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Abstract

Vegetables play a chief part in the human diet
and provide the essential nutrients and vitamins
necessary to perform numerous essential phys-
iological functions in the human body. Unfor-
tunately, the consumption of vegetables laden
with heavy metals (HMs) is among the most
imperative issues of recent years because of
their toxic impacts on human health. The toxic
HMs accumulated in vegetables after their
release into the ecosystem through diverse
natural and human-centered activities. The
prolonged use of synthetic agrochemicals,
irrigation of agricultural lands with untreated
municipal and industrial effluents, inappropri-

ate dumping of solid waste, and various other
industrial activities are the main causative
factors of HMs accumulation in productive
soils. The mobility of HMs in the soil and their
accumulation in vegetables is remarkably
influenced by several soil and plant factors
that control their bioavailability. Reduction in
growth, biomass, yield and poor nutritional
quality are the key symptoms of HMs toxicity
after their absorption by the vegetables. Health
risks to humans via the consumption of HMs
contaminated vegetables have been investi-
gated through different risk assessment equa-
tions. Interestingly, different novel remediation
techniques such as phytoremediation, immobi-
lization, water management strategies, and
applications of microbial inocula could be
practiced for safer vegetable production for
human consumption from HMs polluted soils.
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19.1 Introduction

Rapid industrialization and urban sprawls have
significantly increased problems associated with
food security, sustainable agriculture, and safe
food production (Rai 2018; Toth et al. 2016;
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Saumel et al. 2012; Clarke 2011). Among dif-
ferent problems, soil pollution with heavy metals
(HMs) such as Cd, Pb, Cr, As, Ni, and Hg are
becoming a serious environmental concern in
recent years (Kumar et al. 2019; Gupta et al.
2018; Oves et al. 2012).

Mainly, anthropogenic activities such as rapid
industrialization, aerosols production through the
combustion of fossil fuels, mining processes,
aerial deposition from smelters, applications of
agrochemicals like herbicides or metallo-
pesticides, phosphate fertilizers which release
diverse HMs such as Cr, Hg, Cd, and Ni in
agricultural soils, irrigation with untreated
industrial or municipal wastewater, improper
handling and dismantling of hazardous waste,
additions of livestock manures as well as sewage
sludge have significantly accelerated soil con-
tamination with HMs (El-Kady and Abdel-
Wahhab 2018; Gall et al. 2015; Woldetsadik
et al. 2017; Kihampa et al. 2011; Luo et al. 2009;
Chary et al. 2008). The toxic effects of HMs
appeared on soil (micro)organisms which ulti-
mately damage soil quality, and its fertility con-
sequently affects safe food production after their
deposition in the soil (Gadd 2010).

Vegetables are the most vital part of the
human diet and are widely consumed due to the
provision of essential nutrients such as carbohy-
drates, proteins, antioxidants, vitamins, dietary
fibers, and essential minerals. Unfortunately,
vegetables produced from HMs contaminated
soils situated near industrial sources have
higher concentrations of HMs in them than oth-
ers (Slavin and Lloyd 2012). The accumulation
and biotoxic effects of HMs are entirely influ-
enced by their concentrations, source of con-
tamination, chemical fraction and speciation,
mode of deposition, the accumulation capacity of
vegetables, soil, and other environmental factors
(Yadav et al. 2018; Lente et al. 2014). Vegeta-
bles accumulate HMs either by absorption
through their roots or by aerial deposition. Heavy
metals are taken up by the vegetables and
absorbed in the apoplast of roots which subse-
quently encourage aerial transport. It was repor-
ted that tubers and leafy vegetables accumulate
higher concentrations of HMs because roots and

leaves of herbaceous plants retain very high
concentrations compared to fruits and stems
(Singh et al. 2015; Agrawal et al. 2007). Here-
after, this loading of HMs in vegetables and their
edible parts from contaminated soils becomes a
grave concern owing to the risk of metal toxicity
in animals and humans. Humans may experience
reduced intellectual abilities in children, demen-
tia in adults, dysfunctions of central nervous
system, renal and gastrointestinal failure,
insomnia, visionary loss and osteoporosis upon
accelerated exposure to HMs (Rai et al. 2018;
Emamverdian et al. 2015; Gall et al. 2015; Jan
et al. 2011; Gadd 2010). Different risk assess-
ment models are being used to evaluate potential
hazards from the exposures to these HMs
(Kamunda et al. 2016; Zhou et al. 2016).

Thus, there is a dire need to remediate such
HMs affected soils that can pose serious threats
to human health. Several remediation techniques
have been adopted to reduce HMs accumulation
in vegetables. These strategies include phy-
tomanagement (Radziemska et al. 2020), immo-
bilization (Xu et al. 2019; Wang et al. 2014),
water management strategies, cropping patterns
(De Juan et al. 1996), and applications of dif-
ferent microbial inocula (Edelstein and Ben-Hur
2018). Apart from this, laws have been enforced
in many countries to control the release of HMs
from different industries. Hence, this chapter
aims to highlight HMs toxicity, their accumula-
tion and transfer in vegetables, and associated
health risks by consuming the HMs polluted
foodstuff.

19.2 Soil Pollution with HMs

Major sources of soil pollution with HMs are
categorized as natural and anthropogenic activi-
ties. Among natural phenomena, geological rock
formation is the most important natural source of
HMs discharge in the environment (Gupta et al.
2019). Generally, large quantities of Mn, Co, Cr,
Ni, Cu, Zn, Cd, Sn, Pb, and Hg are released by
geological processes. Similarly, some igneous
rocks such as hornblende, augite, and olivine also
share considerable amounts of Ni, Co, Zn, and
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Cu in the soils. Moreover, increased levels of
different HMs were observed among the cate-
gories of sedimentary rocks in the order of
shale > limestone > sandstone (Nagajyoti et al.
2010). The volcanic eruption is also contributing
its share in releasing Zn, Al, Mn, Ni, Cu, Hg, and
Pb, along with some hazardous and toxic gases
(Nagajyoti et al. 2010).

Industrial sources of HMs pollution include
smelting, mining, transport of ores, metal recy-
cling, and finishing activities. Estimatedly, ore
mining is the major source of the release of dif-
ferent HMs in the environment (Yang et al. 2018;
Duruibe et al. 2007). Runoff from mine wastes
and weathering of metallic materials also con-
tribute to the contamination of water bodies and
surrounding lands due to leaching (Li et al. 2015;
Pandey et al. 2016). The long-term use of
industrial and municipal wastewater considerably
increased HMs accumulation in agricultural soils
(Turan et al. 2018). Numerous scientists reported
the considerable concentrations of different HMs
in arable soils followed by in vegetables (Ratul
et al. 2018; Chabukdhara et al. 2016; Prashar and
Prasad 2013). For example, higher concentrations
of HMs were found in tomatoes when irrigated by
sewage water (Alghobar and Suresha 2017).

Similarly, the applications of industrial effluents
released from electroplating and Pb-acid batteries
could cause the contamination of soil with Ni and
Pb (Shahbaz et al. 2018; Khan et al. 2020). The
atmospheric deposition also results in the precipi-
tation of HMs on soil or nearby vegetation, thus
increasing soil pollution with HMs. High-
temperature processes, e.g., casting and smelting
are involved in releasing different HMs in vapors
and particulate forms. These vapors chemically
react with water vapors present in the air and pro-
duce aerosols. Later, these aerosols are dispersed by
the wind (commonly known as a dry deposition) or
deposited by rainfall (wet deposition) causing con-
tamination of water and soil (Chen et al. 2014).
Energy production units, for example, coal-burning
power plants, nuclear power stations, and petroleum
combustion also emit different toxic HMs (Liao
et al. 2016; Chen et al. 2014).

19.3 Factors Influencing
the Mobility and HMs
Accumulation in Vegetables

Several soil factors controlled the mobility and
accumulation of HMs in vegetables from agri-
cultural soils. The pH values of agricultural
soils, an important factor, play a pivotal part in
controlling the solubility of HMs. For instance,
mobility of HMs increased at acidic pH whereas
decreased at alkaline pH (Sheoran et al. 2016).
This is because of the adsorption of HMs onto
the surfaces of negatively charge soil con-
stituents such as organic matter, the mineral-
based clays such as silicates and others as well
as the (hydro) oxides of Mn, Al, and Fe. Simi-
larly, the anion exchange capacity (AEC) in-
creases at acidic pH owing to an increase in
overall net positive charge which enhanced the
bioavailability of HMs and vice versa (Bhargava
et al. 2012). Additionally, the presence of
organic components in the soil also restricts the
solubility of HMs due to the occurrence of more
active binding sites and the abundance of ionic
and polar functional groups like amino, phenol
and carboxyl groups. These functional groups
are released from the breakdown of fulvic and
humic acids which are soluble at all pH levels.
Inner sphere complexation, adsorption, and ion
exchange are the key mechanisms involved in
retaining HMs by organic matter (Evans 1989).
The bioavailability of HMs in agricultural soils
was also increased due to a rise in temperature
owing to the rapid breakdown of organic matter
(Silveira et al. 2003). For instance, rise in tem-
perature significantly increased Zn and Cd
transfer from the soil to different parts of plants
(Cornu et al. 2016). Likewise, the soil texture
also affects the uptake and bioaccumulation of
HMs in vegetables. The highest bioavailability
of HMs was observed in sand and loam fol-
lowed by fine-textured and clay loam soils due
to the abundant fine pores in fine-textured soils
compared to coarse-textured soils (Sheoran et al.
2010). The lowest bioavailability of HMs was
observed in soils having higher CEC values such
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as clay due to their much high adsorption
potential (Bhargava et al. 2012).

19.3.1 Factors Associated
with Vegetables

The accumulation of HMs in different vegetables
varied among them owing to different morpho-
logical, physiological, and anatomical traits of
plants (Yadav et al. 2018). Branch density, leaf
inclination angle, stomata size and density, leaf
area, the structure and shape of plant canopy are
other factors that favor HMs accumulation in
vegetables from aerial deposition (Shahid et al.
2017). Likewise, the transpiration rate also con-
trols HMs uptake and their accumulation in
vegetables. Initially, HMs are absorbed by the
root apoplast and later ascend with transpiration
channels via xylem tissues. Later, HMs were
transported to aerial parts of vegetables and
subsequently accumulated under the influence of
transpiration. Plants that have high and flourish-
ing transpiration rates accumulate higher quan-
tities of HMs. Thus, leafy vegetables store much
larger amounts of HMs than non-leafy vegetables
owing to their higher transpiration and translo-
cations rates (Hao et al. 2019). Likewise, the
transport of HMs from roots to stem followed by
fruit during translocation and transpiration pro-
cesses is longer in non-leafy vegetables which
may be attributed to their much lower accumu-
lation (Khan et al. 2009).

19.4 Accumulation of HMs
in Vegetables

The accumulation of HMs in vegetables depends
upon several plants (vegetable type) and soil
factors (bioavailability). Generally, leafy veg-
etables are good accumulators of HMs as com-
pared to fruits. For example, spinach and lettuce
are more efficient in accumulating Cd, when
compared with French beans and peas (Alexan-
der et al. 2006).

Much lower Cd uptake was observed in
leafy vegetables compared to solanaceous, roots,
alliums, melon, and legumes (Yang et al. 2010).
The accumulation of different HMs in the veg-
etable of six different categories (legume, stalk,
melon, solanaceous, root, and leafy vegetables)
was investigated grown on HMs contaminated
agricultural land. Results suggested that leafy
vegetables significantly accumulated the higher
concentrations of HMs with the least accumula-
tion in melon vegetables. The Pb, As, and Cd
concentrations were found above the threshold
levels of food contaminants set by the China
National Standard (Zhou et al. 2016). Likewise,
the accumulation of Cd, Ni, Cr, As, Pb, and Hg
were evaluated in different vegetables and the
results suggested that Chicorium endive and
Coriandrum sativum L. accumulated Pb and As
respectively, while, Spinacia oleracea L as well
as Ipomea aquatica, Forssk and Phaseolus vul-
garis L. accumulated Cr, Cd, Hg, and Ni,
respectively (Anarado et al. 2019; Kumar et al.
2014). The concentrations of Pb, Ni, Cr, and Cd
in Abelmoschus esculentus were estimated col-
lected from HMs contaminated soil irrigated with
wastewater. Abelmoschus esculentus remarkably
accumulated the concentrations of these HMs
above their recommended values (Balkhair and
Ashraf 2016). Leafy vegetables such as spinach,
cabbage, parsley, and lettuce were also able
to store the higher concentrations of Pb in con-
trast to stem (garlic and white radish) and fruit
vegetables (cucumber, pumpkin, capsicum, green
beans, and eggplant). However, average values
of As, Cr, Se, and Zn in vegetables were higher
than their standard values (Cao et al. 2014).
Likewise, concentrations of numerous HMs were
also assessed in radish, tomato, lady finger,
cauliflower, brinjal, spinach, and cabbage
(Chauhan and Chauhan 2014). Reportedly, much
higher transport of different HMs in roots, stems,
and leaves were observed in onion, lettuce,
cabbage, and spinach. All reported values were
higher than their standard values set by FAO and
the WHO/EU combined limits (Akan et al.
2013).
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19.5 Toxic Effects of HMs
on Vegetables After
Their Accumulation

Different plants show variable toxic symptoms on
exposure to higher concentrations of HMs. Bio-
mass reduction, growth inhibition, alterations in
photosynthesis pigments, restricted water uptake
are the usual key indicators of HMs toxicity in
plants (Edelstein and Ben-Hur 2018; Sridhar et al.
2011). Numerous studies revealed that HMs stress
in plants alters their spectral reflectance, which
could cause different biochemical and physio-
logical disorders in them and thus influence
nutrients uptake by the vegetables (Sridhar et al.
2017, 2011). Interface with key nucleic acids, (de)
activation of essential enzymes, disturbance in
electron transport pathways and membrane injury
are the known HMs toxicity in plants at the cel-
lular level (Chen et al. 2003). For instance, the
higher Cd uptake in lettuce caused a significant
reduction of shoot biomass owing to Cd-induced
chromosomal aberration (Monteiro et al. 2009;
Seregin and Kozhevnikova 2006). Furthermore,
alterations in protein synthesis, photosynthetic
pigments, and respiration rates significantly
reduced morphological traits of leaves of different
plants grown on HMs contaminated soils (Chaves
et al. 2011). Similarly, the excessive uptake and
accumulation of HMs in vegetables resulted in the
overproduction of oxygen-based non-radical
species such as hydrogen peroxide (H2O2),
organic hydroperoxide (ROOH), and singlet
oxygen as well as oxygen-based free radicals such
as peroxyl (RO2

•), alkoxyl (RO•), hydroxyl (OH•)
and superoxide anion radicals (O2

•−) (Shahid et al.
2014; Circu and Aw 2010).

19.6 Human Health After
the Exposure to HMs Through
the Intake of Contaminated
Vegetables

The substantial accumulation of HMs in vegeta-
bles is of serious concern due to damaging human
health even in much lower concentrations

(Manzoor et al. 2018). Toxic HMs entered into the
food chain via soil-plant-humans and soil-plant-
animal-humans pathways, which caused detri-
mental effects in humans after exposure (Edelstein
and Ben-Hur 2018; McLaughlin et al. 2000).
Nevertheless, the biotoxic effects of HMs entirely
depend upon the total and bioavailable concen-
trations, speciation, time, and dose of exposure
(Manzoor et al. 2018). The ingestion of HMs
contaminated vegetables resulted in the depletion
of certain crucial nutrients in humans which further
caused malnutrition disabilities, growth retarda-
tion, neurological and immunological disorders,
renal failure, reduced intellectual abilities as well
as gastrointestinal and other types of cancer
(Türkdogan et al. 2003; Iyengar and Nair 2000).
Chronic or acute Pb poisoning damages the gas-
trointestinal tract and the central nervous system in
children (Markowitz 2000). Likewise, appetite
loss, abdominal pain, hallucinations, headache,
fatigue, arthritis, hypertension, and kidney failure
are the symptoms of acute Pb exposure (Khan et al.
2020; Jaishankar et al. 2014). Long-lasting contact
with Pb caused congenital disabilities, autism, and
damage to brain tissues, dyslexia, hyperactivity,
muscular weakness, a significant reduction in
weight, psychosis, and even could lead to death
(Martin and Griswold 2009). Abnormal heartbeat,
leukocytes, vomiting, nausea, damage to blood
vessels, reduction of erythrocytes as well as
pricking feelings in different body parts, while
cancer, hypertension, cardiovascular failure, dia-
betes mellitus, skin itching, neurological, periph-
eral, and pulmonary disorders are the common
symptoms of acute and chronic As poisoning in
humans (Smith et al. 2002). Likewise, the negative
impacts of HMs in pregnant women and on the
growth of the fetus have been substantially avail-
able in the literature. For instance, exposure to
HMs affects the ovary resulting in damage to the
female reproductive system and disturbing the
hormonal production and their discharge mecha-
nisms (Silberstein et al. 2006). Exposure to Pb
during pregnancy caused its accumulation in the
blood which resulted in premature birth, weight
loss in neonates, stillbirths, and hypertension, and
even spontaneous abortions (Grant et al. 2013).
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19.7 Prediction of Health Risks
Associated with Contaminated
Vegetables Through Different
Models

19.7.1 Risk Evaluation Theory

The risk evaluation process is adopted to deter-
mine the health effects caused by HMs in humans
after exposure to them. The risk assessment
approach mainly contains (i) hazard determina-
tion, (ii) exposure estimation, (iii) toxicity
assessment (dose-response), and (iv) risk classi-
fication. Hazard determination mainly aims to
examine the presence, amount, and spatial dis-
persion of HMs in an ecosystem in a given time
(Chen et al. 2015; Huang et al. 2014; Shakoor
et al. 2017). In recent findings, many researchers
identified the presence of HMs in the ecosystem
owing to natural or anthropogenic events recog-
nized as a possible hazard for the community.
Different risk assessment models are being used
to evaluate potential hazards from these HMs
after the acute and chronic exposures (Kamunda
et al. 2016; Zhou et al. 2016).

19.7.2 Estimating the Daily HMs
Intake

Different methods have been used to estimate
health risk assessment based on Provisional
Tolerable Daily Intake (PTDI) by consuming
HMs enriched vegetables (Chary et al. 2008).
The expression for the estimation of daily HMs
intake is as follows

DIM ¼ Cmetal � Cfactor=Baverageweight

In the above expression Cmetal, Cfactor,
Dfood intake and Baverage weight represent HMs
concentration in vegetable (mg kg‒1), conversion
factor, daily intake of HMs enriched vegetables,
and average body weight, respectively. The val-
ues of DIM were higher for vegetable samples
collected from wastewater irrigation zone in
contrast to vegetables irrigated with groundwater
(Mahmood and Malik 2014).

19.7.3 Hazard Quotients

The hazard quotient index has been previously
used to estimate the human health risks associ-
ated with HMs intake after consuming vegeta-
bles. It is the ratio between the estimated and the
standard doses (RD). If the ratio value is less than
1 represents no risk to humans from exposure to
toxic HMs. If the values of HQ are equal or
greater than 1, it shows a high risk to popula-
tions. The expression of HQ is given below

HQ ¼ Wplant �� ½Metalplant
� �

=RfD� B

In the above equation, Wplant is the dry weight
of HMs in the consumable parts of vegetables
(mg d‒1), Mplant represents the amount of HMs in
vegetables (mg kg‒1), RfD expressed standard of
reference dose of a HM for food (mg d‒1), and B
expressed the average body weight (kg).

19.7.4 Health Risk Index

The health risk index calculates the relationship
between daily HM intake and standard dose. The
mathematical expression of HRI is as follows

HRI ¼ DIM =RfD

It is assumed that the population is at higher
risk if HRI values are found higher than 1 in
them. Results of HRI revealed that the consump-
tion of HMs contaminated vegetables poses a
serious health risk to humans. It was mainly due
to irrigation with wastewater having very higher
HMs concentrations (Mahmood and Malik 2014).

19.7.5 Carcinogenic Risk

The populations consuming HMs contaminated
vegetables may experience cancer risk, which is
estimated by the following expression.

CR ¼ CDI� SF

Cancer risk is 10–100 times higher in children
exposed to Ni and Cr by consuming
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contaminated foodstuff. Likewise, As also pos-
sess serious potential carcinogenic risk in chil-
dren when exceeded from its tolerable level (Cao
et al. 2014).

19.8 Management of HMs
Contaminated Soils for Safer
Vegetable Production

This section covers different management
strategies that remove, render or reduce the
uptake of higher concentrations of HMs by the
vegetables from the soil environment.

19.8.1 Phytoremediation

Phytoremediation is a “green solution” technique
that involve plants to partially or eliminate HMs
from the environment (Ali et al. 2013). It can
also be used with other remediation methods
such as immobilization and other primitive
methods as the final step in the remediation
process (Radziemska et al. 2019, 2020). Phy-
toremediation has several advantages such as
being cost-effective, high acceptance rate by the
community, no harm to the environment, con-
trolling HMs from the root zones of trees, min-
imal risk of secondary pollution as well as the
potential to eliminate multiple HMs from a single
site (Tauqeer et al. 2019). Poor plant establish-
ment, growth inhibition because of HMs toxicity,
prior knowledge about the site and environmen-
tal conditions, required large time, increased
solubility and transport of HMs which further
enhanced the risk of secondary pollution are the
disadvantages of phytoremediation (Tauqeer
et al. 2019).

19.8.2 Immobilization

In recent years, the in-situ immobilization
remediation method has gained the attention of
scientists worldwide owing to its vast applica-
bility, easy availability of raw materials as well
as lower labor and energy requirements (Zhai

et al. 2018). Numerous organic and inorganic
amendments have been known to reduce HMs
uptake by vegetables grown on HMs polluted
soils (Arshad et al. 2016; Kumar and Chopra
2014). These amendments not only reduced
HMs uptake by the vegetables but also improved
soil conditions that further supported plant
establishment and maintain their nutritional
quality (Xu et al. 2019). Likewise, iron and
silicon-rich material significantly increased the
growth of B. Chinensis by reducing As and Cd
uptake compared to alkaline clay and synthetic
zeolite (Yao et al. 2017). Phosphorus (P) is also a
key component of vegetables development in the
agricultural system. Phosphorus applications also
significantly control HMs uptake by forming a
stable metal complex, increasing soil pH and
CEC (Yin et al. 2016).

Organic materials have also been considered
to be effective additives in reducing HMs
bioavailability in agricultural soils (Shan et al.
2016). Compost, pig manure, and wheat straw had
noticeably restricted Cd transport to the roots and
aerial parts of radish. During the experiment, it
was observed that pig manure was the most effi-
cient amendment in reducing Cd uptake compared
to wheat straw (Shan et al. 2016). Similarly, in a
field experiment, poultry, swine, and cattle man-
ure were added to the Cd polluted soil during a
four-year vegetable production period. It was
noticed that these amendments had significantly
decreased Cd concentrations and its uptake by
spinach (Sato et al. 2010). Likewise, biochar, “a
substance produced from organic residues such as
agricultural wastes, plant, and animal wastes”
under the limited supply of oxygen, has recently
gained the attention of scientists worldwide due to
its vast applications as fertilizer and potential
amendment in immobilizing numerous environ-
mental contaminants (Awad et al. 2017; Woldet-
sadik et al. 2016; Wang et al. 2015). Biochar
applications have significantly increased the
growth of turnips (Brassica rapa L.) by lowering
HMs uptake. It was observed that peanut shell-
derived biochar was efficient in decreasing HMs
uptake by turnips in contrast to soybean, sewage
sludge, and rice straw amendments (Khan et al.
2015). Furthermore, paper-mill sludge biochar
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had also considerably reduced Zn and Cd uptake,
while improving the yield of lettuce (Kim et al.
2015). Similarly, biochar applications also
reduced HMs concentrations in garlic (Song et al.
2014), Jack bean (Puga et al. 2015) and pepper
(Xu et al. 2016).

19.8.3 Water Management Strategies

Constant and prolonged water applications also
influence the HMs accumulation in soils and
vegetables. Irrigation of contaminated agricul-
tural lands with water significantly increased
HMs uptake by vegetables at their critical growth
(Tack et al. 2017). However, continuous and
long-term field monitoring is required to explore
this fact. Likewise, irrigation of arable lands with
fresh and surface waters as well as municipal and
industrial wastewaters influence HMs accumu-
lation in vegetables (Asgari and Cornelis 2015;
Qureshi et al. 2016). Additionally, modes of
water use such as surface, drip, and other irri-
gation practices may also reduce HMs accumu-
lation in soil profile and vegetables grown on
them. Reportedly, the use of subsurface pressure-
compensating drip irrigation method was able to
reduce HMs accumulation in the soil profile and
cauliflower curds (Singh et al. 2020).

19.8.4 Soil Applications of Different
Microbial Inocula

Soil-microbe-plant interaction plays a key role
owing to its potential in improving the growth,
yield, nutritional quality, and restricting HMs
accumulation in plants. This interaction not only
increased microbial mediated HMs tolerance in
plants but also improved the overall traits of
plants (Tiwari and Lata 2018).

This possibly could be due to precipitation,
absorption, and accumulation of HMs in the cell
walls of microbes, conversion of HMs into less
toxic form through oxidation-reduction reactions,
exclusion of HMs from their cell as well as
encapsulation (Tiwari and Lata 2018 and refer-
ences therein). Likewise, the applications of

arbuscular mycorrhizal fungi (AMF) in arable
lands polluted with HMs have been extensively
revealed (Riaz et al. 2020; Chang et al. 2018).
Arbuscular mycorrhizal fungi are unique and
diverse microorganisms directly associated with
the host plant and soil, increasing the minerals
and water acquisition and their uptake by the
plants which ensure plant establishment under
HMs stress (Khan et al. 2020). The presence of
AMF in HMs contaminated soils encourage the
plant growth through developing root system, by
improving the growth and surface area of root
hair which increased nutrient acquisition under
HMs stress (Pavithra and Yapa 2018).

19.9 Conclusion and Way Forward

Vegetables are the key component of the human
diet and provide essential mineral nutrients to
maintain numerous physiological functions.
Also, they are a good accumulator of HMs
without showing any toxic symptoms and pose a
severe risk to human health after exposure by
consuming HMs contaminated vegetables. Thus,
there is a need to take effective remedial mea-
sures to control HMs accumulation in vegetables
grown on contaminated soils. Applications of
different novel remediation techniques such as
phytoremediation, water management strategies
and utilization of microbial inocula control HMs
accumulation in vegetables. It is further sug-
gested that more lab-scale and field studies are
required to understand different mechanisms
occurring on molecular levels that affect the
nutritional components of vegetables produced
from HMs contaminated soils.
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