®

Check for
updates

Plagiarism Detection in Students’
Answers Using FP-Growth Algorithm

Sabina Nurlybayeva! @, Iskander Akhmetov!?®) @, Alexander Gelbukh?®,
and Rustam Mussabayev?3

! Faculty of Information Technology, Kazakh-British Technical University,
Almaty, Kazakhstan
s_nurlybaeva@kbtu.kz
2 Instituto Politecnico Nacional, CIC, Mexico City, Mexico
gelbukh@gelbukh.com
3 Institute of Information and Computational Technologies,
Pushkin Street 125, Almaty, Kazakhstan
http://kbtu.edu.kz
http://iict.kz

Abstract. According to statistics, over the past year, the quality of edu-
cation has fallen due to the pandemic, and the percentage of plagiarism
in the work of students has increased. Modern plagiarism detection sys-
tems work well with external plagiarism, they allow to weed out works
and answers that completely copy someone else’s published ideas. Using
natural language processing methods, the proposed algorithm allows not
only detecting plagiarism, but also correctly classifies students’ responses
by the amount of plagiarism. This research paper implements a two-step
plagiarism detection algorithm. In the experiment, the text was con-
verted into a vector form by the GloVe method, and then segmented by
K-means and the result was obtained by the FP-Growth unsupervised
learning algorithm.

Keywords: Plagiarism detection + Natural language processing -
Machine learning

1 Introduction

Plagiarism is the “wrongful appropriation” and “stealing and publication” of
another author’s “language, thoughts, ideas, or expressions” and the represen-
tation of them as one’s own original work. Plagiarism is considered academic
dishonesty and a breach of journalistic ethics. The problem of plagiarism is also
encountered among the writing and journalistic community, when articles copy
the content, and the works have the same plots. Plagiarism has become a prob-
lem not only for publicists, but also in educational institutions, this problem is
becoming more and more serious. Based on the research of 6,096 undergradu-
ate students at 31 universities, 67.4% was found committed in plagiarism. The
© Springer Nature Switzerland AG 2021

I. Batyrshin et al. (Eds.): MICAI 2021, LNAI 13068, pp. 153-162, 2021.
https://doi.org/10.1007/978-3-030-89820-5_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89820-5_12&domain=pdf
http://orcid.org/0000-0002-2967-2201
http://orcid.org/0000-0002-3221-9352
http://orcid.org/0000-0001-7845-9039
http://orcid.org/0000-0001-7283-5144
https://doi.org/10.1007/978-3-030-89820-5_12

154 S. Nurlybayeva et al.

results of similar study on several different campuses with more than 6,000 par-
ticipants from the high school and undergraduate students, showed 76% were
found committed in plagiarism [9]. Thus in order to protect academic integrity
plagiarism detection has gained a lot of importance these days.

Plagiarism means taking the work or ideas of someone else and passing them
off as your own. The most common and well known form being textual plagiarism.
For the purpose of this thesis, all references to plagiarism will be to textual pla-
giarism; copying the text from a source text and presenting it as your own answer.
Plagiarism comes in many forms. One can directly copy a text, but detecting pure
verbatim plagiarism is a fairly easy task, and plagiarists are quickly caught doing
this with current tools. In order to mask an act of plagiarism, the text is often
rewritten, words in a sentence rearranged, replaced with synonyms, or the text
may be summarized. This makes it harder for automated systems to detect the
plagiarised text. Detecting semantic meaning in a text is especially challenging
to do with a computer algorithm. They are however very adept at lexical analy-
sis. Most plagiarism detection tools use the structural and lexical similarities of
documents.

Machine learning allows users to find optimal settings automatically based on
statistics from a data set made up of pre-classified plagiarism and non-plagiarism
cases. By defining passages, documents or sentences in a data set as plagiarism,
or even the kind of plagiarism methods used on each passage, a system could
potentially be tailored to each institution, or even teacher preference.

This study will develop a method for detecting plagiarism and classifying it
according to the level of uniqueness of the text using natural language process-
ing techniques. This approach implies a two-stage plagiarism detection algorithm
that trains the model without marking, segmentation and searching for frequent
elements.

Student answer

|

l

Plagiarism detection

FP-Growth -
frequent item set

i GloVe -
Preprocessing
. K-Means -
Clugterisation words clusterisation
Sentence Sentence
preprocessing vectorisation

¥
Result

Fig. 1. Algorithm stages



Plagiarism Detection in Students’ Answers Using FP-Growth Algorithm 155

The K-means algorithm is implemented for segmentation of words vectors
into similar clusters, from which in the future, using the FP - Growth unsuper-
vised algorithm, frequent sets of elements will be derived. In our context, we
receive sentences that are plagiarized. Proposed plagiarism detection algorithm
is described in the Fig. 1 above.

2 Related Works

With the development of the internet, people are actively looking for a solution
to the plagiarism problem. The most popular tracking systems are Skyline Inc.
software, Sherlock software and iThenticate [4].

Skyline. Inc. developed standalone plagiarism-detector anti plagiarism soft-
ware, which detects plagiarized text. It is an autonomous Microsoft Windows-
based computer desktop application made with Visual C # .Net. It follows the
exact substrings detection method and it is used in the academic environment. At
any rate, it has its shortcomings which is that it runs just on windows operating
system, it raises a huge amount of false positives (it flags a sentence as plagiarized
even though it is not). It also lacks plagiarism prevention mechanism because there
is no module or subsystem in place to deter or discourage plagiarism [3].

Sherlock, is a program used to recognize copyright encroachment for essays,
computer source codes files and other kinds of textual documents in digital form.
Sherlock works by converting text it receives into digital signatures to measure
the similarity between the documents. A digital signature is a number formed
by changing several words (3 by default) in the input into a series of bits and
joining those bits into a number. Sherlock is developed with C programming
language and it requires compilation before being installed either on Unix/Linux
or Windows. It doesn’t have a GUI as it is a command-line program.

iThenticate compares a given document against the document sources avail-
able on the World Wide Web. It also compares the given document against
proprietary databases of published works (including ABI/Inform, Periodical
Abstracts, Business Dateline), as well as numerous electronic books and pro-
duces originality reports. The originality reports provide the amounts of materi-
als copied (in percentages) to determine the extent of plagiarism, was developed
using PHP and supported by an MSQL back end database [4].

Over the past decade, Machine Learning solutions have displaced legacy tech-
nologies. In the problem of recognizing plagiarism, three main types of solving
the problem can be distinguished: distance-meausuring algorithm, character n-
gram algorithm and clustering algorithm.

Previously, works such as Plagiarism Detection Using the Levenshtein Dis-
tance and Smith-Waterman Algorithm [11] where the Levenshtein distance
between two strings is given by the minimum number of operations, and that
needed to transform one string into the other, where an operation is an inser-
tion, deletion, or substitution of a single character is seen. A commonly-used
bottom-up dynamic programming algorithm for computing the Levenshtein dis-
tance involves the use of an (n + 1) x (m + 1) matrix, where n and m are



156 S. Nurlybayeva et al.

the lengths of the two strings. This algorithm is based on the Wagner-Fischer
algorithm for edit a distance.

The Smith-Waterman algorithm is a classical method of comparing two
strings with a view to identifying highly similar sections within them. It is
widely-used in finding good near-matches, or so-called local alignments, within
biological sequences.

Generally, when researchers compute the similarity of the texts, they first
use the Levenshtein distance method to divide the table, after dividing the table
and then making some of the portions don’t calculate, they applied simplified
Smith-Waterman algorithm to the rest of the table, because of the less nodes of
the table will be compute than Levenshtein distance.

We also came across Intrinsic Plagiarism Detection Using Character n-gram
[1]. This algorithm attempts to quantify the style variation within a document
using character n-gram profiles and a style change function based on an appro-
priate dissimilarity measure originally proposed for author identification.

In this supervised method, the classification model is trained with a small
number of features which are the proportions of the n-gram classes. In detail,
method is composed of the following steps:

1. Segment each document d into fragments si by using the sliding window
technique. Let S denotes the set of these fragments.

2. Build the n-gram class document model without considering numerals.
Researchers choose to consider the frequency of a n-gram ngi as the number
of its occurrence in d such that it is counted once per fragment. Therefore,
the minimum value that could take a frequency is 1 if ngi appears only in one
fragment, and its maximum value is —S— (the number of fragments in d) if
ngi occurs in each fragment si S.

3. Represent each fragment si by a vector of m features fj, j 0,..., m—1. So that,
each fj is the proportion of the n-grams that belong to the class labeled j to
the total number of n-grams in si.

4. Combine into one dataset the fragment vectors obtained from all the training
corpus documents. Then, label each vector with its authenticity state, i.e.
plagiarized, if the fragment plagiarism percentage exceeds 50% and original
otherwise.

5. Use the Naive Bayes algorithm as classifier.

In this project, we used some basic idea from the above methods and imple-
mented a plagiarism detection on a completely different concept. We used unsu-
pervised machine learning algorithm called using Frequent Pattern (FP) Growth
Algorithm.

3 Dataset and Features

In this study, the freely available Clough-Stevenson corpus [2] was applied. The
corpus consists of answers to five short questions on a variety of topics in Com-
puter Science field. The five short questions are:



Plagiarism Detection in Students’ Answers Using FP-Growth Algorithm 157

What is inheritance in object oriented programming?

— Explain the PageRank algorithm that is used by the Google search engine.
Explain the Vector Space Model that is used for Information Retrieval.

— Explain Bayes Theorem from probability theory.

— What is dynamic programming?

Each question has 19 students answers and 1 Wikipedia answer. We are also
given which answers are plagiarised.

Table 1. Dataset statistics

Number of questions 5

Number of answers per question 20

Number of Non or lightly plagiarised answers | 57

Number of Heavily plagiarised answers 19

Mean number of words per answer 216

There are four different types of answers. They are cut, light, non-plagiarised and
heavy. Cut refers to answers that are fully copy-pasted from Wikipedia answer.
Heavy refers to answers that are heavily copied from Wikipedia answers, light
refers to answers which are slightly copied from Wikipedia answers with extreme
changes to the structure of answers. Non refers to non plagiarised work. Statistics
about dataset is given in the Table 1 given above.

Thus the input for our system is various documents which contain student
answers for various questions. The output is the list of students that have pla-
giarised work for each question.

4 Methodology

In our experiment we used K-mean algorithm and FP-Growth algorithm. The
FP-Growth Algorithm, proposed by Han [10], is an efficient and scalable method
for mining the complete set of frequent patterns by pattern fragment growth,
using an extended prefix-tree structure for storing compressed and crucial infor-
mation about frequent patterns named frequent-pattern tree (FP-tree). FP-
Growth algorithm is normally used to find frequent item-sets given a number
of transactions. In natural language processing, we can model our text data
into vectors using word vector vector representation techniques. Many word vec-
tor representation techniques have been developed in recent times. We will use
GloVe [8] to represent our textual data in form of vectors. Thus we get a vector
representing each unique word in our data.

For getting similar words in context and meaning, many methods have been
used like Brown Clustering Algorithm [6] or Word2Vec [7]. However in our
project, we use K-means [5] Clustering Algorithm because of its features like



158 S. Nurlybayeva et al.

completeness, exclusivity and fast execution. In our project, clusters of similar
words are created. Then a vector for each sentence is built based on those clus-
ters. If the two words belong to the same cluster then, the same cluster number
is applied to both the words in the vector. After that a vector for each text doc-
ument is created based on sentence vectors. If two sentence vectors are similar,
then we assign a unique number to those sentences. Thus we get a vector for
each document which we can use as item-sets in the FP-Growth Algorithm and
the number of documents will be our transactions. Once we get frequent item
sets we know which documents are plagiarised from each other.

5 Experiment

Preprocessing. For pre-processing we have to make sure that all the words are
lower cased with all the punctuation removed. We use the NLTK sentence tok-
enizer to get list of sentences so that we know where does each sentence begin
and end. There are various latin words in our answers as well so we use “latinl”
encoding for reading the text.

Vectorisation. After preprocessing the text we needed a way to cluster simi-
lar words. Since, we were using K-means clustering which is a distance based
clustering method, we needed each unique word in our corpus to have a numeri-
cal value. The choice was between several algorithms: bert glove word2 century.
Since the initial task is to determine plagiarism, the word itself is important to
us, but not its meaning. The BERT algorithm will generate several vectors for
the words of homonyms, since it takes into account the position of the word
within the sentence and considers the context of use.

The most famous word2vec word embedding model is the predictive model,
that is, it trains itself trying to predict the target word in context (CBOW) or
context words from the target (skip gram).

And the GloVe model uses a hit-count matrix to perform attachments that
is more suited to this typical task. Each row of the matrix represents a word,
while each column represents contexts in which words may appear. Matrix values
represent the frequency with which a word occurs in a given context. Downsizing
is then applied to this matrix to create the resulting embedding matrix (each
row will be a word embedding vector). The main intuition underlying the model
is the simple observation that ratios of word-word co-occurrence probabilities
have the potential for encoding some form of meaning.

After performing GloVe on our preprocessed data we get vector of each unique
word in our corpus. We can use this representation for clustering and further
processing.

Implementation. K-means clustering algorithm is that it is not guaranteed to
find the most optimal cluster arrangement, if you pick the wrong starting points.



Plagiarism Detection in Students’ Answers Using FP-Growth Algorithm 159

One method for overcoming this is to run the algorithm a number of times with
different randomly selected starting points, and then pick the solution that has
the lowest total squared Euclidean distance. This approach is used in the scikit-
learn package, defaulting to 10 separate repetitions. Since text-based data is
usually high-dimensional and sparse, we first use the dimensionality reduction
method to reduce the dimension of the high-dimensional text feature vectors.
Then use the improved density peaks algorithm to determine the number of
clusters and the initial clustering centers, after which the K-means algorithm is
used for clustering [12].

In the experiment, two options for implementing the K-means algorithm were
proposed: with the use of dimensionality reduction and without, i.e. the algo-
rithm worked with 126 clusters, the number is determined by the number of
words in the dataset—1.262 and the size reduction factor is 0.1. For an objec-
tive assessment of the method, an iterative selection of K was launched in the
range from 10 to 150, and using the Silhouette and Elbow method metrics, it
was revealed that the best indicator is at K = 126. Results of two metrics are
shown in Fig. 2 below. Since less than 126 clusters according to the WCSS metric
shows elements that are too far from the centroids, i.e., little similarity of ele-
ments within the cluster, and after 126 clusters, the resulting groups have high
similarity and do not have a clear separation boundary by Silhouette metric.

1623 Elbow Method Silhouette method

30 60 90 120 150
Number of Clusters

30 60 9 120 150
Number of Clusters

(a) Elbow method (b) Silhouette method

Fig. 2. K-means algorithm metrics

Scikit-learn implementation of K-Means returns an object that indicates the
cluster to which each input vector belongs. Thus after performing K-means clus-
tering, we get similar word clusters. Now, we need to apply FP-growth Algorithm
to find frequent item sets. But in order to do that, we first need to represent
our data in the form of transactions of various item-sets. In order to do that we
created our own vector representation explained below.

Vector Representation. From the obtained clusters and its respective labels from
K-means clustering algorithm, we now use these clusters to convert our data in
each documents to vectors. For this, we do the following.



160 S. Nurlybayeva et al.

— Determine the cluster label for each of the word in sentences and substitute
the word with its respective cluster label.

— From the above step, we merge all the words and form sentence vectors.

— From these sentence vector, we form answer vector by assigning a unique
number if two sentence vectors are different. If two sentence vectors are same
we assign each of them the same number.

Thus we get a vector for each answer. This vector can be viewed as an item-set
and each answer can be viewed as a transaction. Thus we get a list of transactions
which contain item-sets. We can feed this into FP-Growth Algorithm to get
frequent item sets.

FP-Growth Algorithm. The FP-growth algorithm is currently one of the fastest
approaches to frequent item set mining. One of the currently fastest and most
popular algorithms for frequent item set mining is the FP-growth algorithm. It
is based on a prefix tree representation of the given database of transactions
(called an FP-tree), which can save considerable amounts of memory for storing
the transactions. The basic idea of the FP-growth algorithm can be described
as a recursive elimination scheme: in a preprocessing step delete all items from
the transactions that are not frequent individually, i.e., do not appear in a user-
specified minimum number of transactions. Then select all transactions that
contain the least frequent item (least frequent among those that are frequent)
and delete this item from them. Recourse to process the obtained reduced (also
known as projected) database, remembering that the item sets found in the recur-
sion share the deleted item as a prefix. On return, remove the processed item
also from the database of all transactions and start over, i.e., process the second
frequent item etc. In these processing steps the prefix tree, which is enhanced
by links between the branches, is exploited to quickly find the transactions con-
taining a given item and also to remove this item from the transactions after it
has been processed.

Thus after performing FP-Growth Algorithm we get frequent item sets. In
our context we get frequent sentences which are plagiarised. We can find which
sentences are plagiarised by just looking at the transactions which in our case
are student answers. Now it is important to know that we need to consider
only three or more frequent item-sets meaning only three or more plagiarised
sentences. This is because most of the students can have one one or two similar
sentences like “This is called Inheritance”. We cannot penalise students for that.

6 Results

As, described in Sect. 2, Each question has 19 students answers and 1 wikipedia
answer.

Having launched the proposed solution to the problem of plagiarism detection
on the Corpus, we compared the metrics of the classifier with the metrics from
the studied articles from Sect. 2.



Plagiarism Detection in Students’ Answers Using FP-Growth Algorithm 161

Of the studies studied using machine learning, the most successful algorithm
can be distinguished - it is N-gram classes algorithmBensalem2014, since the
metrics of this algorithm are higher than those of Levenshtein Distance and
Smith-Waterman Algorithm [11].

Table 2. Comparison of the proposed approach with the most popular algorithms

Model Precision | Recall | F-score
K-means and FP-Growth algorithm (this work) 90.4% |52.3% | 66.3%
Levenshtein Distance and Smith-Waterman Algorithm [11] | 39.3% 31.7% | 35.1%
N-gram classes [1] 31.3% 49.2% |38.3%

Thus, comparing the indicators of the algorithms from the Table 2, the solution
proposed in this work has the best metrics. For example, comparing with the
most successful N-gram classes algorithm, our approach has a small gap in the
recall metric - only 3% but the precision metric is almost 60% higher.

7 Conclusion

Many methods have been proposed to detect and stop plagiarism. But, still there
are many questions which are to be answered. Natural Language Processing has
greater possibilities of providing a sound and concrete mechanism which is capa-
ble of detecting plagiarism in any document. In this paper we have tried to show
finding plagiarism using FP-growth with its advantages and tried to implement
clusterisation algorithm with dimension reduction. We have developed a system
based on principles of vector representations.

8 Future Work

A s an extension to this work, we can include vector representations using other
techniques such as word2vec. Another future work is to change the domain from
documents to programming code plagiarism detection. In the task of detection
plagiarism in source code, we would need stricter noise removal as well as the
support count of FP-growth algorithm will increase.

Acknowledgment. This research is conducted within the framework of the grant
num. AP09058174 “Development of language-independent unsupervised methods of
semantic analysis of large amounts of text data”.

The work was done with partial support from the Mexican Government through
the grant A1-S-47854 of the CONACYT, Mexico and grants 20211784, 20211884, and
20211178 of the Secretaria de Investigacién y Posgrado of the Instituto Politécnico
Nacional, Mexico. The authors thank the CONACYT for the computing resources
brought to them through the Plataforma de Aprendizaje Profundo para Tecnologias
del Lenguaje of the Laboratorio de Supercémputo of the INAOE, Mexico.



162 S. Nurlybayeva et al.
References
1. Bensalem, 1., Rosso, P., Chikhi, S.: Intrinsic plagiarism detection using N-gram

10.

11.

12.

classes. In: EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings of the Conference, pp. 1459-1464 (2014). https://
doi.org/10.3115/v1/d14-1153

Clough, P.; Stevenson, M.: Developing a corpus of plagiarised short answers. In:
31, pp. 527-540 (2005)

El Tahir Ali, A.M., Dahwa Abdulla, H.M., Snésel, V.: Overview and comparison of
plagiarism detection tools. In: CEUR Workshop Proceedings, vol. 706, pp. 161-172
(2011). ISSN: 16130073

Foltynek, T., et al.: Testing of support tools for plagiarism detection. Int. J. Educ.
Technol. High. Educ. 17(1), Article no. 46 (2020). https://doi.org/10.1186/s41239-
020-00192-4. arXiv: 2002.04279. ISSN: 23659440

Li, Y., Wu, H.: A clustering method based on k-means algorithm. In: Phys. Pro-
cedia 25, 1104-1109 (2012). https://doi.org/10.1016/j.phpro.2012.03.206. ISSN:
18753892

. Liang, P.: Semi-supervised learning for natural language. In: Massachusetts Insti-

tute of Technology. Department of Electrical Engineering and Computer Science,
p- 86 (2005). http://hdl.handle.net/1721.1/33296

Mikolov, T., et al.: Distributed representations of words and phrases and their
compositionality. In: Advances in Neural Information Processing Systems, October
2013. arXiv: 1310.4546. ISSN: 10495258

Pennington, J., Richard, S., Manning, C.: GloVe: global vectors for word rep-
resentation. Br. J. Neurosurg. 31(6), 682-687 (2017). https://doi.org/10.1080/
02688697.2017.1354122. ISSN: 1360046X

. Scanlon, P.M., Neumann, D.R.: Internet plagiarism among college students. J.

College Stud. Dev. 43(3), 374-385 (2002). ISSN: 08975264

Shafiee, A., Karimi, M.: On the relationship between entropy and information.
Phys. Essays 20(3), 487—493 (2007). https://doi.org/10.4006/1.3153419. ISSN:
08361398

Su, Z., et al.: Plagiarism detection using the Levenshtein distance and Smith-
Waterman algorithm. In: 3rd International Conference on Innovative Computing
Information and Control, ICICIC 2008, pp. 1-3 (2008). https://doi.org/10.1109/
ICICIC.2008.422

Sun, Y., Plato§, J.: High-dimensional text clustering by dimensionality reduction
and improved density peak. In: Wireless Communications and Mobile Computing
2020 (2020). https://doi.org/10.1155/2020/8881112. ISSN: 15308677


https://doi.org/10.3115/v1/d14-1153
https://doi.org/10.3115/v1/d14-1153
https://doi.org/10.1186/s41239-020-00192-4
https://doi.org/10.1186/s41239-020-00192-4
http://arxiv.org/abs/2002.04279
https://doi.org/10.1016/j.phpro.2012.03.206
http://hdl.handle.net/1721.1/33296
http://arxiv.org/abs/1310.4546
https://doi.org/10.1080/02688697.2017.1354122
https://doi.org/10.1080/02688697.2017.1354122
https://doi.org/10.4006/1.3153419
https://doi.org/10.1109/ICICIC.2008.422
https://doi.org/10.1109/ICICIC.2008.422
https://doi.org/10.1155/2020/8881112

	Plagiarism Detection in Students' Answers Using FP-Growth Algorithm
	1 Introduction
	2 Related Works
	3 Dataset and Features
	4 Methodology
	5 Experiment
	6 Results
	7 Conclusion
	8 Future Work
	References




