B-spline and NURBS solutions are shown in Fig. 9, wherein the mechanical
responses (in terms of compliance, volume fraction and displacement at point D) of
each optimized configuration are reported in the caption of each image.

Some interesting remarks can be inferred from the analysis of these results. As
expected, the optimized topologies, solutions of problem (18), are characterized by a
compliance lower than their counterparts’ solutions of problem (28). The constraint
on the volume fraction is met for both problems. Indeed, the requirement on the
structural displacement at point D is the main cause at the basis of the differences
observed in the optimized topologies.

Firstly, the presence of such a requirement enforces major modifications in the
optimized topology. A quick glance to Figs. 8 and 9 suffices to understand this point.
In particular, small horizontal/oblique topological branches appear in the solution of
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(a) = 2, = 155.13 Nmm,
ref

= 0.3,

D1 = 1.00 mm, iter = 200
(b) = 4, = 162.60 Nmm,

ref
= 0.3,

D1 = 1.00 mm, iter = 200

(c) = 2, = 150.59 Nmm,
ref

= 0.3,

D1 = 1.00 mm, iter = 200
(d) = 4, = 154.81 Nmm,

ref
= 0.3,

D1 = 1.00 mm, iter = 200

(e) Density color-map

Fig. 9 BK2-2D—optimized solutions of problem (28) when using (a), (b) a B-spline surface and
(c), (d) a NURBS surface

problem (28) to increase the overall stiffness along the x1 axis in order to satisfy the
requirement on the displacement at point D.

Secondly, NURBS solution provides better performances in term of compliance
at the end of optimization process for problem (18) and (28) with less CPs but more
optimization variables (because of the presence of NURBS weights).

Thirdly, it is noteworthy that for problem (28) the GC-MMA algorithm stops
because the criterion on the maximum number of iterations is met for both B-spline
and NURBS solutions, as it can be inferred from Fig. 9.

Concerning the threshold plane for the construction of the CAD model, it is
automatically calculated in order to respect both constraints, i.e. volume fraction
and displacement. The displacement field along x1 axis for the B-spline solutions of
problem (28), obtained as a result of a FE analysis on the topology resulting from
the CAD reassembly operation, is illustrated in Fig. 10. The volume fraction and the
displacement along x1 axis at point D of the optimized topology are reported in the
figure caption.
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(a)
ref

= 0.299 mm3, 1 = 0.8910 mm (b)
ref

= 0.299 mm3, 1 = 0.9943 mm

Fig. 10 BK2-2D—displacement field along x1 axis after CAD reassembly for the optimized
solutions of problem (28) when using a B-spline surface with (a) pj = 2 and (b) pj = 4

4.1.5 Multi-Displacement Requirement on a Non-loaded Region

The benchmark problem BK3-2D aims at showing the influence of the displacement
requirement, imposed on multiple non-loaded regions, on the final optimized
topology. To this purpose, four different problems are considered:

• Problem (18) is solved by considering a volume fraction γ = 0.4 (with Vref =
10000 mm3);

• Problem (28) is solved by considering the same volume fraction of problem (18)
and by introducing a constraint on the displacement component along x2 axis at
point O, uO2,ref = −0.5 mm;

• Problem (28) is solved by considering the same volume fraction of problem (18)
and by introducing a constraint on the displacement component along x1 axis at
point N, uN1,ref = 0.25 mm;

• Problem (28) is solved by considering the same volume fraction of problem (18)
and by introducing a constraint on both the displacement components at point N
and O, i.e. uN1,ref = 0.25 mm and uO2,ref = −0.5 mm.

Each CNLPP is solved by using: (a) a B-spline surface characterized by nCP =
46×46 CPs and pj = 2, and (b) a NURBS surface characterized by nCP = 32×32
CPs and pj = 2. The maximum number of iterations is Nmax

iter = 200.
The optimized topology, for both B-spline and NURBS surfaces, are illustrated

in Figs. 11 and 12, respectively. In the caption of each figure, the problem type, the
number of iterations as well as the values of compliance, volume, and displacement
components at point N and O are also indicated.

From the analysis of the results, one can infer the following remarks. Firstly,
unlike the results found for BK2-2D, the compliance of the optimized topologies
solution of problem (28) is lower than the compliance of the optimal solution
of problem (18) in the case of BK3-2D, for both B-spline and NURBS surfaces.
This is an unexpected result that can be justified through the non-convexity of the
objective function of problems (18) and (28). Probably, in the case of BK3-2D,
adding constraints on the displacement of non-loaded regions allows the GC-
MMA algorithm to better explore the design space in order to find a feasible local
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(a) = 906.19 Nmm,
ref

= 0.4,

N1 = 0.30 mm, O2 = −0.60 mm, iter = 64

(b) = 875.27 Nmm,
ref

= 0.4,

N1 = 0.29 mm, O2 = −0.50 mm,
iter = 200

(c) = 818.27 Nmm,
ref

= 0.4,

N1 = 0.25 mm, O2 = −0.55 mm, iter = 90

(d) = 828.23 Nmm,
ref

= 0.4,

N1 = 0.25 mm, O2 = −0.50 mm, iter = 69

(e) Density color-map

Fig. 11 BK3-2D—optimized B-spline solutions of (a) problem (18), and of problem (28) with a
constraint on (b) uO2, (c) uN1, (d) uO2 and uN1

minimizer. This is confirmed by the nature of the local feasible minimizer found
for each problem formulation: in each case the optimized solution is located on the
boundary of the feasible region because the constraints are active, i.e. the constraint
functions on the volume fraction and on the multi-displacement DR are almost null
(the residual is always in the interval [. −10−6, 0]).

Secondly, as shown in Figs. 11 and 12, B-spline solutions are characterized by
topological branches thinner than those of the NURBS counterparts. This is due to
the size of the local support of Eq. (9): since B-spline and NURBS entities used
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(a) = 873.89 Nmm,
ref

= 0.4,

N1 = 0.29 mm, O2 = −0.58 mm,
iter = 200

(b) = 845.39 Nmm,
ref

= 0.4,

N1 = 0.28 mm, O2 = −0.50 mm,
iter = 187

(c) = 803.36 Nmm,
ref

= 0.4,

N1 = 0.25 mm, O2 = −0.54 mm,
iter = 200

(d) = 799.56 Nmm,
ref

= 0.4,

N1 = 0.25 mm, O2 = −0.50 mm,
iter = 158

(e) Density color-map

Fig. 12 BK3-2D—optimized NURBS solutions of (a) problem (18), and of problem (28) with a
constraint on (b) uO2, (c) uN1, (d) uO2 and uN1

in this example are characterized by the same degrees pj = 2 (j = 1, 2), the
local support of the B-spline solutions is smaller than the one of NURBS solutions
because the CPs number used for B-spline entities is greater than the one used for
NURBS entities.
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4.2 3D Benchmark Problems

4.2.1 Description of 3D Benchmark Problems

In the general 3D case, two benchmarks problem are considered. The first one
(BK1-3D) is a box, whose sizes are a1 = a2 = a3 = 40 mm. The material is
Ti6Al4V (E = 110000 MPa and ν = 0.33). The load is applied along the x3
axis at point E (Fig. 13a), with a magnitude FE = 20000N . As shown in Fig. 13a,
the load is applied at a master node, located at (x1 = 20, x2 = 20 x3 = 40)
mm, which is linked to a set of slave nodes in the upper zone of the box, i.e.
SE = {(x1, x2, x3) | x1 ∈ [18, 22] mm, x2 ∈ [18, 22] mm, x3 = 40 mm}. The
link between the DOFs of the master node and those of the slave nodes is ensured
through multi-point constraint elements (MPC184) with a rigid beam behaviour. In
particular, MPC184 elements are used to define (locally) a rigid surface region. The
box is clamped at the four corners placed at x3 = 0 mm. NDRs (grey colour in
Fig. 13a) are considered near to the regions where BCs and load are applied, i.e.

• NDR1 = {(x1, x2, x3) | x1 ∈ [0, 4] mm, x2 ∈ [0, 4] mm, x3 ∈ [0, 4] mm};
• NDR2 = {(x1, x2, x3) | x1 ∈ [36, 40] mm, x2 ∈ [0, 40] mm, x3 ∈ [0, 4] mm};
• NDR3 = {(x1, x2, x3) | x1 ∈ [0, 4] mm, x2 ∈ [36, 40] mm, x3 ∈ [0, 4] mm};
• NDR4 = {(x1, x2, x3) | x1 ∈ [36, 40] mm, x2 ∈ [36, 40] mm, x3 ∈ [0, 4] mm};
• NDR5 = {(x1, x2, x3) | x1 ∈ [16, 24] mm, x2 ∈ [16, 24] mm, x3 ∈
[36, 40] mm}.

Static FE analyses are carried out using 20×20×20 SOLID185 elements (8 nodes,
3 DOFs per node).

The second benchmark problem (BK2-3D) focuses on the 3D version of a special
cantilever beam. The material properties are the same as those characterizing BK2-
2D. The geometry of the 3D model is illustrated in Fig. 13b: the dimensions are

Fig. 13 Geometry and boundary conditions for benchmarks (a) BK1-3D and (b) BK2-3D
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a1 = 500 mm, a2 = 40 mm, a3 = 500 mm. As in the previous case, MPC184
elements are used for load application: a force FH = 3000 N is applied at the
master node H along the x3 axis. Node H has coordinates x1 = 500 mm, x2 = 20
mm, x3 = 0 mm and is linked to the set of slave nodes belonging to the following
region: SH = {(x1, x2, x3) | x1 ∈ [470, 500] mm, x2 ∈ [0, 40] mm, x3 = 0 mm}.
Clamped BCs are applied on the nodes belonging to the following sets Sclamp1 =
{(x1, x2, x3) | x1 = 0 mm, x2 ∈ [0, 40] mm, x3 = 0 mm}, and roller support-
like BCs (i.e. u1 = u2 = 0, whilst u3 displacement is set as free) are applied on
the following nodes : SRS3 = {(x1, x2, x3) | x1 = 0 mm, x2 ∈ [0, 40] mm, x3 =
500 mm}. As usual, NDRs are defined in the neighbourhood of the regions where
BCs and loads are applied. For this example, three NDRs are defined as follows:

• NDR1 = {(x1, x2, x3) | x1 ∈ [0, 30] mm, x2 ∈ [0, 40] mm, x3 ∈ [0, 30] mm};
• NDR2 = {(x1, x2, x3) | x1 ∈ [470, 500] mm, x2 ∈ [0, 40] mm, x3 ∈
[0, 30] mm};

• NDR3 = {(x1, x2, x3) | x1 ∈ [0, 30] mm, x2 ∈ [0, 40] mm, x3 ∈
[470, 500] mm}.

Static FE analysis is carried out by using a mesh composed of 50×4×50 SOLID185
elements.

The last benchmark problem (BK3-3D) is characterized by the same material
properties, geometry, mesh, loads, and BCs of BK2-3D. The only difference
between BK2-3D and BK3-3D consists in a further roller support-like BCs (i.e.
u2 = u3 = 0, whilst u1 is free), which is applied on the following set of nodes:
SRS1 = {(x1, x2, x3) | x1 = 500 mm, x2 ∈ [0, 40] mm, x3 = 500 mm}. The node
located in the middle of the segment indicated by SRS1 is denoted J, as shown in
Fig. 13b.

4.2.2 Displacement Requirement on Loaded Region

Problem (27) is solved for BK1-3D by considering both B-spline and NURBS
hyper-surfaces. The reference value of the displacement for problem (27) is
uE3,ref = 0.1 mm. Degrees and number of CPs are chosen as follows:

• B-spline hyper-surface: nCP = 18× 18× 18 and pj = 2, 4;
• NURBS hyper-surface: nCP = 14× 14× 14 and pj = 2, 4.

The maximum number of iterations is Nmax
iter = 100. The optimized topologies for

both B-spline and NURBS solutions are shown in Fig. 14, wherein the mechanical
responses (in terms of volume fraction and displacement at point E) are provided in
the related sub-caption.

The optimized topology relative to the NURBS hyper-surface is characterized by
a value of the objective function lower than the B-spline counterpart, even with half
CPs in NURBS hyper-surface configuration. Both solutions satisfy the constraint on
the displacement at point E. Moreover, the solution obtained when using a NURBS
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(a)
ref

= 0.1767, E3 = 0.10 mm,

iter = 49

(b)
ref

= 0.2079, E3 = 0.10 mm,

iter = 46

(c)
ref

= 0.1603, E3 = 0.10 mm,

iter = 91
(d)

ref
= 0.1885, E3 = 0.10 mm,

iter = 100

Fig. 14 Benchmark BK1-3D, optimized solutions of problem (27) for a B-spline hyper-surface
with nCP = 18 × 18 × 18 and (a) pj = 2, (b) pj = 4 and for a NURBS hyper-surface with
nCP = 14× 14× 14 and (c) pj = 2, (d) pj = 4

hyper-surface is characterized by a boundary surface smoother than the B-spline
counterpart, as shown in Fig. 14.

4.2.3 Displacement Requirement on Non-loaded Region

The influence of the displacement constraint over a non-loaded region on the
optimized topology is considered in the case of BK2-3D. The analysis strategy is
the same as that used for BK2-2D: both problems (18) and (28) are solved, and
the resulting topologies are compared. A further constraint on the symmetry of the
topology with respect to plane x2 = a2

2 is added to both problem formulations. CPs
and degrees are set as follows:
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(a) = 7830.61 Nmm
ref

= 0.30,

I3 = −1.26 mm, iter = 48

(b) = 7563.08 Nmm
ref

= 0.30,

I3 = −1.21 mm, iter = 104

(c) = 8187.66 Nmm
ref

= 0.30,

I3 = −1.00 mm, iter = 146

(d) = 7715.04 Nmm
ref

= 0.30,

I3 = −1.00 mm, iter = 200

Fig. 15 Benchmark BK2-3D, optimized solutions of problem (18) for (a) B-spline and (b)
NURBS hyper-surfaces and optimized solutions of problem (28) for (c) B-spline and (d) NURBS
hyper-surfaces

• B-spline hyper-surface: nCP = 40× 4× 40 and pj = 2;
• NURBS hyper-surface: nCP = 30× 4× 30 and pj = 2.

Firstly, problem (18) is solved with a volume fraction γ = 0.3 (Vref = 107 mm3).
Secondly, problem (28) is solved by introducing a requirement on the displacement
component along x3 axis at point I, i.e. uI3,ref = 1 mm.

Optimized topologies obtained from B-spline and NURBS hyper-surfaces, for
both problems (18) and (28), are shown in Fig. 15, where the relative compliance,
volume fraction, displacement at point I, and number of iterations are reported in
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the figure sub-captions. For both problems, the maximum number of iterations is
Nmax

iter = 200.
As for BK2-2D, the final compliance for problem (18) is lower than that of

problem (28) due to the additional displacement requirement at point I in the
latter formulation, which is fulfilled at the end of the process for both B-spline and
NURBS solutions. It is noteworthy that, for both problems (18) and (28) a lower
value of the objective function is obtained with a NURBS hyper-surface with a
number of CPs lower than that of the B-spline counterpart. Nevertheless, the B-
spline hyper-surface is still characterized by a fewer number of design variables:
3200 for B-spline solution vs. 3600 for NURBS solution (because of symmetry).

4.2.4 Multi-Displacement Requirement on a Non-loaded Region

The benchmark problem BK3-3D aims at showing the influence of the displacement
requirement, imposed on multiple non-loaded regions, on the final optimized
topology. To this end, analogously to BK2-3D, both problems (18) and (28) are
solved, and the resulting topologies are compared. A further constraint on the
symmetry of the topology with respect to plane x2 = a2

2 is added to both problem
formulations. CPs number and degrees of B-spline and NURBS entities are the same
as in BK2-3D.

Firstly, problem (18) is solved with a volume fraction γ = 0.3 (Vref = 107 mm3).
Secondly, problem (28) is solved by introducing a requirement on the displacement
component along x3 axis at point I, i.e. uI3,ref = 0.20 mm, and on the displacement
component along x1 axis at point J, i.e. uI3,ref = 0.10 mm. For both problems, the
maximum number of iterations is Nmax

iter = 200.
Optimized topologies obtained from B-spline and NURBS hyper-surfaces, for

both problems (18) and (28), are shown in Fig. 16, where the relative compliance,
volume fraction, displacement components at points I and J and number of iterations
are reported in the figure sub-captions. As far as numerical results are concerned,
the same remarks already done for BK2-3D apply also in this case.

5 Conclusions

In this work, a general formulation of the multi-displacement requirement has been
proposed in the framework of a density-based topology optimization algorithm
making use of NURBS hyper-surfaces.

Some points of the proposed method deserve attention.
Firstly, unlike the classical SIMP approach, there is no need to define a further

filter zone, as the NURBS local support establishes an implicit relationship among
contiguous mesh elements. The size of this filter zone depends on the NURBS
discrete parameters, which can be properly tuned in order to obtain a good
compromise among performances, variables saving and smoothness of boundary.
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(a) = 2967.57 Nmm
ref

= 0.30,

I3 = −0.38 mm, J1 = −0.21 mm,
iter = 126

(b) = 2897.23 Nmm
ref

= 0.30,

I3 = −0.37 mm, J1 = −0.20 mm,
iter = 113

(c) = 3034.16 Nmm
ref

= 0.30,

I3 = −0.20 mm, J1 = −0.10 mm,
iter = 200

(d) = 2955.49 Nmm
ref

= 0.30,

I3 = −0.20 mm, J1 = −0.10 mm,
iter = 200

Fig. 16 Benchmark BK3-3D, optimized solutions of problem (18) for (a) B-spline and (b)
NURBS hyper-surfaces and optimized solutions of problem (28) for (c) B-spline and (d) NURBS
hyper-surfaces

Secondly, in all the considered benchmarks the role of NURBS weights has been
assessed. In particular by considering the same number of CPs and the same degrees,
the objective function of the NURBS solution is lower than the B-spline counterpart,
and the boundary of the NURBS solution is always smoother than that of the B-
spline solution.

Finally, the optimized topology does not depend upon the quality of the mesh
of the FE model, but only upon the integer parameters of the NURBS entity (i.e.
degrees of the blending functions and number of CPs). The FE model is used only to
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assess the physical responses of the problem at hand. The optimized topology can be
easily reassembled at the end of the optimization process because it is described by
means of a CAD-compatible entity. Moreover, the performances (in terms of volume
fraction, displacement requirement, compliance, etc.) of the optimized solution
reassembled in the CAD environment are better than those of the related density-
map solution and the set of constraints is systematically fulfilled on both solutions.

As far as TO problems involving a requirement on structural displacements
are concerned, two meaningful prospects can be identified. Firstly, the multi-
displacement requirement should be properly formulated in the case of large
generalized displacements and strains. Of course also the influence of the non-
linear behaviour of the material should be considered in this case. Secondly, the
geometrical wrinkling affecting the boundary of the optimized topology (especially
for B-spline solutions) could be properly reduced by integrating the knot-vector
components as design variables into the problem formulation. Research is ongoing
on the aforementioned aspects.

Acknowledgments Thibaut Rodriguez is grateful to region Nouvelle-Aquitaine for supporting
this research work through the OCEAN-ALM project.
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Anti-plane Shear in Hyperelasticity

Jendrik Voss, Herbert Baaser, Robert J. Martin, and Patrizio Neff

1 Introduction

The anti-plane shear problem is considered one of the classical challenges in applied
nonlinear elasticity theory [25–27]. The essence of this problem is to consider only
a very special and simple deformation mode, the so-called anti-plane shear (APS),
which allows for a reduction of the governing set of equations to an analytically
more tractable form, in the compressible as well as the incompressible case. It has
been traditional (although not mandatory) to interpret the anti-plane shear problem
in a certain non-trivial sense: namely which nonlinear elastic formulations (with
nonlinear energies) allow for solutions in APS-form provided only the boundary
data is in APS-form [20, 22, 36, 37, 39].

In contrast to this established approach, Gao [13–16] has recently re-interpreted
the APS-problem as a simple search for minimizers of the energy functional within
the restricted class of APS-deformations. Obviously, the two approaches share some
concepts but are, in general, distinct from each other. In this paper, we clarify the
differences between both approaches, including numerical examples to highlight the
unsuitability of the latter approach in the general case. For simplicity, we pose the
APS-problem only for pure Dirichlet boundary data and restrict our considerations
to the isotropic case.

We also give a counterexample to a recent statement from the 2015 Int. J.
Eng. Sci. article “On the determination of semi-inverse solutions of nonlinear
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Cauchy elasticity: The not so simple case of anti-plane shear” by Pucci et al. [38],
erroneously connecting ellipticity and the so-called empirical inequalities.

2 Anti-plane Shear Deformations

We employ the usual notion of an anti-plane shear deformation.

Definition 1 An anti-plane shear deformation (or APS-deformation) is a mapping
ϕ : � ⊂ R3 → R

3 of the form ϕ(x1, x2, x3) = (x1, x2, x3 + u(x1, x2)) with an
arbitrary scalar-valued function u : �xy ⊂ R2 → R.

Due to its form, an APS-deformation of a cylinder-shaped body can be identified
entirely by the displacement of the bottom or top with the scalar-valued height-
function u(x1, x2). Let α := u,x1 , β := u,x2 , γ := ‖∇u‖, and γ 2 = α2+β2 . Then
the deformation-gradient F = ∇ϕ and the left and right Cauchy-Green-deformation
tensors B = FFT =: U2 and C = FT F =: V 2 corresponding to an arbitrary APS-
deformation are given by

F =
⎛
⎝1 0 0

0 1 0
α β 1

⎞
⎠ , B =

⎛
⎝1 0 α

0 1 β

α β 1+ γ 2

⎞
⎠ , C =

⎛
⎝1+ α2 αβ α

αβ 1+ β2 β

α β 1

⎞
⎠ . (1)

In this case, the three isotropic matrix invariants of B (or, equivalently, C)

I1 = tr(B) = ‖F‖2 , I2 = 1

2
[(tr B)2 − tr(B2)] = tr(CofB) = ‖CofF‖2 ,

I3 = det(B) = (detF)2 (2)

are given by I1 = I2 = 3+ γ 2 and I3 = 1. In particular, APS-deformations always
satisfy the condition detF = 1 of incompressibility.

In this paper, we discuss the deformation ϕ of an elastic isotropic body �,
cylinder-shaped in its natural state, induced by given boundary conditions. We
assume a hyperelastic material behavior, i.e., that the resulting deformation ϕ

is stationary with respect to the energy functional I (ϕ) = ∫
�
W(∇ϕ) dx for

some nonlinear elastic energy potential W(F). The given boundary conditions are
assumed to be satisfiable by an APS-deformation of the whole body, which is
the case if and only if the Dirichlet boundary conditions only contain consistent
x3-shifting.1 Under such boundary conditions, we investigate whether or not an

1 Possible boundary conditions are Dirichlet or Neumann boundary conditions which permit an
APS-deformation of the surface ∂� of �. Here, we restrict our attention to Dirichlet boundary
condition for simplicity of exposition.
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APS-deformation of the whole body � exists which is stationary with respect to
the energy functional I (ϕ).

Of course, due to the involved nonlinearity, the existence of minimizers or
solutions to the corresponding Euler-Lagrange equations is not guaranteed without
further assumptions (like polyconvexity (cf. Sect. 4.1) and appropriate coercivity
conditions) on the energy function. Furthermore, in the case of non-unique solutions
(i.e., multiple stationary points), it has to be demonstrated that at least one critical
point has the form of an APS-deformation. Therefore, we introduce a number of
different terms describing the respective solutions.

• An APS-equilibrium is an APS-deformation which is stationary with respect
to the restriction of the energy functional to the class of APS-deformations (cf.
Sect. 5).

• A global equilibrium is an arbitrary deformation which is stationary without the
restriction to the class of APS-deformations (cf. Sect. 3).

• A global APS-equilibrium is an APS-deformation which is a global equilib-
rium. Note that every global APS-equilibrium is an APS-equilibrium, but that it
is not clear a priori whether the converse holds.

• We call an energy function W APS-admissible if every APS-equilibrium is also
a global equilibrium, i.e., if every APS-equilibrium is a global APS-equilibrium.
Note that APS-admissibility does not imply the existence of an APS-equilibrium.
Furthermore, even for a non-APS-admissible energy, it is possible for some spe-
cific kind of APS-deformation to be a global APS-equilibrium, cf. Remark 3.1.

2.1 Minimizing with Additional Constraints

We can consider APS-deformations as an additional constraint regarding the general
minimization problem

I (ϕ) =
∫
�

W(∇ϕ(x)) dx → min
ϕ∈M , (3)

where M includes some given boundary conditions. Thereby, we distinguish
between a priori and a posteriori constraints.

In the former case, the whole variational problem (3) becomes restricted by
adding further constraints to the class of allowed deformationsM . A very prominent
example is the incompressibility assumption det∇ϕ = 1 for all x ∈ �. For materials
such as rubber, it is much easier to change their shape than their volume, e.g.,
the relation between infinitesimal shear modulus μ and infinitesimal bulk modulus
κ is more extreme for rubber compared to steel or other elastic materials. By
restricting the minimization problem to the class of incompressible deformations
we simplify the whole model and its corresponding Euler-Lagrange equations to the
class of deformations which represent a change in shape but do not alter the volume
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anywhere in the material. The resulting deformation is a priori incompressible and
used as an approximation for rubber-like materials. In this case, incompressibility is
an additional assumption for the mathematical model used to reduce its complexity,
ideally without moving far away from the initial problem (no material is completely
incompressible).

A posteriori constraints work quite differently. For instance, we consider the
minimization problem of some arbitrary energy function W with specific boundary
conditions and want to solve its Euler-Lagrange equations. Now, for some arbitrary
reason, be it the boundary conditions or the energy function itself, we believe that
in this specific setting the resulting deformation should be incompressible even
though the general material model is compressible. In this case, we start without the
incompressibility constraint and derive the full Euler-Lagrange equations.2 Now,
a posteriori, we add the additional incompressibility constraint as an ansatz to
simplify the Euler-Lagrange equations. Note that the existence of a minimizer is
not ensured for this ansatz of incompressibility; instead, we just try to solve the full
Euler-Lagrange equations by testing this approach. The resulting deformation, if it
exists at all, is incompressible by the a posteriori assumption and solves the original
(compressible) equilibrium problem.

A priori and a posteriori minimization are not identical: A solution of the latter
approach directly solves the former minimization problem but not vice versa. In
general, a deformation of the a priori case does not solve the original (compressible)
minimization problem and therefore it is not ensured that it is a solution of the a
posteriori minimization problem, too. Only the a posteriori restriction to the class of
incompressible deformations remains generally valid in the sense that the resulting
incompressible solution is energetically optimal in the bigger class of compressible
deformations. It is crucial to understand that even the raw number of Euler-Lagrange
equations of these two problems differ.

We can visualize this issue with a simple two-dimensional function I : R2 → R
which is bounded below. In this example, we replace the constraint of incompress-
ibility by the simple condition x = y. Now, in the a priori case, we consider the
one-dimensional problem I1 : R → R with I1(x) = I (x, x) instead which can be
solved by the single equation I ′1(x) = d

dx I (x, x) = 0. In the a posteriori case, we
start with the two-dimensional problem ∇I (x, y) = (0, 0) and add the assumption
x = y afterward. The latter approach has no solution in most cases while the former
case does not necessarily minimize I (x, y) (cf. Fig. 1).

To summarize the conflict, a minimum state in a subclass, like the class of
incompressible deformations, does not have to be a global minimum of the general
class of compressible deformations. A priori constraints are very strong assumptions
for the elasticity model to reduce the analytical complexity significantly while a
posteriori constraints are used as mathematical tools trying to solve the general
model. Besides, the latter can also be used to validate energy functions regarding

2 The solutions of the Euler-Lagrange equations are the stationary points of the original minimiza-
tion problem and for the most part impossible to solve analytically.
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x

y

I (x , y )

x = y

x

y

I (x , y )

x = y

Fig. 1 Difference between a posteriori (black graph) and a priori minimization (red line) using a
two-dimensional visualization I : R2 → R and the constraint x = y. Left: Both methods end up
with the same minimum, i.e., the a priori solution happens to solve the a posteriori minimization.
Right: The a priori minimum is not a minimum of the a I (x, y) while the a posteriori method has
no solution at all, i.e., it exists no solution which minimizes I (x, y) and also satisfies the constraint
x = y

a desired physical behavior, e.g., the observation that every global minimum of the
energy in Fig. 1 (Left) satisfies the constraint x = y without any additional a priori
assumption.

The same consideration applies to APS-deformations: An APS-equilibrium is a
solution to the general minimization problem (3) with the a priori restriction of APS-
deformations while a global APS-equilibrium solves the general problem using
APS-deformation as an a posteriori constraint, i.e., only as an ansatz to reduce the
full Euler-Lagrange equations.

3 The Classical Full Equilibrium Approach (A Posteriori)

We first discuss the full equilibrium approach to answer the following closely related
questions:

• Under which conditions is every APS-equilibrium a global APS-
equilibrium?

• Under which conditions does a solution of the Euler-Lagrange equations
have the form of an APS-deformation?

In general, it is possible to obtain non-APS solutions to the equations of
equilibrium which do have the form of an APS-deformation on the boundary of
�, see the example in Figs. 3b, and 4b. It is therefore not sufficient to consider the
equilibrium equations for APS-deformations exclusively, as described in Sect. 5, an
approach followed, e.g., by Gao [14, 16].
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The guiding questions were answered exhaustively by Knowles in 1976 [25, 26].
In the following, we elaborate on his work and set it in context with the notion of
APS-convexity.

A stationary deformation or equilibrium solution ϕ is a deformation which
satisfies the Euler-Lagrange equation

Div[DW(∇ϕ)] = 0 (4)

to the variational problem

I (ϕ) =
∫
�

W(∇ϕ) dx −→ min . (5)

In the following, we will assume that W(F) ≥ W(1) for all F ∈ GL+(3), i.e., that
the natural state F = 1 is optimal.

Any isotropic energy function W can be represented in terms of the invariants
I1, I2, I3 of the left Cauchy-Green deformation tensor globally B = FFT , see, e.g.,
Antman [3, Chapter 12.13]. Since the derivatives of these invariants with respect to
F are given by

DFI1(FF
T ).H = 〈2F,H 〉 , DF I2(FF

T ).H = 〈2 (I11− B)F,H 〉 , (6)

DFI3(FF
T ).H = 〈2I3F

−T ,H 〉 ,

respectively, the derivative DW(F) of the energy can be expressed in terms of I1,
I2, and I3 via

DW(F) = ∂W

∂I1
DFI1(FF

T )+ ∂W

∂I2
DFI2(FF

T )+ ∂W

∂I3
DFI3(FF

T )

= 2
∂W

∂I1
F + 2

∂W

∂I2
(I11− B)F + 2I3

∂W

∂I3
F−T . (7)

In the special case of APS-deformations (for which I3 = 1), the (full) equations of
equilibrium are therefore given by (cf. Knowles [26, eq.(10)])

Div

(
2
∂W

∂I1
F + 2

∂W

∂I2
(I11− B)F + pF−T

)
= 0 (8)

with p(I1, I2) := 2 ∂W
∂I3
(I1, I2, 1).
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Using the general representation (1) of APS-deformations as an a posteriori
constraint, Eq. (8) can be written more explicitly as

Div

⎛
⎜⎜⎜⎝

2 ∂W
∂I1

+ 2(2+ β2) ∂W
∂I2

+ p −2αβ ∂W
∂I2

−2α
(
∂W
∂I2

+ p
)

−2αβ ∂W
∂I2

2 ∂W
∂I1

+ 2(2+ α2) ∂W
∂I2

+ p −2β
(
∂W
∂I2

+ p
)

2α
(
∂W
∂I1

+ ∂W
∂I2

)
2β
(
∂W
∂I1

+ ∂W
∂I2

)
2 ∂W
∂I1

+ 4 ∂W
∂I2

+ p

⎞
⎟⎟⎟⎠ = 0 .

(9)

Since an APS-deformation is completely defined by a single scalar-valued function
u(x1, x2), the system (9) is over-determined by two equations. In order to ensure
the existence of a solution u(x1, x2) to all three partial differential equations, the
energy function W should therefore satisfy certain conditions so that two equations
are omitted.

Since all occurring terms in (9) are independent of x3, the last column of
the matrix does not contribute to the divergence term. We therefore simplify the
equations by replacing these entries by -. Introducing the notation

G(I1, I2) := 2
∂W

∂I2
(I1, I2, 1) , H(I1, I2) := 2

[
∂W

∂I1
(I1, I2, 1)+ ∂W

∂I2
(I1, I2, 1)

]
,

q(I1, I2) := p(I1, I2)+ 2
∂W

∂I1
(I1, I2, 1)+ 2(I1 − 1)

∂W

∂I2
(I1, I2, 1) (10)

with p(I1, I2) := 2
∂W

∂I3
(I1, I2, 1) ,

we write the Euler-Lagrange equations for the general compressible case as

q,x1 = (α2G),x1 + (αβG),x2 , (I)

Div

⎛
⎝q − α2G −2αβG -

−2αβG q − β2G -

αH βH -

⎞
⎠ = 0 ⇐⇒ q,x2 = (αβG),x1 + (β2G),x2 , (II)

0 = (αH),x1 + (βH),x2 . (III)

Our approach to the problem of over-determination consists of two steps: first, we
consider under which circumstances Eq. (III) has a solution u(x1, x2); next, we find
conditions under which this solution u(x1, x2) necessarily satisfies the other two
Eqs. (I) and (II).

Remark 3.1 (Simple Plane Shear) Some classes of APS-deformations satisfy the
above equations in a trivial way without further conditions on the energy function.
Such deformations are known as simple plane shear deformations. These specific
APS-deformations solve the full Euler-Lagrange equations (I)–(III) without the need
of APS-admissibility.
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The most simple example of a simple plane shear deformation is that of homoge-
neous shear: Since the Euler-Lagrange equations depend on γ 2 = ‖∇u‖2 via I1 =
I2 = 3 + γ 2, every APS-deformation with constant γ satisfies (I)–(III) trivially.3

For a detailed discussion of different types of simple plane shear, including axial-
symmetric APS-deformations with u(x1, x2) = ũ(R), see [2, 8, 18, 38].

In the general case, however, APS-boundary conditions do not necessarily allow
for simple plane shear deformations. The focus of this work is therefore to elaborate
conditions (cf. Sect. 3.2) for APS-admissibility, i.e., conditions under which (I)–
(III) can be satisfied for APS-deformations which are not simple plane shear
deformations.

3.1 APS-Convexity

The third Euler-Lagrange equation, rewritten in divergence form

0 = div
[
H
(

3+ ‖∇u‖2, 3+ ‖∇u‖2
)
∇u
]

(11)

= 2 div

[(
∂W

∂I1
(I1, I2, I3)+ ∂W

∂I2
(I1, I2, I3)

)
∇u
]
,

can be represented as

div
(
g′(‖∇u‖2)∇u

)
= 0 , with g(x) := W(3+ x, 3+ x, 1) . (12)

From the assumption that the natural state F = 1 is globally optimal for W(F), we
infer g(x) ≥ g(0). Thus Eq. (12) is the Euler-Lagrange equation corresponding to
the scalar variational problem

∫
�

1

2
g(‖∇u‖2) dx −→ min . (13)

Of course, the simplest way of ensuring a solution to this equation is to require
the convexity of the energy functional.4 Therefore, the third Euler-Lagrange
equation (III) of our original variation problem does have a solution if the mapping
(α, β) 
→ g(‖(α, β)‖2) is convex.

3 For the homogeneous deformation u(x1, x2) = c1 x1 + c2 x2 + c3 with constants c1, c2, c3 ∈ R ,
it follows directly from the linearity of u that α = u,x1 = c1 and β = u,x2 = c2 . This implies
I1 = I2 = 3 + α2 + β2 = const., which shows that G(I1, I2) ,H(I1, I2) , p(I1, I2) , q(I1, I2) =
const. Thus, all three Euler-Lagrange equations are trivially fulfilled.
4 Convexity is clearly not necessary for the existence of a minimizer, see, e.g., [16], but it will turn
out later that this convexity condition is not a particularly limiting property for most elastic energy
functions.
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Definition 2 (APS-convexity) We call an energy function W : R3×3 −→
R , F 
→ W(F) anti-plane shear convex (or APS-convex) if it is convex on
the convex set

APS =
{⎛
⎝1 0 0

0 1 0
α β 1

⎞
⎠
∣∣∣∣ α, β ∈ R

}
.

Remark 3.2 If the function W is expressed in terms of the matrix invariants I1,
I2, and I3, then the function is APS-convex if and only if the mapping (α, β) 
→
W(3 + γ 2, 3 + γ 2, 1), where γ 2 = α2 + β2, is convex. This equivalence results
from the equalities I1 = I2 = 3+ ‖∇u‖2 and I3 = 1 for APS-deformations.

In the following, we will consider explicit conditions for APS-convexity of isotropic
energy functions W .

Lemma 1 If g : [0,∞)→ R satisfies g(x) ≥ g(0) for all x in R, then convexity of
g implies APS-convexity of W(I1, I2, I3).

Proof If g is convex and minimal at 0, then g is monotone increasing on [0,∞).
Then the mapping (α, β) 
→ W(3+ γ 2, 3+ γ 2, 1) = g(‖(α, β)‖2) is convex as the
composition of the convex mapping ‖ . ‖2 and the convex and monotone increasing
mapping g. ��
Lemma 2 If W(I1, I2, I3) is sufficiently smooth and has its global minimum in the
natural state, then the condition

∀R > 0 : W′′(3+ R2) ≥ 0 with W(I1) := W(I1, I1, 1) , (APS1)

implies APS-convexity.

Proof Condition (APS1) is equivalent to the convexity of W on [3,∞), i.e.,
convexity of the mapping x 
→ W(3 + x, 3 + x, 1) = g(x) on [0,∞) which,
due to Lemma 1, implies APS-convexity of W . ��
The reverse of this implication does not hold in general. In order to obtain a
condition equivalent to APS-convexity, we need to directly consider the convexity
of the mapping x 
→ g(x2) instead.
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Theorem 1 The condition

∀R > 0 : d2

dR2 W(3+ R2, 3+ R2, 1) ≥ 0 (APS2)

is equivalent to APS-convexity of W(F).

Proof Recall that APS-convexity is equivalent to the convexity of the mapping
(α, β) 
→ g(‖(α, β)‖2), which immediately implies the convexity of the mapping
R 
→ g(‖(R, 0)‖2) = g(R2) = W(3+ R2, 3+ R2, 1) and thus (APS2).

If, on the other hand, (APS2) holds, then the mapping R 
→ g(R2) = W(3 +
R2, 3 + R2, 1) is convex and hence, due to the assumed minimality of the energy
at the reference configuration, monotone increasing on [0,∞). Thus the mapping
(α, β) 
→ g(‖(α, β)‖2) is convex as the composition of the (convex) Euclidean
norm with a monotone increasing, convex function. ��
Remark 3.3 Under the assumption that W is minimal in 1 we have shown that the
two statements

W(I1, I2, I3) is APS-convex : (α , β) 
→ W(3+ γ 2, 3+ γ 2, 1) ,

where γ 2 = α2 + β2 , is convex,

(APS2) : γ 
→ W(3+ γ 2, 3+ γ 2, 1) is convex on [0,∞)

are equivalent.

Remark 3.4 The so-called ellipticity condition

∀R> 0 : d

dR

[
R

(
∂W

∂I1
(I1, I2, 1)+ ∂W

∂I2
(I1, I2, 1)

)∣∣∣∣
I1=I2=3+R2

]
≥ 0 , (APS3)

given by Knowles [26, eq.(19)] is equivalent to APS-convexity of W(F).

Proof (APS3) ⇐⇒ d

dR

[
Rg′(R2)

]
≥ 0 ⇐⇒ d2

dR2
g(R2) ≥ 0 ⇐⇒ (APS2) .

��
The following implication was pointed out by Fosdick et al. [10, 11].
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Lemma 3 APS-convexity (APS3) implies

∀R > 0 : W′(3+ R2) > 0 with W(I1) := W(I1, I1, 1) . (14)

Proof Let f (R) = RW′(3+ R2). Then (APS3) implies f ′(R) > 0 for all R > 0,
i.e., monotonicity of f , thus 0 = f (0) < f (R) = RW′(3 + R2) and hence
W′(3+ R2) > 0 for all R > 0. ��

3.2 Energy Function Admissibility Conditions

We introduced APS-convexity as a sufficient condition for the existence of a solution
u(x1, x2) to Eq. (III) and, by means of (APS2), derived a simple criterion for this
condition. Another way to obtain such a solution u(x1, x2) without requiring APS-
convexity is discussed in Gao [13, Theorem 5], cf. Sect. 5.

In the following, we consider under which circumstances this solution also
satisfies the other two Eqs. (I) and (II) so that the APS-deformation induced by
u(x1, x2) is an overall solution of the full equilibrium equations (I)–(III). The
following theorem was obtained by Knowles [26, eq. (21)]; here, we want to
elaborate on his proof.

Recall that an energy function is APS-admissible if every APS-equilibrium
(solution of equation (III)) is also a global equilibrium (solves Eqs. (I)–(III)).

Theorem 2 (Compressible Case) Let W(I1, I2, I3) be an isotropic, elastic energy
function. Then W is APS-admissible if and only if the following conditions are
satisfied:

∃b ∈ R : ∀ I1 = I2 ≥ 3, I3 = 1 : b ∂W
∂I1

(I1, I2, I3)+ (b − 1)
∂W

∂I2
(I1, I2, I3) = 0 ,

(K1)

∂2W

∂I1
2
+ I1

∂2W

∂I1∂I2
+ ∂2W

∂I1∂I3
+ (I1 − 1)

∂2W

∂I2
2
+ ∂2W

∂I2∂I3
+ 1

2

∂W

∂I2
= 0 .

(K2)

Proof Recall from Sect. 3 that for an APS-deformation, the three equations of
equilibrium are given by

q,x1 = (α2G),x1 + (αβG),x2 , (I)

q,x2 = (αβG),x1 + (β2G),x2 , (II) (15)

0 = (αH),x1 + (βH),x2 . (III)
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Let u(x1, x2) be an arbitrary solution of equation (III), i.e., an APS-equilibrium. We
want to derive Eqs. (K1) and (K2) as conditions on W(I1, I2, I3) for the other two
Euler-Lagrange equations to be necessarily satisfied for u(x1, x2).

If relation (K1) holds,5 we can simplify Eq. (I) to read6

q,x1 = (α2G),x1 + (αβG),x2 = α(αG),x1 + α,x1αG+ α(βG),x2 + α,x2βG

= α div(G∇u)+ α,x1αG+ α,x2βG = G(α,x1α + α,x2β)

= G(αα,x1 + ββ,x1) = G
∂

∂x1

[
1

2
γ 2
]
= Gγ γ,x1 , (16)

where α,x2 = u,x1x2 = u,x2x1 = β,x1 .
By utilizing the fact that the invariants7 depend only on u(x1, x2), the term

q(I1, I2) can be expressed as

u(x1, x2) 
→ q(3+ γ 2, 3+ γ 2) := q̃(γ 2)

with
∂q

∂x1
(3+ γ 2, 3+ γ 2) = q̃ ′(γ 2)2γ γ,x1 . (17)

Therefore, we can transform (II) and similarly (I) to

(
q̃ ′(γ 2)− 1

2
G(3+ γ 2, 3+ γ 2)

)
2γ γ,x1 = 0 ,

(
q̃ ′(γ 2)− 1

2
G(3+ γ 2, 3+ γ 2)

)
2γ γ,x2 = 0 , (18)

respectively. As a result, the Euler-Lagrange equations are simplified by condi-
tion (K1) to the system of equations

[
q̃ ′(γ 2)− ∂W

∂I2
(3+ γ 2, 3+ γ 2, 1)

]
2γ γ,x1 = 0 , (I)

[
q̃ ′(γ 2)− ∂W

∂I2
(3+ γ 2, 3+ γ 2, 1)

]
2γ γ,x2 = 0 , (II) (19)

[
α
∂W

∂I2
(3+ γ 2, 3+ γ 2, 1)

]
,x1

+
[
β
∂W

∂I2
(3+ γ 2, 3+ γ 2, 1)

]
,x2

= 0 . (III)

5 For the necessity of (K1), see Knowles [25, eq.(3.22)].
6 With the notation from (10), we can restate (K1) as bH(I1, I2) = G(I1, I2) with constant
b ∈ R. Therefore, the relationship div(H ∇u) = 0 together with bH(I1, I2) = G(I1, I2) yields
div(G∇u) = 0 .
7 Note again that I1 = I2 = 3+ γ 2 = 3+ ‖∇u‖2.
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Note that Eqs. (I) and (II) are trivially satisfied if γ = ‖∇u‖2 is constant, i.e.,
if ϕ is a simple plane shear deformation. In the general case of arbitrary APS-
deformations, however, (I) and (II) are satisfied if and only if the equation

q̃ ′(R2) = ∂W

∂I2
(3+ R2, 3+ R2, 1) (20)

holds for all R ∈ R. Thus, Eqs. (I) and (II) are reduced to a single new
Eq. (20) by (K1). The system of equations is still over-determined by one equation.
Therefore, we need to show that the last Eq. (20) is equivalent to the energy function
compatibility condition (K2):

q̃ ′(R2) = 2
d

dR2

∂W

∂I3
(3+ R2, 3+ R2, 1)+ 2

d

dR2

∂W

∂I1
(3+ R2, 3+ R2, 1)

+ 2
d

dR2

[
(2+ R2)

∂W

∂I2
(3+ R2, 3+ R2, 1)

]

= 2

(
∂2W

∂I3∂I1
1+ ∂2W

∂I3∂I2
1

)
+ 2

(
∂2W

∂I1
2 1+ ∂2W

∂I1∂I2
1

)
+ 2

∂W

∂I2

+ 2(2+ R2)

(
∂2W

∂I2∂I1
1+ ∂2W

∂I2
2 1

)

= 2

[
∂2W

∂I1∂I3
+ ∂2W

∂I2∂I3
+ ∂2W

∂I1
2 + I1

∂2W

∂I1∂I2
+ (I1−1)

∂2W

∂I2
2 +

∂W

∂I2

]
.

(21)

Thus (20) and (K2) are, in fact, equivalent in this case.
Altogether, under the two conditions (K1) and (K2), the Euler-Lagrange equa-

tions for a compressible energy function are always simplified such that Eqs. (I)
and (II) can be omitted for any solution of equation (III). ��
In the case of incompressible nonlinear elasticity, energy functions are only defined
on the special linear group of isochoric deformations with I3 = 1, thus condition
(K2) is not well defined. However, since APS-deformations belong to the class of
isochoric deformations, the problem of APS-admissibility can be considered in the
incompressible case as well. It should be expected that in the incompressible case,
less restricting requirements than the conditions (K1) and (K2) are needed to ensure
APS-admissibility.

The concept of APS-convexity remains the same for incompressible and com-
pressible energy functions, starting with the variational problem

min
det∇ϕ=1

∫
�

W(∇ϕ) dx 0⇒ min
∫
�

W(∇ϕ)+ p(x) (det(∇ϕ)− 1) dx , (22)
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where p(x1, x2, x3) ∈ C1(�) is now the Lagrange multiplier for the constraint
det∇ϕ = 1 of incompressibility. With the same notation as before, the Euler-
Lagrange equations are simplified to

Div [DW(F)+ p(x) Cof(F )] = 0

with Cof(F ) = (detF)F−T = F−T by incompressibility. We obtain the same
formal equation as in the compressible case (8):

Div

(
2
∂W

∂I1
F + 2

∂W

∂I2
(I11− B)F + pF−T

)
= 0 . (23)

Here, however, p ∈ C1(�,R) is the Lagrange multiplier and not a fixed term
given by the energy function W(F). This yields the same equilibrium system
of three coupled partial differential equations, but this time in two scalar-valued
functions u(x1, x2) and p(x1, x2, x3). Therefore, the equilibrium system is only
over-determined by one equation, which means that although the system still does
not have a solution in general, only one condition on the energy function is required
for APS-admissibility.

Theorem 3 (Incompressible Case) LetW(I1, I2) be an isotropic and incompress-
ible elastic energy function. The function W is APS-admissible if and only if

∃b ∈ R : ∀ I1 = I2 ≥ 3 : b
∂W

∂I1
(I1, I2)+ (b − 1)

∂W

∂I2
(I1, I2) = 0 . (K1)

Proof Analogously to the proof of Theorem 2, the Euler-Lagrange equations can
be reduced with the condition (K1) by one equation. Therefore, we can remove
one of the first two Euler-Lagrange equations and leave two equations to determine
u(x1, x2) and p(x1, x2, x3). The system of equations is therefore no longer over-
determined under the assumption of (K1). Moreover, it is possible to compute the
Lagrange multiplier p(x1, x2, x3) for a given solution u(x1, x2).8 ��
Remark 3.5 For ∂W

∂I1
= c1 and ∂W

∂I2
= c2 with arbitrary constants c1, c2 > 0,

condition (K1) is automatically satisfied with b = c2
c1+c2

and the energy function
is APS-convex (APS3).

Remark 3.6 In linear elasticity, the energy function Wlin(ε) = μ ‖ε‖2 + λ
2 tr(ε)2

with ε = sym∇u is automatically APS-admissible and APS-convex [43]. There-
fore, any linear elasticity solution constrained by APS-boundary conditions is

8 For detailed calculations, see [43].
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automatically an APS-deformation. Thus APS-admissibility is an inherently non-
linear concept.

4 Connections to Constitutive Requirements in Nonlinear
Elasticity

The concept of APS-convexity can be extended to the class of APS+-deformations
ϕ : � ⊂ R3 → R3,

ϕ(x1, x2, x3) = (x1, x2, x3 + u(x1, x2, x3)) with ϕ ∈ C1(�) . (24)

We call convexity of this type of functions APS+-convexity. Note that APS+-
convexity immediately implies APS-convexity.

4.1 Convexity

The following lemma shows that an energy function W is APS+-convex (and thus
APS-convex) if it is polyconvex, i.e., if [5, eq.(0.8)]

W(F) = P(F, Cof(F ), det(F )) with P : R3×3 × R3×3 × R ∼= R19 −→ R convex .

Lemma 4 Every polyconvex energy function W(F) is APS+-convex.

Proof For APS+-convexity of W in F = ∇ϕ we have to show that

W(t ∇ϕ1 + (1− t) ∇ϕ2) ≤ t W(∇ϕ1)+ (1− t) W(∇ϕ2) , t ∈ [0, 1]

holds for arbitrary APS+-deformations ϕ1, ϕ2 (24). In this case, the minors of
F = ∇ϕ are given by

F =
⎛
⎜⎝

1 0 0

0 1 0

u,x1 u,x2 1+ u,x3

⎞
⎟⎠ , Cof(F ) =

⎛
⎜⎝

1+ u,x3 0 −u,x1

0 1+ ux3 −u,x2

0 0 1

⎞
⎟⎠ , det(F ) = 1+ u,x3 .

(25)

Due to the affine linearity of the above terms, we find for ϕ = t ϕ1 + (1− t) ϕ2:

F = t F1 + (1− t) F2 ,

Cof(t F1 + (1− t) F2) = t Cof(F1)+ (1− t)Cof(F2) , (26)

det(t F1 + (1− t) F2) = t det(F1)+ (1− t) det(F2) ,
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where F = ∇ϕ . If P is convex, then

W(t F1 + (1− t) F2)

= P(t F1 + (1− t) F2, Cof(t F1 + (1− t) F2), det(t F1 + (1− t) F2))

= P(t F1 + (1− t) F2, Cof(F1)+ (1− t)Cof(F2), t det(F1)+ (1− t) det(F2))

≤ t P (F1, Cof(F1), det(F1))+ (1− t) P (F2, Cof(F2), det(F2))

= t W(F1)+ (1− t)W(F2) ,

which concludes the proof. ��
We now want to reduce the requirement of polyconvexity to that of rank-one
convexity. An energy function W(F) is called rank-one convex if the mapping
t 
→ W(F + t ξ ⊗ η) is convex on [0, 1] for all F ∈ R3×3 and all ξ, η ∈ R3.

Lemma 5 Every rank-one convex energy function W(F) is APS+-convex.

Proof Again, we need to show that the mapping

t 
→ W(tF1 + (1− t)F2) = W(F2 + t (F1 − F2))

is convex on [0, 1] for all F1, F2 of the form (25)1. However, this convexity property
follows directly from the rank-one convexity since F1 − F2 is of the form

F1 − F2 =
⎛
⎝ 0 0 0

0 0 0
u,x1 − v,x1 u,x2 − v,x2 u,x3 − v,x3

⎞
⎠ =

⎛
⎝ 0

0
1

⎞
⎠⊗

⎛
⎝u,x1 − v,x1

u,x2 − v,x2

u,x3 − v,x3

⎞
⎠ ,

which concludes the proof. ��
Remark 4.1 The above proof also shows that W is APS+-convex if and only if the
mapping t 
→ W(F + t (0, 0, 1)T ⊗η) is convex on [0, 1] for all F of the form (25)1
and all η ∈ R3.

Corollary 1 IfW(F) is strictly rank-one convex and APS-admissible, then the anti-
plane shear solution (APS-equilibrium) is a unique APS-equilibrium and minimal
in the class of APS-deformations, due to APS-convexity.

Remark 4.2 As demonstrated by Lemma 5, APS-convexity is not a highly restric-
tive condition for physically viable elastic energy functions. Moreover, it is remark-
able that APS-convexity is equivalent to the monotonicity of the Cauchy shear stress
in simple shear [41], see Lemma 8 in Appendix.

Remark 4.3 In a recent article by Pucci et al. [38, eq.(7.1)] it is claimed that in
the compressible case, Knowles’ “ellipticity condition [. . . ] is a consequence of the
empirical inequalities and [compatibility with linear elasticity]”, i.e., that the so-
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called empirical inequalities [3, 29, 42]

β0 := 2√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
≤ 0 , β1 := 2√

I3

∂W

∂I1
> 0 ,

β−1 := −2
√
I3
∂W

∂I2
≤ 0 (27)

together with the condition of a stress-free reference configuration imply Knowles’
ellipticity condition (Remark 3.4), cf. Remark 7.1 in Appendix. We show here that
for large deformations, this statement is erroneous: Consider the energy function

W(F) = 3μ

4
α
[

log(I1)+ log(I2)− log(I3)︸ ︷︷ ︸
=log(‖U‖2)+log(‖U−1‖2)

−2 log(3)
]+ μ

2
(1− α)

[
I1 + 2√

I3
− 5

]
, (28)

with μ > 0 and 0 < α < 1. The first term is isochoric (i.e., invariant with respect
to volume change) and therefore has bulk modulus κ = 0, the second term ensures
positive bulk modulus in the reference state. The empirical inequalities

β0 = 3μ

4
α

[
2√
I3

(
I2

1

I2
− I3

1

I3

)]
+ μ

2
(1− α)

[
2√
I3

(
0− I3

1

I
3/2
3

)]
= μ(1− α)

I3
< 0 ,

β1 = 3μ

4
α

2√
I3

1

I1
+ μ

2
(1− α)

2√
I3
· 1 > 0 , β−1 = −3μ

4
α
√
I3

2

I2
≤ 0 (29)

are satisfied. Moreover, the energy function is stress-free in the reference configura-
tion F = 1, since

[
∂W

∂I1
+ 2

∂W

∂I2
+ ∂W

∂I3

]
F=1

= 3μ

4
α

[
1

3
+ 2

3
− 1

1

]
+ μ

2
(1− α)

[
1− 1

1

]
= 0

(30)

and the generated infinitesimal shear modulus can be determined from

(β1 − β−1)F=1 =
3μ

4
α

[
2

3
+ 2

3

]
+ μ

2
(1− α)

[
2

1

]
= μ . (31)

Recall from Lemma 3.4 that Knowles’ ellipticity condition is equivalent to the
condition (APS2) of APS-convexity which, in this case, reads

0 ≤ d2

dR2 W(3+ R2, 3+ R2, 1) = 3μ

4
α

d2

dR2

[
2 log(3+ R2)

]
+ μ

2
(1− α)

d2

dR2

[
R2
]

= 3μ

2
α

d

dR

[
2R

3+ R2

]
+ μ

2
(1− α)

d

dR
[2R] = 3μα

[
3− R2

(
3+ R2

)2
]
+ μ(1− α) . (32)
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However, if 8
9 < α < 1, then there exists an interval where APS-convexity

is violated. Therefore, the energy function (28) with 8
9 < α is compatible with

linear elasticity and satisfies the empirical inequalities (27) as well as the condition
of a stress-free reference configuration but does not satisfy Knowles’ ellipticity
condition, in contradiction to the claim by Pucci et al. [38].

4.2 Tension-Compression Symmetry

Table 1 shows a number of elastic energy potentials used in nonlinear elasticity
theory and their properties regarding APS-convexity. The detailed calculations can
be found in [43].

Note that an APS-admissible energy in the incompressible case only has to
satisfy condition (K1), whereas an APS-admissible energy for the general com-
pressible case must also fulfill condition (K2). A still unsolved problem is to
find a compressible viable energy function which is APS-admissible but depends
nonlinearly on I2. It is noticeable in Table 1 that many energy functions satisfy
condition (K1) with b = 0 or b = 1

2 ; the former case can be easily explained by the
independence from the second invariant.

Lemma 6 Every isotropic energy function W(F) which can be expressed in the
form W(F) = W(I1, I3), i.e., which does not depend on the second invariant I2,
satisfies condition (K1) with b = 0.

Proof Condition (K1) with b = 0 can be simplified to ∂W
∂I2

= 0, which is trivially
fulfilled for every isotropic energy function of the type W(F) = W(I1, I3). ��
The special case b = 1

2 , on the other hand, shows a more interesting relation to the
so-called tension-compression symmetry of an energy.

Definition 3 An energy function W(F) is called tension-compression symmetric if
W(F) = W(F−1) for all F ∈ GL+(3).

Lemma 7 An isotropic tension-compression symmetric energy function W is
invariant under permutation of the two invariants I1 and I2 under the constraint of
incompressibility, i.e., W(I1, I2, 1) = W(I2, I1, 1), see also [4].

Proof Let I ′1 = I1(B
−1) , I ′2 = I2(B

−1) , I ′3 = I3(B
−1) . Then

I ′1 = tr(B−1) = tr
(det(B)

det(B)
B−1
)
= 1

det(B)
tr(det(B)B−T ) = tr(Cof(B))

det(B)
= I2

I3
,

I ′2 = tr(Cof(B−1)) = tr(det(B−1) (B−1)−T ) = det(B−1) tr(BT ) = tr(B)

det(B)
= I1

I3
,

I ′3 = det(B−1) = 1

det(B)
= 1

I3
. (33)
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Table 1 An overview of APS-related properties for several important energy functions

Name Energy expression

Rank-
1
convex

APS-
convex K1 incomp. K2 compr.

Neo-Hooke [35] W(F) = μ
2 (I1I

− 1
3

3 − 3)+ h(I3) Yes Yes b = 0 No

Mooney-Rivlin
[35]

W(F) = μ
2 α

(
I1I

− 1
3

3 − 3

)
+

μ
2 (1− α)

(
I2I

− 2
3

3 − 3

)
+ h(I3)

Yes Yes b = 1− α No

Blatz-Ko [21] W(F) = μ
2

(
I1 + 2√

I3
− 5
)

Yes Yes b = 0 Yesa

Veronda-
Westman
[34]

W(F) =
μ
(
eγ (I1−3)−1

γ
− I2−3

2

)
+ h(I3)

No Yes No No

Mihai-Neff
[28, 31]

W(F) =
μ
2

(
I1 I3

− 1
3 − 3

)
+ μ̃

4 (I1 − 3)2

+ κ
2

(
I3

1
2 − 1

)2

No Yes b = 0 μ̃ = μ
3

Knowles W(F) =
μ
2b

([
1+ b

n

(
I1 I3

− 1
3 − 3

)]n − 1
)

+ 1
D1

(
I3

1
2 − 1

)2

? Yes b = 0 No

Bazant W(F) = ‖B − B−1‖2 No Yes b = 1
2 No

Ciarlet [9] W(F) = c1
2 I1 + c2

2 I2 + h(
√
I3) Yes Yes b = c2

c1+c2
c2 = 0

SVK [9] W(F) = μ
4 ‖C−1‖2+ λ

8 tr(C−1)2 No Yes No —

4th Order W(F) =
μ tr(E2)+ A

2 tr(E3)+D tr(E2)2
No Yes No —

Hencky [17, 33] W(F) =
μ‖ dev logV ‖2 + κ

2 (tr(logV ))2
No No b = 1

2 No

exp-Hencky [32] W(F) =
μ
k
ek ‖ dev logV ‖2 + κ

2k̂
ek̂(tr(logV ))2

No Yes b = 1
2 No

Martin-Neff W(F) = ‖F‖3

det(F ) + det(F ) ‖F−1‖3 Yes Yes b = 1
2 No

Model [43] W(F) =
c1

(√
I1 +√I2 +

√
3√
I3
− 3
√

3
)

No approximation to linear
elasticity in F = 1.

Yes Yes b = 1
2 Yes

Becker [7] W(F) = 2μ〈U, logU − 1〉 No No No Yes
a A general class of APS-admissible energy functions W(I1, I3) can be found in [23]

Therefore, tension-compression-symmetry impliesW(I1, I2, I3) = W(I ′1, I ′2, I ′3) =
W(I2

I3
, I1
I3
, 1
I3
) and thus, in particular, W(I1, I2, 1) = W

(
I2
1 ,

I1
1 ,

1
1

)
= W(I2, I1, 1).

��
Theorem 4 Every isotropic tension-compression-symmetric energy functionW(F)

satisfies condition (K1) with b = 1
2 .
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Proof The condition (K1) with b = 1
2 can be restated as

1

2

∂W

∂I1
(I1, I1, 1)+

(1

2
− 1
)∂W
∂I2

(I1, I1, 1) = 0 ⇐⇒ ∂W

∂I1
(I1, I1, 1) = ∂W

∂I2
(I1, I1, 1)

for all I1 ≥ 3, and for tension-compression symmetric W we find

∂W

∂I1
(I1, I1, 1) = d

dt
W(t, I1, 1)

∣∣∣∣
t=I1

= d

dt
W(I1, t, 1)

∣∣∣∣
t=I1

= ∂W

∂I2
(I1, I1, 1)

due to Lemma 7. ��
Coming back to Table 1, we observe that no energy function which satisfies
condition (K1) with b = 1

2 also fulfills the second condition (K2). Therefore, we
hypothesize that APS-admissibility is not a reasonable characteristic for physically
motivated compressible energy functions.

5 The Constrained Equilibrium Approach (A Priori)

By testing several examples, we are led to believe that most viable energy functions
in compressible nonlinear elasticity are not APS-admissible. Therefore, in general,
APS-boundary conditions do not necessarily lead to an APS-deformation of the
whole body. Nevertheless, it is possible to compute the energetically optimal APS-
deformation by minimization only over the class of APS-deformations, i.e., APS-
deformation as an a priori constraint (cf. Sect. 5):

I (ϕ) =
∫
�

W(∇ϕ) dx −→ min
ϕ∈APS

. (34)

An equilibrium of the corresponding Euler-Lagrange equations of (34) (with respect
to the restriction of the energy functional to the class of APS-deformations) is
called APS-equilibrium and does not have to be stationary in the global sense (5).
As emphasized by Saccomandi [39], this approach was chosen by Gao [13–16]:9

starting with

I (u) =
∫
�

W(3+ ‖∇u‖2) dx −→ min , (35)

9 Gao [12]:“ [. . . ] the equilibrium equation [. . . ] has just one non-trivial component [namely
equation (III)].” Gao claims that Knowles’ condition (K1) is automatically satisfied for every elastic
energy function with b = 0, which is clearly not the case (Table 1).
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where we employ the same notation10 W(I1, I1, 1) =W(I1) as before, we obtain
the Euler-Lagrange equation div(W′(3+‖∇u‖2)∇u) = 0 for stationarity within the
class of APS-deformations, which is equivalent to Eq. (III) from the full equilibrium
approach.

Corollary 2 APS-Convexity of the energy function W(F) ensures the existence of
a unique APS-equilibrium which is a global energy minimizer (among the class of
APS-deformations).

Contrary to Theorem 5 in [16], we see in Lemma 5 that strict rank-one convexity
implies strict APS-convexity which, in turn, implies uniqueness of the APS-
equilibrium.

Gao [16] prominently discusses the case where g(‖u‖2) = W(3 + ‖u‖2) =
W(3+‖u‖2, 3+‖u‖2, 1) is not convex. In this case, the existence of a solution to the
minimization problem is not clear due to the loss of APS-convexity (see Lemma 1),
and one needs to resort to just solutions of the Euler-Lagrange equation (III); of
course, while such solutions may exist, it is by no means obvious why they should
satisfy the general equations of equilibrium.

Remark 5.1 If an energy function is APS-admissible (satisfies (K1) for incompress-
ible material behavior or (K1) and (K2) in the compressible case), then the full and
the constrained equilibrium approach provide the same solution.

6 Finite Element Simulations

We consider the deformation of a unit cube � with APS-type Dirichlet boundary
conditions on the four lateral sides of the cube, see Fig. 2. In order to compare
the APS-computations for different constitutive laws, we perform numerical sim-
ulations using the finite element system ABAQUS [1], which supports the use of
internal models (e.g., the compressible Neo-Hooke or the compressible Mooney-
Rivlin model) as well as the implementation of custom hyperelastic models via the
provided user subroutine uhyper, which requires the user to provide the energy
function W(I1, I2, I3) in terms of the invariants as well as its first, second, and third
derivatives.

In the latter case for the energy expression of Becker [7], which is formulated in
terms of the right stretch tensor U (and its logarithms) instead of the deformation
invariants, we implement the constitutive relations via the umat user subroutine
into the ABAQUS environment following [30] for strain–energies based on principal
stretches or their logarithms, see also [19]. Here, we obtain the analytical deriva-

tions, e.g., d2W
d(log λi)d(log λj )

, by Matlab [40] following [24] and transform the resulting

10 For APS-deformations, I1 = I2 = 3+ ‖∇u‖2 and I3 = 1.
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Fig. 2 (Left) Prescribed APS-boundary conditions. (Right) possible APS-deformation of the top
and bottom side of the cube

material tangent modulus C into the typical mixed configuration used by ABAQUS,
see [30], for the Jaumann stress rate.

For our numerical calculations, we use a grid of 21×21×21 nodes. The consid-
ered unit cube is discretized by 8-noded linear brick elements with hybrid formula-
tion (C3D8H) in order to get better approximations for the (quasi-)incompressible
hyperelastic models.

The APS-boundary conditions as shown in Fig. 2 are realized by the disp
subroutine which enables the user to prescribe values for selected node sets and their
addressed degree of freedom (DOF) for each iteration increment. Here, we apply the
functional value depending on the nodal x1, x2-position onto the boundary nodes of
the unit cube.

In the following, we want to visualize the difference between APS-admissible
energy functions in the general compressible case, APS-admissibility only for
the constraint of incompressibility and an energy function that satisfies neither
condition. We start with the incompressible case and choose the Mooney-Rivlin
and Veronda-Westman energy functions (see Table 1). Both are APS-convex, but
only the Mooney-Rivlin energy satisfies the condition (K1) which implies APS-
admissibility in the incompressible case. An exact APS-deformation is characterized
by an exclusive displacement in e3-direction for every node of the whole body �.
Therefore, the e1-e2-plane grid-structure of the nodes in the undeformed body �

has to be maintained by any deformation in equilibrium for an APS-admissible
energy function. We introduce the measure uδ =

√
(ϕ1(x)− x1)2 + (ϕ1(x)− x2)2

of deviation from an APS-deformation.
The graphics in Fig. 3a visualize the deformation induced by the Mooney-Rivlin

energy, which is APS-admissible in the incompressible case. The slice of the inside
of the cube shows perfect APS-behavior, maintaining the original grid-structure.
The deformation induced by the non-APS-admissible Veronda-Westman energy
function is shown in Fig. 3b. The deviation to the original grid-structure is more
distinct and affects the whole body �.
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Fig. 3 Visualization of a slice (at x3 = 0.5) of the deformed square with APS-boundary
condition (Fig. 2) for the Mooney-Rivlin (a) and the Veronda-Westman (b) energy in the quasi-
incompressible case (bulk modulus K ∼ 105μ shear modulus). The color shows the displacement
uδ in x1- and x2-direction
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Fig. 4 Visualization of a slice (x3 = 0.5) of the deformed square with APS-boundary condition
(Fig. 2) with the Blatz-Ko (a) and the Mooney-Rivlin (b) energy in the compressible case (bulk
modulus K ∼ μ shear modulus). The color shows the displacement uδ in x1- and x2-direction

For the visualization of APS-admissibility in the compressible case, we again
use the Mooney-Rivlin energy and compare it to the APS-admissible Blatz-Ko
model (cf. Table 1); note that the Mooney-Rivlin energy is not APS-admissible
in the compressible case. Similar to our observation of the quasi-incompressible
case, the equilibrium solution for the APS-admissible energy function (Blatz-Ko,
Fig. 4a) shows perfect APS-behavior inside the cube. The deformation induced by
the Mooney-Rivlin energy, on the other hand, shows more distinguished deviations
from an APS-deformation throughout the whole body.

Last, we repeat our quasi-incompressible calculations for the Becker-energy
Ŵ (F ) = W(F) + K

2 (detF − 1)2 with K 1 μ (cf. Fig. 5). The Becker
model is not APS-admissible, i.e., condition (K1) is not satisfied but still shows
almost perfect APS-behavior at the middle height (x3 ≈ 0.5) of the cube for
the APS-boundary conditions used here, while the grid-structure of the deformed
configuration gradually becomes more convoluted near the top and bottom sides
of the cube. In addition, the lack of APS-convexity of the Becker-energy leads to
the loss of convergence in the compressible case. As mentioned above, these two
versions of the model (compressible and quasi-incompressible) are implemented in
ABAQUS via the umat user interface.
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Fig. 5 Visualization of a slice (a) at x3 = 0.5 and (b) at x3 = 0.9 of the deformed square with
APS-boundary condition (Fig. 2) for the Becker-energy in the quasi-incompressible case (bulk
modulus K ∼ 105μ shear modulus). The color shows the displacement uδ in x1- and x2-direction

7 Conclusion

This work elaborates on Knowles’ paper [26] and the difference between Knowles’
(full) and Gao’s (constrained) approach. The two conditions (K1) and (K2) as
discovered by Knowles were derived directly from the Euler-Lagrange equations
of the energy function W . The required ellipticity condition [26, eq.(19)] was
identified with the introduced APS-convexity and inferred from the important
concepts of polyconvexity and rank-one convexity. Since the latter condition is a
highly desirable property in nonlinear elasticity from a mathematical point of view,
the requirement of APS-convexity does not further restrict the class of viable energy
functions. Moreover, investigating different elastic energy functions revealed that
even a number of commonly used non-rank-one convex energy functions are in fact
still APS-convex due to its equivalence to the monotonicity of the Cauchy shear
stress in simple shear.

Furthermore, it was shown that, contrary to expectations, (K1) is fulfilled by
almost all investigated energy functions; indeed, this condition follows from the
physically reasonable requirement of tension-compression-symmetry. Therefore, it
is to be expected for incompressible elastic materials to exhibit APS-deformations
under given APS-boundary conditions.

However, within the context of nonlinear hyperelasticity, the additional APS-
admissibility condition (K2) in the compressible case appears to be satisfied only
in the trivial case of energies which do not depend on the second invariant I2. Note
that the only energy function listed in Table 1 that satisfies condition (K2) and is not
independent of I2 is a function without consistency to linear elasticity, unsuitable
for mechanical application.

By numerical simulations, we were able to visualize the difference between
the deformations under APS-type boundary conditions induced by APS-admissible
and non-APS-admissible energy functions in the incompressible as well as the
compressible case.

Acknowledgment We thank Giuseppe Saccomandi (University of Perugia) and Roger Fosdick
(University of Minnesota) for helpful discussions.
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Appendix

Recall that in the isotropic case, the Cauchy-stress tensor can always be expressed
in the form

σ = β01+ β1B + β−1B
−1 (36)

with scalar-valued functions βi depending on the invariants of B. In the hyperelastic
isotropic case, β0, β1, and β−1 are given by

β0 = 2√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
, β1 = 2√

I3

∂W

∂I1
, β−1 = −2

√
I3
∂W

∂I2
. (37)

Lemma 8 Let ϕ : � → R, ϕ(x) = (x1 + γ x2, x2, x3) be a simple shear
deformation, with γ ∈ R denoting the amount of shear. Then the Cauchy shear
stress σ12 of an arbitrary isotropic energy function W(I1, I2, I3) is monotone as a
scalar-valued function depending on the amount of shear for positive γ if and only
if W is APS-convex.

Proof We consider the Cauchy-stress tensor for an arbitrary material which is
stress-free in the reference configuration:

σ = β01+ β1B + β−1B
−1 . (38)

In the case of simple shear we compute [6, p.41]

∇ϕ =
⎛
⎝1 γ 0

0 1 0
0 0 1

⎞
⎠ , B = FFT =

⎛
⎝1+ γ 2 γ 0

γ 1 0
0 0 1

⎞
⎠ , B−1 =

⎛
⎝ 1 −γ 0
−γ 1+ γ 2 0
0 0 1

⎞
⎠ , (39)

I1 = trB = 3+ γ 2 , I2 = tr(CofB) = tr

⎛
⎝ 1 −γ 0
−γ 1+ γ 2 0
0 0 1

⎞
⎠ = 3+ γ 2 , I3 = detB = 1 ,

0⇒ σ = (β0 + β1 + β−1)1+
⎛
⎝ β1γ

2 (β1 − β−1)γ 0
(β1 − β−1)γ β−1γ

2 0
0 0 0

⎞
⎠ . (40)

Therefore, the Cauchy shear stress component σ12 is a scalar-valued function
depending on the amount of shear γ , given by

σ12(γ ) = (β1−β−1)γ = γ
2√
I3

(
∂W

∂I1
+ I3

∂W

∂I2

)∣∣∣∣
I1=I2=3+γ 2,I3=1

= 2γ

(
∂W

∂I1
+ ∂W

∂I2

)∣∣∣∣
I1=I2=3+γ 2,I3=1

= d

dγ
W(3+ γ 2, 3+ γ 2, 1). (41)
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The positivity of the Cauchy shear stress is already implied by the (weak) empirical
inequalities β1 > 0 , β−1 ≤ 0. The condition for shear-monotonicity is given by

d

dγ
σ12(γ ) = d2

dγ 2 W(3+ γ 2, 3+ γ 2, 1) > 0 ∀ γ ≥ 0 , (42)

which is equivalent to APS-convexity condition (APS2) of the energy function
W(I1, I2, I3) . ��
Remark 7.1 The empirical inequalities (27) state that β0 ≤ 0 , β1 > 0 , β−1 ≤ 0.
In the case of APS-deformations (I1 = I2 = 3 + γ 2 , I3 = 1), Pucci et al. [38,
eq.(4.3)] obtain the inequality

(I1 − 3)p(h∗)′ + q2h∗ > 0 , ∀ I1 ≥ 3 with h∗(I1) = β1 − β−1|I1=I2 ,I3=1 ,

(43)

“where p, q are real numbers such that p > 0 and q �= 0”, by a “simple
manipulation of the empirical inequalities (27) and [the stress-free reference
configuration]”. In [38, Remark III], it is pointed out correctly that in the case of
p = 1 , q2 = 1

2 (they erroneously use q = 1) the resulting constitutive inequality

0 < 2

(
(I1 − 3)(h∗)′(3+ γ 2)+ 1

2
h∗(3+ γ 2)

)

= (h∗)′(3+ γ 2) · 2γ 2 + h∗(3+ γ 2) = d

dγ

[
γ h∗(3+ γ 2)

]
(44)

is equivalent to APS-convexity by Eq. (APS3) with

(
∂W

∂I1
+∂W
∂I2

)∣∣∣∣
I1=I2=3+γ 2,I3=1

(37)= β1 − β−1|I1=I2=3+γ 2 ,I3=1 =h∗(3+γ 2) . (45)

We are, however, not able to reproduce a proof of inequality (43), see also the
counterexample in Remark 4.3.

Lemma 9 Let W be a sufficiently smooth isotropic energy function such that the
induced Cauchy-stress response satisfies the (weak) empirical inequalities. Then
for sufficiently small shear deformations (i.e., within a neighborhood of the identity
1), the Cauchy shear stress is a monotone function of the amount of shear.

Proof In Lemma 8, we already computed the Cauchy shear stress corresponding to
a simple shear to be σ12(γ ) = (β1 − β−1)γ , with γ ∈ R denoting the amount of
shear. The monotonicity of this mapping is equivalent to
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0 <
d

dγ
σ12(γ ) = d

dγ

[
(β1(3+ γ 2)− β−1(3+ γ 2))γ

]

=
(
β ′1(3+ γ 2)− β ′−1(3+ γ 2)

)
2γ 2 + β1(3+ γ 2)− β−1(3+ γ 2) . (46)

According to the (weak) empirical inequalities, β1(3) − β−1(3) =: μ > 0.
Therefore, β1(3+γ 2)−β−1(3+γ 2) ≥ ε > 0 for sufficiently small γ ∈ R. IfW and
thus β1, β−1 are sufficiently smooth, then β ′1 − β ′2 is locally Lipschitz-continuous,
and thus within a compact neighborhood of 1,

d

dγ
σ12(γ ) = β1(3+ γ 2)− β−1(3+ γ 2)︸ ︷︷ ︸

≥ε
+
(
β ′1(3+ γ 2)− β ′−1(3+ γ 2)

)
︸ ︷︷ ︸

≤ const.

· 2γ 2 > 0

for every sufficiently small shear deformation, i.e., sufficiently small γ . ��
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Identification of Diffusion Properties
of Polymer-Matrix Composite Materials
with Complex Texture

Marianne Beringhier, Marco Gigliotti, and Paolo Vannucci

1 Introduction

Structural parts made of polymer-matrix composite materials exposed to the envi-
ronment may suffer from material degradation related to species (water, oxygen . . . )
diffusion-reaction phenomena within the materials substrate. Species concentration
may affect material properties and give rise to internal stresses, leading to aging and
durability issues. In order to predict the durability of materials and structures it is
therefore of paramount importance to identify the materials diffusion behavior. In an
industrial context the availability of rapid identification procedures is also desirable.

According to the Thermodynamics of Irreversible Processes, the diffusion
behavior can be isotropic or orthotropic (we will see below, in fact, that the diffusion
of a species is ruled by a 2nd rank tensor): for many materials, due to the complexity
of the microscopic texture, the principal directions of orthotropy are not known a
priori and are part of the identification procedure.

From the experimental point of view, differently from thermal conduction—
where temperature spatial fields can be measured (for instance, by thermocouples or
by infrared thermography)—in the case of chemical diffusion (diffusion of species
molecules bounded to the material substrate driven by concentration gradients)
the species concentration fields cannot be directly measured if not qualitatively
with the aid of physical-chemical characterization techniques (Fourier-transform
infrared spectroscopy—FTIR, Nuclear Magnetic Resonance—NMR, Raman Anal-
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ysis . . . [22]). Therefore the diffusion behavior (isotropic, orthotropic) cannot be
assessed explicitly.

A popular experimental technique for diffusion identification involves carrying
out gravimetric tests. In this technique, material samples (usually of parallelepipedic
shape) are exposed to a controlled environment (with fixed temperature and relative
humidity) and are periodically weighted. If diffusion is Fickian, the sample mass
uptake is linear with respect to the square root of time in the first times of the
conditioning, then reaches saturation. The diffusion behavior can be then inferred
indirectly by exploiting the gravimetric curve.

A great deal of literature studies concern the identification of the diffusion
properties of materials whose diffusion behavior (isotropic, orthotropic) is known
a priori, for instance, through the knowledge of the material microstructure.
This is the case, for instance, of moisture diffusion in bulk polymer materials
(no privileged diffusion direction—isotropic behavior), polymeric materials with
randomly dispersed reinforcing particles (the random nature of the microstructures
generates isotropic behavior) or reinforced by hydrophobic long continuum carbon
fibers (orthotropic behavior—principal directions of orthotropy are along the fibers
and perpendicularly to fibers). In these cases, the identification of the diffusive
parameters is usually carried out by inverse analysis of the isotropic and orthotropic
Fick’s law by minimizing the error between the simulated and the experimental
curves (1 gravimetric curve for the isotropic case, 3 gravimetric curves for the
orthotropic case). The simulated curves can be obtained by means of analytical
methods [14], Finite Element Method [3, 21, 30], more recently by methods based
on Proper Generalized Decomposition techniques [4, 5].

Shen and Springer [24] have proposed a method for rapid identification of the
diffusion coefficients in the isotropic and orthotropic cases. The method (also called
the slope method) involves measuring the initial slope of the gravimetric curve then
using the analytical expression of the slope, which corresponds to a short time
approximation of the Fick’s equation.

As early as 1987, Arhonime et al. [2] presented gravimetric curves for moisture
absorbing Kevlar-epoxy laminated unidirectional composite parallelepipedic thin
samples with identical dimensions and different fiber orientations, showing that
mass uptake curves were significantly affected by the fiber orientation of samples.

Beringhier et al. [6] simulated this behavior by using an anisotropic Fick
diffusion model in which anisotropy was generated by rotating the sample axes with
respect to the fiber direction (the orientation of the orthotropic reference frame).1

They also showed that the sample apparent anisotropic behavior can be enhanced
by the sample shape and dimensions.

1 We have already mentioned that two are the possible cases for the behavior concerning the
diffusion properties: isotropic or orthotropic. However, for the sake of shortness we denote here
and in the following as anisotropic an orthotropic case when the orthotropy axes do not coincide
with the reference frame. In such a case, as well known, the property is still orthotropic but the
tensor representing it in the reference frame looks like that of a completely anisotropic case [29].
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Furthermore, by adapting the Shen and Springer slope method [24] to the
anisotropic case, Beringhier et al. [6] exploited the experimental results of Arhonime
et al. [2] in inverse manner, allowing identifying the principal coefficients of
diffusion and the orientation of the orthotropy reference frame. In the 2D planar
case, for fixed sample dimensions, the slope of the mass uptake curves is affected
by the 2 in-plane principal values of the diffusion coefficients (along the axis of the
principal orthotropic frame) and the 1 in-plane rotation angle between the sample
and the orthotropic frame. The inverse problem consists in the solution of a 3 × 3
system of nonlinear algebraic equations with 3 unknowns. A protocol procedure was
proposed but it was only applied for a 2D planar case as the identification procedure
requires for 3D case the use of a more robust algorithm than the Gauss-Newton ones
as discussed in this paper.

The present paper focuses in particular on the identification of the diffusion
behavior of materials with complex texture in the full 3D case framework. In
this case, for samples with fixed shape and dimensions, the issue resides in the
identification of 6 unknown quantities, the 3 principal values of the diffusion
coefficients (along the axis of the principal orthotropic frame) and the 3 rotation
angles between the sample and the orthotropic frame. The inverse problem consists
in the solution of a 6×6 nonlinear algebraic equations with 6 unknowns. Because of
the high nonlinearity of these equations, the method followed for the identification
is the transformation of it into an optimization problem: a distance is introduced
in the space of the physical parameters and then the solution is searched as the
point, in the physical space, that minimizes, i.e. reduces to zero, such a distance.
A dedicated protocol and appropriate optimization algorithms for achieving this
goal are presented. The methodology is here developed mainly for polymer-matrix
composite materials with complex texture exhibiting Fickian behavior; however, in
the future it can be extended to other kind of material textures and to other materials
showing different diffusion behavior.

The paper is organized as follows. Section 2 presents the theoretical background,
with an overview of the Thermodynamics of Irreversible Processes (TIP) approach,
the illustration of the structure of a diffuso-mechanical model, the general structure
of the diffusion tensor. Section 3 presents the identification of the diffusion
properties in the orthotropic case, based on the Shen and Springer slope method.
Section 4 concerns the anisotropic diffusion through the short time approximation.
Section 5 concerns the identification in the anisotropic case, a review of the full
3D case, with details on the numerical procedure (Adaptive Local Evolution-PSO)
used for solving the minimization problem and a case study. Finally, Sect. 6 presents
conclusions and perspectives of the present research.

2 Theoretical Background and Experimental Premises

Within the framework of the Thermodynamics of Irreversible Processes with
Internal Variables (TIP/TIV approaches, see, for instance, [11, 13, 18, 19, 23]), the
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evolution and the state equations of the state variables (for instance, the species
concentration, c and the strain E) or their dual (the chemical potential of the
diffusing species, μ, the Cauchy stress, T) in a weakly coupled diffuso-mechanical
elastic problem can be calculated by the dissipation and state potentials and are
given by

j = −D∇c, (1)

T = CE(c)(E− EH ) = CE(c)(E− β�c), (2)

where j is the mass flux of the diffusing species, D the diffusivity tensor, CE(c)

the elasticity tensor which may depend on c, and EH is the swelling strain, linearly
related to a change of concentration �c (with respect to a reference concentration,
c0, �c = c − c0) through the tensor of hygroscopic expansion β. Equations (1)
and (2) are in fact constitutive equations which must be accompanied by proper
balance equations, for instance, the mass balance of the diffusing species

∂c

∂t
= −∇ · j+ σ, (3)

in which σ represents the production of species mass (due, for instance, to chemical
reaction). By exploiting Eq. (1), Eq. (3) becomes

∂c

∂t
= ∇ · (D∇c)+ σ, (4)

which is analogous to the thermal conduction equation in solids, including a
diffusive term and a reaction term. Other relevant balance equations are the solid
mass balance, the momentum balance, and the internal energy balance. It can
be seen that even in the case of pure diffusive behavior (non-chemical reactions,
σ = 0) the solution of a diffuso-mechanical problem passes through the solution of
Eq. (4), with appropriate initial and boundary conditions, which is essential for the
identification of the concentration dependent elasticity tensor and for the calculation
of the hygroscopic swelling strain (see [30] for more details). In turn, the solution
of Eq. (4) passes through the knowledge of the diffusivity tensor D, which must be
identified though proper experiments.

An important note on the symmetry of the diffusivity tensor, D, has been
compiled by Powers [23] within the framework of TIP, in the analogous case of
thermal conduction (in thermal conduction the analogous of D is the conductivity
tensor K).

By taking the tensor D as the sum of a symmetric, Ds , and an unsymmetric, Du,
part

D = Ds + Du. (5)
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The Onsager conjecture [19] states

Du = 0. (6)

The condition Ds∇c·∇c ≥ 0 is satisfied if and only if Ds is positive semi-definite.
Therefore eigenvalues of Ds are positive, that is, invariants of Ds are positive.

In this context, the (3) eigenvalues of D, D1, D2, D3, can be identical, D1 =
D2 = D3 = D or different D1 �= D2 �= D3. In the first case the diffusive behavior
is isotropic and D = DI. In the second case the diffusive behavior is orthotropic and
D can be represented by a (3 × 3) diagonal matrix in the principal reference frame
(1, 2, 3)

D =
⎡
⎣D1 0 0

0 D2 0
0 0 D3

⎤
⎦ . (7)

In a generalized reference frame (x, y, z) rotated with respect to (1, 2, 3) the
diffusivity matrix attached to D is not diagonal. This last case can be considered
by misuse of language as anisotropic due the fact that non-diagonal terms appear in
the D matrix due to a frame rotation, see Note 1. This fact is extremely important
when dealing with samples of material having a given spatial orientation. The
identification of D consists in the identification of 1 parameter (D) in the isotropic
case and of 3 parameters (D1, D2, and D3) in the orthotropic case. However, it is
not possible to establish a priori whether the behavior is isotropic or orthotropic.
As stressed in the introduction, for many materials, due to the complexity of the
microscopic texture, the principal directions of orthotropy are not known a priori
and are part of the identification procedure.

3 Identification of the Diffusion Properties in Orthotropic
Case

More details about the description of the Shen and Springer Slope Based approach
can be found in [6]. Shen and Springer [24] have proposed an approximated short
time analytical solution for the mass gainM(t) as a function of time for the isotropic
and orthotropic case: the solution is based on the exact solution for Fickian diffusion
into a semi-infinite domain with constant and homogeneous fixed concentration
(c = c∞) on the external boundary (see Crank [9] and Carslaw and Jaeger [7],
for the analogous thermal conduction problem). In the 3D case, Shen and Springer
assume that each of the six surfaces of the parallelepipedic domain behaves as a
semi-infinite media, the mass gain is given by
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M(t) = 4M∞√
π

[√
D1

Lx
+
√
D2

Ly
+
√
D3

Lz

]√
t, (8)

where D1, D2, and D3 are the three diffusion coefficients in the orthotropic
reference frame (1, 2, 3) Lx , Ly , Lz are the sample dimensions along x, y and z,
respectively andM∞ is the mass gain at saturation. According to the short time solu-
tion, the mass evolves linearly with respect to

√
t , the short time solution represents

the initial slope of the analytical mass gain curve, giving a satisfactory description
of the analytical solution in a M(t)

M∞ range between 0 and 0.2–0.4. This solution
is applicable to initially dry samples exposed to a regulated humidity/temperature
environment in which temperature and relative humidity values are fixed and stay
constant. The weight of the sample (that is, the weight of absorbed humidity-
water, since the initially dry sample weight is known) is periodically measured by a
precision balance and reported. In the presence of Fickian behavior, the gravimetric
curve (water mass uptake) is approximately linear as a function of square root of
time, for short times.

A discussion concerning the validity of this approach can be found in [1, 6] and
the references therein.

The notable point in the approach by Shen and Springer is that it allows to relate
the identification of the diffusion coefficients to the measurement of the slope, S, of
the mass gain curve M(t)

M∞ with respect to
√
t as

S = M(t)

M∞
√
t
= 4√

π

[√
D1

Lx
+
√
D2

Ly
+
√
D3

Lz

]
. (9)

This approach also referred as slope method is adapted to the determination of
the diffusion properties as it allows to drastically decrease the test time. It has to
be noted, however, that even when employing the slope method the value of mass
gain at saturation, M∞, has to be known, since it enters the slope equation (Eq. (9));
therefore at least one gravimetric test has to be carried out up to saturation.

The protocol for rapid identification in the orthotropic (isotropic) diffusion
behavior based on the use of the Shen and Springer short time solution—slope
method—can be here resumed (see also [24])

1. Identification of M∞ by 1 gravimetric test up to saturation.
2. Realization of 3 (1) short time gravimetric tests to obtain 3 (1) distinct slopes.
3. Measurement of the 3 (1) slopes.
4. Use of the slope equations (Eq. (9)) to solve a 3 × 3 (1) linear algebraic system

of 3 (1) unknowns (D1, D2, D3 (D)).

An example of identification based on this approach is fully illustrated in [6] the
reader can find more details therein. In that case, D3 = D2 so that only two
parameters (namely D1 and D2) need to be identified through the employment of
two separated slopes. Two unknown parameters D1 and D2 can be calculated by
using the Shen and Springer short time solution (Eq. (8)) with D3 = D2. The two
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experimental slopes, for instance, denoted by S1 and S2 allow computing D1 and
D2 by solving the linear system with respect to

√
D1 and

√
D2

4√
π

[
1
Lx

Ly+Lz
Ly Lz

1
Ly

Lx+Lz
Lx Lz

][√
D1√
D2

]
=
[
S1

S2

]
. (10)

It is essential to note that since the gravimetric curve is stopped at M(t)
M∞ equal to 0.4

by the slope method the time gain with respect to a gravimetric test up to saturation
can approximately span from 3 to 5, depending on the time to reach saturation.

4 Anisotropic Diffusion and Short Time Approximation

We recall that anisotropy is here generated by rotating the sample axes with respect
to the fiber direction (the orientation of the orthotropic reference frame). In this case,
the second-order diffusivity tensor written in a generalized reference frame (x, y, z)
can be represented by the following matrix

D =
⎡
⎣Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ . (11)

The relationship between the anisotropic diffusivity matrix given by Eq. (11) in
the (x, y, z) reference frame and the orthotropic diffusivity matrix in the (1, 2, 3)
reference frame is given by the algebraic relations between the 2 coordinate systems
(orthotropic and anisotropic or generalized) by the rotation angles as follows

⎡
⎣D1 0 0

0 D2 0
0 0 D3

⎤
⎦ = QT

⎡
⎣Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤
⎦Q, (12)

where Q is the operator moving from the anisotropic (generalized) axes to the
principal axes. The Q matrix can be expressed under the form

Q = Rθ Rφ Rψ, (13)

where

• Rθ is the rotation matrix around the x-axis of an angle θ

Rθ =
⎡
⎣1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎤
⎦ ; (14)
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• Rφ is the rotation matrix around the y-axis of an angle φ

Rφ =
⎡
⎣ cos(φ) 0 sin(φ)

0 1 0
− sin(φ) 0 cos(φ)

⎤
⎦ ; (15)

• Rψ is the rotation matrix around the z-axis of an angle ψ

Rψ =
⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ . (16)

We then deduce the following relationships between the anisotropic diffusion
coefficients, Dxx , Dyy , Dzz, and the diagonal diffusion coefficients D1, D2, D3,
by the rotation angles θ , φ, ψ :

Dxx = D1ĉ
2(φ)ĉ2(ψ)+D2ĉ

2(φ)ŝ2(ψ)+D3ŝ
2(φ),

Dyy = D1(ŝ(θ)ŝ(φ)ĉ(ψ)+ ĉ(θ)ŝ(ψ))2 +D2(ĉ(θ)ĉ(ψ)−
ŝ(θ)ŝ(φ)ŝ(ψ))2 +D3ŝ

2(θ)ĉ2(φ),

Dzz = D1(ŝ(θ)ŝ(ψ)− ĉ(θ)ŝ(φ)ĉ(ψ))2 +D2(ŝ(θ)ĉ(ψ)+
ĉ(θ)ŝ(φ)ŝ(ψ))2 +D3ĉ

2(θ)ĉ2(φ),

Dxy = D1ĉ(φ)ĉ(ψ)(ĉ(θ)ŝ(ψ)+ ĉ(ψ)ŝ(φ)ŝ(θ))−
D2ĉ(φ)ŝ(ψ)(ĉ(ψ)ĉ(θ)− ŝ(φ)ŝ(ψ)ŝ(θ))−D3ĉ(φ)ŝ(φ)ŝ(θ),

Dxz = D1ĉ(φ)ĉ(ψ)(ŝ(ψ)ŝ(θ)− ĉ(ψ)ĉ(θ)ŝ(φ))−
D2ĉ(φ)ŝ(ψ)(ĉ(ψ)ŝ(θ)+ ĉ(θ)ŝ(φ)ŝ(ψ))+D3ĉ(φ)ĉ(θ)ŝ(φ),

Dyz = −D3ĉ(θ)ŝ(θ)ĉ
2(φ)+D1(ĉ(θ)ŝ(ψ)+

ĉ(ψ)ŝ(φ)ŝ(θ))(ŝ(ψ)ŝ(θ)− ĉ(ψ)ĉ(θ)ŝ(φ))+
D2(ĉ(ψ)ŝ(θ)+ ĉ(θ)ŝ(φ)ŝ(ψ))(ĉ(ψ)ĉ(θ)− ŝ(φ)ŝ(ψ)ŝ(θ)),

(17)

where ĉ and ŝ stand for the cosine and the sine functions, respectively. Let us note
that no analytical solution is available in the anisotropic case.

Due to the interest of short time analysis for the identification and the lack of
analytical solution, the Shen and Springer orthotropic (isotropic) slope expression
(Eq. (8)) can be generalized to the anisotropic case by directly replacing the
coefficients D1, D2, and D3 by their related values Dxx , Dyy , and Dzz (see [6]
for more details and in-depth discussion on the matter)

M(t) = 4M∞√
π

[√
Dxx

Lx
+
√
Dyy

Ly
+
√
Dzz

Lz

]√
t . (18)

The extradiagonal coefficients of the anisotropy tensor are assumed to have
no influence on the diffusive behavior for short times (see again [2] for in-depth
discussion about this assumption).
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By replacing Dxx , Dyy , and Dzz by their expressions Eq. (17) the slope, S, of the
curve M(t)

M∞ with respect to
√
t is finally expressed by

S = 4√
π

[√
Dxx

Lx
+
√
Dyy

Ly
+
√
Dzz

Lz

]
. (19)

In the case of planar anisotropic diffusion in the (x, y) plane, there exists only a
rotation around the z-axis, denoted by ψ . The diffusivity matrix has the form

D =
⎡
⎣Dxx Dxy 0
Dxy Dyy 0
0 0 Dzz

⎤
⎦ (20)

with

Dxx = D1ĉ
2(ψ)+D2ŝ

2(ψ)

Dyy = D1ŝ
2(ψ)+D2ĉ

2(ψ)

Dzz = D3

Dxy = D1ĉ(ψ)ŝ(ψ)−D2ŝ(ψ)ĉ(ψ)

Dxz = Dyz = 0,

(21)

where ĉ and ŝ stand for the cosine and the sine functions, respectively.
By considering the particular case D3 = D2, the slope can be expressed under the
form

S = 4√
π

[√
D1ĉ2(ψ)+D2ŝ2(ψ)

Lx
+
√
D1ŝ2(ψ)+D2ĉ2(ψ)

Ly
+
√
D2

Lz

]
, (22)

where ĉ and ŝ stand for the cosine and the sine functions, respectively.
The study of planar anisotropic diffusion can be also dealt within the polar method
[27, 29]. The diffusion coefficients have thus the form

Dxx = T + sgn(D1 −D2) R ĉ (2 ψ)

Dyy = T − sgn(D1 −D2) R ĉ (2ψ)

Dzz = T − sgn(D1 −D2) R

Dxy = sgn(D1 −D2) 2R ĉ (ψ) ŝ (ψ) ,

(23)
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where ĉ and ŝ stand for the cosine and the sine functions, respectively, sgn stands
for the sign function and T and R are the polar invariants defined by

T = D1 +D2

2

R = | D1 −D2 |
2

.

(24)

Within the polar representation, the slope is given by

S = 4√
π

[√
T+sgn(D1−D2) R ĉ(2 ψ)

Lx
+
√
T−sgn(D1−D2) R ĉ(2ψ)

Ly
+

√
T−sgn(D1−D2) R

Lz

]
,

(25)

where ĉ stands for the cosine function and sgn stands for the sign function.

5 Identification of the Diffusion Properties in the Anisotropic
Case

5.1 Generalities

The identification problem in the 3D anisotropic case is related to three angles
of rotation around the x, y, and z-axis, respectively, denoted by θ , φ, and ψ ,
respectively. The change from the current frame (frame attached to the initial
configuration as, for example, the axes of the plate where the tests samples are cut)
to the principal orthotropic frame can be represented by the operator Q = RθRφRψ .
To identify these three angles, the sample is rotated from his current configuration
by three angles around the x, y, and z-axis, respectively, denoted by θt , φt , and
ψt , respectively: this can be represented by the operator Qt = RθtRφtRψt . The
change from the rotated frame to the principal frame can be represented by the
operator Qtm = QT

t Q which describes the composition of 3D rotations as depicted
in Fig. 1. Let us note that the rotated axes represent the generalized axes, or the axes
of the samples for which the gravimetric tests are carried out. The expression of the
anisotropic diffusion coefficients depends on:

• the 3 principal diffusion coefficients, D1, D2, and D3, the 3 angles θ , φ, and ψ
expressing the rotation from the initial frame to the principal (orthotropic) axis—
these 6 coefficients are unknown,

• the angles θt , φt , and ψt expressing the rotation from the rotated frame to the
initial frame—these three coefficients are known,
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Fig. 1 Bases changes: current frame, main frame, and rotated frame (figure from Ref. [6])

and the expression is the following

⎡
⎣Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ = Qtm (θ, φ,ψ, θt , φt , ψt )

⎡
⎣D1 0 0

0 D2 0
0 0 D3

⎤
⎦

×Qtm (θ, φ,ψ, θt , φt , ψt )
T . (26)

Dxx , Dyy , and Dzz are then used in the slope analytical expression. By considering
6 different 3-uplet (θt , φt , ψt ), 6 slopes can be calculated. The system to determine
the 6 unknowns D1, D2, D3, θ , φ, and ψ is a 6× 6 nonlinear algebraic system.
This system can be simplified by considering the planar anisotropic diffusion as in
this case the combination of two rotations of a same axis is investigated leading to
simplified relations.

5.2 Full 3D Diffusion

In the 3D anisotropic diffusion case, the rotations around the three different axes
(x, y, and z, respectively) have to be considered: θ , φ, and ψ from the current axis
to the orthotropic axis, θt , φt , and ψt from the initial axis (configuration of the
initial plate) to the rotated axis (configuration of the test sample). The operator Qtm

depends on the six angles θ , φ, ψ , θt , φt , and ψt . By using Eq. (26), the expression
of the coefficients of the anisotropic diffusivity tensor are deduced and depend on
D1, D2, D3 (the 3 principal diffusion coefficients) and θ , φ, ψ , θt , φt , and ψt . They
allow to determine the expression of the slope S given by Eq. (19) which depends
on D1, D2, D3, θ , φ, ψ , θt , φt , ψt , Lx , Ly , Lz. Let us recall Lx , Ly , and Lz are the
sample dimensions along x, y, and z, respectively. The six unknowns D1, D2, D3,
θ , φ, ψ can be determined by considering six different values for the 3-uplet (θt , φt ,
ψt ) and the sample size (Lx , Ly , and Lz) leading to six different expressions for the
slopes. Finally a 6×6 nonlinear algebraic system has to be solved. The expression



300 M. Beringhier et al.

of the slope can be written under the form

fi(D1,D2,D3, θ, φ, ψ) = 0 (27)

for a fixed value of the 3-uplet (θt , φt , ψt )i and the sample size (Lx, Ly, Lz)i
where the exponent i denotes the configuration. More precisely, fi is the difference
between the predicted value of Si deduced from Eq. (19) and the experimental value
of Si calculated from a gravimetric test (slope of the gravimetric curve at short time).
The dependence of the fi with respect to their arguments is nonlinear. Six unknowns
having to be determined, six values of (θt , φt , ψt )i and their associated sample size
(Lx, Ly, Lz)i and slope values have to be considered. We then obtain a system of
six equations:

fi(D1,D2,D3, θ, φ, ψ) = 0 for i = 1 . . . 6. (28)

This system can be numerically solved by turning into a constrained minimization
problem

min
D1,D2,D3,θ,φ,ψ

(
6∑
i=1

f 2
i (D1,D2,D3, θ, φ, ψ)

)
(29)

subject to

D1 ≥ 0,D2 ≥ 0,D3 ≥ 0,

θ ∈
[
−π

2
,
π

2

]
, φ ∈

[
−π

2
,
π

2

]
, ψ ∈

[
−π

2
,
π

2

]
. (30)

5.3 Numerical Procedure for Identification

As seen in the previous sections, we identify the quantities D1,D2,D3 through
a minimization procedure: we look for the minimum of the objective function
specified in Eq. (29). Because such a function is non-convex, the search for a
minimum by the classical descent methods, sensitive to the starting point, is
unsuited: a bad choice of the starting point could lead to a local minimum. In the
problem at hand, there are no indications to choose a suitable initial guess, so the
use of such classical descent methods is not recommended.

That is why we have decided to make use of a metaheuristic; as well known,
metaheuristics are optimization strategies inspired by some heuristics mimicking a
real-world phenomenon: simulated annealing is inspired by a metallurgic process
for decreasing the internal energy in metal alloys, and colonies refer to the social
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behavior of ants, genetic algorithms mimic the Darwinian selection in nature and so
on. A general characteristic of metaheuristics is that they work on a population of
individuals rather than on only a single element; in such a way, the exploration of
the feasible domain is much more effective and by consequence the probability to
be trapped in a local minimum decreases.

For the problem at hand, we have used an algorithm for Particle Swarm
Optimization (PSO). This is a metaheuristic introduced by Eberhart and Kennedy
[12] to solve complex optimization problems. It is inspired by and it mimics in an
algebraic way the social behavior and dynamics of groups of individuals (particles),
such as the flocks of birds, whose groups displacements are not imposed by a leader:
the same overall behavior of the flock guides itself.

In this analogy, each particle composing the swarm is actually a vector of Rn,
with n the number of design variables, who is a candidate to the solution of the
minimization problem under consideration. A true advantage of a PSO algorithm is
its true simplicity: a PSO is a zeroth order algorithm, i.e. it just needs the evaluation
of the objective function: no calculation of derivatives is needed, so that it is able to
tackle problems ruled by discrete variables too. In addition, the standard algorithm
is very simple and short, so that calculations are usually very quick.

In particular, we have used the PSO algorithm ALE-PSO (Adaptive Local
Evolution-PSO) [28]; this is an algorithm having the possibility to tune all the
parameters of a standard PSO algorithm and to let evolve the main numerical
coefficients along the computation steps through a power law specified by the user.
Each coefficient can be updated independently by the others, so as to optimize
the trade-off between the exploration and exploitation capabilities of the numerical
procedure with respect to a given objective function. The algorithm can also handle
constrained problems, by a technique which is essentially a barrier method.

Actually, as the most part of numerical methods, also PSO algorithms depend
upon some parameters to be chosen by the user to guarantee convergence, rapidity,
and robustness of the algorithm itself. Tuning these parameters, i.e. the best choice
of them, is one of the major issues with PSO algorithms. Generally speaking, tuning
of parameters depends mostly upon the objective function; so, a set of well suited
parameters for a given problem can be a bad choice in another case. Tuning of
parameters is mostly based upon experience, and in some cases several tests can
be necessary to find a good tuning. For this reason, some attempts have been made
to establish, on the one hand, the dynamics of the swarm, though often on very
simplified models, to obtain some conditions for the convergence of the swarm
towards a final point of the design space, see, for instance, the works of Shi and
Eberhart [25], Ozcan and Mohan [20], Clerc and Kennedy [8], Trelea [26], Liu et al.
[17], Jiang et al. [16], and, on the other hand, to propose adaptive PSO algorithms,
i.e. algorithms which tune the parameters during the calculation, see, for instance,
the papers of Hu and Eberhart [15], Yasuda et al. [32], Yamaguchi et al. [31], DeBao
and ChunXia [10].

The general scheme of a PSO algorithm can be condensed in the following
updating rule: in a swarm composed bym particles, the new position of the particle k
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in the feasible space, i.e. the vector xkt+1 containing the value of the design variables
represented by such a particle at the iteration t + 1, 1 ≤ t ≤ s, is given by

xkt+1 = xkt + ukt+1, (31)

with the displacement ukt+1 updated as

ukt+1 = r0c0u
k
t + r1c1

(
pkt − xkt

)
+ r2c2

(
p
g
t − xkt

)
. (32)

In the above equations:

• pkt : vector recording the best position occupied so far by the kth particle
(personal best position); in a minimization problem for the objective function
f (x), pkt is updated as follows

pkt+1 =
{
pkt , if f (xkt+1) ≥ f (pkt ),

xkt+1, if f (xkt+1) < f (pkt );
(33)

• p
g
t : vector recording the best position occupied so far by any particle in

the swarm (global best position); in a minimization problem for the objective
function f (x), pgt is updated as

p
g

t+1 ∈
{
pkt+1, k = 1, . . . , m

}
such that f (pgt+1) = min

k=1,...,m
f (pkt+1); (34)

• r0, r1, r2: independent random coefficients, uniformly distributed in the range
[0, 1];

• c0, c1, c2: real coefficients called, respectively, inertial, cognition, and social
parameters.

The use of the random coefficients r0, r1, r2, together with the fact that usually
the original swarm is randomly generated, gives a stochastic nature to the algorithm.
Anyway, this stochastic nature is weighted, in some way, by the presence of the
coefficients c0, c1, c2: their value has a paramount importance in the convergence,
stability, and search domain exploration of the algorithm. The choice of these
coefficients is of the greatest importance. Unfortunately, as said above, the best
choice of these parameters is function-dependent and sometimes it is difficult to
found a suitable set of parameters. For this reason, one can think to update also the
coefficients c0, c1, and c2, so as to improve the convergence of the algorithm.

Normally, high values of c0 and c1 improve exploration, while increasing values
of c2 increases stability and rapidity of convergence. Hence, a good strategy can be
the following one: to begin the computation with high values of c0 and c1 and a low
value of c2, for better exploring the feasible domain. Once, hopefully, the search
concentrated in a good region of the feasible domain, to decrease the values of c0
and c1 and to increase the value of c2. Nevertheless, some relations among these
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parameters must be respected in order to ensure stability and convergence. In ALE-
PSO, it has been chosen to update the coefficients cj , j = 0, 1, 2 according to a
power law ruled by three parameters, cj,0, cj,s , and ej :

cj,t = cj,s + (cj,0 − cj,s)

(
s − t

s − 1

)ej
, j ∈ {0, 1, 2}. (35)

In the above equation cj,t is the value of the coefficient cj at iteration t , cj,s at
the end of the iterations (t = s) and cj,0 at the beginning (t = 0). The user has
to choose the coefficients cj,0 and cj,s besides the power ej . This last modulates
the variation of the coefficient cj along the iterations, giving the possibility to the
user to increase the rapidity of the variation at the beginning or at the end of the
iterations. The use of such an updating rule is motivated by the need to adapt the
coefficients to the dynamics of the storm. This is affected by the problem itself and
also by the storm size, so there is not an optimal general strategy for the updating of
the coefficients cj s. That is why disposing of an updating rule that can be tailored
to a specific problem is suitable. The law (35), depending upon 3 parameters, has
proven to be rather effective to this purpose, the reader is referred to [28] for more
details.

In ALE-PSO, the frequency of updating the random parameters r0, r1, and r2 can
be fixed by the user; three are the possibilities:

1. r0, r1, and r2 are updated at each iteration (all the particles receive the same value
of r0, r1, and r2);

2. r0, r1, and r2 are updated at each particle (all the components of ukt+1 receive the
same value of r0, r1, and r2);

3. r0, r1, and r2 are updated at each component of each particle (no repeated values,
in principle).

Normally, the third option ensures a better exploration of the feasible domain, but
it is more time consuming; option 1 is quickest but recommended only for simple
problems, as it lowers too much the search capacity of the algorithm, while option
2 is a good compromise for many problems.

If the new position of a particle increases the value of f (x), ALE-PSO can,
optionally, refuse to update the position; this option tends to concentrate the search
on good regions, though it increases the probability of convergence towards non
global minima.

5.4 Identification Test

We have applied ALE-PSO to the identification of the D1,D2,D3 and θ, φ,ψ for
the case whose data are shown in Table 1 where a set of six samples with different
values of (θt , φt , ψt )i , size (Lx, Ly, Lz)i and slopes are considered.
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Table 1 Configurations (rotated angles and sample size) and computed slopes

Configuration i (θt , φt , ψt )i (◦) (Lx, Ly, Lz)i (mm) Slope Si (h−1/2)

1 (0, 0, 0) (110, 10, 1.7) 0.0275

2 (45, 0, 0) (110, 10, 1.7) 0.0471

3 (0, 0, 0) (1.7, 110, 10) 0.0166

4 (0, 45, 0) (1.7, 110, 10) 0.0135

5 (0, 0, 0) (10, 1.7, 110) 0.0793

6 (0, 0, 45) (10, 1.7, 110) 0.0141

The parameters used for ALE-PSO are:

• inertial parameter: c0,0 = 1, c0,s = 0.5, e0 = 0.5;
• cognition parameter: c1,0 = 5, c1,s = 1.5, e1 = 0.5;
• social parameter: c2,0 = 1, c2,s = 1.8, e2 = 2;
• update of the coefficients: at each variable (option iii);
• size of the swarm: m = 50;
• number of iterations: s = 200;
• coefficient r0: randomly determined.

The result of the search is:

D1 = 0.015 mm2.h−1, D2 = 0.0015 mm2.h−1, D3 = 0.00015 mm2.h−1,

θ = φ = ψ = 0◦.

The value of f for the best solution, i.e. the residual (we recall that, for the
formulation used for the minimum problem, the solution corresponds to a zero-
valued objective function), found at iteration 45, is f = 0.12 × 10−30, while the
best average of the residual, denoting the best swarm, is 0.37 × 10−8, at iteration
48. We show in Fig. 2 the diagrams of the objective function versus the iterations
and in Fig. 3 the dynamics of the swarm during iterations: randomly generated, at
the beginning the swarm occupies almost uniformly the design space; then, it moves
more and more towards the solution and at the end it practically coincides with the
best particle.

6 Proposal for a Rapid Identification Protocol Based on the
Slope Method in the Anisotropic Case

A protocol for a rapid identification based on the slope method in the anisotropic
case can be proposed and consists in:

1. Identification of mass (concentration) at saturation by 1 gravimetric test up to
saturation
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Fig. 2 The objective function f along iterations; left column: diagrams of f ; right column:
diagrams of log(f )

2. Realization of at least 6 short time gravimetric tests to obtain 6 separated slopes.
The samples must be realized by performing 6 distinct appropriate rotations
about a given reference frame (for instance, that of the as-received material) or
2 distinct appropriate rotations for 3 distinct appropriate sample sizes (as, for
instance, presented in Table 1).

3. Measurement of the slopes.
4. Use of the slopes equations to solve a 6 × 6 nonlinear algebraic system of 6

unknowns (D1, D2, D3, θ , φ and ψ). A robust optimization algorithm has to be
used to determine the six unknowns: being the problem non-convex, it is better to
use metaheuristics; in this case, we have used a PSO algorithm with dynamically
changing coefficients, ALE-PSO.
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Fig. 3 The evolution of the swarm during iterations in the space D1,D2,D3 (=var 1, var 2, var
3, respectively). The initial swarm, randomly generated, converges more and more towards the
solution; at the end, i.e. after 50 iterations, the entire swarm practically coincides with the best
particle

For planar anisotropic diffusion, the number of unknowns reduces to 3, with the
need of measuring 3 distinct slopes on samples realized by performing 3 distinct
appropriate rotations about a given reference frame (for instance, that of the as-
received material).

Again we note that since the gravimetric curve is stopped at M(t)
M∞ equal to 0.4 by

the slope method the time gain with respect to a gravimetric test up to saturation can
approximately span from 3 to 5, depending on the time to reach saturation.

We stress moreover the fact that in order to separate slopes by at least 5% to
take into proper account the experimental scatter, one can either change sample
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orientation in order to enhance the effect of one particular coefficient Di with
respect to another either choose proper sample dimensions to enhance diffusion
along one particular direction. The optimization of the generalized parameters Di

L2
i

may generally not be straightforward: the knowledge of indicative values (order
of magnitude) for the diffusion coefficients from step 1 may help deciding proper
sample dimensions (sample rotations) for step 2.

7 Conclusions

The paper has been focused on the identification of 3D anisotropic diffusion
properties of materials with complex texture, based on the exploitation of short
time gravimetric tests. The paper has addressed the development of an experimental
protocol and an identification algorithm for the full 3D diffusion case, aiming
at establishing the 3 coefficients of diffusion along the principal directions of
orthotropy and the orientation of the orthotropic reference frame with respect to
the sample frame. The identification of the physical properties has been carried
out through the minimization of a distance in the space of the physical parameters.
The problem being non-convex, the chosen numerical strategy used for the search
of the global minimum has been a Particle Swarm Optimization—PSO, the code
ALE-PSO (Adaptive Local Evolution-PSO) with adaptive coefficients, proven to
be more robust with respect to Gauss-Newton algorithms. Because of the high
nonlinearity of the equations involved in the studied physical problem, possible
research perspectives include the use of invariant properties for the expression of
the material diffusivity and the use of quaternions for the expression of the rotations
with respect to the orthotropic frame. The methodology here used has been mainly
developed for polymer-matrix composite materials with complex texture exhibiting
Fickian behavior; however, in the future it will be extended to other kind of material
textures and to other materials showing different diffusion behavior. These topics
are currently under investigation.
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