
Approximate the Clique-Width
of a Graph Using Shortest Paths

J. Leonardo González-Ruiz1(B) , J. Raymundo Marcial-Romero1 ,
J. A. Hernández1 , and Guillermo De-Ita2

1 Facultad de Ingenieŕıa, Universidad Autónoma del Estado de México,
Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Mexico

{jlgonzalezru,jrmarcialr,xoseahernandez}@uaemex.mx
2 Benemérita Universidad Autónoma de Puebla, 4 Sur 104 Centro Histórico C.P.,

72000 Puebla, Mexico
deita@cs.buap.mx

Abstract. In this paper, we present an algorithm to approximate the
clique-width of a graph. The proposed approach is based on computing
the shortest paths between pairs of vertices. We experimentally show
that our proposal approximates the clique-width of simple graphs in
polynomial time, while other methods that calculate it in an exact way,
transform the problem to SAT, that is well-known as NP-Complete.

Keywords: Graph theory · Clique-width · Algorithm complexity

1 Introduction

The clique-width has been recently studied as an invariant that maintains its
properties under graph isomorphism, belonging to the theory of parameterized
complexity [1], which is a branch of computational complexity theory that classi-
fies the difficulty of problems according to multiple input or output parameters,
specifically in graph theory it measures the difficulty of decomposing a graph
into a tree-like structure. Computing the clique-width of a graph consists of
construct a finite term which represents the graph.

Courcelle et al. [2] presents a set of four operations to construct such term: 1)
the creation of labels for vertices, 2) the disjoint union of graphs, 3) the creation
of edges and 4) the re-labeling of vertices. The number of labels used to construct
the finite term is commonly denoted by k. The minimum k number used to
construct the term, also called k-expression, defines the clique-width. Finding the
best combination which minimizes the k-expression is a NP -complete problem
[3], furthermore, there is no constant error in the approximation algorithms
for the calculation of the clique-width [3]. As the clique-width increases, the
complexity of the problem in graphs also increases, in the same way the difficulty
to achieve the decomposition of the graph increases, in fact, for some automata

Supported by CONACYT.

c© Springer Nature Switzerland AG 2021
I. Batyrshin et al. (Eds.): MICAI 2021, LNAI 13068, pp. 337–347, 2021.
https://doi.org/10.1007/978-3-030-89820-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89820-5_27&domain=pdf
http://orcid.org/0000-0003-4691-8426
http://orcid.org/0000-0002-5808-5727
http://orcid.org/0000-0001-8951-0063
http://orcid.org/0000-0001-7948-8253
https://doi.org/10.1007/978-3-030-89820-5_27

338 J. L. González-Ruiz et al.

that represent certain problems in graphs (according to the main Courcelle’s
theorem), its computation rapidly consumes memory.

In recent years, the clique-width has been studied in different classes of graphs
showing the behavior of this invariant under certain operations. For exam-
ple, Golumbic et al. [4] showed that for every graph with hereditary distance
(a graph in which the distances between all connected induced subgraphs is the
same as in the original graph), the clique-width (cwd for short) is smaller or
equal to 3, so the following problems have a linear solution in this type of graph:
minimum dominant set, minimum connected dominant set, minimum Steiner
tree, maximum weight clique, domestic number for a fixed k, vertices cover and
colorability for a fixed k. Examples can also be found in [5] for graphs with cwd
3 or 4.

The importance of classifying these types of graphs according to their cwd
allows us to have a set of problems in graph theory that allow solutions in polyno-
mial time, which indicates that they are into the tractable problems category. A
variant of the problem, which also belongs to the NP -complete class, is to decide
whether a graph has cwd of size k, for a fixed k number. For graphs with cwd
bounded, in [6] is shown that there is an algorithm in polynomial time (O(n2m))
that recognizes graphs of cwd less than or equal to 3. However, the authors refer
that the problem remains open for k ≥ 4. In the other hand, there is a classifi-
cation for the graphs of cwd ≤ 2, since the graphs of cwd = 2 are precisely the
cographs (graphs that can be generated by a graph K1 by complementation or
disjoint union).

Similarly, the same result holds for the other invariant in graphs, the
treewidth [7], however, the cwd is more general in the sense that graphs with a
small tree-width also have small cwd. Algorithms used to calculate the cwd in
these graphs require a previous certificate that indicates that they have small
cwd, however, calculating this certificate or deciding if the cwd is bounded by
a given number is also a complicated problem in the combinatorial sense. In
other hand, the cwd of a graph with n vertices of degree greater than 2 cannot
be approximated by a polynomial algorithm with an absolute error of nε unless
P = NP [3].

Recently, González-Ruiz et al. [8] showed that the cwd for Cactus graphs is
less or equal to 4 and a polynomial time algorithm was presented that calculates
exactly the 4−expression. Furthermore, in [9] they studied graphs called Polyg-
onal Trees, which consist of simple cycles joined by at most one edge, showing
that the cwd of this type of graph is less or equal to 5 and a polynomial time
algorithm was presented that calculates the 5 − expression.

Additionally Heule et al. [10] present a procedure to transform the cwd
problem to the SAT problem. Its conversion algorithm is polynomial, however,
as is well known, the Propositional Satisfaction problem (SAT) remains NP -
complete. They calculate the cwd of relevant graphs in the literature for which
the exact cwd was not known, using SAT solvers. The graphs considered have
known topologies such as Brinkmann, Dodecahedron, Frutch, Kittell, McGee,
Desargues, among others.

Approximate the Clique-Width of a Graph Using Shortest Paths 339

In this article we present a polynomial algorithm that approximates the cwd
of simple graphs based on induced paths and show a comparison with the exact
results of Heule et al.

2 Preliminares

All the graphs in this article are simple, that is, finite, without loops or multiple
edges, and without direction. A graph is a pair G = (V,E), where V is a set of
elements called vertices and E an unordered set of pairs of vertices called edges.
An edge e is denoted as uv where u and v are vertices. As we know |A| is used
to denote the cardinality of a set A. The degree of a v vertex in a graph G is the
number of edges of G incident at v. Also the maximum degree of the vertices of
G is denoted by Δ(G). In other hand a graph is connected if for every partition
of its set of vertices into two non-empty sets X and Y , there is at least one edge
with an end in X and another end in Y . Additionally a graph G′, whose set
of vertices and edges build a subset of vertices and edges of a given graph G,
is called a subgraph of G. An abstract graph represents a class of isomorphic
graphs.

Let G be a graph and v, w vertices of G, a path from v to w, denoted by
path(v, w), is a sequence of edges: v0v1, v1v2, . . . , v(n−1), vn such that v = v0,
vn = w and vk is adjacent to v(k+1), for 0 ≤ k ≤ n. The length of the path is n.
In other way, a simple path is a path where v0, v1, . . . , v(n−1), vn are all different.
A cycle is a nonempty path such that the first and last vertex are identical, and
a simple cycle is a cycle in which there is no repeated vertex, except for the
first and last. Pn and Cn denote a path and a simple loop respectively, where n
denotes the number of vertices.

Dijkstra’s algorithm called minimum paths algorithm determines the shortest
path given a starting vertex to the rest of the vertices of a given graph [7], the
complexity of this algorithm is O(n2). In the Algorithm 1 we present the pseudo-
code of the procedure of E. Dijkstra (1959) to find the shortest path between a
pair of vertices.

In other hand, a spanning tree of a connected graph of n vertices is a subset
of n − 1 edges that forms a tree. Given a graph G = (V,E), let TG be one
of its spanning trees. The edges in TG are called tree edges, while the edges
E(G) \ E(TG) are called fronds. Let e ∈ E(G) \ E(TG) be a frond edge, the
union of the path in TG between the end points of e with the same edge e form
a simple cycle, such a cycle it is called the fundamental of G with respect to
TG. Each frond e = vw fulfills the maximum path contained in the fundamental
cycle of which it is part. The set of fundamental cycles of G will be denoted by
C. Let L be a countable set of labels. A labeled graph is a (G, γ) pair where γ
is a function that maps V (G) to the set L. A labeled graph can also be defined
by a triplet G = (V,E, γ) and its labeling function is denoted by γ(G). We can
say that G is D -labelled if D is finite and γ(G) ⊆ D.

We now introduce the notion of cwd (cwd, for short). Let C be a countable
set of labels. A labeled graph is a pair (G, γ) where γ maps each element of V (G)

340 J. L. González-Ruiz et al.

Algorithm 1. Dijkstra. Procedure that calculates the shortest path between
two vertices given a graph G and two origin and destination vertices.
1: procedure shortest path
2: let (vini an origin vertex and vfin a destination vertex of G)
3: Assign each vertex of V (G) a distance value, zero to the vertices between which

the path is sought and infinity to the remaining vertices.
4: The source vertex vini is identified as the current vertex and the other vi ∈ V (G)

as unvisited vertices.
5: A set of unvisited vertices is created denoted by B
6: while vfin ∈ B do
7: For the current vertex its neighbors are considered and the different routes are

saved as P i.
8: The vertices used are removed from the set B of unvisited vertices.
9: end while

10: return The shortest path P i with vini and vfin as endpoints

into C . A labeled graph can also be defined as a triple G = (V (G), E(G), γ(G))
and its labeling function is denoted by γ(G). We say that G is C-labeled if C
is finite and γ(G)(V) ⊆ C. We denote by G (C) the set of undirected C-labeled
graphs. A vertex with label a will be called an a-port.

We introduce the following symbols:

– a nullary symbol a(v) for every a ∈ C and v ∈ V ;
– a unary symbol ρa→b for all a, b ∈ C , with a �= b;
– a unary symbol ηa,b for all a, b ∈ C , with a �= b;
– a binary symbol ⊕.

These symbols are used to denote operations on graphs as follows: a(v) creates
a vertex with label a corresponding to the vertex v, ρa→b renames the vertex a
by b, ηa,b creates an edge between a and b, and ⊕ is a disjoint union of graphs.

For C ⊆ C we denote by T (C) the set of finite well-formed terms written
with the symbols ⊕, a, ρa→b, ηa,b for all a, b ∈ C, where a �= b. Each term in
T (C) denotes a set of labeled undirected graphs. Since any two graphs denoted
by the same term t are isomorphic, one can also consider that t defines a unique
abstract graph.

The following definitions are given by induction on the structure of t. We let
val(t) be the set of graphs denoted by t.

If t ∈ T (C) we have the following cases:

1. t = a ∈ C: val(t) is the set of graphs with a single vertex labeled by a;
2. t = t1 ⊕ t2: val(t) is the set of graphs G = G1 ∪ G2 where G1 and G2 are

disjoint and G1 ∈ val(t1), G2 ∈ val(t2);
3. t = ρa→b(t′) : val(t) = {ρa→b(G)|G ∈ val(t′)} where for every graph G in

val(t′), the graph ρa→b(G) is obtained by replacing every vertex label a by b
in G;

4. t = ηa,b(t′) : val(t) = {ηa,b(G)|G ∈ val(t′)} where for every undirected labeled
graph G = (V,E, γ) in val(t′), we let ηa,b(G) = (V,E′, γ) such that

Approximate the Clique-Width of a Graph Using Shortest Paths 341

E′ = E ∪ {{x, y}|x, y ∈ V, x �= y, γ(x) = a, γ(y) = b}, e.g. ηa,b(G) adds an
edge between each pair of vertices a and b in G.

For every labeled graph G we let:
cwd(G) = min{|C||G ∈ val(t), t ∈ T (C)}.
A term t ∈ T (C) such that |C|= cwd (G) and G = val(t) is called optimal

expression of G [11] and written as |C|-expression.
In other words, the cwd of a graph G is the minimum number of different

labels needed to construct a vertex-labeled graph isomorphic to G using the four
mentioned operations.

As an example we show the computing of cwd for a simple graph Fig. 1 that
consists of a cycle of size 4. Firstable in Fig. 2 shows the creation of vertices 3 and
2 of the original graph by the expression a(3)⊕a(2), next in Fig. 3 the labels b(1)
and b(4) are created. Then, in Fig. 4 the disjoint union of the vertices created in
steps 1 and 2 is made using the expression (b(1)⊕b(4))⊕(a(3)⊕a(2)). Finally, in
Fig. 5 the edges between the labeled vertices are created, resulting in an abstract
graph isomorphic to the original by the expression η(a,b)((b(1) ⊕ b(4)) ⊕ (a(3) ⊕
a(2))).

As we can see, 2 labels were used to build the cycle of size 4. It is obvious
that a single label cannot be used to build the cycle of 4, since edges cannot be
created between the same vertices. Therefore, the cwd of a cycle with size 4 is 2.

3 Shortest Path Procedure

In this section we show a procedure based on shortest paths, which allows,
throughout the construction, to use a smaller number of labels, thus optimizing
the cwd computation.

Let G = (V,E) be a simple graph and C be the set of fundamental cycles
of G. If Ci, Cj ∈ C and E(Ci) ∩ E(Cj) �= 0 then Ci
Cj = (E(Ci) ∪ E(Cj)) −
(E(Ci) ∩ E(Cj)) forms a compound loop, where
 denotes the symmetric dif-
ference operation between the set of edges in both loops.

Let G = (V,E) be a simple graph and C1 the smallest fundamental cycle,
the result of the decomposition of the graph by a spanning tree and its co-tree.

Looking to find an optimal way to construct a graph from the minimum,
element of G, i.e. the smallest fundamental cycle, we have proposed the following
inductive construction of subgraphs representing together G:

G′
1 = C1.

G′
n = G′

(n−1) ∪ min{Dijkstra((V (G), E(G) \ ⋃n−1
i=1 E(G′

i)), vi, vj)|vi, vj ∈
G′

n−1, vi �= vj}.

Each graph G′
i is induced from the original graph and is contained as shown

by the proposition 1.

Proposition 1. G′
1 ⊂ G′

2 . . . ⊂ G′
n = G.

342 J. L. González-Ruiz et al.

1 2

3 4

Fig. 1. Simple graph

a(2)

a(3)

Fig. 2. Step 1: a(3) ⊕ a(2)

b(1)

b(4)

Fig. 3. Step 2: b(1) ⊕ b(4)

b(1) a(2)

a(3) b(4)

Fig. 4. Step 3: (b(1) ⊕ b(4)) ⊕ ((a(3) ⊕
a(2))

b(1) a(2)

a(3) b(4)

Fig. 5. Step 4: (ηa,b(b(1) ⊕ b(4)) ⊕ ((a(3) ⊕ a(2)))

Proof. V (G′
i) ⊆ V (G′

i+1) y E(G′
i) ⊆ E(G′

i+1),∀i, 1 ≤ i < n. �

Now, to simplify the notation we use:

P i
vini,vfin

= min{Dijkstra((V (G), E(G)
⋃n−1

i=1 E(G′
i)), vi, vj)|vi, vj ∈

G′
n−1, vi �= vj}

where vini, vfin are the initial and final vertex respectively of the short-
est path found by Dijkstra’s method. Therefore, we can establish the following
theorem.

Theorem 1. Let G a simple graph, and G′
1 ⊂ G′

2 . . . ⊂ G′
n = G, we can build

each kG′
n

n
1
-expression to calculate the cwd(G), inductively represented by:

G′
1 = C1.

G′
n = G′

n−1 ∪ Pn−1
vini,vfin

.

Proof. The proof will be carried out detailing the procedure:
Let L be a set of labels. We construct the k-expression of each induced

subgraph G′
i as follows:

– For all vi ∈ G′
1, take a new ai ∈ L and create ai(vi).

– The k-expression of the graph G′
1 is: k(G′

1) = ηa1,al
(ηai−1,ai

(a1(v1) ⊕ . . . ⊕
al(vl)) where l = |V (G′

1)|, 1 < i ≤ l.

Approximate the Clique-Width of a Graph Using Shortest Paths 343

– Let K = {ai|1 ≤ i ≤ l}, that is, the labels that have been used to construct
the k-expression of the graph G′

j−1. The set of labels that can be reused in
the construction of the kG′

j
-expression starting from the expression kG′

j−1
are

defined as:
R = {ai ∈ K|ai(vk) ∈ kG′

j−1
, δ(vk) ∈ G \ E(G′

j−1) = 0}.
– Let as ∈ R the label that will be used to rename all other R in the G′

j−1 graph.
The resulting expression after relabeling is: ρat→as

(kG′
j−1

)∀at ∈ R, at �= as.
– For each v ∈ Pn−1

vini,vfin
, v �= vini �= vfin, take a ai ∈ R with ai �= as if exists,

if not, take a new ai ∈ L and create ai(vi).
– As P j−1

vini,vfin
\ {vini, vfin} is a path that can be associated with each vertex,

considering its adjacency, an index of the sequence {1, · · · , r} where r is the
number of vertices of the path. With this arrangement create the k-expression:
kP j−1 = ηai−1,ai

(a1(v1) ⊕ · · · ⊕ ar(vr)) where 1 < i ≤ r.
– Thus kG′

j
= ηar,vfin

(ηa1,vini
(kG′

j−1
⊕kP j−1)), where a1, ar ∈ P j−1 are the two

labeled vertices of the ends of P j−1. �

Now for a better understanding, we present the algorithm 2 that constructs
the k-expression given a simple graph. As input, the algorithm receives a graph
and its decomposition into fundamental cycles. It starts using the smallest size
cycle and calculating its k-expression, later the vertices already used in the con-
struction are stored in the set A, using these vertices the shortest path between
them is searched, when finding it, compute its k-expression and add the ver-
tices of the path to the set A. This method is repeated until the original graph is
built, creating edges between already labeled vertices and releasing labels already
covered.

Each step of the 2 algorithm is described as follows. From lines 1 to 2 the
algorithm starts with G as input and C1 is the smallest fundamental cycle of
G. In line 3 each vertex of C1 is added to the set of vertices A. In line 4 the
vertices involved in the cycle C1 are deleted from the original graph G. In line
5 we begin to build the k-expression using different labels for each vertex in C1.
From lines 6 to 23 we have the main procedure as long as the number of edges
in the resulting G is different from 0. In this procedure, in line 7, the shortest
path P is found between each vertex of A on the G graph using the well known
Dijkstra algorithm, if you have more than one path with the same cardinality
then you can choose the last one found. In line 8 the new k-expression of the
path P from step 7 is constructed, at this moment we already have the first and
last label of P since it is an element of A, each vertex between the first and
last on the way must be different. In line 9 the edges involved in the path P
mentioned above are deleted from the current G. In line 10 each vertex of the
path P found (except the extremes) is added to A.

Now the following condition allows to release labels to be able to reuse them,
from 11 to 14 it is compared if the degree of each vertex in A is 0, if it is true,
the corresponding labels are released and the vertex of the A set is deleted since
has been covered in its entirety. The above is useful to do less operations. The
next condition from 15 to 22 is to verify if the elements of A are connected in

344 J. L. González-Ruiz et al.

the current G, if so, an edge is created using the η operation, which will join
the different k-expressions that have already been built. After that, on line 17
the edges found in the last step of the current G are deleted. Finally the same
condition is repeated from 18 to 21 as it was done in lines 11 to 14. The while
instructions will be repeated until all edges are deleted from the graph G.

Furthermore, the complexity of the method presented in this paper is given
by two main methods, the first is the well-known Dijkstra Algorithm for simple
graphs which is of order O(n2). In other hand, the proposed method is in the
worst case O(n − 3), removing the first minimum cycle of size 3. Therefore, the
complexity of these methods is O(n3).

4 Example

This section shows how our algorithm works when considering the 8-cubic graph,
which is illustrated in Fig. 6 also called a trivalent graph whose vertices have
degree 3. This graph contains 8 vertices and 12 edges. In Fig. 7 we start with the
cycle C1 = [4, 6, 5] so 3 labels are used and the set A = {4, 6, 5}. In Fig. 8 the
computing of the shortest path is shown with the following steps: the shortest

Algorithm 2. Procedure that calculates a k-expression (G) when G is decom-
posed into fundamental cycles.
1: procedure k-expression(G)
2: let (Ci a subgraph of G which is the smallest fundamental cycle of G)
3: 3. Add each vertex of V [Ci] in A
4: Delete the edges E[Ci] from G
5: Build the k − expression of Ci

6: while |E[G]|�= 0 do
7: Find the shortest path P using Dijkstra’s algorithm between each vertex of A

in the graph G {If you have more than one path of the same size, the last one
found is taken}

8: Build the k − expression of P
9: Delete from G the edges of P

10: Add to each vertex of V [P] in A
11: if For each ai ∈ A, the degree of ai in G is 0 then
12: Free a label
13: Delete vertex ai of A
14: end if
15: if the actual elements of A are connected in G then
16: Build the k-expression using η operator
17: Delete the previous created edges from G
18: if for each ai ∈ A, the degree of ai in G is 0 then
19: Free the label
20: Delete the vertex ai of A
21: end if
22: end if
23: end while

Approximate the Clique-Width of a Graph Using Shortest Paths 345

path between the vertices of A is calculated, the resulting path is P = [5, 1, 7, 6]
and 2 more labels are used, as a result A = {4, 5, 6, 1, 7}, now 2 labels can be
released, the ones corresponding to vertex 6 and 5, one of them will be left as a
residual label for the entire graph and we have a free one, as a result A = {4, 1, 7},
5 labels have been used and 1 remains free to use. Later in Fig. 9 the following
algorithm computing is shown, the shortest path is found P = [7, 8, 2, 1], the
free label is used and a new one, and the vertices are added to the set A, so far
A = {4, 1, 7, 8, 2}, at this moment labels 7 and 1 can be released, so there are 2
free labels left and the set would be A = {4, 8, 2}. In Fig. 10 the following path
found is shown P = [8, 3, 2], one of the two available labels is used and the set
is as follows: A = {4, 8, 2, 3}, labels 8 and 2 can be released, the resulting set
would be: A = {4, 3}. Finally, in Fig. 11 an edge is created between 4 and 3, to
later release these two vertices leaving the set as A = {}, ending the algorithm
and resulting in the cwd (8 cubic graph 2) ≤ 6.

1

2

34

5
6

7

8

Fig. 6. 8 cubic graph 2

1

2

34

5
6

7

8

Fig. 7. C1 = [4, 6, 5]

1

2

34

5
6

7

8

Fig. 8. P = [5, 1, 7, 6]

1

2

34

5
6

7

8

Fig. 9. P = [7, 8, 2, 1]

346 J. L. González-Ruiz et al.

1

2

34

5
6

7

8

Fig. 10. P = [8, 3, 2]

1

2

34

5
6

7

8

Fig. 11. η(4,3)

5 Conclusions

This article presents a proposal to approximate the cwd of simple graphs. The
proposed algorithm is based on the classic Dijkstra algorithm together with the
calculation of the shortest paths of induced graphs. To get a conclusion about
the efficiency of our algorithm, the results reported by Heule [10] were considered
and compared with those generated by our proposal. In Table 1, is shown the
name of the graph with its number of vertices and edges, followed by the exact
result of Heule et al. and the result of our proposal.

On the other hand, the error between an exact method and an approximation
method is given by an equation in [3] as follows: |A(G) − cwd(G)|≤ nε, where
A(G) is the result of the cwd using an approximation algorithm (which is our
case), the cwd(G) is the exact result, n is the number of vertices and finally ε is

Table 1. Comparison between approach algorithm and exact CWD

Graph |V | |E| Heule Our proposal Error

Brinkmann 21 42 10 10 0%

Desargues 20 30 8 10 23.13%

Dodecahedron 20 30 8 8 0%

Errera 17 45 8 8 0%

Frutch 12 18 5 7 27.8%

Kittell 23 63 8 9 ≈0%

McGee 24 36 8 10 21.8%

Paley13 13 39 9 10 ≈0%

Pappus 18 27 8 9 ≈0%

Petersen 10 15 5 7 30.1%

Poussin 15 39 7 8 ≈0%

Robertson 19 38 9 10 ≈0%

Shirkhande 16 48 9 11 25%

Approximate the Clique-Width of a Graph Using Shortest Paths 347

the error, clearing ε gives the error of the last column. As can be seen in Table 1,
in 8 of the 13 cases the cwd with an ≈0% of error was obtained, having in the
worst case an error of 30.1% and in the average case an error of 9.8%.

The advantage of this algorithm is that its execution time is polynomial so
the approximation has a complexity of the order O(n3) where n is the number
of vertices of the input graph.

References

1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, NewYork (1999)

2. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Sys. Sci. 46(2), 218–270 (1993)

3. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is np-
complete. SIAM J. Discrete Mathe. 23(2), 909–939 (2009)

4. Golumbic, M.C., Rotics, U.: Graph-theoretic concepts in computer science. In:
25th Proceedings of the International Workshop on Clique-Width of Perfect Graph
Classes (WG1999) Ascona, Switzerland, June 17–19, 1999, pp. 135–147. Springer,
Berlin (1999). https://doi.org/10.1007/978-3-642-11409-0

5. Langer, Alexander, Reidl, Felix, Rossmanith, Peter, Sikdar, Somnath: Practical
algorithms for MSO model-checking on tree-decomposable graphs. Comput. Sci.
Rev. 1314, 39–74 (2014)

6. Derek, G. Corneil, M.H., Lanlignel, J.-M., Reed, B., Rotics, U.: Polynomial-time
recognition of clique-width ≤ 3 graphs. Discrete Appl. Math. 160(6), 834–865
(2012)

7. Bondy, J.-A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics.
Springer, New York, London (2007)

8. Leonardo González-Ruiz, J., Raymundo Marcial-Romero, J., Hernández-Serv́ın,
J.A..: Computing the clique-width of cactus graphs. Electronic Notes in Theoreti-
cal Computer Science. In: Tenth Latin American Workshop on Logic/Languages,
Algorithms and New Methods of Reasoning (LANMR), vol. 8, pp. 47–57 (2016)

9. Leonardo González-Ruiz, J., Raymundo Marcial-Romero, J., Hernández, J.A.,
De Ita. C.: Computing the clique-width of polygonal tree graphs. In: Pichardo-
Lagunas, O., Miranda-Jiménez, S. (eds.) Advances in Soft Computing, pp. 449–459,
Springer International Publishing, Cham (2017)

10. Marijn, J., Heule, H., Szeider, S.: A SAT Approach to clique-width. In: ACM
Transactions on Computational Logic pp. 318–334. Springer, Berlin (2013)

11. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101, 77–114 (2000)

https://doi.org/10.1007/978-3-642-11409-0

	Approximate the Clique-Width of a Graph Using Shortest Paths
	1 Introduction
	2 Preliminares
	3 Shortest Path Procedure
	4 Example
	5 Conclusions
	References

