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Abstract. Blockchain technology has the characteristics of decentralization and
tamper resistance, which can store data safely and reduce the cost of trust effec-
tively. However, the existing blockchain system has weak performance in data
management, and only supports traversal queries with transaction hashes as key-
words. The query method based on the account transaction trace chain (ATTC)
improves the query efficiency of historical transactions of the account. However,
the efficiency of querying accounts with longer transaction chains has not been
effectively improved. Given the inefficiency and single method of the ATTC index
in the query, we propose a subchain-based account transaction chain (SCATC)
index structure. First, the account transaction chain is divided into subchains, and
the last block of each subchain is connected by a hash pointer. The block-by-block
querymode in ATTC is converted to the subchain-by-subchain querymode, which
shortens the query path; then, the query algorithm is given for the SCATC index
structure. Simulation analysis shows that the SCATC index structure significantly
improves query efficiency.
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1 Introduction

In 2008, Bitcoin was proposed by Satoshi Nakamoto in “Bitcoin: A Peer-to-Peer Elec-
tronic Cash System” [1], marking the emergence of blockchain technology. Blockchain
is a distributed database technology that has the characteristics of decentralization, trace-
ability, tamper-proof, collective maintenance, etc. [2]. The emergence of this technology
solves a series of problems such as high cost, low efficiency, and low trust brought by
centralized institutions [3]. Level-DB is the mainstream database in the blockchain sys-
tem, which is based on the storage structure of the LSM tree. This leads to the lower
reading performance of the blockchain [4]. Besides, Level-DB only supports simple
Key-Value queries, not relational queries [5]. When querying transactions, users can
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only traverse in block order, which further reduces query efficiency [6]. The blockchain
system only supports related queries with transaction hashes as keywords and does not
query with account hashes as keywords. The query method is single.

To quickly query account historical transactions, an index structure that sup-
ports querying account transaction chains was proposed in the Education Certificate
Blockchain (ECBC) [7]. This index structure has the characteristics of low latency
and high throughput. You et al. [8] designed a hybrid index mechanism that supports
blockchain transaction traceability based on the Ethereum state tree. In thismechanism, a
hash pointer is embedded in the account transaction, which points to the block where the
previous transaction. Through the pointer, the Account Transaction Trace Chain (ATTC)
can be quickly traced. The querymethod based onATTC improves the query efficiency of
account transactions, but for some active accounts with longer transaction chain length,
a longer chain still needs to be traversed. Besides, users do not always want to find all the
historical transactions of an account, and it is still difficult to find target transactions in
massive account data. In this regard, we improve the query scheme based on ATTC and
propose a subchain-based account transaction chain (SCATC) index structure, which
solves the shortcomings of the ATTC index structure in the query effectively.

The main contributions of this paper are as follows:

1. We divide the transaction chain into subchains and connect different subchains with
hash pointers to shorten the query path when querying early historical transactions.
This solution is not a query mode that uses space for time. While reducing the time
complexity, the space complexity does not increase significantly.

2. We design a query algorithm for the SCATC index structure. The simulation
results show that the SCATC-based query is more efficient when querying the early
transactions of accounts.

The paper is organized as follows. Section 2 of this article introduces the related
work of blockchain in the data query. Section 3 introduces the index structure based
on SCATC and the query algorithm given in detail. Section 4 is efficiency analysis and
simulation experiment. The full text is summarized in Sect. 5.

2 Related Works

To improve the efficiency of blockchain in data retrieval, Morishima et al. [9] propose to
accelerate blockchain search through GPU using the higher computing power of GPU.
Utilizing the feature that blockchain data does not need to be updated or deleted, an
array-based Patricia tree structure is introduced, which is suitable for GPU processing.
To study the identity verification and range query issues in the hybrid storage blockchain,
Zhang et al. [10] used a unique gas cost model to design an authentication data structure
GEM2-tree that can be effectively maintained by the blockchain. It not only saves gas
consumption in smart contracts but also effectively supports identity verification queries.
Aiming at the inefficient query of the ElasticChain [11] model on the blockchain, Jia
et al. [12] propose an ElasticQM (elastic querymodel) querymethod based on themodel.
In the user layer, the model catches the user’s first query result to improve the efficiency
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of the second query. In the data layer, the B-tree is combined with the Merkle tree to
construct the blockchain data storage structure of the B-M tree. This storage structure
improves the query efficiency of the internal data of the block. Jiao et al. [13] propose a
blockchain database system framework, which realizes the application of data manage-
ment on the blockchain. Combining red-black trees with Merkle trees, they propose a
tamper-resistance index based on hash pointers. Through the index can realize the fast
positioning of the data in the block. Zheng et al. [14] divide the data attributes on the
blockchain into discrete attributes and continuous attributes and proposed aMHerkle tree
index structure for different attributes, which supports range query. Ren et al. [15] intro-
duce aDCOMB(DualCombinationBloomfilter) scheme,which converts the computing
power used for Bitcoin mining into the computing power for data query. DCOMB has
higher random read performance and lower error rate than COMB (Combination Bloom
filter). The encrypted signature tree data structure of the Merkel Block Space Index
(BSI) [6] modifies the Merkle KD-tree to support fast Spatio-temporal query process-
ing. In Ethereum, when a user initiates a transaction, the system checks the status of the
account. Wan et al. [16] built a Merkle Patricia tree account storage structure GMPT
(Group Merkel Patricia Tree) to speed up the query of account status. However, GMPT
does not support fast queries of historical transactions. For this, an index directory BKV
(B-Key-Value) is constructed in combination with the B-tree index [17].

3 SCATC Index Structure

3.1 Index Design

Given ATTC’s shortcomings in retrieval, we improve it based on the index structure. In
ATTC, the transactions of accounts in different blocks are connected by hash pointers.
The hash pointers here are called the first hash pointer (FHP).

In the SCATC index structure, account transaction chain is divided into subchains.
Every k(k > 1) block is divided into a subchain, and each subchain has a subchain
number. The index structure of SCATC is shown in Fig. 1.

Fig. 1. SCATC index structure
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Each transaction of the account will identify the location of the transaction when it
enters the chain. For example, Accountn,k (Account is the account name, n≥1 and k≥1,
n and k are both positive integers) means that the account is in the k th block in the nth
subchain of the transaction chain. In ATTC, every time a user participates in a transaction
of k blocks, another hash pointer is added to the account branch leaf node in the block
Accountn,k pointing to the block Accountn−1,k . The hash pointer connecting the blocks
at the last block of the two subchains is second hash pointer (SHP).

Within each block body, each leaf node of the Merkle tree represents an account,
and both FHP and SHP are stored in the pointer variable defined in the leaf node. For
new blocks on the chain, the system will detect each account whose status has changed,
and update the transaction chain and subchain for each account. The specific steps for
dividing subchains are as follows:

Step 1: Firstly, determine whether the account is a new user one by one. If so, set
the transaction subchain number of the account transaction chain and the block serial
number in the subchain to 1. If not, go to step 2.

Step 2: Determine whether the block sequence number of the sub-chain where the
previous block in the account transaction chain is located is less than k − 1. If so, the
subchain number of the new transaction is the same as the previous block, and the
sequence number of the block in the sub-chain is increased by 1.

Step 3: Determine whether the block sequence number in the subchain where the
previous block in the transaction chain is equal to k − 1, if so, the subchain number of
the new transaction is the same as the previous block, and the block sequence number
in the subchain is k. At the same time, the secondary hash pointer SHP is added to the
account branch node of the new block to point to the k th block of the previous subchain.

Step 4: Determine whether the block sequence number in the subchain where the
previous block is located is equal to k. If so, the subchain number in the new transaction
is increased by 1, and the block sequence number is 1. This block is the initial block of
the new subchain in the transaction chain.

3.2 Algorithm Design

When inquiring about historical transactions, users can directly access the k th block of
the previous subchain from the k th block of the latest subchain according to the SHP
until the target subchain. Then traverse the blocks in the target subchain to obtain the
transaction. Before the query reaches the target subchain, only one block is visited in
all subchains except the latest subchain. The block-by-block traversal query method is
transformed into a subchain-by-subchain query, which shortens the access path in the
search process. The FHP in SCATC is not embedded in the transaction but embedded
in the leaf nodes of the Merkle tree. When querying early historical transactions, the
system will directly filter the user’s recent transaction data.

To achieve rapid retrieval of data, we design the query algorithm as shown below for
the SCATC index.
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Algorithm 1  SCATC query algorithm
Input：Target account subchain
Output：Account transaction 

TargetAccount_data=[]
p = LatestBlock.data
if p.Subchain_BlockNum<k: 

for i in range(LatestBlock, LatestSubchain_FirstBlock,-1): 
        q= i.data
        for j in q:
            if j.Account==Target_Account:
               TargetAccount_data.append(j)
for i in range(LatestSubchain_kBlock,TargetSubchain_ kBlock,-k): 

q= i.data
for j in q:

     if j.Account==Target_Account:
           TargetAccount_data.append(j)
for i in range(TargetSubchain_kBlock, TargetSubchain_FisrtBlock,-1):  
    q= i.data
    for j in q:
       if j.Account==Target_Account:
           TargetAccount_data.append(j)
return TargetAccount_data

The algorithm first creates a list TargetAccount_data to save the data of the target
accounts that have been accessed. Lines 2–8 of the algorithm visit the latest block in the
transaction chain. If the sequence number of the block is less than k, traverse from the
latest block to the first block in the subchain. Lines 9–13 of the algorithm, according to
the hash pointer in the k th block, access the k th block of the previous subchain until the
k th block of the target subchain. During this process, only one block is visited in each
subchain. Lines 14–18 of the algorithm traverse all the blocks in the target subchain.

4 Experiment and Analysis

4.1 Efficiency Analysis

The length of the subchain affects the scope and efficiency of the query. Assuming that
the transaction chain length of the current target account is s, and the number of blocks
in each subchain is k(k > 1). When the transaction chain length s is determined, the
number of subchains n and k are inversely proportional.

n = s

k
(1)

When k increases, the number of block accesses in the subchainwill increase, and the
query range will increase. The number n of subchains will continue to decrease with the
increase of k, because when the query proceeds to the target subchain, other subchains
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only access the last block, which reduces the number of irrelevant blocks that need to
be visited when locating the target subchain.

The ATTC-based query method requires access to the complete transaction chain;
the number of irrelevant blocks accessed is t1.

t1 = n(k − 1) (2)

In the SCATC-based query method, the number of blocks to be accessed in the initial
query subchain is t2.

t2 = s

k
+ k − 1 (3)

The number of blocks in the irrelevant subchain accessed is t3.

t3 = n − 1 (4)

With the increasing number of users’ transactions, n tends to increase monotonically.
Equations (2) and (4) can be regarded as a linear function of t to n. In Eq. (2), the
coefficient of the independent variable n is k(k > 1), and Eq. (4) where the coefficient
of the independent variable is 1.With the growth of n, the number of irrelevant blocks that
need to be accessed increases rapidly based on the ATTC query method. The SCATC-
based query method has a slower growth rate, and the larger the n, the more obvious the
advantage of the SCATC-based query method.

4.2 Simulation Experiment

The simulation environment is a host computer, where the CPU is Intel(R) Core(TM)
i7-5500U, 12 GB memory, and the 64-bit operating system Windows10 Professional
Edition. The SCATC index structure is written and implemented in python language.
The blockchain requires each full node tomaintain a complete ledger, so the data retrieval
of the simulation is performed locally.

The simulation compares the query efficiency of ATTC and SCATC query methods
under different transaction chain lengths. Set the subchain length k to 10. The length
of the transaction chain is set to 1000–6000 blocks, and the corresponding number of
subchains is 100–600. The simulation experiments are divided into six groups according
to different transaction chain lengths, and each group of simulations is repeated eight
times. To better highlight the effect of simulation comparison, each query is tested with
the initial subchain. Both query methods start from the latest block forward, so the query
time in SCATC includes the time to locate the subchain. The simulation experimental
data obtained are shown in Tables 1 and 2.
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Table 1. ATTC

Number of blocks Query time/Ms AVG Mean deviation

1000 21 25 13 13 19 20 12 23 18.3 33.4

2000 32 42 30 35 61 56 48 43 43.4 69.8

3000 52 55 47 42 56 39 50 49 48.8 36.4

4000 46 54 73 88 56 69 75 61 65.3 88.0

5000 85 99 88 65 73 79 92 87 83.5 67.0

6000 74 109 85 77 83 95 88 101 89.0 76.0

Table 2. SCATC

Number of blocks Query time/Ms AVG Mean deviation

1000 15 12 16 15 15 17 13 13 14.5 11.0

2000 17 14 15 14 12 15 12 16 14.4 11.0

3000 16 18 14 13 15 17 16 13 15.3 12.0

4000 15 13 15 16 14 13 15 16 14.6 7.8

5000 17 17 17 13 16 16 19 18 16.6 9.8

6000 10 12 16 12 18 21 17 19 17.4 11.8

The average value of each subchain of simulation experimental data of ATTC and
SCATC is plotted as a line chart shown in Fig. 2. As the length of the transaction
chain continues to grow, the query time based on the ATTC query method is constantly
increasing. However, the query method based on SCATC has not changed significantly
in query efficiency as the length of the transaction chain continues to increase.

For active users in the blockchain system, the length of the transaction chain has
increased at a faster rate. From a theoretical analysis, whether it is based on ATTC or
SCATC query methods, as the transaction chain grows, the length of the transaction
chain that needs to be traversed will be longer, and the query efficiency will show
a downward trend. However, after the SCATC index structure divides the transaction
chain into subchains, it greatly reduces the number of visits to irrelevant blocks. The
limited length of the transaction chain cannot cause a significant change in SCATC’s
query efficiency.
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Fig. 2. Comparison of query efficiency

5 Conclusions

We improve the query efficiency of the ATTC index structure and proposes a SCATC
index structure that supports querying account subchain data. We divide the transaction
chain into subchains, add hash pointers to the account branch nodes of the block at the last
block of each subchain, and each subchain is connected by hash pointers. Through this
pointer, the query mode of traversing the transaction chain is converted to the subchain
querymode, which effectively reduces the access to irrelevant block data and reduces the
computational overhead.Besides,we also design a query algorithm for the SCATC index.
Simulation experiments and analysis show that the index structure based on SCATC can
improve the query efficiency of account transactions effectively.
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