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Preface

This volume contains the papers presented at the 15th International Conference on
Reachability Problems (RP 2021), organized by the University of Liverpool and
Liverpool John Moores University, UK. Previous events in the series were located at
the University of Paris, France (2020), Université Libre de Bruxelles, Belgium (2019),
Aix-Marseille University, France (2018), Royal Holloway, University of London, UK
(2017), Aalborg University, Denmark (2016), the University of Warsaw, Poland
(2015), the University of Oxford, UK (2014), Uppsala University, Sweden (2013), the
University of Bordeaux, France (2012), the University of Genoa, Italy (2011), Masaryk
University Brno, Czech Republic (2010), École Polytechnique, France (2009), the
University of Liverpool, UK (2008), and Turku University, Finland (2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modeling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to) reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri nets;
computational game theory; computational aspects of semigroups, groups, and rings;
reachability in dynamical and hybrid systems; frontiers between decidable and unde-
cidable reachability problems; complexity and decidability aspects; predictability in
iterative maps, and new computational paradigms.

We are very grateful to our invited speakers, who gave the following talks:

– Udi Boker, Interdisciplinary Center (IDC), Israel:
“Quantitative vs. Weighted Automata”

– Clare Dixon, University of Manchester, UK:
“Theorem Proving Using Clausal Resolution: From Past to Present”

– Javier Esparza, Technische Universitӓt München, Germany:
“Population Protocols: Beyond Runtime Analysis”

– Damien Woods, Maynooth University, Ireland:
“Algorithmic Self-assembly and Molecular Robotics: Theory and Practice”

– Georg Zetzsche Max Planck Institute for Software System, Kaiserslautern,
Germany:
“Recent Advances on Reachability Problems for Valence Systems (Invited Talk)”

The conference received 27 submissions (17 regular and 10 presentation only
submissions) from which four regular papers were withdrawn. Each submission was
carefully reviewed by three Program Committee (PC) members. Based on these
reviews, the PC decided to accept six regular papers in addition to four invited speakers
contributions. The members of the PC and the list of external reviewers can be found at
the end of this preface. We are grateful for the high-quality work produced by the PC



and the external reviewers. Overall this volume contains six contributed papers and
four papers from invited speakers which cover their talks.

The conference also provided the opportunity to other young and established
researchers to present work in progress or work already published elsewhere. This year
in addition to six regular submissions, the PC accepted 10 high-quality informal pre-
sentations on various reachability aspects in theoretical computer science. A list of
accepted presentation-only submissions is given below:

Not All Bugs Are Created Equal, But Robust Reachability Can Tell
the Difference

Guillaume Girol, Benjamin Farinier, and Sebastien Bardin

Abstract. This paper introduces a new property called robust reachability which refines
the standard notion of reachability in order to take replicability into account. A bug is
robustly reachable if a controlled input can make it so the bug is reached whatever the
value of uncontrolled input. Robust reachability is better suited than standard reacha-
bility in many realistic situations related to security (e.g., criticality assessment or bug
prioritization) or software engineering (e.g., replicable test suites and flakiness). We
propose a formal treatment of the concept, and we revisit existing symbolic bug finding
methods through this new lens. Remarkably, robust reachability allows differentiating
bounded model checking from symbolic execution while they have the same deductive
power in the standard case. Finally, we propose the first symbolic verifier dedicated to
robust reachability: we use it for criticality assessment of four existing vulnerabilities
and compare it with standard symbolic execution. Note: this paper has been published
in the proceedings of CAV 2021.

Sound Verification Procedures for Temporal Properties
of Infinite-State Systems

Quentin Peyras, Jean-Paul Bodeveix, Julien Brunel, and David Chemouil

Abstract. First-order Linear Temporal Logic (FOLTL) is particularly convenient to
specify distributed systems, in particular because of the unbounded aspect of their state
space. Decidable fragments have recently been exhibited and open the way for tractable
verification. However, these fragments are not expressible enough for realistic speci-
fications. In this paper, we propose three abstraction techniques to translate a typical
FOLTL specification into two of its decidable fragments. All three abstractions are
proved to be sound (the proofs are validated with Coq) and have a high degree of
automation. In order to put these techniques into practice, we propose a specification
language relying on FOLTL. Our prototype then performs the verification relying on
existing model checkers. We successfully verified safety and liveness properties for
eight specifications of distributed systems from the literature. Note: this paper has been
published in the proceedings of CAV 2021.
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Continuous One-counter Automata

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, and Guillermo Perez

Abstract. We study the reachability problem for continuous one-counter automata,
COCA for short. In such automata, transitions are guarded by upper and lower bound
tests against the counter value. Additionally, the counter updates associated with taking
transitions can be (non-deterministically) scaled down by a nonzero factor between
zero and one. Our three main results are as follows: (1) we prove that the reachability
problem for COCA with global upper and lower bound tests is in NC2; (2) that, in
general, the problem is decidable in polynomial time; and (3) that it is decidable in the
polynomial hierarchy for COCA with parametric counter updates and bound tests.
Note: this paper has been published in the proceedings of LICS 2021.

Solitaire of Independence

Ville Salo

Abstract. We introduce the solitaire of independence, and ask some questions about it,
in particular we state the associated reachability problem and ask about its complexity.
We briefly explain the connection to certain invariant measures on TEP subshifts.

Linear-time Model Checking Branching Processes

Stefan Kiefer, Pavel Semukhin, and Cas Widdershoven

Abstract. (Multi-type) branching processes are a natural and well-studied model for
generating random infinite trees. Branching processes feature both nondeterministic
and probabilistic branching, generalizing both transition systems and Markov chains
(but not generally Markov decision processes). We study the complexity of model
checking branching processes against linear-time omega-regular specifications: is it the
case almost surely that every branch of a tree randomly generated by the branching
process satisfies the omega-regular specification? The main result is that for LTL
specifications this problem is in PSPACE, subsuming classic results for transition
systems and Markov chains, respectively. The underlying general model-checking
algorithm is based on the automata-theoretic approach, using unambiguous Büchi
automata. Note: this paper has been published in the proceedings of CONCUR 2021.

Depth-first Search in Directed Planar Graphs

Eric Allender, Archit Chauhan, and Samir Datta

Abstract. We present an algorithm for constructing a depth-first search tree in planar
digraphs; the algorithm can be implemented in the complexity class AC1 (UL
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intersection co-UL), which is contained in AC2. Prior to this (for more than a
quarter-century), the fastest uniform deterministic parallel algorithm for this problem
was O(log10n) (corresponding to the complexity class AC10�NC11). We also consider
the problem of computing depth-first search trees in other classes of graphs, and obtain
additional new upper bounds. Note: this paper has been published in the proceedings of
MFCS 2021.

The Pseudo-Skolem Problem is Decidable

Julian D’Costa, Toghrul Karimov, Rupak Majumdar, Joel Ouaknine, Mahmoud
Salamati, Sadegh Soudjani, and James Worrell

Abstract. We study fundamental decision problems on linear dynamical systems in
discrete time. We focus on pseudo-orbits, the collection of trajectories of the dynamical
system for which there is an arbitrarily small perturbation at each step. Pseudo-orbits
are generalizations of orbits in the topological theory of dynamical systems. We study
the pseudo-orbit problem, whether a state belongs to the pseudo-orbit of another state,
and the pseudo-Skolem problem, whether a hyperplane is reachable by an e-
pseudo-orbit for every e. These problems are analogous to the well-studied orbit
problem and Skolem problem on unperturbed dynamical systems. Our main results
show that the pseudo-orbit problem is decidable in polynomial time and, surprisingly,
the Skolem problem on pseudo-orbits is also decidable. The former extends the seminal
result of Kannan and Lipton from orbits to pseudo-orbits. The latter is in contrast to the
Skolem problem for linear dynamical systems, which remains open for proper orbits.
Note: this paper has been published in the proceedings of MFCS 2021.

The Edit Distance to k-Subsequence Universality

Joel Day, Pamela Fleischmann, Maria Kosche, Tore Ko, Florin Manea, and Stefan
Siemer

Abstract. A word u is a subsequence of another word w if u can be obtained from w by
deleting some of its letters. In the early 1970s, Imre Simon defined the relation *k

(now called Simon-Congruence) as follows: two words having exactly the same set of
subsequences of length at most k are *k-congruent. This relation was central in
defining and analyzing piecewise testable languages, but has found many applications
in areas such as algorithmic learning theory, databases theory, or computational lin-
guistics. Recently, it was shown that testing whether two words are *k-congruent can
be done in optimal linear time. Thus, it is a natural next step to ask, for two words
w and u which are not *k-equivalent, what is the minimal number of edit operations
that we need to perform on w in order to obtain a word which is *k-equivalent to u? In
this paper, we consider this problem in a setting which seems interesting: when u is a
k -subsequence universal word. A word u with alph (u)=R is called k -subsequence
universal if the set of subsequences of length k of u contains all possible words of
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length k over R. As such, our results are a series of efficient algorithms computing the
edit distance from w to the language of k-subsequence universal words. In other words,
we are interested in optimally editing a word w in order to reach k -universality. The
submitted manuscript was an extended version of a paper which was published at
STACS 2021.

Matching Patterns with Variables under Hamming Distance

Pawel Gawrychowski, Florin Manea, and Stefan Siemer

Abstract. A pattern a is a string of variables and terminal letters. We say that a
matches a word w, consisting only of terminal letters, if w can be obtained by replacing
the variables of a by terminal words. The matching problem, i.e., deciding whether a
given pattern matches a given word, has been heavily investigated: it is NP-complete in
general, but can be solved efficiently for classes of patterns with restricted structure. In
this paper, we approach this problem in a generalized setting, by considering
approximate pattern matching under Hamming distance. More precisely, we are
interested in what is the minimum Hamming distance between w and any word u ob-
tained by replacing the variables of a by terminal words. Firstly, we address the class of
regular patterns (in which no variable occurs twice) and propose efficient algorithms for
this problem, as well as matching conditional lower bounds. We show that the problem
can still be solved efficiently if we allow repeated variables, but restrict the way the
different variables can be interleaved according to a locality parameter. However, as
soon as we allow a variable to occur more than once and its occurrences can be
interleaved arbitrarily with those of other variables, even if none of them occurs more
than once, the problem becomes intractable. Note: this paper has been published in the
proceedings of MFCS 2021.

Runtime Monitoring for Markov Decision Processes

Sebastian Junges, Hazem Torfah, and Sanjit A. Seshia

Abstract. We investigate the problem of monitoring partially observable systems with
nondeterministic and probabilistic dynamics. In such systems, every state may be
associated with a risk, e.g., the probability of an imminent crash. During runtime, we
obtain partial information about the system state in the form of observations. The
monitor uses this information to estimate the risk of the (unobservable) current system
state. Our results are threefold. First, we show that extensions of state estimation
approaches do not scale due the combination of nondeterminism and probabilities.
While convex hull algorithms improve the practical runtime, they do not prevent an
exponential memory blowup. Second, we present a tractable algorithm based on model
checking conditional reachability probabilities. Third, we provide prototypical imple-
mentations and manifest the applicability of our algorithms to a range of benchmarks.
The results highlight the possibilities and boundaries of our novel algorithms. Note:
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this paper has been published in the proceedings of CAV 2021; the full paper with
appendices can be found at https://arxiv.org/abs/2105.12322.

So overall, the conference program consisted of five invited talks, six presentations
of contributed papers, and 10 informal presentations in the area of reachability prob-
lems, stretching from results on fundamental questions in mathematics and computer
science up to efficient solutions of practical problems.

It is a pleasure to thank the team behind the EasyChair system and the Lecture Notes
in Computer Science team at Springer, who together made the production of this
volume possible in time for the conference. Finally, we thank all the authors and
invited speakers for their high-quality contributions, and the participants for making RP
2021 a success. We are also very grateful to Alfred Hofmann for the continuous
support of the event in the last decade and to Ronan Nugent for supporting this year’s
conference, as well as to the London Mathematical Society and Springer for their
financial sponsorship.

October 2021 Paul C. Bell
Patrick Totzke
Igor Potapov
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Quantitative vs. Weighted Automata

Udi Boker

Interdisciplinary Center (IDC) Herzliya, Israel
udiboker@idc.ac.il

https://faculty.idc.ac.il/udiboker

Abstract. Weighted automata are widely researched, but with a variety of dif-
ferent semantics, which mostly fit into either the “quantitative view” or the
“algebraic view”. We argue that the two views result with incomparable auto-
mata families, each providing a different conceptual generalization of Boolean
automata and having different natural extensions. We propose to term the former
“quantitative automata” and the latter “weighted automata”. In both views,
transitions are labeled with weights and the value of a path of transitions is given
by some value function on the traversed weights. However, the main conceptual
difference is in the generalization of nondeterminism and its dual (universality,
in alternating automata). Quantitative automata keep the preference meaning of
choice and obligation to nondeterminism and universality, interpreted as
supremum and infimum, respectively, and accordingly restrict weights and value
functions to the totally ordered domain of real numbers. Weighted automata, on
the other hand, generalize nondeterminism to an arbitrary commutative opera-
tion (of a semiring or valuation monoid), and generally have no interpretation of
universality. The weights and value functions can be from arbitrary domains. On
several aspects the algebraic view generalizes the quantitative one, allowing for
richer weight domains and interpretations of nondeterminism, whereas on dif-
ferent aspects the quantitative view is more general, having alternation, inherent
compatibility with games and adequacy to approximations. We argue that
clarifying the conceptual difference between the two automata families can
enlighten their possible future extensions.

Keywords: Quantitative automata � Weighted automata � Nondeterminism �
Alternation � Games � Logic



Theorem Proving Using Clausal Resolution:
From Past to Present

Clare Dixon

Department of Computer Science, University of Manchester, Manchester, M13
9PL, UK

clare.dixon@manchester.ac.uk

Abstract. Modal and temporal logics are extensions to classical logic that have
operators that deal with necessity and possibility (modal logics) and such as
sometime, always and next (temporal logics). Models are sets of worlds that are
connected by an accessibility relation. Restrictions imposed on this relation and
the operators allowed give rise to different families of logic. This paper discusses
an approach to theorem proving for temporal and modal logics based on clausal
resolution. The main ideas are the translation to a normal form and the appli-
cation of resolution rules that relate to the same world. This research initially
focused on propositional linear time temporal logic but has been extended to
computation tree logic, monodic first order temporal logic and normal modal
logics. We describe the approach, explain the adaptations necessary for the
logics mentioned and discuss the results of the provers developed for these
logics.

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC)
under the historic grants GR/K57282, GR/M44859 and GR/M46631 and more recently the Science
of Sensor Systems Software (S4 EP/N007565/1) and by the UK Industrial Strategy Challenge Fund
(ISCF), delivered by UKRI and managed by EPSRC under the grants Future AI and Robotics Hub
for Space (FAIR-SPACE EP/R026092/1) and Robotics and Artificial Intelligence for Nuclear (RAIN
EP/R026084/1)

http://orcid.org/0000-0002-4610-9533


Population Protocols: Beyond Runtime
Analysis

Javier Esparza

Technical University of Munich, Germany
esparza@in.tum.de

Abstract. Population protocols are a model of computation in which an arbitrary
number of indistinguishable finite-state agents interact in pairs to collectively
decide if their initial global configuration satisfies a given property. Population
protocols were introduced by Angluin et al. to study the theoretical properties of
networks of mobile sensors with very limited computational resources, but they
are also very strongly related to chemical reaction networks, a discrete model of
chemistry in which agents are molecules that change their states due to colli-
sions. We survey our recent work on the verification of population protocols and
their state complexity.

The work surveyed in this note was supported by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation program under grant agreement No
787367 “Parameterized Verification and Synthesis” (PaVeS).

http://orcid.org/0000-0001-9862-4919


Algorithmic Self-Assembly and Molecular
Robotics: Theory and Practice

Damien Woods

Hamilton Institute and Department of Computer Science, Maynooth University,
Ireland

damien.woods@mu.ie
https://dna.hamilton.ie/

Abstract. The field of algorithmic self-assembly is concerned with the theory
and practice of designing molecules that perform computations while growing
structures, in an autonomous bottom-up fashion. Algorithmic molecular robotics
imagines pre-formed structures that actuate and move while performing com-
putational tasks. Significant effort has been invested into defining and studying
discrete mathematical models that are close enough to physical reality to be
implementable in the wet-lab, yet suitable for mathematical investigation and
characterisation. In some cases, theoretical ideas have inspired wet-lab imple-
mentations, and in others physical limitations and abilities have inspired model
definitions. The presentation will introduce both self-assembly and robotics
models, and show what it means to compute in these models. The main direc-
tions of theoretical research in the field to date will be covered, along with an
overview of the kinds of techniques used in some proofs. Finally, there will be a
light overview of how one goes about designing and experimentally imple-
menting algorithmic self-assembling DNA tiles in the wet lab, including some of
our latest results on that topic.

Keywords: DNA computing � Self-assembly � Theory of computation

Supported by European Research Council (ERC) award number 772766 and Science foundation
Ireland (SFI) grant 18/ERCS/5746 (this abstract reflects only the authors’ view and the ERC is not
responsible for any use that may be made of the information it contains).



Recent Advances on Reachability Problems
for Valence Systems

Georg Zetzsche

Max Planck Institute for Software Systems (MPI-SWS), Germany

Abstract. Valence systems are an abstract model of computation that consists of
a finite-state control and some storage mechanism. In contrast to traditional
models, the storage mechanism is not fixed, but given as a parameter. This
allows us to precisely state questions like: For which storage mechanisms is the
reachability problem decidable? This survey reports on recent results that aim to
understand the impact of the storage mechanism on decidability and complexity
of several variants of the reachability problem. The considered problems are
configuration reachability, model-checking first-order logic with reachability,
and reachability under bounded context switching and scope-boundedness.

http://orcid.org/0000-0002-6421-4388
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Quantitative vs. Weighted Automata

Udi Boker(B)

Reichman University, Herzliya, Israel
udiboker@idc.ac.il

https://faculty.idc.ac.il/udiboker

Abstract. Weighted automata are widely researched, but with a vari-
ety of different semantics, which mostly fit into either the “quantitative
view” or the “algebraic view”. We argue that the two views result with
incomparable automata families, each providing a different conceptual
generalization of Boolean automata and having different natural exten-
sions.

We propose to term the former “quantitative automata” and the lat-
ter “weighted automata”.

In both views, transitions are labeled with weights and the value of
a path of transitions is given by some value function on the traversed
weights. However, the main conceptual difference is in the generalization
of nondeterminism and its dual (universality, in alternating automata).

Quantitative automata keep the preference meaning of choice and
obligation to nondeterminism and universality, interpreted as supremum
and infimum, respectively, and accordingly restrict weights and value
functions to the totally ordered domain of real numbers.

Weighted automata, on the other hand, generalize nondeterminism to
an arbitrary commutative operation (of a semiring or valuation monoid),
and generally have no interpretation of universality. The weights and
value functions can be from arbitrary domains.

On several aspects the algebraic view generalizes the quantitative one,
allowing for richer weight domains and interpretations of nondetermin-
ism, whereas on different aspects the quantitative view is more general,
having alternation, inherent compatibility with games and adequacy to
approximations.

We argue that clarifying the conceptual difference between the two
automata families can enlighten their possible future extensions.

Keywords: Quantitative automata · Weighted automata ·
Nondeterminism · Alternation · Games · Logic

1 Introduction

A Bit of History

1959 Nondeterministic automata (on finite words) introduced by Michael
Rabin and Dana Scott [65].

c© Springer Nature Switzerland AG 2021
P. C. Bell et al. (Eds.): RP 2021, LNCS 13035, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-89716-1_1
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4 U. Boker

1961 Weighted automata (with integer weights on finite words) introduced by
Marcel-Paul Schützenberger [67].

1962 Automata on infinite words introduced by Julius Richard Büchi [19].
1963 Probabilistic automata (on finite words) introduced by Michael Rabin

[64].
1970s Weighted automata over semirings (on finite words) have evolved (e.g.,

[41,66]).
1976 Alternating automata introduced by Ashok Chandra, Dexter Kozen and

Larry Stockmeyer [21,22].
2000s Weighted automata over semirings on infinite words have evolved (e.g.,

[30,36,40]).
2008 Quantitative automata, as we refer to them, introduced by Krishnendu

Chatterjee, Laurent Doyen, and Thomas Henzinger [23–25].
2010 Weighted automata over valuation monoids introduced by Manfred

Droste and Ingmar Meinecke [37,38].

Along the years:

– The various automata types were generalized to operate not only on words,
but also on trees, graphs, and other structures.

– Counter automata of various types have evolved, which are inherently dif-
ferent from quantitative and weighted automata in the sense that in counter
automata the counter value along a run can allow or forbid certain transitions.

– Automata were shown to be closely related to other entities and especially to
logic and games, in both the Boolean and weighted settings.

– Automata on infinite words proved very useful in verification and synthesis.
– Alternation was shown to be particularly related to logic and games, and also

proved very useful in verification.

The Relations Between Quantitative and Weighted Automata

The main conceptual difference between quantitative and weighted automata is
in the interpretation of nondeterminism and its dual (universality). Quantitative
automata keep their preference meaning with choice and obligation, respectively,
thus considering weights and value functions over the totally ordered domain of
real numbers. Weighted automata, on the other hand, allow for an arbitrary com-
mutative interpretation of nondeterminism and generally have no interpretation
of universality.

Quantitative automata usually have no acceptance condition, which is gener-
alized by the numerical value of the automaton on the input. Weighted automata
generally do have a Boolean acceptance condition, and only the values of accept-
ing runs are considered by the commutative operation.

The automata families are formally defined in Sect. 2 and their relations are
illustrated in Fig. 1.
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Nondeterministic Quantitative Auto.

Alternating Quantitative Auto.

Semiring
Weighted Auto.

Totally-complete
Semiring

Weighted Auto.

Valuation-monoid
Weighted Auto.

ω-Valuation-monoid
Weighted Auto.

On
Finite words

On
Infinite words

Quantitative Automata

Weighted Automata

1 2

3
4

5 6

7 8

9 10

Fig. 1. Quantitative and weighted automata relations. Examples of some automata
types that belong to the different (intersection of) automata families, as marked by the
circled numbers, are given below.

For a quantitative automaton, one may first consider whether it is nondeter-
ministic, universal, or alternating, and then consider its specific type, which is
determined by its value function—a function Val from finite or infinite sequences
of real numbers to a real number, defining how to value a path of transition
weights. For example, an alternating discounted-sum automaton.

For a weighted automaton, one needs to first consider which subfamily it
belongs to, depending on the algebraic restrictions on the function

∏
to value

a path of transition weights and the function
∑

to aggregate the values of the
accepting paths on an input word. The most common subfamily is of semir-
ing weighted automata, operating on finite words and requiring

∏
and

∑
to

correspond to the ⊗ and ⊕ operations of a semiring. For automata on infinite
words, one needs to restrict the semiring to a totally-complete semiring, which
properly extends

∏
and

∑
to infinite sequences and sets. In order to extend

weighted automata to allow for the value functions that are used by quantita-
tive automata, one needs to replace semirings with the more liberal valuation
monoid for finite words and ω-valuation monoid for infinite words.

Example of Automata Types in the Different (intersection of) Automata Fami-
lies. The numbers below correspond to the circled numbers in Fig. 1. Some of
the value functions, semirings, and valuation monoids mentioned in the examples



6 U. Boker

are formally defined in Sect. 2. For 4 and 8 , requiring a commutative operation
on infinitely many elements that is different from supremum and infimum, we
are not aware of many natural examples in the literature.

1,2. The intersection of [totally-complete] semiring weighted automata and
nondeterministic quantitative automata restricts the former to interpret ⊕
as max (and

∑
as supremum) and the latter to use value functions (which

take the role of
∏

in the semiring) that distribute over supremum. On finite
words ( 1 in Fig. 1), it includes various common automata types, among
which are Boolean finite automata (NFAs) and Sum-automata, which are
the same as tropical/arctic/max-plus automata. On infinite words ( 2 ),
there are fewer examples, among which are Sup automata.

3,4. [Totally-complete] semiring weighted automata that are not quantitative
automata interpret the ⊕ and

∑
operations differently from max/min

and supremum/infimum. For finite words ( 3 ), there are many interesting
examples, such as weighted automata over the log semiring.

5,6. Nondeterministic quantitative automata that are not [totally-complete]
semiring weighted automata use value functions that do not distribute
over max/ supremum. There are many such examples, among which are
Avg automata on finite words and LimInfAvg automata on infinite words.

7,8. [ω-]valuation-monoid weighted automata that are not [totally-complete]
semiring weighted automata and not quantitative automata interpret the
⊕ and

∑
operations differently from max/min and supremum/infimum,

and their value functions do not distribute over
∑

. On finite words ( 7 ),
one can take for example the domain of weights to be {0, 1}, use the value
function Avg, and interpret ⊕ as multiplication.

9,10. All alternating quantitative automata that indeed use alternation (namely,
automata that do not have only nondeterministic or universal transitions)
are not [ω-]valuation-monoid weighted automata.

Terminology Mismatch in the Literature. The usage in the literature of “weighted
automata” to different automata families can often be confusing. Some papers
on “weighted automata” are specific to the tropical/arctic semiring (which is
in 1 of Fig. 1), for example [3,6,20]; some speak of quantitative automata, for
example [24,27]; and a significant segment of them refer to semiring weighted
automata on finite words. There are also cases of using “quantitative automata”
when referring to the algebraic view, for example [8].

Different Conceptual Views Leading to Different Extensions

As a result of the conceptual differences between the two automata families, they
are naturally related to and extended with different notions and entities.

In particular, quantitative automata, which incorporate preference and the
dual roles of nondeterminism and universality, naturally relate to two-player
turn-based zero-sum games and to formal verification and synthesis, and allow
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for approximations with respect to standard distance functions over the real
numbers.

Weighted automata, on the other hand, having an algebraic structure and a
flexible interpretation of nondeterminism, are naturally related to various alge-
braic areas and have established equivalences with monadic second order logic.

In Sect. 3 we elaborate on several such notions and entities that are differently
related to each of the automata families, and put forward possible extensions of
the relations with the “less related” family.

We believe that understanding the conceptual difference between the two
automata families (and making a terminological distinction between them) can
help clarity, and furthermore enlighten the possible future extensions of each
family, taking inspiration from natural extensions of the other family.

2 Definitions of Quantitative and Weighted Automata

We start with defining transition-labeled automata1, and then extend them sep-
arately to quantitative automata and to weighted automata.

Remark 1. We describe automata on finite or infinite words, while both quanti-
tative and weighted automata have orthogonal generalizations to more involved
input structures, such as trees, graphs, and pictures. Likewise, we speak of
automata with a single weight on each transition, while both automata fami-
lies have natural extensions that allow for multiple weights on each transition.

Nondeterministic and Alternating Transition-labeled Automata

A nondeterministic transition-labeled automaton is a tuple A = (Σ,Q, I, δ),
where Σ is an alphabet set; Q is a finite nonempty set of states; I ⊆ Q is a set
of initial states; and δ : Q × Σ → 2W×Q is a transition function, where W is a
set of labels.

A transition is a tuple (q, σ, x, q′) ∈ Q × Σ × W × Q, also written q
σ:x−−→ q′.

(Note that there might be several transitions with different weights over the
same letter between the same pair of states2.) We write γ(t) = x for the weight
of a transition t = (q, σ, x, q′).

A run (or path) of the automaton on a word w is a sequence π of transitions
that starts in an initial state and respects the transition function; that is π =

t0, t1, t2, . . ., such that t0 = q
w[0]:x−−−−→ q′ for a transition t0 ∈ δ and q ∈ I, and

1 We define first an automaton without an acceptance-condition/value-function/semi-
ring/valuation-monoid, but with initial state(s). Usually, the term ‘automaton’ refers
to an entity with them, while ‘semiautomaton’ to an entity that also lacks initial
state(s).

2 This extra flexibility of allowing for “parallel” transitions with different weights is
often omitted, since it is redundant for some value functions while important for
others.
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for every i > 0, we have ti−1 = q
w[i−1]:x−−−−−→ q′ and ti = q′ w[i]:x−−−→ q′′, such that

ti−1, ti ∈ δ.
A nondeterministic automaton is deterministic if its set of initial states is a

singleton and its transition function maps every state and letter to a singleton
(a weight-state pair).

An alternating transition-labeled automaton is also a tuple A = (Σ,Q, ι, δ),
where Σ and Q are as in the nondeterministic case, ι ∈ Q is an initial state3,
and δ : Q×Σ → B+(R×Q) is a transition function, where B+(R×Q) is the set
of positive Boolean formulas (transition conditions) over weight-state pairs.

A transition is as in the nondeterministic case a tuple (q, σ, x, q′) ∈
Q×Σ×R × Q. (A transition condition generally yields many transitions.)

A run of the automaton on a word w is intuitively a play between Adam
and Eve in a game denoted by GA(w)4. It starts in the initial state ι, and in
each round, when the automaton is in state q and the next letter of w is σ, Eve
resolves the nondeterminism (disjunctions) of the transition condition δ(q, σ) and
Adam resolves its universality (conjunctions), yielding a transition q

σ:x−−→ q′. The
output of a play is thus a path π = t0t1t2 . . . of transitions.

A nondeterministic (resp. universal) automaton is a special case of an alter-
nating automaton, in which all transition conditions are disjunctions (resp. con-
junctions).

A nondeterministic/alternating automaton is complete if for every state q ∈
Q and letter σ ∈ Σ, there is at least one transition q

σ:x−−→ q′ to some state q′.

2.1 Quantitative Automata

A quantitative automaton is defined with respect to a value function Val : R∗ →
R or Val : Rω → R. It is then called a nondeterministic/alternating Val automa-
ton (e.g., a nondeterministic discounted-sum automaton).

Examples of Common Value Functions Over Sequences of Real Values.5

For finite sequences v = v0v1 . . . vn−1:

– Sum(v) =
n−1∑

i=0

vi – Avg(v) =
1
n

n−1∑

i=0

vi – Prod(v) =
n−1∏

i=0

vi

For finite and infinite sequences v = v0v1 . . .:

– Inf(v) = inf{vn | n ≥ 0} – Sup(v) = sup{vn | n ≥ 0}

– For a discount factor λ ∈ Q ∩ (0, 1), λDSum(v) =
∑

i≥0

λivi

3 Nondeterministic automata are also often defined with a single initial state.
4 An equivalent definition goes via trees instead of games.
5 There are value functions that are more naturally defined over sequences of tuples

of real values (see Remark 1), for example lexicographic-mean-payoff [9] and
discounted-summation with multiple discount factors [13].
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For infinite sequences v = v0v1 . . .:

– LimInf(v) = lim
n→∞ inf{vi | i ≥ n}

– LimInfAvg(v) = LimInf

(
1
n

n−1∑

i=0

vi

)
– LimSup(v) = lim

n→∞ sup{vi | i ≥ n}

– LimSupAvg(v) = LimSup

(
1
n

n−1∑

i=0

vi

)

(LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff.)
A nondeterministic quantitative automaton is a complete nondeterministic

transition-labeled automaton with labels of real numbers6 and some value func-
tion Val.

The value of a run π is Val(γ(π)). The value of A on a word w is the supre-
mum7 of Val(π) over all runs π of A on w.

An alternating quantitative automaton is a complete alternating transition-
labeled automaton with labels of real numbers and some value function Val.

The value of A on a word w is determined by the game GA(w), which becomes
a Val game: the value of a play (which is a path π of transitions) is Val(γ(π));
Eve wants to maximize it and Adam wants to minimize it. When this game is
determined, which is guaranteed for the considered value functions, the value of
A on w is the value of GA(w).

Two automata A and A′ are equivalent, denoted by A ≡ A′, if they realize
the same function8.

2.2 Weighted Automata

A weighted automaton is defined with respect to a semiring or more generally
with respect to an [ω-]valuation monoid9.

A semiring is a structure (D,⊕,⊗, 0, 1), where (D,⊕, 0) is a commutative
monoid, (D,⊗, 1) is a monoid, multiplication distributes over addition, and for
every x ∈ D, 0 ⊗ x = x ⊗ 0 = 0.

A semiring is complete if (D,⊕, 0) is a complete monoid (namely, equipped
with a

∑
operation that properly extends ⊕ to infinite sets of elements), and

it is totally complete if it is also equipped with a
∏

operation that properly
extends ⊗ to infinite sequences of elements, while preserving distributivity over
addition [40,59].

Examples of common semirings.

– The Boolean ({0, 1},∨,∧, 0, 1)
– The tropical (also known as min-plus) (N ∪ {∞},min,+,∞, 0)

6 Considering algorithmic aspects of quantitative automata, labels are usually rational
numbers, concretely represented.

7 It is sometimes defined analogously with infimum instead of supremum. Considering
alternating quantitative automata, infimum relates to universal transitions.

8 A function in this context is called in [23] a “quantitative language”.
9 Automata with multiple weights on transitions can be defined with respect to struc-

ture monoids [39].
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– The arctic (also known as max-plus) (N ∪ {−∞},max,+,−∞, 0)
– The natural numbers (N,+, ·, 0, 1) with the usual addition and multiplication
– The log semiring (R ∪ {−∞,+∞},⊕,+,−∞, 0) with x ⊕ y = log(ex + ey)

A valuation monoid is a tuple (D,⊕, 0,Val), where (D,⊕, 0) is a commutative
monoid and Val : D∗ → D is a function10. An ω-valuation monoid is defined
analogously, while requiring that ⊕ is properly extended to

∑
over infinite sets

of elements, and having Val : Dω → D.

Examples of common [ω-]valuation monoids

– A semiring, taking its product ⊗ to be the valuation function Val.
– (R ∪ {−∞}, sup,−∞,Val), where Val is some value function as appears in

Sect. 2.1 with a corresponding extension to R ∪ {−∞}.

A weighted automaton on finite words (resp. infinite words) is a transition-
labeled nondeterministic automaton together with a Boolean acceptance condi-
tion11 and a semiring or a valuation-monoid (resp. a totally complete semiring
or an ω-valuation-monoid).

A run is accepting if it satisfies the acceptance condition12.
The value of an accepting run π is

∏
γ(π) with respect to a semiring and

Val(γ(π)) with respect to an [ω-]valuation monoid.
The value of A on a word w is the semiring’s/[ω-]valuation-monoid’s sum-

mation (
∑

) of w’s accepting-runs values or 0 if there are no accepting runs.
Two automata A and A′ are equivalent, denoted by A ≡ A′, if they realize

the same function13.

3 Related Notions and Entities

Automata are closely related to many notions and entities in computer science.
We briefly look into how quantitative automata and weighted automata are,
often differently, related to some of them, and how to possibly extend each such
relation with respect to the “less related” automata family.

10 In [38], the original definition of a valuation monoid has additional restrictions that
are loosened in [48].

11 Semiring weighted automata are sometimes defined with an acceptance condition
(e.g., [48]) and sometimes without it, while having instead labels on both transitions
and states (e.g., [34]). However, considering infinite words or valuation monoids,
weighted automata have an acceptance condition [38].

12 For finite words, the acceptance condition is a set F ⊆ Q of final states, and a
run satisfies it if it ends in a final state. For infinite words there are many accep-
tance conditions, such as Büchi or Muller. (More details on the different acceptance
conditions can be found, for example, in [12]).

13 A function in this context is often viewed as a formal power series.
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3.1 Alternation

Since alternating automata were introduced in [21,22], they were extended to
many models (e.g., [31,55]) over various input structures (e.g., [57,58,62]), and
shown to be closely related to logic and to games (e.g., [58,74]), very useful in
formal verification (e.g., [31,72]), and in general to play a key role in automata
theory.

Quantitative automata are naturally generalized from nondeterminism to
alternation, having the dual roles of choice for nondeterminism and obligation
for universality, and alternating quantitative automata are often more expressive
than nondeterministic ones and allow for better closure properties [24]. (The title
of [24] speaks of “weighted automata”, but relates to quantitative automata.)

Considering weighted automata, on either a semirings or [ω-]valuation
monoids, there is no natural interpretation of alternation, as nondeterminism
is interpreted by a general commutative operation ⊕, which need not have a
dual.

The ⊗ or Val functions that are used for valuing a path of transitions have an
orthogonal role, and are not generally adequate for the ‘universality role’. Yet,
in some settings it is interesting to look into an interpretation of an alternating
weighted automaton, in which ⊗ takes this role, as is done in [4] with respect to
the tropical semiring and in [53] with respect to commutative semirings.

It may possibly be interesting to look into extensions of semirings and valu-
ation monoids, as suggested in [53], that add another operator to take the role
of universality.

It may also be interesting to look into restrictions of semirings and valuation
monoids for which the ⊕ operation has a meaningful syntactic dual.

3.2 Games

Two-player turn-based win-lose games are closely related to logic and to Boolean
automata, especially to alternating Boolean automata. For example, deciding
the winner of an infinite game over an arena A is the same as deciding whether
A, seen as a one-letter alternating automaton with a corresponding acceptance
condition, is empty. Other examples are good-for-games automata [15,50] (see
Sect. 3.4), which are useful in solving games [29,50], and the interplay between
automata and games in formal verification and synthesis (see Sect. 3.6).

Analogously, two-player turn-based zero-sum games, which generalize win-
lose games by having (possibly infinitely) many values to plays, and in which
Eve wants to maximize the play’s value and Adam wants to minimize it, are
closely related to quantitative automata.

In particular, the above example of viewing a game as a special case of an
alternating automaton over a singleton alphabet generalizes to the quantitative
setting—the value of the game, which is the value that Eve can guarantee against
any strategy of Adam, is the value of the automaton on the single input word.
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Along the same lines, the other examples above are also naturally generalized to
the quantitative setting (e.g., [5,16,33,46,49])14.

Weighted automata are connected to games via their connection to logics
(see Sect. 3.3), which are connected to Ehrenfeucht-Fräıssé games. However, we
are not aware of works that directly connect between general weighted automata
and games.

3.3 Logic

Automata theory has evolved from logic and remained very related to it. In
particular, Büchi, Elgot and Trakhtenbrot established the equivalence of (ω-
regular complete) automata and monadic second order (MSO) logic (of order)
on words [19,42,71], while a series of results provided the equivalence of counter-
free (aperiodic) automata and both first order logic (FOL) and linear temporal
logic (LTL) on finite and infinite words [47,52,56,61,63,68–70] (see a detailed
exploration of the latter in [32]).

The result on the equivalence of Boolean automata and MSO was extended
by Manfred Droste and Paul Gastin to the equivalence of semiring weighted
automata on finite words and a restricted version of a weighted MSO logic that
they defined [34]. This result was then further extended to totally-complete
semiring weighted automata on infinite words [40], to [ω-]valuation monoid
weighted automata on finite and infinite words [38], and to various extensions of
weighted automata on various input structures, each corresponding to a variant
of weighted MSO. In [48], there is a unifying framework for the equivalence of
weighted automata and weighted MSO on finite words.

The result on the equivalence of aperiodic Boolean automata and first-order
logic was extended by Droste and Gastin to the equivalence of aperiodic poly-
nomially ambiguous weighted automata on finite words and weighted FOL [35].

As for the connection of quantitative automata and logic, there are vari-
ous extensions of temporal logic with value functions Val that are related to
Val automata, for example [1,10,17,60]. However, we are not aware of general
equivalence theorems as in the case of weighted automata.

It may be interesting to look into adaptations of weighted MSO that are
equivalent to nondeterministic and alternating quantitative automata, as well
as on adaptations of weighted FOL that are equivalent to their aperiodic coun-
terparts. Another interesting direction, in particular for formal verification (see
Sect. 2.2), is to establish equivalence between quantitative automata and some
weighted temporal logics.

3.4 Between Determinism and Nondeterminism

In general, deterministic automata have better compositional properties than
nondeterministic automata, making them better suited for applications such as

14 The “weighted automata” in the title of [49] refer to a variant of Sum automata,
defined over infinite words with an acceptance condition on finite prefixes.
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synthesis and probabilistic model checking. Yet, deterministic automata are often
exponentially bigger than equivalent nondeterministic automata and sometimes
lack in expressive power.

This unpleasant trade-off between determinism and nondeterminism moti-
vates formalisms that are in between them, aiming at enjoying, sometimes, the
best of both worlds.

Dominant such formalisms are unambiguity, determinism in the limit (semi-
determinism), history determinism [28], and good for gameness [50].

A Boolean automaton is unambiguous if there is at most one accepting run on
each word; it is deterministic in the limit (for Büchi automata) if its continuation
from every accepting state is deterministic; it is history deterministic if there is
a strategy to resolve its nondeterminism by only considering the prefix of the
word read so far (and getting an equivalent automaton); and it is good for games
if its product with every game G whose winning condition is the automaton’s
language provides a game with the same winner as of G.

Unambiguity and determinism-in-the-limit are defined, as is, on weighted
automata, based on their acceptance conditions. Observe that unambiguous
weighted automata do not need the ⊕ operation, as there is at most one accept-
ing run. Hence, the notion is relevant also to quantitative automata if adding
an acceptance condition, which can also relate to a threshold (see Sect. 3.6 for
threshold quantitative automata). For example, requiring at most one run on
each word whose value is equal to or bigger than a threshold.

Unambiguity can also be generalized with respect to weighted automata (with
no ⊕ operation) or quantitative automata (with acceptance conditions) by means
of functional automata [44]—rather than having at most one accepting run on
each word, all accepting runs on a word should have the same value.

History-determinism and good-for-gameness have natural generalizations to
quantitative automata, due to the choice interpretation of nondeterminism. The
definition of history determinism follows as is [16,28], while good-for-gameness
relates to zero-sum games rather than to win-lose games [16]. Interestingly, while
history determinism and good for gameness are equivalent for Boolean automata
[15], they are not equivalent for quantitative automata [16].

Though history-determinism and good-for-gameness look less natural for
weighted automata, it might be interesting to analyze such notions. History
determinism is technically defined also for a weighted automaton with an arbi-
trary ⊕ operation (requiring a strategy to generate for every word w a single
run with the value of the automaton on w), though possibly not very meaningful
for a general weighted automaton. As for good for gameness, it might be that
certain types of games are adequate to an interesting product with weighted
automata.

3.5 Approximations

Quantitative automata, having real values for words, naturally allow for approxi-
mations with respect to standard distance functions. Accordingly, there are many
works on approximated solutions with quantitative automata (some of them have
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“weighted automata” in the title), either with respect to a specific distance func-
tion, such as difference (e.g., [11,45,51]) or ratio15 (e.g., [6,7]), or with respect
to a general distance function d that respects the order on R, namely having
that for every x ≤ y ≤ z ∈ R, we have d(x, y) ≤ d(x, z) and d(y, z) ≤ d(x, z)
(e.g., [14]).

These approximated solutions provide a significant added value to the gen-
eralization of Boolean automata to quantitative automata, as often an exact
solution is impossible or computationally very difficult.

Considering weighted automata, once the domain of values is arbitrary, there
is a problem to consider meaningful distance functions. However, restricting the
domain to R, or to some other set with meaningful distance functions, allows for
analogous approximated solutions.

3.6 Formal Verification and Synthesis

Verification (model checking) asks whether a given system satisfies a given spec-
ification, and synthesis asks to automatically generate a system that satisfies a
given specification.

Verification and synthesis are traditionally Boolean, having a yes-no value
to both the system properties (such as whether or not the system ‘serves only
coffee’) and to the satisfaction level of the specification (for example, ‘yes’ if the
system satisfies the specification of ‘serving only coffee’ or ‘serving only tea’).

This Boolean perspective falls short of many verification needs of contem-
porary systems, concerning performance, robustness, and resource-constraint
requirements. One system is often preferred over another, even though they
are both correct, since one is, for example, faster than the other, or, if they are
both incorrect, one misbehaves less frequently than the other.

As a result, recent years have seen the emergence and rapid development of
quantitative formal verification and synthesis in an attempt to cope with these
needs (e.g., [2,5,9,10,18,26,33,43,46,51]).

According to this approach, both the system properties and the satisfaction
values are no longer Boolean. For example, a property of a system can be an
‘average response time’, and the system can get a satisfaction level of 0.7 to a
specification that quantitatively combines requirements on the ‘average response
time’ and the ‘power consumption’.

Automata and game theory play a key role in verification and synthesis of
reactive systems (see, e.g., [54,73]) and both quantitative and weighted automata
are valuable in generalizing them to the quantitative setting.

Considering the generalization of the satisfaction level, quantitative automata
are more natural, as satisfaction evaluates to a value from an ordered domain,
and we want the system to get a value as high as possible. In this context,
and others, it is also common to consider threshold quantitative automata, which
return a yes-no answer for whether the value of the automaton on an input word

15 As ratio does not satisfy the triangle inequality, it is formally not a distance function,
and one may speak instead of d(x, y) = | log x − log y|.
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is equal to or bigger than a threshold. This provides the flexibility of playing
back and forth between Boolean and quantitative satisfaction values.

Also for synthesis, which is viewed as a two-player game between the environ-
ment, generating the inputs to the system, and the system, interactively respond-
ing to these inputs, quantitative automata are more natural (see Sect. 3.2).

As for generalization of system properties, both quantitative and weighted
automata are suitable, as such properties might have very general aspects.
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Abstract. Modal and temporal logics are extensions to classical logic
that have operators that deal with necessity and possibility (modal log-
ics) and such as sometime, always and next (temporal logics). Models are
sets of worlds that are connected by an accessibility relation. Restrictions
imposed on this relation and the operators allowed give rise to different
families of logic. This paper discusses an approach to theorem proving for
temporal and modal logics based on clausal resolution. The main ideas
are the translation to a normal form and the application of resolution
rules that relate to the same world. This research initially focused on
propositional linear time temporal logic but has been extended to com-
putation tree logic, monodic first order temporal logic and normal modal
logics. We describe the approach, explain the adaptations necessary for
the logics mentioned and discuss the results of the provers developed for
these logics.

1 Introduction

Non-classical logics such as temporal or modal logics have been proposed to
model situations with a number of worlds connected by a relation representing
temporal ordering or representing possible worlds. We discuss a clausal resolution
method that was originally proposed for propositional linear time temporal logic
(see for example [13,23]) and has been since been adapted to the branching
time temporal logic CTL [10], first order temporal logic [16] and normal modal
logics [3].

The main features of the method is the translation of formulae to an equi-
satisfiable set of formulae (clauses) in a normal form for that logic. This removes
operators, restricts formulae to particular formats and introduces new propo-
sitional variables to rename subformulae. Resolution rules are then applied to
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clauses that apply to the same world. In temporal logics there is a need to iden-
tify sets of formulae that ensure a proposition (or its negation) always holds
to resolve with a formula that states that its negation must eventually hold.
In modal logics care has to be made that any restrictions on the accessibility
relation between worlds is correctly modelled.

In Sect. 2 we present this approach applied to propositional linear time tem-
poral logic and in Sects. 3, 4 and 5 discuss how this has been applied to the
branching time temporal logic CTL, first order temporal logic and normal modal
logics respectively, providing conclusions in Sect. 6.

2 Propositional Temporal Logic

Propositional (discrete) Linear Time Temporal Logic (LTL) can be thought of
as classical propositional logic extended with operators to deal with time. The
future-time temporal connectives we use include ‘ �’ (in the next moment) and
‘U ’ (until). LTL formulae are constructed from the following elements:

– a set, PROP , of propositional symbols;
– propositional connectives, true,¬,∨; and
– temporal connectives, �, and U .

The set of well-formed formulae (wff) of LTL, is defined as the smallest set
satisfying the following:

– any elements of PROP and true are in wff;
– if ϕ and ψ are in wff, then so are ¬ϕ,ϕ ∨ ψ, �ϕ,ϕ U ψ.

A literal is defined as either a proposition symbol or the negation of a proposition
symbol.

A model for LTL formulae can be characterised as a sequence of states, σ,
of the form σ = s0, s1, s2, s3, . . . , where each state si is a set of propositional
symbols representing those propositions, which are satisfied at the ith moment
in time. The notation (σ, i) |= ϕ denotes the truth of formula ϕ in the model σ
at the state of index i ∈ N and is defined as follows.

(σ, i) |= true
(σ, i) |= p iff p ∈ si where p ∈ PROP
(σ, i) |= ¬ϕ iff it is not the case that (σ, i) |= ϕ
(σ, i) |= ϕ ∨ ψ iff (σ, i) |= ϕ or (σ, i) |= ψ
(σ, i) |= �ϕ iff (σ, i + 1) |= ϕ
(σ, i) |= ϕUψ iff ∃k ∈ N. k ≥ i and (σ, k) |= ψ and

∀j ∈ N, if i � j < k then (σ, j) |= ϕ

Note we can obtain false and the other Boolean operators via the usual equiv-
alences and we define ‘ ’ (always in the future), ‘♦’ (sometime in the future)
and ‘W’ (unless or weak until) operators as follows.
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♦ϕ ≡ trueU ϕ
ϕ ≡ ¬♦¬ϕ

ϕ W ψ ≡ (ϕ U ψ) ∨ ( ϕ)

For any formula ϕ, model σ, and state index i ∈ N, either (σ, i) |= ϕ holds or
(σ, i) |= ϕ does not hold, denoted by (σ, i) 	|= ϕ. If there is some σ such that
(σ, 0) |= ϕ, then ϕ is said to be satisfiable. If (σ, 0) |= ϕ for all models, σ, then ϕ
is said to be valid and is written |= ϕ. A set N of formulae is satisfiable in the
model σ at the state of index i ∈ N if, and only if, for all ϕ ∈ N , (σ, i) |= ϕ. A
formula of the form ♦ϕ or ψ U ϕ is called an eventuality.

2.1 Normal Form

Separated Normal Form (SNF) was first introduced for LTL in [11,12] with
clauses having a past implies present or future form. This was later changed to
the present implies (non-strict) future form we present here (see [14]). We also
use an additional connective ‘start’ that holds only at the beginning of time,
i.e.,

(σ, i) |= start iff i = 0

that allows the general form of the clauses of the normal form to be implications.
A normal form for LTL is of the form

∧
h Ch where each Ch is an initial, step,

or sometime clause:

start ⇒
∨

j

lj (initial)
∧

i

l′i ⇒ �
∨

j

lj (step)
∧

i

l′i ⇒ ♦l (sometime)

where l′i, lj and l are literals in the language PROP . We can translate any LTL
formula ϕ into a formula ϕ′ such that ϕ is satisfiable if and only if ϕ′ is satisfi-
able [14] with at most a linear increase in the size of the formula. The translation
uses standard equivalences from propositional and temporal logic, renames com-
plex subformulae using new propositions linking the new propositions with the
satisfaction of the renamed subformula everywhere in the model and unwinding
temporal operators into formulae to be satisfied now and in the next moment in
time, using their fixpoint definitions. We also assume clauses are kept in their
simplest form by performing standard simplifications for classical logic.

2.2 Resolution for Propositional Temporal Logic

The resolution method for LTL based on SNF was introduced in [11] with fur-
ther details in [14]. Pairs of initial or step clauses may be resolved using the
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following initial and step resolution rules which can be viewed as the application
of the standard classical resolution rule to formulae representing constraints at
a particular moment in time (where A and A′ are conjunctions of literals, B and
B′ are disjunctions of literals and p is a proposition).

start ⇒ B ∨ p
start ⇒ B′ ∨ ¬p
start ⇒ B ∨ B′

A ⇒ �(B ∨ p)
A′ ⇒ �(B′ ∨ ¬p)

(A ∧ A′) ⇒ �(B ∨ B′)

The following rewrite rule is used to remove clauses which imply false in the
next moment in time (where A is a conjunction of literals).

{A ⇒ �false} −→
{
start ⇒ ¬A
true ⇒ �¬A

}

Thus, if, by satisfying A, a contradiction is produced in the next moment, then
A must never be satisfied.

The eventuality resolution rule resolves a sometime clause and a set of step
clauses that together ensure a complementary literal will always hold. In particu-
lar, the eventuality resolution rule can be applied between a sometime clause with
l on the right hand side and a set of clauses that together imply

∨
i A ⇒ � ¬l.

This is made up from a conjunction of one or more step clauses Ai ⇒ �Bi such

that for all i, 0 ≤ i ≤ r, Bi ⇒ ¬l and Bi ⇒
r∨

j=0

Aj .

∨
i Ai ⇒ � ¬l
A′ ⇒ ♦l
A′ ⇒ ∧

i(¬Ai)Wl

The set of clauses Ai ⇒ �Bi that satisfy these side conditions are together
known as a loop in ¬l. Algorithms to find the loop are described in [7,8]. The
resolvent must be translated into SNF before any further resolution steps.

The resolution process terminates when either no new resolvents can be gen-
erated or a contradiction is derived by generating the following unsatisfiable
formula

start ⇒ false.

Given any temporal formula, ϕ, to be tested for unsatisfiability, the following
steps are performed.

1. Translate ϕ into SNF, giving ϕ′.
2. Perform initial and step resolution (including the above rewrite rule, simpli-

fication and subsumption) on ϕ′ until either
(a) start ⇒ false is derived—terminate declaring that ϕ is unsatisfiable; or
(b) no new resolvents are generated—continue to step (3).

3. Select an eventuality from the right-hand side of a sometime clause within
ϕ′, for example ♦l. Search for loop-formulae for ¬l.

4. Construct loop resolvents for the loop detected and each sometime clause with
♦l on the right-hand side. If any new formulae (i.e., that are not subsumed
by clauses already present) have been generated, go to step (2).
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5. If all eventualities have been resolved, i.e., no new formulae have been gener-
ated for any of the eventualities, terminate declaring ϕ satisfiable; otherwise
go to step (3).

The soundness, completeness and termination of the calculus is shown in [14].
The temporal resolution calculus is implemented in the theorem prover

TRP++ [18,19]. The initial and step clauses can be translated into first-order
logic using a natural arithmetic translation and then initial and step resolution
correspond to first-order ordered resolution [2]. As such any first order theorem
prover could be used to implement these aspects. However TRP++ uses its own
“near propositional” approach. The loop search algorithm can also be imple-
mented by repeated calls to step resolution inferences [9]. Thus there is a need
for the efficient performance of the step resolution. A comparison of TRP++
and an earlier version TRP with other tableau-based provers for LTL is made
in [18,20] and is shown to be competitive.

3 Branching-Time Temporal Logics

CTL [10] is a branching time temporal logic using the syntax of LTL in addition
to two path operators A (all paths) and E (some path). CTL has the restric-
tion that every path operator is paired with a temporal operator. Formulae are
interpreted over model structures with sets of states and a serial binary accessi-
bility relation that can be unwound into infinite trees. The temporal resolution
method for LTL has been extended to CTL [30,32] based on earlier work [4].
The normal form is of the form A

∧
h Ch where the clauses Ch differ from the

LTL normal form as follows:

– there are two versions of the step clauses one for each path operator paired
with the next operator;

– there are two versions of the sometime clauses one for each path operator
paired with the sometime operator;

– the step clauses and sometime clauses are labelled with an index identifying
a successor state or a path respectively; and

– global clauses of the form true ⇒ ∨
i li are also used (note this can be used

in the LTL variant of the normal form instead using an initial clause start ⇒∨
i li and a step clause true ⇒ �

∨
i li to represent propositional clauses

holding everywhere).

There are more initial and step resolution rules to account for the combinations
of step clauses with different path operators and the use of global clauses. There
are two temporal resolution rules one for each path operator matched with a
sometime operator where the resolvent takes the same path operator as the
eventuality. Soundness, completeness and termination are shown in [32] as well
as that the translation to the normal form preserves satisfiability.

This has been implemented at the prover CTL-RP [31] using the first order
prover SPASS [5] with ordered resolution and selection [2] to implement the
resolution rules. A comparison with other provers has been carried out in [15,31]
the latter stating that that CTL-RP is more stable than other provers.
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4 First Order Temporal Logic

First-Order (linear discrete time) Temporal Logic (FOTL) is an extension of
classical first-order logic with operators from Sect. 2. The syntax for LTL is
extended with syntax for first order formulae, namely with quantifiers, variables,
constants and predicate symbols. Formulae are interpreted over sequences of first
order structures.

Whilst being expressive, FOTL, in general, is incomplete and the set of valid
formulae of FOTL is not recursively enumerable (see for example [1]). A FOTL
formula ψ is called monodic if any subformulae of the form T1ϕ, where T1 is one
of ♦, , �, or ϕ1T2ϕ2, where T2 is one of U or W, contains at most one free
variable [16]. The set of valid monodic formulae is known to be finitely axiomati-
sable [16]. Further by restricting the first order part to some decidable fragment
of first-order logic, such as the guarded, two-variable or monadic fragments we
obtain decidability.

The LTL resolution calculus has been extended to the monodic fragment
of FOTL in [6,21]. A normal form, termed Divided Separated Normal Form
(DSNF), has been defined for FOTL [6] of the form

I ∧ U ∧ ∀xS ∧ ∀xE .

(where the underlying sets of formulae are viewed as conjunctions). This trans-
lates the formula into four sets U , I, S, E , namely:

– the initial part, I, finite set of arbitrary closed first-order formulae;
– the universal part, U , a finite set of arbitrary closed first-order formulae;
– the step part, S, a finite set of temporal step clauses of the form p ⇒ �l, or

P (x) ⇒ �L(x) where p is a proposition, l is a literal, P (x) is a unary atom
and L(x) is a unary literal; and

– the eventuality part, E , a finite set of clauses of the form ♦L(x) and ♦l where
l is a propositional literal and L(x) is a unary literal.

In this setting

– initial resolution involves finding a contradiction in the sets U ∪ I;
– step resolution involves finding sets of step clauses whose right hand sides

along with the set U give a contradiction; and
– eventuality resolution is extended to the first order case.

The paper [21] provides a more machine-oriented clausal resolution calculus
based on that in [6]. Two implementations of this calculus have been carried
out TeMP [17] and TSPASS [22]. TeMP uses the kernel of the first order prover
Vampire [29] to carry out step resolution and TSPASS uses the first order prover
SPASS [5] to carry out step resolution ensuring that derivations are fair. Whilst
an experimental analysis has been carried out in these papers this is restricted
by a lack of benchmarks and other provers for this logic.
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5 Normal Modal Logics

The general approach is applied to modal logics in [24]. Modal logics are evalu-
ated over possible worlds or states with a family of binary relations Rj between
worlds such that (s, t) ∈ Rj if agent j considers world t possible from world
s. The operators j and ♦j associated with each binary relation Rj denote
necessity and possibility. Informally jϕ is satisfied at world s if ϕ holds at all
the worlds related to s via the Rj relation and ♦jϕ is satisfied at world s if ϕ
holds at some world related to s via the Rj relation.

The normal form for normal modal logics SNFK is a conjunction of clauses
∗ ∧

h Ch where ∗ is the universal operator and ∗ϕ holds if, and only if,
ϕ holds at the current world and at all reachable worlds. Each Ch is as follows:

start ⇒
∨

i

li (initial)

true ⇒
∨

i

li (literal)

l′ ⇒ j l (positive j)
l′ ⇒ ♦j l (negative j)

where li, l and l′ are literals.
Several resolution rules are provided that capture the semantics of the modal

operators, some involving more than two premises. Other modal logics can be
derived by restricting the accessibility relation to be a particular form (reflexive,
serial, transitive, Euclidean or symmetric). This is represented in the calculus
by adding clauses that capture these restrictions. For example, for reflexive rela-
tions, the T axiom jϕ ⇒ ϕ holds. This is captured by adding the clause
true ⇒ ¬l′ ∨ l for any clause l′ ⇒ j l. These calculi are shown to be sound,
complete and terminating [24].

In [25,27] the normal form is changed to incorporate a modal level (the
maximal number of nested occurrences of modal operators that a subformula is
in the scope of) for the modal logic K and initial clauses are not required as they
can be represented by literal clauses holding at modal level 0. This representation
has been implemented in the theorem prover KSP [26] and has been shown to
work well where formulae are distributed across levels. This has been extended
to other normal modal logics by providing translations into the normal form
with modal levels [28].

6 Conclusion

We have provided an overview to the clausal resolution method first applied to
LTL that has been extended to other temporal logics CTL and FOTL and normal
modal logics. The key features of the method have been shown applicable to a
range of logics, amenable to implementation, resulting in competitive theorem
provers.

Acknowledgments. This paper describes the work of many researchers. I would like
to thank all of those who collaborated to further this line of research.
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Abstract. We survey our recent work on the verification of population
protocols and their state complexity.

1 Introduction

Population protocols are a model of computation in which an arbitrary number
of indistinguishable finite-state agents interact in pairs to collectively decide if
their initial global configuration satisfies a given property. Population protocols
were introduced by Angluin et al. in [7,8] to study the theoretical properties
of networks of mobile sensors with very limited computational resources, but
they are also very strongly related to chemical reaction networks [53], a discrete
model of chemistry in which agents are molecules that change their states due
to collisions.

Population protocols decide a property by stable consensus. Each state of
an agent is assigned a binary output (yes/no). At each step, a pair of agents is
selected uniformly at random and allowed to interact. In a correct protocol, all
agents eventually reach with probability 1 the set of states whose output correctly
answers the question “did our initial configuration satisfy the property?” and
stay in these states forever.

The parallel runtime of a protocol is defined as the expected number of inter-
actions until a stable consensus is reached (i.e. until the property is decided),
divided by the number of agents. In recent years, much research on popula-
tion protocols has focused on the runtime of population protocols, and several
landmark results have been obtained. In particular, recent results have studied
protocols for majority and leader election in which the number of states grows
with the number of agents, and shown that poly-logarithmic time is achievable by
protocols without leaders, even for very slow growth functions, see e.g. [3,4,40].
Many of these results have been described in excellent surveys [5,27].

My work on population protocols, carried out with many of my PhD students
and postdocs, and in collaboration with other colleagues, has focused on other
aspects than runtime analysis, and this is the reason for the title of this note.

The work surveyed in this note was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program
under grant agreement No 787367 “Parameterized Verification and Synthesis” (PaVeS).
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I first learned about population protocols at a talk by Paul Spirakis in ICALP
2008. As a researcher working on the theory of Petri nets, I noticed the connec-
tion of population protocols to Petri nets, and as a researcher working on auto-
matic verification, I asked myself if the correctness problem—given a population
protocol and a property, does the protocol decide the property?—was decidable.
The problem consisted of checking whether an infinite collection of finite-state
Markov chains, one for each initial configuration of the protocol, satisfies a rather
sophisticated liveness property with probability 1. This makes it very hard: live-
ness properties are harder to verify than safety properties, probabilistic systems
are harder than non-probabilistic ones, and parameterized problems, i.e., prob-
lems involving families of systems with an arbitrarily large number of agents,
are much harder to verify than systems with a fixed number of agents. After
looking at the problem for some time I could not find an answer, but I kept
it at the back of my mind, and in 2015 (seven years later!) I suggested to my
colleagues Pierre Ganty, Jérôme Leroux, and Rupak Majumdar to examine it
again. This time, thanks to new progress by Leroux on the theory of Petri nets,
we proved that the correctness problem is decidable, although as hard as the
reachability problem for Petri nets [31]. This was the starting point of a research
program devoted to the theory and practice of verifying population protocols,
which reached an important milestone in 2020 with the release of Peregrine
2.0, a verifier based on new theoretical results [15,32]. The first part of this
note surveys this research, adding all the work carried out since 2017 to a brief
previous survey [28].

In 2018, Michael Blondin, Stefan Jaax and myself observed that a well-known
result of the theory of Petri nets had a surprising application to the theory
of population protocols: It showed that an infinite family of predicates of the
form x ≥ k for certain values of k could be decided by extremely succinct
protocols with only O(log log k) states. This sparked our interest in the question
of how many states are needed to decide a given predicate, or, by analogy to
automata theory, the state complexity of the predicate. The question is relevant.
For example, the fast protocol for majority implicitly described in [10] has tens
of thousands of states. This is an obstacle to implementations of protocols in
chemistry, where the number of states corresponds to the number of chemical
species participating in the reactions. The number of states is also important
because it plays the role of memory in sequential computational models. Indeed,
the total memory available to a population protocol is the logarithm of the
number of states multiplied by the number of agents.

To the best of our knowledge, we are the first group to study the state
complexity of predicates. While we do not have a complete characterization
yet, we have already proved several results. In 2018 the only bounds on state
complexity were the ones derived from the synthesis procedures of [9,10]. The
input to these procedures is a boolean combination of atomic predicates of the
form

∑k
i=1 aixi ∼ b, where ai and b are integers, and ∼ is either < or ≡m, the

latter denoting congruence modulo m. (It is known that every predicate decidable
by population protocols is of this form.) The bounds of [9,10] are exponential in
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both the number of atomic predicates, and in their size, with numbers written
in binary. Since 2018 we have shown that every predicate has a protocol with
a polynomial number of states both in the number and the size of the atomic
predicates [14,16], and that, as mentioned above, some predicates have much
smaller protocols [16]. Very recently, we have also obtained lower bounds for the
state complexity [24]. The second part of the note surveys this work.

The note is structured as follows. Section 2 introduces terminology, and
Sects. 3 and 4 survey our work on verification and state complexity, respectively.

2 Some Terminology

We assume that the reader is familiar with the basics of the population protocol
model; here we just fix some terminology.

Population Protocols. A population protocol has a set of states and transitions,
with a distinguished set of initial states. Every state also has an associated
output, 1 or 0. Transitions model interactions between two agents. They have
the form q1, q2 �→ q′

1, q
′
2, meaning that two agents in states q1 and q2 interact and

move to states q′
1 and q′

2. We assume that there is exactly one transition for each
pair of states, but transitions can also be silent, meaning that the states of the
agents do not change. A configuration of a protocol is a mapping assigning to
each state a number of agents. Initial configurations put arbitrarily many agents
in the initial states, and 0 agents elsewhere. A protocol starts at some initial
configuration, and executes steps by repeatedly picking two agents uniformly at
random and applying the corresponding transition. A run is an infinite sequence
of configurations obtained by executing infinitely many steps.

A configuration has consensus 1 resp. 0 if all its agents occupy states with
output 1 resp. 0. We also say that the configuration is a 1-consensus, resp. a
0-consensus, or just a consensus when we are not specific. A configuration is a
stable 1-consensus if every configuration reachable from it, including itself, is
a 1-consensus. A protocol is well specified if for every initial configuration C
there is b ∈ {0, 1} such that runs starting at C eventually reach a stable b-
consensus with probability 1 (abbreviated as w.p.1 in this note); in this case, we
say that the protocol outputs b for the initial configuration C. A well specified
protocol with initial states q1, . . . , qk decides the predicate ϕ(x1, . . . , xk) defined
by: ϕ(n1, . . . , nk) = b iff the protocol outputs b for the initial configuration that
puts n1, . . . , nk agents in q1, . . . , qk.

We also consider protocols with (one or more) leaders. Intuitively, this is
a population protocol with a set of distinguished agents. Formally, a protocol
with leaders only differs from a normal population protocol in the definition of
the set of initial configurations. The initial configurations of normal protocols
put arbitrarily many agents in the initial states, and 0 agents elsewhere. In a
protocol with leaders the initial configurations also put a fixed number of agents,
the same for every initial configuration, in other states.

Population protocols can be seen as special classes of Petri nets or Vector
Addition Systems [51,52]. For the purposes of this note, it suffices to say that,
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like a protocol, a Petri net has a set of states (called places in Petri net jargon)
and transitions. However, transitions have the form q1, . . . , qn �→ q′

1, . . . , q
′
m for

arbitrary n,m ≥ 0. So, intuitively, transitions of a Petri net can represent inter-
actions between more than two agents, and they can create or destroy agents.
The theory of Petri nets has produced numerous results about the properties of
their reachability graphs, i.e., the graphs with the configurations as nodes, and
the steps as transitions. Such results can be immediately translated to population
protocols.

Presburger Arithmetic, Presburger Predicates, and Presburger Sets. A funda-
mental result of the theory of population protocols is that they decide precisely
the Presburger predicates, i.e., the predicates expressible in Presburger arith-
metic [11]. We briefly recall the definition of Presburger arithmetic and some
results, and refer to [41] for more details.

Atomic formulas of Presburger arithmetic are of the form
∑k

i=1 aixi ∼ b,
where ai and b are integers, xi are variables, and ∼ is either < or ≡m, the latter
denoting the congruence modulo m for some m ≥ 2. We call these atomic formu-
las threshold and remainder (or modulo) formulas, respectively. The formulas of
Presburger arithmetic are the result of closing atomic formulas under Boolean
operations and first-order existential or universal quantification. For example,

ϕ(x, y) = ∀z ∃u : 3x − u ≤ 0 ∧ 2z − y + u ≥ 4 ∧ (x + y) ≡5 3

is a formula of Presburger arithmetic with free variables x and y.
A formula ϕ(x1, . . . , xn) is interpreted over Nn in the expected way. A set of

vectors S ⊆ N
n is a Presburger set if there is a Presburger formula ϕ such that

a vector belongs to S iff it satisfies ϕ, and a predicate over N
n is a Presburger

predicate if the set of vectors satisfying the predicate is a Presburger set. So
Presburger formulas are finite representations of the Presburger sets and predi-
cates. Semilinear sets are another representation of the Presburger sets, that is,
a set is semilinear iff it is Presburger. In this note we do not need any specific
properties of the semilinear representation.

Presburger arithmetic has a quantifier-elimination procedure, meaning that
every formula can be transformed into an equivalent boolean combination of
threshold and remainder predicates. The satisfiability problem for full Presburger
arithmetic is decidable, but its complexity is high, it lies between 2-NEXP and
2-EXPSPACE. For quantifier-free formulas the problem is NP-complete, and
there exist SMT-solvers efficient in practice. The tools Peregrine 1.0 and 2.0
described later in this note are implemented on top of the Z3 solver [50].

3 Verification of Population Protocols

The design of population protocols is quite error prone. In our experience, it is
hardly ever the case that the first design for a protocol computing a predicate is
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correct. The problem is accentuated by the lack of a suitable high-level program-
ming language for protocols, which makes their design akin to writing machine
code.

In this context, the limited expressive power of population protocols also has
a positive side: the correctness problem is not trivially undecidable, as happens
with many other models of computation. In this section we show that the prob-
lem is in fact decidable, and survey our work leading from the first decidability
result to the current decision procedures and to their practical implementation.

3.1 Decidability and Complexity

In [31] we proved that the two central verification problems for population pro-
tocols are decidable:

– Well-specification: Given a population protocol, is it well specified?
– Correctness: Given a population protocol and a Presburger predicate (repre-

sented as a Presburger formula), does the protocol compute the predicate?

The results were extended to decidability of more general properties in [30]. The
proofs proceed by reduction to the reachability problem for Petri nets, which
is decidable [43,47]. We also showed that well-specification and correctness are
recursively equivalent to the reachability problem for Petri nets. More precisely:

– The reachability problem for Petri nets can be reduced to well-specification
or correctness in polynomial time;

– Given an oracle for the reachability problem for Petri nets, well-specification
and correctness can be decided in elementary time, i.e., in time bounded by
a finite tower of exponentials.

It has been shown recently that the reachability problem for Petri nets is
Ackermann-complete, meaning that its complexity is bounded from below and
from above by non-primitive recursive fast growing functions related to the Ack-
ermann function [25,26,46]. Therefore, well-specification and correctness are not
primitive recursive either, that is, no algorithm running in time bounded by a
primitive recursive function can solve them.

The very high complexity of the correctness problem leads to the question
whether the problem could be more tractable for special protocol classes. In [11]
Angluin et al. not only characterized the expressive power of population proto-
cols, but also of other models with more restricted communication mechanisms.
In [33,36] we conducted a complete analysis of the complexity of the correctness
problem for the models of [11]. We showed that for models based on immediate
and delayed observation the correctness problem is PSPACE-complete and com-
plete at the second level of the polynomial hierarchy, respectively. Immediate
observation protocols have transitions of the form q1, q �→ q2, q. Intuitively, an
agent in state q1 observes that the other process is in state q, which allows it to
immediately move to state q2. Intuitively, in such protocols if an agent at q1 can
execute the transition, then every agent at q1 can take it as well, which greatly
simplifies the verification task. In delayed observation protocols the observer in
q1 may move to q2 at a later point.
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3.2 A First Attempt at a Verification Tool

In [18], published in 2017, we addressed the problem of developing an algorithm
that would be efficient enough to automatically prove correctness for a class of
protocols satisfying three conditions:

(a) No loss of expressive power: the class should compute all Presburger predi-
cates.

(b) Naturality: the class should contain many of the protocols discussed in the
literature.

(c) Feasible membership problem: deciding if a protocol belongs to the class
should have reasonable complexity.

In the paper we introduced the class of Well-Specified Strongly Silent proto-
cols (WSSS). Intuitively, a protocol is silent if an execution reaches a terminal
configuration with probability 1, where a configuration is terminal if cannot
reach any other configuration. (Observe that a protocol correctly deciding a
property need not be silent; indeed, the definition of when a protocol decides a
property only requires that an execution reaches a consensus w.p.1. Reaching a
consensus is a weaker property, because it allows the protocol to keep visiting
different configurations, as long as in all of them the agents agree on the same
value.) Further, a protocol is strongly silent if, loosely speaking, its transitions
are organized in layers such that transitions of higher layers cannot be enabled
by executing transitions of lower layers. In particular, if the protocol reaches a
configuration of the highest layer that does not enable any transition, then this
configuration is terminal. We showed that WSSS protocols satisfy (a) and (b),
and proved that the membership problem for the class is in the complexity class
DP. Recall that DP is the class of languages L such that L = L1 ∩ L2 for some
languages L1 ∈ NP and L2 ∈ coNP; in view of the Ackermannian complexity of
the general case, this result shows that WSSS satisfies (c). The proof that the
problem is in DP reduces membership to checking satisfiability resp. unsatisfi-
ability of two quantifier-free formulas of Presburger arithmetic. The procedure
was implemented in Peregrine 1.0 [17], a tool for the verification of popula-
tion protocols built on top of the constraint solver Z3, and the first tool able to
automatically prove well-specification for all initial configurations.

While WSSS protocols decide all Presburger predicates, Peregrine 1.0 had
several limitations, which will be subject of the next section. From the most
conceptual to the most practical:

– The verification algorithm of [18] was dissociated from the decidability results
proved in [31]. To put it bluntly, the theoretical result was not guiding the
design of a practical algorithm.

– The tool did not produce correctness certificates; if the tool returned “cor-
rect”, the user had to trust the result.

– Many protocols designed to be fast, or to use few states, are not in WSSS.
Examples include the average-and-conquer protocol of [6] (for fixed values of
the parameters), or the compact threshold protocols of [14]. In particular,
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many protocols that perform a “random search”, like the second protocol in
Example 1 below, are non-silent.

Example 1. The following two (very slow) protocols decide whether the number
of blue agents minus the number of red agents is at least 2k for a given k ≥ 1.
These protocols are also of interest in the next section on state complexity.

First Protocol. Each agent has a bag that can hold up to 2k pebbles and a
flag that can be up or down (corresponding to output 1 and 0, respectively).
Initially, each agent has one pebble and its flag is down. When two agents meet
they update their bags and flags depending on their colors:

– Two red agents. No change.
– One blue and one red agent. If none of the two bags is empty, then both

agents throw one pebble away and lower their flags; we call this interaction
a cancellation. Else, if the bag of the blue agent is full (that is, if it has 2k

pebbles) or if both flags were up before the interaction, then both agents raise
their flags. Else, both agents lower their flags.

– Two blue agents. One agent gives the other as many pebbles as the other
agent’s bag can still hold. If this fills the other agent’s bag, or if both flags
were up before the interaction, then both agents raise their flags; otherwise
they lower them.

Let us prove correctness. Let x and y be the numbers of blue and red
agents, respectively. W.p.1 cancellations keep occurring until a configuration
C is reached in which only blue or only red agents have pebbles (or no agent
has pebbles). If x − y ≥ 2k, then no red agents have pebbles at C, and in runs
from C some blue agent fills its bag and raises its flag w.p.1. The bag remains
full forever, and w.p.1 this agent eventually meets all other agents without any
other interaction happening in-between, after which all flags are up, and stay up
forever. If x − y < 2k, then after C no bag is ever full, and so any flag that
is lowered stays down forever. Moreover, at C the flag of the blue agent that
participated in the last cancellation is down, and this agent brings down the flag
of any agent it meets. So eventually all flags stay down w.p.1.

Second Protocol. Again, agents have bags and flags. The following updates ensure
that the number of pebbles in each bag is always 0 or a power of 2:

– Two red agents. No change.
– One blue and one red agent. If both agents have exactly one pebble, they

throw their pebbles away and lower their flags. Else, if the bag of the blue
agent is full or both flags were up before the interaction, then both agents
raise their flags. Else, both agents lower their flags.

– Two blue agents. If both agents hold the same number of pebbles, then one
of them gives to the other as many pebbles as the other’s bag can still hold;
if one agent has no pebbles, then it receives from the other half its pebbles;
otherwise no pebbles are exchanged. If after this some bag is full, or if both
flags were up before the interaction, then both agents raise their flags, else
they lower them.
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This protocol is also correct. Intuitively, blue agents can distribute pebbles
among them into any combination of powers of 2 (up to 2k). For example, if
k = 2 the blue agents can partition 5 pebbles among them as 1+1+1+1+1 (5
agents get one pebble each); 2+1+1+1; 2+2+1; or 4+1. Randomness ensures
that all these partitions are visited infinitely often, and so that cancellations
keep occurring until a configuration C is reached in which only blue or only red
agents have pebbles (or no agent has pebbles).

If x − y ≥ 2k, then runs from C eventually execute the following sequence
of interactions w.p.1: first, some blue agent fills its bag and raises its flag; this
agent then proceeds to meet all red agents, and then all blue agents whose bag is
not empty; after that, the agent meets each blue agent with empty bag, sharing
its pebbles with it, but only to recover them immediately. After this sequence
all flags are up, and remain so forever. If x− y < 2k, then the argument is as for
the first protocol.

The first protocol is silent. If x ≥ y, then w.p.1 it eventually reaches and
stays in the configuration in which �(x − y)/2k� blue agents have 2k pebbles,
one blue agent has (x−y) mod 2k pebbles each, all other agents have 0 pebbles,
and all flags are up or down, depending on whether x − y ≥ 2k holds or not. If
x ≤ y, the protocol reaches and stays in the configuration in which y − x red
agents have one pebble each, all other agents have 0 pebbles, and all flags are
down. The second protocol needs exponentially fewer states, but is not silent.
Indeed, when x ≥ y the blue agents keep visiting all partitions of x − y forever.

3.3 A New Proof Methodology: Stage Graphs

Finding theoretical and algorithmic answers to the limitations of Peregrine
1.0 took three years. Initially we did not even have a clear picture of these
limitations. They emerged when we started to investigate how to automatically
compute an upper bound on the expected runtime of a protocol. This work,
published in [19], introduced stage graphs, a notion that, after many rewrites,
finally led to the stage graph proof methodology of [15], which we describe now.

Stage graphs reduce correctness to checking that certain assertions are induc-
tive invariants, and that certain ranking functions decrease in appropriate ways.
For standard sequential programs these checks are still undecidable problems,
but for population protocols they turn out to be decidable.

Certificates of Correctness. The reachability graph of a population protocol
has all possible configurations as nodes, and an edge from C to C ′ whenever C ′

is reachable from C in one step. It is an infinite graph, but every configuration
has finitely many descendants. (A consequence of the fact that transitions do
not change the number of agents). We call graphs with this property weakly
finite [29]. An edge of the graph corresponds to executing one transition of the
protocol. The probability of executing a transition at configuration C is the
fraction of the pairs of agents at C that enable the transition. Equipped with
these notions, let us briefly review how to certify different kinds of properties.
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Certifying Safety. Safety properties can be certified using inductive invariants.
An inductive invariant is just a set of configurations closed under the reachability
relation, i.e., if a configuration belongs to the set, then so do all its successors.
Given a set I of initial configurations and some set D of dangerous configurations,
an inductive invariant Int satisfying I ⊆ Int and Int ∩ D = ∅ certifies that D is
not reachable from I.

Certifying Termination. Liveness properties, like termination, can be certified
by ranking functions assigning to each configuration an element of a set with
a well-founded order, like the natural numbers. Termination for all runs of the
program starting at I is certified by an inductive invariant Int containing I,
and a strictly decreasing ranking function over Int , i.e., a ranking function that
strictly decreases whenever the protocol takes a step.

Certifying Termination w.p.1. Termination with probability 1 can also be cer-
tified by an inductive invariant Int containing I, and a ranking function f .
However, the ranking function only needs to be weakly decreasing, meaning that
for every non-terminal configuration C ∈ Int , some configuration C ′ reachable
from C in one or more steps satisfies f(C ′) < f(C). Indeed, if such a function
exists, then for every non-terminal configuration of C ∈ Int there is a positive
probability of taking a path that stays within Int by inductivity, and decreases
the ranking function. Since the reachability graph is weakly finite, this probabil-
ity is bounded from below by some ε > 0 independent of C. So runs reach and
stay at terminal configurations w.p.1.

Certifying Stable Consensus w.p.1. In order to certify that a run starting at a
given set I eventually reaches stable consensus b w.p.1, for some given b ∈ {0, 1},
we need two inductive invariants Int1 , Int2 and a ranking function f satisfying
three properties:

– Int1 contains I (and so, by inductivity, also all configurations reachable from
I) and Int2;

– Int2 contains only b-consensus configurations (and so, by inductivity, any run
reaching Int2 reaches stable consensus); and

– f is weakly decreasing on Int1\Int2, i.e., for every C ∈ Int1\Int2, some C ′

reachable from C in one or more steps satisfies f(C ′) < f(C).

The same argument as above shows that runs starting at C ∈ Int1\Int2 even-
tually reach Int2 w.p.1, and, since Int2 is inductive, get trapped in Int2. Since
Int2 only contains configurations with consensus b, runs starting at I reach stable
consensus b w.p.1.

This proof technique is complete, meaning that if a run starting at I even-
tually reaches stable consensus b w.p.1, then we can always find a suitable Int1
and Int2, and f . Indeed, it suffices to choose Int1 as the set of all configurations
reachable from I; Int2 as the set of all configurations of Int1 with stable consen-
sus b; and f as the function assigning 0 to the configurations of Int2, and 1 to
the configurations of Int1\Int2.
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Stage Graphs. It is useful to split stable consensus proofs into a small steps. For
this one can exhibit a finite, directed, and acyclic graph, whose nodes are pairs
v = (Int , f), where Int is an inductive invariant, and f is a ranking function cer-
tifying that runs starting at Int eventually get trapped in Int1 ∪ . . .∪ Intn w.p.1,
where Int1, . . . , Intn are the invariants of the children of v. Further, the invari-
ants of the bottom nodes of the graph only contain consensus configurations. In
[15] we call these objects stage graphs, and their nodes stages. A stage graph
proves that runs starting at a stage “travel down the graph w.p.1” until they
reach a bottom stage, and so stable consensus. Intuitively, stages correspond to
“milestones” towards stable consensus.

To prove a protocol correct, we produce two stage graphs proving that runs
starting at initial configurations that satisfy the predicate eventually reach stable
consensus 1, and the corresponding property for stable consensus 0. The stage
graphs have an initial stage containing the initial configurations satisfying or not
satisfying the predicate, respectively. Observe that, since stages are inductive the
initial stages also contain every reachable configuration. Let us examine stage
graphs in more detail with the help of a well-known example.

Example 2. Consider the following majority protocol, whose purpose is to decide
if the initial configuration contains more blue agents than red agents. Apart from
red or blue, agents can also be active of passive, yielding four possible states
Q = {B,R,b, r} (uppercase for active agents, lowercase for passive ones). The
initial states are B and R, and so initially all agents are active. The protocol
has four transitions:

t1 : B,R �→ b, r t2 : B, r �→ B,b

t3 : R,b �→ R, r t4 : b, r �→ b,b

The blue states B,b have output 1, and the red states R, r output 0. So in this
case, for better visualization, we call the outputs “blue” and “red”, instead of
1 and 0. The protocol is correct if it satisfies the following property: for every
initial configuration C, i.e., every configuration C satisfying C(b) = C(r) = 0, if
C(B) < C(R), eventually all agents stay forever in the red states {R, r} w.p.1,
and if C(B) ≥ C(R) eventually all agents stay forever in the blue states {B,b}
w.p.1.

Figure 1 shows two stage graphs for the protocol. Stages are given as con-
straints over variables B,R,b, r, describing the number of agents in states
B,R,b, r, respectively. For example, the constraint B < R represents the set of
all configurations C satisfying C(B) < C(R). Ranking functions are described
as functions of B,R,b, r. For example, the function B + R assigns to every
configuration C the number C(B) + C(R).

The stage graph on the left of Fig. 1 proves that runs starting at any config-
uration satisfying B < R reaches stable consensus red with probability 1. The
“human” proof goes as follows: because of transition t1, from any configura-
tion satisfying B < R the protocol eventually reaches a configuration satisfying
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Fig. 1. Stage graphs for the protocol of Example 2

B = 0, and then transition t3 eventually changes all remaining blue agents into
red agents. The stage graph reflects this proof structure:

– The initial stage S1 contains exactly the configurations satisfying B < R. The
ranking function f(B,R,b, r) = B+R certifies that runs starting at a config-
uration of S1 eventually get trapped in S2, the set of configurations satisfying
R > 0 ∧ B = 0, w.p.1. Indeed, consider any configuration C ∈ S1\S2, i.e.,
a configuration satisfying 0 < B < R. Then C enables transition t1. Letting
C

t1−→ C ′ we have

f(C ′) = B′ + R′ = (B − 1) + (R − 1) < B + R = f(C) .

So f is weakly decreasing.
– Similarly, the ranking function g(B,R,b, r) = b certifies that runs starting

at a configuration of S2\S3 eventually get trapped in S3. Since S3 is the
set of configurations without blue agents, we are done. Observe that not
every transition decreases b; actually, transition t4, which is enabled at some
configurations of S2\S3, increases it. However, g is weakly decreasing because
of transition t3.

– Observe that S1,S2,S3 are inductive invariants. For example, if a configura-
tion satisfies B < R, then so does any configuration reached by applying any
of the four transitions of the protocol.

Let us now consider the stage graph on the right. It proves that runs starting
at initial configurations satisfying B ≥ R (that is, at the set of configurations
satisfying B ≥ R and b = 0 = r) reach stable consensus blue w.p.1. The choice
of the initial stage S1 is not completely trivial. S1 must satisfy three conditions:
(a) contain all configurations satisfying B ≥ R and b = 0 = r; (b) contain
only configurations with a majority of blue agents or a tie, because only those
configurations reach stable consensus blue; (c) be inductive. We cannot choose
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S1 = B ≥ R because it violates (b); for example, the configuration given by
B = 1, R = 1, b = 1, r = 2 has a majority of red agents. We cannot choose
S1 = B ≥ R∧b = 0 = r either, because it violates (c). One has to find the right
set between these two.

The “human” proof uses as milestone the configurations at which there are no
agents left in state R. These configurations can be of three kinds, corresponding
to the stages S2, S3, and S4:

– if there are no red agents left (stage S4), then the run has already reached
stable consensus blue;

– if there are agents left in B (stage S2), then any agents in state r are eventually
turned blue by transition t2;

– if there are agents left in b (stage S3), then any agents in state r are eventually
turned blue by transition t4.

Decidability of Correctness. If we are given stage graphs and told they
prove that a protocol correctly decides a given property, we can in principle
check this statement. We need to check that the initial stages contain the ini-
tial configurations satisfying and violating the property, respectively; that all
stages are inductive and all ranking functions weakly decreasing; and that the
bottom stages only contain configurations with the right consensus. However,
since stages are infinite sets, the problem of carrying out such checks might be
undecidable. The main theorem of [15] proves that, if a protocol is correct, then
there exist stage graphs for which the checks reduce to proving satisfiability of
formulas of Presburger arithmetic, which is decidable. More precisely, the the-
orem proves that every correct protocol has Presburger stage graphs, i.e., stage
graphs satisfying the following properties:

– Stages are Presburger sets of configurations, i..e, sets expressible in Presburger
arithmetic.

– Ranking functions are Presburger functions.
A ranking function f is Presburger if there is a formula ϕ(C,n) of Presburger
arithmetic with free variables C and n such that for every configuration C
and every number n we have f(C) = n iff ϕ(C, n) holds.

– Each ranking function f comes equipped with a bound B such that for every
configuration C in the domain of f , some configuration C ′ reachable from C
in at most B steps satisfies f(C ′) < f(C). So, strictly speaking, a Presburger
stage graph consists not only of stages and ranking functions, but also of
bounds for these functions.

Let us now see why checking that a stage graph is Presburger reduces to the
satisfiability problem of Presburger arithmetic. Checking that the initial stages
contain all initial configurations, and that the bottom stages only contain config-
urations with the right consensus is easy, because the sets of initial configurations
and consensuses are Presburger. Let us consider the other two checks.
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Checking that a Stage is Inductive. Since stages are Presburger sets, given a
stage S there is a formula S(C) expressing it. Further, for every transition t it
is easy to construct a formula stept(C,C′) that holds iff C

t−→ C ′. For example,
for our majority protocol we have

stept1(C,C′) := C ≥ (1, 1, 0, 0) ∧ C′ = C + (−1,−1, 1, 1)

So inductivity is expressed by the formula

∀C,C′ :

(

S(C) ∧
∨

t∈T

stept(C,C′)

)

→ S(C′)

where T is the set of transitions of the protocol.

Checking that a Ranking Function is Weakly Decreasing. If the reachability rela-
tion of population protocols would be expressible in Presburger arithmetic, i.e.,
if there were a Presburger formula reach(C,C′) such that reach(C,C ′) holds iff
C

∗−→ C ′, then the weakly-decreasing property for arbitrary ranking functions
would be expressible by the formula

∃C′,n,n′ : reach(C,C′) ∧ ϕf (C,n) ∧ ϕf (C′,n′) ∧ n′ ≥ n

However, this is not the case; it is well known that the reachability relation of
Petri nets may not be Presburger, and the result easily transfers to population
protocols. This is the reason for the restriction to bounded ranking functions.
It is easy to construct by induction a formula reachB(C,C′) that holds if there
exists a configuration C ′ reachable from C in at most B steps. Just take

reach1(C,C′) := C = C′ ∨
∨

t∈T

stept(C,C′)

reachk+1(C,C′) := ∃C′′ : reach1(C,C′′) ∧ reachk(C′′,C′)

Now we can express the weakly decreasing property as above, replacing reach
by reachB .

As we mentioned before, the proof of existence of Presburger stage graphs
is based on deep results on the theory of Petri nets, which can also be applied
to population protocols. The main one is Leroux’s theorem [45], stating the
following. Let X and Y be Presburger sets of configurations of a Petri net,
and let reach(X) be the set of configurations reachable from X. The theorem
states that if reach(X) ∩ Y = ∅ holds, then there exists a Presburger inductive
invariant that certifies this fact, i.e., there exists a Presburger set S closed under
the reachability relation such that reach(X) ⊆ S and S ∩ Y = ∅. Observe
that if reach(X) were always itself a Presburger set, then we could just take
S = reach(X). Intuitively, Leroux’s theorem shows that, while reach(X) is not
always a Presburger set, it is always very close to it (in fact, Leroux’s proof
shows that reach(X) always belongs to a class of sets called almost semilinear).
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3.4 Population Protocols Decide Exactly the Presburger Predicates

Angluin et al. proved in [11] that population protocols compute exactly the
Presburger predicates. The difficult part is to show that population protocols
only compute Presburger predicates. Let us show that this is a simple corollary
of the fact that correctness can always be certified by Presburger stage graphs.

Consider a protocol that decides a predicate, say ϕ. Let I be the set of initial
configurations of the protocol, and let I1 and I0 be a partition of I into the set of
initial configurations that satisfy and do not satisfy ϕ, respectively. Our theorem
shows that there exists a Presburger stage graph with initial stage S such that
I1 ⊆ S. This stage graph proves that a run starting at any configuration of S
eventually reaches stable consensus 1 w.p.1. Since the protocol decides ϕ, no
configuration of I0 belongs to S, i.e., we have S ∩ I0 = ∅. Together with I1 ⊆ S,
we have S ∩ I = I1. But S is Presburger, and so is I (indeed, I is just the set
of configurations with 0 agents in non-initial states). Since Presburger sets are
closed under intersection, I1 is also Presburger.

3.5 Automatic Computation of Stage Graphs

We have developed a practical approach to the computation of stage graphs,
implemented in the tool Peregrine 2.0 [32]. The design of the tool is guided
by the theoretical results on stage graphs, and by the notion of dead transitions.
A transition t is dead at a configuration C if no run starting at C executes t,
and t is dead at a stage S if t is dead at every C ∈ S. Population protocols
designed by humans usually run in phases. Initially, all transitions are alive, and
the end of each phase is marked by the “death” of one or more transitions, i.e.,
by reaching a configuration at which these transitions become dead. Runs of the
protocol keep “killing transitions” until they reach a consensus configuration
whose consensus cannot be broken by any of the transitions still alive. This
consensus is then stable. When applied to the majority protocol, Peregrine
2.0 computes automatically two stage graphs very similar to those of Fig. 1 in a
couple of seconds.

Like Peregrine 1.0, Peregrine 2.0 is built on top of the Z3 constraint
solver. More precisely, it uses Z3 to check satisfiability of formulas of the existen-
tial fragment of Presburger arithmetic. The existential fragment is as expressive
as full Presburger arithmetic, but can be handled much more efficiently.

Given a protocol and a Presburger predicate, Peregrine 2.0 computes two
stage graphs, proving that runs starting at every initial configuration of the pro-
tocol satisfying (resp. violating) the predicate eventually reach stable consensus
1 (resp. stable consensus 0) w.p.1. Let I1 be the set of initial configurations
satisfying the predicate, the other case being similar. Peregrine 2.0 maintains
a worklist of Presburger stages, finitely represented by Presburger formulas.
Initially, the worklist contains only one stage, namely an inductive Presburger
overapproximation PotReach(I1) (for “potentially reachable”) of the configura-
tions reachable from I1. The procedure computing PotReach(I1) is the result of
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many years of research on tractable “relaxations” of the reachability relation of
Petri nets [13,20,34,35,39].

In its main loop, Peregrine 2.0 repeatedly picks a Presburger stage S from
the worklist, and processes it. First, the tool checks whether S is terminal, i.e., if
all its configurations are a 1-consensus. (Since S is inductive by construction, an
affirmative answer implies that all configurations of S are stable 1-consensuses.)
Checking that every configuration of S is a 1-consensus reduces to checking
unsatisfiability of a simple formula. If S is not terminal, the tool attempts to
construct one or more successor stages with strictly more dead transitions than
S. For this, the tool computes a set of eventually dead transitions: transitions
that are alive at one or more configurations of S, but will become dead w.p.1
in any run starting at those configurations. Again, the procedure to compute
U makes heavy use of results of Petri net theory [42], but also of the theory of
well-quasi-orders [1,38].

If Peregrine 2.0 finds a nonempty set of eventually dead transitions, then it
constructs a successor stage of S by overapproximating the configurations reach-
able from S, underapproximating the configurations at which the transitions of
U are dead, and intersecting the results. If Peregrine 2.0 fails to find eventu-
ally dead transitions, it heuristically splits S into different stages and adds them
to the worklist to be processed. Indeed, it could be the case that no transition
becomes eventually dead from every configuration of S, but this no longer holds
after a split; for example, imagine that transition t1 eventually becomes dead
from every configuration of S1 ⊂ S, and another transition t2 becomes eventu-
ally dead from every configuration of S2 = S\S1. In this case, after splitting S
into S1 and S2 the tool can find nonempty sets of eventually dead transitions
for both S1 and S2.

Peregrine 2.0 has successfully proved correct a large variety of protocols,
including majority and approximate majority protocols (Example 2, [19, Ex. 3],
[6,21], [44, coin game], [49]), various flock-of-birds protocol families ([22], [16,
Sect. 3], [23, threshold-n]) for the family of predicates x ≥ k for some constant
k ≥ 0; or protocols for threshold and remainder predicates of [7,16]. For all these
examples Peregrine 2.0 computes stage graphs with a few stages. Currently,
the main limitation of the tool is the size of the systems of linear constraints
involved, which limits the tool to protocols with up to some dozens of states and
some thousands of transitions.

4 Succinct Predicates and State Complexity

After writing our first papers on the verification of population protocols, we
observed that the theory of Petri nets was also relevant for a problem that,
perhaps surprisingly, had not been studied yet: the state complexity of predi-
cates decidable by population protocols. Informally, the state complexity of a
predicate is the minimal number of states of the protocols that decide it, and,
given a number η, one defines the function STATE (η) as the maximum state
state complexity of all predicates of size at most η. But what is the size of a
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predicate? This requires us to fix a representation. Since population protocols
compute exactly the predicates expressible in Presburger arithmetic [11], we
must choose a representation of the Presburger sets. There are three natural
representations: formulas of Presburger arithmetic, quantifier-free formulas of
Presburger arithmetic, and semilinear sets [41]. Semilinear sets are difficult to
parse by humans, and no paper on population protocols uses them to describe
predicates. Full Presburger arithmetic is very succinct, but the complexity of its
satisfiability problem lies between 2-NEXP and 2-EXPSPACE [41], and so it can
lead to results in which a predicate requires very few states, but only because of a
representation that is very difficult to compute. This leaves quantifier-free Pres-
burger arithmetic. This representation also has two advantages of its own. First,
standard predicates for which numerous protocols have been given in the litera-
ture (like majority, threshold, or remainder predicates) are naturally expressed
without quantifiers. Second, the procedures given so far to construct popula-
tion protocols for any given Presburger predicate explicitly use the fact that
Presburger arithmetic has a quantifier elimination procedure, i.e., they first con-
struct protocols for all threshold and remainder predicates, and then show that
the predicates computed by protocols are closed under negation and conjunction.

4.1 State Complexity: Upper Bounds

The first synthesis procedure for the construction of a protocol deciding a given
Presburger predicate was presented in [9]. The procedure is simple and elegant,
but it yields large protocols. Given a quantifier-free Presburger formula ϕ, i.e., a
boolean combination of atomic formulas, the number of states of the synthesized
protocol grows exponentially in both the number of bits of the largest coefficient
of ϕ in absolute value, and the number of atomic formulas. In terms of |ϕ|
(defined as the number of bits needed to write ϕ, with coefficients written in
binary) they have Ω(2poly(|ϕ|)) states. This raises the question whether protocols
with O(poly(|ϕ|)) states, which we call succinct, exist. We gave an affirmative
answer in [14], completing first partial results obtained in [16]. We describe how
to avoid both exponential dependencies.

Handling Large Coefficients. In order to prevent having the exponential depen-
dence on the coefficients, we design protocols for threshold and remainder pred-
icates that, loosely speaking, represent numbers in binary. A very easy case
is described in Example 1: the first predicate for x − y ≥ 2k has Θ(2k) states,
because agents can hold any number of pebbles between 0 and 2k, but the second
has only Θ(k) states, because the number of pebbles is always a power of 2. The
construction of [14] proceeds in two steps: first we construct a succinct protocol
in which the agents are assisted by helpers, additional agents that are not part
of the input, and initially occupy a distinguished state, say H; then we give an
equivalent protocol without helpers. Helpers are similar to leaders, but with the
property (guaranteed by the design of the protocol) that if the protocol works
correctly with a certain number of helpers, then it also works correctly for any
larger number. This property is crucial when dealing with boolean combinations.
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Consider a predicate like 13x − 9y ≥ 5. Protocols for this predicate have two
initial states, for x and y. Since 13 = 23 + 22 + 20, the protocol has a transition
that moves an agent in the initial state for x and two helpers into states 23, 22,
and 20, respectively. (Transitions that move multiple agents to new states in one
single step can be easily simulated by the usual protocol transitions with a very
low cost in terms of states.) Similarly, another transition for each agent in the
initial state for y, the protocol moves this agent and one helper into states −23

and −21. Pairs of agents in states 2l and −2l can “cancel”, meaning that they
both move to state H, and so become helpers ready to continue assisting.

In [14] we show that this idea can be applied to every threshold or remainder
predicate, resulting in a succinct protocol with a fixed number of helpers, cubic
in the size of the predicate, but independent of the size of the input. But how
do we go from this protocol to another one without helpers? For large inputs
in which the number of agents exceeds this number of helpers, we can let each
agent take two jobs: act as a regular agent and a helper. Let us show how to
do for h helpers. In a first phase, the protocol assigns to each agent a number
between 1 and h, ensuring that each number is assigned to at least one agent
(this is the point at which we need a sufficiently large input with at least h
agents). More precisely, at the end of this phase each agent is in a state of the
form (x, i), meaning that the agent initially represented one unit of input for
variable x, and that it has been assigned number i. For this, initially every agent
is placed in state (x, 1). Transitions of the form (x, i), (x, i) �→ (x, i + 1), (x, i)
for every 1 ≤ i ≤ h − 1 guarantee that all but one agent is promoted to (x, 2),
all but one to (x, 3), etc. In other words, at each step one agent is “left behind”,
and so the protocol has at least h helpers.

However, the protocol must be correct for all inputs, not only for those with
at least h agents. In [14] this is solved by designing a second family of protocols
for small inputs, which works in a completely different way. It is then easy to
combine the protocols for large and small inputs into a protocol for all inputs.

Handling Large Boolean Combinations of Atomic Formulas. The second problem
of the synthesis procedure of [9] is the exponential dependence of the number
of states on the number of atomic formulas. The dependence comes from the
fact that, given protocols P1, . . . ,Pk with n1, . . . , nk states deciding formulas
ϕ1, . . . , ϕk, respectively, the synthesis procedure yields a protocol P for deciding
ϕ1 ∧ · · · ∧ ϕk with n1 · n2 · . . . · nk states (and similarly for ϕ1 ∨ · · · ∨ ϕk).
Intuitively, in P each agent carries out k jobs: act as an agent of P1, of P2, . . . ,
and of Pk. The state of an agent is a k-tuple of states of the P1, . . . ,Pk, and
when two agents meet, they compare their states in each protocol Pi, and apply
the corresponding transition. In other words: the new protocol executes all of
P1, . . . ,Pk synchronously.

We need a new succinct construction for a boolean combination of atomic
predicates with O(n1+· · ·+nk) instead of Ω(n1·. . .·nk) states. A naive first idea is
to let P execute P1, . . . ,Pk asynchronously in parallel, instead of synchronously,
and combine the results. However, this does not work. Assume ϕ1, . . . , ϕk have
arity m. In order to compute (ϕ1 ∧ · · · ∧ ϕk)(x), where x = (x1, . . . , xm), the
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protocol P would have to dispatch x agents to (the input states of) each Pi,
giving a total of k · x agents, but the protocol only has the agents of the input,
i.e. x agents. But couldn’t we use (k−1)·x helpers, and then obtain an equivalent
protocol without helpers? No, this does not work either, because in this case the
number of helpers depends on the size of the input, and the technique we used
above only allows us to simulate a fixed number of helpers. The solution is to
use a more sophisticated construction for parallel asynchronous computation.
Again, we need to consider separately the cases of large and small inputs, but
the former is more interesting, and so we only describe protocols for large inputs.

Given an arbitrary threshold or modulo predicate ψ(x) of arity m, it is easy
to construct a predicate ψ̃(y,z) of arity 2m satisfying

ψ̃(y,z) = ψ(ky + z)

For instance, if ψ(x1, x2) = (3x1 − 2x2 > 6) and k = 4, then we can choose
ψ̃(y1, y2, z1, z2) = (12y1 + 3z1 − 8y2 − 2z2 > 6).

Intuitively, the idea is to let P compute ϕ̃1(y,z), . . . , ϕ̃k(y,z) instead of
ϕ1(x), . . . , ϕk(x) for some y and z satisfying x = ky+ z. Then P only needs to
dispatch a total of

k

(
m∑

i=1

yi + zi

)

= k

(
m∑

i=1

yi + (xi − kyi)

)

≤
m∑

i=1

xi + m · (k − 1)2

agents to compute all of ϕ̃1, . . . , ϕ̃k. So P only needs m · (k − 1)2 helpers, a fixed
number independent of the number of agents.

Let us now describe how P computes ϕ̃i(y,z) for some y and z satisfying
x = ky + z. Let P̃1, . . . , P̃k be protocols computing ϕ̃1, . . . , ϕ̃k, let x1, . . . , xm
be the input states of P, and let yj1, . . . , y

j
m and zj1, . . . , z

j
m be the input states

of P̃j for every 1 ≤ j ≤ k. Protocol P repeatedly chooses an index 1 ≤ i ≤ m,
and executes one of these two actions, which can be implemented with some
effort using only binary interactions: take k agents from xi, and dispatch them
to y1i, . . . , y

k
i (one agent to each state); or take one agent from xi and (k − 1)

helpers, and dispatch them to z1i, . . . , z
k
i. If all agents of xi are dispatched for

every 1 ≤ i ≤ m, then we say that the dispatch is correct. Observe that a correct
dispatch satisfies x = ky + z.

The problem is that the dispatch may or may not be correct. Assume, e.g.,
that k = 5 and m = 1. Consider the input x1 = 17, and assume that P has
m · (k − 1)2 = 16 helpers. P may correctly dispatch y1 = 3 agents to each of
y11, . . . , y

1
5 and z1 = 2 to each of z11, . . . , z

1
5; this gives a total of (3 + 2) · 5 = 25

agents, consisting of the 17 agents for the input plus 8 helpers. However, it may
also wrongly dispatch 2 agents to each y1i and 4 agents to each of z1i, with a
total of (2 + 4) · 5 = 30 agents, consisting of 14 input agents plus 16 helpers. In
the second case, each Pj wrongly computes ϕ̃j(2, 4) = ϕj(2 · 5 + 4) = ϕj(14),
instead of the correct value ϕj(17).

To solve this problem we ensure that P can always recall agents already
dispatched to P̃1, . . . , P̃k as long as the dispatch is not yet correct. This allows
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P to “try out” dispatches until it dispatches correctly, which happens eventually
w.p.1. For this we design P so that the atomic protocols P̃1, . . . , P̃k can work
with agents that arrive to the initial states over time (dynamic initialization),
and can always return to their initial states and go back to P, unless the dispatch
is correct (reversibility). To ensure that P stops recalling agents after a correct
dispatch, we modify the dispatch transitions so that they become disabled when
x1, . . . , xm are not populated.

4.2 State Complexity: Lower Bounds

In [16,24] we have also studied the problem of obtaining lower bounds for
STATE (η). This question turns out be surprisingly hard, and so we have focused
on obtain lower bounds for the state complexity of a particularly simple family
of predicates, namely those of of the form x ≥ k. This amounts to finding a lower
bound for the number n of states needed to decide x ≥ k, or, equivalently, an
upper bound for the largest number k such that x ≥ k can be decided by a pro-
tocol with n states. We prefer the latter formulation due to its analogy with the
busy beaver function. Recall that the busy beaver function assigns to a number
n the largest η such that a Turing machine with at most n states, started on
a blank tape, writes η consecutive 1s on the tape and halts. Analogously, the
busy beaver function for population protocols assigns to n the largest η such
that a population protocol with at most n states decides the predicate x ≥ η.
Intuitively, η is the largest number “recognizable” by protocols with at most n
states.

We have obtained results for protocols with and without leaders. It is known
that the time complexity of predicates is different for population protocols with
and without leaders: While the first can decide any Presburger predicate in poly-
logarithmic parallel time [10], the latter need linear parallel time for majority
[4]. Is the same true for state complexity? The question is still open, but we have
made some progress.

Let BB ,BBL : N → N be the busy beaver functions for leaderless protocols
and for protocols with leaders, respectively. A protocol similar to the second
one of Example 1, only simpler, decides x ≥ 2n with O(n) states, showing
that BB(n) ∈ Ω(2n). In [16] we prove BBL(n) ∈ Ω(22

n

). This result is quite
surprising: for certain numbers k, there are population protocols that decide
x ≥ k even though an agent does not have enough memory to index even one
bit of k. The proof follows from a theorem by Mayr and Meyer on presentations
of commutative semigroups [48], which can be reformulated in protocol terms
as follows: for every n ≥ 1, there exists a protocol with O(n) states and three
distinguished states start , end , counter such that from an initial configuration
that puts one agent in start and k agents in counter , respectively, it is possible
to reach a configuration putting at least one agent in state end if and only if
k ≥ 22

n

. By adding transitions that allow an agent in state end to attract all
other agents to end , it is easy to obtain a protocol deciding x ≥ 22

n

.
Can we also obtain upper bounds on BB(n) and BBL(n), and so lower bounds

on the state complexity? After some years investigating this question without
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progress, we have recently made a breakthrough [24]. Our first result is that
BBL(n) is bounded by a variant of the Ackermann function. The result is proved
by means of a pumping technique. We first show that if a protocol with n states
answers 0 for two inputs a < b satisfying certain conditions, then it also answers
0 for every input a+λ(b−a), and so the protocol cannot compute any predicate
of the form x ≥ η. Then we find a function F (n) such that if a protocol with
at most n states rejects all inputs with at most F (n) agents, then there are
inputs a < b < F (n) satisfying the conditions. The function is obtained using
results from the theory of controlled sequences, an area of mathematics related
to well-quasi-orders [2,12,37].

An Ackermannian upper bound may seem extremely weak. However, it fol-
lows from recent results in the theory of Petri nets that functions similar to
BBL(n) have an Ackermannian lower bound. To give an example, say that a
protocol weakly decides the predicate x ≥ k if the following holds: for every
initial configuration with at least k agents there exists a run leading to a config-
uration with consensus 1; for every initial configuration with less than k agents,
no such configuration is reachable. Then the largest k such that x ≥ k is weakly
computable with n states is an Ackermannian function of n.

The main result of [24] is a triple exponential bound on BB(n). That is,
leaderless protocols with at most n states can recognize numbers at most triple
exponential in n. The proof technique is again a pumping lemma. The key prop-
erty of leaderless protocols that we use to obtain an elementary bound is that,
loosely speaking, the set of initial configurations of a leaderless protocol is closed
under addition. To understand this, observe that initial configurations of a lead-
erless protocol deciding x ≥ k put k agents in the initial state and 0 agents in
all others. Therefore, the sum of two initial configurations with k1 and k2 agents
is the initial configuration with k1 + k2 agents. This does no longer hold for
protocols with a leader, whose initial configurations also put one agent in the
initial state of the leader; in this case, the sum of two initial configurations with
a leader is a configuration with two leaders.

In an unpublished result obtained together with Jérôme Leroux, we have
improved the bound for leaderless protocols to double exponential; we conjecture
that the optimal upper bound is single exponential, matching the lower bound.
But currently we do not even have a line of attack to obtain an elementary bound
for protocols with a leader.

5 Conclusions and Future Work

We have surveyed our recent work on the verification of population protocols,
and on their state complexity. This work has produced Peregrine, the first
automatic tool able to verify correctness of protocols for all inputs. In the veri-
fication area, there are many open directions for future work:

– Protocols are often designed parametrically, for example, one gives a con-
struction that yields a protocol deciding ax− by ≥ c for arbitrary coefficients
a, b, c. Our methods cannot yet prove that the construction is correct for every
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a, b, c. It is easy to show that verifying infinite families of protocols is an unde-
cidable problem, even for very restricted cases, but it should be possible to
design procedures that perform well in practice.

– As mentioned in the introduction, in the last years families of protocols that
decide one single predicate, but where the number of states increases with
the number of agents, have been intensely investigated, see e.g. [5,27]. Again,
we do not have any verification technique for them.

– The work initiated in [19] on the automatic verification of the expected run-
time of a protocol is still in its infancy.

Our work on the state complexity problem is tightly linked to difficult prob-
lems of the theory of Petri nets. The obvious future direction is closing the
current gaps between the upper and lower bounds for the busy beaver functions
in the leaderless case, and the case with leaders. We consider this a fundamental
problem in the theory of population protocols. Intuitively, it measures quantita-
tively the relation between the microscopic scale of agents and the macroscopic
scale of the predicates they decide.
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Abstract. Valence systems are an abstract model of computation that
consists of a finite-state control and some storage mechanism. In contrast
to traditional models, the storage mechanism is not fixed, but given as
a parameter. This allows us to precisely state questions like: For which
storage mechanisms is the reachability problem decidable?

This survey reports on recent results that aim to understand the
impact of the storage mechanism on decidability and complexity of sev-
eral variants of the reachability problem. The considered problems are
configuration reachability, model-checking first-order logic with reach-
ability, and reachability under bounded context switching and scope-
boundedness.

1 Introduction

Reachability problems play a central role in automata theory, particularly in
applications to verification. The most prominent example is safety verification,
where we have some system model and we want to establish algorithmically that
in this model it is not possible to reach certain undesirable configurations.

Therefore, during the last few decades, an extensive research effort has aimed
to understand, for various kinds of abstract system models, whether reachability
is decidable and with which computational complexity. Many of the results in this
space consider abstract system models that consist of some finite-state control
and some storage mechanism. This is because when we want to verify a particular
program, the finite-state control allows us to describe the control flow of the
program, whereas the storage mechanism can be used to store memory contents.

Well-known examples of such models are vector addition systems with states
(VASS) and pushdown systems. In a VASS, the storage mechanism consists of
several N-counters: These assume values in the natural numbers that can be
incremented and decremented (but not tested for zero). In a pushdown sys-
tem, the storage consists of a stack that can be manipulated with push and pop
instructions. In addition to these basic types of storage mechanisms, there exists
a rich variety of extensions both of N-counters (resets [7,11], transfers [11], lossi-
ness [24], just to name a few) and of pushdowns (e.g. higher-order stacks [28],
additional counters [15,21], etc.).
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A large part of the questions studied in this space are of the following form:
For a concrete storage mechanism, is a certain reachability problem decidable,
and if so, what is the complexity?

This survey presents a line of work that takes a slightly different perspective.
Instead of studying concrete storage mechanisms, can we obtain general insights
into how the structure of the storage mechanism impacts decidability and com-
plexity of reachability problems? To this end, one considers an abstract model
in which the storage mechanism appears as a parameter. Then, one can ask: For
which storage mechanism is a particular problem decidable, tractable, etc.?

A Too General Question. To set the stage, we start with a question that is
likely too general to answer. Suppose we have a storage mechanism whose (finite)
set of instructions is an alphabet X. The set of all sequences of instructions that
bring the storage into an accepting configurations is a language L ⊆ X∗. We
consider the following decision problem REACH(L):

Given A regular language R ⊆ X∗.
Question Is R ∩ L non-empty?

For example, suppose Xd = {a1, . . . , ad, ā1, . . . , ād} and let Vd ⊆ X∗
d be the set

of all words where for every i: (1) there are just as many ai as āi and (2) in
every prefix, there are at least as many ai as there are āi. Then, REACH(Vd) is
just the reachability problem in d-dimensional VASS.

Another example is the language d2 ⊆ X2, where w ∈ Pd if and only if w
can be obtained from the empty word by repeatedly inserting the words aiāi

with i ∈ {1, . . . , d}. Then, REACH(Pd) is just the reachability problem (of the
empty-stack configuration) for pushdown systems with d stack symbols.

Furthermore, suppose Zd ⊆ X∗
d is the set of words that contain, for each i,

the same number of ai as āi. Then REACH(Zd) is the reachability problem for
automata with d separate Z-counters, which can assume values in Z and have
to be zero in the end. This corresponds to the model of Z-VASS [13] (which are
also known as blind counter automata [12] and are in most contexts equivalent
to reversal bounded counter machines [16]).

This raises the following question:

Question 1.1. For which languages L is REACH(L) decidable?

Of course, understanding this would be extremely useful for designing
abstract system models for reasoning about programs. Unfortunately, Ques-
tion 1.1 currently appears out of reach. In fact, it even seems unlikely that
there exists an illuminating characterization.

However, there is a more restricted setting that still covers many storage
mechanisms from the literature and, as it turned out during the last few years,
several variants of the reachability problem admit simple characterizations in
terms of decidability and complexity.
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(a) (b) (c) (d) (e)

Fig. 1. Example graphs

Graphs. In this setting, the storage mechanism is defined by an undirected
graph Γ = (V,E) where self-loops are allowed. Hence, V is a finite set of vertices
and E ⊆ {e ⊆ V | 1 ≤ |e| ≤ 2} is its set of edges. A vertex v is looped if {v} ∈ E,
otherwise it is unlooped. We say that Γ is a clique if there is an edge between any
two distinct vertices. A graph is looped (unlooped) if all its vertices are looped
(unlooped). A graph Γ0 = (V0, E0) is an induced subgraph of Γ1 = (V1, E1) if Γ0

is isomorphic to a restriction of Γ1 onto some vertex set. Formally, this means
there there is an injective map f : V0 → V1 such that for u, v ∈ V0, we have
{f(u), f(v)} ∈ E1 if and only if {u, v} ∈ E0.

To a graph Γ , we associate the alphabet XΓ = {v, v̄ | v ∈ V }, which we think
of as a set of instructions as above. Intuitively, v̄ will be the inverse instruction
of v, as in the examples above. Moreover, the edges of Γ tell us whether the
respective instructions should commute. Thus, we obtain a rewriting relation �
on the set of words X∗

Γ :

rvv̄s � rs for r, s ∈ X∗
Γ and v ∈ V , and (R1)

rxys � ryxs for r, s ∈ X∗
Γ and x ∈ {u, ū}, y ∈ {v, v̄}, {u, v} ∈ E (R2)

In particular, if v has a self-loop ({v} ∈ E), then we have rv̄vs � rvv̄s � rs.
This allows us to define a language that can play a similar role as the lan-

guages above:

L(Γ ) = {w ∈ X∗
Γ | w

∗� ε},

where ε ∈ X∗
Γ is the empty word and

∗� is the reflexive transitive closure of �.

Examples. Let us see how to realize storage mechanisms with graphs. If Γ is
one of the graphs from Figs. 1a to 1c, then, up to renaming letters, L(Γ ) is V3,
P3, or Z3 from above.

If Γ is the graph from Fig. 1d, then L(Γ ) is the language corresponding to
two pushdowns. This is because the vertices on the left together behave like one
pushdown; the same is true for the two vertices on the right. Moreover, Γ has an
edge from any left vertex to any right vertex. Hence, these two pushdowns can
be used independently. It is well-known that such systems can simulate Turing
machines, so that the reachability problem is undecidable.

Let Γ be the graph from Fig. 1e. The two vertices on the left together real-
ize a pushdown (with two stack symbols). The two vertices on the right are
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adjacent and thus behave like two N-counters. Furthermore, as in Fig. 1d, there
are edges everywhere from left to right. Thus, Γ realizes a storage consisting of
one pushdown and two N-counters. Thus, we have a two-dimensional pushdown
VASS [21].

Suppose Γ is the direct product of graphs Γ1 and Γ2. This means, Γ is
obtained from the disjoint union of Γ1 and Γ2 by adding an edge from every
vertex of Γ1 to every vertex of Γ2. Then Γ realizes a storage mechanism that
consists of both the storage mechanisms of Γ1 and Γ2, and they can be used inde-
pendently. An instance of this which will be used frequently is that of adding an
N-counter or adding a Z-counter. This means, we take the direct product with
an unlooped (resp. looped) vertex.

If Γ is obtained from Γ0 by adding an isolated vertex v with no self-loop, then
Γ behaves like a stack whose entries are configurations of the storage mechanism
of Γ0. Hence, with Γ , we have the instructions of Γ0, which act on the top-most
entry in the stack. Moreover, using v, we can start a new stack entry. With v̄,
we pop the top-most entry. The latter can only succeed if the top-most entry
(which is a configuration of Γ0) is final according to Γ0. Thus, we think of the
storage mechanism of Γ as obtained from that of Γ0 by building stacks.

Valence Systems. Given a graph Γ = (V,E), we can now define a formal
machine model that uses Γ as its storage mechanism. A valence system over Γ
is a pair A = (Q,T ), where Q is a finite set of states and T ⊆ Q × XΓ × Q
is its set of transitions. A pre-configuration of A is a pair (q, w) with q ∈ Q
and w ∈ X∗

Γ . Then (q, w) can reach (q′, w′) in one step if there is a transition
(q, u, q′) with w′ = wu. In this case, we write (q, w) → (q, w′).

The reachability problem for valence systems over Γ , short REACH(Γ ) is the
following:

Given A valence system A = (Q,T ) over Γ and states s, t ∈ Q

Question Is there some w ∈ X∗
Γ such that (s, ε) ∗−→ (t, w) with w

∗� ε?

Now clearly, REACH(Γ ) is essentially the same as REACH(L(Γ )). This allows us
to formulate a more manageable version of Question 1.1:

Question 1.2. For which graphs Γ is REACH(Γ ) decidable?

This question is clearly much more restricted in scope than Question 1.1. There-
fore, there is hope that we can understand this class of graphs. And in fact,
while Question 1.2 is still not settled, at least a partial answer is available (see
Theorem 2.1).

Outline. This survey reports on results about variations of Question 1.2.
In other words, we focus on decidability and complexity results concerning
reachability-type problems for valence systems. In Sect. 2, we consider Ques-
tion 1.2 itself. In Sect. 3, we turn to the complexity of REACH(Γ ) depending on
Γ . In Sect. 4, we look at a harder problem, namely model-checking first-order
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logic with a reachability predicate for the configuration space of a valence sys-
tem. Finally, in Sects. 5 and 6, we consider underapproximations of the set of all
runs in which reachability is decidable for every Γ .

Historical Notes. Some remarks on the history of the notion of valence sys-
tems are in order. The origin of this concept is the idea to study finite automata
in which each edge is labeled (in addition to some input) by an element of a
(typically infinite) monoid. This type of model has been studied under various
names by several authors, either defining acceptance by producing the identity
element of the monoid [10,17–19,26] or a prescribed target set [33]. The earliest
(although implicit) use of this is probably the Chomsky-Schützenberger theo-
rem, stating that every context-free language can be obtained using a rational
transduction from the word problem of the free group [2]. The term valence
automaton (and thus valence system) originates from the theory of regulated
rewriting (see [5] for a general overview), where it was first used for valence
grammars [29], in which each grammar rule has an associated monoid element.
Afterwards, the term was also applied to automata (e.g. in [10]).

The graphs Γ above, together with their interpretation as storage mecha-
nisms, were introduced in [36] and used there to define monoids, which were
then used in valence automata. For this survey, it turned out that avoiding the
terminology of monoids simplified the exposition.

2 Reachability

We begin with the partial answer that exists for Question 1.2. As we have seen
in the examples above (Fig. 1e), there are graphs that realize the storage mech-
anism of a pushdown with additional N-counters. Systems with such a storage
are called pushdown VASS (PVASS) in the literature [8,21]. Whether reach-
ability is decidable for these is a long-standing open problem in the area of
infinite-state systems [8,21]. In fact, even for PVASS with a single counter (i.e.
one-dimensional PVASS), the decidability status is open. Thus, determining the
decidability status of REACH for the graph would amount to a solu-
tion to this problem. Aside from this, there are two other graphs that realize a
one-dimensional PVASS: We say that Γ is a PVASS-graph if it is isomorphic to
one of the following three graphs:

The fact that the left and the middle graph represent a (one-dimensional) PVASS
can be seen as for Fig. 1e. For the graph on the right, this follows from the
classical Chomsky-Schützenberger theorem [2,18].

We say that the graph Γ is PVASS-free if it has no PVASS-graph as an
induced subgraph. Observe that a graph Γ is PVASS-free if and only if in the
neighborhood of each unlooped vertex, any two vertices are adjacent.

To state the result, we need a further notion. We define the class of transitive
forests inductively. First, every isolated vertex is a transitive forest. Moreover,
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if Γ1 and Γ2 are transitive forests, then (i) the disjoint union of Γ1 and Γ2 is a
transitive forest and (ii) if Γ is the graph obtained by adding one vertex v to Γ1

so that v is adjacent to every vertex in Γ1, then Γ is also a transitive forest.
We are now ready to state the partial answer to Question 1.2.

Theorem 2.1 ([38]). Let Γ be PVASS-free. Then REACH(Γ ) is decidable if and
only if Γ is a transitive forest.

By SC±, we denote the class of PVASS-free transitive forests. Intuitively, the
storage mechanisms in SC± are obtained as follows. In the simplest case, they
are unlooped cliques (hence a set of N-counters). In addition to this, we can
build stacks and add Z-counters. In this notation, “±” stands for the two types
of counters: We start with N-counters (+), but after building stacks once, we
can then only add Z-counters (−).

In contrast, let SC+ consist of all graphs that are transitive forests and con-
tain a PVASS-graph. One can show that if Γ is not a transitive forest, then
REACH(Γ ) is undecidable [38]. Thus, SC+ is the class of graphs for which
decidability remains open. Intuitively, the corresponding storage mechanisms are
obtained by starting with a set of N-counters and then alternating (1) building
stacks and (2) adding N-counters.

Open Problem 2.2. Is REACH(Γ ) decidable for every Γ in SC+?

Of course, the simplest case of Open Problem 2.2 is the reachability problem in
one-dimensional PVASS.

3 Complexity

Let us now turn to the complexity of REACH(Γ ). What we know so far is confined
to the class SC−, which consists of all graphs in SC± that do not have as
an induced subgraph. Hence, intuitively, the corresponding storage mechanisms
are obtained by starting from a pushdown and then alternating (1) adding Z-
counters and (2) building stacks. (Thus, they are the same as SC±, but all the
counters are Z-counters, which explains the “−”). This is an important subclass,
because according to a characterization in [1], these are exactly those graphs for
which valence automata (i.e. valence systems that can read input and accept
languages) have semilinear Parikh images.

Among the graphs in SC−, the complexity landscape is understood.

Theorem 3.1 ([14]). Let Γ be a graph in SC−. Then REACH(Γ ) is

1. NL-complete if Γ is a looped clique.
2. P-complete if Γ is a disjoint union of at least two cliques, and
3. NP-complete otherwise.

Strictly speaking, the proof in [14] is only about the case where Γ has a self-
loop on every vertex (in this case, REACH(Γ ) is the rational subset membership
problem for graph groups, see also [22]). However, the proof works essentially the
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same for all of SC−. Moreover, it follows from [14] that if the graph Γ is part of
the input, then reachability is NEXP-complete. In order to show these results, the
paper [14] introduces an extension of existential Presburger arithmetic inspired
by [30] and determines its complexity.

However, the complexity of reachability for the graphs in SC± is far from
being understood.

Open Problem 3.2. Describe the complexity landscape of REACH for the
graphs in SC±.

Until a few years ago, Open Problem 3.2 seemed out of reach. However, given
the recent stunning resolution of the complexity of reachability in VASS [3,4,20]
and the fact that decidability for SC± is shown in [38] using a reduction to
reachability in VASS with nested zero tests, there is hope to obtain new insights
into Open Problem 3.2.

4 First-Order Logic with Reachability

We now consider a decision problem that is computationally significantly harder
than traditional reachability. Instead of asking whether a particular configura-
tion can reach another, we want to decide a given first-order sentence that can
mention configurations and express reachability (either in a single step or in a
finite run).

Configuration Graphs of Valence Systems. Let us make this precise. With
a valence system A = (Q,T ) over a graph Γ = (V,E) we define its configuration
space as follows. Its universe consists of the configurations of A, which we define
next. It is not appropriate to define pre-configurations (recall that those are pairs
(q, w) ∈ Q×X∗

Γ ) as elements of the configuration space. This is because, in all the
examples mentioned above, the configurations of the realized storage mechanism
correspond rather to certain equivalence classes of words in X∗

Γ . For example, if
Γ is the graph in Fig. 1a, the set of configurations should be Q×N×N×N and if
Γ is the graph in Fig. 1b with vertices a, b, c, then the configuration graph should
be Q × {a, b, c}∗. In general, the equivalence relation is given by the rewriting
relation �. We define the equivalence relation ≡ to be the reflexive, symmetric,
and transitive closure of �. It is not difficult to show that then we have w ≡ ε
if and only if w

∗� ε (this is because � is terminating and confluent, see [37,
Equation (8.2)]). The equivalence class of w ∈ X∗

Γ is denoted [w]. We shall define
configurations of A as certain equivalence classes with respect to ≡.

Recall that in a valence system, we consider a run arriving in (q, w) to be
valid if w

∗� ε. Therefore, we define an equivalence class [u]≡ is admissible (for
configurations) if there is some v ∈ X∗

Γ with uv
∗� ε (equivalently, [uv] = [ε]).

This leads to the following definition.
A configuration of A is a pair (q, [w]) with q ∈ Q and w ∈ X∗

Γ such that w is
admissible. Observe that in all the examples given above, this definition yields
a notion of configuration that fits with the realized storage mechanism.
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On configurations, it is now natural to define a step relation: Whenever we
have (q, w) → (q′, w′), then we also have (q, [w]) → (q′, [w′]).

The Logical Structure. With the valence system A, we associate the following
logical structure S(A). Its universe is the set of configurations of A. Moreover,
it has the following predicates:

1. For each configuration, it has a constant.
2. For each q ∈ Q, there is a unary predicate stateq(·), which is true if the

finite-state component of a configuration is q.
3. A binary one-step relation step(·, ·), which states that one configuration can

reach the other in exactly one step.
4. A binary reachability relation reach(·, ·), with expresses reachability with an

arbitrary run.

We are now interested in the model checking problem of first-order sentences
over the structure S(A):

Given A first-order formula ϕ over the above signature.
Question Does ϕ hold in S(A)?

Since this problem consists in deciding first-order sentences that involve reach-
ability, we call this problem briefly FO[R] for Γ .

In order to state the result on decidability of FO[R], we need some terminology
on graphs. We call a graph an N

2-triangle if it is isomorphic to one of the
following two graphs:

In other words, the graph realizes either (1) three N-counters or (2) two N-
counters and one Z-counter. We say that Γ is N

2-triangle-free if it does not
contain an N

2-triangle as an induced subgraph. We are now ready to state the
result about FO[R].

Theorem 4.1 ([6]). Let Γ be a graph. Then FO[R] is decidable for Γ if and
only if Γ is a disjoint union of N2-triangle-free cliques.

5 Underapproximation I: Bounded Context Switching

A well-known example of a storage mechanism for which reachability is unde-
cidable is a multipushdown: Two or more stacks that can be used independently.
Here, undecidability is unfortunate, because this problem is equivalent to decid-
ing safety properties of multithreaded recursive programs with shared mem-
ory [32]. However, it turned out that many bugs in such programs already man-
ifest in runs where the program switches between its threads a small number of
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times [23,27]. Checking whether such runs exist is called context-bounded model-
checking [31]. On the side of multipushdown systems, this corresponds to a small
number of switches between its stacks. Moreover, given a small bound k ≥ 0, it
is NP-complete to decide if a multipushdown system has a run reaching a given
configuration with at most k switches between its stacks [9,31].

Given the sharp drop in complexity from undecidable to NP, it would be
useful to have a more abstract notion of bounded context switching that also
applies to other storage mechanisms. Such a concept was developed in [25].

Contexts. To define this concept, we begin with the notion of contexts. In the
case of a multipushdown system, a context is a segment of the run in which only
one stack is used. Observe that a multipushdown consisting of r stacks, with s
stack letters each, corresponds to a graph MPr,s, which is a direct product of
r separate unlooped anticliques, each having s vertices. Here, an anticlique is a
graph in which no two distinct vertices have an edge. Thus, if Γ = MPr,s, then
a context corresponds to a word over XΓ where the occurring vertices form an
anti-clique. This motivates the following definition.

Let Γ be any graph and w ∈ X∗
Γ . Then the factorization of w into its contexts

is obtained as follows. Take the maximal prefix of w whose set of vertices forms
an anticlique. This prefix is the first (left-most) context in the factorization.
Then, recursively factorize the remaining suffix of w. By ‖w‖, we denote the
number of contexts in its context factorization.

Context-Bounded Reachability. Given the notion of contexts, we can now
define the problem of context-bounded reachability for valence systems over Γ ,
which we denote by BCREACH(Γ ):

Given A valence system A = (Q,T ), s, t ∈ Q, and k ≥ 0 (encoded in unary)
Question Is there a w ∈ X∗

Γ such that (s, ε) ∗−→ (t, w) with w
∗� ε and ‖w‖ ≤ k?

It turns out that this notion of context bounding yields decidability, and even
membership in NP, for every graph Γ .

Theorem 5.1 ([25]). For every graph Γ , BCREACH(Γ ) is in NP. If Γ is a
transitive forest, then BCREACH(Γ ) is in P.

However, the exact set of graphs for which BCREACH is in P remains unclear:

Open Problem 5.2. Describe the complexity landscape of BCREACH. In par-
ticular, what is the complexity of BCREACH for the graph ?

As mentioned in [25], if one could show NP-hardness for the graph
and every version of it obtained by placing self-loops, then this

would yield the complete landscape: This would imply that BCREACH(Γ ) is in
P for transitive forests and NP-complete otherwise.
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6 Underapproximation II: Scope Boundedness

Aside from bounding the number of contexts, there exist a number of other
underapproximations of the set of runs of multipushdown systems that lead to
decidable reachability. One such underapproximation that covers a relatively
large portion of the set of all runs is obtained by scope-bounding [35]. The idea
is, instead of bounding the number of all contexts, we just bound the number
of contexts between each push instruction and its matching pop. A run of a
multipushdown system is said to be k-scoped if every letter pushed onto some
stack i will be popped within at most k visits to the same stack i. Thus a run with
at most k contexts is also k-scoped. However, the price of this higher coverage
is that the complexity of k-scoped reachability goes up to PSPACE [35].

As in the case of bounded context switching, this motivates the study of
analogues of scope boundedness for more general storage mechanisms. In [34],
such an analogue was found.

Weak Dependence Classes. In the notion of scope-boundedness, we first need
an analogue of two contexts “belonging to the same stack”. This is achieved by
the notion of weak dependency. Observe that in the case of multipushdowns, i.e.
graphs MPr,s, two instructions belong to the same pushdown if they belong to
the same anticlique. However, “the same anticlique” may not be well-defined in
a general graph: It is possible that for vertices u, v, w, there is an edge from u
to v and from v to w, but no edge from u to w. In that case, do u and w to the
same anticlique?

Instead, we generalize this in a different way. Note that two vertices in MPr,s

belong to the same stack if and only if there is a path between them in the
complement graph of MPr,s. This also makes sense in the general case: We say
that vertices u, v of Γ are weakly dependent if there is a path between u and
v in the complement of Γ . Here, the complement of Γ is the graph with the
same set of vertices, but the opposite set of edges. Clearly, weak dependency is
an equivalence relation. Moreover, each context in a word w ∈ X∗

Γ belongs to a
well-defined weak dependence class.

Greedy Reductions. The next step is to find a generalization of “matching
push and pop instructions”. It is natural to define this based on which letters
cancel in a reduction w

∗� ε. However, to avoid some corner cases in the algo-
rithms, we define this with respect to a particular type of reduction. Instead of
the rules in (R1) and (R2), consider the slightly different relation defined by

rvv̄s ↪→ rs for r, s ∈ X∗
Γ and v ∈ V, and (R1′)

rv̄vs ↪→ rs for r, s ∈ X∗
Γ and v ∈ V, {v} ∈ E, and (R2′)

rxys ↪→ ryxs for r, s ∈ X∗
Γ and x ∈ {u, ū}, y ∈ {v, v̄}, {u, v} ∈ E (R3′)

Then of course, we have w
∗

↪→ ε if and only if w
∗� ε. A word w ∈ X∗

Γ

is irreducible if none of the rules (R1) and (R2) (equivalently, none of the rules
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(R1′) to (R3′)) are applicable to w. A reduction of w is a sequence of applications
of (R1′) to (R3′) to obtain ε. We call this reduction greedy if it begins with a
sequence of applications of (R1′) and (R2′) that turn each each context of w
into an irreducible word. Since the relation � and thus ↪→ is confluent, we have
w

∗� ε if and only if w admits a greedy reduction.

Matching Relation. A reduction π : w
∗

↪→ ε naturally defines a matching
relation between positions of w: Two positions are related if they are cancelled
using (R3′) (after possibly being transported using (R1′) and (R2′)). This binary
relation on the set of positions of w, induced by π, is called the matching relation.

Scope Boundedness. We are now ready to formulate the notion of scope
boundedness. We say that w ∈ X∗

Γ is k-scoped if there exists a greedy reduction
π : w

∗
↪→ ε such that: for any two matched positions i and j, there are at most

k − 1 contexts strictly between the contexts of i and j that belong to the same
weak dependence class as i and j. It is an easy exercise to observe that in the
special case Γ = MPr,s, this notion coincides exactly with the original notion of
scope boundedness.

This leads to the problem of bounded scope reachability for valence systems
over Γ , briefly BSREACH(Γ ):

Given A valence system A = (Q,T ), s, t ∈ Q, and k ≥ 0 (encoded in unary)
Question Is there a k-scoped w ∈ X∗

Γ with (s, ε) ∗−→ (t, w) and w
∗� ε?

We will also consider the problem BSREACHk(Γ ), where k is not part of the
input, but fixed.

This notion of scope-boundedness does indeed yield decidable reachability
for every graph. Moreover, in contrast to the case of bounded contexts, the
complexity landscape is well understood.

Theorem 6.1 ([34]). Let Γ be a graph. Then BSREACH(Γ ) is

1. NL-complete if Γ has at most one vertex,
2. P-complete if Γ is an anti-clique with ≥ 2 vertices,
3. PSPACE-complete otherwise.

Note that the complexity of BSREACH is always PSPACE, except for those
cases where scope-bounded reachability is merely classical reachability in one-
counter machines (namely, the first case above) or in pushdown automata (the
second case). Therefore, the paper [34] also studies the case of fixed k.

Theorem 6.2 ([34]). Let Γ be a graph and k ≥ 1. Then BSREACHk(Γ ) is

1. NL-complete if Γ is a clique, and
2. P-complete otherwise.
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Since the complexity is well-understood for individual graphs, the paper [34] also
studies the case where Γ is part of the input, and drawn from a class of graphs.
It then gives partial results on the complexity landscape in terms of the possible
graph classes. In this setting, the are many cases where the complexity is not
understood yet. We refer to [34] for details.
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Abstract. Colored Petri nets offer a compact and user friendly repre-
sentation of the traditional P/T nets and colored nets with finite color
ranges can be unfolded into the underlying P/T nets, however, at the
expense of an exponential explosion in size. We present two novel tech-
niques based on static analyses in order to reduce the size of unfolded
colored nets. The first method identifies colors that behave equivalently
and groups them into equivalence classes, potentially reducing the num-
ber of used colors. The second method overapproximates the sets of colors
that can appear in places and excludes colors that can never be present
in a given place. Both methods are complementary and the combined
approach allows us to significantly reduce the size of multiple colored
Petri nets from the Model Checking Contest benchmark. We compare
the performance of our unfolder with state-of-the-art techniques imple-
mented in the tools MCC, Spike and ITS-Tools, and while our approach
remains competitive w.r.t. unfolding time, it outperforms the existing
approaches both in the size of unfolded nets as well as in the number of
answered model checking queries from the 2020 Model Checking Contest.

1 Introduction

Petri nets [22], also known as P/T nets, are a powerful modelling formalism
supported by a rich family of verification techniques [20]. However, P/T nets
often become too large and incomprehensible for humans to read. Therefore,
colored Petri nets (CPN) [14] were introduced to allow for high level modelling
of distributed systems. In CPNs, each place is assigned a color domain and each
token in that place has a color from its domain. Arcs have expressions that
define what colored tokens to consume or produce, and transitions have guard
expressions that restrict transition enabledness.

A CPN can be translated into an equivalent P/T net, provided that every
color domain is finite, through a process called unfolding. This allows us to use
efficient verification tools already developed for P/T nets. When unfolding a
CPN, each place is unfolded into a new place for each color that a token can
take in that place; a naive approach is to create a new place for each color in the
color domain of the place. Transitions are unfolded such that each binding of
variables to colors, satisfying the guard, is unfolded into a new transition copy in
c© Springer Nature Switzerland AG 2021
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the unfolded net. The size of an unfolded net can be exponentially larger than the
colored net and the unfolding process therefore requires optimizations in order to
finish in realistic time and memory. Several types of improvements were proposed
that analyse transition guards and arc expressions [6,19,23]. However, even with
these optimizations, there still exist CPNs that cannot be unfolded. As an exam-
ple, the largest instances of the nets FamilyReunion [5,12] and DrinkVending-
Machine [11,21] from the Model Checking Contest [18] have not been unfolded
yet.

We propose two novel methods for statically analysing a CPN to reduce the
size of the unfolded P/T net. The first method called color quotienting uses the
fact that sometimes multiple colors behave equivalently throughout the colored
net. If such colors exist in the net, we can create equivalence classes that rep-
resent the colors with similar behaviour. As such, we can reduce the amount of
colors that we need to consider when unfolding. The second method called color
approximation overapproximates which colors can possibly be present in any
given place s.t. we only unfold places for the colors that can exist. This method
also allows for invalidating bindings that are dependent on unreachable colors,
thus reducing the amount of transitions that are unfolded.

Our two methods are implemented in the model checker TAPAAL [7,13] and
an extensive experimental evaluation shows convincing performance compared
to the state-of-the-art tools for CPN unfolding.

Related Work. Heiner et al. [19] analyse the arc and guard expressions to reduce
the amount of bindings by collecting patterns. The pattern analysis is imple-
mented in the tool Snoopy [9] and our color approximation method further
extends this method. In [23] the same authors present a technique for repre-
senting the patterns as Interval Decision Diagrams. This technique is used in
the tools Snoopy [9], MARCIE [10] and Spike [3] and performs better compared
to [19]; it also allows to unfold a superset of colored nets compared to the format
adopted by the Model Checking Contest benchmark [18].

In [6] (MCC) Dal-Zilio describes a method called stable places. A stable place
is a place that never changes from the initial marking, i.e. every time a token is
consumed from this place an equivalent token is added to the place. This method
is especially efficient on the net BART from the Model Checking Contest [18],
however, it does not detect places that deviate even a little from the initial
marking. Our color approximation method includes a more general form of the
stable places. In the unfolder MCC [6], a component analysis is introduced and
it detects if a net consists of a number of copies of the same component. MCC
is used in the TINA toolchain [1] and to our knowledge in the latest release of
the LoLA tool [27]. GreatSPN [8] is another tool for unfolding CPNs, however,
in [6] it is demonstrated that MCC is able to greatly outperform GreatSPN and
as such we omit GreatSPN from later experiments.

ITS-Tools [24] has an integrated unfolding engine. The tool uses a technique
of variable symmetry identification, in which it is analyzed whether variables x
and y are permutable in a binding. Furthermore, they use stable places dur-
ing the binding and they apply analysis to choose the binding order of param-
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eters to simplify false guards as soon as possible. After unfolding, ITS-Tools
applies further post-unfolding reductions that remove orphan places/transitions
and behaviourally equivalent transitions [25]. Our implementation includes a
variant of the symmetric variables reduction as well. In [26] Thierry-Mieg et al.
present a technique for automatic detection of symmetries in high level Petri
nets used to construct symbolic reachability graphs in the GreatSPN tool. This
detection of symmetries is reminiscent of the color quotienting method presented
in this paper, although our color quotienting method is used for unfolding the
colored Petri net instead of symbolic model checking.

In [17] Klostergaard presents a simple unfolding method implemented in
TAPAAL [7,13], which is the base of our implementation. The implementation
is efficient but there are several nets which it cannot unfold. Both unfolding
methods introduced in this paper are advanced static analyses techniques and all
of the above mentioned techniques, except symmetric variables and component
analysis, are captured by color approximation and/or color quotienting.

2 Preliminaries

Let N
>0 be the set of positive integers and N

0 the set of nonnegative integers.
A Labeled Transition System (LTS) is a triple (Q,Act,−→) where Q is a set of
states, Act is a finite, nonempty set of actions, and −→⊆ Q × Act × Q is the
transition relation. A binary relation R over the set of states of an LTS is a
bisimulation iff for every (s1, s2) ∈ R and a ∈ Act it holds that if s1

a−→ s′
1 then

there is a transition s2
a−→ s′

2 s.t. (s′
1, s

′
2) ∈ R, and if s2

a−→ s′
2 then there is a

transition s1
a−→ s′

1 s.t. (s′
1, s

′
2) ∈ R. Two states s and s′ are bisimilar, written

s ∼ s′, iff there is a bisimulation R s.t. (s, s′) ∈ R.
A finite multiset over some nonempty set A is a collection of elements from

A where each element occurs in the multiset a finite amount of times; a multiset
S over a set A can be identified with a function S : A −→ N

0 where S(a) is the
number of occurrences of element a ∈ A in the multiset S. We shall represent
multisets by a formal sum

∑
a∈A S(a)′(a) such that e.g. 1′(x) + 2′(y) stands

for a multiset containing one element x and two elements y. We assume the
standard multiset operations of membership (∈), inclusion (⊆), equality (=),
union (�), subtraction (\) and by |S| we denote the cardinality of S (including
the repetition of elements). By S(A) we denote the set of all multisets over the
set A. Finally, we also define the function set as a way of reducing multisets of
colors to sets of colors given by set(S) def= {a | a ∈ S} where set(S) is the set of
all colors with at least one occurrence in S.

2.1 Colored Petri Nets

Colored Petri nets (CPN) are an extension of traditional P/T nets introduced
by Kurt Jensen [14] in 1981. In CPNs, places are associated with color domains
where colors represent the values of tokens. Arc expressions describe what colors



72 A. Bilgram et al.

to consume and add to places depending on a given binding (assignment of vari-
ables to colors). Transitions may contain guards restricting which bindings are
valid. There exist several different definitions of CPNs from the powerful version
defined in [16] that includes the ML language for describing arcs expressions
and guards to less powerful ones such as the one used in the Model Checking
Contest [18]. We shall first give an abstract definition of a CPN.

Definition 1. A colored Petri net is a tuple N = (P , T ,C,B, C ,G,W ,WI ,M0)
where

1. P is a finite set of places,
2. T is a finite set of transitions s.t. P ∩ T = ∅,
3. C is a nonempty set of colors,
4. B is a nonempty set of bindings,
5. C : P −→ 2C \ ∅ is a place color type function,
6. G : T × B −→ {true, false} is a guard evaluation function,
7. W : ((P × T ) ∪ (T × P )) × B −→ S(C) is an arc evaluation function s.t.

set(W ((p, t), b)) ⊆ C(p) and set(W ((t, p), b)) ⊆ C(p) for all p ∈ P , t ∈ T and
b ∈ B,

8. WI : P × T −→ N
>0 ∪ {∞} is an inhibitor arc weight function, and

9. M0 is the initial marking where a marking M is a function M : P −→ S(C)
s.t. set(M(p)) ⊆ C(p) for all p ∈ P .

Notice that G, W and WI are semantic functions which are in different
variants of CPN defined by a concrete syntax. The set of all markings on a
CPN N is denoted by M(N ). In order to avoid the use of partial functions, we
allow W ((p, t), b) = W ((t, p), b) = ∅ and WI(p, t) = ∞, meaning that if the arc
evaluation function returns the empty multiset then the arc has no effect on
transition firing and if the inhibitor arc function returns infinity then it never
inhibits the connected transition.

Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a fixed CPN for the rest of this
section. Let B(t) def= {b ∈ B | G(t, b) = true} be the set of all bindings that satisfy
the guard of transition t ∈ T . Let � : T −→ Act be a transition labeling function.
The semantics of a CPN N is defined as an LTS L(N ) = (M(N ), Act,−→) where
M(N ) is the set of states defined as all markings on N , Act is the set of actions,
and M

a−→ M ′ iff there exists t ∈ T where �(t) = a and there is b ∈ B(t) s.t.

W ((p, t), b) ⊆ M(p) and WI(p, t) > |M(p)| for all p ∈ P, and
M ′(p) = (M(p) \ W ((p, t), b)) � W ((t, p), b) for all p ∈ P.

We denote the firing of a transition t ∈ T in marking M reaching M ′ as M
t−→ M ′.

Let −→=
⋃

t∈T
t−→ and let −→∗ be the reflexive and transitive closure of −→.

Remark 1. To reason about model checking of CPNs, we need to have a finite
representation of colored nets that can be passed as an input to an algorithm.
One way to enforce such a representation is to assume that all color domains are
finite and the semantic functions C, G, W and WI are effectively computable.
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Finally, let us define the notion of postset and preset of p ∈ P as p• = {t ∈
T | ∃b ∈ B. W ((p, t), b) �= ∅} and •p = {t ∈ T | ∃b ∈ B. W ((t, p), b) �= ∅}.
Similarly, for a transition t ∈ T we define t• = {p ∈ P | ∃b ∈ B. W ((t, p), b) �= ∅}
and •t = {p ∈ P | ∃b ∈ B. W ((p, t), b) �= ∅}. We also define the preset of inhibitor
arcs as ◦t = {p ∈ P | WI(p, t) �= ∞}.

2.2 P/T Nets

A Place/Transition (P/T) net is a CPN N = (P , T ,C,B, C ,G,W ,WI ,M0) with
one color C = {•} and only one binding B = {bε} s.t. every guard evaluates to
true i.e. G(t, bε) = true for all t ∈ T and every arc evaluates to a multiset over
{•} i.e. W ((p, t), bε) ∈ S({•}) and W ((t, p), bε) ∈ S({•}) for all p ∈ P and t ∈ T .

2.3 Integer Colored Petri Nets

An integer CPN (as used e.g. in the Model Checking Contest [18]) is a CPN
N = (P , T ,C,B, C ,G,W ,WI ,M0) where all colors are integer products i.e.
C =

⋃
k≥1(N

0)k. We use interval ranges to describe sets of colors s.t. a tuple of
ranges ([a1, b1], ..., [ak, bk]) where ai, bi ∈ N

0 for i, 1 ≤ i ≤ k, describes the set of
colors {(c1, ..., ck) | ai ≤ ci ≤ bi for all 1 ≤ i ≤ k}. If the interval upperbound is
smaller than the lowerbound, the interval range denotes the empty set and by [a]
we denote the singleton interval [a, a]. We use the set of variables V = {x1, ..., xn}
to represent colors. Variables can be present on arcs and in guards. A binding
b : V −→ C assigns colors to variables. We write b ≡ 〈x1 = c1, ..., xn = cn〉 for a
binding where b(xi) = ci for all i, 1 ≤ i ≤ n. We now introduce the syntax of
arc/guard expressions and its intuitive semantics by an example.

Figure 1 shows an integer CPN where places (circles) are associated with
ranges. The initial marking contains five tokens (two of color 0 and three of color
2) in p1 and two tokens of color 5 in place p2. There is a guard on transition t
(rectangle) that compares x with the integer 1 and restricts the valid bindings.
We can see that the arc from t to p3 creates a product of the integers x and y,
where the value of x is decremented by one. We assume that all ranges are cyclic,
meaning that the predecessor of 0 in the color set A is 2. Figure 1 also shows
an example of transition firing. Markings are written as formal sums showing
how many tokens of what colors are in the different places. The transition t
can fire only once, as the inhibitor arc (for unlabelled inhibitor arcs we assume
the default weight 1) from place p3 to transition t inhibits the second transition
firing.

The CPN model used in Model Checking Contest [18] further uses color types
called dots and cyclic enumerations—these can be easily translated to integer
ranges. All examples in this paper are expressed in integer CPN syntax.
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Fig. 1. Integer CPN and transition firing under the binding 〈x = 0, y = 5〉

2.4 Unfolding

CPNs with finite color domains can be unfolded into an equivalent P/T net [15].
Each place p is unfolded into |C(p)| places, a transition is made for each legal
binding and we translate the multiset of colors on the arc to a multiset over
•. We now provide a formal definition of unfolding in our syntax, following the
approach from [4,17].

For each place connected to an inhibitor arc, we create a fresh summation
place that contains the sum of tokens across the rest of the unfolded places. The
summation places is created to ensure that inhibitor arcs functions correctly
after unfolding.

Definition 2 (Unfolding). Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN.
The unfolded P/T net N u = (Pu, Tu,Cu,Bu, Cu, Gu,Wu,Wu

I ,Mu
0 ) is given by

1. Pu = {p(c) | p ∈ P ∧ c ∈ C(p)} ∪ {p(sum) | t ∈ T, p ∈ ◦t},
2. Tu =

⋃
t∈T

⋃
b∈B(t) t(b),

3. C
u = {•},

4. B
u = {bε},

5. Cu(p(c)) = {•} for all p(c) ∈ Pu,
6. Gu(t(b), bε) = true for all t(b) ∈ Tu,
7. Wu((p(c), t(b)), b) = W ((p, t), b)(c)′(•) and Wu((t(b), p(c)), b) = W ((t, p), b)

(c)′(•) for all p(c) ∈ Pu and t(b) ∈ Tu, and
Wu((p(sum), t(b)), b)= |W ((p, t), b)|′(•) and Wu((t(b), p(sum)), b) = |W ((t,
p), b)|′(•) for all p(sum) ∈ Pu and t(b) ∈ Tu,

8. Wu
I (p(sum), t(b)) = WI(p, t) for all p(sum) ∈ Pu and t(b) ∈ Tu, and

9. Mu
0 (p(c)) = M0(p)(c)′(•) for all p(c) ∈ Pu and

Mu
0 (p(sum)) = |M0(p)|′(•) for all p(sum) ∈ Pu

where p(sum) denotes the sum of all tokens regardless of color for place p.

The theorem showing that the unfolded net is bisimilar to the original CPN
was proved in [4,17]; we only add a small optimization on the summation places.

Theorem 1. ([4,17]). Given a CPN N = (P , T ,C,B, C ,G,W ,WI ,M0) and
the unfolded CPN N u = (Pu, Tu,Cu,Bu, Cu, Gu,Wu,Wu

I ,Mu
0 ) then M0 ∼ Mu

0

with labeling function �(t(b)) = t for all t(b) ∈ Tu.
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3 Color Quotienting

Unfolding a CPN without any further analysis will often lead to many unneces-
sary places and transitions. We shall now present our first technique that allows
to group equivalently behaving colors into equivalence classes in order to reduce
the number of colors and hence also to reduce the size of the unfolded net.

As an example consider the CPN in Fig. 2a, the unfolded version of this net
adds five places for both p1 and p2. However, we see that in p1 all colors greater
than or equal to 3 behave exactly the same throughout the net and can thus
be represented by a single color. We can thus quotient the CPN by partitioning
the color domain of each place into a number of equivalence classes of colors s.t.
the colors behaving equivalently are represented by the same equivalence class.
Using this approach we can construct a bisimilar CPN seen in Fig. 2b where the
color ([3, 5]) now represents all colors greater than or equal to 3.

Such a reduction in the number of colors is possible to include already dur-
ing the design of a CPN model, however, the models may look less intuitive for
human modeller or the nets can be auto-generated and hence contain redun-
dant/equivalent colors as observed in the benchmark of CPN models from the
annual Model Checking Contest benchmark [18].

We thus introduce color partition on places where all colors with similar
behaviour in a given place are grouped into an equivalence class, denoted by θ.
Let us assume a fixed CPN N = (P , T ,C,B, C ,G,W ,WI ,M0). A partition δ is
a function δ : P −→ 22

C \ ∅ that for a place p returns the equivalence classes of
C(p) s.t. (

⋃
θ∈δ(p) θ) = C(p) and θ1 ∩ θ2 = ∅ for all θ1, θ2 ∈ δ(p) where θ1 �= θ2.

Definition 3. Given a partition δ and markings M and M ′, we write M(p)
δ≡

M ′(p) for a p ∈ P iff for all θ ∈ δ(p) it holds that
∑

c∈θ M(p)(c) =
∑

c∈θ M ′(p)(c). We write M
δ≡ M ′ iff M(p)

δ≡ M ′(p) for all p ∈ P . A par-

tition δ is stable if the relation
δ≡ on markings induced by δ is a bisimulation.

Consider the CPN in Fig. 2a. The partition shown in the Fig. 2c is not stable
as demonstrated by the transition firing from M1 and M2 to M ′

1 and M ′
2 where

M1
δ≡ M2 but M ′

1 � δ≡ M ′
2. Figure 2d shows an example of a stable partition (here

we describe the partition with ranges in the same manner as in integer CPNs).
We now describe how a CPN may be quotiented using a stable partition.

First, we define the notion of binding equivalence under a partition.

Definition 4. Given a partition δ, a transition t ∈ T and bindings b, b′ ∈ B(t),

we write b
δ,t≡ b′ iff for all p ∈ •t and for all θ ∈ δ(p) it holds that

∑
c∈θ W ((p, t), b)(c) =

∑
c∈θ W ((p, t), b′)(c)

and for all p ∈ t• and for all θ ∈ δ(p) it holds that
∑

c∈θ W ((t, p), b)(c) =
∑

c∈θ W ((t, p), b′)(c).
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Fig. 2. Quotienting example

We can now define classes of equivalent bindings given a partition δ which are
bindings that have the same behaviour for a given transition, formally Bδ(t) def=

{[b]t | b ∈ B(t)} where [b]t = {b′ | b′ δ,t≡ b}.
For a given stable partition, we now construct a quotiented CPN where the

set of colors are the equivalence classes of the stable partition and the set of
bindings are the equivalence classes of bindings. As such, we rewrite the arc and
guard evaluation functions to instead consider an equivalence class of bindings,
which is possible since each binding in the equivalence class behaves equivalently.

Definition 5. Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN and δ a stable
partition of N . The quotiented CPN N δ = (P, T,Cδ,Bδ, Cδ, Gδ,W δ,W δ

I ,M δ
0 ) is

defined by

1. C
δ =

⋃
p∈P δ(p)

2. B
δ =

⊎
t∈T Bδ(t).

3. Gδ(t, [b]t) = G(t, b) for all t ∈ T and [b]t ∈ B(t),
4. Cδ(p) = δ(p) for all p ∈ P ,
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5. W δ((p, t), [b]t) = S where S(θ) =
∑

c∈θ W ((p, t), b)(c) for all θ ∈ δ(p) and
W δ((t, p), [b]t) = S where S(θ) =

∑
c∈θ W ((t, p), b)(c) for all θ ∈ δ(p)

for all p ∈ P , t ∈ T and [b]t ∈ B
δ,

6. W δ
I (p, t) = WI(p, t) for all p ∈ P and t ∈ T , and

7. M δ
0 (p) = S where S(θ) =

∑
c∈θ M0(p)(c) for all p ∈ P and θ ∈ δ(p).

We can now present our main correctness theorem, stating that the original
and quotiented colored nets are bisimilar.

Theorem 2. Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN, δ a stable par-
tition and N δ = (P δ, T δ,Cδ,Bδ, Cδ, Gδ,W δ,W δ

I ,M δ
0 ) the quotiented CPN. Then

M0 ∼ M δ
0 .

3.1 Computing Stable Partitions

Our main challenge is how to efficiently compute a stable partition in order to
apply the quotienting technique. To do so, we first define a partition refinement.

Definition 6. Given two partitions δ and δ′ we write δ ≥ δ′ iff for all p ∈
P and all θ′ ∈ δ′(p) there exists θ ∈ δ(p) s.t. θ′ ⊆ θ. Additionally, we write
δ > δ′ if δ ≥ δ′ and δ′ �= δ.

Note that for any finite CPN as assumed in Remark 1, the refinement relation
> is well-founded as for any δ > δ′ the partition δ′ has strictly more equivalence
classes for at least one place p ∈ P . We now define also the union of two partitions
as the smallest partition that has both of the partitions as refinements.

Definition 7. Given two partitions δ1, δ2 and p ∈ P , let ←→ be a relation over
δ1(p) ∪ δ2(p) s.t. θ ←→ θ′ iff θ ∩ θ′ �= ∅ where θ, θ′ ∈ δ1(p) ∪ δ2(p). Let ←→∗

be the reflexive, transitive closure of ←→ and let [θ] def=
⋃

θ′∈δ1(p)∪δ2(p),θ←→∗θ′ θ′

where θ ∈ δ1(p) ∪ δ2(p). Finally, we define the partition union operator � by
(δ1 � δ2)(p) =

⋃
θ∈δ1(p)∪δ2(p)

{[θ]} for all p ∈ P .

For example, assume some place p s.t. C(p) = {([1, 5])} and partitions δ1 and
δ2 s.t. δ1(p) = {([1, 2]), ([3, 4]), ([5])} and δ2(p) = {([1]), ([2, 3]), ([4]), ([5])} then
(δ1 � δ2)(p) = {([1, 4]), ([5])}.

Lemma 1. Let δ1 and δ2 be two partitions. Then (i) δ1�δ2 ≥ δ1 and δ1�δ2 ≥ δ2,
and (ii) if δ1 and δ2 are stable partitions then so is δ1 � δ2.

The lemma above implies the existence of a unique maximum stable partition.

Theorem 3. There is a unique maximum stable partition δ s.t. δ ≥ δ′ for all
stable partitions δ′.

In order to provide an algorithm for computing a stable partition, we
define the maximum arc size for a given CPN N as the function max(N ) =
maxp∈P,t∈T,b∈B(|W ((p, t), b)|, |W ((t, p), b)|). The set of all markings smaller than
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Algorithm 1: Stabilize(N )
1 Input: N = (P , T ,C,B, C , G, W , WI , M0)
2 Output: Stable partition δ
3 let δ(p) := {C(p)} for all p ∈ P
4 for t ∈ T do

5 while ∃M1, M2 ∈ M
bounded(N ).M1

δ≡ M2 ∧ M1 � t−→ ∧M2
t−→ do

6 pick δ′ < δ s.t. M1 �δ
′

≡ M2; δ := δ′

7 end

8 end
9 let Q := P //Waiting list of places

10 while Q �= ∅ do
11 let p ∈ Q; Q := Q \ {p}
12 for t ∈ •p do

13 if ∃M1, M2 ∈ M
bounded(N ).M1

δ≡ M2.∃M ′
1 ∈ M

bounded(N ).M1
t−→

M ′
1 ∧ ∀M ′

2 ∈ M
bounded(N ).M2

t−→ M ′
2 ∧ M ′

1(p) � δ≡ M ′
2(p) then

14 pick δ′ < δ s.t. M1 �δ
′

≡ M2 and δ′(p′) = δ(p′) for all p′ ∈ P \ •t
15 Q := Q ∪ {p′ | δ′(p′) �= δ(p′)}; δ := δ′

16 end

17 end

18 end
19 return δ

the max arc size over N is defined by M
bounded(N ) = {M ∈ M(N ) | |M(p)| ≤

max(N ) for all p ∈ P}. As such, M
bounded(N ) is a finite set of all bounded

markings of N with cardinality less than or equal to max(N ).
Algorithm 1 now gives a procedure for computing a stable partition over a

given CPN. It starts with an initial partition where every color in the color
domain is in the same equivalence class for each place. The algorithm is then
split into two parts. The first part from line 4 to 8 creates an initial partition
applying the guard restrictions to the input places of the transitions. The second
part from line 10 to 18 back propagates the guard restrictions throughout the
net s.t. only colors that behave the same are quotiented together. Depending
on the choices in lines 6 and 14, the algorithm may return the maximum stable
partition, however in the practical implementation this is not guaranteed due to
an approximation of the guard/arc expression analysis.

Theorem 4. Given a CPN N , the algorithm Stabilize(N ) terminates and
returns a stable partition of N .

3.2 Stable Partition Algorithm for Integer CPNs

The Stabilize computation presented in Algorithm 1 can be used to find a stable
partition for any finite CPN. However, implementation-wise it is inefficient to
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Fig. 3. Example CPN

Table 1. Stages of δ throughout Algorithm 1 for CPN in Fig. 3. The 0th iteration is
the state of δ just before the while loop begins. The symbol ‘-’ indicates that the value
is the same as in the previous row.

Iteration p1 p2 p3 p4 Q
0 {([1, 4])} {([1, 4])} {([1, 3]), ([4])} {([1, 4], [1]), ([1, 4], [2]),

([1, 4], [3, 4])}
{p1, p2, p3, p4}

1, p = p3 {([1, 3]), ([4])} - - - {p1, p2, p4}
2, p = p4 - {([1]), ([2]), ([3, 4])} - - {p1, p2}
3, p = p2 - - - {([1, 4], [1]), ([1, 4], [2]),

([1, 4], [3]), ([1, 4], [4])}
{p1, p4}

4, p = p4 - {([1]), ([2]), ([3]), ([4])} - - {p1, p2}
5, p = p2 - - - - {p1}
6, p = p1 - - - - {}

Table 2. Stages of α when computing the fixed point of E for the CPN in Fig. 3. The
symbol ‘-’ indicates that the value is the same as in the previous row.

Iteration p1 p2 p3 p4

0, α = α0 {([1])} {([3])} {} {}
1, t = t1 - - {([1])} {([1], [3])}
2, t = t2 - {([3, 4])} - -

3, t = t1 - - - {([1], [3, 4])}
4, t = t2 - {([3, 4]), ([1])} - -

5, t = t1 - - - {([1], [3, 4]), ([1], [1])}
6, t = t2 - {([1, 4])} - -

7, t = t1 - - - {([1], [1, 4])}

represent every color in a given equivalence class individually. Hence, for integer
CPN we represent an equivalence class as a tuple of ranges. As an example
of computing stable partitions with Algorithm 1, consider the integer CPN in
Fig. 3. Table 1 shows the different stages that δ undergoes in order to become
stable. In iteration 0, the guard restrictions from the first for-loop are applied,
followed by the iterations of the main while-loop. In our implementation, we
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do not iterate through every bounded marking and we instead (for efficiency
reasons) statically analyze the places, arcs and guards in order to partition the
color sets. For example, in iteration number 1, we consider the place p3 and we
can see that the colors in the range [1, 3] must be distinguished from the color
4. This partitioning propagates back to the place p1 as firing the transition t1
moves tokens from p1 to p3 without changing its color.

4 Color Approximation

We now introduce another technique for safely overapproximating what colors
can be present in each place of a CPN. Let N = (P , T ,C,B, C ,G,W ,WI ,M0)
be a fixed CPN for the rest of this section. A color approximation is a function
α : P −→ 2C where α(p) approximates the possible colors in place p ∈ P s.t.
α(p) ⊆ C(p). Let A be the set of all color approximations. For a marking M and
color approximation α, we write M ⊆ α iff set(M(p)) ⊆ α(p) for all p ∈ P . A
color expansion is a function E : A −→ A defined by

E(α)(p) =

⎧
⎨

⎩

α(p) ∪ set(W ((t, p), b)) if ∃t ∈ T.∃b ∈ B(t).
set(W ((p, t), b)) ⊆ α(p)

α(p) otherwise.

A color expansion iteratively expands the possible colors that exist in each
place and obviously preserves the following property.

Lemma 2. Let α be a color approximation then α(p) ⊆ E(α)(p) for all p ∈ P .

Let α0 be the initial approximation such that α0(p) def= set(M0(p)) for all
p ∈ P . Since E is a monotonic function on a complete lattice, we can compute
its minimum fixed point and formulate the following key theorem.

Theorem 5. Let α be a minimum fixed point of E such that α0(p) ⊆ α(p) for
all p ∈ P . If M0 −→∗ M then M ⊆ α.

Given a color approximation α satisfying the preconditions of Theorem 5, we
can now construct a reduced CPN N α = (P, T,C,B, Cα, G,W,WI ,M0) where
Cα(p) = α(p) for all p ∈ P . The net N α can hence have possibly smaller set of
colors in its color domains and it satisfies the following theorem.

Theorem 6. The reachable fragments from the initial marking M0 of the LTSs
generated by N and N α are isomorphic.

4.1 Computing Color Approximation on Integer CPNs

As with color quotienting, representing each color individually becomes ineffi-
cient. We thus employ integer ranges to represent color approximations. Consider
the approximation α where α(p) = {(1, 2), (2, 2), (3, 2), (5, 6), (5, 7)} are possible
colors (pairs of integers) in the place p; this can be more compactly represented
as a set of tuples of ranges {([1, 3], [2, 2]), ([5, 5], [6, 7])}.
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Table 3. Number of unfolded nets for each unfolder

Spike Tapaal A ITS B MCC A+B Total

Unfolded nets 172 174 199 202 204 205 207 208

However, computing the minimum fixed point of E using ranges is not as
trivial as using complete color sets. To do so, we need to compute new ranges
depending on arcs and guards. We demonstrate this on the CPN in Fig. 3. Table 2
shows the computation of the minimum fixed point of E, starting from the
initial approximation α0. For example, in iteration number 5, we check if firing
transition t1 can produce any additional tokens to the places p3 and p4. Clearly,
there is no change to the possible token colors in p3 as α(p1) did not change,
however the addition of the integer range [1] to α(p2) in the previous iteration
now allows us to produce a new token color (1, 1) into p4 and hence we add the
singleton range ([1], [1]) to α(p4).

5 Experiments

We implemented the quotienting method from Sect. 3 as well as the color approx-
imation method from Sect. 4 in C++ as an extension to the verification engine
verifypn [13] from the TAPAAL toolchain [7]. We also implemented the method
of variable symmetry identification inspired by its use in ITS-Tools [25]; the effect
of this method is marginal as it additionally reduces the size of the unfolded net
only on a few instances.

We perform experiments comparing several different approaches; the quoti-
enting approach (method A), the color approximation (method B) and the com-
bination of quotienting, symmetric variables and color approximation (method
A+B) against the unfolder MCC [6] (used also by TINA [1] and LoLA [27]),
ITSTools unfolder [24] and Spike unfolder [3] (also used by MARCIE [10] and
Snoopy [9]) and the previous verifypn TAPAAL unfolder (revision 226) referred
to as Tapaal. We compare the tools on the complete set of CPN nets and queries
from 2020 Model Checking Contest [18]. The experiments are conducted on a
compute cluster running Linux version 5.8.0-2, where each experiment is con-
ducted on a AMD Epyc 7551 processor with a 15 GB memory limit and 5 min
timeout. A repeatability package is available in [2].

Table 3 shows for each of the unfolders the number of unfolded nets within
the memory/time limit. The last column shows the total number of unfolded
nets by all tools combined. The single net that we cannot unfold is FamilyRe-
union3000 which was unfolded by MCC, though we can unfold it given 3 extra
minutes. Our method A+B can unfold 3 nets that no other tool can unfold;
DrinkVendingMachine48, 72, 96. This is directly attributed to method A.

The comparison of the sizes (total number of transitions and places) of
unfolded nets is done by plotting the ratios between the size produced by our
A+B method and the competing unfolder. Figure 4a shows the size ratios where
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Fig. 4. Unfolding size and unfolding time comparison

at least one comparison is not equal to 1. We see that our method has a sig-
nificantly smaller size ratio for 88 colored nets, sometimes reducing the nets
by several orders of magnitude. In a few cases ITS-Tools is able to unfold to a
smaller net than our method due to their post-reductions. This is most prevalent
on VehicularWifi which they unfold to the size of 38429 objects while we create
a net of size 85835. The figure also shows one net unfolded by MCC where we
timed out.

As our method outperforms the state-of-the-art unfolders w.r.t. the size of
the unfolded nets, the question is whether the overhead of the advanced static
analysis does not kill the benefits. Fortunately, this is not the case as shown in
Fig. 4b where the 80 slowest running times (independently sorted in nondecreas-
ing order) for each tool are depicted. The plots show that ITS, MCC and our
unfolder are close in performance, while Spike is slower. ITS-Tools is generally
fast on the nets that are unfolded in less than 10 s, however it becomes gradually
slower and has problems unfolding the larger nets. The MCC unfolder and our
method are similar in performance, except for the largest instances where we are
faster.

The overall conclusion is that our advanced analyses adds only a little over-
head while significantly decreasing the size of the unfolded nets. This is also
confirmed by the number of answered reachability, CTL and LTL queries from
the 2020 Model Checking Contest benchmark. The colored nets and queries are
unfolded by the different tools and then verified by the TAPAAL engine. Here
our unfolding method allows TAPAAL to answer in total 81.7% of all queries
whereas the MCC unfolder can answer 76.9% and ITS-Tools unfolder 76.1% of
all queries.

6 Conclusion

We presented two complementary methods for reducing the unfolding size of
colored Petri nets (CPN). Both methods are proved correct and implemented
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in an open-source verification engine of the tool TAPAAL. Experimental results
show a significant improvement in the size of unfolded nets, compared to state-of-
the-art tools, without compromising the unfolding speed. The actual verification
on the models and queries from the 2020 Model Checking Contest shows that
our unfolding technique allows us to solve 4.8% more queries compared to the
second best competing tool. In future work, we plan to combine our approach
with structural reduction techniques.
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Abstract. In this article we introduce a solution method for a spe-
cial class of nonlinear initial-value problems using set-based propagation
techniques. The novelty of the approach is that we employ a particular
embedding (Carleman linearization) to leverage recent advances of high-
dimensional reachability solvers for linear ordinary differential equations
based on the support function. Using a global error bound for the Car-
leman linearization abstraction, we are able to describe the full set of
behaviors of the system for sets of initial conditions and in dense time.
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1 Introduction

We consider the problem of solving a system of nonlinear ordinary differential
equations (ODEs) for a set of initial states. This is better known as reachability
analysis. While for linear systems there exist very efficient algorithms [1,8,21,29],
reachability analysis for nonlinear systems remains a challenging problem.

Traditional approaches [2] include those based on Taylor models [13], sim-
ulation [15], or hybridization [30]. In this paper we present a new approach to
this problem by transforming the nonlinear system into an infinite-dimensional
linear system, which we then truncate. This truncated model approximates the
original system.

More specifically, our approach is based on Carleman linearization, which is
an established method in mathematical nonlinear control but differs from the
above-mentioned approaches. The Taylor-model approach truncates an infinite
Taylor polynomial, while we truncate a linear system. Hybridization approaches
linearize smalls regions in the state space, while we linearize the whole system.

To achieve good accuracy, the truncation results in a high-dimensional linear
system. To solve such systems, we leverage efficient reachability solvers based on
the support function that have recently been developed.
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Our approach can be used to obtain approximate solutions very quickly, but
in an unsound way. Alternatively, using an error estimate, one can obtain a sound
overapproximation. Under certain conditions (essentially weak nonlinearity), the
error estimate converges, resulting in a precise approximation.

Contributions. This paper makes the following contributions:

– We revisit Carleman linearization and explain how it can be used as a fast
but unsound way to propagate sets through a nonlinear dynamical system.

– We extend the approach to a sound and practical reachability algorithm for
dissipative nonlinear dynamical systems.

– We evaluate the algorithm in two case studies and discuss its strengths.

Related Work. The original idea by Carleman [12,27] did not receive much atten-
tion for several decades. Steeb showed that, while the nonlinear system and its
infinite-dimensional embedding share the same analytic solutions, the embed-
ding may admit additional non-analytic solutions [39]. Carleman linearization
has since been applied successfully in control theory [14,19,33,36] and physics
and chemistry [18,23].

Several works provide bounds on the approximation error of the truncated
linearized system [16,31]. In this paper we use the error bound derived in [31].

An approach that is related to ours transforms a nonlinear system into a
linear or polynomial system via a “change of bases,” using polynomials instead
of Kronecker powers, and derives conditions under which this transformation
preserves invariants [37].

Outline. The next section recalls the mathematical basis used in this paper.
Section 3 introduces the classic Carleman linearization. In Sect. 4 we describe
how to propagate sets using Carleman linearization. In Sect. 5 we extend this
approach to a reachability algorithm for dissipative nonlinear dynamical systems.
We evaluate the algorithm in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

In this section we summarize the mathematical prerequisites to make this paper
self-contained. For a detailed derivation of the Carleman linearization procedure
we refer to [16].

2.1 Vectors, Norms, and Sets

Let N = {1, 2, . . .} be the set of positive integers and R the set of real numbers,
and for any N ∈ N we let [N ] := {1, 2, . . . , N}. n-dimensional vectors x ∈ R

n are
understood as column vectors with components xi ∈ R, i ∈ [n]. Transposition is
written xT . For any x ∈ R

n and p ∈ R≥1 ∪{∞}, ‖x‖p denotes the vector p-norm
of x, with notable special cases p = 2 (Euclidean norm) and p = ∞ (supremum
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norm). If A = (aij) ∈ R
m×n is a matrix, ‖A‖p denotes the matrix norm induced

by the vector p-norm, with notable special cases p = 2 (spectral norm: the largest
singular value) and p = ∞ (supremum norm: the maximum absolute row sum).
We may abbreviate ‖·‖ for ‖·‖∞. See [24] for precise definitions of these concepts.

For a compact, i.e. bounded and closed set X ⊆ R
n, ‖X‖p denotes the max-

imum of ‖x‖p over all x ∈ X . If X is polytopic (i.e. admits a representation
as the finite intersection of half-spaces), its norm can be computed by a finite
number of vector p-norm evaluations. Indeed, the map x → ‖x‖p is convex and
the maximum of a convex function over a polytope is attained at one of its ver-
tices. However, computing the vertex representation of a polytope initially given
by its half-space representation can be computationally expensive in dimensions
higher than two (see [25]). A simpler rule applies if X is hyperrectangular (i.e.,
can be represented as an axis-aligned box with center c ∈ R

n and radius vector
r ∈ R

n). Then ‖X‖p = ‖c + Dr‖p where D = (Dij) ∈ R
n×n is diagonal with

matrix elements Dii = 1 if ci ≥ 0 and Dii = −1 otherwise, i ∈ [N ]. We write
Bn

r for the n-dimensional infinity-norm ball with radius r centered in the origin.
The projection of a set X to the first k dimensions is denoted by π1:k(X ).

2.2 Support Function

A standard approach to operate with compact and convex sets in R
n is to use

the support function [28]. The support function of X ⊆ R
n along direction

d ∈ R
n, ρ(d,X ), is the maximum of dT x over all x ∈ X . In particular, if X is a

polytope in half-space representation, its support function can be computed by
solving a linear program (LP), and for certain classes of sets analytic formulas
exist, which can be numerically evaluated in an efficient way. Such cases include
hyperrectangular sets. Since the support function distributes over Minkowski
sums, i.e. ρ(d,X ⊕Y) = ρ(d,X )+ρ(d,Y) for any pair of sets X and Y, and since
it holds that ρ(d,MX ) = ρ(MT d,X ) for any matrix M ∈ R

n×n, the support
function has been successfully applied to solve linear set-based recurrences of the
form Xk+1 = MXk ⊕ Yk, either explicitly or implicitly by solving the recurrence
only along a predefined number of directions [9,17,29]. It is well-known that such
recurrences are prevalent in reachability analysis of linear initial-value problems
(IVPs), or nonlinear ones after some form of conservative linearization; see for
example [2] and references therein.

2.3 Kronecker Product

For any pair of vectors x ∈ R
n, y ∈ R

m, their Kronecker product is w = x ⊗
y = (x1y1, . . . , x1ym, x2y1, . . . , xnym)T , and the dimension is dim(w) = mn.
This product is not commutative. For matrices the definition is analogous: if
A ∈ R

m×n and B ∈ R
p×q, then A ⊗ B ∈ R

mp×nq and

A ⊗ B :=

⎛
⎜⎝

a11B . . . a1nB
...

...
am1B . . . amnB

⎞
⎟⎠ .
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The Kronecker power x⊗i of x ∈ R
n is a convenient notation to express all

possible products of elements of a vector up to a given order:

x⊗i := x ⊗ · · · ⊗ x︸ ︷︷ ︸
i times

, x ∈ R
n.

Note that dim(x⊗i) = ni, and each component of x⊗i is of the form
xω1
1 xω2

2 · · · xωn
n for some multi-index ω ∈ N

n, ‖ω‖1 = i. For example, if n = 2,
the first two Kronecker powers are x⊗1 = x = (x1, x2)T and x⊗2 = x ⊗ x =
(x2

1, x1x2, x2x1, x
2
2)

T . Further properties of Kronecker products can be found in
[42] and [40].

3 Carleman Linearization

In this section we recall the classic Carleman linearization approach [12,27].
Polynomial differential equations are an important class of nonlinear systems

x′(t) = f(x(t)), f : Rn → R
n, such that the coordinate functions fi : Rn → R are

multivariate polynomials. Many systems can be rewritten as polynomial vector
fields by introducing auxiliary variables, and any polynomial system is formally
equivalent to a second-order system, possibly in higher dimensions – for a proof
of this statement and an algorithm to compute such transformation see [16]. We
can thus focus on quadratic ODEs without loss of generality. Consider the IVP
for an n-dimensional quadratic ODE,

dx(t)
dt

= F1x + F2x
⊗2, (1)

with initial condition x(0) ∈ R
n. Each xi(t), i ∈ [n], is a function of t over

the interval [0, T ] where T is the time horizon. We assume that the matrices
F1 ∈ R

n×n and F2 ∈ R
n×n2

are independent of t. Intuitively, F1 (resp. F2) is
associated with the linear (resp. nonlinear) behavior of the dynamical system;
thus ‖F2‖2/‖F1‖2 being small corresponds to weak nonlinearity – a concept we
will use in a later section.

The Carleman linearization (or Carleman embedding) procedure begins by
introducing a sequence of auxiliary variables ŷj := x⊗j , j ∈ N. Differentiating
such variables with respect to time, and repeatedly substituting (1) into the
derivatives of each ŷj gives a formal equivalence with an infinite-dimensional
linear system of ODEs [27]. Truncation to order N leads to a finite linear IVP
in the lifted variables ŷ := (ŷ1, ŷ2, . . . , ŷN )T , namely

dŷ

dt
= Aŷ, ŷ(0) = ŷ0, (2)

with initial condition ŷ0 = (x0, x
⊗2
0 , . . . , x⊗N

0 )T and coefficients matrix A, which
has the bi-diagonal block structure
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1
1 A1

2 0 0 · · · 0
0 A2

2 A2
3 0 · · · 0

0 0 A3
3 A3

4 0
...

...
...

...
. . . . . . 0

0 0 · · · 0 AN−1
N−1 AN−1

N

0 0 · · · 0 0 AN
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where the Ai
i and Ai

i+1, which we call transfer matrices, have dimensions ni ×ni

and ni × ni+1 respectively, and are defined by the formula

Ai
i+i′−1 =

i∑
ν=1

i factors︷ ︸︸ ︷
In ⊗ · · · ⊗ Fi′

↑
ν-th position

⊗ · · · ⊗ In.

for all i ∈ [N ] and where i′ is either 1 (Ai
i is placed on the main diagonal) or

2 (Ai
i+1 is placed on the upper diagonal) and where In is the identity matrix

of order n. Note also that A1
1 = F1 and A1

2 = F2. The dimension of (2) is
n + n2 + · · · + nN = nN+1−n

n−1 = O(nN ).

Running Example. We illustrate the concepts described above in the simplest
possible scenario. Consider the logistic equation (a special case of (1) for n = 1)

dx(t)
dt

= rx(1 − x/K). (4)

This equation and related generalizations arise naturally in the context of
population dynamics, where r > 0 controls the initial rate of exponential growth,
and K > 0 is the asymptotic equilibrium (the other equilibrium being x = 0). We
transform (4) into the canonical scalar form (1), namely x′(t) = ax(t) + bx2(t),
via a = r and b = −r/K. Defining the auxiliary variables ŷj = xj , j ∈ N, we
see that their first-order derivatives satisfy ŷ′

1 = x′ = aŷ1 + bŷ2, ŷ′
2 = 2x′x =

2aŷ2 + 2bŷ3, etc. Hence the nonlinear ODE (4) is equivalent to the (infinite)
linear ODE

ŷ′
j = jaŷj + jbŷj+1, j ∈ N.

If we now fix the truncation order N , say, to N = 4, we obtain

dŷ(t)
dt

=

⎛
⎜⎜⎝

a b 0 0
0 2a 2b 0
0 0 3a 3b
0 0 0 4a

⎞
⎟⎟⎠ ŷ, ŷ(0) =

⎛
⎜⎜⎝

x0

x2
0

x3
0

x4
0

⎞
⎟⎟⎠ .

To estimate the quality of the approximation by finite truncation, we plot
the solutions of (4) from x0 = 0.5 over a time horizon of 10 and also plot the
solution of (2) for several choices of N in Fig. 1(a). The model parameters are
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Fig. 1. Solution of the original and of the truncated linearized IVPs for (4).

r = −0.5 and K = 0.8. As can be seen, for increasing N the solutions converge
to the analytic solution, which in this case is known and given as

x(t) =
x0aeat

a + b(1 − eat)x0
.

Solving Eq. (2) requires computing the matrix exponential acting on the ini-
tial states ŷ(t = kδ) = eAkδ ŷ(0) at all times, which may be expensive for higher-
dimensional systems. In the next section we introduce a method to propagate
sets of initial conditions in dense time making use of the particular structure of
the matrix (3) using support function techniques. Theoretical estimates of the
truncation error are considered in Sect. 5.

4 Set Propagation

In the previous section we saw how to transform a nonlinear IVP into an approx-
imate linear IVP by Carleman linearization and truncation at a chosen order N .
In this section we describe how this approach generalizes to IVPs whose initial
condition is a set of states X0 ⊆ R

n described by a hyperrectangle. This is a com-
mon case, and hyperrectangular approximations can be computed efficiently. We
need to discuss two steps: how to transform X0 to the linear system and how to
propagate sets of states for a linear IVP.

For the transformation of X0 we generalize the Kronecker product to sets
with X ⊗i := {x⊗i | x ∈ X}. For a hyperrectangle X we approximate X ⊗i by
applying the rules of interval arithmetic to each dimension [32]. We note that
one needs to carefully arrange the variables in order to obtain a tight solution.
The arrangement consists of grouping the same variables of each monomial;
for example, x2

1x2x1 is evaluated using interval arithmetic as x3
1x2 to avoid the

dependency problem. To illustrate, consider the extension of the example in
Sect. 2.3 to the hyperrectangle X = [0.9, 1.1] × [−0.1, 0.1]. Then X ⊗1 = X ⊆ R

2

and X ⊗2 ⊆ [0.81, 1.21] × [−0.11, 0.11] × [−0.11, 0.11] × [0.0, 0.01] ⊆ R
4.
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There exist many algorithms to propagate a set through an IVP in a con-
servative way, i.e., the result overapproximates the true solution, in particular
for linear IVPs [1–3,8,20–22,26,29]. Most of these approaches first discretize
the continuous-time system, for which the error can be made arbitrarily small
by choosing a small discretization step δ, and then propagate the sets in dis-
crete time, which in certain cases can be done in an error-free way. We refer the
reader to the above works for details about the discretization. Below we explain
the second step because it is relevant for the later discussion.

Given a discretized linear IVP with discretized matrix Φ = eAδ and dis-
cretized initial condition X̂0,

xk+1 = Φxk, x0 ∈ X̂0,

the set of reachable states is described by the flowpipe
⋃

k≥0 Rk where the Rk :=
ΦkX̂0 is the reach set for the time span [kδ, (k + 1)δ]. In other words, a flowpipe
is a sequence of reach sets given by the matrix powers of Φ applied to X̂0. This
computation scales to systems with hundreds of dimensions.

Example (cont’d). Consider again the logistic system. In Fig. 1(b) we plot the
flowpipes obtained for the different truncated approximations with an initial
condition X0 = [0.47, 0.53].

5 Reachability Algorithm

In this section we discuss an error estimation that allows us to obtain a sound
overapproximation of the states reachable by the original nonlinear system.

5.1 Error Bound

We have yet to determine how the solutions of the truncated linear IVP (2) are
related to those of the original nonlinear IVP (1). To formulate this relation
precisely, we introduce some notation. The error of the j-th block of variables is
defined as ηj(t) := x⊗j(t) − ŷj(t), which is the difference between the Kronecker
power of the solution of (1) and the projection of the solution of (2) onto the
corresponding block of variables of the lifted ŷ. We are mostly interested in the
first block, i.e., j = 1, since x(t) = x⊗1(t), and the truncation error corresponds
to upper bounding the quantity ‖η1(t)‖ ≤ ε(t) for some error function ε(t) to be
determined. Ideally, for fixed t the error function should decrease sufficiently fast
for increasing order N , so we can use low orders in practice, typically 2 to 6. In
[16] the authors derived explicit error bounds for the linearization, i.e., a function
ε(t) that only depends on the initial condition and the norms of the matrices F1

and F2. However, that approach is too conservative since ε(t) diverges in finite
time – even in cases when the solution of the linearized system (2) is converging.

Crucial to the present article, the authors in [31] discovered that, by imposing
an assumption on the class of quadratic problems considered, an arbitrary-time
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and exponentially convergent error formula holds. There are two main assump-
tions: 1) linear terms dominate over nonlinear ones (weak nonlinearity) and
2) nonlinear effects play a prominent role during a finite time span, after which
only linear terms matter (linear dissipation). These definitions are formalized
below. In the following we assume that the eigenvalues of F1 in (1) are sorted
(counting multiplicities) such that �(λn) ≤ · · · ≤ �(λ1), where �(λ) is the real
part of λ.

Definition 1. System (1) is said to be weakly nonlinear if the ratio

R :=
‖x0‖‖F2‖
|�(λ1)| (5)

satisfies R < 1.

Definition 2. System (1) is said to be dissipative if �(λ1) < 0 (i.e., the real
part of all eigenvalues is negative).

The conditions �(λ1) < 0 and R < 1 ensure arbitrary-time convergence.

Theorem 1 ([31, Corollary 1]). Assuming that (1) is weakly nonlinear and
dissipative, the error bound associated with the linearized problem (2) truncated
at order N satisfies

‖η1(t)‖ ≤ ε(t) := ‖x0‖RN (1 − e�(λ1)t)N , (6)

with R as defined in (5). This error bound holds for all t ≥ 0.

5.2 Obtaining a Sound Set-Propagation Algorithm

The interesting aspect of (6) is that we can enclose all possible behaviors of
a nonlinear problem for a hyperrectangular initial condition X0 ⊆ R

n in two
steps: first, propagating the solutions of the high-dimensional linear system (2)
forward in time using a suitable linear reachability technique; in a second step,
enlarging the solution (a sequence of reach sets Rj with associated time span
Δt = [t, t + δ] for some δ > 0) by taking the Minkowski sum with a ball of
radius r := max(|a|, |b|) where [a, b] is the interval-arithmetic evaluation of ε(Δt).
Moreover, the truncation error converges to zero for increasing N and, as we will
see in the experiments, typical values of N do not have to be prohibitively large
to obtain reasonable approximation bounds.

Theorem 2. Given a flowpipe, consider any n-dimensional reach set Rj, j ≥ 0,
and its associated time span Δt = [t, t + δ]. Let Rk be the true set of reachable
states in the time span Δt and r as defined above. Then we have Rk ⊆ Rk ⊕Bn

r .

This allows us to present a sound reachability method as shown in Algo-
rithm 1. Crucially, we see that in Line 5 we only require the reach sets Rj in
the first n dimensions. Thus it suffices to compute these sets in a “sparse” way
in Line 2. We can use an algorithm based on the support function for post to
achieve that. In our implementation we use the algorithm from [29], which takes
as input a set of direction vectors in which the reach sets are evaluated.
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Algorithm 1: Reachability algorithm
Input: X0 ⊆ R

n: hyperrectangular initial states; F1, F2: system matrices;
N : truncation order; T : time horizon; post : algorithm to compute a flowpipe for
linear systems

Output: flowpipe overapproximating the reachable states until T

1 A, X̂0 ← linearize(X0, F1, F2, N) ; // Carleman linearization

2 (R0, . . . , Rm) ← post(y′ = Ay, y(0) ∈ X̂0) ; // flowpipe for linear system
3 for j ← 0 to m do
4 ε ← error(Rj , X0, F1, F2, N) ; // linearization error
5 Rε

j ← π1:n(Rj) ⊕ Bn
ε ; // enlarged reach set

6 end
7 return (Rε

0, . . . , Rε
m)

5.3 Reevaluation of the Error Term

For dissipative systems, while the solution of the linear system may converge to
zero, the corrected term including the error estimate may not. This observation
leads to the idea of reevaluating the error estimate after some time t∗, since for
fixed F1 and F2, a decreasing ‖x0‖ leads to a smaller value R which, in turn,
reduces the error estimate ε(t). This is, however, nontrivial because by the time
one reevaluates, the past error estimate must be taken into account and thus
the new state estimate at t∗ may already be too pessimistic. In the evaluation
we apply such a reevaluation manually.

6 Evaluation

In this section we study two models that have also been used in [31], but we
repeat them here to make this article self-contained. In the first model we evalu-
ate all aspects outlined in the present article including the error bounds. In the
second model we demonstrate that even if the assumptions for the error bounds
do not apply, we can still obtain solutions of useful accuracy.

For comparison we compute an overapproximation of the reachable states for
the original nonlinear systems using a Taylor-model (TM) approach implemented
in JuliaReach [4,6,7,35], with the default parameters (Taylor polynomials with
spatial and temporal expansions of orders 2 and 8 respectively), which generally
has high precision. To evaluate the flowpipe for the linear system in Algorithm 1,
we use the 2n directions ±ei for i ∈ [n], where ei is the unit vector in dimension
i, which corresponds to the outer hyperrectangular approximation of π1:n(Rj).
Note that the number of directions, 2n, is independent of the truncation order
N . Interval-arithmetic computations are performed using the Julia library Inter-
valArithmetic.jl [5], and for set-based computations we use LazySets.jl [38]. The
code and scripts to run these problems is available online.1

1 github.com/JuliaReach/RP21 RE.

https://github.com/JuliaReach/RP21_RE
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6.1 Epidemic Model (SEIR)

There exist several widely used models of population dynamics that generalize
the logistic model from Sect. 3 [10]. We consider the popular SEIR epidemic
model with data on the early spread of the COVID-19 disease from [34]. A
population P is divided into four compartments: susceptible (PS), exposed (PE),
infectious (PI), and recovered (PR). An individual is initially susceptible and
becomes exposed/infected with rate rtra. The latent time before an exposed
individual becomes infectious themselves is Tlat. Finally, an infectious individual
recovers after time Tinf. New individuals are added to the population with rate
Λ. We also consider a vaccination with rate rvac [41]. The system of ODEs is:

dPS

dt
= −Λ

PS

P
− rvacPS − rtraPS

PI

P
+ Λ

dPE

dt
= −Λ

PE

P
− PE

Tlat
+ rtraPS

PI

P
dPI

dt
= −Λ

PI

P
+

PE

Tlat
− PI

Tinf

dPR

dt
= −Λ

PR

P
+ rvacPS +

PI

Tinf

In this model we assume that P = PS + PE + PI + PR remains constant, so
we need not model PR. The corresponding Fi matrices thus simplify to

F1 =

⎛
⎝

− Λ
P − rvac 0 0

0 − Λ
P − 1

Tlat
0

0 1
Tlat

− Λ
P − 1

Tinf

⎞
⎠ , F2 =

⎛
⎝

0 0 − rtra
P 0 0 0 0 0 0

0 0 rtra
P 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎠ .

Since F1 is triangular, �(λ1) = − Λ
P − min{rvac,

1
Tlat

, 1
Tinf

}. We also have

‖F2‖ =
√
2rtra
P and ‖X0‖ ≤ P . Thus we can estimate

R =
‖X0‖

√
2rtra
P

Λ
P + min{rvac,

1
Tlat

, 1
Tinf

} ≤
√

2rtra
Λ
P + min{rvac,

1
Tlat

, 1
Tinf

} .

The time scale is measured in days. We use the same parameters as in [31]:
a population of P = 107, Λ is small (here: Λ = 1), hence the constant term
is disregarded in the analysis, Tlat = 5.2, Tinf = 2.3, rtra = 0.13 days−1, and
rvac = 0.19 days−1. We choose X0 = [6e6, 3e5, 3.7e6] ⊕ B3

1e5, which results in
R ≈ 0.68 and �(λ1) ≈ −0.19 and thus Theorem 1 is applicable.

The analysis results without and with conservative error estimate are plotted
in Fig. 2, where we used the discretization step δ = 0.1. We can see that the non-
conservative Carleman approximation is precise even for the small value N = 2.
However, the error estimate is too conservative for such small value of N thus it
is not plotted. However, using N = 5 the error estimate improves significantly,
but only until around time t = 4; this is due to the large values in X0. At t = 4
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Fig. 2. Results for the SEIR model.

Table 1. Run times for the SEIR model and the Burgers model obtained for the
Taylor-model (TM) approach and the Carleman linearization with different truncation
orders N .

SEIR model Burgers model

No error bound Incl. error bound Initial point Initial set

TM 6.14 s 0.88 s 0.91 s

Carleman N = 2: 0.006 s N = 5: 0.185 s N = 2: 0.0065 s N = 2: 0.0067 s

N = 3: 0.24 s N = 3: 0.29 s

we reevaluate the estimate. Since the state and with it the norm has changed,
the new error estimate is more optimistic and converges quickly. The run times
are given in Table 1.

6.2 Burgers Partial Differential Equation

We study a model arising from the discretization of a partial differential equation
(PDE). Consider the viscous Burgers equation to model convective flow [11]

∂tu + x∂xu = ν∂2
xu.

We use the following model parameters: viscosity ν = 0.05, domain length
L0 = 1, and U0 = 1. We consider the initial condition u(x, 0) = −U0 sin(2πx/L0)
on the domain x ∈ ±L0/2 and Dirichlet conditions u(x, 0) = 0 at the boundaries.
We distribute this initial condition to a set by keeping the end points fixed and
enlarging the initial point to some width w = 0.06. For the PDE discretization
we use central differences obtaining the coupled differential equations

∂tui = ν
ui+1 − 2ui + ui−1

Δx2
− u2

i+1 − u2
i−1

4Δx
. (7)



96 M. Forets and C. Schilling

Fig. 3. Results for the Burgers model at t = 0.5 with initial condition width w.

We use nx = 10 points and Δx = L0/(nx − 1). Equation (7) has the form of
(1) that we need to apply Carleman linearization. We obtain �(λ1) ≈ −0.488 < 0
but R ≈ 18.58, i.e., R as defined in Eq. 5 is not smaller than one. Although the
theoretical error bounds from Theorem 1 are not applicable here, it is interesting
to observe that the set-based solution is reasonably accurate with respect to the
solution obtained for the original nonlinear system. In Fig. 3 we plot the results
at t = 0.5. For the linear reachability algorithm we used the step size δ = 0.01.
We can see that we still obtain good approximations that decrease exponentially
by incrementing the truncation N . The run times are given in Table 1.

7 Conclusions

In this paper we have presented a reachability method that abstracts nonlinear
terms into a higher-dimensional space such that the evolution is approximately
linear. The main advantage of the method is that we can leverage recent set
propagation techniques that are specialized to high-dimensional linear ODEs.
However, the method does not apply to general nonlinear systems but requires
weak nonlinearity, i.e., the relative norm of the nonlinear term should be smaller
than that of the linear term. Under such limitations, the presented method out-
performs other reachability methods because linear reachability in high dimen-
sion can be solved efficiently.

This work can be extended in several ways. First, we can consider time-
dependent terms; an error bound is derived in [31]. Second, in our experimental
evaluation we observed that manually reevaluating the error bound can improve
the precision if the norm of the states shrinks (which should generally happen
for dissipative systems). It would be interesting to automate this process. Third,
the reachability analysis can be accelerated, e.g., using Krylov methods to work
more efficiently in high dimensions. A more challenging direction is to devise a
new reachability algorithm that exploits the structure of the linearized system.
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Abstract. Jordan Normal Forms serve as excellent representatives of
conjugacy classes of matrices over algebraically closed fields. Once we
know normal forms, we can compute functions of matrices, their main
invariants, etc. The situation is more complicated if we search for normal
forms for conjugacy classes over fields that are not closed and especially
over rings.

In this paper we study PGL(2,Z)-conjugacy classes of GL(2,Z) matri-
ces. For the ring of integers the Jordan approach has various limitations
and in fact it is not effective. The normal forms of conjugacy classes of
GL(2,Z) matrices are provided by an alternative theory, which is known
as Gauss Reduction Theory. We introduce new techniques to compute
reduced forms in Gauss Reduction Theory in terms of the elements of
certain continued fractions. The current approach is based on recent
progress in the field of the geometry of numbers. The proposed tech-
nique provides an explicit computation of periods of continued fractions
for the slopes of eigenvectors.

Keywords: Integer matrices · Gauss reduction theory · Continued
fractions · Geometry of numbers

Introduction

In this paper we study the structure of the conjugacy classes of GL(2,Z). Recall
that GL(2,Z) is the group of all invertible matrices with integer coefficients. As a
consequence the determinants of such matrices are ±1. We say that the matrices
A and B from GL(2,Z) are PGL(2,Z)-conjugate if there exists a GL(2,Z) matrix
C such that B = ±CAC−1. In the integer case projectivity simply means that
all matrices are considered up to the multiplication by ±1.

Recall that for algebraically closed fields every matrix is conjugate to its
Jordan Normal Form. The situation with GL(n,Z) is not so simple as the set
of integer numbers does not have a field structure. A description of PGL(2,Z)-
conjugacy classes in the two-dimensional case is the subject of Gauss Reduction
Theory. The conjugacy classes are classified by periods of certain periodic con-
tinued fractions (for additional information we refer to [13,17,18]; for the algo-
rithms of the conjugacy test in GL(2,Z) see [4,6]). The first geometric invariants
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of GL(2,Z) matrices in the spirit of continued fractions were studied in [9]. The
question of the classification of conjugacy classes is closely related to the study
of homogeneous forms (see e.g. in [2]) and the theory of Markov and Lagrange
spectra (see e.g. in [5]).

Our aim is to study a natural class of reduced matrices that represent every
conjugacy class, which are good candidates for normal forms in integer settings.
Note that the number of reduced matrices in any PGL(2,Z)-conjugacy class of
matrices is finite (see, e.g., in Chapter 7 of [11]). In this paper we approach the
following problem.

Problem 1. Find explicit expressions for normal forms PGL(2,Z)-conjugate to
a given matrix.

We solve this problem by introducing a new surprising explicit formula to
generate all reduced matrices PGL(2,Z)-conjugate to a given one via certain
long continued fractions that are built using the elements of the matrices. We
show how write all the reduced matrices in Sect. 3. The formula is justified
by Theorem 3 which is supplemented by technical statements of Theorem 2,
Theorem 4 and Proposition 2. The new method is based on lattice trigonometry
introduced in [7,8] (see also in [11]).

We expect that the computational complexity of the new method is compara-
ble to the algorithm of Chapter 7 in [11]. One of the advantages of the proposed
new approach is that it constructs all reduced matrices while the classical algo-
rithms result in a single reduced matrix. In addition all the reduced operators of
the proposed approach are explicitly described via geometric invariants, which
is potentially useful for the multidimensional case. Recall that the studies of
the conjugacy classes of GL(n,Z) for n > 2 were motivated by V. Arnold (see,
e.g., in [1]) who revived the notion of multidimensional continued fractions in
the sense of Klein ([15,16]). The first results in higher dimensional cases were
obtained in [10] (see also [11], Chapter 21), however the theory is far from its
final form even for the case of n = 3. We hope that the approach of the current
paper will give some hints for numerous open problems in the multidimensional
case.

This paper is organized as follows. In Sect. 1 we start with necessary notions
and definitions of geometry of numbers. In particular we introduce the notion of
the semigroup of reduced matrices. We discuss three different cases of GL(2,Z)
matrices in general in Sect. 2. In Sect. 3 we bring together all the stages of finding
all reduced matrices PGL(2,Z)-conjugate to a given one. Finally in Sect. 4 we
discuss some technical details used in the construction of reduced matrices.

1 Background

In this section we briefly discuss basic notions used in the computation of reduced
matrices. We start in Subsect. 1.1 with elementary notions and definitions of lat-
tice geometry. In Subsect. 1.2 we define sails of integer angles; and introduce LLS
sequences for broken lines. Further we define LLS sequences for integer angles.
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Sails and LLS sequences are important invariants related to conjugacy classes
of GL(2,Z) matrices. We continue in Subsect. 1.3 with the notion of periods of
LLS sequences related to matrices. In Subsect. 1.4 we introduce reduced matrices
and give a continuant representation for them. We conclude this section with a
general definition of difference of sequences in Subsect. 1.5.

1.1 Basics of Integer Geometry in the Plane

We say that a point is integer if its coordinates are integers. A segment is integer
if its endpoints are integer. An angle is called integer if its vertex is an integer
point. We also say that an integer angle is rational if its edges contain integer
points distinct to the vertex.

An affine transformation is said to be integer if it is a one-to-one mapping of
the lattice Z2 to itself. Note that the set of integer transformations is a semidirect
product of the group of translations by an integer vector and the group GL(2,Z).
Two sets are integer congruent if there exists an integer affine transformation
providing a bijection between these two sets.

Definition 1. The integer length of an integer segment AB is the number of
integer points inside its interior plus one. Denote it by l�(AB).

The integer sine of a rational angle ∠ABC is the following integer:
| det(AB,BC)|
l�(AB)·l�(BC) , where |det(AB,BC)| is the absolute value of the determinant of
the matrix of the pair of vectors (AB,BC). Denote it by lsin∠ABC.

The integer lengths and sines are invariants of integer affine transformations.

1.2 Sail and LLS Sequences

Let us now study an important invariant of angles and broken lines. It will be
employed in the proofs, however from computational perspectives one can use
the statement of Theorem 4 as the explicit definition of LLS sequences for angles
(without appealing to integer geometry).

Let ∠ABC be an integer angle. The boundary of the convex hull of all integer
points in the convex closure of ∠ABC except B is called the sail of ∠ABC.

Note that the sail of a rational angle is a finite broken line, while the sail of
an integer angle that is not rational is a broken line infinite on one or both sides.

Definition 2. Let A1, . . . , An be a broken line (here we can consider finite or
infinite broken lines) such that Ai, Ai+1, and O are not in one line for all
admissible parameters of i. Define

a2k = det(OAk, OAk+1) and a2k−1 =
det(AkAk−1, AkAk+1)

a2k−2ak
.

for all admissible k. The sequence (a0, . . . , a2n) (or an infinite one respectively)
is called the LLS sequence of the broken line A0 . . . An.
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Definition 3. Consider an integer angle ∠ABC. Let . . . Ai−1, AiAi+1, . . . be the
sail of ∠ABC. Here we consider the broken line directed from the edge AB to
the edge BC. Let the LLS sequence for the broken line . . . Ai−1, AiAi+1, . . . be
(. . . a2k−1, a2k, a2k+1, . . .) (finite or infinite). Then the sequence

(. . . |a2k−1|, |a2k|, |a2k+1|, . . .)
is called the Lattice Length Sine sequence (or simply LLS sequence, for short) of
the angle ∠ABC and is denoted by LLS(∠ABC).

Remark 1. Note that the LLS sequence can be defined for any lattice (not nec-
essarily for the integer lattice).

Remark 2. Consider a rational angle ∠ABC with a positive det(AO,BC). Then
its LLS sequence (a0, . . . , a2n) consists of an odd number of elements and

a2k = l�AkAk+1 and a2k−1 = lsin∠Ak−1AkAk+1 for all admissible k.

Now let us recall the definition of a continuant.

Definition 4. Let n be a positive integer. A continuant Kn is a polynomial with
integer coefficients defined recursively by

K−1() = 0; K0() = 1; K1(a1) = a1;
Kn(a1, a2, . . . , an) = anKn−1(a1, a2, . . . , an−1) + Kn−2(a1, a2, . . . , an−2).

Remark 3. Note that we have the following general expression relating continued
fractions and continuants. For any real numbers a1, . . . , an it holds that

[a1; a2 : · · · : an] =
Kn(a1, a2, . . . , an)
Kn−1(a2, . . . , an)

.

We use the following important geometric property of LLS sequences.

Theorem 1 ([7] 2008). Consider a finite broken line A1, . . . , An with LLS
sequence (a0, . . . , a2n). Let also A0 = (1, 0) and A1 = (1, a0). Then

An =
(
K2n+1(a0, . . . , a2n),K2n(a1, . . . , a2n)

)
.

For further additional information on the geometry of continued fractions
see [11].

1.3 LLS Periods of GL(2,Z) Matrices

Let M be a (2× 2)-matrix with two distinct real eigenvalues. In this case M has
two eigenlines. The complement to these eigenlines is a union of four cones. We
say that the sails of these cones are the sails associated to M .

Definition 5. We say that a sequence of positive integers is an LLS sequence
of M if this sequence is the LLS sequence of one of the sails associated to M .
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Remark 4. It turns out that in the case of GL(2,Z) matrices with real irrational
eigenvalues the LLS sequences of all associated sails coincide up to a possible
index shift and reversal (see Section 7 of [11]). So the LLS sequence is uniquely
defined by the matrix in this case.

We conclude this subsection with the following fundamental definition.

Definition 6. Let M be a GL(2,Z) matrix with real irrational eigenvalues. Then
its LLS sequence is periodic. In addition M2 acts as a periodic shift on every
one of the sails. Assume that M2 shifts the sail by n vertices. Then any period
of length n is called an LLS period of M . (Here we write the elements of the
period in order from a vertex v on the sail to the vertex M2(v) on the sail.)

Remark 5. Note that matrices inverse to each other have reversed periods.

1.4 Reduced Matrices and Continuants

In this section we introduce reduced matrices. Their elements have a nice repre-
sentation in terms of continuants. Let us fix the following notation.

Definition 7. Let a be a real number, denote Ma =
(

0 1
1 a

)
.

Now let (a1, . . . , an) be any sequence of real numbers, we set

Ma1,...,an
=

n∏

k=1

(
0 1
1 ak

)
.

Definition 8. Consider a sequence of positive integers (a1, . . . , an). Then the
matrix Ma1,...,an

is said to be reduced.

There are two main benefits for the proposed choice of reduced matrices.
Firstly, they form a semigroup with respect to matrix multiplication. Secondly,
there is the following explicit description of such matrices.

Proposition 1. Let n ≥ 0 and let (a1, . . . , an) ∈ R
n. Then we have

Ma1,...,an
=

(
Kn−2(a2, . . . , an−1) Kn−1(a2, . . . , an)

Kn−1(a1, a2, . . . , an−1) Kn(a1, a2, . . . , an)

)
.

In addition, we have detMa1,...,an
= (−1)n.

Example 1. Consider

M3,−3,−2,5 = M3 · M−3 · M−2 · M5.

Hence M is represented by the following sequence: (3,−3,−2, 5). By Proposi-
tion 1 we immediately have

M3,−3,−2,5 =
(

K2(−3,−2) K3(−3,−2, 5)
K3(3,−3,−2) K4(3,−3,−2, 5)

)
.
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Therefore,

M3,−3,−2,5 =
(

7 32
19 87

)
.

Here we actually have

19
7

= [3 : −3 : −2] and
87
19

= [3 : −3 : −2 : 5].

Note also that
det M = (−1)4 = 1.

Proof of Proposition 1. The proof is done by induction in n.

Base of Induction. For n = 1, 2 we have respectively

Ma1 =
(

0 1
1 a1

)
=

(
K−1() K0()
K0() K1(a1)

)
.

Ma1,a2 = Ma1Ma2 =
(

1 a2

a1 1 + a1a2

)
=

(
K0() K1(a2)

K1(a1) K2(a1, a2)

)
.

Step of Induction. We have

Ma1,...,an+1 = Ma1,...,an
· Man+1 =(

Kn−2(a2, . . . , an−1) Kn−1(a2, . . . , an)
Kn−1(a1, . . . , an−1) Kn(a1, . . . , an)

)
·
(

0 1
1 an+1

)
=

(
Kn−1(a2, . . . , an) Kn−2(a2, . . . , an−1) + an+1Kn−1(a2, . . . , an)
Kn(a1, . . . , an) Kn−1(a1, . . . , an−1) + an+1Kn(a1, . . . , an)

)
=

(
Kn−1(a2, . . . , an) Kn(a2, . . . , an+1)
Kn(a1, . . . , an) Kn+1(a1, . . . , an+1)

)
.

The last equality is a classical relation for the numerators and denominators of
continued fractions (see, e.g., in [14] or in [11]). This concludes the proof for the
induction step.

Finally, since detMa = −1 we have det M = (−1)n. ��

1.5 Difference of Sequences

Finally let us give the following general combinatorial definition.

Definition 9. Let m > n be two non-negative integers and consider two
sequences of real numbers Sa = (a1, . . . , am) and Sb = (b1, . . . , bn). We say
that there exists a difference of Sa and Sb if there exists k ≤ m+1 such that the
following conditions are fulfilled: (i) bi = ai for 1 ≤ i < k;
(ii) either k = m + 1 or bk �= ak; (iii) bk+i = ak+i+m−n for 0 ≤ i ≤ n − k.
In this case we denote Sa − Sb = (ak, ak+1, . . . , ak+n−m−1).

Example 2. (i) We have (1, 2, 3, 4, 5, 6, 7, 8) − (1, 2, 3, 6, 7, 8) = (4, 5).
(ii) The expression (1, 2, 3, 4, 5, 6, 7, 8) − (1, 5, 8) is not defined.
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2 Three Cases of GL(2,Z) Matrices

It is natural to split the matrices of GL(2,Z) into three cases with respect to
their spectra (set of eigenvalues). We distinguish the cases of complex, rational,
and real irrational spectra. The cases of complex and rational cases are rather
straightforward, they are not included in Gauss Reduction Theory. The case of
real irrational spectra is more complicated, it is central for this paper. Let us
now briefly discuss these three cases in this section.

Case of Complex Spectra: We start with GL(2,Z) matrices whose charac-
teristic polynomials have a pair of complex conjugate roots. There are exactly
three PGL(2,Z)-conjugacy classes of such matrices (these classes are perfectly
distinguished by traces of matrices). They are represented by

(
1 1

−1 0

)
,

(
0 1

−1 0

)
, and

(
0 1

−1 −1

)
.

The author does not have a link to the proof of the classification in the complex
case, however it is a classical result. The complete proof will be shortly available
in the second edition of [11].

Case of Rational Spectra: It turns out that such matrices have eigenvalues
equal to ±1, any of rational spectra matrices are PGL(2,Z)-conjugate to exactly
one of the following matrices

(
1 m
0 1

)
for m ≥ 0,

(
1 0
0 −1

)
, or

(
1 1
0 −1

)
.

(Note that the rational spectra case contains the degenerate case of coinciding
roots.) For the proofs in the rational spectra case see [3].

Case of Real Irrational Spectra: This case is the most complicated. It is
described by a so-called Gauss Reduction Theory, which is based on Euclidean
type algorithms providing a descent to reduced matrices (see Chapter 7 of [11]).
It is interesting to note that the number of reduced matrices integer congruent to
a given one is finite and equal to the number of elements in the minimal period
of the regular continued fraction for the tangent of the slope of any eigenvector
of the matrix. In the next section we introduce an alternative algorithm based on
explicit expressions for reduced matrices that originated in geometry of numbers.

3 Techniques to Find Reduced Matrices
PGL(2,Z)-Conjugate to a Given One

Let us outline the main stages of the reduced matrices construction. All the
statements involved in it are proven in the next section. The construction is
based on general Theorem 3 and several supplementary technical statements.

Remark 6. The proposed algorithm provides an answer to Problem 1.
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Goal of the Algorithm. List all reduced matrices PGL(2,Z)-conjugate to M .

Input Data. We are given a GL(2,Z) matrix. Namely we have M =
(

p r
q s

)
.

Step 1. Starting with any point P0 we set P1 = M4(P0) and P2 = M6(P0) and
compute LLS(∠P0OP1) and LLS(∠P0OP2) using Theorem 4.

Step 2. By Proposition 2 one of the periods of the LLS sequence for M is a half
of LLS(∠P0OP2) − LLS(∠P0OP1). We take the first half of this sequence, so
let the period be (a1, . . . , an) and let the lengths of the minimal possible periods
be m.

Step 3. Now we can write down the reduced matrices in accordance with The-
orem 2 and Proposition 1.

Output. All the reduced matrices PGL(2,Z)-conjugate to M will be of the form
(

Kn−2(ak+2, . . . , ak+n−1) Kn−1(ak+2, . . . , ak+n)
Kn−1(ak+1, ak+2, . . . , ak+n−1) Kn(ak+1, ak+2, . . . , ak+n)

)
, k = 0, . . . ,m − 1.

Example 3. Input: Find all reduced matrices for the matrix M =
(

7 −30
−10 43

)
.

Step 1. Starting with any point P0 = (1, 1) set

P1 = M4(P0) = (−2875199, 4119201) and
P2 = M6(P0) = (−7182245951, 10289762449).

Let us first compute LLS(∠P0OP1). First of all note that

ε = −sign
1
1

= −1, δ = sign
−2875199
4119201

= −1 and det(OP1, OP2) · (−1) > 0.

Hence we take the following odd regular continued fractions: 1
1 = [1] and

∣
∣−2875199

4119201

∣
∣ = 2875199

4119201 = [0; 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 3].

Now we combine these two continued fractions in accordance with Theorem 4:

[−1; 0 : 0 : −1 : −2 : −3 : −4 : −1 : −2 : −3 : −4 : −1 : −2 : −3 : −4 :
−1 : −2 : −3 : −3] = −6994400

4119201 .

We have
∣
∣
∣
∣
−6994400
4119201

∣
∣
∣
∣ =

6994400
4119201

= [1; 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 3].

Therefore, LLS(∠P0OP1) = (1, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 3).
Similarly we get

LLS(∠P0OP2) = (1, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3 , 3).
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(Here we show the difference of the sequences in the box).

Step 2. By Proposition 2 one of the periods of the LLS sequence for M is a half
of the sequence LLS(∠P0OP2) − LLS(∠P0OP1) = (4, 1, 2, 3, 4, 1, 2, 3), which is
(4, 1, 2, 3). The minimal possible period is of length 4 (so m = 4).

Step 3. We can write down the reduced matrices in accordance with Theorem 2
and Proposition 1 for all distinct periods of length 4, i.e. for

(4, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 1), and (3, 4, 1, 2).

Output. Finally applying Proposition 1 to these four sequences we have the list
of all reduced matrices PGL(2,Z)-conjugate to M :
(

K2(1, 2) K3(1, 2, 3)
K3(4, 1, 2) K4(4, 1, 2, 3)

)
=

(
3 10
14 47

)
,

(
7 30
10 43

)
,

(
13 16
30 37

)
,

(
5 14
16 45

)
.

(We show continuants only for the first matrix and omit them for the others.)

4 Technical Aspects of Reduced Matrices Computation

In this section we show some technical statements involved in the justification
of the above algorithm. We start in Subsect. 4.1 with writing periods of LLS
sequences for reduced matrices. In Subsect. 4.2 we explain how to list all reduced
matrices PGL(2,Z)-conjugate to the given one (the reduced matrices are given
in terms of LLS periods of original matrices). Then we show in general how to
compute LLS sequences of angles in Subsect. 4.3. Finally in Subsect. 4.4 we state
how to compute the periods of LLS sequences.

4.1 Continued Fraction Enumeration of Reduced Matrices

Let us find a period of the LLS sequence for matrices Ma1,a2,...,an
.

Theorem 2. Let n, a1, . . . , an be positive integers. Then one of the periods of
the LLS sequence for Ma1,a2,...,an

is (a1, a2, . . . , an).

Proof. Consider the sequence of integer points (xk, yk) = Mk
a1,a2,...,an

(1, 0) for
positive integer values of k. By Proposition 1 and Definition 7 for every k we
know the coordinates xk and yk via continuants. So from the general theory
of continued fractions they are relatively prime and further by Remark 3 they
satisfy

yk

xk
= [(a1; a2 : · · · : an)k].

Therefore, all the points (xk, yk) are vertices of the sail of the periodic continued
fraction α = [(a1; a2 : · · · : an)]. (This is a classical statement of geometry of
numbers (Theorem 3.1 of [11]).) This immediately implies that the direction
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of the vector (1, α) is the limiting direction for the sequence of directions for
the vectors (xk, yk), and in particular that lim

k→∞
(yk/xk) = α. Hence (1, α) is

one of the eigenvectors corresponding to the maximal eigenvalue (and thus the
eigenvalues are both real and distinct). By construction the LLS sequence for α
is periodic with period (a1, a2, . . . , an).

Finally the sail for α from some element coincides with the sail for M . Since
the sail for M is periodic, the period is the same as for α, i.e. (a1, a2, . . . , an). ��

4.2 Matrices PGL(2,Z)-Conjugate to a Given One

The following theorem produces the list of all reduced matrices PGL(2,Z)-
conjugate to a given one.

Theorem 3. Let M be a GL(2,Z) matrix and let (a1, . . . , an) be a period of
the LLS sequence corresponding to M . Finally let m be the minimal length of
the period of the LLS sequence. Then the list of all reduced matrices PGL(2,Z)-
conjugate to M consists of the following m matrices:

Ma1+k,...,an+k
, k = 1, . . . ,m.

Let us first prove the following lemma.

Lemma 1. Two operators have the same LLS sequences if and only if their
unions of eigenlines are integer congruent to each other.

Proof. The LLS sequence is an invariant of arrangements of two lines with
respect to integer congruences, hence they are the same if the unions of eigenlines
for the operators are integer congruent to each other.

Now let the unions of eigenlines have the same LLS sequences. Pick any of the
four angles for the first unions of the eigenlines. Now we pick another angle for the
second union of the eigenlines in such a way that their subsequences of integer
lengths and integer sines coincide respectively. This is always possible as the
adjacent angles have the same LLS sequence with subsequence of integer angles
equal to the subsequence of integer sines and vice versa. This is a consequence
of a classical duality of sails for adjacent angles ([11], Proposition 8.5).

Such angles are integer congruent. This follows from the fact that the sail is
uniquely reconstructed by the LLS sequence, one of its vertices, and the direction
of one of the adjacent edges to this vertex. Once LLS sequence is reconstructed,
the integer angle is reconstructed itself (here we assume that we consider the
angles with vertex at the origin). For further details we refer to [11], Theorem
4.11. Since the angles are integer congruent, the unions of eigenlines are integer
congruent as well. ��

Proof of Theorem 3. By Lemma 1 we know that two operators have the same
LLS sequences if and only if their unions of eigenlines are integer congruent to
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each other. In Theorem 2 we showed that the LLS sequence of Mb1,b2,...,br has a
period

(b1, b2, . . . , br).

Therefore, by Lemma 1, M could be congruent only to reduced matrices whose
units of eigenlines are integer congruent to the units of eigenlines

±Ma1+k,...,an+k

for k = 1, . . . ,m (these are the only matrices with LLS sequences of length n that
have such LLS sequences). By the structure of the sails of reduced operators (as
the first segment of the sail in the positive octant containing (1, 0) is orthogonal
to the x-axis) reduced matrices with congruent units of eigenlines have coinciding
eigenlines. By a general statement in geometry of numbers, the operators with
coinciding eigenlines are the elements of the same Dirichlet group and in the
two-dimensional case they are some rational powers of each other (see Section 8.1
of [11]).

The LLS sequence of M2 shifts the LLS sequence by n, and hence the reduced
matrices integer conjugate to ±M should be defined by sequences of length n
(or, equivalently, that they have periods of length n). Note that the powers of
matrices Ma1+k,...,an+k

are defined by a sequence of length n if and only if the
exponents are either 1 or −1.

In the case of the exponent equal to 1 we have matrices Ma1+k,...,an+k
for

k = 1, . . . ,m themselves. In case of the exponent equal to −1 the LLS sequences
are reversed, so this case is possible only for palindromic sequences, and hence
we arrive to the same matrices Ma1+k,...,an+k

for k = 1, . . . , m. Therefore, the
list of all reduced matrices PGL(2,Z)-conjugate to M consists of m matrices of
the form Ma1+k,...,an+k

for k = 1, . . . , m. This concludes the proof. ��

4.3 Computation of LLS Sequences for Rational Angles

In this subsection we formulate a theorem that provides an explicit formula for
the LLS sequence of a given matrix. This formula is very much in the spirit of
generalized Perron Identity introduced in our recent paper [12].

Theorem 4. Consider two linearly independent integer vectors A = (p, q) and
B = (r, s). We assume that none of them are proportional either to (1, 0) or
to (0, 1). Let two sequences of integers (a0, a1, . . . , a2m) and (b0, b1, . . . , b2n) be
defined as the sequences of elements of the odd regular continued fractions of

– |q/p| and |s/r| in case of det(OA,OB) · signp
q < 0;

– |p/q| and |r/s| in case of det(OA,OB) · signp
q > 0.

Further we set ε = −signp
q and δ = sign r

s . Denote also

α = [εa2m : εa2m−1 : · · · : εa1 : εa0 : 0 : δb0 : δb1 : · · · : δb2n].

Let |α| = [c0; c1 : · · · : c2k] be the regular odd continued fraction for |α|. Set
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– S = (c0, c1, . . . , c2k) in the case c0 �= 0;
– S = (c2, . . . , c2k) in the case c0 = 0.

Then S is the LLS sequence for the angle ∠AOB.

Remark 7. In fact it is possible to simplify the computation of the continued
fraction for α. Namely we take

α = [εa2m : εa2m−1 : · · · : εa1 : εa0 : 0 : δw];

where w = s/r if det(OA,OB) · signp
q < 0 and w = r/s otherwise.

We continue with the following remark.

Remark 8. Recall one technical statement for angles represented by slopes with
tangents less than 1: the angles represented by the continued fractions

[0; a1 : a2 : · · · : a2n] and [a2; · · · : a2n]

are integer congruent. In particular, they have the same LLS sequences.

Proof of Theorem 4. First we set E = (1, 0). Consider the broken line that is a
concatenation of the sail of the angle ∠AOE (in case the last edge of this sail is
not vertical we add the infinitesimal edge EE of zero integer length with vertical
direction and 0 integer length) and the sail for the angle ∠EOB (again we add
another infinitesimal edge EE in case the first edge of the sail of the angle is not
vertical).

Note that this broken line L has the following properties:

– it starts at the ray OA and ends at the ray OB;
– the direction of the first edge is towards the interior of the angle ∠AOB.

Then the angle is integer congruent to the angle ∠EOC with C = (1, α)
where |α| is defined by the LLS sequence of the above broken line as

α = [εa2m : εa2m−1 : · · · : εa1 : εa0 : 0 : δb0 : δb1 : · · · : δb2n].

The proof for this formula is given by the study of numerous straightforward
cases of various signs for p, q, r, s and det(OA,OB).

Let us study the case p, q, r, s > 0,det(OA,OB) < 0. In this case, the first
part of the broken line L will be the sail of ∠AOE passed clockwise. Hence the
elements of the LLS sequence will be reversed and negative to the values of the
LLS sequence for ∠AOE. Note that in the case of q/p < 1 we end up with an
infinitesimal (zero integer length) vertical vector which additionally brings two
elements: the element �p/q	 for the angle with the vertical line passing through
E, and the element 0 indicating that we stay at E. Then we switch to the second
sail. Both sails are starting vertically (or asymptotically vertical in the case of
a1 or b1 are zeroes), hence the angle between the edges corresponding to a0 and
b0 is zero. So we add a zero element to the LLS sequence for L here. Finally we
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continue back following the sail of the angle ∠EOB, which is described by the
continued fraction [b0 : b1 : · · · : b2n] (here again we have b0 = 0 and b1 = �s/r	
for the case of r/s < 1). Hence the LLS sequence of the broken line L is

(−a2m,−a2m−1, . . . ,−a1,−a0, 0, b0, b1, . . . , b2n).

Finally we get α = [−a2m : −a2m−1 : · · · : −a1 : −a0 : 0 : b0 : b1 : · · · : b2n].
The cases for the rest choices of signs for p, q, r, s and det(OA,OB) are con-

sidered similarly, so we omit them here.
Now let |α| = [c0; c1 : · · · : c2k]. Therefore (c.f. Remark 8) the LLS sequence

for ∠EOC is either (c0, c1, c2, . . . , c2k) if c0 �= 0, or (c2, . . . , c2k) otherwise. ��

4.4 Periods of the LLS Sequences Corresponding to Matrices

In this subsection we show how to extract periods of the LLS sequence for a
given matrix.

Proposition 2. Let a GL(2,Z) matrix M have distinct irrational eigenvalues
(not necessarily positive). Let also P0 be any non-zero integer point. Denote
P1 = M4(P0) and P2 = M6(P0). Then there exists a difference LLS(∠P0OP2)−
LLS(∠P0OP1), which is a period of the LLS sequence for M repeated twice.

Remark 9. The obtained period of the LLS sequence is not necessarily minimal.

We start the proof with the following lemma.

Lemma 2. Let a GL(2,Z) matrix M have distinct irrational positive eigen-
values. Let also P0 be any non-zero integer point. Denote P1 = M2(P0) and
P2 = M3(P0). Then there exists a difference LLS(∠P0OP2) − LLS(∠P0OP1),
which is a period of the LLS sequence for M .

Remark 10. It is not enough to consider the difference of the LLS sequences for
the angles ∠P0OP1 and ∠P0OQ (where Q = M(P0)), as it is not possible to
determine the last integer sine of the period then. Let us illustrate this with the
following example.

Consider a matrix M =
(

1 2
1 3

)
and the point P = (4,−1). Then

Q = M(P0) = (2, 1), P1 = M2(P0) = (4, 5), and P2 = M3(P0) = (14, 19).

The LLS sequences for the angles ∠P0OQ, ∠P0OP1 and ∠P0OP2 are respectively

(1, 4, 1); (1, 3, 1, 3, 1); and (1, 3, 1, 2, 1, 3, 1).

We have
(1, 3, 1, 2, 1, 3, 1) − (1, 3, 1, 3, 1) = (2, 1)

which is the correct period for the LLS sequence of M , while the difference
(1, 3, 1, 3, 1) − (1, 4, 1) is not even defined.
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Proof of Lemma 2. Set Q = M(P0). First of all note that ∠P0OQ is a funda-
mental domain of one of the angles C whose edges are eigenvectors of M up to
the action of the group of (integer) powers of M . Hence it contains at least one
vertex of the sail. Denote this vertex by v. Then the angle ∠P0OP2 contains
vertices v0 = v, v1 = M(v), and v2 = M2(v). Thus by convexity reasons, the
sail for the angle ∠P0OP2 contains the part of the sail of C between v0 and v2.
Namely there will be four parts of the sail:

– S1: a part of the sail contained in P0Ov0;
– S2: a part of the sail contained in v0Ov1;
– S3: a part of the sail contained in v1Ov2;
– S4: a part of the sail contained in v2OP2.

Here S2 and S3 are periods of the sail for the angle ∠P0OP2.
Now by the same reason we have v0 and v1 in the sail for angle ∠P0OP1. We

have the following parts:

– S′
1: a part of the sail contained in P0Ov0;

– S′
2: a part of the sail contained in v0Ov1;

– S′
3: a part of the sail contained in v1OP1.

Note that
S′
1 = S1, S′

2 = S2
∼= S3, and S′

3
∼= S4.

Therefore, the difference of the LLS sequences for the angle ∠P0OP2 and the
angle ∠P0OP1 is precisely the period of the LLS sequence between the points
v1 and v2. This period corresponds to M as M(v1) = v2. This concludes the
proof. ��
Proof of Proposition 2. First of all let us study the LLS sequences of reduced
operators. Let M = Ma1,...,an

be a reduced operator for the sequence of positive
integers (a1, . . . , an). Then from Definition 7 we have

M2 = M2
a1,...,an

= Ma1,...,an,a1,...,an
.

Hence the period of the LLS sequence of M2 is twice the period of M .
For an arbitrary M we know that

M2 ∼= Ma1,...,an,a1,...,an
= M2

a1,...,an
.

Hence M itself is PGL(2,Z)-congruent to Ma1,...,an
Therefore, the period of the

LLS sequence corresponding to M2 will be twice the period of the LLS sequence
for M . By Lemma 2 the difference LLS(∠P0OP3) − LLS(∠P0OP2) exists and
it is a period for M2. Finally by the above the resulting sequence is a period of
the LLS sequence for M repeated twice. ��
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Abstract. An absent factor of a string w is a string u which does not
occur as a contiguous substring (a.k.a. factor) inside w. We extend this
well-studied notion and define absent subsequences: a string u is an
absent subsequence of a string w if u does not occur as subsequence
(a.k.a. scattered factor) inside w. Of particular interest to us are min-
imal absent subsequences, i.e., absent subsequences whose every sub-
sequence is not absent, and shortest absent subsequences, i.e., absent
subsequences of minimal length. We show a series of combinatorial and
algorithmic results regarding these two notions. For instance: we give
combinatorial characterisations of the sets of minimal and, respectively,
shortest absent subsequences in a word, as well as compact representa-
tions of these sets; we show how we can test efficiently if a string is a
shortest or minimal absent subsequence in a word, and we give efficient
algorithms computing the lexicographically smallest absent subsequence
of each kind; also, we show how a data structure for answering short-
est absent subsequence-queries for the factors of a given string can be
efficiently computed.

Keywords: Absent subsequence · Arch-factorization · Stringology ·
Subsequence · Subsequence-Universality

1 Introduction

A word u is a subsequence (also called scattered factor or subword) of a string
w if there exist (possibly empty) strings v1, . . . , v�+1 and u1, . . . , u� such that
u = u1 . . . u� and w = v1u1 . . . v�u�v�+1. In other words, u can be obtained from
w by removing some of its letters.

The study of the relationship between words and their subsequences has been
a central topic in combinatorics on words and string algorithms, as well as in
language and automata theory (see, e.g., the chapter Subwords in [47, Chapter 6]
for an overview of the fundamental aspects of this topic). Subsequences appear in
many areas of theoretical computer science, such as logic of automata theory [28,
30–32,35,36,52,53,57], combinatorics on words [24,37,38,40,46,48,50], as well
as algorithms [3,10,11,39,56]. From a practical point of view, subsequences are
generally used to model corrupted or lossy representations of an original string,
and appear, for instance, in applications related to formal verification, see [28,57]
and the references therein, or in bioinformatics-related problems, see [49].
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In most investigations related to subsequences, comparing the sets of subse-
quences of two different strings is usually a central task. In particular, Imre Simon
defined and studied (see [47,52,53]) the relation ∼k (now called the Simon’s Con-
gruence) between strings having exactly the same set of subsequences of length
at most k (see, e.g., [32] as well as the surveys [43,44] and the references therein
for the theory developed around ∼k and its applications). In particular, ∼k is
a well-studied relation in the area of string algorithms. The problems of decid-
ing whether two given strings are ∼k-equivalent, for a given k, and to find the
largest k such that two given strings are ∼k-equivalent (and their applications)
were heavily investigated in the literature, see, e.g., [16,23,26,29,54,55] and the
references therein. Last year, optimal solutions were given for both these prob-
lems [4,27]. Two concepts seemed to play an important role in all these inves-
tigations: on the one hand, the notion of distinguishing word, i.e., the shortest
subsequence present in one string and absent from the other. On the other hand,
the notion of universality index of a string [4,19], i.e., the largest k such that
the string contains as subsequences all possible strings of length at most k; that
is, the length of the shortest subsequence absent from that string, minus 1.

Motivated by these two concepts and the role they play, we study in this
paper the set of absent subsequences of a string w, i.e., the set of strings which
are not subsequences of w. As such, our investigation is also strongly related to
the study of missing factors (or missing words, MAWs) in strings, where the focus
is on the set of strings which are not substrings (or factors) of w. The literature
on the respective topic ranges from many very practical applications of this
concept [5,12,13,18,45,51] to deep theoretical results of combinatorial [9,17,20–
22,41,42] or algorithmic nature [1,2,5,6,14,15,25]. Absent subsequences are also
related to the well-studied notion of patterns avoided by permutations, see for
instance [33], with the main difference being that a permutation is essentially a
word whose letters are pairwise distinct.

Moreover, absent subsequences of a string (denoted by w in the following)
seem to naturally occur in many practical scenarios, potentially relevant in the
context of reachability and avoidability problems.

On the one hand, assume that w is some string (or stream) we observe,
which may represent e.g. the trace of some computation or, in a totally different
framework, the DNA-sequence describing some gene. In this framework, absent
subsequences correspond to sequences of letters avoided by the string w. As
such, they can be an avoided sequence of events in the observed trace or an
avoided scattered sequence of nucleotides in the given gene. Understanding the
set of absent subsequences of the respective string, and in particular its extremal
elements with respect to some ordering, as well as being able to quickly retrieve
its elements and process them efficiently seems useful to us.

On the other hand, when considering problems whose input is a set of strings,
one could be interested in the case when the respective input can be compactly
represented as the set of absent subsequences (potentially with some additional
combinatorial properties, which make this set finite) of a given string. Clearly,
one would then be interested in processing the given string and representing its
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set of absent subsequences by some compact data structure which further would
allow querying it efficiently.

In this context, our paper is focused on two particular classes of absent subse-
quences: minimal absent subsequences (MAS for short), i.e., absent subsequences
whose every subsequence is not absent, and shortest absent subsequences (SAS
for short), i.e., absent subsequences of minimal length. In Sect. 3, we show a
series of novel combinatorial results: we give precise characterizations of the set
of minimal absent subsequences and shortest absent subsequences occurring in a
word, as well as examples of words w having an exponential number (w.r.t. the
length of w) of minimal absent subsequences and shortest absent subsequences,
respectively. We also identify, for a given number k, a class of words having a
maximal number of SAS, among all words whose SAS have length k.

We continue with a series of algorithmic results in Sect. 4. We first show a
series of simple algorithms, useful to test efficiently if a string is a shortest or
minimal absent subsequence in a word. Motivated by the existence of words with
exponentially large sets of minimal absent subsequences and shortest absent sub-
sequences, our main contributions show, in Sects. 4.1 and 4.2, how to construct
compact representations of these sets. These representations are fundamental to
obtaining efficient algorithms querying the set of SAS and MAS of a word, and
searching for such absent subsequences with certain properties or efficiently enu-
merating them. These results are based on the combinatorial characterizations
of the respective sets combined with an involved machinery of data structures,
which we introduce gradually for the sake of readability. In Sect. 4.1, we show
another main result of our paper, where, for a given word w, we construct in lin-
ear time a data structure for efficiently answering queries asking for the shortest
absent subsequences in the factors of w (note that the same problem was recently
approached in the case of missing factors [2]).

The techniques used to obtain these results are a combination of combina-
torics on words results with efficient data structures and algorithmic techniques.
For space reasons, the detailed proofs and algorithms for our results are given
in the full version of this paper available on arXiv [34].

2 Basic Definitions

Let N be the set of natural numbers, including 0. For m,n ∈ N, we let [m : n] =
{m,m + 1, . . . , n}. An alphabet Σ is a nonempty finite set of symbols called
letters. A string (also called word) is a finite sequence of letters from Σ, thus an
element of the free monoid Σ∗. For the rest of the paper, we assume that the
strings we work with are over an alphabet Σ = {1, 2, . . . , σ}.

Let Σ+ = Σ∗\{ε}, where ε is the empty string. The length of a string w ∈ Σ∗

is denoted by |w|. The ith letter of w ∈ Σ∗ is denoted by w[i], for i ∈ [1 : |w|].
For m,n ∈ N, we let w[m : n] = w[m]w[m + 1] . . . w[n], |w|a = |{i ∈ [1 : |w|] |
w[i] = a}|. A string u = w[m : n] is a factor of w, and we have w = xuy for
some x, y ∈ Σ∗. If x = ε (resp. y = ε), u is called a prefix (resp. suffix) of w. Let
alph(w) = {x ∈ Σ | |w|x > 0} be the smallest subset S ⊂ Σ such that w ∈ S∗.
We can now introduce the notion of subsequence.
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Definition 1. We call u a subsequence of length k of w, where |w| = n, if there
exist positions 1 ≤ i1 < i2 < . . . < ik ≤ n, such that u = w[i1]w[i2] · · · w[ik].

We recall the notion of k-universality of a string as presented in [4].

Definition 2. We call a word w k-universal if any string v of length |v| ≤ k over
alph(w) appears as a subsequence of w. For a word w, we define its universality
index ι(w) to be the largest integer k such that w is k-universal.

If ι(w) = k, then w is �-universal for all � ≤ k. Note that the universality index
of a word w is always defined w.r.t. the alphabet of the word w. For instance,
w = 01210 is 1-universal (as it contains all words of length 1 over {0, 1, 2} but
would not be 1-universal if we consider an extended alphabet {0, 1, 2, 3}. The fact
that the universality index is computed w.r.t. the alphabet of w also means that
every word is at least 1-universal. Note that in our results we either investigate
the properties of a given word w or we show algorithms working on some input
word w. In this context, the universality of the factors of w and other words we
construct is defined w.r.t. alph(w). See [4,19] for a detailed discussion on this.

We recall the arch factorisation, introduced by Hebrard [29].

Definition 3. For w ∈ Σ∗, with Σ = alph(w), the arch factorisation of w is
defined as w = arw(1) · · · arw(ι(w))r(w) where for all i ∈ [1 : ι(w)] the last
letter of arw(i) occurs exactly once in arw(i), each arch arw(i) is 1-universal,
and alph(r(w)) � Σ. The words arw(i) are called arches of w, r(w) is called the
rest.

Let m(w) = arw(1)[|arw(1)|] · · · arw(k)[|arw(k)|] be the word containing the
unique last letters of each arch.

Note that by definition each arch arw(i) from a word w is 1-universal. By
an abuse of notation, we can write i ∈ arw(�) if i is a natural number such that
|arw(1) · · · arw(� − 1)| < i ≤ |arw(1) · · · arw(�)|, i.e., i is a position of w contained
in the �th arch of w.

The main concepts discussed in this paper are the following.

Definition 4. A word v is an absent subsequence of w if v is not a subsequence
of w. An absent subsequence v of w is a minimal absent subsequence (for short,
MAS) of w if every proper subsequence of v is a subsequence of w. We will
denote the set of all MAS of w by MAS(w). An absent subsequence v of w is
a shortest absent subsequence (for short, SAS) of w if |v| ≤ |v′| for any other
absent subsequence v′ of w. We will denote the set of all SAS of w by SAS(w).

Note that any SAS of w has length ι(w) + 1 and v is an MAS of w if and
only if v is absent and every subsequence of v of length |v| − 1 is a subsequence
of w.

3 Combinatorial Properties of SAS and MAS

We begin with a presentation of several combinatorial properties of the MAS
and SAS. Let us first take a closer look at MAS.
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If v = v[1] · · · v[m + 1] is an MAS of w then v[1] · · · v[m] is a subsequence
of w. Hence, we can go left-to-right through w and greedily choose positions
1 ≤ i1 < . . . < im ≤ n = |w| such that v[1] · · · v[m] = w[i1] · · · w[im] and i� is the
leftmost occurrence of w[i�] in w[i�−1 + 1 : n] (as described in Algorithm 1 in
Sect. 4). Because v itself is absent, v[m+1] cannot occur in the suffix of w starting
at im + 1. Furthermore, we know that v[1] · · · v[m − 1]v[m + 1] is a subsequence
of w. Hence, v[m + 1] occurs in the suffix of w starting at im−1 + 1. We deduce
v[m+1] ∈ alph(w[im−1+1 : im])\alph(w[im+1 : n]). This argument is illustrated
in Fig. 1 and can be applied inductively to deduce v[k] ∈ alph(w[ik−2 + 1 :
ik−1]) \ alph(w[ik−1 + 1 : ik − 1]) for all k �= 1. The choice of v[1] ∈ alph(w) is
arbitrary. More details are given in the proof to the following theorem which is
in the full version of this paper available on arXiv [34]. For notational reasons
we introduce i0 = 0 and im+1 = n + 1.

Fig. 1. Illustration of positions and intervals inside word w

Theorem 1. Let v, w ∈ Σ∗, |v| = m + 1 and |w| = n, then v is an MAS of w
if and only if there are positions 0 = i0 < i1 < . . . < im < im+1 = n + 1 such
that all of the following conditions are satisfied.

(i) v = w[i1] · · · w[im]v[m + 1]
(ii) v[1] /∈ alph(w[1 : i1 − 1])
(iii) v[k] /∈ alph(w[ik−1 + 1 : ik − 1]) for all k ∈ [2 : m + 1]
(iv) v[k] ∈ alph(w[ik−2 + 1 : ik−1]) for all k ∈ [2 : m + 1]

Properties (i) to (iii) (the latter for k ≤ m only) are satisfied if we choose
the positions i1, . . . , im greedily, as described in the beginning of this section.

By Theorem 1, we have no restriction on the first letter of an MAS and
indeed we can find an MAS starting with an arbitrary letter.

Remark 1. For every x ∈ alph(w), x|w|x+1 is an MAS of w, hence, for every
choice of x ∈ alph(w), we can find an MAS v starting with x.

Using Theorem 1 we can now determine the whole set of MAS of a word w.
This will be formalized later in Theorem 8. For now, we just give an example.

Example 1. Let w = 0011 ∈ {0, 1}∗ and we want to construct v, an MAS of w.
We start by choosing v[1] = 0. Then i1 = 1 and by item (iv). v[2] ∈ alph(w[1 :
1]) = {0}, so i2 = 2 (by item (iii)). Again by item (iv), we have v[3] ∈ alph(w[2 :
2]) = {0}. The letter v[3] does not occur in w[i2 + 1 : n], hence, i3 = n + 1, and



120 M. Kosche et al.

v = 03 is an MAS of w. If we let v[1] = 1, we have i1 = 3. By item (iv), we have
v[2] ∈ alph(w[1 : 3]) = {0, 1}. If we choose v[2] = 1, we obtain v = 13 with an
argument analogous to the first case. So let us choose v[2] = 0. Then i2 = n + 1,
and v = 10 is an MAS of w. Theorem 1 claims MAS(w) = {03, 10, 13} and indeed
10 is the only absent sequence of length 2, and every word of length ≥ 3 is either
not absent (001, 011 and 0011) or contains 10, 03 or 13 as a subsequence.

From this example also follows that not every MAS is an SAS. The converse
is necessarily true. So, for any SAS v of w we have |v| = ι(w) + 1, and we can
find positions 1 ≤ i1 < i2 ≤ . . . < iι(w) ≤ n satisfying Theorem 1. The following
theorem claims that every arch of w (see Definition 3) contains exactly one of
these positions. A proof is given in the paper’s full version [34].

Theorem 2. Let w = arw(1) · · · arw(ι(w))r(w) as in Definition 2. Then, v is an
SAS of w if and only if there are positions i0 = 0, i� ∈ arw(�) for all 1 ≤ � ≤ ι(w),
and iι(w)+1 = n + 1 satisfying Theorem 1.

A way to efficiently enumerate all SAS in a word will be given later in Theo-
rem 7. Here, we only give an example based on a less efficient, but more intuitive,
strategy of identifying the SAS of a word.

Example 2. Let w = 012121012 with ι(w) = 2, and the arch factorisation of w
is w = 012 · 1210 · 12. We construct v, an SAS of w. By Theorem 2, we have
|v| = ι(w) + 1 = 3 and by item (iv) of Theorem 1 the letter v[3] does not occur
in alph(w[i2 : n]) ⊃ alph(r(w)), so v[3] is not contained in alph(r(w)). Hence,
v[3] = 0 and its rightmost position in arw(2) is on position 7. Therefore, v[2]
should not appear before position 7 in arw(2) (as v[1] appears in arw(1) for
sure). So, v[2] /∈ alph(w[4 : 6]) = {1, 2} and v[2] = 0. Ultimately, the rightmost
occurrence of v[2] in arw(1) is on position 1, and we can arbitrarily choose
v[1] ∈ alph(arw(1)) = {0, 1, 2}. We conclude that SAS(w) = {000, 100, 200}.

To better understand the properties of SAS and MAS, we analyse some
particular words. For simplicity, assume for the rest of this section that σ is a
large even constant, and k = (2σ+2)m where m is a natural number. For k ≥ 1,
we define the words A2k−1 = ( (1 · 2 · · · · · σ)(σ · (σ − 1) · · · · · 1) )k−1(1 · 2 · · · · · σ),
A2k = A2k−1(σ · (σ − 1) · · · · · 1), and Bk = (1 · 2 · · · · · σ)k. We can show the
following results.

Proposition 1. The word Bk has a polynomial number of SAS and exponen-
tially (in the length of the word) more MAS than SAS.

Based on Theorems 1 and 2, it follows that the SAS of Bk correspond to
decreasing sequences of length k + 1 of numbers from {1, . . . , σ}. A family of
words included in MAS(Bk), which is disjoint from SAS(Bk), consists of the
words v = (Πt=1,m(σ · ui · 1 · σ))σ, where ui is a decreasing sequence of length
2σ of numbers from {1, . . . , σ}, for all i. By counting arguments, we obtain
the result stated above. However, there are words whose sets of MAS and SAS
coincide.
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Proposition 2. MAS(Ak) = SAS(Ak).

In particular, one can show that the number of SAS in the words Ak is
exponential in the length of the word. The main idea is to observe that an SAS
in Ak is a sequence i1, . . . , ik+1 of numbers from {1, . . . , σ}, such that i2�−1 ≥ i2�

for all � ∈ [ 1 : 	k/2
 ] and i2� ≤ i2�+1 for all � ∈ [ 1 : �k/2� ]. We then can estimate
the number of such sequences of numbers and obtain the following result.

Proposition 3. The word Ak has an exponential (in |Ak|) number of SAS.

The following proposition formalises an additional insightful observation.

Proposition 4. |SAS(Ak)| ≥ |SAS(w)| holds for all w ∈ Σ∗ with ι(w) = k.

A proof is sketched in the full version of this paper [34].
Propositions 1 and 3 motivate our investigation for compact representations

of the sets of SAS and MAS of words. These sets can be exponentially large, and
we would still like to have efficient (i.e., polynomial) ways of representing them,
allowing us to explore and efficiently search these sets.

4 Algorithms

The results we present from now on are of algorithmic nature. The computa-
tional model we use to describe our results is the standard unit-cost RAM with
logarithmic word size: for an input of size n, each memory word can hold log n
bits. In all the problems, we assume that we are given a word w of length n
over an integer alphabet Σ = {1, 2, . . . , σ}, with |Σ| = σ ≤ n. As the problems
considered here are trivial for unary alphabets, we also assume σ ≥ 2. For a more
detailed general discussion on this model see the full version of this paper [34].

We start with some preliminaries and simple initial results. The decomposi-
tion of word w into its arches can be done with a greedy approach. A detailed
description of how to do so can be seen in the full version of this paper available
on arXiv [34]. The following theorem is well known and a proof can be seen for
example in [4]. It shows that the universality index and the decomposition into
arches can be obtained in linear time.

Theorem 3. Given a word w, of length n, we can compute in linear time O(n)
ι(w) and the arch factorisation arw(1) · · · arw(ι(w))r(w) of w.

For a word w with length n, further helpful notations are nextw(a, i), which
denotes the next occurrence of letter a in the word w[i : n], and lastw(a, i), which
denotes the last occurrence of letter a in the word w[1 : i]. Both these values can
be computed by traversing w from position i to the right or left, respectively (see
full version on arXiv [34]). While doing so, the runtime of computing nextw(a, i)
is proportional to the length of the shortest factor w[i : j] of w such that w[j] = a,
and the runtime of lastw(a, i) is proportional to the length of the shortest factor
w[j : i] of w such that w[j] = a.
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Based on these notations, we can define the function isSubseq(w, u) which
checks if a word u is a subsequence of a word w. This can be done by utilizing a
greedy approach as discussed in Sect. 3 and depicted in Algorithm 1. While this
approach is standard and relatively straightforward, it is important to note it
before proceeding with our algorithms. The idea is the following. We consider the
letters of u one by one, and try to identify the shortest prefix w[1 : ij ] of w which
contains u[1 : j] as a subsequence. To compute the shortest prefix w[1 : ij+1] of
w which contains u[1 : j +1], we simply search for the first occurrence of u[j +1]
in w after position ij . The runtime of the algorithm isSubseq is clearly linear in
the worst case. When u is a subsequence of w, then w[1 : pos] is the shortest
prefix of w which contains u, and the runtime of the algorithm is O(pos).

Algorithm 1: isSubseq(w,u)
Input: Word w with |w| = n, word u with |u| = m to be tested

1 pos ← 1;
2 for i = 1 to m do
3 pos ← nextw(u[i], pos);
4 return pos == ∞ ? false : true;

A further helpful notation is llo(w) = min{lastw(a, n) | a ∈ Σ}, the position
of the leftmost of the last occurrences of the letters of Σ in w. The following
lemma is not hard to show.

Lemma 1. Given a word w of length n, we can compute llo(w) in O(n) time.

Based on these notions, we can already present our first results, regarding
the basic algorithmic properties of SAS and MAS. Firstly, we can easily compute
an SAS (and, therefore, an MAS) in a given word.

Lemma 2. Given a word w of length n with ι(w) = k and its arch decomposi-
tion, we can retrieve in O(k) time an SAS (and, therefore, an MAS) of w.

The following theorem shows that we can efficiently test if a given word u is
an SAS or MAS of a given word w.

Theorem 4. Given a word w of length n and a word u of length m, we can test
in O(n) time whether u is an SAS or MAS of w.

4.1 A Compact Representation of the SAS of a Word

We now introduce a series of data structures which are fundamental for the
efficient implementation of the main algorithms presented in this paper.

For a word w of length n with arch factorization w = arw(1) · · · arw(k)r(w),
we define two k × σ arrays firstInArch[·][·] and lastInArch[·][·] by the following
relations. For � ∈ [1 : k] and a ∈ Σ, firstInArch[�][a] is the leftmost position of
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arw(�) where a occurs and lastInArch[�][a] is the rightmost position of arw(�)
where a occurs. These two arrays are very intuitive: they simply store for each
letter of the alphabet its first and last occurrence inside the arch.

Example 3. For w = 12213.113312.21, with arches arw(1) = 12213 and arw(2) =
113312 and rest r(w) = 21, we have the following.

firstInArch[·][1] firstInArch[·][2] firstInArch[·][3]

firstInArch[1][·] 1 2 5

firstInArch[2][·] 6 11 8

lastInArch[·][1] lastInArch[·][2] lastInArch[·][3]

lastInArch[1][·] 4 3 5

lastInArch[2][·] 10 11 9

Lemma 3. For a word w of length n, we can compute firstInArch[·][·] and
lastInArch[·][·] in O(n) time.

We continue with the array minArch[·] with n-elements, where, for i ∈ [1 : n],
minArch[i] = j if and only if j = min{g | alph(w[i : g]) = Σ}. If {g | alph(w[i :
g]) = Σ} = ∅, then minArch[i] = ∞. Intuitively, minArch[i] is the end point of
the shortest 1-universal factor (i.e., arch) of w starting at i.

Example 4. Consider the word w = 12213.113312.21 with the arches arw(1) =
12213 and arw(2) = 113312 and the rest r(w) = 21. We have minArch[j] = 5 for
j ∈ [1 : 3], minArch[j] = 11 for j ∈ [4 : 9], and minArch[j] = ∞ for j ∈ [10 : 13].

The array minArch[·] can be computed efficiently.

Lemma 4. For a word w of length n, we can compute minArch[·] in O(n) time.

A very important consequence of Lemma 4 is that we can define a tree-
structure of the arches (i.e., the 1-universal factors occurring in a word).

Definition 5. Let w be a word of length n over Σ. The arch-tree of w, denoted
by Aw, is a rooted labelled tree defined as follows:

– The set of nodes of the tree is {i | 0 ≤ i ≤ n + 1}, where the node n + 1 is the
root of the tree Aw. The root node n + 1 is labelled with the letter w[llo(w)],
the node i is labelled with the letter w[i], for all i ∈ [1 : n], and the node 0 is
labelled with ↑.

– For i ∈ [1 : n − 1], we have two cases:
• if minArch[i + 1] = j then node i is a child of node j.
• if minArch[i + 1] = ∞ then node i is a child of the root n + 1.

– Node n is a child of node n + 1.
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Example 5. For the word w = 12213.113312.21, the root 14 of A has the children
9, 10, 11, 12, 13 and is labelled with 3, the node 11 has the children 3, 4, 5, 6, 7, 8,
and the node 5 has the children 0, 1, 2. So, the root 14 and the nodes 11 and 5
are internal nodes, while all other nodes are leaves.

Theorem 5. For a word w of length n, we can construct Aw in O(n) time.

Constructed in a straightforward way based on Lemma 4, the arch-tree Aw

encodes all the arches occurring in w. Now, we can identify an SAS in w[i : n]
by simply listing (in the order from i − 1 upwards to n + 1) the labels of the
nodes met on the path from i − 1 to n + 1, without that of node i − 1.

For a word w and each i ∈ [0 : n], we define depth(i) as the number of edges
on the shortest path from i to the root of Aw. In this case, for i ∈ [0 : n], we
have that w[i + 1 : n] has universality index depth(i) − 1.

Example 6. For the word w = 12213.113312.21, an SAS in w[5 : 13] contains the
letters w[11] = 2 and the label 3 of 14, so 23 (corresponding to the path 4 → 11 →
14). An SAS in w[2 : 13] contains, in order, the letters w[5] = 3, w[11] = 2 and
the label 3 of 14, so 323 (corresponding to the path 1 → 5 → 11 → 14). We also
have depth(4) = 2, so ι(w[5 : 13]) = 1, while depth(1) = 3 and ι(w[2 : 13]) = 2.

Enhancing the construction of Aw from Theorem 5 with level ancestor data
structures [8] for this tree, we can now efficiently process internal SAS queries
for a given word w, i.e., we can efficiently retrieve a compact representation of
an SAS for each factor of w.

Theorem 6. For a word w of length n we can construct in O(n) time data
structures allowing us to answer in O(1) time queries sasRange(i, j): “return a
representation of an SAS of w[i : j]”.

Proof. We start with the preprocessing phase, in which we construct the data
structures allowing us to answer the queries efficiently.

We first construct the tree Aw for the word w. For each node i of Aw, we
compute depth(i). This can be done in linear time in a standard way.

Then we construct a solution for the Level Ancestor Problem for the rooted
tree Aw. This is defined as follows (see [8]). For a rooted tree T , LAT (u, d) = v
where v is an ancestor of u and depth(v) = d, if such a node exists, or ↑ otherwise.
The Level Ancestor Problem can now be formulated.

– Preprocessing: A rooted tree T with N vertices. (T = Aw in our case and
N = n + 1)

– Querying: For a node u in the rooted tree T , query levelAncestorT (u, d)
returns LAT (u, d), if it exists, and false otherwise.

A simple and elegant solution for this problem which has O(N) preprocessing
time and O(1) time for query-answering can be found in, e.g., [8] (see also [7] for
a more involved discussion). So, for the tree Aw we can compute in O(n) time
data structures allowing us to answer levelAncestorAw

queries in O(1) time.



Absent Subsequences in Words 125

This is the entire preprocessing we need in order to be able to answer
sasRange-queries in constant time.

We will now explain how an sasRange-query is answered.
Let us assume we have to answer sasRange(i, j), i.e., to return a representa-

tion of an SAS of w[i : j]. The compact representation of an SAS of w[i : j] will
consist in two nodes of the tree Aw and in the following we explain both how to
compute these two nodes, and what is their semantics (i.e., how an SAS can be
retrieved from them).

Assume that depth(i−1) = x and depth(j −1) = y. We retrieve the ancestor
t of the node i− 1 which is at distance x− y from this node. So t is the ancestor
of depth y+1 of node i−1, and can be retrieved as levelAncestorAw

(i−1, y+1).
We check whether t > j (i.e., w[i : j] is a prefix of w[i : t]). If t > j, then we set
t′ to be the successor of t on the path to i − 1. If t ≤ j, we set t = t′.

The answer to sasRange(i, j) is the pair of nodes (i − 1, t′). This answer can
be clearly computed in constant time after the preprocessing we performed.

We claim that this pair of nodes is a compact representation of an SAS of
w[i : j], and such an SAS can be obtained as follows: we go in the tree Aw from
the node i − 1 on the path towards node t′ and output, in order, the labels of
the nodes we meet (except the label of node i − 1). Then we output the label of
the parent node of t′. This is an SAS of w[i : j].

Let us now explain why the above claim holds.
Firstly, from the fact that depth(i− 1) = x and depth(j − 1) = y we get that

ι(w[i : n]) = x − 1 and ι(w[j : n]) = y − 1. Therefore, (x − 1) − (y − 1) − 1 =
x − y − 1 ≤ ι(w[i : j]) ≤ (x − 1) − (y − 1) = x − y. Thus, we compute w[i : t],
the shortest factor of w starting on position i which is x − y universal; clearly,
t = levelAncestorAw

(i − 1, y + 1). Now, there are two possibilities. In the first
case, ι(w[i : j]) = x − y − 1 and j < t. Then, for t′ the successor of t on the path
to i−1, we have that w[i : t′] is the shortest (x−y−1)-universal prefix of w[i : j]
and w[t] is not contained in w[t′ + 1 : j]. In the second case, ι(w[i : j]) = x − y
and j ≥ t. Then, for t′ = t, we have that w[i : t′] is the shortest (x−y)-universal
prefix of w[i : j] and w[t′′] is not contained in w[t + 1 : j], where t′′ is the parent
of t. Note that, in this case, since ι(w[i : j]) ≤ x − y and ι(w[i : t′′]) = x − y + 1,
we have that j < t′′.

In both cases, the label of the nodes found on the path from node i − 1
towards node t′, without the label of i − 1, form the subsequence m(w[i : j]),
from Definition 3. To this subsequence we add either w[t] (if t �= t′) or w[t′′]
(otherwise), and obtain an absent subsequence of length ι(w[i : j])+1 of w[i : j].
This concludes our proof. ��

In order to obtain compact representations of all the SAS and MAS of a word
w, we need to define a series of additional arrays.

For a word w of length n, we define the array dist[·] with n-elements, where,
for i ∈ [1 : n], dist[i] = min{|u| | u is an absent subsequence of minimal length of
w[i : n], starting with w[i]}. The intuition behind the array dist[·], and the way
we will use it, is the following. Assume that w has k arches arw(1), . . . , arw(k),
and i ∈ arw(�). Then there exists an SAS of w, denoted by w[i1] . . . w[ik+1],
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which contains position i only if dist[i] = k + 1 − (� − 1) = k − � + 2. Indeed,
an SAS contains one position of every arch, so if i is in that SAS, then it should
be its �th position, and there should be a word u starting on position i, with
|u| = k − � + 2, such that u is not a subsequence of w[i : n]. Nevertheless, for all
positions j of arw(�) it holds that dist[j] ≥ k − � + 2.

Example 7. For the word w = 12213.113312.21, we have dist[i] = 2 for i ∈ [9 : 13]
(as exemplified by the word w[i]3), dist[i] = 3 for i ∈ [3 : 8] (as exemplified by
the word w[i]23), and dist[i] = 4 for i ∈ [1 : 2] (as exemplified by the word
w[i]323). Note that the single shortest absent sequence in this word is 323.

Lemma 5. For a word w of length n, we can construct dist[·] in O(n) time.

Next, we introduce two additional arrays sortedLast[·][·] and Leq[·][·] which
are crucial in our representation of the shortest absent subsequences of a word.
Let w be a word of length n, with arch factorization w = arw(1) · · · arw(k)r(w).
For each � ∈ [1 : k − 1], we define L� to be the set {lastInArch[�][a] | a ∈ Σ}. We
define the set L′

� = L� \{lastInArch[�][a] | dist(firstInArch[�+1][a]) > k − �+1}.
Finally, we define the array sortedLast[�][·], with |L′

�| elements, which contains
the elements of L′

� sorted in ascending order. For � = k, we proceed in a similar
way. We define Lk to be the set {lastInArch[k][a] | a ∈ Σ}. However, we define
L′

k = Lk \ {lastInArch[k][a] | a ∈ alph(r(w))}. Then, once more, we define the
array sortedLast[k][·], with |L′

k| elements, which contains the elements of L′
k

sorted in ascending order.
Moreover, we define for each � an array with |arw(�)| elements Leq[�][·] where

we have Leq[�][i] = max{t | sortedLast[�][t] ≤ i} ∪ {−∞} for i ∈ arw(�). For
simplicity, we assume that Leq[�][·] is indexed by the positions of arw(�).

The intuition behind these arrays is the following. Assume that i is a position
in arw(�). Then, by Theorems 1 and 2, it is clear that i can be contained in an SAS
only if i = firstInArch[�][w[i]]. Moreover, we need to have that dist[i] = k−�+2,
as explained when the intuition behind the array dist[·] was described. That is,
i needs to be in L′

�−1. Finally, an SAS going through i can only continue with a
letter a of the arch � + 1 such that dist[firstInArch[� + 1][a]] = k − � + 1, which,
moreover, occurs last time in the arch � on a position ≤ i (otherwise, the SAS
would have two letters in arch �, a contradiction). So, a is exactly one of the
letters on the positions given by the elements of sortedLast[�][1 : Leq[�][i]].

Example 8. For w = 12213.113312.21 we have arw(1) = 12213, arw(2) = 113312,
and L1 = {3, 4, 5}. From this set, we eliminate positions lastInArch[1][1] = 4 and
lastInArch[1][2] = 3, since dist[firstInArch[2][1]] = dist[6] = 3 > 2 − 1 + 1 and
dist[firstInArch[2][2]] = dist[7] = 3 > 2−1+1. So L′

1 = {5}. Thus, sortedLast[1][·]
has only one element, namely 5. Accordingly, Leq[1][i] = −∞ for i ∈ [1 : 4] and
Leq[1][5] = 1. We have L2 = {9, 10, 11}. From this set, we once more eliminate
two positions lastInArch[1][1] = 10 and lastInArch[1][2] = 11, because 1, 2 ∈
alph(r(w)). So L′

2 = {10}. Thus, sortedLast[2][·] has only one element, namely
10. Accordingly, Leq[2][i] = −∞ for i ∈ [6 : 9] and Leq[2][10] = Leq[2][11] = 10.
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Based on the arrays sortedLast[�][·], for � ≤ k, we define the corresponding
arrays lexSmall[�][·] with, respectively, |L′

�| elements, where lexSmall[�][i] = t
if and only if w[t] = min{w[j] | j ∈ sortedLast[�][1 : i]}. In other words,
w[ lexSmall[�][i] ] is the lexicographically smallest letter occurring on the posi-
tions of w corresponding to the first i elements of sortedLast[�][·]. Let init also
be an element of startSAS such that w[init] is lexicographically smaller than
w[j], for all j ∈ startSAS \ {init}. Finally, we collect in a list startSAS the
elements firstInArch[1][a], for a ∈ Σ, such that dist[firstInArch[1][a]] = k + 1.

Lemma 6. For a word w of length n, we can construct sortedLast[·][·], Leq[·][·],
lexSmall[·][·], and the list startSAS in O(n) time.

We now formalize the intuition that firstInArch[1][·], sortedLast[·][·], and
Leq[·][·] are a compact representation of all the SAS of a given word w.

Theorem 7. Given a word w of length n with k arches arw(1), . . . , arw(k), as
well as the arrays firstInArch[·][·], sortedLast[·][·], Leq[·][·], lexSmall[·][·], the set
startSAS, and the position init of w, which can all be computed in linear time,
we can perform the following tasks:

1. We can check in O(k) time if a word u of length k + 1 is an SAS of w.
2. We can compute in O(k) time the lexicographically smallest SAS of w.
3. We can efficiently enumerate (i.e., with polynomial delay) all the SAS of w.

Proof. We just give here the intuition behind this representation. As in Defini-
tion 3, let w = arw(1) · · · arw(k)r(w). We observe that the arrays firstInArch[·][·],
sortedLast[·][·], Leq[·][·], and the set startSAS induce a tree structure Tw for w,
called the SAS-tree of w, which is defined inductively as follows.

– The root of Tw is • while all the nodes of Tw of depth 1 to k are positions of
w. The nodes of depth k + 1 of Tw are letters of Σ.

– The children of • are the positions of the set startSAS. These are the only
nodes of depth 1.

– For � ∈ [1 : k − 1], we define the nodes of depth � + 1 as follows. The children
of a node i of depth � are the nodes firstInArch[�+1][w[j]] where j ∈ Leq[�][i].

– For � = k, we define the nodes of depth k + 1 (the leaves) as follows. The
children of a node i from level k are the letters of {w[j] | j ∈ Leq[k][i]}.

– Tw contains no other nodes than the one defined above.

We claim that the paths in the tree from • to the leaves correspond exactly to
the set of SAS of w. Moreover, we do not need to construct this (potentially very
large) tree: it is compactly represented by the data structures enumerated in the
statement. However, based on this claim and the intuitive tree representation of
SAS(w), the statement of the theorem can be shown. In particular, the array
lexSmall[·][·] and position init of w are important in showing (2): they allow us
to identify the path corresponding to the lexicographically smallest SAS of w. ��
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4.2 A Compact Representation of the MAS of a Word

Finally, we move our attention to computing a compact representation of the
MAS of a word. Our main result is the following.

Theorem 8. For a word w, we can construct in O(n2σ) time data structures
allowing us to efficiently perform the following tasks:

1. We can check in O(m) time if a word u of length m is an MAS of w.
2. We can compute in polynomial time the longest MAS of w.
3. We can check in polynomial time for a given length � if there exists an MAS

of length � of w.
4. We can efficiently enumerate (with polynomial delay) all the MAS of w.

Proof. The compact representation of MAS(w) is based on Theorem 1. We define
a directed acyclic graph Dw with the nodes {(i, j) | 0 ≤ j < i ≤ n} ∪ {(0, 0), f}.
The edges (represented as arrows A → B between nodes A and B) are defined
as follows:

– We have an edge (0, 0) → (i, 0) if there exists a letter a ∈ Σ such that
i = firstInArch[1][a]. This edge is labelled with a.

– We have an edge (i, j) → (k, i) if there exists a letter a ∈ Σ such that
k = nextw(a, i + 1) and a ∈ alph(w[j + 1 : i]). This edge is labelled with a.

– We have an edge (i, j) → f if there exists b ∈ alph(w[j + 1 : i]) and b /∈
alph(w[i + 1 : n]). This edge is labelled with b.

We claim that the words of MAS(w) correspond one-to-one to the paths in
the graph Dw from (0, 0) to f . Based on this claim, the statement of the theorem
can be shown (see full version on arXiv [34]). ��

It is worth noting that the lexicographically smallest MAS of a word w is
a|w|a+1 where a is the lexicographically smallest letter of Σ which occurs in w.

Based on Theorem 1, we can also show the following result.

Corollary 1. For a word w of length n, we can construct in O(nσ) time data
structures allowing us to answer masExt(u) queries: for a subsequence u of w,
decide whether there exists an MAS uv of w, and, if yes, construct such an MAS
uv of minimal length. The time needed to answer a query is O(|v| + |u|).
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Abstract. Gossip protocols are programs that can be used by a group
of agents to synchronise what information they have. Namely, assuming
each agent holds a secret, the goal of a protocol is to reach a situation in
which all agents are experts, i.e., know all secrets. Distributed epistemic
gossip protocols use epistemic formulas in the component programs for
the agents. In this paper, we investigate in-depth one of the simplest
classes of such gossip protocols: propositional gossip protocols, in which
whether an agent wants to initiate a call depends only the set of secrets
that the agent currently knows. We establish important properties about
the order of calls possible in a correct propositional gossip protocol, i.e., a
one that terminates in the desired all-expert state. This allows us to solve
the following open problem: all correct propositional gossip protocols for
n ≥ 4 agents require at least 2n − 2 calls in the worst case.

1 Introduction

1.1 Background and Motivation

Gossip protocols have the goal of spreading information through a network via
point-to-point communications (which we refer to as calls). Each agent holds
initially a secret and the aim is to arrive at a situation in which all agents
know each other secrets. During each call the caller and callee exchange all
secrets that they know at that point. Such protocols were successfully used in a
number of domains, for instance communication networks [17], computation of
aggregate information [21], and data replication [23]. For a more recent account
see [20] and [22]. One of the early results established by a number of authors
in the seventies, e.g., [25], is that for n agents 2n − 4 calls are necessary and
sufficient when every agent can communicate with any other agent. When such
a communication graph is not complete, 2n − 3 calls may be needed [11] but
are sufficient for any connected communication graph [16]. However, all such
protocols considered in these papers were centralised.

In [10] a dynamic epistemic logic was introduced in which gossip protocols
could be expressed as formulas. These protocols rely on agents’ knowledge and
are distributed, so they are distributed epistemic gossip protocols. This also means
that they can be seen as special cases of knowledge-based programs introduced
in [14].
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In [2] a simpler modal logic was introduced that is sufficient to define these
protocols and to reason about their correctness. This logic is interesting in its
own rights and was subsequently studied in a number of papers. In this paper,
we are going to focus on its simplest propositional fragment.

Propositional gossip protocols are a particular type of epistemic gossip pro-
tocols in which all guards are propositional. This means that calls being made
by each agent are dependent only on the secrets that the agent have had access
to. Clearly, this can lead to states where multiple calls are possible at the same
time. Then a scheduler would decide which call takes priority. Throughout this
paper, we assume that the scheduler is demonic and it picks the order of calls in
a way such that the protocol fails or to maximise the number of calls made before
termination. In other words, we study these gossip protocols in their worst-case
scenario.

In [9], many challenging open problems about general as well as propositional
gossip protocols were listed. In this paper, we solve its Problem 7, which ask to
show that no correct propositional gossip exists that always terminates within
2n − 2 steps for n ≥ 4 agents. Note that we prove this lower bound holds even
if the communication graph is a complete graph.

1.2 Related Work

Much work has been done on general epistemic gossip protocols. The various
types of calls used in [10] and [2] were presented in a uniform framework in
[3], where in total 18 types of communication were considered and compared
w.r.t. their epistemic strength. In [5], and its full version [8], the decidability
of the semantics of the gossiping logic and truth was established for its limited
fragment (namely, without nesting of modalities). Building upon these results
it was proved in [5] that the distributed gossip protocols, the guards of which
are defined in this logic, are implementable, that their partial correctness is
decidable, and in [7] that termination and two forms of fair termination of these
protocols are decidable, as well. Building on that, [29] showed decidability of
the full logic for various variants of the gossiping model. Further, in [4] the
computational complexity of this fragment was studied and in [6] an extension
with the common knowledge operator was considered and analogous decidability
results were established there.

Despite how simple this modal logic seems to be, there remain natural open
problems about it and the gossip protocols defined using it. These problems
were discussed at length in [9], where partial results were presented. Open prob-
lems listed there regarding axiomatisations for knowledge in gossiping logic were
subsequently solved in [29]. In [24] we addressed several of its open problems
regarding propositional gossip protocols. In particular, we showed that no cor-
rect propositional gossip protocol exists when, ignoring calls’ direction, any two
agents cannot directly call each other and that checking the correctness of a
given protocol is co-NP-complete. However, its Problem 7 that conjectures any
such protocol to need at least 2n − 2 calls in the worst case was left open. We
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were only able to show 2n−3 lower bound in [24] for this problem, but improving
this to 2n−2 in this paper requires many new ideas and a detailed case analysis.

Centralised gossip protocols were studied in [18] and [19]. These had the goal
to achieve higher-order shared knowledge. This was investigated further in [12],
where optimal protocols for various versions of such a generalised gossip problem
were given. These protocols depend on various parameters, such as the type of
the underlying graph or communication. Additionally, different gossip problems
which contained some negative goals, for example that certain agents must not
know certain secrets, were studied. Such problems were further studied in [13]
with temporal constraints, i.e., a given call has to (or can only) be made within
a given time interval.

The number of calls needed to reach the desired all expert situation in the
distributed but synchronous setting was studied in [26]. In the synchronous set-
ting, agents are notified if a call was made, but may not necessary know which
agents were involved. In this paper we study the more complex fully distributed
asynchronous setting, where agents are not aware of the calls they do not partic-
ipate in. In [27,28] the expected time of termination of several gossip protocols
for complete graphs was studied.

Dynamic distributed gossip protocols were studied in [30], in which the calls
allow the agents to transmit the links as well as share secrets. These protocols
were characterised in terms of the class of graphs for which they terminate.
Various dynamic gossip protocols were proposed and analysed in [31]. In [15]
these protocols were analysed by embedding them in a network programming
language NetKAT [1].

1.3 Plan of the Paper

We will firstly go through the logic, originally defined in [2]. We will show a
couple of examples of propositional gossip protocols and prove their correctness.
We will then perform a thorough case analysis of possible call scenarios of a
correct propositional gossip protocol, and show that in each of them at least
2n−2 calls are needed in the worst-case to terminate in the all-expert situation,
where n > 3 is the number agents.

2 Gossiping Logic

We recall here the framework of [2], which we restrict to the propositional setting.
We assume a fixed set A of n ≥ 3 agents and stipulate that each agent holds
exactly one secret , and that there exists a bijection between the set of agents
and the set of secrets. We use it implicitly by denoting the secret of agent a by
A, of agent b by B, etc. We denote by Sec the set of all secrets.

The propositional language Lp is defined by the following grammar:

φ ::= FaS | ¬φ | φ ∧ φ,
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where S ∈ Sec and a ∈ A. We will distinguish the following sublanguage La
p,

where a ∈ A is a fixed agent, which disallow all Fb operators for b �= a.
So FaS is an atomic formula, which we read as ‘agent a is familiar with the

secret S’. Note that in [2], a compound formula Kaφ, i.e., ‘agent a knows the
formula φ is true’, was used. Dropping Kaφ from the logic simplifies greatly
its semantics and the execution of a gossip protocol, while it is still capable
of describing a rich class of protocols. Below we shall freely use other Boolean
connectives that can be defined using ¬ and ∧ in a standard way. We shall use
the following formula

Expi ≡
∧

S∈Sec

FiS,

that denotes the fact that agent i is an expert , i.e., he is familiar with all the
secrets.

Each call , written as ab or a, b, concerns two different agents, the caller ,
a, and the callee , b. After the call the caller and the callee learn each others
secrets. Calls are denoted by c, d. Abusing notation we write a ∈ c to denote
that agent a is one of the two agents involved in the call c.

In what follows we focus on call sequences. Unless explicitly stated each call
sequence is assumed to be finite. The empty sequence is denoted by ε. We use
c to denote a call sequence and C to denote the set of all finite call sequences.
Given call sequences c and d and a call c we denote by c.c the outcome of adding
c at the end of the sequence c and by c.d the outcome of appending the sequences
c and d. We say that c′ is an extension of a call sequence c if for some call
sequence d we have c′ = c.d.

The agents and possible calls of a given protocol can be thought of as nodes
(agents) and edges (calls) of its communication graph . The graph of calls
made during a given call sequence is a pruned communication graph where
edges between agents that did not call each other in this call sequence were
removed. Unless explicitly stated, all these graphs are undirected, i.e., we ignore
the direction of calls here.

To describe what secrets the agents are familiar with, we use the concept of
a gossip situation . It is a sequence s = (Qa)a∈A, where {A} ⊆ Qa ⊆ Sec
for each agent a. Intuitively, Qa is the set of secrets a is familiar with in the
gossip situation s. The initial gossip situation is the one in which each Qa

equals {A} and is denoted by root. It reflects the fact that initially each agent is
familiar only with his own secret. Note that an agent a is an expert in a gossip
situation s iff Qa = Sec.

Each call transforms the current gossip situation by modifying the sets of
secrets the agents involved in the call are familiar with as follows. Consider a
gossip situation s:=(Qd)d∈A and a call ab.

Then

ab(s) := (Q′
d)d∈A,

where Q′
a = Q′

b = Qa ∪ Qb, and for c �∈ {a, b}, Q′
c = Qc.
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So the effect of a call is that the caller and the callee share the secrets they
are familiar with.

The result of applying a call sequence to a gossip situation s is defined induc-
tively as follows:

ε(s) := s, (c.c)(s) := c(c(s)).

Example 1. We will use the following concise notation for gossip situations. Sets
of secrets will be written down as lists. e.g., the set {A,B,C} will be written as
ABC. Gossip situations will be written down as lists of lists of secrets separated
by a comma. e.g., if there are three agents, a, b and c, then root = A,B,C and
the gossip situation ({A,B}, {A,B}, {C}) will be written as AB,AB,C.

Let A = {a, b, c}. Consider the call sequence ac.cb.ac. It generates the follow-
ing successive gossip situations starting from root:

A,B,C
ac−→ AC,B,AC

cb−→ AC,ABC,ABC
ac−→ ABC,ABC,ABC.

Hence (ac.cb.ac)(root) = (ABC,ABC,ABC). 
�
Definition 2. Consider a call sequence c ∈ C. We define the satisfaction rela-
tion |= inductively as follows:

c |= FaS iff S ∈ c(root)a,
c |= ¬φ iff c �|= φ,

c |= φ1 ∧ φ2 iff c |= φ1 and c |= φ2.

So a formula FaS is true after the call sequence c whenever secret S belongs
to the set of secrets agent a is familiar with in the situation generated by the
call sequence c applied to the initial situation root. Hence c |= Expa iff agent a
is an expert in c(root).

By a propositional component program , in short a program , for an
agent a we mean a statement of the form

∗[[]mj=1 ψj → cj ],

where m ≥ 0 and each ψj → cj is such that

– agent a is the caller in the call cj ,
– ψj ∈ La

p.

We call each such construct ψ → c a rule and refer in this context to ψ as
a guard . If the guard of a rule is true then the corresponding agent and call is
called to be active .

Intuitively, ∗ denotes a repeated execution of the rules, one at a time, where
each time non-deterministically an active rule is selected.

Consider a propositional gossip protocol , P , that is a parallel composition
of the propositional component programs ∗[[]ma

j=1 ψa
j → caj ], one for each agent

a ∈ A.
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The computation tree of P is a directed tree defined inductively as follows.
Its nodes are call sequences and its root is the empty call sequence ε. Further, if
c is a node and for some rule ψa

j → caj we have c |= ψa
j , then c.caj is a node that

is a direct descendant of c. Intuitively, the arc from c to c.caj records the effect
of the execution of the rule ψa

j → caj performed after the call sequence c took
place.

By a computation of a gossip protocol P we mean a maximal rooted path
in its computation tree. In what follows we identify each computation with the
unique call sequence it generates. Any prefix of such a call sequence is called a
prefix of P . We say that the gossip protocol P is partially correct if for all
leaves c of the computation tree of P , and all agents a, we have c |= Expa, i.e.,
if each agent is an expert in the gossip situation c(root).

We say furthermore that P terminates if all its computations are finite and
say that P is correct if it is partially correct and terminates.

In [10] the following correct propositional gossip protocol, called Learn New
Secrets (LNS in short), for complete digraphs was proposed.

Example 3 (LNS protocol). The following program is used by agent i:

∗[[]j∈A¬FiJ → ij].

Informally, agent i calls agent j if agent i is not familiar with j’s secret.

In [24] a propositional protocol Learn Next Secret (LXS) was proposed. First
of all, agents were only able to call agents with a higher “index”, which for
instance can be their phone number or name, with the corresponding total order
(>) on A. Second, just like in the LNS protocol, agents were only able to call
another agent if they did not know their secret. Finally, it was required that an
agent can make a call to another agent only if he already knows all the secrets
of agents with the index value lower than the agent to be called.

Example 4 (LXS protocol). The following program is used by agent i:

∗[[]{j∈A|j>i}¬FiJ ∧
∧

{k∈A|k<j}
FiK → ij].

Note that although the communication graph of LXS protocol is not com-
plete, a call between any two agents is possible if its direction is ignored. We
now prove that this LXS protocol is correct.

Theorem 5. The Learn Next Secret (LXS) protocol proposed in [24] is a correct
propositional gossip protocol.

Proof. Note that as all calls are determined only by the secrets currently known
by the agent, so the protocol is indeed propositional.

Termination can be seen as each call made ensures the caller learns at least
one secret, hence the protocol terminates, as we have a finite number of secrets
to be learned, and a finite number of agents learning them.
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It remains to be shown that when the protocol terminates, all agents are
experts.

Assume the protocol is not correct. As we know the protocol terminates, this
must mean that when we terminate at least one agent is not an expert. Let a be
the agent with the lowest index which is not an expert. Now, consider the agent
with the lowest index whose secret agent a does not know.

If that agent b has higher index than a, then by definition of the LXS protocol,
ab would be available; a contradiction. So the index of b has to be lower than
the index of a. Therefore, by definition of the LXS protocol, a could not make
any calls before termination.

Now, all agents with lower index than a, including b, must be experts, and
hence know secret A. This means that a was called by an agent say c. But for
ca to be available, c must know all secrets corresponding to agents of index
lower than a, including B. Hence when a was first called by c, a learned B; a
contradiction. 
�

Finally, we now define a new protocol, Learn New Secrets with a special one
(LNSwS1), where one agent whose secret acts as guard that all the other agents
wait for before making their calls. Formally, we define it as follows where the
special agent and its secret is denoted by x and X, respectively.

Example 6 (LNSwS1 protocol). The following program is used by the special
agent x:

∗[[]{j∈A}¬FxJ → xj].

The following program is used by agents i ∈ A \ {x}:

∗[[]{j∈A\{x}}FiX ∧ ¬FiJ → ij].

Again, we now show this protocol’s correctness.

Theorem 7. The LNSwS1 protocol is a correct propositional gossip protocol.

Proof. Note that as all calls are determined only by the secrets currently known
by the agent, the protocol is indeed propositional.

Termination can be seen as each call made ensures the caller learns at least
one secret, hence the protocol terminates, as we have a finite number of secrets
to be learned, and a finite number of agents learning them.

It remains to be shown that when the protocol terminates, all agents are
experts.

Assume the protocol is not correct. As we know the protocol terminates, this
must mean that when we terminate at least one agent, say y, is not an expert.
As x is always happy to initiate a call with any agent it does not know the secret
of, as does any agent which knows X, any agent which is not an expert when
the protocol terminates must not know X.

However, by definition of the LNSwS1 protocol, every agent which initiates
a call must know X, and hence every agent which has been involved in any call
must know X. Yet, x is an expert, and so must know Y . This means that y must
have been involved in a call, and hence must know X; a contradiction. 
�
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3 Minimal Number of Calls

In the rest of the paper, we improve the lower bound on the minimal number
of calls required in the worst-case by a correct propositional gossip protocol to
terminate in the all-expert situation, thus solving Problem 7 as stated in [9].

Theorem 8. Every correct propositional protocol on n > 3 agents uses at least
2n − 2 calls in the worst case.

In other words, Theorem 8 says that the height of the computation tree of every
correct propositional protocol is at least 2n − 2. In order to prove this theorem,
we first need to establish many intermediate partial results and analyse different
call scenarios. We will also make use of the following results from [24].

Lemma 9. No correct proposition protocol for 4 agents exists with fewer than
6 calls.

Due to Lemma 9, in the rest of the paper will assume that n > 4. We will
also use the following observations from [24].

Lemma 10 (Call Removal). Consider a propositional gossip protocol P . Let
c.d be a prefix of P such that c.d �|= FaB. Let d′ be d where all calls that
involve an agent familiar with B are removed, then c.d′ is also a prefix of P
and, moreover, (c.d)(root)a = (c.d′)(root)a.

Lemma 11 (Initiation). Consider any call sequence c which is a prefix of
a computation of a correct propositional gossip protocol P such that c |= FaB.
There does not exist a call sequence d such that c.d.ab is a prefix of P . (In other
words, agent a will never call agent b if agent a already knows B.)

Lemma 12 (Conversation). For a protocol on n agents to correctly terminate
in m calls, every agent must be involved in a call after at most m − n + 2 calls.
Furthermore, after m−n+p calls, each secret must be known by at least p agents.

3.1 Basic Call Structure of a Correct Propositional Protocol

We will now show a necessary possible structure of a correct propositional pro-
tocol.

Lemma 13. Every correct propositional protocol admits a scenario where an
agent, say a, is initially involved in a call with an agent b, which is then involved
in a call with an agent c.

From here, every correct propositional protocol admits a scenario where ac
is the next call involving either b or c. We will refer to this structure as CC
(cycle component).

Proof. In Lemma 5 in [9] it was shown that every gossip protocol has a compu-
tation that starts with the same agent being involved in its first two calls. By
relabeling the names of the agents, we can assume that the first call is between
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a and b, followed by a call between b and c, hence we get the situation where
a is initially involved in a call with an agent b, which is then involved in a call
with an agent c.

Now, every agent which knows C also knows A. Hence by Lemma 11, no
agent with C will ever initiate a call with a, and so a must learn C in a call
initiated by a himself. Also by Lemma 11, a will never have a further call with
b. Now, assume ac is never available. Agent a must learn C from initiating a call
with an agent, say d.

Let us pick a computation where a knows the greatest number of secrets
before learning C. In other words, if c.ad is a prefix of a computation which
starts with a call between a and b, followed by a call between b and c, and where
a learns C during the call ad, we require the size of c(root)a to be the largest
possible. This is well-defined as this value is an integer between 1 and |A|.

We know that c |= ¬FaD, because otherwise ad would not be possible due
to Lemma 11. We can then remove all calls of agents familiar with D in c
and obtain c′. Due to Lemma 10, c′.ad is still a valid prefix of a computation.
Note that d cannot possibly know C (nor any other secret apart from his own)
after c′, because all his calls were removed. At the same time we know that
c(root)a = c′(root)a.

Hence, there exists a longer prefix, c′.ad.d.ae, of this computation such that
a finally learns C during ae. Therefore, c(root)a is smaller than c′.ad.d(root)a,
because the later includes at least one more secret (namely D); this is a con-
tradiction with the assumption that a knew the most number of secrets before
learning C in the c.ad prefix of a correct computation. 
�

This gives us a certain prefix which must be available for all correct propo-
sitional protocols. From here we can expand with different cases in order to get
our desired result. Before going to case analysis we need one more important
result.

From Lemma 12, if we are aiming to create a correct protocol with 2n − 3
calls or fewer, then all agents must be involved in a call after at most n−1 calls.
This gives us a useful cut-off point when looking at how many calls we have
remaining before all agents must have been involved in a call.

Lemma 14. Assume there is a situation in a protocol where r agents have yet
to be involved in a call with only r − 2 calls remaining before all agents must
have been involved in a call. Then no correct protocol exists with this proposed
number of calls.

Proof. Consider an agent not yet involved in a call. If this agent calls an agent
already involved in a call then we have r −1 agents and r −3 calls, so this leaves
us in the same position, but with fewer uncalled agents. If this continues, we
would reach a state with no calls remaining before all agents must have been in
at least one call, and yet two agents not yet in a call. We can also make all calls
currently available from all agents which have been involved in calls so far.

Again this will at best still leave us in the scenario where there are r − 1
agents left and r −3 calls remaining before all must have been involved in a call,
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but now with no calls directly from or to any agents which already have been
involved in a call. If these were the only options we could repeatedly apply them
until we are left with two agents and zero calls, in which case we would have
failed. Therefore, there must be a call between two agents not yet involved in
any call.

Consider any pair of such agents. If after they call each other, one (or both) of
these agents could now call an agent already involved in a call then we are again
in the scenario where we have r−2 agents and r−4 calls; the exact situation we
started, but now with fewer uncalled agents and calls. If these two agents were
the last two yet to be involved in a call, then we were already done before this
call took place, as we would have two agents left but zero calls. Therefore there
must be two agents a and b, such that there is a call between a and b, which
cannot be immediately followed by a call to any agent already in a call.

Assume neither a or b now wishes to initiate a call. As there trivially must
be more than two agents in total, and this was the first call for both agents,
neither a or b is currently an expert, meaning they must be involved in future
calls. As neither wishes to initiate a call, this means they must be called, say by
an agent c after a call sequence c.

By relabelling, let c call a, i.e. c.ca is a prefix of a computation. In this
situation, by Lemma 11, c did not know A, hence, by Lemma 10, there exists
a call sequence c′.ac where c′ is c where all calls that involve an agent familiar
with A are removed. But this means either a is called by an agent which has
already been involved in a call, or we can create the CC situation.

Therefore, either a or b wishes to initiate a call with another agent c, which
has yet to be involved in a call. Hence, every agent which knows C also knows
A. Therefore, by Lemma 11, no agent with C will ever initiate a call with a.
Therefore a must make the call to learn C.

From Lemma 13 it then follows that there must be a call sequence c such
that after this sequence ac is available. This sequence must involve a, and hence
can be formed in such a way as to contain at most p new agents for the p new
calls involved. If all agents have now been involved in a call we are done by from
Lemma 12, because we have used n calls and yet only two agents know C. But,
if more agents are yet to be involved in a call, then after ac we have at most
r − p− 5 calls remaining for at least r − p− 3 agents to be involved in a call. We
remain in the exact situation as we started, but now with fewer uncalled agents
and calls. We may try to repeat this process, however as there is a finite number
of agents and calls, we will eventually be left with no calls remaining and agents
not yet involved in a call. 
�

Note that Lemma 14 already shows that every correct propositional gossip
protocol has to use at least 2n−3 calls in the worst case, because we begin with
n − 2 calls remaining for n agents yet to be involved in a call.

Lemma 15. For a correct propositional gossip protocol with n agents, if there
are x calls remaining then each secret must be known by at least n − x agents.
If only n − x agents know a secret, say, A, then in every future call one of the
agents involved get to know A. Furthermore, in such a situation, if y agents are
experts, then at least n − x − y agents must be active.
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Proof. As each call can increase the number of agents which know a secret by
at most one, if there are x calls remaining then each secret must be known by
at least n − x agents.

If we have x calls remaining and only n − x agents know A, then in the
remaining x calls, x agents must learn A. At most one agent may learn A in
each call, therefore every future call must have an agent learning A. In other
words, every call must be between an agent that does not know A and an agent
that knows A.

As every call must pass on A, after a call is made both agents involved know
A. All agents which are not experts must be involved in at least one more call
to become an expert. This means we have at least n − x − y non-expert agents
that know A and need to be in at least one more call each. We claim that in this
situation all such agents have to be a caller or a callee of an active call which
would then imply that at least n − x − y agents are active.

Notice that if fewer than n − x − y agents are active, then not all of the
n−x− y non-expert agents that know A may be a caller or a callee of an active
call. This is because no agent that knows A may call another agent that knows
A, so at most one such agent may be involved in each of these calls.

Suppose, that there is a non-expert agent, denoted by b, that knows A but
is not a caller nor a callee in any active call. Let us execute in any order all
active calls of agents that do not know A. Note that all these calls are made to
agents that know A and they can make at most one such a call, because they get
to know A afterwards. Moreover, executing any such call does not activate nor
deactivate any calls of other agents that do not know A, because they cannot
even observe that such a call was made. Hence, no new calls become active and
so none of these calls can be to b, because we assumed he is not a callee in any
active call.

Finally, after all these calls are made, agent b knows A and is still not an
expert and is still not active, because he was not involved in any call. However,
all active agents now know A and therefore cannot call b. Moreover, all active
agents in the future must know A, because an agent can only become active by
being called. So agent b will never be called nor call anyone to become an expert;
a contradiction. 
�

3.2 Different Call Scenarios

Let us fix a correct propositional gossip protocol for n > 4 agents and analyse
its different call scenarios (corresponding to different lemmas in this section). In
each of them we will show that at least 2n−2 calls can be made by the protocol
in the worst case. In all these call scenarios we assume that the call sequence
starts as in Lemma 13, i.e., once the first two calls made are between agents a
and b and then b and c, ac can occur after some number of calls in order to form
CC. Due to space constraints, some of the proofs of these different cases had to
be moved to the appendix.
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Lemma 16. Assume ac can occur once a knows all secrets apart from C. Then
at least 2n − 2 calls can be made.

Proof. As after a and b have had their call, no calls in the sequence leading to
ac may involve C, these can occur before b and c have had their call. Therefore,
after at least n−2 calls we can reach the position where a knows all secrets apart
from C, and c has not yet been in any calls. From here, if we are to complete
the protocol in 2n − 3 calls, we have just n − 1 calls remaining and n − 1 agents
do not know C, hence in every call an agent must learn C. As ac is active let us
perform this call.

Now a and c are both experts, and the only agents which know C. This
means that every call must now involve an agent calling an agent which knows
C. However, assume in this state an agent d can call a. If we took da before ac,
then we would have used n − 1 calls, and therefore 2n − 3 would not be possible
as only one agent knows C from Lemma 12. Hence all calls must be to c. This
means that if we go back to the situation before ac, every agent must be able to
call c. However, if we go back to the original case now, where b and c have had
their call, this means we have used n − 1 calls, but the other n − 2 agents can
now initiate a call with c. This takes us to 2n − 3 calls yet b is not an expert. 
�
Lemma 17. Assume ac can occur once agent a knows all secrets apart from C
and one other, say, D. Then at least 2n − 2 calls can be made.

Proof. Let us follow this until after ca, whilst using Lemma 10 to remove all
calls involving d. This leaves just n − 2 calls, yet there are still n − 1 agents
which do not know D. 
�

We can extend Lemma 17 to get an even stronger result.

Lemma 18. Assume ac can occur after some amount of calls to form CC, leav-
ing at least one agent uncalled, say, d.

Assume further that CC can be extended with calls until all but one agent is
now connected to CC in the graph of calls made. Then at least 2n − 2 calls can
be made.

Proof. In this situation, CC has n−1 agents, and hence at least n−1 calls. This
leaves just n − 2 calls, yet there are still n − 1 agents which do not know D. 
�
Lemma 19. Assume ac can occur once agent a knows all secrets apart from C
and two others, say, D and E. Then at least 2n − 2 calls can be made.

Lemma 20. Assume ac can occur after some amount of calls to form CC, leav-
ing at least three agents uncalled.

Assume further that for agents not yet in a call (which will now be referred to
as NCC), they are willing to form a connected component of their own, using all
agents, beginning with xy followed by a call between y and z, and finally ending
with xz. Then at least 2n − 2 calls can be made.
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Proof. In this scenario, exactly n calls have been used. This means every secret
must be known by at least three agents, if we were to complete in 2n − 3 calls
from Lemma 12. We find that both C and Z are known by exactly 3 agents, and
hence must be learned in all future calls. Hence, the next call must be from and
to one of a, b, c and x, y, z.

Furthermore, these 3 calls must all be available. Assume there is no call
between x, y, z and a. Every call must have an agent learn both C and Z, so any
agent which knows exactly one of these secrets must call an agent which knows
the other. Therefore, if there is no call between x, y, z and a, then a may not be
in any future calls, as these are the only 3 agents which will have have Z and
not C, else another call has been made to an agent and C has not been learned.
So, in this state these three calls must be available and no others, all calls must
be between a, b, c and x, y, z, with each involved exactly once.

This means that either, at least two of these calls are initiated from CC, or
at least two of these calls are initiated from NCC. As these are independent,
we do not know which occurs first, and hence, due to relabelling, we can say
that at least two of these calls are initiated by CC. But assume NCC is still in
the position where only two calls have been made, between x and y and then
between y and z. Now let the two calls from a, b, c to x, y, z happen. In this
position t agents have not yet been involved in a call after n − t + 1 calls. Hence
t−2 calls remain before all these t agents must have been involved in a call. The
result follows from Lemma 14. 
�
Lemma 21. Assume ac can occur after a call sequence forming CC that leaves
at least three agents uncalled.

Assume further that for agents not yet in a call, they are willing to form a
connected component of their own, beginning with xy followed by a call between y
and z, and finally ending with xz, however without all agents from NCC included.
Assume also from this NCC connected component (now referred to as NCC-CC)
an agent wishes to initiate a call with an agent in CC (or be called by an agent
in CC). Then at least 2n − 2 calls can be made.

Proof. Let there be t agents not yet in a call. After the call from NCC-CC to
CC (or from CC to NCC-CC), n − t + 1 calls have been made, yet t agents have
yet to be involved in a call. Hence t − 2 calls remain before all these t agents
must have been involved in a call. The result follows from Lemma 14. 
�
Lemma 22. Assume ac can occur after some amount of calls to form CC. Con-
tinue making all calls possible which can be initiated by the agents in CC, to form
a larger CC, until all these calls are used, leaving at least 3 agents uncalled.

Assume further that for agents not yet in a call (which will now be referred to
as NCC), they are willing to form a connected component of their own, beginning
with xy followed by a call between y and z, and finally ending with xz, however
without all agents from NCC included.

Assume also that no agent from NCC wishes to initiate a call with CC until
it knows all secrets of agents in NCC. Then at least 2n − 2 calls can be made.
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Lemma 23. Assume ac can occur after some amount of calls to form CC, leav-
ing at least 3 agents uncalled.

Assume further that for agents not yet in a call, NCC, no cycle can be formed
without a call to or from CC. Then at least 2n − 2 calls can be made.

Lemma 24. Assume ac can occur after some amount of calls to form CC, leav-
ing at least 3 agents uncalled.

Assume further that in NCC at least two further instances of this can form,
all disconnect from each other. Then at least 2n − 2 calls can be made.

Proof. As eventually the protocol must connect all agents, these three (or more)
cycles must join each other. However, two of these must be able to join to form
a bigger connected component without the others being involved initially. Hence
we could do this before any calls have been made in the other components at
all. This takes us to the same position as in Lemma 21. 
�
Lemma 25. Assume ac can occur after some amount of calls to form CC, leav-
ing at least 3 agents uncalled.

Assume further that in NCC a further instances of this can form. Assume that
after this, we can reach a situation where these components remain disconnected,
but possibly more calls have been made until we are left with these two connected
components, and finally two agents not yet in a call. Then at least 2n − 2 calls
can be made.

3.3 The Main Result

We are finally ready to prove Theorem 8, which establishes 2n − 2 lower bound
on the number of calls needed by a correct propositional protocol.

Proof (of Theorem 8). In Lemma 13 we have shown a necessary possible structure
for all correct propositional protocols, in where CC is formed. We then examined
every possibility that can take place from this structure.

In Lemma 16 we showed that should CC contain all agents then no correct
propositional protocol may exist with fewer than 2n−2 calls. This meant at least
one agent must not have been involved in the calls leading up to ac, and hence
it must be possible that after ac at least one agent has not yet been involved in
a call.

By Lemma 17 and Lemma 19 we see that it must be possible for there to be
at least three agents not yet in a call at this stage.

In Lemma 20 we showed that these remaining agents cannot form a complete
cycle component using all remaining agents themselves. We also show in Lemma
21 that if an agent remains which has still not been involved in a call after this
second cycle component has formed, then these two cycle components cannot
immediately call each other. In Lemma 22 we also showed that once the second
cycle component is formed, waiting for an expert in NCC does not work either.
In Lemma 23 we showed that there must be a connected cycle component in
NCC which does not call CC before it is completed.
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We have shown a connected cycle component must form in NCC, but not yet
be able to call or be called by CC. In Lemma 24 we showed that we could not
form three (or more) independent cycle components, so the remaining agents
may not form another connected cycle component themselves. If there was just
one agent left we would be done by Lemma 11. Finally in Lemma 25 we showed
that once two cycle components are formed, if we have two additional agents
which have only been involved in a call with each other then this will not give
us a protocol with fewer than 2n − 2 calls either.

Together, this shows that in no case is a correct propositional gossip protocol
that uses less than 2n − 2 calls in the worst case is possible. 
�

4 Conclusions

In this paper we showed that any correct propositional gossip protocol in the
worst case needs 2n − 2 calls to terminate in an all-expert situation and thus
solving an open Problem 7 from [9]. One may try to increase this lower bound
further as not even a linear upper bound is known at the moment (note that LNS,
LXS, and LNSwS1 protocols all require O(n2) calls in the worst case). However,
given how complex analysis was required to increase this lower bound from
2n − 3 to 2n − 2, this problem seems very difficult. Nevertheless, we conjecture
that this is possible and the different structures of how sequences of calls of a
correct protocol may look like that we established in this paper would be crucial
in proving such a result and any future analyses of such protocols.

Another interesting problem still open is Problem 6 of [9], which conjectures
that 2n − 3 calls are needed by any gossip protocol (with arbitrary nesting of
knowledge modalities). Already [9] demonstrates a (non-propositional) gossip
protocol that always terminates in 2n − 3 steps for n > 3 agents, but showing
this number of calls is necessary is highly non-trivial.
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Abstract. We investigate the complexity of the reachability problem
for (deep) neural networks: does it compute valid output given some
valid input? It was recently claimed that the problem is NP-complete
for general neural networks and conjunctive input/output specifications.
We repair some flaws in the original upper and lower bound proofs. We
then show that NP-hardness already holds for restricted classes of simple
specifications and neural networks with just one layer, as well as neural
networks with minimal requirements on the occurring parameters.

Keywords: Machine learning · Computational complexity · Formal
specification and verification

1 Introduction

Deep learning has proved to be very successful for highly challenging or even
otherwise intractable tasks in a broad range of applications such as image recog-
nition [11] or natural language processing [5] but also safety-critical applica-
tions like autonomous driving [4], medical applications [12], or financial matters
[2]. These naturally come with safety concerns and the need for certification
methods. Recent such methods can be divided into (i) Adversarial Attack and
Defense, (ii) Testing, and (iii) Formal Verification. A comprehensive survery
about all three categories is given in [6].

The former two cannot guarantee the absence of errors. Formal verification
of neural networks (NN) is a relatively new area of research which ensures com-
pleteness of the certification procedure. Recent work on sound and complete
verification algorithms for NN are mostly concerned with efficient solutions to
their reachability problem NNReach [1,3,8,13]: given an NN and symbolic spec-
ifications of valid inputs and outputs, decide whether there is some valid input
such that the corresponding output is valid, too. This corresponds to the under-
standing of reachability in classical software verification: valid sets of inputs and
outputs are specified and the question is whether there is a valid input that leads
to a valid output. Put differently, the question is whether the set of valid outputs
is reachable from the set of valid inputs. The difference to classical reachability
problems in discrete state-based programs is that there reachability is a matter
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of lengths of a connection. In NN this is given by the number of layers, and it is
rather the width of the continuous state space which may cause unreachability.

Solving NNReach is interesting for practical purposes. An efficient algo-
rithm can be used to ensure that no input from some specified set of inputs is
misclassified or that some undesired class of outputs is never reached. In appli-
cations like autonomous-driving, where classifiers based on neural networks are
used to make critical decisions, such safeguards are indispensable.

However, all known algorithms for NNReach show the same drawback: a
lack of scalability to networks of large size which, unfortunately, are featured
typically in real-world applications [10]. This is not a big surprise as the problem
is NP-complete. This result was proposed by Katz et al. [8] for NN with ReLU
and identity activations, and later also by Ruan et al. [14]. While there is no
reason to doubt the NP-completeness claim, the proofs are not stringent and
contain flaws.

The argument for the upper bound in [8] misses the fact that real inputs are
not necessarily polynomially bounded in size. In fact, guessing values in R is not
even effective without a bound on the size of their representation. Such a bound
is closely linked to the question whether such values can be approximated upto
some precision. The proof by Katz et al. makes no argument for any bound on
the representation of such values, let alone a polynomial one.1

The arguments for the lower bound by a reduction from 3sat in [8] and [15]
rely on a discretisation of real values to model Boolean values. This does not work
for the signum function σ used by Ruan et al. as it is not congruent for sums: e.g.
σ(−3) = σ(−1) but σ(2 + (−3)) �= σ(2 + (−1)), showing that one cannot simply
interpret any negative number as the Boolean value false etc. As a consequence,
completeness of the construction fails as there are (real) solutions to NNReach
which do not correspond to (discrete) satisfying 3sat assignments. Katz et al.
seem to be aware of this and use a slightly more elaborate discretisation in their
reduction, but unfortunately it still suffers from similar problems.2

We start our investigations into the complexity of NNReach by fixing these
issues in Sect. 3. We provide a different argument for membership in NP which
shows that the need for nondeterminism is not to be sought in the input values
but in the use of ReLU nodes. As a corollary we obtain polynomial decidability
for NN with a bounded number of such nodes. We also address the issue of
discretisation of real values in the lower bound proof, fixing the construction
given by Katz et al. We do not address the one by Ruan et al. further, as this
does not provide any further insights or new results.

We then observe that the reduction from 3sat constructs a very specific class
of NNReach instances which we call C(3sat). NN from this class have a fixed
amount of layers but scaling input and output dimension as well as layer size.
This raises the question whether, in comparison to the networks from C(3sat),

1 While this paper was being processed, Katz et al. published an extended version
of their original paper [9]. Unfortunately, the flaws concerning the upper bound are
still present in this version.

2 These problems are repaired in [9], but in a slightly different way than we do.
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reducing the amount of layers or fixing dimensionality leads to a class of networks
for which NNReach is efficiently solvable. In Sect. 4 we show that the answer to
this is mostly negative: NP-hardness of NNReach holds for NN with just one
layer and an output dimension of one. While this provides minimal requirements
on the structure of NN for NNReach to be NP-hard, we also give minimal
criteria on the weights and biases in NN for NP-hardness to hold. Thus, the
computational difficulty of NNReach in the sense of NP-completeness is quite
robust. The requirements on the structure or parameters of an NN that are
needed for NP-hardness to occur are easily met in practical applications. Due to
space restrictions, some technical proof details are deferred to the appendix.

We conclude in Sect. 5 with references to possible future work.

2 Preliminaries

Definition 1. A neural network (NN) N is a layered graph that represents a
function of type R

n → R
m.

The first layer l = 0 is called the input layer and consists of n nodes. The
i-th node computes the output y0i = xi where xi is the i-th input to the overall
network. Thus, the output of the input layer (y00, . . . , y0(n−1)) is identical to the
input of N .

A layer 1 ≤ l ≤ L − 2 is called hidden and consists of k nodes. Note that k
must not be uniform across the hidden layers of N . Then, the i-th node of layer
l computes the output yli = σli(

∑
j c

(l−1)
ji y(l−1)j + bli) where j iterates over the

output dimensions of the previous layer, c
(l−1)
ji are real constants which are called

weights, bli is a real constant which is called bias and σli is some (typically non-
linear) function called activation. The outputs of all nodes of layer l combined
gives the output (yl0, . . . , yl(k−1)) of the hidden layer.

The last layer l = L − 1 is called the output layer and consists of m nodes.
The i-th node computes an output y(L−1)i in the same way as a node in a hidden
layer. The output of the output layer (y(L−1)0, . . . , y(L−1)(m−1)) is considered as
the output of the network N .

The output of a neural network N under input x is denoted N(x). If a node in
a layer l > 0 has less inputs than there are outputs in layer l−1 then we assume
that the unconsidered outputs of l − 1 are weighted with zero. We only consider
networks where nodes in hidden layers have the identity or the ReLU function,
and nodes in the output layer have the identity as activation. The ReLU function
is defined as x �→ max(0, x). Nodes with ReLU or identity activation are called
ReLU nodes or identity nodes, respectively. Given some input to the NN, we say
that a ReLU node is active, resp. inactive if the input for its activation function
is greater, resp. less than or equal to 0. We visualize an NN as a directed graph
with weighted edges. An example is given in Fig. 1.

Our main interest lies in the validity of specifications over the output values of
NN given specifications over their input values. These specifications are expressed
as conjunctions of linear constraints on the input and output variables of a
network.
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Fig. 1. Schema of a neural network with five layers, input dimension of two and output
dimension of one. Filled nodes are ReLU nodes, empty nodes are identity nodes. An
edge between two nodes u and v with label w denotes that the output of u is weighted
with w in the computation of v. No edge between u and v implies w = 0. The bias of
a node is depicted by a value above or below the node. If there is no such value then
the bias is zero.

Definition 2. A specification ϕ for a given set of variables X is defined by the
following grammar:

ϕ ::= ϕ ∧ ϕ | t ≤ b t ::= c · x | t + t

where b, c are rational constants and x ∈ X is a variable.

We use t ≥ b and t = b as syntactic sugar for −t ≤ −b and t ≤ b ∧ −t ≤ −b.
Furthermore, we use 	 for x+(−x) = 0 and ⊥ for x+(−x) = 1 where x is some
variable. We call a specification ϕ simple if for all t ≤ b it holds that t = c ·x for
some rational constant c and variable x.

Definition 3. Specification ϕ(x0, . . . , xn−1) is true under x = (r0, . . . , rn−1) ∈
R

n if each inequality in ϕ is satisfied in real arithmetic with each xi set to ri.

We write ϕ(x) for the application of x to the variables of ϕ. If there are less
variables in ϕ than dimensions in x we ignore the additional values of x. If we
consider a specification ϕ in context of a neural network N we call it an input
or output specification and assume that the set of variables occurring in ϕ is a
subset of the input respectively output variables of N .

Definition 4. The decision problem NNReach is the following: given a neu-
ral network N , input specification ϕin(x0, . . . , xn−1) and output specification
ϕout(y0, . . . , ym−1), is there x ∈ R

n such that ϕin(x) and ϕout(N(x)) are true?

3 NNReach is NP-Complete

3.1 Membership in NP

The argument used by Katz et al. to show membership of NNReach in NP
can be summarized as follows: nondeterministically guess an input vector x as
a witness, compute the output N(x) of the network and check that ϕin(x) ∧
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ϕout(N(x)) holds. It is indisputable that the computation and check of this
procedure are polynomial in the size of N , ϕin, ϕout and the size of x. However,
for inclusion in NP we also need the size of x to be polynomially bounded in
the size of the instance given as (N,ϕin, ϕout). There may be an argument for
this, for instance based on the correspondence between size of x and required
approximation precision for such values. However, we are not aware of such an
argument, let alone a striking one, and there is also a simpler way of obtaining
the upper bound.

Definition 5. A ReLU-linear program over a set X = {x0, . . . , xn−1} of vari-
ables is a set Φ of (in-)equalities of the form

bj +
m∑

i=1

cji · xji ≤ xj or ReLU (bj +
m∑

i=1

cji · xji) = xj

where xji, xj ∈ X and cji, bj ∈ Q. Equations of the second form are called ReLU-
equations. A solution to Φ is a vector x ∈ R

n which satisfies all (in-)equalities
when each variable xi ∈ X is replaced by x(i). A ReLU-equality ReLU (bj +∑m

i=1 cji · xji) = xj is satisfied by x if

– bj +
∑m

i=1 cji · xji ≥ 0 and xj = bj +
∑m

i=1 cji · xji, or
– bj +

∑m
i=1 cji · xji ≤ 0 and xj = 0.

The problem of solving a ReLU-linear program is: given Φ, decide whether there
is a solution to it.

Any ReLU-linear program without ReLU-equalities is a linear program in
the usual sense, and linear programs are known to be solvable in polynomial
time [7].

Lemma 1. The problem of solving a ReLU-linear program is in NP.

Proof. Suppose a ReLU-linear program Φ with l ReLU-equalities is given. Exis-
tence of a solution can be decided as follows. Guess, for each ReLU-equation χk of
the form ReLU (bj+

∑m
i=1 cji ·xji) = xj , some ak ∈ {0, 1}. Let a = (a0, . . . , al−1).

Next, let Φa result from Φ by replacing each χk by the following (in-)equalities.

bj +
m∑

i=1

cji · xji ≥ 0 , bj +
m∑

i=1

cji · xji = xj if ak = 1

bj +
m∑

i=1

cji · xji ≤ 0 , xj = 0 if ak = 0

The following is not hard to see: (i) Using standard transformations, Φa can
be turned into a linear program of size linear in Φ. (ii) Any solution to Φa is
also a solution to Φ, (iii) If Φ has a solution, then there is a ∈ {0, 1}l such
that Φa has a solution. This can be created as follows. Let x be a solution to
Φ. For each ReLU-equation χk as above, let ak = 1 if the corresponding sum
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is non-negative, otherwise let ak = 0. Then x is also a solution for Φa . Thus,
ReLU-linear programs can be solved in nondeterministic polynomial time by
guessing a, and then constructing the linear program Φa and solving it. ��

With this definition of a ReLU-linear program and the corresponding lemma
at hand, we are set to prove NP-membership of NNReach.

Theorem 1. NNReach is in NP.

Proof. Let I = (N,ϕin, ϕout). We construct a ReLU-linear program ΦI of size
linear in |N | + |ϕin| + |ϕout| which is solvable iff there is a solution for I. The
ReLU-linear program ΦI contains the following (in-)equalities.

– ϕin and ϕout (with each conjunct seen as one (in-)equality),
– for each non-ReLU node vli computing

∑
j c

(l−1)
ji y(l−1)j + bli add the equality

∑
j c

(l−1)
ji y(l−1)j + bli = yli (in the form of two inequalities of appropriate

form),
– for each ReLU node vli computing ReLU (

∑
j c

(l−1)
ji y(l−1)j + bli) add the

ReLU-equality ReLU (
∑

j c
(l−1)
ji y(l−1)j + bli) = yli.

The claim on the size of ΦI should be clear. Moreover, note that a solution x
to I can be extended to an assignment x′ of real values at every node of N ,
including values y for the output nodes of N s.t., in particular N(x) = y. Then
x′ is a solution to ΦI . Likewise, a solution to ΦI can be turned into a solution
to I by projection to the input variables.

Hence, NNReach polynomially reduces to the problem of solving ReLU-
linear programs which, by Lemma 1 is in NP. ��

It is interesting to point out the role of witnesses for positive instances of the
NNReach problem: it is tempting to regard values to the input nodes of the
NN as potential witnesses as done by Katz et al. but, as mentioned before, for
as long as there is no argument for their polynomial boundedness these are not
suitable witnesses in an NP procedure. Instead, Theorem 1 above shows that an
assignment to the ReLU nodes as being in-/active can serve as such a witness.
This immediately yields a polynomial fragment of NNReach.

Corollary 1. The reachability problem for NN with a bounded number of ReLU
nodes is decidable in polynomial time.

3.2 NP-Hardness

Katz et al. try to build a polynomial-time reduction from 3sat to NNReach.
The underlying idea is to encode the structure of a 3sat formula in a neural
network and the existence of a satisfying assignment for this formula in the
corresponding input- and output-specifications. Consider the 3sat instance

ψ = (X0 ∨ X1 ∨ X1) ∧ (¬X0 ∨ X1 ∨ ¬X2) ∧ (¬X1 ∨ X2 ∨ X3)
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Fig. 2. Gadgets used in the reduction from 3sat to NNReach. A non-weighted out-
going edge of a gadget is connected to a weighted incoming edge of another gadget in
the actual construction or is considered an output of the overall neural network.

with four propositional variables and three clauses, and let (N,ϕin, ϕout) be the
NNReach instance resulting from the mapping of ψ according to the reduction.
To understand the structure of N we make use of so-called gadgets, specified
in Fig. 2. Each gadget is a compact NN and is used to describe a functional
subcomponent of N . Using these gadgets, the network N is depicted in Fig. 3.

Ignoring the bool-gadgets for the moment, assume that input values are
taken from {0, 1} instead of R. The function computed by N is described as fol-
lows. Each of the three or-gadgets together with their connected not-gadgets
represent one of the clauses in ψ. From Fig. 2 we can infer that the not-gadgets
negate their inputs and that the or-gadgets output 1 if at least one input is 1
and 0 otherwise. Hence, if an or-gadget outputs 1 then the current input, viewed
as an assignment to the propositional variables in ψ, satisfies the corresponding
clause. The and-gadget simply sums up all of its inputs and, thus, we get that
y is equal to 3 iff each or-gadget outputs one. Therefore, with the output spec-
ification ϕout := y = 3, we get a reduction from 3sat to NNReach, provided
that input values are externally restricted to {0, 1}.

But NN are defined for all real-valued inputs, so we need further adjust-
ments to make the reduction complete. First, note that it is impossible to write
an input specification ϕin(x) which is satisfied by x iff x ∈ {0, 1}n because
{0, 1}n is not a hyperrectangle in R

n but conjunctions of inequalities only spec-
ify hyperrectangles. This is where we make use of bool-gadgets. Let ε be
a very small constant. A bool-gadget with input x and output z computes
z = max(0, ε − x) + max(0, x − 1 + ε). Now, Katz et al. claim the following: if
x ∈ [0; 1] then we have z ∈ [0; ε] iff x ∈ [0; ε] or x ∈ [1−ε; 1]. Thus, by connecting
a bool-gadget to each input xi in N and using the simple specifications

ϕin :=
3∧

i=0

xi ≥ 0 ∧ xi ≤ 1 ϕout :=
3∧

i=0

zi ≥ 0 ∧ zi ≤ ε ∧ y ≥ 3(1 − ε) ∧ y ≤ 3
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Fig. 3. Schema of a neural network resulting from the reduction of the 3sat-formula
(X0 ∨ X1 ∨ X1) ∧ (¬X0 ∨ X1 ∨ ¬X2) ∧ (¬X1 ∨ X2 ∨ X3). Note that no weights are
depicted as these are specified inside the gadgets.

we would get a correct translation of ψ. Note that the constraint on y is no
longer y = 3 as the valid inputs to N , determined by the bool-gadgets and
their output constraints, are not exactly 0 or exactly 1. However, the claim
about bool-gadgets is wrong. Consider a bool-gadget with very small ε such
that it is safe to assume ε < 2ε < 1 − ε. Then, for x = 2ε we have z = 0, which
contradicts the claim. In fact, it can be shown that for each ε ≤ 1

2 and each input
x ∈ [0; 1] the output z is an element of [0; ε]. Clearly, this is not the intended
property of these gadgets. But with some adjustments to the bool-gadgets we
can make the reduction work.

A bool∗-gadget is a neural network with functional form R → R shown in
Fig. 2. It computes the function

z = max
(

0,
1
2

− x

)

+ max
(

0, x − 1
2

)

− 1
2
,

where x is the input variable and z is the output variable. For this bool∗-gadget
we can show a similar statement as it was intended for the bool-gadgets in the
original proof.

Lemma 2. In a bool∗-gadget with input x and output z we have z = 0 if and
only if x = 0 or x = 1.

Proof. Note that z = max
(
0, 1

2 − x
)

+ max
(
0, x − 1

2

) − 1
2 is equivalent to

z =

{
−x if x < 1

2 ,

x − 1 otherwise.

From this we immediately get that z = 0 if x = 0 or x = 1, and z �= 0 for all
other values of x. ��



Reachability is NP-Complete Even for the Simplest Neural Networks 157

Now, replacing all bool-gadgets with bool∗-gadgets in the construction and
using the simple specifications ϕin = 	 and ϕout =

∧n−1
i=0 zi = 0 ∧ y = m for

a 3sat-instance with n propositional variables and m clauses, we get a correct
reduction from 3sat to NNReach.

Theorem 2. NNReach is NP-hard.

One could argue that the networks resulting from the reduction of 3sat are not
typical feed-forward neural networks as they do not follow a layerwise structure.
A reason for this is that some inputs are connected to not-gadgets where some
are not and that the outputs zi are not in the same layer as the output y. This
can of course be fixed by introducing additional dummy nodes.

4 NP-Hardness Holds in Very Restricted Cases Already

Let C(3sat) be the class of NNReach instances which are obtained as images
under the reduction presented in the previous section. Note that the NN of
C(3sat) are already quite restricted; they possess only a fixed number of layers.
In this section we strengthen the NP-hardness result by constructing even simpler
classes of NN for which NNReach is NP-hard already. Section 4.1 studies the
possibility to make these NN structurally as simple as possible; Sect. 4.2 shows
that requirements on weights and biases can be relaxed whilst retaining NP-
hardness.

4.1 Neural Networks of a Simple Structure

We consider NN with just one hidden layer of ReLU nodes and an output dimen-
sion of one. As before, we can establish a reduction from 3sat.

Theorem 3. NNReach is NP-hard for NN with output dimension one, a single
hidden layer and simple specifications.

Proof. Let ψ be a 3sat formula with n propositional variables Xi and m clauses
lj . We slightly modify the construction of a network N in the proof of Theorem 2.
First, we remove the last identity node of all bool∗-gadgets in N and directly
connect the two outputs of their ReLU nodes to the and-gadget, weighted with
1. Additionally, we merge not-gadgets and or-gadgets in N . Consider the or-
gadget corresponding to some clause lj . The merged gadget has three inputs
xj0 , xj1 , xj2 and computes max

(
0, 1 − ∑2

k=0 fj(xjk)
)

where fj(xjk) = xjk if Xjk

occurs positively in lj and fj(xjk) = 1−xij if it occurs negatively. It is straight-
forward to see that the output of such a gadget is 0 if at least one positively
(resp. negatively) weighted input is 0, resp. 1, and that the output is 1 if all
positively weighted inputs are 1 and all negatively weighted inputs are 0. These
merged gadgets are connected with weight −1 to the and-gadget. Once done for
all bool∗-, not- and or-gadgets, the overall output y of N is given by

n−1∑

i=0

max
(
0,

1
2

− xi

)
+ max

(
0, xi − 1

2
) −

m−1∑

i=0

max
(
0, 1 −

2∑

j=0

fi(xij)
)
.
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Note that N has input dimension n, a single hidden layer of 2n+m ReLU nodes
and output dimension 1.

Now take the simple specifications ϕin =
∧n−1

i=0 xi ≥ 0 ∧ xi ≤ 1 and ϕout =
y = n

2 . We argue that the following holds for a solution to (N,ϕin, ϕout): (i)
all xi are either 0 or 1, and (ii) the output of each merged or-gadget is 0.
To show (i), we assume the opposite, i.e. there is a solution with xk ∈ (0; 1)
for some k. This implies that

∑n−1
i=0 max

(
0, 1

2 − xi

)
+ max

(
0, xi − 1

2

)
< n

2 as
for all xi ∈ [0; 1] we have max

(
0, 1

2 − xi

)
+ max

(
0, xi − 1

2

) ≤ 1
2 , and for xk

we have max
(
0, 1

2 − xk

)
+ max

(
0, xk − 1

2

)
< 1

2 . Furthermore, we must have
−∑m−1

i=0 max
(
0, 1 − ∑2

j=0 f(xij)
) ≤ 0. Therefore, this cannot be a solution for

(N,ϕin, ϕout) as it does not satisfy y = n
2 .

To show (ii), assume there is a solution such that one merged or-gadget
outputs a value different from 0. Then, −∑m−1

i=0 max
(
0, 1 − ∑2

j=0 f(xij)
)

< 0
which in combination with (i) yields y < n

2 . Again, this is a contradiction.
Putting (i) and (ii) together, a solution for (N,ϕin, ϕout) implies the existence

of a model for ψ. For the opposite direction assume that ψ has a model I. Then, a
solution for (N,ϕin, ϕout) is given by xi = 1 if I(Xi) is true and xi = 0 otherwise.

��
In the previous section, especially in the arguments of Corollary 1, we

pointed out that the occurrence of ReLU nodes is crucial for the NP-hardness of
NNReach. Thus, it is tempting to assume that any major restriction to these
nodes leads to efficiently solvable classes.

Theorem 4. NNReach is NP-hard for NN where all ReLU nodes have at most
one non-zero weighted input and simple specifications.

Proof. We prove NP-hardness via a reduction from 3sat. The reduction works
in the same way as in the proof of Theorem 2, but with the following adjust-
ments. We replace the or-gadgets with simple identity-nodes, we do not include
the and-gadget, and we set the output specification to ϕout =

∧n−1
i=0 zi =

0 ∧ ∧m
i=0 yi ≥ 1, where yi is the output of the i-th identity-node replacing the

former i-th or-gadget, zi is the output of the i-th BOOL-gadget, n is the num-
ber of propositional variables and m the number of clauses in the considered
3sat-instance. Note that this is a simple specification and that the only ReLU
nodes in this network are inside the bool∗-gadgets, which have only one non-
zero input. Now, if each zi = 0 then the value of an output yi is equivalent to
the number of inputs equal to 1. The correctness of this reduction is argued int
the exaxt same way as in in the original one. ��
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Fig. 4. Gadgets used to show that NNReach is NP-hard if restricted to C ({−c, 0, d}).
A non-weighted outgoing edge of a gadget is connected to a weighted incoming one of
another gadget in the actual construction or are considered as outputs of the overall
neural networks.

4.2 Neural Networks with Simple Parameters

One could argue that the NP-hardness results in Theorem 2 and 3 are only
partially applicable to real world problems as the constructed NN use very spe-
cific combinations of weights and biases, namely −1, 0, 1

2 and 1, which may be
unlikely to occur in this exact combination in real-world applications. We show
that NNReach is already NP-hard in cases where only very weak assumptions
are made on the set of occurring weights and biases.

For P ⊆ Q let C(P ) be the class of NNReach instances whose NN only
use weights and biases from P and simple specifications. We will show that NP-
hardness already occurs when P contains three values: 0, some positive and some
negative value. We make use of the same techniques as in Sect. 3 and assume
that the general idea of gadgets and the reduction from 3sat to NNReach are
known.

Definition 6. Let c, d ∈ Q
>0 and ψ be a 3sat-formula with n propositional

variables Xi and m clauses lj. The network N−c,d,ψ is a network with 2n inputs,
two for each Xi, called xi and xi. We describe the structure of N−c,d,ψ using the
gadgets from Fig. 4:

– Each input xi is connected to both inputs of a disc-gadget and this gadget is
connected with weight −c to a chain of five identity nodes interconnected with
weight −c. We call the output of the last node of this chain zi.

– Each pair xi and xi is connected to an eq0-gadget and this gadget is connected
with weight −c to a chain of six identity nodes interconnected with weight −c.
We call the output of the last node of this chain ei.

– Each input xi is connected to a norm-gadget. Analogously, each xi is con-
nected to a norm-gadget.
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– If c ≥ 1 (resp. c < 1) then there are m orA-gadgets (resp. orB-gadgets),
one for each lj s.t. if Xi occurs positively in lj then the output of the norm-
gadget connected to xi is connected and if Xi occurs negatively the output of
the norm-gadget conntected to xi is connected.

– The outputs of all orA-gadgets respectively orB-gadgets are connected to a
single and-gadget. We denote the output of this and-gadget with y.

Note that each N−c,d,ψ has eight layers and output dimension 2n+1. Moreover,
N−c,d,ψ ∈ C({−c, 0, d}). Next, we need to clarify some properties of the used
gadgets.

Lemma 3. Let x0, x1, x2 denote inputs for some gadget. The following state-
ments hold:

1. If x0 = x1 then the output of a disc-gadget is 0 if and only if x0 = x1 = − d
c2

or x0 = x1 = 1
c .

2. If x0 = − d
c2 then the output of a norm-gadget is 0 and if x0 = 1

c then the
output is −dc.

3. If x0 = d
c2 then the output of norm-gadget is −dc and if x0 = − 1

c then the
output is 0.

4. If x0 = x1 = x2 = 0 then the output of an orA-gadget is dc4 − dc3. If at
least one input is −dc while the others are 0 then the output is dc4. The same
holds for an orB-gadget with the difference that if x0 = x1 = x2 = 0 then the
output is dc4 − dc5.

Proof. We start with Property 3.1 and assume that the inputs x0, x1 are equal.
We can infer from the depiction in Fig. 4 that the output of a disc-gadget is given
by d − cmax(0, dx0) − cmax(0,−cx1). At this point we make a case distinction.
If x0 = x1 < 0 then the output is given by d + c2x1 and equal to zero if and
only if x1 = − d

c2 . If x0 = x1 > 0 then the output is given by d − cdx0 and equal
to zero if and only if x0 = 1

c . The last case, namely x0 = x1 = 0, leads to an
output of d.

The Properties 3.2, 3.3 and 3.4 are easily argued. We can infer from Fig. 4
that the output of a norm-gadget is given by −c(d−cmax(0,−cx0)), the output
of a norm-gadget given by −cmax(0, c2x0), the output of an or-A-gadget given
by dc4 − cmax(0, dc2 + c2

∑2
i=0 xi) and the output of an OR-B-gadget given by

dc4−cmax(0, dc4+c2
∑2

i=0 xi). Then the statements about these gadgets follow
by inserting the mentioned values and solving the equations. ��

With these properties at hand, we are suited to prove our main statement of
this section.

Theorem 5. Let c, d ∈ Q
>0. NNReach restricted to C ({−c, 0, d}) is NP-hard.

Proof. Let c, d ∈ Q
>0. Take a 3sat-formula ψ and consider (N−c,d,ψ, ϕin, ϕout)

with N−c,d,ψ defined above, ϕin = 	 and ϕout =
∧n−1

i=0 zi = 0 ∧ ei = 0 ∧ y =
m · d2c4. Obviously, these specifications are simple.
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Clearly, (N−c,d,ψ, ϕin, ϕout) can be constructed in time polynomial in the size
of ψ. For the correctness of the construction assume that ψ has a model I. We
claim that (N−c,d,ψ, ϕin, ϕout) is solved with xi = 1

c if I(Xi) is true, xi = − d
c2

otherwise, and xi = −xi. Note that ϕin is trivially satisfied.
So apply these inputs to N−c,d,ψ. According to Lemma 3.1, all outputs zi

are 0. It is easily verified that all outputs ei are 0 as well. Thus, it is left to
argue that y = m ·d2c4. Consider one of the orA|B-gadgets occurring in N−c,d,ψ,
corresponding to a clause lj . Its inputs are given by the norm- and norm-
gadgets connected to the inputs xi, resp. xi corresponding to the Xi occurring
in lj . According to Lemma 3.2 and 3 these inputs are either 0 or −dc. If lj is
satisfied by I then there is at least one input to the orA|B-gadget that is equal
to −dc. From the fact that ψ is satisfied by I and Lemma 3.4 it follows that each
orA|B-gadget outputs dc4. Therefore, the output y of N−c,d,ψ is m · d2c4. This
means that ϕout is valid as well.

Consider now the converse direction. A solution for (N−c,d,ψ, ϕin, ϕout) must
yield that all xi are 1

c or − d
c2 and xi = xi as all zi and ei have to equal 0.

Therefore, all m orA|B-gadgets have to output dc4 as y must equal m · d2c4.
This implies that each orA|B-gadget has at least one input that is −dc which in
turn means that there is at least one indirectly connected xi or xi that is 1

c resp.
d
c2 . Thus, ψ is satisfied by setting Xi true if xi = 1

c and false if xi = − d
c2 . ��

If d = c and we allow for arbitrary specifications we can show that 0 as a
value for weights or biases is unnecessary to keep the lower bound.

Theorem 6. Let c ∈ Q
>0. NNReach is NP-hard for NN in C ({−c, c}) and

arbitrary specifications.

Proof. This is done in the same way as the proof of Theorem 5 with some
slight modifications. We only sketch this reduction by describing the differences
compared to the instances (N−c,c,ψ, ϕin, ϕout) resulting from the reduction used
in Theorem 5.

We do not use eq0-gadgets in the network but add for each input xi the
conjunct xi = −xi to the input specification ϕin. This also means that we do
not include

∧n−1
i=0 ei = 0 in the output specification ϕout. Consider the weights

between the input and the first hidden layer. If the inputs xi and xi were orig-
inally weighted with zero we set the weights corresponding to xi and xi to be
c. In combination with the input constraint xi = −xi this is equal to weighting
xi and xi with zero. If xi (xi) was originally weighted with c we have to set
the weight of xi (xi) to be −c. If it was weighted with −c we have to set the
weight of its counterpart to be c. This leads to the case that all non-zero inputs
of a node in the first hidden layer are doubled compared to the same inputs in a
network N−c,c,ψ. Consider now the weights between two layers l and l + 1 with
l > 0. For each node in l we add a node in the same layer with the same input
weights. If the output of a node in layer l was originally weighted with zero then
we weight it with c and the corresponding output of its copy with −c. If the
output was originally weighted with weight c (−c) then we weight the output of
the copy node with c (−c), too. As before, this doubles the input values at the
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nodes in layer l+1, which means that compared to a network N−c,c,ψ the output
value of our modified network is multiplied by 27. Thus, we have to change the
output constraint of y to be y = 27(m · c6). Note that these modifications give a
network using only the weights −c and c.

To get rid of zero bias, we add the inputs xbias,1, xbias,1, . . . , xbias,7, xbias,7 to
the network and add the input constraints xbias,i = −∑i−1

j=0
1

2j+1cj and xbias,i =
−xbias,i to ϕin. Then, we set the bias of all nodes which originally had a zero
bias to be c. For xbias,i with i > 1 we add a chain of i − 1 identity nodes each
with bias c and interconnected with weight c and connect this chain with weight
c to xbias,i and −c to xbias,i. All other weights are assumed to be zero which
is realized using the same techniques as described in the previous paragraph. If
a node in the first hidden layer originally had a zero bias we weight the input
xbias,1 with c and xbias,i with −c. If the input specification holds then the bias
plus these inputs sums up to zero. If a node in some layer l ∈ {2, . . . , 7} originally
had a zero bias we weight the output of the last node of the chain corresponding
to xbias,l and its copy with c. Again, if the input specification holds, the bias
value of this node is nullified. This modification ensures that the network is from
C({−c, c}). ��

5 Conclusion

We investigated the computational complexity of the reachability problem for
NN with ReLU and identity activations. We revised the original proof of its
NP-completeness, fixing flaws in both the upper and lower bound, and showed
that the parameter driving NP-hardness is the number of ReLU nodes. Further-
more, we showed that NNReach is difficult for very restricted classes of small
NN already, respectively that three parameters of different signum occurring as
weights and biases suffice for NP-hardness. This indicates that finding non-trivial
classes of NN with practical relevance and polynomial NNReach is unlikely.

It remains to be seen whether NP-hardness can be strengthened, for instance
for classes of NN with a single hidden layer and a maximum of two non-zero
inputs to ReLU nodes, or only one arbitrary positive and only one arbitrary
negative weight and bias value. However, possible results here are only of theo-
retical interest.

From a practical perspective, it would be interesting to see if pure ReLU
networks, where every node in a hidden layer has a ReLU activation, lead to
similar results as these are more common in practice. Also, investigating the
fixed-parameter tractability of the problem more broadly could be promising.
It remains to be seen whether there are parameters other than the number of
ReLU nodes, like structural properties or dimensionality, whose fixing leads to
polynomial decidability. This could yield efficiently solvable classes of NN that
are also of practical interest.
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