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Abstract. Straight assembly line and U-shaped assembly line usually required to
be extended and updated in order to solve line balancing problems in the real-world
based on computational intelligence. In the literature, most models are presented
for solving assembly line balancing (ALBP) assumedeterministic processing time.
This paper is extended solving ALBPwith the stochastic environment using fuzzy
theory as one of the main pillars of computational intelligent, it’s called “Worker–
Task Stochastic Assigned toWorkstation Heuristic” (W–TSAWH) is adopted. The
framework can be structured by creating stochastic work environment (SWE) and
assigning process. Firstly, SWE is adopted, with three fuzzy logic models as fuzzy
skill level, fuzzy work stability and dynamic fuzzy processing time models. These
models are used in order to represent uncertainty associated with task process-
ing time in real assembly system. Secondly, a heuristic algorithm is developed to
obtain best solution. The algorithm organized by sequence vector, and a mathe-
matical model that assigns task and worker that subjected to some constraints into
constant number of workstations to minimize cycle time. Finally, the performance
validation of the methodology is proved using a numerical example.

Keywords: Fuzzy logic · Mixed-model assembly line · Heuristic algorithm ·
Cycle time

1 Introduction

The early production began by assembly of one unit of production. The assembly line
which have the procedure of specific product produced on the line, which operate man-
ually or with the aid of instruments for handling or completing the procedure of product
assembly. A typical assembly line consists of a series of successive workstations, each
of which contains some work elements known as tasks. Each performed in a crisp value
called task processing time. In addition, the balancing problem refers to equality of out-
put of each successive operation in the sequence of the assembly line. If they are all
equal, then it is a condition of perfect balance can be considered to be smooth [1]. The
assembly line balancing problem (ALBP) is one of a class problems which are known to
be computationally difficult (NP-hard problems), basically that based on the assignment
the set of tasks into given workstations in a way that not violating precedence constraint
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among tasks and some other constraints. The assignment of tasks to workstations is done
to insure that the assembly can meet the demand rate. Thus each workstation is given a
fixed amount of time to complete its work, max of them called cycle time [1–3]. Most
common class of ALBP is based on objectives are usually classified into four catego-
rize: Minimize the number of workstations for given cycle time is (Type–I), this type is
utilized for installing a new assembly line; Minimize the cycle time of the assembly line
for given number of workstations is given (Type–II), this is applied when changes occur
for improving of an existing assembly line [multi-objective fuzzy assembly line balanc-
ing using genetic algorithm]; Minimizing both cycle time and number of workstation
simultaneously is given (Type–E); Generating a feasible solution while both cycle time
and number of workstation is given (Type–F) [4].

Today’s increasingly competitive global market climate forces manufacturing com-
panies to improve productivity plans with the goal of increasing efficiency and effec-
tiveness. In this direction, an efficient assembly line considered as the most important in
developing assembly line [3]. Therefore. assembly line also can categorized into other
classification according to shape layout into two versions: straight assembly line bal-
ancing (SALB), that allocating assembly tasks only predecessors are already allocated
to straight workstations, and U-shaped (UALB), which allocating assembly tasks whose
predecessors and successors are already allocated to workstations along the assembly
line with respect to the solution efficiency can be estimated to be better for the same
number of workstations due to available more options of assignable tasks than straight
version of the assembly line [3, 5, 6]. Figure 1 illustrates the two versions of the assembly
line according to layout.

I, II   Workstation 

Fig. 1. Tasks arrangement in versions of assembly line ((a) straight assembly line (b) U-shaped
assembly line) [7]

However, the task processing time of almost assembly line was considered a crisp,
that mean task may be completed in standard time and this may lead to delay in spec-
ified cycle time and in product completion [8]. Whilst, in practical there is a high
uncertainty, ambiguity, and vagueness in processing time of tasks are performed by
worker. This case of worker, significant variation may result from worker fatigue, non
skilful workers, motivations of the employees, lack of training, etc. also varying pro-
duction rate may result from machine breakdowns. To incorporate process time uncer-
tainty in ALBP, task processing time may be treated by estimating uncertain data [1].



196 S. A. Aufy and A. H. Kassam

Computational intelligent technique (CI) proved their abilities to reach more efficient
solutions for real-world problems. The main aspect of real–world problem is imprecise
and uncertain data, thus, the input data must be only estimated as within uncertainty due
to both machine and worker factors. This uncertainty can be organized a fuzzy number
to reduce errors of uncertainty. Therefore, stochastic nature of task processing time is to
be considered [9].

2 Relevant Literature

There are numerous literatures have been reviewed studies for solvingALBP, andmost of
them related with solving ALPB assuming that the processing time as a crisp, but others
reported with fuzzy processing time, some of them were summarized as the following:
Samah and AllaEldin (2020) [10] presented a novel methodology for solving a mixed-
model assembly line balancing problem using a worker-assigned heuristic workstation
(W-TAWH) model to address both SALB and UALB versions. The proposal enhanced
performance measures depending on the number of suitable workers and tasks that
assigned to the given workstation. Finally, these measures are integrated and optimized
by employing the desirability function approach for optimization. Salehi et al. (2017)
[6] proposed a new hybrid fuzzy interactive approach to solve a new multi-objective
ALB problem and it was formulated in a fuzzy environment. Two examples and case
studies were adopted for experimental study to demonstrate the effectiveness of the
solution and proved the notability of the proposed approach compared with benchmark
approaches in the literature. Alavidoost et al. (2016) [3] introduced a novel bi-objective
fuzzy mixed-integer linear programming model to represent uncertainty associated with
task processing time, the proposed model considered to optimize two conflicting objec-
tives (minimizing cycle time and workstations number) simultaneously. A numerical
example, besides benchmark study was considered over some test problems to assess
the performance of the proposed solution. The results show that the proposed model
can be utilized not only in ALBP but also it would be helpful to handle any practical
multi-objective linear programming. Anthony et al. (2016) [9] proposed fuzzy logic
model for balancing a single model assembly line. The fuzzy toolbox was used in the
analysis of the data, these data obtained from a tricycle assembly line. Results show that
the efficiency of the assembly line increased from 88.1% to 92.4%, while idle time was
reduced by 56.5% as well as reduction of the bottleneck. Yilmaz et al. (2016) [11] used
a genetic algorithm and heuristic priority rule to solve stochastic two-sided U-shape
assembly line balancing problem The proposed procedure aims to minimize the num-
ber of positions and minimize number of workstations for given cycle time. Finally, to
validate the efficiency of the proposed algorithm a comparison study for test problems
taken from the literature is conducted. The obtained results demonstrate that the pro-
posed algorithm performs well. Zeqiang and wenming (2015) [12] improved a heuristic
procedure based on traditional ranked positional weight method to solve mixed –model
U-line balancing problem (MMULBP)with two parameters are task processing time and
cycle time as fuzzy numbers. The results obtained of an experimental study show that
the improved procedure is effective. Zacharia (2012) [13] proposed a fuzzy of the simple
assembly line balancing problem type–II. The task processing times formulated as tri-
angular fuzzy membership functions. A multi-objective genetic algorithm is presented
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for solving FALBP-II. Fitness function represented as a total fuzzy cost function with
the weighted sum of multiple fuzzy objectives. These weights were studied for three
different methods (fixed, random, adaptive weight). The aim of this work is to solve the
assembly line balancing problem which consists of SALB problem and UALB problem
in real-world. The organization of the study is described as follows. In the next section,
formulate the W-TSAWH model, then proposed a solution approach to solve this prob-
lem. The next numerical example is used to demonstrate the effectiveness, validity, and
reality of the developed approach. Finally, conclusion and future works are given.

3 Formulation of W–TSAWH Problem

In this study, the research effort towards exploitation the features of the ALBP to assign
a proper task and best available worker that subjected to a set of constraints into suit-
able fixed workstation numbers as a consequence reducing the cycle time in stochastic
environment. In another words, the aim is to increase the efficiency of overall through-
put of the assembly line. The extension of assembly line balancing model type–II (W-
TSAWH) developed to achieve a satisfactory best or near best solution with respect to
both straight and U-shaped models. Generally, the framework is to solve W-TSAWH
problem described by designing three–phases. Firstly, is devoted to convert deterministic
task processing time into stochastic using fuzzy theory. Whereas the second and third
are dedicated to developing an inclusive mathematical model for recursive algorithms
for assigning processes for both tasks and workers, with the main objective to minimize
workstations cycle time in both straight and U-shaped assembly line models. Figure 2
demonstrates the framework of W-TSAWH. The developed algorithm is subject to the
following constraints:

1. Task assigned to workstation if the precedence relationship not violated.
2. Every task processing time is considered in stochastic work environment.
3. The time of set-up, loading, unloading material are involved in the processing time.
4. The number of task processing times allocated to each workstation must not exceed

the cycle time specified.
5. Given workstations number must be identical with worker number (it guarantees

that each worker will be allocated only to one the workstation).

3.1 Phase 1: Stochastic Work Environment

To ensure taking into account the uncertainty of processing time in real – assembly sys-
tems, this phase intended to response the need for a comprehensive capability for work
conditions inwhich fuzzyparameters such as skill level andwork stability. The traditional
methods for solving assembly line balancing depend on deterministic time. This study
presented approach to address balancing assembly line under stochastic work environ-
ment, it is devoted to estimating data according to human intuition to cover variability
and uncertainty in task processing time. This phase strictly interferes with customers
satisfied in the form of due date that the most distinctive quality of modern industry.
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Fig. 2. The framework of the developed W–TSAWH approach.

Data required to be collected so as to structure the integral framework for the developed
model are related data which includes product data, worker data, and machine data.
Typically, at each workstation there are variables considered as a main because inherent
stochastic in assembly process. In this study, the variables can be categories into worker
skills that assigned to perform tasks and work stability as important curability measures
associated with nature of the complete time of tasks for uncertain work environment.
According to author’s knowledge, such variables are not reported in existing literature.
Thus, this study proposes stochastic work environment (SWE). The basic idea of this
module is treating the related input data utilizing fuzzy logic theory, while, the output is
representing process time as stochastic output. However, the outline of SWE organized
by developing three fuzzy logic models. These are fuzzy skill level (FSL) model, fuzzy
work stability (FWS) model, and dynamic fuzzy processing time (DFPT) model.

Fuzzy Skill Level (FSL) Model
FSL model is structured to estimate skill level for each worker (SLk) measure on an
assembly line to satisfy the constraint (2) that says a given task in difference processing
time due to different worker efficiency in the form of processing time the change amount
of time due to the diversity in work accumulated experience according to employment
period (EP) and training period (TP) variables,which are structured according to standard
classification of occupation. The output variable (SL) is controlled using 25 fuzzy rules
reasoning according to general formula (IF<condition> THEN<result>). Finally, the
Mamdani interference method was used to fuzzy logic of FSLmodel in order to get crisp
value (SLk) value. Figure 3 depicted the outline of the FSL model.

Fuzzy Work Stability (FWS) Model
FWS model allows taking into account the degree of available of worker (AWk) and
available of machine (AM) as fuzzy input variables in order to estimate work stability
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Fig. 3. Outline of the developed FSL model.

for each worker (WSk). These variables can be formulated with relative importance
which defined according to expert knowledge, the use of FWS was proposed according
to the following procedure:

Step-1: Calculate the working ratio (WRk) for each worker by using Eq. (1).

WRk = (WDk)/(TWD) (1)

Where:

WDk : Working days of worker (k)
TWD: Total working days

Step-2: Calculate the ascertain ratio (ARk) for each worker by using Eq. (2).

ARk = (ATk)/(TTL) (2)

Where:
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ATk : Assigned tasks of worker
TTL: Total tasks on assembly line

Step-3: Calculate the availability of worker (AWk) which results from average of two
percentages are working ratio, and ascertain ratio.

While the availability of machine (AM) is the actual time that the machine is capable
of production as a percent of total planned production time and formulated in Eq. (3).

AM = RT/PPT (3)

Where.

AM: available of machine
RT: run time
PPT: planned production time

The input/output variables are fuzzified trapezoidal membership function shaped.
Finally, all computation procedures of the inference process is achieved by mamdani
inference method. Figure 4 denote the outline of the FWS model.

Dynamic Fuzzy Processing Time (DFPT) Model
Dynamic Fuzzy Processing Time (DFPT) model is designed to treat the difference in
max value of processing time (PT). When a max value in each fuzzy set turns, dynamic
process is developed. The output of FSL model and FWS model (SL &WS) are used as
input variables for DFPTmodel. Input/output variables are fuzzified into set of triangular
and trapezoidal membership function shape in range from 0–1. Finally, a fuzzy inference
procedure is similar to those used in FSL and FWS models in order to estimate PTik of
task (i) needed by worker (k). Figure 5 denote the outline of the FWS model.

3.2 Phase 2: Assigning Tasks to Workstation

The assignment aims to minimize the cycle time for balancing assembly tasks along
assembly line. Thus, task- heuristic recursive algorithm (T-HRA) is developed to achieve
this aim. The evolved algorithm’s search process is based on achieving maximum equal-
ity in total execution time along the assembly line, in such a manner that maximum
equality in partition sequence vector (SV) data is achieved for all workstations. Under
this consideration, there was lower variation in workstation time between workstations,
as shown in Fig. 6. For further details, the following steps will summarize the procedure
of the developed algorithm.

Step 1:- To address the imposed precedence relationship constraint between all of tasks,
a positional weight priority rule of the form SV was used to rank the set of tasks. In the
academic scene, a set of heuristic priority rules is used in forming SV to rank the set of
tasks according to their priority function and precedence relationships among them. In
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Fig. 4. Outline of the developed FWS model.

this study, the maximum total number priority rule for SALB and UALB was used and
its corresponding equation is presented in Eq. (4) & (5), respectively.

Ptp (max) = max

{∑
i∈p i (4)

pmaxf (c) = max
{
number of task ∈ µs

c, number of tasks ∈ µ
p
c
}

(5)

Step 2:- Segmentation the sequence vector into A & B parts by dividing the given
workstations by 2.
Step 3:- Calculate workstation ratio (WR), that display the ratio of the givenworkstations
that allocated to each sub-vector, that subject to the impost condition, that say, WR ≤ 1.
Step 4:- Calculate time ratio (TR), displays the set of data ratio assigned to each part
(A & B), and the idea is based on dividing the SV into two parts called sub-vector, each
one can be represented by the left and right positions (PL&RP), as formulated in Eq. (6).

TR =
∑i

j=PL
APTj/

∑Pr

j=i+1
APTj (6)

Step 5:- Checking of the condition that says (TR ≤ WR), if yes, a new position (i +
1) must be added, if not, continue to step (6), which ensures that the amount of time
allotted for the sub-vector has the least variation.
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Fig. 5. Outline of the developed DFPT model.

Step 6:- The last position (i) must be deleted from the sub-vector (A), to ensure that the
TR ≤ WR condition not violating.
Step 7:- All steps from (1–6) should be repeated until the rest of the given workstations
become 1, in another words, each sub-vector which represents a workstation that has a
number of tasks assigned to it.

3.3 Phase 3: Assigning Worker to Workstation and Evaluation

The assignment is aimed for minimizing the cycle time for worker assembly line bal-
ancing problem. Thus, worker - heuristic recursive algorithm (W-HRA) is developed to
achieve this goal. Workers assigned to given workstations have been summarized in the
following procedure and can be shown in Fig. 7.
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Fig. 6. Flowchart of the recursive algorithm for assigning tasks to workstations.
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Step 1:- Compute workstation time (WT), as shown in Eq. (7), it shows the total time
needed to finish the assigned tasks to the workstation.

Tsw =
∑n

i=1

∑
i∈s TTkiAsi for k = 1, . . . .,W (7)

Step 2:- Repeat step (1) for available workers until given workers have been assigned to
a workstation based on the minimum Tsw.
Step 3:- The steps above should be repeated for each workstation.
Step 4:- Finally, determine the minimum cycle time of assembly line using Eq. (8).

CT = max (Tsw) for ∀ s ∈ S (8)

Fig. 7. Flowchart of the recursive algorithm for assigning workers to workstations.

4 Implementation Mechanism of the Developed W-TSAWH
Approach

Generally, instead of using deterministic data, the evolved mechanism is experimentally
tested using theoretical data to account for the uncertainty associated with task process-
ing time. So, the reality, effectiveness, and validity of the developed approach can be



Recursive Heuristic Algorithm for Balancing Mixed–Model 205

highlighted. Two types of mixed models are critical for the criteria of the mechanism of
two products (A&B) with data given in Table 1 and 2 respectively and the precedence
relationship is given in Fig. 8. Generally, the twomentioned products (A&B) are required
12 tasks, each can be performed by any one of four workers with different capabilities,
i.e. process time. The experiments testes through four points of parameters i.e. (EP, TP,
AW, AM). EP and TP are dealt by two critical points (VL, VS), while the two others AW
and AM are tested at (AV, UAV), which represents the extreme levels. The crisp value
of the extreme points is belonging to fuzzy sets. Tables 3 and 4 denoted the extreme
point range of each fuzzy set under study. Then, maximum values of input &output
variables are specified by authors and listed in Table 5. Obviously, fuzzy inference will
be executed using toolbox Graphical User Inference (GUI) in MATLAB.

Fig. 8. Precedence graph of combined product.

In order to demonstrate the applicability of the proposed mathematical model and
effective solution of the developed solution approach, two cases (case A & case B)
covering diversity of the work condition are studied for both examined layout of mixed
assembly line SAL andUAL. These caseswere solved according to the above-mentioned
parameter values and the final decision is focusing on estimated processing time and then
the best solution of cycle time required for the analysis and comparative is approached.

Case A: Fixed Skill Level, Variable Work Stability
This case examined data for two test problems (A1, A2), each test will benchmark the
performance of the developed approach through the two examined WS extreme levels.
Table 6 presents the results from the developed approach for SAL & UAL, respectively.

i. A1 SL is VS, WS is AV & UAV

A11 EP is VS AND TP is VS AND AW is AV AND AM is AV.
A12 EP is VS AND TP is VS AND AW is UAV AND AM is UAV.

ii. A2 SL is VL, WS is AV & UAV

A21 EP is VL AND TP is VL AND AW is AV AND AM is AV.
A22 EP is VL AND TP is VL AND AW is UAV AND AM is UAV.
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Table 1. Data set of the product (A).

Task no. Task time (per unit time)

W1 W2 W3 W4

1 17 23 17 13

2 15 14 17 13

3 22 15 27 25

4 10 17 13 20

5 21 25 16 32

6 28 18 20 21

7 42 28 23 34

8 17 23 40 25

9 19 18 17 34

10 16 27 35 26

11 27 23 14 19

12 13 15 10 11

Table 2. Data set of the product (B).

Task no. Task time (per unit time)

W1 W2 W3 W4

1 18 22 19 13

2 21 22 16 20

3 12 25 17 15

4 29 21 19 16

5 31 25 26 22

6 25 14 22 15

7 11 20 23 12

8 27 33 40 25

9 19 13 17 34

10 26 27 35 16

11 9 14 10 13

12 7 9 12 12
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Table 3. Fuzzy sets ranges of model 1

Employment period (EP) Training period (TP)

Fuzzy set Boundary Values Fuzzy set Boundary Values

VS 0 × 35 0 VS 0 × 60 0

0.05 × 35 1.75 0.037 × 60 2.22

0.15 × 35 5.25 0.075 × 60 4.5

/ 0.11 × 60 6.6
.
.
.

.

.

.
.
.
.

.

.

.

VL 0.50 × 35 17.5 VL 0.83 × 60 49.8

0.75 × 35 26.25 0.90 × 60 54

1 × 35 35 1 × 60 60

/ 1 × 60 60

Table 4. Fuzzy sets ranges of model 2

Availability of worker (AW) Availability of machine (AM)

Fuzzy set Boundary Values Fuzzy set Boundary Values

UAV 0 × 0.9 0 AV 0 × 0.85 0

0.05 × 0.9 0.04 0.05 × 0.85 0.04

0.10 × 0.9 0.09 0.10 × 0.85 0.08

0.30 × 0.9 0.27 0.30 × 0.85 0.25
.
.
.

.

.

.
.
.
.

.

.

.

AV 0.50 × 0.9 0.45 UAV 0.50 × 0.85 0.72

0.70 × 0.9 0.63 0.70 × 0.85 0.59

1 × 0.9 0.9 1 × 0.85 0.85

1 × 0.9 0.9 1 × 0.85 0.85

Table 5. Data for setting input/output fuzzy variables

Models Description Data

1 Maximum employment period 35 year

2 Maximum training period 60 day

3 Maximum skill level 0.95

4 Maximum available of worker 0.9

5 Maximum available of machine 0.85

6 Maximum work stability 0.8

7 Maximum processing time Dynamic process
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Case B: Variable Skill Level, Fixed Work Stability
This case treated the examined data for two test problems (B1, B2), as listed below, each
test will benchmark the performance of the developed approach through the examined
SL extreme levels. Table 7 presents the results from the developed approach for SAL &
UAL, respectively.

i. B1 SL is VS & VL, WS is AV

B11 EP is VS AND TP is VS AND AW is AV AND AM is AV.
B12 EP is VL AND TP is VL AND AW is AV AND AW is AV.

ii. B2 SL is VS & VL, WS is UAV

B21 EP is VS AND TP is VS AND AW is UAV AND AM is UAV.
B22 EP is VL AND TP is VL AND AW is UAV AND AM is UAV.

5 Numerical Results and Discussion

The performance ofW-TSAWH approach was evaluated over A&B cases. In the exper-
iments, we included eight test, concerning the two examined versions of ALB problem.
Hence, for each test, the # of tasks = 12 must be assigned to 4 workstations/workers.
Comparing the results yielded by the two versions of W-TSAWH approach, one can
observe that W-TSAWH with U-shaped outperforms the other one version. This is
established from the fact that the increasing ratio of minimum cycle time about rang
0.06–0.07. It is cleared that the processing time of the tests are sensitive with respect to
the change credibility measures. Generally, in comparison between all the eight tests,
that the tests have best minimum cycle time because in these tests they take higher SL
scores while WS take lower or higher score for the examined extreme points, that means
SL was the more impact because of its related with manual and semi-automated assem-
bly line. Figure 9 display the divergence of the minimum cycle time obtained by the two
versions of the developed approach over the cases examined. It is clear from this figure
that, in most of the tests the U-shape version perform better than other one (although
the difference is not large), in other words, this study proved the U–shaped version was
preferred for examined parameters basically based on worker. Figure 10 and 11 shows
the comparison of the cycle time obtained by two versions over the straight layout, case
A, case B and U- shaped layout, case A, case B. The diagram confirm that the tests
represented A21, A22, B12, B22 related with high SL are given CT= 38.26 & 35.88 for
SAL and UAL respectively, in the contrary, that the tests A11 and B11 have high score
of WS are given CT = 114.95, 107.8 for SAL and UAL respectively.

As mentioned earlier, the most important stochastic parameters, EP, TP, AW, AM,
are considered in the stochastic work environment of W–TSAWH approach. To obtain
sufficient details of the effect of these parameters and their levels on experimental results
as listed inTable 8,Taguchimethodwas used.Thismethodhas developed a special design
of orthogonal array to study the entire problem parameters space with small number of
experiments based on number of factors and their levels.



Recursive Heuristic Algorithm for Balancing Mixed–Model 215

Fig. 9. Cycle time for all tests.

To determine the best parameters level, a robust design criterion entitled Signal–
to–Noise (S/N) ratio, which establishes the relative importance of each parameter with
respect to its main impacts on the objective function. Usually, the S/N ratio classifies
objective function into three types: a nominal the better, smaller the better, larger the
better, each type calculates the S/N ratio differently [14, 15]. The examined objec-
tive function are classified as smaller the better. MINITAB 17 was used for Taguchi
method implementation. The parameter values with impact effect expected to have great
improvement of objective function (minimumcycle time). The standard orthogonal array
(L16) (24) is conducted for the SWE parameter combinations on an examined prob-
lem.Analysis of variance (ANOVA) is applied to investigate the effect of the parameters
and their interactions, from Tables 9 and 10 EP, AW, EP*TP, EP*AW, TP*AW, have
significant impact on the objective function because taking P–value less than 0.05, thus

Table 8. Input variables with their fuzzy values

Parameter Levels symbol Extreme range Setting

EP VS 0–5.25 w1: 4, w2: 3, w3: 5, w4: 1

VL 17.5–35 w1: 18, w2: 29, w3: 23, w4: 25

TP VS 0–6.6 w1: 2, w2: 5, w3: 4, w4: 6

VL 49.8–60 w1: 50, w2: 53, w3: 60, w4: 57

AW UAV 0–0.27 w1: 0.15, w2: 0.20, w3: 0.25,w4: 0.10

AV 0.45–0.9 w1: 0.5, w2: 0.7, w3: 0.65, w4: 0.75

AM UAV 0.69 /

AV 0.20 /
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these obtained results proved the main role of worker rather than machine that were
considered in manual and semi-automation assembly systems.

Table 9. ANOVA results for straight assembly line

Parameters Sum of 
Square 

Mean of 
Square DF F value P - value 

EP 6.759 0.00 1 0.00 0.997 
TP 20.437 20.437 1 6.13 0.132 

AW 3.333 80.701 1 24.22 0.039 
AM 3.333 4.999 1 1.50 0.345 

EP * AW 108.402 182.358 1 54.73 0.018 
EP * AM 1.666 0.00 1 0.00 1.000 
TP * AW 80.542 80.542 1 24.17 0.039 
TP * AM 4.918 4.918 1 1.50 0.345 

AW * AM 3.332 3.332 1 1.000 0.423 

Fig. 10. Cycle time for a straight assembly line in case A & case B.

Fig. 11. Cycle time for U - shaped assembly line in case A & case B.
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6 Conclusions and Future Works

In this study a developed W–TSAWH approach for balancing mixed-model straight
and U–shaped is presented. We concern with the assigned of the suitable task/worker
to the suitable workstation based on minimizing cycle time as the main objective that
subjected to some constraints. The problem also was formulated in an uncertain envi-
ronment with fuzzy parameters. SWE is used to estimate stochastic processing time,
and then recursive algorithm is developed for tasks/worker allocation to proper work-
station. Finally, the performance of the developed approach was validated through set of
numerical experiments. The developed model is proven to be capable to address the two
types of assembly line are straight and U–shaped balancing problem under uncertainty
work environment. Virtually, it is proved their efficiency through specify the more effect
element in uncertain work environment. The extensive computational study proved the
superiority of the parameters regard to workers over the other examined because we
are dealing with manual or semi-automation. Although, it is limited by two versions of
assembly line balancing models are straight and U–shaped, future works can focus on
solving more complicated problems such as two-sided or parallel layout of assembly
line using the W–TSAWH model. In addition, the developed algorithm could solve by
employing multi-objective genetic algorithm.
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