
Reachability is NP-Complete Even for the
Simplest Neural Networks

Marco Sälzer(B) and Martin Lange

School of Electr. Eng. and Computer Science, University of Kassel, Kassel, Germany
{marco.saelzer,martin.lange}@uni-kassel.de

https://www.uni-kassel.de/eecs/fmv

Abstract. We investigate the complexity of the reachability problem
for (deep) neural networks: does it compute valid output given some
valid input? It was recently claimed that the problem is NP-complete
for general neural networks and conjunctive input/output specifications.
We repair some flaws in the original upper and lower bound proofs. We
then show that NP-hardness already holds for restricted classes of simple
specifications and neural networks with just one layer, as well as neural
networks with minimal requirements on the occurring parameters.

Keywords: Machine learning · Computational complexity · Formal
specification and verification

1 Introduction

Deep learning has proved to be very successful for highly challenging or even
otherwise intractable tasks in a broad range of applications such as image recog-
nition [11] or natural language processing [5] but also safety-critical applica-
tions like autonomous driving [4], medical applications [12], or financial matters
[2]. These naturally come with safety concerns and the need for certification
methods. Recent such methods can be divided into (i) Adversarial Attack and
Defense, (ii) Testing, and (iii) Formal Verification. A comprehensive survery
about all three categories is given in [6].

The former two cannot guarantee the absence of errors. Formal verification
of neural networks (NN) is a relatively new area of research which ensures com-
pleteness of the certification procedure. Recent work on sound and complete
verification algorithms for NN are mostly concerned with efficient solutions to
their reachability problem NNReach [1,3,8,13]: given an NN and symbolic spec-
ifications of valid inputs and outputs, decide whether there is some valid input
such that the corresponding output is valid, too. This corresponds to the under-
standing of reachability in classical software verification: valid sets of inputs and
outputs are specified and the question is whether there is a valid input that leads
to a valid output. Put differently, the question is whether the set of valid outputs
is reachable from the set of valid inputs. The difference to classical reachability
problems in discrete state-based programs is that there reachability is a matter

c© Springer Nature Switzerland AG 2021
P. C. Bell et al. (Eds.): RP 2021, LNCS 13035, pp. 149–164, 2021.
https://doi.org/10.1007/978-3-030-89716-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89716-1_10&domain=pdf
http://orcid.org/0000-0002-8012-5465
http://orcid.org/0000-0002-1621-0972
https://doi.org/10.1007/978-3-030-89716-1_10

150 M. Sälzer and M. Lange

of lengths of a connection. In NN this is given by the number of layers, and it is
rather the width of the continuous state space which may cause unreachability.

Solving NNReach is interesting for practical purposes. An efficient algo-
rithm can be used to ensure that no input from some specified set of inputs is
misclassified or that some undesired class of outputs is never reached. In appli-
cations like autonomous-driving, where classifiers based on neural networks are
used to make critical decisions, such safeguards are indispensable.

However, all known algorithms for NNReach show the same drawback: a
lack of scalability to networks of large size which, unfortunately, are featured
typically in real-world applications [10]. This is not a big surprise as the problem
is NP-complete. This result was proposed by Katz et al. [8] for NN with ReLU
and identity activations, and later also by Ruan et al. [14]. While there is no
reason to doubt the NP-completeness claim, the proofs are not stringent and
contain flaws.

The argument for the upper bound in [8] misses the fact that real inputs are
not necessarily polynomially bounded in size. In fact, guessing values in R is not
even effective without a bound on the size of their representation. Such a bound
is closely linked to the question whether such values can be approximated upto
some precision. The proof by Katz et al. makes no argument for any bound on
the representation of such values, let alone a polynomial one.1

The arguments for the lower bound by a reduction from 3sat in [8] and [15]
rely on a discretisation of real values to model Boolean values. This does not work
for the signum function σ used by Ruan et al. as it is not congruent for sums: e.g.
σ(−3) = σ(−1) but σ(2 + (−3)) �= σ(2 + (−1)), showing that one cannot simply
interpret any negative number as the Boolean value false etc. As a consequence,
completeness of the construction fails as there are (real) solutions to NNReach
which do not correspond to (discrete) satisfying 3sat assignments. Katz et al.
seem to be aware of this and use a slightly more elaborate discretisation in their
reduction, but unfortunately it still suffers from similar problems.2

We start our investigations into the complexity of NNReach by fixing these
issues in Sect. 3. We provide a different argument for membership in NP which
shows that the need for nondeterminism is not to be sought in the input values
but in the use of ReLU nodes. As a corollary we obtain polynomial decidability
for NN with a bounded number of such nodes. We also address the issue of
discretisation of real values in the lower bound proof, fixing the construction
given by Katz et al. We do not address the one by Ruan et al. further, as this
does not provide any further insights or new results.

We then observe that the reduction from 3sat constructs a very specific class
of NNReach instances which we call C(3sat). NN from this class have a fixed
amount of layers but scaling input and output dimension as well as layer size.
This raises the question whether, in comparison to the networks from C(3sat),

1 While this paper was being processed, Katz et al. published an extended version
of their original paper [9]. Unfortunately, the flaws concerning the upper bound are
still present in this version.

2 These problems are repaired in [9], but in a slightly different way than we do.

Reachability is NP-Complete Even for the Simplest Neural Networks 151

reducing the amount of layers or fixing dimensionality leads to a class of networks
for which NNReach is efficiently solvable. In Sect. 4 we show that the answer to
this is mostly negative: NP-hardness of NNReach holds for NN with just one
layer and an output dimension of one. While this provides minimal requirements
on the structure of NN for NNReach to be NP-hard, we also give minimal
criteria on the weights and biases in NN for NP-hardness to hold. Thus, the
computational difficulty of NNReach in the sense of NP-completeness is quite
robust. The requirements on the structure or parameters of an NN that are
needed for NP-hardness to occur are easily met in practical applications. Due to
space restrictions, some technical proof details are deferred to the appendix.

We conclude in Sect. 5 with references to possible future work.

2 Preliminaries

Definition 1. A neural network (NN) N is a layered graph that represents a
function of type R

n → R
m.

The first layer l = 0 is called the input layer and consists of n nodes. The
i-th node computes the output y0i = xi where xi is the i-th input to the overall
network. Thus, the output of the input layer (y00, . . . , y0(n−1)) is identical to the
input of N .

A layer 1 ≤ l ≤ L − 2 is called hidden and consists of k nodes. Note that k
must not be uniform across the hidden layers of N . Then, the i-th node of layer
l computes the output yli = σli(

∑
j c

(l−1)
ji y(l−1)j + bli) where j iterates over the

output dimensions of the previous layer, c
(l−1)
ji are real constants which are called

weights, bli is a real constant which is called bias and σli is some (typically non-
linear) function called activation. The outputs of all nodes of layer l combined
gives the output (yl0, . . . , yl(k−1)) of the hidden layer.

The last layer l = L − 1 is called the output layer and consists of m nodes.
The i-th node computes an output y(L−1)i in the same way as a node in a hidden
layer. The output of the output layer (y(L−1)0, . . . , y(L−1)(m−1)) is considered as
the output of the network N .

The output of a neural network N under input x is denoted N(x). If a node in
a layer l > 0 has less inputs than there are outputs in layer l−1 then we assume
that the unconsidered outputs of l − 1 are weighted with zero. We only consider
networks where nodes in hidden layers have the identity or the ReLU function,
and nodes in the output layer have the identity as activation. The ReLU function
is defined as x �→ max(0, x). Nodes with ReLU or identity activation are called
ReLU nodes or identity nodes, respectively. Given some input to the NN, we say
that a ReLU node is active, resp. inactive if the input for its activation function
is greater, resp. less than or equal to 0. We visualize an NN as a directed graph
with weighted edges. An example is given in Fig. 1.

Our main interest lies in the validity of specifications over the output values of
NN given specifications over their input values. These specifications are expressed
as conjunctions of linear constraints on the input and output variables of a
network.

152 M. Sälzer and M. Lange

Fig. 1. Schema of a neural network with five layers, input dimension of two and output
dimension of one. Filled nodes are ReLU nodes, empty nodes are identity nodes. An
edge between two nodes u and v with label w denotes that the output of u is weighted
with w in the computation of v. No edge between u and v implies w = 0. The bias of
a node is depicted by a value above or below the node. If there is no such value then
the bias is zero.

Definition 2. A specification ϕ for a given set of variables X is defined by the
following grammar:

ϕ ::= ϕ ∧ ϕ | t ≤ b t ::= c · x | t + t

where b, c are rational constants and x ∈ X is a variable.

We use t ≥ b and t = b as syntactic sugar for −t ≤ −b and t ≤ b ∧ −t ≤ −b.
Furthermore, we use 	 for x+(−x) = 0 and ⊥ for x+(−x) = 1 where x is some
variable. We call a specification ϕ simple if for all t ≤ b it holds that t = c ·x for
some rational constant c and variable x.

Definition 3. Specification ϕ(x0, . . . , xn−1) is true under x = (r0, . . . , rn−1) ∈
R

n if each inequality in ϕ is satisfied in real arithmetic with each xi set to ri.

We write ϕ(x) for the application of x to the variables of ϕ. If there are less
variables in ϕ than dimensions in x we ignore the additional values of x. If we
consider a specification ϕ in context of a neural network N we call it an input
or output specification and assume that the set of variables occurring in ϕ is a
subset of the input respectively output variables of N .

Definition 4. The decision problem NNReach is the following: given a neu-
ral network N , input specification ϕin(x0, . . . , xn−1) and output specification
ϕout(y0, . . . , ym−1), is there x ∈ R

n such that ϕin(x) and ϕout(N(x)) are true?

3 NNReach is NP-Complete

3.1 Membership in NP

The argument used by Katz et al. to show membership of NNReach in NP
can be summarized as follows: nondeterministically guess an input vector x as
a witness, compute the output N(x) of the network and check that ϕin(x) ∧

Reachability is NP-Complete Even for the Simplest Neural Networks 153

ϕout(N(x)) holds. It is indisputable that the computation and check of this
procedure are polynomial in the size of N , ϕin, ϕout and the size of x. However,
for inclusion in NP we also need the size of x to be polynomially bounded in
the size of the instance given as (N,ϕin, ϕout). There may be an argument for
this, for instance based on the correspondence between size of x and required
approximation precision for such values. However, we are not aware of such an
argument, let alone a striking one, and there is also a simpler way of obtaining
the upper bound.

Definition 5. A ReLU-linear program over a set X = {x0, . . . , xn−1} of vari-
ables is a set Φ of (in-)equalities of the form

bj +
m∑

i=1

cji · xji ≤ xj or ReLU (bj +
m∑

i=1

cji · xji) = xj

where xji, xj ∈ X and cji, bj ∈ Q. Equations of the second form are called ReLU-
equations. A solution to Φ is a vector x ∈ R

n which satisfies all (in-)equalities
when each variable xi ∈ X is replaced by x(i). A ReLU-equality ReLU (bj +∑m

i=1 cji · xji) = xj is satisfied by x if

– bj +
∑m

i=1 cji · xji ≥ 0 and xj = bj +
∑m

i=1 cji · xji, or
– bj +

∑m
i=1 cji · xji ≤ 0 and xj = 0.

The problem of solving a ReLU-linear program is: given Φ, decide whether there
is a solution to it.

Any ReLU-linear program without ReLU-equalities is a linear program in
the usual sense, and linear programs are known to be solvable in polynomial
time [7].

Lemma 1. The problem of solving a ReLU-linear program is in NP.

Proof. Suppose a ReLU-linear program Φ with l ReLU-equalities is given. Exis-
tence of a solution can be decided as follows. Guess, for each ReLU-equation χk of
the form ReLU (bj+

∑m
i=1 cji ·xji) = xj , some ak ∈ {0, 1}. Let a = (a0, . . . , al−1).

Next, let Φa result from Φ by replacing each χk by the following (in-)equalities.

bj +
m∑

i=1

cji · xji ≥ 0 , bj +
m∑

i=1

cji · xji = xj if ak = 1

bj +
m∑

i=1

cji · xji ≤ 0 , xj = 0 if ak = 0

The following is not hard to see: (i) Using standard transformations, Φa can
be turned into a linear program of size linear in Φ. (ii) Any solution to Φa is
also a solution to Φ, (iii) If Φ has a solution, then there is a ∈ {0, 1}l such
that Φa has a solution. This can be created as follows. Let x be a solution to
Φ. For each ReLU-equation χk as above, let ak = 1 if the corresponding sum

154 M. Sälzer and M. Lange

is non-negative, otherwise let ak = 0. Then x is also a solution for Φa . Thus,
ReLU-linear programs can be solved in nondeterministic polynomial time by
guessing a, and then constructing the linear program Φa and solving it. ��

With this definition of a ReLU-linear program and the corresponding lemma
at hand, we are set to prove NP-membership of NNReach.

Theorem 1. NNReach is in NP.

Proof. Let I = (N,ϕin, ϕout). We construct a ReLU-linear program ΦI of size
linear in |N | + |ϕin| + |ϕout| which is solvable iff there is a solution for I. The
ReLU-linear program ΦI contains the following (in-)equalities.

– ϕin and ϕout (with each conjunct seen as one (in-)equality),
– for each non-ReLU node vli computing

∑
j c

(l−1)
ji y(l−1)j + bli add the equality

∑
j c

(l−1)
ji y(l−1)j + bli = yli (in the form of two inequalities of appropriate

form),
– for each ReLU node vli computing ReLU (

∑
j c

(l−1)
ji y(l−1)j + bli) add the

ReLU-equality ReLU (
∑

j c
(l−1)
ji y(l−1)j + bli) = yli.

The claim on the size of ΦI should be clear. Moreover, note that a solution x
to I can be extended to an assignment x′ of real values at every node of N ,
including values y for the output nodes of N s.t., in particular N(x) = y. Then
x′ is a solution to ΦI . Likewise, a solution to ΦI can be turned into a solution
to I by projection to the input variables.

Hence, NNReach polynomially reduces to the problem of solving ReLU-
linear programs which, by Lemma 1 is in NP. ��

It is interesting to point out the role of witnesses for positive instances of the
NNReach problem: it is tempting to regard values to the input nodes of the
NN as potential witnesses as done by Katz et al. but, as mentioned before, for
as long as there is no argument for their polynomial boundedness these are not
suitable witnesses in an NP procedure. Instead, Theorem 1 above shows that an
assignment to the ReLU nodes as being in-/active can serve as such a witness.
This immediately yields a polynomial fragment of NNReach.

Corollary 1. The reachability problem for NN with a bounded number of ReLU
nodes is decidable in polynomial time.

3.2 NP-Hardness

Katz et al. try to build a polynomial-time reduction from 3sat to NNReach.
The underlying idea is to encode the structure of a 3sat formula in a neural
network and the existence of a satisfying assignment for this formula in the
corresponding input- and output-specifications. Consider the 3sat instance

ψ = (X0 ∨ X1 ∨ X1) ∧ (¬X0 ∨ X1 ∨ ¬X2) ∧ (¬X1 ∨ X2 ∨ X3)

Reachability is NP-Complete Even for the Simplest Neural Networks 155

Fig. 2. Gadgets used in the reduction from 3sat to NNReach. A non-weighted out-
going edge of a gadget is connected to a weighted incoming edge of another gadget in
the actual construction or is considered an output of the overall neural network.

with four propositional variables and three clauses, and let (N,ϕin, ϕout) be the
NNReach instance resulting from the mapping of ψ according to the reduction.
To understand the structure of N we make use of so-called gadgets, specified
in Fig. 2. Each gadget is a compact NN and is used to describe a functional
subcomponent of N . Using these gadgets, the network N is depicted in Fig. 3.

Ignoring the bool-gadgets for the moment, assume that input values are
taken from {0, 1} instead of R. The function computed by N is described as fol-
lows. Each of the three or-gadgets together with their connected not-gadgets
represent one of the clauses in ψ. From Fig. 2 we can infer that the not-gadgets
negate their inputs and that the or-gadgets output 1 if at least one input is 1
and 0 otherwise. Hence, if an or-gadget outputs 1 then the current input, viewed
as an assignment to the propositional variables in ψ, satisfies the corresponding
clause. The and-gadget simply sums up all of its inputs and, thus, we get that
y is equal to 3 iff each or-gadget outputs one. Therefore, with the output spec-
ification ϕout := y = 3, we get a reduction from 3sat to NNReach, provided
that input values are externally restricted to {0, 1}.

But NN are defined for all real-valued inputs, so we need further adjust-
ments to make the reduction complete. First, note that it is impossible to write
an input specification ϕin(x) which is satisfied by x iff x ∈ {0, 1}n because
{0, 1}n is not a hyperrectangle in R

n but conjunctions of inequalities only spec-
ify hyperrectangles. This is where we make use of bool-gadgets. Let ε be
a very small constant. A bool-gadget with input x and output z computes
z = max(0, ε − x) + max(0, x − 1 + ε). Now, Katz et al. claim the following: if
x ∈ [0; 1] then we have z ∈ [0; ε] iff x ∈ [0; ε] or x ∈ [1−ε; 1]. Thus, by connecting
a bool-gadget to each input xi in N and using the simple specifications

ϕin :=
3∧

i=0

xi ≥ 0 ∧ xi ≤ 1 ϕout :=
3∧

i=0

zi ≥ 0 ∧ zi ≤ ε ∧ y ≥ 3(1 − ε) ∧ y ≤ 3

156 M. Sälzer and M. Lange

Fig. 3. Schema of a neural network resulting from the reduction of the 3sat-formula
(X0 ∨ X1 ∨ X1) ∧ (¬X0 ∨ X1 ∨ ¬X2) ∧ (¬X1 ∨ X2 ∨ X3). Note that no weights are
depicted as these are specified inside the gadgets.

we would get a correct translation of ψ. Note that the constraint on y is no
longer y = 3 as the valid inputs to N , determined by the bool-gadgets and
their output constraints, are not exactly 0 or exactly 1. However, the claim
about bool-gadgets is wrong. Consider a bool-gadget with very small ε such
that it is safe to assume ε < 2ε < 1 − ε. Then, for x = 2ε we have z = 0, which
contradicts the claim. In fact, it can be shown that for each ε ≤ 1

2 and each input
x ∈ [0; 1] the output z is an element of [0; ε]. Clearly, this is not the intended
property of these gadgets. But with some adjustments to the bool-gadgets we
can make the reduction work.

A bool∗-gadget is a neural network with functional form R → R shown in
Fig. 2. It computes the function

z = max
(

0,
1
2

− x

)

+ max
(

0, x − 1
2

)

− 1
2
,

where x is the input variable and z is the output variable. For this bool∗-gadget
we can show a similar statement as it was intended for the bool-gadgets in the
original proof.

Lemma 2. In a bool∗-gadget with input x and output z we have z = 0 if and
only if x = 0 or x = 1.

Proof. Note that z = max
(
0, 1

2 − x
)

+ max
(
0, x − 1

2

) − 1
2 is equivalent to

z =

{
−x if x < 1

2 ,

x − 1 otherwise.

From this we immediately get that z = 0 if x = 0 or x = 1, and z �= 0 for all
other values of x. ��

Reachability is NP-Complete Even for the Simplest Neural Networks 157

Now, replacing all bool-gadgets with bool∗-gadgets in the construction and
using the simple specifications ϕin = 	 and ϕout =

∧n−1
i=0 zi = 0 ∧ y = m for

a 3sat-instance with n propositional variables and m clauses, we get a correct
reduction from 3sat to NNReach.

Theorem 2. NNReach is NP-hard.

One could argue that the networks resulting from the reduction of 3sat are not
typical feed-forward neural networks as they do not follow a layerwise structure.
A reason for this is that some inputs are connected to not-gadgets where some
are not and that the outputs zi are not in the same layer as the output y. This
can of course be fixed by introducing additional dummy nodes.

4 NP-Hardness Holds in Very Restricted Cases Already

Let C(3sat) be the class of NNReach instances which are obtained as images
under the reduction presented in the previous section. Note that the NN of
C(3sat) are already quite restricted; they possess only a fixed number of layers.
In this section we strengthen the NP-hardness result by constructing even simpler
classes of NN for which NNReach is NP-hard already. Section 4.1 studies the
possibility to make these NN structurally as simple as possible; Sect. 4.2 shows
that requirements on weights and biases can be relaxed whilst retaining NP-
hardness.

4.1 Neural Networks of a Simple Structure

We consider NN with just one hidden layer of ReLU nodes and an output dimen-
sion of one. As before, we can establish a reduction from 3sat.

Theorem 3. NNReach is NP-hard for NN with output dimension one, a single
hidden layer and simple specifications.

Proof. Let ψ be a 3sat formula with n propositional variables Xi and m clauses
lj . We slightly modify the construction of a network N in the proof of Theorem 2.
First, we remove the last identity node of all bool∗-gadgets in N and directly
connect the two outputs of their ReLU nodes to the and-gadget, weighted with
1. Additionally, we merge not-gadgets and or-gadgets in N . Consider the or-
gadget corresponding to some clause lj . The merged gadget has three inputs
xj0 , xj1 , xj2 and computes max

(
0, 1 − ∑2

k=0 fj(xjk)
)

where fj(xjk) = xjk if Xjk

occurs positively in lj and fj(xjk) = 1−xij if it occurs negatively. It is straight-
forward to see that the output of such a gadget is 0 if at least one positively
(resp. negatively) weighted input is 0, resp. 1, and that the output is 1 if all
positively weighted inputs are 1 and all negatively weighted inputs are 0. These
merged gadgets are connected with weight −1 to the and-gadget. Once done for
all bool∗-, not- and or-gadgets, the overall output y of N is given by

n−1∑

i=0

max
(
0,

1
2

− xi

)
+ max

(
0, xi − 1

2
) −

m−1∑

i=0

max
(
0, 1 −

2∑

j=0

fi(xij)
)
.

158 M. Sälzer and M. Lange

Note that N has input dimension n, a single hidden layer of 2n+m ReLU nodes
and output dimension 1.

Now take the simple specifications ϕin =
∧n−1

i=0 xi ≥ 0 ∧ xi ≤ 1 and ϕout =
y = n

2 . We argue that the following holds for a solution to (N,ϕin, ϕout): (i)
all xi are either 0 or 1, and (ii) the output of each merged or-gadget is 0.
To show (i), we assume the opposite, i.e. there is a solution with xk ∈ (0; 1)
for some k. This implies that

∑n−1
i=0 max

(
0, 1

2 − xi

)
+ max

(
0, xi − 1

2

)
< n

2 as
for all xi ∈ [0; 1] we have max

(
0, 1

2 − xi

)
+ max

(
0, xi − 1

2

) ≤ 1
2 , and for xk

we have max
(
0, 1

2 − xk

)
+ max

(
0, xk − 1

2

)
< 1

2 . Furthermore, we must have
−∑m−1

i=0 max
(
0, 1 − ∑2

j=0 f(xij)
) ≤ 0. Therefore, this cannot be a solution for

(N,ϕin, ϕout) as it does not satisfy y = n
2 .

To show (ii), assume there is a solution such that one merged or-gadget
outputs a value different from 0. Then, −∑m−1

i=0 max
(
0, 1 − ∑2

j=0 f(xij)
)

< 0
which in combination with (i) yields y < n

2 . Again, this is a contradiction.
Putting (i) and (ii) together, a solution for (N,ϕin, ϕout) implies the existence

of a model for ψ. For the opposite direction assume that ψ has a model I. Then, a
solution for (N,ϕin, ϕout) is given by xi = 1 if I(Xi) is true and xi = 0 otherwise.

��
In the previous section, especially in the arguments of Corollary 1, we

pointed out that the occurrence of ReLU nodes is crucial for the NP-hardness of
NNReach. Thus, it is tempting to assume that any major restriction to these
nodes leads to efficiently solvable classes.

Theorem 4. NNReach is NP-hard for NN where all ReLU nodes have at most
one non-zero weighted input and simple specifications.

Proof. We prove NP-hardness via a reduction from 3sat. The reduction works
in the same way as in the proof of Theorem 2, but with the following adjust-
ments. We replace the or-gadgets with simple identity-nodes, we do not include
the and-gadget, and we set the output specification to ϕout =

∧n−1
i=0 zi =

0 ∧ ∧m
i=0 yi ≥ 1, where yi is the output of the i-th identity-node replacing the

former i-th or-gadget, zi is the output of the i-th BOOL-gadget, n is the num-
ber of propositional variables and m the number of clauses in the considered
3sat-instance. Note that this is a simple specification and that the only ReLU
nodes in this network are inside the bool∗-gadgets, which have only one non-
zero input. Now, if each zi = 0 then the value of an output yi is equivalent to
the number of inputs equal to 1. The correctness of this reduction is argued int
the exaxt same way as in in the original one. ��

Reachability is NP-Complete Even for the Simplest Neural Networks 159

Fig. 4. Gadgets used to show that NNReach is NP-hard if restricted to C ({−c, 0, d}).
A non-weighted outgoing edge of a gadget is connected to a weighted incoming one of
another gadget in the actual construction or are considered as outputs of the overall
neural networks.

4.2 Neural Networks with Simple Parameters

One could argue that the NP-hardness results in Theorem 2 and 3 are only
partially applicable to real world problems as the constructed NN use very spe-
cific combinations of weights and biases, namely −1, 0, 1

2 and 1, which may be
unlikely to occur in this exact combination in real-world applications. We show
that NNReach is already NP-hard in cases where only very weak assumptions
are made on the set of occurring weights and biases.

For P ⊆ Q let C(P) be the class of NNReach instances whose NN only
use weights and biases from P and simple specifications. We will show that NP-
hardness already occurs when P contains three values: 0, some positive and some
negative value. We make use of the same techniques as in Sect. 3 and assume
that the general idea of gadgets and the reduction from 3sat to NNReach are
known.

Definition 6. Let c, d ∈ Q
>0 and ψ be a 3sat-formula with n propositional

variables Xi and m clauses lj. The network N−c,d,ψ is a network with 2n inputs,
two for each Xi, called xi and xi. We describe the structure of N−c,d,ψ using the
gadgets from Fig. 4:

– Each input xi is connected to both inputs of a disc-gadget and this gadget is
connected with weight −c to a chain of five identity nodes interconnected with
weight −c. We call the output of the last node of this chain zi.

– Each pair xi and xi is connected to an eq0-gadget and this gadget is connected
with weight −c to a chain of six identity nodes interconnected with weight −c.
We call the output of the last node of this chain ei.

– Each input xi is connected to a norm-gadget. Analogously, each xi is con-
nected to a norm-gadget.

160 M. Sälzer and M. Lange

– If c ≥ 1 (resp. c < 1) then there are m orA-gadgets (resp. orB-gadgets),
one for each lj s.t. if Xi occurs positively in lj then the output of the norm-
gadget connected to xi is connected and if Xi occurs negatively the output of
the norm-gadget conntected to xi is connected.

– The outputs of all orA-gadgets respectively orB-gadgets are connected to a
single and-gadget. We denote the output of this and-gadget with y.

Note that each N−c,d,ψ has eight layers and output dimension 2n+1. Moreover,
N−c,d,ψ ∈ C({−c, 0, d}). Next, we need to clarify some properties of the used
gadgets.

Lemma 3. Let x0, x1, x2 denote inputs for some gadget. The following state-
ments hold:

1. If x0 = x1 then the output of a disc-gadget is 0 if and only if x0 = x1 = − d
c2

or x0 = x1 = 1
c .

2. If x0 = − d
c2 then the output of a norm-gadget is 0 and if x0 = 1

c then the
output is −dc.

3. If x0 = d
c2 then the output of norm-gadget is −dc and if x0 = − 1

c then the
output is 0.

4. If x0 = x1 = x2 = 0 then the output of an orA-gadget is dc4 − dc3. If at
least one input is −dc while the others are 0 then the output is dc4. The same
holds for an orB-gadget with the difference that if x0 = x1 = x2 = 0 then the
output is dc4 − dc5.

Proof. We start with Property 3.1 and assume that the inputs x0, x1 are equal.
We can infer from the depiction in Fig. 4 that the output of a disc-gadget is given
by d − cmax(0, dx0) − cmax(0,−cx1). At this point we make a case distinction.
If x0 = x1 < 0 then the output is given by d + c2x1 and equal to zero if and
only if x1 = − d

c2 . If x0 = x1 > 0 then the output is given by d − cdx0 and equal
to zero if and only if x0 = 1

c . The last case, namely x0 = x1 = 0, leads to an
output of d.

The Properties 3.2, 3.3 and 3.4 are easily argued. We can infer from Fig. 4
that the output of a norm-gadget is given by −c(d−cmax(0,−cx0)), the output
of a norm-gadget given by −cmax(0, c2x0), the output of an or-A-gadget given
by dc4 − cmax(0, dc2 + c2

∑2
i=0 xi) and the output of an OR-B-gadget given by

dc4−cmax(0, dc4+c2
∑2

i=0 xi). Then the statements about these gadgets follow
by inserting the mentioned values and solving the equations. ��

With these properties at hand, we are suited to prove our main statement of
this section.

Theorem 5. Let c, d ∈ Q
>0. NNReach restricted to C ({−c, 0, d}) is NP-hard.

Proof. Let c, d ∈ Q
>0. Take a 3sat-formula ψ and consider (N−c,d,ψ, ϕin, ϕout)

with N−c,d,ψ defined above, ϕin = 	 and ϕout =
∧n−1

i=0 zi = 0 ∧ ei = 0 ∧ y =
m · d2c4. Obviously, these specifications are simple.

Reachability is NP-Complete Even for the Simplest Neural Networks 161

Clearly, (N−c,d,ψ, ϕin, ϕout) can be constructed in time polynomial in the size
of ψ. For the correctness of the construction assume that ψ has a model I. We
claim that (N−c,d,ψ, ϕin, ϕout) is solved with xi = 1

c if I(Xi) is true, xi = − d
c2

otherwise, and xi = −xi. Note that ϕin is trivially satisfied.
So apply these inputs to N−c,d,ψ. According to Lemma 3.1, all outputs zi

are 0. It is easily verified that all outputs ei are 0 as well. Thus, it is left to
argue that y = m ·d2c4. Consider one of the orA|B-gadgets occurring in N−c,d,ψ,
corresponding to a clause lj . Its inputs are given by the norm- and norm-
gadgets connected to the inputs xi, resp. xi corresponding to the Xi occurring
in lj . According to Lemma 3.2 and 3 these inputs are either 0 or −dc. If lj is
satisfied by I then there is at least one input to the orA|B-gadget that is equal
to −dc. From the fact that ψ is satisfied by I and Lemma 3.4 it follows that each
orA|B-gadget outputs dc4. Therefore, the output y of N−c,d,ψ is m · d2c4. This
means that ϕout is valid as well.

Consider now the converse direction. A solution for (N−c,d,ψ, ϕin, ϕout) must
yield that all xi are 1

c or − d
c2 and xi = xi as all zi and ei have to equal 0.

Therefore, all m orA|B-gadgets have to output dc4 as y must equal m · d2c4.
This implies that each orA|B-gadget has at least one input that is −dc which in
turn means that there is at least one indirectly connected xi or xi that is 1

c resp.
d
c2 . Thus, ψ is satisfied by setting Xi true if xi = 1

c and false if xi = − d
c2 . ��

If d = c and we allow for arbitrary specifications we can show that 0 as a
value for weights or biases is unnecessary to keep the lower bound.

Theorem 6. Let c ∈ Q
>0. NNReach is NP-hard for NN in C ({−c, c}) and

arbitrary specifications.

Proof. This is done in the same way as the proof of Theorem 5 with some
slight modifications. We only sketch this reduction by describing the differences
compared to the instances (N−c,c,ψ, ϕin, ϕout) resulting from the reduction used
in Theorem 5.

We do not use eq0-gadgets in the network but add for each input xi the
conjunct xi = −xi to the input specification ϕin. This also means that we do
not include

∧n−1
i=0 ei = 0 in the output specification ϕout. Consider the weights

between the input and the first hidden layer. If the inputs xi and xi were orig-
inally weighted with zero we set the weights corresponding to xi and xi to be
c. In combination with the input constraint xi = −xi this is equal to weighting
xi and xi with zero. If xi (xi) was originally weighted with c we have to set
the weight of xi (xi) to be −c. If it was weighted with −c we have to set the
weight of its counterpart to be c. This leads to the case that all non-zero inputs
of a node in the first hidden layer are doubled compared to the same inputs in a
network N−c,c,ψ. Consider now the weights between two layers l and l + 1 with
l > 0. For each node in l we add a node in the same layer with the same input
weights. If the output of a node in layer l was originally weighted with zero then
we weight it with c and the corresponding output of its copy with −c. If the
output was originally weighted with weight c (−c) then we weight the output of
the copy node with c (−c), too. As before, this doubles the input values at the

162 M. Sälzer and M. Lange

nodes in layer l+1, which means that compared to a network N−c,c,ψ the output
value of our modified network is multiplied by 27. Thus, we have to change the
output constraint of y to be y = 27(m · c6). Note that these modifications give a
network using only the weights −c and c.

To get rid of zero bias, we add the inputs xbias,1, xbias,1, . . . , xbias,7, xbias,7 to
the network and add the input constraints xbias,i = −∑i−1

j=0
1

2j+1cj and xbias,i =
−xbias,i to ϕin. Then, we set the bias of all nodes which originally had a zero
bias to be c. For xbias,i with i > 1 we add a chain of i − 1 identity nodes each
with bias c and interconnected with weight c and connect this chain with weight
c to xbias,i and −c to xbias,i. All other weights are assumed to be zero which
is realized using the same techniques as described in the previous paragraph. If
a node in the first hidden layer originally had a zero bias we weight the input
xbias,1 with c and xbias,i with −c. If the input specification holds then the bias
plus these inputs sums up to zero. If a node in some layer l ∈ {2, . . . , 7} originally
had a zero bias we weight the output of the last node of the chain corresponding
to xbias,l and its copy with c. Again, if the input specification holds, the bias
value of this node is nullified. This modification ensures that the network is from
C({−c, c}). ��

5 Conclusion

We investigated the computational complexity of the reachability problem for
NN with ReLU and identity activations. We revised the original proof of its
NP-completeness, fixing flaws in both the upper and lower bound, and showed
that the parameter driving NP-hardness is the number of ReLU nodes. Further-
more, we showed that NNReach is difficult for very restricted classes of small
NN already, respectively that three parameters of different signum occurring as
weights and biases suffice for NP-hardness. This indicates that finding non-trivial
classes of NN with practical relevance and polynomial NNReach is unlikely.

It remains to be seen whether NP-hardness can be strengthened, for instance
for classes of NN with a single hidden layer and a maximum of two non-zero
inputs to ReLU nodes, or only one arbitrary positive and only one arbitrary
negative weight and bias value. However, possible results here are only of theo-
retical interest.

From a practical perspective, it would be interesting to see if pure ReLU
networks, where every node in a hidden layer has a ReLU activation, lead to
similar results as these are more common in practice. Also, investigating the
fixed-parameter tractability of the problem more broadly could be promising.
It remains to be seen whether there are parameters other than the number of
ReLU nodes, like structural properties or dimensionality, whose fixing leads to
polynomial decidability. This could yield efficiently solvable classes of NN that
are also of practical interest.

Reachability is NP-Complete Even for the Simplest Neural Networks 163

References

1. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal,
Canada, pp. 4795–4804 (2018). https://proceedings.neurips.cc/paper/2018/hash/
be53d253d6bc3258a8160556dda3e9b2-Abstract.html

2. Dixon, M., Klabjan, D., Bang, J.H.: Classification-based financial markets pre-
diction using deep neural networks. Algorithmic Finance 6(3–4), 67–77 (2017).
https://doi.org/10.3233/AF-170176

3. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

4. Grigorescu, S.M., Trasnea, B., Cocias, T.T., Macesanu, G.: A survey of deep learn-
ing techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020).
https://doi.org/10.1002/rob.21918

5. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

6. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270

7. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Comb.
4(4), 373–396 (1984). https://doi.org/10.1007/BF02579150

8. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

9. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a cal-
culus for reasoning about deep neural networks. Form Methods Syst. Des. (2021).
https://doi.org/10.1007/s10703-021-00363-7

10. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architec-
tures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516
(2020). https://doi.org/10.1007/s10462-020-09825-6

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/
10.1145/3065386

12. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

13. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 6615–6624.
AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16898

https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
https://doi.org/10.3233/AF-170176
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1002/rob.21918
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/s10703-021-00363-7
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.media.2017.07.005
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

164 M. Sälzer and M. Lange

14. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Lang, J. (ed.) Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–
19 July 2018, Stockholm, Sweden, pp. 2651–2659. ijcai.org (2018). https://doi.org/
10.24963/ijcai.2018/368

15. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. CoRR abs/1805.02242 (2018). http://arxiv.org/
abs/1805.02242

https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.24963/ijcai.2018/368
http://arxiv.org/abs/1805.02242
http://arxiv.org/abs/1805.02242

	Reachability is NP-Complete Even for the Simplest Neural Networks
	1 Introduction
	2 Preliminaries
	3 NNReach is NP-Complete
	3.1 Membership in NP
	3.2 NP-Hardness

	4 NP-Hardness Holds in Very Restricted Cases Already
	4.1 Neural Networks of a Simple Structure
	4.2 Neural Networks with Simple Parameters

	5 Conclusion
	References

