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1 Introduction

Big Cohen-Macaulay modules over (commutative, noetherian) local rings were
introduced by Hochster around 50 years ago and their relevance to local algebra
is established beyond doubt. Indeed, they play a prominent role in Hochster’s
lecture notes [21], where he describes a number of homological conjectures that
can be proved using big Cohen-Macaulay modules, and their finitely generated
counterparts, the maximal Cohen-Macaulay modules; the latter are sometimes
called, as in loc. cit., “small” Cohen-Macaulay modules see also. Hochster [20, 21]
proved that big Cohen-Macaulay modules exist when the local ring contains a field;
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and conjectured that even rings of mixed-characteristic possess such modules. This
conjecture was proved by André [1], see also Bhatt, thereby settling a number of the
homological conjectures. In fact, by results of Hochster and Huneke [23, 24], and
André [1] there exist even big Cohen-Macaulay algebras over any local ring. The
reader will find a survey of these developments in [25, 35].

In this work we introduce three versions of the Cohen-Macaulay property that
apply also to complexes of modules, discuss various constructions that give rise
to them, and present some consequences that follow from their existence. In fact
such complexes have come up earlier, in the work of Roberts [41, 42], recalled in
Sect. 4.3, and in recent work of Bhatt [4], though only in passing. What we found
is that results that were proved using big Cohen-Macaulay modules can often be
proved using one of their complex variants. This assertion is backed up the material
presented in Sects. 3 and 5. Moreover, as will be apparent in the discussion in Sect. 4,
the complex versions are easier to construct, and with better finiteness properties.
It thus seems worthwhile to shine an independent light on them. Let us begin by
defining them.

We say that a complex M over a local ring R with maximal ideal m has maximal
depth if depthR M = dim R, where depth is as in Sect. 2.4; we ask also that H(M) be
bounded and the canonical map H0(M) → H0(k ⊗L

R M) be non-zero. Any complex
that satisfies the last condition has depth at most dim R, whence the name “maximal
depth”. An R-module has maximal depth precisely when it is big Cohen-Macaulay.
The depth of a complex can be computed in terms of its local cohomology modules,
Hi
m(M), with support on m. Thus depthR M = dim R means that Hi

m(M) is zero
for i < dim R, and nonzero for i = dim R. A complex of maximal depth is big
Cohen-Macaulay if Hi

m(M) = 0 for i > dim R as well. When in addition the R-
module H(M) is finitely generated, M is maximal Cohen-Macaulay (MCM). Thus
an MCM module is what we know it to be. These notions are discussed in detail in
Sect. 3 and 4.

When R is an excellent local domain with residue field of positive characteristic,
R+, its integral closure in an algebraic closure of its field of fractions, is big Cohen-
Macaulay. This was proved by Hochster and Huneke [23], see also Huneke and
Lyubeznik [26], when R itself contains a field of positive characteristic. When R

has mixed characteristic this is a recent result of Bhatt [4]. Thus for such rings there
is a canonical construction of a big Cohen-Macaulay module, even an algebra. See
also the work of André [2] and Gabber [14] concerning functorial construction of
big Cohen-Macaulay algebras; see also [37, Appendix A]. On the other hand, R+ is
never big Cohen-Macaulay when R contains the rationals and is a normal domain
of Krull dimension at least 3, by a stadard trace argument. As far as we know, in
this context there are no such “simple” models of big Cohen-Macaulay modules, let
alone algebras. See however Schoutens’ work [44].

When R is essentially of finite type containing a field of characteristic zero, the
derived push-forward of the structure sheaf of a resolution of singularities of Spec R

is an MCM complex [41]. What is more, this complex is equivalent to a graded-
commutative differential graded algebra; see 4.3. This is noteworthy because when
such a ring R is also a normal domain of dimension ≥3 it cannot have any MCM
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algebras, by the same trace argument as for R+. For a local ring R with a dualizing
complex there are concrete constructions of MCM complexes; see Corollaries 4.6
and 4.9 and the paragraph below. However we do not know any that are also
differential graded algebras. In [5] Bhatt gives examples of complete local rings,
containing a field of positive characteristic, that do not have any MCM algebras.

As to applications, in Sect. 3 we prove the New Intersection Theorem and its
improved version using complexes of maximal depth, extending the ideas from
[27] where they are proved using big Cohen-Macaulay modules. It follows from the
work of Hochster [22] and Dutta [9] that the Improved New Intersection Theorem
is equivalent to the Canonical Element Theorem. In Sect. 4 we use results from
loc. cit. to prove that for local rings with dualizing complexes the Canonical Element
Theorem implies the existence of MCM complexes. An interesting point emerges:
replacing “module” with “complex” puts the existence of big Cohen-Macaulay
modules on par with the rest of the homological conjectures.

In Sect. 5 we paraphrase Boutot’s proof of his theorem on rational singularities to
highlight the role of MCM complexes. We also give a new proof of a subadditivity
property for multiplier ideals. On the other hand, there are applications of MCM
modules that do require working with modules; see 4.15. Nevertheless, it is clear to
us that big Cohen-Macaulay complexes and MCM complexes have their uses, hence
this survey.

2 Local Cohomology and Derived Completions

In this section, we recall basic definitions and results on local cohomology and
derived completions. Throughout R will be a commutative noetherian ring. By
an R-complex we mean a complex of R-modules; the grading will be upper or
lower, depending on the context. In case of ambiguity, we indicate the grading; for
example, given an R-complex M , the supremum of H(M) depends on whether the
grading is upper or lower. So we write sup H∗(M) for the largest integer i such that
Hi (M) �= 0, and sup H∗(M) for the corresponding integer for the upper grading.

We write D(R) for the (full) derived category of R viewed as a triangulated
category with translation �, the usual suspension functor on complexes. We take
[11, 33] as basic references, augmented by Avramov and Foxby [3] and Roberts
[41], except that we use the term “semi-injective” in place of “q-injective” as in
[33], and “DG-injective”, as in [3]. Similarly for the projective and flat analogs.

2.1 Derived I -torsion

Let I an ideal in R. The I-power torsion subcomplex of an R-complex M is

ΓIM := {m ∈ M | Inm = 0 for some n ≥ 0}.
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By m ∈ M we mean that m is in Mi for some i. The corresponding derived functor
is denoted RΓI (M); thus RΓI (M) = ΓIJ where M

∼−→ J is any semi-injective
resolution of M . In fact, one can compute these derived functors from any complex
of injective R-modules quasi-isomorphic to M; see [33, §3.5]. By construction there
is a natural morphism RΓI (M) → M in the D(R). The R-modules

Hi
I (M) := Hi (RΓI (M)) for i ∈ Z

are the local cohomology modules of M , supported on I . Evidently, these modules
are I -power torsion. Conversely, when the R-module H(M) is I -power torsion, the
natural map RΓI (M) → M is an isomorphism in D(R); see [11, Proposition 6.12],
or [33, Corollary 3.2.1].

In what follows we will use the fact that the class of I -power torsion complexes
form a localizing subcategory of D(R); see [11, §6], or [33, §3.5]. This has
the consequence that these complexes are stable under various constructions. For
example, this class of complexes is closed under L ⊗L

R (−) for any L in D(R).
Thus, for any R-complexes L and M the natural map

RΓI (L ⊗L
R M) −→ L ⊗L

R RΓI (M) (2.1)

is a quasi-isomorphism.

2.2 Derived I -completion

The I -adic completion of an R-complex M with respect to the ideal I , denoted
ΛIM , is

ΛIM := lim
n�0

M/InM .

This complex is thus the limit of the system

· · · −→ M/In+1M −→ M/InM −→ · · · −→ M/IM .

The canonical surjections M → M/InM induce an R-linear map M → ΛIM .
If this is an isomorphism we say that M is I-adically complete, or just I-complete,
though we reserve this name mainly for modules. The left-derived completion with
respect to I of an R-complex M is the R-complex

LΛI (M) := ΛIP where P 	 M is a semi-projective resolution.
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This complex is well-defined in D(R), and there is a natural morphism

M −→ LΛI (M) .

We say M is derived I-complete if this map is a quasi-isomorphism; equivalently if
each Hi (X) is derived I -complete; see [11, Proposition 6.15], or [46, Tag091N]

The derived I -complete modules from a colocalizing subcategory of D(R), and
this means that for N in D(R) the natural map

LΛI (RHomR(N,M)) −→ RHomR(N, LΛI (M))

is a quasi-isomorphism. In particular, when F is a perfect complex, we have an
isomorphim in D(R)

F ⊗L
R LΛI (M) 	 LΛI (F ⊗L

R M). (2.2)

These isomorphisms will be useful in what follows. It is a fundamental fact, proved
by Greenlees and May [16], see also [11, Proposition 4.3] or [33, §4], that derived
local cohomology and derived completions are adjoint functors:

RHomR(RΓI (M),N) 	 RHomR(M, LΛI (N)) . (2.3)

One can take this as a starting point for defining derived completions, which works
better in the non-noetherian settings; see [46]. This adjunction implies that the
natural maps are quasi-isomorphisms:

LΛI (RΓI (M))
	−−→ LΛI (M) and RΓI (M)

	−−→ RΓI (LΛI (M)) . (2.4)

The result below, due to A.-M. Simon [45, 1.4], is a version of Nakayama’s
Lemma for cohomology of complete modules. It is clear from the proof that we
only need X to be derived I -complete; see [46, Tag09b9].

Lemma 2.1 For any R-complex X consisting of I -complete modules, and integer
i, if I Hi (X) = Hi (X), then Hi (X) = 0.

Proof The point is that Zi , the module of cycle in degree i, is a closed submodule
of the I -complete module Xi , and hence is also I -complete. Moreover Hi (X) is the
cokernel of the map Xi+1 → Zi , and a map between I -complete modules is zero if
and only if its I -adic completion is zero. This translates to the desired result. 
�
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2.3 Koszul Complexes

Given a sequence of elements r := r1, . . . , rn in the ring R, and an R-complex M ,
we write K(r;M) for the Koszul complex on r with coefficients in M , namely

K(r;M) := K(r;R) ⊗R M .

Its homology is denoted H∗(r;M). For a single element r ∈ R, the complex

K(r;M) can be constructed as the mapping cone of the homothety map M
r−→ M .

In particular, one has an exact sequence

0 −→ M −→ K(r;M) −→ �M −→ 0 (2.5)

of R-complexes. The Koszul complex on a sequence can thus be constructed as
an iterated mapping cone. From Lemma 2.1 one gets the result below. Recall that
sup H∗(−) denotes the supremum, in lower grading.

Lemma 2.2 Let R be a noetherian ring and X a derived I -complete R-complex.
For any sequence r := r1, . . . , rn in I one has

sup H∗(r;X) ≥ sup H∗(X) .

Proof When X is derived I -complete so is K(r;X) for any r ∈ I . It thus suffices
to verify the desired claim for n = 1. Replacing X by ΛIP , where P is a semi-
projective resolution of X, we can assume X, and hence also K(r;X), consists of
I -complete modules. The desired inequality is then immediate from the standard
long exact sequence in homology

· · · −→ Hi (X)
r−→ Hi (X) −→ Hi (r, X) −→ Hi−1(X) −→ · · ·

arising from the mapping cone sequence (2.5) and Lemma 2.1. 
�
To wrap up this section we recall the notion of depth for complexes.

2.4 Depth

The I-depth of an R-complex M is

depthR(I,M) := inf{i | Hi
I (M) �= 0}.

In particular, depthR(I,M) = ∞ if HI (M) = 0. When the ring R is local, with
maximal ideal m, the depth of M refers to the m-depth of M .
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Depth can also be computed using Ext and Koszul homology:

depthR(I,M) = inf{i | ExtiR(R/I,M) �= 0} ,

and if a sequence r := r1, . . . , rn generates I , then

depthR(I,M) = n − sup{i | Hi (r;M) �= 0}

This last equality can be expressed in terms of Koszul cohomology. All these results
are from [13], though special cases (for example, when M is an R-module) had been
known for much longer.

Remark 2.3 Let R be a commutative ring, I an ideal in R, and M an R-complex.
Set s = sup H∗(M).

(1) depthR(I,M) ≥ −s and equality holds if ΓI (Hs(M)) �= 0.
(2) When R is local and F is a finite free complex, one has

depthR(F ⊗R M) = depthR M − proj dimR F

For part (1) see [13, 2.7]. When F is the resolution of a module and M = R, part (2)
is nothing but the equality of Auslander and Buchsbaum. For a proof in the general
case see, for example, [13, Theorem 2.4].

3 Complexes of Maximal Depth and the Intersection
Theorems

In this section we introduce a notion of “maximal depth” for complexes over local
rings. The gist of the results presented here is that their existence implies the
Improved New Intersection Theorem, and hence a whole slew of “homological
conjectures”, most of which have been recently settled by André [1].

A module of maximal depth is nothing but a big Cohen-Macaulay module
and Hochster proved, already in [21], that their existence implies the homological
conjectures mentioned above. On the other hand, the Canonical Element Conjecture,
now theorem, implies that R has a complex of maximal depth, even one with finitely
generated homology. This will be one of the outcomes of the discussion in the
next section; see Remark 4.13. No such conclusion can be drawn about big Cohen-
Macaulay modules.
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3.1 Complexes of Maximal Depth

Throughout (R,m, k) will be a local ring, with maximal ideal m and residue field k.
We say that an R-complex M has maximal depth if the following conditions hold:

(1) H(M) is bounded;
(2) H0(M) → H0(k ⊗L

R M) is nonzero; and
(3) depthR M = dim R.

The nomenclature is based on that fact that depthR M ≤ dim R for any complex M

that satisfies condition (2) above. This inequality follows from Lemma 3.1 applied
with F := K , the Koszul complex on a system of parameters for R. Condition (3)
can be restated as

Hi
m(M) = 0 for i < dim R and Hdim R

m (M) �= 0 . (3.1)

Clearly when M is a module it has maximal depth precisely when it is big Cohen-
Macaulay; condition (2) says that M �= mM . Note also that if a complex M has
maximal depth then so does M⊕�−nN for any R-module N and integer n ≥ dim R.

Lemma 3.1 Let M be an R-complex with the natural map H0(M) → H0(k ⊗L
R M)

nonzero. For any R-complex F with Hi (F ) = 0 for i < 0, if H0(F )⊗R k is nonzero,
then so is H0(F ⊗L

R M).

Proof We can assume M is semi-projective, so the functor − ⊗L
R M is represented

by − ⊗R M . By hypothesis there exists a cycle, say z, in M0 whose image in k ⊗R

M = M/mM is not a boundary. Consider the morphism R → M of R-complexes,
where r �→ rz. Its composition R → M → k ⊗R M factors through the canonical
surjection R → k, yielding the commutative square

R M

k k ⊗R M.

The dotted arrow is a left-inverse in D(R) of the induced k → k ⊗R M . It exists
because k → H(k ⊗R M) is nonzero, by the choice of z, and the complex k ⊗R M

is quasi-isomorphic to H(k ⊗R M) in D(k), and hence in D(R). Applying F ⊗L
R −

to the diagram above yields the commutative square in D(R) on the left:

F F ⊗L
R M

F ⊗L
R k F ⊗L

R (k ⊗R M)

H0(F ) H0(F ⊗L
R M)

H0(F ⊗L
R k) H0(F ⊗L

R (k ⊗R M))
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The commutative square on the right is obtained by applying H0(−) to the one on
the left. In this square, the hypotheses on F imply that the vertical map on the left is
nonzero, so hence is its composition with the horizontal arrow. The commutativity
of the square then yields that H0(F ⊗L

R M) is nonzero. 
�
The following result is due to Hochster and Huneke for rings containing a field,

and due to André in the mixed characteristic case.

Theorem 3.2 (André [1], Hochster and Huneke [23, 24]) Each noetherian local
ring possesses a big Cohen-Macaulay algebra. 
�

As has been said before, the existence of big Cohen-Macaulay algebras, and
hence big Cohen-Macaulay modules, implies many of the homological conjectures.
In particular, it can be used to give a quick proof of the New Intersection Theorem,
first proved in full generality by P. Roberts [43] using intersection theory; see also
[40]. Here is a proof that uses only the existence of complexes of maximal depth; the
point being that they are easier to construct than big Cohen-Macaulay modules. Our
argument is modeled on that of [27, Theorem 2.5], which uses big Cohen-Macaulay
modules.

Theorem 3.3 Let R be a local ring. Any finite free R-complex

F := 0 → Fn → · · · → F0 → 0

with H0(F ) �= 0 and lengthR Hi (F ) finite for each i satisfies n ≥ dim R.

Proof Let M be an R-complex of maximal depth. As H(F ) is of finite length, the
R-module H(F ⊗R M) is m-power torsion, so 2.3(1) yields the second equality:

proj dimR F = depthR M − depthR(F ⊗R M)

= depthR M + sup H∗(F ⊗R M)

≥ depthR M

= dim R

The first one is by 2.3(2). The inequality is by Lemma 3.1, noting that H0(F ) ⊗R k

is nonzero by Nakayama’s lemma. 
�
One can deduce also the Improved New Intersection Theorem 3.6 from the exis-

tence of complexes of maximal depth, but the proof takes some more preparation.

Lemma 3.4 Let R be a local ring and M an R-complex. If M has maximal depth,
then so does LΛI (M) for any ideal I ⊂ R.

Proof Condition (1) for maximal depth holds because H(M) bounded implies
H(LΛI (M)) is bounded; this follows, for example, from (2.3) and the observation
RΓI (R) has finite projective dimension. As to the other conditions, the main point
is that for any R-complex X such that H(X) is I -power torsion, the canonical map
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M → LΛI (M) in D(R) induces a quasi-isomorphism

X ⊗L
R M

	−−→ X ⊗L
R LΛI (M).

This can be deduced from (2.2) and (2.4). In particular, taking X = RΓm(R), where
m is the maximal ideal of R, yields

RΓm(M) 	 RΓm(LΛI (M)) ,

so that depthR M = depthR LΛI (M). Moreover, taking X = k gives the
isomorphism in the following commutative diagram in D(R):

M k ⊗L
R M

LΛI(M) k ⊗L
R LΛI(M)

�

that is induced by the morphism M → LΛI (M). Since M has maximal depth, the
map in the top row is nonzero when we apply H0(−), and so the same holds for the
map in the bottom row. Thus LΛI (M) has maximal depth. 
�
Lemma 3.5 Let (R,m, k) be a local ring and M a derived m-complete R-complex
of maximal depth. Set d := dim R. The following statements hold:

(1) For any system of parameters r1, . . . , rd for R, one has

depthR(K(r1, . . . , rn;M)) = n for each 1 ≤ n ≤ d.

In other words, the depth of M with respect to the ideal (r1, . . . , rn) is n.
(2) For any p ∈ Spec R one has

depthRp
Mp ≥ dim Rp ,

and equality holds when the map H0(M) → H0(k(p) ⊗L
R M) is nonzero, in

which case the Rp-complex Mp has maximal depth.

Proof

(1) Set r = r1, . . . , rd . The hypothesis that M has maximal depth and the depth
sensitivity of the Koszul complex K(r;R) yield Hi (r;M) = 0 for i ≥ 1. One
has an isomorphism of R-complexes

K(r;M) ∼= K(rn+1, . . . , rd;K(r1, . . . , rn;M)) .
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Since M is derived complete with respect to m, it follows from Lemma 2.2,
applied to the sequence rn+1, . . . , rd and X := K(r1, . . . , rn;M), that

Hi (K(r1, . . . , rn;M)) = 0 for i ≥ 1.

On the other hand, since the natural map H0(M) → H0(k ⊗L
R M) is nonzero,

Lemma 3.1 applied with F = K(r1, . . . , rn;R), yields

H0(K(r1, . . . , rn;M)) �= 0 .

Thus the depth sensitivity of K(r1, . . . , rn;M) yields the equality in (1).
(2) Set h := height p and choose a system of parameters r := r1, . . . , rd for R such

that the elements r1, . . . , rh are in p. One has

depthRp
Mp ≥ depthR(K(r1, . . . , rh),M) ≥ h .

where the first inequality is clear and the second one holds by (1). The natural
map M → k(p) ⊗L

R M factors through Mp, so under the additional hypothesis
Lemma 3.1 implies depthRp

Mp ≤ h. We conclude that Mp has maximal depth.

�

Given the preceding result, we argue as in the proof of [27, Theorem 3.1] to
deduce the Improved New Intersection Theorem:

Theorem 3.6 Let R be a noetherian local ring and F := 0 → Fn → · · · → F0 →
0 a finite free R-complex with H0(F ) �= 0 and length Hi (F ) finite for each i ≥ 1. If
an ideal I annihilates a minimal generator of H0(F ), then n ≥ dim R − dim(R/I).

Proof Let M be an R-complex of maximal depth. By Lemma 3.4, we can assume
M is derived m-complete, so Lemma 3.5 applies. Set s := sup H∗(F ⊗R M) and
note that s ≥ 0, by Lemma 3.1.

Fix p in AssR Hs(F ⊗R M), so that depthRp
Hs(F ⊗R M)p = 0. The choice of

p implies that H(F ⊗R M)p is nonzero, and hence H(F )p and H(M)p are nonzero
as well. Therefore one gets

proj dimRp
Fp = depthRp

Mp − depthRp
(F ⊗R M)p

= depthRp
Mp + s

≥ dim Rp + s

(3.2)

The equalities are by 2.3 and the inequality is by Lemma 3.5(2).
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Suppose s ≥ 1. We claim that p = m, the maximal ideal of R, so (3.2) yields

proj dimR F ≥ dim R ,

which implies the desired inequality.
Indeed if p �= m, then since lengthR Hi (F ) is finite for i ≥ 1, one gets that

Fp 	 H0(F )p, which justifies the equality below:

depth Rp ≥ proj dimRp
H0(F )p = proj dimRp

Fp ≥ dim Rp + s

The first inequality is a consequence of the Auslander-Buchsbaum equality 2.3(2),
the second one is from (3.2). We have arrived at a contradiction for s ≥ 1.

It remains to consider the case s = 0. Set X := F ⊗R M . Since H0(F ) is finitely
generated, Nakayama’s Lemma and Lemma 3.1 imply that each minimal generator
of H0(F ) gives a nonzero element in H0(X). One of these is thus annihilated by
I , by the hypotheses. Said otherwise, ΓI H0(F ) �= 0. Since sup H∗(X) = 0, this
implies depthR(I,X) = 0, by Remark 2.3, and hence one gets the equality below

depthR X ≤ depthR(I,X) + dim(R/I) = dim(R/I)

The inequality can be verified by arguing as in the proof of [27, Proposition 5.5(4)]:
Let a := a1, . . . , al be a set of generators for the ideal I , and let b := b1, . . . , bn be
elements in R whose residue classes in R/I form a system of parameters. Since M

is derived m-complete, so is X and hence also K(a;X). Then Lemma 2.2 applied
to the sequence b and complex K(a;X) yields

sup H∗(a, b;X) ≥ sup H∗(a;X) ;

this gives the desired inequality. Finally it remains to invoke the Auslander-
Buchsbaum equality once again to get

proj dimR F = depthR M − depthR X ≥ dim R − dim(R/I) .

This completes the proof. 
�

4 MCM Complexes

In this section we introduce two strengthenings of the notion of complexes of
maximal depth, and discuss various constructions that yield such complexes. As
before let (R,m, k) be a local ring, of Krull dimension d.
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4.1 Big Cohen-Macaulay Complexes

We say that an R-complex M is big Cohen-Macaulay if the following conditions
hold:

(1) H(M) is bounded;
(2) H0(M) → H0(k ⊗L

R M) is nonzero.
(3) Hi

m(M) = 0 for i �= dim R;

If in addition H(M) is finitely generated, M is maximal Cohen-Macaulay; usually
abbreviated to MCM. Condition (2) implies in particular that H0(k ⊗L

R M) is
nonzero, and from this it follows that Hi

m(M) �= 0 for some i. Thus condition
(3) implies depthR M = dim R; in particular, a big Cohen-Macaulay complex has
maximal depth, in the sense of 3.1 and Hdim R

m (M) �= 0. However (3) is more
restrictive, as the following observation shows.

Lemma 4.1 If M is an MCM R-complex, then Hi (M) = 0 for i �∈ [0, dim R];
moreover, H0(M) �= 0.

Proof The last part of the statement is immediate from condition (2).
Set d = dim R. Let K be the Koszul complex on a system of parameters for R.

Then one has isomorphisms

K ⊗R M 	 K ⊗L
R RΓm(M) 	 K ⊗L

R �−d Hd
m(M)

where the first one is from (2.1), since K ⊗R M is m-power torsion, and the second
isomorphism holds by the defining property (3) of a big Cohen-Macaulay complex.
Hence

inf H∗(K ⊗R M) ≥ 0 and sup H∗(K ⊗R M) ≤ d .

By our hypotheses, the R-module Hi (M) is finitely generated for each i, and since
K is a Koszul complex on d elements, a standard argument leads to the desired
vanishing of Hi (M). 
�

Any nonzero MCM R-module is MCM when viewed as complex. However, even
over Cohen-Macaulay rings, which are not fields, there are MCM complexes that are
not modules; see the discussion in (3.1). In the rest of this section we discuss various
ways MCM complexes can arise, or can be expected to arise. It turns out that often
condition (2) is the one that is hardest to verify. Here is one case when this poses
no problem; see 4.3 for an application. The main case of interest is where A is a dg
(=differential graded) R-algebra.

Lemma 4.2 Let A be an R-complex with a unital (but not necessarily associative)
multiplication rule such that the Leibniz rule holds and i := inf H∗(A) is finite. If
Hi (A) is finitely generated, then the identity element of A is nonzero in H0(A⊗L

R k).
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Proof One has Hi (A ⊗L
R k) ∼= Hi (A) ⊗R k and the latter module is nonzero, by

Nakayama’s lemma and the finite generation hypothesis. We have A⊗L
R k = A⊗R T

where T is a Tate resolution of k; see [48]. So A ⊗R T is also a (possibly non-
associative) dg algebra. Thus if the identity element were trivial in H(A⊗R T ), then
H(A ⊗R T ) = 0 holds, contradicting Hi (A ⊗L

R k) �= 0. 
�
The MCM property for complexes has a simple interpretation in terms of their

duals with respect to dualizing complexes.

4.2 Dualizing Complexes

Let D be a dualizing complex for R, normalized1 so Di is nonzero only in the range
[0, d], where d := dim R and always with nonzero cohomology in degree 0. Thus
D is an R-complex with H(D) finitely generated, and RΓm(D) 	 �−dE, where
E is the injective hull of k; see [41, Chapter 2, §3] see also Chapter V. For any
R-complex M set

M† := RHomR(M,D) .

One version of the local duality theorem is that the functor M �→ M† is a
contravariant equivalence when restricted to Db(mod R), the bounded derived
category of finitely generated R-modules; see [41, Chapter 2, Theorem 3.5]. For
M in this subcategory, this gives the last of following quasi-isomorphisms:

RHomR(M†, E) = RHomR(RHomR(M,D),E)

	 RHomR(RHomR(M,D),�d RΓm(D))

	 �d RΓm(RHomR(RHomR(M,D),D))

	 �d RΓm(M)

The rest are standard. Passing to cohomology yields the usual local duality:

HomR(Hi (M†), E) ∼= Hd−i
m (M) for each i. (4.1)

When R is m-adically complete, one can apply Matlis duality to express Hi (M†) as
a dual of Hd−i

m (M).
We also need to introduce a class of maps that will play an important role in the

sequel: For any R-module N let ζ i
N denote the composition of maps

1 In [18, 41], a dualizing complex is normalized to be nonzero in [−d, 0].
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ExtiR(k,N)
∼=−−→ ExtiR(k, RΓm(N)) −→ ExtiR(R, RΓm(N)) ∼= Hi

m(N) (4.2)

where the one in the middle is induced by the surjection R → k. We will be
particular interested in ζ d

N . If this map is nonzero, then dimR N = dim R, but the
converse does not hold.

Proposition 4.3 With D as above and M an R-complex with H(M) finitely
generated, set N := H0(M†). Then M is MCM if and only if M† 	 N and the
map ζ d

N is nonzero, for d = dim R.

Proof Given the hypothesis on the local cohomology on M , it follows that Hi (M†)

is nonzero for i �= 0 and hence M† 	 N . Moreover, this quasi-isomorphism yields

RΓm(N) 	 RΓm(RHomR(M, D)) 	 RHomR(M, RΓm(D)) 	 �−d HomR(M, E) .

Therefore the map (4.2) is induced by (to be precise, the degree 0 component of the
map in cohomology induced by) the map

RHomR(k, HomR(M,E)) −→ HomR(M,E)

By adjunction, the map above is

RHomR(k ⊗L
R M,E) −→ HomR(M,E)

That is to say, (4.2) is the Matlis dual of the map H0(M) → H0(k ⊗L
R M). This

justifies the claims.
Clearly, these steps are reversible: if N is a finitely generated R-module such that

the map (4.2) is nonzero, the R-complex RHomR(N,D) is MCM. 
�
Here then is a way (and the only way) to construct MCM complexes when R has

a dualizing complex: Take a finitely generated R-module N for which ζ d
N is nonzero;

then the complex RHomR(N,D) is MCM. It thus becomes important to understand
the class of finitely generated R-modules for which the map ζ d

N is nonzero.
To that end let F be a minimal free resolution of k, and set

� := Coker(Fd+1 → Fd) ;

this is the dth syzygy module of k. Since minimal free resolutions are isomorphic as
complexes, this � is independent of the choice of resolution, up to an isomorphism.
The canonical surjection F → F�d gives a morphism in D(R):

ε : k −→ �d� . (4.3)

We view it as an element in ExtdR(k,�). The map ζ d
� below is from (4.2).
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Lemma 4.4 One has ζ d
�(ε) = 0 if and only if ζ d

� = 0 if and only if ζ d
N = 0 for all

R-modules N .

Proof Fix an R-module N . Any map f in HomR(�,N) induces a map

f∗ : ExtdR(k,�) −→ ExtdR(k,N) .

Let F be a resolution of k as above, defining �. Any map k → �dN in D(R) is
represented by a morphism of complexes F → �dN , and hence factors through the
surjection F → F�d , that is to say, the morphism ε. We deduce that any element of
ExtdR(k,N) is of the form f∗(ε), for some f in HomR(�,N).

In particular, ExtdR(k,�) is generated by ε as a left module over EndR(�). This
observation, and the linearity of the ζ d

� with respect to EndR(�), yields ζ d
� = 0 if

and only if ζ d
�(ε) = 0. Also each f in HomR(�,N) induces a commutative square

Extd
R(k,Ω) Hd (Ω)

Extd
R(k, N) Hd (N)

f∗

ζd
Ω

Hd (f)

ζd
N

Thus if ζ d
� = 0 we deduce that ζ d

N(f∗ε) = 0. By varying f we conclude from the
discussion above that ζ d

N = 0. 
�
We should record the following result immediately. It is one formulation of the

Canonical Element Theorem; see [22, (3.15)]. The “canonical element” in question
is ζ d

�(ε); see Lemma 4.4.

Theorem 4.5 For any noetherian local ring R, one has ζ d
� �= 0. 
�

Here then is first construction of an MCM R-complex.

Corollary 4.6 If R has a dualizing complex the R-complex �† is MCM. 
�
Remark 4.7 Suppose R has a dualizing complex. Given Proposition 4.3 and
Lemma 4.4 it follows that �† is MCM if and only if there exists some R-complex
M that is MCM. Therefore, the Canonical Element Theorem, in all its various
formulations [22], is equivalent to the statement that R has an MCM R-complex!

We now describe another way to construct an MCM complex. Let D be a
dualizing complex for R and set ωR := H0(D); this is the canonical module of R.

Lemma 4.8 One has ζ d
� �= 0 if and only if ζ d

ωR
�= 0.

Proof We write ω for ωR . Given Lemma 4.4 we have to verify that if ζ d
� �= 0, then

ζ d
ω �= 0. Let E be an injective hull of k, the residue field of R. Since this is a faithful

injective, there exists a map α : Hd
m(�) → E such that α ◦ ζ d

� �= 0.
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It follows from local duality 4.1, applied to M = �, that α is induced by a
morphism f : � → D; equivalently, an R-linear map f : � → ω. This gives the
following commutative diagram

Extd
R(k, Ω) Hd (Ω)

Extd
R(k, N) Hd (ω) E

f∗

ζd
Ω

Hd (f) α

ζd
ω

Since α ◦ ζ d
� �= 0 we conclude that ζ d

ω �= 0, as desired. 
�
Corollary 4.9 If R has a dualizing complex, the R-complex ωR

† is MCM. 
�
The preceding result prompts a natural question.

Question 4.10 When is the dualizing complex itself an MCM complex?
Let R be a local ring with a dualizing complex D, normalized as in 4.2. The local

cohomology of D has the right properties, so, by Proposition 4.3, the R-complex
D is MCM precisely when ζ d

R is nonzero. Easy examples involving non-domains
show that this is not always the case; Dutta [10] asked: Is ζ d

R nonzero whenever R
is a complete normal domain? Recently, Ma, Singh, and Walther [38] constructed
counterexamples.

On the other hand, when R is quasi-Gorenstein, that is to say, when ωR is free,
it follows from Corollary 4.9 that D is MCM.

Here is a broader question, also of interest, concerning the maps ζ i
N : It is easy to

check that this is nonzero when i = depthR N . What conditions on N ensure that
this is the only i for which it is true? By taking direct sums of modules of differing
depths, we obtain modules N with ζ i

N nonzero for more than a single i.

Example 4.11 When (R,m, k) is a regular local ring and N is a finitely generated
R-module, then N is Buchsbaum if and only if ζ i

N is surjective for each i < dimR N .
So any non-CM Buchsbaum R-module would give an example.

Remark 4.12 Let F 	 k be a free resolution of k and r := r1, . . . , rn elements such
that (r) is primary to the maximal ideal. The canonical surjection R/(r) → k lifts
to a morphism of complexes K(r;R) → F . Applying HomR(−, N) induces maps

ExtiR(k,N) −→ Hi (r;N)

It is easy to verify that ζ i
N factors through this map. What is more, if s is another

sequence of elements such that r ∈ (s), then the map above factors as

ExtiR(k,N) −→ Hi (s;N) −→ Hi (r;N)

Thus if any of maps above are zero, so is ζ i
N .
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We would like to record a few more observations about MCM complexes.

Remark 4.13 Let (R,m, k) be an arbitrary noetherian local ring. Then its m-
adic-completion, ̂R, has a dualizing complex, and hence an MCM ̂R-complex, as
discussed above. Since any MCM ̂R-complex is a big Cohen-Macaulay complex
over R, we conclude that R has a big Cohen-Macaulay complex, and, in particular,
a complex of maximal depth.

Remark 4.14 Assume R has a dualizing complex and that M is an MCM R-
complex. It is easy to check using Proposition 4.3 that Mp is an MCM Rp-complex
for p in Spec R, as long as condition (2) defining MCM complexes holds at p. For
example, if A is dg R-algebra that is MCM as an R-complex, then since Ap is a dg
Rp-algebra, Lemma 4.2 implies that it is an MCM Rp-complex.

Remark 4.15 While MCM complexes have their uses, as the discussion in Sect. 3
makes clear, they are not always a good substitute for MCM modules. Indeed, in
[21, §3] Hochster proves if every local ring has an MCM module, then the Serre
positivity conjecture on multiplicities is a consequence of the vanishing conjecture;
see also [25, §4]. Hochster’s arguments cannot be carried out with MCM complexes
in place of modules. The basic problem is this: Given a finite free complex F , over
a local ring R, with homology of finite length, if M is an MCM R-module, then
H(F ⊗R M) is concentrated in at most one degree; this need not be the case when M

is an MCM complex. Indeed this is clear from Iversen’s Amplitude inequality [28],
which is a reformulation of the New Intersection Theorem, and reads:

amp(F ⊗L
R X) ≥ amp(X)

where F is any finite free complex with H(F ) �= 0 and X is an R-complex with
H(X) bounded. Here amp(X) := sup H∗(X) − inf H∗(X), the amplitude of X. By
the way, the Amplitude Inequality holds even when H(X) is unbounded [13].

4.3 Via Resolution of Singularities

The constructions of MCM complexes described above are independent of the
characteristic of the ring, but proving that they are MCM is a non-trivial task, for it
depends on knowing that one has MCM complexes to begin with; see Remark 4.7.
Next, we describe a complex that arises from a completely different source that one
can prove is MCM independently. The drawback is that it is restricted to algebras
essentially of finite type and containing the rationals. We first record a well-known
observation about proper maps.

Lemma 4.16 Let R be any commutative noetherian ring and π : X → Spec(R) a
proper map from a noetherian scheme X. Viewed as an object in D(R) the complex
Rπ∗OX is equivalent to a dg algebra with cohomology graded-commutative and
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finitely generated. When R contains a field of characteristic zero, the dg algebra
itself can be chosen to be graded-commutative.

Proof By Grothendieck [17, Theorem 3.2.1], since OX is coherent and π is proper,
Rπ∗OX is coherent and hence its cohomology is finitely generated. Next, we explain
why this complex is equivalent, in D(R), to a dg algebra. The idea is that OX is a
ring object in D(X) and there is a natural morphism

Rπ∗F ⊗L
R Rπ∗G −→ Rπ∗(F ⊗L

X G)

so Rπ∗OX is ring object in D(R). One can realize this concretely as follows.
Let {Ui}ni=1 be an affine cover of X. Then the Čech complex computing Rπ∗OX

is equivalent to the total complex associated to the co-simplicial commutative ring

It remains to point out that the Alexander-Whitney map makes the normalization of
a co-simplicial ring a dg algebra, with graded-commutative cohomology. Moreover,
since R contains a field of characteristic zero, it is even quasi-isomorphic to a
graded-commutative dg algebra. 
�

The statement of the next result, which is due to Roberts [41], invokes the
resolution of singularities in characteristic zero, established by Hironaka. The proof
uses Grothendieck duality for projective maps [18] and the theorem of Grauert and
Riemenschneider [15] on the vanishing of cohomology. Given these, the calculation
that is needed is standard; see the proof of [19, Proposition 2.2 ] due to Hartshorne
and Ogus. It will be clear from the proof that the result extends to any context where
one has sufficient vanishing of cohomology; see [41, Theorem 3.3].

Proposition 4.17 Let (R,m, k) be an excellent noetherian local ring containing
a field of characteristic zero, and admitting a dualizing complex. Let π : X →
Spec(R) be a resolution of singularities. The R-complex Rπ∗OX is MCM and
equivalent to a graded-commutative dg algebra.

Proof Given Lemmas 4.16 and 4.2 it remains to verify that Hj
m(Rπ∗OX) = 0 for

j �= d, where d := dim R. Let D be a dualizing complex for R and π !D = ωX,
the dualizing sheaf for X. Since the R-complex Rπ∗OX has finitely generated
cohomology, local duality 4.1 yields the first isomorphism below

Hj
m(Rπ∗OX) ∼= Extd−j

R (Rπ∗OX,D)
∨

∼= Extd−j
X (OX, π !D)∨

= Hd−j (X, ωX)
∨
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The second isomorphism is by coherent Grothendieck duality [18]. It remains to
invoke the Grauert-Riemenschneider vanishing theorem [15]—see Murayama [39,
Theorems A&B] for the version that applies in the present generality—to deduce
that the last module in the display is 0 for all j �= d. 
�

Here is a natural question, growing out of Proposition 4.17. A positive answer
might have a bearing on the theory of multiplier ideals; see Theorem 5.3.

Question 4.18 When R contains a field of positive characteristic, or is of mixed
characteristic, does it have an MCM R-complex that is also a dg algebra? What
about a graded-commutative dg algebra?

5 Applications to Birational Geometry

In this section we prove two celebrated results in birational geometry using MCM
complexes constructed via Proposition 4.17. The first one generalizes Boutot’s
theorem on rational singularities [8]; the argument is only a slight reworking of
Boutot’s proof, emphasizing the role of the derived push-forward as an MCM
complex. Related circles of ideas can be found in the work of Bhatt, Kollár, Kovács,
and Ma [6, 30, 31, 34].

Theorem 5.1 Let ρ : Z → Spec R be a map of excellent schemes containing a field
of characteristic zero, admitting dualizing complexes, and such that R → Rρ∗OZ

splits in D(R). If Z has rational singularities, then so does R.

Proof We may assume (R,m) is local. Note that the condition implies R → ρ∗OZ

is injective so in particular R is reduced (as Z is reduced). Take π : X → Spec R to
be a resolution of singularities. Then there is a (reduced) subscheme of X ×Spec R Z

that is birational over Z for each irreducible component of Z. Let Y be a resolution
of singularities of that subscheme. Thus there is a commutative diagram:

Y X

Z Spec R.

σ π

ρ

This induces a commutative diagram

R Rρ∗OZ

Rπ∗OX Rρ∗ Rσ∗OY .

∼=
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The right vertical map is an isomorphism since Z has rational singularities. Now
since R → Rρ∗OZ splits in D(R), chasing the diagram shows that R → Rπ∗OX

splits in D(R). In particular, we know that the induced map

Hi
m(R) ↪→ Hi

m(Rπ∗OX)

is split-injective for all i. Because Rπ∗OX is a MCM complex, by Proposition 4.17,
it follows that Hi

m(R) = 0 for i < d, that is to say, R is Cohen-Macaulay.
Finally, the Matlis dual of the injection above yields a surjective map π∗ωX � ωR .
Therefore π∗ωX

∼= ωR since X → Spec R is birational.
Putting these together yields ω•

R
∼= Rπ∗ω•

X, where ω•
R and ω•

X are the normalized
dualizing complex of R and X respectively. Applying RHomR(−, ω•

R) and using
Grothendieck duality yields R ∼= Rπ∗OX. Thus R has rational singularities. 
�

Here is an application.

Corollary 5.2 If (R,) is KLT, then R has rational singularities.

Proof Let π : Y → X = Spec R be a log resolution of (R,). Since (R,) is
KLT, we know that �KY − π∗(KX + )� is effective and exceptional, thus

R = π∗OY (�KY − π∗(KX + )�) = Rπ∗OY (�KY − π∗(KX + )�) ,

where the second equality follows from relative Kawamata-Viehweg vanishing [32,
Theorem 9.4.1]; see [39, Theorems A&B] for the general version. Then the
composition of maps

R → Rπ∗OY → Rπ∗OY (�KY − π∗(KX + )�) ∼= R ,

is an isomorphism, that is to say, the map R → Rπ∗OY splits in D(R). Theorem 5.1
then implies R has rational singularities. 
�

Our second application is a new proof of the subadditivity property of multiplier
ideals [32]. The first proof in the generality below is due to Jonsson and Mustaţă [29,
Theorem A.2]. Our idea of using the MCM property of Rπ∗OX to prove this comes
from the analogous methods in positive and mixed characteristic [36, 47].

Theorem 5.3 Let (A,m) be an excellent noetherian regular local ring containing
a field of characteristic zero. Given ideals a, b in A and numbers s, t ∈ Q≥0, one
has J (A, asbt ) ⊆ J (A, as)J (A, bt ).

Proof We first claim that we may assume that a, b are both principal ideals. This
type of reduction is standard for multiplier ideals [32, Proposition 9.2.26], but we do
not know a reference for the case of mixed multiplier ideals J (A, asbt ). However the
argument is the same and we now sketch it. Indeed, fix general elements f1, . . . , fk
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in a and g1, . . . , gl in b for k > s and l > t and set

D1 = 1

k

∑

Div(fi) = 1

k
Div(

∏

(fi))

D2 = 1

l

∑

Div(gi) = 1

l
Div(

∏

(gi)) .

For a log resolution π : X → SpecA of (A, a, b) with OX(−F) = a · OX and
OX(−G) = b · OX, we have that

π−1∗ Div(fi) + Fexc = π∗Div(fi) and π−1∗ Div(gi) + Gexc = π∗Div(gi).

where π−1∗ denotes the strict transform and Fexc and Gexc are the π -exceptional
parts of F and G. Since the fi and gi are generic, the associated divisors and their
strict transforms are reduced. A straightforward computation then shows that

�sF � =
⌊ s

k

∑

π∗Div(fi)
⌋

and �tG� =
⌊

t

l

∑

π∗Div(gi)

⌋

.

Thus J (A, asbt ) = J (A, (
∏

fi)
s/k(

∏

gi)
t/ l), and likewise J (A, as) =

J (A, (
∏

fi)
s/k) and J (A, bt ) = J (A, (

∏

gi)
t/ l). Therefore we may assume

that a and b are principal.
Now we assume a = (f ) and b = (g). Let R be the normalization of

A[f 1/ds , g1/dt ] where ds and dt are the denominators of s and t ; thus f s, gt

are elements in R. Let π : X → Spec R be a resolution of singularities. Thus
X → Spec A is a regular alteration; we write π also for this map.

In what follows, to simplify notation, we write E for Hd
m(A). Given an element

r ∈ R let 0r
E be the kernel of the composite map

E = Hd
m(A) −→ Hd

m(R)
r−→ Hd

m(R) −→ Hd
m(Rπ∗OX)

Now suppose that a power rm of r lives in A (for instance r = f s or r = gt ). Then
by Blickle et al. [7, Theorem 8.1] we have that Tr(J (ωR, r)) = J (A, (rm)1/m). By
local duality it is easy to see that

J (A, (rm)1/m) = annA 0r
E .

In particular, J (A, f s) = annA 0f s

E and J (A, gt ) = annA 0gt

E .
We next claim that the following inclusion holds:

{η ∈ E | J (A, f s) · η ⊆ 0gt

E } ⊆ 0f sgt

E . (5.1)
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Indeed, suppose J (A, f s)η ⊆ 0gt

E , then J (A, f s) · gtη = 0 in Hd
m(Rπ∗OX). Note

that gtη makes sense in Hd
m(Rπ∗OX) as the latter is a module over R. Thus

gtη ∈ annHd
m(Rπ∗OX) J (A, f s) ∼= HomA(A/J (A, f s), Hd

m(Rπ∗OX)) .

Next, because Rπ∗OX is MCM, by Proposition 4.17, one gets the equality below

h−i (Rπ∗OX ⊗L
A E) ∼= Hd−i

m (Rπ∗OX) = 0

for all i ≥ 1. Thus we conclude that gtη is in the module

HomA(
A

J (A, f s)
, Hd

m(Rπ∗OX)) ∼= h0
(

RHomA(
A

J (A, f s)
, Rπ∗OX ⊗L

A E)

)

∼= h0
(

Rπ∗OX ⊗L
A RHomA(

A

J (A, f s)
, E)

)

∼= h0
(

Rπ∗OX ⊗L
A annE J (A, f s)

)

.

The second isomorphism follows from [12, Proposition 1.1 (4)], noting that A is
regular thus every bounded complex is isomorphic to a bounded complex of flat
modules in D(A), and the third isomorphism follows from the fact that E is an
injective A-module.

Consider the following composite map; again, the second multiplication by f s

map makes sense since we can view Rπ∗OX as a complex over R and not merely
over A:

E → h0
(

Rπ∗OX ⊗L
A E

) ·f s

−→ h0
(

Rπ∗OX ⊗L
A E

)

.

Its kernel is annE J (A, f s), by Matlis duality. Thus the composition of the natural
induced maps

Rπ∗OX ⊗L
A annE J (A, f s) → Rπ∗OX ⊗L

A E
·f s

−→ Rπ∗OX ⊗L
A E

is zero in h0. In particular, since gtη is in h0 of the source of this composite map,
we deduce that, viewed as an element in target, namely in

h0
(

Rπ∗OX ⊗L
A E

) ∼= Hd
m(Rπ∗OX)

it is killed by f s . Therefore f sgtη = 0 in Hd
m(Rπ∗OX) and hence η ∈ 0f sgt

E .
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This justifies (5.1).

Finally, for any z ∈ annE J (A, f s)J (A, gt ), we have J (A, f s)z ⊆ 0gt

E and thus

z ∈ 0f sgt

E by (5.1). Therefore

annE J (A, f s)J (A, gt ) ⊆ 0f sgt

E

and hence by Matlis duality J (A, f sgt ) ⊆ J (A, f s)J (A, gt ). 
�
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