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Abstract

Hazardous pollutants from anthropogenic
activities are continually delivered into various
natural spheres including the terrestrial biolog-
ical system which is a highly influenced
ecological sphere confronting the genuine
contamination problem. Synthetics like pesti-
cides, insecticides, herbicides, vinasse, pol-
yaromatic hydrocarbons, heavy metals,
agrochemicals, dioxins, and toxic sewage are
among the potentially harmful pollutants that
alter the physicochemical characteristics of the
soil by chemical interactions with the soil
environment and its dwelling biota, hence

upsetting the typical functioning. Accordingly,
these pollutants must be checked and moni-
tored to revamp the health of the soil and
henceforth utilization of earthworms gives an
alternative yet stunning, novel, and biological
monitoring tool to evaluate the hazardous
impacts of the pollutants through its biomarkers
response and bioindication abilities. Earth-
worms end up being profoundly viable in
monitoring the soil pollutants. This chapter
significantly reviews the importance of earth-
worms in pollutants biomonitoring in special
reference to the soil ecosystem.
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23.1 Introduction

The soil ecosystem is actively involved in the
regulation of biogeochemical cycles, disposal of
waste, retention of carbon, water filtration, and
temperature regulation. All these services are
maintained by the inherent communities of the
soils intrinsic to life and other fundamental
activities on the earth (Pérès et al. 2011). But, in
the present-day scenario, the excessive use of
pesticides, insecticides, and broad-spectrum
chemicals causes negative environmental conse-
quences at physiological and chemical levels in
the soil ecosystem (Lionetto et al. 2019).
Besides, urban waste, toxic sludge, atmospheric
deposition, and industrialization enhance soil
pollution (Calisi et al. 2014). The researchers in
the most recent decade’s centers around the
physio-chemical characterization of soil health;
however, there is a prerequisite for exceptionally
capable and proficient tools to detect the real-
time impact of the pollutants as conventional
methodologies are not all that compelling
(Bünemann et al. 2018; Yang et al. 2020a).
Nonetheless, various studies indicate the utility
of soil biota as the early warning indicators of
pollutants through their biomarkers response and
bioindication abilities (Burger 2006; Parmar
et al. 2016). Cortet et al. (1999) in their critical
review discuss the relevancy of nematodes,
mites, isopods, mollusks, and earthworms as
exceptionally valuable life forms for contamina-
tion bioindication (Cortet et al. 1999).

The growing concerns of soil health account
for the developing interest in the improvement of
new-age bioindicators and early warning tech-
niques. The soil pollution assessment analysis is
a complex process (Ashraf et al. 2014). Subse-
quently, the use of earthworms as a bioindicator
model provides a unique, novel, eco-friendly,
cost–benefit, and convenient approach for soil
pollution assessment. Earthworms are engaged
with the pedogenesis and customarily utilized as
agents to indicate the soil fertility, land use
impact, and organic matter breakdown (Calisi
et al. 2011, 2014). They are straightforwardly
confronting the toxic impacts of the soil

pollutants through their permeable and highly
sensitive skin for the pollutants. Additionally,
they ingest the defiled soil particles and accord-
ingly impact the pollutants availability (Wall-
work 1983; Jager et al. 2003; Vijver et al. 2003).
Because of their higher relevance in standard
toxicity testing protocols, earthworms discover
their utilization as soil contamination bioindica-
tors. Their mechanism of response and
biomarkers generation toward the stress pro-
duced by the toxic soil pollutants can provide
more extensive information in accessing the level
of soil health. Therefore, we, here in this chapter,
have focused to explore the bioindication and
biomarkers response of earthworms in pollution
assessment of the soil ecosystem.

23.2 Biological System
and Pollution Biomarkers

The pollution assessment and measuring their
toxic impacts in different environmental spheres
is a highly difficult process (Ashraf et al. 2014).
For doing such complex estimations, nature fur-
nished us with extraordinary sentinel living
beings that can distinguish the continuous chan-
ges that occurred in the environment. The sen-
tinel species can biosense the extent of pollution
by making specific changes in the form of
biomarkers response. These biomarkers are
expressed as `̀ alterations'' in the body of sentinel
species. These changes can be best utilized to
express the toxicological impacts of a particular
pollutant. Therefore, it is used as an early
warning indicator. When the biological sentinel
species got exposed to a particular or variety of
pollutants, adverse and toxic effects have been
seen at the molecular and cellular levels. These
changes are represented by the molecular and
cellular biomarkers in the bioindicator species.
These biomarkers viably give the necessary
information on the bioavailability and the
adverse effects of the contaminants on the envi-
ronment as these biomarkers can assist us with
understanding the biochemical processes of
absorption, transportation, and biotransformation
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of pollutants in the sentinel organisms as well as
the environment. Below are the various cate-
gories of biomarkers that are useful in measuring
the level of pollution and toxicity of particular
pollutant existed in the environment.

23.2.1 Exposure

These are the class-specific biomarkers as they
are expressed in the body of sentinel species in
response to a specific class of pollutants (Scott-
Fordsmand and Weeks 2000). Genetic alter-
ations, circulating antibodies, DNA and protein
adducts, altered proteins, metallothioneins levels,
altered cholinesterase activity, ethoxyresorufin-
O-demethylase activity, and altered gene expres-
sion are some of the main exposure biomarkers
that reflect their expression in response to pollu-
tants exposure in the animal’s body.

23.2.2 Histological

These are the biomarkers with a defined cellular
origin (Kilty et al. 2007). Elevated troponin
levels, altered alanine aminotransferase,
transaminase activity, thinning of epithelium
lining, altered lysosomal-cytoplasm ratio, and
basophil-digestive cell ratio are some of the
histological biomarkers that define the morpho-
logical damage in the organism’s body when
exposed to different pollutants (Reddy 2012).

23.2.3 Stress

As the name indicated, these biomarkers are
expressed in the animal’s body in response to the
physiological stress instigated by the toxic
impacts of the pollutants (Etteieb et al. 2019).
The generation of heat shock proteins in response
to tackling temperature variations, acute phase
proteins, cortisol, cytokines, alpha-amylase,
reactive oxygen species level, MDA levels in the
serum and plasma, altered GHS, SOD, thiore-
doxin reductase, and glutathione peroxidase
activities are some of the well-known stress

biomarkers in the animal’s body (Colacevich
et al. 2011; Ali and Naaz 2013).

23.2.4 Genotoxicity

A few pollutants, for example, PAHs, naph-
thalene, and phenanthrene are notable for their
genotoxic potential when exposed to living
organisms. These agents cause DNA damage and
consequently promote mutations in the organ-
ism’s body (Hirano and Tamae 2010). These
pollutants cause DNA alterations through the
phenomenon of oxidative respiration and altered
metabolic reactions. The damage to genetic
material persists in the form of chromosomal
abnormality, distorted sister chromatids, abnor-
mal DNA-DNA crosslinks, and DNA–protein
binding. To monitor the genotoxic damage on the
exposure of toxic pollutants, there are several
genotoxic biomarkers with the help of which we
can assess the toxic potential of a particular toxin.
For example, increased micronucleus formation,
chromosomal aberrations, comet formation, and
toxicogenomic signatures are some of the known
biomarkers which serve as good genotoxic
biomarkers for toxicity assessment (Vasseur and
Bonnard 2014; Muangphra et al. 2015).

23.3 Effects of Soil Pollutants
on Earthworms

Earthworms are perceived as suitable candidates
for the biomonitoring purpose of soil pollutants
(Hirano and Tamae 2011). Different investiga-
tions have been done to signify the role of
earthworms as bioindicators of soil pollution
(Haeba et al. 2013). Scientists examined the
effect of natural and depleted uranium on the
earthworms and noticed genetic and cytotoxic
alterations in their body tissues (Giovanetti et al.
2010). It has been discovered that the earth-
worms have incredible bioaccumulation poten-
tial, thus, proved to be helpful for heavy metals
biomonitoring (Usmani and Kumar 2015). The
study by Natal-de-Luz et. al. observed the cen-
trality of earthworms in the ecological risk
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assessment of mixed chemical compounds
(Natal-da-Luz et al. 2011). Likewise, Qiu et al.
utilize Aporrectodea calignosa (gray worm) for
toxicity assessment of binary mixture of zinc and
cadmium (Bart et al. 2018). One of the study
reported the bioaccumulation of mixture form of
nickel and chlorpyrifos in the body tissues of the
earthworm, thus, describes the assimilation
pathway of these pollutants in the lumbricid
earthworms body (Lister et al. 2011). Different
studies that evaluated the effects of a variety of
soil pollutants on different earthworm species
have been presented in Table 23.1.

23.4 Pollutant-Induced Biomarker
Responses in Earthworm

As stated above, earthworms are highly sensi-
tive toward pollutants exposure and proved
helpful in their biomonitoring. When exposed
to pollutants, the body of earthworms reacts to
them by expressing cellular, behavioral, mor-
phological, genetic, and biochemical biomark-
ers (Fig. 23.1). Different pollutants induce a
different kind of biomarkers response. Differ-
ent research reports signify the expression of a
variety of biomarkers responses concerning a
specific pollutant. These are discussed below.

23.4.1 Methiocarb

The insecticide methiocarb is a carbonic acid
derived organic ester that is synthesized from the
condensation of 3, 5-dimethyl-4 (methylsulfonyl)
phenol with methyl carbamic acid (Fig. 23.2)
Researchers investigated the biomarkers
response of the Lumbricus terrestris toward the
methiocarb exposure.

The study was performed under controlled
experimental conditions at a temperature of
18 ± 1 °C with a 16:8 h photoperiod ratio of
light and dark The exposure of the insecticide
was given at different time intervals of 0, 7, and
14 days. The study involves the measurement of
altered lysosomal permeability, MTs expression,
and granulocyte morphogenetic analysis. With

these analyses, other parameters like growth,
reproduction, and survival capacity will also be
taken into consideration. The results of the study
concluded that the used model species of
earthworms was very sensitive toward the
methiocarb exposure and different biomarkers of
effect such as enlarged granulocytes, and desta-
bilized lysosomal membrane was observed to be
the potential biomarkers that are helpful in
biomonitoring of this specific insecticide (Calisi
et al. 2011).

23.4.2 Imidacloprid

Imidacloprid influences the soil health and local
soil life forms by enhancing the pollution levels
in the terrestrial environment (Knoepp et al.
2012). The native earthworm species Eisenia
fetida was exceptionally influenced when
exposed to Imidacloprid. The risk evaluation of
this particular insecticide was evaluated by
researchers, and observed genotoxic effects on
Eisenia fetida. The DNA damage and sperm
deformity were observed to be the relevant
genotoxic and physiological biomarkers expres-
sed in this particular earthworm species in
response to Imidacloprid exposure in the terres-
trial ecosystem (Zang et al. 2000).

23.4.3 Pesticides

Certain studies conducted mutual toxicity testing
of regularly utilized pesticides. Aldicarb, chlor-
fluazuron, cypermethrin, metalaxyl, and atrazine
are some of the commonly used pesticides that
are significantly important in causing soil pollu-
tion (Mosleh et al. 2003; Miglani and Bisht
2019). Experimental studies showed the envi-
ronmental consequences of these pesticides and
correlate the expression of the different
biomarkers in the earthworm’s body with the
toxic impacts of these chemicals. For instance,
researchers in a study observed the deleterious
effects of these pesticides on the earthworm,
Aporrectodea calignosa, and observed that the
soluble protein in the earthworm’s body was
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Table 23.1 List of investigations on the adverse effects of common soil pollutants in different earthworm species after
pollutants exposure

Earthworm Species Soil Pollutants Effects References

Eisenia fetida 1,2,4-trichlorobenzene • Alterations observed in
the ultrastructure of skin
and cuticle

• Low mucus production
and finally disappears

Wu et al. (2012)

Cadmium and Lead • Weight loss
• Delayed sexual maturity

Urionabarrenetxea et al. (2020)

Tetraethyl Lead and
Lead Oxide

• Inflexible metameric
segmentation

• Rupturing of skin and
cuticle

• Coelomic fluid extrusion
is observed

Rao et al. (2003)

Benomyl • Regeneration of posterior
segment is influenced

• Teratogenic effects
• Groove anomalies
• Development of two tails
at the posterior end

Zoran et al. (1986), Drewes et al.
(1987), Sorour and Larink (2001)

Carbamates • Development of tumors
and swelling in the body

Yadav et al. (2017)

Propoxur, Methidathion,
Triazophos, Endosulfan,
Carbofuran

• Swelling, bursting, and
bleeding of the sores
have been observed

Dureja et al. (1999), Dureja and
Tanwar (2012)

Integrated toxic effects
of Cd, Cu, Pb, and Zn

• Higher mortality rate
• Altered sexual activities

Spurgeon and Hopkin (1996)

Pentachlorophenol • Affect cocoon production
• Infertile cocoons

Van Gestel et al. (1989), Landrum
et al. (2006)

PCBs • Damaged genetic
material

• Influence the activity of
CAT, POD, and SOD

• Altered carbohydrate
metabolism

• Disrupted osmotic
function

Åslund et al. (2011), Duan et al.
(2017)

2, 2′, 4, 4′-
tetrabromodiphenyl
ether (BDE-47)
clothianidin,

• SOD gene transcripts
upregulation

• Suppressed catalase
activity

Xu et al. (2015)

Imidacloprid,
thiacloprid, nitenpyram,
and, acetamiprid,

• The altered activity of
catalase enzyme

• Lower fecundity rate

Wang et al. (2015)

Lampito mauritii Phosphamidon • Hyperactivity in the body Bharathi and Rao (1986), Dureja
and Tanwar (2012)

Monocrotophos and
Dichlorvos

• Inhibited and altered
AChE activity

• Damaged intestinal villi
• Degenerated nucleus

Datta et al. (2016), Samal et al.
(2019), Kavitha et al. (2020)

(continued)
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decreased from the initial proteins levels. Besides
this observation, the GPT, AcP, and GOT
enzyme activities are at their low. These bio-
chemical changes are considered as important
biomarkers response of this snail species which
were found to be suitable in determining the
environmental toxicity (Mosleh et al. 2003).

23.4.4 Polystyrene Microplastics

Microplastics are one of the major and emerging
soil pollutants that are known for their serious
environmental consequences (Kumar et al.
2020). They are ubiquitous and non-
biodegradable (Smith et al. 2018; Mammo

Table 23.1 (continued)

Earthworm Species Soil Pollutants Effects References

• Weight loss
• Blood sinuses congestion

Lumbricus
terrestris

Benomyl •Hindered AChE activity
• Impairment in
locomotion

•Mitosis inhibition

Byrde and Richmond (1976),
Stringer and Wright (1976),
Subaraja and Vanisree (2015)

Lumbricus rubellus
and Lumbriculus
variegatus

C60 Fullerene
Nanoparticles

• Damaged musculature,
epidermis, and cuticular
part

Van der Ploeg et al. (2011,,

Aporrectodea rosea Cadmium and Lead • Inhibition of total
antioxidant capacity

Sinkakarimi et al. (2020)

Pontoscolex
corethrurus

benzo(a)pyrene • Loss of weight
• Low survival rate

Hernández-Castellanos et al. (2013)

Eisenia andrei Oil contaminated soil • Higher mortality rate is
observed

Hentati et al. (2013)

Drawida willsi Carbofuran and
malathion

• Lowering acetylcholine
esterase activity

Panda and Sahu (2004)

Allolobophora
chlorotica

Carbendazim • Disrupted functioning of
giant nerve fibers

• Altered burrowing
behavior

Ellis et al. (2010)

Perionyx excavatus Chlorpyrifos and
carbofuran

• Highly toxic
• Death of earthworms

De Silva and van Gestel (2009)

Enchytraeus
crypticus

Nylon microplastics
debris

• Significant reduction in
the reproduction activity
of earthworms

(Lahive et al. 2019)

Aporrectodea
tuberculata

Copper and Zinc • Decreased cytochrome
CYP1A and GST activities

Lukkari et al. (2004)

Aporrectodea
caliginosa

Pentachlorophenol,
copper, and cadmium

• DNA and lysosomal
damage are observed

Klobučar et al. (2011)

Aporrectodea rosea
and Aporrectodea
trapezoides

Cadmium and lead
nitrate

• DNA damage
• Lipid peroxidation
• Decrease in total
antioxidant capacity

Sinkakarimi et al. (2020)

Octolasion
cyaneum

Glyphosate • Glutathione S-transferase
activity observed to be
declined

Salvio et al. (2016)
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et al. 2020). Studies on the toxic effects of these
polystyrene-based microplastics are one of the
enthusiastic areas of research. These polystyrene
microplastics (PsMPs) bioaccumulates in the soft
and delicate tissues of the soil creatures through
the natural way of food chain interactions and
causes adverse metabolic functioning (Wang
et al. 2019). A recent study shows the toxic
consequences of PsMPs on the earthworm spe-
cies Eisenia fetida. Their exposure to Eisenia
fetida initiates the expression of biomarkers
response in the form of DNA damage and
oxidative stress. Consequently, the study indi-
cates the histopathological alterations in the
intestinal wall of earthworms (Jiang et al. 2020).

23.4.5 Antibiotics

These are widely used biologically active mole-
cules that interact with the soil ecosystem in their
pure form (Manyi-Loh et al. 2018; Cycoń et al.
2019). They enter the terrestrial environment
through medical waste dumping, domestic
sludge, and human excretion (Larsson 2014;
Kraemer et al. 2019). In a recent study,
researchers explored the environmental effects on
the soil ecosystem and the native earthworm
species. The study involves the use of different
exposure concentrations of ciprofloxacin to the
earthworm Eisenia fetida, and it was observed
that a concentration of 1–2 g/kg of ciprofloxacin
exposure causes deformity in DNA while the

Pollutants
Insecticides Pesticides Herbicides 

Heavy Metals Others

Transfer

Soil Ecosystem

Earthworms
Biochemical interactions Bioaccumulation in soft tissues

Biomarkers 
Response

Exposure Histological Stress Genotoxic

Pesticides Herbicides Residue in 
Excreta

Organic 
Pollutants

Inorganic 
Pollutants

Thin 
epithelium 
lining
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digestive 
cell ratio 

Deterioration 
of Cell 
membrane

ROS 
Generation

HSP 
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MDA GHS 
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DNA 
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DNA-DNA 
crosslinks 

Fig. 23.1 Diagrammatic representation of the different biomarkers response of earthworms to common soil pollutants

OH

S

3,5-dimethyl-4(methylsulfanyl)phenol

+
N
H

O

OH

Condensation

Methyl carbamic acid

N
H

O

O

S

(3,5-dimethyl-4-methylsulfanylphenyl) N-methylcarbamate

Fig. 23.2 Chemical synthesis of methiocarb. Adapted after: Calisi et al. 2011, Gupta 2011
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other biomarkers such as antioxidant enzymatic
activity, mRNA expression, HSP 70, MTs, etc.
were upregulated (Yang et al. 2020b).

23.4.6 Thifluzamide

The extensive use of fungicides imposes serious
environmental concerns (Mahmood et al. 2016).
Apart from target organisms, their toxic nature
also influences the non-target species present in
the soil (Gill and Garg 2014). The fungicide
Thifluzamide is one of the commonly used
fungicides which are chemically characterized as
amide (Yang et al. 2016; Yao et al. 2020). This
fungicide disturbs the SDH metabolism in the
organisms (Yang et al. 2017). A recent study
evaluates the biomarkers response of Eisenia
fetida concerning the stress induced by the
Thifluzamide with different concentrations ran-
ges from 0 to 10 mg/kg. It has been observed that
this particular fungicide induces DNA damage,
ROS generation, inhibited activities of GST,
CAT, POS, and SOD enzymes in the body of
Eisenia fetida (Yao et al. 2020).

23.4.7 Neonicotinoid Insecticides
and Heavy Metals

The extensive use of neonicotinoid insecticides
(For example, dinotefuran, thiamethoxam) and
heavy metals (e.g., cadmium, zinc, copper)
addition in the soil ecosystem causes serious
environmental pollution across the globe (Goul-
son 2013). Recent studies analyzes the mutual
toxic impacts of neonicotinoid insecticides and
heavy metals on Eisenia fetida. This earthworm
species is proved to be a very sensitive bioindi-
cator species against the impact of the mutual
pollutants. The development of ROS, cellular
and DNA damage, deformed midgut cell lining,
and disturbed MDA activity are some of the
known biomarkers response of Eisenia fetida
toward the mutual toxic impact of these neoni-
cotinoid insecticides and heavy metals (Yan et al.
2020).

23.4.8 Sunfentrazone

Modern agricultural practices use some specific
herbicides. The Sunfentrazone is one of the
herbicides that have a wide range of applicability
in modern agriculture (Gehrke et al. 2020).
Studies reported the toxic effects of this herbicide
on some of the aquatic organisms while
amphibians also develop abnormalities toward its
toxicity (Giesy et al. 2000; Graymore et al. 2001;
Mann et al. 2009). Recently, researchers analyze
its toxic potential by using Eisenia fetida as a
model organism for its environmental biomoni-
toring. Different concentrations ranging from 0.2
to 5.0 mg/kg of the Sunfentrazone have been
prepared and the earthworms are exposed to this
herbicide in the soil under set laboratory proto-
cols. During the study, the researchers observed
the generation of reactive oxygen species in the
earthworm’s body which was one of the well-
established biomarkers of this species toward soil
pollutants exposure. Various other biomarkers
such as GST, catalase, SOD, guaiacol peroxidase
altered activities, and DNA damage are the
prominent biomarkers that are highly useful for
Sunfentrazone biomonitoring and its associated
environmental impacts on soil health (Li et al.
2020). Table 23.2 represents the common, trade
name, IUPAC nomenclature, molecular formula,
and chemical structures of several soil pollutants.

23.5 Conclusion

It was observed that numerous earthworm spe-
cies engaged with the biomonitoring and early
warning of the soil pollutants. In recent years, the
study of earthworm biomarkers proved their
utility in contamination detection in terrestrial
environments. The DNA damage, anomalous
enzymatic functioning, heat shock proteins
expression, MTs expression, and so forth are
observed to be the prominent biomarkers that
help in providing a scientific understanding of
earthworm’s biomarkers response toward soil
pollutants exposure. This article proved to be
beneficial for the development and promotion of
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the earthworm-based biosensing approach for
soil pollution assessment.
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