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1 An Introduction to the Conjecture

A very important problem in Commutative Algebra is the study of the growth of
the Hilbert function of an ideal in a given degree if one knows more than one step
of [its] history, cit. Mark Green [28]. A classical theorem, due to Macaulay [36],
answers this question by providing an estimate on the Hilbert function in a given
degree just by knowing its value in the previous one. This result is very useful, but
it is far from being optimal. For instance, there is no way of taking into account
any additional information about the ideal. The Eisenbud-Green-Harris, henceforth
EGH, Conjecture was first raised in [17, 18], and precisely addresses this matter. By
effectively using the additional data that the given ideal contains a regular sequence,
it predicts for instance more accurate growth bounds.

We will now introduce some notation and terminology in order to state the
EGH Conjecture. Throughout this article, A = ⊕

d�0 Ad will denote a standard
graded polynomial ring K[x1, . . . , xn] over a field K , and m = (x1, . . . , xn) its
homogeneous maximal ideal. We consider A equipped with the lexicographic order
� induced by x1 > x2 > . . . > xn. Given polynomials g1, . . . , gs ∈ A, we will
denote by 〈g1, . . . , gs〉 theK-vector space generated by such elements to distinguish
it from the ideal that they generate, which we denote by (g1, . . . , gs). We denote the
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Hilbert function of a graded module M and its value in d by H(M) and H(M; d),
respectively. On the set of Hilbert functions we consider the partial order given by
point-wise inequality. Recall that a K-vector space V ⊆ Ad is called lex-segment if
there exists a monomial v ∈ V such that V = 〈u ∈ Ad | u monomial, u ≥ v〉.

The classical Macaulay Theorem states that, given any homogeneous ideal I , if
one lets Ld ⊆ Ad be the lex-segment of dimension equal to H(I ; d), then Lex(I ) =⊕

d�0 Ld is an ideal, that we call lex-ideal. In order to take into account that I

contains a regular sequence, we will introduce the so-called lex-plus-powers ideals.
Given an integer 0 < r � n, we let a = (a1, . . . , ar ) denote an ordered sequence

of integers 0 < a1 � . . . � ar , and we call it a degree sequence. We call the ideal
a = (x

a1
1 , . . . , x

ar
r ) ⊆ A the pure-powers ideal of degree a. With any homogeneous

ideal I ⊆ A which contains an ideal f generated by a regular sequence f1, . . . , fr ,
of degree a = (a1, . . . , ar ), we associate the K-vector space

LPPa(I ) =
⊕

d�0

〈Ld + ad〉,

where Ld ⊆ Ad is the largest, hence unique, lex-segment which satisfies H(I ; d) =
dimK 〈Ld + ad〉. As Macaulay Theorem proves that Lex(I ) is an ideal, the EGH
Conjecture predicts that LPPa(I ) is an ideal, which we call the lex-plus-powers
ideal associated with I with respect to the degree sequence a.

Conjecture 1.1 (EGH) Let I ⊆ A be a homogeneous ideal that contains a
homogeneous ideal f generated by regular sequence of degree a. Then LPPa(I )

is an ideal.

Observe that the EGH Conjecture is a generalization of Macaulay Theorem,
which corresponds to the case f = (f1) with respect to any 0 �= f1 ∈ I of degree
a1. Just like lexicographic ideals, lex-plus-powers ideals enjoy several properties of
extremality. For example, assuming that the EGH Conjecture is true in general, then
one can show that the growth of LPPa(I ) in each degree is smaller than that of I .
That is, H(mLPPa(I )) � H(mI ), see Lemma 2.14. This immediately translates
into an inequality β0j (LPPa(I )) � β0j (I ) between minimal number of generators
in each degree j . We point out that the more refined version of such inequality, i.e.,

βij (LPP
a(I )) � βij (I ) for all i, j,

is currently unknown in general, and goes under the name of LPP-Conjecture, see
for instance [11, 19, 20, 37, 41, 44].

In the following, it will be useful to have several formulations of the EGH
Conjecture, which we will use interchangeably at our convenience.

An equivalent way of approaching the conjecture is degree by degree: given
a sequence a, for a non-negative integer d we say that a homogeneous ideal
I ⊆ A = K[x1, . . . , xn] satisfies EGHa(d) if there exists an a-lpp ideal J such
that dimK(Jd) = dimK(Id) and dimK(Jd+1) � dimK(Id+1). We say that I satisfies
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EGHa if it satisfies EGHa(d) for all non-negative integers d. One can readily
verify that Conjecture 1.1 holds true if and only if, for every degree sequence a,
every homogeneous ideal containing a regular sequence of degree a satisfies EGHa ,
see [9].

We conclude this introductory section by recalling a weaker version of the EGH
Conjecture, raised in [18]. Let a = (a1, . . . , an) be a degree sequence, and D be
an integer such that a1 � D �

∑n
i=1(ai − 1). Let b the unique integer such that

∑b
i=1(ai − 1) � D <

∑b+1
i=1 (ai − 1), and set δ = ∑b+1

i=1 (ai − 1) − D + 1 if b < n,
and δ = 1 otherwise.

Conjecture 1.2 (Cayley-Bacharach) Let f ⊆ A = K[x1, . . . , xn] be an ideal
generated by a regular sequence of degree a = (a1, . . . , an), and g /∈ f be a
homogeneous element of degree D � a1. Let I = f + (g), and e be the multiplicity
of A/I . Then

e �
n∏

i=1

ai − δ

n∏

i=b+1

ai.

Conjecture 1.2 has been studied by several researchers, from very different points
of view; for instance, see [5, 24, 25, 31]. The validity of the EGH Conjecture in the
case r = n for almost complete intersections would imply Conjecture 1.2. For an
explicit instance of this, see Example 5.6.

This survey paper is structured as follows: in Sect. 2 we treat the case when the
given ideal already contains a pure-powers ideal, presenting a new proof of the
Clements-Lindström Theorem. Section 3 is very brief, and collects some statements
from the theory of linkage, together with a result which yields a reduction to
the Artinian case. In Sect. 4 we present proofs of several cases of the conjecture,
previously known in the literature. Finally, in Sect. 5 we collect some applications
of the techniques and the results illustrated before, together with several examples.

2 Monomial Regular Sequences and the
Clements–Lindström Theorem

The goal of this section is to prove the Clements-Lindström Theorem [14], a more
general version of the Kruskal-Katona Theorem [33, 34]. The proof presented here
relies on recovering a strong hyperplane restriction theorem for strongly-stable-plus-
powers and lpp ideals due to Gasharov [21, 22], see also [10, Theorem 2.2]. Our
strategy uses the techniques of [7], and is different from the standard one available
in the literature [14, 39, 40].

Recall that a monomial ideal J ⊆ A = K[x1, . . . , xn] is called strongly stable
if for every monomial u ∈ J and any variable xi which divides u, one has that



162 G. Caviglia et al.

x−1
i xju ∈ J for all 1 � j � i. The ideal J is said to be a-strongly-stable-plus-
powers, a-spp or, simply, spp for short, if there exist a strongly stable ideal S and a
pure power ideal a of degree a such that J = S + a. Clearly, a-lpp ideals are a-spp.

Theorem 2.1 Let I ⊆ A be a homogeneous ideal that contains a pure-powers ideal
a of degree a. Then

(i) LPPa(I ) is an ideal.
(ii) If I is a-spp, then H(I + (xi

n)) � H(LPPa(I ) + (xi
n)) for all i > 0.

We first prove Theorem 2.1 (i) for n = r = 2. Since strongly stable ideals in two
variables are lex-ideals, a-spp ideals are automatically a-lpp in this case.

We start by recalling a few properties of monomial ideals, which are special cases
of more general results derived from linkage theory, that we will discuss in Sect. 3.

Let I be a monomial ideal that contains a = (x
a1
1 , x

a2
2 ). When we view I as a

K[x1]-module, we have a decomposition

I =
⊕

i�0

x
di

1 K[x1] · xi
2; (2.1)

observe that, since I is an ideal, one has di � di+1 for all i. Also observe
that I is spp if and only if di+1 + 1 � di for all i. Define the link I � = I �

a
of I with respect to the ideal a to be the ideal I � = (a :A I). Notice that

I � = (x
a1−d0
1 , x

a2
2 )∩ (x

a1−d1
1 , x

a2−1
2 )∩· · ·∩ (x

a1−da2−1

1 , x2) is an ideal generated by

the monomials x
a1−di

1 x
a2−1−i
2 , i = 0, . . . , a2 − 1, and that as a K[x1]-module can

be written as

I � =
⎛

⎝
a2−1⊕

i=0

x
a1−da2−1−i

1 K[x1] · xi
2

⎞

⎠ ⊕
⎛

⎝
⊕

i�a2

K[x1] · xi
2

⎞

⎠ . (2.2)

Remark 2.2 (1) It is immediate from (2.2) that (I �)� = I .
(2) The Hilbert function of I � is determined by that of I . More precisely, if we let

R = A/a and s = a1 +a2 −2, then H(R; d) = H(R/IR; d)+H(R/I�R; s −
d).

(3) The link of an a-lpp ideal is again an a-lpp ideal. Thus, we may as well prove
that I � is a-spp if I is a-spp. To this end, consider the decomposition of I as in
(2.1). Given any monomial x

b1
1 x

b2
2 ∈ I � with 1 � b2 < a2, one just needs to

show that x
b1+1
1 x

b2−1
2 ∈ I �. By (2.2), it is enough to verify that a1 − di + 1 �

a1 − di+1 for all i, which is equivalent to di+1 + 1 � di for all i. Finally, this is
true for all i, because I is spp by assumption.

We are now ready to prove the case n = 2 of Theorem 2.1 (i).

Proposition 2.3 Let a = (a1, a2), and I ⊆ A = K[x1, x2] be a homogeneous ideal
that contains a = (x

a1
1 , x

a2
2 ). Then LPPa(I ) is an ideal.
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After taking any initial ideal, without loss of generality we may assume that I is
monomial. In fact, this operation preserves its Hilbert function, and the initial ideal
still contains a. Next, we give three different proofs of the above proposition.

In the first one, we make use of linkage.

Proof 1 We need to show that the K-vector space LPPa(I ) = ⊕
j�0〈Lj + aj 〉 is

indeed an ideal, and we do so by proving that LPPa(I ) agrees with an ideal J for
all degrees i � a2 − 1 and it agrees with an ideal J ′ for all degrees i � a2 − 1.
By Macaulay Theorem, there is a lex-ideal L with the same Hilbert function as I .
Consider the a-lpp ideal J = L + a. By construction, for all j = 1, . . . , a2 − 1 one
has H(J ; j) = H(L; j) = H(I ; j).

Now we construct the ideal J ′ as follows. First consider the link I � = (a :A I).
Since I � ⊇ a, again by Macaulay Theorem there exists a lexicographic ideal L′ with
the same Hilbert function as I �. Thus, the a-lpp ideal L′ + a has the same Hilbert
function as I � in degrees j = 0, . . . , a1 −1. We now let J ′ = (L′ +a)�. By Remark
2.2 (2), J ′ is an lpp ideal and, by Remark 2.2 (3) its Hilbert function in degrees
j � a2 − 1 coincides with that of I . Therefore J ′ has the desired properties, and the
proof is complete. �

In the second proof we use techniques borrowed from [37, Section 3], see also
[7, Section 4].

Proof 2 The Hilbert function of a monomial ideal is independent of the base field,
thus without loss of generality we may assume that K = C. It suffices to construct
an a-spp ideal with the same Hilbert function as I . Let ξ1, . . . , ξa2 the a2-roots of
unity over C, and observe that xa2

2 −x
a2
1 = (x2−ξ1x1)(x2−ξ2x1) · · · (x2−ξa2x1) ∈

I . We consider the distractionD given by a family of linear forms {li}i�1 defined as
li = x2 − ξix1, for i = 1, . . . , a2, and li = x2 for all i > a2; see [3] for the theory
of distractions. Given a decomposition of I (0) = I = ⊕

i�0 I[i]xi
2, we let J (0) be

the distracted ideal

J (0) = J =
⊕

i�0

I[i]
i∏

j=1

lj =
a2⊕

i=0

I[i]
i∏

j=1

lj ⊕
⊕

i�a2

K[x1] · xi
2,

which shares with I the same Hilbert function, and the same Betti numbers as well.
Observe that the last equality is due to the fact that both x

a2
1 and x

a2
2 − x

a2
1 are in

J , and therefore x
a2
2 ∈ J . We let I (1) be in>(J (0)), where > is any monomial order

such that x1 > x2, and J (1) be the ideal obtained by distracting I (1) with D. We
construct in this way a sequence I (0), I (1),. . . ,I (h) of ideals with the same Hilbert
function, each of which contains a; we finally want to show that this sequence
eventually stabilizes at an ideal, we call it L, which is a-spp. To this end, observe
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that for all integers p � 0 we have

H
(
I

(h)
[0] ⊕ I

(h)
[1] x2 ⊕ · · · ⊕ I

(h)
[p] x

p

2

)
= H

⎛

⎝in>(I
(h)
[0] ⊕ I

(h)
[1] l1 ⊕ · · · ⊕ I

(h)
[p]

p∏

j=1

lj )

⎞

⎠

� H
(
I

(h+1)
[0] ⊕ I

(h+1)
[1] x2 ⊕ · · · ⊕ I

(h+1)
[p] x

p

2

)
.

(2.3)

In the above, we consider three modules whose Hilbert functions are computed as
homogenousK[x1]-submodules of the gradedK[x1]-moduleA = K[x1, x2], where
xd
2 has degree d. Notice that the inequality in (2.3) is due to the inclusion of the

second module in the third one. Observe that I
(0)
[0] ⊆ I

(1)
[0] ⊆ . . . is an ascending

chain of ideals that will eventually stabilize, say at I
(h0)[0] . Inductively, assume that

for all i = 0, . . . , p − 1 the ideals in I
(hi−1)

[i] ⊆ I
(hi−1+1)
[i] ⊆ . . . form a chain that

stabilizes, say at hi . The inclusion of the second into the third module of (2.3), for
any h > max{h0, . . . , hp−1}, yields that I

(h)
[p] ⊆ I

(h+1)
[p] . Thus, for h � hp−1 we

have again a chain of ideals which will stabilize, say at hp. Repeat this process for
all p � a2 − 1, so that for all h � h′ = max{h1, . . . , ha2−1} we have I (h) = I (h+1).
Let L = I (h′). Keeping in mind how L has been constructed, apply (2.3) to L to
obtain, for all p � 0

L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p]xp

2 = in>

⎛

⎝L[0] ⊕ L[1]l1 ⊕ · · · ⊕ L[p]
p∏

j=1

lj

⎞

⎠

= L[0] ⊕ L[1]l1 ⊕ · · · ⊕ L[p]
p∏

j=1

lj ,

(2.4)

where the second equality can be verified by induction on p, using the first equality
and the fact that the least monomial with respect to > in the support of

∏p

j=1 lj is

x
p

2 .
Next, we prove that L is a-spp. By construction L ⊇ a, since each I (i) and J (i)

does; thus, we have to show that x1L[p] ⊆ L[p−1] that for all 0 < p � a2 − 1.
Again by induction on p, by (2.4) we have L[0] ⊕ L[1]x2 = L[0] ⊕ L[1](x2 − x1),
which implies x1L[1] ⊆ L[0]. Moreover, by induction and again by (2.4), L[0] ⊕
L[1]x2 ⊕ · · · ⊕ L[p]xp

2 = L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p−1]xp−1
2 ⊕ L[p]

∏p

j=1 lj . Since

lj = x2 − ξj x1 with j = 1, . . . , p, we have that
∏p

j=1 lj has a full support, i.e., its

support contains all of the monomials of degree p. In particular it contains x1x
p−1
2 .

It follows that x1L[p] ⊆ L[p−1], as desired. �
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The third proof relies on an application of Gotzmann Persistence Theorem
[26, 27].

Proof 3 Let LPPa(I ) = L + a, where each Ld is the largest lex-segment such
that dimK(Ld + ad) = H(I ; d). In order to show that LPPa(I ) is an ideal we
have to show that, for every integer d � 0, we have H(A/(mL + a); d + 1) �
H(A/LPPa(I ); d + 1). For this, without loss of generality we can assume that
(LPPa(I ))j = aj for all j < d. Let k = dimK L̃d , where L̃d is the image in A/a
of the K-vector space Ld + ad . If k = 0 there is nothing to prove. Let us assume
k > 0, and study the following three cases separately: d < a2 − 1, d = a2 − 1,
and d � a2. If d < a2 − 1, then (LPPa(I ))d = Ld , (LPPa(I ))d+1 = Ld+1, and the
conclusion follows from Macaulay Theorem.

Now assume d = a2 − 1. If Ld+1 = Ad+1, then there is nothing to
show, so assume that Ld+1 � Ad+1. If xd+1

2 is a minimal generator of I , then
H(A/(mLd); d +1) � H(A/mI ; d +1) � H(A/I ; d +1)+1. Since H(A/I ; d +
1) = H(A/L; d + 1) − 1, it follows that H(A/mL; d + 1) � H(A/L; d + 1), and
therefore m1Ld ⊆ Ld+1. A fortiori, we have that m1(LPPa(I ))d ⊆ (LPPa(I ))d+1,
and the proof of this case is complete. If xd+1

2 is not a minimal generator of I , then
dim(A/J ) = 0, where J = I�d . In particular, H(A/I ; j) � H(A/(xd

1 , xd
2 ); d) =

d. By Macaulay Theorem we have that H(A/I ; d + 1) � d. If equality holds, then
I has no minimal generators in degree d + 1, and thus H(A/J ; d + 1) = d as well.
By Gotzmann Persistence Theorem applied to J , we have that H(A/H ; j) = d for
all j � d, which contradicts the fact that dim(A/J ) = 0.

Finally, if d � a2, we first observe that once again k = H(A/I ; d) � d,
and that H(A/(mLd) + a; d + 1) = k − 1. Since k = H(A/I ; d), to conclude
the proof it suffices to show that k > H(A/I ; d + 1), since the latter is equal to
H(A/LPPa(I ); d + 1). It follows from Macaulay Theorem H(A/I ; d + 1) � k =
H(A/I ; d), since we have already observed that k � d. If equality holds, then by
Gotzmann Persistence Theorem applied to the ideal J = I�d we would have that
H(A/J ; j) = H(A/J ; d) = k > 0 for all j � d. In particular, this would imply
that dim(A/J ) > 0, in contrast with the fact that J contains (x

a1
1 , x

a2
2 ), and hence it

is Artinian. �
Remark 2.4

(1) Observe that Proof 1 can be adapted to any regular sequence of degree a =
(a1, a2) using properties of linkage analogous to those of Remark 2.2, see
Theorem 4.1.

(2) It is easy to see that, in Proof 2, we can also keep track of Betti numbers and
prove, in characteristic zero, that they cannot decrease when passing to the lex-
plus-powers ideal.

(3) In Proof 3 we do not actually use the fact that the regular sequence is monomial.
In fact, the same argument can be used to prove that any ideal which contains a
regular sequence of degree a = (a1, a2) satisfies EGHa .

We now move our attention from the case n = 2 to the general one.
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Proposition 2.5 Under the same assumptions of Theorem 2.1, there exists an a-spp
ideal with the same Hilbert function as that of I .

Proof We define a total order on the set S of monomial ideals with the same Hilbert
function as I , and which contain the pure-powers ideal a = (x

a1
1 , . . . , x

ar
r ). First,

given any J ∈ S , we order the set of its monomials {mi} from lower to higher
degrees, and monomials of the same degree lexicographically. Now, given a second
ideal J ′ ∈ S and the set of its monomials {m′

i}, we set J > J ′ if and only if
there exists i such that mj = m′

j for all j � i and mi+1 > m′
i+1. Observe that,

since J and J ′ have the same Hilbert function, we are forced to have degmj =
degm′

j for all j . Let P be the maximal element of S; we claim that P is a-spp.
Assume by contradiction that there exists a monomial m ∈ P � a such that xi

divides m and x−1
i xjm /∈ P for some j < i. Write P = ⊕

q Pq · q, where each
q ∈ K[x1, . . . , x̂j , . . . , x̂i , . . . , xn] is a monomial, and Pq ⊆ K[xj , xi] is an ideal.
Notice that each Pq contains (x

aj

j , x
ai

i )K[xj , xi] since P ∈ S , and that Pq ⊆ Pq ′

whenever q divides q ′ since P is an ideal. By Proposition 2.3, for every q there
exists an (aj , ai)-spp ideal Qq ⊆ K[xj , xi] with the same Hilbert function as Pq .

Let now Q = ⊕
q Qq · q, and observe that Q ∈ S . In fact, Q is clearly spanned

by monomials, and it contains a. Moreover, if q divides q ′ one gets H(Qq) =
H(Pq) � H(Pq ′) = H(Qq ′). Since Qq and Qq ′ are both (aj , ai)-spp, it follows
that Qq ⊆ Qq ′ , which in turn that Q is an ideal. Since P is not a-spp, by our choice
of the indices i and j there exists q such that Pq is not (aj , ai)-spp. In particular, it
follows that Q > P , which contradicts maximality of P . �
Remark 2.6 As in the case of two variables, see Remark 2.4 (2), in the proof of
Proposition 2.5 one can keep track of how the Betti numbers change in order to
prove that, in characteristic zero, the Betti numbers of the a-spp ideal we obtain
cannot decrease. This fact is helpful in order to prove the LPP-Conjecture for ideals
that contain pure-powers.

We point out that, in all pre-existing proofs of Clements-Lindström Theorem 2.1
[14, 39, 40], one finds a preliminary reduction step that goes under the name of
compression. This step consists of assuming that Clements-Lindström Theorem
holds in n − 1 variables in order to construct an a-spp ideal J ⊆ A in n variables
that, for any i = 1, . . . , n, has a decomposition J = ⊕

j�0 J[j ]xj
i , where J[j ] is

(a1, . . . , âi , . . . , ar )-lpp for all j . In our proof, this step corresponds to the reduction
provided by Proposition 2.5. Observe that the above ideal J is not necessarily a-lpp
globally in n variables, as the following example shows.

Example 2.7 Let n � 4 and consider the (2, 2)-spp ideal I = (x2
1 , x1x2, . . . ,

x1xn−1, x
2
2 , x2x3) in A = K[x1, . . . , xn]; then I is compressed, but not (2, 2)-lpp,

since the monomial x1xn is missing from its generators.

We introduce some notation and terminology, which will be used henceforth in
this section.
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Let A = K[x1, . . . , xn], m = (x1, . . . , xn), a = (a1, . . . , ar ) be a degree
sequence, and a = (x

a1
1 , . . . , x

ar
r ) be the corresponding pure-powers ideal. Fur-

thermore, let A = K[x1, . . . , xn−1], and m = (x1, . . . , xn−1)A. If r < n, we let
a = a and a = (x

a1
1 , . . . , x

ar
r )A. Otherwise, if r = n, we let a = (a1, . . . , an−1)

and a = (x
a1
1 , . . . , x

an−1
n−1 )A.

Given a K-vector space V ⊆ Ad generated by monomials, we say that V is a-
lpp if it is the truncation in degree d of an a-lpp ideal. Similarly, we say that V is
a-spp if it is the truncation in degree d of an a-spp ideal. Observe that a K-vector
subspace V = ⊕d

i=0 V[d−i]xi
n ⊆ Ad containing ad is a-spp if and only if V[i] is

a-spp for all i, and m1V[i] ⊆ V[i+1] for all i � max{d − an + 1, 0}; we will refer
to the latter property as stability. Moreover, if V ⊆ Ad is a-lpp, respectively a-spp,
then m1V + ad+1 is also a-lpp, respectively a-spp. Finally, if V,W ⊆ Ad are a-lpp
and dimK(V ) � dimK(W), then V ⊆ W .

Let L ⊆ Ad be a lex-segment and V = L + ad . If V �= Ad , there exists the
largest monomial u ∈ Ad � V with respect to the lexicographic order. In this case,
we let V + = V + 〈u〉; otherwise, we let V + = V = Ad . Either way, V + can be
written as L′ + ad , where L′ is a lex-segment, and therefore it is a-lpp.

If V �= ad we may write V = W ⊕ ad , with W �= 0 a vector space
minimally generated by monomials m1 � m2 � . . . � mt . In this case, we let
V − = 〈m1, . . . , mt−1〉 + ad ; otherwise, we set V − = V = ad .

The notion of segment we recall next is extracted from [7], and it will be crucial
in the proof of Theorem 2.1.

Definition 2.8 Let V ⊆ Ad be a K-vector space, written as V = ⊕d
i=0 V[d−i]xi

n.
Then, V is called an a-segment, or simply a segment, if it is a-spp and, for all i,

1. V[i] ⊆ Ai is a-lpp, and
2. V[i+j ] ⊆ mj (V[i])+ + ai+j for all 1 � j � d − i.

Note that, if V ⊆ Ad is a-lpp, then it is an a-segment.

Remark 2.9 If V ⊆ Ad is a segment, it immediately follows from the definition that
m1V + ad+1 ⊆ Ad+1 is also an a-segment.

Lemma 2.10 Let V and W be two a-segments in Ad . Then either V ⊆ W , or
W ⊆ V .

Proof Write V = ⊕d
i=0 V[d−i]xi

n and W = ⊕d
i=0 W[d−i]xi

n. If the conclusion is
false, since V and W are segments we can find i �= j such that V[i] � W[i] and
V[j ] � W[j ]; say j < i. Since V[j ] is lpp, V[j ] ⊇ (W[j ])+, and therefore V[i] =
V[i] + ai ⊇ mi−jV[j ] + ai ⊇ mi−j (W[j ])+ + ai ⊇ W[i], which is a contradiction.

�
Definition 2.11 Let V ⊆ Ad be a K-vector space, written as V = ⊕d

i=0 V[d−i]xi
n.

We define the dimension sequence δ(V ) = (dimK(V[d]), dimK(V[d] ⊕
V[d−1]), . . . , dimK(V )) ∈ N

d+1. On the set of all such sequences, we consider
the partial order given by point-wise inequality.
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Lemma 2.12 Let V ⊆ Ad be an a-spp K-vector space, written as V =
⊕d

i=0 V[d−i]xi
n. Assume that

1. V[i] ⊆ Ai is a-lpp for all i, and
2. δ(V ) is minimal among all dimension sequences of a-spp K-vector subspaces

W = ⊕d
i=0 W[d−i]xi

n ⊆ Ad such that dimK(W) = dimK(V ) and W[i] is a-lpp
for all i.

Then, V is a segment.

Proof Assume that V is not a segment; then, there exist i < j such that V[i] � Ai

and mj−i (V[i])+ + aj �⊇ V[j ], and choose i and j so that j − i is minimal. Observe
that necessarily i � max{d − an + 1, 0}, since otherwise V[i] = Ai . Since V[i]
and V[j ] are a-lpp, the fact that mj−i (V[i])+ + aj does not contain V[j ] implies
that mj−i (V[i])+ + aj is properly contained in V[j ]. In particular, the latter properly
contains aj , and we have that

mj−i (V[i])+ + aj ⊆ (V[j ])−. (2.5)

Now, define W = ⊕d
k=0 W[d−k]xk

n , where W[i] = (V[i])+, W[j ] = (V[j ])−, and
W[k] = V[k] for all k �= j, i. We claim that W is an a-spp vector space.

In fact, let k � max{d − an + 1, 0}; by stability, if k �= j, j − 1, i, i − 1, then
m1W[k] = m1V[k] ⊆ V[k+1] = W[k+1]; if k = j , then m1W[j ] ⊆ m1V[j ] ⊆ V[j+1] =
W[j+1] and if k = i − 1, then m1W[i−1] = m1V[i−1] ⊆ V[i] ⊆ W[i].

By costruction, we have that mj−iW[i] ⊆ W[j ], see (2.5); therefore, if j − i = 1
we are done, again by stability.

Thus, we may assume that j − i > 1 and prove next that mk−iW[i] + ak =
W[k] for all i < k < j . Since j − i is minimal, we have that mk−iW[i] + ak =
mk−i (V[i])+ +ak ⊇ V[k] = W[k]. If the containment were strict, then we would have
mk−i (V[i])+ + ak ⊇ (V[k])+ and, again by minimality, mj−k(V[k])+ + aj ⊇ V[j ];
this would in turn implymj−i (V[i])+ +aj = mj−k

(
mk−i (V[i])+ + ak

)+aj ⊇ V[j ],
contradicting our initial assumption on i and j .

The only case left to be shown is now m1W[j−1] ⊆ W[j ]. By applying what we
have proved above for k = j −1, we have thatm1W[j−1]+aj = m1

(
mj−1−iW[i]

)+
aj = mj−iW[i] + aj ⊆ W[j ], as desired.

Thus, W is an a-spp vector space; furthermore, it is clear from definition that
each W[i] is an a-lpp. Finally, observe that δ(W) < δ(V ) by construction, which
contradicts the minimality of δ(V ), and we are done. �
Proposition 2.13 For every d � 0 and every D � dimK(Ad) there exists a unique
segment V with dimK(V ) = D. Moreover, the sequence δ(V ) is the minimum of the
set of all sequences δ(W) of a-spp vector spaces W = ⊕d

i=0 W[d−i]xi
n ⊆ Ad which

have dimension D and such that each W[i] is a-lpp.
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Proof By Lemma 2.12 we have that any vector space with minimal dimension
sequence is a segment, and by Lemma 2.10 any two such segments are comparable,
hence equal. �

We already mentioned before that, if the EGH Conjecture held in full generality,
then LPPa(I ) would be the ideal with minimal growth among those containing a
regular sequence of degree a, and with Hilbert function equal to that of I . The proof
is easy and we include it here.

Proposition 2.14 Assume that EGH holds true. Let I ⊆ A be a homogeneous ideal
that contains a regular sequence of degree a. Then H(mLPPa(I )) � H(mI ).

Proof Let d � 0 be an integer, and let a′ = (a1, . . . , ar ) be the degree sequence
obtained from a by considering only the degrees ai such that ai � d. Let J =
(Id), and observe that LPPa(I )d = LPPa′

(I )d = LPPa′
(J )d . Moreover, since

Jd+1 = m1Id , we have H(LPPa′
(J ); d + 1) = H(J ; d + 1) = H(mI ; d + 1).

Since m1LPPa′
(J )d ⊆ LPPa′

(J )d+1, we finally obtain that H(mLPPa(I ); d + 1) =
H(mLPPa′

(J ); d + 1) � H(mI ; d + 1). �
We would like to observe that, even if we do not know that EGH holds in general,
we can still get an minimal growth statement in a Clements-Lindström ring A/a,
under milder hypotheses.

Lemma 2.15 (Minimal Growth) Assume that every homogeneous ideal contain-
ing a satisfies EGHa . If a ⊆ I ⊆ A is such an ideal, then H(mLPPa(I ) + a) �
H(mI + a).

Proof Fix an integer d � 0, and let J = (Id)+a. Note that both I and J satisfy the
EGH, and LPPa(I )d = LPPa(J )d . Observe that Jd+1 = m1Jd + ad+1 = m1Id +
ad+1, and accordingly H(LPPa(J ); d + 1) = H(J ; d + 1) = H(mI + a; d + 1).
Now, since (mLPPa(J ) + a)d+1 = m1(LPPa(J ))d + ad+1 ⊆ (LPPa(J ))d+1, we
may conclude that H(mLPPa(I ) + a; d + 1) � H(LPPa(J ); d + 1) = H(mI + a;
d + 1). �

We are finally in a position to prove the main result of this section. The simple
idea underlying the new proof we present here is to demonstrate Clements–
Lindström Theorem using Strong Hyperplane Restriction, like Green proved
Macaulay Theorem using generic hyperplane section; this also motivates why
Part (ii) has been assimilated into the statement.

Proof of Theorem 2.1 By adding sufficiently large powers of the variables
xr+1, . . . , xn, we may assume that r = n. After taking any initial ideal, and by
Proposition 2.5, we may assume that I is an a-spp monomial ideal. By induction,
we may also assume that both Part (i) and Part (ii) hold true in polynomial rings
with less than n variables, since the case n = 1 is trivial. In particular, any lpp ideal
of A has Minimal Growth, see Lemma 2.15.
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We write I = ⊕
i�0 I[i]xi

n; for all i, we let J[i] = LPPa(I[i]), which by induction
is an ideal of A. Next, we prove that

J =
⊕

i�0

J[i]xi
n

is also an a-spp ideal. First of all, observe that I[k] ⊆ I[k+1] for all k, since I is an
ideal. This implies that H(J[k]) = H(I[k]) � H(I[k+1]) = H(J[k+1]). Since the
ideals J[k] and J[k+1] are lpp, it follows that J[k] ⊆ J[k+1], which, in turn, translates
into J being an ideal. Since I is a-spp, for all i < an − 1 we have m1I[i+1] ⊆ I[i]
and a ⊆ I[i]; thus

H(J[i]) = H(I[i]) � H(m1I[i+1] + a) � H(m1J[i+1] + a),

where the last inequality follows from Lemma 2.15. This yields that thatm1J[i+1] ⊆
J[i] for all i < an − 1, and J is a-spp by stability.

Given an a-spp vector space V ⊆ Ad , denote by σ(V ) the segment contained in
Ad which has the same dimension as V . Let J = ⊕

d�0
Jd be the homogeneous ideal

we constructed above and let

σ(J ) =
⊕

d�0

σ(Jd).

We claim that σ(J ) is the a-lpp ideal we are looking for.
First of all we show that it is an ideal. Fix a degree d � 0, and write Jd =⊕d
i=0(Jd)[d−i]xi

n, σ(Jd) = ⊕d
i=0 σ(Jd)[d−i]xi

n; for notational simplicity, in the
following we let σ[d−i] = σ(Jd)[d−i]. By stability, we then have

m1Jd + ad+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m1(Jd)[d] + ad+1

) ⊕
(⊕d

i=0(Jd)[d−i]xi+1
n

)
, if d < an − 1,

(
m1(Jd)[d] + ad+1

) ⊕
(⊕an−2

i=0 (Jd)[d−i]xi+1
n

)
⊕

(⊕d
i=an

Ad−ix
i
n

)
,if d � an − 1,

and

m1σ(Jd) + ad+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m1σ[d] + ad+1

) ⊕
(⊕d

i=0 σ[d−i]xi+1
n

)
, if d < an − 1,

(
m1σ[d] + ad+1

) ⊕
(⊕an−2

i=0 σ[d−i]xi+1
n

)
⊕

(⊕d
i=an

Ad−ix
i
n

)
, if d � an − 1.
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When d < an − 1, we set σ[an−1] = (Jd)[an−1] = 0. From the above equalities
we thus get

dimK(m1Jd + ad+1) − dimK(m1σ(Jd) + ad+1) =
= (

dimK(m1(Jd)[d] + ad+1) − dimK(m1(σ[d] + ad+1))
) +

(
dimK(σ[an−1]) − dimK((Jd)[an−1])

)
.

(2.6)
Since σ(Jd) is a segment, σ[d] ⊆ A is a-lpp and its dimension sequence

δ = δ(σ (Jd)) is minimal for the Proposition 2.13. Moreover, the a-lpp vector
space Ld ⊆ Ad with the same Hilbert function as (Jd)[d] has Minimal Growth,
and σ[d] ⊆ Ld by the minimality of δ. Therefore,

dimK(m1(Jd)[d] + ad+1) � dimK(m1Ld + ad+1) � dimK(m1σ[d] + ad+1).

Recall that the last entry of the dimension sequence is the dimension of the vector
space itself; thus, since σ(Jd) and Jd have the same dimension and δ(Jd) � δ we
get dimK(σ[an−1]) � dimK((Jd)[an−1]). An application of (2.6) now yields

dimK(m1Jd + ad+1) � dimK(m1σ(Jd) + ad+1).

Since J is an ideal that contains a, we have that m1Jd + ad+1 ⊆ Jd+1 and, thus,

dimK(m1σ(Jd) + ad+1) � dimK(Jd+1) = dimK(σ(Jd+1)).

By Remark 2.9, we know that m1σ(Jd) + ad+1 is a segment, and so is σ(Jd+1) by
definition; then, it follows that m1σ(Jd) ⊆ σ(Jd+1). We may finally conclude that
σ(J ) is an ideal, which is a-spp by construction, and has the same Hilbert function
as I .

Next, we observe that σ(J ) satisfies Part (ii) of the theorem, since H(σ(J ) +
(xi

n); d) is just the i-th entry of δ(σ (Jd)), H(J + (xi
n); d) is the i-th entry of δ(Jd),

and δ � δ(Jd).
By construction, σ(J ) is the ideal with all the required properties, once we have

proved the following claim.

Claim σ(J ) is a-lpp.

Proof of the Claim By contradiction, there exists a degree d such that σ(Jd) is
an a-spp D-dimensional vector space which is not lpp; thus, we may consider a
counterexample of degree d and of minimal dimension D for which the operator σ

does not return an a-lpp vector space of dimension D inside Ad ; then, if we apply
σ to any (D − 1)-dimensional a-spp vector space of Ad , we obtain an a-lpp vector
space, but there is an a-spp vector space of dimension D which is transformed by σ

into an a-spp vector space V + 〈v〉 which is not lpp. Thus, V is a-lpp, V + 〈v〉 is
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a-segment, and we write them as

V =
d⊕

i=0

V[d−i]xi
n, V + 〈v〉 =

d⊕

i=0

Ṽ[d−i]xi
n.

Let also w be the monomial such that V + 〈w〉 is the a-lpp vector subspace of
dimension D of Ad and observe that w > v. Write v = vxt

n and w = wxs
n, where

v,w are monomials in A.
Since V + 〈v〉 is a segment, we have that t � s.
If t = s we immediately get a contradiction, since by construction v andw would

both be the largest monomial of degree d − t which is not contained in V[d−t].
Therefore, we may assume that t > s, and a = deg(w) = d − s > d − t =

deg(v) = b. Observe that v ∈ Ṽ[d−t], and that d − t < an. Moreover ma−bṼ[d−t] ⊆
Ṽ[d−s] holds by stability applied to V + 〈v〉. We write w = xi1 · · · xia and v =
xj1 · · · xjb

, with i1 � . . . � ia and j1 � . . . � jb. Since w > v we have two
cases, either v divides w, or xi1 · · · xib > v. In both cases, it is easy to see that
w ∈ ma−bṼ[d−t] ⊆ Ṽ[d−s], and thus w ∈ V + 〈v〉, which is a contradiction. �

The proofs of Theorem 2.1 (i) previously available in the literature do not include
Part (ii), the Strong Hyperplane Section of Gasharov. One advantage of our approach
is that, with little additional effort, one can show that the Betti numbers of an a-spp
ideal are at most those of the corresponding a-lpp ideal; see [8, 42]. Furthermore,
combining this fact with Remark 2.6, one recovers the LPP-Conjecture for ideals
containing pure-powers ideals in characteristic zero, which is the main result of [37,
Section 3]. Note that, in [37], the authors also provide a characteristic-free proof
that settles the LPP-Conjecture for ideals that contain pure-powers.

3 Artinian Reduction and Linkage

In this brief section we collect some results which will be useful in what follows.
We start with Proposition 10 in [9], which offers in many cases a way to prove the
EGH Conjecture in the Artinian case only.

Proposition 3.1 Let f ⊆ A = K[x1, . . . , xn] be an ideal generated by a regular
sequence of degree a, and � be a linear A/f-regular form. Let also A = A/(�), and
f = fA. If every homogeneous ideal of A containing f satisfies EGHa , then every
homogeneous ideal of A containing f satisfies EGHa .

Proof Let I ⊆ A be a homogeneous ideal that contains f and for i � 0 we let
Ii = (I :A �i) + (�). By assumption, there exist a-lpp ideals Ji ⊆ K[x1, . . . , xn−1]
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with the same Hilbert function as Ii/(�). Now, we define

J =
⊕

i�0

Jix
i
n,

and we claim that J is an ideal with the same Hilbert function as I ; since a ⊆ J0 ⊆
J , the conclusion will then follow from Theorem 2.1.

By considering the short exact sequences 0 −→ A/(I :A �j )(−1)
·�−→ A/(I :A

�j−1) −→ A/Ij−1A −→ 0 for all j , a straightforward computation yields that
H(J ) = H(I).

What it is left to be shown is that J is an ideal. Let as beforem = (x1, . . . , xn−1);
since Ji is an ideal of A, we have mJi ⊆ Ji for all i and, accordingly, mJ ⊆ J . The
condition xnJ ⊆ J translates into the containments Ji ⊆ Ji+1 for all i � 0. Since
each Ji is an a-lpp ideal, it suffices to show that H(Ji) � H(Ji+1), which holds
true since Ii ⊆ Ii+1. �

We now recall some results from the theory of linkage. In Sect. 2 we introduced
the following notation: given a homogeneous ideal I ⊆ A = K[x1, . . . , xn]
containing an ideal f generated by a regular sequence of degree a = (a1, . . . , an),
we let I �

f = (f :A I), and call it the link of I with respect to f, which is an ideal
that contains f. Obviously, the link depends on f; however, when it is clear from the
context which f we consider, we denote I �

f simply by I �.

Proposition 3.2 Let a = (a1, . . . , an) and A, I , f be as above; let also R = A/f
and s = ∑n

i=1(ai − 1). Then,

(i) (I �)� = I .
(ii) H(IR; d) = H(R; d) − H(I�R; s − d).
(iii) type (R/IR) = μ(I�R), i.e., the dimension of the socle of R/IR equals the

minimal number of generators of its linked ideal.

In particular, if I = (f + (g)) is an almost complete intersection, then the ideal
I � = (f :A g) defines a Gorenstein ring, and viceversa. Moreover, if deg(g) = D,
then soc((f :A g)R) is concentrated in degree s − D.

Proof Observe that the functor (−)∨ = HomR(−, R) is the Matlis dual, since R is
Gorenstein Artinian. The statements that we want to prove are a direct consequence
of Matlis duality, see [4, Sections 3.2 and 3.6]. It is well known that a module and
its Matlis dual have the same annihilator. In particular, since (A/I)∨ ∼= I �/f, we
obtain that I = annA(A/I) = annA(I �/f) = (I �)�, which proves (i). For (ii),
recall that in the graded setting one has ((A/I)∨)d ∼= (A/I)s−d , for all d ∈ Z.
Since (A/I�)∨ ∼= I/f, the claim follows from the graded short exact sequences of
K-vector spaces 0 → (I/f)d → (A/f)d → (A/I)d → 0. Part (iii) is again a
consequence of Matlis duality. �

We conclude this part with an easy lemma.
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Lemma 3.3 Let a = (a1, . . . , ar ) and b = (b1, . . . , br ) be degree sequences
satisfying ai � bi for all i = 1, . . . , r . If an ideal I satisfies EGHa , then it satisfies
EGHb.

Proof By assumption, J = LPPa(I ) is a a-lpp ideal with the same Hilbert function
as I . By our assumption on the degree sequences, J also contains the pure-powers
ideal (x

b1
1 , . . . , x

br
r ). Therefore, by Theorem 2.1, LPPb(J ) is a b-lpp ideal with the

same Hilbert function as I . �

4 Results on the EGH Conjecture

We collect in the following the most relevant cases when EGH is known to be true.
We start with a very recent result, Theorem 4.1, proved by the first two authors in [6,
Theorem A], which improves an older result due Maclagan and the first author, [9,
Theorem 2]. Indeed, as we show in this section, from Theorem 4.1 one can derive
with little effort all of the significant known cases of the EGH Conjecture which
take into account only hypotheses on the degree sequence a and not on the ideal I .
A further generalization can be found in [6], see Theorem 3.6.

Theorem 4.1 Let I ⊆ A be a homogeneous ideal which contains a regular
sequence of degree a = (a1, . . . , ar ) and assume that ai �

∑i−1
j=1(aj − 1) for

all i � 3; then, I satisfies EGHa .

Proof For brevity’s sake, we present here only the proof of the weaker statement
[9, Theorem 2], that is, we will assume that ai >

∑i−1
j=1(aj − 1) for all i � 3.

Observe that, by Proposition 3.1, we may let r = n and work by induction on n.
Let a = (a1, . . . , an−1); by induction, suppose that every ideal of A containing a
regular sequence of degree a satisfies EGHa(d) for all d.

Clearly, for d < an−1, we have that EGHa(d) is equivalent to EGHa(d). Thus,
let d + 1 ≥ an, so that s − (d + 1) < an − 1; by induction, I � satisfies EGHa and
the previous case yields that I � satisfies EGHHa s − (d + 1) for all d + 1 ≥ an. By
Proposition 3.2 (ii), we know that H(IR; d) = H(R; d) − H(I�R; s − d), where
R = A/f and s = ∑n

i=1(ai − 1). It now follows that I satisfies EGHa(d) also for
all d + 1 ≥ an, and the proof is complete. �

As we have already observed in Remark 2.4 (1), Theorem 4.1 yields the EGH for
r � 2.

One big advantage of Theorem 4.1 is that it can be applied in order to obtain
growth bounds for the Hilbert function which are at least as good as the ones given
by Macaulay Theorem. This can be done for any homogenous ideal, regardless of
the degree sequence. The key observation to see this is the following.

Lemma 4.2 Assume that |K| = ∞ and that I contains an ideal f generated by
a regular sequence of degree a = (a1, . . . , ar ). If b = (b1, . . . , br ) is a degree
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sequence such that bi � ai for all i, then I contains an ideal g generated by a
regular sequence of degree b.

Proof We proceed by induction on r � 1. Let r = 1 and observe that Ib1 �= 0 since
b1 ≥ a1. It follows that there exists a regular element g1 ∈ I of degree b1.

By induction, we have constructed a homogeneous ideal g′ = (g1, . . . , gr−1),
which is unmixed and generated by a regular sequence of degrees b1, . . . , br−1.
Observe that, since I contains f1, . . . , fr , we have that ht(IjA) � r for all j � ar .
In particular, the ideal g′ + Ibr A has height at least r , since br � ar . Thus, by
prime avoidance, we find an element gr ∈ Ibr which is regular modulo g′ and
g = (g1, . . . , gr ) is the ideal we were looking for. �

As another application of the theory of linkage to the EGH Conjecture, we now
present a result due to Chong [13], which settles the conjecture for Gorenstein ideals
of height three.

Proposition 4.3 Let I be a homogeneous ideal that contains an ideal f generated
by a regular sequence of degree a = (a1, . . . , an). Assume that b = (b1, . . . , bn)

is a degree sequence such that bi � ai for all i, and I �
f satisfies EGHb; then I

satisfies EGHa .

Proof Let s = ∑n
i=1(ai − 1) and I � = I �

f ; by hypothesis there exists a b-lpp
ideal J with the same Hilbert function as I � that also contains the pure-powers ideal
a = (x

a1
1 , . . . , x

ar
r ), since ai � bi for all i. Consider now J �

a ; by Proposition 3.2 (ii)
for all d � 0 we have

H(I/f; d) = H(A/f; d) − H(I�/f; s − d)

= H(A/å; d) − H(J/å; s − d) = H(J �
å /å; d).

By Theorem 2.1, there exists an a-lpp ideal with the same Hilbert function as J �
a ,

and we are done. �
Observe that in the above proof we used Theorem 2.1 to transform the monomial

ideal J �
a into an a-lpp ideal. In fact, it can be proved in general that J �

a is already
a-lpp whenever J is a-lpp, see for instance [45, Theorem 5.7], or [11, Proposition
3.2].

Sequentially bounded licci ideals were first introduced in [13], and are those
ideals to which Proposition 4.3 can be applied repeatedly in order to prove the EGH
Conjecture. We recall the main definitions here.

Definition 4.4 Let I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal, and set I0 =
I . We say that I is linked to a complete intersection, or licci for short, if there exist
ideals Ij = (Ij−1)

�
fj
where f1, . . . , fs are ideals of the same height as I generated

by regular sequences of degrees a1, . . . , as , such that Is is generated by a regular
sequence of degree as+1.

We say that I is sequentially bounded licci if the above sequence also satisfies
a1 � . . . � as+1.
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We also recall that I is said to be minimally licci if it is licci and, in addition, for
each j the regular sequence generating fj+1 can be chosen to be of minimal degree
among all the regular sequences contained in Ij . Observe that fj ⊆ Ij , therefore
minimally licci ideals are sequentially bounded licci. It was proved by Watanabe
[46] that height three Gorenstein ideals are licci. Later on, Migliore and Nagel show
that such ideals are also minimally licci [38]. We see next how these facts together,
combined with Proposition 4.3, yield the main result of [13].

Theorem 4.5 Let I ⊆ A be a sequentially bounded licci ideal, where the first link
of I is performed with respect to a regular sequence of degree a; then I satisfies
EGHa .

In particular, if I is a Gorenstein ideal of height 3 containing a regular sequence
of degree a = (a1, a2, a3), then I satisfies EGHa .

Proof We prove the first part only for n = r , and we refer the reader to the original
paper for the reduction to this case; this is shown in [13, Proposition 10], where the
proof runs along the same lines as that of Proposition 3.1.

Since Is is a complete intersection of degree as+1 by assumption, it trivially
satisfies EGHas+1

; therefore Proposition 4.3 implies that Is−1 satisfies EGHas
, and

its repeated application to the sequence of linked ideals eventually yields that I

satisfies EGHa1
, that is EGHa . �

Remark 4.6 The height 3 Gorenstein case proved by Chong is also related to a
previous result due to Geramita and Kreuzer concerning the Cayley-Bacharach
Conjecture in P3 [24, Corollary 4.4]. In fact, EGH for a height 3 Gorenstein ideal I
is equivalent to EGH for its linked ideal I �, which is an almost complete intersection
by Proposition 3.2 (iii). As pointed out in the introduction, EGH for almost complete
intersections implies the Cayley-Bacharach Conjecture 1.2.

Next, we present a result due to Francisco [20, Corollary 5.2] which settles
EGHa(D) for almost complete intersections (f + (g)) in the first relevant degree,
namely D = deg(g).

Theorem 4.7 Let f ⊆ A be an ideal generated by a regular sequence of degree a =
(a1, . . . , ar ), and let g /∈ f be an element of degree D � a1 such that I = f + (g).
Then, I satisfies EGHa(D).

Proof We may assume that K is infinite. First, we reduce to the Artinian case by
arguing as follows: we choose some N > D + 1 and homogeneous elements of
degree N such that f1, . . . , fr , fr+1, . . . , fn is a full regular sequence of degree
a′ = (a1, . . . , ar , N, . . . , N). In this way, proving EGHa(D) for I is equivalent to
proving EGHa′(D) for I + (fr+1, . . . , fn). Thus, for the rest of proof r = n and
A/f is Artinian.

Now, let b be the unique integer such that
∑b

i=1(ai − 1) � D <
∑b+1

i=1 (ai − 1).

It is then easy to see that J = a + (h), where h = x
a1−1
1 · · · xab−1

b · xD−∑b
i=1(ai−1)

b+1 ,
is the smallest a-lpp ideal with H(J ;D) = H(I ;D).
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To conclude the proof, it suffices to show that H(J ;D + 1) � H(I ;D + 1). To
this end, let s = ∑n

i=1(ai − 1), and consider the links I � = I �
f = (f :A I) and

J � = J �
a = (a :A J ). The natural graded short exact sequences

0 → A/I�(−D) → A/f → A/I → 0 and 0 → A/J �(−D) → A/a → A/J → 0

show that we only have to prove that H(J �; 1) � H(I�; 1). A direct computation
shows that

J � = a : (h) = (x1, . . . , xb, x

∑b+1
i=1 (ai−1)−D+1

b+1 , x
ab+2
b+2 , . . . , xan

n ),

that is, H(J �; 1) = b.
Suppose, by contradiction, that I � contains c linear forms, with c > b; then, by

Prime Avoidance we can find a homogeneous ideal g ⊆ I � generated by a regular
sequence of degree (1, . . . , 1, ac+1, . . . , an) such that the socle degree of A/g is∑n

i=c+1(ai −1) <
∑n

i=b+1(ai −1) � s−D. Thus, H(A/I�; s−D) � H(A/g; s−
D) = 0 which is not possible, since the ring A/I� is Gorenstein of socle degree
s − D by Proposition 3.2 (iii). �
Remark 4.8 It is easy to see by means of Lemma 4.2 that the condition D � a1 in
the statement of Theorem 4.7 can always be met.

Observe that, again by Proposition 3.2 (ii), the statement of Theorem 4.7 is
equivalent to proving EGHa(s − D − 1) for the ideal I � = I �

f . Since the socle
of A/I� is concentrated in degree s −D, this is equivalent to controlling the growth
of the Hilbert function of a Gorenstein ring from socle degree minus 1 to the socle
degree. For other results of this nature, see for instance [43].

The next result we present is due to Abedelfatah, see [1] and [2]; it can be viewed
as a generalization of the Clements-Lindström Theorem to ideals that contain a
regular sequence generated by products of linear forms. Below we provide the proof
of the general version, cf. [2, Theorem 3.4].

Theorem 4.9 Let f ⊆ A be an ideal generated by a regular sequence of degree
a = (a1, . . . , ar ). Assume that f ⊆ P , where P is an ideal generated by products of
linear forms. Then, any ideal I ⊆ A that contains P satisfies EGHa .

Proof By induction we may assume that the claim is true for ideals in polynomial
rings with less than n variables, since the base case n = 1 is trivial.

Let s be the smallest degree of a minimal generator p of P . Since s � a1, by
Lemma 3.3 it suffices to show that I satisfies EGHa′ , where a′ = (s, a2, . . . , ar ).
Moreover, by Theorem 2.1, it is enough to prove that, for every degree d � 0, there
exists a monomial ideal J that contains (xs

1, x
a2
2 , . . . , x

ar
r ) such that H(I ; d) =

H(J ; d) and H(I ; d + 1) = H(J ; d + 1).
We write p = �1 · · · �s , where �i are linear forms which we order as follows:
For k = 1, . . . , s, let I

(0)
k denote the image ideal of I in A/(�k) and choose �1

so that H(I
(0)
1 ; d) = mink{H(I

(0)
k ; d)}.
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Inductively, given �1, . . . , �j , for k = j + 1, . . . , s we let I
(j)
k denote the image

ideal of (I :A (�1 · · · �j )) in A/(�k) and choose �j+1 so that H(I
(j)

j+1; d − j) =
mink{H(I

(j)
k ; d − j)}.

Now, with some abuse of notation, we let Ak = A/(�k) for k = 1, . . . , s; for
notational simplicity, we also set Ij = I

(j)

j+1 for j = 0, . . . , s − 1. By construction,
we thus have

H(Ij ; d − j) � H(Ij+1; d − j) for all j = 0, . . . , s − 1. (4.1)

Moreover, for all j = 1, . . . , s − 1, the short exact sequences

provide that

H(A/I ; i) =
s−1∑

j=0

H(Aj+1/Ij ; i − j), for all i. (4.2)

Let ã = (a2, . . . , an) and Ã = K[x2, . . . , xn]. Observe that Ak
∼= Ã for all k,

thus, by induction, we can find ã-lpp ideals J[j ] in Ã with the same Hilbert function

as Ij , for j = 0, . . . , s−1. Consider now J = ⊕s−1
j=0 J[j ]xj

1⊕Axs
1, and let Jd denote

the degree d component of J . If we show, and we shall do, that m1Jd ⊆ Jd+1, that
is, J is closed under multiplication from degree d to degree d + 1, then the proof is
complete, since H(A/J ; i) = H(A/I ; i) for all i by (4.2).

To this end, we clearly have that (x2, . . . , xn)1(J[j ])d−j ⊆ (J[j ])d−j+1, since
each J[j ] is an ideal in Ã. It is left to show that x1Jd ⊆ Jd+1, which translates into
(J[j ])d−j ⊆ (J[j+1])d−j for all j = 0, . . . , s − 1; since such ideals are both ã-lpp,
this is yielded by (4.1). �
Corollary 4.10 The EGH Conjecture is true for monomial ideals.

Another interesting known case, of different nature, is when the regular sequence
that defines f is a Gröbner basis with respect to some monomial order. In fact, in this
situation, the initial forms of the sequence are a regular sequence of monomials.

Proposition 4.11 Let f be an ideal ofA generated by a regular sequence f1, . . . , fr

of degree a, such that {f1, . . . , fr } is a Gröbner basis with respect to some monomial
order �. Then, every homogeneous ideal of A containing f satisfies EGHa .

Proof Let I be a homogeneous ideal that contains f. Let us consider the set S
of all homogeneous ideals of A with the same Hilbert function as I that contain
a monomial regular sequence g1, . . . , gr of degree a. Observe that S is not
empty since, by assumption, the initial ideal of I contains the regular sequence of
monomials given by the initial forms of f1, . . . , fr , which has degree a.
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Since the monomials g1, . . . , gr are pairwise coprime, we may write gi =
∏

j∈Bi
x

bij

j , for some subsets Bi ⊆ {1, . . . , n} with Bi ∩ Bi′ = ∅ if i �= i′, and we
let |g1, . . . , gr | = ∑r

i=1 |Bi | denote the cardinality of the support of g1, . . . , gr .
Now, we choose an element J ofSwhich contains a regular sequence h1, . . . , hr

with minimal support and we will show that |h1, . . . , hr | = r . In this way we will
have that each hk is the ak-th power of a variable, which we may assume being equal
to x

ak

k ; the conclusion will then follow by Theorem 2.1.
Clearly |h1, . . . , hr | � r . If we assume by way of contradiction that the

inequality were strict, then there would exist i ∈ {1, . . . , r} and 1 � j < j ′ � n

such that xjxj ′ | hi . Consider then the change of coordinates ϕ defined by

xk �→ xk, for all k �= j ′, and xj ′ �→ xj + xj ′ ,

let J ′ = in�(ϕ(J )), where � denotes the lexicographic order, and let h′
k =

in�(ϕ(hk)) ∈ J ′ for k = 1, . . . , r . It is immediate to see that h′
1, . . . , h

′
r is still

a monomial regular sequence of degree a; since J ′ has the same Hilbert function as
I , it belongs toS. However, h′

k = hk for all k �= i, whereas h′
i has one less variable

than hi in its support. In particular, |h′
1, . . . , h

′
r | < |h1, . . . , hr |, which contradicts

the minimality of the support of h1, . . . , hr , and we are done. �
Clearly, one can generalize the above by using a weight order ω, as long as the

given regular sequence form a Gröbner basis with respect to the induced order �ω

and the ideal of the initial forms of the sequence satisfies the EGH Conjecture.
Contrary to the “special” case in which the regular sequence f1, . . . , fr is a

Gröbner basis, as far as we know the “generic” version of the conjecture is still
open. We record this fact as a question.

Question 4.12 Let a = (a1, . . . , ar ) be a degree sequence. Does there exist a
non-empty Zariski open set U ⊆ P(Aa1) × P(Aa2) × · · · × P(Aar ) of general
forms of degree a such that, for every [f1, . . . , fr ] ∈ U , any ideal I containing
f = (f1, . . . , fr ) satisfies EGHa?

In [32, Proposition 4.2], Herzog and Popescu show that, once a regular sequence
of degree a = (2, 2 . . . , 2) is fixed, then any generic ideal generated by quadrics
that contains it satisfies EGHa . We would like to warn the reader that Question 4.12
addresses a different kind of “genericity”. In fact, we are not fixing the regular
sequence beforehand, but we are asking whether the EGH Conjecture holds for any
ideal containing a general regular sequence.



180 G. Caviglia et al.

Remark 4.13

(1) When f is a general complete intersection, then the set of monomials ofAwhich
do not belong to the monomial complete intersection of the same degree as
f forms a K-basis of A/f, and this is well-known. This observation could be
helpful in giving a positive answer to Question 4.12.

(2) It is currently not known, though, whether or not, after a general change of
coordinates ϕ : A → A the set of monomials of A which do not belong to the
monomial complete intersection of the same degree as f is a K-basis of A/ϕ(f),
when f is a complete intersection. A positive answer in this matter would make
Question 4.12 even more interesting. In fact, in light of the first part of the
remark, it would provide a strategy to attack the EGH Conjecture at once.

There are some other very special cases when EGH is known to hold that can be
found in the literature; we complete this section with two of them.

A special case of interest is when I contains a regular sequence of quadrics, and
this is the assumption on I in the original statement of the conjecture. In this case,
EGH is known to be true in low dimension; for n � 4, it can be proven by a direct
application of linkage; see also [12]. The validity of the conjecture for n = 5 was
first claimed in [44], but a proof was never provided until recently, when Güntürkün
and Hochster finally settle the case of five quadrics in [23, Theorem 4.1]. We present
an alternative proof of their result which relies on the techniques we used so far.

Theorem 4.14 I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal containing a
regular sequence of degree a = (2, 2, 2, 2, 2); then, I satisfies EGHa .

Proof We may assume that K = K . By Proposition 3.1 we may assume that n =
5, A/I is Artinian and f ⊆ I is an ideal generated by a regular sequence of five
quadrics; notice that the socle degree s of A/f is s = 5.

By Proposition 3.2 (ii) it suffices to show that I satisfies EGHa(j) for j = 0, 1, 2;
this is clearly true for j = 0, 1 and we are left with the case j = 2.

If H(I ; 2) = 6, then we are done by Theorem 4.7. Since the locus of reducible
elements in P(Sym2(A1)) has dimension 2n − 2 = 8, if H(I ; 2) � 7 then I must
contain a reducible quadric Q = �1�2. Proceeding as in the proof of Theorem 4.9,
we construct ideals J[0] and J[1] in Ã = K[x2, . . . , x5] such that J = J[0] ⊕J[1]x1⊕
Ax2

1 is a monomial vector space which contains a = (x2
1 , . . . , x

2
5), m1J2 ⊆ J3,

H(A/J ; i) = H(A/I ; i) for all i, and the conclusion follows from an application
of Theorem 2.1. �

In [15], Cooper proves some cases of the EGH Conjecture when r is small,
including a = (a1, a2, a3) with a1 = 2, 3 and a2 = a3. We present a proof of
the case a = (3, a, a), which is based on the techniques of [6].

Proposition 4.15 Let I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal containing
a regular sequence of degree a = (3, a, a). Then, I satisfies EGHa .

Proof We may assume, as accustomed, that K is infinite and, by Proposition 3.1,
that r = n = 3. Therefore, let f = (f1, f2, f3) ⊆ I be an ideal generated by a
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regular sequence of degree a; since the socle degree of A/I is 2a, by Proposition 3.2
(ii), we only have to show that I satisfies EGHa(d) for all d < a.

Let a = (3, a), and observe that I satisfies EGHa by Theorem 4.1. Thus, since
EGHa(d) is equivalent to EGHa(d) for all d < a − 1, we only have to prove that
EGHa(a − 1) holds.

Let Q = (f1, f2, u1, . . . , uc) ⊆ I , where u1, . . . , uc are the pre-images of a
K-basis of (I/f)a−1. First, assume that f3 /∈ Q; thus, Q satisfies EGHa(a − 1) and,
therefore, if J denotes the smallest a-lpp ideal such thatH(Q; a−1) = H(J ; a−1),
we then have H(Q; a) � H(J ; a). Observe that J = J + (xa

3 ) is an a-lpp ideal
such that H(J ; a − 1) = H(J ; a − 1) and H(J ; a) = H(J ; a) + 1. We then have
that

H(I ; a) ≥ H(Q + (f3); a) = H(Q; a) + 1 � H(J ; a) + 1 = H(J ; a),

and this case is done.
Otherwise, f3 ∈ Q and, accordingly, ht(Q) = 3. By Prime Avoidance we

may assume that f1, vc, f2 forms a regular sequence of degree a′ = (3, a − 1, a)

when a �= 3; when a = 3, we may take the sequence vc, f1, f2 of degree
a′ = (2, 3, 3) instead. Either way, I satisfies EGHa′ by Theorem 4.1 and, therefore,
there exists a a′-lpp ideal J with the same Hilbert function as I . In particular, since
a � a′, the monomial ideal J also contains a = (x3

1 , x
a
2 , xa

3 ), and we conclude by
Theorem 2.1. �

5 Applications and Examples

In this section, we present some applications of the EGH Conjecture, supported by
several examples. For our computations, it is convenient to introduce the following
integers.

Definition 5.1 Let a = (a1, . . . , ar ) be a degree sequence, and h, d be non-negative
integers with h � n and d � 1. For r < i � n, we let ai = ∞ and x

ai

i = 0. Also,
we let

[
h

d

]

a

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dimK

(
K[xn−h+1, . . . , xn]

(x
ai

i | n − h + 1 � i � n)

)

d

if h � 1;

0 if h = 0.

Whenever a is clear from the context, we will omit it from the notation.
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Remark 5.2 Notice that

[
h

d

]

a

actually depends on n: for instance

[
1
2

]

(2)

=
{
0 if n = 1;
1 otherwise.

The next definition is based on the Macaulay representation, cf. [4, Section 4.2],
but it takes also into account the additional information brought by the degree
sequence.

We adopt the standard convention that ∞ − 1 = ∞ and a � ∞ for all a ∈ Z.

With the above notation, given an integer 0 < k �
[
n

d

]

, we may write

k =
[
kd

d

]

+
[

kd−1

d − 1

]

+ . . . +
[
k1

1

]

,

where kd � kd−1 � . . . � k1 � 0 and #{t | kt = i} �
{

an−i − 1 for 0 � i < n;
1 for i = n.

Such an expression is called the (a, n)-Macaulay representation of k in base d. As
for the classical Macaulay representation, which corresponds to the choice ai = ∞
for all i, the (a, n)-Macaulay representation of k in base d exists, and it is unique;
for instance, see [16, 29, 45].

Finally, given the a-Macaulay representation of k in base d, we let

k〈d〉
a =

[
kd

d + 1

]

+
[
kd−1

d

]

+ . . . +
[
k1

2

]

.

Observe that, given any a-lpp ideal J ⊆ A with k = H(A/J ; d), then H(A/mJ +
å; d + 1) = k

〈d〉
a .

Since m1Jd ⊆ Jd+1, the k
〈d〉
a represents the maximal growth in degree d + 1 of

the quotient by an a-lpp ideal which has Hilbert function equal to k in degree d, as
it happens in the classical case.

Next, we present a proof of the following enhanced version of Macaulay
Theorem, see for instance [16, 45], which is a direct consequence of Theorem 2.1.

Theorem 5.3 Let a = (a1, . . . , ar ) be a degree sequence, a the corresponding
pure-powers ideal, and R = A/a. Let H : N −→ N be a numerical function; then,
H is the Hilbert function of R/I for some homogeneous ideal I of R if and only if

H(d + 1) � H(d)〈d〉
a for all d ≥ 1

Proof Let I ⊆ R be a homogeneous ideal and J its lift to A. By Theorem 2.1,
L = LPPa(J ) is an ideal with the same Hilbert function as I , and from the fact that
m1Jd ⊆ Jd+1 we get that H(A/J ; d + 1) = H(A/L; d + 1) � H(A/L; d)

〈d〉
a =

H(A/J ; d)
〈d〉
a .
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Conversely, let H be a numerical function that satisfies the growth condition,
d be a non-negative integer, and let V ⊆ Ad be an a-lpp K-vector space such
that dimK(Ad/V ) = H(d). Consider the a-lpp ideal J = (V ) + a; then H(d)

〈d〉
a

coincides with the dimension of (A/J )d+1 which, by assumption, is at least H(d +
1). By adding appropriate monomials to Jd+1 if necessary, we can make J into an
a-lpp K-ideal such that dimK((A/J )d+1) = H(d + 1). Arguing in this way for all
d, we obtain a monomial ideal I containing a, which in fact is an a-lpp ideal, with
Hilbert function H . �
There are implementations of these results in software systems such as Macaulay2,
see for instance the one authored by White [47].

Example 5.4 Let A = K[x1, x2, x3], and let I ⊆ A be a homogeneous ideal which
contains a regular sequence of degree a = (3, 3, 4). Suppose that, regarding its
Hilbert function, we only know that H(A/I ; 5) = 5, and that we would like to
estimate H(A/I ; 6). Classically, this is achieved by means of Macaulay Theorem,
which provides H(A/I ; 6) � 5. However, since EGHa holds by Theorem 4.1, we
know that H(I) = H(LPPa(I )), therefore Theorem 5.3 yields that H(A/I ; 6) �
5〈5〉
a = 2.

The following result was observed by Liang [35].

Proposition 5.5 Let I ⊆ A = K[x1, x2, x3] be an ideal which contains an ideal f
generated by a regular sequence of degree (a1, a2) and let μ(I) denote its minimal
number of generators; then, μ(I) � a1 · a2.

Proof Observe that any ideal containing f satisfies EGH(a1,a2) by Theorem 4.1,
therefore by Lemma 2.15 we have H(I/mI ) � H(L/mL), where L =
LPP(a1,a2)(I ). Thus, we may as well bound μ(L). Notice that, if u = xi

1x
j

2xk
3

is a minimal generator of J , then 0 � i < a1 and 0 � j < a2, since J contains

a = (x
a1
1 , x

a2
2 ). Moreover, if v = xi′

1 x
j ′
2 xk′

3 is another minimal monomial generator
of J , then necessarily i′ �= i or j ′ �= j . Therefore, there are at most a1 · a2 possible
choices for i and j , as desired. �
Proposition 5.5 can be applied to bound the number of defining equations of
curves in P

3. In fact, such a curve is defined by a homogeneous height two ideal
P ⊆ K[x0, x1, x2, x3], which then contains a regular sequence of some degree
(a1, a2). Pick a general linear form � which is regular modulo P and let A = A/� ∼=
K[x1, x2, x3], and P = PA. Then μ(P ) = μ(P ), and use Proposition 5.5 on P ,
since the latter contains a regular sequence of degree (a1, a2).

As we mentioned in the introduction, see Conjecture 1.2, another application
of the EGH Conjecture is the Cayley-Bacharach Theorem. Its original formulation
states that a cubic C ⊆ P

2 which contains eight points that lie on the intersection
of two cubics, must contain the ninth point as well. Later on, this fact has been
extended and generalized in various ways. We illustrate a connection with the EGH
in the following example.
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Example 5.6 Let X ⊆ P
3 be a complete intersection of degree (3, 3, 3). We show

that a cubic hypersurface Y containing at least 22 of the 27 points of X, must
contain X.

To see this, let f = (f1, f2, f3) ⊆ A = K[x1, . . . , x4] be an ideal of definition
of X. Moreover, let g be a cubic defining Y , let I = f + (g) and, by way
of contradiction, assume that g /∈ f. Let |K| = ∞; after a general change of
coordinates, if necessary, we may write I sat = (I :A x∞

4 ) and assume that x4 is
A/I sat-regular.

Clearly, g ∈ I sat. Next, we claim that we may assume that g /∈ f + (x4). In fact,
if this is not the case, there exists 0 �= g1 ∈ (I :A x4) ⊆ I sat of degree at most 2
such that g = f + g1x4, for some f ∈ f. The element g1 may or may not belong to
f + (x4). If it does, arguing as above, we obtain that I sat actually contains a linear
form �, which is not in f + (x4), since x4 is A/I sat-regular. Either way, we found an
element g2 ∈ I sat of degree < 3 which does not belongs to f + (x4). Multiplying it
by an appropriate power of x4, we obtain a form g3 of degree 3 which still belongs
to I sat, but does not belong to f + (x4). Therefore, we may let g = g3, and our claim
is proven.

Henceforth, let A = A/(x4) and denote by f, I , g and I sat the images in A of
f, I, g and I sat respectively; moreover, let J = f+(g) ⊆ A. Then, we immediately
have

e(A/I) = e(A/I sat) = e(A/I sat) � e(A/J ).

By Proposition 4.15, LPP(3,3,3)(J ) is an ideal with the same Hilbert function as J .
Moreover, since g /∈ f by what we have seen above, the ideal LPP(3,3,3)(J ) must
contain the monomial x2

1x2. In particular,

e(A/I) � e(A/J ) = e(A/LPP(3,3,3)(J )) � e(A/(x3
1 , x

2
1x2, x

3
2 , x

3
3)) = 21.

However, our hypothesis guarantees that e(A/I) � 22, a contradiction.

We conclude the paper by illustrating how the combinatorial Kruskal-Katona
Theorem [33, 34], a characterization of all the possible f -vectors of simplicial
complexes 	, is related to the EGH Conjecture for a = (2, 2, . . . , 2). For additional
details on what follows, see for instance [30, Section 6.4].
Recall that the f -vector f (	) = (f0, . . . , fr−1) of an (r − 1)-dimensional
simplicial complex 	 simply records in its entry fi−1 the number of faces of 	

of dimension i − 1. As it is customary, we set f−1 = 1. Given positive integers
h, d, write its Macaulay representation h = (

hd

d

) + (
hd−1
d−1

) + . . . + (
h1
1

)
, where

hd � hd−1 � . . . � h1 � 0, and set

h(d) =
(

hd

d + 1

)

+
(

hd−1

d

)

+ . . . +
(

h1

2

)

;
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the Kruskal-Katona Theorem states that (f0, . . . , fr−1) is the f -vector of a
simplicial complex of dimension r − 1 if and only if fd+1 � f

(d+1)
d for each

d = 0, . . . , r − 2.
Given a simplicial complex 	, its f -vector f (	) and its Stanley-Reisner ring

K[	], we have that K[	] = K[x1, . . . , xn]/J , where n = f0 and J = J	 is
a square-free monomial ideal. If we let R = K[x1, . . . , xn]/I , where I = J +
(x2

1 , . . . , x
2
n), then it is easy to see that H(R; i) = fi−1 for all i � 0.

On the other hand, any monomial ideal I ⊆ A = K[x1, . . . , xn] containing
a = (x2

1 , . . . , x
2
n), can be written uniquely as I = J + a, where J is a square-free

monomial ideal. If we consider 	 = 	J , then its f -vector f (	) = (f0, . . . , fr−1),
where fi = H(A/I ; i + 1) for all i � 0.

Finally, the crucial observation is that

[
k

d

]

a

=
(

k

d

)

when if a = (2, 2, . . . , 2).

Therefore, the numerical condition of Theorem 5.3 can be restated as

fd = H(R; d + 1) � H(R; d)〈d〉
a = H(R; d)(d) = f

(d)
d−1, for all d � 1,

which is precisely the condition of Kruskal-Katona Theorem.

Example 5.7 Let f = (4, 5, 2), and let us construct a simplicial complex 	 such
that f (	) = f . Consider the numerical function H : N → N defined as H(0) =
1, H(1) = 4, H(2) = 5, H(3) = 2, and H(d) = 0 for d > 3. By means of
Theorem 5.3, it can be checked that there exists a (2, 2, 2, 2)-lpp ideal I with Hilbert
function equal to H , namely, I = (x1x2) + (x2

1 , x
2
2 , x

2
3 , x

2
4). If we let J = (x1x2),

then 	 = 	J is the following 2-dimensional simplicial complex

x3 x1

x4x2

and f (	) = f .

Example 5.8 If f = (4, 5, 3), then there is no simplicial complex 	 such that
f (	) = f , since there is no (2, 2, 2, 2)-lpp ideal of K[x1, x2, x3, x4] with Hilbert
function H satisfying H(2) = 5 and H(3) = 3 > H(2)〈2〉(2,2,2,2) = 2.
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