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Preface

Crop production is drastically affected due to external or environmental stresses.The
biotic stresses cause significant yield losses in the range of 31–42% together with 6–
20% loss during the post-harvest stage. The abiotic stresses also aggravate the situ-
ation with crop damage in the range of 6–20%. Understanding the mechanisms of
interaction of plants with the biotic stresses caused by insects, bacteria,fungi, viruses,
oomycetes, etc., and abiotic stresses due to heat, cold, drought,flooding, submer-
gence, salinity, acidity, etc., is critical to develop resilient crop varieties. Global
warming and climate change are also causing emergence of new diseases and insects
together with newer biotypes and physiological races of the causal agents on the one
hand and aggravating the abiotic stress problemswith additional extremes and unpre-
dictability. Development of crop varieties resistant and/or adaptive to these stresses
is highly important. The future mission of crop improvement should, therefore, lay
emphasis on the development of crop varieties with optimum genome plasticity by
possessing resistance or tolerance to multiple biotic and abiotic stresses simulta-
neously. A moderate estimation of world population by 2050 is about 9.3 billion
that would necessitate an increase of crop production by about 70%. On the other
hand, the additional losses due to climate change and global warming somewhere in
the range of 10–15% should be minimized.Therefore, increase in the crop yield as
well as minimization of its loss should be practiced simultaneously focusing on both
‘adaptation’ and ‘mitigation.’

Traditional plant breeding practiced in the last century contributed a lot to the
science of crop genetic improvement. Classical plant breeding methods including
selection, hybridization, polyploidy and mutation effectively catered to the basic
F5needs—food, feed, fiber, fuel and furniture. The advent of molecular breeding and
genetic engineering in the latter part of twentieth century complimented classical
breeding that addressed the increasing needs of the world. The twenty-first century
came with a gift to the geneticists and plant breeders with the strategy of genome
sequencing inArabidopsis and rice followedby the tools of genomics-aided breeding.
More recently, another revolutionary technique, genome or gene editing,became
available for genetic correction of crop genomes! The travel from ‘plant breeding’
based on visual or perceivable selection to ‘molecular breeding’ assisted by linked
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markers to ‘transgenic breeding’ using genetic transformation with alien genes to
‘genomics-aided breeding’ facilitated by known gene sequences has now arrived at
the age of ‘genetic rectification’ employing genome or gene editing.

Knowledge on the advanced genetic and genomic crop improvement strate-
gies including molecular breeding, transgenics, genomic-assisted breeding and the
recently emerged genome editing for developing resistant, tolerant and/or adaptive
crop varieties is useful to students, faculties and scientists in the public and private
universities and organizations. Whole-genome sequencing of most of the major crop
plants followed by genotyping-by-sequencing has facilitated identification of exactly
the genes conferring resistance, tolerance or adaptability leading to gene discovery,
allele mining and shuttle breeding which in turn opened up the scope for ‘designing’
or ‘tailoring’ crop genomes with resistance/tolerance to biotic and abiotic stresses.

Tomymind, themission of agriculture in this century is FHNEE securitymeaning
food, health, nutrition, energy and environment security. Hence, genome designing of
crops should focus on breeding of varieties with higher yields and improved qualities
of the five basic F5 utilities; nutritional and neutraceutical compounds; and other
industrially and aesthetically important products and possibility of multiple utilities.
For this purpose of ‘precise’ breeding, employment of the genetic and genomic
techniques individually or in combination as and when required will play a crucial
role.

The chapters of the 12 volumes of this twin book series entitled Genomic
Designing for Biotic Stress Resistant Crops and Genomic Designing for Abiotic
Stress Resistant Crops will deliberate on different types of biotic and abiotic stresses
and their effects on and interaction with crop plants; will enumerate the available
genetic diversitywith regard to biotic or abiotic stress resistance among cultivars; will
illuminate on the potential gene pools for utilization in interspecific gene transfer;will
brief on the classical genetics of stress resistance and traditional breeding for trans-
ferring them to their cultivated counterparts; will discuss on molecular mapping of
genes and QTLs underlying stress resistance and their marker-assisted introgression
into elite crop varieties; will enunciate different emerging genomics-aided techniques
including genomic selection, allele mining,gene discovery and gene pyramiding for
developing smart cropvarietieswith genetic potential to produceF5 of higher quantity
and quality; and also will elaborate the case studies on genome editing focusing on
specific genes. Most of these chapters will discuss on the success stories of genetic
engineering in the relevant crops specifically for generating crops with resistance
and/or adaptability to diseases,insects and abiotic stresses.

There are obviously a number of reviews and books on the individual aspects of
plantmolecular breeding, genetic engineering and genomics-aided breeding on crops
or on agro-economic traits which includes the 100-plus books edited byme.However,
there is no comprehensive reviews or books available that has coverage on crop
commodity groups including cereals and millets, oilseeds, pulses, fruits and nuts,
vegetables and technical or industrial crops, and modern strategies in single volumes
with precise focuses on biotic and abiotic stresses. The present volumes will fill this
gap with deliberations on about 120 important crops or their groups.
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This volume on “Genomic Designing for Abiotic Stress Resistant Oilseed Crops”
includes eight chapters focused on Soybean, Rapeseed, Sunflower, Peanut, Rape and
Mustard, Sesame, Castor and Flax contributed by 58 scientists from six countries
Canada, China, India, Japan, Serbia, and USA. I remain immensely thankful for their
highly useful contributions.

I am indebted to my wife Phullara who as always has assisted me directly in
editing these books and indirectly through maintaining an academic ambience to
pursue my efforts for science and society pleasantly and peacefully.

New Delhi, India Chittaranjan Kole
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Chapter 1
Genomic Designing for Abiotic Stress
Tolerant Soybean

Milind B. Ratnaparkhe, Gyanesh K. Satpute, Giriraj Kumawat,
Subhash Chandra, Viraj G. Kamble, Rucha Kavishwar, Vijayata Singh,
Jogendra Singh, Ajay K. Singh, S. V. Ramesh, Virender Kumar,
Sreeja Sudhakaran, Manoj K. Srivastava, Nishtha Shesh, Anjana Jajoo,
Sanjay Gupta, Maharaj Singh, Donghe Xu, Madan Bhattacharya,
and Henry T. Nguyen

Abstract Soybean is an agronomically important crop which is rich in seed protein
(about 40%) and oil (about 20%), enriches the soil by fixing nitrogen through
symbiosis with bacteria. It is widely used as food, feed, and for industrial purpose. In
addition to human consumption, soybean is a major protein source in animal feeds.
Soybean is also becoming a major crop for biodiesel production. In soybean, abiotic
stresses including drought, temperature extremes, floods, salinity, acidity, mineral
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2 M. B. Ratnaparkhe et al.

toxicity and nutrient deficiency have emerged as the major challenges for achieving
the increased productivity. Breeding for tolerance to abiotic stresses is cumbersome
due to their genetic control bymultiple genes and are also verymuch influenced by the
environment. The novel genomic designing approaches have enabled the improve-
ment of soybean at a faster pace than traditional approaches. Genomic-assisted
breeding, genomic selection, genome sequencing, marker-assisted selection, genetic
engineering approaches, and genomics tools have been used to improve tolerance
to biotic and abiotic stresses, yield and seed composition traits. Genomic designing
overcomes the limitations of traditional breeding methods and accelerate the devel-
opment of climate-smart soybean crops. Developing abiotic stress-tolerant soybean
varieties have become convenient with the availability of a complete genomic
sequence of soybean and functional genomics studies. This chapter discusses the
major milestones in soybean genetics, genome mapping and recent developments in
comparative and functional genomics and genome editing related to abiotic stresses.

Keywords Soybean · Abiotic stress · Drought tolerance · GWAS · Functional
genomics

1.1 Introduction

1.1.1 Economic Importance of the Crop

Soybean [Glycine max (L.) Merr] is an important oilseed crop in the world and
serves as a major source of protein and oil for both humans and animals. Soybean
forms a raw material for several human health and industrial applications. Besides
the edible oil l (18–22%), the seed comprising around 38–45% of protein, and ash,
carbohydrate minerals along with antioxidants are major component with poten-
tial nutraceutical applications for human health. Hence, soybean has been gaining
wide attention in various industries such as food, feed wellness and pharmaceuti-
cals which are attributable to its unique components of minerals, isoflavones, toco-
pherols etc. Ecologically soybean is involved in biological nitrogen fixation hence
improves the soil fertility. Considering its diverse uses the crop is aptly named “mir-
acle bean”. Although the crop is cultivated globally, the United States of America,
Brazil, Argentina, China and India are major global producers. Also considering the
multiple sectors the crop serves as raw materials, sustainable soybean production is
imperative for ensuring global food security.

1.1.2 Reduction in Yield and Quality Due to Abiotic Stresses

Multiple abiotic stressors such as drought, elevated temperature, freezing conditions,
floods, soil salinity, acidity and the consequent mineral toxicity or nutrient deficiency
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are some of the challenges soybean production encounters worldwide. Further, the
anticipated frequent extreme in weather conditions due to global climate change is
another serious concern for sustainable soybean production. It has been observed that
millions of acres of soybean crop loss occur every year due tomultiple abiotic factors.
Crop loss due to various abiotic stresses demands developing strategies to increase
soybean yield or maintain yield stability under multitude of abiotic stresses. There-
fore, genomic design of soybean for climate resilience and sustainable production
with higher yield potential and nutritional value is mandatory.

1.1.3 Growing Importance in the Face of Climate Change
and Increasing Population

The multitude of biochemical characteristics and good quality oil makes soybean a
desired oil seed crop and rising its demand worldwide. Nevertheless, the requirement
of doubled food production by the end of the year 2050 owing to population explo-
sion will severely squeeze the sufficient production of oil seed crops even more so in
the context of changing climatic conditions (Deshmukh et al. 2014). Climate change
and extreme weather conditions negatively impact the crop yield while temperature,
precipitation, and solar radiation are the main drivers of crop growth and develop-
ment. Therefore, the breeders are entrusted to provide emphasis on the development
of not only high yielding and nutritionally superior soybean genotypes but also the
genotypes which are expected to tolerate extreme weather conditions.

1.1.4 Limitations of Traditional Breeding and Rational
of Genome Designing

The conventional plant breeding strategies such as single pod descent, back-
cross breeding, pedigree breeding and bulk population breeding have undoubtedly
contributed to the improved soybean yield and tolerance to various abiotic stresses.
Nevertheless, these strategies are time consuming andwarrant screening of huge plant
population that consumes land, labour and water resources. Moreover the breeding
for complex traits that are governed by multiple genes are severely influenced by
the environment. Further, the complexity of multiple abiotic stresses affecting the
standing crop due to climate change have instilled a sense of new urgency into accel-
erating the rates of genetic gain inmolecular breeding programs. Hence, regardless of
the conventional breeding efforts, it is imperative to integrate the genome designing
based breeding approaches to enhance the production potential of the soybean. To
facilitate the advances in soybean breeding, it is indispensable to exploit the molec-
ular breeding techniques such as marker-assisted breeding, recombinant DNA tech-
nology, genome editing and multiple “omics” to improve the soybean quality and
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yield. Hence, these limitations of traditional breeding strategies warrant the large-
scale application of genomics science in the improvement of soybean for abiotic
stresses.

1.2 Abiotic Stresses and Related Traits in Soybean

1.2.1 Root Characters

Considering the water-deficit stress or flooding stress due to climate change, char-
acteristic features of soybean roots are important to tide over the abiotic stresses.
The observed root architecture traits of soybean have revealed that narrow root angle
to the soil surface is preferred as it enhances development of lateral roots in the
upper root regions where penetration of sunlight is ample. Other root traits such as
number of forks, crossings are imperative for good soil penetration, coupled with
appreciable root length density (RLD) due to enhanced root surface and root volume.
Root characteristic features are important for absorption of soilmoisture during stress
conditions. Nonetheless deeper soybean roots have not yielded desired results when
the soil is shallow or no water at depth or during the conditions of mild water stress
(Vadez et al. 2015).

1.2.2 Drought Tolerance

An estimate states that around 40% reduction in soybean production worldwide is
due to decrease in water supply and it is also anticipated that such losses would
further aggravate due to frequent droughts and water shortages under the scenario
of future climate change. Enhancing the irrigation potential is not a viable approach
considering the poor resource conditions of the many of the developing countries.
This scenario warrants the development of drought-tolerant varieties as an important
research urgency. Drought in soybean reduces the economic yield levels by 40%
(Specht et al. 1999), however, depending upon the intensity of water-deficit stress
and the stage of occurrence, yield losses could be as high as 80%. Phenotyping
for drought resistance assumed significance in this context, wherein physiological
and biochemical aspects of dehydration avoidance and dehydration tolerance are
measured. Breeding for drought tolerance depends on phenotyping methods which
are reliable, relatively fast and economical. Generally, the measure of dehydration
avoidance involves investigating plant water status, in terms of visual symptoms of
leaf senescence, relative water content and analyzing other constitutive traits such as
root architecture attributes.
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1.2.3 Flooding and Submergence Tolerance

Water logging/flooding is a most deleterious stress next only to drought. Flooding
affects the plant health and yield of soybeans in 16% of the soybean production area
causes severe economic losses. In US alone flooding stress in soybean causes an
annual loss of approximately $1.5 billion (Boyer 1982, 1983; Oosterhuis et al. 1990;
Rosenzweig et al. 2002; Bailey-Serres et al. 2012; Ahmed et al. 2013). Flooding
stress could be due to submergence or water logging though the former in soybean is
a rare occurrence (Oosterhui et al. 1990; VanToai et al. 1994; Linkermer et al. 1998).
Water logging or flooding results in reduction in root and shoot growth, decline in
atmospheric nitrogen fixation, photosynthetic potential, stomatal conductance and
nutrient uptake consequently severely affects the yield of soybean and it may cause
death of plant in severe conditions (Sullivan et al. 2001; Shannon et al. 2005; VanToai
et al. 2012; Rhine et al. 2012; Wu et al. 2017a).

1.2.4 Heat Tolerance

Yield reduction in soybean due to extreme temperature conditions has been estimated
to be around 40% (Specht et al. 1999). Heat stress during vegetative stage affects the
growth of soybean. Soybean is highly sensitive to elevated temperature conditions
(>35 °C) during reproductive stages as heat stress cause flower and pod abortion
during early stages, however the prolonged heat stress during pod filling stages leads
to severe reduction in seed size and seed vigour (Boyer 1982; Chebrolu et al. 2016).
Therefore, improving heat tolerance of soybean varieties is very crucial to improve
the yield levels.

1.2.5 Cold Tolerance

In order to expand the soybean cultivation area from its traditional stronghold it is
essential to impart cold tolerance trait so that cultivars could adapt to growing under
low temperature conditions. The multiple effects of low temperature on soybean
include poor germination, less seedling vigour, flower abortion and poor grain filling
at reproductive stages (Yamamoto and Narikawa 1966). Northern hemisphere is
characterized with short growing seasons and hence efforts are required to develop
soybean varieties having traits such as good emergence and early seedling vigor.
Seedling emergence test and early seedling weight are the traits evaluated in soybean
germplasm. Genetic dissection of these traits and introgression in cultivated varieties
through marker assisted breeding programme is a viable approach to enable the
growth of soybean in northern regions.
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1.2.6 Salinity Tolerance

Salinity stress severely affects the yields of soybean. High salinity level poses serious
damage to the life cycle of soybean whereas low salt levels could cause significant
reduction in soybean yield levels (Abel and Mackenzie 1964; Pitman and Läuchli
2002). Various agronomic features of the crop that are affected due to high salinity
are significant reduction in plant height, leaf size, biomass, number of pods.plant−1,
number of internodes.plant−1, number of branches.plant−1, weight.plant−1 and 100
seed weight (Shao et al. 1986; Shao et al. 1993; Parida and Das 2005; Blanco et al.
2007; Bustingorri and Lavado 2011; El-Sabagh et al. 2015). Salt stress observed
during the nodulation stage greatly reduces the efficiency of biological nitrogen
fixation as severe reduction in number and biomass of root nodules documented
(Singleton and Bohlool 1984; Rabie and Kumazawa 1988; Yang and Blanchar 1993;
Delgado et al. 1994; Elsheikh and Wood 1995). Soybean germplasm display a spec-
trum of salt tolerance capability (Yang et al. 1993; Pitman and Läuchli 2002; Lenis
et al. 2011).

1.3 Genetic Resources of Resistance/Tolerance Genes

The diverse morphological, cytological and genetical features of wild species of
soybean and also the cultivated soybean display wide array of genetic sources of
resistance tomultiple biotic and abiotic stresses. Thus,wild species forman important
component of gene pool for the exploration of useful genes and alleles conferring
abiotic stress tolerance. The annual and perennial soybean species are significantly
distantly related.Wild perennialGlycine species offer immense potential for soybean
improvement. The genus Glycine has two subgenera, GlycineWilld. (perennial) and
Soja (Moench) F.J. Herm (annual). The subgenus Soja includes two species: the
cultivated soybean [(G. max (L.) Merr.)] and its wild annual progenitor G. soja
Sieb. & Zucc. (Ratnaparkhe et al. 2010). The subgenus Glycine comprises 30 wild
perennial species thus, the genetic resources of soybean may be categorized into four
plausible gene pools (GP).

1.3.1 Soybean GP-1

Soybean gene pool -1 (GP-1) comprise all of the biological species which could
be crossed among them to yield vigorous hybrids characterized with normal meiotic
chromosome pairing and possess total seed fertility. All soybean (G.max) germplasm
and the wild soybean, G. soja, constitute GP-1 with the qualification that seed
sterility can be associated with chromosomal structural changes such as inversions
and translocations. Gene segregation is normal and gene exchange is generally easy.
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1.3.2 Soybean GP-2

GP-2 include those species which can hybridize with GP-1 with relative ease and
the resultant F1 plants exhibit at least some seed fertility (Harlan and de Wet 1971).
Glycine max is devoid of GP-2 because no known species exhibit such a relationship
with soybean. Though it is plausible for existence of such species in Southeast Asia
where the Glycine genus may have originated, extensive germplasm exploration is
indispensable to validate this suggestion.

1.3.3 Soybean GP-3

GP-3 is a potential genetic resource of soybean even though the hybrids betweenGP-1
and GP-3 are lethal. Gene transfers between GP-1 and GP-3 are not possible without
resorting to in vitro culture based techniques such as embryo rescue etc. (Harlan
and de Wet 1971). GP-3 includes the 26 wild perennial species of the subgenus
Glycine which are indigenous to Australia and remain geographically isolated from
G. max and G. soja. The three species G. argyrea, G. canescens, and G. tomentella
have been successfully hybridized with soybean embryo culture based rescue tech-
niques ensured the survival of F1 hybrids. However, much progress has not been
made beyond the amphidiploid stage, with the exception of Singh et al. (1998a, b)
suggesting that only these three species belong to GP-3.

1.3.4 Soybean GP-4

GP-4 is considered an extremely outer limit of genetic resources of soybean. Several
pre- and post-hybridization barriers arrests the process of embryo development
resulting in premature abortion of embryo. Bridge crosses with genus Glycine could
circumvent the problems of seedling lethality, seed inviability and inviable F1 plants
(Singh et al. 2007). Hence restricting the utility of GP-4 only few wild perennial
Glycine species have been hybridizedwith soybean. Thus, majority of species belong
to soybean GP-4 as they have not been hybridized with GP-1 when hybridized did
not produce viable F1 plants (Singh et al. 1987). Although the wild perennial species
exhibit resistance to several biotic and abiotic stresses, the transfer of useful genes
into soybean has not been accomplished. Thus, the breeders/geneticists have access
to the primary gene pool for expanding the germplasm base.
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1.4 Classical Genetics and Traditional Breeding of Abiotic
Stress Tolerance in Soybean

1.4.1 Classical Mapping Efforts

Soybeanhas beenunder continuous investigation for its genetic improvement byplant
breeders. The crop encounters various biotic and abiotic stresses and hence improving
their tolerance to stresses along with seed composition traits is pertinent. Improving
agronomic performance of the crop would ensure higher productivity, and improved
consumption of soybean and soy products leading to realization of greater economic
benefits. Plant breeders have been traditionally using the practices of hybridization
and meticulous selection methods to ensure better performing genotypes resulting in
development of many soybean varieties. Classical genetics and traditional breeding
approaches have been used to develop tolerance for drought, waterlogging stress,
salt tolerance and for other abiotic stresses. Table 1.1 lists the soybean lines and
resources used for the genetic improvement of abiotic stress tolerance.

1.4.2 Breeding Objectives

Designing highly productivity genotypes under water-limited conditions is an impor-
tant breeding objective. It warrants introgression of physiological traits that define
plant water relations and hydraulic processes, into a common genetic background
(Satpute et al. 2021). Water deficit condition is an outcome of complex interplay
of several factors including low soil moisture and extreme temperatures and other
edaphic factors. Breeding promising soybean genotypes through transfer of gene(s)
conferring drought tolerance is an effective approach to alleviating the ill-effects of
drought.Under drought stress, soybeanplants suffer fromoxidative injury,membrane
system damage, cellular ion leakage and protein denaturation, declined photosyn-
thetic rates, and CO2 uptake rates consequently causing reduction in biomass accu-
mulation and yield levels. Hence, under drought, among the various physiological
processes, photosynthesis is severely down-regulated with wider ramifications for
the economic yield levels of the crops.

Breeding approaches to develop drought tolerant soybean involve diverse strate-
gies namely recurrent selection and evaluation of segregating population under
imposed drought-stress environment, and investigating the secondary traits for effi-
cient selection, molecular breeding for drought tolerance, genomics-based and trans-
genic technologies to improve the drought tolerance trait. Advance phenotyping-
based breeding approaches are pre-requisite and are being adopted systematically by
developing early generation biparental, backcross or multi-parent intercross popula-
tions using identified candidate drought tolerant parental lines and wider-adaptable
high yielding varieties. The populations are advanced through F2 generation by mass
selection where bulks are subjected to chemical desiccation process using potassium
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Table 1.1 Potential genetic resources for abiotic stress tolerance

Tolerant genetic
resource/genotype

Source References

Drought tolerance

PI 416,937 USDA, ARS Sloane et al. (1990), Patterson and
Hudak (1996), Sinclair et al.
(2007), King et al. (2009)

Young USDA, ARS Mian et al. (1996)

Jackson – Purcell et al. (1997)

PI 407,155 – Chen et al. (2006)

R01-416F and R01-581F USA Chen et al. (2007)

93,705-36 and PI471938 USDA King et al. (2009)

PI 468,917 – Seversike et al. (2014)

C12 and W05 CUHK, China Hossain et al. (2014)

PI 567,690 and PI 567,731 China Pathan et al. (2014)

EC 538,828, JS 97–52 and
EC 602,288

India Bhatia et al. (2014), Bhatia and
Jumrani (2016)

NTCPR94-5157,
N09-13,890, NC-Raleigh,
and SC07-1518RR

USA Fried et al. (2019)

PK 1180 and SL 46 India Sreenivasa et al. (2020)

TGX 709-7E and EC
389,174

India Satpute et al. (2020a)

Water logging tolerance

Edison, GR 8836, CX 415 USA VanToai et al. (1994)

Archer USA VanToai et al. (2001)

PI 408105A Korea Shannon et al. (2005)

Misuzudaizu Japan Githiri et al. (2006)

91,210–350, 91,210–316 USA Henshaw et al. (2007)

Kefeng No. 1 China Wang et al. (2008b)

Peking China Sayama et al. (2009)

Nam Vang, VND2,
ATF15-1

Cambodia VanToai et al. (2010)

AGS 313 Bangladesh Ara et al. (2015)

JS 97–52 and JS 20–38 India Anonymous (2015)

Iyodaizu Japan Nguyen et al. (2017)

Kokubu 7, Maetsuezairai
90B, Yahagi

Japan Suematsu et al. (2017)

(continued)
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Table 1.1 (continued)

Tolerant genetic
resource/genotype

Source References

UA 5615C, R10-4892,
R13-12552, R07-6669,
Walters, R04-342,
S11-25,108, S12-1362,
S11-25,615

USA Wu et al. (2017a)

JS 20–38, C 2797, Hardee,
IS 128 and JS 71–05

India Chandra et al. (2020)

PI 561,271, PI 567,651, PI
567,343, PI 407,184,PI
603910C, PI 567394B, PI
467,162, PI 479,751, PI
407,229, PI 597459C, PI
424,082, PI 378699A, PI
424107A, PI 366,124

USA Valliyodan et al. (2017)

Salt tolerance

S-100, Centennial, Cook,
D49-2491, Dillon,
Forrest, Gordon, Haskell,
Hill, Hutton, Johnston,
Lee, Manokin, Wright

USA Lee et al. (2004)

Nannong 1138–2 China Chen et al. (2008)

Jindou no. 6 (PI574484) China Hamwieh et al. (2011)

FT-Abyara (PI628838) Brazil Hamwieh et al. (2011)

JWS156-1 Japan Hamwieh and Xu (2008)

PI483463 China Lee et al. (2009)

Tiefeng 8 China Guan et al. (2014a)

W05 China Qi et al. (2014)

Fiskeby III Sweden Do et al. (2018)

Osage USA Zeng et al. (2017)

Jidou 12 China Shi et al. (2018)

SL 1226, SL 1258 India Singh et al. (2020)

PI597458B, PI342434,
PI548198, PI561389B,
PI407202, PI407220,
PI424107A, PI479752,
PI407083, PI468908,
PI080837, PI417500,
PI424116, PI483460B,
PI562551

USDA Soybean Germplasm
Collection

Do et al. (2019)
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Fig. 1.1 Workflow for developing drought tolerant parental lines and varieties specially for target
population of environments (TPE) of drought conditions occurring at seed filling growth stage

iodide 0.2% (Blum et al. 1991; Bhatia et al. 2014; Satpute et al. 2019) followed
by selections. Mass selection for the trait large seeds following chemical desic-
cation has significantly improved the seed weight and grain yield under chemical
desiccation stress compared to control set up wherein seed selection was performed
without chemical desiccation (Blum 2011). After two cycles of selection, intensive
investigation of candidate genotypes for multiple drought tolerance-related traits is
practiced in advance generations using three-tier selection scheme followed bymulti-
traits indexing. Figure 1.1 shows the scheme involved in developing drought tolerant
soybean (Satpute et al. 2021). Development of soybean varieties with enhanced toler-
ance to drought, heat, salinity and cold has become a high research priority in major
breeding programs worldwide (Fig. 1.2).

1.5 Genetic Diversity Analysis

1.5.1 Phenotype and Genotype Based Diversity Analysis

During the past three decades, genetic diversity studies in soybean has been domi-
nated by phenotyping-based diversity analysis, cytogenetics and molecular studies,
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Fig. 1.2 a and b Screening of soybean germplasm under field condition for tolerance to water
logging

including variation in isozymes and, seed proteins, use of restriction fragment length
polymorphism (RFLP), random amplification of polymorphic DNA(RAPD), ampli-
fied fragment length polymorphism (AFLP), simple sequence repeat (SSR) and single
nucleotide polymorphism (SNP) markers. The geographic differentiation in Chinese
cultivated soybean andgenetic diversitywas studied using the coefficient of parentage
(Cui et al. 2000a), morphological traits (Dong et al. 2004), SSR markers (Li et al.
2008a;Wang et al. 2008a; Li et al. 2010;Wang et al. 2015) and SNPmarkers (Kajiya-
Kanegae et al. 2021; Saleem et al. 2021). The diversity analysis of Asian soybean
landraces and North American cultivars revealed a low level of diversity in the Amer-
ican pools than in the Asian pools, based on phenotypic characterization (Cui et al.
2000a, 2001) or the coefficient of parentage analysis (Cui et al. 2000b). Low diversity
was further confirmed in DNA sequence-based analyses showing successive genetic
bottlenecks between wild and cultivated soybeans and between Asian landraces and
North American cultivars (Hyten et al. 2006). Genetic diversity studies in soybean
have been discussed in detail by Carter et al. (2004). Comparison of Chinese and
American Soybean Accessions using High-Density SNPs in population structure
analysis, and cluster analysis revealed that the genetic basis of Chinese soybeans is
entirely distinct from that of the USA (Liu et al. 2017).

1.5.2 Relationship with Other Cultivated Species and Wild
Relatives

Comprehensive biosystematics based relationship analysis of all species in the genus
Glycine reveal that annual (subgenus Soja) and perennial (subgenusGlycine) soybean
species are significantly distantly related (Doyle et al. 2003), having diverged from
a common ancestor around 5 MYA (Innes et al. 2008). As stated above in genetic
resources section, several attempts to hybridize species between the subgenus Soja
and subgenus Glycine were unsuccessful. The pods resulted from interspecific
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hybridization eventually aborted and got abscised although pod development was
found to be initiated (Ladizinsky et al. 1979a; b). Later, the intersubgeneric F1 hybrids
of G. max × G. clandestina, G. max × G. tomentella and G. max × G. canescens
were successfully obtained either following embryo rescue technique (Newell and
Hymowitz 1982; Singh and Hymowitz 1985; Singh et al. 1987) or using transplanted
endosperm as a nurse layer (Broué et al. 1982). In general, the cultivated soybean
could only hybridizewithmembers of the subgenusGlycine imperfectly. Theprogeny
of such inter-subgeneric hybrids were completely sterile and obtained with a great
difficulty. Studies have proven that cultivated soybean does not hybridize with any of
thewild relatives in other genera of the tribe (Hymowitz et al. 1995;Hymowitz 2004).
The wild soybean (G. soja) has accumulated rich genetic diversity in the process of
evolution and adaptation (Kofsky et al. 2018). This adaptive evolutionary process
has resulted in wide diversification in the traits of wild soybean. The diversity for
multiple morphological features includes flower, pubescence, seed and hilum color,
disease and insect resistance traits, physiological and biochemical traits (protein, oil
and carbohydrates and their constituents content) (Boerma and Specht 2004).

1.6 Association Mapping Studies

1.6.1 Extent of Linkage Disequilibrium

Linkage disequilibrium (LD) describes changes in the genetic variation within a
population over time. Variation in LD either at genome scale or at a particular-
genomic region is influenced by various factors such as mutation, domestication,
level of inbreeding and selection, confounding effects, population admixture, and
population substructure (Rafalski and Morgante 2004). A strong correlation is antic-
ipated between inter-locus distance and LD if the recombination rates do not vary
across the genome particularly in a constant population size. Soybean, owing to its
ineffective recombination and homozygous genetic background, exhibit less decay
of LD (longer region is in LD).

1.6.2 Genome-Wide LD Studies

SNPs are choice markers due to its abundant DNA polymorphism and hence are
useful in genetic diversity studies and in determination of genetic relatedness among
the individuals. To investigate the genetic frequency of SNP in soybean genome,
~28.7 kbp of coding region, 37.9 kbp of non-coding perigenic region, and 9.7 kbp of
randomnon-coding genomic regionswere evaluated in 25 diverse soybean genotypes
(Zhu et al. 2003). This study divulged that the nucleotide diversity (θ) observed in
coding and in non-coding perigenic DNA was 0.00053 and 0.00111, respectively.
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The combined nucleotide diversity of whole sequence was 0.00097. Squared allele
frequency correlations (r2) among haplotypes at 54 loci with two or more SNPs
indicated low genome-wide LD. A haplotype map of soybean (GmHapMap) was
constructed using whole-genome sequence data from 1007 Glycine max accessions
yielding 14.9 million variants as well as 4.3 M tag SNPs (Torkamanhe et al. 2021).
A lower level of genome wide genetic diversity was observed in soybean compared
to other major crops. Genome-wide LD investigations in soybean have facilitated
identification of molecular markers and key genes associated with various abiotic
stresses.

1.6.3 Genome Wide LD Studies for Drought Tolerance

Quantitative trait locus (QTL) mapping using bi-parental populations is limitated by
restricted allelic diversity of parental genotypes and mapping resolution. The allelic
diversity among mapping populations can be increased to some extent by using
multi-parental crosses (Deshmukh et al. 2014). The genome wide association study
(GWAS) approach provides opportunities to explore the tremendous allelic diver-
sity present in soybean germplasm. Since millions of crossing events and natural
mutations have been fixed in the germplasm during evolution, the mapping reso-
lution of GWAS is comparatively higher. The recent advances in sequencing have
played an important role in performing the genome- wide association studies (Abdu-
rakhmonov and Abdukarimov 2008). GWAS is now routinely being used in soybean
and other plant species, however fewer studies have been reported with regards to
different abiotic stresses. GWAS for quantitative traits like drought tolerance are
predicted to be affected by population structure. GWAS models like mixed linear
model (MLM) and compressed mixed linear model (CMLM) have been developed
which takes into account the population structure, kinship and spurious allelic asso-
ciations (Deshmukh et al. 2014). Recent development in statistical tools involving
larger set of genotypes and high throughput genotyping approaches will definitely
improve GWAS power.

Dhanpal et al. (2015) analyzed a population of 373 genotypes in four environments
for carbon isotope ratio (δ13C), an important physiological trait linked with water
use efficiency (WUE). An association of 39 SNPs, linked to 21 different loci involved
in conferring drought tolerance trait has been found. Similarly, Kaler et al. (2017)
reported 54 SNPs associated with δ13C & 47 SNPs associated with δ18O. These
SNPs were tagged with 46 putative loci and 21 putative genetic loci for δ13C and
δ18O, respectively. Several markers and loci have been reported for various drought
related traits viz., chlorophyll fluorescence (Hao et al. 2012; Herritt et al. 2018),
canopy temperature (Kaler et al. 2017), delayed canopywilting (Steketee et al. (2020)
and drought susceptibility index (Chen et al. 2020) (Table 1.2). GWAS analysis in
soybean for drought tolerance was reported using 259 Chinese cultivars for drought
related traits. This investigation was based on a total of 4,616 SNPs, and 15 SNP-trait
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Table 1.2 Details of genome wide association studies (GWAS) carried out for abiotic stress
tolerance

Trait GWAS loci Markers Genotypes Method References

Drought tolerance

Chlorophyll and
chlorophyll
fluorescence
parameters

51 1536 SNP 168 MLM Hao et al.
(2012)

Ureide
concentration

53 33,957 SNP 374 PROC
GLIMMIX

Roy et al.
(2014)

Carbon isotope
ratio (δ13C)

21 12,347 SNP 373 GLM &MLM Dhanpal et al.
(2015)

Chlorophyll
contents

27 31,253 SNP 332 MLM Dhanpal et al.
(2016)

Carbon isotope
ratio (δ13C)
Oxygen isotope
ratio (δ13C)

46
21

31,260 SNP 373 Farm-CPU Kaler et al.
(2017)

Canopy
temperature

34 31,260 SNP 345 Farm-CPU Kaler et al.
(2017)

Chlorophyll
fluorescence

53 32,453 SNP 189 CMLM Herritt et al.
(2018)

Delayed canopy
wilting

44 34,379 SNP 162 MLM Steketee et al.
(2020)

Germination
under drought

15 4,616 SNP 259 MLM Liu et al.
(2020a)

Drought
susceptibility
index and yield
traits

302 105,970 SNP 136 MLM Chen et al.
(2020)

Water logging tolerance

Seed-flooding
tolerance in terms
of germination
rate, normal
seedling rate and
electric
conductivity

25 60,109 SNPs 347 MLM and
mrMLM

Yu et al.
(2019)

Foliar damage
score

14 31,125 SNPs 384 GLM, MLM,
CMLM.,
ECMLM

Wu et al.
(2020)

Salinity tolerance

Seed germination
under salt stress

8 1142 191 MLM Kan et al.
(2015)

(continued)
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Table 1.2 (continued)

Trait GWAS loci Markers Genotypes Method References

Leaf chloride
concentrations
and leaf
chlorophyll
concentrations

45 33,009 283 GLM, MLM Zeng et al.
(2017)

Leaf scorch score 62 37,281 192 GLM, MLM Huang et al.
(2018)

leaf scorching
score (LSS),
chlorophyll
content
ratio(CCR), leaf
sodium
content(LSC) and
leaf chloride
content (LCC)

8 42,000 305 EMMAX,
MLMM

Do et al.
(2019)

LSS, CCR, LSC
and LCC

29 3.7 M 305 EMMAX,
MLMM

Do et al.
(2019)

Salt tolerance at
germination stage

18 207,608 211 CMLM Zhang et al.
(2019)

associations were identified by GWAS, among which three SNPs were suggestively
associated with two of the drought-tolerance indices (Liu et al. 2020a).

1.6.4 Genome-Wide Association Mapping for Flooding
Tolerance

Genome-wide associationmapping has advantages over bi-parental QTLmapping as
the former exploits the historical and evolutionary recombination (Zhu et al. 2008).
Yu et al. (2020) conducted GWAS in a panel of 347 soybean genotypes to identify
SNPs associated with seed-flooding tolerance related traits, viz., germination rate
(GR), normal seedling rate (NSR) and electrical conductivity (EC). Use of 60,109
SNPs identified threemajorQTNs, viz., QTN13, qNSR-10 and qEC-7–2 linked to the
traits. Further, QTN13 was consistently identified in all three traits investigated and
in multiple environments.Wu et al. (2020a) applied GWAS in a panel of 384 soybean
lines, using 42,291 SNP markers and models viz. regression linear model (GLM),
mixed linear model (MLM), compressed mixed linear model (CMLM), and enriched
compressed mixed linear model (ECMLM) for dissecting flooding tolerance. It has
resulted in identification of 14 SNPs associated with flooding tolerance across all the
environments and models (Table 1.2).
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1.6.5 Genome-Wide Association Mapping for Salt Tolerance

Seed germination under salt stress was used for an association mapping study by
Kan et al. (2015). Under salt stress, three loci significantly associated with three
traits namely the ratio of imbibition rate, the ratio of germination index, and the ratio
of germination rate, were identified and mapped to chromosomes Gm08, Gm09
and Gm18. Using 283 diverse lines of worldwide soybean accessions, In another
GWAS study, Zeng et al. (2017a) identified eight genetic loci (mapped on to chro-
mosomes Gm02, Gm7, Gm08, Gm10, Gm13, Gm14, Gm16, and Gm20) associated
with leaf chloride and leaf chlorophyll concentrations by using sing 283 diverse
lines of soybean accessions. Huang et al. (2018) used a diverse set of 192 soybean
germplasm and identified six genomic regions (Gm02, Gm03, Gm05, Gm06, Gm08
and Gm18) associated with salt tolerance based on visual leaf scorch score. The
study by Do et al. (2019), using two GWAS populations for association mapping
of salt tolerance, confirmed the major locus on chromosome Gm03 and identified
three novel loci on Gm01, Gm08 and Gm18. Several SNPs have been identified to be
significantly associated with traits, leaf scorching score (LSS), chlorophyll content
ratio (CCR), leaf sodium content (LSC) and leaf chloride content (LCC) (Do et al.
2019). Zhang et al. (2019) identified genomic regions associated with salt tolerance
at germination stage and showed 18 significant SNPs were located on chromosome
Gm08 and Gm18. Seventeen of the 18 significant SNPs were located in a major
QTLqST-8, which was identified by linkage mapping in recombinant inbred lines
(RILs) (Zhang et al. 2019). Though GWAS studies for salinity stress are relatively
few in soybean, besides confirming major genetic determined by linkage mapping,
GWAShas provided information of tolerant loci fromnewgermplasm sources, which
are quite useful in QTL pyramiding (Table 1.2).

1.7 Molecular Mapping of Tolerance Genes and QTLs

1.7.1 Brief History of Molecular Mapping in Soybean

The first report of utilization of molecular markers in soybean is use of restriction
fragment length polymorphism (RFLP) for the assessment of genetic diversity of
the soybean nuclear genome (Apuya et al. 1988). Subsequently, RFLP markers were
used extensively for genetic diversity analysis (Kiem et al. 1989; Skorupska et al.
1993; Lorenzen et al. 1995) and linkage mapping (Kiem et al. 1990; Diers et al.
1992; Lark et al. 1993; Akkaya et al. 1995; Shoemaker and Specht 1995; Mansur
et al. 1996; Kiem et al. 1997; Cregan et al. 1999; Ferreira et al. 2000; Yamanaka et al.
2001; Lightfoot et al. 2005) until SSR and SNPmarkers become popular (Hyten et al.
2010a), Lee et al. (2015), Sun et al. (2019a), Ratnaparkhe et al. (2020), Kumawat
et al. 2021).
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1.7.2 Evolution of Marker Types and Genetic Diversity
Studies

Various marker-based technologies such as RFLPs, RAPDs, AFLPs, SSRs and SNPs
were used for genetic mapping and diversity studies in soybean. Apuya et al. (1988)
analyzed randomly chosen 300 RFLP probes in genomic DNA of the genetically
distant cultivars Minosy and Noir 1. RAPDs were also used extensively by soybean
geneticists, mainly for germplasm classification (Thompson et al. 1998; Brown–
Guedira et al. 2000; Li and Nelson 2002). Construction of soybean linkage maps
was done using SSR and AFLP markers (Morgante et al. 1994; Keim et al. 1997;
Matthews et al. 2001). Interestingly, the first report of SSR allelic variation and
their use as marker system in plant species was in soybean (Akkaya et al. 1992;
Morgante and Oliveri 1993). SSR polymorphism showed high level of allelic varia-
tion in cultivated and wild soybean genotypes (Morgante et al. 1994; Maughan et al.
1995; Rongwen et al. 1995; Li et al. 2010). Akkaya et al. (1995) developed SSRs
in soybean and integrated them into the linkage map. Subsequently, Cregan et al.
(1999) mapped 606 SSR loci to develop an integrated soybean linkage map which
was subsequently improved by addition of 420 SSRs (Song et al. 2004; Cregan et al.
1999). Hisano et al. (2007) used EST sequences to map a total 668 EST-derived SSR
marker loci on soybean linkage map. Further, the availability of BAC-end sequence
facilitated development of additional SSRs leading to integration of physical map
and genetic map (Shultz et al. 2007; Shoemaker et al. 2006). Utilizing the whole
genome sequence of soybean, a SSR database (BARCSOYSSR_1.0) was developed
by Song et al. (2010). This genome-wide SSR database provides informative SSRs
at any genomic position required for fine mapping as well as for MAS. Choi et al.
(2007) identified SNPs via the resequencing of sequence-tagged sites (STSs) devel-
oped from EST sequences. In the total 2.44 Mbp of aligned sequence, a total of
5,551 SNPs were discovered, including 4712 single-base changes and 839 InDels
resulting in an average nucleotide diversity of θ = 0.000997. Exploiting these SNPs,
a total of 1,141 genes were placed on the genetic map by virtue of a SNP segre-
gating among one or more RIL mapping populations, thus constructed a transcript
map in soybean. Recent advances in whole genome sequencing and high throughput
genotyping helped in the large scale genetic diversity studies of soybean germplasm
collections.

1.7.3 Mapping Populations

Various mapping populations in soybean have been developed independently based
upon the interests and needs of individual researchers, i.e., the degree of polymor-
phism required and specific agronomic traits for analysis. F2 populations or recom-
binant inbred lines (RILs) have been employed for the construction of linkage maps
in soybean. While interspecific mapping populations have contributed enormously
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to the saturation of the soybean linkage map, intraspecific linkage maps have also
been developed. Recently, Nested association mapping (NAM) have been used for
genetic mapping in soybean (Diers et al. 2018; Beche et al. 2020).

1.7.4 QTL Mapping Studies

Molecular markers especially DNA-based markers have been used extensively to
identify the genomic locations of major QTLs governing different traits in soybean.
RILs which are developed following several generations of selfing (typically up to F6
or F7) are used inmappingQTLs.RILs are helpful in dissecting theQTLs and the esti-
mate of influence of single or few QTL is possible depending on the population size.
More than thousand QTLs governing over 100 agronomically and physiologically
important traits have been characterized or mapped in soybean (Grant et al. 2010).
Information pertaining to the QTLs mapped in soybean is available on database
SoyBase (http://soybase.org). Recently, the advent of SNP-based geneticmarkers has
facilitated theQTLanalysis ofmanyagronomic traits of soybean (https://soybase.org,
http://soykb.org). The developments in the field of whole genome sequencing and
the popularity of high throughput technologies have facilitated the genetic mapping
in soybean in a great way yielding millions of SNP markers (Schmutz et al. 2010).

QTL mapping and molecular marker development have advanced in dissecting
several agronomic traits and in studying the genetic basis of resistance against drought
and water logging along with improved yield. In the pursuit to develop genotyping
tools for investigatingmapping population, Hyten et al. (2008) has developed amulti-
plex assay designated as soybean oligo pool all-1 (SoyOPA-1). This custom-made
384-SNP GoldenGate assay was developed utilizing SNPs discovered through rese-
quencing of five diverse soybean accessions. Later, Hyten et al. (2010a) sequenced
a total of 3,268 SNP-containing robust STS in six diverse genotypes, resulting in
identification of 13,042 SNPs with an average of 3.5 SNP per polymorphic STS.
These SNPs along with 5,551 SNPs discovered by Choi et al. (2007) were used to
design two Illumina custom 1536 SNP GoldenGate assays designated as SoyOPA-2
and SoyOPA-3. A set of 1,536 SNPs (from the 3456 SNPs in three SoyOPAs) desig-
nated asUniversal SoyLinkage Panel 1.0 (USLP1.0), ensured sufficient polymorphic
markers at genome scale for use in QTL mapping applications. Hyten et al. (2010b)
sequenced a reduced representation library of soybean to identify SNPs using high
throughput sequencing methods. A total of 1,536 SNPs were selected to create an
Illumina GoldenGate assay (SoyOPA-4). The SoyOPA-4 produced 1,254 successful
GoldenGate assays suggesting an assay conversion rate of 81.6% for the predicted
SNPs. Chaisan et al. (2010) used ESTs derived from 18 genotypes for EST clus-
tering and SNP identification resulting in a total of 3,219 EST contigs and a total of
26,735 SNPs. The confirmation of in silico identified SNPs by Sanger sequencing
yielded 15.7% accuracy rate between two cultivars Williams 82 and Harosoy. SNP
markers in soybean which could be utilized for mapping of complex traits as well as

http://soybase.org
https://soybase.org
http://soykb.org
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molecular breeding applications have been developed in recent investigations (Song
et al. 2012; Li et al. 2019; Song et al. 2020).

1.7.5 QTL Mapping Software

QTL mapping in soybean has progressed swiftly in last three decades or so nonethe-
less, a large fraction of QTLs remains unutilized in breeding programs because
of issues such as low accuracy and false-positives. However, the QTL accuracy
could be improved by adopting various QTL mapping methods and effective statis-
tical models such as single marker analysis (SMA), simple interval mapping (SIM),
composite interval mapping (CIM), multiple interval mapping (MIM), and Bayesian
interval mapping (BIM). Various QTL mapping softwares and QTL network have
been developed to perform the task. “Meta-QTL analysis” compile QTL data from
multiple reports onto a same map to ensure precise identification of QTL regions
(Deshmukh et al. 2012; Sosnowski et al. 2012). Meta-QTL was effectively utilized
by Hwang et al. (2015) to identify QTLs linked to Canopy wilting using l five
different populations (RILs). Among the QTLs identified, one QTL on chromosome
8 in the 93,705 KS4895 × Jackson population co-segregated with already known
QTL linked with wilting identified in a Kefeng1×Nannong 1138–2 population. The
advances in statistical approaches and software resulted in exponential increase in
soybean genetic mapping studies to understand plants response to extreme climatic
conditions for abiotic stress such as drought, water logging and high temperature
stress.

1.8 Marker-Assisted Breeding for Resistance/Tolerance
Traits

Marker-assisted selection (MAS) is an indirect selection method where the linked
molecular marker is utilized to transfer important agronomic traits from one geno-
type to another genotype. Marker-assisted backcrossing (MABC) is an important
approach employed in soybean for transferring trait of interest. The high-throughput
genotyping technologies have greatly assisted in the process of molecular marker
identification and QTL mapping for different traits in soybean. The molecular
breeding approaches such as Marker-assisted backcrossing and marker-assisted
recurrent selection have aided in the introgression of the trait of economic or agro-
nomic interest in soybean. In the past decades, several studies have focused on the
genetic and molecular mechanisms of drought tolerance, flooding tolerance, salt
tolerance where several QTLs have been identified to be associated with various
abiotic stresses.
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1.8.1 QTL Mapping for Drought Tolerance

Drought tolerance is a complex trait influenced by multiple genetic locations or
governed by polygenes/QTLs, introgression of minor QTLs from donor to recip-
ient cultivar is not an easy task. QTL mapping identified a total of 10 genomic
regions associated with canopy wilting under drought stress (Table 1.3). Majority of
these QTLs (9/10) have donor alleles conferring slow wilting traits from PI 416,937,
Jackson, or both (Charlson et al. 2009; Abdel-Haleem et al. 2012; Hwang et al.
2015). Molecular markers associated with these QTLs could be explored for use
in MAS to introgress the slow canopy wilting phenotypes from the donor into the
elite backgrounds. However, transferring these QTLs is challenging task owing to
the comple and, quantitative nature of the trait along with its sensitivity to prevailing
environmental factors. Most minor QTLs were found to be unstable across the envi-
ronments and populations. For instance, even major QTLs on chromosome 12 (R2=
0.27) identified in all five environments from Benning× PI 416,937 (Abdel-Haleem
et al. 2012) was not detected in any populations or site-years (Hwang et al. 2015).
Accordingly, it is mandatory for QTL confirmation in more advanced generations to
validate each individualQTL. It also suggests thatmolecular stacking of all confirmed
QTLs in the genetic background of an elite cultivar is imperative to develop drought
tolerance in soybean (Valliyodan et al. 2016). Ren et al. (2020) identified 23 QTL
linked to drought tolerance of which seven QTLs were identified on chromosomes
2, 6, 7, 17, and 19 while five QTL were found on chromosomes 2, 6, 13, 17, and 19
respectively.

1.8.2 QTL Mapping for Root System Architecture
and Canopy Characteristics

Mapping of genomic regions controlling root system architecture (RSA) and canopy
characteristics is critical to develop soybean that is cultivable in water-limited envi-
ronment (Song et al. 2016a). In an interspecific RIL population derived from crossG.
max (V71-370)×G. soja (PI407162), four significantQTLs associatedwith different
root architectural traits were identified on chromosome Gm06 and Gm 07 (Prince
et al. 2015a). In another study, Manavalan et al. (2015) identified a major QTL on
chromosome Gm08 controlling tap root length, lateral root number and shoot length.
Six transcription factors and two key cell wall expansion-related genes were iden-
tified as candidate genes in the confidence interval of this QTL. Recently, Dhanpal
et al. (2021) conducted first genome-wide association study reporting genetic loci
for RSA traits for field-grown soybean and identified key candidate genes.
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1.8.3 QTL Mapping for Flooding Tolerance

Several studies have focusedonunderstanding the genetic andmolecularmechanisms
of flooding tolerance in soybean identifying underlying major QTLs (http://www.
soybase.org). VanToai et al. (2001) identified one QTL linked to molecular marker
Sat_064 located on chromosome 18 associated with flooding tolerance. However,
Reyna et al. (2003) could not find this QTL (Sat_064) associated to water logging
tolerance in near-isogenic line (NIL) populations due to different genetic background
or location/soil types of studies. Cornelious et al. (2005) reported five QTLs associ-
ated with flooding tolerance. The marker Satt485 on chromosome 3, marker Satt599
on chromosome 5, and three markers Satt160, Satt269, and Satt252 on chromosomes
13were identified to be linked with the QTL. They are associated with flooding toler-
ance in two RIL populations (Table 1.3). Githiri et al. (2006) identified seven QTLs
associated with yield under flooding stress resulting in a proposed QTL near Satt100.
Wang et al. (2008b) mapped three QTLs, Satt531-A941V (chromosome 1), Satt648-
K418_2V (chromosome 5), and Satt038-Satt275 (chromosome 18) associated with
soybean flooding tolerance. Sayama et al. (2009) detected four putative QTLs viz.
Sft1, Sft2, Sft3, and Sft4 associated with flooding tolerance and were mapped on to
the chromosomes 2, 4, 8, and 12, respectively. Two new QTLs associated with both
flooding injury score and flooding yield index were mapped on chromosomes 11 and
13 (Nguyen et al. 2012). However, these QTLs were discovered using bi-parental
population characterized with a restricted mapping resolution due to limited recom-
bination events. Later several novel QTLs associated with root system architecture,
water-logging tolerance and yield in soybean have been identified (Ye et al. 2018;
Wu et al. 2017b; Wu et al. 2020; Sharmin et al. 2020).

1.8.4 QTL Mapping for Salt Tolerance

Dissecting the genetic mechanism of salt tolerance in various stages of crop growth
critical for the breeding of salt-tolerant soybeans (Munns and Tester 2008; Deinlein
et al. 2014). Genetic architecture of salt tolerance in soybean has been dissected in
several studies through bi-parental mapping and genome-wide association studies.
An overview of the salt tolerant QTLs identified in soybean through bi-parental
mapping is given in Table 1.4. In an F2:5 population derived from a cross of the salt-
tolerant cultivar S-100 and salt-sensitive cultivar Tokyo, Lee et al. (2004) mapped
a major locus on Gm03, explaining 29% and 35% of phenotypic variation in green
house and field conditions, respectively. Chen et al. (2008) identified four QTLs
for salt tolerance at the seedling stage on Gm03, Gm07, Gm09, and Gm18. Subse-
quently, several studies have confirmed themajor locus onGm03, in different genetic
backgrounds using bi-parental mapping populations, including interspecific cross
mapping population of G. max × G. soja (Hamwieh and Xu 2008; Hamwieh et al.
2011; Ha et al. 2013; Qi et al. 2014; Guan et al. 2014a; Zeng et al. 2017; Do et al.

http://www.soybase.org
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2018; Shi et al. 2018). Zeng et al. (2017b) identified two new QTLs for leaf chlo-
ride content on Gm13 and Gm15, using KCl and NaCl treatments. Do et al. (2018)
identified a QTL for salt tolerance on Gm13, linked with leaf sodium content.

To identify salt tolerance QTLs at the germination stage, Zhang et al. (2019) used
a RIL population and mapped 25 QTLs associated with four different salt tolerance
indices during the soybean germination stage. Out of 25 QTLs identified for four
salt tolerance indices at seedling stage, nine QTLs were located in an overlapping
region on Gm08 (named qST-8, Zhang et al. 2019). A wild soybean (Glycine soja)
accession JWS156-1 with high saline and alkaline salt tolerance was identified, and a
significant QTL for alkaline salt tolerance was detected onGm17 (Tuyen et al. 2010).
The QTL for alkaline salt tolerance was different from the QTL for saline tolerance
found on Gm03, previously in this genotype. This study demonstrated that saline and
sodic stress tolerances are controlled by different genes in soybean. DNA markers
associated with these QTLs can be used for marker-assisted pyramiding of tolerance
genes in soybean for both saline and sodic stresses. Bi-parental linkage mapping
has successfully mapped two major locus and several minor loci for salt tolerance,
however bi-parental linkage mapping can detect alleles from parents only (Korte
and Farlow 2013). Nevertheless, salt-tolerant loci identified by linkage mapping are
highly useful for marker-assisted selection and gene cloning.

DNA markers tightly linked with the salt tolerance QTLs and the genes charac-
terized can be used in the selection of salt-tolerant lines. The major QTLs identified
on Gm03 and Gm08, are stable QTLs identified in several studies, therefore, highly
useful forMAS.Marker-assisted pyramiding of the identifiedmajor andminor QTLs
may provide higher salt tolerance than single QTL. Marker-assisted development of
NILs for major QTL on Gm03, and their evaluation showed higher salt tolerance
(Guan et al. 2014b; Do et al. 2016), and higher grain yield in saline field conditions
(Do et al. 2016; Liu et al. 2016). The salinity tolerance of tolerant NILs, NIL-T, was
associated with the maintenance of seed size under salt stress and could be attributed
to the ability to regulate Na+ and Cl− in both vegetative and reproductive tissues
(Liu et al. 2016). Haplotype-based markers for the identified salt-tolerant QTLs
were successfully developed and utilized for new tolerant germplasm identification
(Patil et al. 2016; Kumawat et al. 2020).

1.9 Map-Based Cloning of Tolerance Genes

1.9.1 Strategies: Landing and Walking

Availability of genomic clone libraries with large DNA inserts is one of the essen-
tial requirements for plant genome analysis, primarily for physical mapping, gene
isolation, and gene structure and function analysis. The Bacterial Artificial chromo-
some (BAC) vectors have been used widely for generating genomic DNA libraries
in economically important crop plants including soybean. Development of BAC
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libraries is considered as critical step towards physical mapping and positional
cloning of important genes.

1.9.2 Libraries: BAC/YAC Libraries

Several BAC libraries have been developed from different soybean genotypes and
wild species. These soybean BAC libraries have been developed with different objec-
tives including general genomic research as well as specifically for cloning of biotic
and abiotic stress tolerance loci. These libraries have provided a good resource for
positional cloning of agronomical and biologically important QTL genes that the
representative genotype possesses. BAC libraries have also been constructed for
several wild species includingG. soja, G. syndetika, G. canescens, G. stenophita, G.
cyrtoloba, G. tomentella, G. falcata, and the polyploid, G. dolichocarpa. All BAC
libraries are publicly available to soybean researchers. The physical map genera-
tion of soybean was initiated with the development of early genetic maps charac-
terized by the even distribution on the whole genome of the crop. Yeast artificial
chromosomes (YACs) were initially developed with a view to utilize the resource
for chromosome walking and in situ hybridization (Zhuet al. 1996). BAC libraries
covering the whole soybean genome were generated by early genomic researchers
(Marek and Shoemaker 1997; Danesh et al. 1998; Tomkins et al. 1999; Salimath and
Bhattacharyya 1999; Meksem et al. 2000). BAC libraries encompassing variety of
genotypes have led to the development of early physical contigs (Marek and Shoe-
maker 1997). Efforts were made to develop physical map of soybean genome using
BAC andBIBAC based libraries (Wu et al. 2004). A physical map of soybean cultivar
Williams 82 was in place that was generated from 67,968 BAC clones from a BstYI
library and 40,320 clones from aHindIII library ([http://soybeanphysicalmap.org/]).
Furthermore, SSR markers derived from BAC ends sequence (BES) were mapped
and integrated into the physical map to improve its quality (Shoemaker et al. 2008).
Six-dimensional BAC clones pools were employed to demonstrate the anchoring of
genetic markers to the soybean BAC clones (Wu et al. 2008). On the parallel lines
soybean unigene sets from NCBI were computationally anchored to Williams 82
BES resulting in anchoring of additional 305 contigs thereby complementing 1,184
anchored contigs achieved through 6-D pool screening efforts (Wu et al. 2008).
Thus, the physical framework was accomplished by associating the contigs to the
molecular markers which in turn was achieved by finger printing of the BAC clones
through overgo hybridization, RFLPhybridization and SSRamplification (Song et al.
2004). The soybean physical map was updated and available at Soybean Breeders
Toolbox (SBT) in soybase website (http://www.soybase.org) for the greater benefit
of research community. Later, physical maps of soybean and related wild species
were used for comparative and functional genomics studies (Innes et al. 2008; Ha
et al. 2012; Ashfield et al. 2012).

http://soybeanphysicalmap.org/
http://www.soybase.org
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1.10 Genomics-Aided Breeding for Tolerance Traits

1.10.1 Details of Genome Sequencing

Soybean genome sequencing project was accomplished by US Department of
Energy-Joint Genome Initiative (DOE-JGI)-Community Sequencing Program (CSP)
(Schmutz et al. 2010). Peptides from other flowering plants, TIGR legume EST data
basewere used and alignedwith soybean genome data to obtain the gene rich regions.
The resultant regions were fed in to the gene prediction algorithms to find putative
genic regions. The homologous regions were integrated with EST sequences using
PASA program (Haas et al. 2003). The genome sequence data and gene annotation of
soybean is housed in Phytozome database (Goodstein et al. 2012) (http://www.phy
tozome.net/). It provides access to genes and gene families either by keyword-based
search or sequence similarity-based programs like BLAST and BLAT (BLAST like
Alignment Tool). The sequence analysis via shared functional domain or consensus
sequence similarity enables the study on the evolutionary history of each gene family
and identification of the closely linked gene families. Gbrowser in the database facil-
itates EST alignments, utility of VISTA tracks that helps in assessing the extent
of nucleotide conservation in related plant genera. The Biomart- open-source data
retrieval software allows the research community to download complete data from
phytozome.

1.10.2 Application of Structural and Functional Genomics
in Genomics-Assisted Breeding

New sequencing technologies have the potential to rapidly change the molecular
research landscape in soybean (Lam et al. 2010; Libault et al. 2010; Li et al. 2013;
Chung et al. 2014). Several research projects include genome re-sequencing, gene
expression, and whole transcript profiling have provided large scale datasets for
comparative and functional genomics studies (Valliyodan et al. 2016, 2019; Kim
et al. 2019; Kajiya-Kanegae et al. 2021). Structural variations play important roles
in driving genome evolution and gene structure variation which in turn contribute to
agronomic trait variations. Liu et al. (2020) selected 26 accessions and performed
de novo genome assembly for soybean accession. Through a comparative genome
analysis, a total of 14,604,953 SNPs and 12,716,823 Indels, 27,531 copy number
variations and 723,862 present and absent variations, were identified.

In addition to structural variations, gene expression studies are imperative
constituent of any crop improvement program. Expression studies on single and
global gene expression pattern analysis is an integral part of any crop improvement
program. The gene expression patterns are investigated using the global expression
analysis techniques like high-density expression arrays, Serial Analysis of Gene
Expression and other functional genomics approaches. Usage of microarray on

http://www.phytozome.net/
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soybean gene expression studies were conducted for functional studies of key genes
(Maguire et al. 2002; Thibaud-Nissen et al. 2003; Vodkin et al. 2004).). Functional
genomics studieswere also conducted to identify the role ofmicroRNAs.MicroRNAs
(miRNAs) are key regulators of gene expression and play important roles in many
aspects of plant biology. Turner et al. (2012), identified number of novel miRNAs
and previously unknown family members for conserved miRNAs in the recently
released soybean genome sequence. They classified all known soybean miRNAs
based on their phylogenetic conservation (conserved, legume- and soybean-specific
miRNAs) and examined their genome organization, family characteristics and target
diversity. Comparative and functional genomics have been applied extensively in
soybean for identification of genes associated with key agronomic and physiological
traits and for understanding the genome structure (Ma et al. 2010; Livingstone et al.
2010; Kim et al. 2010; Deshmukh et al. 2014; Ratnaparkhe et al. 2013; Valliyodan
et al. 2016; Li et al. 2017; Zhou et al. 2019; Kim et al. 2019; Lin et al. 2019; Ferreira-
Neto et al. 2019; Schmutz et al. 2019; Chaudhary et al. 2019; Paganon et al. 2020;
Liu et al. 2020a; Valliyodan et al. 2021).

1.10.3 Transcriptomic Approaches to Dvelop Drought
Tolerance

Characterization of genetic elements defining the root traits and related transcrip-
tional responses to drought tolerance has gained greater interests in soybean (Thao
et al. 2013). Initial exploration of genetic tool box for drought tolerance in soybean
showed strong upregulation of around 3000 root-derived genes and metabolite
coumestrol (Tripathi et al. 2016). In another study, a complex response of root
tissues subjected to drought tolerance was identified along with the involvement of
multiple biochemical pathways (Stolf-Moreira et al. 2010). In addition, early tran-
scriptional responses of soybean roots to drought stress have been investigated in
detail by Neto et al. (2013). Further, molecular basis of canopy wilting tolerance was
studies through whole transcriptome sequences of leaf tissues of contrasting soybean
genotypes (Prince et al. 2015b). Among the various differentially expressed genes,
gene encoding UDP glucuronosyl transferase was specific to the drought tolerant
line PI 567690. Comparison of root transcriptome profiles of genotypes DT2008
and William 82 indicated that the drought tolerant ability of DT2008 roots could
be ascribed to the expression of high number of genes of root origin during early
dehydration than during the prolonged dehydration. Also, differential expression of
genes involved in osmo-protectant biosynthesis, transcription factors among others
conferred drought tolerance (Ha et al. 2015). Root-specific transcriptome changes
were observed in soybean lines subjected to drought stress. It identified several tran-
scription factors that were differentially regulated during drought stress paving way
for development of transcription factor-cis element network (Song et al. 2016b).
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To gain further molecular insights about the aquaporin family proteins (AQPs),
the plant specific AQPs, 23 soybean tonoplast intrinsic proteins (TIPs) genes were
analyzed (Song et al. 2016b). Analysis identified 81 SNPs andmany InDels in coding
regions of TIP genes and their functional validation have provided key information
regarding the roles of AQPs in soybean under various abiotic stresses (Song et al.
2016b). Similarly, exploration of AQPs in Glycine soja yielded 62 GsAQP genes.
Comparative expression and protein–protein interaction analysis of AQPs in culti-
vated and wild soybean have helped in identifying GmTIP2;1 as a novel candidate
gene, conferring salt and water stress tolerance (Zhang et al. 2017). The compre-
hensive list of investigations exploring the drought tolerance mechanism in soybean
utilizing transcriptomic approaches are presented in Table 1.5.

1.10.4 Applications of Structural and Functional Genomics

Plants have evolved an integrated strategy including signal perception and trans-
duction, regulation of gene expression and biochemical and physiological responses
adapting to drought stress. An effective and direct strategy to endure drought stress is
to reduce water loss through closing stomata. The stomatal aperture is modulated by
multiple factors including environmental signals, biotic/abiotic stress, CO2 concen-
tration, light and plant hormones. Several hormones are involved in stomatal regu-
lation, among which the stress hormone abscisic acid (ABA) plays the main role.
During the signal transduction and adaptive response, the expressional changes of
a large number of drought responsive genes occur. Chen et al. (2020) identified
soybean drought-tolerant genotypes and new candidate genes for breeding. Total
422 SNPs and 302 genes were correlated with drought associated traits through
GWAS studies. In addition, thirteen genes were identified which were associated
with the node number of main stem trait. By qRT-PCR, the expression level of
Glyma.03G018000 and Glyma.03G018900 in drought-tolerant varieties was signif-
icantly increased. This study provides important drought-tolerant genotypes, traits,
SNPs and potential genes, possibly useful for soybean genetic breeding.

1.10.4.1 Reverse Genetics Approaches

Recent advances in gene isolation, plant transformation, and genetic engineering are
being used extensively to alter metabolic pathways in plants by tailor made modifi-
cations to single or multiple genes. Many of these modifications are directed toward
increasing the nutritional value of plant-derived foods and feeds. These methodolo-
gies are based on quickly growing information based on molecular findings, under-
standing, and predictions of metabolic fluxes and network pathways. The applica-
tion of recombinant DNA and related techniques to plants opened up the potential
to improve agronomic characters, drought tolerance, heat tolerance and salt stress
resistance.
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RNAi Technology

In functional genomics, RNA interference (RNAi) is a propitious gene regulatory
approach that plays a substantial role in crop improvement by permitting down-
regulation of gene expression by small molecules of interfering RNA without
affecting the expression of other genes. The discovery and study of the RNA interfer-
ence phenomenon, in which double- stranded RNAs (dsRNA) elicits degradation of a
targetmRNAcontaining homologous sequence, led to development ofmore effective
dsRNA-mediated gene silencingmethods. RNAi is a less complicated, quick and effi-
cient method of silencing gene expression in a range of organism including prokary-
otes and eukaryotes. The silencing of a gene is a result of degradation of RNA into
short RNA fragments that binds to specific nuclease which activates ribonucleases
to target homologous mRNA. Specific gene silencing has been shown to be related
to two ancient processes, co-suppression in plants and quelling in fungi, and has
also been associated with regulatory processes such as transposon silencing, antiviral
defensemechanisms, gene regulation, and chromosomalmodification (Agrawal et al.
2003). The insertion of a functional intron region in the nuclear genome as a spacer
fragment additionally increases the efficiency of the gene silencing induction, due
to generation of an intron spliced hairpin RNA (ihpRNA) (Wesley et al. 2003). In
plants, biotic stress is caused by living organisms, especially, viruses, bacteria, fungi,
insects, arachnids, nematodes, and weeds. These organisms account for about a 40%
loss in the overall yield of six major food and cash crops. RNAi technology has
opened up new prospects for crop protection against biotic stresses.

Plants in their natural field conditions constantly get exposed to various abiotic
factors such as high salinity, variation in temperature, flood, drought, and heavy
metals, which hinders proper growth and development in plants. These factors are
also one of the major causes behind huge crop losses globally. The changing climatic
conditions and rapidly expanding population demand creates an urgent need to
develop more stress-tolerant cultivars. Hence, RNAi technology can be utilized to
develop transgenic cultivars that can cope with different abiotic stresses. Functional
genomics studies revealed that novel genetic determinants are involved in stress
adaptation in plants, which can be used to attain stress tolerance.

Receptor for activatedC-kinase 1 (RACK-1) is a highly conserved scaffold protein
that plays a significant role in plant growth and development. Rice plants generated
through transgenic method (RNAi technology- a reverse genetic approach) where
RNAi mediated downregulation of RACK-1 gene carried out, has shown more toler-
ance to drought dress as compared to the non-transgenic rice plants (Li et al. 2009).
Likewise, disruption of rice farnesyltransferase/squalene synthase (SQS) by maize
squalene synthase via RNAi, resulted in enhanced drought tolerance at vegetative
and reproductive stages (Manavalan et al. 2012).

Stress tolerance and development in plants are regulated bymiRNAand negatively
affect the expression of the post-transcriptional gene. Wang et al. (2011a) examined
that miRNA are involved in the very early stage during seed germination and identi-
fied that miRNA-mediated regulation of gene expression is present in maize imbibed
seed. Wang et al. (2011b), reported 32 known members of 10 miRNA families and 8
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newmiRNAs/newmembers of knownmiRNA families that were found to be respon-
sive to drought stress by high-throughput sequencing of small RNAs fromMedicago
truncatula. These findings suggest the importance of miRNAs in the response of
plants to abiotic stress in general and drought stress in particular.

OsTZF1gene is amember of theCCCH-type zinc finger gene family in rice (Oryza
sativa). Conditions like drought, high-salt stress, and hydrogen peroxide can induce
the expression of OsTZF1. Expression ofOsTZF1 gene was also induced by abscisic
acid, salicylic acid, and methyl jasmonate. OsTZF1 gene overexpressed transgenic
plants showed enhanced tolerance to high salt and drought stresses; whereas trans-
genic rice plants in OsTZF1 gene were silenced using RNAi technology has shown
less tolerance. This suggests the role played by OsTZF1gene in abiotic stress toler-
ance (Jan et al. 2013). Dehydrin proteins play a significant role in protecting plants
from osmotic damage. Various research results suggest that overexpression of dehy-
drin gene WZY2 provides more tolerance to plant against osmotic stress. A study
conducted by Yu et al. (2019) suggests that RNAi mediated silencing of WZY2 gene
in Arabidopsis thaliana makes plant intolerant to osmotic stress.

Several researchers have focused on functional genomics studies of drought
responsive genes (Le et al. 2012; Barbosa et al. 2013; Hua et al. 2018; Wang
et al. 2018a; Wei et al. 2019). Drought responsive genes consist of regulatory genes
encoding plenty of transcription factors (TFs), effector genes encoding chaperones,
enzymes and ion/water channels etc. Several groups of TFs, such as ABA-responsive
element-binding (AREB), dehydration responsive element binding (DREB), MYB,
bZIP, NAC, and WRKY, respond to drought stress and act in an ABA-dependent or
ABA-independent manner. Transcription factors are being used to develop geneti-
cally modified plants more tolerant to abiotic stresses. DREB and AREB TFs were
introduced in soybean showing improved drought tolerance, under controlled condi-
tions. Soybean, transgenic lines containing AtDREB1A, showed higher survival rate
after a severe water deficit and important physiological responses to water depriva-
tion, such as higher stomatal conductance and the maintenance of photosynthesis
and photosynthetic efficiency (Polizel et al. 2011; de Pavia Rolla et al. 2014). Higher
survival rates of DREB plants are because of lower water use due to lower tran-
spiration rates under well-watered conditions. In addition to physiological studies,
molecular analysis revealed that drought-response genes were highly expressed
in DREB1A plants subjected to severe water deficit (Polizel et al. 2011). Mizoi
et al. (2012) identified GmDREB2A, and showed that its heterologous expression
in Arabidopsis induced stress-inducible genes such as RD29A, RD29B, HsfA3, and
HSP70 and improved stress tolerance. These findings indicate that plants overex-
pressing AtDREB2A and DREB2Alike proteins have increased tolerance to abiotic
stresses. In soybean, the overexpression of AREB1 gene indicated drought toler-
ance and exhibiting no leaf damage. It showed better growth and physiological
performance under water-deficit as compared to the wild type (Barbosa et al. 2013).

Other transcription factor, WRKY, plays important roles in response to various
abiotic stresses (Zhou et al. 2008). Previous studies have proved that soybean
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GmWRKY54 can improve stress tolerance in transgenicArabidopsis. Soybean trans-
genic plants were generated and further investigated for biological mechanisms of
GmWRKY54 in response to drought stress (Wei et al. 2019). This study demonstrated
that expression of GmWRKY54, driven by either a constitutive promoter (pCm) or a
drought-induced promoter (RD29a), confers drought tolerance. Recently, genes as
candidate biomarkers have also been identified to screen for drought-tolerant geno-
types (Hua et al. 2018). Using a GeneChip Soybean Genome Array, Hua et al. (2018)
identified 697 differentially expressed genes. These genes are mainly involved in the
metabolic and hormone signaling pathways. Ten DEGs were validated in a sample of
20 soybean cultivars varying in the level of drought tolerance. This research provided
a newset of transcriptomic data andbiomarkers for early diagnosis of drought damage
and molecular breeding of drought tolerance in soybean.

Major advancement has also been made in the structural and functional genomics
studies for salt tolerance (Roy et al. 2014; Wang et al. 2018b; Zhang et al. 2019;
Li et al. 2020a, b). Several loci for salt tolerance have been mapped in soybean
and among them candidate genes for two major loci have been cloned (Guan et al.
2014b; Qi et al. 2014; Do et al. 2016; Zhang et al. 2019). A major and consistent
salt tolerance locus on Gm03, was fine mapped and candidate gene was cloned and
characterized as a sodium transporter (Guan et al. 2014b; Qi et al. 2014; Do et al.
2016; Patil et al. 2016).Qi et al. (2014) finemapped and identified the gene underlying
this QTL in a salt tolerant wild soybean accession W05. The candidate gene named
GmCHX1, is a counterpart of Glyma03g32900 in Williams 82 and homolog of the
Na+/H+ antiporter gene family. Genomic sequence analysis of GmCHX1 for W05
and Williams 82 revealed that Williams 82 had a ~3.8 Kb Ty1/copia retrotransposon
inserted into exon 3, but not in its counterpart Glysoja01g005509 in W05 (Qi et al.
2014). In another study, Guan et al. (2014b) resolved this QTL into a salt tolerant
variety Tiefeng 8, identifying the same gene Glyma03g32900 (named asGmSALT3)
having similar insertion of a 3.78-kb copia retrotransposon in exon 3 of salt sensitive
parent. Subsequently, Do et al. (2016) characterized this locus in salt tolerant cultivar
FT-Abhayra and identified Glyma03g32900 (named Ncl) as causal gene. Insertion
of a ~3.8-kb Ty1/copia type retrotransposon was responsible for the loss of gene
function and salt sensitivity. Association of Glyma03g32900 functional alleles and
salt tolerance was confirmed in near isogenic lines (Guan et al. 2014b; Do et al.
2016). genetic Overexpression of Glyma03g32900 by genetic transformation in the
sensitive genotype Kariyutaka showed improved salt tolerance (Do et al. 2016). Fine
mapping of major locus for salt tolerance qST-8 was conducted and a candidate gene
Glyma.08g102000 (named GmCDF1), belonging to the cation diffusion facilitator
(CDF) family, was identified (Zhang et al. 2019). RNA interference mediated down-
regulation of GmCDF1 in soybean hairy roots resulted in tolerance to salt stress
(Zhang et al. 2019).
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1.11 Recent Concepts and Strategies Developed

Genomic-assisted breeding, genomic selection (GS), genome sequencing, marker-
assisted selection (MAS), genetic engineering approaches, and genomics tools have
been used to improve soybean yield and quality. Genomic selection is a simple,
reliable, and powerful approach that enables the rapid selection of superior geno-
types, bringing bigger benefits to the breeders. The marker-assisted selection also
has an advantage in screening difficult traits and identification of recessive alleles.
Recent advancement in genomic tools and next-generation sequencing techniques
makes it easier to develop new varieties with the superior trait. Genomic approaches,
along with bioinformatics tools, allow a gigantic leap forward in plant breeding.
Genomic designing overcomes the limitations of traditional breeding methods and
accelerated the development of climate-smart soybean crops. Developing abiotic
stress-tolerant soybean varieties have become convenient with the availability of a
complete genomic sequence of soybean. Recently, gene editing tools such as modi-
fied meganucleases, hybrid DNA/RNA oligonucleotides, zinc finger nucleases, TAL
effector nucleases and modified CRISPR/Cas9 are used for developing abiotic stress
tolerance (Bao et al. 2021). Each of these tools has the ability to precisely target one
specific DNA sequence within a genome and to create a double-stranded DNA break.
DNA repair to such breaks sometimes leads to gene knockouts or gene replacement
by homologous recombination. Genome rearrangements are also possible to engi-
neer. Creation and use of such genome rearrangements, gene knockouts and gene
replacements by the soybean researchers is gaining significant momentum (Carrijo
et al. 2021).

1.11.1 Genome Editing—A Magic Bullet

Genome editing is at the dawn of its golden age. It is described as the ability to
modify and manipulate DNA sequences with higher precision in living cells (Segal
and Meckler 2003). The ability to remove, insert or even edit DNA sequences easily
and accurately has attracted the interest of the scientific community in a wide range
of biotechnology areas, such as medicine, environmental studies and even agricul-
ture. Targetable nucleases enable scientists to target and modify theoretically any
gene in any organism. In the past few years, rapid development of molecular under-
standingwith the aid of advanced computational technology and instrumentationwith
multiplexing and higher precision has led to the development of sequence specific
DNA nucleases has progressed rapidly and such nucleases like zinc-finger nucle-
ases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)
systems have been used in plant species such as Arabidopsis (Zhang et al. 2010; Li
et al. 2013), tobacco (Nekrasov et al. 2013; Zhang et al. 2013), rice (Li et al. 2012;
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Shan et al. 2013, 2014), barley (Wendt et al. 2013), soybean (Sun et al. 2015; Curtin
et al. 2011), Brachypodium (Shan et al. 2013) and maize (Shukla et al. 2009).

All these nucleases involved in the genome editing technology are consist of
DNA binding domains together with non-specific nuclease domains that generate
double- strand breaks (DSBs). The DSBs are mainly repaired by non-homologous
end-joining (NHEJ) or homologous recombination (HR) pathway (Chen and Gao
2013). NHEJ simply re-joins the broken DNA ends in an error-prone fashion and
often results in small deletions or insertions. In the HR pathway, DSBs are correctly
repaired using a homologous donor DNA as template. So far most genome editing
has utilised the NHEJ pathway to knockout genes and only a few illustrations of
gene insertion by HDR have been reported (Hyun 2020). The reasons may be that
the mass of tissues to which DNA is delivered are often composed of determinate
cells in which HDR is not the preferred repair mechanism.

1.11.1.1 ZFNs (Zinc Finger Nucleases)

Zinc finger proteins were considered as the very first of the “genome editing” nucle-
ases to hit the scene in the end of the twentieth century. The Zinc finges, class of
protein which is found the most commonly as a DNA binding protein domain in
eukaryotes. Zinc finger nuclease (ZFN) is made up of two domains: DNA binding
domain with repeated zinc fingers and FokI restriction enzyme-derived nuclease
domainwhich is considered one of themost abundant DNAbindingmotifs in eukary-
otic genome having the ability to recognize any sequence (Bitinaite et al. 1998). It is
generally comprised of ~30 amino acid modules that interact with nucleotide triplets
ie codons. ZFNs have been designed in suchway that that it can recognize all of the 64
possible trinucleotide combinations, and by stringing different zinc finger moieties,
one can create ZFNs that specifically recognize any specific sequence ofDNA triplets
(Segal et al. 2003). Each ZFN typically recognizes 3–6 nucleotide triplets, binds to
the nuclease functions only as dimer, are required to target any specific locus. The
first half part that recognizes the sequence upstream and the later one recognize the
sequence downstream of the site to be modified (Szczepek et al. 2007).

1.11.1.2 TALENs (Transcription Activator-Like Effector Nucleases)

Transcription activator-like effector nucleases (TALENs) have made a huge impact
on the genomic engineering (Bedell et al. 2012). TALENs, like ZFNs contain the
FokI nuclease fused to the DNA binding protein domain which can be exploited for
targeted cleavage. This DNA binding domain known as Transcription activator-like
effectors (TALE) derived from plant pathogenic Xanthomonas bacterium contains
33–35 amino acid repeat domains that recognizes a single base pair of the DNA
(Joung and Sander 2013). Two hyper variable amino acids which are known as the
repeat-variable di-residues (RVD) determine the TALE specificity found at positions
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12 and 13. The TALE repeats use four RVD domains NN, NI, HD and NG which
recognize guanine, adenine, cytosine and thymidine, respectively (Deng et al. 2012).

Although TALENs are effective tools for genome editing, there are some limita-
tions regarding the potential target sites, such as the need for T at position 1 (Doyle
et al. 2012) and the fact that some TALENs fail to cause mutations at the desired
location despite of engineering nuclease and DNA binding domain. The latestly
developed genome editing technology- CRISPR/Cas system seems to provide a
complementary approach to ZFNs and TALENs, as it only requires the PAM (NGG)
motif preceding the recognition sequence.

1.11.1.3 CRISPR/Cas System

The research into the defence mechanisms of bacteria brought CRISPR to the scien-
tific community. First discovered in 1987, the CRISPR-Cas system is an adaptive
immunity prokaryotic defence system. As a result, it has been the focus of aggressive
research that provided compelling insights into its function, as well as the promise
of new molecular techniques (Ishino et al. 1987). CRISPR immunity has been cate-
gorized into three stages: adaptation, expression and interference. During the adap-
tation stage new spacer sequences are incorporated into the CRISPR locus. During
the expression stage the CRISPR locus is transcribed to generate, or mature, the
CRISPR RNA (crRNA). Finally, in the interference stage the invading nucleic acid
is destroyed using the processed crRNA in some form of effector complex containing
Cas proteins.

The most commonly used RGN in genome editing is the Cas9 nuclease from the
type II CRISPR/Cas9 system of Streptococcus pyogenes (Jinek et al. 2012). With
this system, there are two components that enable targeted DNA cleavage: a Cas9
protein and an RNA complex consisting of a CRISPR RNA (crRNA; contains 20
nucleotides of RNA that are homologous to the target site) and a transactivating
CRISRP RNA (tracrRNA). For genome engineering purposes, the system can be
reduced in complexity by fusing the crRNA and tracrRNA to generate a single-guide
RNA (sgRNA) (Jinek et al. 2012). Also protospacer adjacent motif (PAM) sequences
(5’- NGG-3’), an essential targeting component is situated upstream of the crRNA
which is recognized by the cas9. The CRISPR/Cas systems can therefore cleave 23
bps target DNA sequence.

In contrast to ZFNs and TALENs, which require recoding of proteins using large
DNA segments (500–1500 bp) for each new target site, CRISPR-Cas9 can be easily
altered to target any genomic sequence by changing the 20-bp protospacer of the
guide RNA, which can be accomplished by subcloning this nucleotide sequence into
the guide RNA plasmid backbone. The Cas9 protein component remains unchanged.
This ease of use for CRISPR-Cas9 is a significant advantage over ZFNs andTALENs,
especially in generating a large set of vectors to target numerous sites (Mali et al.
2013). Another potential advantage of CRISPR-Cas9 is the ability to multiplex, i.e.,
to use multiple guide RNAs in parallel to target multiple sites simultaneously in the
same cell (Cong et al. 2013 and Mali et al. 2013). With respect to site selection,
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CRISPR-Cas9 compares favourably with ZFNs and TALENs.With the most flexible
version of the S. pyogenes CRISPR-Cas system, site selection is limited to 23-bp
sequences on either strand that end in an NGG motif (the PAM for S. pyogenes
Cas9), which occurs on average once every 8 bp (Cong et al. 2013).

The targeted plant genome editing using sequence specific nucleases has a great
potential for crop improvement to meet the increasing global food demands and to
provide sustainable productive agriculture system. Immediately after its early use to
edit the genomes of bacteria and animals (Hwang et al. 2013; Mali et al. 2013), its
efficacy was validated in the model plant systems of Arabidopsis, rice and tobacco
(Feng et al. 2013; Nekrasov et al. 2013; Xie and Yang, 2013).

1.12 Genetic Engineering for Tolerance Traits

Genetic modification of soybean utilizing various genes has resulted in the improved
salt and drought tolerance traits (Table 1.6). Confirmation of drought tolerance
in soybean was performed by ectopic expression of AtABF3 Gene (Kim et al.
2018). Several genes and TFs have been ectopically expressed in other model plants
to study their functional significance. For example, over-expression of soybean-
derived calmodulin gene (GmCaM4) in Arabidopsis enhanced tolerance to salinity
owing to upregulation of AtMYB2-regulated genes, namely P5CS1 (�1- pyrroline-
5-carboxylate synthetase-1) (Yoo et al. 2005). Similarly, soybean-derived S-phase
kinase-associated protein 1 (SKP1) gene GmSK1 was over expressed in Nicotiana
tobacum cv. Samsun showing improved tolerance to salinity and drought stress
(Chen et al. 2018). Pitman and Läuchli (2002) suggested that genetic modification
for enhanced salt tolerance is an important approach. In dry regions, irrigation of
moderately salt tolerant crops with brackish water is feasible and will be helpful for
increasing the crop production. Identification of orthologs and their functional anal-
ysis will provide opportunity to improve salt tolerance in soybean through genetic
engineering. Based on the knowledge of monovalent cation/proton antiporter (CPA)
family in Arabidopsis, several genes have been identified and functionally character-
ized for their involvement in salt tolerance in soybean. Jia et al. (2017) demonstrated
that GsCHX19.3, a member of cation/H+ exchanger super family from wild soybean
provide tolerance to high salinity and carbonate alkaline stress.GsCHX19.3mediates
K+ uptake and Na+ excretion under carbonate alkaline stress when over-expressed in
Arabidopsis. Sun et al. (2019a) found that aNa+/H+ exchanger,GmNHX1,was upreg-
ulated under salt stress in soybean genotype Jidou 7. Overexpression ofGmNHX1 in
Arabidopsis, enhances salt tolerance by maintaining K+/Na+ ratio in root (Sun et al.
2019b). Similarly, overexpression of transcription factor GmNAC15, a member of
the NAC transcription factor family in soybean, enhances salt tolerance in soybean
hairy roots (Ming et al. 2018).

Jia et al. (2020) characterized GmCHX20a, a paralog of salt tolerant gene
GmCHX1, and found that the ectopic expression of GmCHX20a in soybean hairy
roots and Arabidopsis led to an increase in salt sensitivity and osmotic tolerance. It
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was suggested thatGmCHX20a andGmCHX1 together addresses both osmotic stress
and ionic stress at different times of salinity stress exposure (Jia et al. 2020). Higher
expression ofGmCHX20a led to an increase in salt sensitivity and osmotic tolerance
in early stage of salinity stress, whereas higher expression of GmCHX1 protected
plants via Na+ exclusion under salt stress in later stage. Jin et al. (2019) charac-
terized GsPRX9, a class III peroxidase which upregulated significantly under salt
stress. Overexpression of the GsPRX9 in soybean hairy roots resulted in higher root
fresh weight, primary root length, activities of peroxidase and superoxide dismutase,
and glutathione level, but had shown lower H2O2 content than those in control roots
under salt stress. This suggests that the overexpression of the GsPRX9 gene results
in enhanced salt tolerance and activation of antioxidant response in soybean. These
examples provide insight into themechanism of salt tolerance in soybean and various
genes playing important role in maintaining ion ratio and antioxidant properties in
plant, which can be utilized for genetic engineering of salt tolerance in soybean. To
improve salt tolerance through genetic engineering, the negative regulators of salt
tolerance could be down-regulated by gene editing and positive regulators could be
overexpressed through genetic transformation.

The availability of large number of salinity tolerant genotypes makes it possible
to develop salt tolerant soybean cultivars. Further, genetic characterization for trait
inheritance and QTL identification made it feasible to introgress single or multiple
salinity stress tolerant QTLs in desirable genetic background through DNA marker-
assisted backcrossing and marker assisted recurrent selection (Lee et al. 2009). Iden-
tification of progeny lines which have shown higher tolerance than tolerant parental
genotypes in some of the studies indicated that when positive alleles from tolerant
and susceptible parents come together, higher tolerance is achievable (Hamwieh et al.
2011; Do et al. 2018). Therefore, identification of positive alleles from both types of
parents is desirable for QTL pyramiding for higher salt tolerance. It is also possible
to identify different positive loci from two different tolerant genotypes to increase
the threshold of stress tolerance, and in such cases QTL mapping may be performed
in populations derived from tolerant × tolerant parents. Functional characteriza-
tion of positive regulators of salinity stress tolerance like GmCHX1, GmCHX19.3,
GmNAC15 and GmNHX1, made it feasible to genetically engineer target soybean
cultivars in a short period of time. However, identification of negative regulators of
salinity tolerance indicates that target genetic background should be carefully charac-
terized to overcome the negative interaction of these negative loci, when introgression
or modification of positive genes and alleles is planned.

1.13 Prospectus and Limitations of Genomic Designing
for Soybean

Genomic designing approaches have enabled the improvement of soybean at a faster
pace than traditional approaches. Introgression of genes and QTLs become much
easierwith the genomics advances.Marker-basedQTLmapping is a powerfulmethod
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to recognize regions of the genome that co-segregatewith a given trait andmapping of
QTL for abiotic stress tolerance can be utilized for the elevation of tolerance against
drought (Carpentieri-Pipolo et al. 2012; Zhang et al. 2012), salt (Hamwieh et al. 2011;
Ha et al. 2013; Tuyenet al. 2013), flood (Guzman et al.2007; Li et al. 2008b), and
heavy metal stress (Sharma et al. 2011) in soybean. QTL mapping is more efficient
compared to traditional mapping approaches since it does not require large numbers
of progenies and generations of segregation populations. Genome-wide association
study is an excellent approach to explore the allelic diversity present in the natural
accessions of soybean. Furthermore, GWAS mapping resolution is higher than QTL
mapping resolution due to millions of crossing events accumulated in the germplasm
in the course of evolution (Deshmukh et al. 2014). Genome-wide association study
has a great advantage in the dissection of the complex genetic architecture (Korte
and Farlow 2013). Genome-assisted breeding in soybean helps in selecting superior
genotypes which in turn improve the quality and yield of soybean crops on a large
scale.

Although genome designing approaches have many benefits and are less time-
consuming, more reliable, and easier methods, it has some limitations also. For
instance, the resolution of QTL mapping is not very high due to biased mapping of
QTL. Also, this method is limited to map allelic diversity that tends to segregate in
a biparental population (Borevitz and Nordborg 2003). From a single QTL mapping
experiment, it is hard to isolate perfect candidate genes. Moreover, genes that are
identified by QTL mapping experiments are limited to those that segregate in the
considered cross (Brachi et al. 2010). Genome-wide association study can overcome
these limitations of QTL mapping, although it has its limitations such as the risk of
many false positives as a result of population structure, unpredictable power to detect
QTL, and the background LD can confound the results. The main drawback of MAS
is linkage drag which can be minimized by marker-assisted backcrossing (MAB)
and GS limitation is high cost and low accuracy (Staub et al. 1996; Deshmukh et al.
2014). Genome editing and other genomic methods undoubtedly set a milestone that
solves all new challenges in the stream of science, however, it has somemajor ethical
issues and negative side effects. In the future, advancement in genomic designing
tools and methodologies may overcome the above-mentioned limitations (Bao et al.
2021; Carrijo et al. 2021).

1.14 Bioinformatic Resources for Soybean Improvement

Bioinformatics plays an inevitable role in the modern genomics era. It is a science
of collecting, storing, and developing algorithmic tools to analyze and under-
stand complex biological data. There are several databases and bioinformatics tools
available for various purposes.
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1.14.1 Gene and Genome Databases

Arabidopsis was the first plant species and the third multicellular organism to be
completely sequenced and published (Kaul et al. 2000). Later, with the advancement
of next-generation sequencing, several plant genomes were sequenced, and most of
them are available in public databases. Biological databases are stores of biolog-
ical information, and are mainly of two types, primary and secondary database.
In the primary database, the sequence information is stored, and the secondary
database utilizes this information. The secondary database uses the genome sequence
information and performs the downstream analysis like functional annotations. The
most important databases where genome and gene sequences can be submitted and
retrieved are NCBI, Phytozome, and Ensemble. SoyKB and SoyBase are secondary
databases that are specific to soybean. Most of these databases were generated for
easy retrieval of specific genomic sequences, annotated genes, and putative functions
of the genes possess marker information, QTL, transcriptomic data and can perform
other downstream analysis. These databases play an important role in the identi-
fication of homologous genes using the information of functionally characterized
genes.

1.14.2 Comparative Genome Databases

Genome sequencing of a large number of plant species and whole-genome re-
sequencing of different cultivars of a crop generates new scopes of comparative
genomics. Several studies have been published for comprehensive gene family
analysis and duplication among the plant species. These types of studies are very
important for the evolutionary fingerprinting of plant species. On the other hand,
whole genome resequencing helps to explore genomic variants within a species.
The comparative genomic variants would help in the dissection of biochemical path-
ways. The variant information of around 20,000 soybean accessions is available at
SoyBase (Grant et al. 2010;Brown et al. 2020; https://www.soybase.org/) and SoyKB
(Joshi et al. 2017; http://soykb.org/) database generated by SoySNP50K chip (Song
et al. 2013). These single nucleotide variant data can be downloaded from SoyBase
and SoyKB databases using Plant Introduction (PI) ID, genomic coordinate, and
SNP ID. Further, variant information can be utilized for various studies like genome-
wide association study, genomic selection, and superior haplotype identification. The
comparative genomic analysis also provides evolutionary information, polyploidiza-
tion, copy number variation, and presence-absent variations (PAV). Ha et al. (2019)
developed a database Soybean-VCF2Genomes to identify the closest accession in
soybean germplasm collection.

https://www.soybase.org/
http://soykb.org/
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1.14.3 Gene Expression Databases

The transcriptional data provides the information about different gene interaction in
diverse biological conditions, their role in biochemical pathways, and their function.
The microarray and expressed sequence tags (EST) data information was dominant
over a decade. Later, the advancement ofNGS techniques replaced these conventional
techniques. Next-generation sequencing is based on whole tissue mRNA sequencing
and generate large amounts of sequencing data related to gene expression in various
environmental conditions that can play important role in predicting gene function.
There are several methods for gene expression analysis such as microarrays, Gene
Chips, EST, serial analysis of gene expression (SAGE), massive parallel signature
sequencing (MPSS), and RNAseq (Chaudhary et al. 2015). RNA-seq data related
to various environment and stress conditions are available at different public sites
like NCBI (https://www.ncbi.nlm.nih.gov/sra/), EMBL-ENA (https://www.ebi.ac.
uk/ena/browser/home) and DDBJ (https://www.ddbj.nig.ac.jp/index-e.html). These
databases provide the RNA-seq data of sequence read archive (SRA) raw files which
can be analyzed using various publicly available RNA-seq pipelines. However, some
databases like BAR (http://bar.utoronto.ca/), SoyKB, and SoyBase provides the
publicly available analyzed data in the form of gene expression profile in different
tissues and conditions. Several studies have been performed using publicly available
RNAseqdata and identifiedvarious keygenes related to specific conditions (Machado
et al. 2019). The biotic and abiotic stress related RNAseq data is also available in
future, meta-transcriptomics analysis would result in the understanding of precise
gene function, gene-environment interaction, and complex biological pathways.

1.14.4 Protein or Metabolome Databases

Proteins are the most important biomolecules as they directly control biolog-
ical pathways and act as a functional unit. There are several hundred different
proteins present in soybean seed but the major is glycinin (11S legumin type)
and conglycinin (7S vicilin type), both comprise 65–80% of total protein content
and 25–35% of seed content (Hammond et al. 2003). Soybean also has anti-
nutrient content like kunitz trypsin inhibitors, lectin, P34 allergen, urease, and
some other transporter protein, oil storage protein oleosins, sucrose binding and
many others. Many studies have been conducted in soybean and different crops
for the identification of protein expression in different tissue at various time inter-
vals under stress conditions. The different techniques like 2D gel electrophoresis,
HPLC, UPLC, LCMS, and GCMS have been used for the identification of
proteins/metabolome in different environmental conditions. Several metabolites are
available in Kyoto Encyclopedia of Genes and Genomes (KEGG: https://www.gen
ome.jp/kegg/), Arabidopsis acyl-lipid metabolism (http://aralip.plantbiology.msu.
edu/pathways/pathways), BRENDA (https://www.brenda-enzymes.org/index.php),

https://www.ncbi.nlm.nih.gov/sra/
https://www.ebi.ac.uk/ena/browser/home
https://www.ddbj.nig.ac.jp/index-e.html
http://bar.utoronto.ca/
https://www.genome.jp/kegg/
http://aralip.plantbiology.msu.edu/pathways/pathways
https://www.brenda-enzymes.org/index.php
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MassBank (http://www.massbank.jp/). Medicine plant (http://medicinalplantgeno
mics.msu.edu/), MetabolomeXchange (http://www.metabolomexchange.org/site/),
Plant Metabolic Network (PMN: https://plantcyc.org/), Plant/Eukaryotic andMicro-
bial Systems Resource (PMR: http://metnetweb.gdcb.iastate.edu/PMR/), PRIMe
(http://prime.psc.riken.jp/?action=metabolites_index), MetaboLights (https://www.
ebi.ac.uk/metabolights/index). SoyMetDB is a metabolomic database for soybean
and provide a one-stop web resource for integrating, mining and visualizing soybean
metabolomic data, including identification and expression of various metabolites
across different experiments and time courses (Joshi et al. 2017). These databases
give the idea about metabolite biochemical and physiological properties.

1.14.5 Integration of Data from Multiple Sources

The advancement of differentmodern techniques in genomics, proteomics, ionomics,
metabolomics, and phenomics develops a large amount of data that can be integrated
to find precise identification of the target. There are several studies that successfully
identified target by integrating two or more techniques. The genome-wide associa-
tion studies (GWAS) alongwith transcriptomics data have been successfully explored
for the identification of candidate genes governing particular traits. A computation
approach, “camoco” has been developed which is the integration of GWAS and
gene co-expression network (Schaefer et al. 2018). The integrated use of GWAS
and RNAseq data identified 7 promising candidate genes for drought tolerance in
maize, from the 62 loci identified in GWAS (Guo et al. 2020). Similar studies are
also available in Brassica for yield (Lu et al. 2017) and in linseed for seed fatty acid
metabolism (Xie et al. 2019). In recent study, integration of GWAS, digital pheno-
typing and transcriptomics was done for the identification of drought resistance
genes in cotton (Li et al. 2020). Further, the integration of WGRS, transcriptome,
and metabolite at different seed development stages have been utilised for the dissec-
tion of seed component related traits (Chaudhary et al. 2015). SoyBase provides the
data of genetics, genomics, and USDA germplasm information. The loci informa-
tion of nearly 100 traits for QTLs mapping and GWAS studies are available on
SoyBase (Grant et al. 2010). The SoyKB is a web-based database that provides data
of genomics, transcriptomics, metabolomics, and molecular breeding (Joshi et al.
2017). A recently developed SoyTD integrated database (http://artemis.cyverse.org/
soykb_dev/SoyTD/) of WGRS and transcriptomics gives the information of natural
variations and expression of soybean transporter genes (Deshmukh et al. 2020).
Lai et al. (2020) developed a comprehensive framework consisting of of bioinfor-
matics big data mining, meta-analysis, and a gene prioritization algorithm. A total of
36,705 test genes set collected from multidimensional data platforms were analysed
and candidate genes for flooding tolerance were identified. In the future, integration
of more databases would help to accurately understand the complex biochemical
pathways and identification of candidate genes for a specifictrait.

http://www.massbank.jp/
http://medicinalplantgenomics.msu.edu/
http://www.metabolomexchange.org/site/
https://plantcyc.org/
http://metnetweb.gdcb.iastate.edu/PMR/
http://prime.psc.riken.jp/%3Faction%3Dmetabolites_index
https://www.ebi.ac.uk/metabolights/index
http://artemis.cyverse.org/soykb_dev/SoyTD/
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1.15 Future Perspectives

In just the past few years we havewitnessed tremendous progress in soybean compar-
ative and functional genomics and an explosive expansion of new resources.We have
seen large scale whole genome sequencing, development of high-density genetic
maps using high through put approaches, construction of physical and transcript
maps, development of high-density cDNA and oligo arrays, and advancement in
functional genomics studies. These resources and the research outcome have shed
much light on the structure, organization and evolution of the soybean genome and
key genes associated with biotic, abiotic stresses and other traits. With the avail-
ability of the whole-genome sequence of the soybean genome, emerging functional
genomic data and large-scale re-sequencing data, genome-wide comparisons are
being achieved. These approaches will allow researchers to decipher the evolutionary
history and genomic complexity of soybean. We will be able to further explore
genomic approaches to the elucidation of key genes or functional components that
control complex agronomical and physiological traits.
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Chapter 2
Designing the Rapeseed Genome
for Abiotic Stress Tolerance

Inderpreet Dhaliwal, Indu Rialch, Kusum Rana, Jasmeet Kaur,
and Gurpreet Kaur

Abstract Brassica species were domesticated as oil producing crops during
different periods at many sites throughout the world. Animal fat being pricier, the
poor used vegetable oil as a source of their nutrition. Accordingly, world produc-
tion of vegetable oil has been incremental chiefly due to increased production of
soybean, palm and oilseed rape. Rapeseed (Brassica napusL.), also known as Canola
or Oilseed rape, has thus become an important source of vegetable oil worldwide,
and ranks third after soybean and palm. The world population is expected to cross
the 9 billion mark by 2050, and to assure food and nutritional security for our
soaring future generations, we need to necessarily double the production of food
crops by then. However, various environmental stresses negate the realization of
this target. Rapeseed thrives very well in countries of the northern hemisphere of
the planet having cool and humid climates, making it a very important oil- and
protein-crop, since no other crop can produce such high yields of both oil and
protein under these climatic conditions. In the coming decades, it has the poten-
tial of achieving the rank numero uno as the cheapest source of nutritious vegetable
oil for the impoverished of the world. Nevertheless, it is prone to various abiotic
stresses which not only affect normal growth rate of the plant but also decrease crop
productivity by alarming proportions. It is, therefore, imperative to develop new
stress tolerant varieties having higher productivity and better adaptation to the abiotic
stresses abounding because of climate change. This chapter summarizes the various
abiotic stresses afflicting rapeseed; the classical, genetic and molecular approaches
that have been employed for breeding for abiotic stress tolerance, together with
biotechnological and synthetic biology research breakthroughs aimed at creating
abiotic stress-resistant climate-resilient varieties. The combination of classical and
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molecular breeding, being assisted by integrated omics and genome editing break-
throughs, can lead to speed up breeding of the crop and alter the rate of production
of rapeseed worldwide, making it feasible to achieve the target of being number one
in meeting the demands for vegetable oil of a soaring population.

Keywords Brassica napus · Oilseed rape · Rapeseed · Canola · Abiotic stress ·
Temperature stress · Drought stress · Salt stress

2.1 Introduction

During evolution, all the cultivated crops attained uniformity, but this gener-
ated such genetic bottlenecks that nearly all of them now only possess a narrow
resilience towards stresses, making themmore exposed to abiotic and biotic stresses.
Plants regularly endure discrete stresses that hinder their growth and development
throughout the growth cycle (Massonnet et al. 2007). Adverse environmental adver-
sities like high and low temperature, mineral toxicity, salt stress, water scarcity and
waterlogging, nutrient deficiency etc. constitute the various abiotic stresses that prove
damaging for crop production and genome stability (Raza et al. 2019, 2020). It has
been anticipated that abiotic stresses can limit global crop production by 70% (Boyer
1982). Drought, salt and temperature stress have a very wide geographical distribu-
tion and are the major abiotic determinants that hinder crop productivity. The inten-
sity, time and duration of stress is responsible for plant’s susceptible reaction. The
situation is further exacerbated due to climate change, with unsuitable ecological
circumstances deterring plants from realizing their full genetic potential, thereby
leading to decreased crop productivity. Often, abiotic stresses occur in combina-
tion and have a severe effect: high temperature and water scarcity frequently occur
together during a bout of drought; plants are repeatedly exposed to salt stress, mois-
ture deficit, and frost situations together; drought and mineral toxicities may also
occur together.

Brassica specieswere domesticated as oil producing crops during different periods
at many sites throughout the world. Animal fat being pricier, the poor used to rely
on vegetable oil as a source of their nutrition. Accordingly, world production of
vegetable oil has been incremental chiefly due to increased production of soybean,
palm and oilseed rape. Rapeseed, also known as oilseed rape or canola, is cultivated
in the temperate climates of the planet during different seasons (Shahzadi et al. 2015;
Zhu et al. 2016) chiefly for the extraction of oil from its seed. The oil is utilized for
human nutrition as well as a renewable raw material for the chemical industry, as
a catch crop for green manuring, as a forage crop and more recently as a source of
regenerative energy. Its processing produces a high-protein content meal as a by-
product which is used as a high-quality livestock feed. Also known as oil cake, this
rapeseed meal is also used as a fertilizer in certain parts of the world.

In world crop production, oilseed crops rank 2nd after cereals and, betwixt them,
rapeseed ranks third worldwide with an annual value of 41 billion USD collectively
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(USDA 2018). However, it is exposed to many biotic and abiotic stresses which are
responsible for reducing its production and productivity. This chapter discusses the
various abiotic stresses afflicting oilseed rape; the classical, genetic and molecular
approaches employed for breeding stress-resistant crop, together with biotechnolog-
ical and synthetic biology research breakthroughs, to create abiotic stress-tolerant
climate-resilient varieties that are fitter to face the biggest challenge in human history:
that of nutritionally feeding 9 billion people by 2050.

2.1.1 Temperature Stress

Geographical distribution of plants is predominantly dependent upon a vital climatic
factor: temperature (Sutcliffe 1977). Plants can endure temperatures way above the
optimumvalues required for their growth anddevelopment; however, above-optimum
temperatures cause stress. Crops generally encounter heat stress during the repro-
ductive phase of their development, though cultivated, field-grown crops are under
temperature stress for most of their growing season (Mahan et al. 1995). Huge yield
losses have been reported because of high temperatures which further get aggra-
vated when combined with losses from other environmental stresses. There are yield
differences even between areas with cooler and warmer temperatures or between
winter and summer seasons, suggesting the influence high temperature stress has
in lowering yields (Paulsen 1994). Plants’ response to temperature stress is mainly
dependent on the stage of development it is in. Elevated temperatures increase the
rate of plant development, thereby shortening reproductive phase (Hall 1992) and
lowering the yield potential (Entz and Fowler 1991) through reduction in photosyn-
thetic resources (Morrison 1993). A combination of water and heat stress severely
affect the source as well as sink for assimilates (Mendham and Salsbury 1995). In
rapeseed, the yield generally relies upon the factors going on before and during
flowering stage (Mendham and Salsbury 1995; Angadi et al. 1999).

2.1.2 Drought Stress

Water scarcity is one of the most critical environmental stresses that can occur due to
low rainfall, salinity, high and low temperatures, and high intensity of light. It is said to
be amultidimensional stress that amounts tomodifications in the phenological, phys-
iological, morphological, biochemical, and molecular pathways in plants. Drought
can critically affect seed germination, plant vegetative growth, seed quality and seed
yield. The flowering stage is exceedingly prone to drought injury, inducing seed
(29.5%) and oil (31.7%) yield losses (Shekari et al. 2015) in rapeseed. Physiological
changes in the water-stressed leaves through osmoregulation and osmotic adjust-
ment of water potential and relative water content have been observed in Brassica
crops. Drought stress diminishes leaf size, stem extension and root proliferation,
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disrupts plant water relations and dwindles the water-use efficiency. Carbon-di-oxide
absorption by leaves is slashed primarily due to closure of the stomata, membrane
damage and disrupted activity of various enzymes, chiefly those of CO2 fixation and
ATP synthesis. Increased flow of metabolites through the photorespiratory pathway
enhances the oxidative loadon the tissues, as bothmechanisms spawn reactive oxygen
species (ROS), the major deterrent to growth.

2.1.3 Salt Stress

Salt stress is the aggregation of extreme salt content in the soil that ultimately inhibits
crop growth, leading to death. It is an extremely damaging abiotic stress, causing ionic
toxicity, osmotic and oxidative stress simultaneously (Tanveer and Shabala 2018).
This can be engendered by alterations in respiration, photosynthesis and metabolism
of nucleic acids and proteins (Hasegawa et al. 2000). Extreme salt concentrations
adversely hinder cellular homeostasis and several key physiological processes. A
direct consequence of salt stress is an incremental build-up of ROS (Hasegawa et al.
2000; Chaves et al. 2009). The soil texture and composition are negatively altered
(Vital 2008), and high salt concentrations lead to an imbalance of nutrients and ions,
thereby impeding the normal morpho-physiological and biological processes of the
plant (Shinwari et al. 1998). This results in higher osmotic pressure of the soil than
the root cells, the root cells thus leach out water into the soil instead of absorbing it
from the soil, creating water and nutrition imbalance in plants (Sharma et al. 2019).
High salt concentration negatively affects seed germination inmanyBrassica species,
resulting in retarded plant growth and development and may even result in the death
of the plant under severe conditions (Zamani et al. 2010).

2.1.4 Cold Stress

Low-temperature stress declines both the quality and quantity of yield (Dreccer et al.
2018). The duration and amount of exposure to this stress, stage of development of
the plant and moisture content are the key components that determine the extent of
injury caused due to frost stress. Frost can suddenly kill the entire crop, especially in
areaswhere temperatures unexpectedly drop below 0 °C. In rapeseed, thewhole plant
dies if it encounters frost at seedling stage (Shah et al. 2016). It also directly affects
flowering and siliqua development and prevents seed formation, thereby affecting
crop productivity and causing considerable yield losses (Shah et al. 2016).
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2.1.5 Metal Toxicity

Themacronutrients (C,O,H,Mg, S,N,Ca, P, andK) andmicronutrients (Cu, Zn,Mn,
Fe, Mo, B, Ni, Co, Cl, and B) are essential metals required for various physiological
and biochemical processes in the plants. The 53 d-block elements that have a density
of >5 g/cm3 are classified as heavy metals (Jarup 2003). Micronutrients copper, zinc,
cobalt, nickel and iron are beneficial for better crop growth but if they accumu-
late in large amount, become harmful (Khan et al. 2018; Narendrula-Kotha et al.
2020), while other metals like arsenate (As), cesium (Cs), lead (Pb), and cadmium
(Cd), are toxic even in less amounts (Khalid et al. 2018). Heavy metal accumulation
above threshold may disturb soil microbiological equilibrium and thus diminish soil
fertility. Crop productivity and quality is adversely affected by heavy metal toxi-
city (HMT) of soil and water, contaminating swathes of land because of overuse
of pesticides, fertilizers, municipal and compost wastes, and heavy metal release
from smelting industries and metalliferous mines (Yang et al. 2005). The response
to HMT includes decrease in seed germination and growth (Siddiqui et al. 2014),
low biomass (Ben Ghnaya et al. 2009), chlorosis (Baryla et al. 2001), antioxidative
defense (Nouairi et al. 2009), impaired uptake of essential elements (Feigl et al. 2013),
peroxidation of membrane (John et al. 2009) and production of malondialdehyde
(Ben Ghnaya et al. 2009).

2.2 Genetic Variation for Abiotic Stress Tolerance

2.2.1 Temperature Stress Tolerance

High temperature during flowering and siliqua filling stage has the most crucial
impact on canola yield. Genetic variation for heat tolerance has been reported in
cultivated Brassicas. B. rapa is least tolerant to thermal stress than B. napus and B.
juncea, whereas, B. napus is least to recover from temperature stress (Angadi et al.
2000). Genetic variation for thermo-tolerance during reproductive phase has been
observed in different genotypes ofB. napus (Aksouh-Harradj et al. 2006;Annisa et al.
2013; Koscielny et al. 2018). Traits like pollen fertility, seed set (Young et al. 2004;
Wu et al. 2020a, b), vigorous root system (Wu et al. 2018), electrical conductivity,
electrical impedance (Wu et al. 2017), chlorophyll fluorescence (Cowley and Luckett
2011) and accumulation of heat shock proteins (Queitsch et al. 2000) can be exploited
for breeding of heat tolerant crops.
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2.2.2 Drought Tolerance

Being a complex trait, drought tolerance involves an array of component traits.
Different traits for drought tolerance have been studied by few workers. Richards
and Thurling (1979) reported leaf proline accumulation, leaf chlorophyll stability
and germination at low osmotic potentials as criteria for selection. They documented
inter-specific variations for heritability of different traits. Maximum broad-sense
heritability of 65% for chlorophyll stability in B. napus, followed by 55% for germi-
nation in B. rapa and 40% for proline accumulation in both B. rapa and B. napus
were reported.However, proline accumulation and germination have explicitly lower
narrow-sense heritability than broad-sense heritability. Cheema and Sadaqat (2004)
reported non-additive, duplicate and complementary epistasis along with significant
genotype × environment interactions for yield and its components through gener-
ation mean analysis, while evaluating populations under both drought stressed and
control conditions. Yang et al. (2008) used diallel crossing design for evaluating
the genetic estimates for seed germination under drought conditions. Both general
combining ability (GCA) and specific combining ability (SCA) were found to play
a significant role for six different germination traits.

2.2.3 Salt Tolerance

Exploration of heritable variation within the available germplasm is pivotal for
breeders to extract significant information on various abiotic factors. Inter specific
variations have been found for salt tolerance. Amphidiploids of Brassicas are better
in salt tolerance than diploid parents (Ashraff 2001). InB. napus, cultivarDunkeld for
biomass and seed yield (Qasim 2000), ST9194 for germination (Puppala et al. 1999)
and, Rapora, Mytnitskii and Chisayanatane for seed yield (Pokrovskii 1990) have
been identified to be tolerant to salt stress conditions. Diallel crosses and generation
mean analysis have been utilized to estimate various genetic parameters for traits
related to salt tolerance. Additive, non-additive and additive-dominance effects have
been found to control genetic variation for traits related to salt tolerance. Rezai and
Saeidi (2005) reported both additive and non-additive gene actions for traits related
to salt tolerance by utilizing diallel crosses in rapeseed. Additive genetic control has
been found for ions such as calcium (Ca), potassium (K), sodium (Na), ratios of
different ions (potassium/sodium, calcium/sodium) and stress tolerance index. Qiu
and Li (2009) reported the predominance of dominant genes with an additive effect
and with little existence of over-dominance for salt tolerance. Additive-dominance
effects for salt tolerance traits were reported in B. napus (Long et al. 2013), B.
juncea (Thakral and Prakash 1998) B. rapa (Kumar and Yadav 1985) and B. carinata
(Thakral and Singh 1994).



2 Designing the Rapeseed Genome for Abiotic Stress Tolerance 81

2.3 Traditional Breeding Approaches for Abiotic Stress
Tolerance

2.3.1 Drought Tolerance

Breeding for drought-resistant varieties is one of the best approaches for higher gains
in water stress situation. For a complex trait like drought, breeding for its component
traits is an ideal approach as compared to breeding per se for drought. Existence of
genetic variations for the component traits of drought have already been elucidated.
In the past, attempts have been made to breed drought tolerant genotypes in Brassica
spp. For this, selection for flowering time or harvest index gave better genetic gains
than selection for yield performance. The wild species have also been explored to
combat drought stress. The wild crucifers, Sinapsis alba and Moricandia arvensis
possess drought tolerance (Warwick 1993). These wild species were utilized for
development of intergeneric hybrids with cultivated Brassicas (Bang et al. 2007;Wei
et al. 2007). Bang et al. (2007) developed intergeneric hybrids between cultivated
diploid B. oleracea and M. arvensis in an attempt to transfer drought tolerance into
cultivated species. Monosomic addition lines of M. arvensis in B. oleracea have
also been generated. Similarly, Wei et al. (2007) developed BC1 from the cross of S.
alba/B. oleracea//B. oleracea that had recovered full chromosomal complement of
B. oleracea with additional chromosomes of S. alba.

2.3.2 Salt Tolerance

Enhanced knowledge of biochemical and stress-response signaling pathways has
revolutionized the salinity performance of modern varieties. Noteworthy progress
has been documented for salt tolerance in wheat, rice and tomato. Some salt tolerant
varieties of Indian mustard, viz., CS52, CS54, CS56 have been released for culti-
vation in India by Central Salinity Research Institute, Karnal. Identification of key
component traits and elucidation ofmechanism for salt tolerancewill help in breeding
of salt tolerant varieties. Screening of cultivated germplasm along with wild species
can prove beneficial for breeding salt tolerant rapeseed varieties.
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2.4 Molecular Breeding Approaches for Abiotic Stress
Tolerance

2.4.1 Drought Tolerance

In response to drought stress, biosynthetic and signal transductionpathwayof abscisic
acid (ABA) has been elucidated in detail (Century et al. 2008). During stress, rapid
accumulation ofABA induces stomata closure therebyminimizing losses due to tran-
spiration and protecting the plant from water deficit damage. Farnesyl-transferase
(FTA) has been reported as the key negative regulator of ABA sensitivity in the guard
cell of stomata.Different subunits (α- orβ-subunit) of FTAhavebeen shown toplay an
important role inArabidopsis. Down-regulation of these subunits affects the stomatal
conductance and water transpiration, thus enhancing response to ABA and conse-
quently making the plant tolerate drought (Wang et al. 2005). Transgenics developed
with rd29A:anti-AtFTB construct also showed resistance to seed abortion underwater
deficient conditions. Under field trials with normal conditions, yield performance of
transgenics was at par with wild-type, while under moderate drought stress condi-
tions, transgenics yielded significantly higher than control. Under drought condi-
tions, lignin accumulation increases, and Caffeic acid O-methyltransferase (COMT)
is involved in its synthesis. In B. napus, Li et al. (2016) identified 12 homologues of
COMT1, denoted as BnCOMT1-1 to BnCOMT1-12. Differential expression studies
revealed that under water deficient conditions expression levels of these BnCOMT1s
decreases. Non-synchronization between the total lignin accumulation processes and
BnCOMT1s transcripts indicated the involvement of these genes in synthesis of
specific subunit of lignin.

Fan et al. (2015) identified two quantitative trait loci (QTLs),
QDT.TxFr.2H and QDT.TxFr.5H, on chromosomes 2H and 5H that showed
drought tolerance, while one significant QTL QST.TxFr.7H, located on 7H was
found for salinity tolerance in doubled haploid (DH) population of oilseed rape by
simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP)
markers (Fig. 2.1). Gad et al. (2021) used high density linkage map for mapping of
consensus QTLs for germination indices under both control and stress conditions
(Fig. 2.2).Thirty-six consensus QTLs across the two study environments and 18
QTLs specific to one study environment affected the drought susceptibility indices
of four traits: germination percentage, root length, shoot length and root-to-shoot
length ratio and were mapped in B. napus. Co-linearity between genetic and physical
maps facilitated detection of around 256 candidate genes. Of these, single-nucleotide
polymorphisms/insertion–deletion (SNP/InDel) variations were detected in 128
genes and these SNP/InDel could also differentiate the two parents. Some of these,
BnaC03g32780D, BnaC03g37030D and BnaC09g27300D are directly related with
drought stress tolerance. Li et al. (2014) identified 28, 26 and 31 QTLs for root and
shoot related traits under control, water logging and drought conditions, respectively.
Mapping of 11 and 19 QTLs related to water logging tolerance coefficients and
drought resistance coefficients indicated existence of complex genetic mechanism.
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Fig. 2.1 QTL associated with drought tolerance (in red), salinity tolerance (in green), relative
moisture content (black) and proline content under drought or salinity stress (in blue) (Adapted
from Fan et al. 2015)

Fig. 2.2 QTL associated with drought tolerance (Adapted from Gad et al. 2021)



84 I. Dhaliwal et al.

However, overlapping of some of the QTLs for both these traits was also suggestive
of relatedness of genetic bases controlling these traits.

2.4.2 Salt Stress

Reports on mapping of QTLs for salt stress tolerance in B. napus are very scanty.
Now a days, transgenic plants are being utilized to test the overexpression of specific
up-regulating genes induced by salt stress. Transgenics conferring to salt tolerance in
Brassicas have also been reported. Besides, the candidate genes for ion homeostasis
and osmolyte accumulation have also been documented (Zhang et al. 2004).

Late-embryogenesis abundant (LEA) proteins belonging to hydrophilic protein
group provide protection for various abiotic stresses. Dalal et al. (2009) elucidated
the functional role of a Group.

4 LEA protein, LEA4-1 in B. napus. ABA, salt, cold and osmotic stresses
induced the expression of LEA4-1 gene in leaf tissues whereas constitutive expres-
sion was reported in reproductive tissues. Cloning and transformation of the gene in
Escherichia coli and Arabidopsis conferred its role for salt and temperature toler-
ance. LEA4-1 gene expressed under both constitutive Cauliflower mosaic virus 35S
(CaMV35S) as well as Desiccation-responsive 29A (RD29A) promoter for abiotic
stress and exhibited increase in tolerance to abiotic stresses, particularly salt and
drought stresses in Arabidopsis. Lang et al. (2017) identified 45 QTLs for salt toler-
ance that explained 4.80–51.14% of total phenotypic variation. Of these, qSPAD5,
major QTL for chlorophyll, was mapped on LG5. Fine mapping through Intron poly-
morphic markers narrowed down its region to 390 kb. This region envisages gene
Bra003640, a candidate gene for salt tolerance, and spanned a length of 1063 bp
with three exons interrupted by two introns. Expression analysis studies for qSPAD5
significantly differentiated the parents.

2.4.3 Cold/Freezing Stress

In B. rapa and B. napus, Teutonico et al. (1995) tried to map the QTLs involved
in acclimatized freezing tolerance (FTA) and acclimatization ability (FTB). It was
however, not possible to map QTLs for FTA in B. napus. However, for B. rapa,
significant QTLs for FTA and FTB were detected on LGs 2, 4, 5 and 7 while two
QTLs for non-acclimatized freezing tolerance (FTN) were mapped on LGs 9 and 10.
Winter parent contributed positive additive and negative dominance effects for FTN.
RFLP probe developed from a cold-induced cDNA in A. thaliana mapped near two
QTLs for FTA/FTB. Association of RFLP probe with FTA/FTB loci was indicative
of their involvement. Kole et al. (2002) identified and compared the QTLs for winter
survival (WS), FTA, FTN and FT in B. rapa and B. napus. For WS, five and 16
QTLs were identified in B. rapa and B. napus respectively. Of the 16 QTLs in B.
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napus, six QTLs were stable and were detected for two respective winter seasons.
For FTA, 2 and 1 QTLs, respectively, were detected in B. rapa and B. napus. For
FTN, it could be possible to map a single QTL only in B. rapa. Correspondence
of QTLs for different traits with in a species indicated the involvement of some
alleles in providing better acclimatized freezing tolerance. Correspondence of QTLs
between B. rapa and B. napus indicated the presence of allelic variation. Huang et al.
(2018) mapped 11 QTLs clustered on seven linkage groups for cold resistance traits
in B. napus. One QTL, qECYL-4, for electrical conductivity, five QTLs, qSPADYL-
6, qSPADYL-7, qSPADYS-3, qSPADYS-5 and qSPADYS-6, for chlorophyll content,
two QTLs, qMDAYL-3 and qMDAYS-6 for monoaldehyde and three QTLs, qSPYL-
7, qSPYL-11 and qSPYL-12 for soluble protein were mapped. Two candidate genes
BnaA08g05330D and BnaA08g15470D encoding the cold-regulated proteins were
identified. Differential expression analysis between parents also confirmed their role
in resistance to cold.

2.4.4 Boron Deficiency

In Brassica napus, Zhang et al. (2014) used a DH population and identified a major
novel QTL qBEC-A3a on chromosome A03 for boron deficiency (Fig. 2.3).

2.4.5 Phosphorus Deficiency

Phosphorus (P) is a major nutrient affecting growth in the rhizosphere. There are
very few reports on underlying genetic mechanisms, QTLs and candidate genes for
phosphorus utilization efficiency in Brassicas. Yang et al. (2010) reported the genetic
basis of P deficiency tolerance inB. napus. Sixty-two significant QTLswere detected
for root and associated traits under high and low phosphorus regimes. Of these, three
unique QTLs, uq.A1, uq.C3a and uq.C3b were associated directly with root traits
and P uptake. Two functional genes, AtGPT1 and AtIPS2 related to phosphorus
transporters and regulators in Arabidopsis were developed into markers, BnIPS2-C3
and BnGPT1-C3, which were mapped with in the confidence limits of QTLs, uq.C3a
and uq.C3b.

2.5 Post-Genomics Research for Addressing Abiotic
Stresses in Rapeseed

The current yield plateau ofBrassica genuswas confronted by various environmental
challenges including salinity, extreme temperatures (drought), heat, frost, and heavy
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Fig. 2.3 QTLs associated
with salt tolerance (Adapted
from Lang et al. 2017)
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metal stress. The plants are susceptible to salt and high (>30 °C) temperature at
seedling stage whereas drought and frost poses major threat during after flowering
to grain filling stage (Kumar et al. 2017).

2.5.1 Genomics and Transcriptomics

With the advent of sequencing of five Brassica genomes and the development of
various omic tools have led to the advancement of Brassica genomics. Nowadays
several genomic technologies like high next generation sequencing (NGS) platforms,
QTLmapping, genomewide and candidate gene based associationmapping (GWAS,
CG-AM) based on SSRs, cleaved amplified polymorphic sequence (CAPS), inter
simple sequence repeats (ISSRs), SNPs have been implemented to elucidate novel
genes and/or markers trait associations against various abiotic stresses (Kole et al
2002; Trick et al. 2009; Wang et al. 2011; Bus et al. 2012; Chalhoub et al. 2014;
Bayer et al. 2017; Rahaman et al. 2017; Paritosh et al. 2021). Table 2.1 represents
the identification of QTLs in rapeseed against abiotic stress.

Through transcriptomic or RNA profiling researchers have been able to decipher
up-regulated and down-regulated genes against abiotic stresses. This was carried out
either by next-generation sequencing (NGS), RNA-Seq, expressed sequence tags
(ESTs), serial analysis of gene expression (SAGE), and microarrays (Goodwin et al.
2016;Wang et al. 2018; Luo et al. 2019). InB. napusWang et al. (2018) characterized
2167 transcription factors (TFs) from five families including, 518 BnAP2/EREBPs,
252BnbZIPs, 721BnMYBs, 398BnNACsand278BnWRKYsagainst drought, cold,
salinity and heat stress, respectively. Out of 2167 TFs nearly 80% TFs were abiotic
stress inducible and 315 were differentially expressed genes (DEGs). Comparative
transcriptomic analysis by Yong et al. (2014) deciphered 438 transporter genes from
14,719 DEGs in rapeseed roots and leaves under increased salinity stress. Zou et al.
(2013) identified 4432 differentially expressed genes under water logging stress
in the roots of ZS9 (B. napus). After GO enrichment analysis 144 and 191 genes
were found to be down-regulated and up-regulated, respectively. Also, Luo et al.

Table 2.1 QTLs identified in rapeseed against various abiotic stresses

S. No. Type of stress QTL(s) identified References

1 Drought and low temperature 31 He et al. (2016)

2 Cold 11 Huang et al. (2018)

3 Salinity 62 Yong et al. (2015)

4 Winter survival and freezing 6, 16 Kole et al (2002)

5 Freezing 4 Asghari et al. (2008)

6 Water logging and drought 26, 31 Li et al. (2014)

7 Salinity 25 Wan et al. (2017)
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(2019) characterized 10,233 (up-regulated) and 9111 (down-regulated) DEGs under
normal and low temperature conditions in rapeseed genotypes. The up-regulated
genes were related with phyto-hormone regulation, signal transduction, and pentose
phosphate pathway whereas down-regulated genes were associated with ubiquitin-
mediated proteolysis. Likewise, Xin et al. (2019) in rapeseed identified 47,328 DEGs
against cold temperatures. Recently Jian et al. (2020) carried out transcriptomic
and metabolomics studies in five spring and winter rapeseed lines treated at two
temperatures (4 and 28 °C). DEGs of 25,460 and 28,512 and 41 and 47 differentially
expressed metabolites each were identified and characterized in both spring and
winter types against cold stress response.

2.5.2 Proteomics

Proteomics is the study of total proteins expressed in response to plant stress either in
cell wall, organelle, nuclear and phosphor-proteome of an organism (Nakagami et al.
2012; Luan et al. 2018). For proteomics analysis various techniques like yeast two-
hybrid (Y2H) system, matrix-assisted laser desorption ionization (MALDI), electro
spray ionization (ESI)-MS, and one/two- dimensional gel electrophoresis (2-DGE)
were used for proteomeprofiling against several abiotic stresses (Komatsu et al. 2014;
Shao et al. 2015). Proteins like CTRI, CDPK21, TPR, BSL and STN7 are expressed
in plants under salt and drought stress (Luo et al. 2015). In rapeseed Yildiz et al.
(2015) examined various proteins under salt and lipoic acid stress using 2-DGE and
MALDI-TOFMS. A total of 28 proteins have been expressed under stress conditions
of which 10 and 18 proteins were expressed during microsporocyte and microspore
stage, respectively. Dolatabadi et al. (2019) identified 44 proteins using 2-DGE under
salt-stress in rapeseed.

2.5.3 Metabolomics and Phenomics

Metabolomics is study of elucidation of primary and secondarymetabolites including
organic acids, secondary metabolites, vitamins, amino acids, peptides etcalong with
their metabolic and biochemical pathways in any plant species (Razzaq et al.
2019; Raza 2020). Techniques like nuclear magnetic resonance (NMR) and mass
spectrometry including liquid chromatography-mass spectrometry (LC–MS), gas
chromatography-mass spectrometry (GC–MS), direct injection-mass spectrometry
(DIMS), and high-performance liquid chromatography (HPLC) have been used
in metabolite profiling (Parida et al. 2018). Nokhrina et al. (2014) overexpressed
Phosphatidyl inositol-specific phospholipase (PLC2) gene in rapeseed and evalu-
ated metabolome of transgenic plants. The transgenic plants showed increased level
of maltose, unsaturated free fatty acids, glycerol, glycerol 3-phosphate, raffinose,
stachyose under low temperatures. Jian et al. (2020) identified 41 and 47 metabolites
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in spring and winter rapeseed ecotypes respectively under cold stress. In addition
to metabolomics, plant phenomics or high throughput phenotyping (HTP) has been
used in various crop improvement studies such asGWAS,CG-AM,genomic selection
(GS), marker assisted selection (MAS), and QTL mapping. Plant phenomics is the
analysis of plants morphology in a specific environmental using various techniques.
The recent advancements in HTP tools including X-ray tomography, hyper spectral
imaging, and visible light imaging has led to phenotyping evaluation of thousands
of plants at a time (Raza et al. 2021). For HTP, several phenotyping centers like
National Plant Phenomics Center (UK), Phenome UK, Nordic Plant Phenotyping
Network (Denmark), PHENOPSIS-INRA (France) have been setup across the world
(Raza et al. 2021). Very few examples of HTP are available in rapeseed (Zhang et al.
2017; Li et al. 2020).

2.5.4 Bioinformatics

With the advent of genome sequencing ofBrassica species, numerous bioinformatics
software’s and databases have been hugely developed for various gene annotations,
prediction, domain and motif analysis, sequence alignment, phylogenetic studies,
transcriptomic analysis, de novo assembling, plant-pathogen interaction studies etc.
Table 2.2 summarizes some available databases in public domain as well as other
software’s along with URLs.

2.6 Genetic Engineering for Abiotic Stress Tolerance

The molecular characterization and functional validation of several identified genes
against various abiotic stresses in rapeseed through recent omic technologies have
paved the way to elucidate host-pest interactions and to characterize the gene func-
tion. The functional validation was carried out by Knock in or Knock down or Knock
out strategies using RNA interference (RNAi), host induced gene silencing (HIGS),
virus induced gene silencing (VIGS), and clustered regularly interspaced short palin-
dromic repeats (CRISPR)-associated proteins (Cas) system (Yin and Hulbert 2015;
Majumdar et al. 2017;Maet al. 2019). Transgenics and/or genetic engineering against
abiotic stress resistance include the manipulation or incorporation of certain gene(s)
that are responsible for stress regulation, and improvise plant growth under extreme
environmental conditions. Literature cites several transgenics developed in Bras-
sica species with improved abiotic stress tolerance. For example, Tabasum (2016)
introduced PDH45 DNA helicase gene from pea in to rapeseed. The 53 transformed
B. napus transgenic lines showed resistance against salt, drought and heat stress.
The other successful examples of Brassica transgenics along with transferred genes
against various abiotic stresses are listed in Table 2.3.



90 I. Dhaliwal et al.

Table 2.2 Summary of some available databases and softwares along with their URLs

S. No. Software URL References

1 Brassica genome http://brassicagenome.net/databa
ses.php

Stein et al. (2002)

2 Phytozome http://www.phytozome.net Goodstein et al. (2012)
Nordberg et al. (2014)

3 PlantGDB http://www.plantgdb.org Dong et al. (2004)
Duvick et al. (2008)

4 Ensembl Plants http://plants.ensembl.org Bolser et al. (2016)

5 TAGdb http://www.plantgdb.org/TaGDB/
cgi-bin/blastGDB.pl

Marshall et al. (2010)

6 KEGG http://www.genome.jp/kegg/gen
ome/plant.html

Kanehisa and Goto (2000)

7 Genevestigator http://genevestigator.com Hruz et al (2008)

8 BRAD http://brassicadb.org/brad/ Cheng et al. (2011)

9 PRGdb http://prgdb.org/prgdb/ Sanseverino et al. (2010)

10 UniProt http://www.uniprot.org The UniProt consortium

11 SMART http://smart.embl-heidelberg.de/ Schultz et al. (2000)

12 Cutadapt 1.7.1 https://pypi.python.org/pypi/cut
adapt

Martin (2011)

13 DEGseq R-package Wang and Wang (2020)

14 DAVID https://david.ncifcrf.gov/ Huang et al. (2009a, b)

15 MEGA 6.0 https://www.megasoftware.net/ Tamura et al. (2013)

16 agriGO http://bioinfo.cau.edu.cn/agriGO/ Tian et al. (2017)

17 Patho Plant http://www.pathoplant.de/ Bolívar et al. (2014)

18 SWISS-2D-PAGE
WORLD-2D-PAGE

https://world-2dpage.expasy.org/
swiss-2dpage/

Table 2.3 The transgenics developed in rapeseed along with transferred genes against various
abiotic stresses

S. No. Gene(s) Stress resistance References

1 AtTrx-h2 Salinity Kim et al. (2017)

2 CBF1/2/3, BnCBF5 and
BnCBF17

Freezing tolerance Moustafa et al. (2016)

3 YHem1 Salinity Lu et al. (2013)

4 AtDWF4 Heat and drought Sun et al. (2015), Sahni et al.
(2016)

5 BnPLC2 Low temperature Smolikova et al. (2016)

6 DREB, AtPLD-α-1 Salinity and drought Qamarunnisa et al. (2015)
Kong et al. (2011)

7 BnKCS1-1, BnKCS1-2, and
BnCER1-2

Drought tolerance Wang et al. (2020)

http://brassicagenome.net/databases.php
http://www.phytozome.net
http://www.plantgdb.org
http://plants.ensembl.org
http://www.plantgdb.org/TaGDB/cgi-bin/blastGDB.pl
http://www.genome.jp/kegg/genome/plant.html
http://genevestigator.com
http://brassicadb.org/brad/
http://prgdb.org/prgdb/
http://www.uniprot.org
http://smart.embl-heidelberg.de/
https://pypi.python.org/pypi/cutadapt
https://david.ncifcrf.gov/
https://www.megasoftware.net/
http://bioinfo.cau.edu.cn/agriGO/
http://www.pathoplant.de/
https://world-2dpage.expasy.org/swiss-2dpage/
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Table 2.4 Genome editing using CRISPR/Cas9 system in rapeseed against abiotic stress and
agronomic traits

S. No. Gene(s) Trait References

Abiotic stresses

1 BnLLA10 Salt tolerance Hu et al. (2018)

2 BnaA6.RGA, DELLA protein Transcription factor for
drought tolerance

Wu et al. (2020a)

Other agronomic traits

3 BnSPL3-Cnn, BnSPL3-C4,
BnSPL3-C3, BnSPL3-A4,
BnSPL3-A5, JAGGED

Pod development and
shattering

Zaman et al. (2019)

4 BnaMAX1 Plant architecture and
yield

Zheng et al. (2020)

5 CLAVATA Silique development Yang et al. (2018)

6 FAD2 Oil quality Okuzaki et al. (2018)

2.7 Genome Editing

CRISPR/Cas technology has inadvertently revolutionized the concept of genome
editing in crop plants (Raza et al. 2021). Recently, this technology has been widely
used in gene editing of various abiotic stresses in Brassica species. Table 2.4
summarizes successful studies using CRISPR/Cas9 system in B. napus.

2.8 Future Perspectives

Conventional plant breeding has been unsuccessful in contributing towards a 100%
tolerance/resistance towards abiotic stresses so far. Climate change coupled with
agronomic significance of rapeseed in global agriculture call for advanced tech-
niques to combat various abiotic stresses in plants. Drought, salt, frost and high
temperature stresses significantly affect the crops’ productivity, making it impera-
tive to develop/identify abiotic stress (drought/salt/cold/heat) tolerant cultivars. The
missing links in the metabolic pathways and genes involved in stress response need
to be elucidated to solve the puzzle. An encouraging research direction is genome
editing via the CRISPR/Cas system. Engineering metabolic pathways and stress-
associated genes for climate-resilient cultivar development can open up new vistas
of research in the crop. Speed breeding has emerged as a new time-saving breeding
tool and the combination of omics, genome editing, and speed breeding can accel-
erate rapeseed production with improved traits and increased abiotic stress tolerance.
Synthetic biology, another emerging approach, can be applied in conjunction with
engineering methods to develop climate-smart rapeseed plants.
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Chapter 3
Sunflower and Abiotic Stress: Genetics
and Breeding for Resistance
in the—Omics Era
Sunflower Abiotic Stress Breeding

Nada Hladni, Chao-Chien Jan, Milan Jocković, Sandra Cvejić, Siniša Jocić,
Aleksandra Radanović, and Dragana Miladinović

Abstract Sunflower is considered more tolerant and adaptable to abiotic stresses
than many other crops. It can be successfully grown in marginal soils and in semi-
arid conditions. Hence, sunflower crop stands a very good chance of surviving
a changing environment with its broad genetic base and the use of emerging—
omics technologies. In the future, it will be necessary to improve sunflower crop
productivity under different abiotic stresses occurring individually or simultane-
ously Future work in sunflower genetics and breeding for abiotic stress tolerance
should be directed to the research and exploitation of the available genetic resources,
as useful sources of genes for resilience. An integrated multidisciplinary approach
based on genetics and—omics, physiology, and modelling, along with the appli-
cation of modern breeding tools, should be used for designing of novel sunflower
varieties, more resilient for abiotic stresses and extreme environmental conditions
that are becoming more frequent due to climate change. In this chapter, we present
a review on how sunflower could be adapted to abiotic stresses, respective traits,
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genetic resources, and tools for their introduction into the cultivated sunflower, thus
making sunflower tolerant to the extreme climatic conditions.

Keywords Helianthus annuus · Abiotic stress · Breeding · Tolerance · Genomic
selection ·Multidisciplinary approach

3.1 Introduction

Cultivated sunflower (Helianthus annuus L.) is a globally important oilseed crop,
mostly used for oil production fromseed, but it is also used as a protein crop for human
consumption, as well as for feed (Hladni and Miladinović 2019). It is cultivated on
over 26.5million hectares inmore than 60 countries (FAO 2017), with the production
that takes the fourth place among oilseeds, after soybean, oil palm, and oilseed rape
(Jocić et al. 2015; Kaya et al. 2015). Sunflower oil is of a very high quality and
generally sells for a premium price compared to soybean, rapeseed, cottonseed, and
groundnut. Depending on the breeding goals and final use, we could say that there
are three basic sunflower types: oilseed, confectionery, and ornamental sunflower
(Seiler and Jan 2010).

Because of its specific structure of its main organs (root, stem, leaves, and head),
sunflower is successfully grown in quite a few countries on, so-called, marginal soils.
In most casses, in semiarid conditions where almost every year an abiotic stress of
one kind or another is present acting as a limiting factor on crop production (Škorić
2009). Hence, sunflower crop stands a very good chance of adapting to changes
in the environment, with its broad genetic base and the emerging technologies that
will allow traits and gene mining from the vast and relatively unexploited wild crop
relatives’ gene pool and has been proposed as a potential model crop for adaptation
to a changing environment (Seiler 2018). Further understanding of the underlying
physiology of the genotype-specific responses of sunflower to predictable and unpre-
dictable environmental variation could enhance the efficiency of the selection for
improved stress tolerance and allow cultivation of this crop across an even larger
area (de la Vega and Chapman 2010; Miladinović et al. 2019).

In this chapter we present a review on possibilities for sunflower adaptation to
abiotic stress, respective traits, genetic resources, and tools for their introduction into
the cultivated sunflower, thus making sunflower even more tolerant to the extreme
climatic conditions (Fig. 3.1).

3.2 Abiotic Stress Tolerance Related Traits

In breeding for tolerance to abiotic stresses, the basic task is to reduce their adverse
effects of on sunflower growth and yield. Characterization of abiotic stress toler-
ance and traits related to it is very complex and interrelated to many factors. As a
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Fig. 3.1 Designing of abiotic-stress-tolerant sunflower: Traits, mechanisms and tools

crop frequently grown on marginal soils and in less extensive production systems,
sunflower faces many abiotic stresses, thus requiring study of different abiotic stress-
related traits, with the aim of their pyramiding and combining in one resilient
genotype (Table 3.1).

3.2.1 Root Characters

In the past decades, breeders were mostly occupied with improvements of above-
ground parts of sunflower plant neglecting one of perhaps the most important parts of
the plant for its ability to adapt to different environmental conditions. Because of that,
it is necessary to focus future breeding efforts on improvement root traits, as well,
in order to minimize the effect of stressful conditions on plant development. These
efforts could be facilitated by novel phenotyping platforms for non-invasive root
analysis, that enable efficient characterization of root architecture and investigation
of the developmental dynamics and root growth (Radanović et al. 2018).

Kaya (2016) stated that in sunflower, drought tolerant genotypes should be
attributed with powerful roots in order to increase water uptake from the soil. Culti-
vated sunflower has the potential to trap soil moisture reserves that are inaccessible
to many other crops and root traits. Root length and diameter, root length density
and root volume, along with fresh and dry root weight and total dry matter are a
significant indicator of sunflower tolerance to root drought (Song et al. 1999; Rauf
2008; Comas et al. 2013). However, there is a lack of useful data aboutmorphological
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Table 3.1 Traits related to abiotic stress tolerance in sunflower

Abiotic stress Trait(s) References

Root
characters

Root length and diameter
Root length density
Root volume
Fresh and dry root weight

Rauf (2008), Nagarathna et al. (2012),
Comas et al. (2013)

Heat tolerance Increased transpiration
Tolerance to intensive transpiration
Deep and powerful root system
Total number of nodes
Reduced leaf temperature
Leaf and head orientation at the time of
anthesis
Pollen viability under heat stress

Rauf et al. (2012), Seiler (2012),
Škorić (2012), Kalyar et al. (2013b,
2014), Razaq et al. (2017)

Cold
tolerance

Chlorophyll content
Chlorophyll fluorescence
Specific leaf area

Allinne et al. (2009), Hniličková et al.
(2017)

Drought
tolerance

Tolerance to high osmotic pressure
Reduced transpiration
Chlorophyll fluorescence
Photosynthetic performance index
Root weight
Cuticular wax
Leaf cuticular transpiration
Leaf temperature in early phases
Leaf pubescence
Altered leaf angle
Leaf rolling
Stay-green

Miller (1987), Škorić (1989, 1992,
2009), Belhassen et al. (1996),
Panković (1996), Parameswaran
(1996), Vranceanu (2000), Chimenti
et al. (2004), Petcu et al. (2008),
Onemli and Gucer (2010), Sato et al.
(2012), Kulundžić et al. (2016), Umar
and Siddiqui (2018), Cicek et al.
(2019)

Flooding and
submergence
tolerance

Anaerobic energy production
Hypocotyl diameter
Chlorophyll concentration
Leaf mass per area

Wample and Reid (1978), Torres and
Diedenhofen (1981), Lenssen et al.
(2004), Gao et al. (2019)

Salinity
tolerance

Proline accumulation
Germination index
Germination vigour index
Dry matter accumulation
Relative growth rate
Relative growth reduction
Root growth
Shoot fresh weight
Leaf ion content
Plant height

Hussain and Rehman (1993), Prakash
et al. (1993), Singh (2000), Ashraf
and Harris (2004), Lexer et al. (2004),
Fernandez-Martinez et al. (2009),
Seiler (2012), Škorić (2012), Li et al.
(2020), Wenhui et al. (2020)

(continued)
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Table 3.1 (continued)

Abiotic stress Trait(s) References

Water use
efficiency

Quantum yield of photosynthesis II
Photosynthetic efficacy index
Relationship between WUE and �13C
isotope
Temperature of the leaves

Lambrides et al. (2004), Canavar et al.
(2014), Kulundžić et al. (2016)

and physiological root parameters of sunflower that can be useful in breeding as it
requires the knowledge about root traits and their effect on sunflower productivity
while it is known that depth-efficient roots for more water uptake are one of indi-
cators of physiological drought tolerance (Comas et al. 2013; Kaya 2016). Ongoing
climate drift in recent years motivated scientists for thorough evaluation of plant
performance under stress conditions including detailed physiological studies as well
as genomic analyses with special attention that has been given to evaluate relation-
ship between root-related traits and performance under water limitation (Mitchell
et al. 2013; Mickelbart et al. 2015; Kusmec et al. 2017; Scoffoni et al. 2017a, b;
Li et al. 2018). Results from several studies gave clearer picture about transforma-
tions in root morphology under water deficit and it has been noticed that plants often
increase the distribution of root biomass and change root morphology under water
restriction (Pace et al. 1999; Uga et al. 2011; Tardieu 2013; Comas et al. 2013). Rauf
et al. (2009) evaluated sunflower root characteristics under different water regimes
and results indicated that drought had repressive effect on root weight and shoot
length while elevate effect on root length and root-to-shoot ratio.

Biotechnological tools increased the progress in identification of the genetic basis
of root traits variations in sunflower. Quantitative trait loci (QTL) associated with
increased root foraging, root length, root biomass, lateral root length, and root angle
have been identified (MacMillan et al. 2006; Courtois et al. 2009; Ruta et al. 2010;
Uga et al. 2011, 2013; Mace et al. 2012; Christopher et al. 2013; El-Soda et al. 2014;
Gao and Lynch 2016). Using genome wide association (GWA) study Masalia et al.
(2018) measured several root and growth traits in sunflower in well-watered and
water limited environments and identified 13 genomic regions that were associated
with the traits of interest across the two environments. The authors found that water
limitation reduced seedling size and produced a shift toward deeper rooting and
also discovered evidence of pleiotropy across multiple traits, as well as numerous
environmentally independent genetic effects. They also suggested that the majority
of alleles associated with these traits have consistent effects across environments.

3.2.2 Heat Tolerance

One of the main abiotic factors which, especially in recent years, has become threat-
ening to sunflower production, is the stress caused by high temperatures. Heat stress



106 N. Hladni et al.

is defined as the high temperature period lasting enough to cause significant yield
reduction and has becomeone of themajor abiotic stresses that occupies parts ofAsia,
America, some parts of Europe and the whole Africa and Australia (Singh 2004a;
Kalyar et al. 2013a). Negative impact of heat stress on molecular, cellular, physio-
logical, phenological, and agronomic traits of sunflower is sunflower is reflected in
the decrease of seed number per head, rate and duration of seed and embryo growth,
seed weight and change in seed oil characteristics (Chiementi et al. 2002; Prasad and
Staggenborg 2008; Kalyar et al. 2013a). Higher air temperature can have a negative
affect on sunflower growth by inducing shorter developmental stages as well as lead
to early senescence and diminish oxidative protection in sunflower primary leaves
(De la Haba et al. 2014). Terzić et al. (2017) found that temperatures above 27 °C
reduce nectar production, while those above 33 °C completely stop nectar produc-
tion. Sunflower can also adapt to higher temperatures by increasing transpiration
rate, which keeps the leaves relatively cool. This mechanism is also correlated with
high yield due to a positive correlation of transpiration with photosynthetic rate and
achene yield (Kalyar et al. 2013a).

It is possible to achieve heat tolerance in sunflower by avoiding adverse conditions
or bybreedingvarieties and specieswith increased resistance to heat shocks.Different
management practices can be applied in order minimize the negative impact of heat
stress, such as earlier sowing date, that is found to lead to a significant increase in
the leaf area and to enable sunflower plants to avoid water and heat stress during
flowering initiation (Barros et al. 2004). Screening available germplasm is the first
step to choose adequate source for heat tolerance for the use in breeding. Wild
sunflower relatives present valuable source for many important traits in this regard
(Lexer et al. 2003; El Midaoui et al. 2003; Warburton et al. 2017; Seiler et al. 2017).
Essential criteria in breeding sunflower for tolerance to high temperatures and heat
stress, are deep and well-developed root system, tolerance to intensive transpiration,
increased pollination capacity, high seed filling rate and rapid synthesis of oil under
hot conditions (Seiler 2012; Škorić 2012). Negative effect of heat stress can also
be reduced with selection on proper head, leaf, or petiole inclination (Kalyar et al.
2013b).

3.2.3 Cold Tolerance

One of the limiting abiotic factors faced by many plant species are low temperatures
which can occur at different stages of the development. In sunflower, each genotype
has an optimal range of temperatures for its normal growth and development (Škorić
2009). Considering that usual sowing date in the northern hemisphere is the end of
March and the beginning of April, sunflower is faced with the low temperatures at
early stages of the development such as germination, emergence, and the 2–3 leaf
stage, especially in early plantings and during the maturation period of sunflower
production at higher altitudes. Gornik (2011) studied the effect of different temper-
ature treatments on sunflower seed in order to increase its tolerance to chilling and
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concluded that dry seed storage at 5 °C reduced seedling injuries exhibited by external
root discoloration and increased chlorophyll content in leaves. Tetreault et al. (2016)
evaluated low temperature tolerance among three natural populations of the peren-
nial sunflower speciesHelianthus maximiliani and found that freezing tolerance was
the highest in plants from the northernmost latitude under both non-cold-acclimated
and cold-acclimated experimental conditions. Furthermore, authors concluded that
plants from all three populations retained the ability to increase freezing tolerance
through the process of cold acclimation. In order to better understand sunflower
tolerance to low temperatures Hniličkova et al. (2017) conducted study in order
to identify the physiological mechanisms associated with the resistance and toler-
ance of young sunflower plants to freezing temperatures and found that there were
no significant changes of osmotic potential in a reaction to the effect of freezing
temperatures. However, the knowledge on frost tolerance of sunflower plants after
exposure to a period of low temperature is still poorly understood, especially on
molecular basis. Hewezi et al. (2006) reported about initial characterization of the
transcriptome activity of sunflower and found that that the down-regulation and/or
non-induction of genes having a critical role in tolerance to low temperature.

3.2.4 Drought Tolerance

Drought is one of the biggest challenges to crop production in the twenty-first century
as well as sunflower production worldwide, severely reducing yield, oil content, oil
quality, and other important yield traits (Tyagi et al. 2018; Hladni et al. 2018a, b).
Considering that temperature level has increased during vegetation period for most
field crops, the biggest concern is crop production in arid regions as higher evapora-
tion will cause increase in water deficit (Homann 2017). Drought stress in sunflower
causemany physiological changes as it starts with diminishing of plant water content,
then leaf water potential, biomass, cell enlargement and growth and with closing
stomata, mainly due to turgor loss (Javaid et al. 2015). In a comprehensive study
of Keipp et al. (2020) authors concluded that oil content in sunflower seed was not
reduced by drought stress and that reduced oil yield was a result of lower seedweight,
limited by a decreased cell diameter. Consequently, different management strategies
are applied in practice in order to minimize the damage caused by drought, such as
moving the sowing date in order to escape drought period or foliar application of
abscisic acid and potassium chloride (Škorić 2012; Hussain et al. 2013).

During domestication process cultivated sunflower lost some drought survival
mechanisms found in wild relatives (Seiler et al. 2017). In breeding for drought toler-
ance, the most widely used Helianthus species are H. argophyllus and H. anomalus
(Baldini andVanozzi 1999; Seiler 2007). Amongwild relativesHelianthus anomalus
is distinguishedwith large achene and relatively high oil contentwhichmakes it desir-
able in breedingpurposes andwas identified as a target species, particularly for abiotic
stress tolerance and adaptation to extreme soil properties (Seiler et al. 2006; Seiler
2007; Kantar et al. 2015). Several other sunflower wild relatives, widely adapted to
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drought conditions, can be used as a potential source for tolerant genes such as H.
mollis, H. deserticola, H. hirsutus, H. maximiliani, H. tuberosus etc. (Škorić 2009;
Vassilevska-Ivanova et al. 2014).

One of the main objectives in many sunflower breeding programs is tolerance
to drought and therefore it is important to identify the physiological, metabolic and
molecular mechanisms underlying the response of plants to drought stress. Devel-
opment of lines and hybrids that are drought-tolerant in sunflower breeding implies
thorough study of the relationship between drought tolerance traits and yield and
effective screening methods for these traits. Screening genotypes by measuring
photosynthetic performance index and leaf temperature in early phases of devel-
opment can be used to classify responses of genotypes to water deficit (Kulundžić
et al. 2016; Cicek et al. 2019). In sunflower breeding for drought tolerance, it is
necessary to improve efficiency of genotypes to use available water. Water use effi-
ciency is positively correlated with improved harvest index which is defined as seed
yield per total above-ground biomass (Hütsch and Schubert 2017; Keipp et al. 2019,
2020). According to study of Onemly and Gucer (2010) one of the best selection
criteria for drought tolerance at early vegetative stage are number of leaves and root
weight. Newer study from Pekcan et al. (2016) evaluated effects of drought stress
on sunflower stems and roots and indicated that dry and total fresh weight, as well
as total root fresh weight are important indicators for drought tolerance. Drought
indexes as a quantitative measure of several variables should be used in order to
more efficient and precise study drought tolerance (Razzaq et al. 2017).

3.2.5 Flooding and Submergence Tolerance

Abiotic stress caused by changes in water availability can be either water
deficit caused by drought period, or excess in water availability causing water
logging/submergence due to flooding period (Pradhan andMohanty 2013; Mustroph
2018). Excessivewater negatively affects productivity andviability in plants (Tamang
and Fukao 2015). Hence, water logging/submergence is one of the most impor-
tant abiotic stresses in agricultural crop production which affects 10% of the land
area worldwide (Conaty et al. 2008). Being a complex stress, flooding restricts gas
diffusion between the plant, soil and atmosphere (Van Dongen and Licausi 2015;
Voesenek and Bailey-Serres 2015). In such unfavorable conditions, insufficient or
complete absence of oxygen in plant cell is restricting mitochondria activity and
together with restricted carbon dioxide (CO2) in leaves cause energy crisis within
plant cell (Mustroph 2018). Earlier studies on effect of varying periods of flooding
of sunflower roots demonstrated different changes in shoot morphology such as leaf
epinasty, death of shoot apex, extreme chlorosis and hypertrophy of nodes and intern-
odes (Wample and Reid 1978). Sunflower sensitivity to water logging is logging is
also outlined in a newer study of Grassini et al. (2007) who concluded that water
loggingduringgrainfillingdetermines direct physiological responses such as reduced
plant leaf area and leaf capacity to fix carbon and negative effect on plant capacity to
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absorb water. Negative effect of excess water stress on sunflower plants during the
sowing-emergence period is also described by Loose et al. (2017) who reports that
water stress substantially reduces emergence, plant density, shoot and root growth,
even after 48-h stress. Authors also concluded that water excess also causes morpho-
logical changes such as leads to the formation of adventitious and secondary roots.
Anatomical adaptations such as aerenchyma formation, the formation of a barrier
against radial oxygen loss, and the growth of adventitious rootsmay prevent dramatic
yield loss (Mustroph 2018). There are also examples like in Japan, where sunflower is
grown in rotation with rice in the paddy field and where higher soil moisture provoke
decrease in growth, yield, oil content and the oleic acid content (Yasumoto et al.
2011).

Physiological mechanisms responsible for the responses of crops to excess soil
moisture is still insufficient and future research should be addressed to QTL analyses
or genome-wide association (GWA) studies in combination with specific tolerance
traits (Mustroph 2018). Such studies should also include sunflower wild relatives
as bearing in mind the diversity of habitats they inhabit information about flooding
tolerance among them can enhance the chances of finding useful tolerance traits
which can be used in breeding process to improve adaptation of cultivated sunflower.

3.2.6 Salinity Tolerance

As one of the major abiotic stresses in plant production that cause negative effects on
plant growth and crop yield, salinity affects more than 800 million hectares of land
and in total more than 20% of agriculture (Mickelbart et al. 2015; Song and Wang
2015; Ding et al. 2018; Li et al. 2020). In many countries, sunflower is often grown
on low-to-medium-saline soils (Hladni 2010; Škorić 2016). Generally, sunflower is
known as amoderate salt-tolerant crop but its ability to survive and grow under saline
conditions depends on the interaction between salty environment and the ability of the
genotype to tolerate those conditions, which also varies depending on growth phase.
The first phase in sunflower life cycle, germination, is significantly affected by the
salt stresswhich reduces the ability of plants to uptakewater from the soil, resulting in
the growth inhibition and yield loss (Li et al. 2020). The results of numerous studies
indicated negative effects of increased levels of salinity on other sunflower traits such
as leaf area, dry matter, seed number per head, seed yield per plant, seed yield and
seed oil content, particularly adversely affecting sensitive genotypes (Katerji et al.
1994; Flagella et al. 2004; Di Caterina et al. 2007; Jabeen and Ahmad 2012). There
are different selection criteria proposed by a number of researchers that can be used
in salinity studies such as cell survival, seed germination, dry matter accumulation,
leaf death or senescence, leaf ion content, leaf necrosis, root growth, and osmotic
(Singh 2000; Lexer et al. 2003; Fernandez-Martinez et al. 2009; Seiler 2012; Škorić
2012; Li et al. 2020). One of the latest approaches for efficient and reliable method
for screening sunflower genotypes for salinity tolerance is proposed by Li et al.
(2020) who suggested that the germination index and the germination vigour index
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are the twomost reliable traits for salt tolerance of sunflower at the germination stage,
based on correlation analysis. Authors phenotyped 552 inbred lines of sunflower for
different traits at seed germination stage and developed a quantitative evaluation
model. The use of sunflower wild relatives can elevate the success in breeding for
salt tolerance as severalHelianthus species are native to salt-affected habitats (Seiler
et al. 2017). As a unique species well adapted to saline soils H. paradoxus is a great
source for salt tolerant genes which can be used to breed more salt-tolerant cultivated
sunflower and potentially provide a 25% yield premium in saline soils (Hajjar and
Hodgkin 2007; Seiler et al. 2017).

3.2.7 Herbicide Tolerance

Imidazolinones (IMI) and sulfonylureas (SU) tolerant plantswith alteredAHAS genes
and enzymes have been widely used since their introduction in the early 1980s, and
now they constitute one of the major weed control methods for many crops (Tan et al.
2005; Škorić 2009). Gene discovery and trait development for herbicide tolerance in
sunflower is considered to beoneof themost important issueswhen it comes to raising
the productivity and the competitive ability of this crop (Sala et al.2012b). IMI andSU
herbicides provide excellent broad-spectrum weed control in sunflower, including
some of the most problematic weeds. In addition, both families of herbicides allow
the possibility to control weeds that are insufficiently controlled by other herbicides
traditionally used in sunflower (Sala et al.2012a).

In 1998, USDA-ARS (NDSU) research team transferred IMI resistance into culti-
vated sunflowers and released public “IMISUN” lines (Miller and Al-Khatib 2000).
Malidža et al. (2000), reported having transferred resistance to Imidazolinones from
the wild H. annuus L. from Kansas into the elite line HA-26 and found that the
resistance was controlled by a single partially dominant gene. Sala et al. (2008a,
b) identified new source of IMI resistance, CLHA-PLUS, that is controlled by the
expression of the partially dominant nuclear allele Ahasl1-3 that was developed by
seed mutagenesis and selection with imazapyr. At the molecular level that CLHA-
PLUS is found to be different from Imr1 and that both of them are allelic variants
of the locus AHASL (Sala et al. 2008a, b). This new trait confers better stability
of the herbicide tolerance in different environmental conditions, permit developing
new herbicide formulations providingmore flexible and reliable weed control, higher
oil content, than previous IMISUN trait (Sala et al.2012a, b; Weston et al. 2012).
Sulfonylurea-tolerant sunflowers were developed from wild sunflower populations
discovered in the United States collected from the same Kansas area in which IMI
resistance was found. The USDA-ARS (NDSU) research group incorporated this
genetic resistance into cultivated sunflower and released public lines SURES-1 and
SURES-2 in 2001 (Al-Khatib et al. 1999; Miller and Al-Khatib 2004). This trait,
controlled by one dominant gene was introduced into elite inbred lines and sulfony-
lurea tolerant sunflower hybrids (Express Sun technology) were introduced in the
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USA and in many countries in Eastern Europe (Fabie and Miller 2002; Sarpe et al.
2007; Jocić et al. 2008, 2011; Mithila and Godar 2013; Meluca et al. 2014; Cvejić
et al. 2016).

Although Clearfield and Express Sun technologies are widely used, there are
problems in the production such as herbicide residue effects on the following crops,
gene escaping to wild species, weed tolerance, as well as tolerant sunflower cultivars
response to ALS inhibiting herbicides (Sala et al. 2008a, b, 2012a; Vrbničanin et al.
2008; Božić et al. 2012; Presotto et al. 2012; Jursik et al. 2015).

3.2.8 Nutrient Use Efficiency

Indices of nutrient use efficiency (NUE) in plant production are often the ratios of
mass balances between crop yields and the total amount of nutrients in plants in
harvest. Term NUE is also being used for nitrogen use efficiency, as a parameter for
improving crop sustainability aswell as indicator of progress towardsworldwide food
security, improved nutrition, reduced pollution and sustainable agriculture (Norton
and Roberts 2015). Nutrient deficiency and/or nutrient toxicity is not yet recognized
as a main target in sunflower breeding programs worldwide (Seiler 2012; Škorić
2012). Using the appropriate screeningmethods, selecting adequate geneticmaterial,
and using available breeding methods the NUE in sunflower can be increased. When
it comes to the potential for creation of varieties with superior NUE it is important
to note that it depends largely on the genetic variability present for that particular
NUE-regulated property alongwith the development of amethodology for the precise
quantification of physiological parameters that reflect an effectiveNUE (Baligar et al.
2001).

Nutrients have essential importance in plant metabolism and due to disruption of
the supply of a particular nutrient, changes in plant metabolism are manifested. Like
other crops, sunflower is highly dependent on nutrient availability, which is ulti-
mately expressed through quantitative and qualitative characteristics of sunflower
achene. According to Blamey et al. (1987) the most important macro elements for
sunflower development are nitrogen (N), phosphorus (P), potassium (K), sulphur (S),
calcium (Ca) and magnesium (Mg). Each mineral element has specific function in
plant metabolism. Nitrogen (N) is one of the most needed elements for plant growth
participates in processes of photosynthesis, respiration, multiplication and cellular
differentiation, while phosphorus (P) plays an important role in the maintenance
of membrane structures, synthesis of biomolecules and formation of high-energy
molecules (Malhotra et al. 2018; Xu et al. 2020). In sunflower production, farmers
traditionally apply organic fertilizer plus N and P fertilizers, which are considered as
the nutrients that most frequently limit plant growth (Shu-Tian et al. 2018). Besides
N and P, other factors such as water availability, environmental conditions and other
nutrients as well co-limit plant growth (Weih et al. 2018). Among nutrients, potas-
sium (K) is very important for cell growth and plant development, it has strong
mobility in plants and plays an important role in the formation of the yield and
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quality improvement (Hepler et al. 2001; Oosterhuis et al. 2014; Hu et al. 2016).
It has also important role in increasing cell wall thickness and tissue stiffness and
thus increasing resistance to some pathogens (Basseto et al. 2007). The application
of K in sunflower increases achene yield, 1000-achene weight and kernel rate of
both oil and confectionery sunflower (Shu-Tian et al. 2018). Sunflower is also highly
sensitive to boron (B) deficiency, as it is an essential microelement which plays an
important role in transporting nutrients from the roots to upper parts of the plant, its
deficiency is widespread around the world with negative effect on crop production
(Ceyhan et al. 2008; Wang et al. 2015). For balanced plant growth and exploitation
of seed yield potential, as well as adequate oil and fatty acid content it is necessary
to provide optimum amounts of these macro elements during the entire vegetation
season as imbalanced mineral supply not only influences sunflower achene yield but
also decreases other nutrient efficiencies (Amanullah and Khan 2010; Shu-Tian et al.
2018). Baligar et al. (2001) reported that efficiency of applied fertilizers in sunflower
have been estimated to be about or below 50% for N, below 10% for P, and about
40% for K.

3.2.9 Water Use Efficiency

Bearing in mind ongoing climate change one of the main goals of water manage-
ment will be the implementation of effective water management strategies as a key
element for increase in water productivity. As outlined in study of Hatfield and Dold
(2019), changing climate with increase in the temperature, variable precipitation and
increase in concentration of carbon dioxide (CO2) will affect water use efficiency
(WUE) in plants. Furthermore, these climate changes will also have an impact on
increased atmospheric water demand by crops and increased potential for soil water
availability due to increased variation in precipitation during the growing season.
WUE is defined as the ratio of amount of carbon assimilated as biomass in the
plant and the total loss of water due to transpiration (Blum 2005). Unlike other field
crops sunflower forms a deep root system allowing it to draw water from the deeper
layers of the soil. Because of that water requirements for sunflower are moderate
and it can tolerate short-term drought with moderate yield reduction (Garcia-Vila
et al. 2012). However, the long-term water deficit, which is increasingly common
due to climate change, is limiting evapotranspiration and thorough reduced assimi-
lation of carbon negatively affect the growth of sunflower plants, and consequently
seed and oil yields (Demir et al. 2006; Ahmad et al. 2014). Although sunflower has
ability to withstand short periods of drought, the lack of water affects all develop-
ment phases of the sunflower. The most effective strategy for reducing the negative
effect of water scarcity in sunflower production is supplementary irrigation, espe-
cially in late vegetative period, flowering period and seed formation (Mahmoud and
Ahmed 2016; Xiao et al. 2007). Enhancing WUE of plants is probably the most
effective and the cheapest strategy to deal with negative effects of water deficit
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and climate change. This can be achieved through selection and creation of geno-
types with changes in morphology and other characteristics that will enhance WUE
(Rauf 2008). Mahmoud and Ahmed (2016) evaluated WUE in new sunflower geno-
types obtained from selling and induced mutation and results indicated that mutation
M2,1–63 surpassed other genotypes. Some authors suggest that selection for a higher
WUE can be achieved through indirect selection on isotope �13C content which is
of a great importance in sunflower breeding programs aimed at generating drought
tolerant genotypes (Lambrides et al. 2004; Canavar et al. 2014). Applying biotechno-
logical approaches in selection forWUEcan lead to amore effective and faster results
in breeding process. Water uptake and loss in plants is influenced by developmental
phase via environmental factors, there is a complex network of genes that regulates
root morphology and architecture, cuticle development, stomatal development, etc.
and strongly impact water use efficiency (WUE), and represent the best targets for
molecular breeding programs (Ruggiero et al. 2017).

3.3 Sources of Abiotic Stress Tolerance Genes

3.3.1 Wild Relatives as a Source of Abiotic Stress Tolerance

Greater diversity present inwild relatives allows adaptation to environmental changes
and challenges and thus preserve economic viability of cultivated sunflower. Genus
Helianthus is consisted of 39 perennial and 14 annual species that are invaluable
source of many useful traits (Seiler et al. 2017). The full exploitation of wild rela-
tives is hampered by the fact that genus Helianthus genus contain species of various
levels of ploidy. Implementation of specialized techniques such as embryo rescue
or tissue culture is required for obtaining interspecies hybrids and transfer of gene
of interest. Improvement of cytogenetic studies increased the success and enhanced
introduction of genes formany important traits as differences in the ploidy level cause
many difficulties such as cross incompatibility, embryo abortion, sterility, reduced
fertility, and dormancy in interspecific hybrids. Breeding for resistance is considered
to be the most effective and environmentally friendly practise for biotic and abiotic
stress control. The use of wild relatives of sunflower in breeding have enabled so far
to maintain the resilience and sustainability of the seed and oil yield of cultivated
sunflower and thus preserve economic viability. During domestication process, culti-
vated sunflower lost many of the traits from its wild progenitor, especially in seed
characteristics, plant architecture changes, changes in reproductive strategy and life
cycle shift (Radanović et al. 2018). Breeding for modern crops should include traits
that are lost during domestication process and selection for high yield, primarily
meant on adaptations to adverse environments (Palmgren et al. 2015). Sunflower
wild relatives represent valuable source for tolerance to different abiotic stresses
such as drought and nutrient stress tolerance found in H. anomalus (Seiler et al.
2006; Seiler 2007). Drought tolerant species are also H. argophyllus, H. mollis, H.
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deserticola, H. hirsutus, H. maximiliani, H. tuberosus etc. as presented in several
studies (Baldini and Vannozzi 1999; Škorić 2009; Vassilevska-Ivanova et al. 2014).
In the study of Welch and Rieseberg (2002) H. paradoxus was found to be five
times more salt tolerant than ancestral species H. annuus and H. petiolaris. High
adaptation of H. paradoxus to salinity is confirmed in several other studies (Chan-
dler and Jan 1984; Miller 1995; Edelist et al. 2009). Because of high adaptation
to desert and sandy areas H. anomalus Blake and H. deserticola Heiser are good
candidates for breeding for heat stress tolerance (Seiler 2012). Benefits of using wild
relatives is also the opportunity to study the physiological processes that are involved
in the survival mechanisms which may be useful for improvement of cultivated crops
grown under abiotic stress. This is outlined in study of Bowsher et al. (2016) who
tested the expectation that a desert-dwelling sunflower species, Helianthus niveus
ssp. tephrodes would exhibit root and leaf traits consistent with greater ability to
avoid drought than cultivated sunflower H. annuus in a usual garden environment.
The results from their study reveal that leaf pubescence from Helianthus niveus
ssp. tephrodes may give improvement in breeding for drought-prone, high radiation
environments. Evolutionary changes in sunflower cultivation in the last two decades
has been achieved through the introduction of aceto-hydroxy acid synthase (AHAS)
genes for herbicide tolerance from wild population of Helianthus annuus L (Sala
et al.2012c).

3.3.2 Local Populations, Open Pollinated Varieties

The importance of local populations and open pollinated varieties as a gene pool for
crop improvement is reflected in the fact that they are characterized with many valu-
able genes, especially those addressing higher adaptability to specific environmental
conditions and resistance to certain diseases. Sunflower breeding as an industrial
plant started in Russia, where farmers initiate selection of individual plants based
on phenotype characteristics. Thus, Russian farmers were among the first “sun-
flower breeders” in modern history as they were choosing individual plants based
on characteristics like head size, seed size and stay-green characteristic. Using the
method “mass selection”, a number of local varieties were created among which
well-known were Zelenka, Chernyanka, Puzanok and Fuksinka (Pustovoit 1967).
Using phenotypic selection Russian farmers created a large number of local cultivars
of which some had improved agronomic traits and resistance to important constrains
of sunflower production (Seiler and Jan 2010). Škorić (2016) reported that use of
sunflower landraces and varietiesmade some practical results in breeding for drought
tolerance. Open pollinated varieties created in Russia have been used as a base for
breeding programs around the world and with the introduction of hybrids in produc-
tion served as the source for development of a large number of lines. Even today in
some breeding Institutes in Russia, in a smaller part of assortment, offer varieties
tolerant to drought and other stresses like R-453 (Rodnik), Buzuluk, Umnik (https://
en.vniimk.ru/).

https://en.vniimk.ru/
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3.3.3 Inbred Lines Gene Pool for Abiotic Stress Tolerance

The great importance of genotypes created in different breeding canters is reflected
in diversity of environments of their origin and considering that sunflower breeding
canters exist all over the world, it is a really wide range of different environments.
These genetic stocks have certain limitations for their use, agreements are generally
required. They are made up of different types of synthetic populations and inbred
lines created over many years of breeding and using different tools for broadening
the variability such as inducedmutation, interspecific hybridization and new biotech-
nologymethods. Certainly, themost famous sunflower collection of public sunflower
inbred lines is USDA-ARS. Sunflower germplasm from USDA-ARS was and still is
distributed around the globe and served as the base breeding material for creation of
numerous B, A and Rf lines. Usually, germplasm from this centre is used in recur-
rent selection for introduction of many valuable genes (Seiler and Jan 2010; Terzić
et al. 2020). Using interspecific hybridization between cultivated H. annuus and H.
paradoxusMiller and Seiler (2003) released two salt-tolerant oilseed parental lines,
HA 429 and HA 430. Sunflower inbred lines having stay-green traits such as HA-48,
HA-22, CMS-1–50, PH-BC-2–91, PR-ST-3, RHA-SES and RHA-583 are suitable
for the development of drought-tolerant lines and hybrids (Škorić 2016).

Other important sunflower breeding canters which are necessary to mention
because of their considerable contribution to sunflower genetic resources especially
in breeding for resistance and tolerance to diseases and herbicides are Institute of
Field and Vegetable Crops from Novi Sad, Dobroudja Agricultural Institute from
General Toshevo, National Institute for Agricultural Research from Montpellier,
Instituto Nacional de Tecnología Agropecuaria from Pergamino, Institudo de Agri-
cultura Sostenible from Cordoba, Institute of Oilseed Crops from Zaporozhie and
well known Vavilov All-Russian Institute of Plant Genetic Resources from Saint
Peterburg.

3.3.4 Artificially Induced/Incorporated Traits/Genes

Generating new genetic variability, mutations are the primary source for alterations
of traits in living organisms. There is no difference in variability caused by spon-
taneous and induced mutations, except of higher rate of induced mutations. In
mutation breeding, different mutagenic agents are used in order to generate new
genetic variability with desirable traits, based on random genetic variations. Muta-
gens have potential to induce hereditary alterations in plant genome and thereby
enhance the frequency to obtain preferred individuals. Mutagenic agents have been
used in breeding by many authors but have generally been restricted to obtaining
dominant traits while recessive ones have largely been lost during selection (Barkley
and Wang 2008). Climate drift has increased the need for mutation breeding in
order to develop germplasm with increased resistance to abiotic stress. This includes



116 N. Hladni et al.

application of induced mutations in order to improve plant architecture, shift in life
cycle and resistance/tolerance to stresses. It is possible to enrich the genetic vari-
ability of cultivated sunflower using mutations (Cvejić et al. 2014). Many useful
traits in sunflower have been already developed with induced mutations by applying
physical and chemical mutagenic agents such as shorter vegetation, larger head and
increased 1000 seedweight, decreased plant height, resistance to rust and broomrape,
altered oil content and quality and tolerance to herbicides (Savin and Stepanenko
1968; Cvetkova 1970; Soldatov 1976; Lofgren and Ramaraje Urs 1982; Schuster
and Kubler 1983; LeClercq 1985; Osorio et al. 1995; Velasco et al. 1999; Sala et al.
2008a, b; Encheva et al. 2008; Encheva and Shindrova 2011 Mykhailenko et al.
2019). In mutation breeding it is very important to use an effective concentration of
a mutagen as the Mykhailiuk frequency and range of mutations is also determined
by adequate application (Mykhailenko et al. 2019).

3.4 Genetic Diversity Analysis

Compromises between both stress resistance and plant performance have been well
documented in natural anddomesticated germplasmalike (Kempel et al. 2011;Koziol
et al. 2012; Lind et al. 2013). They also represent the primary explanation for the
decline in resistance that has been reported in numerous crops compared to their wild
progenitors (Koziol et al. 2012). During the process of adaptive divergence, genomic
regions under selection can display strong differentiation. While the ongoing gene
flow between populations homogenizes other regions, thus generating heterogeneous
patterns of genomic divergence (Wu 2001; Nosil et al. 2009).

Future climate change and adaptation of cultivated sunflower to the new abiotic
environment require the use of knowledge of where wild germplasm are locally
adapted today (Mehrabi et al. 2019). It was established that sunflower often thrives
outside its canters of origin and wild diversity. Domesticated sunflower is cultivated
across wide areas of temperature and precipitation gradients that, on a global level,
seem to outstrip the narrow spread climatic space of wild relatives of sunflower
crop in their native range in Northern America (Khoury et al. 2016). Domestication
and sunflower breeding create population bottlenecks and eroded genetic diversity
(Tang and Knapp 2003; Harter et al. 2004; Liu and Burke 2006). However, a great
diversity of sunflowers andmigration has apparently partially counteracted the effects
of domestication and other diversity-reducing processes in modern oilseed sunflower
inbred lines (Cheres and Kanapp 1998).

Land races and OP varieties have numerous genetic variations. They are also
well-adapted to the local soil types and climatic conditions, in addition to other
environmental factors. They are the source of many desirable genes, most impor-
tantly the genes addressing higher adaptability to environmental conditions (Kaya
et al. 2015). Sunflower landraces contribute with diversity to the improvement of
high yielding oilseed and confectionary sunflower hybrids (Tan and Kaya 2019).
This genetic diversity and its characterization are particularly important for hybrid
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sunflower breeding. This is due to the fact that parental lines with the diverse origin
have a higher potential heterosis, compared to hybrids created from closely related
parents (Kaya 2016).

3.4.1 Phenotype-Based Diversity Analysis

Cultivated sunflower in most casses has limited genetic variability. This is especially
true for major agronomic traits (Zambelli and León 2015). Therefore the creation of
a new sunflower ideotype demands broadening of the sunflower genetic diversity and
it asks for an increased use of wild Helianthus species in breeding programs (Škorić
2012). Phenotypic diversity of the tested material is determined using distinctness,
uniformity, and stability (DUS) test guidelines (UPOV 2000).

There has been substantial progress when it comes to collecting and preserving
wild species, understanding the origin, domestication increasing the genetic diversity
and organization of the genetic diversity characterization and screening methods for
abiotic stresses in sunflower so far, only a small portion of the available diversity has
been exploited (Seiler 2012; Seiler et al. 2017). Modern crops should be developed
with properties once possessed by their CWR (crop wild relatives) in order to tolerate
adverse environmental conditions that were inadvertently lost during selecting for
high yield (Palmgren et al. 2015). This is why, knowledge of distinct habitats and
adaptations ofwild species can be helpful in identifying potential sources of tolerance
genes in ecotypes which are able to survive in areas with abiotic challenges (Seiler
et al. 2017). SunflowerCWRcontain significant variabilitywhen it comes to tolerance
to abiotic stresses which include drought, salinity, heat, flooding, low nutrient, and
heavy metal tolerance (Ortiz 2015).

For the germplasm collections to be used more efficiently and effectively, it is
important to characterize the diversity of the germplasm (An -delković et al. 2020;
Terzić et al. 2020). The most common technique used in the estimation of the genetic
diversity of the crops is based on both pedigree records and phenotypic trait obser-
vation. Traditionally, morphological traits are used for individual evaluations of both
the uniformity and stability of the genotype. by Coque et al. (2008) andMandel et al.
(2011) have exhaustively addressed the genetic diversity and population structure of
North American and European resources. Terzić et al. (2019) confirmed the UGA-
SAM1 as an important resource when it comes to sunflower research. The highest
phenotypic diversity was found in the less developed group, followed by non-oil
genotypes that have been developed from less intensive selection compared with
oil lines and more so when compared with the RHA-O group, which had demon-
strated the lowest diversity. What was interesting is that the RHA-O group had the
highest diversity for specific traits including days to maturity, which was the result
of optimization of HA lines for pollination and less intensive exclusion of early
genotypes due to lower yields. Hladni et al. (2017) used the Shannon (H) diversity
index in order to evaluate the variability of 68 confectionary sunflower genotypes
based on 32 morphological descriptors. The high diversity index value (0.7) signifies
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that the material evaluated is representative as a confectionary sunflower germplasm
collection. HOMALS analysis, demonstrates the value of descriptor selection for
germplasm evaluation. Based on the HOMALS analysis, the most instructive traits
were coloration of stigma DFIA, seed colour of stripes SCS and seed main colour
SMC which had the highest variability. It also had the highest discriminative power
among genotypes. Isolated genotypes that may not be represented by yield or seed-
specific traits can be useful sources of traits used in breeding. If the confirmed
diversity of the studied material is taken into consideration, it is safe to assume that
it possesses a good potential when it comes to long-term use for adaptability of
confectionery sunflower abiotic stresses tolerance.

The efficiency of breeding programs can be improved by adequate selection of
traits used in germplasm evaluation. While the loss of variability can be lowered if
diversity focused traits were used. This includes leaf, seed, and certain flower traits,
instead of only focusing on yield and quality (Terzić et al. 2019). Finding the most
productive sunflower hybrid for specific environmental conditions is possible via
testing in different environments, if we take into consideration that the genotype is
fixed while the environment shows variation through years and locations. Reliable
estimation of the extent to which genotype by environment interaction (GEI) affects
a trait of interest is an important determinant for the evaluation and selection of
genotypes, especially for target regions. For obtaining reliable information regarding
the GEI effect, it is necessary to organize a multi-environment trial (Jocković et al.
2019).

3.4.2 Genotype-Based Diversity Analysis Based on Molecular
Marker Studies

Implementation of the molecular biology techniques in plant breeding is of excep-
tional value. It is more profitable for plant breeder as it facilitates breeding strate-
gies and ensures exact and quick results (Duca 2008). Molecular markers provide
an effective means for characterizing genetic variability and establishing phyloge-
netic relationships among cultivated and wild Helianthus species. Markers linked
with both qualitative and quantitative traits and genes should make marker-assisted
selection (MAS) easier. Eventually leading to cloning and manipulation of desirable
genes. When it comes to understanding the origin, domestication, and organization
of the genetic diversity, characterization, and screening methods for abiotic stresses
significant advances have been made (Seiler and Jan 2010).

For sunflower, simple sequence repeats (SSR) markers have been developed. In
addition, they have been used in one study to characterize the genetic diversity
among 16 elite inbred lines, and in another study among 19 elite inbred lines and
28 domestic and wild germplasm accessions, this also included Native American
landraces (Paniego et al. 2002; Tang and Knapp 2003). “Target region amplifica-
tion polymorphism” (TRAP), a new marker technique, has been developed by Tang
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and Hu and Vick (2003). It uses bioinformatics tools and expresses sequence tag
(EST) database information to generate polymorphic markers around targeted gene
sequences. To investigate the loss of genetic diversity associated with artificial selec-
tion, 266 accessions of H. annuus were analysed, including 239 cultivated acces-
sions used for GWA analyses, as well as 27 wild accessions spanning the geographic
range ofH. annuus in North America. (Hubner et al. 2019). The nucleotide diversity
parameter (p) (Nei 1987) was calculated on a per-site basis. Determine the nucleotide
diversity of each gene, the average p value was calculated across all single nucleotide
polymorphisms (SNPs) within the same gene. For the wild and cultivated accessions
these calculationswere performed separately. The reduction in genetic diversity asso-
ciated with artificial selection was estimated by the ratio of diversity values in wild
sunflowers to those in cultivars (pwild/p cultivated) (Gao et al. 2019). The largest and
most comprehensive analysis of genetic diversity, population structure and linkage
disequilibrium for cultivated sunflower conducted to date INTA, INRA and USDA-
UBC. The genotyping strategy that was used combined proprietary ddRADseq with
public WGS data to with the goal of obtaining an integrative SNP-matrix. It also
included individuals from different breeding programs. In this regard, gene banks
and CWR collections hold a substantial amount of genetic diversity for many agro-
nomically important traits that are available to be exploited to expand the breeding
genetic base. As well as to deal with the changing environmental challenges for the
crop (Filipi et al. 2020).

In this day and age, the increased availability of SNP markers, along with their
more rapid and highly automated genotyping technologies, have been the driving
force that has inspired their use in diversity studies and the evaluation of population
structure (Mandel et al. 2013; Cadic et al. 2013). Ecological selection can be both
quite complex and environmentally dependent. In addition, it can act in different
genomic regions at different life history stages. Ćalić et al. (2016) have been able to
identify a set of nearly 500 K high-quality SNPs from whole-genome shotgun re-
sequencing data. They werea also able to use this data, along with a custom GWAS
pipeline, to investigate the genetic basis of abiotic stress responses in sunflower.
Goebl et al. (2020) have studied how populations adapt to new habitats. From how
small populations persist despite ongoing gene flow to the conservation of diversity.
What they discovered is that themaintenance of divergent adaptation in this system is
mediated via habitat and life stage-specific selection how that alters allele frequen-
cies. The possibility to observe allele frequency shifts during early life stages at
specific loci is particularly important for selection (Huang et al. 2020; Todesco et al.
2020). Filipi et al. (2015) stated in their first report that comparing the performance
of SSR and SNP markers for population genetics analysis in cultivated sunflower
showed that both the SSR and SNP panels used are equally appropriate for estimating
genetic diversity and population structure in sunflower association mapping popula-
tion. The levels of diversity and population structure of these inbred lines provide us
with generated knowledge which is an important contribution to sunflower breeding
and conservation. It also serves to complete theworldwide diversitymap of cultivated
sunflower.
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The primary gene pool that occurs in extreme environments indicates that utiliza-
tion of wildH. annuus for the breeding of abiotic stress tolerance is likely to produce
quick gains with minimal effort. Especially when using a combination of gap anal-
ysis, environmental nichemodelling, and phylogenetic approaches. The combination
of techniques demonstrates the potential for publicly available ecogeographic and
phylogenetic data that can further facilitate identification of potential sources of
abiotic stress traits in plant breeding programs (Kantar et al. 2015). Hladni et al.
(2018a) reported a similar result where the combination of the PCA of morpholog-
ical data, PCoA of molecular marker data and GD between parental lines is fast and
affordable. But more importantly, at the same time it provides crucial information for
parental choice. Knowledge of the complex response of the plant to the abiotic stress
requires avoidance of the single gene analysis and advancing in the genome informa-
tion of the sunflower (Mianlengeh et al. 2018). Studies of theHelianthus species will
be highly relevant for research concerning characters for which they are the only
source and for understanding evolution and adaptation of the Helianthus genome
(Terzić et al. 2020). It is important to note that there has not yet been a comprehen-
sive analysis of the genetic diversity and allelic variants currently being used across
international breeding programs. Performing these types of studies is a critical step
towards a better understanding of the genetic base of current sunflower breeding
worldwide (Seiler et al. 2017). It is necessary to apply an integrated multidisci-
plinary approach based on plant genetics and genomics, physiology, and modelling
(Sala et al.2012a, b, c). The combined use of pheno- and genotyping can also be
considered the future of UPOV DUS test. In this usage genetic distances translated
to UPOV characteristics are proposed as an addition to existing phenotype traits
(Terzić et al. 2019).

3.5 Classical Genetics and Traditional Breeding for Abiotic
Stress Tolerance

The cultivated sunflower has a long history beginning with the Native American
Indians’ domestication as early as 3000BCdeveloping a tall single-headed plant type
for oil extraction, dye, andmedicinal use. During the 1500 s, sunflower was primarily
used as forage for livestock and poultry in Europe as well as in the Americans after
it was introduction to the US in the 1920s to 1940s. The first revolutionary change
in sunflower was its establishment as an oilseed crop in the 1950s with an intensive
breeding effort to produce high oilseed sunflower. Soon after, the second revolution
was the conversion of sunflower to a hybrid crop utilizing hybrid vigour via the
use of cytoplasmic male-sterility and fertility restoration gene quickly establishing
sunflower as one of the major oilseeds crops worldwide (Seiler et al. 2017).

During the past 70 years, the modern-day high oilseed sunflower has benefitted
from the advancement of breeding for all the aspects of agronomic characteristics,
diseases resistance, and quality, but the pace of improvement has plateaued due
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to its narrow genetic base. The value of the large genetic resources of the wild
Helianthus species has been recognized with their utilization through interspecific
gene transfer contributing new genes for agronomic and quality characteristics, as
well as biotic and abiotic environmental stresses (Terzić et al. 2020). Due to the
narrow genetic base of cultivated sunflower and the utilization of the wildHelianthus
species, significant progress has occurred in recent years increasing resistance to
diseases, insects, broomrape, oil and oil quality, and abiotic stress including salt,
herbicide, and drought tolerance. The wildHelianthus species are widely distributed
in North America, from northern Mexico to southern Canada, from the Pacific to the
Atlantic Ocean, and in highmountains to 2600m, in alkaline, salty, dry and wet soils,
each with specific adaptation features enduring their natural and often extreme and
hostile habitats (Rogers et al. 1982). Their survivalmechanisms to the extreme abiotic
stress should be among the high priorities of any sunflower breeder’s future planning
for improving stress tolerance in cultivated sunflower. Previous reviews of sunflower
response to abiotic stresses (Škorić 2009, 2016), sunflower and climate changes
(Debaeke et al. 2017; Miladinović et al. 2019), and wild and cultivated sunflower
genetic resources (Terzić et al. 2020) have paved the way for this discussion.

3.5.1 Root Characters

In the past decades, breeders were mostly occupied with improvements of above-
ground parts of sunflower plant neglecting one of perhaps the most important parts of
the plant for its ability to adapt to different environmental conditions. Because of that,
it is necessary to focus future breeding efforts on improvement root traits, as well,
in order to minimize the effect of stressful conditions on plant development. These
efforts could be facilitated by novel phenotyping platforms for non-invasive root
analysis, that enable efficient characterization of root architecture and investigation
of the developmental dynamics and root growth (Radanović et al. 2018).

Kaya (2016) stated that in sunflower, drought tolerant genotypes should be
attributed with powerful roots in order to increase water uptake from the soil. Culti-
vated sunflower has the potential to trap soil moisture reserves that are inaccessible
to many other crops and root traits. This includes root length and diameter, root
length density, root volume, fresh and dry root weight. Along with total dry matter
are significant indicator of sunflower root drought tolerance (Song et al. 1999; Rauf
2008; Comas et al. 2013). However, there is a lack of useful data regarding both the
morphological and the physiological root parameters that can be useful in sunflower
breeding. This is due to the fact that it requires the knowledge about root traits and
their effect on sunflower productivity while it is known that depth-efficient roots for
more water uptake are one of indicators of physiological drought tolerance (Comas
et al. 2013; Kaya 2016). Ongoing climate drift in recent years motivated scien-
tists for thorough evaluation of plant performance under stress conditions including
detailed physiological studies as well as genomic analyses with special attention that
has been given to evaluate relationship between root-related traits and performance
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under water limitation (Mitchell et al. 2013; Mickelbart et al. 2015; Kusmec et al.
2017; Scoffoni et al. 2017a, b; Li et al. 2018). Results from several studies gave
clearer picture about transformations in root morphology under water deficit and it
has been noticed that plants often increase the distribution of root biomass and change
root morphology under water restriction (Pace et al. 1999; Uga et al. 2011; Tardieu
2012; Comas et al. 2013). Rauf et al. (2009) evaluated sunflower root characteristics
under different water regimes and results indicated that drought had repressive effect
on root weight and shoot length while elevate effect on root length and root-to-shoot
ratio.

Biotechnological tools increased the progress in identification of the genetic basis
of root traits variations in sunflower. Quantitative trait loci (QTL) associated with
increased root foraging, root length, root biomass, lateral root length, and root angle
have been identified (MacMillan et al. 2006; Courtois et al. 2009; Ruta et al. 2010;
Uga et al. 2011, 2013; Mace et al. 2012; Christopher et al. 2013; El-Soda et al. 2014;
Gao and Lynch 2016). Using genome wide association (GWA) study Masalia et al.
(2018) measured several root and growth traits in sunflower in well-watered and
water limited environments and identified 13 genomic regions that were associated
with the traits of interest across the two environments. The authors found that water
limitation reduced seedling size and produced a shift toward deeper rooting and
also discovered evidence of pleiotropy across multiple traits, as well as numerous
environmentally independent genetic effects. They also suggested that the majority
of alleles associated with these traits have consistent effects across environments.

3.5.2 Heat and Cold Tolerance

Highheat duringflowering and seed-filling stages negatively impacts fertilization and
can drastically reduce seed yield. Temperature above 31 °C at anthesis significantly
reduces yield because of its negative effects on pollen production and fertilization
(Chimenti and Hall 2001). Chimenti et al. (2001) also indicated that the embryo
growth continued to decrease with the increase of temperature from 25 to 40 °C.
Unfortunately, extremely limited work targeting the genetics and breeding of heat
tolerance has been conducted. However, the use of wildH. argophyllus (Tavoljansky
et al. 2004; Warburton et al. 2017) was suggested for heat tolerance utilizing its
silvery hairy leaves to reflects sun lights to reduce the leaf temperature and thus
reduce transpiration. Seiler (2012) also suggested to use wild Helianthus species H.
anomalus, H. deserticola, H. nuttallii Torrey and Gray, and H. petiolaris for heat
tolerance.

Cold tolerance in sunflower would safeguard the crop from early planting prob-
lems related to seed germination, and seedling survival, and would be favourable for
stable flowering and seed filling for plants growing in relatively colder environment.
WildHelianthus species growing in the far northern latitudes of their distribution and
at high mountain elevations are expected to possess genes tolerant to the extreme
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cold that should be considered for cold tolerance breeding (Škorić 2009). Candi-
date species could include H. petiolaris, H nuttallii, H. arizonensis, H. ciliaris, H.
cusickii, H. pumilus, H. maximiliani Schrader, and H. pauciflorus (rigidus) (Cass.)
Desf. Tetreault et al. (2016) compare the cold acclimation capacity and freezing
tolerance of high cold tolerance of wild H. maximiliani from Manitoba, Canada to
this species from Texas and Kansas. Similarly, only selected northern H. tuberosus
L. andH. maximiliani selection locally adapted to survive the harsh winters in Fargo,
ND, USA survived, while the others less adapted ones were quickly eliminated from
a perennial test plot (Seiler, personal communication). Of course, the mechanization
of cold tolerance of candidate accession(s) should always be examined before any
attempt to transfer genes begins.

The results of obtaining cold tolerant genotypes among chemicallymutated proge-
nies (Kalaydzhyan et al. 2007, 2009) cited by Škorić (2016) are exceptionally encour-
aging. The selected progenies planted in late fall/early winter survived the harsh
winter and low temperature to −20 °C in the field. These should be an excellent
germplasm source for all the sunflower breeders looking for high cold tolerance.

3.5.3 Drought Tolerance

Drought is the most important abiotic stress negatively affecting the sunflower
crop globally. Unfavorable seasonal variations of available precipitation continue
to threaten its cultivation in drought-prone marginal areas. Sunflower genotypes
having the ability to survive water deficits with a deep rooting system and the use
of water conservation mechanisms that can resume normal growth afterwards are in
high demand, especially when growing in less desirable marginal lands.

According to Škorić (2016), drought tolerance characteristics appeared to be
related to deep rooting, more efficient water uptake, high osmotic pressure toler-
ance, low transpiration ratio, and the ability to recover after wilting under heat stress.
Parameters useful for drought tolerance selection have been evaluated, including
high osmotic adjustment (Chimenti et al. 2004), high self-fertility (Andre 2004),
hypocotyl and leaf growth (Sato et al. 2012), root/shoot ratio in early vegetative
growing stage (Petcu et al. 2008), and stay-green trait (Škorić 1992). Recently,
Umar and Siddiqui (2018) used chlorophyll fluorescence and stomatal conductance,
photosynthetic pigments, leaf water status, osmotic potential, hydrogen peroxide
(H2O2) content, proline content, and enzyme analyses to distinguish susceptible and
tolerant genotypes. Due to the complexity of the drought tolerance manifestation and
the large number of morphological and physiological characteristics involved, the
selection of parameters used in individual genetic and breeding studies often relies
on the contrasting characteristics of the parents involved. A “stay-green” trait has
been specifically mentioned by Škorić (2016) for its relatedness to drought toler-
ance, earlier confirmed by Vrânceanu (2000) as an effective criterion for selection of
drought tolerance in sunflower. Drought tolerance line with stay-green characteristic



124 N. Hladni et al.

have been shown to have increased RuBisCo proteins, therefore higher photosyn-
thesis, and higher quantum yield of photosynthesis in the leaves, supporting the use
of stay-green trait for drought tolerance selection.

The wild annual H. argophyllus Torrey & Gray found in sandy beaches of Texas
and Florida, with an annual rainfall of 50–100 cm, has been extensively used for
sunflower drought tolerance. The drought tolerance mechanisms of H. argophyllus
were compared with four susceptible cultivated lines in the greenhouse with varying
irrigation regimes (Baldini et al. 1993). Under drought conditions, H. argophyllus
was shown to have higher photosynthetic rates, higher transpiration efficiency, and
less leaf area reduction. The greater water content of leaves helped maintain greater
photosynthetic activity,which led to a greater dehydration avoidance capability due to
its well-developed root system enabling improved water uptake. Similar field experi-
ments conducted byMartin et al. (1992) also indicated thatH. argophyllus had a lower
transpiration, amore efficient stomatal control and osmotic adjustment, and the bene-
fits of a denser root system.Divergent selection based on physiological parameters for
drought tolerance on F1, F2 and F3 progenies of a cross between a cultivated line and
H. argophyllus has been proven effective (Baldini and Vannozzi 1998,1999), with a
high level of drought tolerance and yield potential combined in improved sunflower
cultivars. This efficiency is likely to rely on the ability of breeder’s selection of
adequate parameters with respect to individual cross combinations.

Even though the cultivated sunflower is highly susceptible to drought, the natural
habitats of its wild relatives often grow in exceedingly dry, sandy, or rocky soils with
annual precipitation ranging from <12 to 65 cm (Rogers et al. 1982). These species
should be the considered and evaluated in the future search of drought tolerance.
The species worth looking at are as follows with the annual precipitation in cm
in parenthesis: H. anomalus Blake (25–50); H. arizonensis R. Jackson (25–50);
H. cusickii A. Gray (25–60); H. deserticola Heiser (12–25); H. exilis Gray (50); H.
gracilentusA.Gray (25–50);H. laciniatusA.Gray (25–60);H. neglectusHeiser (25–
50);H. niveus (Benth.) Brandegee ssp. canescensHeiser (12–50);H. niveus (Benth.)
Brandegee ssp. niveus (Benth.) Brandegee (12); H. niveus (Benth.) Brandegee ssp.
tephrodes (Gray) Heiser (<12);H. praecox Engleman&Gray ssp. hirtusHeiser (50);
and H. pumilus Nutt. (25–60).

3.5.4 Salinity Tolerance

Salinity is considered the secondmost important abiotic stress to crops after drought,
defined as mineral deficiency or excess amount of soluble salts surrounding the root
zone (Singh 2004b). As sunflower expands into marginal lands in many countries,
tolerance to salinity has become essential and among the top priorities of breeding
programs. Despite its importance, unfortunately, only limited work on sunflower
salt tolerance has been reported thus far. Chandler and Jan (1984) evaluated wild H.
paradoxusHeiser,H. debilisNutt. AndH. annuus accessions known to grow in salty
areas using hydroponic tanks with varying NaCl concentrations. In the experiment,
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cultivated sunflower line HA 89 and H. debilis wilted at the concentration of 240–
400 mM, while the wild H. annuus and H. paradoxus survived at 800–1300 mM. It
was also shown that the salt tolerance of the H. paradoxus was controlled by domi-
nant genes since the hybrids betweenH. paradoxus and cultivated sunflower were as
resistant as H. paradoxus. Following the initial discovery of the H. paradoxus resis-
tance, resistance was successfully transferred into cultivated lines and germplasms
released (Miller 1995; Miller and Seiler, 2003). Miller (1995) crossed susceptible
cultivated line HA 821 with three salt tolerantH. paradoxus accessions, and grew F1,
F2 and testcross BC1F1 progenies in pots in the greenhouse and irrigatedwith varying
concentrations of NaCl. His results suggested onemajor gene Sa1 controlled seedling
tolerance, and a recessive modifier gene also seemed to affect seedling tolerance.

Since H. paradoxus is mostly sub-irrigated in low places with water having
12,000–14,000 ppmNaCl concentration, its exceptional salt resistance was expected
(Rogers et al. 1982). Studies of H. paradoxus in alkaline soil in the field or in
the greenhouse with varying concentrations of soil minerals in irrigation water will
further clarify its usefulness helping to sustain sunflower production in poormarginal
lands. Meanwhile, in order to further enrich the salt tolerance of sunflower, wild
Helianthus collections from areas of known alkaline soil should be the first choice
for evaluation. This group includes H. ciliaris DC., H. salicifolius Dietr, and H.
laciniatus. In addition, species from dry and rocky soils should also be considered
if resources allow. This group includes species as H. laevigatus Torrey and Gray, H.
smithii Heiser, H. eggertii Small, H. californicusDC., and H. gracilentus.

3.5.5 Herbicide Tolerance

For cultivated sunflower, effective herbicide use will not only help control weeds, but
also offer the added benefit of controlling broomrape (Orobanche cumana Wallr.),
a parasitic weed causing severe economic crop losses if not controlled. Broomrape
resistance breeding has been under extreme pressure trying to keep pace with the
rapid race shifts in the last 20 years in major sunflower production regions of the
world. Herbicide resistant sunflower hybrids could offer an alternative, as well as
an additional option to the use of race-specific broomrape resistant hybrids. The
advantage of using an herbicide that it is non-race-specific can extend its effectiveness
for a much longer period of time than the use of race-specific-resistance genes until
broomrape emerges with genes resistant to the particular herbicide.

Sunflower breeders have successfully identified herbicide resistance genes
from wild H. annuus L. and through chemical induced mutation with resistance
to the widely used ALS-inhibiting herbicides, including the imidazolinone and
sulfonylurea herbicide. Their mode of action and resistance have been evaluated and
incorporated into cultivated lines. The first source of imidazolinone and sulfony-
lurea herbicide resistance was found from the surviving wild H. annuus plants in a
soybean field after seven consecutive years of imazethapyr treatment for controlling
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weeds. This source was quickly transferred into cultivated background by Miller
and Al-khatib (2000), Alonso et al. (1998), and Al-Khatib and Miller (2000). The
imazethapyr used by Alonso et al. (1998) also provided 100% control of broomrape.

The resistance to imidazolinone herbicides involves two genes, a semidominant
Imr1 and a modifier gene Imr2, with complete resistance achieved only when a line
or a hybrid is homozygous with both genes, Imr1 Imr2 (Miller 1995). A different
source of IMI resistance was obtained through EMS treatment was reported by
Sala et al. (2008a, b), and the gene CLHA-PLUS was shown to have a higher
degree of IMI resistance than that of the wild H. annuus source. The BASF’s
IMI-resistant hybrids, CLEARFIELD®

, has since gained wide acceptance by the
sunflower breeding communities especially in areas of heavy broomrape infesta-
tions. Similarly, the SU-group of herbicide resistance was also identified in the same
wild H. annuus population possessing IMI resistance, as well as from mutagenesis.
Because of the partial dominance of the resistance genes, more effort is needed to
incorporate them into the hybrids slowing their acceptance compared to the more
popular IMI chemistries of CLEARFIELD®.

The herbicide resistance in sunflower presents a good example of utilizing induced
mutation as well as the wild Helianthus species. In addition, an abundance of herbi-
cide tolerance genes in wild Helianthus species has been demonstrated. Olson et al.
(2004) found imazamox and tribenuron tolerance genes after evaluating 46 popula-
tions of wildH. annuus andH. petiolarisNutt. Miller and Seiler (2005) also reported
the discovery of tribenuron resistance genes in collections of wildH. annuus popula-
tions from Canada. It is likely that wild Helianthus species will continue to provide
future herbicide tolerance geneswhen newherbicides are developed for the sunflower
crop.However, the heavyuseof herbicide tolerant sunflower on large scale production
is also likely to accelerate the flow of tolerance genes into nearby cross-compatible
wild annual Helianthus species, with the herbicide application acting to select for
surviving tolerant individuals and quickly increasing tolerance gene frequency in
those population making their control impossible. This reverse gene flow should be
kept to a minimum and closely monitored.

3.5.6 Traditional Breeding Methods

Tolerance to abiotic stress is usually controlled and affected by multiple, interacting
mechanisms and because of the complexity and insufficient research it is espe-
cially difficult to breed for. With the use of conventional breeding plant genome is
manipulated using conservative breeding tools within natural limitations (Acquaah
2015). Conventional breeding has been used in sunflower for successful develop-
ment of cultivars (varieties and hybrids) for varieties of eco-environments, adapted
to different types of abiotic stress. Selection of the appropriate breeding method
firstly depends on genetic background of inherited trait, whether is qualitative or
quantitative. Most of the abiotic stress related traits in sunflower are quantitative and
controlled by several genes (Table 3.2).
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Traditional breeding methods, such as recurrent selection, are widely used in
sunflower for the development of improved genotypes resistant and tolerant to
different limiting factors in production. Backcross method was commonly used
strategy for introducing disease resistance into high yielding inbred lines of sunflower
(Jocić et al. 2015). The conventional breeding procedures use hybridization and
phenotype-based selection that are later followed by selection of promising breeding
lines through yield evaluation trials (Janila et al. 2016). Main goal in sunflower
breeding program is development of hybrids with high oil productivity, via seed
yield. In order to achieve high productivity sunflower hybrids should be adaptable
to different environments and resistant/tolerant to many biotic and abiotic limita-
tions. Bearing this in mind, sunflower development as an industrial crop has under-
gone three different breeding methods known as mass selection, individual selection
and development of hybrids (Jocić et al. 2015). Mass selection was firstly used in
sunflower breeding for development of number of varieties with improved seed yield,
oil content and resistant for different pests (Pustovoit 1967). Individual selection or
“modified recurrent selection” called seed reserve Pustovoit used for improving the
oil content in the first half of twentieth century and it is still found to be an effective
breeding method in selection for high oil content. After the discovery of cytoplasmic
male sterility (CMS) in interspecific hybrid H. annuus x H. petiolaris by French
scientist Leclercq (1969) and use of fertility restorer genes (Kinman 1970) it made
revolutionary changes in sunflower production as it was possible to grow hybrids.
Exploitation of heterotic potential in hybrids includes the creation of inbred lines
and testing the general and specific combining abilities in order to develop supe-
rior hybrids. By crossing of maternal inbred lines possessing CMS, and paternal
inbred lines possessing fertility-restoring genes sunflower hybrids are developed
(Kaya et al. 2012). Hybrids achieve seed yields 25–30% higher than cultivars. Hybrid
breeding allows combination of resistance and tolerance from different inbred lines
which gives durable resistance/tolerance to a certain constraint. According to Škorić
(2016) main abiotic factors in sunflower production are drought, mineral toxici-
ties/deficiencies, and frost. Occupying the first position as the most unfavorable
abiotic stress, drought is widespread on over one third of the soils worldwide (Škorić
2016). Because of complexity and polygenic nature of abiotic stress for implemen-
tation of appropriate breeding method it is necessary to choose adequate strategy.
Regarding drought stress, there are numerous strategies utilized in breeding such
as induction of earliness for drought escape, modification of certain plant traits that
leads toward drought resistance and introduction of drought tolerant traits associated
with high yield (Rauf 2008).

3.5.7 Use of Morphological Markers

Morphological markers have been utilized in plant breeding a long time ago. They
served to plant breeders as a tool to evaluate variability and visually distinguish
qualities like plant architecture, seed structure, flower colour, growth habit and
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other important agronomic traits. They are used in traditional breeding as they do
not require specific instruments, facilities or qualified technicians. Morphological
markers have been successfully used by breeders of various crops and they also play
an important role in the management and maintenance of Plant Genetic Resources
(PGR), as well as in Plant Breeders’ Rights (PBR) system (Babić et al. 2016; Nadeem
et al. 2018). They can be used for design of desirable genotype by combination of
favorable genes which are identified based on inheritance of the gene in relation to
morphological indicators of a particular trait (Kutcher et al. 1996). They are also
very important as they have been associated with a number of quantitative traits in
determination of the agronomic value and also in taxonomic classification (Jin et al.
1993; Ortiz et al. 2008). Russian farmers were among the first “sunflower breeders
“in modern history as they were choosing individual plants based on morpholog-
ical characteristics like head size, seed size and stay-green characteristic. One of the
most significant morphological markers to determine drought tolerant genotypes in
sunflower is stay green trait (Škorić 2012, 2016). The use of stay green criteria is also
connectedwith resistance toMacrophomina and simultaneously selected inbred lines
also showed resistance to Phomopsis (Vrânceanu et al. 1992; Škorić 2016). Special
attention when using stay green trait should be focused on selection on genotypes
with high percent of self-fertility.

Main disadvantages ofmorphologicalmarkers are unknownmechanismof genetic
control and they are also limited in number as it depends on the plant growth phase
which is also largely influenced by environmental conditions (Eagles et al. 2001;
Babić et al. 2016). Morphological markers are often considered unreliable indicators
reflected through low level of polymorphism, lowheritability, late expression, limited
discriminative power and potential to measure relatedness and genetic similarity
(Babić et al. 2016).

3.5.8 Use of Molecular Markers

Sunflower breeding for new varieties better adapted to abiotic stresses based on the
traditional methods and technologies takes time, money and human effort, though
their efficiency is often low (Duca 2008; Debaeke et al. 2017). Molecular markers
played a major role in acceleration of that process and identification and introduction
of abiotic stress relate genes into elite germplasm (Miladinović et al. 2019). Conse-
quently, molecular markers can be used as valuable tool for identification of parental
lines and combinations (Suresha et al. 2017).

Abiotic stress tolerance in sunflower is mostly controlled by several genes, hence
breeders need to put a lot of effort in identification and validation of tolerance QTLs
that could be used in MAS. Most of the studies deal with drought tolerance related
traits. The first study on the identification of drought tolerance QTLs was published
by Jamaux et al. (1997), who mapped QTLs by random amplified polymorphic DNA
(RAPD), random fragment length polymorphism (RFLP) and sequence-tagged site
(STS) bulked analysis. Herve et al. (2001) mapped 19 QTLs associated with water
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status by use of amplified fragment length polymorphism (AFLP) markers. Detected
QTLs described between 8.8 and 62.9% of the phenotypic variance of each examined
trait. In addition to QTLmapping, Kiani et al. (2007a) performed expression analysis
in determining drought tolerance. Several QTLs were associated with the expression
of water status traits and net photosynthesis rate. The same authors Kiani et al.
(2007b) analysed agronomical and yield parameters in two water stress conditions
in greenhouse and the field and recommended marker from Chap. 14, ORS391, in
combination with a marker that is the closest to the common QTL for plant status
and osmotic adjustment, ORS523-1, for pyramiding of QTLs that are associated
with yield and drought tolerance (Kiani et al. 2009). In their research, Abdi et al.
(2012) used SNP-based cleaved amplified polymorphic sequence (CAPS) markers
and identified regions that carry colocalized QTLs for several drought tolerance
related traits on Chaps. 5, 10, 14 and 17, concluding that markers associated to
these detected QTLs could be a valuable tool in marker-assisted breeding. Adiredjo
et al. (2014) identified QTLs associated with water use efficiency and carbon isotope
discrimination in sunflower leaves and identified the most promising regions for
MAS on Chaps. 6 and 13 that carried QTLs associated to examined traits, of which
carbon isotope discrimination was found to be as the most important one and in high
negative correlation with WUE.

One of the rare molecular studies of sunflower reaction to low temperature
was done by Allinne et al. (2009). The authors detected several putative genomic
regions involved in the variation of sunflower physiological traits under low temper-
ature. They recommended the major QTLs for cold tolerance associated with SSR
markers, such as ORS331-2, for the cell membrane stability, to be checked in several
environments to see if they can be used in marker-assisted selection programs.
Since sunflower adaptation to individual and combined stress is imparted through a
complex, yet to be fully understoodmechanisms,meta-analysis could be a useful tool
for study of molecular mechanism behind multiple individual stress and combined
stress tolerance in sunflower (Shaik and Ramaskrishna 2013). Under combined or
multiple stresses, the meta-analysis can also be used for identification of candidate
genes for multiple and combined stress tolerance (Ramu et al. 2016).

3.6 Limitations of Traditional Breeding and Prospects
of Genomic Designing

Publishing of sunflower genome sequence provided the foundation for exploitation
of genetic diversity and wider use of genomic and other—omics tools in sunflower
breeding (Badouin et al. 2017). Furthermore, recent breakthroughs in genome editing
(GE) technologies have opened a new era in plant breeding and paved the way for
introduction of precision breeding in sunflower breeding programmes, by providing
more precise and efficient tools to increase sunflower abiotic stress resilience by
means of trait engineering (Miladinović et al. 2021).
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3.6.1 Integration of—Omics Technologies

Sunflower is considered tolerant to abiotic stress, hence there are not genomics
studies related to its reaction to abiotic stress, since most of the papers are focused
on biotic stress resistance and improved quality. Several studies dealt with tran-
scriptomics of sunflower response to different abiotic stresses. In the most recent
study, Gody et al. (2020) provided transcriptomic data of sunflower leaves subjected
to water deficit, that differentiated both plant water status and the different geno-
types. Ramu et al. (2016) studied combined response of sunflower plants to different
stresses using meta-analysis of publicly available transcriptome data. The authors
found that menadione-based screening can be used for identification both of geno-
types tolerant to different biotic and abiotic stresses, and the genotypes tolerant to
combined stresses. In their work, Balliau et al. (2021) studied proteomic response of
sunflower plants to water deficit. They have identified 3062 proteins and the quan-
tified 1211 of them in the leaves of the 24 sunflower genotypes grown under two
watering regimes, hence producing data that could be of use in the study of the
effects of genotype and watering conditions on sunflower proteome. A combination
of targeted and untargeted metabolomic analyses on water-stressed and fully irri-
gated sunflower leaf samples was used for characterization of metabolic markers for
discriminating sunflower genotypes and environmental conditions (Fernandez et al.
2019). The results obtained indicated that only limited number of metabolic markers
can clearly differentiate samples under different stresses in a more discriminant
manner than classical physiological data used to discriminate individuals subjected
to water stress.

Immense progress made in the field of—omics have opened new paths to under-
stand and study the mechanisms of abiotic stress tolerance in plants (Ozturk Gokce
et al. 2020). Since using only one—omics approach is not sufficient to develop novel
abiotic stress resistant crop varieties, efficient combination of different -omic tools
and techniques looks like a promising strategy (Chaudhary et al. 2019). The same
stands for sunflower, where the integration of various—omics approaches is a prereq-
uisite for elucidation of the complex abiotic stress response. The first, and up to our
knowledge, the only work using integrated approach to study sunflower response to
water-deficit conditions was described by Sarazin et al. (2017) who used genomics
(RNA-seq and quantitative RT-PCR), physiological (growth, water statute, stomatal
conduction evaluations, and transpiration rate) and biochemical analyses (LC–MS).
The authors concluded that sunflower water stress tolerance is correlated with a tran-
scriptome fine-tuning that triggers activation of ABA-dependent genes and not to
ABA overproduction.
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3.6.2 Genomic Studies

Exploitation of available genetic resources in combination with different genomic
tools could lead to considerable improvements in sunflower resilience to abiotic
stresses. For instance,Gao et al. (2019) used genome-wide association study (GWAS)
for analysis of variation of sunflower crop performance and response to flooding (Gao
et al. 2019). The authors identified a subset of loci conferring flooding resistance
without negative effects on plant growth and concluded that genomic selection (GS)
could be efficiently used for the development of cultivars that are both flooding-
tolerant and highly productive. The first high throughput sequencing study for gene
expression profiling analysis of sunflower under drought stress has beenperformedby
Liang et al. (2017). The authors have identified 17 genes that play roles in sunflower
response to abiotic stress and may be relevant for drought tolerance, as well. The
results of their study also demonstrated the complex nature of the drought stress
response in sunflower, involving multiple metabolic pathways.

GS uses genome-wide molecular data as predictors of performance of genotype
under certain stress conditions and enables development of quantitative trait loci
(Würschum et al. 2013; Fillipi et al. 2014). GS develops the prediction model by
integration of genotypic and phenotypic data of training population which are used
to obtain genomic estimated breeding values (GEBVs) (Meuwissen et al. 2001).
GS so far has not been used for prediction of abiotic stress tolerance in sunflower,
but for the prediction of hybrid performance (Reif et al. 2013), hybrid oil content
(Mangin et al. 2017) and Sclerotinia mid-stalk rot tolerance (Livaja et al. 2016).
Nevertheless, the results obtained in these studies showed that GS could improve
breeding efficiency, especially in the cases when either one or both parents are not
well-characterized. Besides that, these first steps in genomic selection showed that
it can successfully address complex quantitative traits in sunflower, one related to
abiotic stress tolerance included (Dimitrijević and Horn 2018).

3.6.3 Use of Modern Breeding Techniques

There have been several attempts to introduce genes for abiotic stress resistance into
sunflower using different genetic transformation methods. Watanabe et al. (2005)
incorporated yeast Metallothionein metallothionein gene (CUP1) into sunflower
and succeeded to select heavy metal-tolerant sunflower calluses thus confirming
successful transfer of the trait. Cheng et al. (2009) inserted the drought and salt
resistance gene P5CS into sunflower and obtained six transformed buds but did
not manage to obtain fertile transgenic plants. Tishchenko et al. (2014) introduced
dsRNA-suppressor of proline dehydrogenase gene into sunflower plants with the aim
to increase their tolerance to water deficiency and salinity. However, due to lack of
commercial interest and regulatory issues, up to date, no application for the market
introduction of a genetically modified sunflower has been made (ISAAA 2021).
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Development ofGE tools and techniques, could provide newperspectives formore
efficient sunflower breeding for complex phenotypic traits controlled by polygenes,
including traits related to abiotic stress resistance. Up to date, there is only one report
on use of GE in sunflower. Ynet and Yilancioglu (2018) described CRISPR/Cas9
model for sunflower resistance for biotic and abiotic stresses. The authors determined
the suitable genetic changes to perform and design of relevant plasmids, plasmid
transfer method into the sunflower genome, as well as the control for whether the
plasmid is transferred into the genome and if GE is effective.

Both in genetic transformation and GE, regeneration efficiency could be an
obstacle for their effective use in sunflower breeding. In order to overcome this
problem,Zhang (2016) proposed the use of low inoculumwith long coculture (LI/LC)
transformation protocol, while Ikeda et al. (2005) used small and branching varieties
of sunflower in order to increase plant regeneration and gene introduction.

Combined with the classical genetic studies, this newly available genome
sequence, along with the advanced sequencing technologies could enable the study
of the epigenetic phenomena in sunflower and the application of epigenome profiling
and engineering for creation of the genotypeswith the durable abiotic stress resilience
(Varotto et al. 2020). Advances in—omics research provided new tools and models
for understanding of abiotic stress related traits and to identify target traits useful
for sunflower improvement. They opened the way to the discovery of loci affecting
sunflower reaction to stress conditions or the expression of stress tolerance related
traits, as well as identification of genes that could be useful either as candidate
sequences for QTLs or for further manipulation using modern breeding tools, also
useful for the removal of detrimental mutations or enrichment of specific sequences
with either alleles from wild relatives or other abiotic stress resistance sources
(An -delković et al. 2020).
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Chapter 4
Integration of Genomics Approaches
in Abiotic Stress Tolerance in Groundnut
(Arachis hypogaea L.): An Overview

B. Aravind, Spurthi N. Nayak, Rakeshkumar S. Choudhary,
Spoorti S. Gandhadmath, P. V. V. Prasad, Manish K. Pandey,
Ramesh S. Bhat, Naveen Puppala, Putta Latha, Palagiri Sudhakar,
and Rajeev K. Varshney

Abstract In recent years, the effect of climate change on agriculture is perceived
with irregular rainfall trends, temperature patterns and disease/pest outbreaks.
Productivity of many crop species is impaired by abiotic stress such as heat,
salinity, drought, cold and heavy metal stresses. In groundnut, the impact of high
temperatures and drought on crop growth and development have been extensively
studied. In order to meet global food and nutritional welfare, there is a need to
consider the physiological responses and molecular pathways underlying abiotic
stress tolerance. Several traits like water use efficiency (WUE), chlorophyll content,
photosynthetic rate, stomatal conductance, root traits and yield-related parame-
ters were found to be affected by abiotic stresses in groundnut. The availability
of germplasm resources and genomic technologies help in exploring the tolerant
genotypes conferring abiotic stress tolerance. The genomic regions associated with
the tolerance related traits were studied using genetic linkage and association-based
approaches using different types of molecular markers in groundnut. Latest advances
in sequencing and artificial intelligence-based gene prediction have improved the
process of identifying possible genes that impart abiotic stress tolerance. The tran-
scriptomics, proteomics, metabolomics and genetic engineering approaches were
utilized for imparting drought tolerance. Though genomics studies related to heat,
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salinity, cold tolerance are very limited in groundnut, there is high potential to utilize
available resources and multi-omics technologies to improve groundnut for abiotic
stress tolerance.

Keywords Peanut · Drought · Heat · Salinity ·Multi-omics · Transgenics ·
Marker-trait association

4.1 Introduction

Climate change and climate variability affect the growth, development and produc-
tivity of crop plants. Climate change influences biotic and abiotic stresses in culti-
vated crops adversely affecting the productivity and quality of the produce. Climate
changes cause erratic rainfall patterns, drought, high temperature, chilling, flooding,
salinity, increased carbon dioxide concentration and other greenhouse gases. Besides,
these changes influence the occurrence and intensity of new pests, diseases and their
sporadic spread. Thus, climate change aggravates both biotic and abiotic stresses
in cultivated crops thereby negatively influencing the productivity of several crop
species including groundnut which could intensify the concerns for malnutrition and
poverty across the globe (Hatfield and Prueger 2015; Kole et al. 2015).

Groundnut or peanut is a self-pollinated annual legume largely cultivated in dry
areas of tropics and subtropics. It belongs to the family Fabaceae and its botanical
name is Arachis hypogaea Linn., a Greek-derived word referred to the plant that
produces fruits or pods under the ground or soil. It is one of the world’s principal
economic crops and is the second most important annual oilseed crop after soybean
(Glycine max L. Merr). It is believed to be a native of Brazil (South America).

Groundnut is primarily valued because of its richness in edible oil and vegetable
proteins. It is rightly called as ‘king of oilseeds’ because of its contribution towards
edible oil industries. Groundnuts contain about 47–53% oil; 25–36% protein; 10–
15% carbohydrate and are rich sources of phosphorus, vitamins B and E. The
groundnut crop can be grown from 40° N to 40° S of the equator. It is cultivated
in about 29.59 million hectares’ area in the world with production of 48.75 million
tons.China leads in groundnut production by36%globally followedby India,Nigeria
and the United States of America (FAOSTAT 2019).

The exposure to certain biotic and abiotic stresses is the major constraint, which
hinder groundnut productivity. Biotic stresses include the incidence of diseases like
rust, stem rot, early and late leaf spot, Aspergillus flavus, groundnut bud necrosis
disease, bacterial wilt and the insect pest like tobacco cutworm, gram pod borer,
jassids, thrips, etc., while abiotic stresses primarily include the incidence of drought,
high-temperature, low-temperature, salinity, phosphorus deficiency and calcium-
induced iron chlorosis. Drought and high temperature or the combination of both
are major abiotic constraints in groundnut growing regions. Drought occurring in
mid and at the end of growing season severely damage the crop by affecting pod
yield. Terminal drought in Valencia groundnut genotypes revealed that the drought
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stress reduced biomass production at harvest by 13.03%, pod yield by 33.16% and
the number of mature pods per plant by 36.54% (Carvalho et al. 2017). The reduction
in the number of mature pods per plant was the main cause of yield loss (Carvalho
et al. 2017). Hamidou et al. (2012) reported a 72% decrease in the pod yield due to
drought stress at high temperatures and a 55% decrease at moderate temperatures.
The harvest index (HI) was decreased by 50% during the hotter season and by 25%
during the moderately hot season. The duration and intensity of drought and the
growth stages at which drought occurs have an impact on groundnut yields (Awal
and Ikeda 2002). Drought stress boost the incidence of Aspergillus flavus and afla-
toxin contamination (Craufurd et al. 2006). There were significant negative linear
relations between infection and fraction of extractable soil water between flowering
and harvest. The study stated that the infection severity and concentration of aflatoxin
in groundnut can be correlated with the incidence of drought stress during pod-filling
when soil temperatures are ideal for the growth of Aspergillus flavus (Craufurd et al.
2006).

The ambient temperature for growth of groundnut is between 25 and 30 °C and
for flowering and maturity is about 28–33 °C. The increase in mean air temperature
of 23 °C is predicted to mitigate the groundnut yield by 23–36% in India (Hundal
and Kaur 1996). The day temperature more than 35 °C during the reproductive
phase reduces the fruit set and pod yield (Prasad et al. 1999a) that was due to fewer
pollen grains and reduced pollen viability (Prasad et al. 1999b, 2000a). Higher soil
temperature (38/22 °C; daytimemaximum/night-timeminimum) affected the flower,
peg and nodule formation in groudnut (Prasad et al. 2000b, 2001). Temperature below
18–20 °C results in delay in germination in groundnut resulting in poor growth of
plants with delayed maturity (Bhagat et al. 1992). Salinity is another major abiotic
stress that reduces the plant’s ability to absorb water, causes ionic imbalance, and
generates reactive oxygen species (ROS) (Azad et al. 2014). In calcareous black clay
soil application of phosphorus in groundnut has shown a significant response in grain
yield and yield components (Singh and Singh 2000; Kamara et al. 2011).

Groundnut being a C3 plant showed increase in growth and biomass production
under elevated CO2 conditions as compared to ambient CO2 conditions. Climate
change in terms of elevated CO2 alone or combination with optimal temperature has
favored groundnut growth, development and yield (Shwetha et al. 2017). Elevated
CO2 (700 µmol mol−1) increased leaf photosynthesis across all temperatures in
the range for 32/22 °C to 44/34 °C (Prasad et al. 2003). However, super-optimal
temperatures were detrimental to groundnut reproductive processes (pollen viability,
seed set, individual seed weight and seed HI) under both optimal and elevated levels
of CO2 (Prasad et al. 2003).

Considering the food value and economic value, groundnut is important in the
present era of changing climate and overcoming poverty and malnutrition in devel-
oping countries. There is scope to enhance the beneficial properties of groundnut by
using potential genotypes from available genetic resources and wild relatives using
plant breeding approaches.However, conventional or traditional breeding approaches
have limitations. For example, the development of drought-tolerant crops through
traditional breeding is time-intensive and laborious because of quantitative nature
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of drought tolerance (Ribaut et al. 1997). The incorporation of resistance genes
from distant relatives of Arachis species is difficult due genetic incompatibility. It
is important to include new omics technologies along with the traditional breeding
approaches to improve groundnut genotypes that are climate resilient (Kambiranda
et al. 2011).

4.2 Description of Different Abiotic Stresses

The external pressure or environmental conditions that negatively impacts the plant
growth and maturity are stress responses (Levitt 1972, 1980). The effects of stresses
are measured in terms of plant survival, crop yield, growth (biomass) and primary
assimilatory processes (carbon assimilation, mineral uptake).

The plant’s ability to cope up with the adverse environment is associated with
stress tolerance. Plants overcome the stress either by avoidance, where plants respond
by reducing the impact of the environmental stresses or by tolerance, where the
plant’s genetic/ physiological properties help to withstand the stress conditions. In
groundnut, the yield losses are mainly attributed to abiotic stresses viz., drought,
high temperature, salinity and heavy metal stresses. The impact of abiotic stress on
the growth and development of the groundnut crop are presented in Fig. 4.1.

Fig. 4.1 Effect of abiotic stress on groundnut (Arachis hypogaea)
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4.2.1 Drought Tolerance

Severe moisture stress during crop growth adversely affect the pod yield, quality
of seeds and higher aflatoxin contamination in groundnut (Holbrook and Stalker
2010). Terminal drought conditions in groundnut resulted in 24% yield reduction
as compared to moisture stress at vegetative phases. Hence it is observed that the
duration of drought and its affect on reproductive phase has influenced on yield
reduction (Boontang et al. 2010). Several plant characteristics like root traits, leaf
traits and WUE are important for increasing the tolerance to abiotic stresses.

Breeding for drought tolerance basically depends on the yield advantage of
tolerant genotypes that can extract water from the soil under moisture stress condi-
tions. In this regards, the root architecture (root length, rooting depth and root disper-
sion) plays an integral role in the absorption of water and nutrient (Matsui and Singh
2003; Reddy et al. 2003; Nigam et al. 2005) and genotypes with such traits produced
relatively higher yield even under prolonged drought conditions in the vegetative
stages (Songsri et al. 2008, 2009). Under terminal drought conditions, leaves play
important role by reducing photosynthetic activity by inculcating high stomatal resis-
tancewhereas roots do not respond during the late growth stages (Jongrungklang et al.
2014). IncreasedWUE is found to be the result of the association between decreased
net photosynthetic rate and stomatal closure (Ruggiero et al. 2017). However, higher
biomass production and harvest index was observed (Nigam et al. 2005; Ratnakumar
and Vadez 2011; Koolachart et al. 2013). Generally early-maturing genotypes yield
more than the late-maturing genotypes under drought conditions. However, early
maturing groundnuts if exposed to terminal drought conditions, there is a reduction
in the yield (Kashiwagi et al. 2006). The traits like specific leaf area (SLA), transpi-
ration rate, chlorophyll content, relative water content and WUE are important traits
that are considered in drought tolerance studies in groundnut.

“WUE is broadly defined as the ratio of water used by the plant for metabolism
to the water lost through transpiration and is an indicator of selecting the crops for
drought tolerance” (Udayakumar et al. 1998; Evans and Sadler 2008; Rao et al. 1995;
2001). The drought tolerance in groundnut was studied by screening several of these
physiological traits (Table 4.1).

Apart from the phenotypical and physiological effects experienced by the plant
under drought stress, it is observed that aflatoxin contamination is associated with
the drought. Hence usage of drought-tolerant germplasm resistant to aflatoxin has
become a prominent trait for selection (Guo et al. 2008; Fountain et al. 2014). It is also
observed that therewas no significant effect of aflatoxin contamination over reduction
in yield under drought condition that suggests that drought tolerant mechanism and
the disease incidence might be independent (Hamidou et al. 2014).
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4.2.2 Heat Tolerance

The physiological responses of heat (high temperature) stress impacts both water and
nutrient absorption and uptake due to reduced activities of nutrient-metabolizing
enzymes like nitrate reductase (Huang et al. 2012; Klimešová et al. 2020). “The
reproductive processes involving pollen and stigma viability, pollination, anthesis,
pollen tube growth, and early embryo development are particularly vulnerable to heat
stress”(Giorno et al. 2013; Hamidou et al. 2013). However, pollen is more sensitive
to heat than stigma (Lamaoui et al. 2018).

Like in other crops, the groundnut productivity is also affected by high-
temperature stress especially during the reproductive stages of the crop. The hot
days and warm nights limit the groundnut pod set due to reduced pollen viability and
pollen count. Heat stress has a greater negative effect on flowering and microsporo-
genesis (Prasad et al. 2000a; Craufurd et al. 2003). Studies on the solute leakage
and chlorophyll fluorescence parameters in leaves at the time of heat stress reduced
chlorophyll content (Chauhan and Senboku 1997; Nautiyal et al. 2008). The differ-
ences in chlorophyll fluorescence and membrane thermostability were also found to
be good indicators for the high-temperature tolerance (Talwar et al. 1999).

The light-dependent chemical reactions and carbohydrate metabolism occurring
in chloroplasts are adversely affected due to heat stress resulting in an effect on
the photosynthetic rate (Prasad et al. 2015). Besides, the membrane function and
membrane integrity plays an integral role over photosynthesis and respiration rates.
The membrane stability during the stress plays an important role in exhibiting high-
temperature tolerance. The estimation of themalondialdehyde (MDA), obtainedwith
lipid peroxidation is used in screening for heat tolerance. The heat stress also induces
heat shock proteins (HSPs) in plants. These are a unique set of low molecular mass
proteins with various molecular sizes like HSP17, HSP40, HSP60, HSP70, HSP100.
They help the cells to endure the heat stress by acting as molecular chaperones
protecting essential enzymes and nucleic acids from denaturation and misfolding
due to high temperature (Jain 2000).

All the plants under continuous heat stress tend to produce ROS and its accu-
mulation causes membrane polarization at the plasma membrane outer surface
and activates the RBOHD (Respiratory burst oxidase homolg protein-D), a ROS-
producing enzyme located at the plasma membrane. The ROS accumulation may
lead to programmed cell death (PCD) (Qi et al. 2011) and acts as signal to trigger
heat shock response in the plants (Asada 2006).

Drought and heat stresses often coincide and have varied impact on the plant’s
growth and development. The combined impact of drought and heat have a more
detrimental effect on plant growth than independently. The heat stress influences
membrane fluidity by affecting the integrity of protein and lipids in the membrane
and inducesmembrane leakiness. The thylakoidmembranes of chloroplast are highly
prone to heat and drought stress that affect photosynthetic rate and act as primary
indicators (Prasad et al. 2008). The screening of several physiological traits to identify
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the genotypes with high-temperature stress tolerance in groundnut are indicated in
Table 4.1.

4.2.3 Salinity Tolerance

Salinity, another important crop productivity limiting abiotic stress that reduces the
plants’ ability to absorb water besides affecting ionic balance, chloroplast stromal
value andROSproduction (Azad et al. 2014). Increasing soil salinity decreased haulm
weight and pod yield by 47.7% and 53.6%, respectively, while seed oil content and
protein content are decreased by 7.84% and 12.1%, respectively (Azad et al. 2014).
An increase in soil salinity influences the nutrient status of the plant. The rise in soil
salinity levels from 6.3 to 11.1 dSm−1 resulted in decrease in nitrogen and phospho-
rous content of haulm, while potassium content remained unaffected (El-Rheemkh
and Zaki 2015). Meena et al. (2017) reported that the salinity level in water up to
2.0 dSm−1 and root zone soil salinity of 3.21 dSm−1 has no significant effect over
groundnut pod and haulm yield under calcareous black clay soil conditions. A study
on the effect of salinity on two groundnut varieties (Dacca-1 and Zhinga) showed a
significant decrease in germination percentage with an increase in salt concentration.
It also caused a sharp reduction in chlorophyll a, b and total chlorophyll content in
both genotypes (Akter et al. 2020). The total number of pods per plant was reduced
under salinity and pod weight showed significant variation under saline conditions
which proved to be the best trait for salinity tolerance screening (Srivastava et al.
2018). Apart from these, a negative trend was observed in traits like, seedling emer-
gence, radicle elongation, plant height and drymatter weight with increase in salinity
(Mensah et al. 2006).

“Soil sodicity is the accumulation of sodium salt relative to other types of salt
cations like calcium and magnesium, which is caused by increased soil pH.” Effects
of exchangeable sodium percentage in groundnut showed severe effects of sodicity
with results depicting about 50% loss of yield, a continuous decrease in dry matter
and detoriation in protein content and oil quality (Singh et al. 1985). An increase in
exchangeable sodium percentage has significantly reduced the availability of nutri-
ents like K, Ca and N which makes groundnut a sensitive crop towards sodicity. Iron
chlorosis is often observed in soils with higher pH and calcareous soils, limiting the
crop productivity (Prasad et al. 2000c).

Genotypes differ in their response to iron chlorosis and foliar application of ferrous
sulphate can help to manage iron deficiency in groundnut (Prasad et al. 2000c). The
flooding and submergence situations are rare in groundnut cultivated areas and no
published reports indicate the tolerance to submergence/flooding in groundnuts.
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4.2.4 Cold Tolerance

The sub optimal temperatures can affect the plant’s metabolism leading to two types
of injuries viz., chilling and freezing injury.Chilling injury iswhen aplant gets injured
above freezing temperatures (0–15 °C) and the latter is when the plant is exposed
to freezing temperatures (<0 °C) leading to injury. Plants differ in their tolerance to
chilling and freezing temperatures (Wani et al. 2016; Jain 2000). Acclimatization
for cold tolerance is attained when a plant is exposed to chilling, yet non-freezing
temperatures gradually let the plants to adapt to the cold environments.

Low temperatures are a limiting factor for groundnuts’ crop development and can
be a potential reason for yield loss. Cold temperatures have been shown to affect
germination, dry matter accumulation, shelling percentage and yield (Table 4.1).
About 158 groundnut accessions that were tolerant to low temperature (12 °C) at
germination stage showcased superiotity in several agronomic traits against control
across seasons. They can serve as breeding material for genetically diverse cold-
tolerant high-yielding groundnut cultivars (Upadhyaya et al. 2009).

4.2.5 Heavy Metal Stress Tolerance

Most of the heavy metals like mercury, cadmium, chromium, lead and arsenate
have shown to affect the plant growth (especially root traits) of groundnut (Bhanu-
mathi et al. 2005; Dogan et al. 2013; Lu et al. 2013; Bianucci et al. 2017; Zong
et al. 2020). Cadmium toxicity (>200 µM) and lead (>1000 mg /L) has shown toxic
effects on plant growth, chlorophyll content, lower antioxidant activity and higher
MDA content (Dogan et al. 2013; Dong et al. 2020). Excess cadmium was found to
reduce the root surface area, number of root tips and specific root length, however
the root diameters increased considerably. The groundnut cultivars with fine roots
showed a high capability of Cd accumulation (Lu et al. 2013). The negative effect of
mercuric acetate on seedling growth, root and shoot length and chlorophyll content
was observed in groundnut (Bhanumathi et al. 2005). Chromium accumulation is
shown in the groundnut cultivars with an extensive root system (Zong et al. 2020).
There is a need to study the effect of heavymetals and their accumulation in groundnut
cultivars as they induce an adverse effect on human health upon consumption.

Several physiological, morphological and yield related traits are screened to know
the impact of abiotic stresses on crops (Table 4.2).
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Table 4.2 Important phenotypic traits screened for abiotic stress tolerance in groundnut

S. No. Category Traits or observations recorded

1 Leaf and leaf related traits Specific leaf area; Specific Leaf weight; Leaf
thickness; SPAD Chlorophyll Meter Reading;
Leaf shape; Stomatal frequency/density;
Chlorophyll fluorescence; Photosynthetic rate;
Stomatal conductance; Transpiration rate;
Intercellular CO2 concentration; Relative water
content; Specific leaf nitrogen content

2 Flower and flower related traits Flower initiation; 50% flowering; Pollen
viability; Stigma receptivity; Pollen growth

3 Shoot and shoot related traits Plant height; Number of primary branches;
Number of secondary branches; Canopy
temperature

4 Root and root related traits Root length; Root shoot ratio; Root structure

5 Yield related traits Pod to flower ratio; Number of pods per plant;
Leaf dry weight; Stem dry weight; Haulm
weight; Pod weight; Seed weight; Seed weight;
Test weight; Shell weight; Shelling percentage;
Biological yield; Harvesting index; Sound mature
kernel percentage

6 Seed and seed related traits Germination percentage; Temperature induction
response

7 Biochemical studies Total chlorophyll content; Total carotenoid
content; Total anthocyanin content; Membrane
injury index; Chlorophyll stability index; Lipid
peroxidation assay; Activity estimation of
enzymatic antioxidants; ROS estimation

4.3 Genetic Resources for Exploring the Abiotic Stress
Tolerance

Cultivated groundnut is believed to be monophyletic origin with low genetic diver-
sity. A. duranensis (A-genome) and A. ipanensis (B-genome) are considered as the
ancestors of cultivated groundnut. Wild relatives of the groundnut have gone through
several rough environments andmany havemanaged to survive till date. Even though,
the yield and other commercial requirements are not fulfilled by wild spp., they
exhibit tolerance/resistance to several abiotic and biotic stresses. This potential of
the wild relatives can be tapped to improve cultivated groundnut. Hence, it is very
much important to understand the classification of these genetic resources for its
usage in breeding programs.

The genusArachis has at least 81 described species (Stalker 2017) and are broadly
classified under nine taxonomic sections (Krapovickas and Gregory 1994) based on
their cytogenetic and morphological features along with their respective geographic
distribution and sexual compatibilities. A gene pool can be defined as “The total
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genetic diversity found within a population or a species expected to have extensive
diversity and better ablility to withstand the challenges posed by environmental
stresses” (Valls and Simpson 2005).

Groundnut genetic resources are broadly classified as the primary (GP1),
secondary (GP2) and tertiary (GP3) gene pools based on their sexual compatibility.
GP1 includes species that can be directly mated with the crop to produce fertile
progeny. The section Arachis contains the GP1 of cultivated groundnut with two
tetraploids, A. hypogaea and A. monticola (2n = 4x = 40; genome AB). GP2 is
composed of the most closely related wild species which on crossing with GP1
results in partial fertility. The GP2 of A. hypogaea’s include its close relatives,
diploid ancestor (2n = 2x = 20) with genome of A, B, F and K. GP3 is made
up of even more distantly related crop wild species. They produce sterile hybrids
on crossing with GP1 (Rami et al. 2014). The groundnut germplasm is conserved at
national and international gene banks of ICRISAT, USDA-ARS and CAAS (Pandey
et al. 2012b). Secondary and tertiary genepools of Arachis are known to have resis-
tance/tolerance towards abiotic and biotic stresses (Simpson et al. 2003;Mallikarjuna
et al. 2011; Foncéka et al. 2012; Stalker et al. 2013; Upadhyaya et al. 2014). There
were several efforts to develop synthetic amphidiploids using the wild relatives of the
cultivated groundnut (Burow et al. 2001;Mallikarjuna et al. 2011). Besides, synthetic
amphidiploids and autotetraploids, chromosome segment substitution lines (CSSL)
(Foncéka et al. 2012), targeting induced local lesions in genomes (TILLING) popu-
lations (Knoll et al. 2011), multi-parent populations likemultiparent advanced gener-
ation intercross (MAGIC), nested association mapping (NAM) populations (Pandey
et al. 2020b; Scott et al. 2020) are available today as important genetic resources
of groundnut breeding. These genetic resources need to be explored to identify the
genomic regions conferring tolerance to abiotic stresses in groundnut. The advanced
genomics technologies could help harness the potentials of the available genetic
resources in groundnut. For instance, TILLING by sequencing was used to identify
the functions of new candidate genes in groundnut (Guo et al. 2015).

Over the years, studies have reported the availability of several genotypes iden-
tified as source of abiotic stress tolerance which is often governed by quite a lot of
genes and environment (G × E) interactions. Drought being a major abiotic stress
worldwide, resulting in loss of yield and quality of rainfed groundnut, several lines
with superior performance under different kinds of drought (early, mid and end-
season drought) have been identified and are now available for use in the breeding
program after extensive field screening (Nigam et al. 2002; Monyo and Varshney
2016).

The studies on the groundnut improvement using transgenic methods are limited.
Among the several stress-response genes, transcription factors (TFs) play a key role.
Coexpression of stress-responsive TFs, AtHB7, AtDREB2A and AtABF3 (associ-
ated with downstream gene expression) have showed improved tolerance to salinity,
drought and oxidative stresses compared to wild types, with increased total biomass
(Pruthvi et al. 2014). Transgenic groundnut plants with overexpression of genemtlD
(from Escherichia coli) involved in the biosynthesis of mannitol showed a better
performance to several traits that govern abiotic stress tolerance (Patel et al. 2017).
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4.3.1 Genomics in Abiotic Stress Tolerance Studies

The primary mandate of breeding programs is to develop cultivars with high yielding
capacity, resistance to abiotic and biotic stresses and adaptation to specific environ-
mental conditions. The groundnut breeders in the past have used mass-selection to
make use of natural variation among local varieties. Negative correlation between
disease resistance and yield makes mass selection non-preferable in groundnut
(Knauft and Wynne 1995). The methodologies like mutagenesis and hybridiza-
tion were utilized more frequently in crop improvement programs. The pedigree
process, which enables the breeder to perform selection for highly heritable traits
viz., pod size, shape, seed size, plant type and testa colour in early segregating
populations, has become more widespread among groundnut breeders. This method
greatly reduced the size of individual segregating populations. Later, SSD (single-
seed descent) method and recurrent selection were utilized in groundnut (Wynne
1976; Hildebrand 1984). Backcross breeding methodologies have also been used in
the past years as they aid in the detection of qualitatively inherited traits but are not
commonly used due to the lack of purely inherited diseases and insect resistance
traits. Genotype and environment interactions are widespread in groundnut hence,
multi-year and multi-location testing is an essential part of a breeding program.
With the availability of modern technology and tools, molecular intervention in
breeding became evident. The genomics-assisted breeding strategies were proven to
be more accurate and repeatable. In this regard, the crop improvement in groundnut
has witnessed the utilization of modern tools in the past decade (Pandey et al. 2020a)
including genomic selection for complex traits like crop yield under drought stress
with high G × E condition (Pandey et al. 2020b). Crop improvement in the present
era relies on a 5G breeding strategy that gives accuracy and increases productivity in
breeding programmes. The 5Gs include utilising “genome, germplasm, gene func-
tion, genomic breeding, and genome editing in crop enhancement” (Varshney et al.
2020). The sequence information was utilized in developing the marker systems,
diversity arrays and expression studies that can enable to identify the candidate genes
that are conferring abiotic stress tolerance. The utilization of genomics resources
along with the recent advances in artificial intelligence can hasten the process of
crop improvement.

4.3.2 Diversity Analysis

Crop diversity is the variation observed in genetic and phenotypic characteristics
of crop plants. It helps farmers and plant breeders to develop high yielding and
more productive varieties. Crop diversification is one of the strategies in agricultural
diversification which farmers have adopted to reduce risks and challenges involved
in agriculture and to increase their farm income. Therefore, preservation of diverse
crop germplasm serves as valuable source of variability for breeding. The greatest
diversity of groundnuts is found in South America, which is also considered to be the
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centre of origin of the crop, where the Chaco region is known as the primary centre
of diversity and other areas as secondary centres of diversity of cultivated groundnuts
(Krapovickas 1969; Gregory and Gregory 1976).

Arachis hypogaea is divided into two subspecies, hypogaea and fastigiata. The
subsp. hypogaea is characterized by alternate branching and absence of flowers on
the main axis and has a long-life cycle, whereas subsp. fastigiata is acclaimed by
sequential branching and the flowers over main axis with shorter life cycle. Further,
subsp. fastigiata is subdivided into four botanical varieties, vulgaris (Spanish type),
fastigiata (Valencia type), peruviana, and aequatoriana. Subsp. hypogaea is subdi-
vided into two botanical varieties, hypogaea (Virginia type) and hirsuta (Krapovickas
1969).

Morphological and agronomic characteristics are visible descriptors that serve
as key factors for diversity studies. Identification of genotypes at the farm level
can be easily done with the help of these morphological descriptors. Evaluation of
phenotypic diversity for various morphological descriptors and agronomic traits like
pod yield, number of pods per plant and late leaf spot resistance in groundnut core
collection showed significant variation (Banla et al. 2020). The parameters such as
width and length of seeds and pods and hundred seed weight were found to be higher
in the hypogaea group than in the fastigiata group. The leaf length andwidth, shelling
percentage, and plant height were higher in fastigiata group (Upadhyaya 2003).The
number of pods per plant and yield per plant were highly variable while pod length
and width were less variables in comparison with other traits (Banla et al. 2020).

The Asian core collection of groundnuts consisting of 504 accessions was evalu-
ated for agronomic traits in two seasons at two locations (Swamy et al. 2003). Signif-
icant variation was seen in the characteristics related to flower initiation, number of
primary and secondary branches, and other yield characteristics as mentioned in
Table 4.2.

“Genetic diversity is essential to meet the diverse goals in plant breeding such
as producing cultivars with increased yield, wider adaptation, desirable quality and
pest resistance” (Nevo et al. 1982). Genetic divergence is also a pre-requisite for
hybridization program or agronomic improvement of crop species to obtain desir-
able genotypes. “More diverse the parents, the greater are the chances for obtaining
the highest heterotic F1 and broad-spectrum variability in segregating generation”
(Arunachalam 1981). Genus Arachis has a huge diversity of genomes. Out of 15
genomes (A, B, AB, D, F, K, EX, T, PR, H, C, T, E, R1 and R2) available in Arachis
genus, reference genome sequences are available only for few genomes (A, B, and
AB) (Stalker 2017).

Study on genetic variability and genetic divergence was carried out using 29
exotic and local lines of groundnut and were grouped into seven clusters based on
characters like plant height, total pods per plant, kernels per pod, hundred podweight,
shelling percentage, HI and pod yield per plant (Islam et al. 2005). Reddy and Reddy
(1993) also reported that hundred pod weight, number of branches per plant and HI
accounted for more than 80% of total divergence.

In situ hybridization studies between wild species and A. hypogaea indicated the
genome differentiation in section Arachis may be due to recurring elements (Seijo
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et al. 2007). Isozymes and proteins were used in the initial molecular diversity studies
(Krishna and Mitra 1987; Grieshammer 1989; Lu and Pickersgill 1993), restriction
fragment length polymorphism (RFLP; Kochert et al. 1991, 1996; Paik-Ro et al.
1992), random amplified polymorphic DNA (RAPD; Halward et al. 1991, 1992;
Hilu and Stalker 1995; Subramanian et al. 2000; Dwivedi et al. 2001) and ampli-
fied fragment length polymorphism (AFLP; He and Prakash 1997, 2001; Gimenes
et al. 2002; Herselman 2003; Milla et al. 2005). Higher levels of polymorphism
were observed with microsatellites or simple sequence repeats (SSRs) in groundnut
(Pandey et al. 2012a; Krishna et al. 2004; Moretzsohn et al. 2005; Barkley et al.
2007; Varshney et al. 2009).

The genome survey sequence and EST (expressed sequence tags) in Arachiswere
used to develop genomic and genic SSRs that are utilized to study molecular diver-
sity (Ferguson et al. 2004; Cuc et al. 2008; Mondal et al. 2012; Bhad et al. 2016).
Genomic SSR markers were used for molecular diversity, detection of association
with diverse resistance (Mace et al. 2006; Mondal and Badigannavar 2010), and
development of framework map in cultivated groundnut (Gautami et al. 2012c). The
microsatellite markers were used to study diversity in several core and mini core
collections available in groundnut (Wang et al. 2011; Jianget al. 2014; Mukri et al.
2012).

Besides, other marker systems like Arachis hypogaea transposable element
(AhTE) markers (Bhat et al. 2008; Shirasawa et al. 2012; Gayathri et al. 2018),
diversity arrays technology (DArT) markers have been developed in groundnut. Due
to the availability of less expensive sequencing platforms, several research groups
have generated and reported single nucleotide polymorphism (SNP) markers (Khera
et al. 2013; Zhou et al. 2014; Chopra et al. 2015; Hong et al. 2015; Clevenger et al.
2017; Pandey et al. 2017; Peng et al. 2020).

Analysis of genetic diversity in themini-core accessions of groundnut showed that
oleic acid and protein content are two significant contributors towards genotype diver-
gence. The oleic acid contributed 30.75% to the divergence of genotypes and protein
content by 28.78% (Mukri et al. 2014). Genome wide association study (GWAS)
for four physiological traits viz., leaf area index, canopy temperature, chlorophyll
index, and normalized difference vegetative index in 125 accessions from ICRISAT
groundnut mini core collection revealed that these traits are important in improving
productivity and act as indirect indices offering drought tolerance (Shaibu et al. 2020).
This study has also identified a total of 20 highly significant marker-trait associa-
tions (MTAs) with 11 SNP markers for four physiological traits of importance in
groundnut.

In plants, microsatellites have been recognized as useful molecular markers in
marker-assisted selection (MAS) and analysis of genetic divergence. In groundnut,
RFLP, RAPD and AFLP markers have showed lower polymorphism between A.
hypogaea and A. monticola (Kochert et al. 1996), but significant variations were
reported among other Arachis species (Kochert et al. 1991; Pail-Ro et al. 1992) and
between botanical varieties of cultivated groundnut using AFLP and DNA amplifica-
tion fingerprinting (DAF) technique (He and Prakash 1997). Microsatellite markers
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are more preferred over other markers for construction of linkage maps and quantita-
tive trait locus (QTL) analysis, as they are PCR-based, codominant, highly polymor-
phic and its ability to transfer among related species (Hougaard et al. 2008; Bertioli
et al. 2009; Moretzsohn et al. 2009; Varshney et al. 2009).

Being allotetraploid in origin, the fundamental hardship for groundnut improve-
ment is its narrow genetic base. During evolution, several diverse alleles that adapt
to the ecological niches were acquired that can be utilized in crop improvement
programmes. To ease the screening of underutilized wild germplasm sources, core
collections of 831 and 1704 accessions of groundnut and a minicore of 112 and 184
accessions at USDA-ARS and ICRISAT, respectively (Holbrook et al. 1993; Upad-
hyaya et al. 2002). These core and mini core populations harbour greater diversity
that can be efficiently utilized in breeding programs.

4.3.3 Molecular Mapping

With the advancements in genome sequencing,marker development and construction
of genetic maps, QTL analysis has gathered a lot of valuable information that can
be very well utilized for crop improvement programs in groundnut. Several marker
systems like RFLP, RAPD, AFLP, DArT, SSR, AhTE and SNPs have been developed
and were utilized for construction of maps, genetic diversity analysis, using markers
for marker-assisted selection (MAS) andmarker-assisted breeding (MAB) (reviewed
in Pandey et al. 2012b; Janila et al. 2016; Bhat et al. 2020).

The mapping of associated genomic regions with target traits can be conducted
by using multiple types of populations like recombinant inbred lines (RILs), near
isogenic lines (NILs), F2 population, backcross introgression lines, NAM, MAGIC
and the natural populations in groundnut (Pandey et al. 2012b; Varshney et al. 2013;
Janila et al. 2014; Pandey et al. 2020a). Based on the mapping population used, the
trait mapping may be of three types viz., linkage mapping, linkage disequilibrium
(LD) based GWAS, and joint linkage-association mapping (JLAM) (Pandey et al.
2016).

4.3.3.1 Linkage Mapping

Several attempts in constructing genetic linkage maps were made with diploid and
tetraploid species of Arachis (Table 4.3). The first known genetic map with RFLP
markers in Arachis species was constructed using F2 population (A. stenosperma ×
A. cardenasii) resulting in eleven linkage groups (Halward et al. 1993). Later first
generation of a synthetic interspecific tetraploid BC1 population {[A. batizocoi× (A.
cardenasii × A. diogoi)]4x × A. hypogaea (‘Florunner’)} was used to draft another
RFLP-based linkage map (Burow et al. 2001). Other molecular markers such as
AFLP (Herselman et al. 2004), RAPD (Garcia et al. 2005), SSR (Moretzsohn et al.
2009), DArT (Shasidhar et al. 2017) and SNP (Bertioli et al. 2014) were utilized to
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construct the genetic maps on biparental mapping population. After a lot of initial
research that has been conducted in the AA and BB genomes of the groundnut crop,
scientists moved towards mapping the genome of the cultivated groundnut. Though
the genome of the cultivated groundnut was not quite easy to understand with simple
mapping since it is an allotetraploid crop. SSR based linkage maps have also been
created from an interspecific F2 population of the A-genome (A. duranensis and
A. stenosperma) with 170 SSRs and 11 linkage groups (Moretzsohn et al. 2005).
With the availability of larger number of markers (1469) studying the relationship
between the wild genotypes and the cultivated peanut became common (Shirasawa
et al. 2013). The ability of the SNP markers to obtain more productive information
from the genome of the crop is evident. Mapping was much specific and detailed
with the SNP markers. They were also being integrated into the genetic maps. Hong
et al. (2010) developed six consensus maps with 175 loci. Several scientists later
dedicatedly used the SNPs to construct the genetic maps viz., Shirasawa et al. (2013)
mapped 3693 SNP loci across the groundnut genomewhich helped in the crop’s char-
acterization. Besides, a consensus map was developed using 16 segregating popula-
tions of various diverse genetic backgrounds enabled mapping with greater genome
coverage (Shirasawa et al. 2013). Most of the works emphasized in mapping several
loci in a single genetic map and utilize it for MAB (e.g., Hong et al. 2008, 2010;
Foncéka et al. 2009; Wang et al. 2012; Shirasawa et al. 2013).

In a biparental population-based mapping, considering the amount of recombina-
tion events that occur during the development of the population, the localization of
the quantitative trait loci (QTLs) is only between 10 and 20 cM intervals and detec-
tion of QTL mainly resides on the phenotypic variation in the population. These
characters are considered as a limitation when a biparental population is considered
for mapping.

Commonly used biparental populations like the F2 population are easy for
construction and estimation of both additive and dominant effects with the limitations
of lesser power, limited recombination and the temporary nature of the population.
When it comes to the utility of introgressing specific genes, the backcross (BC)
population is considered the best, but it will be highly impossible to estimate the
dominant effects. BC population also takes a lot of time unlike F2 population-based
mapping and the temporary nature of the population adds difficulty in the process.
On the other hand, doubled haploid (DH) population is known for its immortality and
easy replication along with rapid map construction abilities. Despite its advantage to
bring rapid recombination, it’s use is very limited due to expenses involved in tech-
nology. RIL population-based map construction has the best of recombination in the
population which in turn provided abundant opportunities in mapping the genome
generally with very less mortality percentage and easy in replication at the cost of
much more time requirements and impossibility to estimate the dominant effects
(Ren et al. 2017).

Several small effect (<10%phenotypic variation explained-PVE) andmajor effect
QTLs (>10% PVE) were identified and reported for various types of traits viz.,
agronomic and yield component traits (Selvaraj et al. 2009; Hake et al. 2017; Luo
et al. 2017a), biotic stress resistance (Khedikar et al. 2010; Kolekar et al. 2016; Zhou
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et al. 2016; Pandey et al. 2017), abiotic stress tolerance especially for drought-related
traits (Varshney et al. 2009; Leal-Bertioli et al. 2016) and quality traits (Sarvamangala
et al. 2011; Shasidhar et al. 2017).

The efforts to dissect the QTLs for drought tolerance related traits like leaf area,
transpiration efficiency, chlorophyll meter reading (SCMR), carbon discrimination
ratio and other yield-related traits in groundnut mapping population TAG24× ICGV
86031 identified some main effect QTLs and many epistatic QTLs, indicating the
complexity of the drought tolerance related traits. The QTL mapping was carried
out using several tools like QTL Cartographer, QTL Network and Genotype Matrix
Mapping (Ravi et al. 2011). Further, a consensusmapwith threemapping populations
viz., TAG 24 × ICGV 86031, ICGS 76 × CSMG 84-1 and ICGS 44 × ICGS 76
was utilized for identification of 153 main-QTLs and 25 epistatic QTLs with low
to moderate phenotypic variance for drought tolerance related traits (Gautami et al.
2012c). This study suggested the utilization of marker-assisted recurrent selection
(MARS) and genomic selection (GS) for crop improvement. However, for other
abiotic stresses like high-temperature tolerance, efforts are currently being made to
detect genomic regions using linkage mapping (JL 24× 55–437) and bulk segregant
transcriptomemapping approaches. Themapping studies on salinity tolerance are yet
to be explored in groundnut. Recently, about 19 main effect QTLs were identified
for drought tolerance and Fe chlorosis and identified several transcription factors
like bHLH, MyB, NAM at the QTL region (Pandey et al. 2021). So far, not much
emphasis has been paid on the mapping of salinity and cold tolerance in groundnut.

4.3.3.2 Association Mapping Studies

There are very limited studies to explore the MTAs based on GWAS for abiotic
stress tolerance in groundnut. The reference collection of groundnut comprising of
300 accessions were genotyped with DArT and SSR markers and phenotyping for
50 important agronomic, disease, quality traits and drought tolerance related traits.
The genotypes were phenotyped for several drought tolerance related traits in well-
watered and water-stressed conditions and about 152 MTAs were detected in both
conditions (Pandey et al. 2014b). However, the GWAS on other abiotic stresses like
salinity, high temperature, heavy metals, etc. need to be explored further.

4.4 Marker-Assisted Breeding

The germplasm is the foundation to improve the genetic content of cultivars. In
this direction, cultivated and wild genotypes of groundnut have been gathered,
conserved and extensively characterized at institutes like ICRISAT, USDA-ARS
and OCRI-CAAS. The core and mini-core collection were generated in groundnut
and screened for traits like yield, quality, abiotic and abiotic stresses (Liao 2017).
Marker-assisted breeding helps to transfer desired genes into a recipient genetic
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background and minimizes the growing cycles needed for recovery of recurrent
parent genome. As the linkage and association-based studies indicated several small
effect QTLs/MTAs associated with drought tolerance with low to moderate pheno-
typic variance explained, the marker-assisted back cross-breeding is not effective.
Hence either MARS or GS approaches should be utilized to transfer the genomic
regions for improving elite groundnut genotypes for drought tolerance. There are
limited published reports on the introgression breeding for abiotic stress tolerance in
groundnut. In one of the studies, introgression of alleles from thewild speciesArachis
duranensis and A. batizocoi was carried out to improve earliness, WUE, pod yield
and photosynthetic traits in a set of lines derived from the cross of an induced allote-
traploid and cultivated groundnutwith selection underwater stress (Dutra et al. 2018).
Also, the abiotic stress-related traits in groundnut are complex with high environ-
mental influence which has further been adversely impacted by climate change. For
such traits, genomic prediction-based selection of plant progenies provides greater
opportunity in attaining genetic gains in the field. A recent study on genomic selec-
tion in groundnut has performed comparative assessment for different GSmodels and
pinpointed ‘naïve interaction model’ and ‘naïve and informed interaction models’
for high prediction accuracy for the complex traitswith high genotype× environment
interactions (Pandey et al. 2020b).

4.5 Multi-omics Approaches

Advancements in genomics and computational biology has given a bigger opportu-
nity to combine the molecular and computational tools to better understand the func-
tions of the genes. Several omics approaches like transcriptomics using complete
transcriptome sequencing reveals the uniquely expressed genes concerning abiotic
stresses. The sequencing-based approaches are also utilized in identifying molec-
ular markers like SNPs and InDels. However, drafting a picture based only on
the transcriptome of the crop can be biased, since even the translated proteins are
still subjected to several post-translational modifications which might result in a
different phenotype. With several new platforms having arrived viz., 2D gel (Ingel
proteomics); liquid Chromatography with tandem mass spectrometry (LC–MS/MS)
in solution proteomics, Electrospray Ionization (ESI)—LCMS & matrix-assisted
laser desorption/ionization-time of fligh (MALDI-TOF) to generate reliable protein
sequence data instead of previously used Edmund degradation sequencing studying
themolecular mechanisms have becomemuch better nowadays. These sequence data
can be further analyzed deeply for several new pathway proteins and new compo-
nents. This promises a great insight in future to identify the exact final product of a
targeted gene within the plant system to understand themetabolic profiles temporally
and spatially during stress (Handakumbura et al. 2017; Kumar et al. 2017).

The gene expression atlas has provided the information on network of genes
expressed during different developmental stages of groundnut plant in hypogaea
(Clevenger et al. 2016) and fastigiata (Sinha et al. 2020) subspecies of Arachis. A
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report on the interpretation of the transcriptome profile of two wild species, A. dura-
nensis and A. magna identified eight candidate genes that shared identical expression
profiles in response to drought conditions and recovery at multiple stages. The genes
such as NAC and bZIP1 were annotated to be involved in signalling in response to
drought in A. duranensis roots. Other genes that are involved in primary metabolism
(CA or NIT ), cell protection/ adaptation mechanisms (CDSP, DiP, or EXLB) were
also reported in both A. duranensis and A. magna (Brasileiro et al. 2015).

An attempt to isolate drought-responsive genes from groundnut roots using
suppression subtractive hybridization showed that 80 of the 111 transcripts had
homology with known genes and 31 with unknown/ uncharacterized genes (Ding
et al. 2014). This study also showed the involvement of ANN, ADH and MnSOD
in the drought tolerance mechanism in groundnut. Also, the expression of P5CS, a
key regulatory enzyme in proline biosynthesis, was increased in the tissues under
drought stress (Ding et al. 2014). Genes encoding lea3, lea4 andmetallothionein-like
protein had shown involvement in drought stress in peanuts (Su et al. 2011;Quan et al.
2007). The transcription factors like AP2/EREBP (AhWSI 279), bHLH (AhWSI 40),
bZIP (AhWSI 20), CCAAT box (AhWSI 117), Homeobox (AhWSI6 11), Jumonji
(AhWSI 72, AhWSI 116), NAC (AhWSI 153, AhWSI 308) and several zinc finger
protein transcripts were induced under drought treatments in groundnut. Among
the stress-related proteins, LEAs, HSPs, transcription factors like zinc fingers, AP2,
Myb,WRKY and NAC and drought-induced protein were highly expressed in plants
exposed to moderate levels of stress (Govind et al. 2009). Transcription factors (TFs)
that play key role in eliciting stress responses in A. duranensis include MYB (13%),
bZIP (13%), AP2-EREB and bHLH (8%), WRK (6%) and NAC (7%). In the case
of A. stenosperma distribution of TFs were slightly different, that is MYB (14%),
bZIP (18%),WRK (4%) bHLH (6%) and AP2-EREB (10%). Themost expressed TF
family in drought-imposed A. duranensis and fungi infected A. stenosperma leaves
was basic leucine zipper (bZIP)-type TF protein which is followed by the MYB
family (Guimaraes et al. 2012).

Oflate, a genome-wide transcriptome analysis was carried out on Valencia geno-
types of groundnut C76-16 and Val-C, and the study indicated activation of key
genes in ABA and sucrose metabolism pathways under drought stress conditions
(Bhogireddy et al. 2020). Transcriptome analysis of salinity-affected groundnut
genotypes has provided insights of the expression of transcription factors, genes
related to cell wall biogenesis, cell growth, antioxidant activity etc., upon salinity
stress (Zhang et al. 2020).

4.6 Genomics Aided Breeding

Conventional breedingmethodologies havebeen followed since ages for the improve-
ment of cultivars. For instance, ICGV 91114 and Dh 256 cultivars were released for
drought-prone areas in India using conventional breeding approaches. However, the
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advancement in omics technologies has overcome these drawbacks of the conven-
tional breeding approaches by easy understanding of the molecular mechanisms
governing complex traits. These omics technologies coupled with next-generation
sequencing technologies have resulted in higher genetic gains with high precision
and accuracy in less time and resources (Fig. 4.2).

The wild germplasm sources harbor regions of the genome that show resistance
to various environment stresses along with increased nutritional contents. Several
institutes maintain genetic resources of groundnut namely, the NBPGR, DGR and
the Gene Banks of ICRISAT in India; USDA, Texas A&M University, and North
Carolina State University in the USA; OCRI CAAS and CRIGAAS; INTA and
IBONE in Argentina and EMBRAPA -CENARGEN and the Instituto Agronomico
de Campinas in Brazil.

The peanut genome sequencing was initiated by the International Peanut Genome
Initiative (IPGI) in the year 2010 through the Peanut Genome Consortium (PGC).
This consortiumhas sequenced twodiploid progenitors,A. duranensisV14167 andA.
ipaensisK30076 (Bertioli et al. 2016). In the same duration another initiative,Diploid
Progenitor Peanut A-Genome Sequencing Consortium (DPPAGSC) has sequenced
different A-genome genotype, PI475845 (Chen et al. 2016). While the genome size
of A-genome was predicted to be 1.05 Gb and 1.21 Gb by DPPAGSC and IPGI,
respectively. The genome size of B-genome was predicted to be 1.51 Gb with 41,840

Fig. 4.2 Genomics approaches for abiotic stress tolerance in groundnut
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genes by IPGI. This information on genome sequences will accelerate the research
on gene discovery, trait mapping using genomics and molecular breeding tools.

Several cultivars with enhanced yield and resistance traits have been successfully
developed using conventional breeding approaches but it is limited in improving few
selective traits. Such traits can be specifically targeted and improved using molec-
ular breeding approaches. Genomics has the potential to accelerate the processes
of gene discovery, trait dissection and molecular breeding. Hence genomics-assisted
breeding plays key role in the improvement of cultivarsmuch faster than conventional
breeding. For genetic analysis and trait association studies, accurate phenotyping data
for target traits is equally important along with the marker data. The efficiency and
accuracy of candidate gene discovery and trait mapping are positively correlatedwith
the precise trait characterization in diverse genotypes (Varshney et al. 2018).

Genomics, a breakthrough technology serves as a promising tool for decrypting
the stress responsiveness of crop plants with adaptation traits or in identifying under-
lying alleles or genes or QTLs in wild relatives. The stress adaptation of crop plants
can be enhanced by molecular breeding approaches. Next-generation sequencing
technologies and phenotyping platforms have metamorphosed molecular breeding
to genomics-assisted breeding. Evaluation of genetic diversity and development of
genetic linkage map are key steps in marker-assisted breeding programs (Dwivedi
et al. 2003). Also, genomics-assisted breeding is found to have a key role in the
development of climate change resilient crops (Kole et al. 2015; Gangrude et al.
2019).

Marker-assisted backcrossing (MABC) is a preferred molecular breeding
approach for improving elite genotypes that are deficient in one or two impor-
tant traits. Since majority of the economically important traits related to abiotic
stresses are quantitative and governed by several small effect QTLs, an alternative
molecular breeding method called MARS was suggested to boost such dynamic
traits like yield and resistance to abiotic stress (Ribaut and Ragot 2007). Today, in
groundnuts, MABC is used for traits linked to biotic stress tolerance (viz., foliar
diseases, root-knot nematodes) and to improve the oil content for which high pheno-
typic QTL markers have been successfully identified (Simpson et al. 2003; Chu
et al. 2011). Both MABC and MARS require the design of family-based mapping
populations and the discovery of QTLs/markers that are related to their respective
traits. In case of unavailability of family-based mapping population and with poly-
genic traits ‘genomic selection’ (GS) could be an appropriate molecular breeding
approach for crop improvement (Nayak et al. 2017; Chaudhari et al. 2019; Pandey
et al. 2020). The data analysis for linkage and QTL mapping can be carried out
by using software like Mapmaker, AntMap, DGMAP, JoinMap, MadMapper, Map
Manager QTX, MSTMAP, RECORD, THREaDMapper, R/qtl, R/qtl2 packages are
utilized for linkage mapping and QTL analysis.
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4.7 Genetic Engineering Approaches

Transgenic approaches seem to be an alternative solution in addressing the unsolvable
issues regarding any stress for a plant. When the traditional breeding methods cannot
be used to introduce genes, which impart tolerance to the concerned problem, the
transgenic approach can be utilized. This approach allows us to explore and exploit
genes across genepools irrespective of the genus. Several transgenic works have
been made in groundnut in view of obtaining better yield, better seed quality, good
oil quality and composition and various biotic and abiotic stress tolerance traits.
Abiotic stress tolerance traits viz., mercury stress, salinity stress, drought, heat, etc.,
have been evaluated in the field level (Mallikarjuna et al. 2016; Gantait and Mondal
2018). The list of studies related to the use of transgenic approaches to impact
tolerance to abiotic stresses is presented in Table 4.4.

4.8 Role of Bioinformatics as a Tool in Groundnut
Genomics

The scientific advances in the areas ofmicrosensors andmicrofluidics havewitnessed
the development of the next-generation and third-generation sequencing that enabled
high-throughput data generation. Bioinformatics and computational biology have
become an integral part of genomics and proteomics.

In groundnut genomics studies have reached new heights with the availability of
genome sequences of diploid ancestors (Bertioli et al. 2016; Chen et al. 2016). The
genome information have enabled large-scale genome-wide discovery of 515,223
Insertion/deletions (InDels, Vishwakarma et al. 2017) and millions of SSRs (Chen
et al. 2016; Zhao et al. 2017; Luo et al. 2017b). A high-quality genome assembly of
‘Tifrunner’, a cultivated tetraploid genome has been sequenced (Bertioli et al. 2019).
Another reference genome assembly was developed for A. hypogaea var. Shitouqi
and whole-genome resequencing of 52 accessions of groundnut has provided fore-
sight about the legume genomics, karyotypes, polyploidy evolution and the crop
domestication of cultivated groundnut (Zhuang et al. 2019).

The genome sequences, markers and other genomics information has been
deposited in a common crop specific database called as PeanutBase. The key goal
of the PeanutBase is to combine genetic and genomic data to allow for quicker crop
improvement in groundnut. Its aim is to compile, archive andmake available genetic,
genomic and gene expression resources for groundnut and to assist in breeding and
molecular study.

The genetic resources on several groundnut species viz., A. batizocoi, A. carde-
nasii, A. correntina, A. diogoi, A. duranensis, A. ipaensis, A. magna, A. hypogaea,
A. monticola and A. stenosperma is available in the database. It also allows to
perform different BLAST options in the genome of the available three species viz.,
A. duranensis, A. ipaensis and A. hypogaea. The genome visualization platforms like
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GBrowser and JBrowser are integrated in the PeanutBase along with synteny and
navigation tools.

The gene expression atlas, the data has been generated by comparing the RNA
sequencing (RNA-Seq) read counts from 22 A. hypogaea tissues against the A.
ipaensis and A. duranensis genome combined. It provides information on differ-
entially expressed genes from each tissue comparison. Other information such as the
nematode expression experiment and the drought expression experiment was also
documented in this database (Dash et al. 2016). The published genotypic and pheno-
typic data aremade available to the researchers working on groundnut. An interactive
pedigree chart and a platform to compare the genotypes based on the heredity have
also been made available in the database.

Resources for the peanut research community include:

1. PeanutBase: http://peanutbase.org/
2. American Peanut Council (coordinating the Peanut Genomics Initiative) http://

www.peanutsusa.com/
3. American Peanut Research and Education Society (APRES), http://apresinc.

com/
4. Peanut Information Network System (PINS), https://site.caes.uga.edu/pins/)

https://peanuts.caes.uga.edu/
5. IBP—peanut; see trait dictionary https://www.integratedbreeding.net/cropinfor

mation/groundnuts
6. Crop Ontology—peanut http://www.cropontology.org/ontology/CO_337/Gro

undnut
7. CGIARGenerationChallenge Program—peanut, http://www.generationcp.org/

gcp-research/research-initiatives/legumes/legumes-groundnuts
8. PeanutDB, http://bioinfolab.muohio.edu/txid3818v1/

4.9 Conclusions

With effect of climate change, the abiotic stresses pose a major challenge in plant
growth and sustainability of several crop species including groundnut. The groundnut
crop must adapt to several abiotic stresses mainly to high temperature, drought and
salinity. The abiotic stresses not only affect the crop yield by direct physiological
effects but also impart a favourable environment for new pests and diseases. Hence
it is very important to breed for the groundnut varieties tolerant to abiotic stresses
with high productivity to address the food security and malnutrition prevailing in
the developing countries. With the advancement in genomics research and computa-
tional know-hows, the genomics enabled crop improvement is possible in groundnut.
Several efforts have been successful in imparting disease resistance in groundnut
using genomics assisted approaches like MABC, MAS, QTL sequencing, etc. The
studies on abiotic stress tolerance are limited to drought and efforts are being made
for other stresses. With the current climate change scenario, it is necessary to study
the mechanisms involved in abiotic stress tolerance, their cross-talks and improve

http://peanutbase.org/
http://www.peanutsusa.com/
http://apresinc.com/
https://site.caes.uga.edu/pins/
https://peanuts.caes.uga.edu/
https://www.integratedbreeding.net/cropinformation/groundnuts
http://www.cropontology.org/ontology/CO_337/Groundnut
http://www.generationcp.org/gcp-research/research-initiatives/legumes/legumes-groundnuts
http://bioinfolab.muohio.edu/txid3818v1/
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the elite cultivars for better-withstanding capacity. Advanced genomics approaches
like genomic selection and genotype prediction based on artificial intelligence can
be utilized to improve the groundnut crop for complex traits related to abiotic stress
tolerance.
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Chapter 5
Drought Tolerance
in Rapeseed-Mustard: Conventional
and Molecular Approaches

Maharaj Singh, V. V. Singh, Naveen Singh, and Monika

Abstract Rapeseed and mustard group of crops, cultivated in the arid and semi-arid
regions of northern India, face many abiotic stresses especially drought, salinity,
and high temperature. These stresses adversely affect plant growth and productivity.
Among different abiotic stresses, drought stress is considered to be a major imped-
iment in mustard cultivation. It is estimated that 40% of the world’s land area is
affected by drought. Approximately 55% of the agricultural lands in India are culti-
vated under rainfed situations, where mustard cultivation needs an alternative contin-
gency plan. In genus Brassica, a significant inter and intra-specific variability exists
for drought response, which needs to be exploited through genetic options. The pres-
ence of heritable variation in the gene pool of any crop is a prerequisite for defining
a successful breeding program. Genetically diverse landraces, cultivated and/or wild
relatives, evolved in different parts of the world, are the reservoirs of novel gene
constellations required for better adaptation and performance under water deficit
conditions. Availability of a relatively large number of crossable species in Brassicas
and tissue culture mediated approaches provide ample options for incorporating
better water productivity and drought tolerance in future varieties. Deployment of
molecular markers and other biotechnological tools along with breeding approaches
has the potential to improve precision, breeding efficiency and genetic gain through
development of drought-tolerant varieties with higher productive. The correlated
sub-traits and QTLs for responsive physiological traits imparting drought tolerance
have already been identified by many workers. Therefore, it would be possible to
transfer various drought-related traits into other adapted cultivars by involvingmolec-
ular markers linked to identified QTLs. The transgenic approach, on the other hand,
open-up new opportunities in the introgression of the genomic segment(s), which
are responsible for enhancing the capacity of Brassicas to withstand drought, from

V. V. Singh (B) · Monika
ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan 321303, India

M. Singh
ICAR-Indian Institute of Soybean Research, Indore, MP 452001, India

N. Singh
ICAR-Indian Institute of Agricultural Research, New Delhi, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Kole (ed.), Genomic Designing for Abiotic Stress Resistant Oilseed Crops,
https://doi.org/10.1007/978-3-030-90044-1_5

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90044-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-90044-1_5


200 M. Singh et al.

unrelated species to cultivated ones. Advancement in terms of material and informa-
tion and integration of different options and approaches shall help in mitigating the
ill effects of limited water availability and improving rapeseed-mustard productivity
in drought-affected areas.

Keywords Brassicas · Drought tolerance · Photosynthesis ·Water use efficiency ·
Breeding ·Marker-assisted selection · QTL mapping

5.1 Introduction

The crop plants face various abiotic stresses such as temperature (high/low), water
stress (scarce/excess) and soil related salt/nutrient deficiencies and toxicities etc.
The crop may also face one or more than one stresses at a time. High temperature
coupled with drought, a very common phenomenon, adversely affect plant growth
and productivity in the crop growing environments. Among these abiotic stresses,
drought is the most serious problem which affects about 40% of the world’s crop
area and its population. Availability of insufficient fresh water for use is one of the
curse to the mankind, which keep on challenging the habitat, livelihood, stability
and sustainability of the living beings in the past. Drought occurs in regions consis-
tently receiving a below-average or erratic rainfall accompanied by low atmospheric
humidity. Drought can be broadly classified into (i) agricultural drought; (ii) mete-
orological drought; and (iii) hydrological drought. Agricultural drought is the most
important and it occurs during periods of below-average precipitation and above-
normal evaporation, thus, resulting in reduced plant growth and crop productivity.
Limited water availability at the time of sowing reduce total area under cultivation
in many parts of the world.

The genus Brassica harbours more than 100 species and most important among
these are rapeseed (Brassica napus L.), mustard (B. juncea L.), cabbage (B. oler-
acea L.) and turnip rape (B. rapa L.). Species in this genus are being cultivated
for oil, condiments, vegetables, or fodder purposes (Ashraf and McNeilly 2004).
Rapeseed is the main oilseed crop of Europe and North America, while mustard is
mainly cultivated in India, South East Asia and North Africa. Brassicas have a pref-
erence for different agro-ecological conditions, thus, have the potential to grow in the
traditional as well as non-traditional areas with improved and well adapted varieties
with matching management practices. Stability of performance in these conditions
are always challenged by scarcity of irrigation water or untimely rainfall in rainfed
areas. Agro-techniques developed for these regions create a responsive environment
to realize the potential of the cultivars. Rapeseed mustard is an input responsive crop
and has wider plasticity to different climates.

India is producing more than nine million metric tons of rapeseed-mustard seeds
primarily from marginal lands of highly diverse environments by following agro-
ecology specific varieties and cultivation practices. Fifty-five percent of the agricul-
tural lands are rainfed, where cultivation of mustard can be explored with alternative
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contingency plan. Rapeseed-mustard due to its low water requirement (80–240 mm)
fits well in the rainfed cropping systems of the country where crop is sown under
conserved soil moisture. Although this group of crops possess better tolerance to
drought than most of other crops, however, growing environments still demands a
better level of tolerance. Significant inter-specific variation for drought tolerance
exists within Brassica, which needs to be exploited through selection and breeding.
Furthermore, wild and related species are reservoir of many useful agronomic traits
including resistance to drought conditions. Such germplasm are potential sources for
incorporating drought resistance in cultivated species (Warwick 1993).

5.2 Physiological Traits: Response to Drought

Drought is themost severe water stress that causes significant reduction in the growth
and productivity of crop plants (Ludlow and Muchow 1990). Several physiological
and biochemical processes are being altered by drought stress. Some of these alter-
ations in the plants triggers adaptation mechanisms to tolerate drought stress. Degree
of adaptation, enforced by decreased water potential, under drought condition varies
among the species (Save et al. 1995). Drought causesmorphological and biochemical
changes in plants. Under severe conditions it losses plant parts and, thus, causing
functional damage (Sangtarash 2010). Various physiological responses of plants
with their tolerance mechanisms, such as pigment content and stability and high
relative water content are known to determine ability to withstand drought (Clarke
and McCaig 1982). The change in ratio of chlorophyll ‘a’ and ‘b’ and carotenoids
content reported to be changed with onset of drought (Anjum et al. 2003 and Farooq
et al. 2009). The response to drought stress is a function of genotype, intensity of
stress and its duration, weather and growth conditions, and developmental stage of
rapeseed (Robertson and Holland 2004).

5.2.1 Germination and Seedling Growth

Drought delay seed germination, reduces seedling vigour and, consequently poor
seedling establishment. Seed germination under drought conditions is mainly
affected by osmotic stress attributed directed to lower water absorption through
the seed coat and, hence, reduced water uptake by the seeds under stress situations
(Bahrami et al. 2012). Poor germination under water stress due to slower hydrol-
ysis of storage compounds in endosperm or cotyledons and slower rate of transfer
of hydrolysed material to the growing embryo axis was also reported (Ayaz et al.
2000). Further, the decrease in osmotic potential was identified to be main cause in
lowering rate of water absorption, which results in decrease turgidity, cell division
and finally decreased germination and growth (Zaefizadeh et al. 2011).
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5.2.2 Phenology

During plant development, early vigour is an important trait under limited moisture
conditions (Cairns et al. 2009). Faster phenology development under drought is a
desirable trait and can alleviate the drought effects on yield. The degree of tolerance
and trait variability is different from crop to crop. For example, seed size and early
seedling vigour has been identified to be associated with drought tolerance in B.
juncea. Seed size, in this species, was identified to be positively correlated with root
length, root dry weight, root to shoot ratio and vigour index (Singh et al. 2012).
It was also reported that genotypes with larger size results in improved shoot dry
weight (13–43%), biomass (25–57%) and seed yield (12%) as compared to small
seeds. Initial seedling weight, strongly correlated with seed size, emanates in higher
shoot dry weight, biomass and yield (Elliott et al. 2017). Besides the effect of seed
size on plant biomass and yield, larger seed size also ensures the tolerance to flea
beetle in mustard. Hence, initial seedling growth and vigour are highly desirable
characteristic of a cultivar, which affects plant growth and development under stress
conditions.

Water stress drastically reduce the number of branches per plant, number of sili-
quae on the main shoot and the number of seeds per siliqua in drought-sensitive
rapeseed genotypes (Zakirullah et al. 2000; Singh et al. 2002). Moreover, drought
stress at the flowering stage considerably reduces the number of siliquae (Shirani
and Daneshian 2006; Tribay and Renard 1999) and siliquae size, probably due to
shortage of photosynthetic substances created by water stress (Rao and Mendham
1991). Water deficit stress during the flowering stage until the maturity in rape-
seed cultivars cause a reduction in seed yield, biological yield, number of siliquae
per plant, number of seeds per siliqua, 1000-seed weight, oil content, and oil yield
(Nasri et al. 2008; Sinaki et al. 2007; Ali et al. 2009).

5.2.3 Root Architecture

Sufficient information on the role of root traits in drought avoidance among crop
plants is available (Courtois et al. 2009; Maurel et al. 2010; Yamaguchi and Sharp
2010). Since higher root length and root mass facilitates water uptake under drought
conditions, these are considered important trait for any drought-tolerant cultivar
(Turner 1986). An increase in root depth in genotypes of different Brassicas was
studied and it was reported that average root zone depth was 118.2 cm in B. juncea
and 109 cm in B. napus. Higher root depth in B. juncea has lead to higher soil
moisture extraction from deeper soil layers than that in B. napus. Root zone depth
was positively correlated with the number of primary and secondary branches and
the number of pods per plant in B. juncea while no such correlation was found in B.
napus (Singh et al 2003; Singh and Kumar 2005). Increased water use in B. juncea
through elevated plant water status (LWP and RWC) and photosynthetic activity
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helps in stabilizing productivity under water stress. Under drought conditions, a
positive association was also observed between seed yield per plant and seedling
root traits viz., root length, fresh and dry root weight (Cheema and Sadaqat 2004).
Moderate level of stress is known to accelerate root growth through abscisic acid
(ABA) synthesis.

Association of yield related traits with seedling root traits appeared to be more
important than seedling shoot traits, under limited water conditions, established that
roots as amore powerful sink. The root needs to grow longer for exploring deeper soil
layers for water to drive nutrients and photo synthates for their development under
limited water conditions. A well-developed and deep root system will have a higher
capacity to absorb water and minerals and transport them to the growing shoots.
Therefore, selection under water stress conditions, contrary to normal conditions,
should be based on root traits rather than on shoot characteristics.

5.2.4 Plant Water Relation and Osmotic Adjustment (OA)

The physiological and biochemical changes in plants, under drought conditions,
helps in their adaptation under stress by maintaining growth and productivity. Such
established parameters could help in the screening and indirect selection of tolerant
genotypes. Plant recovery from drought stress primarily depends on the capacity
to maintain higher Relative Water Content (RWC) (Blum et al. 1999). A signifi-
cant reduction in dry matter accumulation, chlorophyll content, RWC and, hence,
seed and oil yield under rainfed conditions was also reported (Lallu 2012). Osmotic
adjustment, on the other hand, plays an important role in maintaining turgor in cells
under declining water potential. It also helps in maintaining stomatal conductance
and photosynthesis at lowerwater potential. Turner et al. (2001) reported delayed leaf
senescence and death, reduced flower abortion, improved root growth and increased
water extraction from the soil due to increased osmotic potential. In general, water
stress enforces osmotic dehydration of the plant tissues resulting in altered plant
water relations. Variation in the maintenance of internal plant water status at the time
of flowering was associated with grain yield under drought conditions (Blum 2002).

Leaf water potential (LWP) is an index forwhole-plant water status (Turner 1982).
Under the irrigated condition, transpiration in plants creates a negative LWP resulting
into uptake ofwater from the soil.Whereas under drought conditions, highly negative
LWP results in cavitation and create sturgor loss, and ultimately wilting of the plant.

Reduced relative water contents and osmotic potential, and increase in total green-
ness and proline contents were observed in mustard under different levels of water
stresses (Alikhan et al. 2010). InB. juncea, water deficit decreasesLWPand leafRWC
resulting in greater osmotic adjustment and higher root growth. Such adjustments
help the plants to explore greater soil volume for water availability, thus, resulting in
better yield attributes and seed yield. B. juncea had better osmotic adjustment than
B. napus and a decrease in LWP, RWC and osmotic potential promote root growth in
B. juncea better than in B. napus (Indo-Australia Final Project report 2009). Relative
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water content is closely related to cell size and determine the intricate relationship
between transpiration and water supply to the leaf (Fischer and Wood 1979). The
genotypes that maintain higher LWP and RWC are able to tolerate drought by main-
taining higher water status (Kamoshita et al. 2008). The studies also suggested that
differences for RWC among the genotypes, influenced by the severity of stress, adap-
tation and plantmaturity, can be used as a secondary selection criterion (Lafitte 2002).
In Brassicas, the differences for osmotic adjustment can be associated with produc-
tion under drought stress (Kumar et al. 1984), however, such adjustments are growth
stage dependent. In mustard, genotypes are known to articulate osmotic adjustment
at anthesis but not at seed-filling stage (Ma et al. 2006).

5.2.5 Oxidative Damage

Reactive oxygen species (ROS) are synthesised in the plants as by-products of
various intricate metabolic pathways occurred in different cellular compartments.
The synthesis of ROS in the plants is a regular process occurring in chloroplasts,
mitochondria and peroxisomes. Equilibrium between production and scavenging
of ROS is largely affected by different abiotic stress including drought (Apel and
Hirt 2004). Osmotic stress increases free proline, H2O2 malondialdehyde content
(MDA) and lipoxygenase (LOX) activity in Brassicas (Alam et al. 2013). Variation
in ascorbate content in different Brassica species has been reported. In B. napus, B.
campestris, and B. juncea it decreased, increased, and remained unaltered, respec-
tively, on the onset of water stress. As a consequence of osmotic stress, increase in
glutathione (GSH) and glutathione S-transferase (GST) content and decreased activ-
ities of catalase (CAT) and mono dehydroascorbate reductase (MDHAR) was also
reported in B. juncea (Alam et al. 2014). Furthermore, osmotic stress is responsible
for increase in the glutathione disulfide (GSSG) content and decrease theGSH/GSSG
ratio in all the Brassica species.

5.2.6 Stomatal Behaviour, Gas Exchange Parameters
and Water Use Efficiency

Stomatal behaviour regulates both transpiration rate and net assimilation, which
are crucial for improving crop water use efficiency (WUE). Regulation of stomata
by guard cells determines the amount of CO2 available for photosynthesis and the
amount of water loss through transpiration (Lawson et al. 2014). Speed of stomatal
response to the changed environment, stomatal density and mesophyll conductance
to CO2 have been proposed as important traits for adaptation under drought condi-
tion (Lawson and Blatt 2014; Franks et al. 2015). The stomatal response, and not
the stomatal density, is more likely to enhance WUE (Lawson and Blatt 2014) and
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stomata get close with decreased LWP (Brodribb and Holbrook 2003). It has been
observed that photosynthesis gets supressed when RWC falls around 70% (Lawlor
andCornic 2002). Therefore, the photosynthetic apparatus’s resistance towater stress
is also an important trigger for stomatal closure. Thus, drought reduces photosyn-
thesis, transpiration, water use efficiency and seed yield. Furthermore, photosyn-
thesis, transpiration, water use efficiency (WUE), stomatal conductance, leaf area
index (LAI), specific leaf area (SLA), total dry matter (TDM) and seed yield were
significantly affected by genotypes, environment and intricate relationship between
them. In B. juncea genotypes, photosynthesis and water use efficiency are known to
had a positive and significant correlation with seed yield under both irrigated rainfed
conditions (Singh et al. 2009). ImprovingWUEwould reduce the water requirement
for realizing defined yield potential and, thus, help in saving a considerable amount of
irrigation water. Using the carbon isotope discrimination technique, genotypic vari-
ation for WUE has been reported in peanut (Wright et al. 1988) and mustard (Singh
et al. 2007). A positive and significant association of WUE with total dry matter and
seed yield was also reported under the rainfed condition (Singh et al. 2009). Further-
more, genotypes with thicker leaves have observed greater WUE (Singh et al. 2003).
Transpiration efficiency (TE) also influence the performance of crop under limited
water availability. The ratio of photosynthesis rate to transpiration decreased when
leaf vapour pressure deficit increase as a consequence of stress in rapeseed.

5.2.7 Canopy Temperature

Canopy temperature, directly related to stomatal conductance, is an important deter-
minant of water stress tolerance. The high stomatal conductance favours more
transpiration, thus, maintains the cooler canopy temperature. Canopy temperature
and canopy temperature depression (CTD), under drought stress, are the reliable
indicators of cooling of leaves under hot and humid climates achieved through
transpiration.

On the onset of drought, stomata start closing, transpiration decreases and canopy
temperature rises progressively. The close association of osmotic adjustment with
both stomatal conductance and canopy temperature has been reported in different
Brassica species by Kumar et al. (1984) and Singh et al. (1985). Genotypes with
better osmotic adjustment maintained higher stomatal conductance and transpira-
tional cooling (higher Tc-Ta) as compared to ones with low-osmotic adjustment.
Drought tolerant B. carinata, in general, had cooler leaves as compared with B.
juncea, B. rapa and B. napus. The differences in Tc-Ta were perhaps due to differ-
ences in stomatal conductance (Kumar and Singh 1998). Canopy temperature (CT)
has, thus, established as screening technique for drought stress tolerance. With the
advent of portable infrared thermometers (IRT) this approach has extensively being
used for differentiating drought tolerance and susceptibility among genotypes.Water
stress increases leaf temperature and decreases the difference between canopy and air



206 M. Singh et al.

temperature. Application of potassium decreased the transpirational losses, whereas,
(Tc-Ta) increased irrespective of sampling stages and stress levels (Fanaei et al. 2009).

5.2.8 Photosynthesis, Physiological Parameters and Crop
Productivity

Mustard genotypes carrying gene constellations responsible for governing water
stress related traits/sub-traits imparts drought tolerance and observed little or no
loss in performance under water deficit conditions. As we have already discussed,
in this chapter, that drought is a complex phenomenon and response to which is
determined by large number of morphological, physiological and biochemical sub-
traits. In rapeseed-mustard, osmotic adjustment (Singh et al. 1996), transpirational
cooling (Chaudhary et al. 1989), epicuticular wax on leaves, the difference between
air and canopy temperature, DSI (Singh andChaudhary 2003) can easily differentiate
the tolerant and susceptible types. The physiological responses to drought stress may
vary with developmental stages, and thus, make the screening difficult. The above
mentioned traits are, therefore, shall be used for the phenotyping of drought tolerance
(Tuberosa 2012). At present, measurable traits like water-use efficiency (WUE),
drought susceptibility index (DSI), relative vigour index (RVI) and leaf wilting index
(LWI), are widely used in breeding programmes directed towards development of
drought tolerant cultivars in rapeseed-mustard (Tables 5.1 and 5.2).

Water potential, biomass and DSI can be used as criterion to evaluate the
different Brassica species for relative drought tolerance (Ashraf andMehmood 1990;
Chaunhan et al. 2007). Specific leaf areas, on the other hand observe a significantly
negative association with WUE, Total Dry Matter (TDM) and seed yield under both
irrigated and rainfed conditions. A positive and significant association of photo-
synthesis with WUE, total dry matter and seed yield under rainfed conditions was
reported by Singh and co-workers in 2009. The significantly positive association
of WUE under the rainfed condition with TDM and seed yield. However, transpi-
ration observed a significantly positive relationship with stomatal conductance and
LAI under irrigated condition. Besides the plant phenological traits, water stress
also known to cause increase in proline content, closure of stomata and inhibition of
photosynthesis and hence reduced plant growth and development. Water stress also
induced a significant difference in chlorophyll contents and accumulation of proline
in Brassica species (Gibon et al. 2000). Associations of osmotic adjustment with
stomatal conductance and canopy temperature have also been reported in Brassicas
(Kumar et al. 1984; Singh et al. 1985).

Significant differences were observed among the various canola accessions for
chlorophyll content and proline accumulation (Din et al. 2011). The reduction in
chlorophyll content as a consequence of drought may be due to loss of pigment
by disorganization of thylakoid membranes (Ladjal et al. 2000). This reduction in
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Table 5.1 Traits at different developmental stage in different species under drought regime in
Brassica

Traits or
method

Species Developmental
stage

Traits Drought
regime

References

Seedling
length, SSD,
RVI

B. napus Germination Biological and
biophysical
traits

Petri-dish,
10%
PEG-6000
solution

Yang et al.
(2007)

Drought
susceptibility
Index (DSI)

B. juncea Maturity Seed yield and
yield attributes

Experimental
field

Chauhan
et al. (2007)

Leaf wilting
index (LWI)

B. napus Seedling Biological and
biophysical
traits

Pots in
rain-out
shelter

Li et al.
(2012)

Principal
component,
clustering,
subordinate
function
analysis

B. napus Flowering Morphological
and agronomic
traits

Rain-out
shelter

Zhu et al.
(2011)

Total dry
matter
(TDM), LAI,
RGR, CGR

B. napus Whole stage Physiological
growth indices

Field Moaveni
et al. (2010)

Biomass and
water
potential

B. napus, B.
juncea, B.
camperstris,
B. carinata

Seedling and
vegetative

Biomass, water
potential,
osmotic
potential

Green house Ashraf and
Mehmood
(1990)

chlorophyll content under drought stressmaybe attributed to (i) reduction in synthesis
of the main chlorophyll pigment complexes (Allakhverdiev et al. 2000), (ii) destruc-
tion of chiral macro-aggregates of light-harvesting chlorophyll “a” or “b” pigment-
protein complexes (CHCIIs), which protect the photosynthetic apparatus and/or (iii)
oxidative damage of chloroplast lipids, pigments and proteins (Tambussi et al. 2000;
Guo et al. 2015). The Chla/Chlb ratio numerically increases under moderate stress
while it decreases under severe stress. This is presumably due to faster reduction of
Chla content compared to that of Chlb under moderate stress conditions. Overall, lot
of efforts has been made in finding out and associating physiological sub-traits to
drought tolerance in Brassicas. Such information shall be highly useful in indirect
selection of genotypes/germplasm/populations more efficiently.
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Table 5.2 Formula for calculation of different stress indices

Index Formula

Seedling Survival after Drought (SSD) Calculated in percent

Relative Vigor Index (RVI) (Cs × Ds)/(Ci × Di), where Cs and Ci are lengths of
seedlings under drought-stressed and irrigated
conditions, respectively. Whereas, Ds and Di are
seedling survival (%) under drought and irrigated
conditions, respectively

Drought Susceptibility Index (DSI) (1 − As/Ai)/(1 − Bs/Bi) where, As and Ai are traits
for a given genotype measured under drought-stressed
and irrigated conditions, respectively

Leaf wilting index (LWI) (1 − E/F) × 100, where E is the number of wilted
leaves and F is the total number of leaves

Total Dry Matter (TDM) Total dry matter of 10 plants

Leaf Area Index (LAI) One-side green leaf area per unit ground surface area
in broadleaf canopies

Relative Growth Rate (RGR) (1/W) (dW/dt) so that RGR is increasing in dry mass
(dW) per increase in time (dt) divided by existing
biomass (W)

Crop growth rate (CGR) The crop growth rate is increase in mass over a period
of time

5.3 Breeding for Drought Tolerance

Breeding oilseed Brassicas for tolerance to drought is necessary to develop the culti-
vars with enhanced and sustained production under rainfed conditions. The crop
genotypes must be screened under target environments having an adequate degree
of stresses to quantify the sources of variation. Since this approach is highly depen-
dent of environmental fluctuations, therefore, chances of failure of experiments is
always there. Furthermore, mimicking the natural environmental conditions under
artificial screening is very difficult and cost in-effective. On the other hand, plant
responses to water stress are influenced by time, duration, frequency and intensity
of stress. Plant, soil and climatic conditions are continuously interacting for deter-
mining the response of plants to water deficient conditions. It is difficult to establish-
ment of well-defined and repeatable water stress conditions, thus, making screening
of drought-tolerant genotypes more difficult (Ramirez and Kelly 1998). Therefore,
different selection indicators should be used for the phenotyping of drought toler-
ance (Tuberosa 2012). A number of traits such as leaf wilting index (LWI), water-use
efficiency (WUE), stress tolerance index (STI), drought susceptibility index (DSI)
and relative vigor index (RVI) are widely used in breeding programmes for the
identification of genotypes which produce higher yield under stress conditions.

Drought tolerance is a complex of traits controlled by relatively large number
of genes (Blum 2005). Magnitude of heritable variation, for any quantitative traits,
in the gene pool of a crop is prerequisite for any genetic improvement. Genetic
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diversity is already available in form of well-adapted cultivars/improved germplasm,
landraces, relatives and wild species. Selection for drought tolerance is associated
with early flowering and partitioning of dry matter to reproductive parts. Of course,
selection for earliness is difficult due to its continued fruit-bearing behaviour till
maturity. Dry-matter partitioning in reproductive parts is more prominent in rainfed
than in irrigated condition. Anthesis, harvest index and maturity, on the other hand,
are largely influenced by drought stress and, thus, affects screening of tolerant geno-
type. Biomass production and its partitioning, known to influence yield, is a result of
intricate relationship among hundreds of genes and their interactions with environ-
ment. Rapeseed-mustard genotypes in which pods bearing and their maturity begins
early in the season are considered to be more desirable for cultivation in stress prone
areas. The phenomena of drought escape and drought avoidance are also operative in
Brassicas and a number of mustard varieties viz., RH 725, DRMR 1165-40, DRMR
150-35, Aravali, Geeta, GM-1, PBR 97, Pusa Bahar, Pusa Bold, RH 781, RH 819,
RGN 48, RB 50, Shivani, TM-2, TM-4 and Vaibhav are released for drought affected
areas of India.

5.4 Genes Governing Drought Tolerance

Continuous efforts are being made to elucidate the molecular mechanism of drought
tolerance in plants. A total of 1092 drought-responsive genes have been discovered,
of which 37 are transcription factors. Out of these drought-responsive genes, 28
were related to signal transduction and 61 were from osmo-sensing-responsive path-
ways. Three hundred and eight down-regulated and 248 up-regulated genes were
also reported for drought in Sinapis alba (Dong et al. 2012). Gene ontology (GO)
analysis showed differentially expressed genes involved in cell division, catalytic
and metabolic processes. Many of these genes were involved in response to abscisic
acid (ABA) or water stress, indicating that ABA and water stress-mediated signal
transductions are the probable mechanisms for the root hydrotropic response. With
the availability of a large number of candidate genes imparting drought tolerance,
genetic enhancement for drought tolerance in Brassicas can be achieved through
manipulating their expression. Relatedness of this species to Arabidopsis shall be
further helpful in predicting response of these genes.

With the open access to the massive gene expression data and bioinformatic tool
for predicting key genes involved in water stress genes were confirmed to related
to known biological processes involved in imparting resistance to drought (Liang
et al. 2011). A number of genes (about 500) were identified to be linked to the stress
response and the ABA response (Liang et al. 2011). In another attempt, overex-
pression of an ethylene-responsive factor (ERF) from B. rapa (BrERF4) increased
Arabidopsis resistance to salt and drought stresses. BrERF4 expressionwas triggered
by ethylene or methyl jasmonate but not by ABA or NaCl (Seo et al. 2010), thus,
suggesting that BrERF4 seems to be activated through a network of diverse signaling
pathways in response to these two stresses. Arabidopsis lateral suppressor (LAS)
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homologous gene (BnLAS) from B. napus was cloned and found to be expressing in
the roots, shoot tips, lateral meristems, and flower organs of the plants (Yang et al.
2011). Annexin gene (AnnBn1), isolated and cloned from the drought-tolerant rape-
seed genotype ‘Q2’ (Xiao et al. 2012), encoding Annexins in genus Brassica play
an important role in abiotic stress responses (Jami et al. 2008). With the availability
of tools to design gene based markers and highly efficient and reproducible molec-
ular markers, these identified genes can be edited or staked into improved genetic
backgrounds.

5.5 Deployment of QTLs Through Marker Assisted
Selection

Although conventional breeding was successful in the past century in raising the
yield potential of the crop (Campos et al. 2004; Borlaug and Dowswell 2005; Duvick
2005), however, efforts in development of drought tolerant varieties are sporadic and
largely unsuccessful. At this stage, plant breeders have either little or no knowledge
of the factor responsible for genetic variability for response to drought (Blum 1988;
Borlaug 2007). Little/no information on variability, inheritance and genome segment
governing the trait and linked molecular markers for sub-traits governing drought
tolerancewas themajor impediment in transferring the drought tolerance in improved
genetic backgrounds. Thus, continuous efforts were made to understand or elucidate
genetic bases of phonological characteristics for e.g. stay green trait (Jiang et al. 2004;
Verma et al. 2004); genetic variation for osmotic adjustment (Teulat et al. 1998;Robin
et al. 2003); root growth rate, length and biomass in exploiting soil moisture (Johnson
et al. 2000; Nguyen et al. 2004); reduction in leaf area and reduction in growth period
(Anyia and Herzog 2004); limitation of non-stomatal water loss from leaves (Lafitte
and Courtois 2002), and response of leaf elongation rate to soil moisture (Reymond
et al. 2003).

Since conventional approaches are not efficient anddemands improvement consid-
ering the increasing frequency and severity of drought imposed by continuously
changing climate. For improving sustainability and stability of yield under stress
conditions, the breeder has to adopt cost and time efficient approaches in breeding
programs where the genetic dissection of the quantitative traits is a prerequisite for
controlling the adaptive response of crops to abiotic stress. Response to most of
abiotic stresses is quantitative in nature and are genetically determined by Quan-
titative Trait Loci (QTLs). QTL analysis provided unprecedented opportunities in
finding out chromosome regions that controls variations for different morphological,
physiological, and biochemical changes affecting plant growth under water-stressed
environments. The QTL approach is considered to be a more logical approach that
helps to reveal the genetic as well as physiological components distressing source-
sink relationships under abiotic stress (Miralles and Slafer 2007;Welcker et al. 2007).
Molecular markers led identification of QTLs has helped in establishing their linkage
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with physiological sub-traits imparting drought tolerance (Chinnusamy et al. 2005;
Hussain 2006). Once the QTLs linked to specific sub-traits for drought tolerance are
tagged with molecular markers, their transfer to other genetic backgrounds through
Marker-Assisted Selection (MAS) becomes possible.

Using 72 Double Haplid (DH) lines derived from a cross between drought and
salinity tolerant genotype (TX9425) with a sensitive variety (Franklin) of Brassica.
The QTLs responsible for leaf wilting under drought stress were identified on 2H
and 5H chromosomes. The QTL located on chromosome 2H explained 42% of
phenotypic variation, whereas, the one on chromosome 5H was less affected by
agronomic backgrounds (Fan et al. 2015). Thirty QTLs for water use efficiency
(WUE), indicated by carbon isotope ratios and photosynthetic traits, were mapped
and significant QTLs on 7 linkage groups were reported to explain 3.4–36.6% of
the phenotypic variance (Hall et al. 2005). Further, QTLs for several physiological
characters like photosynthetic capacity, nitrogen content, leaf thickness and stomatal
density were reported at the same location indicating that gene(s) at these loci may
have pleiotropic effects for traits related to water-use and photosynthesis. The QTLs
responsible to govern root pulling force trait had relatively small contributions to the
phenotypic variation, although some of the QTLs were consistent across the years.
In addition to this, a major QTL for days to flowering detected on linkage group 2.
QTLs for plant height are mapped on LG 14 T, however, no stable QTLs for seed
yield under stress is reported in genusBrassica (Mahmood et al. 2005). However, low
constancy and reliability of identified QTLs was also reported using RIL populations
developed using contrasting values for days to 50% flowering, length of root and root
length reduction rate and percentage of fully emerged cotyledons. Furthermore, some
QTLs for root length and response were found overlapped on chromosome 1 and
3 in Arabidopsis thaliana. Signifying that these two loci may contain genes which
regulate root length and tolerance.

With the availability ofmoleculemarkers tightly linked to loci governing response
to drought stress, application of Marker-assisted selection (MAS) has strength to
precisely assemble them to any improved background with high precision. For
achieving this, parents with extreme contrasting sub-traits, especially yield under
stress and drought tolerance, need to be identified and mapped. QTLs linked to
different drought related sub-traits has been identified, however, efforts for valida-
tion of these QTLs in altogether different genetic backgrounds and development
of reliable and linked molecular marker system need to be directed for successful
deployment of MAS in incorporation of drought tolerance. In this endeavour, the
approach of QTL mapping has become crucial to the use of DNA markers in the
improvement of crops species (Ramchiary et al. 2007). MAS potentially helps in
shortening the cycle of selection and improving genetic gains (Moose and Mumm
2008).

Marker-assisted selection is non-destructive, efficient, reliable and stage indepen-
dent method used successfully with identified DNA markers that flank a gene of
interest or any segment of DNA. This approach can be used to gain information on
the genotype of a single plant or a large number of samples at a timewithout exposing
the plant to stress. This technique provides an authoritative tool to shorten breeding
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cycles conducted for enhancement of plant stress tolerance. In past two decades,
development of molecular markers linked to physiological traits has made signifi-
cant headway and is considered as a major breakthrough in crop improvement. Use
of molecular markers has increased rapidly and lead to the development of detailed
molecular linkage maps for many plant species (Jain and Selvaraj 1997), including
rapeseed-mustard (Yangj et al. 2016). Different types of DNAmarkers such as AFLP,
RFLP, SSR andRAPDare being using in rapeseed-mustard breeding programmes for
mapping, tracking of genes/QTLs, trait discovery and diversity analysis etc. (Saranga
et al. 2001; Lionneton et al. 2002; Sharma et al. 2002; Pradhan et al. 2003; Quesada
et al. 2002; Ramchiary et al. 2007; Vinu et al. 2013; Thakur et al. 2018). Various
markers such as random amplified polymorphic DNA, restriction fragment length
polymorphism, amplified fragment length polymorphism and simple sequence repeat
analyses have been used in the marker-assisted selection in various crops of genus
Brassica. With the available information and material, it has now become possible
to integrate MAS actively in breeding programmes directed towards development of
high yielding stress tolerant, including drought tolerant, rapeseed-mustard cultivars
for fragile environments.

5.6 Conclusions and Future Perspective

Most of Brassica cultivars do not perform satisfactorily under field stress condi-
tions due to their sensitivity to drought stress. Physiological and phenotypic traits
associated with drought-tolerant serve as important criterion for identifying stress-
tolerant genotypes and introducing tolerance into cultivated genotypes. Efforts were
made in the past to utilize the intra-specific variability, however, only limited success
is achieved. Alternatively, high degree of drought tolerance has been identified in
wild and weedy relatives, however, their transfer to cultivated germplasm has not
been much successful due to poor fertility in the progenies generated through sexual
hybridization and severe linkage drag. With the availability of tissue culture proce-
dures and protocols and information on location of responsive gene/QTLs and avail-
able linked molecular markers, it is now possible to synthesise the fertile progenies
and tag the genomic segments fromwild resources. Molecular markers have strength
to faster identification of genes or QTLs associated with drought stress tolerance
and their deployment. Furthermore, the recombinant DNA approach promises to
introduce traits from unrelated sources. Engineered genes encoding osmolytes, plant
growth regulators, late embryogenesis abundant proteins, antioxidants, and transcrip-
tion factors introduced into transgenic lines performed well under controlled stress
conditions. However, practical implication of this could not be fully encouraged
and utilized due to regulatory and technical issues. Further, with the discovery of
new cis-genic approaches like CRISPR-(clustered regularly interspaced short palin-
dromic repeats)-Cas gene editing, to modify the function of inhabited gene(s) has
become possible. Use of CRISPR (clustered regularly interspaced short palindromic
repeats)-Cas technology, an effective, novel and holistic approach, shall open up
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new vistas for better understanding about the intricate relationship between drought
related sub-traits and physiological and biochemical functions within and between
different abiotic stresses. In future, this approachhas potential to regulate andmitigate
the ill effects of drought. With the advancement in science and technological break-
throughs it has now become possible to deploy multiple stress tolerance mechanisms
in Brassicas to achieve high levels of tolerance, and thus, stabilize the performance
and improve productivity in stress prone areas.
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Chapter 6
Genomic Designing for Sesame
Resistance to Abiotic Stresses

Xiurong Zhang, Jun You, Hongmei Miao, and Haiyang Zhang

Abstract Abiotic stress conditions result from climate change and the water-supply
shortage affect plant growth and cause extensive losses to agricultural production
worldwide. Sesame, one of the oldest and important oil-yielding crops, is highly
valued for its high quality oil rich in antioxidants with health benefits. We describe
here the abiotic stresses that significantly curtail the productivity of sesame and the
progresses in the genetics and breeding research for abiotic stress tolerance improv-
ment in sesame. The potential of genomics-assisted breeding for improvement ib
abiotic stress tolerance in sesame is also discussed.

Keywords Sesame · Sesamum indicum · Abiotic stresses · Waterlogging ·
Drought · Breeding · QTLs · Genomics-assisted selection

6.1 Introduction

Sesame (SesamumindicumL.), belonging to the genus Sesamum, is one of theworld’s
most ancient oilseed crops with evidence that it has been cultivated in Asia for more
than 5000 years (Bedigian 2004). Sesame is an annual self-pollinating oilseed crop
and widely grown in tropical and subtropical areas mainly for its seed. Sesame seeds
have higher oil content than other oilseed crops, contain approximately 55% oil and
25% protein (Wang et al. 2014). Besides high oil content, sesame is known for its
nutritional and medicinal properties. The seed contains all essential amino acids and
is a good source of unsaturated fatty acids and minerals such as calcium. It is worth
noting that sesame seeds are also rich in antioxidants and bioactive compounds (such
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as sesamum, sesamolin, tocopherol and phytosterols) that are beneficial to human
health (Pathak et al. 2014). Seed of sesame is widely used for edible products like
edible oil, paste, cakes, flour, and confectioneries due to its high nutrients, unique
taste and flavor (Hama 2016). Sesame oil also can be used for pharmaceutical or
industrial uses such as raw material of cosmetics, soap, and lubricants (Myint et al.
2020).

Global sesame production was about 6.55 million tons in 2019, of which about
61%wasproduced inAfrica and34% inAsia (FAO2019). Sudan is theworld’s largest
producer of sesame, followed byMyanmar, India, Tanzania, Nigeria, China, Burkina
Faso, Ethiopia, South Sudan, and Chad. With the improvement of consumers’ health
awareness and the deepening understanding of the benefits of sesame, the global
demand for sesame is growing steadily (Dossa et al. 2017a; Myint et al. 2020).
However, the abiotic stresses such as waterlogging and drought caused by climate
anomalies seriously affect the yield and quality of sesame around the world.

6.2 Reduction in Yield and Quality Due to Abiotic Stresses
in Sesame

6.2.1 Types and Distribution of Abiotic Stresses in Sesame

Sesame can grow in harsh environments and do not need much fertilizer or water.
However, yield varies greatly with growing environment and cultivation practices.
Waterlogging and drought are the main abiotic stresses in sesame. In China, the
production of sesame often suffers from abiotic stresses during the growing season
from June to August. About 20–35% and 10–30% of the planting areas suffer
from waterlogging and drought, respectively. Waterlogging stress mainly occurred
in Henan, Hubei, and Anhui provinces, occasionally a seasonal drought, while
Liaoning, Hebei, Shanxi and Jiangxi were dominated by drought. Both waterlogging
and drought stress occurred in the whole growth stage of sesame, and the frequency
of waterlogging and drought stress occurred in different growth stage was 46% in
seedling stage, 44% in early flowering stage, 52% in full flowering stage, 45% in final
flowering stage, 41% in filling stage and 29% in maturity stage. In Myanmar, 18%
of dryland sesame growers reported that excessive rainfall was the main cause of
reduced dryland sesame production (Myint et al. 2020). Likewise, a short monsoon
season resulting in drought stress also reduces the sesame yield in Myanmar (Myint
and Kyaw 2019). In Ethiopia, sesame production is carried out under rain-fed condi-
tions. Reduced rainfall and prolonged drought caused by climate change are the
major challenges for sesame production in Ethiopia (Girmay 2018).
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6.2.2 Waterlogging and Evaluation of Tolerance in Sesame

Sesame usually grows in rainfed regions. Waterlogging stress is the most common
disaster for sesame (Fig. 6.1). Waterlogging stress leads to damage due to lack
ofoxygen inplant tissues. For sesame, waterlogging inhibits the respiration of root,
reduces the photosynthesis rate, inhibits the growth and development of plants, and
finally cause serious yield losses (Wang et al. 2000; Sun et al. 2008, 2010b;Wei et al.
2013). Continuous waterloggingwould reduce the yield and seed quality (Wang et al.
1999; Sun et al. 2010b; Sarkar et al. 2016; Yuan et al. 2018). Exposed with water-
logging, the yield of sesame could decrease by 44.8%–100% (Ding et al. 2012).
Yuan et al. (2018) found that the plant height of six genotypes was reduced by
19.50%–46.76%, and the zone length of capsule was decreased by 24.02%–67.03%
under 24–60 h waterlogging exposure. After waterlogging stress for 60 h, the plant
yield of some varieties was reduced by 88.2%. On the other hand, the content of
oil, protein, and polysaccharide in the six varieties varied from 51.99%–58.61%,
19.08%–22.05%, to 9.12%–13.68%, respectively. The content of fiber, polysaccha-
ride, and ash also changed significantly in most varieties. For most test varieties
treated under the 36 h waterlogging stress, the acid value and peroxide value of
sesame oil varied significantly.

Morphological observations showed that the waterlogging tolerance was signifi-
cantly correlated with root vigor, pubescence intensity on stem, and seed coat color
(Liu et al. 1993; Wang et al. 2000). In order to evaluate waterlogging tolerance in

Fig. 6.1 Waterlogging stress in sesame field caused by excessive rainfall
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sesame, Sun et al. (2010b) determined the capsule number per plant and seed weight
per plant as the top two indicators for waterlogging tolerance assay from the 13
morphological and agronomic traits. Zhang et al. (2014) applied normal plant rate
and plant survival rate to evaluate the waterlogging tolerance of sesameat flowering
stage.

6.2.3 Drought and Evaluation for Tolerance in Sesame

Sesame originated from the tropical regions and has a certain drought tolerance.
However, drought orwater deficit also inhibits the growth and development of sesame
plants (Fig. 6.2). Drought in the seedling stage leads to restrained growth and devel-
opment of root and leaves, reduced plant height and biomass (Sun et al. 2010a; Harfi
et al. 2016). Drought stress at flowering stage had significant effects on plant height,
capsule size, seed per capsule and seed per plant, which resulted in decreased yield of
sesame (Sun et al. 2010a; Golestani and Pakniyat 2015). Drought generally results in
a reduction of 150–375 kg/ha, with an average reduction rate of about 23%. Serious
drought can result in a 50–80% reduction of production. Eskandari et al. (2009) found
that severe water stress reduced the yield of oil and protein by 38.18 and 10.77%,
respectively, which affected the quality of sesame.

Fig. 6.2 Insufficient rainfall and lack of irrigation induced drought stress in sesame
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Morphological comparison using scanningmicroscope reflected the spefic surface
structure of leaf hairs and the variation among the various sesame varieties (Su et al.
2016). The variation of the structure and secretory components of sesame glandular
hairs can be used to evaluate the drought resistance of sesame. Meanwhile, the
amount of wax on leaves also indicate the tolerance level to drought stress and the
seed yield (coefficient r = 0.466*) (Kim et al. 2007). In order to determine the
ideal indicators for drought resistance in sesame, the effects of drought on growth
and yield, biochemical and physio-morphological indices were evaluated (Sun et al.
2010a; Dossa et al. 2017c; Gholinezhad and Darvishzadeh 2018; Li et al. 2018a).

6.2.4 Strategies to Tackle Abiotic Stresses in Sesame

The counter measures to mitigate abiotic stresses include: (1) Planting varieties with
strong stress resistance, which can increase the yield by 10–15% under stress condi-
tion; (2) use cultivation measures to deal with abiotic stress. To prevent and control
waterlogging, the fields are usually made into “deep furrows and narrow block” or
ridging, and clear the furrows in time for drainage after the rain. Measures such as
mulching, drip irrigation and timely irrigation are often adopted to prevent and control
drought. The application of these cultivation measures can increase production by
10–35%; and (3) sprayingwaterlogging-resistant inducers or drought-resistant agents
on sesame leaves during the growth period, increasing production by 6–8%.

6.3 Traditional Breeding and Sesame Varieties with High
Tolerance to Abiotic Stresses

6.3.1 Use of Morphological Markers

Identification of waterlogging tolerance of sesame was mainly carried out during
germination and flowering stage. The evaluation index of waterlogging tolerance
in germination period was relatively normal at seedling rate. The varieties with
relatively normal seedling rate ≥80.00% was considered as high tolerance, 60.00–
79.99% was tolerance, 40.00–59.99% was moderate tolerance, 20.00–39.99% was
intolerance, and <20.00% was extremely intolerance. The evaluation index of water-
logging tolerance at the full flowering stage was relatively waterlogging-tolerance
index, which was calculated by the number of withering plants, the withering grades
and the number of survivingplants. Thevarietieswith relativewaterlogging-tolerance
index ≥0.8 was considered as high tolerance, 0.6–0.79 was tolerance, 0.4–0.59 was
moderate tolerance, 0.2–0.39 was intolerance, and <0.2 was extremely intolerance.

Drought tolerance of sesame was evaluated in germination stage and adult period.
The evaluation index of drought tolerance at germination stagewas relatively drought
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tolerance index, which was calculated by different drought tolerance grades and
seedling numbers. The varieties with relatively drought tolerance index ≥90.00%
was considered as high tolerance, 80.00–89.99% was tolerance, 70.00–79.99% was
medium tolerance, 50.00–69.99% was intolerance, and <50.00% was extreme intol-
erance. The evaluation index of drought resistance at adult period was drought toler-
ance index, which was calculated by the number of withering plants, the withering
grades and the number of surviving plants. The varieties with drought tolerance index
≥90.00% was considered as high tolerance, 70.00–89.99%, was tolerance, 50.00–
69.99% was medium tolerance, 20.00–49.99% was intolerance, and <20.00% was
extreme intolerance.

6.3.2 Breeding Objectives: Positive and Negative Selection

The positive selection targets in stress tolerance breeding include the survival rate and
yield-related traits of plants under abiotic stress, which directly or indirectly reflects
the resistance of plants to abiotic stress. The negative selection targets are traits
related to quality and disease resistance, as well as yield under normal conditions. In
other words, the improvement of stress tolerance should not bring negative effects
on yield potential, quality and disease resistance.

6.3.3 Classical Breeding Achievements in Yield, Quality,
and Stress Tolerance

The genetic improvement of tolerance of sesame in China began in the 1960s. At first,
it mainly used line breeding methods. In the past decades, since the 1970s, a variety
of breeding methods including conventional hybridization, radiation mutagenesis,
space mutagenesis, line selection, distant hybridization, and the utilization of two-
line heterosis of nuclear male sterility have been applied for sesame breeding. Some
excellent Chinese elite varieties and local varieties, such as Zhongzhi 13, Yuzhi
1, Yiyangbai and Henan 1, showed high weather resistance and met the produc-
tion requirements (Liu et al. 1993; Ding et al. 2012). Under the artificial water-
logging conditions, more representative varieties with high waterlogging tolerance
such as Zhongzhi 5, Zhongzhi 7, Zhongzhi 11, Zhongzhi 13, Zhongzhi 20, Henan
1, Yiyangbai, Yuzhi 4, Zhengzhi 98N09, Zhengzhi 97C01, Zhengzhi 13, Ezhi 1,
Ezhi 6, Jizhi 1, Luozhi 12, Zhuzhi 14, Zhuzhi 18 have been bred or screened. The
drought-resistant varieties are Jinhuangma, Jinzhi 2, and Liaozhi 1 (data not shown,
Xiongrong Zhang). Some sesame cultivars with tolerant to drought stress have been
released in different states of India, such as Usha (OMT–11–6–5), Gouri, Madhavi,
Uma (OMT–11–6–3), and Prachi (ORM 17) (Tripathy et al. 2019). Gholamhoseini
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(2020) identified Sudan 94 as a drought-tolerant genotypewith the best yield stability
based on its agronomic traits under water deficiency.

6.3.4 Limitations of Traditional Breeding and Rationale
for Molecular Breeding

Traditional breeding is a method of breeding new varieties based on phenotypic
selection, which generally refers to selection, mutation and hybridization methods
of breeding. One of the limitations of conventional breeding is that it is not easy to
obtain the desiredmaterial with excellent characters, and the other is that the breeding
cycle is long. Molecular breeding is based on molecular selection technology for the
selection of new varieties, generally refers to molecular marker-assisted breeding.
By using the genotypes of molecular markers closely linked to the target genes (or
traits), molecular marker-assisted breeding can obtain individuals with the target
genes (or traits) in the conventional breeding program through molecular selec-
tion, thus improving the selection efficiency and accelerating the breeding process.
Transgenic breeding uses DNA recombination technology and DNA transfer tech-
nology to introduce the target gene into the recipient organism and obtain transgenic
individuals, so as to realize directional breeding.

6.4 Genetic Diversity Related to Abiotic Stress Tolerance
in Sesame

6.4.1 Phenotype-Based Diversity Analysis

The Sesamum genushas 23 species (IPGRI and NBPGR 2004)and S. indicum is the
well-known and widely cultivated species within this genus. Several wild relatives
of sesame with the adaptive features including hairiness, linear leaves, fleshy roots,
more stomata located on the paraxial plane of leaf, and increased seed setting rate in
dry season, have been proved tolerant to some abiotic stresses (Nimmakayala et al.
2011). For example, S. laciniatum, S. occidentale and S. radiatum were tolerant to
drought stress, and S. malabaricum was reported resistant to waterlogging stress
(Nimmakayala et al. 2011). These wild relatives of sesame are precious resources
for abiotic stress tolerance improvement in sesame.

Beside wild related sesame species, over 25,000 genetic materials of cultivated
sesame are currently preserved in some genebanks worldwide, including Oil Crops
Research Institute, Chinese Academy of Agricultural Sciences in China, National
Agrobiodiversity Center, Rural Development Administration in South Korea, and
NBPGR National Gene Bank in India (Dossa et al. 2017a). Based on germplasm
resources, several studies were performed to analyze the diversity of abiotic stress
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tolerance and screen for tolerance sources in sesame (Boureima et al. 2012, 2016;
Zhang et al. 2014; Liu et al. 2017; Priyadharshini et al. 2018). Ding et al. (2012)
evaluated the waterlogging tolerance of 43 main sesame cultivars from China at full
flowering stage. They found most of the present sesame cultivars were sensitive to
waterlogging stress, and two cultivars, Xiongzhi No. 1 and Zhongzhi No. 13, with
higher percentage of normal plant and with higher harvest yield after waterlogging
stress, respectively, showed relatively higher waterlogging tolerance among these
cultivars. The results also indicated that waterlogging tolerance of the southern
cultivars was higher than those from northern regions. Zhang et al. (2014) screened
for tolerance sources of waterlogging stress in sesame core collections containing
186 landraces, and identified eight waterlogging tolerant germplasm. Liu et al.
(2017) selected 12 sesame germplasmswith high drought-tolerance from 100 sesame
germplasm by a comprehensive evaluation method. Dossa et al. (2019a) analyzed
the drought tolerance of 400 different sesame genotypes from 29 different countries
around the world. Five traits associated with drought tolerance, including survival
rate, stem length, capsule number, wilting level, and seed yield were investigated,
and extensive variations of these traits were observed among the sesame genotypes
under normal and drought stress condition. It was found that the drought resistance
of the genotypes from tropical regions was significantly higher than that from
northern regions. Li et al. (2018b) investigated the tolerance to drought and salinity
of 490 sesame lines at germination stage. Most of the genotypes were moderately
tolerant to drought and salt stresses, while the tolerant genotypes and sensitive ones
were less represented for both stresses. In total, only 27 accessions were commonly
tolerant to drought and salt stresses. Similarly, the correlation of traits between
drought and salt was significantly weak, indicating the responses of different sesame
genotypes to drought and excess salt stresses were quite distinctat germination stage.

6.4.2 Gene Pool of the Sesame Resources with High
Toleranceto Abiotic Stresses

With continuous application of “omics” tools in sesame, more and more abiotic
stress resistance-related gene resources have been discovered. Using whole-genome
RNA-Seq analysis, Wang et al.(2012) identified 13,307 waterlogging-responsive
genes in sesame. Later, a comparative time-course transcriptome analysis between
waterlogging-sensitive and waterlogging-tolerant genotypes were performed to
explore the molecular mechanisms of waterlogging stress response in sesame (Wang
et al. 2016a). A total of 1379 genes, which were significantly differentially expressed
at all time-point during waterlogging stress, were identified as the core genes respon-
sible for the waterlogging response in sesame. Furthermore, 66 genes were identi-
fied as key components for improving waterlogging tolerance of sesame through a
comparative analysis between two distinct genotypes. Recently, a high resolution
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dynamic transcriptome data of two contrasting sesame genotypes during the water-
logging and recovery stages were released (Dossa et al. 2019c). Clustering analysis
of 126 RNA-seq data revealed three stages of sesame seed response to waterlog-
ging stress: early response stage (0–12 h), delayed response stage (12–36 h) and
recovery stage (36–48 h) (Wang et al. 2021a). Further analysis showed that WRKY
and ERF transcription factor family members played an important role in transcrip-
tional regulation of waterlogging-responsive genes during stress. By constructing
a time-series expression regulation network of transcription factors and thier target
genes, several key transcription factors, such as SiRAP2.2 and SiERF056, which
simultaneously regulate the three waterlogging response periods, were discovered
(Wang et al. 2021a). For drought stress, a RNA-seq analysis of sesame root identified
722 genes as core drought-responsesive genes and 61 genes showed different expres-
sion profiles in two sesame cultivars during drought stress (Dossa et al. 2017b). In
another study, transcriptional profiling in sesame leaves of two contrasting genotypes
for drought stress tolerance was characterized, and 684 up-regulated genes as well
as 1346 down-regulated genes in both genotypes were revealed (You et al. 2019).
Zhang et al. (2019a) analyzed the transcriptomic changes in sesame seedlings under
salt stress. A total of 1946 and 1275 genes were identified in all time-point of salt-
sensitive and salt-tolerant genotype, respectively. Notably, 59 genes were specific
and robustly upregulated in salt tolerance genotypes under salt treatment, and were
identified as resources for enhancing salt tolerance. Transcription factors play an
important role in plant adaptation to abiotic stress. A series of TFs, such as ERF,
bZIP,WRKY,MYB,NAC andHD-Zip, have been genome-wide analyzed in sesame,
and several stress-responsiveTFmembers of these family have been identified (Dossa
et al. 2016; Li et al. 2017; Mmadi et al. 2017; Wang et al. 2018; Zhang et al. 2018;
Wei et al. 2019). By a meta-analysis of sesame transcriptome datasets under drought,
salt, waterlogging, and osmotic stresses, Dossa et al. (2019b) identified 543 genes as
core abiotic stress-responsive genes (CARG) that robustly differentially expressed
in all stress conditions. Transcription factor members belong to ERF, bHLH, MYB,
andWRKY families were overrepresented in CARGs, indicating that these TF fami-
lies are the main regulatory factors in response to various abiotic stresses in sesame.
Moreover, overexpression of two transcription factors (SiERF5 and SiNAC104) in
Arabidopsis thaliana increased tolerance to waterlogging, drought, and osmotic
stresses. In another study, a R2-R3 MYB transcription factor, SiMYB75, strongly
induced by drought, ABA, salinityand osmotic stresses was identified in sesame.
Overexpression of SiMYB75in Arabidopsis increased ABA content and ABA sensi-
tivity, as well as improved tolerance to salinity and drought stresses, suggesting that
SiMYB75 modulates abiotic stresses through an ABA-dependent manner (Dossa
et al. 2020). Chowdhury et al. (2017) overexpressed an osmotin-like gene from
Solanum nigrum (SindOLP) in sesame. The transgenic sesame enhanced tolerance
to salinity and drought stresses, as well as the charcoal rot pathogen through the
integrated activation of multiple components of the defense signaling cascade.
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6.5 Molecular Genetics and Breeding for Abiotic Stress
Tolerance in Sesame

6.5.1 Mapping QTLs Related to Stress Tolerance in Sesame

Quantitative trait locus (QTL) mapping based on highdensity linkage maps is an
approach widely used for investigating genetic variants responsible for phenotypic
variation of complex traits. Zhang et al. (2014) mapped quantitative trait loci (QTLs)
linked to waterlogging tolerance in sesame using a population of recombinant inbred
lines derived from a cross between Zhongzhi 13 and Yiyangbai. The length of
constructed genetic map was 592.4 cM, and 70 marker loci were distributed into
15 linkage groups (LGs), with an average distance of 8.46 cM. A total of six QTLs
(qWH09CHL15, qEZ09ZCL13, qEZ10CHL07, qEZ10ZCL07, qWH10CHL09 and
qWH10ZCL09) related to waterlogging tolerance at flowering stage were identified
in sesame (Fig. 6.3), with individual QTLs explaining 5.67–17.19% of the phenotype
variance. Furthermore, ZM428, a simple sequence repeat (SSR)marker tightly linked
with qWH10CHL09 (QTL explaining the most phenotype variance) was confirmed
as an effective molecula rmarker for marker-assisted selection (MAS) to improve
waterlogging tolerance of sesame.

6.5.2 Association of Molecular Markers and Target Genes
Regulating Stress Tolerance in Sesame

Genome-wide association study (GWAS) has certain advantages over traditional
linkage analysis and has been considered as apowerful tool for detecting the genetic
architecture of complex traits in crops. Li et al. (2018b) performed GWAS in 490
diverse sesame accessions to analyze the genetic bases of drought (polyethylene
glycol-induced) and salinity (NaCl-induced) tolerances at germination stage. There
are 120 and 132 significant single nucleotide polymorphisms (SNPs) resolved to
15 and 9 QTLs identified for salinity and drought stresses, respectively. Only two
QTLs were detected under both salinity and drought stress conditions, suggesting
distinct genetic bases of salinity and drought tolerance in sesame. A total of 13
potential drought-tolerant genes and 27 potential salt-tolerant genes were identified
in the QTL region, closely involving in signal transduction, hormone synthesis or ion
sequestration. Dossa et al. (2019a) investigated the genetic basis of sesame drought
tolerance at flowering stage by GWAS based on drought tolerance related traits
(survival rate, stem length, capsule number, wilting level, and yield in control and
stress conditions). Ten stable QTLs (constitutively detected in two years or different
traits) located in four LGs explained more than 40% of phenotypic variation. Two
pleiotropic QTLs harboring known and unreported genes related to drought resis-
tance, including SiSAM, SiABI4, SiGOLS1, SiTTM3, and SiNIMIN1 were reported.
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Fig. 6.3 Mapping of sesame waterlogging tolerance QTL (Zhang et al. 2014)

Moreover, the authors found that a missense mutation in the coding region of SiSAM
may contribute to the natural variation of sesame drought tolerance.

6.6 Genomics-Aided Breeding for Stress ToleranceTraits

Research on genetics and molecular biology of sesame was almost blank before
2010. However, the release of the draft sesame genome (Wang et al. 2014) and the
application of various omics technologies (Wei et al. 2011, 2014b, 2015; Zhang et al.
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2019b) have greatly promoted the research on genetics and functional genomics in
sesame. With these invaluable efforts, a large number of genetic resources included
informative molecular markers (Zhang et al. 2012; Wei et al. 2014a, b; Dossa 2016;
Purru et al. 2018; Kizil et al. 2020), ultra-dense genetic maps (Wang et al. 2016b;
Zhang et al. 2016; Mei et al. 2017), transcriptome assemblies (Wei et al. 2011; Wang
et al. 2012; Dossa et al. 2017b, 2019c; You et al. 2019; Zhang et al. 2020), integrative
online databases (Wang et al. 2015, 2021b; Dossa et al. 2017d; Wei et al. 2017)
etc. were developed in sesame, which provide an important basis for the genetic
improvement of important agronomic traits including abiotic stress resistance in
sesame.

Marker-assisted selection (MAS) is an indirect selection process based on molec-
ular markers associated with the traits of interest, which makes efficient selection
in breeding programs. Although numerous QTLs for traits associated with abiotic
stress tolerancewere identified invarious crops, fewof themwere successfully used in
stress tolerance breeding mainly due to strong genotype-by-environment interaction
(Mishra et al. 2013; Priyadarshan 2019). Some SSR or SNP markers associated with
abiotic stress tolerance related traits were detected in sesame (Zhang et al. 2014;
Li et al. 2018b; Dossa et al. 2019a), but their effectiveness in breeding for stress
tolerance through MAS needs further evaluation. Besides MAS, transgenic tech-
niqueisalsoan efficient way to enhance resistance to abiotic stresses in crop breeding.
Although the protocol of genetic transformation through Agrobacterium in sesame
need to be further optimized, some successful attempts have provided opportunities
for improve abiotic stress tolerance of sesame by transgenic breeding (Yadav et al.
2010; Al-Shafeay et al. 2011; Chowdhury et al. 2014). In a recent study, an exoge-
nous gene from Solanum nigrum was introduced into sesame that enhanced stress
and disease resistance in transgenic plants (Chowdhury et al. 2017).

Global planting area and production of sesame have remarkably increased in
recent years, but the productivity of sesame is still very low mainly due to its poor
yield stability in various adverse conditions. Over the last two decades, substantial
progress has been made in revealing the genetic basis of traits related to abiotic stress
tolerance and molecular mechanisms of tolerance to abiotic stress in sesame. More
importantly, several QTLs and functional genes related to abiotic stress tolerance
were identified and could be used in breeding progress. More genetic sources of
tolerance to abiotic stresses characterized in valuable germplasm resources, and
more applications ofmolecular breeding technique,will help to accelerate the genetic
improvement of abiotic stress tolerance in sesame.
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Chapter 7
Abiotic Stresses in Castor Plant

Xuegui Yin, Jiannong Lu, Akwasi Yeboah, and Yuelian Liu

Abstract Castor, Ricinus communis, is one of the top ten oil crops in the world. It
has been paid more and more attention because of its high economic value. In the
process of growth and development, it is subjected to a variety of abiotic stresses from
the environment. In this chapter, the stresses on castor are discussed in considera-
tion of heat tolerances, cold tolerance, drought tolerance, flooding and submergence
tolerance, nutrient use efficiency, water use efficiency, salt-alkali stress and metal
ion toxicity. It is suggested that more attention should be paid to the physiological
adaptation mechanisms of castor to these stresses.

Keywords Ricinus communis L. · Abiotic atress · Heat tolerance · Cold
tolerance · Drought tolerance · Salinity tolerance ·Metal tolerance

7.1 Introduction

Castor is good at resistance to stresses, and is good at adaptability to soil drought,
salinity, alkalinity andother adverse conditions (Jiao et al. 2019). In the recent years, it
has also been widely used in soil improvement and ecological environment construc-
tion (Zhou et al. 2010; Wang et al. 2019). Therefore, it is necessary to study the
mechanism of abiotic stresses on castor. In base of this, this chapter systematically
summarized the research progress of abiotic stresses on castor. Further, it was put
forward the research prospect, aiming to provide a scientific reference for the theo-
retical research of castor abiotic stress and the application in production practice
(Blum 2017).
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7.2 Root Characters

Castor plant has a well-developed tap root system, with primary root and all forms of
lateral roots. The primary root can reach up to 4 m underground in soil from which
about three to six primary lateral roots spread out. Out of the primary lateral roots,
the secondary, tertiary, and quaternary lateral roots are produced. The secondary root
is mostly found at the soil surface and travels parallel to soil surface, with a little
bend downward, and grows to 90–120 cm. The tertiary roots grow to 30–45 cm long
(Naik 2018). Well-developed lateral roots of the plant can grow up to 2 m in soil.
The development of root hairs and fine root from the primary and lateral roots form
coniform root system (Moshkin 1986). Majority of the plant roots dispense within
50 cm from the surface of the earth and penetrate deeper into the soil during low
rainy seasons. The lateral roots can be visible during moist conditions. Castor root
characters is one of its major tolerance to several abiotic stressors such as drought
and heavy metals (Salihu et al. 2014; Yeboah et al. 2020).

7.3 Heat Tolerance

Plant growth anddevelopment are affected byhigh temperatures.During plant growth
periods, the amount of heat unit needed by the plant depends on the climatic condi-
tions (Hasanuzzaman et al. 2013). Castor bean is a thermophilic crop and its response
to heat stress varies among geographical origins (Severino and Auld 2013a). In the
tropical and subtropical regions, cultivars from the temperate region usually expe-
rience senescence or premature death. The vigorous growth season of castor is in
June to August in China. Once the temperature exceeds 40°C, the flower buds and
flowers will wilt, and the ovary will fall, which will affect the seed setting during
the season (Liu et al. 2005). In Southern part of China, sowing of castor seeds in
September–October extend the growth period with increase capsule formation and
seed yield compared to spring sowing in February–March which is attributed to
the lower temperature, and sowing in July–August leads to varieties with smaller
racemes than normal due to the relatively high temperature (Yin et al. 2019). At
seed filling stage, heat stress directly impedes yield, as increased senescence hinders
seed setting, resulting in weight loss (Severino and Auld 2013a). Exposure to high
temperature hinders several metabolic processes including transpiration, respira-
tion, membrane thermo-stability, and photosynthesis by interfering the electron
transfer mediated by PSII, transforming the fluidity of thylakoid membranes, which
can lead to the ooze of PSII light-harvesting complexes and decrease chlorophyll
(Hasanuzzaman et al. 2013; Wahid et al., 2007). Several mechanisms are involved to
enhance plants growth upon heat stress. Acquired tolerance mechanism also known
as avoidance/acclimation, is where plants survive under lethal temperatures after
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being exposed to mild temperature, and inherited tolerance also known as adapta-
tion mechanism involves the survival of plants under extremely high temperature
(Wahid et al. 2007). Traits including alteration of membrane lipid compositions, leaf
cooling via transpirational loss, and change in leaf orientation are observed to select
avoidance mechanism, and trait for adaptation mechanisms like early maturity that
is related to smaller yield losses which is observed in most crops could be explored
in castor (Lipiec et al. 2013; Wahid et al. 2007).

7.4 Cold Tolerance

Different plant species especially crop cultivars require a specific scope of tempera-
tures for their normal functioning. These temperatures rely not only on the cultivar
but also on the growth stage of a particular cultivar (Sala et al. 2012). A devia-
tion from the optimum range of temperature results in temperature stress, that is, it
disrupts plant performance. Stressors due to low temperature can be classified into
two namely chilling stress and freezing stress (Kolaksazov et al. 2013).

Castor is very susceptible to cold stress at the early growth stage. For this reason,
the slow germination, irregular germination and cold-sensitive germination of the
seed often exist, which is one of the major concerns that has attracted the attention
of many breeders but yet to no avail. Temperature around 14 to 15 °C enhances its
germination, the optimum and maximum temperatures needed by the plant are 31
and 36 °C, respectively (Salihu et al. 2014). Within this scope, the germination rate
and emergence rate increase as the temperature increases. Germination and seedling
emergence delays when grown in soil with low temperature which leads to irregular
stands (Moshkin 1986).

Since the plant is highly sensitive to cold, temperature below −1 °C, capable to
induce frost, may cause severe damage or death to castor seedlings. The plant is
affected by cold when temperature drops to 5ºC or below (Moshkin 1986). On an
average, dailymean temperature of 15 °C enhances the seedling growth and optimum
temperature required for the overall growth period fall between 20 and 28 °C. To
a certain extent, an increase in temperature may reduce the flowering and maturity
period. The pistil and stamen flowers bloom provided the daily mean temperature is
greater than 18 °C (Yin et al. 2019).

In order to increase castor tolerance to cold stress, breeding of cold tolerant culti-
vars and some physiological parameter may be useful to select for resistant varieties.
Parameters including the content of chlorophyll, specific leaf area etc. correlated
genetically to cold stress (Škorić 2016) and these criteria can be studied in castor to
enhance tolerance to cold stress.
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7.5 Drought Tolerance

The ability of plants to grow and survive when faced with scarcity of water resources
can be termed as drought tolerance. Drought is one of the major factors that caused
great famine in the past and could still be a crucial threat to the world food security.
Castor as an industrial crop is tolerant to drought owing to its strong root system
which can penetrate deeper into the soil. The ability of castor to cope in drought area
is beneficial which will help lessen the competition for land with other food crops.

At the early growth stages, castor plant is highly sensitive to water stress. The
callus initiation, chlorophyll content, and nitrate reductase activity in castor reduced
due towater stress, at the cellular level (Manjula et al. 2003). Drought stress increases
the abscisic acid level in the phloem sap as well as the cuticular wax load (Zhong
et al. 1996; Lakshmamma et al. 2009).

One mechanism castor plant adopts to tolerate drought is by osmotic adjustment
which sustainswater relations under osmotic stress.Osmotic adjustment accumulates
a range of osmotically active molecules/ions such as soluble sugars, proline, organic
acids, chloride ions, calcium, andpotassium (Shanker et al. 2014). Theosmotic poten-
tial of the cell becomes minimized under limited water supply in order to pull water
into the cell and helpsmaintain turgor. By osmotic adjustment, the cytoplasmic activ-
ities and organelles occur at a normal pace and it increases plant growth, assimilation,
and photosynthesis activities (Blum 2017). The presence of osmotic adjustments in
the leaves of castor greatly varied with the severity of the effect genotypes. Accumu-
lation of soluble sugars were the highest (61%) in the osmotically active compounds
accumulated by the genotypes, and then the free amino acids (17%) and proline
(12%), and the least with 2.8% for potassium (Babita et al. 2010). The genotypes
with the highest seed yield of osmotic adjustment was 53% which was higher than
those with low osmotic adjustment (Babita et al. 2010).

Under water deficit, the stomatal conductance was maintained and the net CO2

fixation of castor plant was high without being affected. The early stomatal closure
decreased the rate of water loss by transpiration (Sausen and Rosa 2010). Photo-
synthetic contents of castor plants observed under drought stress was protected
and restrictions of photosynthetic pigment were usually due to diffusive resistance
(Sausen and Rosa 2010). Severe drought stress partially reduced the photosynthetic
functions of castor, however, after 24 h of exposure to this stress, the plant fully
regained its normal photosynthetic function. But, the plant was highly sensitive to
limited light (Funk and Zachary 2010).

7.6 Flooding and Submergence Tolerance

Despite water being a requirement for plant growth and development, its excess
can negatively affect their viability and productivity (Fukao et al. 2019). The unpre-
dicted occurrences, localizations, regimes, and global warming have increased floods
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(Wilson et al. 2019). About 10% of the world’s land area is waterlogged and this has
become one of the most crucial restrictions affecting crop production (Patel et al.
2015). In determining plant survival to flood, factors such as type of crop and soil,
growth stage, flooding conditions, and fertility levels are considered (Fukao et al.
2019).

Castor is a non-waterlogging crop and highly responsive to soil anoxia caused by
waterlogging. After the exposure of castor plants to soil flooding for a minimum of
2 h and maximum for 6 h, the amount of abscisic acid produced by flooded roots,
CO2 uptake, leaf extension, hydraulic conductance of root, stomatal conductance,
and transpiration were decreased (Else et al. 2001). Castor beans exposured to soil
flooding after 3 days were completely injuerd and died after 4 days (Severino et al.
2005). Plants left exposed to hypoxic conditions revealed that the amount of starch,
β-amylase activity, protein, and soluble sugars increased as the nitrate reductase
activity and seed yield did reduced (Beltrão et al. 2006; Baldwin and Cossar 2009).

Although it has been concluded by experiments that flooding affects castor growth
and development, the plant response to excessive water ramains unknown, the phys-
iological mechanisms for responses of plant to excessive soil moisture need further
studies.

7.7 Nutrient Use Efficiency

The nutrient use efficiency (NUE) of plants depends on the amount and availability of
nutrient intake, integration, and utilization capacity by the plant (Aouass et al. 2020).
Variation in the use of nutrient among plants might be as a result of the inherent
genetic nature of the germplasm resources, which successively reflect on the effec-
tiveness of nutrient uptake, absorption, production of dry matter, shoot and leaves
translocation efficiency, among others and also affects the interactions between plant
and its environment (Baligar et al. 2001; Baligar and Fageria 2015). Over the years,
the appilication of mineral fertilizers such as nitrogen, phosphorus, and potassium
have been beneficial to increase global food production. However, environmental
stressors can inflict numerous challenges like nutrient uptake, cycling, and avail-
ability which particularly influences plant NUE, thereby decreasing plant growth,
development and consequently the entire yield (Panjabi et al. 2019). The effect of
atmospheric CO2 and high-temperature stress owing to drought also can influence
the seed yield and oil content of castor plant. How these abiotic stresses interact with
each other and how they effect photosynthesis, plant development, and transpiration
are not fully explored in castor (Xue et al. 2017). Among the major nutrients, the
availability of N in most soils worldwide is insufficient and is the basic requirement
for castor growth. The application of 300 kg ha−1 N improved castor yield up to
5939.3 kg ha−1 indicating that the higher N the higher the yield of castor (Xue et al.
2017). Nitrogen plays a vital role in the growth of castor as well as other crops,
it is involved in protein synthesis, chlorophyll, and metabolism and transformation
of energy. Its presence also influences the uptake of some necessary nutrients and
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contribute to the optimalizing partitioning of photosynthates to reproductive organs
increasing the seed (Moro et al. 2012; Torres et al. 2016).

Potassium is involved inmaintaining the turgor and cell osmotic balance of plants.
Hence its presence affects the development of plants system, mostly the root and
shoot system. Indirectly, the availability of potassium is affected by photosynthesis
and transcription because cations are involved in the opening and closing of the stoma
and cellular turgor (Zubillaga et al. 2002; da Costa et al. 2016). In the process of
harvesting of residues, a greater proportion of the potassium remains in the soil with
only a small fraction presents in the seed. In contrast to potassium, the phosphorus
play a more active action during the period of seed filling (Zubillaga et al. 2002).
Phosphorus has been found to help in energy transfer via ATP. It is also a constituent
of nucleotides and phospholipids in cell membranes.

The management of some nutrients has been altered in certain areas and growing
systems due to abiotic stress and the changing climate (Ramesh et al. 2013). Exoge-
nous application of potassium significantly enhanced castor growth, carboxylation
efficiency, carotenoids, chlorophyll, water use efficiency, stomatal conductance, and
transpiration (da Costa et al. 2016). It is presupposed that plants suffering from
drought stress have a increasing demand for potassium since it is desirable to keep
photosynthetic CO2 fixation (Wang et al. 2013).

Despite the fact that castor plant has high elasticity, its structure is needed to be
amended by the presence of nutrients and may affect CO2 assimilation and light
interception, which might not only impair the quality but would also drastically
decrease the seed yield.

The NUE of plants can be improved by the creation of proper genotypic varia-
tion, methods and selection criteria (Baligar et al. 2001). Selection of cultivars with
superior tolerance to suboptimal nutrients levels in soil creates chances of improving
the crop production potential on low nutritional lands across the globe (Fageria et al.
2003). In castor breeding programs, the following aspect must be factored: (i) the
ability to produce close-maximum yields on soil having low nutrients level (ii) iden-
tification of root trait that effectively uses elevated levels of soil nutrients so as to
develop cultivars with high NUE that can advance to the sustainability as well as
environmental protection.

7.8 Water Use Efficiency

The ratio of total carbon (biomass, photosynthesis, or yield) in plants and the total
water loss as a result of transpiration is referred to as water-use efficiency (WUE).
The increase inWUE is one strategy to determine plant response to low or high water
deficiency in soil, which is in the aim of several researchers that focus to improve
plants’ tolerance to drought. WUE is also a measure to access water-use strategies in
plant and adjustability to various climatic conditions (Lima et al. 2013). Castor is an
oilseed plant that requires moderate amount of water and has the capacity to tolerate
drought to a certain extent, and with low water intake has moderate yield reduction
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(Bhunia et al. 2012). This is due to the deep root system which enables it to draw
water from the deeper layers of the soil, and its ability to control water loss from the
leaves in the case of water deficit. Nevertheless, long period of water deficiency as a
result of climate change can adversely influence the growth and seed oil content of
castor plant (Koutroubas et al. 2000).

Water requirements firstly before flowering phase (pre-anthesis) and after flow-
ering (post-anthesis) is crucial to increase castor seed oil yield and limited amount
of water supply results in small leaf area index and withered leaves. Though water
shortage affects the whole developmental phases of castor, the higher yield reduc-
tion takes place in drought during the reproductive phase and at seed filling (Rajala
et al. 2011; Severino and Auld 2013b). Castor water requirements vary from 188 to
1178 mm with negligible influence from the environment and soil type (Patel et al.
1998; Severino and Auld 2013b). Ramanjaneyulu et al. (2013) researched irrigation
regime on castor oil quality and seed yield during post rainy season in India and found
that maximal seed yield (2.13 t ha−1) can be obtained by irrigation. This increase in
yield was due to the increasing number of capsules and racemes but not with seed
weight (Arnaud 1990; Laureti and Marras 1995).

Agronomical practices such as irrigation is an appropriate method to solve water
deficit in plants. Crop rotation, cultivation technology, mulching to decrease soil
evaporation, and weed control are some other practices that can be employed but one
major setback is their high production costs. Changes in plant morphology, harvest
index, leaf hydraulics, root system, and seed properties could solve the issue of water
deficit in plant and increaseWUE. Therefore, breeding of genotypes with highWUE
is most suitable and economical approach to overcome the issue of water deficit
(Lakshmamma et al. 2010; Thatikunta et al. 2016).

The presence of genetic variability is a prerequisite to increase WUE in castor
plant. Evaluation of 64 germplasm lines of castor showed that lines with signifi-
cant positive relationship with total dry matter and root characters had high WUE
(Lakshmamma et al. 2010). Among the three castor hybrids, Pronto demonstrated
as a high WUE hybrid with the highest yield content compare to HD912 and Negus
(Koutroubas et al. 2000). Severino and Auld (Severino and Auld 2013b) studied
six different cultivars of castor under irrigation and rainfed and found that only cv.
BRS Nordestina had the highest yield and tolerance to the amount of water in the
soil. Thatikunta et al. (Thatikunta et al. 2016) found that genotypes including PCS
171, PCS-230, RG-48, Kranthi, and SKI-215 were genotypes with superior extrinsic
and intrinsic WUE among the 35 castor genotypes that were studied. The above
genotypes also had high total dry matter, greening index, and low specific leaf area.

Identification for high WUE genotypes can also be achieved by carbon isotope
discrimination (CID) which is very significant in castor breeding designed at
creating drought-tolerant genotypes. The lowest value for �13C indicates plant
with the highest WUE. This approach gives a long-term measure of WUE unlike
other approach like the measurements of gas exchange based on single leaves.
Stomatal closure decreases CO2 and transpiration in leaves under water-stressed
conditions. This enforces the enzyme ribulose-1, 5-bisphosphate carboxylase
oxygenase (RUBISCO) to discriminate against 12C, which leads to increase in 13C
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(El-Soda et al. 2014). In that same study, genotypes including PCS-330, Kranthi,
PCS-230, and PCS-265 with low discrimination to �13C had the highest capacity
for WUE (Thatikunta et al. 2016).

7.9 Other Abiotic Stresses

7.9.1 Salinity

Salinity, as part of the known abiotic stresses, affects almost 7% of the global land
area, furtherly decreasing the productivity of crop (Li et al. 2012). According to
the FAO report in 2008, it is supposed that the land area affected by salinity is over
830 million hectares. The presence of saline water leads to salinization of almost 403
million hectares and the activities related with the availability of disproportionately
large amount of sodium leads to that of 434 million hectares (FAO 2008). All of
these areas include both salt- and drought-affected sites that are unfit for agricultural
purposes. Since most arable land for farming is adversely flooded by saline water,
the need to sustain food supply for surging population has become a major concern.
In view of this, growing of salt-tolerant crops is imperative. Castor plants can grow
and survive in marginal lands with with great variation of external salinities compare
to other crops (Oleiwi et al. 2016). The exposure of castor plant to 160 mol m−3

NaCl grew perfectly well without affecting the seed yield (Jeschke and Wolf 1988).
At the early stages of development, castor plant is sensitive to Na, therefore high
concentration of salinity stress either by irrigation water or in the soil can inhibit
plant growth and productivity (Pinheiro et al. 2008; Silva et al. 2008). The total
emergence of castor seed may be delayed and reduced when cultivated in increasing
amount of salinity, however significant differences exist between some genotypes
(Silva et al. 2005).

It was observed that the photosynthetic apparatus in castor plants was induced
upon increasing amount of Na salinity, so was the proline accumulation (Li et al.
2010). The threshold of growth and emergence grown for castor in Na salinity is
7.1 dSm−1, and there was no significant change in nutrient uptake and accumulation
in this elevated level of salt stress (Li et al. 2010). At a salinity of 13.6 dS m−1, the
seedling emergence was delayed by 9 days, and the emergence rate was lowered by
50%. If this concentration persists for 11 days, 60% of the seedlings did not survive
(Zhou et al. 2010).

High saline stress muddles up ion balance that leads to osmotic stress and ion
toxicity and consequently affects plant growth and development (Kumar et al. 2013).
The saline stress induces hyperosmotic and hyperionic effects, and disturbs plants’
roots from absorbing water, while their maximum levels become toxic inside the
plant (Kumar et al. 2013). High salt concentration adversely affected the growth
of castor, despite the cationic composition of water. Among the ions studied in the
irrigation water, the plant was highly sensitive to the available Na, and Ca and Mg
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could not mitigate the Na toxic effect during the emergence stage and at the initial
growth of castor (Severino et al. 2014; Lima et al. 2018). Comparatively, the effect
of the cationic nature in the irrigation water on the emergence and growth of castor
was lesser than that of the electrical conductivity, and the negative effects of the
cations in the irrigation water followed a trend of Na+ > Na+ + Ca2+ > Ca2+ > Na+ +
Ca2+ + Mg2+ > K+. The opening of flower buds and time interval for inflorescence
development wasmore influenced by the cationic composition in the irrigationwater,
and plants irrigated with calcic water demonstratedmore of the effects (de Lima et al.
2016).

In plants, elevated levels of saline stress can hinder key biochemical and physio-
logical processes as well as reactive oxygen species hormones (Yan et al. 2017). One
primary hormone responsible for stress responses in plants is gibberellic acid (GA3),
and it has been found that presoaking of castor seed with 250 μM GA3 increases
the seedling growth even in maximum amount of saline stress (Jiao et al. 2019). In
addition, in order to combat salt stress, some evolutionary strategies such as compart-
mentalization, which can maintain low cytosolic balance by excluding sodium, and
secretion are employed by plants (Purty et al. 2008; Zhang et al. 2014b). Hence,
these strategies can be explored in castor to improve its tolerance to saline stress.

7.9.2 Metal Tolerance

Increased industrialization and urbanization have tremendously influenced the
dischsrge of higher concentrations of heavymetals, such as cadmium, lead, and nickel
into the ecosystem. These heavy metals are highly toxic and non-biodegradable,
which can cause much effects to plants and to animals and humans by extension,
which have become a major concern worldwide (Jha et al. 2017). It seems that the
inherent ability for plants to tolerate and accumulate heavy metal in the soil is the
most cost-effective and sustainable remedy.

Castor bann is extensively researched for remediation of metal soils due to its
ability to tolerate heavy metals in contaminated soils, because of its large biomass
content and high heavy metal accumulating capacity (Jha et al. 2017). Mostly, high
accumulation of heavy metals occurs in the roots of castor plant followed by the
stem and the leaves (Bauddh and Singh 2012; Çelik and Akdaş 2019). The high
accumulation of metals in the roots might be due to the formation of metal complexes
which prevent the translocation of the metal from affecting the overall growth and
physiology of the plant (Yeboah et al. 2020). Also, the higher amount of metals
in plant roots suggests their potential role in stabilizing metal soils (Olivares et al.
2013), hence the ability of castor plants to accumulate heavy metal ions highly in
roots proposes it as a potential player in phytostabilization.

The large biomass production of castor plant enhances its tolerance to heavymetal
stress. However, to certain extent, themetal stress tends to decrease the plant biomass.
The intensity and severity of the metal effect on castor biomass is dependent on the
type and concentration of metal stress and duration of metal applied (Bauddh and
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Singh 2012; Olivares et al. 2013; Çelik and Akdaş 2019). A pot experiment that
examined castor tolerance under Cd, Cu, and Zn-contaminated soils for 4 months
showed that the plant had a high biomass level with an average height of 136 cm
(Wang et al. 2016). Comparing to the control, castor biomass in Cd-contaminated
soil (40 mg/kg) and Cu-contaminated soil (200 and 600 mg/kg) increased by.

−22.9%, 116.9% and −92% respectively. Likewise, biomass under Zn-
contaminated soil increased 113.6% and -85% at 200 and 800 mg/kg (Wang et al.
2016). Elevated levels of Cd with 16 mg/L and Pb with 96 mg/L respectively
decreased and increased both root and shoot biomass of castor in a hydroponic
system. It was concluded that in Cd/Pb contaminated soils, castor plant could be
used as an indicator for Cd soil and tolerance for Pb (Costa et al. 2012).

Castor plant employs different mechanisms to tolerate elevated levels of heavy
metal stress in the growth medium. These mechanisms include accumulation of
proline, compartmentalization, production of antioxidant, phytochelatin, and organic
acid secretion (Huang et al. 2016; Nascimento and Marques 2018; Çelik and Akdaş
2019; Ye et al. 2018; Roychowdhury et al. 2019). These mechanisms are effective to
enhance the growth of castor to overcome metal stress.

Under heavy metal stress, different antioxidant systems are involved to enhance
castor tolerance. The presence of GSH (Glutathione), POD (Peroxidase), and SOD
(Superoxide dismutase) activities in the roots and leaf of castor cultivars Zibo No. 8
and Zibo No. 5 promoted its growth upon Cd stress. GSH activity significantly (p <
0.05) increased in the root of Zibo No. 8 than in Zibo No. 5 due to higher amount
of Cd in the growth medium. This shows that, regardless of the high accumulation
of metals in roots, the roots exhibit an effective system that eliminates the metal,
an instance observed by the upregulation of antioxidants in the root of Zibo No. 8
(Zhang et al. 2014a). Activities of APX (Ascorbate peroxidase), CAT (Catalase), and
PDX (Ascorbate peroxidase) enzymes also significantly increased in castor plants
intercropped with alfalfa under Cd stress (Xiong et al. 2018).

Castor could tolerate metal stress by accumulation of proline. Proline, a stress
metabolite, serves as a cell wall plasticizer and osmoprotectant which maintain cell
membrane and preserves plant cells from dehydrating (Singh et al. 2016). Its expres-
sion in castor demonstrates a positive relationship with the stress intensity. Elevated
levels of Pb (up to 400 μM) has no effect on castor due to its proline content (Kiran
and Prasad 2017). There was a rise in osmoprotectant proline in the leaves of castor
when cultivated in Ni-contaminated soil and was concluded that the increase of
proline under Ni stress depends on plant species and concentration of the metal
toxicity (Bauddh and Singh 2015).

Compartmentalization is also one of the effective strategy castor plant exhibits
to combat elevated levels of metal stress without the plant showing any toxic symp-
toms. To achieve detoxification, the plant either transport the metal ions out of the
cell or sequestrate in cell wall or vacuole to limit the metal effect on other sensitive
metabolic activities in the cell. A number of studies have reported metal accumula-
tion in the roots, stems, and leaves of castor in the growth medium (Nascimento and
Marques 2018). Metal transporters such as ABC transporter protein enhances castor
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to sequester metal ions in the subcellular compartment (Pal et al. 2013). The subcel-
lular partitioningwhich includes cellular debris, organelle, heat-stable protein (HSP),
metal-rich granules (MRG), and heat denature proteins (HDP) are classified based on
the differential centrifugation of tissues and this partitioning gives an idea of metal
tolerance in plants (Zhang et al. 2015). Castor plant exposure to 2 and 5 mg/L Cd
was more pronounced in the order of soluble fraction, MRG, and organelles (Zhang
et al. 2015). In addition, low secretion of organic acids from the roots of castor plant
enhanced its growth in heavy metal contaminated soils. Organic acids such as citric
acid and malate acid increased in the roots in Ni-contaminated soil (Bauddh and
Singh 2015), and tartaric acid, low cysteine, and oxalic acid-enhanced its growth
upon Cu stress with 750 μmol/L (Huang et al. 2016). Lastly, high-affinity ligands
such as phytochelatins promote castor plants to alleviate metal stress especially in
Ni-contaminated soil (Adhikari and Kumar 2012).

7.9.3 Photoperiod

Castor originated in low latitudes, and its photoperiod sensitivity varied significantly
among genotypes. The photoperiod of materials from and around the equator is the
most sensitive, which are difficult or not to bloom when introduced to other regions.
But there are photoperiod insensitive types in castor. There are many wild castor
plants with photoperiod insensitivity in South China. Sowing in different periods has
great influence on growth period and yield. Taking South China as an example, many
of the materials seeded in February bloomed in less than a month, and the main ears
were small, however, the spikes on secondary and tertiary branches can grow very
large. Some varieties can blossom if sown in autumn, but can not blossom when
sown in spring. Photoperiod insensitivity is important for variety adaptability, at the
same time, it is very important to achieve high yield through reasonable sowing date
and proper yield structure.

7.10 Traditional Breeding Methods

Castor has relatively good tolerance and adaptability to different abiotic stresses.
High tolerance and strong adaptability can be selected by germplasm resource iden-
tification and screening, systematic breeding and hybrid breeding. For example, the
tolerance and accumulation of castor to heavy metals are significantly different
between different genotypes. Therefore, the tolerance genotype can be screened
under certain concentration stress. The main screening indexes include germination
rate, seedling emergence rate, biomass and accumulation rate. Unfortunately, the
progress of molecular breeding under abiotic stress in castor is slow, with slight
molecular or morphological markers reported. Because the genetic mechanism of
castor biological stress is little known, its genome design and breeding is still in its
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infancy. With the publication of high quality genome sequences and the progress of
genetic research, castor breeding against abiotic stress is about to usher in a bright
future.
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Chapter 8
Designing Genomic Solutions to Enhance
Abiotic Stress Resistance in Flax

Nadeem Khan, Frank M. You, and Sylvie Cloutier

Abstract Flax is a self-pollinated crop widely cultivated for fiber and oilseed
production. Poor rooting system architecture and abiotic stresses such as drought,
extreme temperature, salt, and cadmium accumulation can significantly affect the
growth of flax, resulting in severe production losses. As such, improving the root
system of flax cultivars and increasing their resistance or tolerance to abiotic stresses
are important to achieve sustainable flax production. In recent years, substan-
tial progress has been made towards the generation of flax genomic resources.
Reduced cost of high-throughput sequencing has fueled the large-scale production
of sequence data, allowing an intensification in the genotyping of numerous popula-
tions for quantitative trait locus (QTL)mapping. Advanced genome-wide association
studies (GWAS) combinedwith candidate gene identification through bioinformatics
approachesmake it possible to identifymany large- and small-effect quantitative trait
loci (QTLs) and candidate genes associated with agronomically important traits. To
date, a total of 521 QTLs associated with abiotic stress-related traits have been
identified in flax. These QTLs constitute markers for genomic selection (GS) to
predict breeding values of populations under selection; the goals being to improve
the accuracy and efficiency of selection, reduce cost, and shorten the breeding cycles.
Combined with genetic simulation, this GS strategy offers a new, effective approach
to predict the breeding performance of crosses and evaluate parents based on their
genotype. Here we provide an overview of genomewide QTL mapping, gene family
identification, and outline the potential of a combined GS strategy with genetic
simulation for breeding improvement of abiotic stress tolerance in flax.
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8.1 Introduction

Stress in plants is defined as external conditions that negatively disturb plant growth
and productivity, mainly as a consequence of their sessile nature (Zhu 2016). A plant
must cope with adverse circumstances such as drought, heat, cold, salt, and metal
toxicity. Collectively, these stresses are known as abiotic stresses, and they pose a
great threat to worldwide agricultural productivity (Wang et al. 2004; Wani et al.
2016). Understanding abiotic stress coping mechanisms in plants will lead to the
design of counteracting strategies that ultimately aim to ensure food security and
agricultural sustainability for a growing world population. Global temperatures are
expected to increase approximately 0.2 °C per decade over the next thirty years,
and this rise in temperature is forecasted to affect crop productivity (Bailey-Serres
et al. 2019). Reduction in freshwater availability and shrinking of biodiversity have
already altered crop growth as exemplified by yield reduction in affected regions
(Keesing et al. 2010; Brown et al. 2019). Such changes are not uniformly distributed
around theworld. For instance, the EuropeanMediterranean countries are expected to
experience warmer temperatures with regular drought stress (DS), while temperature
increases in North America is predicted to affect the cycle of the rainy season from
spring to winter (Hopkin 2005). Climatic changes such as heat stress (HS) can lead
to plant death. One study showed that HS and DS caused up to a 6.2% reduction
in cereal production between 2000 and 2007 (Lesk et al. 2016). Paradoxically, as a
result of the global rise in temperature, excessive amounts of rainfall are also a major
threat for crop production. For example, yield losses in maize totaling US$ 10B from
1989 to 2016 were due to heavy rainfall, a figure of comparable magnitude to the
losses caused by extreme drought in the USA (Li et al. 2019b). Salt stress (SS) is also
a growing threat to plant growth because of the increasing amount of salinization
worldwide (Munns and Tester 2008). In high salt concentration, i.e., 200 mM, most
plants are unable to survive (Flowers 2008; Zhou et al. 2016). High salinity leads
to an increase in ionic toxicity, an increase in osmotic pressure, and disturbs growth
from seedling to flowering (Zhao et al. 2010; Feng et al. 2014; Guo et al. 2018).
SS and DS are often associated, thereby compounding the challenge (Ashraf and
Foolad 2007; Slama et al. 2015). Further, heavy metal (HM) stress has also become
a concern worldwide due to extensive industrialization and because it directly and
indirectly affects soil health and cropproductivity (Shahid et al. 2015).HMscan cause
significant yield losses and disturb various physiological and molecular responses
in plants (Panuccio et al. 2009; Hassan et al. 2017). Most HMs, for example zinc,
copper, manganese, cobalt, and nickel, are crucial for various biological processes
(Salla et al. 2011). In contrast, arsenic, lead, cadmium (Cd), among others, are
highly toxic and adversely affect plant growth and productivity (Xiong et al. 2014;
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Pierart et al. 2015). Several studies have identified candidate genes or loci involved
in HM response, particularly for Cd stress (Wu et al. 2015; Chen et al. 2018; Zhao
et al. 2018). Overall, it is imperative to develop stress resistant cultivars for two
main reasons: (i) to respond to the global environmental changes, and (ii) to meet
the global demand for healthy food.

Flax (Linum usitatissimum L.) is a self-pollinated crop that is widely grown for
fiber and oilseed production. It is a tap-rooted plant with a shallow root system that
depends largely on moisture and nutrient resources mostly located in the top 70 cm
of soil (Hocking et al. 1997; Kar et al. 2007; Hall et al. 2016). Drought (Soto-Cerda
et al. 2019, 2020), extreme temperatures (heat and cold stresses) (Cross et al. 2003;
Tchoumtchoua et al. 2019), salt (Hashem et al. 2011; Yu et al. 2014), and mineral
toxicity (Angelova et al. 2004) negatively impact the growth and development of
flax. To facilitate abiotic stress studies, tremendous progress has been made towards
the development of flax genomic resources including the first assembly of the flax
reference genome into 15 pseudomolecules, its BioNano optical map, a consensus
genetic map, and a first-generation haplotype map constructed using 407 diverse
accessions and ~1.7 million single nucleotide polymorphisms (SNPs) (Cloutier et al.
2012; You et al. 2018). These genomic resources lay a solid foundation for flax
improvement, including abiotic stress-related traits. Traditional approaches have not
been successful because these traits are often controlled by many genes. Identifica-
tion of key candidate genes through genomewide association studies (GWAS) and
other genomewide investigations can be capitalized upon to address the problems
associated with abiotic stress tolerance. Several candidate genes have been identified
successfully through GWAS, for root traits and DS tolerance (Sertse et al. 2019;
Soto-Cerda et al. 2019, 2020). These genes can be pyramided into elite genotypes
via marker-assisted selection to produce abiotic stress tolerant cultivars.

This review summarizes the outcomes of genomic studies and their potential uses
in mitigating plants’ responses to abiotic stresses. First, the importance of GWAS
in flax and other species experiencing a variety of abiotic stresses is discussed prior
to addressing genomewide strategies for gene family identification. Recent concepts
and novel strategies applied to abiotic stresses such as genomic selection (GS) and
genetic simulation are outlined in view of their applications in flax breeding. This
knowledge holds potential in genomic studies for abiotic stress tolerance, not only
in flax but also in other economically important species. Candidate gene mining
can and must be performed imminently to benefit the development of abiotic stress
resistant or tolerant cultivars in a timely manner and in view of the potential severe
consequences associated with climate change.

8.2 Genomics for Crop Improvement

Rapid advances in genomics and the availability of inexpensive and reliable
high-throughput sequencing (HTS) technologies make it possible to sequence
billions of fragments of DNA sequences. Nowadays, short- and long-read sequence
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technologies are amenable to a wide range of genomes compared to first-generation
sequencing (Mardis 2008; Amarasinghe et al. 2020). In modern crop genomics,
DNA markers such as SNPs are broadly used because of their high polymorphism,
ubiquitous nature, and low cost. Large sets of genotypes with thousands to millions
of markers are routinely produced in several plant species. Further, whole-genome
resequencing data is gaining popularity and provides insights into structural diversity
(Voss-Fels and Snowdon 2016). The recent development in HTS and the use of
genomic approacheswill provide key strategies to promote efficiency and precision in
flax breeding research including studies of abiotic stress tolerant and sensitive geno-
types. For instance, the reference genome sequence of flax and its first-generation
haplotype map comprising 407 diverse accessions and ~1.7 million SNPs have
recently been updated (You et al. 2018;Wang et al. 2019a). A better understanding of
fundamental molecular information has the potential to improve flax breeding prac-
tices and accuracy towards superior abiotic stress tolerance. Finding the relationship
between genotypic and phenotypic variations using GWAS can provide insights to
assist flax breeding programs in designing the most efficient breeding strategies.
Once improved, genotypes adapted to respond to abiotic stresses like drought, heat,
and metal toxicity for instance, offer not only a practical genetic improvement but
also a sustainable solution towards bridging the food security gap. Currently, yield
improvement or stability of crops exposed to abiotic stresses are major goals of plant
breeding programs in many crops worldwide (Ciesla et al. 2016; Landi et al. 2017).
Generally, accurate and reliable phenotyping is labor-intensive and time-consuming.
The use of high-throughput phenotyping (HTP), GS, and genetic simulation offers
alternative ways of tackling this issue to achieve accuracy and precision in breeding.
Currently, a combination of abiotic stress-related indices, methods, and population
types have been used to identify QTLs and candidate genes including GWAS,
genomewide identification of candidate genes, doubled haploids (DHs), near-
isogenic lines (NILs), bi-parental population, and others (Khadivi-Khub 2014; Xia
et al. 2014; Fu et al. 2017;Khan et al. 2018b; Sukumaran et al. 2018;Wang et al. 2018;
Soto-Cerda et al. 2019). Here wewill discuss studies focusing on the identification of
abiotic stress-related QTL including traits such as root architecture, drought, water
efficiency, heat, cold, salt, and Cd stresses, mainly in flax, but also in other crops.

8.2.1 Genome-Wide Association Studies (GWAS)

GWASaim to establish associations between genotype and phenotype and to quantify
the contribution of genetic variants across the genomes of many individuals to the
measured traits. They are a powerful tool to predict the candidate genes underlying
complex traits (Nicod et al. 2016). GWAS exploit a large set of genetic variants to
identify a subset of variants associated with a trait of interest (Tam et al. 2019). They
can be based onmultiple environments, years, and traits. GWAShave been successful
in identifying QTLs for abiotic stress-related traits including root architecture and
drought tolerance (Sertse et al. 2019; Soto-Cerda et al. 2019, 2020; Liu et al. 2020;
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Yonis et al. 2020), heat and cold tolerances (Chen et al. 2017; Lafarge et al. 2017;
Song et al. 2018; Zhang et al. 2018), and Cd stress (Wu et al. 2015; Chen et al. 2018)
in flax, as well as in many other plant species. These are summarized in Table 8.1.

The QTLs identified in early studies were mostly obtained using the general
linear model (GLM) or the mixed linear model (MLM) which tended to be the main
single-locus methods at the time. The power of GLM and MLM lies in its ability
to detect large effect quantitative trait nucleotides (QTNs) or QTLs compared to
the multi-locus models that were developed later and that are better suited to detect
smaller effect QTNs or QTLs. An example of such model is the multi-locus random-
SNP-effect mixed linear model (mrMLM) (Wang et al. 2016b; He et al. 2019). In
flax, a total of 521 QTLs were identified for root traits and drought stress using a
combination of single- and multi-locus models (Sertse et al. 2019, 2021; Soto-Cerda
et al. 2019, 2020). Multi- and single-locus models are somewhat complementary
and their combined use enables the identification of both small and large effect
QTNs for complex and low heritability traits. A common concern in GWAS is the
consequent difficulties associated with the identification of causal variants and genes
associated with abiotic stress-related traits that have relatively low heritability. Such
candidate genes must be further validated through functional genomic experiments.
This problem may be overcome by increasing the sample size; however, this would
greatly increase the cost of the experiment. The other problem typically associated
with GWAS is the elimination of markers with low allele frequency, i.e., markers
with alleles present in less than 5–10% of the individuals (Hawkesford and Grif-
fiths 2019). Minor alleles can be difficult to ascertain and the statistical power of
detection of association is poor because it is derived from few individuals; hence, the
minor allele frequency cut-offs of 5–10%, commonly used depending on the popu-
lation size, precludes genotype–phenotype associations of these rare alleles. Proper
design is critical in GWAS, including accounting for the genetic structure of the
population to minimize both false-negative and false-positive results. With proper
methodology, GWAS has been applied successfully to identify numerous key genes.
For example, many of the genes commonly used by the US Food and Drug Admin-
istration as molecular targets in several drugs were identified by GWAS, and this
success strongly supports the continuous efforts to improve the methodology and to
consider its application to large-size populations (Altshuler et al. 2008; Hirschhorn
2009). This section will summarize several studies focusing strictly on GWAS for
abiotic stress-related traits including root architecture, water efficiency, and tolerance
to drought, heat, cold, salt, and Cd.

8.2.1.1 Root Characters

The root system is a critical tissue implicated in many abiotic stress responses but
current knowledgeof its role is limited because its phenotyping is challenging.Conse-
quently, improvement of root architecture is a daunting task that must be overcome to
improve plant adaptation against drought stress, water efficiency, nutrient supplies,
and others. Because of the inherent difficulties associated with accurate phenotyping
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of root traits, breeding efforts to date have focused on altering aboveground traits
(Diederichsen et al. 2006; Heller and Byczyńska 2015). Root traits are essential
for water availability as well as nutrient uptakes, making them important for crop
improvement under drought conditions (Narayanan et al. 2014). Flax cultivars with
deeper and denser root systems could access water more efficiently from deeper soil
layers, especially in rain-fed agricultural systems (Dash et al. 2014; Sertse et al.
2019; Soto-Cerda et al. 2019). Flax cultivars with improved drought tolerance are
crucial for producing plants with high fiber yields with minimum adverse impact
on fiber quality (El-Hariri et al. 2005). Therefore, the combined improvement of
aboveground traits and root traits has the potential to produce well-adapted cultivars
for fiber production. Due to the major threats posed by abiotic stresses, efforts are
being made to enhance tolerance in flax. QTNs governing drought tolerance or root
traits have been reported in flax (Sertse et al. 2019; Soto-Cerda et al. 2019, 2020).
Root development is known to play a significant role in plant nutrient uptake, and
consequently, both morphological and physiological traits are important for abiotic
stress tolerance (Jia et al. 2019). Incorporating genetic information on the root archi-
tecture system into flax breeding practices would benefit efforts to enhance resource
efficiency and/or stress tolerance. The recent development of image software tools
and advances in HTP have enabledmore refined studies of root architecture (Furbank
and Tester 2011; Hartmann et al. 2011; Fahlgren et al. 2015). Applications of GWAS
have also enabled the identification of important QTLs for root traits (Hochholdinger
et al. 2018) and some have already been applied in wheat to develop elite genotypes
(Wasson et al. 2014). In flax, a GWAS of 115 accessions grown hydroponically was
phenotyped for 15 root and two shoot traits, as well as for the shoot to root dry weight
ratio (Sertse et al. 2019). This study tested seven different models and identified 228
QTNs for 16 traits. Candidate genes at the QTN loci encoded GRAS transcription
factors, mitogen-activated protein kinases, and auxin-related lateral organ boundary
proteins. Plants rely on a wide range of protective and adaptive mechanisms against
various abiotic stresses. A considerable number of GWAS studies have shown that
individual root traits are important for breeding practices in crops such as cassava
(Yonis et al. 2020), maize (Pace et al. 2015; Wang et al. 2019a), wheat (Li et al.
2019a), and barley (Jia et al. 2019). A GS analysis in cassava suggested that root-
related traits could be predicted with higher accuracy than yield (Yonis et al. 2020).
Indeed, a comprehensive knowledge of the root architecture system is crucial to
understand its direct role in abiotic stress responses such as drought. Both GWAS
andGS offer opportunities to expand our understanding of the roles of roots in abiotic
stress tolerance and hold potential for indirect selection of the difficult-to-phenotype
root system.

8.2.1.2 Drought Stress (DS) and Water Use Efficiency

In plant breeding, DS is considered one of the most significant abiotic stresses that
negatively affects agricultural productivity worldwide (Shao et al. 2009). Drought
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and temperature fluctuations aremajor environmental threats that often lead to exten-
sive socio-economic crises and limit agricultural crop productivity (Zhao and Dai
2015). In the year 2060, more than 50% of the earth’s arable land’s crop productivity
will be limited by water scarcity (Dhankher and Foyer 2018). DS causes significant
reduction not only in yield but also in harvest areas when it is combined with extreme
temperature fluctuations (Lesk et al. 2016). For example, during 1961–2014, the esti-
mated combined effect of drought and temperature stresses in maize, soybean, and
wheat resulted in global yield losses of 11.6, 12.4, and 9.2%, respectively (Matiu et al.
2017). For effective plant growth, development, and productivity, water availability
is crucial, and its deficit can result in lower yields or even plant death. For instance,
flax fiber yield is highly dependent on water availability and can be reduced by as
much as 35–50% when water deficits are experienced during the vegetative stage
as a consequence of the high transpiration rate at this stage (Heller and Byczyńska
2015). So far in flax genetic improvement, few have achieved the development of
drought resistant genotypes (Diederichsen et al. 2006; Qi et al. 2010; Sharma et al.
2012; Asgarinia et al. 2016). Recently, Serste et al. (2021) conducted a GWAS study
for 11 different traits in irrigated (IR) and non-irrigated (NIR) fields for three years.
Six of the 11 traits showed significant variations between IR and NIR conditions.
Seven different GWAS models were used to identify QTNs associated with DS, and
a total of 148 QTNs were found associated with at least one trait or stress index.
Among these QTNs, 16 were deemed to have major effects because they accounted
for more than 15% of the genetic variance. Genotypes such as CN101595, CN98566,
and fiber types fromChina outperformed others under drought conditions and should
be good drought-resistant resources in flax. Similarly, Soto-Cerda et al. (Soto-Cerda
et al. 2020) investigated four agronomic and four root traits under DS and IR condi-
tions using 170,534 SNPs from 418 diverse flax accessions. Two single- and three
multi-locus models identified 118 QTNs for drought-related traits. Candidate genes
were involved in drought-responsive pathways, root, and vascular tissue develop-
ment. Similar types of GWAS studies for drought and waterlogging tolerance have
also been performed in soybean (Liu et al. 2020), chrysanthemum (Su et al. 2019),
maize (Zhang et al. 2013), and barley (Wehner et al. 2016).

Although the identification of QTLs for DS-related traits remains a challenge
because of the polygenic nature of the traits, the magnitude of the genotype by
environment interactions, and consequently the low heritability, the cited studies are
promising. Enhanced research on flax is expected to lead to novel insights towards
a better understanding of drought tolerance. Taken together, these studies should
greatly facilitate marker-assisted breeding not only in flax but also in other species
experiencing drought stress.

8.2.1.3 Heat Stress (HS)

Global average temperatures are predicted to increase by 1–4 °C by the end of the
twenty-first century (Driedonks et al. 2016). This could threaten global crop produc-
tion because these heightened temperatures may cause HS. The development of
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cultivars resistant to such abiotic stress is needed to ensure sustainability in agri-
cultural production under unfavorable environmental conditions (Bita and Gerats
2013). Limited literature is available regarding the impact of HS on flax. One study
reported that HS does not significantly affect flower production but contributes to a
reduction in boll formation and seed set (Cross et al. 2003). To date, no GWAS has
been conducted on HS-related traits in flax; this may be due to the lack of appro-
priate phenotyping methods for such complex traits and the inherent difficulties
associated with controlling the HS conditions in field environments, thereby limiting
measurements to the small number of individuals that could be handled in controlled
environments. Reliable and accurate phenotyping is crucial for successful GWAS
(Powell et al. 2012). This is why GWAS has been successfully applied to many more
biotic and agronomic traits than to abiotic stress-related traits (Soto-Cerda et al. 2018;
You et al. 2018; He et al. 2019). Recently, some studies have revealed the existence
of QTLs associated with HS-related traits that are promising as molecular markers
in breeding programs. GWAS was utilized to delve into heat tolerance in Brassica
napus and identified key candidate genes associated with flowering, male sterility,
pollen abortion, and others (Rahaman et al. 2018). Plants were exposed to different
HS regimes during the flowering stage and examined for traits such as pollen sterility,
sterile/aborted seeds in siliques, and number of siliques on the main raceme. Using
37,539 SNPs and 88 diverse accessions of B. napus, a total of 5, 8, and 7 QTNs were
identified for the above traits, respectively (Rahaman et al. 2018). A number of the
candidate genes proposed were tissue-specific and temporally expressed. A GWAS
of sorghum was conducted to measure HS response for leaf firing (LF) and leaf
blotching (LB) at the vegetative stage (Chen et al. 2017). These traits were assessed
for up to three years at three locations. With 339 accessions and 13,987 SNPs, nine
SNPs were highly associated with LF and five with LB. The candidate gene analysis
showed that most of them were directly linked to known plant stress response genes
including HS. Other similar GWAS as well as meta analyses also identified QTNs
associated with HS tolerance and their underlying candidate genes (Acuña-Galindo
et al. 2015; Lafarge et al. 2017; Maulana et al. 2018).

Refinement of the identified QTL would benefit candidate gene identification by
narrowing down the search tomore focused and relevant regions.Candidate genes can
be used as transgenes to validate their functional role in HS tolerance. Several species
have applied this strategy including Arabidopsis (Yokotani et al. 2008; Khurana et al.
2017), wheat (Zang et al. 2017), yeast, and rice (Qin et al. 2015).

8.2.1.4 Cold Stress (CS)

Cold or low temperature stresses are themost common type of environmental stresses
to cause crop production losses inmany climatic regions, whether temperate, tropical
or subtropical (Sanghera et al. 2011). Prolonged CS disturbs various plant growth
activities and causes growth retardation, late flowering, stem elongation, and other
effects (Patel and Franklin 2009). For instance, losses of up to 26%were observed in
rice exposed to a CS during the reproductive stage (Ye et al. 2009). CSs not only limit
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crop productivity but also determine crops’ geographical distribution (Chinnusamy
et al. 2007; Thakur et al. 2010). The intensity of the CSs can vary from chilling
(0–15 °C) to freezing (sub-zero) (Sanghera et al. 2011).

Under CS, many plants, including grapevine, watermelon, Arabidopsis, and flax,
can produce certain “counteracting” metabolites such as phenolics and flavonoids
(Rivero et al. 2001; Król et al. 2015; Schulz et al. 2016; Tchoumtchoua et al. 2019).
Flax is mostly grown in temperate regions and cultivars vary greatly in their ability to
respond to CS. For instance, winter-type cultivars are generally more resistant to CS
than spring types. The two most abundant phenolic compounds found in winter flax
(methylated C-glycosylflavonoid swertisin and swertiajaponin) were not detected in
spring flax (Tchoumtchoua et al. 2019).

A GWAS analysis performed on 150 accessions of rice landraces using 67,511
SNPs identified 26 SNPs significantly associated with cold tolerance, explaining
from 26 to 33% of the phenotypic variation (Song et al. 2018). This study suggested
that rice landraces are valuable sources of cold tolerance that could be capitalized
upon in breeding. Several other rice GWAS identified between 47 and 67 QTLs
each for CS-related traits (Wang et al. 2016a; Schläppi et al. 2017; Zhang et al.
2018). In maize, 275 QTLs were identified using 49,585 SNPs (Revilla et al. 2016).
Interestingly, 47 flint inbreds harbored the favorable alleles for six major QTLs but
only four dent type inbreds had the favorable alleles from the test crosses.

In summary, several genes have been reported in different species to be associated
with CS, namely in Oryza sativa (Yoon et al. 2016), transgenic tobacco (Jin et al.
2016),Verbena bonariensis (Wang et al. 2020),Arabidopsis thaliana (Dai et al. 2007;
Visconti et al. 2019), transgenic cotton (Hao et al. 2018), B. napus (Savitch et al.
2005), Zoyia japonica (Kim et al. 2020), andHordeum vulgare (Gierczik et al. 2019).
The identification of functional polymorphism(s) in these genes remains a daunting
task. However, further validation of these genes via orthologous gene identification
and GWAS must be conducted for CS-related traits in order to apply them with
confidence in flax breeding.

8.2.1.5 Salt Stress (SS)

SS is another abiotic stress that causes significant reductions in crop productivity
worldwide (Munns and Tester 2008). The annual global losses due to soil salinization
in irrigated areas have been estimated to be upward of 27B US$ (Qadir et al. 2014).
One study estimated that nearly half of the global irrigated land area is affected by soil
salinity, and about one-fifth of the arable lands (Qiao et al. 2014). SSnegatively affects
cropgrowth, indirectly by affecting soilwater potential anddirectly by affectingwater
uptake. The soil water potential decreases with an increase in ion concentration,
thereby effectively reducing water availability to the plant (Medina et al. 2020).
Generally, SS affects plant’s growth in comparable ways to DS and response to both
stresses shares physiological mechanisms such as the closure of stomata, the loss
of turgescence and photosynthetic rate, the development of reactive oxygen species



262 N. Khan et al.

(ROS), an increase of heat-shock proteins (HSPs), and others (Zhu 2000; Chaves
et al. 2008; Rosyara et al. 2016).

Soil salinity is a growing problem in agriculture production worldwide. Several
strategies have been employed to understand flax’s response to SS but these were met
with limited success; they include gene expression analysis, biochemical markers,
and biotechnological applications (Mchughen and Swartz 1984; Mchughen 1987;
El-Beltagi et al. 2008; Hashem et al. 2011; Yu et al. 2014). To identify SS responsive
QTLs in crops, several GWAS have been conducted in rice (Cui et al. 2018; Lekklar
et al. 2019; Liu et al. 2019a), barley (Mwando et al. 2020), soybean (Do et al. 2019),
Arabidopsis (Deolu-Ajayi et al. 2019), and alfalfa (Liu et al. 2019f; Medina et al.
2020). One study evaluated seed-germination-related traits of 350 diverse accessions
of barley grown under control and SS conditions (Mwando et al. 2020). Approxi-
mately 24 K markers were used to identify 19 loci containing 52 significant markers
that were associated with salt tolerance. A combined GWAS and GS approach was
used in alfalfa (Medina et al. 2020). Using three phenotypic data sets and several
GWAS models, 27 SNPs were associated with salt tolerance. Both barley and alfalfa
studies illustrate the potential for GWAS and GS, not only to identify QTLs for salt
tolerance, but also in practical breeding applications.

Several candidate genes have been hypothesized to play a role in salt tolerance in
plants including rice (Tang et al. 2019), Arabidopsis (Gao et al. 2003; Zhang et al.
2019), soybean (Nguyen et al. 2019), wheat (Jiang et al. 2014), potato (Wang et al.
2019b), and rapeseed (Yang et al. 2019). These candidate genes may be useful in
marker-assisted breeding for developing salt resilient genotypes. More insights into
the molecular mechanisms underlying SS response is required because they remain
generally obscure and, this knowledge is nearly completely lacking in flax. Likewise,
the identification by GWAS of genes or loci involved in salt tolerance will provide
additional avenues to address this growing problem.

8.2.1.6 Cadmium Stress (Cd)

Cd is a non-essential toxic metal that is widespread in water, and in the atmosphere
and is found in both plants and animals. Cd in soils may come from various sources
such as industrial emission, the extensive and prolonged use of fertilizers, atmo-
spheric deposition, and public waste (Tanhuanpää et al. 2007; Ismael et al. 2019).
Kidney and bone damage-causing itai-itai disease in Japan has made consumers and
scientists aware of the negative effects of Cd when consumed by humans (Roberts
2014). Soils vary in Cd content due to both natural and anthropogenic processes, with
phosphate fertilizers being one of the main culprit sources of Cd. Cd is toxic to most
of the plant cells, even at low leaf concentrations of 5–10 µg/g (White and Brown
2010), although few species have adapted to Cd toxicity and can tolerate as much
as 100 µg/g (Broadley et al. 2001; Verbruggen et al. 2009; Lux et al. 2010). Flax
seeds bio-accumulate Cd ranging from 0.232–0.716 ppm (Booker 2019). Among
crops grown in Canada, flax and durum wheat are particularly sensitive to soil Cd
stress (Jiao et al. 2004). Cd is not evenly distributed in the plant and its partitioning is
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temporally modulated throughout its life cycle. In flax for example, Cd accumulates
in the following tissues in decreasing order: root > stem > leaf > seed (Angelova
et al. 2004). Cd accumulation is critical in tissues that are consumed because it is
toxic to both plants and animals, including humans (Godt et al. 2006; Clemens et al.
2013). Some of the toxic effects include liver and renal damages, and bone deminer-
alization (Satarug and Moore 2004). Cd uptake by roots can be translocated to the
aboveground organs, including seeds, which can have toxic effects on the consumer
(Li et al. 2017). GWAS analyses of Cd accumulation have been performed in several
species including rapeseed (Chen et al. 2018), bread wheat (Hussain et al. 2020),
rice (Zhao et al. 2018), maize (Zhao et al. 2018), and barley (Wu et al. 2015). Several
genes have also been reported to be involved in Cd tolerance, such as OsMTP1
(Yuan et al. 2012; Das et al. 2016), OsABCG36, AtABCC1, AtABCC2 (Park et al.
2012; Fu et al. 2019), AtHMA3, AtHMA4 (Verret et al. 2004; Morel et al. 2009),
and GmWRKY142 (Cai et al. 2020). To date, little is known about flax’s response at
the molecular level to Cd exposure. The flax orthologues to some of the above Cd-
associated genes have been identified in a genomewide analysis and are suggested as
candidate genes (Khan et al. 2020). Following validation, these genes can eventually
accelerate flax breeding improvement towards the development of low Cd varieties.

Recently, the Cd accumulation in 418 diverse accessions of B. napus was evalu-
ated by GWAS with a total of 19,167 SNPs (Chen et al. 2018). Twenty-five QTLs
identified with 98 SNPs and dispersed on 15 chromosomes described 3.49–7.57% of
the variation associatedwith root Cd concentration. In this study, 32 Cd-related genes
were explored in regions of 0.33–497.97 kb from the QTNs. In maize, 269 acces-
sions were grown in contaminated soil to identify loci controlling Cd accumulation at
the seedling and maturity stages (Zhao et al. 2018). The GWAS identified the major
QTLqLCd2which explained 39.8%of the average phenotypic variance across exper-
iments. The candidate gene analyses from the rapeseed and maize studies included
genes encoding a cadmium-sensitivity protein, a cadmium/zinc-transportingATPase,
and an iron-regulated transporter.

Taken together, such findings will facilitate future studies and could be useful for
flax breeding. Cd content could become an important trade barrier due to its toxicity
and its presence in food and feed is undesirable. In addition, Cd is also toxic to plants
and affects their growth. Thus, developing varieties with low Cd accumulation is
desirable because it is the most economical and environmentally-friendly way to
solve this critical issue.

8.2.2 Identification of Gene Families Associated with Abiotic
Stresses

Genome-wide investigation of the gene families associated with abiotic and other
types of stresses mainly relies on protein–protein sequences frommodel species such
as Arabidopsis, and/or hidden Markov model (HMM) searches (Khan et al. 2018a,
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2018b; Khan et al. 2020). Generally this approach is combined with gene expression
studies and qRT-PCR analyses to verify the functionality of the orthologous genes
(Wu et al. 2017; Khan et al. 2018b). Advanced resources in both genomics and
bioinformatics have facilitated the study of the evolution of plant gene families. The
knowledge developed in one plant species can be leveraged to identify abiotic stress-
related gene families across multiple species based on sequence homology and/or
synteny. Plant genes belonging to families are often clustered. Characterization of an
individual family member is paramount to understanding their functional diversity.
Both sequence homology and synteny could lead to the identification of orthologous
candidate genes in the species of interest. In the last decade, a number of studies
have shown that transcription factors including AP2/ERF (Xie et al. 2019), MYB
(Dubos et al. 2010), NAC (Liu et al. 2019e),WRKY (Jiang et al. 2017), bZIP (Dröge-
Laser et al. 2018), homeobox (Khan et al. 2018b), and bHLH (Sun et al. 2018) play
a vital role in abiotic stress tolerance. Functional genomic studies in many plant
species have also validated candidate genes associated with abiotic stress. Several
examples can be cited such as an improved root architecture system and enhanced
SS activity in rice (RCc3) (Li et al. 2018b), drought and SS tolerance (OsMYB6)
(Tang et al. 2019), heat tolerance (TaMBF1c) (Qin et al. 2015), low temperature
tolerance (CBF1, CBF2, or CBF3) leading to increased freezing tolerance (Gilmour
et al. 2004), and low Cd accumulation (OsHMA3 and OsABCG36) (Sasaki et al.
2014; Fu et al. 2019). Using such strategy, we recently identified nine candidate
genes for Cd accumulation in flax (Khan et al. 2020). These genes hold potential
to assist in solving the Cd toxicity problem in flax. As a whole, these functional
genomics studies have greatly contributed to the identification of genes involved in
abiotic stress and the underlying mechanisms by which plants respond to abiotic
stresses.

GWAS and genome-wide gene family analyses are complementary. Studies have
shown that bioinformatics and functional investigation of candidate genes associated
with abiotic stress were synergistic (Shaban et al. 2018; Agarwal et al. 2019; Yan
et al. 2019; Zhang et al. 2020b). Genome-wide gene family studies usually provide
insights into evolutionary events such as gene duplication rate of evolution, and
an understanding of the phylogenetic relationships (Wu et al. 2017). However, it is
unable to provide a direct association with a phenotypic trait such as is accomplished
by GWAS. In the last decade, the genomic resources available in public databases
have facilitated the evolutionary studies of gene families. As such, publicly available
genomic information has significantly empowered comparative gene family analyses
across species to reveal their functional diversity. The outcome will provide focus to
further the functional genomic characterization of these genes towards the improve-
ment of stress tolerance in crops. A list of gene families which mediate response to
abiotic stress tolerance in several species is provided (Table 8.2). Finding andmining
candidate genes that are involved in abiotic stress response is an important step to
unraveling and manipulating stress tolerance in flax.
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Table 8.2 List of abiotic stress-related gene families and their functions

Abiotic stress-related gene
families

Functions References

Lipoxygenase gene family Biotic and abiotic stresses Shaban et al. (2018)

Basic leucine zipper (bZIP)
transcription factor

Heat, salinity, and drought Agarwal et al. (2019)

WRKY transcription factors Multiple abiotic stresses Yan et al. (2019)

Mitogen-activated protein kinase
kinase kinases (MAPKKKs)

Drought stress Zhang et al. (2020b)

Superoxide dismutase (SOD) Drought, heat, cold and salinity Verma et al. (2019)

Apetala2/Ethylene responsive
factor (AP2/ERF) transcription
factor

Hormone and abiotic stresses Xie et al. (2019)

MYB transcription factors Biotic and abiotic stresses Dubos et al. (2010)

NAC transcription factor Abiotic stress Liu et al. (2019e)

Basic helix-loop-helix protein
(bHLH) transcription factor

Drought, salt, and cold stress Sun et al. (2018)

Sugars will eventually be
exported transporters (SWEET)

Biotic and abiotic stresses Miao et al. (2017)

Heat shock proteins (HSPs) Biotic and abiotic stresses Schöffl et al. (1998)

Phospholipase D Gene Abiotic stress Lu et al. (2019)

SQUAMOSA promoter binding
protein (SBP)-box gene family

Abiotic stress Zhang et al. (2020a)

Late embryogenesis abundant
(LEA)

Abiotic stress Liu et al. (2019c)

Protein phosphatases (PP2C) Abiotic stress Khan et al. (2019)

ATP-binding cassette (ABC) Biotic and abiotic stresses Khan et al. (2020)

Heavy metal ATPase (HMA) Metals toxicity Li et al. (2015)

Cation diffusion facilitator
(CDF)

Metal ion uptake and transport in
plants

Li et al. (2018c)

Plant metal tolerance proteins
(MTPs)

Metals toxicity Liu et al. (2019d)

8.2.3 Novel Breeding Strategies Using Genomic Selection
(GS) and Genetic Simulation

GSand genetic simulation have recently emerged as promising and effective breeding
strategies. GS is designed to generate genetic estimated breeding values (GEBVs)
for many traits with the objectives of high prediction accuracy, low cost and
reduced breeding cycles. Similarly, both GS and genetic simulation hold potential in
improving the effectiveness in cross prediction and selection of breeding parents. In
flax breeding programs, crosses are made to generate segregating populations with
favorable genetic variation; however, prediction of cross performance and selection
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of parents remain challenging. The application of GS and genetic simulation can
help address some of these challenges due to the remarkable increase in the amount
of high quality genomic sequence data and the decline in the cost of high-throughput
sequencing of the last several years (Bevan et al. 2017). Here, we will outline the
potential of their applications in flax breeding programs.

8.2.3.1 Genomic Selection (GS)

GS is a type of marker-assisted selection (MAS) that is based either on highly dense
random genomewide markers or on the QTLs identified from GWAS associated
with the target trait(s). The main purpose of GS is to improve selection efficiency,
precision, and decision-making by predicting GEBVs in breeding programs. GS
takes advantage of a dense marker saturation or QTLs to predict phenotypes solely
based on genotypic information. The initial concept of GS was introduced in 2001
(Meuwissen et al. 2001). Since then, remarkable progress has been made with this
approach for improvement of biotic, abiotic and agronomic associated traits in species
such as flax (Wang et al. 2019a; Lan et al. 2020), wheat (Bassi et al. 2016), maize
(Albrecht et al. 2011), and soybean (Matei et al. 2018) to name a few. For abiotic
stress-related traits, GS has been applied to drought (Shikha et al. 2017; Li et al.
2018a; Velazco et al. 2019; Wang et al. 2019c), salt (Medina et al. 2020), heat (Yuan
et al. 2018), and cold stresses (Jähne et al. 2019).

GS success hinges on two main elements: statistical models and the choice of
markers. Many GS models have been developed and tested for multiple traits with
inconsistent success rates as evaluated based on their accuracy and the genetic gains
made from selection. For example, seven different GS models were tested for agro-
nomic traits in maize (Shikha et al. 2017). Of those, Bayes B had a higher prediction
accuracy than random regression (RR), least absolute shrinkage and selection oper-
ator (LASSO), Elastic net (EN), Bayes A, random forest (RF), and reproducing
kernel hilbert space (RKHS). Several additional studies investigating the potential
for GS models to predict abiotic stress-related traits including DS, SS, HS, and CS
are summarized (Table 8.3). The overall accuracy and performance of the GSmodels
depend on several factors such as the model performance, the complexity and heri-
tability of the traits, the density of markers, the total number of SNPs, and marker
selection (Desta andOrtiz 2014).At themoment, the ridge regression best linear unbi-
ased prediction (RR-BLUP)model is commonly used to predict abiotic stress-related
traits and it often outperformed most other models (Table 8.3). However, it is quite
possible that other models would prove superior if the choice of a different subset of
markers or other experimental designs had been used. For instance, the machine
learning methods such as support vector machine (SVM) and RF outperformed
RR-BLUP for yield in alfalfa (Medina et al. 2020).

Selection of markers has been proven to be a critical factor for improving predic-
tion accuracy of GEBVs. For instance, GS models based on QTLs as fixed effects
consistently outperformed random SNP selection in flax (Wang et al. 2019a; Lan
et al. 2020). TheseQTLswere identified using several single- andmulti-locus GWAS
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Table 8.3 Models commonly used for genomic selection to predict abiotic stress-related traits in
crops

Models tested Best model Trait Species References

RR, LASSO, EN, Bayes A,
Bayes B, RF, RKHS

Bayes B DS Maize Shikha et al. (2017)

RR-BLUP RR-BLUP DS Maize Wang et al. (2019c)

GBLUP GBLUP DS Maize Dias et al. (2018)

RR-BLUP RR-BLUP DS & HS Maize Yuan et al. (2018)

RKHS, GBLUP RKHS DS Rice Bhandari et al. (2019)

RR-BLUP, BRR, LASSO RR-BLUP DS Chickpea Li et al. (2018a)

GBLUP GBLUP DS Sorghum Velazco et al. (2019)

RR-BLUP RR-BLUP CS Soybean Jähne et al. (2019)

RR-BLUP, Bayes A, Bayes B,
Bayes C, BRR, LASSO, SVM,
RF

SVM & RF SS Alfalfa Medina et al. (2020)

RR: Ridge Regression; LASSO: Least Absolute Shrinkage and Selection Operator; EN: Elastic
Net, RKHS: Reproducing Kernel Hilbert Space; RF: Random Forest; RR-BLUP: Ridge-Regression
Best Linear Unbiased Prediction; BRR: Bayesian Ridge Regression; GBLUP: Genomic Best Linear
Unbiased Prediction; SVM: Support VectorMachine; DS: Drought stress; HS: Heat stress; CS: Cold
stress; SS: Salt stress

statistical methods. The GS results using these QTLs also demonstrate the robust-
ness and reliability of the QTLs identified. The high accuracy obtained with the
QTLs is hypothesized to be a consequence of the reduction in background noises
through the removal of unrelated markers. This noise may arise from genomewide
unrelated markers and through imputation (Rutkoski et al. 2012). Generally, using
QTLs is more beneficial for improving GS accuracy than using genomewide random
SNPs. (Deshmukh et al. 2014). The combined use of single- and multi-locus GWAS
models for QTL identification that serves as marker input for testing GS models is
recommended to achieve high accuracy and consistency in GEBVs (Lan et al. 2020)
(Fig. 8.1).

GWAS in flax have already identified a large number of QTNs associated with
root characteristics and drought tolerance traits (Sertse et al. 2019, 2021; Soto-Cerda
et al. 2019, 2020). However, no GS studies have been reported for these traits to date.
With the current increased frequency and intensity of occurrence of these stresses,
the popularity of these methods is predicted to grow in response to the need to create
crops that are better able to withstand these stresses. The GS approach is anticipated
to facilitate future abiotic stress studies in flax specifically for drought, Cd toxicity,
and other important traits.
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Fig. 8.1 A comprehensive approach for genomic selection (GS) based on GWAS-derived QTL as
markers for flax breeding

8.2.3.2 Strategies for Cross Prediction and Parent Selection

The fundamental objective of a breeding program is to develop superior cultivars
for specific target traits under a wide range of environmental conditions. Traditional
breeding is time consuming and largely relies on the breeder’s experience and plant
phenotypes, often producing undesirable results such as inaccurate predictions and
low efficiency. Cross-breeding using single crosses, double crosses or backcrosses,
followed by offspring selection such as pedigree selection and single-seed descent,
is the most used method in plant breeding. Parent evaluation and selection are the
first step of cross-breeding. To broaden the narrow genetic base of Canadian flax
cultivars (You et al. 2016), a core collection of 407 accessions has been compiled
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from the world flax collections (Diederichsen et al. 2013; Soto-Cerda et al. 2013).
These accessions have been phenotypically evaluated in multiple environments for
several years and at multiple locations (You et al. 2017). Although breeders can
select genotypes with superior phenotypes as parents for crossing, the accuracy and
efficiency of parent selection are impeded by unknown genetic structures and allelic
make-up of the potential parents. Making crosses using all accessions of the core
collection is impractical due to the extensive resources that would be required. The
limited number of crosses possible narrows the probability to recover the best recom-
binants. Genetic simulation can enrich the cross-breeding strategy through effective
cross prediction, best parent selection and the generation of hundreds to thousands
of virtual crosses in a short time. Genetic simulation is applied to breeding whereby
genomic data of parents are used to predict the traits of interest and then virtual
crosses and their progenies are generated using computer tools. The use of computer
simulation tools can assist breeding schemes and allow the exploration of a wide
range of hypotheses in a limited time for complex traits at a low cost. Recently, with
the development of extensive genomic datasets and through the use of computer
simulations, high accuracy in virtual cross-breeding in a limited time have been
made possible. These advances promise to greatly facilitate selection of suitable
breeding schemes, allowing enhanced prediction in the selection for complex traits,
and increasing efficiency in cross-breeding. As genome sequencing grows to bemore
cost-effective, genetic simulation becomes a useful approach to save time and solve
the problems that cannot easily be solved via conventional breeding approaches.

In cross-breeding, parents are crossed to generate segregating populations from
which a superior inbred progeny is selected.Many crosses aremade and the value of a
particular cross depends on the performance of its best progeny and its mean progeny
performance (population mean). A critical issue in a breeding program is the need to
evaluate these crosses cost-effectively and efficiently. Thus, the important elements
to consider in using genetic simulation include (i) phenotyping and genotyping of
potential parents as a training population for the development of GS models and
simulation of a progeny population for each cross based on genomic data of parents,
and (ii) the application of the developedGSmodels to predict GEBVs of all progenies
of a cross. The cross performance is mainly evaluated according to usefulness criteria
that is a function of progeny population mean and genetic variance (Zhong and
Jannink 2007) (Fig. 8.2). This strategy will ensure the best progeny crosses, the
most effective breeding methods, and high breeding accuracy and efficiency in flax
breeding. Such strategy has been used to predict crosses in crops such as wheat (Lado
et al. 2017; Yao et al. 2018), and maize (Bernardo 2015) as well as in theoretical
studies (Zhong and Jannink 2007).

Software Tools and Their Applications in Flax Breeding Simulation

Numerous tools are available to simulate breeding schemes. Some of the recent tools
for breeding scheme simulation are listed in Table 8.4. The pSBVB is a simulation
tool for complex phenotypic traits and to compute the genomic matrix relationships
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Fig. 8.2 A strategy of cross prediction and parent selection using genomic selection and genetic
simulation

among polyploids (Zingaretti et al. 2019). PedigreeSim is used for both diploid and
tetraploid species and predicts pedigrees and cross progeny (Voorrips andMaliepaard
2012). Similarly, the ADAM-plant and QuLinePlus models can predict breeding
outcomes of cross- and self-pollinated crops (Hoyos-Villegas et al. 2019; Liu et al.
2019b). TheADAM-plant simulationworks for predicting self-pollinated crop plants
(Liu et al. 2019b) and it also has the ability to trace significant genetic changes in a set
of populations under various scenarios. Simulation of progeny populations requires
recombination rates between all adjacent markers, and MareyMap is a useful tool to
estimate them through a consensus genetic map as a training data set (Siberchicot
et al. 2017).

Cross Prediction and Parent Evaluation in Flax Breeding

Recently, we performed cross prediction and parent evaluation through GS and
genetic simulation for five traits including seed yield (YLD), days tomaturity (DTM),
oil content (OIL), linolenic acid content (LIN), and powdery mildew resistance (PM)
in flax (unpublished data). A total of 290 flax linseed accessions were evaluated,
generating 4096 (290 × 289 /2) possible virtual single crosses with a partial diallel
cross scheme. Ten GS models were evaluated, and the RR-BLUP model displayed



8 Designing Genomic Solutions to Enhance … 271

Table 8.4 Main features of different phenotypic-genotypic simulation models

Model Feature References

pSBVB Simulate any number of complex
phenotypes

Zingaretti et al. (2019)

PedigreeSim Simulate both diploid and tetraploid
species and predict pedigrees and
cross populations

Voorrips and Maliepaard (2012)

PhenotypeSimulator Predict multiple traits with multiple
underlying genetic loci

Meyer and Birney (2018)

ADAM-plant A tool that models breeding schemes
for both self- and cross-pollinated
crop plants

Liu et al. (2019b)

QuLinePlus A simulation model for
cross-pollinated crops

Hoyos-Villegas et al. (2019)

MareyMap A tool to calculate recombination
rates of all markers on a physical map
based on a training genetic map

Siberchicot et al. (2017)

AlphaSim Enable the simulation of multiple
aspects of breeding programs such as
haplotype sequences and pedigrees,
perform selection and simulate new
generations

Faux et al. (2016)

Phenosim Simulate phenotypes for testing in
GWAS

Günther et al. (2011)

SLiM A simulation framework that enables
modeling of a wide variety of
complex evolutionary scenarios

Haller and Messer (2019)

G2P A simulation tool for both genotype
and phenotype

Tang and Liu (2019)

SimPed A simulation tool to generate
haplotype and genotype data for
pedigree structures

Leal et al. (2005)

a higher prediction ability than the other models. General combining ability (GCA)
and specific combining ability (SCA) were calculated for the simulated doubled
haploid (DH) and recombinant inbred line (RIL) populations and a significant linear
relationship between GCA and SCA (R2 = 0.93–0.98) was obtained for all five
traits (Fig. 8.3), indicating that a parent of higher GCA is more likely to generate
high performance crosses with other parents. Also, a high correlation was observed
between the mid-parent GEBVs and SCA (R2 = 0.93–0.98) as shown in Fig. 8.4,
suggesting that high mid-parent GEBVs of crosses are a good indicator of the
potential of crosses. The results of this study provide a solid foundation for future
cross-breeding studies.
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Fig. 8.3 Relationship between GCAs of parents and usefulness (U) of crosses for five traits. The
blue dots represent the top 10% of crosses based on U of crosses at a 10% selection rate. a Seed
yield (t/ha); b Days to maturity (days); c Oil content (%); d Linolenic acid content (%); e Powdery
mildew resistance in flax. Source unpublished data

8.3 Future Perspectives

The significant advancement in GS and genetic simulation offers new opportuni-
ties to further improve abiotic trait-marker associations, cross-breeding accuracy,
and breeding selection efficiency. Genomic studies investigating the relationships
between root traits and drought tolerance have led to the identification of 521 QTLs
in flax (Sertse et al. 2019, 2021; Soto-Cerda et al. 2019, 2020). The data gener-
ated in these studies can be capitalized upon in GS and genetic simulation to gain
further insights into the genetic complexities of these traits. For future flax genetic
improvement, it is also vital to expand the portfolio of abiotic stress-related traits to
include Cd stress for example. To date, cross-breeding and parent selection remain a
major challenge in plant breeding. The GS and genetic simulation combined strategy
offers opportunities to improve the accuracy and efficiency of cross-breeding in flax
by predicting the best crosses. However, the use of genetic simulation in flax remains
in its infancy and much awaits to be done. Further investigations on the identification
of significant QTLs, the use of HTP, and accuracy improvement of GS and genetic
simulation for both biotic and abiotic traits in flax are warranted.
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Fig. 8.4 Relationship between the mid-parent GEBV values and usefulness (U) of single crosses
for five traits. The blue dots represent the top 10% of crosses based on U of crosses at a 10%
selection rate. a Seed yield (t/ha); b Days to maturity (days); c Oil content (%); d Linolenic acid
content (%); e Powdery mildew resistance in flax. Source unpublished data
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