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Abstract. Incentive mechanisms are an essential method to encour-
age users to participate in the mobile crowdsensing task. However, most
incentive mechanisms based on data quality do not consider users’ secu-
rity and privacy protection. To overcome the above problems, we pro-
pose a privacy protection incentive mechanism based on truth discovery,
named PAID. Specifically, we use the secure truth discovery scheme to
calculate ground truth and the weight of users’ data while protecting
their privacy. Besides, to ensure the accuracy of the MCS results, a data
eligibility assessment is proposed to remove unreliable user data before
the truth discovery scheme. Finally, we distribute rewards to users based
on their data quality. The analysis and evaluation demonstrate the secu-
rity and effectiveness of our PAID.

Keywords: Incentive mechanism · Truth discovery · Mobile
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1 Introduction

As more and more sensors are integrated into human-carried mobile devices, such
as GPS locators, gyroscopes, environmental sensors, and accelerometers, they
can collect various types of data. Therefore, the MCS system [1,2] can utilize
the sensors equipped in mobile devices to collect sensing data and complete
various sensing tasks [3], such as navigation service, traffic monitoring, indoor
positioning, and environmental monitoring. In general, the MCS system consists
of three entities: a task requester, a sensing server, and participating users. The
task requester publishes sensing tasks and pays awards for sensing results. The
server recruits users according to the sensing task, processes the data from users,
and sends the results to the task publisher. Users collect sensing data based on
the requirements of the sensing task and get rewards.

In the practical MCS system, the sensing data collected by users are not
always unreliable [4] due to various factors (such as poor sensor quality, lack of
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effort, background noise). Therefore, the final result may be inaccurate if we treat
the data provided by each user equally (e.g., averaging). To solve this problem,
truth discovery [5,6] has been widely concerned by industry and academia. But
one problem with these methods is that users have to be online to interact with
the server. Therefore, if we design a truth discovery scheme that allows users to
exit, the MCS system can get stronger robustness.

The proper functioning of the truth discovery requires enough users and high-
quality sensing data. Generally, the MCS system utilizes an incentive mechanism
[7] to motivate sufficient users to participate in sensing tasks. However, because
of monetary incentives, malicious users attempt to earn rewards with little or no
effort. Consequently, the evaluation of data quality is critical to the MCS system.
To improve data quality, users who provide incorrect data can be removed before
sensing data aggregated [8]. And the MCS system can output more accurate
aggregation results.

Although the incentive mechanism has been improved a lot, users’ privacy
protection remains inadequate. When users submit sensing data, their sensitive
or private information [9] may be leaked, including identity privacy, location
privacy, and data privacy. And privacy disclosure [10] will reduce users’ willing-
ness to participate in sensing tasks. Recently, some researchers have designed
the incentive mechanism scheme of privacy protection [11,12]. In [8], an incen-
tive method is proposed to protect the user’s identity and data privacy. Still,
the user’s sensing data will be submitted to the task publisher regardless of the
privacy of the sensing data.

To address these issues, we propose a privacy-preserving incentive mechanism
based on truth discovery, called PAID. In our PAID, the task publisher set data
constraints, such as time, location, budget, and sensing data. If the user does
not collect the sensing data at the required time and location or sensing data is
not in the qualified range, we believe that the user’s sensing data is not credible
(i.e., unqualified). After removing the unqualified user’s data, the qualified user’s
sensing data will be submitted to the server to calculate the ground truth and
weight. We also design a secure truth discovery scheme, which can still work
when some users drop out. Moreover, our truth discovery can ensure that other
parties cannot obtain users’ sensing data except users themselves. Finally, we
calculate every user’s data quality according to the weight and distribute the
reward.

In summary, the main contributions of this paper are as follows:

– We propose a method to judge whether the data is in the qualified range.
And this method will not disclose users’ data and the qualified interval in the
implementation process.

– We design a security truth discovery scheme, which can compute ground truth
and users’ weight. In this scheme, any party can not get the user’s sensing
data except himself. And the method can allow users to drop out.

– Our PAID accomplishes reward distribution according to data quality. The
data quality is calculated by the weight.
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2 Problem Statement

In this section, we introduce the background of truth discovery and our design
goals.

2.1 Truth Discovery

Truth discovery [13] is widely used in the MCS system to solve the conflicts
between sensing data collected from multiple sources. Although the methods of
estimating weights and calculating ground truth are different, their general pro-
cesses are similar. Specifically, truth discovery initializes a random ground truth
and then iteratively updates the weight and ground truth until convergence.

Weight Update: Suppose that the ground truth of the object is fixed. If the
user’s sensing data is close to the ground truth, a higher weight should be
assigned to the user. The weight wi of each user ui can be iteratively updated
as follows:

wi = log

(∑|U |
i′=1 dist(xi′ , x∗)
dist(xi, x∗)

)
(1)

where dist(xi, x
∗) is a distance function, and dist(xi, x

∗) = (xi − x∗)2. We use U
to represent the set of users, and |U | is the number of users in the set U . The
sensing data collected by the user ui is denoted as xi, which i is the number of
ui. And x∗ is the estimated ground truth.

Truth Update: Similarly, we assume that the weight wi of each user ui is fixed.
Then we can calculate the ground truth x∗ as follows.

x∗ =
∑|U |

i=1 wi · xi∑|U |
i=1 wi

(2)

The final ground truth x∗ is obtained by iteratively running the weight
update and the truth update when the convergence condition is satisfied.

2.2 Design Goals

In this section, we introduce the design goals of our PAID, which are divided
into privacy and security goals and property goals.

The privacy goals can protect the user’s private data, and the security goals
can avoid malicious attacks. The details are as follows.

– Privacy goals. PAID can protect user’s location privacy, data privacy, and
identity privacy. Specifically, the location and sensing data of a user can not
be obtained by any other parties except the user himself. And users’ real
identities would not be disclosed when performing a sensing task.
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– Security goals. In our PAID, users can avoid the denial of payment attack
(DoP) of TP. The server S cannot initiate an inference attack (IA) on users.
The server S can resist the data pollution attack (DPA) launched by malicious
users. And our PAID guarantees fairness by resisting the Sybil attack (SA).

Our PAID also requires the following property goals.

– Eligibility. If users’ data do not meet the eligibility requirements, they can-
not pass the eligibility assessment. In other words, the sensing data adopted
by our PAID must be eligible.

– Zero-knowledge. When the server S assesses whether users’ data meets the
eligibility requirements, it cannot obtain the content of users’ private data.

Task publisher Sever Users

(7) Deviation elimination

Fig. 1. System model of PAID.

3 Preliminaries

In this section, we review the cryptographic primitives used in our PAID.

3.1 Secret Sharing

We use Shamir’s t-out-of-N secret sharing protocol, which can split each user’s
secret s into N shares, where any t shares can be used to reconstruct s. Still, it
is impossible to get any information about s if the shares obtained by attackers
are less than t.

Assume that some integers can be identified with distinct elements in a finite
field F , where F is parameterized with a size of l > 2k (which k is the security



268 T. Wan et al.

parameter). These integers can represent all users’ IDs, and we use a symbol
U to denote the set of users’ IDs. Then the Shamir’s secret sharing protocol
consists of two steps as below.

– Shamir.share(s, t, U) → {(ui, si)}ui∈U . The inputs of the sharing algorithm
are a secret s, a threshold t ≤ |U |, and a set U of N field elements denoting
the users’ ID, where |U | = N . It outputs a set of shares si, each of which is
associated with its corresponding the user ui.

– Shamir.recon({(ui, si)}ui∈M, t) → s. The inputs of the reconstruction algo-
rithm are the shares corresponding to a subset M ⊆ U and a threshold t,
where t ≤ |M|, and it outputs the secret s.

3.2 Key Agreement

We utilize Diffie-Hellman key agreement called SIGMA [14] in our PAID to
generate a session key between two users. Typically, SIGMA is described in
three parts as follows.

– KA.param(k) → (G, g, q,H). The algorithm’s input is a security parameter
k. It samples a group G of prime order q, along with a generator g and a hash
function H, where H is set as SHA-256 for practicability in our model.

– KA.gen(G, g, q,H) → (x, gx). The algorithm’s inputs are a group G of prime
order q, along with a generator g and a hash function H. It samples a random
x ← Zq and gx, where x and gx will be marked as the secret key SKi and the
public key PKi in the following sections.

– KA.agree(signj(gxi , gxj ),MACk(uj), xi, g
xj , i, j) → si,j . The algorithm’s

inputs are the user ui’s secret key xi, the user uj ’s public key gxj , signed
signature signj(gxi , gxj ) and MACkv

(uj) from the user uj , where kv is used
as the MAC key. It outputs a session key si,j between user ui and user uj . For
simplicity, we use KA.agree(xi, g

xj ) → si,j to represent the above process
in the following sections.

3.3 Paillier Cryptosystem

The Paillier Cryptosystem is a probabilistic public key Cryptosystem. It consists
of three parts as follows.

– Paillier.gen(N, g) → (skp, pkp). The key distribution algorithm inputs are a
number N and g ← Z∗

N2 , where N is the product of two large primes p, q.
It outputs a secret key skp and a public key pkp, where pkp is computed by
(N, g), and skp = lcm(p − 1, q − 1).

– Paillier.enc(m, pkp) → c. The encryption algorithm inputs are a plaintext
m (which m < N) and a public key pkp. It outputs a ciphertext c.

– Paillier.dec(c, skp) → m. The decryption algorithm inputs are a ciphertext
c (which c < N2) and a secret key skp. It outputs a plaintext m.

The Paillier cryptosystem has the property of homomorphic addition.

Epk(a + b) = Epk(a) · Epk(b) (mod N2), (3)

We assume that E is an encryption function.
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4 Technical Intuition

In this section, we first introduce how the interval judgment scheme can judge
users’ data eligibility under protecting users’ privacy. Then, we notice that truth
discovery mainly involves the aggregation of multiple users’ data in a secure
manner. Therefore, we require that the server S only get the sum of users’
input, not content. And we propose a double-masking scheme to achieve this
goal. Finally, we introduce the process of secure truth discovery.

4.1 Interval Judgment Scheme for Privacy Protection

In our PAID, we use the interval judgment scheme [15] based on the Paillier
cryptosystem to determine the sensing data eligibility. Every user ui provides
a sensing data xi, and the server provides a continuous integer interval [y1, y2]
(y1, y2 ← Z∗). The server S can judge whether the user ui’s sensing data xi

meets the interval range [y1, y2] without knowing the data xi. The user ui also
cannot obtain any information about the integer interval. The scheme is divided
into four steps as follows.

– The user ui gets (pkp, skp) ← Paillier.gen(N, g). Then ui computes E(xi)
using pkp and sends it to S.

– The server S picks two random numbers k, b (k, b ← Z∗) to construct a
monotone increasing (or decreasing) function f(xi) = kxi+b. Then the server
S computes f(y1), f(y2), c = E(xi)kE(b) = E(kx + b), and sends them to ui.

– After receiving the information from the server S, the user ui gets f(xi) ←
Paillier.dec(c, sk), then compares the size of f(y1), f(y2), and f(xi). Next,
send the message to the server S.

– After receiving the message from ui, the server S judges whether f(y1) <
f(xd) < f(y2). If so, we can know xi ∈ [y1, y2] because of the monotonicity
of the function f(xi) = kxi + b, i.e., the user ui passes the data eligibility
assessment. Otherwise, the user ui fails to pass the eligibility assessment of
the server S.

For simplicity, We formulate the above process as an interval judgment func-
tion denoted by ins(xi, y1, y2). If the user ui passes the eligibility assessment of
the server S, ins(xi, y1, y2) = 1, otherwise ins(xi, y1, y2) = 0.

4.2 One-Masking to Protect Security

Assume that all users are represented in sequence as integers 1, . . . , n. And any
pair of users (ui, uj), i < j agree on a random value ri,j . Let’s add ri,j to the
user ui’s data xi and subtract ri,j from the user uj ’s data xj to mask all users’
raw data. In other words, each user ui computes as follows.

yi = xi +
∑

uj∈U :i<j

ri,j −
∑

uj∈U :i>j

rj,i (mod R), (4)
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where we assume xi and
∑

uj∈U ri,j is in ZR with order R for simplicity.
Then, each user ui submits yi to the server S, and S computes:

z =
∑

ui∈U

yi

=
∑

ui∈U

⎛
⎝xi +

∑
uj∈U :i<j

ri,j −
∑

uj∈U :i>j

rj,i

⎞
⎠

=
∑

ui∈U

xi (mod R).

(5)

However, this approach has two shortcomings. The first one is that every
user ui needs to exchange the value ri,j with all other users, which will result
in quadratic communication overhead (|U |2) if done naively. The second one is
that the protocol will fail if any user ui drops out since the server can’t eliminate
the value ri,j associated with ui in the final aggregated results z.

4.3 Double-Masking to Protect Security

To solve these security problems, we introduce a double-masking scheme [16].
Every user ui can get a session key ri,j with other user uj by engaging the

Diffie-Hellman key agreement after the server S broadcasting all of the Diffie-
Hellman public keys.

We use the threshold secret sharing scheme to solve the issue that users are
not allowed to drop out. Every user ui can send his secret’s shares to other
users. Once some users cannot submit data in time, other users can recover
masks associated with these users by submitting shares of these users’ secrets
to S, as long as the number of dropped users is less than t (i.e., threshold of
Shamir’s secret sharing).

However, there is a problem that may lead to users’ data leaked to S. There
is a scenario where a user ui is very slow to send data to the server S. The server
S considers that the user ui has dropped and asks for their shares of the user
ui’s secret from all other users. Then, the server S receives the delayed data yi

after recovering ui’s mask. At this time, the server S can remove all the masks
ri,j and get the plaintext xi.

To improve the scheme, we introduce an additional random seed ni to mask
the data. Specifically, each user ui selects a random seed ni on the round of
generating ri,j , then creates and distributes shares of ni to all other users during
the secret sharing round. Now, users calculate yi as follows:

yi =xi + PRG(ni) +
∑

uj∈U :i<j

PRG(ri,j)

−
∑

uj∈U :i>j

PRG(rj,i) (mod R).
(6)
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Note that an honest user will never reveal both kinds of shares of the same
user to the server S. During the recovery round, the server S can request either
a share of ri,j or a share of ni from each surviving user uj . After gathering at
least t shares of ri,j for all dropped users and t shares of ni for all surviving
users, the server S can eliminate the remaining masks to reveal the sum.

4.4 Secure Truth Discovery

In the secure truth discovery scheme [6], data exchange is between users and
the server S. The user ui needs to collect sensing data xi, perform the double-
masking scheme to mask the raw input data, and then send the masked input
data to S. The server S receives masked input data from each user ui and
aggregates the input data of online users. The main process can be summarized
as follows.

Part 1 (Key Generation). A trusted third party creates three key pairs for
each user ui signature, session key, and noise value. Then, each user ui generates
shares of ni using secret sharing protocol and sends the encrypted information
to S.

Part 2 (Masking Data). Each user ui uses the double-masking scheme to
mask his input data and sends it to S.

Part 3 (Unmasking). After receiving the masking data, the server S performs
a summation operation to obtain the sensing data aggregation result of surviving
users. For dropped users, the server S restores their noise using the secret sharing
protocol then eliminates the impact on the aggregation results.

Part 4 (Computing Ground Truth and Weight). After the server S gets
the aggregation result, the server S iteratively calculates the ground truth x∗

and weight wi of every user ui according to Formula 1 and Formula 2 until
convergence. And the server S initializes a random ground truth x∗ in the first
calculation.

5 Our Proposed Scheme

In this section, we introduce the process of our model. For convenience, we
introduce a simple case. We set up a sensing task T to collect the temperature of
urban roads in the evening. There are range requirements for time, location, and
sensing data (i.e., temperature). To be more precise, the time range is required
to be 5–8 pm on February 3rd, the location range is required to be 12.45–12.55 E
and 41.79–41.99 N, and the temperature requirement is 10–15◦C. In our PAID,
we consider the range requirement as the data eligibility requirement E . The data
Di (Di = (xi , τi, ι̂i, ι̃i)) collected by a user ui meet the eligibility requirements
E , meaning that 10 ≤ xi ≤ 15, 5 ≤ τi ≤ 8, 12.45 ≤ ι̂i ≤ 12.55, 41.79 ≤ ι̃i ≤ 41.99.
Figure 1 shows the flow of our PAID. And the specific steps are as follows.
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Step 1 (Task Publish). The task publisher TP initializes a public key pkT
and a private key skT , a reward control parameter π (π is a decimal number),
a task budget B , the number of users N , and eligibility requirements E for a
sensing task T . The public key pkT is used to encrypt the information that the
server S needs to send to the TP, and the TP decrypts the ciphertext using the
private key skT . Then the TP sends the information {T , pkT , π,N ,B , E} to S
as a task request.

Step 2 (User Recruitment). The server S broadcasts the sensing task infor-
mation {T , π,N ,B} and recruits N users who request to participate in the
sensing task. Then S generates a key pair {PKi

S , SKi
S} using the key agreement

scheme for every user ui and sends PKi
S to ui.

Step 3 (Eligibility Assessment). Each user ui confirms whether ci ≤ B−π
N ,

where ci denotes the sensing cost of ui, and the posted lowest reward is denoted
as B−π

N . If ci ≤ B−π
N , ui starts the sensing task and collects the data Di. The user

ui then generates a key pair {PKi, SKi} using the key agreement scheme and com-
putes a session key ki ← KA.agree(SKi, PKi

S) as ui’s anonymous identity infor-
mation. Then the user ui performs the interval judgment scheme ins(Di, E) and
sends the public key PKi to S. Specifically, ins(Di, E) is divided into ins(xi, E),
ins(τi, E), ins(ι̂i, E), ins(ι̃i, E).

Step 4 (Prepayment). After recruiting N eligible users, the server S requests
TP to prepay a budget reward B for the sensing task T to prevent the
denial of payment attack. And the server S calculates the session key ki ←
KA.agree(SKi

S , PKi) with the eligible user ui.

Step 5 (Submission Notification). After getting the budget reward B , the
server S informs the eligible user ui (1 ≤ i ≤ N) to submit data.

Step 6 (Data Submission & Eligibility Confirmation). After receiving the
submission notification, each user ui performs double masking scheme to mask
the sensing data xi and get yi, at the same time, execute eligibility confirmation
ins(Di, E) to prevent malicious users from modifying data. Then ui encrypts
the data yi using the symmetric encryption algorithm and sends the ciphertext
SEnc(yi, ki) to S. The session key ki is the key of symmetric encryption.

Step 7 (Secure Truth Discovery). The server S computes the surviving user
ui’s weight wi and the ground truth x∗ of the sensing object utilizing the truth
discovery algorithm. The detailed algorithm process will be introduced later.

Step 8 (Reward Distribution). The server S calculates the sensing data
quality qi = wi∑m

i=1 wi
of ui, where

∑m
i=1 qi = 1, m is the number of online users.

Then S pays a monetary reward pi = B
m + π · (qi − q̄) for ui, where π · (qi − q̄)

denotes the payment parameter, m ≤ N , and 1 ≤ i ≤ m.

Step 9 (Task Completion). The server S encrypts the ground truth x∗ using
pkT and sends Enc(x∗, pkT ) to TP. And the TP can decrypt the data using
skT , i.e., x∗ = Dec(Enc(x∗, pkT ), skT ).
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6 Analysis

In this section, we introduce property analysis, privacy analysis, and security
analysis to illustrate the feasibility of our PAID.

6.1 Property Analysis

In this section, we introduce eligibility, zero-knowledge of our PAID.

Theorem 1 (Eligibility). If the data Di (Di = (xi , τi, ι̂i, ι̃i)) collected by users
do not meet the eligibility requirement E , these users cannot pass the eligibility
assessment.

Proof. We assume that the user’s data are denoted as s, and the eligibility
requirement interval is [a, b]. The user gets ciphertext E(s) using homomor-
phic encryption. Then S picks different random k, b, and constructs a monotone
increasing (or decreasing) function f(x) = kx + b. Then S computes f(a), f(b),
and c = E(s)kE(b) = E(ks + b). When receiving f(a), f(b), c from S, the user
decrypts c to get f(s) and compare the sizes of f(a), f(b), f(s). Because the user
does not know the monotonicity of the function, it is impossible to determine
the size relationship among the three numbers. Therefore, if the user’s data is
not qualified, then it cannot pass the qualification judgment.

Theorem 2 (Zero-knowledge). The server S can determine whether the
user’s data meets the eligibility requirements, but it cannot know the user’s
specific data content.

Proof. Similar to the description in Theorem 1, we assume that the user’s data
is s, and the server S can receive the user’s homomorphic encrypted cipher-
text E(s). Since the Paillier Cryptosystem is indistinguishable under the chosen
plaintext attack, a malicious user has no way to recover the plaintext s. The
server S may be curious about each user’s data, but it cannot obtain each user’s
data s without knowing the secret key.

6.2 Privacy Analysis

In this section, we demonstrate the protection of user sensing data, location, and
identity privacy in our PAID.

Theorem 3 (Data and location privacy protection). In addition to the
user himself, other parties cannot obtain the user’s sensing data and location
data.

Proof. In PAID, the objects that steal users’ data and location privacy are
mainly the server S and external attackers. Specifically, the server S may obtain
users’ sensing data and location privacy in eligibility assessment and truth dis-
covery. External attackers steal data and location privacy by eavesdropping on
the communication between the server S and users.
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According to Theorem 2, we can know that our PAID is zero-knowledge,
so the server S cannot learn users’ sensing data and location data in the eli-
gibility assessment. In truth discovery, users’ sensing data is sent to S after
double-masking. However, the server S can’t recover users’ raw sensing data by
double-masking sensing data. Furthermore, before the communication between
the user ui and S, the data is encrypted by AES symmetric encryption func-
tion SEnc(yi, ki). Therefore, as long as SEnc(yi, ki) is secure, external attackers
cannot steal the data yi by eavesdropping communication.

Theorem 4 (Identity privacy protection). When users participate in a
sensing task, they use an anonymous identity rather than their real identity.
Therefore, any PPT adversary cannot distinguish the users’ identities.

Proof. In PAID, the anonymous identity of a user ui is represented by ki ←
KA.agree(SKi, PKi

S), and the real identity of ui is SKi where SKi = xi ← Zq,
and PKi

S = gxi
S (PKi

S is a token assigned by S). The user ui uses an anonymous
identity ki rather than a real identity SKi to participate in a sensing task. Because
of the DDH problem, the PPT adversary cannot get the real identity SKi of the
user ui by the anonymous identity ki. We omit the detailed proof, and interested
readers can learn more details in the literature [14].

6.3 Security Analysis

In this section, we describe the attacks our PAID can resist, including Denial
of Payment attack (DoP), Inference attack (IA), Data pollution attack (DPA),
and Sybil attack (SA).

(1) Resistance to denial of payment attack (DoP). We use the prepayment mech-
anism in our PAID. At the beginning of a sensing task, the task publisher
TP pays the monetary rewards of users to S in advance. If a malicious TP
refuses to pay the monetary reward after receiving the data, S can pay the
reward to users according to the reward distribution formula. Therefore, the
TP cannot refuse to pay users the reward.

(2) Resistance to inference attack (IA). The server S cannot initiate an inference
attack against users’ data since our PAID is zero-knowledge.

(3) Resistance to Data pollution attack (DPA). Our PAID introduces eligibility
assessment, and the unqualified data submitted by users are not used in the
truth discovery algorithm. Therefore, our PAID can resist the Data pollution
attack (DPA).

(4) Resistance to Sybil attack (SA). The anonymous identity ki of a user ui

needs the information PKi provided by the user and the token PKi
S assigned

by S. Each user can only obtain one token from S, then get the anonymous
identity ki using the key agreement algorithm. Hence, untrusted users cannot
forge vast fake identities to launch the Sybil attack (SA).
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Table 1. Performance comparison between PAID and related work

Protocol Computational overhead Communication overhead

PAID 4MN2 3

Protocol 2 in [17] 8MN2 6

7 Performance Evaluation

In this section, we analyze the computational and communication overhead in the
eligibility assessment. And Table 1 shows the performance comparison between
our PAID and related work.

7.1 Computational Overhead

Since we use the Paillier homomorphic encryption in eligibility assessment, we
use the modular exponentiation as the computational overhead indicator and
ignore other operations. For convenience, the modular exponentiation in Pail-
lier homomorphic encryption is denoted as MN2 . The server S requires two
encryptions, and users perform one encryption and one decryption. Therefore,
the computational overhead of the eligibility assessment is 4MN2 .

7.2 Communication Overhead

Typically, we measure the communication overhead by communication rounds
in secure multiparty computation. In our eligibility assessment, the interaction
between server and user is 3 rounds.

8 Related Work

Truth discovery is an effective technology that can calculate the ground truth
and users’ quality from conflicting sensing data. Li et al. [13] Proposed a general
truth discovery scheme, but privacy protection is not in their work scope. To
protect users’ privacy data, Miao et al. [18] proposed the first privacy-preserving
truth discovery scheme using the Paillier cryptosystem, but the computational
and communication costs are huge. Later, some works [19] improve the commu-
nication cost and privacy protection of truth discovery. However, these works do
not take into account the failure of the MCS system caused by users’ exit. And
most existing works do not combine the incentive mechanism.

Another previous work related to this paper is the incentive mechanism in the
MCS system. Some works [20] utilize the game theory model, such as the auction
model, to implement incentive mechanisms but do not consider users’ privacy
leakage. In [12], the author designs privacy protection in the incentive mecha-
nism. However, these works do not include the assessment of users who provide
unqualified data in advance. Zhao et al. [8] presented an incentive mechanism
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model to evaluate the reliability of users’ data while protecting data privacy.
However, the users’ sensing data needs to be submitted to the task publisher, so
the sensing data privacy protection is still insufficient.

Different from existing work, we design an incentive mechanism based on
truth discovery, which can remove unqualified users in advance. The incentive
mechanism ensures that enough users participate in the sensing task and improve
truth discovery accuracy.

9 Conclusion

In this paper, we propose a privacy-preserving incentive mechanism based on
truth discovery in the MCS system. Specifically, we design an eligibility assess-
ment scheme to estimate whether the data submitted by users are qualified.
Next, the truth discovery scheme calculates the ground truth and the weight of
each user using these qualified sensing data. Then we quantify the data quality
of users by weight and distribute the rewards. Besides, we also demonstrate that
PAID meets eligibility, zero-knowledge. And the analysis shows that our PAID
can resist the Denial of Payment attack, Inference attack, Data pollution attack,
and Sybil attack. In future work, we will demonstrate the efficiency of our model
through experiments.
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