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Abstract. With the increasing popularity of big data and sharing
economics, spatial crowdsourcing as a new computing paradigm has
attracted the attention of both academia and industry. Task allocation
is one of the indispensable processes in spatial crowdsourcing, but how
to allocate tasks efficiently while protecting location privacy of tasks
and workers is a tough problem. Most of the existing works focus on
the selection of the workers privately. Few of them present solutions for
secure problems in task delivery. To address this problem, we propose a
novel privacy protection scheme that not only protects the location pri-
vacy of workers and tasks but also enables secure delivery of tasks with
very little overhead. We first use the paillier homomorphic cryptosys-
tem to protect the privacy of workers and tasks, then calculate travel
information securely. Finally, let workers restore the tasks’ location. In
our scheme, only workers who meet the requirements can get the exact
location of tasks. In addition, we prove the security of our method under
the semi-honest model. Extensive experiments on real-world data sets
demonstrate that our scheme achieves practical performance in terms of
computational overhead and travel cost.

Keywords: Spatial crowdsourcing · Privacy-preserving ·
Homomorphic cryptosystem · Task allocation

1 Introduction

Crowdsourcing has gradually attracted the attention of all walks of life since
Jeff Howe, a reporter for the Wired magazine, proposed it in 2006 [5]. Jeff Howe
defines crowdsourcing as a company or organization posting problems on the
network to collect better solutions. Nowadays, many crowdsourcing platforms
(e.g., Amazon Mechanical MTurk1, TaskRabbit2) have been established to pro-
vide various kinds of crowdsourcing services. Mobile crowdsensing and spatial
crowdsourcing also emerge as the times. Both of them require the participa-
tion of a large number of users, reduces costs, and leverages the advantages of
the network to accumulate the resource of the public under different knowledge
backgrounds. However, mobile crowdsensing focuses more on the use of mobile
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devices for data perception, collection, and analysis, which does not pay atten-
tion to how tasks are allocated. Many mobile crowdsensing tasks are distributed
and utilized through crowdsourcing. Therefore, solving task allocation problem
in spatial crowdsourcing is also helpful to mobile crowdsensing.

With the rapid development of mobile internet technology, spatial crowd-
sourcing has also become popular. Spatial crowdsourcing plays a critical role in
various fields, such as news, tourism, intelligence, disaster response, and urban
planning [17]. Take real-time traffic condition monitoring as an example, it affects
people’s daily travel and lifestyle at all times. By obtaining the spatial distri-
bution information of users at different times and corresponding various sen-
sor data, such software can analyze and speculate real-time traffic conditions.
When users use this software, they passively become crowdsourcing workers and
share their spatiotemporal information and sensor data. In contrast to general
crowdsourcing, spatial crowdsourcing adds more location requirements that need
workers to reach the designated location to complete the task.

At the same time, people have paid attention to information security, hoping
not only to enjoy the convenience of emerging techniques but also to protect
their private information. When using crowdsourcing, the crowdsourcing plat-
form needs the information of tasks and workers to perform task allocation, which
usually contains a lot of private information. If it leaks out private information,
disastrous consequences will spring out. For example, when users are enjoying
the taxi service, they need to tell drivers where they are and where they want to
go, but users do not want the platform to know. Because location data of users
may indicate their home addresses, lifestyle, and other sensitive information.
Attackers would know the real-time location of users once they grasped these
privacies. These security risks depress the availability of crowdsourcing and may
let some people refuse to use crowdsourcing. Thus, it’s significant to allocate
tasks efficiently at the premise of protecting privacy. To solve this problem,
many feasible solutions have been proposed. [13] used homomorphic encryption
and Yao’s garbled circuits to achieve a secure task distribution. But it only pro-
tects the privacy of workers, without considering the privacy of tasks. However,
task information will indirectly reveal the workers’ information. [21] designed
a grid-based position protection method for task distribution. But the distri-
bution process involves heavy encryption and decryption operations, which is
not efficient for practice. [23] proposed a novel spatial crowdsourcing framework
without trusted third parties but providing differential privacy guarantees. But
workers need to set up an acceptable location in advance, which requires a rela-
tively sizeable storage space. [22] designed a data aggregation protocol based on
k-anonymity, but it cannot well resist malicious deception of workers.

Most of the works focus on how to allocate tasks more securely and efficiently
but ignore the next step after task allocation: how to deliver tasks to workers
securely and efficiently. The major contributions of this article are as follows:

1. We propose a scheme for spatial crowdsourcing task allocation. Based on the
two-server model and an additively homomorphic cryptographic cryptosys-
tem, the proposed scheme protects the location privacy of workers and tasks
without involving any online trusted third party (TTP).
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2. We put forward a novel method to deliver tasks and calculate the travel
information securely. This method ensures that only workers who meet the
requirements can get the location information of tasks and also allows workers
to reconstruct tasks’ location with practical efficiency.

3. Security analysis in our paper indicates that our scheme can protect the loca-
tion information about the works and tasks, as well as the data access pat-
terns. Experimental results demonstrate that our scheme achieves practical
performance in terms of computational overhead and travel cost.

We organize the rest of the paper as follows. Section 2 presents preliminaries,
and Sect. 3 gives the problem formulation. Section 4 gives the proposed scheme.
We present the security and performance analyses in Sect. 5 and introduce related
work in Sect. 6. In Sect. 7, we conclude our work.

2 Preliminaries

In this section, we review the concepts and general procedures of the Paillier
cryptosystem and spatial crowdsourcing, then introduce notations of this article.

2.1 Paillier Cryptosystem

The Paillier cryptosystem is a probabilistic public key encryption system
invented by Paillier in 1999 [11]. The encryption algorithm is a homomorphic
public key encryption system that satisfies addition and number multiplication
homomorphism. Firstly, randomly select two large prime numbers p and q, which
satisfy gcd(pq, (p−1)(q−1)) = 1. Then calculate n = pq and λ = lcm(p−1, q−1).
And randomly select an positive integer g (g ∈ Z∗

n2), which is less than n2. Define
L(x) = (x−1)

n , and there exists μ = (L( gλ mod n2))−1mod n. The public key
PK is (n, g), the private key SK is (λ, μ). In encryption, randomly select a
number r ∈ Zn and calculate the ciphertext c = gm · rn mod n2, where m is the
original message. In decryption, calculate the plaintext m = L(cλ modn2)

L(gλ modn2)
mod n.

We can express the homomorphic properties as : c1 · c2 = E[m1, r1] ·
E[m2, r2] = gm1+m2(r1 ·r2)nmod n2, D[c1 ·c2] = D[E[m1, r1]E[m2, r2]mod n2] =
m1+m2 mod n. Here, r1, r2 ∈ Zn is a random number; m1,m2 ∈ Zn is plaintext;
c1, c2 is the ciphertext of m1,m2.

2.2 Spatial Crowdsourcing

Spatial crowdsourcing applications are already very common in our daily life,
such as Gigwalk, Easyshift, and Fieldagent, etc. It has a wide range of applica-
tions, but when people enjoy the happiness and convenience brought by these
software, people inadvertently reveal a lot of their private information.

Spatial crowdsourcing often includes three parties, requesters, workers, and
crowdsourcing platforms. First, requesters publish tasks on the crowdsourcing
platform, then the crowdsourcing platform allocates tasks according to tasks’
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locations and workers’ locations. And then, workers accept and complete tasks.
There are two modes of spatial crowdsourcing task allocation [18]. One of them
is the Server Assigned Tasks (SAT), which is a platform server-centric model. In
this mode, the platform server assigns a nearby task to each worker after receiv-
ing the locations of all workers. Therefore, it is possible to assign nearby tasks
to each worker when maximizing the overall number of tasks assigned. However,
sending workers’ location to the server may cause privacy threats. The other one
is Worker Selected Tasks (WST), which is a user-centric model. Platform servers
often issue space-aware tasks. Online workers can choose any spatial task with-
out consulting with the server. Users submit less personal information, which
can increase the participation of mobile users. However, some spatial tasks may
never be assigned, and other tasks are assigned redundantly. And may not form
a global optimal allocation (Table 1).

2.3 Notations

Table 2 presents several symbols for better readability.

Table 1. Notations

Notation Meaning

wi, ti Worker i, task i

(PK,SK) Public key, Secret key

xwi , ywi Coordinates of wi, 0 < i ≤ m

xti , yti Coordinates of ti, 0 < i ≤ n

D[·] Decryption operation

E[xwi ], E[ywi ] Encrypted coordinates of wi

E[dxwi,ti ], E[dywi,ti ] The encrypted difference between wi and ti in the x, y direction

Diswi,ti Distance between wi and ti

Ct, Cw Task set, Worker set

sort A function implements sorting from small to large

available A function filtering out workers who are not currently available

3 Problem Formulation

3.1 System Model

Our system model is shown in Fig. 1. In the setting of our privacy-preserving
scheme, we have four entities:

– Requester : A task requester is a user who first publishes tasks to CSP. The
requester then waits for CSP to assign workers. Then wait for the workers
to finish the task. For instance, in the taxi service, the taxi passenger is the
requester, and he waits for the platform to assign him a driver.
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– Worker : A task worker is a user who receives tasks. He decides whether
to accept tasks according to his own will. When he accepts a task, he will
finish the task quickly and efficiently. For instance, in the taxi service, the
taxi driver is the worker, and he waits for the platform to allocate passengers
to him.

– CSP (Crowdsourcing Service Provider) : Upon receiving a task, CSP
cooperates with S to calculate the travel information. Also responsible for
generating lists of candidate workers and interacting with workers.

– S (Server) : S is responsible for key generation and distribution. Assist CSP
to complete travel information calculation. Also responsible for interacting
with workers.

Fig. 1. System model

3.2 Threat Model

The threat model for each entity is set as follows:

– Users: (requesters and workers) are considered as fully trusted in the scheme
where they could execute the operations properly and protect their locations
and secret keys. Users wouldn’t leak their locations actively or passively to
the other entity, e.g. CSP or S.

– CSP & S are considered as honest − but − curious in the sense that they
could execute the designed operations honestly. We also assume that they
cannot collude with each other and wouldn’t launch active attacks, such as
collusion with users, pretending to be a requester (or a worker).

The assumption for CSP and S is reasonable (e.g. [1]), because most of the
cloud service providers in the market are well-established IT companies and they
understand the importance of reputation [8,9]. Active attacks are straightfor-
ward to detect and may damage their reputation once caught. Collusion between
them is highly unlikely as it may damage their reputation and affect their rev-
enues.
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4 The Proposed Scheme

4.1 Overview

Our system model is shown in Fig. 1. The scheme consists of four parts, namely
KeyGen, DataEnc, TaskAllocation, TaskDelivery.

– KeyGen → (PK,SK) : S generate PK and SK for the Paillier Cryptosys-
tem. Sending PK to CSP, requests, and workers, SK to CSP.

– DataEnc → (E[xi], E[yi]) : Workers encrypt their locations, and requesters
encrypt the locations of tasks. Then they all send the encrypted locations to
CSP.

– TaskAllocation → List(t, w) : CSP receives requesters’ tasks, then coop-
erates with S to calculate the travel message between tasks and workers,
generating candidate worker lists based on this.

– TaskDelivery → (tanwi,ti
, signxwi,ti

, signywi,ti
) : CSP notifies workers in

the candidate worker list in turn until the task is assigned. Workers receive
travel information about tasks after they accept tasks.

4.2 Scheme Details

4.2.1 Task Allocation

1) Distance Calculation. After receiving the encrypted tasks’ locations and
workers’ locations, the CSP cooperates with S to calculate the distance between
tasks and workers. The calculation procedures are shown in algorithm1.

First, CSP uses the homomorphic encryption property of the Paillier cryp-
tosystem to calculate the coordinate distance values. Through step 1 completed
by CSP, we can easily see that E[dxwi,ti

] = E[xwi
−xti

], E[dywi,ti
] = E[ywi

−yti
].

In order not to let S get any information about the location, then choose two
random numbers r1, r2 ∈ ZN , adding them to the result and send the result to
S. Upon receiving a, b, c, d from CSP, because S has the decryption key SK, it
can decrypt and calculate the corresponding squared distance, that is ans1 =
E[(dxwi,ti

+ r1) · (dywi,ti
+ r2)], ans2 = E[(dywi,ti

+ r1) · (dywi,ti
+ r2)].

So S cannot get the real distance value. CSP can use the properties of homo-
morphic encryption to remove the influence of r1 and r2 in the results. Ans3
and ans4 are the squared distances in the x and y directions of the real distance
between workers and tasks. The decryption result of ans3 · ans4 is the distance
squared value. Same as before, CSP selects a random number to prevent S spec-
ulation and finally can get Diswi,ti

.

2) Candidates List Generation.
Each worker and task can use Algorithm 1 to calculate the squared distance
between the encrypted locations. Each requester submits the maximum accept-
able distance D when submitting the task location. Only when the distance
between workers and tasks is within the range of the maximum acceptable dis-
tance D, workers are eligible for the task. Therefore, by ranking the distance
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Algorithm 1: Distance Calculation
Input: E[xwi ], E[ywi ], E[xti ], E[yti ]
Output: Diswi,ti

1. CSP:
E[dxwi,ti ] ← E[xwi ] · E[xti ]

−1, E[dywi,ti ] ← E[ywi ] · E[yti ]
−1;

Pick two random numbers r1, r2;
a ← E[dxwi,ti ] · E[r1]; b ← E[dxwi,ti ] · E[r2];
c ← E[dywi,ti ] · E[r1]; d ← E[dywi,ti ] · E[r2];
send a, b, c, d to S;

2. S:
a′ ← D[a]; b′ ← D[b]; c′ ← D[c]; d′ ← D[d];
ans1 ← E[a′ · b′]; ans2 ← E[c′ · d′], send ans1, ans2 to CSP ;

3. CSP:
Pick one random number r3;
ans3 ← ans1 · E[r1 × r2]

−1 · E[dxwi,ti ]
−r1 · E[dxwi,ti ]

−r2 ;
ans4 ← ans2 · E[r1 × r2]

−1 · E[dywi,ti ]
−r1 · E[dywi,ti ]

−r2 ;
ans5 ← ans3 · ans4 · E[r3], send ans5 to S;

4. S:
Receive ans5 from CSP ;
dis ← D[ans5], send dis to CSP ;

5. CSP:
Diswi,ti ← dis − r3;

between tasks and workers, CSP can generate a list of candidate workers. To
facilitate subsequent calculations, CSP records the distance values between work-
ers and tasks in workers’ database and tasks’ database, respectively. We should
note it as it randomly generates the random numbers mentioned in the algorithm
in each cycle.

3) Task Allocation.
We devise efficient task allocation algorithms for both SAT and WTS. After
the previous algorithm process, each task has a corresponding list of candidate
workers. Therefore, the server allocation can directly notify workers in order
according to the candidate worker list until the task is assigned. The procedures
are shown in Algorithm 2.

In the SAT, the maximum number of candidate workers maxNt is set to
prevent too many workers who meet the requirements from affecting efficiency.
Use counter to mark the number of selected workers and t.dtask is the maximum
distance D that the task t can accept. After the processing of sort and available,
CSP can get an optional and orderly set of workers SCw. After many cycles, each
task can get a list of optional workers. It is worth noting that a worker may exist
in multiple candidate worker lists at the same time. When a worker is invited to
a task, the worker will decide whether to accept the task. And we assume that
the workers in this article can only accept one task at a time, and each worker
is busy and idle. When the worker accepts the task, his status will become busy,
and the worker in the other candidate list will be invalid.
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Algorithm 2: Task Allocation - SAT
Input: Ct, Cw,maxNt
Output: Listw = (t, w)
for each task t in Ct do

counter = 0;
SCw = available ( sort ( Cw ) );
for each worker w in SCw do

if w.d[t] > t.dtask then
Break;

else if counter == maxNt then
Break;

else
List ← (t, w);
++counter;

end

end
return List;

The worker mode is that the worker receives all the distance of tasks he
satisfies, then chooses the task subjectively. But what criteria the worker uses to
select the task based on the candidate task list is not the focus of this article, and
this affects the subsequent implementation of the algorithm, so we just briefly
introduce this algorithm.

In the WTS, maxNw is the maximum number of tasks that the worker
can select, and w.dworker is the maximum distance that the worker w can
accept. After going through the previous algorithm, some workers may have
some optional tasks in the database. Then these workers can choose tasks, which
means that they must decide according to their preferences. For workers with
optional tasks, after implementing Algorithm 3, they can get a list of candidate
tasks ordered from near to far.

4.2.2 Task Delivery

1) Pre-processing.
The Paillier cryptosystem is carried out on positive integers, but the latitude
and longitude coordinates are mostly floating-point. It also involves positive and
negative numbers. Therefore, we need to convert the latitude and longitude to
positive integers before encryption, then convert it to the original latitude and
longitude after decrypting. We exploit the modular arithmetic properties of the
Paillier scheme. We represent only integers between (−n/3, n/3). Since n is a
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Algorithm 3: Task Allocation - WTS
Input: Cw,maxNw
Output: Listt = (t, w)
for each worker w in Cw do

counter = 0;
SCt = available ( sort ( Cw.t ) );
for each task t in SCt do

if t.d[w] > w.dworker then
Break;

else if counter == maxNw then
Break;

else
List ← (t, w);
++counter ;

end

end
return List;

very large number, the longitude range is 0–180◦ and the latitude range is 0–90◦,
they are included in the range. Paillier homomorphic arithmetic works modulo
n. We take the convention that a number x < n/3 is positive and that a number
x > 2n/3 is negative. The range n/3 < x < 2n/3 allows for overflow detection.
Representing floating-point numbers as integers is a harder task. Here we use a
variant of fixed-precision arithmetic. In fixed precision, we encode by multiplying
every float by a large number (e.g. 1e6) and rounding the resulting product.
We decode by dividing by that number. There are many other conversions, the
specific details can be found in Sect. 5.

2) Travel Angle Calculation.
Before CSP notifies workers according to the list of candidate workers, it also
needs to work with S to calculate the travel angle of workers. In this way, workers
can combine their locations and travel angle to restore the locations of tasks.
After pre-processing, the Paillier cryptosystem can encrypt and decrypt any real
numbers in the range. Algorithm 4 shows the calculation process of workers’
travel angle.
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Algorithm 4: Travel Angle Calculation
Input: E[xwi

], E[ywi
], E[xti

], E[yti
]

Output: tanwi,ti
, signwi,ti

1. CSP:
E[dxwi,ti

] ← E[xwi
] ∗ E[xti

]−1 ; E[dywi,ti
] ← E[ywi

] ∗ E[yti
]−1;

Pick random numbers r4, r5;
e ← E[dxwi,ti

]r4 ; f ← E[dywi,ti
]r5 ;

send e, f to S;
2. S:

e′ ← D[e]; f ′ ← D[f ];
tanwi,ti

← f ′/e′;
if e′ > 0, signxwi,ti

= 1, else signxwi,ti
= −1;

if f ′ > 0, signywi,ti
= 1, else signywi,ti

= −1;
Send tanwi,ti

, signxwi,ti
to CSP ;

3. CSP:
if r4 < 0, change signxwi,ti

(2 ← 1, 1 ← 2) ;
tanrwi,ti

= tanwi,ti
∗ r4/r5 ;

if tanrwi,ti
> 0, signywi,ti

= signxwi,ti
, else

signywi,ti
= −signxwi,ti

;

Similar to Algorithm 1 at the beginning, we need to get the distance between
the worker and the task first. The distance values calculated in Algorithm 1 have
been recorded in the worker database, so we can directly call the distance result
value according to the worker ID in the candidate worker list. The same is to
prevent S from getting any valid information from the intermediate results, and
the effect of the random number r4, r5 needs to be added, so e, f is calculated
and sent to S. S decrypts the received information, calculates the division value
tan, and sets the sign value according to the rules. It is not difficult to know that
the result corresponding to tanwi,ti

is dywi,ti
/dxwi,ti

, which is mathematically
explained by the tan value of the trigonometric function. It should be noted
that when the longitudes of the two points are the same, the denominator is
0. Although this situation does not occur frequently, to implement the scheme
smoothly, we use a very small value instead of 0 in the code.

Finally, the CSP modifies the signxwi,ti
, signywi,ti

value according to the
positive and negative values of r4, r5. And it is the next information to be sent
to the workers, which is also stored in the workers’ database.

3) Task Location Calculation.
After receiving messages Diswi,ti

, tanwi,ti
, signxwi,ti

, signywi,ti
, workers can

estimate the location of the task.
According to tanwi,ti

= dywi,ti

dxwi,ti
= ywi

−yti

xwi
−xti

.
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We can get

dxwi,ti
= xwi

− xti
= ±

√
Diswi,ti

1 + tan2
wi,ti

xwi
= xti

±
√

Diswi,ti

1 + tan2
wi,ti

(1)

dywi,ti
= ywi

− yti
= ±tanwi,ti

·
√

Diswi,ti

1 + tan2
wi,ti

ywi
= yti

± tanwi,ti
·
√

Diswi,ti

1 + tan2
wi,ti

(2)

The sign in the Eq. (1), (2) is determined by signywi,ti
, signxwi,ti

respec-
tively. When signxwi,ti

= 1, the worker takes the positive sign, and when
signwi,ti

= −1, the worker takes the negative sign. So does signywi,ti
.

5 Security and Performance Analysis

5.1 Security Analysis

We can summarize the security goal of our scheme as Theorem 1, 2, 3, followed
by the proofs. Before providing the rigorous proofs to the privacy, we introduce
the semantic security in Paillier homomorphic cryptosystems [3] and the security
definition of the protocol under the semi-honest model in advance.

Definition 1 (semantic security in Paillier cryptosystem).

Pr{c ← [m1]} − Pr{c ← [m2]} ≤ negl(λ) (3)

In Eq. (3), m1 and m2 represent two plaintexts, c is the ciphertext of m1

encrypted by paillier cryptosystem. Pr{c ← [m1]} is the probability that an
attacker judges the message is m1 after he observes c. Pr{c ← [m2]} is the
probability that an attacker judges the message is m2 after he observes c. negl(λ)
is a negligible polynomial. It means that an attacker can not distinguish m1 from
m1 and m2 after he observes c in Paillier cryptosystem.

Definition 2 (security in the semi-honest model [2]). Suppose ai is the
input of party Pi,

∏
i(π) is the execution image of Pi, and bi is the output of Pi

computed from protocol π. If
∏

i(π) can be simulated from ai and bi, then π is
secure. In other words, distribution of the simulated image is computationally
indistinguishable from

∏
i(π).

Theorem 1. The Distance Calculation (DC) protocol described in Algorithm 1
is secure under the semi-honest model.
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Proof. Here, let the execution image of CSP be denoted by
∏

CSP (DC) =
{(ans1, ans2), (dis)}, where dis = Diswi,ti

+ r3. Note that r3 is a random num-
ber in ZN . We assume

∏S
CSP (DC) means the simulated image of CSP, and∏S

CSP (DC) = {(ans1s, ans2s), (diss)} where all the elements are randomly gen-
erated from ZN . Since paillier cryptosystem is semantically secure, (ans1, ans2)
are computationally indistinguishable from (ans1s, ans2s). Meanwhile, diss is
randomly chosen from ZN , dis is computationally indistinguishable from diss.
Based on the above, we can draw a conclusion that

∏
CSP (DC) is computation-

ally indistinguishable from
∏S

CSP (DC).

Similarly, we can prove
∏

S(DC) is computationally indistinguishable from∏S
S(DC). Thus, combining the above analysis, we can confirm that DC protocol

is sure under the semi-honest model.

Theorem 2. The Travel Angle Calculation (TAC) protocol described in Algo-
rithm 4 is secure under the semi-honest model.

Proof. Here, let the execution image of S be denoted by
∏

S(TAC) = {e, f}. We
assume

∏S
S(TAC) means the simulated image of S, and

∏S
S(TAC) = {es, fs}

where r4, r5 are randomly generated from ZN . Since paillier cryptosystem is
semantically secure, (e, f) are computationally indistinguishable from (es, fs).
Based on the above, we can draw a conclusion that

∏
S(TAC) is computationally

indistinguishable from
∏S

S(TAC).

Follow that familiar way, the execution image of CSP in TAC protocol
is

∏
CSP (TAC) = {tanwi,ti

, signxwi,ti
, signywi,ti

}. Where signxwi,ti
, signywi,ti

can regard as a random number in {1,−1}. tanwi,ti
is plain text with r5/r4, r4

and r5 are randomly generated from ZN . So we can draw a conclusion that∏
CSP (TAC) is computationally indistinguishable from

∏S
CSP (TAC). Thus,

combining the above analysis, we can confirm that TAC protocol is sure under
the semi-honest model.

Theorem 3. The location privacy and the data access patterns are not be dis-
closed to CSP and S in our scheme. That is, CSP and S cannot infer the real
location of workers or tasks from the historical records.

Proof. For location privacy, CSP gets {E[xwi
], E[ywi

]}wi∈Cw
, {E[xti

],
E[yti

]}ti∈Ct
, {Diswi,ti

}wi∈Listw
, {signxwi,ti

}wi∈Listw
, and {signywi,ti

}wi∈Listw

in the whole process. S gets {tanwi,ti
}wi∈Listw

in the entire process. If CSP acci-
dentally knows the real location of a worker, CSP can only infer the task location
to which the worker is assigned. And can only guess that workers in the same
candidate list is closer to the worker. If S accidentally learns the real location
of a worker, S could hardly guess anything. If CSP or S know the location of a
task, the situation is similar. So our scheme does not disclose location privacy
to CSP and S.
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From the perspective of S, S is semi-honest, and he calculates the received
data according to the rules. All the data S obtains are added with random
number {ri}1≤i≤5 as a mask. S has no information to speculate on random
numbers, so he cannot know any location information {(xwi

, ywi
)}wi∈Cw

and
{(xti

, yti
)}ti∈Ct

.
From the perspective of CSP, each task can get a list of candidate workers.

Each worker will get tanwi,ti
, signwi,ti

of the corresponding task. According to
the analysis of Theorem 1 & 2, CSP can only speculate that these candidate
workers 〈w1, w2, · · · , wk〉 are located closer. But it is not possible to know the
real range of its location {xwi

, ywi
}1≤i≤k and {xti

, yti
}1≤i≤k. Therefore, the data

access mode is not exposed to S and CSP.

5.2 Performance Analysis

In this section, we evaluate the proposed scheme and compare it with existing
schemes.

5.2.1 Experimental Setup
In practice, take mobile taxi service as an example, the requester is a user who
needs a taxi, and the worker corresponds to a taxi driver, each task usually needs
only one worker. The characteristic of this application is that a worker needs to
respond in time after each task is released, so it adopts the server distribution
model.

Dataset: We conduct experiments on real datasets from the New York taxi
website1. The data set is from New York taxis, and each month contains about
one million pieces of information with real geographic location (using the 2015
data given on the website, the data after 2015 is not marked with latitude and
longitude). First, remove duplicated coordinates, then randomly divide the data
set into two parts, namely the worker and task locations. Each task requires
the worker (representing the taxi driver) to arrive at the location of the user
(passenger) to pick up the passenger and deliver it to the destination.

Baseline Approaches: We compare with 3 baseline approaches: (1) the
method of our scheme without encryption protection. (2) PriRadar [21] designs
a location protection method that maps the locations of workers and tasks to
the grid. (3) our scheme.

Evaluation Metrics: We evaluate the effect of our scheme on running time,
calculation error, and travel cost. The error is measured by the difference between
the task coordinates restored by the worker and the real coordinates. We measure
travel cost based on the distance between the last worker in the candidate worker
list and the task location (represents the maximum travel cost). We should note
in advance that each experimental result is an average result repeated at least
20 times.

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Setting: All the algorithms were implemented in python 3.4, including the
implementation of Paillier cryptosystem2. We evaluated all the experiments on
window 10, with Intel Core i7 at 2.8 GHz and 16 GB RAM.

5.2.2 Theoretical Analysis
As seen from Table 2, different features realized by different schemes, only our
solution can satisfy all features.

Table 2. Notations

Features DPSC [15] DPGSC [14] EDSC [7] HEEDP [4] ours

Location privacy-preserving � � � � �

Proctect workers and requesters � � � N/A �

Server is untrusted � � � N/A �

Don’t need a trusted third party � � � � �

Using cryptographic approach � � � � �

Don’t fake worker locations � � � � �

5.2.3 Experimental Results

Fig. 2. Runtime Fig. 3. Time to generate candidate
workers under different tasks

Runtime. We evaluate the runtime under different numbers of workers and dif-
ferent schemes. Figure 2 indicates the time spent on the program under different
numbers of workers. We can see that the time to generate the list of candi-
date workers increases continuously with the increase in the number of workers.
Because each worker needs to calculate the distance from tasks’ locations, and it
is based on encrypted data. When interacting with workers, the time for workers
to calculate the task location is not affected by the number of workers. On the
one hand, because the calculations required by workers locally are very easy.

2 https://python-paillier.readthedocs.io/en/develop/index.html.

https://python-paillier.readthedocs.io/en/develop/index.html
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On the other hand, because the candidate worker list sets a maximum num-
ber of workers to improve efficiency, So even if the amount of data is large, the
calculation time is short. It can be found that we leave all or most of the cal-
culations to the cloud platform, and local workers only need to perform simple
calculations to get the real location of the task. Figure 3 shows the time for the
two schemes to generate a list of candidate workers under different numbers of
workers. We can see that the time for generating the candidate worker list in
this paper is much higher. PriRadar didn’t describe how to project the location
on the grid in detail, so we can not know the runtime. But in the previous arti-
cle, we theoretically analyzed the computational overhead. Our scheme requires
fewer exponentiation operations than PriRadar [21] and has more advantages.
Compared with the scheme without protection, it can be seen that the inevitable
disadvantage of encryption technology is that it consumes a lot of running time.
However, when the number of workers is 2,000, the average time is 6 s. When the
number of workers is 10,000, the average time is almost half a minute, acceptable
for a certain area. It is more reasonable to have hundreds of taxi drivers at the
same time, but 10,000 drivers to be in a small area at the same time are not
realistic. In reality, 10,000 drivers can be divided into small areas according to
their locations. Then assign it again. It is very easy to complete.

Fig. 4. Number of candidate workers
under different D

Fig. 5. Longitude error

Number of Candidate Workers. Figure 4 shows the number of candidate
workers generated under different maximum acceptable distance D when the max-
imum number of candidate workers is not set. We can find that as D increases,
the number of candidate workers also gradually increases. When D = 0.00001, the
average number of workers is close to 400. When D = 0.0001, the average num-
ber of workers is higher than 300. We can see that for a task when D gradually
increases, the number of qualified workers also increases. But only one worker is
enough to complete a task, too many candidate workers may increase the running
time. So set the maximum number of candidate workers is necessary.

Error Calculation. Figure 5 and Fig. 6 show the error value between the task
location and the real task location recovered by the worker according to the infor-
mation sent by CSP under different numbers of workers, Fig. 5 is longitude error
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Fig. 6. Latitude error Fig. 7. Error under different D

and Fig. 6 is latitude error. It is found that the error is not significantly related to
the number of workers, the minimum error is very close to 0. The average error is
basically in the 10−10, and the maximum error reaches the 10−9. The amount of
error is already tiny. Fig. 7 indicates the latitude and longitude error under differ-
ent maximum acceptable distances D. We can find that there is no particularly
obvious rule. The value is basically in the order of 10−11 to 10−12. We can see that
the change of D does not cause a large error change. The error is tiny. The calcu-
lations in the workers’ local are easy, fast, and highly accurate.

Fig. 8. Latitude travel cost of task allo-
cation under different D

Fig. 9. Longitude travel cost of task allo-
cation under different D

Travel Cost. Figure 8 and Fig. 9 indicate the latitude and longitude travel cost of
the two schemes at different maximum acceptable distances D, calculated by the
last worker in the list of candidate workers. It can be seen that with the continuous
increase of the maximum acceptable distance D, the travel cost is increased, espe-
cially the PriRadar. However, our scheme has no particularly obvious impact, and
the travel cost is lower. Figure 10 and Fig. 11 indicate the latitude and longitude
travel distances under different workers. It can be seen that our travel distance
is much smaller than in PriRadar [21]. The distance between the worker and the
task is shorter, then when the worker receives the task, he is more willing to receive
the task, and can quickly respond and complete the task. It also indicates that the
travel cost of the task allocation of our scheme is less.
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Fig. 10. Latitude travel distance under
different tasks

Fig. 11. Longitude travel distance under
different tasks

In summary, our overall running time is acceptable and requires fewer expo-
nentiation operations than PriRadar [21]. The maximum number of candidate
workers set has well suppressed the increase in the amount of calculation. The
calculation required locally by the worker is easy and the calculation error is
negligible. The travel cost of our scheme is significantly less than [21], which
indicates the superiority of our scheme.

6 Related Work

The privacy-preserving task allocation in spatial crowdsourcing has been an
active area of research in recent years. Early schemes usually need a trusted
third party [15], or a trusted data processing agency [6], but often cannot be
realized in reality. At the same time, it may cause unnecessary delays in task
allocation. When the staff wants to update their location, online TTP needs to
publish new statistical location data, which may result in higher communication
overhead [19]. And they usually only focus on protecting the location privacy
of workers [12,15], and assume that the task location is public. However, the
task location should also be protected, because workers who receive the task are
often near the task location, and the requester often releases the task near its
location [16].

The more mainstream solutions also have their advantages and disadvan-
tages. In [10,20,22], k-anonymity and dummy users are leveraged to hide the
location in a cloak region or a group of location data to achieve location privacy.
But spatial anonymity cannot resist background knowledge attacks. Differential
privacy protection and encryption technology can resist background knowledge
attacks and have a top-level of privacy protection. [23] proposed a novel spatial
crowdsourcing framework without using a trusted third party but providing a
DP guarantee. Workers no longer submit their locations but choose their accept-
able task set from public task location space, realizing the protection of workers’
locations. But workers need to set up an acceptable location in advance, which
requires a relatively sizeable storage space. The amount of noise is difficult to
control, which can easily lead to reduced data availability. For example, [13]
proposed an efficient protocol to securely compute the worker travel cost and
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select minimum cost worker in the encrypted domain, which reveals nothing
about location privacy. But encryption technology usually has a relatively large
operating overhead. [21] devised a grid-based location protection method, which
can protect the locations of workers and tasks while keeping the distance-aware
information on the protected locations. And they leveraged both attribute-based
encryption and symmetric-key encryption to establish secure channels through
servers, which ensures that the task is delivered securely and accurately by any
untrusted server. But the delivery process involves numerous encryption and
decryption operations, which was not efficient enough.

7 Conclusion

Aiming at the privacy protection of task allocation in spatial crowdsourcing,
we proposed a task allocation scheme based on encryption protection. We use
a two-server model and adopting paillier homomorphic cryptosystem to protect
the location privacy of workers and tasks. And our scheme doesn’t need any
online TTP to involve. We especially realize the delivery of tasks’ locations, which
allows workers to achieve effectively privacy protection with a tiny computational
overhead locally. At the same time, its advantages are proved by experiments on
real data. Our scheme achieves practical performance in terms of computational
overhead and travel cost and the running time is acceptable. For further work, we
are going to focus on how to reduce the computing time of encryption protection
technology, and how to further combine different kinds of protecting the task to
improve efficiency.
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