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Abstract. The Deep Q-Network (DQN) is one of the deep reinforcement
learning algorithms, which uses deep neural network structure to esti-
mate the Q-value in Q-learning. In the previous work, we designed and
implemented a DQN-based Autonomous Aerial Vehicle (AAV) testbed
and proposed a Tabu List Strategy based DQN (TLS-DQN). In this
paper, we propose a LiDAR Based Mobile Area Decision Method for
TLS-DQN to improve the control for AAV Mobility. The evaluation
results show that the proposed method makes a good decision for the
destination and mobile area based on LiDAR.

1 Introduction

The Unmanned Aerial Vehicle (UAV) is expected to be used in different fields
such as aerial photography, transportation, search and rescue of humans, inspec-
tion, land surveying, observation and agriculture. Autonomous Aerial Vehicle
(AAV) [1] has the ability to operate autonomously without human control and is
expected to be used in a variety of fields, similar to UAV. So far many AAVs [2–4]
are proposed and used practically. However, existing autonomous flight systems
are designed for outdoor use and rely on location information by the Global Nav-
igation Satellite System (GNSS) or others. On the other hand, in an environment
where it is difficult to obtain position information from GNSS, it is necessary
to determine a path without using position information. Therefore, autonomous
movement control is essential to achieve operations that are independent of the
external environment, including non-GNSS environments such as indoor, tunnel
and underground.
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In [5–8] the authors consider Wireless Sensor and Actuator Networks
(WSANs), which can act autonomously for disaster monitoring. A WSAN con-
sists of wireless network nodes, all of which have the ability to sense events
(sensors) and perform actuation (actuators) based on the sensing data collected
by the sensors. WSAN nodes in these applications are nodes with integrated
sensors and actuators that have the high processing power, high communication
capability, high battery capacity and may include other functions such as mobil-
ity. The application areas of WSAN include AAV [9], Autonomous Underwater
Vehicle (AUV) [10], Autonomous Surface Vehicle (ASV) [11], Heating, Venti-
lation, Air Conditioning (HVAC) [12], Internet of Things (IoT) [13], Ambient
Intelligence (AmI) [14], ubiquitous robotics [15], and so on.

Deep reinforcement learning [16] is an intelligent algorithm that is effective
in controlling autonomous robots such as AAV. Deep reinforcement learning
is an approximation method using deep neural network for value function and
policy function in reinforcement learning. Deep Q-Network (DQN) is a method
of deep reinforcement learning using Convolution Neural Network (CNN) as a
function approximation of Q-values in the Q-learning algorithm [16,17]. DQN
combines the neural fitting Q-iteration [18,19] and experience replay [20], shares
the hidden layer of the action value function for each action pattern and can
stabilize learning even with nonlinear functions such as CNN [21,22]. However,
there are some points where learning is difficult to progress for problems with
complex operations and rewards, or problems where it takes a long time to obtain
a reward.

In this paper, we propose a LiDAR based mobile area decision method for
TLS-DQN to improve the control for AAV mobility. Also, we present the simula-
tion results for AAV control using TLS-DQN [23,24] and the proposed method.
The structure of the paper is as follows. In Sect. 2, we show the DQN based AAV
testbed. In Sect. 3, we describe the proposed method. In Sect. 4, we discuss the
simulation results of TLS-DQN. Finally, conclusions and future work are given
in Sect. 5.

2 DQN Based AAV Testbed

In this section, we discuss quadrotor for AAV and DQN for AAV mobility.

2.1 Quadrotor for AAV

For the design of AAV, we consider a quadrotor, which is a type of multicopter.
Multicopter is high maneuverable and can operate in places that are difficult
for people to enter, such as disaster areas and dangerous places. It also has the
advantage of not requiring space for takeoffs and landings and being able to
stop at mid-air during the flight, therefore enabling activities at fixed points.
The quadrotor is a type of rotary-wing aircraft that uses four rotors for takeoff
or propulsion, and can operate with less power than hexacopter and octocopter,
and is less expensive to manufacture.
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Fig. 1. Snapshot of AAV.

Table 1. Components of quadrotor.

Component Model

Propeller 15 × 5.8

Motor MN3508 700kv

Electric speed controller F45A 32bitV2

Flight controller Pixhawk 2.4.8

Power distribution board MES-PDB-KIT

Li-Po battery 22.2v 12000mAh XT90

Mobile battery Pilot Pro 2 23000mAh

ToF ranging sensor VL53L0X

Raspberry Pi 3 Model B Plus

PVC pipe VP20

Acrylic plate 5 mm

Fig. 2. AAV control system.
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Fig. 3. DQN for AAV mobility control.

In Fig. 1 is shown a snapshot of the quadrotor used for designing and imple-
menting an AAV testbed. The quadrotor frame is mainly composed of polyvinyl
chloride (PVC) pipe and acrylic plate. The components for connecting the bat-
tery, motor, sensor, etc. to the frame are created using an optical 3D printer.
Table 1 shows the components in the quadrotor. The size specifications of the
quadrotor (including the propeller) are length 87 [cm], width 87 [cm], height
30 [cm] and weight 4259 [g].

In Fig. 2 is shown the AAV control system. The raspberry pi reads saved data
of the best episode when carrying out the simulations by DQN and uses telemetry
communication to send commands such as up, down, forward, back, left, right
and stop to the flight controller. Also, multiple Time-of-Flight (ToF) range sen-
sors using Inter-Integrated Circuit (I2C) communication and General-Purpose
Input Output (GPIO) are used to acquire and save flight data. The Flight Con-
troller (FC) is a component that calculates the optimum motor rotation speed
for flight based on the information sent from the built-in acceleration sensor and
gyro sensor. The Electronic Speed Controller (ESC) is a part that controls the
rotation speed of the motor in response to commands from FC. Through these
sequences, AAV behaves and reproduces movement in simulation.

2.2 DQN for AAV Mobility

The DQN for moving control of AAV structure is shown in Fig. 3. The DQN for
AAV mobility is implemented by Rust programming language [25].

In this work, we use the Deep Belief Network (DBN), because the computa-
tional complexity is smaller than CNN for DNN part in DQN. The environment
is set as vi. At each step, the agent selects an action at from the action sets of
the mobile actuator nodes and observes a position vt from the current state. The
change of the mobile actuator node score rt was regarded as the reward for the
action. For the reinforcement learning, we can complete all of these mobile actu-
ator nodes sequences mt as Markov decision process directly, where sequences
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of observations and actions are mt = v1, a1, v2, . . . , at−1, vt. A method known as
experience replay is used to store the experiences of the agent at each timestep,
et = (mt, at, rt, mt+1) in a dataset D = e1, . . . , eN , cached over many episodes
into a Experience Memory. By defining the discounted reward for the future by a
factor γ, the sum of the future reward until the end would be Rt =

∑T
t′=t γt′−trt′ .

T means the termination time-step of the mobile actuator nodes. After running
experience replay, the agent selects and executes an action according to an ε-
greedy strategy. Since using histories of arbitrary length as inputs to a neural
network can be difficult, Q-function instead works on fixed length format of his-
tories produced by a function φ. The target was to maximize the action value
function Q∗(m,a) = maxπ E[Rt|mt = m,at = a, π], where π is the strategy for
selecting of best action. From the Bellman equation (see Eq. (1)), it is possibel to
maximize the expected value of r + γQ∗(m′, a′), if the optimal value Q∗(m′, a′)
of the sequence at the next time step is known.

Q∗(m′, a′) = Em′∼ξ[r + γa′maxQ∗(m′, a′)|m,a]. (1)

By not using iterative updating method to optimize the equation, it is common to
estimate the equation by using a function approximator. Q-network in DQN is a
neural network function approximator with weights θ and Q(s, a; θ) ≈ Q∗(m,a).
The loss function to train the Q-network is shown in Eq. (2):

Li(θi) = Es,a∼ρ(·)[(yi − Q(s, a; θi))2]. (2)

The yi is the target, which is calculated by the previous iteration result θi−1.
The ρ(m,a) is the probability distribution of sequences m and a. The gradient
of the loss function is shown in Eq. (3):

∇θi
Li(θi) = Em,a∼ρ(·);s′∼ξ[(yi − Q(m,a; θi))∇θi

Q(m,a; θi)]. (3)

We consider tasks in which an agent interacts with an environment. In this
case, the AAV moves step by step in a sequence of observations, actions and
rewards. We took in consideration AAV mobility and consider 7 mobile patterns
(up, down, forward, back, left, right, stop). In order to decide the reward
function, we considered Distance between AAV and Obstacle (DAO) parameter.

The initial weights values are assigned as Normal Initialization [26]. The
input layer is using AAV and the position of destination, total reward values
in Experience Memory and AAV movements patterns. The hidden layer is con-
nected with 256 rectifier units in Rectified Linear Units (ReLU) [27]. The output
Q-values are the AAV movement patterns.
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Algorithm 1. Tabu List for TLS-DQN.
Require: The coordinate with the highest evaluated value in the section is (x, y, z).
1: if (xbefore ≤ xcurrent) ∧ (xcurrent ≤ x) then
2: tabu list ⇐ ((xmin ≤ xbefore) ∧ (ymin ≤ ymax) ∧ (zmin ≤ zmax))
3: else if (xbefore ≥ xcurrent) ∧ (xcurrent ≥ x) then
4: tabu list ⇐ ((xbefore ≤ xmax) ∧ (ymin ≤ ymax) ∧ (zmin ≤ zmax))
5: else if (ybefore ≤ ycurrent) ∧ (ycurrent ≤ y) then
6: tabu list ⇐ ((xmin ≤ xmax) ∧ (ymin ≤ ybefore) ∧ (zmin ≤ zmax))
7: else if (ybefore ≥ ycurrent) ∧ (ycurrent ≥ y) then
8: tabu list ⇐ ((xmin ≤ xmax) ∧ (ybefore ≤ ymax) ∧ (zmin ≤ zmax))
9: else if (zbefore ≤ zcurrent) ∧ (zcurrent ≤ z) then

10: tabu list ⇐ ((xmin ≤ xmax) ∧ (ymin ≤ ymax) ∧ (zmin ≤ zbefore))
11: else if (zbefore ≥ zcurrent) ∧ (zcurrent ≥ z) then
12: tabu list ⇐ ((xmin ≤ xmax) ∧ (ymin ≤ ymax) ∧ (zbefore ≤ zmax))

3 Proposed Method

3.1 TLS-DQN

The idea of the Tabu List Strategy (TLS) is motivated from Tabu Search (TS)
proposed by F. Glover [28] to achieve an efficient search for various optimization
problems by prohibiting movements to previously visited search area in order to
prevent getting stuck in local optima.

r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 (if (xcurrent = xglobal destinations)∧
(ycurrent = yglobal destinations)∧
(zcurrent = zglobal destinations))∨
(((xbefore < xcurrent) ∧ (xcurrent ≤ xlocal destinations))∨
((xbefore > xcurrent) ∧ (xcurrent ≥ xlocal destinations))∨
((ybefore < ycurrent) ∧ (ycurrent ≤ ylocal destinations))∨
((ybefore > ycurrent) ∧ (ycurrent ≥ ylocal destinations))∨
((zbefore < zcurrent) ∧ (zcurrent ≤ zlocal destinations))∨
((zbefore > zcurrent) ∧ (zcurrent ≥ zlocal destinations))).

−1 (else).

(4)

In this paper, reward value is decided by Eq. (4), where “x”, “y” and “z”
means X-axis, Y -axis and Z-axis, respectively. The current means the current
coordinates of the actor node in the DQN, and the before means the coordinates
before selecting and moving the action. Also, the global destination means
the destination in the problem area, and the local destination means the
target passage points until the global destination.

The considered area is partitioned based on the target passage points and
one destination is set in each area. If the current coordinate is closer to the
destination than the coordinate before the move, also if the current coordinate
is equal to the destination, the reward value is 3. In all other cases, the reward
value is −1. The tabu list in TLS is used when an actor node of DQN selects
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Fig. 4. Tabu rule addition method.

an action or the reward for that action is determined. The tabu list is referred
to when selecting the action if the direction of movement of the action has been
randomly determined. If the direction of movement area is included in the tabu
list, the actor node will reselect the action. Also, the tabu list is used when the
reward was determined. When the reward value is 3, the prohibited area is added
to the tabu list based on the rule shown in Algorithm 1. The tabu list holds the
added prohibited areas until the end of the episode and is initialized for each
episode.

Figure 4 shows an example of adding the prohibited area method to the tabu
list according to Algorithm 1. The n in Fig. 4 is a natural number and refers to
the number of iterations in each episode. In Step: [n] of Fig. 4, the actor node has
moved in the Y -axis direction and is closer to the destination than before the
move, and (ybefore < ycurrent) and (ycurrent ≤ ylocal destinations) in Algorithm 1
are satisfied. Therefore, the black-filled area of [(xmin ≤ xmax), (ymin ≤ ybefore),
(zmin ≤ zmax)] is added to the tabu list. Also, in Step: [n+1], the actor node has
moved in the X-axis direction and is closer to the destination than before the
move, and (xbefore < xcurrent) and (xcurrent ≤ xlocal destinations) in Algorithm 1
are satisfied. Therefore, the black-filled area with [(xmin ≤ xbefore), (ymin ≤
ymax), (zmin ≤ zmax)] is added to the tabu list.

The search by TLS-DQN is done in a wider range and is better than the
search by random direction of movement.

3.2 LiDAR Based Mobile Area Decision Method

The proposed method reduces the settings operation for the destination and the
division of mobile area, which was set manually by humans in TLS-DQN. In
addition, the proposed method can decide the destination with less computation
than using SLAM or other methods. In Algorithm 2, using as inputs the coordi-
nates list of obstacles (distance, angle) obtained by LiDAR and the coordinates
of LiDAR placement is generated as output the Destination (X, Y ) as local
destination or global destination. Also, the Z-coordinate of destination is
the median of the movable range in the Z-axis for local destination and
the minimum of the movable range for global destination. The mobile area
is divided based on the decided Destination. In TLS-DQN, if the actor node
reached a local destination, the movable range is decided again based on LiDAR,
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Algorithm 2. LiDAR Based Mobile Area Decision Method.
Input: Point Cloud List ← The coordinates list of obstacles (distance, angle)

obtained by LiDAR
(xLiDAR, yLiDAR) ← The coordinates of LiDAR Placement.

Output: Destination (X, Y ).
for i = 0 to 360 do

2: xPoint Cloud List[i] ← Point Cloud List[i][0] × cos(Point Cloud List[i][1]).
yPoint Cloud List[i] ← Point Cloud List[i][0] × sin(Point Cloud List[i][1]).

4: if Point Cloud List[i][0] > Any Distance then
Distant Point Cloud[i] ← (xPoint Cloud List[i], yPoint Cloud List[i]).

6: (xmin, xmax) ← Min. and Max. value for X-axis in the Distant Point Cloud.
(ymin, ymax) ← Min. and Max. value for Y-axis in the Distant Point Cloud.

8: (xcenter, ycenter) ← (xmin+ xmax
2

, ymin+ ymax
2

).
f lag ← 0.

10: for x = xLiDAR to xcenter do
y ← ( ycenter− yLiDAR

xcenter− xLiDAR
) × (x − xLiDAR) + yLiDAR.

12: for i = 0 to 360 do
if

√
(x − xPoint Cloud List[i])2 + (y − yPoint Cloud List[i])2 > Any Distance

then
14: Destination ← (x, y).

else
16: flag ← 1.

break

18: if flag = 0 then
Destination is local destination.

20: else
Destination is global destination.

then the destination is updated. When updating, the destination is decided con-
tinuously by using the coordinates of the reached local destination for LiDAR
placement.

Fig. 5. Snapshot of considered area.
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4 Performance Evaluation

In this section, we describe the experimental results of the LiDAR based mobile
area decision method for TLS-DQN to improve the control for AAV Mobility
and the simulation results of TLS-DQN based on the decided area.

Fig. 6. Experimental results of the proposed method.

Fig. 7. Visualization results of stitching the considered area.

Fig. 8. Considered area for simulation.

4.1 Results of LiDAR Based Mobile Area Decision Method

The target environment is a corridor with an indoor single-path environment.
Figure 5 shows snapshots of the area used in the simulation scenario and it was
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taken on the ground floor of Building C4 at Okayama University of Science,
Japan. In Fig. 6 are shown the experimental results of the proposed method
for initial placement, Local Destination and Global Destination. In Fig. 6, red
points indicate short distance, orange points indicate medium distance, blue
points indicate distant distance and gray points indicate points behind the direc-
tion of movement. While, Fig. 7 shows the visualization results when switching
the considered area. In Fig. 6 and Fig. 7, the red points indicate short distance,
orange points indicate medium distance, blue points indicate long distance and
gray points indicate points behind the direction of movement. Figure 8 shows
the considered area based on the actual measurements of Fig. 5 area. By using
the proposed method, for the initial configuration [100, 125, 0], the destina-
tions are [90, 700, 150], [100, 1550, 150], [90, 1925, 0] (global destination) in
this scenario. The experimental results show that the global destination is
decided between the initial placement to the end of the path, and the global
destination is decided at the end of the path.

Table 2. Simulation parameters of DQN.

Parameters Values

Number of episode 10000

Number of iteration 2000

Number of hidden layers 3

Number of hidden units 15

Initial weight value Normal initialization

Activation function ReLU

Action selection probability (ε) 0.999 − (t / Number of episode)

(t = 0, 1, 2, . . ., Number of episode)

Learning rate (α) 0.04

Discount rate (γ) 0.9

Experience memory size 300 × 100

Batch size 32

Number of AAV 1
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Fig. 9. Simulation results of rewards.
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Fig. 10. Visualization results.

4.2 Simulation Results of TLS-DQN

We consider for simulations the operations such as takeoffs, flights and land-
ings between the initial position and the destination. Figure 8 shows the con-
sidered area for simulation. Table 2 shows the parameters used for simulations.
The global destination and local destination is decided by the proposed
method. Figure 9 shows the change in reward value of the action in each iteration
for Worst, Median, and Best episodes in TLS-DQN. In the episode of Best, it
can be seen that the reward value is on the rise trend. Figure 10 shows the visu-
alization results of Best episodes in TLS-DQN. The visualization results show
that TLS-DQN is reaching the global destination.

5 Conclusions

In this paper, we proposed a LiDAR based mobile area decision method for TLS-
DQN to improve the control for AAV mobility. The proposed method is used
in an indoor single-path environment and the simulations were carried out by
TLS-DQN for AAV control. From the evaluation results, we conclude as follows.

• The proposed method can decide the mobile area and destination based on
LiDAR.

• The proposed method has a less computation than other methods.
• The proposed method is a good approach for indoor single-path environments.

In the future, we would like to improve the TLS-DQN for AAV mobility and will
consider different scenarios.
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JP20K19793 and Grant for Promotion of OUS Research Project (OUS-RP-20-3).
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