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Dedicated to David Eisenbud on the occasion
of his 75th birthday.



Biosketch of David Eisenbud

David Eisenbud received his PhD in mathematics in 1970 from the University
of Chicago under Professor Saunders MacLane and Professor Chris Robson. He
was in the faculty at Brandeis University from 1970 until becoming Professor of
Mathematics at UC Berkeley in 1997. Eisenbud has been a visiting professor at
Harvard, and in Bonn and Paris.

His mathematical interests range widely over commutative and non-commutative
algebra, algebraic geometry, topology, and computer methods.

Eisenbud served as the director of the Mathematical Sciences Research Institute
from 1997 to 2007 and 2013 to 2022. He worked for the Simons Foundation between
2009 and 2011, creating the Foundation’s grant program in mathematics and the
physical sciences. He is currently on the board of directors of the Foundation, and is
also a director of Math for America, a foundation devoted to improving mathematics
teaching.

Eisenbud has been a member of the Board of Mathematical Sciences and their
Applications of the National Research Council, and the U.S. National Committee of
the International Mathematical Union.

He currently chairs the editorial board of the Algebra and Number Theory
journal, which he helped found in 2006. He serves on the board of the Journal
of Software for Algebra and Geometry, as well as Springer-Verlag’s book series
Algorithms and Computation in Mathematics and Graduate Texts in Mathematics.

In 2006, Eisenbud was elected a Fellow of the American Academy of Arts and
Sciences. He won the 2010 Leroy P. Steele Prize for Mathematical Exposition for his
book Commutative Algebra, with a View toward Algebraic Geometry and the 2020
Award for Distinguished Public Service, both from the American Mathematical
Society.

Eisenbud’s interests outside of mathematics include theater, music, and juggling.
He loves photography and music, and sings Bach, Brahms, Schubert, and Schumann
. . .
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Mostly Mathematical Fragments of
Autobiography

David Eisenbud

I was born on April 8, 1947, to Leonard Eisenbud, a mathematical physicist (and
former student of Eugene Wigner), who was then working at the Oak Ridge National
Laboratory, and Ruth-Jean Eisenbud, a psychologist-psychoanalyst (and former
student of Robert White) with a large private practice.

The family soon moved to Long Island, where my father worked at Brookhaven
National Laboratory, and I developed an early love for the water—I have a photo of
my mother lying on the sand at the edge of the waves with me on her back, grinning.

When I was three, we moved to the Swarthmore area and stayed there eight
years. My father worked for a research lab, and we lived initially on the edge of the
property where the lab had a van de Graaf particle accelerator. I was captivated by
the big machine, which my father patiently explained. I attended a public elementary
school, and then the tiny progressive “School in Rose Valley.” I apparently had such
a poor sense of pitch in second grade that I was forbidden to sing with the rest of
the class, but my music teacher in Rose Valley rescued me and taught me to hold a
tune—a fateful development. Art was an unsolved problem for me too: terminally
stuck on what painting to contribute to a frieze about world history, my teacher took
pity and suggested I paint “The Dark Ages”—all black.

When I was seven, my parents took me to my first Shakespeare play—Macbeth—
preceded by my first lobster dinner, at the original Bookbinders’ Restaurant, a
classic that is no more. My parents had prepared me for the play as best they could,
but my mother told me later that she worried how I would take all the violence. She
was relieved when I leaned over during the play and whispered “They forgot one of
the murders!” Whether or not I was correct, the experience began a lifelong love of
theatre (lobster, too).

We moved back to Long Island when I was 11. There, my father helped found the
Stony Brook University physics department, where he worked until he retired, and
my mother joined the faculty of the NYU postdoctoral program in psychoanalysis. I
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had an academically excellent but socially difficult middle school experience at the
Friends Academy in Locust Valley, and then the opposite at the public Huntington
High School.

When I was about 12, I began announcing, without much apparent cause, that
I wanted to be a mathematician. I read Thomas’ Calculus at 13, and then began to
study mathematical topics proposed by one of my father’s colleagues—Mendelson’s
book on topology, Wilder’s book on the foundations of mathematics. Another
colleague introduced me to the games of Go and Shogi. My father showed me how
to use vectors and algebra to prove simple theorems in plane geometry, which I
found very exciting. I entered some science/math fairs with this, with an analogue
computation of logarithms, and with a calorimeter. I took folk guitar lessons, and
my first serious girlfriend introduced me to the flute—I briefly considered trying to
become a professional flutist (luckily, I stuck with math!).

Having exhausted the math and much else in high school I asked, late in my
junior year, to leave for college, and was accepted at the University of Chicago,
where I entered at 16 (not by any means exceptional there) and left with my PhD
at 23. Despite the famed breadth of education at Chicago, I quickly focused on
mathematics and music. Fortunately, the music came with some breadth, and I
had wonderful mentoring from the well-known musicologist Howard Mayer Brown
and from Brown’s political scientist partner Roger Strauss, in whose home we
practiced. I sang in Brown’s small chorus, and played early instruments—recorders,
krummhorns, Quantz flute, bass viola da gamba—in Brown’s Collegium Musicum
all seven years I was in Chicago. The group was the first to systematically record
the pieces from the Historical Anthology of Music, a collection used by every
musicology graduate student, and we gave a formal concert each quarter in the
beautiful Bond Chapel. The most memorable concert for me was Schütz’ Christmas
Oratorio, in which I played the recorder. (I listen to a recording of this piece every
December.) Music has remained a passion: after years of serious flute study, I started
voice lessons in 1982, focusing on German Lieder, and I still spend many hours a
week enjoying this art. The mathematician, pianist, and cellist Arthur Mattuck, my
music partner for years, referring to the characteristic subjects of these songs, once
wrote that I was “singing songs of puberty in a baritone Schuberty.”

Among the math courses I took as an undergraduate, three stand out as exciting
and inspiring. They could not have been less alike. The first was taught by Otto
Kegel, a postdoc who was a student (and then Assistent, in the German sense) in the
group of Reinhold Baer, in Frankfurt. Kegel taught a second semester linear algebra
course using sesquilinear instead of merely bilinear forms, and with other (too)
modern flourishes. In a subject where most objects are called V or W, Kegel was still
struggling with the transition from German, where the word for W is pronounced
“Vay.” These things, combined with Kegel’s almost illegible handwriting, made the
course extremely hard to follow. Nevertheless, Kegel imbued it with such wonderful
excitement that it was a peak experience.

The other two courses were excellent in a more standard way: in one, the famous
analyst Antoni Zygmund told a highly polished and perfected version of the story
of the Lebesgue integral, and in the other, Felix Browder laid down the basics
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of the theory of functions of one complex variable. To this day I am amazed by
the consequences that flow from a simple hypothesis in that subject. With my
inseparable undergraduate friend Joe Neisendorfer, I wrote notes for Browder’s
course (in pencil, and with plenty of erasures!).

I spent an exciting summer working at the University of Michigan as a counselor
for a high-school math program and being tutored by family friend Paul Halmos,
with problems from his manuscript Hilbert Space Problem Book. This gave me the
idea that I wanted to study operator theory. By the end of my third year at Chicago I
was taking only graduate math courses, and at the end of the year I officially became
a graduate student.

The next summer, my parents treated me to a few months abroad. I chose to go
and work with Otto Kegel, who was by this time back in Frankfurt. Kegel proposed
a research problem about the order automorphisms of infinite ordered sets. I was
possessed by the problem, and could talk of nothing else, no doubt tiresome to
those around me! Though I had taken a German class in college (and gotten a very
solid D), I unfortunately did not try to speak German, nor did I understand it—
with one exception: Saunders MacLane, whom I knew from Chicago, came to visit.
Though he spoke German easily, he had such thick American accent that he was
easy for me to understand. I was relieved when I was given, as office-mate, a young
English mathematician, but Bert Wehrfritz’ cockney accent was almost as much of a
problem for me as German. Peter Neumann was also a visitor to Frankfurt then, and
when I went to England at the end of the summer, he kindly invited me to Oxford
and took me to lunch at the High Table. In that hot weather I was living in a youth
hostel, and I’ll never forget that first time drinking cold hard cider from an ancient
silver mug.

Back in Chicago, I was uncertain what direction to study—neither permutation
groups nor operator theory were represented on the faculty. Advised by Neisendor-
fer to choose a thesis advisor first and subject second, I gravitated to Saunders
MacLane and—thus—category theory. However, this was not to be my thesis:
during MacLane’s sabbatical I made friends with J. C. (Chris) Robson, former
student of Alfred Goldie in Leeds, who was in Chicago as a postdoc with Israel
Herstein. In an intense and exciting (for me) collaboration, Robson and I developed
a noncommutative analogue of the theory of Dedekind domains.

At a memorable dinner that spring, the graduate student across the table from me
said something implying that the work with Robson would be my thesis. I began
to protest. . .when inspiration struck, and I realized how nice it would be to have a
thesis done without a “thesis neurosis”! MacLane and Robson were generous, and I
was done. Since this was already at the end of the spring term, it made sense to take
an extra year, having only the (then) light responsibility of a graduate student and
the freedom of a postdoc.

In the spring of 1968, MacLane took me along to a conference on category
theory at the Batelle Institute in Seattle. David Buchsbaum, whose thesis had laid
the foundation of Abelian categories, was to give a series of lectures on commutative
algebra, and MacLane advised me to prepare for these lectures (at the time I knew
no commutative algebra at all) and follow them closely. I was strongly drawn to
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Buchsbaum for his great warmth and humanity and was also fascinated by his
treatment of homological commutative algebra.

I volunteered to write the notes for the lectures and worked with Buchsbaum
on them. Things were good in the first lectures—that treatment of the Koszul
complex is preserved in my own book on commutative algebra. But in the last
lectures, Buchsbaum turned to his thoughts on the resolution of lower-order
minors of a generic matrix, then an open problem. I found the lectures muddy,
impressionistic, and confusing, and suggested a reorganization. This did not go over
well! Buchsbaum and I ultimately agreed to simply leave that material out.

The contact with Buchsbaum was decisive: I decided I would like to go to work
near him, at Brandeis University, in Waltham near Boston. The academic job market
in 1970, when I got my PhD, was quite different than it is today. This was just at
the end of the period, sparked by the U.S. investment in research following Sputnik,
when jobs in the sciences and mathematics were plentiful. There was no “Mathjobs,”
and people applied to few places. I initially applied only to Brandeis, but Nathan
Jacobson, who knew of some of my work, wrote to Kaplansky to suggest that I
apply to Yale too, and I followed Kap’s advice. With offers from both places, I kept
to my plan and accepted Brandeis.

I had met Monika Schwabe, a medical student, at the wedding of my cousin
Bob to Monika’s college friend Karen in the spring of 1966. I was 19 and living in
Chicago. Monika was 23, living in NYC, and involved with others. I was interested,
but the relationship did not develop. However, a few years later Monika thought that,
after all, I had possibilities, and a courtship began. Ultimately Monika braved the
disapproval of her medical school and her mother to take a year off to live with me
in Chicago. At the end of the year, during a backpacking trip in the high Sierra, we
decided to get married, and Monika returned to finish medical school in New York.
In the Spring of 1970 I got my PhD, Monika got her MD, and we wed, in quick
succession. We packed up and moved to Boston to take up my job at Brandeis,
Monika’s residency in child psychiatry at the Beth Israel Hospital, and a new life in
an apartment in Central Square, Cambridge, a few blocks from the city hall where
my parents had been married.

It was not only the job market that was different in 1970. Brandeis had been
welcomed as the third member of the former Harvard-MIT colloquium, and the
talks rotated, every third week in each place. At least as important for Monika and
me as newcomers: there was a large and elaborate colloquium party, often with
30–50 people, nearly every week, at which we met “everyone” in the area. I was
only later aware how much this institution, immensely valuable to me as a young
mathematician, depended on the non-working spouses—wives, in every case—of
senior members of the community. While the mathematician husbands listened to
great (or not-so-great) talks, these women prepared and set out great quantities of
food and drink, and smilingly welcomed the guests—who were their friends, too.
The “job” of Faculty Wife is nearly gone, and largely unlamented, but in this regard,
it served the mathematical world well, and certainly not only in Boston.

Mathematically speaking I was quite lonely during the first half-year in Boston.
My thesis on noncommutative rings had led to a collaboration with Phillip Griffith
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(no s) about Artinian rings. Surprising as it now seems, at the time the only people
in the Boston area interested in finite dimensional algebras, or indeed in any non-
commutative algebra, were Bhama Srinivasan and the great but already elderly
Richard Brauer—not a community for me. After a semester I figured out what to
do: I went to Buchsbaum and brashly told him that I had a lot of energy that I
would like to use to work on a problem with him! He accepted this proposition, and
we began an intense collaboration of nearly 10 years, including some of my best
work. In my second year at Brandeis Graham Evans arrived for a second postdoc
at MIT. I knew Graham and his wife Kaye from graduate school—he graduated
a year ahead of me, and we were good friends. Monika and I had admired their
early married arrangements, unusual among the students then. During the summer,
I joined Graham most days in his office at MIT. We ran a seminar together that
included some odd characters. Once, one of the members came to the seminar
with a bowl of water and a towel; as the seminar began (I was the speaker), he
carefully washed and dried his face, folded his arms on his desk, put his head down,
and went to sleep. Graham had a secretary/technical typist to himself that summer,
and when we finally produced a manuscript (Basic Elements) she seemed glad to
have something to do at last: she drew a cherub, celebrating with a trumpet on the
cover page. More importantly, the next academic year we collaborated in solving a
famous problem, proving that Every Algebraic Set in n-space is the Intersection of
n Hypersurfaces. In the end, I think that this is what earned me tenure at Brandeis.

I had another stroke of good luck in my second year at Brandeis: an invitation
to a workshop in Oberwolfach. At that time there were (informally!) two kinds of
full professors in Germany: those with and those without an annual week reserved
in Oberwolfach for them, their groups of students, and their invitees. Baer had such
a week, and I had gone along the summer I visited Kegel. Now I was invited to
the annual workshop run by Kasch, Rosenberg and Zelinsky—(I later learned that
Kasch had noticed a paper I’d written as a graduate student giving a homological
proof of a known theorem about when subrings of Noetherian rings are Noetherian.)

I was even given the opportunity to speak, and I explained my newest paper
with Buchsbaum, What Makes a Complex Exact. Maurice Auslander, my senior
colleague at Brandeis, was in the audience, and seemed impressed as well. Ever
since, Oberwolfach has seemed a magical place for me, and I have made a point of
going back whenever I could—at least 30 times over the intervening 50 years. With
perhaps the best mathematical library on the planet, and a perfect setting for walks
and afternoon cake, it is a great place to work with others as well as to listen to talks.

After the workshop I was invited to go for a week to Regensburg to visit Juergen
Herzog, in the group under Ernst Kunz. I stayed with Juergen, and we became good
friends. It was in his household that I first had to try to speak German—a poor
showing. I lectured at the University (in English!), and Kunz was extremely kind to
me.

Monika and I spent the summer of 1972 traveling. In my mind from that summer
are the pleasure of the St. Andrews Mathematical Colloquium in Scotland (Halmos
was the principal speaker) and a lecture by Verdier on a very general form of
the Riemann-Roch theorem, in Aarhus, Denmark. I knew next to nothing about
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algebraic geometry, but I dared to approach Verdier afterwards and asked him what
the Riemann-Roch theorem was good for. I got no answer—the question left him
speechless with disbelief! We then spent the fall in Leeds, England where I visited
Chris Robson and Monika worked as a “Registrar” (= Resident) at High Royds
psychiatric hospital; she reported that all activity stopped, daily, for afternoon tea,
just as in the math department. The earliest notes for Commutative Algebra with a
View toward Algebraic Geometry, finally published in 1995, came from lectures I
gave there (on Noether normalization).

In our study of free resolutions Buchsbaum and I made many computations by
hand, using a method he knew. We hired Ray Zibman, an undergraduate, to program
it, and quickly learned that it was NOT an algorithm—without human curation
it often looped. At the same time Graham Evans at Urbana hired Mike Stillman
to program the computation of free resolutions of homogeneous ideals “up to a
given degree” by ordinary linear algebra. Fast forward to 1983, when Mike came to
graduate school at Harvard. There he met Dave Bayer and learned about Gröbner
bases: soon the program Macaulay was born. Mike was later a postdoc with me, and
I felt that I was for many years Macaulay’s “uncle,” collaborating often with Bayer
and Stillman on computations (in recent years, collaborating with Mike and Dan
Grayson, I became a member of the Macaulay2 team itself.) Macaulay, Macaulay2,
and the computations they enabled have played a major role in my mathematical
career. As I said at a Bayer-Stillman 60th Birthday party, Macaulay is the only video
game to which I’ve ever been addicted!

Backing up to 1974, it was time for me to run the tenure gauntlet at Brandeis.
Given that I had a powerful advocate in Buchsbaum, one might think that it would be
an easy process, and perhaps compared to other tenure processes it was but. . .during
it one senior colleague told me outright that he would not vote for me—because
I might attract students away from him! Another threatened to vote against me
because of an old disagreement with Buchsbaum. These threats could have been
fatal, since at that time the Brandeis department operated on unanimity. After the
first threat I made a trip to Montpellier, where Buchsbaum was on sabbatical, to tell
him of the situation and seek his help—he calmed me down. In the end, neither of
the threats was realized, and the vote of the department was positive.

The university still had to grant me tenure, and the Dean proposed to delay a year
because of the number of cases pending. I was eager to put it all behind me, and in
the end the Dean (whom I didn’t yet know) backed down. Dining with Department
Chair Jerry Levine a week later, Jerry pointed out the Dean across the room and
asked whether I wanted to go and say hello, or perhaps say thank you, but the
situation was still so charged for me that I proposed to go and punch him, instead! (I
did not do it). These experiences left me highly sympathetic with the bright young
researchers who are regularly tortured before promotion.

Tenure gained, Monika and I went for a year to Paris. We traveled on the Queen
Mary, and I watched her with pleasure as she drowsed, pregnant with our first
child, on the deck. I had a Sloan Fellowship and was a visitor at the IHES; Monika
practiced her French as a visitor to the famous Salpêtrière hospital and studied for
her psychiatric Board exams, scheduled the same day that Daniel was supposed to
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be born! Daniel was 3 days late, and Monika, though great with child, took and
passed the exam on schedule.

During the first days in Paris, I ran into Harold (Hal) Levine, a colleague from
Brandeis. Dining at an old-fashioned restaurant on the left bank of the Seine, he
told me a mathematical problem: how could one compute the local degree of a finite
map germ? After a few experiments, I had a glimmer of an idea, and over a sleepless
night I became sure: the degree would appear as the signature of a natural quadratic
form. Hal and I worked this out over the next days.

Arriving for the first time, in the late afternoon, at the Institut des Hautes Etudes
Scientifiques, the first person I encountered was Pierre Deligne, only three years my
senior but already famous for his proof of the Weil conjectures just a year before.
A person of the utmost kindness, Deligne made me feel at home. Though I was
in awe and addressed him with “vous,” he explained to me that all the French
mathematicians “se tutoyent”—that is, use the familiar form of “you”—to one
another, because, in the (rather recent) “old days” all the research mathematicians
in France had been graduates of one school, the Ecole Normale Superieur. The
former students treated each other familiarly (and no doubt lent a hand to each
other in careers—the “old boy” network realized on top of Napoleon’s system of
meritocracy.) Deligne also took me for a wild bicycle ride down paths in the forest
nearby—the first time I had done such a thing. I felt that I could ask Deligne
any mathematical question, and get an illuminating answer tuned to my state of
ignorance.

Of course I told Deligne about the computation of the local degree, the paper
with Hal. He immediately asked how we took care of a certain point. . . that I had
not noticed! I stumbled for a while, and finally came up with a plausible fix. Deligne
had far more technique than I, and he saw that it could be made rigorous—but I had
some learning to do to write the final version of the paper.

I once went with Monika to attend a presentation at the Salpêtrière, and the event
left an impression beyond that of any math lecture: one after another, the presenting
pathologist would fish a tagged brain from a barrel, and begin slicing with a chef’s
knife until he came to the fatal lesion, meantime telling the patient’s final story
(“Entered hospital at 4pm complaining of terrible headache, dead at 6pm. . . Mais
oui!—now you see the cause!”)

Mathematically, I had hoped to work with Lucien Szpiro, the most active person
in French commutative algebra, but Szpiro ran a seminar listed on the bulletin board
as “by invitation only,” and when I asked for an invitation. . .he said, “No!” This
rebuff proved a blessing: I fell in with a group around Bernard Teissier, Norbert
A’Campo and Monique Lejeune-Jalabert, and began to broaden my interests into
singularity theory, initially from Milnor’s wonderful book. These became great
friends, from whom I found a warm welcome that offset Szpiro’s coldness.

When I wasn’t going to Teissier’s seminar at Paris 7, I would walk in the morning
across the Luxembourg gardens to the Metro and take the train to Bures-Sur-Yvette
and the IHES. Two seminar experiences stand out from that time:

Renee Thom was still active in that period, and at the first lecture of the year in his
seminar he was the speaker. He began by writing down a result on the blackboard
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and saying that the seminar that semester would be devoted to the consequences
of that result, of which the proof had been the subject of the previous semester.
Someone in the back of the room raised his hand and proposed a counterexample
to the theorem. This was discussed for a few minutes, and the conclusion was:
yes, it is a counterexample. Unfazed, Thom continued: “Now we will get to the
applications. . ..”

Late in my year in Paris, Daniel Quillen proved that projective modules over
polynomial rings are free, solving a famous problem that had been proposed by
Jean-Pierre Serre. The proof was, in the end, surprisingly direct, and I was appointed
to give an exposition in the main seminar — with Serre himself in the audience. That
I was nervous is a gross understatement, and indeed there came a point in the proof
when I clutched and couldn’t see how to proceed. . .for just a moment. In the end,
all was well.

Our son Daniel was born in June. Monika and I returned to Boston soon
afterwards. We had bought a small house in a beautiful setting, next to the Charles
River at its widest part in Newton, just opposite Brandeis. We could canoe through
most of the year—indeed, I took to commuting to Brandeis by canoe—and skate on
the ice the rest of the time. Since neither of us could bear the idea of moving out
of that spot, we eventually enlarged the house, and our daughter Alina was born.
Monika had by this time finished her training (in both Child and Adult psychiatry)
and had an active practice in a private office nearby.

During that period I taught a course from Milnor’s book on hypersurface
singularities and discovered what are now well-known as the matrix factorizations
associated with a hypersurface. (This suddenly became my most quoted paper in
2004, when some physicists discovered that matrix factorizations could be used
in String Theory.) I also chanced to hear a lecture at MIT by a young postdoc,
Joe Harris, which changed my direction again: Harris spoke about the equations
of canonical curves (are the quadrics generated by those of rank at most 4? Yes,
as Mark Green subsequently proved.) He explained that lots of rank 4 quadrics
come from special varieties, called rational normal scrolls, that contain the curves. I
recognized the equations of the scrolls as being determinantal, and since Buchsbaum
and I had often discussed determinantal ideals, I felt I had something to contribute.
We chatted briefly after the lecture. Not much came of the conversation until later,
though I did write my first algebraic geometry paper, using scrolls to give the
equations of hyperelliptic curves soon afterwards.

During those first 10 years at Brandeis, the work with David Buchsbaum was
by no means our only contact. David was deeply committed to Brandeis and to the
Brandeis math department, which he had helped to build, and we spoke a great deal
about department and university politics. Though I would not have guessed it then,
these lessons were the beginning of my interest in such topics, leading much later
to my work at MSRI and presidency of the American Mathematical Society. David
told me of past struggles on behalf of the department with deans and provosts; of
meetings with the President of Brandeis; and of tensions and repercussions within
the department itself.
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I found all this quite interesting, as a game of chess is interesting. But the first
time I was chair of the department, in 1981–1982, it felt very heavy when I had to
act myself! Worst of all were the negotiations over salaries. Brandeis math salaries
were very low (we thought) compared to what they should have been, and the
department’s egalitarian culture prevented much forward motion. It seemed strategic
to propose a larger increase for a smaller group, hoping to equalize another group
in the next round. In my naiveté I found it dismaying that no one was willing not
to be in the first group. . .so the plan caused only bad feelings, and never got off the
ground. That was the only time in my career when I regularly came home thinking
“I need a drink!”

Curiously, that first experience inoculated me against the stress: when I was
department chair again in the 90’s (and much later director of MSRI) I could more
easily act as if the issues were burningly important, and then turn away and be free
of the care when I didn’t need to be “on.” This skill has gotten stronger and stronger,
and served me well over the years—though there are still issues that can keep me
awake at night.

My second sabbatical was at the Sonderforschungsbereich (forerunner of the
Max Planck Institute) headed by Friedrich Hirzebruch at Bonn University. Monika,
who was born in Germany, was eager to spend a year nearer her origins and some
of her German family with our two children, then 1 and 3 years old, and this helped
determine the place. Chance again did its work in my favor: Antonius van de Ven,
a well-known Dutch algebraic geometer, was visiting for most of the period, and
we fell into a very pleasant collaboration. We would meet in the late morning at
the Institute and work together until hunger reached us around 3 or 4; then we
would stroll into town for food, and best of all, coffee and cake at one of the many
Konditoreien, on which van de Ven was expert.

Van de Ven taught me a great deal about algebraic geometry, as Buchsbaum
had about commutative algebra, and changed my direction again. Later in the year,
Walter Neumann also spent some time in Bonn, and we began a collaboration that
led to a year-long visit by Walter to Brandeis, and our book on knot theory.

It’s perhaps worth saying something about my earlier attempts to learn algebraic
geometry, as well. When I was a student at Chicago there was no algebraic geometer
on the faculty, but I listened to two one-quarter courses that were relevant. In one,
Kaplansky lectured from Chevalley’s book on algebraic curves. . .except that there
were no curves, only fields and valuations. I learned very little. Then the book
of Demazure and Gabriel appeared: schemes as functors. MacLane, who liked
anything with functors, convinced Swan to give a course on this approach. The
high point of the course, reached after a long slog, was to prove: The Grassmannian
Exists! Again, I learned nothing that could be called geometry.

When I came to Brandeis I was determined to keep trying. I listened to Paul
Monsky’s algebraic geometry course first. It was from the Weil foundations, already
a little old-fashioned. Big fields and small ones but. . .no geometry that I could
discern. Things went better as I listened to Mumford’s course from what was to
be his book, “Complex Projective Varieties I”—finally, some geometry! But I found
I still could not understand any of the frequent algebraic geometry seminars in the
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area, all cohomology and schemes. Then in 1977 Hartshorne’s book appeared. Since
my background in commutative algebra was by then strong, I found it relatively easy
to read, and over a summer I studied it end-to-end, doing nearly all the problems.
That fall, at last, the subject was open to me, though I still had not done anything
in it myself. I think of this 10-year effort, and eventual apprenticeship with van de
Ven, when people tell me of their troubles in learning this many-sided subject!

Returning from Bonn, I reconnected with Joe Harris, and enjoyed a long and
very fruitful collaboration with him around the applications of limit linear series—
in particular, the proof that the moduli space of curves of genus g ≥ 24 is of general
type! Joe and I occasionally played Go—he was a much stronger player—and I
imagined us growing old together, playing Go in the sun in Harvard square. This
was not to be.

In the light of what was to come it is worth mentioning my two longest stays
in Berkeley before coming here in earnest in 1997. In 1986 we moved across the
country from Boston for a year’s sabbatical. We loved living in Berkeley, and it was
a particularly productive time for me mathematically. I was a member of what is
now called the “complementary program” at MSRI, though I was well-connected
to some of the people in the algebra program. At the end of the year Monika and
I wondered whether we should try to return—but there seemed no ready way. We
happily went back to Boston, and I to Brandeis. Again in 1994 I was a visitor to
MSRI, for 7 weeks during a program related to algebraic geometry. I felt at the
time that the program badly lacked senior presence. For example, there were no
organizers in residence for most of the time I was there, and I was asked, even as
a short-term visitor, to run the main seminar. Nevertheless, Berkeley/MSRI was a
very attractive place to be (it helped that I house-sat in a wonderful old Berkeley
mansion).

Since my contact with MSRI was so slight, it seemed a great stretch when I
applied for the position of Director, a dark-horse candidate, 5 years later.

Before getting to that, I want to fill in a few relevant events. The first has to
do with my book, Commutative Algebra with a View Toward Algebraic Geometry,
published in 1995, and now by far my most quoted work. Writing this occupied me
off and on for over 20 years: the earliest written material (on Noether normalization)
is from a course I gave during my 1972 sabbatical in Leeds, and the ideas in my
exposition of the Koszul complex date from my still earlier writing of the notes for
Buchsbaum’s lectures in 1968. Some of the chapters carry distinctive memories.
For example, I can still picture a certain cafe near the Lago Maggiore where I sat
for many hours figuring out how to write about Gorenstein rings, after a memorable
workshop at the Monte Verità conference center! Springer was happy to publish the
book, but the proofreading was a nightmare: for a book with both “Algebra” and
“Algebraic” in the title, some typesetter decided that only one was necessary, and
changed all occurrences of “Algebraic” with the push of a button. Unfortunately,
I wasn’t experienced enough to simply say “No!—start again,” and instead spent
painful hours unsuccessfully trying to catch all the changes and change them back.
(As many readers will know, alas, many other slips remained.) Of course there are
things I would write differently if I were starting over, but I feel very good about the
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success the book has had. It won the AMS’ Steele Prize for Exposition in 2010. I
hope someday to write a short version.

I made a couple of mathematical visits to IMPA, in Rio, and something happened
during one of these visits that strongly influenced my future. I was a speaker at a
national meeting where Vladimir Arnol’d (Dima to his friends) was giving a series
of lectures; I listened with delight. I was lucky enough to stay in the same hotel, and
one day at breakfast he mentioned a conjecture that he had made, having to do with
the rigidity of algebras filtered by a sequence of ideals with 1-dimensional quotients.
I thought the conjecture should be false and produced a counterexample a few days
later. Arnol’d was very aware of the stylistic differences between the mathematics
in different countries, and I think he was surprised, not so much that there was a
counterexample, but that an American should have gotten his hands dirty enough to
find it!

Dima and I became good friends, and had some adventures together: for example,
during the conference there was a storm, despite which we went swimming together
in the sea near the hotel. The waves were big, and the water was very rough. We
were separated by a big wave, and when I dragged myself out onto the beach, I
looked around. . .and didn’t see Dima! I thought “Oh, no! has he drowned?” but he
appeared, intact, a few moments later. We didn’t go back in. . .. Later I visited Dima
and his wife Ella in their flat in Paris. Rather than going ’round the corner to buy
the wonderful cheese or croissants, Dima took me on a bike trip to collect berries
and wild vegetables on the outskirts of Paris. Visiting Paris, a little later, I was a
faithful member of his seminar. Though he sometimes didn’t let the lecturer finish
a sentence, his explanations were so good—and generally so much more intuitive
than the lecturer’s—that it was easy for me to forgive him. Another time Dima and
Ella visited Monika and me at our vacation cottage in New Hampshire. We all liked
to collect mushrooms—but Dima and Ella were far more efficient and far less fussy;
they came home with much bigger bags, worms and all.

I’m convinced that Arnol’d’s warm letter of recommendation—because I was the
American who dared to challenge his conjecture, but also because of the work I had
done with Harold Levine on topological degree—was one of the main reasons I was
eventually hired at Berkeley and MSRI.

In 1996 I got a letter that changed my life, with the subject line “Retire in
Berkeley?” Here’s the background: on a visit to Berkeley a year or two before
I spent a very pleasant evening over dinner with Bernd Sturmfels and his wife,
Hyungsook Kim. I mentioned that Berkeley would be a great place to retire someday
(an idea that Marie France Vigneras had once put forward to me). Now Bernd
was suggesting that I apply for the job of MSRI Director! Brandeis had been in
hard times financially for years, and there had been serious cuts in the mathematics
department; I was thoroughly sick of fighting a losing battle to keep the department
strong, and the idea of moving to Berkeley was extremely attractive.

However, I wasn’t as sure that the administrative job of Director was a good fit
for me. I had made only two visits, both times as a peripheral member of programs.
And the administrative jobs I’d had—as department chair, as organizer of scientific
meetings—were far smaller and simpler than the MSRI Directorship. It seems that
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the search committee agreed: I was not the first choice for the position, but when the
first candidate withdrew, I was apparently the best candidate in a weak field. . .and
got the job! Next, I needed a Deputy Director. Hugo Rossi had been Chair at
Brandeis when I was first hired, and was now at the University of Utah. A wonderful
inspiration led me to phone and offer him the position, and he accepted 24 hours
later. Hugo was much a much more experienced administrator than I, and it proved
a successful partnership.

There were bad feelings at the time between the Board of Trustees, headed by
Elwyn Berlekamp, and the directorate, led by Bill Thurston. A charismatic and
immensely brilliant mathematician, Thurston had succeeded in broadening the focus
of MSRI in a very positive way, but the tension with the trustees was proving
destructive. Fortunately the differences were not very deep, and the rifts were soon
mended. Perhaps because of the contrast with Thurston, I got more credit than I
deserved.

An immediate problem I faced was a new policy at the NSF: after 15 years of reg-
ular renewals, the NSF had decided that in 2000 there should be a “recompetition”—
everyone in the world could apply to take the place of MSRI. The NSF was
quite aware of the difficulties that MSRI had had under Thurston, and I felt
that I might become “the Director who lost MSRI”! Our strongest competitor
seemed to be the American Institute of Mathematics (AIM): John Fry, a wealthy
businessman, had promised to put his money behind AIM, which was negotiating
a partnership with Stanford University—a formidable coupling. Fortunately for
MSRI, the AIM/Stanford partnership fell through. Moreover, Berlekamp and others
on the Board contributed money to show that MSRI could also get non-government
funding. To my great relief, MSRI won the recompetition.

My first two five-year terms at MSRI were intense and full of incident, which
will have to be reported elsewhere. Joe Buhler, Michael Singer, Robert Meggin-
son and Julius Zelmanowitz succeeded Hugo as Deputy Directors and I greatly
enjoyed working with them. A first serious fundraising project, carried out with
Development Director Jim Sotiros, gathered $12 million for a building expansion
and renovation that included the grand Simons Auditorium and many other features.
Ten years later architect William Glass and celebrated the achievement with a large-
format book describing that process and some of the ideas that went into the design.
When I retired from the Directorship in 2007, Jim Simons, whom I had recruited to
the Board, gave MSRI its first major endowment gift: $5 million outright plus $5
million to match.

In 2007 Robert Bryant became Director of MSRI, and I happily began life as a
regular Berkeley professor, but this did not last very long. Shortly before I retired
as Director, Jim Simons had inquired about my plans, and soon asked me whether
I would come to New York as Director of the Simons Foundation! At the time the
Foundation was a very much smaller and less active organization than today: there
was a group funding research on Autism, and a group running Math for America—
technically a separate foundation. After looking at the situation, I said no.

A couple of years later Jim asked me to come and found a new Division of
Mathematics and Physical Sciences (MPS) within the foundation, focusing on
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fundamental math, physics and computer science. By this time the Foundation had
developed further and was about to move into much bigger quarters. My task would
be to create a program that could grow over a few years to spend $40 million
annually. This was too exciting to pass up! Starting in 2010, I began to spend
about half time in NYC, and eventually worked on Foundation business full time.
Collaborating with Jim on plans for the MPS program while enjoying the wonderful
atmosphere created by Marilyn Simons’ management of the Foundation proved a
capstone experience.

In 2012–2013 MSRI hosted a year-long program on Commutative Algebra, and
already when I joined the Simons Foundation I had decided to return to Berkeley
for that program. Jim and Marilyn asked me to stay at the Foundation in New York.
Monika and I weighed the possibilities, but we ultimately decided that it would be
too disruptive for our family, and I declined. When I stepped down as Director of
MPS, Jim and Marilyn asked me to join the Board of the Foundation, and I was
delighted to continue in that role.

Robert Bryant’s term came to an end in the summer of 2013, and I put myself
forward as a candidate to succeed him. I have served as Director for two more terms,
but will retire from that job in August of 2022, 25 years after coming to MSRI.

Among the changes at MSRI that I’ve overseen in these years, several stand out.
First, some measurable increases: the number of Academic Sponsor departments
has gone from 28 to 110; the annual budget has gone from about $3 million in
1997–1998 to about $12 million in 2019–2020; and the building expansion roughly
doubled the floorspace of MSRI, now renamed Chern Hall in honor of the founding
director.

With these new resources, the major scientific programs (typically two in each
semester) have been significantly enriched. These already had an excellent reputa-
tion but, as mentioned above, they didn’t always have enough senior participation,
and this aspect has improved as we have moved resources from the “Complementary
Program” into the main programs and raised endowment and other funds to improve
the support of the members. We have emphasized long stays since these are the most
productive. We have greatly increased the number of graduate summer schools we
offer, now held all over the world, and started new programs emphasizing wide
participation from currently under-represented groups, so that (in non-pandemic
times) our building is full throughout the year. We have also added programs to
serve mathematics in other ways, such as the support of Numberphile, the Mathical
Book Prize, the National Math Festival, the prize for mathematical economics given
jointly with the Chicago Mercantile Exchange, and the twice-yearly Congressional
Briefings in Washington, DC. In these ways MSRI has strengthened both its core
missions and its impact on the wider community.

Many people share the credit for these achievements: MSRI has a strong and
well-functioning staff, and successive Deputy Directors, and especially Hélène
Barcelo, Deputy Director for the last 10 years, have contributed immensely.

Until about 2000, the National Science Foundation was essentially the only
financial supporter of MSRI, and it continues to be the most important source. Soon
after I came to MSRI, the NSA began to contribute significantly, and continues to
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do so. Now many private individuals and foundations add their support, amounting
to roughly half our budget, a healthy diversification.

I believe that a substantial endowment will be necessary to ensure MSRI’s
continued ability to serve the community no matter what shifts in federal funding
there may be over time. In 2007 we had virtually no endowment. In 2021 the
endowment (counting pledges) has reached about $75 million, and our current goal
is $100 million.

One sign of the current health of MSRI is the great strength of the field of
applicants to succeed me as Director in August 2022. I’m delighted that Tatiana
Toro, the Craig McKibben & Sarah Merner Professor of Mathematics at the
University of Washington was chosen, and that she has agreed to become MSRI’s
next Director! The Institute will be in good hands.

As for my own future, I’m looking forward to going back to the life of an
ordinary professor at Berkeley, and to being back in the classroom. Despite the
scarcity of time to concentrate on mathematics, I’ve managed to keep up research
over these 25 years. From my work in this period, I’m particularly proud of the
proof of the Boij-Soederberg conjecture and the analysis of Chow forms (both with
Frank Schreyer, continued in work with Daniel Erman); of matrix factorizations for
Cohen-Macaulay modules over complete intersections (with Irena Peeva); of the
work on residual intersections (with Marc Chardin and Bernd Ulrich); and of the
book on intersection theory, “3264 And All That” (with Joe Harris). I’ve had great
pleasure throughout my career in collaborations (you can find the full list of my
collaborators in my MathSci record), and I take a special pleasure in those with
former students, with many of whom I’ve kept a close relationship. I look forward
particularly to continuing collaborations and to advising of PhD students in the next
years.

Berkeley, CA, USA David Eisenbud
August 2021
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1 Introduction

The origin of the theory of D-modules can be found in the works of Kashiwara
[70] and Bernstein [9, 10]. The motivation behind Bernstein’s approach was to give
a solution to a question posed by I. M. Gel’fand [55] at the 1954 edition of the
International Congress of Mathematicians regarding the analytic continuation of the
complex zeta function. The solution is based on the existence of a polynomial in a
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single variable satisfying a certain functional equation. This polynomial coincides
with the b-function developed by Sato in the context of prehomogeneous vector
spaces and it is known as the Bernstein-Sato polynomial.

The theory ofD-modules grew up immensely in the 1970s and 1980s and funda-
mental results regarding Bernstein-Sato polynomials were obtained by Malgrange
[91–93] and Kashiwara [71, 72]. For instance, they proved the rationality of the
roots of the Bernstein-Sato polynomial and related the roots to the eigenvalues of
the monodromy of the Milnor fiber associated to the singularity. Indeed this link is
made through the concept of V -filtrations and the Hilbert-Riemann correspondence.

The theory of D-modules burst into commutative algebra through the seminal
work of Lyubeznik [85] where he proved some finiteness properties of local
cohomology modules. Nowadays, the theory ofD-modules is an essential tool used
in the area and has a prominent role. For example, the smallest integer root of
the Bernstein-Sato polynomial determines the structure of the localization [143],
and thus, using the Čech complex, it is a key ingredient in the computation of
local cohomology modules [107–109, 111]. In addition, several results regarding
finiteness aspects of local cohomology were obtained via the existence of the
Bernstein-Sato polynomial and related techniques [1, 106]. Finally, there are several
invariants that measure singularity that are related to the Bernstein-Sato polynomial
[36, 38, 51, 102].

In this expository paper we survey several features of the theory of Bernstein-
Sato polynomials relating to commutative algebra that have been developed over
the last fifteen years or so. For instance, we discuss a version of Bernstein-Sato
polynomial associated to ideals was introduced by Budur, Mustaţă, and Saito [36].
We also present a version of the theory for rings of positive characteristic developed
by Mustaţă [100] and furthered by Bitoun [14] and Quinlan-Gallego [114]. Finally,
we treat a recent extension to certain singular rings [1, 2, 63]. In addition, we
discuss relations between the roots of the Bernstein-Sato polynomial and the poles
of the complex zeta function [9, 10] and also the relation with multiplier ideals and
jumping numbers [36, 38, 51].

In this survey we have extended a few results to greater generality than previously
in the literature. For instance, we prove the existence of Bernstein-Sato polynomials
of nonprincipal ideals for differentiably admissible algebras in Theorem 5.6. In
Proposition 8.2, we show that Walther’s proof [143] about generation of the
localization as a D-module also holds for nonregular rings. In Theorem 8.6 we
observe conditions sufficient for the finiteness of the associated primes of local
cohomology in terms of the existence of the Bernstein-Sato polynomial; this covers
several cases where this finiteness result is known. We point out that these results are
likely expected by the experts and the proofs are along the lines of previous results.
They are in this survey to expand the literature on this subject.

We have attempted to collect as many examples as possible. In particular, Sect. 4
is devoted to discuss several examples for classical Bernstein-Sato polynomials. In
Sect. 5, we also provide several examples for nonprincipal ideals. In addition, we
tried to collect many examples in other sections. We also attempted to present this
material in an accessible way for people with no previous experience in the subject.
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The theory surrounding the Bernstein-Sato polynomial is vast, and only a portion
of it is discussed here. Our most blatant omission is the relation of the roots of
Bernstein-Sato polynomials with the eigenvalues of the monodromy of the Milnor
fiber [90]. Another crucial aspect of the theory that is not touched upon here is mixed
Hodge modules [119]. We also do not discuss the different variants of the Strong
Monodromy conjecture which relate the poles of the p-adic Igusa zeta function or
the topological zeta function with the roots of the Bernstein-Sato polynomial [48,
68, 105]. We also omitted computational aspects of this subject [13, 107]. We do not
discuss in depth several recent results obtained via representation theory [83, 84].
We hope the reader of this survey is inspired to learn more and we enthusiastically
recommend the surveys of Budur [31, 33], Granger [57], Saito [122], and Walther
[52, 144] for further insight.

2 Preliminaries

2.1 Differential Operators

Definition 2.1 Let K be a field of characteristic zero, and let A be either

• A = K[x1, . . . , xd ], a polynomial ring over K,
• A = K�x1, . . . , xd�, a power series ring over K, or
• A = C{x1, . . . , xd}, the ring of convergent power series in a neighborhood of the

origin over C.

The ring of differential operators DA|K is the K-subalgebra of EndK(A) generated

by A and ∂1, . . . , ∂d , where ∂i is the derivation ∂
∂xi

.

In the polynomial ring case, DA|K is the Weyl algebra. We refer the reader to
books on this subject [46], [96, Chapter 15] for a basic introduction to this ring and
its modules. The Weyl algebra can be described in terms of generators and relations
as

DA|K =
K〈x1, . . . , xd , ∂1, . . . , ∂d〉

(∂ixj − xj ∂i − δij | i, j = 1, . . . , d)
,

where δij is the Kronecker delta. As DA|K is a subalgebra of EndK(A), xi ∈ DA|K
is the operator of multiplication by xi . The ring DA|K has an order filtration

Di
A|K =

⊕

a1,...,ad∈N
b1+···+bd≤i

K · xa1
1 · · · xadd ∂b1

1 · · · ∂bdd .

The associated graded ring of DA|K with respect to the order filtration is a
polynomial ring in 2d variables. Many good properties follow from this, for
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instance, the Weyl algebra is left-Noetherian, is right-Noetherian, and has finite
global dimension.

In the generality of Definition 2.1, the associated graded ring of DA|K with
respect to the order filtration is a polynomial ring over A.

Rings of differential operators are defined much more generally as follows.

Definition 2.2 Let K be a field, and R be a K-algebra.

• D0
R|K = HomR(R,R) ⊆ EndK(R).

• Inductively, we define Di
R|K as

{δ ∈ EndK(R) | δ ◦ μ− μ ◦ δ ∈ Di−1
R|K for all μ ∈ D0

R|K}.

• DR|K =
⋃
i∈NDiR|K.

We call DR|K the ring of (K-linear) differential operators on R, and

D0
R|K ⊆ D1

R|K ⊆ D2
R|K ⊆ · · ·

the order filtration on DR|K.

We refer the interested reader to classic literature on this subject, e.g., [58, §16.8],
[16], [104], and [96, Chapter 15]. We now present a few examples of rings of
differential operators.

(i) If A is a polynomial ring over a field K, then

Di
A|K =

⊕

a1+···+ad≤i
A · ∂

a1
1

a1! · · ·
∂
ad
d

ad ! ,

where
∂
ai
i

ai ! is the K-linear operator given by

∂
ai
i

ai ! (x
b1
1 · · · xbdd ) =

(
bi

ai

)
x
b1
1 · · · xbi−aii · · · xbdd .

Here, we identify an element a ∈ A with the operator of multiplication
by a. In particular, when K has characteristic zero, this definition agrees with
Definition 2.1.



Bernstein-Sato Polynomials in Commutative Algebra 5

(ii) If R is essentially of finite type over K, and W ⊆ R is multiplicatively closed,
then Di

W−1R|K = W−1Di
R|K. In particular, for R = K[x1, . . . , xd ]f ,

Di
R|K =

⊕

a1+···+ad≤i
K[x1, . . . , xd ]f · ∂

a1
1

a1! · · ·
∂
ad
d

ad ! .

(iii) If A is a polynomial ring over K, and R = A/a for some ideal a, then

Di
R|K =

{δ ∈ Di
A|K | δ(a) ⊆ a}
aDi

A|K
.

In general, rings of differential operators need not be left-Noetherian or right-
Noetherian, nor have finite global dimension [12].

We note that if R is an N-graded K-algebra, then DR|K admits a compatible Z-
grading via deg(δ) = deg(δ(f ))− deg(f ) for all homogeneous f ∈ R.

Remark 2.3 The ring R is tautologically a left DR|K-module. Every localization of

R is aDR|K-module as well. For δ ∈ DR|K, and f ∈ R, we define δ(j),f inductively

as δ(0),f = δ, and δ(j),f = δ(j−1),f ◦f −f ◦δ(j−1),f . The action ofDR|K onW−1R

is then given by

δ · r
f
=

t∑

j=0

δ(j),f (r)

f j+1

for δ ∈ Dt
R|K, r ∈ R, f ∈ W .

Definition 2.4 Let a ⊆ R be an ideal and F = f1, . . . , f� ∈ R be a set of
generators for a. Let M be any R-module. The Čech complex of M with respect
to F is defined by

Č•(F ;M) : 0→ M →
⊕

i

Mfi →
⊕

i,j

Mfifj → · · · → Mf1···f� → 0,

where the maps on every summand are localization maps up to a sign. The local
cohomology ofM with support on a is defined by

Hia(M) = Hi(Č•(F ;M)).

This module is independent of the set of generators of a.

As a special case, H 1
(f )(R) =

Rf

R
.
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The Čech complex of any left DR|K-module with respect to any sequence of
elements is a complex of DR|K-modules, and hence the local cohomology of any
DR|K-module with respect to any ideal is a left DR|K-module.

2.2 Differentiably Admissible K-Algebras

In this subsection we introduce what is called now differentiably admissible
algebras. To the best of our knowledge, this is the more general class of ring
where the existence of the Bernstein-Sato polynomial is known. We follow the
extension done for Tate and Dwork-Monsky-Washnitzer K-algebras by Mebkhout
and Narváez-Macarro [98], which was extended by the third-named author to
differentiably admissible algebras [106]. We assume that K is a field of characteristic
zero.

Definition 2.5 Let A be a Noetherian regular K-algebra of dimension d. We say
that A is differentiably admissible if

(i) dim(Am) = d for every maximal ideal m ⊆ A,
(ii) A/m is an algebraic extension of K for every maximal ideal m ⊆ A, and

(iii) DerA|K is a projective A-module of rank d such that the natural map

Am ⊗A DerA|K→ DerAm|K

is an isomorphism.

Example 2.6 The following are examples of differentiably admissible algebras:

(i) Polynomial rings over K.
(ii) Power series rings over K.

(iii) The ring of convergent power series in a neighborhood of the origin over C.
(iv) Tate and Dwork-Monsky-Washnitzer K-algebras [98].
(v) The localization of a complete regular rings of mixed characteristic at the

uniformizer [86, 106].
(vi) Localization of complete local domains of equal-characteristic zero at certain

elements [112].

We note that in the Examples 2.6(i)–(iv), we have that DerA|K is free, because
there exists x1, . . . , xd ∈ R and ∂1, . . . , ∂d ∈ DerA|K such that ∂i(xj ) = δi,j [94,
Theorem 99].

Theorem 2.7 ([106, Theorem 2.7]) Let A be a differentiably admissible K-
algebra. If there is an element f ∈ A such that R = A/fA is a regular ring,
then R is a differentiably admissible K-algebra.
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Remark 2.8 ([106, Proposition 2.10]) Let A be a differentiably admissible K-
algebra. Then,

(i) Dn
A|K = (DerA|K+A)n, and

(ii) DA|K ∼= A〈DerA|K〉.
Theorem 2.9 ([106, Section 2]) Let A be a differentiably admissible K-algebra.
Then,

(i) DA|K is left and right Noetherian;
(ii) grD•

A|K
(DA|K) is a regular ring of pure graded dimension 2d;

(iii) gl. dim(DA|K) = d.

We recall that for Noetherian rings the left and right global dimension are equal.
In fact, this number is also equal to the weak global dimension [116, Theorem 8.27].

Definition 2.10 ([98]) We say that DA|K is a ring of differentiable type if

(i) DA|K is left and right Noetherian,
(ii) grD•

A|K
(DA|K) is a regular ring of pure graded dimension 2d, and

(iii) gl. dim(DA|K) = d.

By Theorem 2.9, the ring of differential operators of any differentiably admissi-
ble algebra is a ring of differentiable type.

2.3 Log-Resolutions

Let A = C[x1, . . . , xd ] be the polynomial ring over the complex numbers and set
X = Cd . A log-resolution of an ideal a ⊆ A is a proper birational morphism π :
X′ → X such that X′ is smooth, a · OX′ = OX′ (−Fπ) for some effective Cartier
divisor Fπ and Fπ + E is a simple normal crossing divisor where E = Exc(π) =∑r
i=1 Ei denotes the exceptional divisor. We have a decomposition Fπ = Fexc +

Faff into its exceptional and affine parts which we denote

Fπ :=
r∑

i=1

NiEi +
s∑

j=1

N ′j Sj

with Ni,N ′j being nonnegative integers. For a principal ideal a = (f ) we have that
Fπ = π∗f is the total transform divisor and Sj are the irreducible components of
the strict transform of f . In particular N ′j = 1 for all j when f is reduced.

The relative canonical divisor

Kπ :=
r∑

i=1

kiEi
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is the effective divisor with exceptional support defined by the Jacobian determinant
of the morphism π .

There are many invariants of singularities that are defined using log-resolutions
but for now we only focus on multiplier ideals. We introduce the basics on these
invariants and we refer the interested reader to Lazarsfeld’s book [77]. We also want
to point out that there is an analytical definition of these ideals that we consider in
Sect. 10.

Definition 2.11 The multiplier ideal associated to an ideal a ⊆ A and λ ∈ R≥0 is
defined as

J (aλ) = π∗OX′ (�Kπ − λFπ�) = {g ∈ A | ordEi (π
∗g) ≥ �λei − ki� ∀i}.

An important feature is that J (aλ) does not depend on the log-resolution
π : X′ → X. Moreover we have Riπ∗OX′ (�Kπ − λFπ�) = 0 for all i > 0.

From its definition we deduce that multiplier ideals satisfy the following
properties:

Proposition 2.12 Let a, b ⊆ A be ideals, and λ, λ′ ∈ R≥0. Then,

(i) If a ⊆ b, then J (aλ) ⊆ J (bλ).
(ii) If λ < λ′, then J (aλ′) ⊆ J (aλ).

(iii) There exists ε > 0 such that J (aλ) = J (aλ′), if λ′ ∈ [λ, λ+ ε).
Definition 2.13 We say that λ is a jumping number of a if

J (aλ) �= J (aλ−ε)

for every ε > 0.

Notice that jumping numbers have to be rational and we have a nested filtration

A � J (aλ1) � J (aλ2) � · · · � J (aλi ) � · · ·

where the jumping numbers are the λi where we have a strict inclusion and λ1 =
lct(a) is the so-called log-canonical threshold. Skoda’s theorem states that J (aλ) =
a · J (aλ−1) for all λ > dimA.

Multiplier ideals can be generalized without much effort to the case where X is
a normal Q-Gorenstein variety over a field K of characteristic zero; one needs to
consider Q-divisors. Fix a log-resolution π : X′ → X and let KX be a canonical
divisor onX which is Q-Cartier with indexm large enough. Pick a canonical divisor
KX′ in X′ such that π∗KX′ = KX. Then, the relative canonical divisor is

Kπ = KX′ − 1

m
π∗(mKX)

and the multiplier ideal of an ideal a ⊆ OX is J (aλ) = π∗OX′ (�Kπ − λFπ�).
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A version of multiplier ideals for normal varieties has been given by de Fernex
and Hacon [47]. In this generality we ensure the existence of canonical divisors that
are not necessarily Q-Cartier. Then we may find some effective boundary divisor �
such that KX +� is Q-Cartier with index m large enough. Then we consider

Kπ = KX′ − 1

m
π∗(m(KX +�))

and the multiplier ideal J (aλ,�) = π∗OX′ (�Kπ − λF �) which depends on �.
This construction allowed de Fernex and Hacon to define the multiplier ideal J (aλ)
associated to a and λ as the unique maximal element of the set of multiplier ideals
J (aλ,�) where � varies among all the effective divisors such that KX + � is Q-
Cartier. A key point proved in [47] is the existence of such a divisor � that realizes
the multiplier ideal as J (aλ) = J (aλ,�).

2.4 Methods in Prime Characteristic

In this section we recall definitions and results in prime characteristic that are used
in Sect. 6. We focus on Cartier operators, differential operators, and test ideals.

Let R be a ring of prime characteristic p. The Frobenius map F : R → R is
defined by r �→ rp. We denote by Fe∗R the R-module that is isomorphic to R as
an Abelian group with the sum and the scalar multiplication is given by the e-th
iteration of Frobenius. To distinguish the elements of Fe∗R from R we write them
as Fe∗f . In particular, r · Fe∗f = Fe∗ (rpef ). Throughout this subsection we assume
that Fe∗R is a finitely generated R-module: that is, R is F -finite.

Definition 2.14 Let R be an F -finite ring.

(i) An additive map ψ : R→ R is a pe-linear map if ψ(rf ) = rpeψ(f ). Let FeR
be the set of all the pe-linear maps.

(ii) An additive map φ : R→ R is a p−e-linear map if φ(rp
e
f ) = rφ(f ). Let CeR

be the set of all the p−e-linear maps.
(iii) An additive map δ : R → R is a differential operator of level e if it is Rp

e
-

linear. Let D(e)R be the set of all differential operator of level e.

Differential operators relate to the Frobenius map in the following important
way. This alternative characterization of the ring of differential operators is used
in Sect. 6.

Theorem 2.15 ([131, Theorem 2.7], [148, Theorem 1.4.9]) Let R be a finitely
generated algebra over a perfect field K. Then

DR|K =
⋃

e∈N
D
(e)
R =

⋃

e∈N
HomRpe (R,R).
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In particular, any operator of degree ≤ p is Rp-linear.

Remark 2.16 Suppose that R is a reduced ring. Then, we may identify Fe∗R =
R1/pe . We have that

(i) FeR ∼= HomR(R, F e∗R),
(ii) CeR ∼= HomR(F e∗R,R), and

(iii) D(e)R
∼= HomR(F e∗R,F e∗R).

Remark 2.17 Let A be a regular F -finite ring. Then,

CeA ⊗A FeA ∼= D(e)A .

This can be reduced to the case of a complete regular local ring. In this case, one can
construct explicitly a free basis for Fe∗A asA is a power series over an F -finite field.
Then, it follows that CeA, FeA, and D(e)A are free A-modules. From this it follows that

CeAa = CeAb if and only D(e)A a = D(e)A b for any two ideals a, b ⊆ A.

We now focus on test ideals. These ideals have been a fundamental tool to
study singularities in prime characteristic. They were first introduced by means of
tight closure developed by Hochster and Huneke [64–67]. Hara and Yoshida [60]
extended the theory to include test ideals of pairs. An approach to test ideals by
means of Cartier operators was given by Blickle et al. [21, 22] in the case that A is
a regular ring. Test ideals have also been studied in singular rings via Cartier maps
[19, 20, 128].

Definition 2.18 Let A be an F -finite regular ring. The test ideal associated to an
ideal a ⊆ A and λ ∈ R≥0 is defined by

τA(a
λ) =

⋃

e∈N
CeAa�p

eλ�.

We note that the chain of ideals {CeAI �p
eλ�} is increasing [21], and so, τA(aλ) =

CeAa�p
eλ� for e � 0.

We now summarize basic well-known properties of test ideals.

Proposition 2.19 ([21]) Let A be an F -finite regular ring, a, b ⊆ A ideals, and
λ, λ′ ∈ R>0. Then,

(i) If a ⊆ b, then τA(aλ) ⊆ τA(bλ).
(ii) If λ < λ′, then τA(aλ

′
) ⊆ τA(aλ).

(iii) There exists ε > 0, such that τA(aλ) = τA(aλ′), if λ′ ∈ [λ, λ+ ε).
In this way, to every ideal a ⊆ A is associated a family of test ideals τA(aλ)

parameterized by real numbers λ ∈ R>0. Indeed, they form a nested chain of ideals.
The real numbers where the test ideals change are called F -jumping numbers. To be
precise:
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Definition 2.20 Let A be an F -finite regular ring and let a ⊆ A be an ideal. A real
number λ is an F -jumping number of a if

τA(a
λ) �= τA(aλ−ε)

for every ε > 0.

3 The Classical Theory for Regular Algebras
in Characteristic Zero

3.1 Definition of the Bernstein-Sato Polynomial
of an Hypersurface

One basic reason that the ring of differential operators is useful is that we can use its
action on the original ring to “undo” multiplication onA: we can bring nonunits inA
to units by applying a differential operator. The Bernstein-Sato functional equation
yields a strengthened version of this principle. Before we state the general definition,
we consider what is perhaps the most basic example.

Example 3.1 Consider the variable x ∈ K[x]. Differentiation by x not only sends x
to 1, but, moreover, decreases powers of x:

∂xx
s+1 = (s + 1)xs for all s ∈ N. (3.1)

In this equation, we were able to use one fixed differential operator to turn any power
of x into a constant times the next smaller power. Moreover, the constant we obtain
is a linear function of the exponent s.

The functional equation arises as a way to obtain a version for Eq. 3.1 for any
element in a K-algebra.

Definition 3.2 Let K a field of characteristic zero and A be a regular K-algebra. A
Bernstein-Sato functional equation for an element f in A is an equation of the form

δ(s)f s+1 = b(s)f s for all s ∈ N,

where δ(s) ∈ DA|K[s] is a polynomial differential operator, and b(s) ∈ K[s] is a
polynomial. We say that such a functional equation is nonzero if b(s) is nonzero;
this implies that δ(s) is nonzero as well. We may say that (δ(s), b(s)) as above
determine a functional equation for f .
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Theorem 3.3 Any nonzero element f ∈ A satisfies a nonzero Bernstein-Sato
functional equation. That is, there exist δ(s) ∈ DA|K[s] and b(s) ∈ K[s] � {0}
such that

δ(s)f s+1 = b(s)f s for all s ∈ N.

We pause to make an observation. Fix f ∈ A, and suppose that (δ1(s), b1(s))

and (δ2(s), b2(s)) determine two Bernstein-Sato functional equations for f :

δi(s)f
s+1 = bi(s)f s for all s ∈ N for i = 1, 2.

Let c(s) ∈ K[s] be a polynomial. Then

(c(s)δ1(s)+ δ2(s))f s+1 = (c(s)b1(s)+ b2(s))f
s for all s ∈ N.

It follows that, for f ∈ A,

{b(s) ∈ K[s] | ∃δ(s) ∈ DA|K[s] such that δ(s)f s+1 = b(s)f s for all s ∈ N}

is an ideal of K[s]. By Theorem 3.3, this ideal is nonzero.

Definition 3.4 The Bernstein-Sato polynomial of f ∈ A is the minimal monic
generator of the ideal

{b(s) ∈ K[s] | ∃ δ(s) ∈ DA|K[s] such that δ(s)f s+1 = b(s)f s for all s ∈ N} ⊂ K[s].

This polynomial is denoted bf (s).

The polynomial described in Definition 3.4 was originally introduced in inde-
pendent constructions by Bernstein [9, 10] to establish meromorphic extensions of
distributions, and by Sato [125, 126] as the b-function in the theory of prehomoge-
neous vector spaces.

3.2 The D-Modules DA|K[s]f s and Af [s]f s

For the proof of Theorem 3.3 and for many applications, it is preferable to consider
the Bernstein-Sato functional equation as a single equality in a DA|K[s]-module
where f s is replaced by a formal power “f s .” We are interested in two such modules
that are closely related:

DA|K[s]f s ⊆ Af [s]f s .
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We give a couple different constructions of each. For much more on these modules,
we refer the interested reader to Walther’s survey [144].

3.2.1 Direct Construction of Af [s]f s

Definition 3.5 We define the left DAf |K[s]-module Af [s]f s as follows:

• As an Af [s]-module, Af [s]f s is a free cyclic module with generator f s .
• Each partial derivative ∂i acts by the rule

∂i(a(s)f
s) =

(
∂i(a(s))+ sa(s)∂i(f )

f

)
f s

for a(s) ∈ Af [s].
We often consider this as a module over the subring DA|K[s] ⊆ DAf |K[s] by

restriction of scalars. To justify that this gives a well-defined DAf |K[s]-module

structure, one checks that ∂i(xia(s)f s) = xi∂i(a(s)f s)+ a(s)f s .
From the definition, we see that this module is compatible with specialization

s �→ n ∈ Z. Namely, for all n ∈ Z, define the specialization maps

θn : Af [s]f s → Af by θn(a(s)f
s) = a(n)f n

and

πn : DAf |K[s] → DAf |K by πn(δ(s)) = δ(n).

We then have πn(δ(s)) · θn(a(s)f s) = θn(δ(s) · a(s)f s). This simply follows from
the fact that the formula for ∂i(a(s)f s) in the definition agrees with the power rule
for derivations when s is replaced by an integer n and f s is replaced by f n.

3.2.2 Local Cohomology Construction of Af [s]f s

It is also advantageous to consider Af [s]f s as a submodule of a local cohomology
module.

Consider the local cohomology module H 1
(f−t)(Af [t]), where t is an indetermi-

nate over A. As an Af -module, this is free with basis

{[
1

f − t
]
,

[
1

(f − t)2
]
,

[
1

(f − t)3
]
, . . .

}
: (3.2)
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indeed, these are linearly independent over Af , and we can rewrite any element

[
p(t)

(f − t)m
]
∈ H 1

(f−t)(Af [t]), with p(t) ∈ Af [t]

in this form by writing t = f − (f − t), expanding, and collecting powers of f − t .
By Remark 2.3, H 1

(f−t)(Af [t]) is naturally a DAf [t]|K-module.
Consider the subring DAf |K[−∂t t] ⊆ DAf [t]|K. We note that −∂t t commutes

with every element ofDAf |K and that −∂t t does not satisfy any nontrivial algebraic
relation over DAf |K, so DAf |K[−∂t t] ∼= DAf |K[s] for an indeterminate s. We

consider H 1
(f−t)(Af [t]) as a DAf |K[s]-module via this isomorphism. Namely,

(δms
m + · · · + δ0) ·

[
a

(f − t)n
]
= (δm(−∂t t)m + · · · + δ0) ·

[
a

(f − t)n
]
,

where the action on the right is the natural action on the localization.

Lemma 3.6 The elements
{
(−∂t t)n ·

[
1

f − t
] ∣∣ n ∈ N

}

are Af -linearly independent in H 1
(f−t)(A[t]) ⊆ H 1

(f−t)(Af [t]).

Proof We show by induction on n that the coefficient of (−∂t t)n ·
[

1
f−t

]
corre-

sponding to the element
[

1
(f−t)n+1

]
in the Af -basis (3.2) is nonzero. This is trivial

if n = 0, and the inductive step follows from the formula

−∂t t ·
[

a

(f − t)n
]
=
[
(n− 1)a

(f − t)n
]
+
[ −nf a
(f − t)n+1

]
. ��

Proposition 3.7 The map

α : Af [s]f s → H 1
(f−t)(Af [t]) given by α(a(s)f s) = a(−∂t t) ·

[
1

f − t
]

is an injective homomorphism of DAf |K[s]-modules.

Proof Injectivity of α follows from Lemma 3.6. We just need to check that this map
is linear with respect to the action of DAf |K[s]. We have that α is Af [s]-linear; we



Bernstein-Sato Polynomials in Commutative Algebra 15

just need to check that α commutes with the derivatives ∂i . We compute that

α(∂if
s) = α

(
s∂i(f )

f
f s

)
= −∂t t ∂i(f )

f

[
1

f − t
]

= −∂i(f )∂t
[

1

f − t
]
= ∂i

[
1

f − t
]
,

where in the penultimate equality we used that

t

[
1

f − t
]
= (f − (f − t))

[
1

f − t
]
= f

[
1

f − t
]
. ��

We note that α is not surjective in general.
As Af [s]f s is generated by f s as a DAf |K[s]-module, Proposition 3.7 yields

the following result.

Proposition 3.8 The DAf |K[s]-module Af [s]f s is isomorphic to the submodule

DAf |K[s] ·
[

1
f−t

]
⊆ H 1

(f−t)(Af [t]), where s acts on the latter by −∂t t .

3.2.3 Constructions of the Module DA|K[s]f s

We now give three constructions of the submodule DA|K[s]f s of the module
Af [s]f s . The first is exactly as suggested by the notation.

Definition 3.9 We define DA|K[s]f s as the DA|K[s]-submodule of Af [s]f s gen-
erated by the element f s .

Proposition 3.10 There is an isomorphism

DA|K[s]f s ∼= DA|K[s]
{δ(s) ∈ DA|K[s] | δ(n)f n = 0 for all n ∈ N} .

Proof We just need to show that the annihilator of f s in Af [s]f s is

{δ(s) ∈ DA|K[s] | δ(n)f n = 0 for all n ∈ N}.
We can write δ(s)f s as p(s)f s for some p(s) ∈ Af [s]. Observe that

p(s)f s = 0⇔ p(s) = 0

⇔ p(n) = 0 for all n ∈ N

⇔ p(n)f n = 0 for all n ∈ N

⇔ θn(p(s)f
s) = 0 for all n ∈ N.
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Then, δ(s)f s = 0 if and only if 0 = θn(δ(s)f
s) = δ(n)f n for all n ∈ N, as

required. ��
Note that this is using characteristic zero in a crucial way: we need that a

polynomial that has infinitely many zeroes (or that is identically zero on N) is the
zero polynomial.

Remark 3.11 An argument analogous to the above shows that, for δ(s) ∈ DA|K[s],
the following are equivalent:

(i) δ(s)f s = 0 in Af [s]f s ;
(ii) δ(n)f n = 0 in A for all n ∈ N;

(iii) δ(n)f n = 0 in Af for all n ∈ Z;
(iv) δ(n)f n = 0 in Af for infinitely many n ∈ Z.

Likewise, by shifting the evaluations, ones sees this is equivalent to:

(v) δ(s + t)f tf s = 0 in Af [s]f s .

Finally, we observe that DA|K[s]f s can be constructed via local cohomology
as in Sect. 3.2.2. By restricting the isomorphism of Proposition 3.8, we obtain the
following result.

Proposition 3.12 TheDA|K[s]-moduleDA|K[s]f s is isomorphic to the submodule

DA|K[s] ·
[

1
f−t

]
⊆ H 1

(f−t)(A[t]), where s acts on the latter by −∂t t .
Proposition 3.13 The following are equal:

(i) The Bernstein-Sato polynomial of f ;

(ii) The minimal polynomial of the action of s on
DA|K[s]f s

DA|K[s]ff s ;

(iii) The minimal polynomial of the action of −∂t t on [ 1
f−t ] in

DA|K[−∂t t] · [ 1
f−t ]

DA|K[−∂t t] · f [ 1
f−t ]
;

(iv) The monic element of smallest degree in K[s] ∩ (AnnD[s](f s)+DA|K[s]f ).
Proof The equality between the first two follows from the definition. The equality
between the second and the third follows from the previous proposition. For the
equality between the second and the fourth, we observe that

DA|K[s]f s

DA|K[s]ff s
∼= coker

(
DA|K[s]

AnnD[s](f s)

·f−→ DA|K[s]
AnnD[s](f s)

)

∼= DA|K[s]
AnnD[s](f s)+DA|K[s]f

.

��
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Remark 3.14 For any rational number α, we can consider the DR|K-modules
DR|Kf α and Af f α by specializing s �→ α in theDR|K[s]-modulesDR|K[s]f s and
Af [s]f s . These modules are important inD-module theory, but we do not focus on
them in depth here.

We end this subsection with equivalent characterizations on Af [s]f s ⊗K[s]
K(s) for f to have a nonzero functional equation. This lemma plays a role in
Corollary 3.21 and Theorem 3.26.

Lemma 3.15 ([2, Proposition 2.18]) Fix an element f ∈ A. Then, the following
are equivalent:

(i) There exists a Bernstein–Sato polynomial for f ;
(ii) Af [s]f s ⊗K[s] K(s) is generated by f s as a DA(s)|K(s)-module;

(iii) Af [s]f s ⊗K[s] K(s) is a finitely-generated DA(s)|K(s)-module.

Proof We first show that (i) implies (ii). For every m ∈ Z, we have an isomorphism
of DA(s)|K(s)-modules

ψm : Af f s ⊗K[s] K(s)→ Af f s ⊗K[s] K(s)

defined by

r(s)h

f α
f s �→ r(s −m)h

f α+m
f s .

Applying these isomorphism to the functional equation, we obtain that 1
fm

f s ∈
DA(s)|K(s)f

s .
Since (ii) implies (iii) follows from definition, we focus in proving that (iii)

implies (i). First we note that (iii) implies that 1
fm

f s . generates Af f s ⊗K[s] K(s)
for some m ∈ N. Then, 1

fm+1 f s ∈ DA(s)|K(s) 1
fm

f s . Then, there exists δ(s) ∈
DA(s)|K(s) such that

δ(s)
1

f m
f s = 1

f m+1 f s .

After clearing denominators and shifting by −m− 1, we obtain a functional
equation. ��

3.3 Existence of Bernstein-Sato Polynomials for Polynomial
Rings via Filtrations

In this subsection A = K[x1, . . . , xd ] is a polynomial ring over a field, K, of
characteristic zero. This was proved in this case by Bernstein [9, 10]. We show the
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existence of the Bernstein-Sato polynomial using the strategy of Coutinho’s book
[46].

We define the Bernstein filtration of A, B•
A|K as

Bi
A|K =

⊕

a1+···+ad+b1+···+bd≤i
K · xa1

1 · · · xadd ∂b1
1 · · · ∂bdd .

We note that

(i) dimK Bi
A|K =

(
n+i
i

)
<∞,

(ii) DA|K =
⋃
i∈N Bi

A|K,

(iii) Bi
A|KB

j

A|K = Bi+j
A|K, and

(iv) [Bi
A|K,B

j

A|K] ⊆ Bi+j−2
A|K .

We observe that the associated graded ring of the filtration, gr(B•
A|K,DA|K), is

isomorphic to K[x1, . . . , xd , y1, . . . , yd ].
Given a left, DA|K-module, M , we say that a filtration �• of K-vector spaces is

B•
A|K-compatible if

(i) dimK �
i <∞,

(ii) M =⋃
i∈N �i , and

(iii) Bi
A|K�

j ⊆ �i+j .
In this manuscript, by a DA|K-module, unless specified, we mean a left DA|K-

module.
We observe that gr(�•,M) is a graded gr(B•

A|K,DA|K)-module. Moreover,M is

finitely generated as a DA|K-module if and only if there exists a filtration �• such
that gr(�•,M) is finitely generated as a gr(B•

A|K,DA|K)-module. In this case, we

say that � is a good filtration for M .

Proposition 3.16 Let M be a finitely generated DA|K-module. Let G denote the
associated graded ring with respect to the Bernstein filtration. Let �•1 and �•2 be
two good filtrations forM . Then,

√
AnnG gr(�•1,M) =

√
AnnG gr(�•2,M).

Thanks to the previous result we are able to define the dimension of a finitely
generated DA|K-moduleM as

dimD(M) = dimG

(
G

AnnG gr(�•,M)

)
.
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Theorem 3.17 (Bernstein’s Inequality) Let M be a finitely generated DA|K-
module. Then,

d ≤ dimD(M) ≤ 2d.

Definition 3.18 We say that a finitely generated DA|K-module,M , is holonomic if
either dimD(M) = d orM = 0.

Theorem 3.19 Every holonomic DA|K-module has finite length as DA|K-module.

Proof Let M0 � M1 � · · · � Mt � M be a proper chain of DA|K-submodules.

Let �• be a good filtration. We note that �ij = �i ∩Mj is a good filtration on Mj .

In addition, �
i

j = φj (�ij ), where π : Mj → Mj/Mj−1 is the quotient map, is
a good filtration for Mj/Mj−1. We have the following identity of Hilbert-Samuel
multiplicities of graded gr(B•

A|K,DA|K)-modules:

e(gr(�•,M)) =
t∑

j=1

e(gr(�
•
j ,Mj/Mj−1)).

Since the multiplicities are positive integers, we have that t ≤ e(gr(�•,M)), and so,
the length ofM as a DR|K-module is at most e(gr(�•,M)). ��
Theorem 3.20 Given any nonzero polynomial f ∈ A, Af [s]f s ⊗K[s] K(s) is a
holonomic DA(s)|K(s)-module.

Proof Let t = deg(f ). We set a filtration

�i = 1

f i
{g ∈ A(s) | deg(g) ≤ (t + 1)i}f s .

We note that �i is a good filtration such that the associated graded ofAf [s]f s⊗K[s]
K(s) has dimension d. ��
Corollary 3.21 ([10]) Given any nonzero polynomial f ∈ A, the Bernstein-Sato
polynomial of f exists.

Proof This follows from Proposition 3.15 and Theorems 3.19 and 3.20. ��

3.4 Existence of Bernstein-Sato Polynomials for Differentiably
Admissible Algebras via Homological Methods

In this subsection we prove the existence of Bernstein-Sato polynomials of dif-
ferentiably admissible K-algebras (see Sect. 2.2). We assume that K is a field of
characteristic zero.
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Definition 3.22 Let A be a differentiably admissible K-algebra. Let M �= 0 be a
finitely generated DA|K-module. We define

gradeD
A|K
(M) = inf{j | ExtjD

A|K
(M,DA|K) �= 0}.

We note that gradeD
A|K
(M) ≤ gl. dim(DR|K) = d.

Remark 3.23 Given a finitely generatedDA|K-module, we can define the filtrations
compatible with the order filtration D•

A|K, good filtrations, and dimension as in

Sect. 3.3.

Proposition 3.24 ([16, Ch 2., Theorem 7.1]) Let A be a differentiably admissible
K-algebra. LetM �= 0 be a finitely generated DA|K-module. Then,

dimD
A|K(M)+ gradeD(M) = 2d.

In particular,

dimD
A|K(M) ≥ d.

We stress that the conclusion of the previous result is satisfied for rings of
differentiable type [98, 106].

Definition 3.25 Let A be a differentiably admissible K-algebra. LetM be a finitely
generated left (right) DA|K-module. We say that M is in the left (right) Bernstein
class if eitherM = 0 or if dimD(M) = d.

Let M be a finitely generated DA|K-module. If M is in the Bernstein class

of DA|K, then ExtiD
A|K
(M,DA|K) �= 0 if and only if i = d [16]. Then, the

functor that sends M to ExtdD
A|K
(M,DA|K) is an exact contravariant functor that

interchanges the left Bernstein class and the right Bernstein class. Furthermore,
M ∼= ExtdD

A|K
(ExtdD

A|K
(M,DA|K),DA|K) for modules in the Bernstein class. Since

DR|K is left and right Noetherian, the modules in the Bernstein class are both
Noetherian and Artinian. We conclude that the modules in the Bernstein class have
finite length as DA|K-modules [98, Proposition 1.2.5])

This class of Bernstein modules is an analogue of the class of holonomic
modules. In particular, it is closed under submodules, quotients, extensions, and
localizations [98, Proposition 1.2.7]).

Theorem 3.26 Let A be a differentiably admissible K-algebra of dimension d.
Given any nonzero element f ∈ A, the Bernstein-Sato polynomial of f exists.

Sketch of proof In this sketch we follow the ideas of Mebkhout and Narváez-
Macarro [98] (see also [106]). In particular, we refer the interested reader to their
work on the base change K to K(s) regarding differentiably admissible algebras
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[98, Section 2]. Let A(s) = A ⊗K K(s). We observe that A(s) is not always
a differentiably admissible K(s)-algebra. Specifically, the residue fields of A(s)
might not be always algebraic. However, DA(s)|K(s) satisfies the conclusions of
Theorem 2.9. In particular, the conclusions of Theorem 3.24 hold, and its Bernstein
class is well defined. We have that the dimension and global dimension ofDA(s)|K(s)
and DA|K are equal. One can show that Af [s]f s ⊗K[s] K(s) has a DA(s)|K(s)-
submodule N is in the Bernstein class ofDA(s)|K(s) such that Nf = Af [s]f s ⊗K[s]
K(s) [98, Proposition 1.2.7 and Proof of Theorem 3.1.1]. Then, there exists � ∈ N
such that f �f s ∈ N . Since N has finite length as DA(s)|K(s)-module the chain

DA(s)|K(s)f
�f s ⊇ DA(s)|K(s)f �+1f s ⊇ DA(s)|K(s)f �+2f s ⊇ . . .

stabilizes. Then, there exists m ∈ N and a differential operator δ(s) ∈ DA(s)|K(s)
such that

δ(s)f �+m+1f s = f �+mf s .

After clearing denominators and a shifting, there exists δ̃(s) ∈ DA|K[s] such that

δ̃(s)ff s = f s . ��

3.5 First Properties of the Bernstein-Sato Polynomial

A first observation about the Bernstein-Sato polynomial is that s + 1 is always a
factor.

Lemma 3.27 For f ∈ A, we have (s + 1) | bf (s) if and only if f is not a unit.

Proof If f is a unit, then we can take f−1f s+1 = 1f s as a functional equation, so
b(s) = 1 is the Bernstein-Sato polynomial of f .

For the converse, by definition, we have δ(s)ff s = bf (s)f s in Af [s]f s . By
Remark 3.11, δ(n)f n+1 = bf (n)f n in Af for all n ∈ Z. In particular, for n = −1,
we get δ(−1)1 = bf (−1)f−1. As δ(−1) ∈ DA|K, we have δ(−1)1 ∈ A. Thus,
bf (−1) = 0, so s + 1 divides bf (s). ��

Quite nicely, the factor (s + 1) characterizes the regularity of f .

Proposition 3.28 ([27]) For f ∈ A, we have A/fA is smooth if and only if
bf (s) = s + 1.

Definition 3.29 The reduced Bernstein-Sato polynomial of a nonunit f ∈ A is

b̃f (s) = bf (s)/(s + 1).
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The analogue of Proposition 3.13 for the reduced Bernstein-Sato polynomial is
as follows.

Proposition 3.30 The following are equal:

(i) b̃f (s),

(ii) The minimal polynomial of the action of s on (s + 1)
DA|K[s]f s

DA|K[s]ff s ,

(iii) The monic element of smallest degree in

K[s] ∩ (AnnD[s]
(
f s)+DA|K[s](f, ∂1(f ), . . . , ∂n(f )

)
).

Proof Once again, the first two are equivalent by definition.
Given a functional equation δ(s)ff s = (s + 1)b̃(s)f s , we have that δ(−1) ∈

DA|K with δ(−1) · 1 = 0. We can write δ(s) = (s + 1)δ′(s) + δ(−1) for some

δ′(s) ∈ DA|K[s], so δ(s) = (s + 1)δ′(s) +∑d
i=1 δi∂i for some δi ∈ DA|K. Then,

using that ∂i(ff s) = (s + 1)∂i(f )f s , we have

(s+1)b̃(s)f s = (s+1)δ′(s)ff s+
d∑

i=1

δi∂iff s = (s+1)(δ′(s)f +
d∑

i=1

δi∂i(f ))f
s .

Thus, such a functional equation implies that b̃(s)f s ∈ DA|K[s](f, ∂1(f ), . . . ,

∂d(f )). Conversely, if b̃(s)f s ∈ DA|K[s](f, ∂1(f ), . . . , ∂d(f )), again using that

∂i(ff s) = (s + 1)∂i(f )f s , we can write (s + 1)b̃(s)f s ∈ DA|K[s]ff s . This
implies the equivalence of the first and the last characterizations. ��

We may also be interested in the characteristic polynomial of the action of s.
Traditionally, with the convention of a sign change, the roots of the characteristic
polynomial are known as the b-exponents of f .

Definition 3.31 The b-exponents of f ∈ A are the roots of the characteristic

polynomial of the action of −s on (s + 1)
DA|K[s]f s

DA|K[s]ff s .

So far we have considered Bernstein-Sato polynomials over different regular
rings A but, a priori, it is not clear how they are related. Our next goal is to address
this issue. We start considering A = K[x1, . . . , xd ], a polynomial ring over a field

K of characteristic zero and denote by bK[x]f (s) the Bernstein-Sato polynomial of
f ∈ A. Given any maximal ideal m ⊆ A we also consider the Bernstein-Sato

polynomial over the localization Am that we denote bK[x]mf (s).

Proposition 3.32 We have:

b
K[x]
f (s) = lcm{bK[x]mf (s) | m ⊆ A maximal ideal}.
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Proof Let b(s) ∈ K[s] be a polynomial. The module b(s)
DA|K[s]f s

DA|K[s]ff s vanishes if

and only if it vanishes locally. The localization at a maximal ideal m ⊆ A is

b(s)
DAm|K[s]f s

DAm|K[s]ff s

and the result follows. ��
For a polynomial f ∈ A we may also consider the Bernstein-Sato polynomial

b
K�x�
f (s) in the formal power series ring K�x1, . . . , xd�.

Proposition 3.33 Let m = (x1, . . . , xd) ⊆ A be the homogeneous maximal ideal.
We have:

b
K[x]m
f (s) = bK�x�

f (s).

Proof B = K�x1, . . . , xd� is faithfully flat over Am = K[x1, . . . , xd ]m. Since

B ⊗Am b(s)
DAm|K[s]f s

DAm|K[s]ff s = b(s)
DB|K[s]f s

DB|K[s]ff s

the result follows. ��
When K = C we may also consider the ring C{x1 − p1, . . . , xd − pd} of

convergent power series in a neighborhood of a point p = (p1, . . . , pd) ∈ Cd .

Corollary 3.34 We have

(i) bC[x]f (s) = lcm{bC{x−p}f (s) | p ∈ Cd}.
(ii) bC{x−p}f (s) = bC�x−p�

f (s).

Proof Working over C we have that all the maximal ideals correspond to points so
(i) follows from Proposition 3.32. For part (ii) we use the same faithful flatness
trick we used in Proposition 3.33 for C{x1 − p1, . . . , xd − pd}. ��

Let f ∈ K[x1, . . . , xd ] be a polynomial and L a field containing K. Let

b
K[x]
f (s) and bL[x]f (s) be the Bernstein-Sato polynomial of f in K[x1, . . . , xd ] and
L[x1, . . . , xd ] respectively.

Proposition 3.35 We have bK[x]f (s) = bL[x]f (s).

Proof Notice that bL[x]f (s) | bK[x]f (s) so we have to prove the other divisibility
condition. Let {ei}i∈I be a basis of L as a K-vector space. We have

DA|L[s]f s

DA|L[s]ff s = L⊗K
DA|K[s]f s

DA|K[s]ff s =
⊕

i∈I

(
DA|K[s]f s

DA|K[s]ff s

)
ei .
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Let b(s) ∈ L[s] be such that b(s)
D
A|L[s]f s

D
A|L[s]ff s = 0. Then b(s) = ∑

bi(s) with

only finitely many nonzero bi(s) ∈ K[s] such that bi(s)
D
A|K[s]f s

D
A|K[s]ff s = 0. Since

b
K[x]
f (s) | bi(s) for all i it follows that bK[x]f (s) | bL[x]f (s). ��

Remark 3.36 Let f ∈ K[x1, . . . , xd ] be a polynomial with an isolated singularity

at the origin, where K is a subfield of C. Then we have bK[x]f (s) = bK�x�
f (s) =

b
C{x}
f (s).

Combining all the results above with the following fundamental result of Kashi-
wara [71], we conclude that the Bernstein-Sato polynomial of f ∈ K[x1, . . . , xd ] is
a polynomial bf (s) ∈ Q[s].
Theorem 3.37 ([71, 92]) The Bernstein-Sato polynomial of an element f ∈
C{x1, . . . , xd}, or f ∈ K[x1, . . . , xd ] for K ⊆ C, factors completely over Q, and
all of its roots are negative rational numbers.

In Sect. 9 we will provide a refinement of this result given by Lichtin [80].

4 Some Families of Examples

Computing explicit examples of Bernstein-Sato polynomials is a very challenging
task. There are general algorithms based on the theory of Gröbner bases over rings
of differential operators but they have a very high complexity so only few examples
can be effectively computed [78, 107, 110]. In this section we review some of the
scarce examples that we may find in the literature. The first systematic method of
producing examples can be found in the work of Yano [146] where he considered,
among others, the case of isolated quasi-homogeneous singularities (see also [25]).
The case of isolated semi-quasi-homogeneous singularities was studied later on by
Saito [120] and Briançon et al. [26].

A case that has been extensively studied is that of plane curves, see [29, 43–
45, 61, 73, 74, 147]. In particular, a conjecture of Yano regarding the b-exponents
of a generic irreducible plane curve among those in the same equisingularity class
has been recently proved by Blanco [18] (see also [4, 17, 45]). Finally we want to
mention that the case of hyperplane arrangements has been studied by Walther [143]
and Saito [124].

We start with some known examples where a Bernstein-Sato functional equation
δ(s)f s+1 = b(s)f s can be given by hand:

(i) Let f = x2
1 + · · · + x2

n be a sum of squares. Then

1

4
(∂2

1 + · · · + ∂2
n)f

s+1 = (s + 1)(s + n
2
)f s.
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(ii) Let f = det(xij ) be the determinant of an n× n generic matrix and set ∂ij :=
d
dxij

. The classic Cayley identity states

det(∂ij )f
s+1 = (s + 1)(s + 2) · · · (s + n)f s.

There are similar identities for determinants of symmetric and antisymmetric
matrices [41].

(iii) Let f = xα1
1 · · · xαnn be a monomial. Then

1

α
α1
1 · · ·ααnn

(∂
α1
1 · · · ∂αnn )f s+1 =

n∏

i=1

αi∏

k=1

(s + k

αi
)f s.

We warn the reader that it requires some extra work to prove that the above
polynomials are minimal so they are indeed Bernstein-Sato polynomials of the
corresponding f .

Let A = C{x1, . . . , xd} and assume that f has an isolated singularity at the
origin. In this case, Yano [146] uses the fact that the support of the holonomicDA|C-

module M̃ := (s+ 1)
D
A|C[s]f s

D
A|C[s]ff s is the maximal ideal and thus it is isomorphic to a

number of copies ofDA|C/DA|C〈x1, . . . , xd〉 ∼= Hdm(A). Dualizing this module we

get the module of differential d-forms �d = DA|C/〈∂1, . . . , ∂d〉DA|C.

Proposition 4.1 ([146, Theorem 3.3]) The reduced Bernstein-Sato polynomial
b̃f (s) of an isolated singularity f is the minimal polynomial of the action of s on
either HomD

A|C(M̃,Hdm(A)) or �n ⊗D
A|C M̃.

Then, Yano’s method boils down to the following steps:

(i) Compute a free resolution of M̃ as a DA|C-module

0← M̃← (DA|C)
β0 ← (DA|C)

β1 ← · · ·

(ii) Apply the functor HomD
A|C(−,Hdm(A))

0→ HomD
A|C(M̃,Hdm(A))→ (Hdm(A))

β0 → (Hdm(A))
β1 → · · ·

(iii) Compute the matrix representation of the action of s and its minimal polyno-
mial.

Yano could effectively work out some cases depending on the following invariant
of the singularity:

L(f ) := min{L | δ(s) = sL + δ1sL−1 + · · · + δL ∈ AnnD[s](f s) , ord(δi) ≤ i}.
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The existence of such a differential operator is given by Kashiwara [71, Theorem
6.3]. More precisely, he could describe step (1) in the cases L(f ) = 1, 2, and 3
where the case L(f ) = 1 is equivalent to having a quasi-homogeneous singularity.

4.1 Quasi-Homogeneous Singularities

Let f = ∑
α aαx

α1
1 · · · xαdn ∈ A be a quasi-homogeneous isolated singularity of

degree N with respect to a weight vector w := (w1, . . . , wd) ∈ Qd>0. We have
χ(f ) = Nf where

χ =
d∑

i=1

wixi∂i

is the Euler operator and χ − Ns ∈ AnnD[s](f s). Set f ′i = ∂i(f ) for i = 1, . . . , d .
Yano’s method is as follows:

(i) We have a free resolution

0 M̃�� DA|C�� (DA|C)n
(f ′1,...,f ′d )

�� 0�� .

(ii) We obtain a presentation HomD
A|C(M̃,Hdm(A)) = {v ∈ Hdm(A) | f ′i v =

0 ∀i}.
(iii) The action of s on v ∈ HomD

A|C(M̃,Hdm(A)) is the same as the action of
1
N
χ . Notice that applying χ to a cohomology class

[ 1
x
α1
1 ···x

αd
d

]
is nothing but

multiplying by the weight of this class.

Example 4.2 Consider the quasi-homogeneous polynomial f = x7+ y5 ∈ C{x, y}
of degree N = 35 with respect to the weight w = (5, 7). A basis of the vector space

{v ∈ H 2
m(A) | x6v = 0, y4v = 0}

is given by the classes
[ 1
xiyj

]
with 1 ≤ i ≤ 6 and 1 ≤ j ≤ 4. The action of

1
35χ = 1

35 (5x∂x + 7y∂y) on these elements yields

1

35
χ

(
1

xy

)
= −12

35

(
1

xy

)
,

1

35
χ

(
1

x2y

)
= −17

35

(
1

x2y

)
, . . . ,

1

35
χ

(
1

x6y4

)
= −58

35

(
1

x6y4

)
.

The matrix representation of the action of s = 1
35χ has a diagonal form with distinct

eigenvalues and thus the characteristic and the minimal polynomials coincide.
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The negatives of the roots of the reduced Bernstein-Sato polynomial b̃f (s), or
equivalently, the roots of b̃f (−s) are

{
12

35
,

17

35
,

19

35
,

22

35
,

24

35
,

26

35
,

27

35
,

29

35
,

31

35
,

32

35
,

33

35
,

34

35
,

36

35
,

37

35
,

38

35
,

39

35
,

41

35
,

43

35
,

44

35
,

46

35
,

48

35
,

51

35
,

53

35
,

58

35

}
.

Remark 4.3 In general, the diagonal form of the matrix representation of the action
of s has repeated eigenvalues so the minimal polynomial only counts them once.
Take for example the quasi-homogeneous polynomial f = x5 + y5 ∈ C[x, y] of
degree N = 5 with respect to the weight w = (1, 1). The roots of b̃f (−s) are

{
2

5
,

3

5
,

4

5
, 1,

6

5
,

7

5
,

8

5

}
.

Theorem 4.4 ([25, 146]) Let f ∈ A be a quasi-homogeneous isolated singularity
of degree N with respect to a weight vector w := (w1, . . . , wd) ∈ Qd>0. Then, the
Bernstein-Sato polynomial of f is

bf (s) = (s + 1)
∏

�∈W

(
s + �

N

)

whereW is the set of weights, without repetition, of the cohomology classes in {v ∈
Hdm(A) | f ′i v = 0 ∀i}.

Recall from Proposition 4.1 that the reduced Bernstein-Sato polynomial b̃f (s) of
an isolated singularity f is the minimal polynomial of the action of s on �d ⊗D

A|C
M̃. In the quasi-homogeneous case we have

�d ⊗D
A|C M̃ ∼= A/(f ′1, . . . , f ′d).

Notice that the monomial basis of the Milnor algebra is dual, with the convenient
shift, of the cohomology classes basis of {v ∈ Hdm(A) | f ′i v = 0 ∀i}. In this case,
the action of s is − 1

N
(χ +∑n

i=1wi).

4.2 Irreducible Plane Curves

Some of the examples considered by Yano deal with the case of plane curves
and his methods were used by Kato to compute the following example which is
a continuation of Example 4.2.
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Example 4.5 ([73]) The roots of b̃f (−s) for f = x7 + y5 are

{
12

35
,

17

35
,

19

35
,

22

35
,

24

35
,

26

35
,

27

35
,

29

35
,

31

35
,

32

35
,

33

35
,

34

35︸ ︷︷ ︸
λ

,

36

35
,

37

35
,

38

35
,

39

35
,

41

35
,

43

35
,

44

35
,

46

35
,

48

35
,

51

35
,

53

35
,

58

35
︸ ︷︷ ︸

2−λ

}
.

Notice that the roots are symmetric with respect to 1 and we point out that those λ <
1 are jumping numbers of the multiplier ideals of f (see Sect. 10). Now consider a
deformation of the singularity,

ft = x7 + y5 − t3,3x3y3 − t5,2x5y2 − t4,3x4y3 − t5,3x5y3.

Then we have a stratification of the space of parameters where some of the roots of
b̃f (−s) may change. More precisely, the boxed roots may change to the same root
shifted by 1.

{t3,3 = 0, t5,2 = 0, t4,3 = 0, t5,3 �= 0}. The root 58
35 changes to 23

35 .
{t3,3 = 0, t5,2 = 0, t4,3 �= 0}. The roots 58

35 ,
53
35 change to 23

35 ,
18
35 .

{t3,3 = 0, t5,2 �= 0, t4,3 = 0}. The roots 58
35 ,

51
35 change to 23

35 ,
16
35 .

{t3,3 = 0, t5,2t4,3 �= 0}. The roots 58
35 ,

53
35 ,

51
35 change to 23

35 ,
18
35 ,

16
35 .

{t5,2 �= 0, 6t5,2 + 175t43,3 = 0}. The roots 58
35 ,

53
35 ,

48
35 change to 23

35 ,
18
35 ,

13
35 .

{t5,2 �= 0, 6t5,2 + 175t43,3 �= 0}. The roots 58
35 ,

53
35 ,

51
35 ,

48
35 change to 23

35 ,
18
35 ,

16
35 ,

13
35 .

In this last stratum we have a Zariski open set where the roots are

{
12

35
,

13

35
,

16

35

17

35
,

18

35
,

19

35
,

22

35
,

23

35
,

24

35
,

26

35
,

27

35
,

29

35
,

31

35
,

32

35
,

33

35
,

34

35
,

36

35
,

37

35
,

38

35
,

39

35
,

41

35
,

43

35
,

44

35
,

46

35

}
,

and thus they are in the interval [lct(f ), lct(f )+1). We say that these are the generic
roots of the Bernstein-Sato polynomial of ft .

An interesting issue in this example is that, even though they have different
Bernstein-Sato polynomials, all the fibres of the deformation ft have the same
Milnor number so they belong to the same equisingularity class. Roughly speaking,
all the fibres have the same log-resolution meaning that they have the same
combinatorial information, which can be encoded in weighted graphs such as the
Enriques diagram [54, §IV.I], [42, S 3.9], the dual graph [42, §4.4], [142, §3.6] or
the Eisenbud-Neumann diagrams [53].
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From now on let f ∈ C{x, y} be a defining equation of the germ of an irreducible
plane curve. A complete set of numerical invariants for the equisingularity class of
f is given by the characteristic exponents (n, β1, . . . , βg) where n ∈ Z>0 is the
multiplicity at the origin of f and the integers n < β1 < · · · < βg can be obtained
from the Puiseux parameterization of f . To describe the equisingularity class of f
we may also consider its semigroup � := 〈β0, β1, . . . , βg〉 that comes from the
valuation of C{x, y}/〈f 〉 given by the Puiseux parametrization of f .

A quasihomogeneous plane curve f = xa + yb with a < b and gcd(a, b) = 1
is irreducible with semigroup � = 〈a, b〉. Adding higher order terms xiyj with
bi + aj > ab does not change the equisingularity class but we do not need all the
higher order terms. Indeed, every irreducible curve with semigroup � = 〈a, b〉 is
analytically isomorphic to one of the fibers of the miniversal deformation

f = xa + yb −
∑
ti,j x

iyj ,

where the sum is taken over the monomials xiyj such that 0 ≤ i ≤ a − 2, 0 ≤ j ≤
b − 2 and bi + aj > ab. This is the setup considered in Example 4.5.

Cassou-Noguès [44] described the stratification by the Bernstein-Sato polyno-
mial of any irreducible plane curve with a single characteristic exponent using
analytic continuation of the complex zeta function.

To construct a miniversal deformation of an irreducible plane curve with g
characteristic exponents is much more complicated and one has to use, follow-
ing Teissier [149], the monomial curve C� associated to the semigroup � =
〈β0, β1, . . . , βg〉 by the parametrization ui = tβi , i = 1, . . . , g. Teissier proved
the existence of a miniversal semigroup constant deformation of this monomial
curve. It turns out that every irreducible plane curve with semigroup � is analytically
isomorphic to one of the fibres of the miniversal deformation of C� . To give explicit
equations in C{x, y} is more complicated and we refer to the work of Blanco [17]
for more details. For the convenience of the reader we illustrate an example with
two characteristic exponents.

Example 4.6 The semigroup of an irreducible plane curve f = (xa + yb)c + xiyj
with bi + aj = d is � = 〈ac, bc, d〉. All the fibres of the deformation

ft =
(
xa + yb +

∑

bk+a�>ab
tk,�x

ky�

)c
+ xiyj +

∑

bck+ac�+dr>cd
tk,�x

ky�
(
xa + yb)r

have the same semigroup.

The ultimate goal would be to find a stratification by the Bernstein-Sato
polynomial of all the irreducible plane curves with a fixed semigroup but this turns
out to be a wild problem. However, one may ask about the roots of the Bernstein-
Sato polynomial of a generic fibre of a deformation of an irreducible plane curve
with a given semigroup. That is, to find the roots in a Zariski open set in the space
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of parameters of the deformation that we call the generic roots of the Bernstein-Sato
polynomial.

Amazingly, Yano [147] conjectured a formula for the generic b-exponents
(instead of the generic roots) of any irreducible plane curve. These generic b-
exponents can be described in terms of the semigroup � but we use a simple
interpretation in terms of the numerical data of a log-resolution of f . Let π : X′ →
Cn be a log-resolution of an irreducible plane curve with g characteristic exponents.
Let Fπ be the total transform divisor and Kπ the relative canonical divisor. In this
case we have g distinguished exceptional divisors, the so-called rupture divisors that
intersect three or more divisors in the support of Fπ . For simplicity we denote them
by E1, . . . , Eg with the corresponding values Ni and ki in Fπ and Kπ respectively.

Conjecture 4.7 ([147]) Let f ∈ C{x, y} be a defining equation of the germ of an
irreducible plane curve with semigroup � = 〈β0, β1, . . . , βg〉. Then, for generic
curves in some �-constant deformation of f , the b-exponents are

g⋃

i=1

{
λi,� = ki + 1+ �

Ni

∣∣∣∣ 0 ≤ � < Ni, βiλi,� �∈ Z, ei−1λi,� �∈ Z

}

where ei−1 = gcd(β0, β1, . . . , βi−1).

If we consider the irreducible plane curve studied by Kato in Example 4.5 we see
that Yano’s conjecture holds true.

Example 4.8 The Yano set associated to the semigroup � = 〈5, 7〉 is

{
λ1,� = 12+ �

35

∣∣∣∣ 0 ≤ � < 35, 7λ1,� �∈ Z, 5λ1,� �∈ Z

}

which gives the generic b-exponents given in Example 4.5.

From the stratification given by Cassou-Noguès [44] one gets that Yano’s
conjecture is true for irreducible plane curves with a single characteristic exponent
(see [45]). Almost thirty years later, Artal-Bartolo, Cassou-Noguès, Luengo, and
Melle-Hernández [4] proved Yano’s conjecture for irreducible plane curves with
two characteristic exponents with the extra assumption that the eigenvalues of
the monodromy are different. Under the same extra condition, Blanco [17] gave
a proof for any number of characteristic exponents. Both papers use the analytic
continuation of the complex zeta function. The extra condition on the eigenvalues
of the monodromy being different ensures that the characteristic and the minimal

polynomial of the action of s on (s + 1)
D
A|C[s]f s

D
A|C[s]ff s are the same.

The shortcomings of the analytic continuation techniques, which deal with the
Bernstein-Sato polynomial instead of the b-exponents, can be seen in examples such
as the following.
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Example 4.9 The Yano sets associated to the semigroup � = 〈10, 15, 36〉 are

{
λ1,� = 5+ �

30

∣∣∣∣ 0 ≤ � < 30, 15λ1,� �∈ Z, 10λ1,� �∈ Z

}
,

and
{
λ2,� = 31+ �

180

∣∣∣∣ 0 ≤ � < 180, 36λ2,� �∈ Z, 5λ2,� �∈ Z

}
.

We have that 11
30 ,

17
30 ,

23
30 ,

29
30 appear in both sets. Therefore they appear with multi-

plicity 2 as b-exponents but only once as roots of the Bernstein-Sato polynomial.

Blanco [18] has recently proved Yano’s conjecture in its generality. His work
uses periods of integrals along vanishing cycles on the Milnor fiber as considered
by Malgrange [90, 91] and Varchenko [140, 141]. In particular he extends vastly
the results of Lichtin [80] and Loeser [82] on the expansions of these periods of
integrals.

4.3 Hyperplane Arrangements

Let f ∈ C[x1, . . . , xd ] be a reduced polynomial defining an arrangement of
hyperplanes so f = f1 · · · f� decomposes as a product of polynomials fi of degree
one. The Bernstein-Sato polynomial of f has been studied by Walther [143] under
the assumptions that the arrangement is:

• Central: f is homogeneous so all the hyperplanes contain the origin.
• Generic: The intersection of any d hyperplanes is the origin.

The main result of Walther, with the assistance of Saito [124] to compute the
multiplicity of −1 as a root, is the following.

Theorem 4.10 ([124, 143]) The Bernstein-Sato polynomial of a generic central
hyperplane arrangement f ∈ C[x1, . . . , xd ] of degree � ≥ d is

bf (s) = (s + 1)d−1
2�−d−2∏

j=0

(
s + j + d

�

)
.

Example 4.11 The homogeneous polynomial f = x5 + y5 ∈ C[x, y] considered
in Remark 4.3 defines an arrangement of five lines through the origin. Walther’s
formula gives

bf (s) = (s + 1)2
(
s + 2

5

)(
s + 3

5

)(
s + 4

5

)(
s + 6

5

)(
s + 7

5

)(
s + 8

5

)
.
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It is an open question to determine the roots of the Bernstein-Sato polynomial of
a nongeneric arrangement. In this general setting, Leykin [143] noticed that −1 is
the only integer root of bf (s).

A natural question that arise when dealing with invariants of hyperplane arrange-
ments is whether these invariants are combinatorial, meaning that they only depend
on the lattice of intersection of the hyperplanes together with the codimensions of
these intersections, and it does not depend on the position of the hyperplanes. Unfor-
tunately this is not the case. Walther [145] provides examples of combinatorially
equivalent arrangements with different Bernstein-Sato polynomial.

Example 4.12 ([124, 145]) The following nongeneric arrangements have the same
intersection lattice

f = xyz(x+3z)(x+y+z)(x+2y+3z)(2x+y+z)(2x+3y+z)(2x+3y+4z),
g = xyz(x+5z)(x+y+ z)(x+3y+5z)(2x+y+ z)(2x+3y+ z)(2x+3y+4z).

However the Bernstein-Sato polynomials differ by the root − 16
9 :

bf (s) = (s + 1)
4∏

j=2

(
s + j

3

) 16∏

j=3

(
s + j

9

)

bg(s) = (s + 1)
4∏

j=2

(
s + j

3

) 15∏

j=3

(
s + j

9

)
.

5 The Case of Nonprincipal Ideals and Relative Versions

In this section we study different extensions of Bernstein-Sato polynomials for
ideals that are not necessarily principal. Sabbah [118] introduced the notion of
Bernstein-Sato ideal BF ⊆ K[s1, . . . , s�] associated to a tuple of elements F =
f1, . . . , f�. More recently, Budur et al. [36] defined a Bernstein-Sato polynomial
ba(s) ∈ K[s] associated to an ideal a ⊆ A which is independent of the set of
generators. The approach to Bernstein-Sato polynomials of nonprincipal ideals has
been simplified by Mustaţă [101].

In order to provide a description of the V -filtration of a holonomic D-module,
Sabbah introduced a relative version of Bernstein-Sato polynomials that is also
considered in the version for nonprincipal ideals [36]. This relative version is also
important to describe multiplier ideals (see Sect. 10).
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5.1 Bernstein-Sato Polynomial for General Ideals in
Differentiably Admissible Algebras

We start studying the Bernstein-Sato polynomial for general ideals using the recent
approach given by Mustaţă [101]. In this section we show its existence for general
ideals in differentiably admissible algebras in Theorem 5.6.

Definition 5.1 Let K a field of characteristic zero, A be a regular K-algebra, and
a ⊆ A be a nonzero ideal. Let F = f1, . . . , f� be a set of generators for a, and
g = f1y1+ · · · + f�y� ∈ A[y1, . . . , y�]. We denote by bF (s) the monic polynomial
in K[s] of least degree among those polynomials b(s) ∈ K[s] such that

δ(s)gs+1 = b(s)gs for all s ∈ N,

where δ(s) ∈ DA[y1,...,y�]|K[s] is a polynomial differential operator. That is, bF (s)
is the Bernstein-Sato polynomial of g.

Before we discuss properties of this notion of the Bernstein-Sato polynomial, we
show that the definition of bF (s) does not depend on the choice of generators for a.

Proposition 5.2 ([101, Remark 2.1]) Let K a field of characteristic zero, A be a
regular K-algebra, and a ⊆ A be a nonzero ideal. Let F = f1, . . . , f� and G =
g1, . . . , gm be two sets of generators for a. Then bF (s) = bG(s).
Proof It suffices to show that bF (s) = bG(s) = bH (s), where H = F ∪ G. This
follows from showing that bF (s) = bG(s)whenG = F ∪g for g ∈ a. Let r1, . . . , r�
such that g = r1f1 + · · · + r�f�. We have that

f1y1 + · · · + f�y� + gy�+1 = f1y1 + · · · + f�y� + (r1f1 + · · · + r�f�)y�+1

f1(y1 + r1y�+1)+ · · · + f�(y� + r�y�+1).

After a change of variables yi �→ yi + riy�+1, this polynomial becomes f . Since
the Bernstein-Sato polynomial does not change by change of variables, we conclude
that bF (s) = bG(s). ��

Given the previous result, we can define the Bernstein-Sato polynomial of a
nonprincipal ideal. Notice that f1y1 + · · · + f�y� is not a unit in A[y1, . . . , y�]
so we may consider its reduced Bernstein-Sato polynomial b̃F (s) = bF (s)

s+1 .

Definition 5.3 Let K a field of characteristic zero, A be a regular K-algebra, and
a ⊆ A be a nonzero ideal. Let F = f1. . . . , f� be a set of generators for a. We
define the Bernstein-Sato polynomial of a as the reduced Bernstein-Sato polynomial
of f1y1 + · · · + f�y�. That is

ba(s) := b̃F (s).
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We point out that the previous definition is not the original given by Budur,
Mustaţă, and Saito [36], which we discuss in the next subsection. This approach
given by Mustaţă [101] has a couple of differences. First, the existence of Bernstein-
Sato polynomials for nonprincipal ideals would follow from the existence of
certain Bernstein-Sato polynomials for a single element. This way in particular
gives the existence of Bernstein-Sato polynomials for nonprincipal ideals in any
differentiably admissible algebras (see Sect. 3.4) such as power series rings over a
field of characteristic zero. Second, the treatment given by Mustaţă [101] can be
done without using V -filtrations.

We now focus on showing the existence of Bernstein-Sato polynomial for
nonprincipal ideals in differentiably admissible algebras. We start recalling a
theorem from Matsumura’s book [94].

Theorem 5.4 ([94, Theorem 99]) Let (A,m,K) be a regular local commutative
Notherian ring with unity of dimension d containing a field K0. Suppose that K
is an algebraic separable extension of K0. Let Â denote the completion of A with
respect to m. Let x1, . . . , xd be a regular system of parameters of A. Then, Â =
K�x1, . . . , xd� is the power series ring with coefficients in K, and Der

Â|K is a free Â-
module with basis ∂1, . . . , ∂d . Moreover, the following conditions are equivalent:

(i) ∂i (i = 1, . . . , d) maps A into A, equivalently, ∂i ∈ DerA|K0
;

(ii) there exist derivations δ1, . . . , δd ∈ DerA|K0
and elements f1, . . . , fd ∈ A

such that δifj = 1 if i = j and 0 otherwise;
(iii) there exist derivations δ1, . . . , δd ∈ DerA|K0

and elements f1 . . . , fd ∈ R such
that det(δifj ) �∈ m;

(iv) DerA|K0
is a free module of rank d (with basis δ1, . . . , δd );

(v) rank(DerA|K0
) = d.

We now show that a power series ring over a differentiably admissible K-algebra
is also a differentiably admissible K-algebra. We point out that this fact does not
hold for polynomial rings, as the residue field can be a transcendental extension of
R. A example of this is A = K�x�, where n = (xy − 1) ⊆ A[y] is a maximal ideal
with residue field Frac(A).

Proposition 5.5 Let A be a differentiably admissible K-algebra of dimension d.
Then, the power series ring A�y� is also a differentiably admissible K-algebra of
dimension d + 1.

Proof Since every regular Noetherian ring is product of regular domains, we
assume without loss of generality that A is a domain. Let n be a maximal ideal
in A�y�. Then, there exists a maximal ideal m ⊆ A such that n = mA�y� + (y). It
follows that n is generated by a regular sequence of d + 1 elements. We conclude
that (A�y�)n is a regular ring of dimension d+1. We also have that A�y�/n ∼= A/m
is an algebraic extension of K.

It remains to show that DerA�y�|K is a projective module of rank d + 1 and
it behaves well with localization. We note that every derivation δ in A can be
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extended to a derivation A�y� by δ(
∑∞
n=0 fny

n) = ∑∞
n=0 δ(fn)y

n. Let M =
A�y�⊗A DerA|K ⊕A�y�∂y ⊆ DerA�y�|K . We note that the natural maps

Mn→ A�y�n ⊗A DerA�y�|K→ DerA�y�n|K

are injective. We fix n ⊆ A�y� a maximal ideal and a maximal ideal m ⊆ R such that
n = mA�y� + (y). We fix δ1, . . . , δd ∈ DerAm|K and elements f1, . . . , fn ∈ mAm

such that δifj = 1 if i = j and 0 otherwise. We can do this by Theorem 5.4. Then,
δ1, . . . , δd , ∂y satisfy Theorem 5.4(3). We conclude that δ1, . . . , δd , ∂y generate
DerA�y�n|K. Then, the composition of the maps

Mn→ A�y�n ⊗A DerA�y�|K→ DerA�y�n|K

is surjective. We conclude that they are isomorphic. Since

Mm =
(
A�y�n ⊗Am (DerA|K)m

)⊕ A�y�n∂y

is free of rank d + 1, we have that

(Mm)n = Mn
∼= DerA�y�n|K

is free of rank d + 1. ��
Theorem 5.6 Let A be differentiably admissible, and a ⊆ A. Then, the Bernstein-
Sato polynomial of a exists.

Proof Let f1, . . . , f� be a set of generators for a. Let f = f1y1 + · · · + f�y� ∈
A�y1, . . . , y��. There exists b(s) ∈ K[s] � {0} and δ(s) ∈ A�y1, . . . , y��[s] such
that

δ(s)ff s = b(s)f s

inAf [s]f s by Proposition 5.5 and Theorem 3.26. There exist finitely many β ∈ N�,
j ∈ N, δβ,j [s] ∈ DA|K[s], and gβ,j ∈ A�y1, . . . , y�� such that

δ(s) =
∑

β,j

gβ,j δβ,j (s)
∂β

∂yβ

because DA�y1,...,y��|K is generated by derivations by Remark 2.8, and by the
description of DerA�y1,...,y��|K in the proof of Proposition 5.5. Then, there exists
hα,β,j ∈ A such that gβ,j =∑

α∈N� hα,β,j y
α . Then,

δ(s) =
∑

β,j

∑

α∈N�

hα,β,j δβ,j (s)y
α ∂

β

∂yβ
.
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We have that

b(s)f s = δ(s)ff s

=
∑

β,j

∑

α∈N�

hα,β,j y
αδβ,j (s)

∂β

∂yβ
ff s

=
∑

β,j

∑

α∈N�

hα,β,j δβ,j (s)y
α ∂

β

∂yβ
ff s .

After specializing for t ∈ N, we have that

b(t)f t =
∑

β,j

∑

α∈N�

hα,β,j δβ,j (t)y
α ∂

β

∂yβ
f t+1.

Then,

∑

β,j

∑

|α|�=|β|−1

hα,β,j δβ,j (t)y
α ∂

β

∂yβ
f t+1 = 0.

by comparing the degree in y1, . . . , y�. Then,

∑

β,j

∑

|α|�=|β|−1

hα,β,j δβ,j (s)y
α ∂

β

∂yβ
ff s = 0.

We have that

δ̃(s) =
∑

β,j

∑

|α|=|β|−1

hα,β,j δβ,j (s)y
α ∂

β

∂yβ
.

satisfies the functional equation and belongs to DA[y1,...,y�]|K[s]. Then, the
Bernstein-Sato polynomial of a exists. ��

5.2 Bernstein-Sato Polynomial of General Ideals Revisited

In this subsection we review the original definition of Bernstein-Sato polynomial of
an ideal given by Budur et al. [36]. Indeed they provide two equivalent approaches
depending on the ring of differential operators we are working with.
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Let K a field of characteristic zero, A be a regular K-algebra, and let F =
f1, . . . , f� be a set of generators of an ideal a ⊆ A. Let S = {sij }1≤i,j≤� be a
new set of variables satisfying the following relations:

(i) sii = si for i = 1, . . . , �.
(ii) [sij , sk�] = δjksi� − δi�skj ,
where δij is the Kronecker’s delta function. Then we consider the ring K〈S〉
generated by S and DA|K〈S〉 := DA|K ⊗K K〈S〉.

In this setting we have the following Bernstein-Sato type functional equation.

Definition 5.7 Let K be a field of characteristic zero and A a regular K-algebra. A
Bernstein-Sato functional equation in DA|K〈S〉 for F = f1, . . . , f� is an equation
of the form

�∑

i=1

δi(S)fif
s1
1 · · · f s�� = b(s1 + · · · + s�)f s11 · · · f s��

where δi(S) ∈ DA|K〈S〉 and b(s) ∈ K[s].
Definition 5.8 Let K be a field of characteristic zero and A a regular K-algebra.
Let F = f1, . . . , f� be a set of generators of an ideal a ⊆ A. The Bernstein-
Sato polynomial ba(s) of a is the monic polynomial of smallest degree satisfying a
Bernstein-Sato functional equation in DA|K〈S〉.

Budur, Mustaţă, and Saito proved the existence of such Bernstein-Sato polyno-
mial. Moreover, they also proved that it does not depend on the set of generators of
the ideal so it is well-defined (see [36, Theorem 2.5]).

After a convenient shifting we can define the Bernstein-Sato polynomial of an
algebraic variety.

Theorem 5.9 ([36]) LetZ(a) ⊆ Cd be the closed variety defined by an ideal a ⊆ A
and c be the codimension of Z(a) in Cd . Then

bZ(a)(s) := ba(s − c)

depends only on the affine scheme Z(a) and not on a.

In this setting we also have that the Bernstein-Sato functional equation in
DA|K〈S〉 is an equality in Af [s1, . . . , sp]f s . TheDA|K〈S〉-module structure on this
module is given by

sij · a(s1, . . . , sp)f s := sia(s1, . . . , si − 1, . . . , sj + 1, . . . , sp)
fj

fi
f s
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where a(s1, . . . , sp) ∈ Af [s1, . . . , sp]. The DA|K〈S〉-submodule generated by f s

has a presentation

DA|K〈S〉f s ∼= DA|K〈S〉
AnnD〈S〉(f s)

,

and thus

DA|K〈S〉f s

DA|K〈S〉(f1, . . . , fp)f
s
∼= DA|K〈S〉

AnnD〈S〉(f s)+DA|K〈S〉(f1, . . . , fp)
.

We have an analogue of Proposition 3.13 that is used in order to provide algorithms
for the computations of these Bernstein-Sato polynomials [3].

Proposition 5.10 The Bernstein-Sato polynomial of an ideal a ⊆ A generated by
F = f1, . . . , f� is the monic generator of the ideal

(
ba(s1 + · · · + sp)

) = K[s1 + · · · + sp] ∩
(
AnnD〈S〉(f s)+DA|K〈S〉(f1, . . . , fp)

)
.

Budur et al. [36, Section 2.10] gave an equivalent definition of Bernstein-Sato
polynomial of a using a functional equation inDA|K[s1, . . . , s�] instead ofDA|K〈S〉.
Theorem 5.11 ([36]) Let K a field of characteristic zero, A be a regular K-algebra,
and a ⊆ A be a nonzero ideal. Let F = f1, . . . , f� be a set of generators for a. Then,
ba(s) ∈ K[s] is the monic polynomial of least degree, b(s) such that

b(s1 + · · · + s�)f s11 · · · f s�� ∈
∑

|α|=1

DR|K[s1, . . . , s�] ·
∏

αi

(
si

−αi
)
f
s1+α1
1 · · · f s�+α�� ,

where α = (α1, . . . , α�) ∈ Z�, |α| = α1 + · · · + α�,
(
si
m

) = 1
m!

∏m−1
j=0 (si − j).

Mustaţă [101, Theorem 1.1] uses this characterization to show that ba(s)
coincides with the reduced Bernstein-Sato polynomial of f1y1 + · · · + f�y� ∈
A[y1, . . . , y�].

One may be tempted to consider a general element λ1f1+ · · ·+ λ�f� ∈ a whose
log-resolution has the same numerical data as the log-resolution of the ideal a.

Example 5.12 Let a = (x4, xy2, y3) ⊆ C[x, y] be a monomial ideal and consider
a general element of the ideal g = x4 + xy2 + y3. The roots of the Bernstein-Sato
polynomial ba(s) are

{
−5

8
,−2

3
,−3

4
,−7

8
,−1,−9

8
,−5

4
,−4

3
,−11

8
,−3

2

}
,
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with −1 being a root with multiplicity 2. Meanwhile, the roots of the reduced
Bernstein-Sato polynomial b̃g(s) are

{
−5

8
,−7

8
,−1,−9

8
,−11

8

}

The exceptional part of the log-resolution divisor Fπ in both cases is of the form
3E1+ 4E2+ 8E3. The roots of b̃g(s) are only contributed by the rupture divisor E3
but this is not the case for ba(s).

5.2.1 Monomial Ideals

Let a ⊆ C[x1, . . . , xd ] be a monomial ideal. Let Pa ⊆ Rd≥0 be the Newton
polyhedron associated to a which is the convex hull of the semigroup

�a = {a = (a1, . . . , ad) ∈ Nd | xa1
1 · · · xadd ∈ a}.

For any faceQ of Pa we define:

(i) MQ the subsemigroup of Zd generated by a − b with a ∈ �a and b ∈ �a ∩Q.
(ii) M ′Q := c +MQ for c ∈ �a ∩Q.

M ′Q is a subset ofMQ that is independent of the choice of c. For a face Q of Pa
not contained in a coordinate hyperplane we consider a function LQ : Rd → R with
rational coefficients such that LQ = 1 onQ. Set

RQ = {LQ(a) | a ∈ ((1, . . . , 1)+ (MQ �M ′Q)) ∩ VQ},

where VQ is the linear subspace generated byQ.
Budur, Mustaţă, and Saito [35] gave a closed formula for the roots of the

Bernstein-Sato polynomial of a in terms of these sets RQ.

Theorem 5.13 ([35]) Let a ⊆ C[x1, . . . , xd ] be a monomial ideal. Let ρa be the set
of roots of ba(−s). Then

ρa =
⋃

Q

RQ

where the union is over the facesQ of Pa not contained in coordinate hyperplanes.

5.2.2 Determinantal Varieties

The theory of equivariant D-modules has been successfully used in recent years to
study local cohomology modules of determinantal varieties. These techniques have
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also been used by Lőrincz et al. [84] to determine the Bernstein-Sato polynomial of
the ideal of maximal minors of a generic matrix.

Theorem 5.14 ([84]) Let X = (xij ) be a generic m × n matrix with m ≥ n. Let
an ⊆ A = C[xij ] be the ideal generated by the n × n minors of X. The Bernstein-
Sato polynomials of the ideal an and the corresponding variety are

ban(s) =
m∏

�=m−n+1

(s + �) .

bZ(an)(s) =
n−1∏

�=0

(s + �) .

They also provided a formula for sub-maximal Pfaffians.

Theorem 5.15 ([84]) LetX = (xij ) be a generic (2n+1)×(2n+1) skew-symmetric
matrix, i.e. xii = 0, xij = −xji . Let b2n ⊆ A = C[xij ] be the ideal generated by
the 2n× 2n Pfaffians of X. The Bernstein-Sato polynomials of the ideal b2n and the
corresponding variety are

bb2n(s) =
n−1∏

�=0

(s + 2�+ 3) .

bZ(b2n)(s) =
n−1∏

�=0

(s + 2�) .

5.3 Bernstein-Sato Ideals

In this subsection we consider the theory of Bernstein-Sato ideals associated to a
tuple of elements F = f1, . . . , f� developed by Sabbah [118].

Definition 5.16 Let K be a field of characteristic zero and A a regular K-algebra. A
Bernstein-Sato functional equation for a tuple F = f1, . . . , f� of elements of A is
an equation of the form

δ(s1, . . . , s�)f
s1+1
1 · · · f s�+1

� = b(s1, . . . , s�)f s11 · · · f s��
where δ(s1, . . . , s�) ∈ DA|K[s1, . . . , s�] and b(s1, . . . , s�) ∈ K[s1, . . . , s�].

All the polynomials b(s1, . . . , s�) satisfying a Bernstein-Sato functional equation
form an ideal BF ⊆ K[s1, . . . , s�] that we refer to as the Bernstein-Sato ideal.
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Remark 5.17 More generally, given a = (a1, . . . , a�) ∈ Z�≥0, we may also consider
the functional equations

δ(s1, . . . , s�)f
s1+a1
1 · · · f s�+a�� = b(s1, . . . , s�)f s11 · · · f s�� for all si ∈ N,

leading to other Bernstein-Sato ideals BaF ⊆ K[s1, . . . , s�].
As in the case � = 1 we first wonder about the existence of such functional

equations.

Theorem 5.18 ([118]) Let K be a field of characteristic zero, and let A be either
K[x1, . . . , xd ] or C{x1, . . . , xd}. Any nonzero tuple F = f1, . . . , f� of elements of
A satisfies a nonzero Bernstein-Sato functional equation and thus BF �= 0.

Sabbah [118] proved this result in the local analytic case A = C{x1, . . . , xd}.
The proof in the polynomial ring case A = K[x1, . . . , xd ] is completely analogous
to the one given in Sect. 3.3 for the case � = 1.

The Bernstein-Sato functional equation is an equality inAf [s1, . . . , s�]f s where
f = f1 · · · f� and f s := f

s1
1 · · ·f s�

�
. We also have that the DA|K[s1, . . . , s�]-

submodule generated by f s has a presentation

DA|K[s1, . . . , s�]f s ∼= DA|K[s1, . . . , s�]
AnnD[s1,...,s�](f s)

,

and, given the fact that

DA|K[s1, . . . , s�]f s

DA|K[s1, . . . , s�]ff s
∼= DA|K[s1, . . . , s�]

AnnD[s1,...,s�](f s)+DA|K[s1, . . . , s�]f
.

we get an analogue of Proposition 3.13 that reads as

Proposition 5.19 The Bernstein-Sato ideal of F = f1, . . . , f� is

BF = K[s1, . . . , s�] ∩ (AnnD
A|K[s1,...,s�](f

s)+DA|K[s1, . . . , s�]f ).

Some properties of Bernstein-Sato ideals are the natural extension of those
satisfied by Bernstein-Sato polynomials. We start with the ones considered in
Sect. 3.5. The analogue of Lemma 3.27 is the following result.

Lemma 5.20 ([30, 95]) Let F = f1, . . . , f� be a tuple where the fi are pairwise
without common factors. Then

BF ⊆
(
(s1 + 1) · · · (s� + 1)

)
.

Equality is achieved if and only if A/(f1, . . . , f�) is smooth.
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We summarize the relations between the Bernstein-Sato ideals when we change
the ring A in the following lemma. For the convenience of the reader we use
temporally the same notation as in Sect. 3.5.

Lemma 5.21 ([28]) We have:

(i) BK[x]F =⋂
m max ideal B

K[x]m
F .

(ii) BK[x]mF = BK[[x]]F , where m is the homogeneous maximal ideal.

(iii) BC{x−p}F = BC[[x−p]]F , where p ∈ Cd .

(iv) BL[x]F = L⊗K BK[x]F where L is a field containing K.

The first rationality result for Bernstein-Sato ideals is given by Gyoja [59] and
Sabbah [118] where they proved the existence of an element of BF which is a
product of polynomials of degree one of the form a1s1 + · · · + a�s� + a, with
ai ∈ Q≥0 and a ∈ Q>0. This fact prompted Budur [32] to make the following:

Conjecture 5.22 The Bernstein-Sato ideal of a tuple F = f1, . . . , f� of elements
in C{x1, . . . , xd} is generated by products of polynomials of degree one

a1s1 + · · · + a�s� + a,

with ai ∈ Q≥0 and a ∈ Q>0

Notice that this would imply that the irreducible components of the zero locus
Z(BF ) are linear. The best result so far towards this conjecture is the following.

Theorem 5.23 ([87]) Every irreducible component of Z(BF ) of codimension 1 is a
hyperplane of type a1s1 + · · · + a�s� + a, with ai ∈ Q≥0 and a ∈ Q>0. Every
irreducible component of Z(BF ) of codimension > 1 can be translated by an
element of Z� inside a component of codimension 1.

Recall that the work of Kashiwara and Malgrange relates the roots of the
Bernstein-Sato polynomials to the eigenvalues of the monodromy and these eigen-
values are roots of unity by the monodromy theorem. An extension to the case of
Bernstein-Sato ideals of Kashiwara and Malgrange result has been given recently
by Budur [32] and Budur et al. [39]. There is also an extension of the Monodromy
theorem in this setting given by Budur and Wang [40] and Budur et al. [34].
Unfortunately these results are not enough to settle Conjecture 5.22.

The main difference with the classical case is that Bernstein-Sato ideals are not
necessarily principally generated. Briançon and Maynadier [30] gave a theoretical
proof of this fact for the following example. The explicit computation was given by
Balhoul and Oaku [7].
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Example 5.24 ([7, 30]) Let F = z, x4 + y4 + zx2y2 be a pair of elements in
C{x, y, z}. The local Bernstein-Sato ideal is nonprincipal

B
C{x}
F =

(
(s1 + 1)(s2 + 1)2(2s2 + 1)(4s2 + 3)(4s2 + 5)(s1 + 2),

(s1 + 1)(s2 + 1)2(2s2 + 1)(4s2 + 3)(4s2 + 5)(2s2 + 3)
)
.

However, when we consider F in C[x, y, z] the global Bernstein-Sato ideal is

B
C[x]
F =

(
(s1 + 1)(s2 + 1)2(2s2 + 1)(2s2 + 3)(4s2 + 3)(4s2 + 5)

)
.

The following example is also given by Balhoul and Oaku.

Example 5.25 ([7]) Let F = z, x5+y5+zx2y3 be a pair of elements in C[x, y, z].
Then the local and the global Bernstein-Sato ideals coincide and are nonprincipal.
Specifically, BF is generated by (s1+ 1)(s2+ 1)2(5s2+ 2)(5s2+ 3)(5s2+ 4)(5s2+
6)(s1+2)(s1+3)(s1+4)(s1+5), (s1+1)(s2+1)2(5s2+2)(5s2+3)(5s2+4)(5s2+
6)(5s2+7)(s1+2), and (s1+1)(s2+1)2(5s2+2)(5s2+3)(5s2+4)(5s2+6)(5s2+
7)(5s2 + 8).

There are interesting examples worked out in several computational articles
by Balhoul [6], Balhoul and Oaku [7], Castro-Jiménez and Ucha-Enríquez [139],
Andres et al. [3]. However, we cannot find many closed formulas for families of
examples. Maynadier [95] studied the case of quasi-homogeneous isolated complete
intersection singularities and we highlight the case of hyperplane arrangements.

5.3.1 Hyperplane Arrangements

Let f ∈ C[x1, . . . , xd ] be a reduced polynomial defining an arrangement of
hyperplanes. The most natural tuple F = f1, · · · , f� associated to f is the one given
by its degree one components. The following result is an extension of Walther’s
work to this setting. It was first obtained by Maisonobe [88] for the case � = d + 1
and further extended by Bath [8] for � ≥ d + 1. We point out that Bath also
provides a formula for other tuples associated to different decompositions of the
arrangement f .

Theorem 5.26 ([8, 88]) Let f = f1 · · · f� ∈ C[x1, . . . , xd ], with � ≥ d + 1, be the
decomposition of a generic central hyperplane arrangement as a product of linear
forms. The Bernstein-Sato ideal of the tuple F = f1, . . . , f� is

BF =
⎛

⎝
�∏

i=1

(si + 1)
2�−d−2∏

j=0

(s1 + · · · + s� + j + d)
⎞

⎠ .
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5.4 Relative Versions

In this section we discuss a more general version of the Bernstein-Sato polynomials
in which the functional equation includes an element of a D-module M [97, 117].
As in the classical case, we consider this functional equation as an equality in a
given module that we define next.

Definition 5.27 LetA be a differentiably admissible K-algebra, andM a leftDA|K-
module. For f ∈ A � {0}, we define the left DAf |K[s]-module Mf [s]f s as
follows:

(i) As an Af [s]-module,Mf [s]f s is isomorphic toMf [s].
(ii) Each partial derivative ∂ ∈ DerA|K acts by the rule

∂(a(s)vf s) =
(
a(s)∂(v)+ sa(s)∂(f )

f

)
f s

for a(s) ∈ Af [s].
Alternative descriptions can be given analogously to Sect. 3.2, but we do not need

them here.

Theorem 5.28 ([98, Theorem 3.1.1], [117]) Let A be a differentiably admissible
K-algebra,M a left DA|K-module in the Bernstein class, and f ∈ A� {0}. For any
element v ∈ M there exists δ(s) ∈ DA|K[s] and b(s) ∈ K[s]� {0} such that

δ(s)vff s = b(s)vf s .

There are not many explicit examples of Bernstein-Sato polynomials in this
generality that we may find in the literature. Torrelli [135, 136] has some results
in the case that M is the local cohomology module of a complete intersection or
a hypersurface with isolated singularities. Reichelt et al. [115] studied the case of
hypergeometric systems.

In the case of M being the ring itself, we find the Bernstein-Sato polynomial of
f relative to an element h ∈ A. Of course, when h = 1 we recover the classical
version.

Corollary 5.29 Let A be a differentiably admissible K-algebra and f ∈ A � {0}.
For any element h ∈ A there exists δ(s) ∈ DA|K[s] and b(s) ∈ K[s]� {0} such that

δ(s)hff s = b(s)hf s .

Definition 5.30 Let A be a differentiably admissible K-algebra, M a left DA|K-
module in the Bernstein class, f ∈ A � {0}, and v ∈ M . We define the relative



Bernstein-Sato Polynomials in Commutative Algebra 45

Bernstein-Sato polynomial bf,v(s) to be the monic polynomial of minimal degree
for which there is a nonzero functional equation

δ(s)vff s = bf,v(s)vf s .

A basic example shows that s = −1 need not always be a root of the relative
Bernstein-Sato polynomial bf,g(s).

Example 5.31 Let A = C[x], and take f = g = x. We have a functional equation

∂xx
s+1x = (s + 2)xsx for all s,

so s = −1 is not a root of bx,x(s). It follows from the next proposition that bx,x(s) =
s + 2.

We record a basic property of relative Bernstein-Sato polynomials that may be
considered as an analogue to Lemma 3.27.

Lemma 5.32 Let A be a differentially admissible K-algebra, and f, g ∈ A � {0}.
If g ∈ (f n−1)� (f n), then s = −n is a root of bf,g(s).

Proof Evaluating the functional equation at s = −n, we have

δ(−n)ff−ng = b(−n)f−ng.
Since g/f n−1 ∈ R, and g/f n /∈ R, we must have b(−n) = 0. ��

We make another related observation.

Lemma 5.33 Let A be a differentially admissible K-algebra, and f, g ∈ A � {0}.
Then bf,f ng(s) = bf,g(s + n) for all n.

Proof Given a functional equation

δ(s)gff s = bf,g(s)gf s,

shifting by n yields

δ(s + n)gf nff s = bf,g(s + n)gf nf s,

so bf,g(s + n) | bf,f ng(s). Similarly, given a functional equation

δ′(s)gf nff s = bf,f ng(s)gf nf s,

we also have

δ′(s − n)gff s = bf,f ng(s − n)gf s,

from which the equality follows. ��
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This notion of relative Bernstein-Sato polynomials has been extended to the case
of nonprincipal ideals by Budur et al. [36] following the approach given in Sect. 5.2.

Theorem 5.34 ([36]) Let K a field of characteristic zero, A be a regular finitely
generated K-algebra, and a ⊆ A be a nonzero ideal. Let F = f1, . . . , f� be a set of
generators for a and consider an element h ∈ A. Then, ba,h(s) ∈ K[s] is the monic
polynomial of least degree, b(s) such that

b(s1+· · ·+s�)hf s11 · · · f s�� ∈
∑

|α|=1

DR|K[s1, . . . , s�]·
∏

αi

(
si

−αi
)
hf
s1+α1
1 · · · f s�+α�� ,

where α = (α1, . . . , α�) ∈ Z�, |α| = α1 + · · · + α�,
(
si
m

) = 1
m!

∏m−1
j=0 (si − j).

5.5 V -Filtrations

In this subsection, we give a quick overview of the V -filtration and its relationship
with the relative versions of Bernstein-Sato polynomials. For further details regard-
ing V -filtrations we refer to Budur’s survey on this subject [31].

Definition 5.35 Suppose that K has characteristic zero. Let A be a regular Noethe-
rian K-algebra. Let T = t1, . . . , t� be a sequence of variables, and let A[t1, . . . , t�]
be a polynomial ring over A. The V -filtration along the ideal (T ) on the ring of
differential operators DA[T ]|K is the filtration indexed by integers i ∈ Z defined by

V i(T )DA[T ]|K = {δ ∈ DA[T ]|K : δ • (T )j ⊆ (T )j+i for all j ∈ Z},

where (T )j = A[T ] for j ≤ 0.

Remark 5.36 We consider DA[T ]|K as a graded ring where deg(ti) = 1 and
deg(∂ti ) = −1. Then,

V i(T )DA[T ]|K =
⊕

a,b∈N�

|a|−|b| ≥ i

DA|K · ta1
1 · · · ta�� ∂b1

t1
· · · ∂b�t� .

The V -filtration along the ideal (T ) on a DA[T ]|K-module M is defined as
follows.

Definition 5.37 Suppose that K has characteristic zero. Let A be a regular Noethe-
rian K-algebra. Let T = t1, . . . , t� be a sequence of variables, and let A[t1, . . . , t�]
be a polynomial ring over A. Let M be a DA[T ]|K-module. A V -filtration on M
along the ideal (T ) = (t1, . . . , t�) is a decreasing filtration {V α(T )M}α onM , indexed
by α ∈ Q, satisfying the following conditions.
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(i) For all α ∈ Q, V α(T )M is a Noetherian V 0
(T )DA[T ]|K-submodule ofM .

(ii) The union of the V α(T )M , over all α ∈ Q, isM .

(iii) V α(T )M =
⋂
γ<α V

γ

(T )M for all α, and the set J consisting of all α ∈ Q for

which V α(T )M �=
⋃
γ>α V

γ

(T )M is discrete.
(iv) For all α ∈ Q and all 1 ≤ i ≤ �,

ti • V α(T )M ⊆ V α+1
(T ) M and ∂ti • V

α
(T )M ⊆ V α−1

(T ) M,

i.e., the filtration is compatible with the V -filtration on DA[T ]|K.

(v) For all α � 0,
∑�
i=1

(
ti • V α(T )M

)
= V α+1

(T ) M .

(vi) For all α ∈ Q,

�∑

i=1

∂ti ti − α

acts nilpotently on V α(T )M/(
⋃
γ>α V

γ

(T )M).

Proposition 5.38 ([31]) Suppose that K has characteristic zero. Let A be a regular
Noetherian K-algebra. Let T = t1, . . . , t� be a sequence of variables, and let
A[t1, . . . , t�] be a polynomial ring over A. Let M be a finitely generated DA[T ]|K-
module. If a V -filtration onM along (T ) exists, then it is unique.

We now define the V -filtration on aDA|K-moduleM along F = f1, . . . , f� ∈ A,
whereM is aDR|K-module. For this, we need the direct image ofM under the graph

embedding iF . We recall that this is the local cohomology module H�(T−F)(M[T ]),
where (T − F) = (t1 − f1, . . . , t� − f�).
Definition 5.39 Suppose that K has characteristic zero. Let A be a regular Noethe-
rian K-algebra. Given indeterminates T = t1, . . . , t�, and F = f1, . . . , f� ∈ A,
consider the ideal (T−F) of the polynomial ringA[T ] generated by t1−f1, . . . , t�−
f�. For a DA|K-moduleM , letM ′ denote the DA[T ]|K-module H�(T−F)(M[T ]), and
identify M with the isomorphic module 0 :M ′ (T − F) ⊆ M ′. Suppose that M ′
admits a V -filtration along (T ) overA[T ]. Then the V -filtration onM along (T−F)
is defined, for α ∈ Q, as

V α(F)M := V α(T )M ′ ∩M = (0 :V α(T )M ′ (T − F)).

We point out that V -filtration over A along F only depends on the ideal a = (F )
and not on the generators chosen.

We now give a result that guarantees the existence of V -filtrations. We point
out that we have not defined regular or quasi-unipotent DA|K-modules. We omit
these definitions, but we mention that all principal localizations Af and all local
cohomology modules Hia(A) of the ring A satisfy these properties.
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Theorem 5.40 ([72, 93]) Suppose that K has characteristic zero. Let A =
K[x1, . . . , xd ] be a polynomial ring andM be a quasi-unipotent regular holonomic
left DA|K-module. Then,M has a V -filtration along F = f1, . . . , f� ∈ A.

Once we ensure the existence of V -filtrations we have the following characteri-
zation in terms of relative Bernstein-Sato polynomials.

Theorem 5.41 ([36, 117]) Suppose that K has characteristic zero. Let A =
K[x1, . . . , xd ] be a polynomial ring andM be a quasi-unipotent regular holonomic
left DA|K-module. Then,

V α(F)M = {v ∈ M | α ≤ c if b(F),v(−c) = 0}.

6 Bernstein-Sato Theory in Prime Characteristic

We now discuss Bernstein-Sato theory in positive characteristic. Throughout this
section, K is a perfect field of characteristic p > 0, and A = K[x1, . . . , xd ] is a
polynomial ring. The main purpose of this section is to discuss the theory developed
by Mustaţă [100], Bitoun [14], and Quinlan-Gallego [114].

Before we do so, as motivation, we briefly discuss the notion of the Bernstein-
Sato functional equation in positive characteristic. Note that for b(s) ∈ K[s], we
have b(s)f s = c(s)f s for all s ∈ N if and only if b and c determine the same
function from Fp to K. This gives a recipe for many unenlightening functional
equations: we can take b(s) to be a function identically zero on Fp, e.g., sp− s, and
δ(s) to be some operator that annihilates every power of f , e.g., the zero operator.
For this reason, the notion of Bernstein-Sato polynomial in characteristic zero is not
as well-suited for consideration in positive characteristic.

Instead, we return to an alternative characterization of the Bernstein-Sato poly-
nomial discussed in Sect. 3.2. As a consequence of Proposition 3.13, for polynomial
rings in characteristic zero, we can characterize the roots of the Bernstein-Sato
polynomial of f as the eigenvalues of the action of −∂t t on [ 1

f−t ] in

DA|K[−∂t t] · [ 1
f−t ]

DA|K[−∂t t]f · [ 1
f−t ]

.

In characteristic p > 0, we consider the eigenvalues of a sequence of operators that
are closely related to −∂t t .
Definition 6.1 Consider DA[t]|K as a graded ring, with grading induced by giving
each xi degree zero, and t degree 1. We set [DA[t]|K]0 to be the subring of
homogeneous elements of degree zero, and [DA[t]|K]≥0 to be the subring spanned
by elements of nonnegative degree.

We note that [DA[t]|K]≥0 is also characterized by the V -filtration as V 0
(t)DA[t]|K.
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Lemma 6.2 [DA[t]|K]0 = DA|K[s0, s1, . . . ], where se = − ∂
pe

t

pe! t
pe . In this ring, the

operators si commute with one another and elements of DA|K, and spi = si for
each i.

Proof We omit the proof that these elements generate. It is clear that each si
commutes with elements of DA|K. For an element f (t) = ∑

j aj t
j ∈ A[t], with

aj ∈ A, using Lucas’ Lemma, we compute

sif (t) =
∑

j

−
(
j + pi
pi

)
aj t

j =
∑

j

−([j ]i + 1)aj t
j ,

where [j ]i is the ith digit in the base p expansion of j ; our convention that the unit
digit is the 0th digit. The other claims follow from this computation. ��

We can interpret the computation in the previous lemma as saying that the
αi-eigenspace of si on A[t] is spanned by the homogeneous elements such that
the ith base p digit of the degree is αi − 1. By way of terminology, we say
that the (α0, α1, α2, . . . )-multieigenspace of (s0, s1, s2, . . . ) is the intersection of
the αi-eigenspace of si for all i. Then, the (α0, α1, α2, . . . )-multieigenspace of
(s0, s1, s2, . . . ) on A[t] is the collection of homogeneous elements of degree∑
i (αi − 1)pi for a tuple with αi = 0 for i � 0. This motivates the idea

that a “Bernstein-Sato root” in positive characteristic should be determined by a
multieigenvalue of the action of (s0, s1, s2, . . . ) on [ 1

f−t ] in

[DA[t]|K]≥0 · [ 1
f−t ]

[DA[t]|K]≥0f · [ 1
f−t ]

.

Based on this motivation, we give two closely related notions of Bernstein-Sato
roots appearing in the literature.

6.1 Bernstein-Sato Roots: p-Adic Version

The first definition of Bernstein-Sato roots that we present follows the treatment of
Bitoun [14]. To each element α = (α0, α1, α2, . . . ) ∈ FNp we associate the p-adic

integer I (α) = α0 + pα1 + p2α2 + · · · .
Theorem 6.3 ([14]) For any f ∈ A, the module

[DA[t]|K]≥0 · [ 1
f−t ]

[DA[t]|K]≥0f · [ 1
f−t ]
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decomposes as a finite direct sum of multieigenspaces of (s0, s1, s2, . . . ). The image
of each multieigenvalue under I is negative, rational, and at least negative one.
Moreover, the map I induces a bijection between multieigenvalues and the set of
negatives of the F -jumping numbers in the interval (0, 1] with denominator not
divisible by p.

In this context, we consider the image of the multieigenvaues under the map
I as the set of Bernstein-Sato roots of f . Moreover, Bitoun constructs a notion
of a Bernstein-Sato polynomial as an ideal in a certain ring; however, this yields
equivalent information to the set of Bernstein-Sato roots just defined.

Example 6.4 ([14])

(i) Let f = x2
1 + · · · + x2

n , with n ≥ 2, and p > 2. Then the set of Bernstein-Sato
roots of f is {−1}. Contrast this with the situation in characteristic zero, where
−n/2 is also a root.

(ii) Let f = x2 + y3, and p > 3. If p ≡ 1 mod 3, then the set of Bernstein-Sato
roots is {−1,−5/6}, and if p ≡ 2 mod 3, then the set of Bernstein-Sato roots is
{−1}.

6.2 Bernstein-Sato Roots: Base p Expansion Version

The second definition of Bernstein-Sato roots that we present is historically the first,
following the treatment of Mustaţă. To each element α = (α0, α1, α2, . . . , αe) ∈
Fe+1
p we associate the real number E(α) = 1

pe+1α0 + 1
pe
α1 + · · · + 1

p
αe.

Theorem 6.5 ([100]) For α ∈ Fe+1
p , we have that α is a multieigenvalue of

[D(e)
A[t]|K]≥0 · [ 1

f−t ]
[D(e)
A[t]|K]≥0f · [ 1

f−t ]

if and only if there is an F -jumping number of f contained in the interval
(E(α), E(α)+ 1/pe+1].

For each level e, one then obtains a set of Bernstein-Sato roots, given as the
image of the multieigenvalues under the map E.

Relative versions of the above result, for an element in a unit F -module, were
considered by Stadnik [134] and Blickle and Stäbler [23].
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6.3 Nonprincipal Case

Both of the approaches above were extended to the nonprincipal case by Quinlan-
Gallego [114]. To state these generalizations, for an n-generated ideal a =
(f1, . . . , fn), we consider the following.

Definition 6.6 Consider DA[t1,...,tn]|K as a graded ring, with grading induced by
giving each xi degree zero, and each ti degree one. We set [DA[t1,...,tn]|K]≥0 to be
the subring spanned by homogeneous elements of nonnegative degree. We also set

se = −
∑

a1+···+an=pe
∂
a1
1

a1! · · ·
∂
an
n

an! t
a1
1 · · · tann .

Theorems 6.3 and 6.5 have analogues in this setting; we state the former here and
refer the reader to [114] for the latter.

Theorem 6.7 Let a = (f1, . . . , fn), and let

η =
[

1

(f1 − t1) · · · (fn − tn)
]
∈ Hn(f1−t1,...,fn−tn)(A[t1, . . . , tn]).

Then, the module

[DA[t1,...,tn]|K]≥0 · η
[DA[t1,...,tn]|K]≥0a · η

decomposes as a finite direct sum of multieigenspaces of (s0, s1, s2, . . . ). The image
of each multieigenvalue under the map I from Sect. 6.1 is rational and negative.
Moreover, there is an equality of cosets in Q/Z:

{I (α) | α is a multieigenvalue of (s0, s1, s2, . . . )} + Z =
{negatives of F -jumping numbers of a with denominator not a multiple of p} + Z.

In this setting, we consider the image of the set of multieigenvalues under the
map I as the set of Bernstein-Sato roots of a.

Example 6.8 ([113]) Let a = (x2, y3). Then, for p = 2, the set of Bernstein-Sato
roots is {−4/3,−5/3,−2}. For p = 3, the set of roots is {−3/2,−2}. For p � 0,
by [113, Theorem 3.1], the set of roots is {−5/6,−7/6,−4/3,−3/2,−5/3,−2}.

The connection between Bernstein-Sato roots and F -jumping numbers largely
stems from the following proposition, and the fact that CeAa = CeAb if and only

D
(e)
A a = D(e)A b.
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Proposition 6.9 ([100, Section 6],[114, Theorem 3.11]) The multieigenspace cor-
responding to (α0, α1, α2, . . . , αe−1) of (s0, s1, s2, . . . , se−1) acting on

[D(e)
A[t1,...,tn]|K]≥0 · η

[D(e)
A[t1,...,tn]|K]≥0a · η

decomposes as the direct sum of the modules

D
(e)
A · aI (α)+sp

e

D
(e)
A · aI (α)+spe+1

s = 0, 1, . . . , n− 1.

7 An Extension to Singular Rings

We now consider the notion of Bernstein-Sato polynomial in rings of characteristic
zero that may be singular. Throughout this section, K is a field of characteristic zero,
and R is a K-algebra.

As in Sect. 3, the definition is as follows:

Definition 7.1 A Bernstein-Sato functional equation for an element f in R is an
equation of the form

δ(s)f s+1 = b(s)f s for all s ∈ N,

where δ(s) ∈ DR|K[s] is a polynomial differential operator, and b(s) ∈ K[s] is a
polynomial. We say that such a functional equation is nonzero if b(s) is nonzero;
this implies that δ(s) is nonzero as well.

If there exists a nonzero functional equation for f , we say that f admits a
Bernstein-Sato polynomial, and the Bernstein-Sato polynomial of f is the minimal
monic generator of the ideal

{b(s) ∈ K[s] | ∃δ(s) ∈ DR|K[s] such that δ(s)f s+1 = b(s)f s for all s ∈ N} ⊆ K[s].

We denote this as bf (s), or as bRf (s) if we need to keep track of the ring in which
we are considering f as an element.

If every element of R admits a Bernstein-Sato polynomial, we say that R has
Bernstein-Sato polynomials.

The set specified above is an ideal of K[s] for the same reason as in Sect. 3.
The proof of existence of Bernstein-Sato polynomials uses the hypothesis that

R is regular crucially in multiple steps; thus, a priori Bernstein-Sato polynomials
may or may not exist in singular rings. Before we consider examples, we want to
consider the functional equation as a formal equality in a D-module.
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Theorem 7.2 ([2]) There exists a unique (up to isomorphism) DRf |K[s]-module,

Rf [s]f s , that is a free as an Rf [s]-module, and that is equipped with maps
θn : Rf [s]f s → Rf , such that πn(δ(s)) · θn(a(s)f s) = θn(δ(s) · a(s)f s) for all
n ∈ N. An element a(s)f s is zero in Rf [s]f s if and only if θn(a(s)f

s) = 0 for
infinitely many (if and only if all) n ∈ N.

Remark 7.3 From this theorem, we see that the following are equivalent, as in the
regular case:

(i) δ(s)ff s = b(s)f s in Rf [s]f s ;
(ii) δ(s)f s+1 = b(s)f s for all s ∈ N;

(iii) δ(s + t)f t+1f s = b(s)f tf s in Rf [s]f s for some/all t ∈ Z.

We note also that Proposition 3.13 holds in this setting, by the same argument.

7.1 Nonexistence of Bernstein-Sato Polynomials

In this subsection, we give some examples of rings with elements that do not admit
Bernstein-Sato polynomials. This is based on a necessary condition on the roots that
utilizes the following definition.

Definition 7.4 A D-ideal of R is an ideal a ⊆ R such that DR|K(a) = a.

As R ⊆ DR|K, we always have a ⊆ DR|K(a), so the nontrivial condition in the
definition above is DR|K(I ) ⊆ I . We always have that 0 and R are D-ideals. Sums,
intersections, and minimal primary components ofD-ideals (when R is Noetherian)
are also D-ideals [137, Proposition 4.1]. When R is a polynomial ring, the only D-
ideals are 0 andR; in other rings, there may be more. We make a simple observation.

Lemma 7.5 Let f ∈ R, and let a ⊆ R be a D-ideal. Let δ(s)f s+1 = b(s)f s be a
functional equation for f . If f n+1 ∈ a and f n /∈ a, then b(n) = 0. In particular, if
f admits a Bernstein-Sato polynomial bf (s), then bf (n) = 0.

Proof After specializing the functional equation, we have δ(n)f n+1 = bf (n)f n.
Since δ(n)f n+1 ∈ a, we must have bf (n)f n ∈ a, which implies bf (n) = 0. ��

From the previous lemma, we obtain the following result.

Proposition 7.6 Let R be a reduced N-graded K-algebra. If DR|K lives in nonneg-
ative degrees, then no element f ∈ [R]>0 admits a Bernstein-Sato polynomial.

Proof Let δ(s)f s+1 = b(s)f s be a functional equation for f . Suppose f ∈ [R]w�
[R]w−1. Since DR|K has no elements of negative degree, [R]≥w(n+1) is a D-ideal

for each n ∈ N, and f n+1 ∈ [R]≥w(n+1), while f n /∈ [R]≥w(n+1). Thus, b(n) = 0
for all n, so b(s) ≡ 0. Thus, f does not admit a Bernstein-Sato polynomial. ��

Large classes of rings with no differential operators of negative degree are
known. In particular, we have the following.



54 J. Àlvarez Montaner et al.

Theorem 7.7 ([24, Corollary 4.49],[62],[89]) Let K be an algebraically closed
field of characteristic zero and let R be a standard-graded normal K-domain with
an isolated singularity and that is a Gorenstein ring. If R has differential operators
of negative degree, then R has log-terminal and rational singularities.

In particular, if R is a hypersurface, and R has differential operators of negative
degree, then the degree of R is less than the dimension of R.

Mallory recently showed that the hypothesis of log-terminal singularities is not
sufficient.

Theorem 7.8 ([89]) Let K be an algebraically closed field of characteristic zero.
There are no differential operators of negative degree on the log-terminal hypersur-
face R = K[x1, x2, x3, x4]/(x3

1 + x3
2 + x3

3 + x3
4).

Corollary 7.9 For R as in Theorems 7.7 and 7.8, no element of [R]≥1 admits a
Bernstein-Sato polynomial.

7.2 Existence of Bernstein-Sato Polynomials

While some rings do not admit Bernstein-Sato polynomials, large classes of singular
rings do.

Definition 7.10 Let R, S be two rings. We say that R is a direct summand of S if
R ⊆ S, and there is an R-module homomorphism β : S → R such that β|R is the
identity on R.

A major source of direct summands comes from invariant theory: if G is a
linearly reductive group acting on a polynomial ring B, then R = BG is a direct
summand of B. In particular, direct summands of polynomial rings include:

(i) invariants of finite groups (including the simple singularities An, Dn, En),
(ii) normal toric rings,

(iii) determinantal rings, and
(iv) coordinate rings of Grassmannians.

We note that a ring R may be a direct summand of a polynomial ring in different
ways; i.e., as different subrings of polynomial rings. For example, theA1 singularity
R = C[a, b, c]/(c2− ab) embeds as a direct summand of B = C[x, y] by the maps

φ1 : R→ B φ1(a) = x2, φ1(b) = y2, φ1(c) = xy, and

φ2 : R→ B φ2(a) = x4, φ2(b) = y4, φ2(c) = x2y2; likewise

φ3 : R→ B[z] φ3(a) = x2, φ3(b) = y2, φ3(c) = xy splits.
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We note also that if R is a direct summand of a polynomial ring, there may be other
embeddings of R into a polynomial ring that are not split. E.g., for R and B as
above,

φ4 : R→ B φ4(a) = x, φ4(b) = xy2, φ4(c) = xy

is injective, but no splitting map β|R exists.

Definition 7.11 ([2, 24]) Let R, S be two rings. We say that R is a differentially
extensible direct summand of S if R is a direct summand of S, and for every
differential operator δ ∈ DR|K, there is some δ̃ ∈ DS|K such that δ̃|R = δ.

This notion is implicit in a number of papers on differential operators, e.g.,
[69, 79, 99, 127]. Differentially extensible direct summands of polynomial rings
include

(i) invariants of finite groups (including the simple singularities An, Dn, En),
(ii) normal toric rings,

(iii) determinantal rings, and
(iv) coordinate rings of Grassmannians of lines Gr(2, n).

As with the direct summand property, a ring may be a differentially extensible
direct summand of a polynomial ring by some embedding, but fail this property for
another embedding into a polynomial ring. For the example considered above, R is
a differentially extensible direct summand of B via φ1 and φ3, but not φ2 or φ4.

Theorem 7.12 ([1, 24]) Let R be a direct summand of a differentiably admissible
algebra B over a field K of characteristic zero. Then every element f ∈ R admits a
Bernstein-Sato polynomial bRf (s), and bRf (s) | bBf (s).

If, in addition, R is a differentially extensible direct summand of B, then bRf (s) =
bBf (s) for all f ∈ R.

Proof Let β : B → R be the splitting map. The key point is that for δ ∈ DB|K,
the map β ◦ δ|R is a differential operator on R; this is left as an exercise using
the inductive definition, or see [133]. Thus, given a functional equation ∀s ∈
N, δ(s)f s+1 = b(s)f s for f in B, we have ∀s ∈ N, β◦δ(s)|R f s+1 = β(b(s)f s) =
b(s)f s in R. This implies that f admits a Bernstein-Sato polynomial in R, and that
bRf (s) | bBf (s).

If R is a differentially extensible direct summand of B, then for any functional
equation ∀s ∈ N, δ(s)f s+1 = b(s)f s for f in R, we can take an extension δ̃(s) by
extending each si-coefficient, and we then have ∀s ∈ N, δ̃(s)f s+1 = b(s)f s in B.
Thus, bBf (s) | bRf (s), so equality holds. ��

Note that for direct summands of polynomial rings, all roots of the Bernstein-
Sato polynomial are negative and rational, as in the regular case.

We end this section with two examples of Bernstein-Sato polynomials in rings
that are not direct summands of polynomial rings.
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Example 7.13 ([2]) Let R = C[x, y]/(xy), and f = x. The operator x∂2
x is a

differential operator on R [138], and it yields a functional equation

x∂2
x x

s+1 = s(s + 1)xs .

Thus, bRf (s) exists, and divides s(s + 1). In fact, we have bRf (s) = s(s + 1). The
ideal (x) is a minimal primary component of (0), hence a D-ideal. By Lemma 7.5,
s = 0 is a root; s = −1 is also a root since x is not a unit.

Example 7.14 ([2]) Let R = C[t2, t3] ∼= C[x, y]
(x3 − y2)

and f = t2. Consider the

differential operator of order two

δ = (t∂t − 1) ◦ ∂2
t ◦ (t∂t − 1)−1,

where (t∂xt − 1)−1 is the inverse function of t∂t − 1 on R. The equation

δ • t2(�+1) = (2�+ 2)(2�− 1)t2�

holds for every � ∈ N. Then, the functional equation

δ • t2(t2)s = (2s + 2)(2s − 1)(t2)s

holds in Rt2[s](t2)s . Thus, bR
t2
(s) divides (s − 1

2 )(s + 1).
We now see that the equality holds. We already know that s = −1 is a root

of bR
t2
(s), because 1

t2
�∈ R. Every differential operator of degree −2 on R can be

written as (t∂t − 1) ◦ ∂2
t ◦ γ ◦ (t∂t − 1)−1 for some γ ∈ C[t∂t ] [130, 132]. Since

Rt2 [s](t2)s is a graded module we can decompose the functional equation as a sum
of homogeneous pieces. Using previous description of such operators, it follows that
s = 1

2 must be a root of bR
t2
(s).

7.3 Differentiable Direct Summands

Definition 7.15 ([1, Definition 3.2]) Let R ⊆ B be an inclusion of K-algebras with
R-linear splitting β : B → R. Recall that, for ζ ∈ Dn

B|K, the map β ◦ ζ |R : R→ R

is an element ofDn
R|K. By abuse of notation, for δ ∈ DB|K, we write β ◦ δ|R for the

element of DR|K obtained from δ by applying β ◦ −|R .
We say that a DR|K-module M is a differential direct summand of a DB|K-

module N if M ⊆ N and there exists an R-linear splitting � : N → M , called
a differential splitting, such that

�(δ • v) = (β ◦ δ|R) • v
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for every δ ∈ DB|K and v ∈ M , where the action on the left-hand side is the DB|K-
action, considering v as an element of N , and the action on the right-hand side is
the DR|K-action.

A key property for differential direct summands is that one can deduce finite
length.

Theorem 7.16 ([1, Proposition 3.4]) Let R ⊆ B be K-algebras such that R is a
direct summand of B. LetM be aDR|K-module and N be aDB|K-module such that
M is a differential direct summand of N . Then,

lengthD
R|K
(M) ≤ lengthD

B|K
(N).

In particular, if lengthD
B|K
(N) is finite, then lengthD

R|K
(M) is also finite.

Definition 7.17 ([1, Definition 3.5]) Let R ⊆ B be K-algebras such that R is
a direct summand of B. Fix DR|K[¯s]-modules M1 and M2 that are differential
direct summands of DB|K[¯s]-modules N1 and N2, respectively, with differential
splittings �1 : N1 → M1 and �2 : N2 → M2. We call φ : N1 → N2 a morphism
of differential direct summands if φ ∈ HomD

B|K[¯s]
(N1, N2), φ(M1) ⊆ M2,

φ|M1 ∈ HomD
R|K[¯s]

(M1,M2), and the following diagram commutes:

M1

φ M1

N1

φ

Θ1
M1

φ M1

M2 N2
Θ2

M2

For simplicity of notation, we often write φ instead of φ|M1 .

Further, a complex M• of DR|K[¯s]-modules is called a differential direct
summand of a complex N• of DB|K[¯s]-modules if each Mi is a differential direct
summand ofNi , and each differential is a morphism of differential direct summands.

Remark 7.18 Let R ⊆ B be K-algebras such that R is a direct summand of B.
It is known that the property of being a differential direct summand is preserved
under localization at elements of R. In addition, it is preserved under taking kernels
and cokernels of morphisms of differential direct summands [1, Proposition 3.6,
Lemma 3.7].

We now present several examples of differentiable direct summands built from
the previous remark.

Example 7.19 Let R ⊆ B be K-algebras such that R is a direct summand of B

(i) For every f ∈ R � {0}, Rf is a differentiable direct summand of Bf .
(ii) For every ideal a ⊆ R, Hia(R) is a differentiable direct summand of Hia(B).

(iii) For every sequence of ideals a1, . . . , a� ⊆ R, Hia1
· · ·Hia� (R) is a differen-

tiable direct summand of Hia1
· · ·Hia� (B).
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We end this subsection showing that Rf [s]f s is a differentiable direct summand
of Rf [s]f s . This gives a more complete approach to prove the existence of the
Bernstein-Sato polynomial.

Theorem 7.20 Let R ⊆ B be K-algebras such that R is a direct summand of B,
and f ∈ R � {0}. Then, Rf [s]f s is a differentiable direct summand of Rf [s]f s . In
particular, if B is a differentiably admissible K-algebra, thenMR[f s] ⊗K K(s) has
finite length as DR(s)|K(s)-module, and so, there exists a functional equation

δ(s)ff s = b(s)f s,

where δ(s) ∈ DR|K and b(s) ∈ K[s]� {0}.

8 Local Cohomology

In this section we discuss some properties of local cohomology modules for regular
rings that follow from the existence of the Bernstein-Sato polynomial.

Proposition 8.1 Let K be a field of characteristic zero, R be a K-algebra, and f ∈
R be a nonzero element. If R has Bernstein-Sato polynomials, then, Rf is a finitely
generated DR|K-module. In particular, if bRf (s) has no integral root less than or

equal to −n, then Rf = DR|K ·
1

f n−1 .

Proof After specializing the functional equation, we have

δ(−t) 1

f t−1 = bRf (−t)
1

f t

for all t ≥ n, with each bRf (−t) �= 0. We conclude that each power of f , and hence

all of Rf , is in DR|K · 1
f n−1 . ��

In fact, a converse to this theorem is true.

Proposition 8.2 ([143, Proposition 1.3]) Let K be a field of characteristic zero, R
be a K-algebra, and f ∈ R have a Bernstein-Sato polynomial. If −n is the smallest

integral root of bf (s), then
1

f n
/∈ DR|K ·

1

f n−1 ⊆ Rf .

We give a proof of this proposition here, since it appears in the literature only in
the regular case.

Lemma 8.3 ([71, Proposition 6.2]) If −n is the smallest integral root of bf (s),
then

(s + n+ j)DR|K[s]f s ∩DR|K[s]f jf s = (s + n+ j)DR|K[s]f s for all j > 0.



Bernstein-Sato Polynomials in Commutative Algebra 59

Proof We proceed by induction on j .

Since bf (s) is the minimal polynomial of the action of s on
DR|K[s]f s

DR|K[s]ff s and

−n− j is not a root of bf (s) for j ≥ 1, the map

DR|K[s]f s

DR|K[s]ff s

s+n+j−−−−→ DR|K[s]f s

DR|K[s]ff s

is an isomorphism. Thus,

(s + n+ j)DR|K[s]f s ∩DR|K[s]ff s = (s + n+ j)DR|K[s]ff s .

In particular, for j = 1, this covers the base case.
Let � : DR|K[s]f s → DR|K[s]f s be the map given by the rule �(δ(s)f s) =

δ(s + 1)ff s . Using the induction hypothesis, for j ≥ 2 we compute

(s + n+ j)DR|K[s]f s ∩DR|K[s]f jf s ⊆ (s + n+ j)DR|K[s]ff s ∩DR|K[s]f jf s

= �((s + n+ j − 1)DR|K[s]f s ∩DR|K[s]f j−1f s)

= �((s + n+ j − 1)DR|K[s]f j−1f s)

= (s + n+ j)DR|K[s]f jf s . ��

Lemma 8.4 ([71, Proposition 6.2]) If −n is the smallest integral root of bf (s),
then

AnnD(f
−n) = DR|K ∩ (AnnD[s](f s)+DR|K[s](s + n)).

Proof Let δ ∈ AnnD(f−n). Write δf s = f−mg(s)f s , with g(s) ∈ R[s]. In fact,
we can take m to be the order of δ. Then g(−n) = 0. By Remark 7.3,

δ · fmf s = g(s +m)f s .

Set h(s) = g(s + m). We then have that h(−n−m) = g(−n) = 0, so
(s + n+m)|h(s). Thus, δ · fmf s ∈ (s +m+ n)DR|K[s]f s , and δ · f mf s ∈
DR|K[s]fmf s by definition. By the previous lemma, we obtain that δ · f mf s ∈
(s +m+ n)DR|K[s]f mf s . We can then write δ · f mf s = (s +m+ n)h′(s)f s for
some h′(s) ∈ R[s]. By Remark 7.3, we have that δ · f s = (s + n)h′(s −m)f s .
Thus, we can write δ as a sum of a multiple of (s + n) and an element in the
annihilator of f s . ��
Proof of Proposition 8.2 Suppose that

1

f n
∈ DR|K

1

f n−1 . Then we can write

DR|K = DR|Kf + AnnD( 1
f n
). From the previous lemma, we have that

AnnD(
1

f n
) = DR|K ∩ (AnnD[s](f s)+DR|K[s](s + n)).
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Then,

1 ∈ DR|Kf + AnnD[s](f s)+DR|K[s](s + n).

Multiplying by
bf (s)

s+n , we get

bf (s)

s + n ∈ AnnD[s](f s)+DR|Kf +DR|K[s] bf (s).

Since bf (s) ∈ DR|Kf + AnnD[s](f s), using Remark 7.3 we have

bf (s)

s + nDR|K[s] ∈ AnnD[s](f s)+DR|K[s]f,

which contradicts that bf (s) is the minimal polynomial in s contained in

AnnD[s](f s)+DR|K[s]f. ��
Remark 8.5 Proposition 8.2 extends to the setting of the DR|K-modules DR|Kf α
for α ∈ Q discussed in Remark 3.14. Namely, if α ∈ Q is such that bf (α) = 0 and
bf (α − i) �= 0 for all integers i > 0, then f α /∈ DR|K · f α+1 in the DR|K-module
Rf f

α .
It is not true in general that bf (α) = 0 implies f α /∈ DR|K · f α+1, even in

the regular case: an example is given by Saito [123]. However, this implication
does hold when R = A is a polynomial ring, and f is quasihomogeneous with
an isolated singularity [15]. We are not aware of an example where bf (n) = 0 and
f n ∈ DR|K · f n+1 for an integer n.

We also relate existence of Bernstein-Sato polynomials to finiteness properties
of local cohomology.

Theorem 8.6 Let K be a field of characteristic zero, R be a K-algebra, and
f ∈ R be a nonzero element. Suppose that R has Bernstein-Sato polynomials and
DR|K is a Noetherian ring. Then, Hia(R) is a finitely generated DR|K-module, and

AssR(H ia(R)) is finite for every ideal a ⊆ R.

Proof Let F = f1, . . . , f� be a set of generators for a. We have that the Čech
complex associated to F is a complex of finitely generated DR|K-modules. Since

DR|K is Noetherian, the Čech complex is a complex of Noetherian DR|K-modules.
Then, the cohomology of this complex is also a Noetherian DR|K-module.

It suffices to show that a Noetherian DR|K-module, N , has a finite set of
associated primes. We build inductively a sequence ofDR|K-submodulesNi ⊆ N as
follows. We set N0 = 0. Given Nt , we pick a maximal element pt ∈ AssR(N/Nt).
This is possible if and only if AssR(N/Nt) �= ∅. We set Ñt+1 = H 0

p(N/Nt ), which

is nonzero, and Nt+1 the preimage of Ñt+1 in N under the quotient map. We have
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that AssR(Ñt+1) = {p}, and so, AssR(Nt+1) = {p} ∪ AssR(Nt ). We note that this
sequence cannot be infinite, becauseN is Noetherian. Then, the sequence stops, and
there is a k ∈ N such that Nk = N . We conclude that AssR(N) ⊆ {p1, . . . , pk}. ��

9 Complex Zeta Functions

The foundational work of Bernstein [9, 10] where he developed the theory of D-
modules and proved the existence of Bernstein-Sato polynomials was motivated by
a question of I. M. Gel’fand [55] at the 1954 edition of the International Congress
of Mathematicians regarding the analytic continuation of the complex zeta function.
Bernstein’s work relates the poles of the complex zeta function to the roots of
the Bernstein-Sato polynomials. Previously, Bernstein and S. I. Gel’fand [11] and
independently Atiyah [5], gave a different approach to the same question using
resolution of singularities.

Throughout this section we consider A = C[x1, . . . , xd ] and the correspond-
ing ring of differential operators DA|C. Given a differential operator δ(s) =∑
α aα(x, s)∂

α ∈ DA|C[s], which is polynomial in s, we denote the conjugate and
the adjoint of δ(s) as

δ̄(s) :=
∑

α

aα(x̄, s̄)∂
α
, δ∗(s) :=

∑

α

(−1)|α|∂αaα(x, s),

where we are using the multidegree notation ∂α := ∂
α1
1 · · · ∂αdd and ∂

α :=
∂
α1
1 · · · ∂αdd with ∂i = d

dxi
.

Let f (x) ∈ A be a non-constant polynomial and let ϕ(x) ∈ C∞c (Cd) be a test
function: an infinitely many times differentiable function with compact support. We
define the parametric distribution f s : C∞c (Cd) −→ C by means of the integral

〈f s, ϕ〉 :=
∫

Cd
|f (x)|2sϕ(x, x̄)dxdx̄, (9.1)

which is well-defined analytic function for any s ∈ C with Re(s) > 0. We point
out that test functions have holomorphic and antiholomorphic part so we use the
notation ϕ = ϕ(x, x̄). We refer to f s or 〈f s, ϕ〉 as the complex zeta function of f .

The approach given by Bernstein in order to solve I. M. Gel’fand’s question uses
the Bernstein-Sato polynomial and integration by parts as follows:

〈f s, ϕ〉 =
∫

Cd
ϕ(x, x̄)|f (x)|2sdxdx̄

= 1

b2
f (s)

∫

Cd
ϕ(x, x̄)

[
δ(s) · f s+1(x)

][
δ̄(s) · f s+1(x̄)

]
dxdx̄
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= 1

b2
f (s)

∫

Cd
δ̄∗δ∗(s)

(
ϕ(x, x̄)

)|f (x)|2(s+1)dxdx̄

= 〈f
s+1, δ̄∗δ∗(s)(ϕ)〉

b2
f (s)

.

Thus we get an analytic function whenever Re(s) > −1, except for possible poles
at b−1

f (0), and it is equal to 〈f s, ϕ〉 in Re(s) > 0. Iterating the process we get

〈f s, ϕ〉 = 〈f
s+�+1, δ̄∗δ∗(s + �) · · · δ̄∗δ∗(s)(ϕ)〉

b2
f (s) · · · b2

f (s + �)
, Re(s) > −�− 1,

In particular we have the following relation between the poles of the complex
zeta function and the roots of the Bernstein-Sato polynomial.

Theorem 9.1 The complex zeta function f s admits a meromorphic continuation to
C and the set of poles is included in {λ− � | bf (λ) = 0 and � ∈ Z≥0}.

Both sets are equal for reduced plane curves and isolated quasi-homogeneous
singularities by work of Loeser [81].

On the other hand, the approach given by Bernstein and S. I. Gel’fand, and
independently Atiyah uses resolution of singularities in order to reduce the problem
to the monomial case, which was already solved by Gel’fand and Shilov [56]. Let
π : X′ → Cn be a log-resolution of f ∈ A and

Fπ :=
r∑

i=1

NiEi +
s∑

j=1

N ′j Sj and Kπ :=
r∑

i=1

kiEi

be the total transform and the relative canonical divisors.
The analytic continuation problem is attacked in this case using a change of

variables.

〈f s, ϕ〉 =
∫

Cd
|f (x)|2sϕ(x, x̄)dxdx̄ =

∫

X′
|π∗f |2s(π∗ϕ)|dπ |2

where |dπ |2 = (π∗dx)(π∗dx) and dπ is the Jacobian determinant of π . In order to
describe the terms of the last integral we consider a finite affine open cover {Uα}α∈�
of E ⊆ X′ such that Supp(ϕ) ⊆ π(∪αUα). Consider a set of local coordinates
z1, . . . , zd in a given Uα . Then we have

π∗f = uα(z)zN1,α
1 · · · zNd,αd , |dπ |2 = |vα(z)|2|z1|2k1,α · · · |zd |2kd,α dzdz

where uα(z) and vα(z) are units and Ni,α may denote both the multiplicities of
the exceptional divisors or of the strict transform. Take {ηα} a partition of unity



Bernstein-Sato Polynomials in Commutative Algebra 63

subordinated to the cover {Uα}α∈�. That is, ηα ∈ C∞(Cd), ∑α ηα ≡ 1, with only
finitely many ηα being nonzero at a point of X′ and Supp(ηα) ⊆ Uα . Therefore

〈f s, ϕ〉 =
∫

X′
|π∗f |2s(π∗ϕ)(π∗dx)(π∗dx)

=
∑

α∈�

∫

Uα

|z1|2(N1,αs+k1,α) · · · |zd |2(Nd,αs+kd,α)|uα(z)|2s |vα(z)|2ϕα(z, z̄)dzdz̄,

where ϕα := ηαπ∗ϕ for each α ∈ �. Notice that π−1(Supp(ϕ)) is a compact set
because π is a proper morphism.

Once we reduced the problem to the monomial case, we can use the work of
Gel’fand and Shilov [56] on regularization to generate a set of candidate poles of f s .

Theorem 9.2 The complex zeta function f s admits a meromorphic continuation to
C and the set of poles is included in

{
−ki + 1+ �

Ni
| � ∈ Z≥0

}
∪
{
−�+ 1

N ′j
| � ∈ Z≥0

}
.

The fundamental result of Kashiwara [71] and Malgrange [92] on the rationality
of the roots of the Bernstein-Sato mentioned in Theorem 3.37 was refined later on by
Lichtin [80]. He provides the same set of candidates for the roots of the Bernstein-
Sato polynomial in terms of the numerical data of the log-resolution of f .

Theorem 9.3 ([80]) Let f ∈ A be a polynomial. Then, the roots of the Bernstein-
Sato polynomial of f are included in the set

{
−ki + 1+ �

Ni
| � ∈ Z≥0

}
∪
{
−�+ 1

N ′j
| � ∈ Z≥0

}
.

In particular, the roots of the Bernstein-Sato polynomial of f are negative rational
numbers.

This result has recently been extended by Dirks and Mustaţă [49].
We also have a bound for the roots given by Saito [121] in terms of the log-

canonical threshold of f ,

lct(f ) := min
i,j

{
ki + 1

Ni
,

1

N ′j

}
.

Theorem 9.4 ([121]) Let f ∈ A be a polynomial. Then, the roots of the Bernstein-
Sato polynomial of f are contained in the interval [−d + lct(f ),−lct(f )].
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In general the set of candidates that we have for the poles of the complex zeta
function or the roots of the Bernstein-Sato polynomial is too big. In order to separate
the wheat from the chaff we consider the notion of contributing divisors.

Definition 9.5 We say that a divisor Ei or Sj contributes to a pole λ of the complex
zeta function f s or to a root λ of the Bernstein-Sato polynomial of f , if we have
λ = − ki+1+�

Ni
or λ = − �+1

N ′j
for some � ∈ Z≥0.

It is an open question to determine the contributing divisors (see [76]). Also we
point out that, in general, the divisors contributing to poles are different from the
divisors contributing to roots. This is not the case for reduced plane curves and
isolated quasi-homogeneous singularities by work of Loeser [81, Theorem 1.9]. In
the case of reduced plane curves, Blanco [17] determined the contributing divisors.

Although we have a set of candidate poles of the complex zeta function one
has to ensure that a candidate is indeed a pole by checking the corresponding
residue. This can be quite challenging and was already posed as a question by
I. M. Gel’fand [55]. In the case of plane curves we have a complete description
given by Blanco [17]. Moreover, it is not straightforward to relate poles of the
complex zeta function to roots of the Bernstein-Sato polynomial. We have that a
pole λ ∈ [−d+ lct(f ),−lct(f )] such that λ+� is not a root of bf (s) for all � ∈ Z>0
is a root of bf (s) but this is not enough to recover all the roots of the Bernstein-Sato
polynomial even if we know all the poles of the complex zeta function.

10 Multiplier Ideals

Let f ∈ A = C[x1, . . . , xd ] be a polynomial. As we mentioned in Sect. 2.3, the
family of multiplier ideals of f is an important object in birational geometry that
is described using a log-resolution of f and comes with a discrete set of rational
numbers, the jumping numbers, that are also related to the roots of the Bernstein-
Sato polynomial.

We start with an analytic approach to multiplier ideals that has its origin in the
work of Kohn [75], Nadel [103], and Siu [129]. The idea behind the construction is
to measure the singularity of f at a point p ∈ Z(f ) ⊆ Cd using the convergence of
certain integrals.

Definition 10.1 Let f ∈ A and p ∈ Z(f ). Let Bε(p) be a closed ball of radius
ε and center p. The multiplier ideal of f at p associated with a rational number
λ ∈ Q>0 is

J (f λ)p =
{
g ∈ A ∣∣ ∃ ε & 1 such that

∫

Bε(p)

|g|2
|f |2λ dxdx <∞

}
.

More generally we consider J (f λ) = ∩p∈Z(f )J (f λ)p.
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Similarly to the case of the complex zeta function we may use a log-resolution
π : X′ → Cd of f to reduce the above integral to a monomial case where we can
easily check its convergence.

∫

Bε(p)

|g|2
|f |2λ dxdx =

∫

π−1
(
Bε(p)

)
|π∗g|2
|π∗f |2λ |dπ |

2,

Consider a finite affine open cover {Uα}α∈� of π−1
(
Bε(p)

)
which is still a

compact set since π is proper. We have to check the convergence of the integral
at each Uα so let z1, . . . , zd be a set of local coordinates in such an open set. Taking
local equations for π∗f , π∗g we get

∫

Uα

|u(z) zL1,α
1 · · · zLd,αd |2

|zN1,α
1 · · · zNd,αd |2λ

|zk1,α
1 · · · zkd,αd |2dzdz

=
∫

Uα

|u(z)| |z1|2(L1,α+k1,α−λN1,α) · · · |zd |2(Ld,α+kd,α−λNd,α)dzdz.

where u(z) is a unit. Using Fubini’s theorem we have that the integral converges if
and only if

Li + ki − λNi > −1, L′j − λN ′j > −1

for all i, j . Here we use that the total transform divisors of f and g are respectively

Fπ :=
r∑

i=1

NiEi +
s∑

j=1

N ′j Sj , Gπ :=
r∑

i=1

LiEi +
t∑

j=1

L′j S′j

and the components of the strict transform of g must contain the components of f .
Equivalently, we require

Li ≥ −�ki − λNi�, L′j ≥ �λN ′j �

so we are saying that π∗g is a section of OX′(�Kπ − λFπ�). This fact leads to the
algebraic geometry definition of multiplier ideals given in Definition 2.11 that we
refine to the local case.

Definition 10.2 Let π : X′ → Cd be a log-resolution of f ∈ A and let Fπ be the
total transform divisor. The multiplier ideal of f at p ∈ Z(f ) associated with a real
number λ ∈ R>0 is the stalk at p of

J (f λ) = π∗OX′ (�Kπ − λFπ�) .
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We omit the reference to the point p if it is clear from the context. Recall that the
multiplier ideals form a discrete filtration

A � J (f λ1) � J (f λ2) � · · · � J (f λi )) � · · ·

and the λi where we have a strict inclusion of ideals are the jumping numbers of f
and λ1 = lct(f ) is the log-canonical threshold.

There is a way to describe a set of candidate jumping numbers in a reasonable
time. However, contrary to the case of roots of the Bernstein-Sato polynomial, the
jumping numbers are not bounded. However they satisfy some periodicity given
by the following version of Skoda’s theorem, which for principal ideals reads as
J (f λ) = (f ) · J (f λ−1) for all λ � 1.

Theorem 10.3 Let f ∈ A be a polynomial. Then, the jumping numbers of f are
included in the set

{
ki + 1+ �
Ni

| � ∈ Z≥0

}
∪
{
�+ 1

N ′j
| � ∈ Z≥0

}
.

In particular, the jumping numbers of f form a discrete set of positive rational
numbers.

We see that we have the same set of candidates for the roots of the Bernstein-Sato
polynomial and the jumping numbers so it is natural to ask how these invariants of
singularities are related. The result that we are going to present is due to Ein et al.
[51]. A different proof of the same result can be found in the work of Budur and
Saito [38] that relies on the theory of V -filtrations.

Theorem 10.4 ([38, 51]) Let λ ∈ (0, 1] be a jumping number of a polynomial f ∈
A. Then −λ is a root of the Bernstein-Sato polynomial bf (s).

Proof Let λ ∈ (0, 1] be a jumping number and take g ∈ J (f λ−ε) � J (f λ) for

ε > 0 small enough. Therefore |g(x)|2
|f (x)|2(λ−ε) is integrable but when we take the limit

ε→ 0 we end up with |g(x)|
2

|f (x)|2λ that is not integrable.

Consider Bernstein-Sato functional equation δ(s) · f s+1 = bf (s) · f s and its
application to the analytic continuation of the complex zeta function

b2
f (s)

∫

Cd
ϕ(x, x̄)|f (x)|2sdxdx̄ =

∫

Cd
δ̄∗δ∗(s)

(
ϕ(x, x̄)

)|f (x)|2(s+1)dxdx̄.

Notice that |g(x)|2ϕ(x, x̄) is still a test function so

b2
f (s)

∫

Cd
|g|2ϕ(x, x̄)|f (x)|2sdxdx̄ =

∫

Cd
δ̄∗δ∗(s)

(|g|2ϕ(x, x̄))|f (x)|2(s+1)dxdx̄.
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Now we take a test function ϕ which is zero outside the ball Bε(p) and identically
one on a smaller ball Bε′(p) ⊆ Bε(p) and thus we get

b2
f (s)

∫

Bε′ (p)
|g|2|f (x)|2sdxdx̄ =

∫

Bε′ (p)
δ̄∗δ∗(s)

(|g|2)|f (x)|2(s+1)dxdx̄.

Taking s = −(λ− ε) we get

b2
f (−λ+ ε)

∫

Bε′ (p)

|g|2
|f (x)|2(λ−ε) dxdx̄ =

∫

Bε′ (p)
δ̄∗δ∗(−λ+ ε)(|g|2)|f (x)|2(1−λ+ε)dxdx̄

but the right-hand side is uniformly bounded for all ε > 0. Thus we have

b2
f (−λ+ ε)

∫

Bε′ (p)

|g|2
|f (x)|2(λ−ε) dxdx̄ ≤ M <∞

for some positive numberM that depends on g. Then, by the monotone convergence
theorem we have to have b2

f (−λ) = 0. ��
So far we have been dealing with the case of an hypersurface f ∈ A for the

sake of clarity but everything works just fine for any ideal a = 〈f1, . . . , fm〉 ⊆ A.
The analytical definition of multiplier ideal at a point p ∈ Z(a) associated with a
rational number λ ∈ Q>0 is

J (aλ)p =
{
g ∈ A ∣∣ ∃ ε & 1 such that

∫

Bε(p)

|g|2
(|f1|2 + · · · + |fm|2)λ dxdx <∞

}
.

and J (aλ) = ∩p∈Z(a)J (aλ)p. One can show that the ideal that we obtain is
independent of the set of generators of the ideal a.

For the algebraic geometry version we consider the stalk at p of the multiplier
ideal

J (aλ) = π∗OX′ (�Kπ − λFπ�) ,

given in Definition 2.11. The extension of Theorem 10.4 to this setting was proved
by Budur, Mustaţă, and Saito [36] using the theory of V -filtrations.

Theorem 10.5 ([36]) Let λ ∈ (lct(a), lct(a) + 1] be a jumping number of a ⊆ A.
Then −λ is a root of the Bernstein-Sato polynomial ba(s).

Finally we want to mention that multiplier ideals can be characterized completely
in terms of relative Bernstein-Sato polynomials. Namely:

Theorem 10.6 ([36]) For all ideals a ⊆ A and all λ we have the equality

J (aλ) = {g ∈ A | γ > λ if ba,g(−γ ) = 0}.
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This theorem is due to Budur and Saito [38] in the case a is principal, and due to
Budur et al. [36] as stated. The proofs rely on the theory of mixed Hodge modules.
Recent work of Dirks and Mustaţă [49] provides a proof of this result that does not
use the theory of mixed Hodge modules.

The analogues of Theorems 10.5 and 10.6 have been shown to hold for certain
singular rings.

To illustrate Theorem 10.6, we use this description of multiplier ideals to give a
quick proof of Skoda’s Theorem in the principal ideal case.

Proposition 10.7 (Skoda’s Theorem for Principal Ideals) For all f ∈ A � {0}
and all λ, we have J (f λ+1) = (f )J (f λ).
Proof Let g ∈ J (f λ), so every root of bf,g(s) is less than −λ. Then, by
Lemma 5.33, every root of bf,fg(s) is less than −λ− 1, and hence fg ∈ J (f λ+1).
This shows the containment J (f λ+1) ⊇ (f )J (f λ).

Now, if g /∈ (f ), then s = −1 is a root of bf,g(s) by Lemma 5.32. Thus,
J (f λ+1) ⊆ (f ). In particular, we can write h ∈ J (f λ+1) as h = fg for g ∈ A;
since the largest root of bf,g(s) is one greater than the largest root of bf,h(s) by
Lemma 5.33, we have that h ∈ J (f λ), and the equality follows. ��
Theorem 10.8 ([2]) Let R be either a ring of invariants of an action of a finite
group on a polynomial ring, or an affine normal toric ring. Then, for every ideal
a ⊆ R, we have the log canonical threshold of a in R coincides with the smallest
root α of bRa (−s), and every jumping number of a in [α, α + 1) is a root of bRa (−s).
Moreover,

JR(aλ) = {g ∈ R | γ > λ if bRa,g(−γ ) = 0}.

The idea behind the proof of this theorem is based on reduction modulo p and
a positive characteristic analogue of the notion of differentially extensibility direct
summand as in Definition 7.11. We refer the reader to [2] for details.

11 Computations via F-Thresholds

The notion of Bernstein-Sato root in positive characteristic discussed in Sect. 6 is
closely related to F -jumping numbers. In this section, we discuss a relationship
between the classical Bernstein-Sato polynomial in characteristic zero and similar
numerical invariants in characteristic p. This connection was first established by
Mustaţă et al. [102], and extended to the singular setting by Àlvarez Montaner et al.
[1].

Definition 11.1 ([102]) Let R be a ring of characteristic p > 0. Let a, J be ideals
of R such that a ⊆ √J . We set

νJa (p
e) = max{n ∈ N | an �⊆ J [pe]}.
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We point out that the limit of lim
e→∞

νJa (p
e)

pe
exists [50].

Theorem 11.2 ([1], see also [102]) Let R be a finitely generated flat Z[1/a]-
algebra for some nonzero a ∈ Z, and a ⊆ √J ideals of R. Write R0 for R ⊗Z Q,
and Rp for R/pR; likewise, write a0 for the extension of a to R0, and similarly for
ap, J0, Jp, etc. If a0 has a Bernstein-Sato polynomial in R0, then we have

((s + 1)bR0
a0
)(ν

Jp
ap (p

e)) ≡ 0 mod p

for all p � 0.

Sketch of proof First, if a = (f1, . . . , f�), set g =∑
i fiyi ∈ R′ = R[y1, . . . , y�].

Then, one checks easily that for p � a, we have ν
Jp
ap (p

e) = νJR
′
p

gp (pe). Thus, we can
reduce to the principal case, where a = (f ).

Let δ(s)f s+1 = bf (s)f s be a functional equation for f in. If we replace a by
a nonzero multiple, we can assume that δ(s) is contained in the image of DR[s]
in DR0[s] (see [1, Lemma 4.18]) and that bf (s) ∈ Z[1/a][s]. Pick n such that
δ(s) ∈ DnR[s] and n is greater than any prime dividing a denominator of a coefficient
of bf (s). Then, for every p ≥ n, we may take the functional equation modulo p in
Rp:

δ(s)f s+1 = bf (s)f s.

Since n < p, we have δ(s) ∈ D(1)
Rp |Fp . In particular, δ(s) is linear over each

subring R[pe], so it stabilizes every ideal expanded from such a subring, namely the

Frobenius powers J [pe] of J . For s = νJpfp , we have f s /∈ J [pe], and f s+1 ∈ J [pe],
so δ(s)f s+1 ∈ J [pe]; we conclude that bf (s) = 0 in Fp, as claimed. ��

The previous theorem can be applied to find roots of bR0
a0 (s) in Q when there are

sufficiently nice formulas for ν
Jp
ap (p

e) for e fixed as p varies.

Proposition 11.3 ([102]) Let R be a finitely generated flat Z[1/a]-algebra for
some nonzero a ∈ Z, and a ⊆ √J ideals of R. Write R0 for R ⊗Z Q, and Rp
for R/pR; likewise, write a0 for the extension of a to R0, and similarly for ap, J0,
Jp, etc. Suppose that a0 has a Bernstein-Sato polynomial in R0.

Let e > 0. Suppose that there is an integer N and polynomials Q[i] for each

[i] ∈ (Z/NZ)× such that ν
Jp
ap (p

e) = Q[i](pe) for all p � 0 with p ∈ [i]. Then

Q[i](0) is a root of bR0
a0 (s) for each [i] ∈ (Z/NZ)×.

Proof We can consider bR0
a0 (s) as a polynomial over Z[1/aa′] for some a′. Fix

[i] ∈ (Z/NZ)×. For any p ∈ [i] with p � (aa′), we have

(s + 1)bR0
a0
(Q[i](0)) ≡ bR0

a0
(Q[i](pe)) ≡ 0 mod p,
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so p | bR0
a0 (Q[i](0)). As there are infinitely many primes p ∈ [i], we must have

b
R0
a0 (Q[i](0)) = 0. ��

Example 11.4 ([102]) Let f = x2 + y3 ∈ Z[x, y], and m = (x, y). One has

νmfp (p
e) =

⎧
⎪⎪⎨

⎪⎪⎩

5
6p
e − 5

6 if p ≡ 1 mod 3

νmfp (p
e) = 5

6p − 7
6 if p ≡ 2 mod 3, e = 1

νmfp (p
e) = 5

6p
e − 1

6p
e−1 − 1 if p ≡ 2 mod 3, e ≥ 2.

By the previous proposition, −5/6,−1 and −7/6 are roots of bf (s), considering f
as an element of Q[x, y]. In fact, bf (s) = (s + 5

6 )(s + 1)(s + 7
6 ).

We note that the method of Proposition 11.3 does not yield any information about
the multiplicities of the roots. There are also examples given in [102] of Bernstein-
Sato polynomials with roots that cannot be recovered by this method. Nonetheless,
we note that this method was successfully employed by Budur et al. [37] to compute
the Bernstein-Sato polynomials of monomial ideals.

Remark 11.5 In the case of a regular ring A = Fp[x1, . . . , xd ], and ideals a, J of
A with a ⊆ √J , the numbers νJa (p

e) are closely related to the F -jumping numbers
discussed in the introduction. In particular, combining [102, Propositions 1.9 & 2.7]
for a and e fixed, we have

{νJa (pe) |
√
J ⊇ a} = {�peλ� − 1 | λ is an F -jumping number of a}.
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1 Introduction

Consider a polynomial ring over a field k, say R = k[x1, . . . , xn]. When studying
finitely generated graded modules M over R, there are many important invariants
we may consider, with the Betti numbers ofM , denoted βi(M), being among some
of the richest. The Betti numbers are defined in terms of generators and relations
(see Sect. 2), with β0(M) being the number of minimal generators of M , β1(M)

the number of minimal relations on these generators, and so on. Despite this simple
definition, they encode a great deal of information. For instance, if one knows the
Betti numbers1 ofM , one can determine the Hilbert series, dimension, multiplicity,
projective dimension, and depth ofM . Furthermore, the Betti numbers provide even
finer data than this, and can often be used to detect subtle geometric differences (see
Example 3.4 for an obligatory example concerning the twisted cubic curve).

There are many questions one can ask about Betti numbers. What sequences arise
as the Betti numbers of some module? Must the sequence be unimodal? How small,
or how large, can individual Betti numbers be? How large is the sum? Questions like

1 Really, we mean the graded Betti numbers ofM , to be defined in Sect. 3.
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this are but just a few examples of those that have been studied in the past decades,
and of the flavor we will discuss in this survey. We will focus on perhaps one of the
longest standing open questions in this area, which is due to Buchsbaum–Eisenbud,
and independently Horrocks (BEH). Their conjecture proposes a lower bound for
each βi(M) depending only on the codimension c of M: that βi(M) �

(
c
i

)
. While

the conjecture remains widely open in the general setting, there are some special
cases that are known. Moreover, if the conjecture is true, then the total Betti number
of M , β(M) := β0(M) + · · · + βn(M), must satisfy β(M) � 2c. Recently, Mark
Walker [69] proved this bound on the total Betti number—known as the Total Rank
Conjecture—in all cases except when char k = 2. Walker also showed that equality
holds if and only ifM is isomorphic toR modulo a regular sequence—such modules
are called complete intersections.

The Betti numbers of modules that are not complete intersections are quite
interesting. For example, it follows from Walker’s result that if our module M is
not a complete intersection, then β(M) � 2c + 1, but there is reason to believe that
β(M) might be much bigger than 2c. Charalambous, Evans, and Miller [31] asked
if in fact we must have β(M) � 2c + 2c−1, and proved that this holds when M
is either a graded module small codimension (c � 4), or a multigraded module of
finite length (meaning c = n) for arbitrary c [29, 30]. More evidence towards this
larger bound for Betti numbers has recently been found, including [11, 12].

For example, Erman showed [41] that if M is a graded module of small
regularity (in terms of the degrees of the first syzygies), then not only is the
BEH Conjecture 4.1 true, but in fact βi(M) � β0(M)

(
c
i

)
. The first author and

Wigglesworth [12] then extended Erman’s work to say that under the same low
regularity hypothesis, β(M) � β0(M)(2c + 2c−1). This stronger bound asserts that
on average, each Betti number βi(M) is at least 1.5 times β0(M)

(
c
i

)
.

The main goal of this survey is to discuss these lower bounds on Betti numbers
and present some of the motivation for these conjectures. We start with a short
introduction to free resolutions and Betti numbers, why we care about them, and
some of the very rich history surrounding these topics. We also collect some open
questions, discuss some possible approaches, and present examples that explain why
certain hypothesis are important.

2 What Is a Free Resolution?

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. We will be primarily
concerned with finitely generated graded R-modulesM . One important invariant
of such a module is the minimal number of elements needed to generateM . In fact,
this number is the first in a sequence of Betti numbers that describe how far M
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is from being a free module. Indeed, suppose that M is minimally generated by β0
elements; this means there is a surjection from Rβ0 toM , say

Rβ0
π0

M.

If π0 is an isomorphism, thenM ∼= Rβ0 is a free module of rank β0. Otherwise,
it has a nonzero kernel, which will also be finitely generated and can be written as
the surjective image of some free module Rβ1 :

Rβ1 Rβ0
π0

M.

ker(π0)

Notice that if M is generated by m1, . . . , mβ0 , and π0 is the map sending each
canonical basis element ei in Rβ0 tomi , then an element (r1, . . . , rβ0)

T in the kernel
of π0 corresponds precisely to a relation among the mi , meaning that

r1m1 + · · · + rβ0mβ0 = 0.

Such relations are called syzygies2 of M and the module kerπ0 is called the first
syzygy module ofM .

Continuing this process we can approximateM by an exact sequence

· · · Fp

πp · · · π2
F1

π1
F0

π0
M 0

where each Fi is free. Such an exact sequence is called a free resolution ofM .
If at each step we have chosen Fi to have the minimal number of generators,

then we say the resolution is minimal, and we set βi(M) to be the rank of Fi in
any such minimal free resolution. This is well-defined, because it is true that two
minimal free resolutions of M are isomorphic as complexes. Furthermore, one has
the following,

βi(M) = rkFi = rkk TorRi (M, k).

The ith syzygy module of M , denoted �i(M), is defined to be the image of
πi , or equivalently the kernel of πi−1. We note that �i(M) is defined only up to
isomorphism.

If at some point in the resolution we obtain an injective map of free modules, then
its kernel is trivial, and we obtain a finite free resolution, in this case of length p:

2 Fun fact: in astronomy, a syzygy is an alignment of three or more celestial objects.
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If a module M has a finite minimal projective resolution, the length of such a
resolution is called the projective dimension ofM , and we write it pdimM .

Remark 2.1 We will often implicitly apply the Rank-Nullity Theorem to conclude
that

βi(M) = rk�i(M)+ rk�i+1(M).

Example 2.2 If M = R/(f1, . . . , fc) where the fi form a regular sequence, then
the minimal free resolution of M is given by the Koszul complex. For instance if
c = 4 then the minimal resolution has the form

Note that the numbers over the arrows represent the rank of the corresponding map,
which is equal to the rank of the corresponding syzygy module �i(M). We will
discuss this in more detail in Sect. 3.2. We will also see that the ranks occurring
in the Koszul complex are conjectured to be the smallest possible for modules of
codimension c (see Conjecture 4.2).

Example 2.3 One of the strongest known bounds on ranks of syzygies is the Syzygy
Theorem 3.13 which states that except for the last syzygy module, the rank of
�i(M) is always at least i. A typical use of such a result might be as follows.
Suppose we had a rank zero module M with Betti numbers {1, 7, 8, 8, 7, 1}. Then
we could calculate the ranks of the syzygy modules by using Remark 2.1 to obtain
the ranks labeled in the diagram below:

We would also obtain from Remark 2.1 that rk�3(M) = 2, which we will
see violates Theorem 3.13. Therefore, such a module does not exist! See also
Example 5.17.

Example 2.4 In [36], Dugger discusses almost complete intersection ideals and the
tantalizing fact that we currently do not know whether or not there is an ideal I of
height 5 with minimal free resolution

David Hilbert, interested in studying minimal free resolutions as a way to count
invariants, was able to prove that finitely generated modules over a polynomial ring
always have finite projective dimension [49].

Theorem 2.5 (Hilbert’s Syzygy Theorem, 1890) Let R = k[x1, . . . , xn] be a
polynomial ring in n variables over a field k. If M is a finitely generated graded
R-module, thenM has a finite free resolution of length at most n.
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While we are primarily interested in studying polynomial rings over fields,
Hilbert’s Syzygy Theorem is true more generally for any Noetherian regular ring.
In fact, if we focus our study on local rings instead, the condition that every finitely
generated module has finite projective dimension characterizes regular local rings
[3, 68]. While we will be working over polynomial rings throughout the rest of the
paper, we point out that the theory of (infinite) free resolutions over non-regular
rings is quite interesting and rich; [59] and [5] are excellent places to start learning
about this.

The upshot of Hilbert’s Syzygy Theorem is that to each finitely generated R-
module M we attach a finite list of Betti numbers β0(M), . . . , βn(M). Note that
while some of these might vanish,M has at most n+ 1 non-zero Betti numbers.

Our main goal in this paper is to discuss the following question:

Question A If M is a finitely generated graded module over R = k[x1, . . . , xn],
where k is a field, can we bound the Betti numbers of M , either from above or
below?

As we will see, there are many results and conjectures relevant to the answer to
this question. Feel free to skip the next section if you can’t handle the suspense!

3 Why Study Resolutions?

Before getting to the heart of the matter in Sect. 4, we would first like to offer some
motivation as to why one might care about Betti numbers at all.

3.1 Betti Numbers Encode Geometry

In a sense, a minimal free resolution ofM contains redundant information—after all,
the first map π1: F1 → F0 is a presentation ofM . However, suppose we do not know
the maps in the resolution, but just the numerical data of the resolution, namely
the numbers {βi}. Surprisingly, this coarse invariant encodes much geometric and
algebraic information about M . First of all, the Betti numbers βi tell us that M
has β0 generators, that there are β1 relations among those generators, and β2
relations among those relations, and so on. But the Betti numbers also encode more
sophisticated information aboutM . For instance, since rank is additive across exact
sequences, we have

rkM = β0 − β1 + · · · + (−1)nβn.
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Moreover, if we have a graded moduleM , we can take the resolution ofM to be
a graded resolution, and if among the βi generators of �i(M), exactly βij of them
live in degree j , then the following formula gives the Hilbert series forM:

HS(M) =

d∑

i=0

(−1)iβij t
j

(1− t)d . (3.1)

We recall that the Hilbert series of M is a power series that encodes the k-vector
space dimension of each graded pieceMi ofM , as follows:

HS(M) =
∞∑

i=0

dimk(Mi)t
i .

This is a classical tool that contains important algebraic and geometric information
about our module. For example, once we write HS(M) = p(t)/(1 − t)m with
p(1) �= 0, we have dim(M) = m and p(1) is equal to the degree of M . So just
by knowing its (graded) Betti numbers, we can then determine the multiplicity
(i.e. degree), dimension, projective dimension, Cohen-Macaulayness, and other
properties and invariants of a moduleM .

The following example gives the spirit of these ideas:

Example 3.1 Suppose that R = k[x, y, z] and that M = R/(xy, xz, yz) corre-
sponds to the affine variety defining the union of the three coordinate lines in k3.
This variety has dimension one and degree three. Let us illustrate how the (graded)
Betti numbers communicate this. The minimal free resolution forM is

From this minimal resolution, we can read the Betti numbers ofM:

• β0 = 1, sinceM is a cyclic module;
• β1 = 3, and these three quadratic generators live in degree 2;
• β2 = 2, and these represent linear (degree 1) syzygies on quadrics (degree 2),

and thus live in degree 3 (= 1+ 2) .

We can include this graded information in our resolution, and write a graded free
resolution ofM:
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The R(−2)3 indicates that we have three generators of degree 2. Formally, the
R-module R(−a) is one copy of R whose elements have their degrees shifted by
a: the polynomial 1 lives in degree 0 in R and degree a in R(−a), and in general
the degree d piece of R(−a) consists of the elements of R of degree d − a. With
this convention, the map φ keeps degrees unchanged—we say it is a degree 0 map:
for example, it takes the vector [1, 1, 1]T , which lives in degree 2, to the element
xy + xz+ yz, which is an element of degree 2. When we move on to the next map,
ψ , we only need to shift the degree of each generator by 1, but since ψ now lands
on R(−2)3, we write R(−3)2.

The graded Betti number βij (M) ofM counts the number of copies of R(−j) in
homological degree i in our resolution. So we have

β00 = 1, β12 = 3, and β23 = 2.

We can collect the graded Betti numbers ofM in what is called a Betti table:

β(M) 0 1 2
0 β00 β11 β22

1 β01 β12 β23
,

β(M) 0 1 2
0 1 − −
1 − 3 2

.

Remark 3.2 To the reader who is seeing Betti tables for the first time, we point out
that although we will write resolutions so that the maps go from left to right, and
thus the Betti numbers appear from right to left {. . . , β2, β1, β0} in a Betti table,
the opposite order is used. Furthermore, by convention, the entry corresponding to
(i, j) in the Betti table ofM is βi,i+j (M), and not βij (M).

Finally, we can use this information to calculate the Hilbert series ofM:

HS(M) = 1t0 − 3t2 + 2t3

(1− t)3 = 1+ 2t

(1− t)1 ,

and since this last fraction is in lowest terms, we see that the dimension ofM is 1 (the
degree of the denominator) and that the degree ofM is equal to p(1) = 1+2·1 = 3.
Recall thatM corresponded to the union of 3 lines. Notice that in this example, the
projective dimension ofM is 2, which is equal to the codimension 3− 1 = 2 ofM .
Hence,M is Cohen-Macaulay. In summary, we can get lots of information aboutM
from its (graded) Betti numbers.

Example 3.3 (The Hilbert Series Doesn’t Determine the Betti Numbers) Let k be a
field, R = k[x, y], and consider the two ideals

I = (x2, xy, y3) and J = (x2, xy + y2).
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One can check that both R/I and R/J have the same Hilbert series:

HS(R/I) = HS(R/J ) = 1+ 2t + 1t2.

However, these modules have different Betti numbers. We work out the minimal
free resolution and Betti numbers for R/I . Since I has two generators of degree 2
and one of degree 3, there are graded Betti numbers β12 and β13. Similarly, the two
minimal syzygies of R/I correspond to the relations

y(x2)− x(xy) = 0 which has degree 3, so β23 = 1

and

y2(xy)− x(y3) = 0 which has degree 4, so β24 = 1.

Continuing this process, we find the following minimal free resolutions and
graded Betti numbers for R/I and R/J , respectively:

β(R/I) 0 1 2
0 1 − −
1 − 2 1
2 − 1 1

β(R/J ) 0 1 2
0 1 − −
1 − 2 −
2 − − 1

Finally, if we calculate the Hilbert series from Eq. 3.1, we notice that the
calculation is the same for R/I and R/J :

HS(R/I) = 1− 2t2−t3 + t3 + t4
(1− t)3 = 1− 2t2 + t4

(1− t)3 = HS(R/J ).

The cancellation of the t3 terms is known as a consecutive cancellation, and one can
see the two 1s on the diagonal in the Betti table for R/I . For the reader who knows
about Gröbner degenerations, I is the initial ideal of J coming from a Lex term-
order. Any such degeneration will preserve the Hilbert series, but not necessarily the
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Betti numbers. For results concerning the relationship between the Betti numbers of
ideals and those of their initial ideals, see [2, 10, 32–34, 61].

Example 3.4 We would be remiss if, in this article dedicated to David Eisenbud
on his birthday, we didn’t also mention that the connection between graded Betti
numbers and geometry is a rich and beautiful story. In his book [37], he paints a
story that begins with the following surprising fact from geometry. If X is a set
consisting of seven general3 points in P

3, then the Hilbert series of the coordinate
ring for X is completely determined by this data. However, this is not sufficient to
determine the Betti numbers of the coordinate ring of X. Indeed, these numbers are
either {1, 4, 6, 3} or {1, 6, 8, 3} depending on whether or not the points lie on a curve
of degree 3.

3.2 Resolutions for Ideals with Few Generators

Over a polynomial ring R = k[x1, . . . , xn], calculating a free resolution is
tantamount to producing the sets of dependence relations among the generators of a
module. In simple cases this is straightforward, as the following example shows:

Example 3.5 Consider the module M = R/(f ), where f is a homogeneous
polynomial in R. Then

is a minimal free resolution of length 1, since over our polynomial ring R, f is a
regular element and cannot be killed by multiplication by any nonzero element.

If I is an ideal minimally generated by two polynomials f and g, then the
minimal free resolution of R/I has length two. Indeed, if c = gcd(f, g), then the
following is a minimal free resolution:

This example can be summarized by the following result:

Proposition 3.6 If I is an ideal in a polynomial ring R that is minimally generated
by one or two homogeneous polynomials, then the projective dimension of R/I is
equal to the minimal number of generators, and the Betti numbers are either {1, 1}
or {1, 2, 1}.

3 This means that no more than 3 lie on a plane and no more than 5 on a conic.
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Whatever optimistic generalization of this proposition one might have in mind
for ideals with 3 or more generators will certainly fail to be true, as we have the
following astonishing results of Burch and Bruns:

Theorem 3.7 (Burch [20]) For each N � 2, there exists a three-generated ideal I
in a polynomial ring R = k[x1, . . . , xN ] such that pdim(R/I) = N .

So we can always find free resolutions of maximal length by simply using 3
generated ideals. In fact, in some sense “every” free resolution is the free resolution
of a 3-generated ideal:

Theorem 3.8 (Bruns [15]) Let R = k[x1, . . . , xn] and

be a minimal free resolution of a finitely generated graded R-moduleM . Then there
exists a 3-generated ideal I in R with minimal free resolution

Remark 3.9 Note that the rank of F ′2 may be different than that of F2, but a rank
calculation yields that

rkF ′2 = 3− 1+ rkF3 − rkF4 + · · · ± rkFn = 2+ rkF2 − rkF1 + rkF0.

From this, it follows that β2 can be arbitrarily large for 3-generated ideals.

Our point in presenting these results is to make plain that free resolutions are
complicated—even for ideals with 3 generators! However, if in Example 3.5 we
add a further restriction for the ideal I = (f, g) and require that f and g have
no common factors (meaning that g is a regular element modulo f ), then the only
relations between f and g are given by the “obvious” relation that gf−fg = 0. This
fact does generalize nicely to any set {f1, . . . , fc} of homogeneous polynomials
provided fi is a regular element modulo the previous fj . Such elements form what
is called a regular sequence, and the ideal they generate is resolved by the Koszul
complex. Rather than introducing the topic here, we point the reader to some of the
many nice references for learning about the Koszul complex, such as [37, Chapter
17], [16, Section 1.6], or [5, Example 1.1.1].

The most important fact we will need about the Koszul complex is that it is a
resolution (of R/(f1, . . . , fc)) if and only if the f1, . . . , fc form a regular sequence,
and that the Betti numbers (and ranks of syzygy modules) of the Koszul complex
are given by binomial coefficients.
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Theorem 3.10 If I is an ideal generated by a regular sequence of c homogeneous
polynomials, then

rk�i(R/I) =
(
c − 1

i − 1

)
,

and therefore

βi(R/I) =
(
c

i

)
.

Remark 3.11 To the reader not familiar with Koszul complexes, it might be
instructive to carefully write out the maps involved to get a feel for how resolutions
are constructed. Essentially, the point is that the generating ith syzygies are built
from using i generators and the fact that fjfi = fifj . Alternatively, perhaps the
quickest way to define the Koszul complex is just to take the tensor product of the c
minimal free resolutions of R/(fi):

Since multiplication by fi has rank one, if one calculates the ranks in the
tensor product inductively, one will see Pascal’s Triangle appearing, providing a
justification of the claims in Theorem 3.10.

3.3 How Small Can the Ranks of Syzygies Be?

If I is an ideal that is generated by a regular sequence then as we saw in the previous
section, the minimal free resolution for R/I is given by the Koszul complex. For
instance, if I has height 8, then β4(R/I) will be equal to

(8
4

) = 70, and the

syzygy module �4(R/I) will have rank
(7

3

) = 35. We will see in the next section
(Conjectures 4.1 and 4.2) that among all ideals of height 8 these numbers are
conjectured to be the smallest possible values for β4 and rk�4 respectively. In
short, these conjectures assert a relationship between the ranks of syzygies and the
height (or codimension) of the ideal. Before we present these conjectures, which
will occupy the remainder of the paper, we close with an example and theorem
that give the sharpest possible bound for ranks of syzygies if one does not refer to
codimension.

Example 3.12 (Bruns [15]) Let R = k[x1, . . . , xn]. There is a finitely generated
moduleM over R with the following resolution:
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In other words, the ith Betti number is 2i + 1 except for the last two Betti numbers.
This is the case for an even nicer reason: if one calculates the ranks of each syzygy
module (which can be read off as the rank of the ith map πi in the resolution) one
sees that the ranks are:

In other words, in this example the ith syzygy module has rank equal to i, except
for the last one. This bound holds for any module, which is the content of the great
Syzygy Theorem.

Theorem 3.13 (Syzygy Theorem, Evans–Griffith [44]) Let M be a finitely gen-
erated module over a polynomial ring R. If�i(M) is not free, then rk� � i. Hence,
if pdimM = p, then

rk�i(M) � i, for i < p.

Moreover,

βi(M) = rk�i(M)+ rk�i+1(M) �

⎧
⎪⎪⎨

⎪⎪⎩

2i + 1 if i < p − 1

p if i = p − 1

1 if i = p

where �i(M) denotes the ith syzygy module ofM .

The Syzygy Theorem together with Bruns’ example provides a sharp lower
bound for βi(M). Without further conditions on M , there is not much more we
can say. However, if we add additional hypotheses on M—for instance, requiring
M to be Cohen-Macaulay, or of a fixed codimension c—then the bounds above
appear to be far from sharp. Indeed, we will discuss a conjecture that states that in
fact βi(M) �

(
c
i

)
; when c is large, this conjecture is much stronger than the Syzygy

Theorem’s bound of 2i+1. Note that the ideal in Example 3.12 is of codimension 2.

3.4 Other Possible Directions

Before we begin to focus on codimension, we want to say that there are many
distinct and interesting alternative questions on bounds for Betti numbers that have
been considered. We present some possibilities below.

One could decide to study ideals and then fix the number of generators of I ;
for example, one could study the sets of Betti numbers of ideals defined by 5
homogeneous polynomials. Theorem 3.8 shows that this approach will not allow
for any upper bounds, except in trivial cases.
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Refining this idea, one could add a condition on the degrees of the generators
of these ideals, and for example ask what the maximal Betti numbers for an ideal
with 3 quadratic generators might be. This question is tractable, though incredibly
difficult. Note that here we are not saying how many variables are in the ring R. For
instance, the largest Betti numbers possible for an ideal generated by 3 quadrics is
{1, 3, 5, 4, 1}; note that the projective dimension is 4. More generally, the question
of whether there exists an upper bound on the projective dimension of an ideal
defined by r forms of degree d1, . . . , dr depending only on r and d1, . . . , dr , and
not on the number of variables, is known as Stillman’s Conjecture, and has been
solved by Ananyan and Hochster [1] in general. The question of providing effective
upper bounds is much harder, and some of the efforts in this direction can be found
in [42]. See [43] for an exposition on some of the followup results that expanded on
the ideas initiated by Ananyan and Hochster in their proof of Stillman’s conjecture;
see also [60] for a survey and [25, 51] for related work on the subject.

We saw in Sects. 2 and 3 that the (graded) Betti number determine the Hilbert
series; however, there can be many distinct sets {βij (M)} for R-modulesM all with
the same given Hilbert series. If one fixes a Hilbert series, what are the possible sets
{βij (M)} for modules M with Hilbert series h(t)? The following theorems give a
beautiful answer that provides an upper bound for the Betti numbers.

Theorem 3.14 (Bigatti [9], Hulett [50], Pardue [63]) Let I be a homogeneous
ideal in R = k[x1, . . . , xn]. Consider the set

H = {J ⊆ R an ideal | HS(R/J ) = HS(R/I)}.

There exists an ideal L ∈ H with the property that among all ideals in H , the Betti
numbers of L are the largest:

βij (R/J ) � βij (R/L) for all i, j and for all J ∈ H.

The ideal L that achieves the largest Betti numbers in the Theorem can be
described explicitly, and goes back 100 years to work of Macaulay [58]; it is the
known as the Lex-segment ideal. To construct L, we start by going over each
degree D and ordering all the monomials in RD lexicographically. Then we collect
the first dimk(JD) monomials in degree D, for all D. Macaulay showed the ideal
L generated by all these monomials has the same Hilbert function as our original
ideal J ; in other words, it is an ideal in H. Bigatti, Hulett, and Pardue then showed
that this special ideal has in fact the largest possible Betti numbers with the same
Hilbert function as I . Moreover, if we fix a Hilbert polynomial, and consider all
the saturated ideals I with that fixed Hilbert polynomial, there is also a particular
lex-segment ideal that maximizes the Betti numbers [26].

While we will focus on lower bounds on Betti numbers given by comparing to
the case of a complete intersection, there are bounds one may consider. Using Boij-
Söderberg theory, Römer showed that the total Betti numbers of R are bounded
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above by a function of the shifts in the minimal graded free resolution of R, and
bounded below by another function of the shifts when R is Cohen-Macaulay [66].

Finally, we remark that while this paper is devoted to the ranks of modules
appearing in a minimal resolution—that is, the study of acyclic complexes—there
has been much work devoted more generally to complexes, or even more generally
to differential modules. For instance, it was conjectured in [7, Conjecture 5.3] that if
F• is any complex over a d-dimensional local ring, and if the homology H(F) has
finite length, then

∑
i rkFi � 2d . This was shown in [7] for the case when d � 3,

and in [35] in the multigraded setting (for all d). However, the conjecture is false in
general. Indeed, in [53], an example is given of a complex of R-modules such that
H(F) has length 2 but

∑
i rkFi < 2d for all d � 8. See also [13, 22–24].

In the remainder of the paper we will state several conjectures concerning lower
bounds for the βi(R/I) in terms of c = codimR/I . As an appetizer, notice that
the Krull altitude theorem asserts that the codimension of R/I must be at most
the minimal number of generators, i.e. β1(R/I) � c. Meanwhile, the Auslander-
Buchsbaum formula above guarantees that the length of the resolution of R/I is at
least the codimension c, which implies that βc(R/I) � 1. With these two classical
results giving us information about Betti numbers in terms of codimension, we now
proceed to the main conjecture we want to focus on.

4 The Buchsbaum–Eisenbud–Horrocks Conjecture and the
Total Rank Conjecture

In the late 1970s, Buchsbaum and Eisenbud [18], and independently Horrocks [47,
Problem 24], conjectured that the Koszul complex is the smallest free resolution
possible; more precisely, that the Betti numbers of any finitely generated module
are at least as large as those of a complete intersection of the same codimension as
given in Theorem 3.10:

Conjecture 4.1 (BEH Conjecture) Let R = k[x1, . . . , xn], where k is a field, and
M be a nonzero finitely generated graded R-module of codimension c, meaning that
ht ann(M) = c. Then

βi(M) �
(
c

i

)

for all 0 � i � pdimR M .

Actually, both Buchsbaum and Eisenbud [18] and Horrocks [47, Problem 24]
propose the following stronger conjecture:

Conjecture 4.2 (Stronger BEH Conjecture for the Ranks of the Syzygies) Let
R = k[x1, . . . , xn], where k is a field, andM be a nonzero finitely generated graded
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R-module of codimension c. Then

rk(�i(M)) �
(
c − 1

i − 1

)
.

Originally, Horrocks’ problem was stated for finite length modules over a regular
local ring, i.e., the case that codimM was as large as possible, and equal to
the dimension of the ring. On the other hand, Buchsbaum and Eisenbud were
interested in resolutions of R/I for a general local ring R. They conjectured that the
minimal free resolution of R/I possessed the structure of a commutative associative
differential graded algebra; they then showed that if this held, and I had grade c,
then the corresponding inequalities (which they independently attribute to Jürgen
Herzog) on the ranks above would hold:

Theorem 4.3 (Buchsbaum–Eisenbud, Proposition 1.4 in [18]) If R/I has codi-
mension c and the minimal free resolution of R/I possesses the structure of an
associative commutative differential graded algebra, then βi(R/I) �

(
c
i

)
for all i.

Furthermore, the rank of the ith syzygy module is at least
(
c−1
i−1

)
.

For some time it was open whether or not all resolutions could be given such a
DGA structure. It turns out that this is not necessarily the case [4, Example 5.2.2],
though notably any algebra R/I of projective dimension at most 3 or of projective
dimension 4 that is Gorenstein will have such a resolution [18, 55, 56]. See also [8]
for more on the pdim(R/I) � 3 case.

Remark 4.4 Throughout, we will adopt the convention that
(
n
k

)
is zero unless 0 �

k � n.

As a motivating example, let R/I be a cyclic module of codimension c.

• The principal ideal theorem guarantees that I must be generated by at least c
elements, so β1(R/I) �

(
c
1

)
.

• The Auslander–Buchsbaum formula implies that pdim(R/I) � c, which implies
that βc(R/I) �

(
c
c

)
.

• If I is generated by exactly c elements, then R/I is resolved by the Koszul
complex, and then βi(R/I) =

(
c
i

)
for all i.

If I has more than c generators, then I will not be a complete intersection, and in
general there is no structural result concerning its minimal free resolution. However,
it stands to reason (at least for optimists) that perhaps the Betti numbers can only
increase as the number of generators grows and grows.

In the rest of this paper we have two goals. First, we want to survey various
generalizations of the BEH Conjecture and give the state of the art for each of these.
Second, we want to include a few basic constructions and techniques that could be
helpful to those who want to work in this field. For a more thorough treatment, we
refer the reader to the book [45] and survey article [28].

We have opted to give a summary of classical results on the BEH Conjecture
first, but we want to point out right away that an immediate consequence of the
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BEH Conjecture is that if the conjecture is true, then the sum of the Betti numbers
will be at least 2c. This weaker conjecture, known as the Total Rank Conjecture,
was proven by Walker in 2018 [69]. Since then, there has been increasing evidence
that apart from complete intersections, which are resolved by the Koszul complex,
it may be true that in fact the sum of the Betti numbers is always at least 2c + 2c−1.
In the final section of the survey, we present the case for this stronger conjecture.

4.1 General Purpose Tools

The BEH Conjecture is known in a surprisingly small number of cases. Indeed, as
a first challenge, it is open an open question whether β2(R/I) �

(5
2

)
whenever

I is an ideal of codimension 5. In this section, we present a collection of general
purpose tools and use them to show that if c � 4 then the conjecture holds. We also
carefully describe how localization can reduce the conjecture to the finite length
case, provided we work over arbitrary regular local rings.

Proposition 4.5 (Buchsbaum–Eisenbud, Theorem 2.1 in [17], see also [58])
Suppose thatM is a module of codimension c. Then

β1(M)− β0(M)+ 1 � c.

If equality holds, thenM is resolved by the Buchsbaum–Rim complex.

Note that this result includes both the Principal Ideal Theorem (whenM = R/I
and thus β0(M) = 1) and the fact that the Koszul complex (a special instance of the
Buchsbaum–Rim complex [19]) resolves complete intersections. Below is a version
of this result in terms of Betti numbers:

Corollary 4.6 IfM is a module of codimension c, then

β1(M) � β0(M)+ c − 1.

If equality holds, then for all i � 2

βi(M) =
(
β0(M)+ i − 3

i − 2

)(
β1(M)

β0(M)+ i − 1

)
.

As an exercise, the reader can prove that if β1(M) = β0(M) + c − 1 then the
BEH conjecture holds, by the equality of binomial coefficients above.

Discounting cases when equality holds, this lower bound β1(M) > β0(M)+c−1
might not at first glance seem very useful, since it only gives information about
β1(M). However, when M is Cohen-Macaulay we can use this result to also gain
information about βc−1(M) as well by appealing to duality. Indeed, if M is a
Cohen-Macaulay module, meaning that the codimension c of M is equal to its
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projective dimension, then applying Hom(−, R) to a resolution of M will yield
a resolution of ExtcR(M,R), another Cohen-Macaulay module. This yields the
following observation:

Proposition 4.7 If {β0, . . . , βc} is the Betti sequence for a Cohen-Macaulay mod-
ule, then so is the reverse sequence {βc, . . . , β0}.

As an application of these ideas, let us use these results to prove Conjecture 4.1
for c � 4. We focus on c = 3 and c = 4, as the smaller cases follow immediately
from the principal ideal theorem.

When c = 3, Corollary 4.6 and Proposition 4.7 imply that

{β0, β1, β2, β3} � {β0, 3+ β0 − 1, 3+ β3 − 1, β3} � {1, 3, 3, 1}

where the inequalities are interpreted entry by entry.
Similarly, for c = 4 we obtain

{β0, β1, β2, β3, β4} � {β0, 4+ β0 − 1, β2, 4+ β4 − 1, β4} � {1, 4, β2, 4, 1}.

From here, we can apply the Syzygy Theorem (3.13) and notice that in a minimal
free resolution

the image of π3 is equal to�3(M), and thus the rank of π3 is at least 3 by the Syzygy
Theorem; here we used that c = 4, so that �3(M) is not free.

Similarly, working now on the resolution of the dual Ext4R(M,R), we can see
that the rank of π2 must be at least 3 as well. Hence

β2 = rkπ2 + rkπ3 � 6,

as required.
However, if we try the same tricks with c = 5, the best we can get is that

{β0, β1, β2, β3, β4, β5} � {1, 5, 7, 7, 5, 1}.

There are, however, other techniques one could use to try and complete this case:

• Suppose M is cyclic, that is, β0 = 1. Then one may assume that β1 > 5.
Indeed, if β1 = 5, then M is a complete intersection and the Koszul complex
is a resolution. Surprisingly, Conjecture 4.1 is still open even if we assume c = 5
and thatM is cyclic. More precisely, it is still open whether or not β2 �

(5
2

) = 10.
• One could suppose further that β1 = 6, so M = R/I is an almost complete

intersection. A result of Kunz [54] guarantees that R/I is not Gorenstein, and
thus β5 � 2. Using linkage, Dugger [36] was able to show in this case that
β2 � 9.
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• In general, for cyclic modules, the rank of π1 will be 1, and thus the Syzygy
Theorem implies that

β2 = rkπ2 + rkπ3 � rkπ2 + 3 = (β1 − rkπ1)+ 3 = β1 + 2,

so whenever β0 = 1 and β1 � 8 we will have the BEH bound for β2.

We close out this section with another general technique and an application. Let
M be a graded module and P be a prime ideal in its support. Since localization is
exact, any minimal free resolution ofM over R will remain exact upon localization
at P . Hence, over the local ring RP , the minimal free resolution of MP must be a
direct summand of this resolution. In other words,

β
RP
i (MP ) � βRi (M).

We now give two applications of this idea. The first shows that if we wanted to
prove a stronger version of the BEH conjecture, we could restrict to finite length
modules.

Conjecture 4.8 (Local BEH Conjecture) Let R be a local ring and M a finitely
generated R-module of codimension c. Then for all i,

βi(M) �
(
c

i

)
.

Lemma 4.9 To prove Conjecture 4.8, it suffices to prove it for modules of finite
length.

Proof Let M be an arbitrary module, not necessarily of finite length. Say that M
has codimension c, and note that there must be a minimal prime P of M of height
c. ThenMP is a finite length module over RP , and

βRi (M) � β
RP
i (MP )

by our localization argument. Since MP must then have codimension c, the result
follows. ��

We apply this idea to the case of monomial ideals and present a short proof that
the BEH conjecture holds for monomial ideals. As we will see in Sect. 5, there are
in fact stronger bounds that hold in the monomial case.

Theorem 4.10 Let I be a monomial ideal of height c in a polynomial ring R. Then
the BEH conjecture holds and βi(R/I) �

(
c
i

)
.

Proof Our first step is to reduce to the case that I is squarefree. Indeed, if I is
a monomial ideal, then there is a squarefree monomial ideal (perhaps in a larger
number of variables) called the polarization of I which has the same codimension
and Betti numbers as I .
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So consider the primary decomposition of a squarefree monomial ideal. It
consists entirely of minimal primes that are generated by subsets of the variables,
and all must have height at least c. Choose any one you like and call it P . Note
that IP = PP , since P is minimal. Without loss of generality, we can assume
P = (x1, . . . , xr ) for some r � c. Then upon localizing R/I at P , it is easy to
see that

(R/I)P ∼= R[x1, . . . , xr ](x1,...,xr )/(x1, . . . , xr ),

whose Betti number are obtained from the Koszul complex on x1, . . . , xr . Thus

βi(R/I) � βi(RP /IP ) =
(
r

i

)
�
(
c

i

)
.

The reader will note that if we choose r as large as possible, then r would be the big
height of the squarefree monomial ideal I , that is, the largest height of an associated
prime. ��
Remark 4.11 Notice that it is not clear that to prove the original BEH Conjecture
(which was stated over a polynomial ring) one can simply study finite length mod-
ules. Indeed, this localization argument might require one to work over localizations
of polynomial rings, which despite being regular will not be polynomial rings.

Finally, we include another important general result that comes up frequently. As
motivation we refer to Example 3.1 with I = (xy, xz, yz). Notice that the element
� = x−y−z is a regular element onM = R/I , for instance by looking at a primary
decomposition. If we work over R = R/(�) ∼= k[y, z], then M ∼= R/(y2, yz, z2),
which is a module of finite length. Standard arguments show that when we go
modulo a regular element like this, the homological invariants (including the Betti
numbers) do not change. One application of this is the fact that the Betti numbers of
Cohen-Macaulay modules are the same as those of finite length modules. We make
this sentence precise in the following:

Proposition 4.12 Let M be a Cohen-Macaulay module of codimension c over the
polynomial ring R = k[x1, . . . , xn] where k is any field. There exist a field k′and a
finite length module M ′ over the polynomial ring R′ = k′[y1, . . . , yc] such that the
Betti numbers ofM andM ′ coincide. Thus the following sets are equal:

{βi(M) : M Cohen-Macaulay of codimension c over k[x1, . . . , xn] for some k}

=

{βi(M) : M is finite length over k[x1, . . . , xc] for some k}.

Proof Let M be a Cohen-Macaulay module of codimension c over k[x1, . . . , xn].
If k is infinite, set k′ = k. If k is finite, then we may enlarge the field, say to the
algebraic closure k′ = k, since flat base change will not affect the Betti numbers
of M . Set R = k′[x1, . . . , xn] and M = M ⊗R R, where M is regarded as an
R-module. Note that βi(M) = βi(M). Now, since we are working over an infinite
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field, there is a sequence of linear forms �1, . . . , �n−c ∈ R that is a maximal regular
sequence onM . Now let R′ = R/(�1, . . . , �n−c) and set

M ′ = M ⊗R R′.

Then since we have gone modulo a regular sequence, βi(M ′) = βi(M), and since
the �i were linear forms, R′ is isomorphic to a polynomial ring k′[y1, . . . , yc]. ��

4.2 Other Results

As we mentioned in the previous section, the BEH conjecture 4.1 remains open for
modules of codimension c � 5 except in a small collection of cases. There are,
however, some classes of modules for which the BEH Conjecture is known.

A deformation argument was used in [52, Remark 4.14] to show that the
conjecture holds for arbitrary c when M = R/I and I is in the linkage class of
a complete intersection. Additionally, in [41] it was shown that if the regularity of
M is small relative to the degrees of the first syzygies of M , meaning the entries in
a presentation matrix forM , then the BEH conjecture holds. This will be discussed
more carefully in Sect. 5.

The conjecture holds also when M is multigraded, meaning that M remains
graded no matter what weights the generators xi are given. In fact, there are several
proofs of this fact, for example [29, 30, 67], but perhaps the strongest version is the
result due to Brun and Römer, [14] which shows that if M is multigraded, then in
fact βi(M) �

(
p
i

)
, where p is the projective dimension of M . Since the projective

dimension can exceed the codimension, this is a much stronger result. Such a
result cannot hold more generally—after all, there are 3-generated ideals I with
projective dimension 1000, by Theorem 3.8, and in that case β1(R/I) = 3 <

(1000
1

)
.

Nevertheless, it would be interesting to know if there are other classes where
(
p
i

)
is

a lower bound for the Betti numbers. We know of at least one other case, when
the resolution of R/I is linear, which we present in Theorem 5.14. We will discuss
the multigraded case in more detail in Sect. 5, when we discuss stronger bounds
on Betti numbers. There is a related conjecture of Herzog, on lower bounds for the
Betti numbers of the so-called linear strands. For more information, see [39, 64, 65].

Finally, the BEH conjecture 4.1 also holds for finite length modules of Loewy
length 2 over any regular local ring (R,m), meaning modulesM satisfying m2M =
0 [21, 27].

4.3 The Total Rank Conjecture

If the Buchsbaum–Eisenbud–Horrocks Rank Conjecture is true, an immediate
corollary would be the Total Rank Conjecture, which is obtained by adding the
individual inequalities:
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Conjecture 4.13 (Total Rank Conjecture) IfM �= 0 is a finitely generated graded
module over R = k[x1, . . . , xn] of codimension c, then

c∑

i=0

βi(M) � 2c.

This Conjecture was settled in 2018 by Walker [69], except in the case that k has
characteristic 2. In fact, Walker’s result also applies to finitely generated modules
over an arbitrary local ring R containing a field of odd characteristic. This result
truly was a breakthrough in the field.

Even though the Total Rank Conjecture is settled (except in characteristic two),
we cannot resist sharing some of the beautiful historical results in this story and
compare them with the modern treatment. For example, the odd length case has a
simple solution via elementary methods:

Lemma 4.14 Suppose thatM is a finitely generatedR-module of (finite) odd length
over R = k[x1, . . . , xn]. Then

n∑

i=0

βi(M) � 2n.

Proof The Hilbert series hM(t) ofM is a polynomial in t , say hM(t) = h0+ h1t +
· · · + hr tr . We can also write it as

hRM(t) =
∑
i,j (−1)iβi,j (M)tj

(1− t)n .

Plugging in t = −1, we obtain

2nhRM(−1) =
∑

i,j

(−1)i+j βi,j (M),

so

2n
∣∣h0 − h1 + · · · + (−1)rhr

∣∣ =
∣∣∣∣∣∣

∑

i,j

(−1)i+j βi,j (M)

∣∣∣∣∣∣
�
∑

i

βi(M).

On the other hand, h0 + h1 + · · · + hr is the rank of M , which we assumed to be
odd. Therefore, h0−h1+· · ·+ (−1)rhr is also odd, and thus nonzero. In particular,

2n �
n∑

i=0

βi(M). ��
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In other words, for modules of finite odd length, the Total Rank Conjecture holds
simply due to constraints on its Hilbert function. In 1993, Avramov and Buchweitz
were able to obtain a generalization of this fact in [6]. Their most general bound was
that if d � 5 andM is a module of finite length over R, then

d∑

i=0

βi(M) �
3

2
(d − 1)2 + 8.

In particular, this shows that when d = 5 the lower bound of 32 = 25 in the Total
Rank Conjecture does hold. Their results were in fact much finer, depending on the
prime factors of the length ofM , �(M). For instance, they show that

• If �(M) is odd, then
∑
βi(M) � 2d , so they recover the above result.

• If �(M) is even but not divisible by 6, then
∑
βi(M) � 3d/2 � 20.79d .

• If �(M) is divisible by 6 but not by 30, then
∑
βi(M) � 5d/4 � 20.58d .

• If �(M) is divisible by 30 but not by 60, then
∑
βi(M) � 2(d+1)/2.

If we move forward 25 years, the following is a summary of Walker’s results:

Theorem 4.15 (Walker [69, 70]) Let M be a finitely generated module of codi-
mension c over k[x1, . . . , xn].
• If char k �= 2, then

∑
βi(M) � 2c.

• If char(k) = 2, then
∑
βi(M) � 2(

√
3)
c−1

> 20.79c+0.208.

While the Total Rank Conjecture remains open in characteristic 2, for that case

Walker [70, Theorem 5] did give the above bound of 2(
√

3)
d−1

, which improves
the previous bounds by Avramov and Buchweitz [6]. We also remark that the Total
Rank Conjecture is related to the Toral Rank Conjecture of Halperin [46]. For a
survey on this and related results, see [22–24, 62].

In Table 1, we indicate the current status (as of the writing of this survey) of both
the Total Rank Conjecture 4.13 and the BEH Conjecture 4.1. The reader may want
to refer to Table 2 at the end of the paper to see what the case for stronger bounds is.

Table 1 Status of the BEH and Total Rank Conjectures for a module of codimension c

c � 4 c � 5

βi �
(
c
i

)
Follows from the Open

Syzygy Theorem

[44]∑
i βi � 2c Follows from box above � c = 5 [6]

all c char(k) �= 2 [69]
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5 Stronger Bounds

We now turn to the question of whether there are larger bounds for Betti numbers
and whether or not these bounds are achieved, starting with Walker’s result [69].

Theorem 5.1 (Walker, Theorem 1 in [69]) Suppose that char k �= 2, and letM be
a finitely generated graded k[x1, . . . , xn]-module of codimension c. Then

c∑

i=0

βi(M) � 2c

with equality if and only ifM is not a complete intersection.

Remark 5.2 The situation where we have a module M ∼= R/I with I an ideal
generated by a regular sequence is very important, and we will want to distinguish it
from any other kind of module; we will abuse notation4 and say thatM is a complete
intersection. We will say that a moduleM is not a complete intersection whenever
M is not isomorphic to any quotient of R by a regular sequence; in particular, when
we refer to modules M that are not a complete intersection, we will include any
non-cyclic module.

Notice that this theorem says that the only time that the Betti numbers sum to 2c

is in the case of a complete intersection. Surprisingly, the next smallest value for the
sum of the Betti numbers that we know of is 2c + 2c−1, which is 50% larger than
the bound of 2c. The next two examples show how to achieve this value. Notice that
in one example this stems from the fact that 1 + 3 + 2 = 6, whereas in the other it
is because 1+ 5+ 5+ 1 = 12.

Example 5.3 Let I be the ideal (x2, xy, y2) in R = k[x, y]. Then R/I is a finite
length module of codimension c = 2 with Betti numbers {1, 3, 2}. Notice that these
sum to 6 which is 22 + 22−1.

By adding new variables (to R and also to I ) we can extend this example
to any c � 2. Indeed, set R = k[x, y, z1, . . . , zc−2], and let I =
(x2, xy, y2, z2

1, z
2
2, . . . , z

2
c−2). Then the minimal free resolution of R/I is obtained

by tensoring the Koszul complex on {z1, . . . , zc−2} with the minimal free resolution
of R/(x2, xy, y2). Thus

βi(R/I) =
(
c − 2

i

)
+ 3

(
c − 2

i − 1

)
+ 2

(
c − 2

i − 2

)

and we see that
∑
βi(R/I) = 2c + 2c−1. We chose to adjoin z2

i just so that
our generators were all in the same degree, but one could choose these additional

4 This is an abuse of notation since the expression “complete intersection” typically refers to a ring,
not a module.
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generators to be of any degree. Note that in all of these examples I is monomial
and R/I is of finite length.

Example 5.4 Consider the ideal

G = (x2, y2, z2, xy − yz, yz− xy)

in the ring R = k[x, y, z]. The height of G is 3 and the Betti numbers of R/I are
{1, 5, 5, 1}. Note that 1+ 5+ 5+ 1 = 23 + 22.

Let c � 3. Then as in Example 5.3, we can just add generators in new variables,
say

I = G+ (z2
1, . . . , z

2
c−3)

and after tensoring with a Koszul complex we have that

βi(R/I) =
(
c − 3

i − 3

)
+ 5

(
c − 3

i − 2

)
+ 5

(
c − 3

i − 1

)
+
(
c − 3

i

)
.

Therefore,

∑
βi(R/I) = 2c + 2c−1.

Note that all of the modules R/I in this example are of finite length.

Example 5.5 If one repeats Example 5.4 with R = k[x, y, z, u, v] and J =
(xy, yz, zu, uv, vx) playing the role of G, then the numerics are exactly the same.
R/J has codimension 3 and the Betti numbers are {1, 5, 5, 1}. The analogous
examples obtained by adding new generators will all be monomial but not of finite
colength. This distinction is important, because we will later see in Corollary 5.8
that there are bounds on the individual Betti numbers for monomial ideal of finite
colength that do not hold for monomial ideals more generally, nor for general ideals
of finite colength.

The following result in [31] shows that for modules that are not complete
intersections, this behavior of Betti numbers adding up to “50% more than 2c” does
hold for c � 4:

Theorem 5.6 (Charalambous–Evans–Miller, Theorem 3 in [31]) Let M be a
finitely generated graded module of height c over a polynomial ring. Suppose M
is not a complete intersection. If c � 4, then

∑
βi(M) � 2c + 2c−1.

In fact, [31] actually provides minimal Betti sequences for each codimension.
For example, in codimension c = 4 they show that {β0, . . . , β4} must be bigger
(entry by entry) than at least one of the following:

{1, 5, 9, 7, 2}, {1, 6, 10, 6, 1}, {2, 6, 8, 6, 2}, {1, 6, 9, 6, 2}
{2, 7, 9, 5, 1}, {2, 6, 9, 6, 1} .
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Note that the entries on the bottom row are the reverse of those directly above. The
proof of this result uses techniques of linkage and relies on the classification [57] of
the possible algebra structures on TorR• (R/I, k). This result led the authors to ask
the following question:

Question B (Charalambous–Evans–Miller [31]) If M is finitely generated
graded module over k[x1, . . . , xn] of codimension c that is not a complete
intersection, is

∑
βi(M) � (1.5)2c = 2c + 2c−1?

We will now discuss several instances where we have an affirmative answer to
this question. We remark, however, that the techniques—and indeed the underlying
reasons—in each instance are completely different! Here are some natural follow-up
questions.

Question C What other modulesM of codimension c satisfy
∑
βi(M) = (1.5)2c?

Question D What are the smallest Betti sequences in a given codimension c, when
we range over all finitely generated modules of codimension c over a polynomial
ring on any number of variables?

5.1 The Multigraded Case

Let R = k[x1, . . . , xn] and let M be a finitely generated graded-module over R.
We say that M is multigraded if it remains graded with respect to any grading of
the variables. For example, when I is a monomial ideal, I and R/I are multigraded
(each).

Example 5.7 Let R = k[x, y, z]. Consider

M = Coker

⎛

⎝
y 0 z

−x z 0
0 −y −x

⎞

⎠ .

The module M is generated by 3 elements; for example, since M is a quotient of
R3, we can take the images of the canonical basis elements e1, e2, e3 for generators
ofM . ThenM has relations

ye1 = xe2, ze2 = ye3, ze1 = xe3.

Suppose we are given any weights on the variables. Then the module M will be
graded as well by setting deg e1 := deg(x), deg e2 := deg(y), deg e3 := deg(z).
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In contrast, consider

N = Coker

(
x y z 0
0 x y z

)
,

β(N) 0 1 2 3
0 2 4 − −
1 − − 4 2

.

Then N is generated by e1, e2, and the relations

ye1 + xe2 = 0, ze1 + ye2 = 0

imply that

deg(y)+ deg(e1) = deg(x)+ deg(e2)

deg(z)+ deg(e1) = deg(y)+ deg(e2)

which has no solution for example when deg(y) = deg(x) = 0 and deg(z) = 1. In
other words, N is not multigraded. Notice that N is finite length as an R-module,
and thus has codimension 3.

The following theorem gives strong bounds on the individual Betti numbers of
modules that are multigraded and of finite-length. For instance they imply that a
module of codimension c must have Betti numbers that either exceed {1, 4, 5, 2} or
{2, 5, 4, 1}. Noting that the Betti numbers of N in the previous example violate both
of these bounds provides yet another reason why it is not multigraded.

Theorem 5.8 (Charalambous–Evans [30]) Let M be a multigraded module of
finite length and let γi(M) denote the rank of the ith syzygy module of M . Then
for all i

γi(M) �
(
n− 1

i − 1

)
and therefore βi(M) �

(
n

i

)
.

Further if M is not a complete intersection, then at least one of the following
holds:

(a) for all i, γi(M) �
(
n−1
i−1

)+ (
n−2
i−2

)
, and therefore βi(M) �

(
n
i

)+ (
n−1
i−1

)
;

(b) for all i, γi(M) �
(
n−1
i−1

)+ (
n−2
i−1

)
, and therefore βi(M) �

(
n
i

)+ (
n−1
i

)
.

Remark 5.9 We want to emphasize that without the assumption that M is multi-
graded and of finite length, Theorem 5.8 is false if c � 3. Indeed, Examples 5.4
(respectively 5.5) give families of modules R/I that are finite length (respectively
multigraded) but with Betti numbers that violate the bounds in Theorem 5.8. This
is essentially due to the fact that R/I is Gorenstein in both cases. Indeed, since
Theorem 5.8 implies that either β0(M) � 2 or βc(M) � 2, any Gorenstein algebra
R/I that is not a complete intersection will violate the bounds in Corollary 5.10. In
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fact, we can use this to deduce the following classical fact: if I is a monomial ideal
in a polynomial ring R such that R/I is of finite length and Gorenstein, then R/I is
a complete intersection.

Summing the inequalities for the Betti numbers in Theorem 5.8 yields the
following result, which is a special case of Question B.

Corollary 5.10 IfM is a multigraded module of finite length then

∑
βi(M) � 2n.

Further ifM is not a complete intersection, then

n∑

i=0

βi(M) � 2n + 2n−1.

We remark that in this case n = codimM .
Notice that one of the examples in Remark 5.9 has Betti numbers {1, 5, 5, 1},

and although this violates the bounds in Theorem 5.8, they nonetheless add up to
23+ 22. Recently, the first author and Seiner were able to show that one can remove
the finite length assumption, provided one works with multigraded cyclic modules:

Theorem 5.11 (Boocher–Seiner [11]) Let I ⊆ R = k[x1, . . . , xn] be a monomial
ideal of any codimension c � 2. If R/I is not a complete intersection, then

c∑

i=0

βi(R/I) � 2c + 2c−1.

Unlike the proofs in the finite length case, this theorem does not apparently
follow from a bound on the individual Betti numbers. Indeed, the argument follows
via a degeneration argument that reduces everything to either a Betti sequence
{1, 3, 2} with c = 2 or a Betti sequence {1, 5, 5, 1} with c = 3. Perhaps it is a
coincidence that these Betti numbers sum to (1.5)2c.

Question E Examples 5.4 and 5.5 are both examples of Gorenstein algebras where
the sum of the Betti numbers is equal to 2c + 2c−1. What other Gorenstein algebras
R/I of codimension c have this sum?

Question F In Examples 5.3 and 5.4, we saw two distinct families of Betti numbers
whose Betti numbers sum to 2c + 2c−1. Are there other examples of Betti numbers
that achieve this sum?

Question G If M is a multigraded k[x1, . . . , xn]-module of codimension c < n

that is not a complete intersection, then does
∑
βi(M) � 2c + 2c−1

hold?
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As a partial answer to this, we have the following:

Theorem 5.12 (Brun–Romer [14]) If M is multigraded k[x1, . . . , xn]-module of
projective dimension p, then βi(M) �

(
p
i

)
.

Since p � c with equality only in the case that M is Cohen-Macaulay, we see
that Question G can be reduced to the Cohen-Macaulay case.

Finally, we cannot resist including the following beautiful result of Charalam-
bous and Evans, which gives a sharp strong bound for monomial ideals of finite
colength:

Theorem 5.13 (Charalambous–Evans [30]) Let R = k[x1, . . . , xn] and M =
R/I , where the ideal I is minimally generated by n pure powers of the variables
and one additional generator m = x

a1
1 · · · xann . Suppose that � is the number of

nonzero ai’s. Then for all i, we have

βi(M) =
(
n

i

)
+
(
n− 1

i − 1

)
+ · · · +

(
n− (�− 1)

i − (�− 1)

)
.

For instance, this says that the Betti numbers of the ideal I = (x2, y2, z2, w2,

xywz) must sum to at least 24 + 23 + 22 + 2 = 30. Indeed, the Betti numbers are
{1, 5, 10, 10, 4}.
Question H Can this theorem be extended outside of the case of finite colength
monomial ideals? Is there a version for general monomial ideals? Is there a version
for multigraded modules? For general ideals?

5.2 Low Regularity Case

We finish this survey with some of the most recent results on larger lower bounds
for Betti numbers. So far we have not paid much attention to the degrees of the
syzygies. After all, our bounds are in terms of the Betti numbers βi , which count the
number of generators, but not their degrees, of the ith syzygy module. But since we
are working with graded modules, we will now actually look at βij .

In terms of degrees, the simplest resolutions are those whose matrices all have
linear entries. Such resolutions are called linear.

Theorem 5.14 (Herzog–Kühl [48]) If M is a graded R-module of projective
dimension p with a linear resolution, then βi(M) �

(
p
i

)
.

Remark 5.15 Notice that this is the same bound given by Brun and Römer for
multigraded modules in Theorem 5.12. In the same paper, Herzog and Kühl show
that apart from this bound, linear resolutions can behave quite wildly.5 Indeed, they

5 This is the term used by Herzog and Kühl.
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show how to produce squarefree monomial ideals with a linear resolution such that
the Betti numbers form a non-unimodal sequence with arbitrarily many extrema.

Linear resolutions have the property that each matrix has entries all of which
are linear. This is a particular case of what is called a pure resolution. We say that
a module M is pure if it is Cohen-Macaulay and each map has entries all of the
same degree. Equivalently, in the free resolution F• → M , each Fi is generated
in a single degree di . This sequence of numbers {d0, . . . , dc} is called the degree
sequence ofM .

Example 5.16 The moduleM given in Example 5.7 with Betti table

β(M) 0 1 2 3
0 2 4 − −
1 − − 4 2

is pure with degree sequence 0, 1, 3, 4. The module R/G in Example 5.4 is an
example of a pure module with degree sequences {0, 2, 3, 5} and Betti table

β(M) 0 1 2 3
0 1 − − −
1 − 5 5 −
2 − − − 1

.

In [48], Herzog and Kühl showed that ifM is a pure module with degree sequence
{d0, . . . , dc}, then for all i � 1 we have

βi(M) = β0(M)
∏

1�j�c
j �=i

|dj − d0|
|di − dj | .

Quite surprisingly, given any degree sequence d0 < d1 < · · · < dp, there
exists a Cohen-Macaulay module M whose resolution is pure with this degree
sequence. This was proven in [38, 40] as part of the resolution of the Boij-Söderberg
conjectures.

Question I IfM is a pure module of codimension c, is βi(M) �
(
c
i

)
?

Given the Herzog-Kühl equations, one might expect that this question is numer-
ical in nature, and in a sense it is. However, the following example shows a major
obstacle:

Example 5.17 Let M be a pure module with degree sequence {0, 2, 3, 7, 8, 10}.
Such a module has codimension 5 and its Betti table is
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β(M) 0 1 2 3 4 5
0 β0(M) − − − − −
1 − 7β0(M) 8β0(M) − − −
2 − − − − − −
3 − − − − − −
4 − − − 8β0(M) 7β0(M) −
5 − − − − − β0(M)

.

Notice that if β0(M) = 1, then this would give an example of a module with
β2(M) <

(5
2

)
. So part of answering Question I involves showing that β0(M) � 2.

One way to prove this is to apply a big hammer—the Total Rank Conjecture, now
Walker’s Theorem [69]. Using Walker’s Theorem, we notice that if β0(M) = 1,
then the sum of the Betti numbers would be equal to 2c, but evidently M is not a
complete intersection, which contradicts Walker’s result. Alternatively, one could
note that from the Betti table, the rank of �3(M) would be 2β0(M), which would
violate the Syzygy Theorem 3.13 when β0(M) = 1.

Extending this sort of argument to general degree sequences will present
many challenges. In fact, we need only to turn to the degree sequence
{0, 1, 2, 3, 5, 7, 8, 9, 10} to see to limits of this argument. A module M possessing
a pure resolution with this degree sequence would necessarily be of codimension 8
and would have Betti table

β(M) 0 1 2 3 4 5 6 7 8
0 4N 25N 60N 60N − − − − −
1 − − − − 42N − − − −
2 − − − − − 60N 60N 25N 4N

for some positive integer N . Boij-Söderberg Theory guarantees that such a module
exists, but N may be large. Note that if N = 1 then β4 <

(8
4

)
, and the sum of

the Betti numbers would be 340 < 28 + 27 which would violate both the BEH
Conjecture 4.1 and provide a negative answer to Question B. Notice that the Betti
sequence is non-unimodal, regardless of N .

The numerical behavior resulting from the Herzog-Kühl equations is nontrivial
to analyze, but is slightly manageable in the case where the last degree dc is small
relative to d1. Note that d1 and dc are essentially degrees of the first syzygies
of M and the Castelnuovo-Mumford Regularity. This insight was first noticed by
Erman in [41]. Coupling this observation with the full force of the newly proven
Boij-Söderberg Theory allowed him to prove the BEH Conjecture for those graded
modules whose regularity is low relative to the degrees of the first syzygies.

Theorem 5.18 (Erman [41]) Let M be a graded R-module of codimension c � 3
generated in degree 0 and let a � 2 be the minimal degree of a first syzygy ofM . If
reg(M) � 2a − 2, then
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βi(M) � β0(M)

(
c

i

)
.

In particular the sum of the Betti numbers is at least β0(M)2c.

To put the regularity bound into perspective, if M is R/I for some ideal I
generated by quadrics, then the above theorem would apply to anyM with regularity
at most 2, which means the Betti table has at most 2 rows. The regularity condition
is relaxed enough to include, for example, the coordinate rings of smooth curves
embedded by linear systems of high degree, those of toric surfaces, as well as any
finite length module whose socle degree is relatively low. In Example 5.17 the two
Betti tables do not obey the low regularity bound. In the first, a = 2 and reg(M) = 5;
in the second, a = 1 and reg(M) = 2.

Erman’s proof uses general Boij-Söderberg techniques to reduce studying the
Betti tables of arbitrary modules to the study of pure modules and then use a
degeneration argument to supply the required numerical bound. These techniques
were pushed even further in [12], where it is shown that in fact the sum of the Betti
numbers is 50% larger:

Theorem 5.19 (Boocher–Wigglesworth [12]) Let M be a graded R-module of
codimension c � 3 generated in degree 0 and let a � 2 be the minimal degree
of a first syzygy ofM . If reg(M) � 2a − 2, then

β(M) � β0(M)(2
c + 2c−1).

If moreover c � 9, then

βi(M) � 2β0(M)

(
c

i

)

for the first half of the Betti numbers, meaning for 1 � i � �c/2�.
Essentially, this says that if the regularity is “low”, then for c � 9, the first

half of the Betti numbers are at least double the conjectured Buchsbaum–Eisenbud–
Horrcks bounds. Then on average the Betti numbers, will be at least 1.5 times the
BEH bounds, and thus the sum of all the Betti numbers needs to be at least 1.5(2c).
The authors deal with the cases c � 8 separately. Again it seems almost miraculous
that the bound of 2c + 2c−1 pops up—in this case aided by the fact that the first half
of the Betti numbers are twice as large as expected.

Remark 5.20 Notice that if R = k[x1, . . . , xc] with c � 2, then any ideal I
generated by c + 1 generic quadrics will be an ideal of height c, and β1(R/I) =
c+ 1 < 2

(
c
1

)
. So without some other condition, for example on the regularity, there

is no hope of finding a stronger bound for the first Betti number.
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Table 2 M is a module of codimension c that is not a complete intersection

As a corollary of Theorem 5.19, for ideals generated by quadrics with c � 9 we
have

reg(R/I) < 3, and R/I is not a CI (⇒ β1(R/I) � 2c, β2(R/I) � 2

(
c

2

)
, . . .

In other words, low regularity forces this rather specific bound for the number of
generators.

We end with a table summarizing the results concerning these stronger bounds
(each). We remind the reader that these entries all concern modules that are not
complete intersections.
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1 Introduction

In this chapter, we consider bigraded minimal free resolutions in the first nontrivial
case. Let R = K[s, t; u, v] be the bigraded polynomial ring, where {s, t} are of
degree (1, 0) and {u, v} are of degree (0, 1); R is graded by Z

2. For d = (d1, d2),
we consider a three dimensional subspace W = Span{f0, f1, f2} ⊆ Rd, with the
additional constraint that

IW = 〈f0, f1, f2〉 satisfies
√
IW = 〈s, t〉 ∩ 〈u, v〉. (1.1)

This generic condition arises from the natural geometric condition of being base-
point free, defined in Sect. 1.2.2 below. We study the minimal free resolution of IW
and we give precise results when d = (1, n) and n ≥ 3.
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Example 1.1 For d = (1, 1) the bigraded Betti numbers of IW are always

0← IW ← (−1,−1)3
∂1←−

(−1,−3)
⊕

(−2,−2)3

⊕
(−3,−1)

∂2←−
(−2,−3)2

⊕
(−3,−2)2

∂3←− (−3,−3)← 0

The degree (2, 2) syzygies are Koszul. The first syzygies of degree (1, 3) and (3, 1)
involve only one set of variables, and arise from the vanishing of a determinant (see
Lemma 3.1). The reader is encouraged to work out the remaining differentials.

The d = (1, 2) case is more complex, and [8] shows that there are two possible
bigraded minimal free resolutions for IW . The resolution type is determined by how

P(W) ⊆ P(R1,2) = P
5 meets the image �1,2 of the Segre map P

1 × P
2 σ1,2−→ P

5 of
factorizable polynomials.

1.1 Motivation from Geometric Modeling

In geometric modeling, it is often useful to approximate a surface in P
3 with

a rational surface of low degree. Most commonly the rational surfaces used are
P

1 × P
1 or P2, and the resulting objects are known as tensor product surfaces and

triangular surfaces. See, for example, [3, 6, 7, 9, 26]. An efficient way to compute
the implicit equation is via approximation complexes [20, 21] which use syzygy
data as input.

A tensor product surface is mapped to P
3 by a four dimensional subspace V ⊆

Rd. For d = (1, 2), Zube describes the singular locus in [28, 29], and in [14, 16],
Elkadi-Galligo-Lê use the geometry of a dual scroll to analyze the image. When√
IV = 〈s, t〉 ∩ 〈u, v〉, [25] shows that there are exactly six types of free resolution

possible, and analyzes the approximation complexes for the distinct resolutions.
Degan [10] examines the situation when the subspace has basepoints. For a three
dimensional subspaceW ⊆ V , the ideals IV and IW are related via linkage in [25].

1.2 Mathematical Background

We start with a quick review of the cast of principal mathematical players, referring
to [12] and [13] for additional details.



The Simplest Minimal Free Resolutions in P
1 × P

1 115

1.2.1 Bigraded Betti Numbers

Definition 1.2 For a bihomogeneous ideal I ⊆ R = K[s, t; u, v] and d ∈ Z
2, the

bigraded Betti numbers are

βi,a = dimK T ori(R/I,K)a.

For all nonnegative integers i and all bidegrees a, βi,a is the number of copies of
R(−a) appearing in the ith module of the minimal free resolution of I . Since a ∈
Z

2, the βi,a cannot be displayed in the Z-graded Betti table format [13]. Bigraded
regularity is studied in [1, 22, 24], and multigraded regularity was introduced in
[23].

Example 1.3 [[8], Theorem 7.8] Let �1,2 be the Segre variety of P1 × P
2 ⊆ P

5 =
P(U), where U has basis {su2, suv, sv2, tu2, tuv, tv2}. ThenW ∩�1,2 is a smooth
conic iff IW has the bigraded Betti numbers as below.

0← IW ← (−1,−2)3
∂1←−

(−1,−6)
⊕

(−2,−4)3

⊕
(−3,−2)

∂2←−
(−2,−6)2

⊕
(−3,−4)2

∂3←− (−3,−6)← 0

For example, β1,(2,4) = 3 and β2,(3,4) = 2.

1.2.2 Bigraded Algebra and Line Bundles on P
1 × P

1

As noted earlier, the constraint that
√
IW is the bihomogeneous maximal ideal

in (1.1) arises as a natural geometric condition, and we give a quick synopsis; for
additional details, see §V.I of [19].

A line bundle L on the abstract variety P
1 × P

1 is characterized by a choice of
d ∈ Z

2 and we write OP1×P1(d) for L. Although the global sections

H 0(OP1×P1(d)) = Rd

are not functions on P
1 × P

1, their ratios give well defined functions on P
1 × P

1

and so zero sets of sections are defined.
The upshot is that to realize P

1 × P
1 as a subvariety of Pn, we choose an n + 1

dimensional subspace W ⊆ Rd with d ∈ Z
2
>(0,0). As long as the fi ∈ W do not

simultaneously vanish on P
1 × P

1, this gives a regular map from P
1 × P

1 to P
n. The

condition that the fi do not simultaneously vanish at a point of P1 × P
1 is exactly

the condition (1.1); in this situation W is said to be basepoint free. For example, if
W = Span{su, sv, tu}, then [(0 : 1), (0 : 1)] ∈ P

1 × P
1 is a basepoint ofW .
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1.2.3 Koszul Homology and Bigraded Hilbert Series

Koszul homology is defined and discussed in Sect. 2. We will give in Definition 2.8
the precise conditions under which a basepoint free system of polynomials f =
{f0, f1, f2} ⊆ Rd is generic. In this case, we make a conjecture in Sect. 2 on the
bigraded Betti numbers, and show that it is equivalent to a recent conjecture made
by Fröberg–Lundqvist in [15] on the bigraded Hilbert series of R/IW .

1.3 Roadmap of This Chapter

Below is an overview of the sections which make up this chapter.

• In Sect. 2, we study the Koszul homology of I ; the first homology encodes the
non-Koszul first syzygies. The spectral sequence of the Čech-Koszul double
complex has a single d3 differential, and we explain the connection to local
cohomology H •B . We make a conjecture about the first Koszul homology module
for generic W, and connect it to a conjecture of Fröberg–Lundqvist [15] on the
Hilbert series of generic bigraded ideals.

• In Sect. 3, we use tools from commutative algebra such as the Hilbert-Burch
theorem to shed additional light on the first syzygies.

• In Sect. 4, we connect the minimal free resolution to the image of the Segre
variety �1,n, obtaining canonical syzygies in certain degrees, without any
assumptions on genericity. The geometry ofW ∩�1,n plays a key role.

• In Sect. 5 we prove results on higher Segre varieties, in particular about how
the geometry of the intersection of W with such varieties influences the free
resolution. We close with a number of questions.

2 Koszul Homology H1(K•(f,R)) and the Generic Case

We start this section with an overview of Koszul homology. We then prove in
Theorem 2.2 a characterization of the first Koszul homology associated to our ideal
IW under the assumption (1.1). Corollary 2.5 then gives a concrete representation
of H1, that we make explicit in Examples 2.6 and 2.7 for factorizable polynomials.
Sect. 2.4 treats the generic case (see Definition 2.8). In this case, we specify some
values of the dimensions (H1)a for a ∈ Z

2≥0 and we state Conjecture 2.10 about
these dimensions.We prove in Proposition 2.17 that our Conjecture is equivalent to
Conjecture 2.14 by Ralf Fröberg and Samuel Lundqvist (Conjecture 8 in [15]).
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2.1 Koszul Homology

For notation, we write a = 〈s, t〉, b = 〈u, v〉, B = a ∩ b and m = R+ = (s, t, u, v)
Definition 2.1 For a sequence of polynomials f = {f0, . . . , fm} the Koszul
complex K• := K•(f, R) is the complex

· · · −→ �j(Rm+1)
δj−→ �j−1(Rm+1) −→ · · ·

where

δj (en1 ∧ · · · ∧ enj ) �→
j∑

i=1

(−1)ifni · (en1 ∧ · · · êni · · · ∧ enj )

The ith Koszul homology is Hi(K•); Koszul cohomology is Hi(HomR(K•, R)).
The Koszul complex is exact iff f is a regular sequence. We will focus on the case
where f = {f0, f1, f2} is a basepoint free subset of Rd. Hence

K•(f, R) : 0→ R(−3d)
δ3−→ R(−2d)3

δ2−→ R(−d)3
δ1−→ R→ 0. (2.1)

Let Zi and Bi be the modules of Koszul i-th cycles and boundaries, graded so
that the inclusion maps Zi, Bi ⊂ Ki are of degree (0, 0), and letHi = Zi/Bi denote
the i-th Koszul homology module. Since δ1(p1, p2, p3) =∑3

i=1 pifi ,

H0 = coker(δ1) = R/IW .

Since
√
IW = B, the codimension of IW is two, so since f has three generators, f is

not a regular sequence, and thus H1 �= 0. Our assumption (1.1) that rad(IW ) = B
means that depth(IW ) = 2, and then H2 = H3 = 0.

From the definition of Koszul homology, the syzygy module Syz(f) := ker(δ1).
Since H1 �= 0, the map δ2 in the Koszul complex (2.1) factors through Syz(f) as

R(−2d)3
δ2−→ Syz(f) but is not surjective. The module im(δ2) is called the module

of Koszul syzygies. Thus, the size of non-Koszul syzygies is measured by H1.

2.2 Determining H1(K•(f,R))

Since rad(IW ) = B, the modules H0 and H1 are supported on B. In particular, we
have that HiB(H1) = 0 for i > 0 and hence, H 0

B(H1) = H1. This says that the
Koszul complex (2.1) is not acyclic globally, but it is acyclic off V (B), i.e. that for
every prime p �⊂ B the localization (K•(f, R))p of (2.1) at p is acyclic.
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Consider the extended Koszul complex of (2.1)

K• : 0→ R(−3d)
δ3−→ R(−2d)3

δ2−→ R(−d)3
δ1−→ R→ R/IW → 0. (2.2)

For the complex (2.2) we have that Hi = 0 if i �= 1. The following theorem charac-
terizes H1.

Theorem 2.2 There is an isomorphism of bigraded R-modules

H1 ∼= ker

(
H 2
B(R(−3d))

δ→
(
H 2
B(R(−2d))

)3
)
.

Proof Consider the Čech-Koszul double complex Č•B(K•) that is obtained from

(2.2) by applying the Čech functor Č•B(−).
Consider the two spectral sequences that arise from the double complex Č•B(K•).

We will denote by hE the spectral sequence that arises taking first homology
horizontally, this is, computing first the Koszul homology, and by vE the spectral
sequence that is obtained by computing first the Čech cohomology. The second page
of the spectral sequence of the horizontal filtration is:

2
hE

ij = HiB(Hj (K•)).

Since HiB(H1) = 0 for i > 0 and H 0
B(H1) = H1, we have

2
hE

ij = HiB(Hj ) =
{
H1 for j = 1 and i = 0
0 otherwise.

We conclude that

H •B(H•)⇒ H1.

The second spectral sequence has

1
vE

ij = HiB(Kj ),

where Ki is the i-th module from the right in Eq. (2.2). Precisely, we have

1
vE

i,−1 = HiB(R/IW )
1
vE

i,0 = HiB(R)
1
vE

i,1 = HiB(R(−d)3)
1
vE

i,2 = HiB(R(−2d)3)
1
vE

i,3 = HiB(R(−3d))
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Therefore, the 1E page of the vertical spectral sequence is

0 ω∗
R(3d) (ω∗

R(2d))3 (ω∗
R(d))3 ω∗

R H3
B(R/W I)

0 H2
B(R(−3d)) δ

H2
B(R(−2d))

)3
H2

B(R(−d))
)3

H2
B(R) H2

B(R/IW )

0 0 0 0 0 H1
B(R/IW )

0 0 0 0 0 H0
B(R/IW )

By comparing both spectral sequences, we conclude that

H1 ∼= ker

(
H 2
B(R(−3d))

δ→
(
H 2
B(R(−2d))

)3
)
. ��

Corollary 2.3 The sequence

0→ R(−3d)
δ3−→ R(−2d)3

δ2−→ Syz(f)→ H 2
B(R(−3d))

δ→
(
H 2
B(R(−2d))

)3

is exact.

Proof From Eq. (2.2), 0 → R(−3d)
δ3−→ R(−2d)3

δ2−→ Syz(f) → H1 → 0

is exact. Theorem 2.2 gives H1 ∼= ker
(
H 2
B(R(−3d))

δ→ (
H 2
B(R(−2d))

)3
)

. The

result follows by connecting the two sequences. ��

2.3 Understanding (H1)a

We have the following consequence of Theorem 2.2.

Corollary 2.4

SuppZ2(H1) ⊂ −N× N+ (3d1 − 2, 3d2) ∪ N×−N+ (3d1, 3d2 − 2).

Proof A direct computation using the Mayer-Vietoris sequence yields

(1) H 2
B(R) = H 2

a(R)⊕H 2
b(R) =

(
ω∗R1
⊗K R2

)
⊕
(
R1 ⊗K ω

∗
R2

)
,

(2) H 3
B(R) = H 4

m(R) = ω∗R ,
(3) HiB(R) = 0 for all i �= 2, 3,

where ω∗S denotes the canonical dualizing module of S. Since we have that the
SuppZ2(H 2

B(R)) = −N × N + (−2, 0) ∪ N × −N + (0,−2), by shifting we get
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that

SuppZ2(H1) ⊂ −N× N+ (3d1 − 2, 3d2) ∪ N×−N+ (3d1, 3d2 − 2). ��

Corollary 2.5 Consider the mapH 2
B(R(−3d))

δ→ (
H 2
B(R(−2d))

)3
. For every a =

(a1, a2), we get

(H1)(a1,a2)
∼= ker

⎛

⎜⎝
R(3d1−a1−2,−3d2+a2)

⊕
R(−3d1+a1,3d2−a2−2)

δa−→
⎛

⎝
R(2d1−a1−2,−2d2+a2)

⊕
R(−2d1+a1,2d2−a2−2)

⎞

⎠
3⎞

⎟⎠

is an isomorphism of K-modules. Identifying the target with

R3
(2d1−a1−2,−2d2+a2)

⊕ R3
(−2d1+a1,2d2−a2−2), we have

δa =
(
φ1 0
0 φ2

)
, with

φ1 : R(−3d1+a1,3d2−a2−2)→ R3
(−2d1+a1,2d2−a2−2),

φ2 : R(3d1−a1−2,−3d2+a2)→ R3
(2d1−a1−2,−2d2+a2)

. (2.3)

For d1, d2 ≥ 2, the previous result gives a description of the kernel (H1)(a1,a2)
:

[3d2,+∞) ker(φ2) R(3d1−a1−2,−3d2+a2) 0 0
3d2 − 1 0 0 0 0

(2d2 − 2, 3d2 − 2] 0 0 0 R(−3d1+a1,3d2−a2−2)

(−∞, 2d2 − 2] 0 0 0 ker(φ1)

(−∞, 2d1 − 2] (2d1 − 2, 3d1 − 2] 3d1 − 1 [3d1,+∞)
The next examples illustrate the map δa of Corollary 2.5 in a particular case in which
the three polynomials fi can be factored as two polynomials with bidegrees (1, 0)
and (0, n).

Example 2.6 Let d = (1, n), f0 = sun, f1 = tvn, f2 = (s + t)(un + vn), and
(a1, a2) = (3, n). Then

(H1)(3,n) = ker

(
(R1 ⊗K ω

∗
R2
)(0,−2n+2)

δ(3,n)−→ (
(R1 ⊗K ω

∗
R2
)(1,−n+2)

)3
)

(2.4)
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and with the standard identification of the canonical dualizing modules, one has

(H1)(3,n)
∼= ker

(
R(0,2n−2) −→

(
R(1,n−2)

)3
)

The map δ(3,n) in Eq. (2.4) is given by multiplication by fi . Precisely, given a ≥ 0,
δ(3,n) is as follows

1

uv

1

uav2n−2−a �→
1

uv

(
1

uav2n−2−a f0,
1

uav2n−2−a f1,
1

uav2n−2−a f2

)
.

Thus, fixing a basis B for (R1 ⊗K ω
∗
R2
)(0,−2n+2) and also fixing a basis B′ for

(R1 ⊗K ω
∗
R2
)3(1,−n+2), |δ(3,n)|BB′ is a (3 · 2(n− 1))× (2n− 1)-matrix given by the

coefficients coefB′((f0, f1, f2) · Bi ) of the i-th element of B multiplied by one of
the fj (j depending on the row), written in the basis B′.
We now exhibit the matrices in Example 2.6 in bidegree (1, 6).

Example 2.7 Set for instance n = 6 (so d = (1, 6)), |δ(3,n)|BB′ is a (3 · 10) × 11-

matrix. One can take B =
{

1
uv

1
u6 , . . . ,

1
uv

1
v6

}
and

B′ =
{

1
uv

s
u4 , . . . ,

1
uv

s
v4 ,

1
uv

t
u4 , . . .

1
uv

t
v4

}
× {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

In this case, one has that the 10-tuple, corresponding to the ‘upper third’ of the
first column of |δ(3,n)|BB′ , induced by multiplying by f0 is

coefB′(f0 · B1) = coefB′
(
f0 · 1

uv

1

u10

)
= coefB′

(
1

uv

s

u4

)
= (1, 0, 0, . . . , 0).

And, because of the structure of multiplication on ω∗R2
, it is easy to see that in

(R1 ⊗K ω
∗
R2
)(1,−n+2), fj · u−6v−6 = 0. Thus, the 6th column of |δ(3,n)|BB′ is zero,

and the rest are not.
The matrix |δ(3,n)|BB′ has the following shape

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Id5×5 0 0
0 0 0
0 0 0
0 0 Id5×5

Id5×5 0 Id5×5

Id5×5 0 Id5×5

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where Id5×5 is the 5× 5-identity matrix.
Finally, we conclude that corank(|δ(3,n)|BB′) = 1. Since the matrix above

induces a morphism from k11 → k30, we have that

HFH1(3, n) = dim(ker(|δ(3,n)|BB ′)) = corank(|δ(3,n)|BB′) = 1.
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This in particular says that there is only one non-Koszul syzygy spanning every
other non-Koszul syzygy.

Examples 2.6 and 2.7 are explained by Theorem 4.7.

2.4 The Generic Case

We give the definition of generic bihomogeneous polynomials fi of the same
bidegree d ∈ Z

2
>0. Note that our assumption (1.1) implies that no di could be equal

to 0.

Definition 2.8 Given d ∈ Z
2
>0 and f = {f0, f1, f2} of bidegree d satisfying (1.1), we

say that f is generic if the maps φ1 and φ2 in (2.3) in Corollary 2.5 have full rank,
for any a ∈ Z

2≥0.

This condition of full rank is not true only under the assumption (1.1). For instance,
the factorizable polynomials in Example 2.7 are not generic, but our Conjecture 2.10
below states that the maps have full rank for polynomials with generic coefficients.

If we denote by nd(a) the difference of dimensions:

nd(a) := dimK

⎛

⎜⎝
R(3d1−a1−2,−3d2+a2)

⊕
R(−3d1+a1,3d2−a2−2)

⎞

⎟⎠− 3 dimK

⎛

⎜⎝
R(2d1−a1−2,−2d2+a2)

⊕
R(−2d1+a1,2d2−a2−2)

⎞

⎟⎠ ∈ Z[a, d],

we have by Corollary 2.5 that

dimK (H1)(a1,a2)
≥ nd(a).

For any real number c, denote

c+ = max(c, 0), c− = max(0,−c). (2.5)

Note that for any c ∈ R, c = c+ − c− and only one of these two numbers can be
positive.

Given d, a ∈ Z
2≥0, we set

domd(a) := (0,−3d1 + a1 + 1)+(0, 3d2 − a2 − 1)+
+ (0, 3d1 − a1 − 1)+(0,−3d2 + a2 + 1)+

codd(a) := (0,−2d1 + a1 + 1)+(0, 2d2 − a2 − 1)+
+ (0, 2d1 − a1 − 1)+(0,−2d2 + a2 + 1)+.
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The following Lemma is straigthforward taking into account that a linear map
V1 → V2 between two K-vector spaces of finite dimension is of maximal rank if
and only if the dimension of its kernel of equals (dimK(V1)− dimK(V2))+.

Lemma 2.9 Let f = {f0, f1, f2} of bidegree d satisfying (1.1). Then, f is generic if
and only if

nd(a) = (domd(a)− 3 codd(a))+. (2.6)

In this case, for any a ∈ Z
2≥0 we have the equality:

dimK (H1)(a1,a2)
= nd(a). (2.7)

In fact, we conjecture that this is indeed the generic behavior

Conjecture 2.10 There exists a nonempty open set in the space of coefficients
of the polynomials fi where f is generic according to Definition 2.8 and hence
dim (H1)a = nd(a) for any a ∈ Z

2≥0 by Lemma 2.9.

Remark 2.11 Note that Corollary 2.5 proves that Conjecture 2.10 is always true
for polynomials fi satisfying assumption (1.1) outside of the range where we have
(a1 ≥ 3d1 and d2 ≤ a2 ≤ 2d2 − 2) and (a2 ≥ 3d2 and d1 ≤ a1 ≤ 2d1 − 2).

2.5 The Fröberg-Lindqvist Conjecture on Bigraded Hilbert
Series

For any bidegree a, we denote by χK•(a) the Euler characteristic of the �-strand of
the Koszul complex (2.1) and let S(x, y) =∑

a∈Z2≥0
χK•(a)x

a1ya2 . Then,

S(x, y) = (1− xd1yd2)3

(1− x)2(1− y)2 . (2.8)

We denote by S(x, y)+ the series supported in Z
2≥0 with coefficients χK•(�)+. The

following lemmas are straightforward.

Lemma 2.12 S(x, y)+ and S(x, y)− are also rational functions of x, y.

Lemma 2.13 Define regions

A1 = a1 < d1 or a2 < d2

A2 = (d1 ≤ a1 < 2d1 and d2 ≤ a2) or (d1 ≤ a1 and d2 ≤ a2 < 2d2)

A3 = (2d1 ≤ a1 < 3d1 and 2d2 ≤ a2) or (a1 < 3d1 and 2d2 ≤ a2 < 3d2)

A4 = 3d1 ≤ a1 and 3d2 ≤ a2
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For any a ∈ Z
2≥0, the coefficient χK•(a) equals the following:

(a1 + 1)(a2 + 1) in A1

(a1 + 1)(a2 + 1)− 3(a1 − d1 + 1)(a2 − d2 + 1) in A2

(a1 + 1)(a2 + 1)− 3(a1 − d1 + 1)(a2 − d2 + 1)+ 3(a1 − 2d1 + 1)(a2 − 2d2 + 1) in A3

0 in A4

The following table shows in which bidegrees the Euler characteristic χK•(a) is
positive, negative or zero.

[3d2,+∞) + +/hiperb/− − 0 0
3d2 − 1 + + 0 0 0

(2d2 − 2, 3d2 − 2] + + + 0 −
(d2 − 1, 2d2 − 2] + + + + +/hiperb/−
(0, d2 − 1] + + + + +

(0, d1 − 1] (d1 − 1, 2d1 − 2] (2d1 − 2, 3d1 − 2] 3d1 − 1 [3d1,+∞)
Here the notation+/hiperb/−means that there is a hyperbola where χK• vanishes,
separating the positive from the negative values. Here is an equivalent version of the
Fröberg and Lundqvist Conjecture 8 from [15]:

Conjecture 2.14 There exists a nonempty open set in the space of coefficients of
the polynomials fi for which dim(R/IW )a = χK•(a)+ for any a ∈ Z

2≥0.

We now prove that Conjecture 2.10 and 2.14 are indeed equivalent.

Lemma 2.15 Let f = {f0, f1, f2} be bihomogeneous polynomials of bidegree d ∈
Z

2
>0 satisfying (1.1). We have the equality:

χK•(a) = dim(R/IW )a − dim (H1)a . (2.9)

As we remarked in Sect. 2.1, our assumption (1.1) implies that H2 = H3 = 0,
and so the proof of Lemma 2.15 is immediate.

We compare the conjectural dimension nd(a) of H1a with the coefficients of S.

Lemma 2.16 For any a ∈ Z
2≥0 we have the equality:

dim nd(a) = χK•(a)−. (2.10)

Proof By Lemma 2.13 are sixteen domains of polynomiality of χK• . Consider for
instance the case a1 > 3d1 − 1, 2d2 − 1 < a2 ≤ 3d2 − 1. Then, nd(a) = (3d1 −
a1−1)(3d2−a2−1), while χK•(a)− = (a1+1)(a2+1)−3(−d1+a1+1)(−d2+
a2+1)+3(−2d1+a1+1)(−2d2+a2+1) and it is a simple computation to check
that they coincide. The other cases are similar. ��
By Lemma 2.12 the generating series T (x, y) =∑

a dim (H1)a x
a1ya2 is a rational

function. Hence

Proposition 2.17 Conjectures 2.10 and 2.14 are equivalent.
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Proof Assume dim (H1)a = nd(a). Using Lemma 2.16, we substitute this value in
the statement of Lemma 2.15:

χK•(a) = χK•(a)+ − χK•(a)− = dim(R/IW )a − χK•(a)−,

which says that dim(R/IW )a = χK•(a)+. The converse is similar. ��
Remark 2.18 By Remark 2.11, we have that dim (H1)a = nd(a) is true for
polynomials fi satisfying assumption (1.1) except in the ranges (a1 ≥ 3d1 and d2 ≤
a2 ≤ 2d2 − 2) and (a2 ≥ 3d2 and d1 ≤ a1 ≤ 2d1 − 2). So, we deduce from the
proof of Proposition 2.17 that Conjecture 2.14 is true outside these ranges.

We end this section with an easy corollary.

Corollary 2.19 If Conjectures 2.10 and 2.14 hold, then for any f regular either
R/IW a = 0 or H1a = 0 for any a ∈ Z

2≥0.

Proof If the conjectures are valid for any f regular, we have for any bidegree a
that dim(R/IW )a = χK•(a)+ and dim (H1)a = χK•(a)−, and as we remarked
after (2.5), at most one of these numbers can be nonzero. ��

3 Koszul Homology H1(K•(f,R)) for d = (1, n)

From now on, we specialize our study to bidegrees of the form d = (1, n), always
assuming thatW is basepoint free. This case is both the natural sequel to the study of
the (1, 2) case studied in [8], as well as a key ingredient for better understanding the
general case. It splits the analysis into separate parts, in a way that we make precise
below. Theorem 3.7 relates the Betti numbers β1,a with the Koszul homology of H1
with respect to the sequence {s, t, u, v}, for any bidegree d.

For degree (1, n), Corollary 2.5 yields the following description of (H1)(a1,a2)
:

(H1)(a1,a2)
∼= ker

⎛

⎜⎝
R(1−a1,−3n+a2)

⊕
R(−3+a1,3n−a2−2)

δ(a1,a2)−→
⎛

⎝
R(−a1,−2n+a2)

⊕
R(−2+a1,2n−a2−2)

⎞

⎠
3⎞

⎟⎠ .

The table given in Sect. 2.3 reduces to

[3n,+∞) R(1−a1,−3n+a2) 0 0
3n− 1 0 0 0

(2n− 2, 3n− 2] 0 0 R(−3+a1,3n−a2−2)

(−∞, 2n− 2] 0 0 ker(φ1)

1 2 [3,+∞)

,
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with

φ1 : R(−3+a1,3n−a2−2)→ R3
(−2+a1,2n−a2−2).

So the region where interesting behavior occurs is in multidegree (a1, a2), with

a2 ≥ 3n and a1 = 1
or

a1 ≥ 3 and a2 ≤ 2n− 2

Since we need IW to be nonzero, we have the constraint that a1 ≥ d1, a2 ≥ d2, so
for d = (1, n), the only region of interest is bidegree (a1, a2), with

a1 ≥ 3 and 2n− 2 ≥ a2 ≥ n,

corresponding to ker(φ1) defined in Sect. 2.3. We study n ≥ 3; n = 2 is analyzed in
[8].

3.1 Tautological First Syzygies: Degrees (1, ∗) and (2, ∗)

Lemma 3.1 There is a unique minimal first syzygy on IW in bidegree (1, 3n).

Proof Because φ2 : K → 0, ker(φ2) , K, and we can describe the syzygy
explicitly as follows (it is of the type appearing in Lemma 6.1 of [8].) Write

f0 = s · p0 + t · q0

f1 = s · p1 + t · q1

f2 = s · p2 + t · q2,

with the pi, qi ∈ k[u, v]n. Then

det

⎡

⎣
f0 p0 q0

f1 p1 q1

f2 p2 q2

⎤

⎦ = 0,

so the 2×2 minors in qi and pi give a syzygy with entries of bidegree (0, 2n), hence
of bidegree (1, 3n) on IW . It is minimal since any syzygy of lower degree would be
of the form (0, d) with d < 2n. This would force W to have basepoints; to see this
note that a syzygy (s0, s1, s2) of bidegree (0, d) must be in the kernel of the map

θ =
[
p0 p1 p2

q0 q1 q2

]
,
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by splitting out the s and t components. But θ gives a map O3
P1(−n) → O2

P1 with
zero cokernel, because the rank of θ drops on the locus of the 2 × 2 minors of θ ;
such a point would be a basepoint ofW . A Chern class computation shows ker(θ) ,
OP1(−3n); in fact it consists of the 2× 2 minors of θ . ��
Proposition 3.2 The syzygy of Lemma 3.1 and the three Koszul syzygies generate a
pair of minimal second syzygies of bidegree (2, 3n). Furthermore, there is a minimal
third syzygy of bidegree (3, 3n).

Proof Let

f0 = s · p0 + t · q0

f1 = s · p1 + t · q1

f2 = s · p2 + t · q2,

with the ai, bi ∈ k[u, v]n, and consider the submatrix A of ∂1 generated by the
syzygy of Lemma 3.1 and the three Koszul syzygies:

⎡

⎣
q1p2 − p1q2 t · q1 + s · p1 t · q2 + s · p2 0
p0q2 − q0p2 −(t · q0 + s · p0) 0 t · q2 + s · p2

q0p1 − p0q1 0 −(t · q0 + s · p0) −(t · q1 + s · p1)

⎤

⎦

The columns of the matrix A′

⎡

⎢⎢⎣

s t 0
q2 −p2 f2

−q1 p1 −f1

q0 −p0 f0

⎤

⎥⎥⎦

are in the kernel of A; the rightmost column is the second Koszul syzygy on IW .
As [t,−s, 1] is in the kernel of A′, we see that there is a third syzygy of bidegree
(3, 3n). Note that by Theorem 3.4 the second Koszul syzygy is not minimal, but can
be represented in terms of the syzygies appearing in Theorem 3.4. ��

The results of Sect. 2.3 show that there are no minimal first syzygies in bidegree
(2, ∗) except for the Koszul syzygies in degree (2, 2n). This can be seen explicitly,
as follows. First, a syzygy with entries of bidegree (1,m) satisfies

(sg0 + th0)f0 + (sg1 + th1)f1 + (sg2 + th2)f2 = 0,

with the fi as in the previous lemma. Note that 〈p0, p1, p2〉 and 〈q0, q1, q2〉 are
both basepoint free on P

1; for otherwise vanishing of {p0, p1, p2, t} would give a
basepoint on P

1 × P
1 and also for for {q0, q1, q2, s}. If (u0 : v0) ∈ P

1 is a point
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where the rank of

[
p0 p1 p2

q0 q1 q2

]

is one, then s = u0, t = v0 is a basepoint of IW . Using that fi = spi + tqi ,
multiplying out and collecting the coefficients of the {s2, st, t2} terms shows that
[g0, g1, g2, h0, h1, h2] is in the kernel of the matrix

M =
⎡

⎣
p0 p1 p2 0 0 0
q0 q1 q2 p0 p1 p2

0 0 0 q0 q1 q2

⎤

⎦ .

The remarks above show that the kernel is free of rank three, with first Chern class
6n. The matrix K below satisfies these properties and clearlyMK = 0:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−p1 0 p2

p0 −p2 0
0 p1 p0

−q1 0 −q2

q0 −q2 0
0 q1 q0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

By the Buchsbaum-Eisenbud criterion, K = ker(M). But K consists of exactly the
Koszul syzygies. From this it follows that the lowest possible nonzero multidegree
in the degree (1, 0) variables for a non-tautological first syzygy is (3,m + n) =
(2,m)+ (1, n), with m ≥ 0. We tackle this next.

3.2 First Syzygies of Degree (3, ∗)

The next theorem gives a complete description of the first syzygies with entries of
degree (2,m), hence which are of total degree (3,m+ n).
Theorem 3.3 For the first Betti numbers,

β1,(3,∗) ∈ {1, . . . , 5}

and all possible values between one and five occur.

Proof Theorems 4.4, 4.7, and 4.8 treat the case where W meets the Segre variety
�1,n in a smooth conic C or 3 noncollinear points Z. In these situations we may
choose a basis soW = Span{g0h0, g1h1, g2h2} with gi degree (1, 0) and hi degree
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(0, n). Theorems 4.7 and 4.8 give explicit resolutions for IW in these cases.

• WhenW ∩�1,n = C there is a single syzygy of bidegree (3, n).
• W ∩�1,n = Z there are two syzygies of bidegrees (3, n+ μ), (3, 2n− μ).
• The remaining cases are covered in Theorem 3.4 below.

��
Theorem 3.4 Suppose {f0, f1, f2} = (sq0 + tq3, sq1 + tq4, sq2 + tq5),with the qi
linearly independent (so n ≥ 5). Then there are exactly five minimal first syzygies
whose entries are quadratic in {s, t}, obtained from the Hilbert-Burch matrix ([13],
Theorem 3.2) N for the ideal Q = 〈q0, . . . , q5〉. If the columns of N have degrees
{b1, . . . , b5}, then the syzygies on IW are of degree {(3, 2n−b1), . . . , (3, 2n−b5)}.
Proof A syzygy with entries of bidegree (2,m) satisifies

(s2a0 + sta1 + t2a2)f0 + (s2b0 + stb1 + t2b2)f1 + (s2c0 + stc1 + t2c2)f2 = 0,

so using that fi = sqi + tqi+3, multiplying out and collecting the coefficients of the
{s3, s2t, st2, t3} terms shows that [a0, b0, c0, a1, b1, c1, a2, b2, c2] is in the kernel
of the matrix

M =

⎡

⎢⎢⎣

q0 q1 q2 0 0 0 0 0 0
q3 q4 q5 q0 q1 q2 0 0 0
0 0 0 q3 q4 q5 q0 q1 q2

0 0 0 0 0 0 q3 q4 q5

⎤

⎥⎥⎦ .

SinceW is basepoint free, it follows that as a sheaf, the cokernel of

O9
P1(−n) M−→ O4

P1

is zero, hence the kernel ofM is a rank five free module with first Chern class 9n. If
N denotes the Hilbert-Burch matrix of Q then N is a 6× 5 matrix whose maximal
minors are Q. Write nijk for the determinant of the submatrix of N obtained by
omitting rows i, j and column k (convention-indexing starts with 0), and consider
the matrix K

⎡

⎢⎢⎢⎢⎢⎣

−n12
0 −n02

0 −n01
0 n15

0 − n24
0 n05

0 − n23
0 n04

0 − n13
0 −n45

0 −n35
0 n34

0
−n12

1 −n02
1 −n01

1 n15
1 − n24

1 n05
1 − n23

1 n04
1 − n13

1 −n45
1 −n35

1 n34
1

−n12
2 −n02

2 −n01
2 n15

2 − n24
2 n05

2 − n23
2 n04

2 − n13
2 −n45

2 −n35
2 n34

2
−n12

3 −n02
3 −n01

3 n15
3 − n24

3 n05
3 − n23

3 n04
3 − n13

3 −n45
3 −n35

3 n34
3

−n12
4 −n02

4 −n01
4 n15

4 − n24
4 n05

4 − n23
4 n04

4 − n13
4 −n45

4 −n35
4 n34

4

⎤

⎥⎥⎥⎥⎥⎦
.

Entries of the ith row of K correspond to combinations of certain 4 × 4 minors of
the submatrix Ni obtained by deleting the ith column of N . A computation shows
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thatM ·Kt = 0 and therefore

0 −→
5⊕

i=1

OP1(−2n+ bi) Kt−→ O9
P1(−n) M−→ O4

P1 −→ 0

is exact, by the Buchsbaum-Eisenbud criterion. ��
Remark 3.5 If the qi are not linearly independent, then the basepoint free assump-
tion means they span a space of dimension 5 or 4, or fall under Theorems 4.7, 4.8.
When dim Span{q0, . . . , q5} ∈ {4, 5}, the matrix N is 5 × 4 or 4 × 3 and the
argument of Theorem 3.4 works with appropriate modifications, which we leave
to the interested reader.

Corollary 3.6 The tautological syzygies constructed in Sect. 3.1 and the syzygies
of Theorem 3.4 are independent.

Proof The syzygies constructed in Theorem 3.4 cannot be in the span of the
tautological syzygies of Sect. 3.1 because their degree in the {u, v} variables is lower
than that of the tautological syzygies. On the other hand, the tautological syzygies
cannot be in the span of the syzygies of Theorem 3.4, as the tautological syzygies
have lower degree in the {s, t} variables. ��

3.3 Computing Betti Numbers, the General Setting

The Koszul homology of the module H1 is computed from the complex M• :=
M•((s, t, u, v),H1):

M• : 0→ H1(−4)
ϕ4−→ H1(−3)4

ϕ3−→ H1(−2)6
ϕ2−→ H 4

1
ϕ1−→ H1 → 0. (3.1)

The bigraded complex M• has the following shape:

0 −→ H1(−2,−2) −→
H1(−2,−1)2

⊕
H1(−1,−2)2

−→

H1(−2, 0)

⊕
H1(−1,−1)4

⊕
H1(0,−2)

−→
H1(0,−1)2

⊕
H1(−1, 0)2

−→ H1 → 0

We denote by H(M)i the i-th homology module.

Theorem 3.7 For any a ∈ Z
2≥0, we have the equality

β1,a = dimK(H(M)1,a)− dimK(H(M)2,a). (3.2)
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Proof First, observe that β1,a �= 0 iff (H1)a is not spanned by the images of
(H1)a−e1 and (H1)a−e2 . Hence β1,a = dimK(H(M)0,a). As dimK(H(M)0,a) is
the alternating sum of dimK(H(M)i,a) for i > 0, it suffices to show that

H(M)3 = 0 = H(M)4.

Let Ki,m = Ki ((s, t, u, v);R) and Ki,f = Ki (f ;R) denote the Koszul complex
of (s, t, u, v) and the Koszul complex of f on R respectively. We consider the two
spectral sequences coming from the double complex Ci,j = Ki,m ⊗R Ki,f .

hE1
i,j = Hi(K•,m)⊗R Ki,f

vE1
i,j = Ki,m ⊗R Hj (K•,f )

Since K•,m is acyclic, Hi(K•,m) = 0 iff i �= 0, and H0(K•,m) = K. Thus,

hE1
i,j =

{
k(

3
j) if i = 0

0 otherwise.

On the vertical spectral sequence, one has:

vE1
i,j =

⎧
⎪⎪⎨

⎪⎪⎩

Ki,m ⊗R H0(K•,f ) if j = 0

Ki,m ⊗R H1(K•,f ) =M. if j = 1

0 otherwise.

Comparing the abutment of both spectral sequences, we have vE2
4,1 = H(M.)4 =

0, vE2
3,1 = H(M.)3 = 0 and vE2

4,0 = H4(K•,m ⊗R H0(K•,f )) = 0. ��
Example 3.8 The homologiesH(M)i , i = 1, 2 in (3.2) might be both nonzero. For
instance, let d = (1, 6). Below we list all nonzero, non-Koszul degree first Betti
numbers for generic f:

β1,(3,10) = 1, β1,(3,11) = 4, β1,(4,10) = 3, β1,(6,9) = 2, β1,(1,18) = 1. (3.3)

The sum of all these numbers equals 11. On the other side, the sum of the
dimensions of all dimK(H(M)1,a) equals 18 and the sum of the dimensions of
all dimK(H(M)2,a) equals 7. Indeed, 11 = 18 − 7. We plot in Fig. 1 below the
bidegrees a with nonzero β1,a in (3.3), together with the curve n(1,6)(a) = 1.
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Fig. 1 The generic case with
d = (1, 6)

1 2 3 4 5 6 7 8

9

12

13

14

15

16

17

18

10

11

The values of n(1,6)(a) are given below, where the column on the left represents
a1 = 0, and the row on the bottom a2 = 0.

| 0 3 0 0 0 0 0 0 0 0 0 |
| 0 2 0 0 0 0 0 0 0 0 0 |
| 0 1 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 1 2 3 4 5 6 7 8 |
| 0 0 0 2 4 6 8 10 12 14 16 |
| 0 0 0 3 6 9 12 15 18 21 24 |
| 0 0 0 4 8 12 16 20 24 28 32 |
| 0 0 0 5 10 15 20 25 30 35 40 |
| 0 0 0 6 12 18 24 30 36 42 48 |
| 0 0 0 1 5 9 13 17 21 25 29 |
| 0 0 0 0 0 0 2 4 6 8 10 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |

The values of the Betti numbers in (3.3) can be deduced from Theorem 3.7 and
Lemma 2.9. A necessary condition is that n(1,6)(a) ≥ 1. For instance, we have that

n(1,6)(3, 10) = 1, n(1,6)(3, 11) = 6, and n(1,6)(4, 10) = 5,

so

β1,(3,11) = n(1,6)(3, 11)− 2n(1,6)(3, 10) = 6− 2 = 4.
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Similarly,

β1,(4,10) = n(1,6)(4, 10)− 2n(1,6)(3, 10) = 5− 2 = 3.

On the other side,

β1,(6,9) = n2,(6,9) = 2, and β1,(1,18) = n2,(1,18) = 1.

For a final example, β1,(5,10) = 0 because

n2,(5,10) = 9 = 3n2,(3,10) + 2(n2,(4,10) − 2n2,(3,10)) = 2n2,(4,10) − n2,(3,10),

and β1,(1,19) = 0 because n(1,6)(1, 19) < 2n(1,6)(1, 18).

Example 3.9 Consider the bidegree d = (1, 42) and f generic. We list all bidegrees
a with nonzero, non-Koszul first Betti number:

(7, 67), (6, 68), (9, 66), (8, 67), (7, 68), (6, 69), (5, 70), (10, 66), (4, 72),

(12, 65), (3, 75), (3, 76), (17, 64), (18, 64), (33, 63), (1, 126).

This is the ordered list of the corresponding Betti numbers: 2, 3, 5, 8, 5, 8, 9, 3, 7, 6,
2, 3, 3, 1, 2, 1. In this example, there are minimal generators of the syzygy module
in degrees a, a − (1, 0) and a − (0, 1), for a = (7, 68). We focus on the bidegrees
(7, 68), (6, 68), (7, 67), marked with solid diamonds in Fig. 2. Note that we also
show a few other bidegrees but we do not display all bidegrees with nonzero, non-
Koszul first Betti number in the list above. All these bidegrees must satisfy that
n(1,42)(a) > 0. We also plot the curve n(1,42)(a) = 1. Again, the values of the Betti
numbers can be deduced from Theorem 3.7 and Lemma 2.9.

Fig. 2 The generic case with
d = (1, 42)
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4 Factorization of Sections of O
P1×P1(1, n) and the Segre

Variety �1,n

Recall the Segre variety �r,s is the image of the regular map

P
r × P

s σr,s−→ P
rs+r+s

given by multiplication

(x0 : . . . : xr), (y0 : . . . : ys) �→ (x0y0 : . . . : x0ys : x1y0 : . . . : xrys).

In general one has the following diagram

P(H0(OP1×P1(1, i)))×P(H0(OP1(n−i)))
ψi

P
(2i+1)(n−i)+i+n+1

π

P(H0(OP1×P1(1, n)))
(4.1)

The composition of the Segre map

P(H 0(OP1×P1(1, 1)))× P(H 0(OP1×P1(0, n− 1))) = P
3 × P

n−1 −→ P
4n−1,

with the projection π onto P(H 0(OP1×P1(1, n))) is given with respect to the basis
{sun, · · · , svn, tun, . . . , tvn} for H 0(OP1×P1(1, n)) by

(a0 : · · · : a3)× (b0 : · · · : bn−1) �→
(a0b0 : a0b1 + a1b0 : a0b2 + a1b1 : . . . a0bn−1 + a1bn−2 : a1bn−1 :
a2b0 : a2b1 + a3b0 : a2b2 + a3b1 : . . . : a2bn−1 + a3bn−2 : a3bn−1)

For example, when n = 2, the image of ψ1 is a quartic hypersurface

Q = V(x2
2x

2
3 − x1x2x3x4 + x0x2x

2
4 + x2

1x3x5 − 2x0x2x3x5 − x0x1x4x5 + x2
0x

2
5).

Definition 4.1 The image of the composite map ψi is �′2i+1,n−i .

Therefore for i = 0 we have �1,n = �′1,n, but for i ≥ 1 the variety �′2i+1,n−i
is a linear projection of �2i+1,n−i , with codim(�′2i+1,n−i ) = n − i. In particular
�′2i+1,n−i is a hypersurface in �′2i+3,n−i−1, and

�1,n = �′1,n ⊆ �′3,n−1 ⊆ �′5,n−2 ⊆ · · · ⊆ �′2n−3,2 ⊆ �′2n−1,1 ⊆ P
2n+1.
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If the basepoint free subspaceW , P
2 is generic, thenW ∩�′2n−1,1 has dimension

1,W ∩�′2n−3,2 is generically finite, andW ∩�′2i+1,n−i is empty for i �= n−1, n−2.

Lemma 4.2 If W is a basepoint free three dimensional subspace of H 0(OP1×P1

(1, n)), thenW is not contained in �1,n.

Proof IfW ⊆ �1,n, then by Theorem 9.22 of [18], the only linear spaces contained
in �n,m are those contained in one of the rulings. So W ⊆ �1,n would mean that
W = {a · l, b · l, c · l} with {a, b, c} belonging to a fiber. But then l is either in
H 0(OP1×P1(1, 0)) or in H 0(OP1(n)) andW is not basepoint free. ��
As n grows, so do the possibilities for the intersection W ∩ �′2i+1,n−i . However,
for some special situations governed by geometry, there are resolutions which are
independent of n, which we now explore.

4.1 Intersection with �1,n

In the case where n = 2, [8] shows that the only way in which W can meet �1,2 in
a curve is if the curve is a smooth conic. This phenomenon persists, but we need a
bit more machinery.

Theorem (Burau-Zeuge [5]) If L is a linear space cutting each n-dimensional
ruling of �1,n in at most a single point, then L ∩�1,n is a rational normal curve.

Lemma 4.3 IfW meets �1,n in a curve, then it must be a smooth conic.

Proof First, supposeW contains a P1 fiber of �1,n, so thatW has basis {l1s, l2s, q}
with li corresponding to points on the P1. Then V(s, q) �= ∅ andW is not basepoint
free. Next, since W is linear, it cannot meet a P

n fiber F of �1,n in more than
two noncollinear points, for then it would be contained in F and hence violate
Lemma 4.2. If W meets F in two points, since W and F are both linear, W ∩ F
is a line L, and if F is the fiber over the point l of L, thenW = {al, bl, c} and since
V(l, c) is nonempty on P

1 × P
1, W would have basepoints. In particular, W can

meet each P
n fiber in at most a point, so by the result of Burau-Zeuge, W ∩�1,n is

a rational normal curve. AsW , P
2, the curve must be a smooth conic. ��

Theorem 4.4 W ∩�1,n is a smooth conic iff IW has a bidegree (3, n) first syzygy.

Proof Suppose IW has a minimal first syzygy of bidegree (3, n),

a(s, t) · f0 + b(s, t) · f1 + c(s, t) · f2 = 0.

If 〈a(s, t), b(s, t), c(s, t)〉 �= 〈s2, st, t2〉, then it must be generated by two bidegree
(2, 0) quadrics {a(s, t), b(s, t)} with no common factor. Changing basis for IW , the
syzygy involves only f0, f1, which implies f0, f1 = −b(s, t)g, a(s, t)g for some
g. This is impossible by degree considerations, so after a change of basis forW , we
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may assume the fi satisfy

s2 · f0 + st · f1 + t2 · f2 = 0

Now we switch perspective, and consider [f0, f1, f2] as a syzygy on [s2, st, t2].
Since the syzygies on the latter space are generated by the columns of

⎡

⎣
t 0
−s −t
0 s

⎤

⎦ ,

we have

f0 = ta0

f1 = sa0 + ta1

f2 = sa1,

with the ai ∈ k[u, v]n. In particular, {a0, a1} are a basepoint free pencil of
H 0(OP1(n)), and we may parameterize as in the proof of Theorem 4.1 of [8] so
thatW ∩�1,n is a smooth conic. On the other hand, ifW ∩�1,n is a smooth conic,
the proof follows as in Theorem 4.1 of [8]. ��
Example 4.5 If W = {sun, tvn, svn + tun}, then since �1,n is given by the 2 × 2
minors of the matrix

[
x0 · · · xn
xn+1 · · · x2n+1

]
,

with xi = sun−ivi for i ∈ {0, . . . , n} and tun−ivi for i ∈ {n + 1, . . . , 2n +
2}, so (dualizing) W = V(x1, . . . , xn−1, xn+2, . . . x2n+1, xn − xn+1) ⊆
P(H 0(OP1×P1(1, n))∨), and using coordinates {x0, xn, x2n+1} for W , W ∩ �1,n =
W ∩ V(x0x2n+1 − x2

n).

Remark 4.6 (Effective Criterion) Notice that given IW , Theorem 4.4 gives an
effective way to understand the geometry of W . Combined with the following
result we obtain a complete description of the minimal free resolution of IW just
by computing wether or not IW has a bidegree (3, n) first syzygy.

4.2 Minimal free Resolutions Determined by the Geometry of
W ∩ �1,n

We now examine situations whereW ∩�1,n has special geometry.
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Theorem 4.7 W ∩�1,n is a smooth conic iff IW has bigraded Betti numbers:

0← IW ← (−1,−n)3 ∂1←−

(−1,−3n)
⊕

(−2,−2n)3

⊕
(−3,−n)

∂2←−
(−2,−3n)2

⊕
(−3,−2n)2

∂3←− (−3,−3n)← 0

Proof In fact, we will show more, exhibiting the differentials in the minimal free
resolution. By Theorem 4.4, we may choose the fi so that

f0 = ta0

f1 = sa0 + ta1

f2 = sa1,

Then the syzygy described by Lemma 3.1 is (a2
1,−a0a1, a

2
0) and we also have the

bidegree (2, 0) syzygy (s2,−st, t2). Consider the ∂i below.

∂1 =
⎡

⎣
a2

1 f1 f2 0 s2

−a0a1 −f0 0 f2 −st
a2

0 0 −f0 −f1 t2

⎤

⎦

∂2 =

⎡

⎢⎢⎢⎢⎢⎣

t s 0 0
−a1 0 0 −s
a0 −a1 −s t
0 a0 t 0
0 0 a1 a0

⎤

⎥⎥⎥⎥⎥⎦

∂3 =

⎡

⎢⎢⎣

s

−t
a0

−a1

⎤

⎥⎥⎦

A check shows ∂i∂i+1 = 0, exactness follows by Buchsbaum-Eisenbud [4]. ��
Example 1.1 is a consequence of Theorem 4.7, because for d = (1, 1), W is
basepoint free iff it meets �1,1 in a smooth conic. When W ∩ �1,n contains three
distinct noncollinear points, the resolution of IW is also completely determined.
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Theorem 4.8 If |W ∩ �1,n| is finite and contains three noncollinear points, then
the bigraded Betti numbers of IW are

0← IW ← (−1,−n)3 ←−

(−1,−3n)

⊕
(−2,−2n)3

⊕
(−3,−n− μ)

⊕
(−3,−2n+ μ)

←−
(−2,−3n)2

⊕
(−3,−2n)3

←− (−3,−3n)← 0

with 0 < μ ≤ �n/2�.
Proof As in the previous theorem, we will describe the differentials in the minimal
free resolution. Since W ∩ �1,n contains three noncollinear points, we may choose
a basis so that W = {l0g0, l1g1, l2g2} with the li of bidegree (1, 0) and the gi of
bidegree (0, n). If the gi are not linearly independent, then changing basis we see
that there are constants a, b, c, d with

W = 〈sg0, tg1, (as + bt) · (cg0 + dg1)〉 = 〈sg0, tg1, acsg0 + bdtg1〉,

so (bdt2, acs2,−st) is a bidegree (2, 0) syzygy on IW and Theorem 4.4 applies.
So we may assume {g0, g1, g2} are linearly independent; suppose the Hilbert-

Burch matrix for {g1, g2, g3} has columns of degree a and n − μ. In this case, in
addition to the three Koszul syzygies and the syzygy of Lemma 3.1, the Hilbert-
Burch syzygies can be lifted: if (b0, b1, b2) is a syzygy of degree a on the gi , then
(l1l2b0, l0l2b1, l0l1b2) is a syzygy of bidegree (3, n + μ) on IW , and similarly for
the syzygy of degree n − μ. Note that g0 = b1c2 − c1b2, g1 = c0b2 − b0c2, g2 =
b0c1− c0b1. A priori, these need not be minimal, but by constructing the remaining
differentials and applying the Buchsbaum-Eisenbud criterion, we will see that they
are. Changing basis, we may assume W has basis = {sg0, tg1, (as + bt)g2}, hence
the syzygy of Lemma 3.1 takes the form (−ag1g2,−bg0g2, g0g1), and

∂1 =
⎡

⎣
−ag1g2 tg1 (as + bt)g2 0 t (as + bt)b0 t (as + bt)c0

−bg0g2 −sg0 0 (as + bt)g2 s(as + bt)b1 s(as + bt)c1

g0g1 0 −sg0 −tg1 stb2 stc2

⎤

⎦
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A check shows that the two matrices below satisfy ∂2∂1 = 0 and ∂3∂2 = 0:

∂2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

t s 0 0 0
ag2 −bg2 as + bt 0 0
0 g1 0 t 0
g0 0 0 0 s

0 0 c2 c1 c0

0 0 −b2 −b1 −b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∂3 =

⎡

⎢⎢⎢⎢⎢⎣

s

−t
−g2

g1

−g0

⎤

⎥⎥⎥⎥⎥⎦

Applying the Buchsbaum-Eisenbud criterion shows the complex is indeed exact.
Since n+ μ ≤ 2n− μ, then it follows that μ ≤ �n/2�. ��
Remark 4.9 If n = 2 then |W ∩ �1,n| is generically finite and generically contains
three noncollinear points. For n ≥ 3 this is not the case, so this closed condition is
very restrictive. Moreover, for n = 2, 3, from Theorem 4.8, one has that μ = 1.

5 Higher Segre Varieties

Since �′2i+1,n−i has codimension n− i, unless i = n− 1 or n− 2, the intersection
W ∩ �′2i+1,n−i is generically empty. Theorems 4.7 and 4.8 illustrate the principle
that when W ∩ �′2i+1,n−i �= ∅ and i ≤ n− 3, special behavior can occur. The next
theorem makes this explicit when |W∩�′2i+1,n−i | is finite and contains at least three
noncollinear points.

Theorem 5.1 SupposeW has basis {g0h0, g1h1, g2h2} with

gj ∈ H 0(O
P1×P1(1, i)) and hj ∈ H 0(O

P1(n− i)), with 0 ≤ i ≤ n− 1, 3 ≤ n. Then

(1) {h0, h1, h2} and {g0, g1, g2} are basepoint free.
(2) A syzygy {a0, a1, a2} on the hi lifts to a syzygy (possibly non-minimal)

{g1g2a0, g0g2a1, g0g1a2}

on IW , and similarly for a syzygy on the gi .
(3) If {h0, h1, h2} is a pencil, then there is a bidegree (3, 2i + n) syzygy on IW .
(4) If {h0, h1, h2} is not a pencil, then it has a Hilbert-Burch matrix with columns

of degrees {n − i − μ,μ} in the {s, t} variables. These give rise to syzygies of
type (2) above of bidegree (3, n+ 2i + μ) and (3, 2n+ i − μ).

Proof For (1), if the gi or hi are not basepoint free, then neither is W , and
for (2), the result is immediate. For (3), if the hi are a pencil, then IW =
〈g0h0, g1h1, g2(ah0 + bh1)〉 for constants a, b, and so (ag1g2, bg0g2,−g0g1) is
the desired syzygy, and (4) follows by applying (2) to the Hilbert-Burch syzygies.

��
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The previous theorem deals with the situation where there is a basis for W
where all three elements factor in the same way. Even if only one or two elements
factor, the minimal free resolutions often behave differently from the generic case.
Computations suggest that all nongeneric behavior in the minimal free resolution
stems from factorization:

Conjecture 5.2 If the bigraded minimal free resolution of IW has nongeneric
bigraded Betti numbers, then for some i ≤ n− 3,W ∩�′2i+1,n−i �= ∅.

5.1 Intersection with �′
3,n−1

We now examine the situation where the elements of W factor into components
of degree (1, 1) and (0, n − 1). The next example shows that the converse to
Conjecture 5.2 need not hold.

Example 5.3 Suppose a, b, c are basepoint free elements of bidegree (1, 1), and
d, e, f are generic elements of bidegree (0, 4), with IW = 〈ad, be, cf 〉. A
computation shows that the Betti numbers of IW are as in the diagram below.

0← IW ← (−1,−5)3 ←−

(−1,−15)

⊕
(−2,−10)3

⊕
(−3,−9)5

⊕
(−4,−8)3

⊕
(−9,−7)

←−

(−2,−15)2

⊕
(−3,−10)6

⊕
(−4,−9)6

⊕
(−9,−8)2

←−

(−3,−15)

⊕
(−4,−10)3

⊕
(−9,−9)

← 0

Lemma 3.1 explains the (1, 15) syzygy, and there are three Koszul syzygies. By
construction, W ∩ �′3,4 consists of three points, and the bigraded Betti numbers
for this example agree with the generic case; Theorem 3.4 explains the five (3, 9)
syzygies, whereas Theorem 5.1 only accounts for two of them.

Theorem 5.4 Suppose W = Span{g0h0, g1h1, g2h2}, with gi of degree (1, 1) and
the hi a pencil of degree (0, n− 1), so that

IW = 〈g0h0, g1h1, g2(ah0 + bh1)〉.
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IfW ∩�1,n is empty andW ∩�′3,n−1 contains three noncollinear points, then there
are minimal first syzygies of degrees

{(−1,−3n), (−2,−2n)3, (−3,−n−2), (−3,−2n+1)2, (−6,−2n+2)}

Proof The syzygies of degree (1, 3n) and (2, 2n) are tautological. The syzygy of
degree (3, n + 2) can be explained by Theorem 5.1 (3), but it is more enlightening
to treat the syzygies of degree (3, ∗) as a group. Write f as in Theorem 3.4:

{sq0 + tq1, sq2 + tq3, sq4 + tq5}.

Using that the hi are a pencil and expanding, we find that

Span{q0, . . . , q5} = Span{uh0, vh0, uh1, vh1}.

Since {h0, h1} are basepoint free, they are a complete intersection, so the Hilbert-
Burch matrix for {uh0, vh0, uh1, vh1} is

⎡

⎢⎢⎣

v 0 p0

−u 0 p1

0 v p2

0 −u p3

⎤

⎥⎥⎦ ,

with the pi of degree n − 2. In particular, the columns have degrees {b1, b2, b3} =
{1, 1, n− 2}, which by Theorem 3.4 yields syzygies in degrees

{(3, 2n− 1), (3, 2n− 1), (3, n+ 2)}

By Corollary 3.6, the seven syzygies constructed so far are independent. We next
prove there exists a unique first syzygy of degree (6, 2n − 2). Let (s0, s1, s2) be a
syzygy on IW , and rewrite it as below

s0g0h0 + s1g1h1 + s2g2(ah0 + bh1) = 0 = (s0g0 + as2g2)h0 + (s1g1 + bs2g2)h1.

(5.1)

So (s0g0 + as2g2, s1g1 + bs2g2) is a syzygy on the complete intersection (h0, h1),
which implies that

S =
[
s0g0 + as2g2

s1g1 + bs2g2

]
,

is in the image of the Koszul syzygy K on {h0, h1}:

K =
[
h1

−h0

]
.
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One possibility is S = 0, which leads to a syzygy of Theorem 5.1 type 3, of bidegree
(3, n + 2), which we have accounted for, so we may suppose S is nonzero. This
means S = p · K for some polynomial p. Since the hi are degree (0, n − 1), the
lowest possible degree for the si in the (0, 1) variables is n − 2. We show that in
degree (a, 2n− 2), there is a unique minimal syzygy of degree (6, 2n− 2) which is
not a multiple of the syzygy of degree (3, n+ 2).

To see this, we write out Eq. (5.1), collecting the coefficients of

{u2n−2, vu2n−1, . . . , v2n−2}.

Each si is of degree n− 2 in the (0, 1) variables, so there are 3(n− 1) columns, and
we obtain a 2n− 1× 3n− 3 matrix

O3n−3
P1 (−1)

ψ−→ O2n−1
P1 .

The coefficients in the (1, 0) variables of the si (written as polynomials in the (0, 1)
variables) correspond to elements of the kernel of this matrix. The nonzero entries
of ψ come from the six linear forms in the (1, 0) variables, obtained by writing the
(1, 1) components gi as

gi = aiu+ biv, with {ai, bi} ∈ K[s, t]1.

Since W is basepoint free and W ∩ �1,n = ∅, the cokernel of ψ is zero, so ker(ψ)
is free of rank n−2, with first Chern class 3−3n. The key is that the unique syzygy
of degree (3, n + 2) generates n − 3 independent syzygies of degree (3, 2n − 2),
which follows from the computation

h0(OP1((2n− 2)− (n+ 2))) = h0(OP1(n− 4)) = n− 3.

Since ker(ψ) has rank n − 2, this means there is a single additional element in the
kernel, which has first Chern class

3(n− 3)− (3n− 3) = −6,

yielding a unique first syzygy of degree (6, 2n− 2). ��
Remark 5.5 If W ∩ �1,n �= ∅, some of the gi will factor. If all three factor, we are
in the situation of Theorem 4.8. If only one or two factor, then the first syzygy of
degree (6, 2n− 2) changes to a syzygy of degree (4, 2n− 2) if |W ∩�1,n| = 2, and
to a syzygy of degree (5, 2n− 2) if |W ∩�1,n| = 1.

Example 5.6 With the hypotheses of Theorem 5.4, computations suggest that the
bigraded Betti numbers are
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0← IW ← (−1,−n)3 ∂1←−

(−1,−3n)

⊕
(−2,−2n)3

⊕
(−3,−n−2)

⊕
(−3,−2n+1)2

⊕
(−6,−2n+2)

∂2←−

(−2,−3n)2

⊕
(−3,−2n)4

⊕
(−6,−2n+1)2

∂3←−
(−3,−3n)

⊕
(−6,−2n)

← 0

Note that the numbers

β2,{∗,−3n} and β3,{∗,−3n}

are explained by Proposition 3.2; one way to prove the diagram above is the correct
Betti table would be to determine explicitly the (6, 2n − 2) syzygy, and then write
down the differentials and apply the Buchsbaum-Eisenbud criterion for exactness.

5.2 Connections to the Hurwitz Discriminant and Sylvester
Map

We consider the case d = (1, n) with n = 5 at the particular bidegree (3, 8). The
aim is to point out the tip of the iceberg of the relation between non generic rank
behavior in the matrix of φ1 from Sect. 2.3 and the different intersections ofW with
the variety of elementary tensors associated to all the decompositions of (1, n) =
(1, i)+ (0, n− i).

We set n = 5. According to Theorem 3.4, when the fi are generic there are
syzygies in degree (3,m) for m ≥ 2 · 5− 0− 1 = 9 (κ = 0 for n = 5). But in this
bidegree, we can read in the table of Sect. 2.3 that the matrix of φ1 has always full
rank in the basepoint free case.

We then move one step to bidegree (3, 8) = (3, 2 · 5− 2) and we try to detect the
existence of nontrivial syzygies there. In this bidegree φ1 : R(0,5) → R3

(1,0), so we
get a 6× 6 matrixM , constructed as follows, according to Example 2.6. Write

f� = s
⎛

⎝
5∑

j=0

p�ju
j v5−j

⎞

⎠+ t
⎛

⎝
5∑

j=0

q�ju
j v5−j

⎞

⎠ , for � = 0, 1, 2.
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Then

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p00 . . . p05

q00 . . . q05

p10 . . . p15

q10 . . . q15

p20 . . . p25

q20 . . . q25

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Let S(3,8) denote the hypersurface V(det(M)). Consider the 9-dimensional variety
�′7,2 ⊂ P

11 of bihomogeneous polynomials factoring as the product of a degree
(1, 3) polynomial and a degree (0, 2) polynomial. We expect dim(�′7,2 ∩W) = 0.
It would be interesting to relate the geometry of S(3,8) to special features of this
intersection (for example, finitely many points but with special properties, or a
curve). Note that W lives in the Grassmanian of planes in P

11 and there is a
polynomial, called the Hurwitz discriminant by Sturmfels [27], which vanishes
whenever the intersection �′7,2 ∩W does not consist of deg(�′7,2) many points.

5.3 Concluding Remarks

We close with a number of questions:

(1) What happens when there are many “low degree” first syzygies? As shown in
[11] and [25], linear first syzygies impose strong constraints.

(2) W is a point of G(2, 2n + 1). How does the Schubert cell structure impact the
free resolution of IW ?

(3) What happens in other bidegrees? For other toric surfaces?
(4) Are there special cases such as in Theorem 4.7, Theorem 4.8, Theorem 5.4

which are of interest to the geometric modeling community?
(5) For computation of toric cohomology, it is sufficient to have a complex with

homology supported in B, rather than an exact sequence. This is studied by
Berkesch-Erman-Smith in [2], and is a very active area of research.

Acknowledgments Most of this paper was written while the third author was visiting Universidad
de Buenos Aires on a Fulbright grant, and he thanks the Fulbright foundation for support and his
hosts for providing a wonderful visit. All computations were done using Macaulay2 [17].
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Castelnuovo–Mumford Regularity
and Powers

Winfried Bruns, Aldo Conca, and Matteo Varbaro

1 Castelnuovo–Mumford Regularity Over General Base
Rings

Castelnuovo–Mumford regularity was introduced in the early eighties of the
twentieth century by Eisenbud and Goto in [12] and by Ooishi [18] as an algebraic
counterpart of the notion of regularity for coherent sheaves on projective spaces
discussed by Mumford in [19].

One of the most important features of Castelnuovo–Mumford regularity is that it
can be equivalently defined in terms of (and hence it bounds) the vanishing of local
cohomology modules, the vanishing of Koszul homology modules and the vanishing
of syzygies.

This triple nature of Castelnuovo–Mumford regularity is usually stated for graded
rings over base fields, but indeed it holds in general as we will show in this section.

Let R =⊕
i∈N Ri be a N-graded ring with R0 commutative and Noetherian. We

assume that R is standard graded, i.e., it is generated as an R0-algebra by finitely
many elements x1, . . . , xn of degree 1. Let S = R0[X1, . . . , Xn] with N-graded
structure induced by the assignment degXi = 1. The R0-algebra map S → R

sendingXi to xi induces an S-module structure on R and hence on every R-module.
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Let M = ⊕
i∈ZMi be a finitely generated graded R-module. Given a ∈ Z we

will denote by M(a) the module that it is obtained from M by shifting the degrees
by a, i.e.M(a)i = Mi+a .

The Castelnuovo–Mumford regularity ofM is defined in terms of local cohomol-
ogy modules HiQR(M) with support on

QR = R+ = (x1, . . . , xn).

For general properties of local cohomology modules we refer the readers to
[2, 6, 13]. In our setting the module HiQR(M) is Z-graded and its homogeneous

component HiQR(M)j of degree j ∈ Z vanishes for large j . The Castelnuovo–
Mumford regularity ofM or, simply, the regularity ofM is defined as

reg(M) = max{i + j : HiQR(M)j �= 0}.

We may as well considerM as an S-module by means of the map S → R and local
cohomology supported on

QS = (X1, . . . , Xn).

Since HiQS (M) = HiQR(M) the resulting regularity is the same.
Here we list some simple properties of regularity that we will freely use.

(1) reg(M(−a)) = reg(M)+ a.
(2) reg(S) = 0 becauseHnQS (S) = (X1 · · ·Xn)−1R0[X−1

1 , . . . , X−1
n ] andHiQS = 0

for all i �= n.
(3) If 0 → N → M → L → 0 is a short exact sequence of finitely generated

graded R-modules with maps of degree 0 then :

reg(N) ≤ max{reg(M), reg(L)+ 1},
reg(M) ≤ max{reg(L), reg(N)},
reg(L) ≤ max{reg(M), reg(N)− 1}.

A minimal set of generators of M is, by definition, a set of generators that is
minimal with respect to inclusion. The number of elements in a minimal set of
generators is not uniquely determined, but the set of the degrees of the elements in
a minimal set of homogeneous generators of M is uniquely determined because it
coincides with the set of i ∈ Z such that [M/QRM]i �= 0. So we have a well defined
notion of largest degree of a minimal generator ofM that we denote by t0(M), that
is,

t0(M) = max{i ∈ Z : [M/QRM]i �= 0}

ifM �= 0. We use t0 becauseM/QRM , TorR0 (M,R0) = TorS0 (M,R0).
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The following result establishes the crucial link between the regularity and the
degree of generators of a module. It appears in [18, Thm.2], where it is attributed to
Mumford, and it appears also in [2, Thm.16.3.1].

Lemma 1.1 t0(M) ≤ reg(M).

Proof Let v = t0(M). Then the R0-module [M/QSM]v is non-zero. Therefore
there is a prime ideal P of R0 such that [M/QSM]v localized at P is non-zero.
In other words, the localization M ′ of M at the multiplicative set R0 \ P is a
graded module over (R0)P [X1, . . . , Xn] with t0(M ′) = t0(M). Since reg(M ′) ≤
reg(M) we may assume right away that R0 is local with maximal ideal, say,
m. Similarly we may also assume that the residue field of R0 is infinite. If
M = H 0

QS
(M), the assertion is obvious. If M �= H 0

QS
(M) then set M ′ =

M/H 0
QS
(M). Clearly t0(H 0

QS
(M)) ≤ reg(M) and reg(M ′) ≤ reg(M). Since

t0(M) ≤ max{t0(M ′), t0(H 0
QS
(M))} it is enough to prove the statement for M ′.

That is to say, we may assume that grade(QS,M) > 0. Because the residue field of
R0 is infinite, there exists L ∈ S1 \mS1 such that L is a non-zero-divisor onM . By
a change of coordinates we may assume that L = Xn. The short exact sequence

0→ M(−1)→ M → M = M/(Xn)M → 0

implies that reg(M) ≤ reg(M) (it is actually equal but we do not need it). As M
is a finitely generated graded module over R0[X1, . . . , Xn−1], we may assume, by
induction on the number of variables, that it is generated in degree ≤ reg(M). But
then it follows easily that alsoM is generated in degree ≤ reg(M). ��

Next we consider the (graded) Koszul homology H(QR,M) = H(QS,M) and
set:

reg1(M) = max{j − i : Hi(QR,M)j �= 0}.

In this case, since H0(QR,M) ∼= M/QRM , the assertion

t0(M) ≤ reg1(M)

is obvious. Now, let

F : · · · → Fc → Fc−1 → · · · → F0 → 0

be a graded S-free resolution ofM , i.e., each Fi is a graded and S-free of finite rank,
the maps have degree 0 and Hi(F ) = 0 for all i with the exception of H0(F) , M .
We say that F is minimal if a basis of F0 maps to a minimal set of homogeneous
generators of M , a basis of F1 maps to a minimal set of homogeneous generators
of the kernel of F0 → M and for i ≥ 2 a basis of Fi maps to a minimal set of
homogeneous generators of the kernel of Fi−1 → Fi−2.
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If R0 is a field then a (finite) minimal S-free resolution always exists and it is
unique up to an isomorphism of complexes. For general R0, it is still true that every
module has a minimal free graded resolution but it is, in general, not finite and
furthermore it is not unique up to an isomorphism of complexes.

Given a minimal graded S-free resolution F ofM we set:

reg2(F) = max{t0(Fi)− i : i = 0, . . . , n− grade(QS,M)}

and

reg3(F) = max{t0(Fi)− i : i ∈ N}.

Obviously we have t0(M) ≤ reg2(F) ≤ reg3(F). We are ready to establish the
following fundamental result:

Theorem 1.2 With the notation above and for every minimal S-free resolution F of
M , we have:

reg(M) = reg1(M) = reg2(F) = reg3(F).

Proof SetQ = QS and g = grade(Q,M) = min{i : HiQ(M) �= 0}.
We first prove that reg(M) ≤ reg1(M). We prove the statement by decreasing

induction on g. Suppose g = n. The induced mapHnQ(F0)→ HnQ(M) is surjective.
Hence we have

reg(M) ≤ reg(F0) = t0(F0) = t0(M) = max{j : H0(Q,M)j �= 0} = reg1(M).

Now assume that g < n and consider

0→ M1 → F0 → M → 0.

We have grade(Q,M1) = g + 1 and

reg(M) ≤ max{reg(F0), reg(M1)− 1}.

By induction reg(M1) ≤ reg1(M1). SinceHi(Q,M1) = Hi+1(Q,M) for i > 0 and

0→ H1(Q,M)→ H0(Q,M1)→ H0(Q, F0)→ H0(Q,M)→ 0

is an exact sequence, we have

reg1(M1) = max{j − i : Hi(Q,M1)j �= 0} = max{a, b}
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with a = max{j : H0(Q,M1)j �= 0} and b = max{j − i : Hi+1(Q,M)j �=
0 and i > 0}. So b ≤ reg1(M) + 1 and, since a ≤ max{t0(F0),max{j :
H1(Q,M)j �= 0}}, we have that a ≤ reg1(M)+ 1 as well. Hence

reg1(M1) ≤ reg1(M)+ 1

and it follows that reg(M) ≤ reg1(M).

Secondly we prove that reg1(M) ≤ reg2(F). Since

Hi(Q,M) = TorSi (M,R0) = Hi(F⊗ R0)

we have that Hi(Q,M) is a subquotient of Fi ⊗ R0 and hence

max{j : Hi(Q,M)j �= 0} ≤ t0(Fi).

Furthermore, Hi(Q,M) = 0 if i > n− g. Therefore reg1(M) ≤ reg2(F).
That reg2(F) ≤ reg3(F) is obvious by definition, so it remains to prove that

reg3(F) ≤ reg(M). SetM0 = M and consider the exact sequence

0→ Mi+1 → Fi → Mi → 0.

By the minimality of F we have t0(Fi) = t0(Mi) ≤ reg(Mi). Hence

reg(Mi+1) ≤ max{t0(Fi), reg(Mi)+ 1} = reg(Mi)+ 1

for all i ≥ 0. It follows that

t0(Fi) = t0(Mi) ≤ reg(Mi) ≤ reg(M)+ i

for every i, that is,

t0(Fi)− i ≤ reg(M),

in other words,

reg3(F) ≤ reg(M). ��
Remark 1.3 Let T → R0 be any surjective homomorpism of unitary rings. It
extends uniquely to S′ = T [X1, . . . , Xn] → S = R0[X1, . . . , Xn]. Therefore
a finitely generated graded R-module M can be regarded as a finitely generated
graded S′-module. Hence the regularity of M can be computed also using a graded
minimal free resolution as S′-module.
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2 Bigraded Castelnuovo–Mumford Regularity

Assume now R = ⊕
(i,j)∈N2 R(i,j) is N

2-graded with R(0,0) commutative
and Noetherian and that R is generated as an R(0,0)-algebra by elements
x1, . . . , xn, y1, . . . , ym with the xi homogeneous of degree (1, 0) and the yj
homogeneous of degree (0, 1)

We will denote by R(∗,0) the subalgebra
⊕
i R(i,0) of R and by Q(1,0) the ideal

of R(∗,0) generated by R(1,0) i.e., by x1, . . . , xn. Similarly R(0,∗) is the subalgebra⊕
j R(0,j) of R andQ(0,1) the ideal of R(0,∗) generated by R(0,1) i.e., by y1, . . . , ym.

We have (at least) three ways of getting an N-graded structure out of the N
2-graded

structure:

(1) (1, 0)-graded structure: the homogeneous component of degree i ∈ N is
given by R(i,∗) = ⊕

j R(i,j). The degree 0 part is R(0,∗) and the ideal of the
homogeneous elements of positive degree isQ(1,0)R = (x1, . . . , xn).

(2) (0, 1)-graded structure: the homogeneous component of degree j ∈ N is
given by R(∗,j) = ⊕

i R(i,j). The degree 0 part is R(∗,0) and the ideal of the
homogeneous elements of positive degree isQ(0,1)R = (y1, . . . , ym).

(3) total degree: the homogeneous component of degree u ∈ N is
⊕
i+j=u R(i,j).

The degree 0 part is R(0,0) and the ideal of the homogeneous elements of
positive degree is (x1, . . . , xn, y1, . . . , ym).

In the same way, any Z
2-graded R-module M = ⊕

M(i,j) can be turned into a Z-
graded module by regrading it with respect to the (1, 0)-grading or with respect to
the (0, 1)-grading or with respect to the total degree.

We may hence consider the Castelnuovo–Mumford regularity ofM with respect
to any of these different graded structures. To distinguish them we will denote by
reg(1,0) M the regularity of M with respect to the (1, 0)-graded structure and by
reg(0,1) M the regularity ofM with respect to the (0, 1)-graded structure.

Given i, j ∈ Z we set M(i,∗) = ⊕
v M(i,v) and M(∗,j) = ⊕

v M(v,j). Clearly
M = ⊕

i M
(i,∗) as a R(0,∗)-graded module and M = ⊕

j M
(∗,j) as an R(∗,0)-

graded module. Also, it is simple to check that, ifM is a finitely generated Z
2-graded

module, then M(i,∗) is a finitely generated R(0,∗)-graded module for all i ∈ Z and
M(∗,j) is a finitely generated R(∗,0)-graded module for all j ∈ Z.

Let S = R(0,0)[X1, . . . , Xn, Y1, . . . , Ym] with the N
2-graded structure induced

by the assignment degXi = (1, 0) and deg Yj = (0, 1). We have:

Proposition 2.1 Let M be a finitely generated Z
2-graded R-module. Let F be a

bigraded S-free minimal resolution of M . Let vi be the largest integer v such that
Fi has a minimal generator in degree (v, ∗) and wi be the largest integer w such
that Fi has a minimal generator in degree (∗, w) Then we have

max{regM(∗,j) : j ∈ Z} = reg(1,0) M = max{vi − i : i = 0, . . . , n},
max{regM(i,∗) : i ∈ Z} = reg(0,1) M = max{wi − i : i = 0, . . . , m},
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where regM(∗,j) is the regularity as an R(∗,0)-graded module and regM(i,∗) is the
regularity as an R(0,∗)-graded module.

Proof Set Q = Q(1,0), i.e. Q is the ideal of R(∗,0) generated by R(1,0). The (1, 0)-
regularity of M is defined by means of the local cohomology H ∗QR(M). We may

regard M as an R(∗,0)-module, so that HcQR(M) = HcQ(M) =
⊕
j H

c
Q(M

(∗,j))
for all c. This explains the first equality. For the second equality, by Theorem 1.2
reg(1,0) M can be computed from any graded minimal free resolution of M as an
R(0,1)[X1, . . . , Xn]-module but we have observed in Remark 1.3 that it can be as
well computed from any minimal free resolution ofM as an S-module. So a minimal
bigraded resolution of M as S-modules serves to compute both the (1, 0) and the
(0, 1) regularity. ��

3 A Non-standard Z
2-Grading

For later applications we will consider in this section a polynomial ring

A = A0[Y1, . . . , Yg]

over a ring A0 with a (non-standard) Z2-graded structure given by

deg Yj = (dj , 1)

where d1, . . . , dg ∈ N.
For every Z

2-graded A-module N =⊕
N(i,v) and for every v ∈ Z we set

ρN(v) = sup{i ∈ Z : N(i,v) �= 0} ∈ Z ∪ {±∞}.

We will study the behaviour of ρN(v) as a function of v. We start with two general
facts.

Lemma 3.1 Given an chain of submodules 0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Np = N
of Z2-graded A modules one has ρN(v) = max{ρNi/Ni−1(v) : i = 1, . . . , p} for
all v.

Proof The function ρN(v) behaves well on short exact sequences with maps of
degree 0. Then the statement follows by induction on p using the short exact
sequences associated to the chain of submodules. ��

Let F be a finitely generated Z
2-graded free A-module with basis e1, . . . , ep and

let < be a monomial order on F . For every Z
2-graded A-submodule U of F we

denote by in<(U) the A0-submodule of F generated by leading monomials (with
coefficients!) of the non-zero elements in U . Since U is an A-submodule of F ,
it turns out that in<(U) is an A-submodule of F as well. Furthermore for every
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monomial aYαei in in<(U) there exists an element u ∈ U such that in<(u) =
aYαei . One has:

Lemma 3.2 ρF/U (v) = ρF/ in<(U)(v) for all v.

Proof It is enough to prove that, given (i, v), one has U(i,v) = F(i,v) if and only if
in<(U(i,v)) = F(i,v) The “only if” implication is obvious. For the “if” implication,
we argue by contradiction. Suppose in<(U(i,v)) = F(i,v) and U(i,v) �= F(i,v). Let
Yαei be the smallest (with respect to the monomial order) monomial of degree
(i, v) which is not in U(i,v). Since Yαei ∈ in<(U(i,v)) there exists u ∈ U such
that in<(u) = Yαei . We may assume that u is homogeneous of degree (i, v). If not,
we simply replace u with the homogeneous component of u of degree (i, v) which
is in U since U is graded. So we have u = Yαei + u1 where u1 is a A0-linear
combination of monomials of degree (i, v) that are < Yαei . Hence, by assumption,
u1 ∈ U(i,v). It follows that Yαei = u− u1 ∈ U(i,v), a contradiction. ��

The fact thatA has no elements of degree (i, 0) ∈ Z
2 with i �= 0 has an important

consequence.

Lemma 3.3 Let N be a Z
2-graded and finitely generated A-module. Then ρN(v)

is eventually either a linear function of v with leading coefficient in {d1, . . . , dg}
or −∞.

Proof First we observe that if n is a generator ofN of degree, say, (α, β) ∈ Z
2, then

Y
α1
1 · · · Y

αg
g n has degree (

∑
j αj dj + α,

∑
j αj + β). Hence N(i,v) is non-zero only

if (i, v) = (∑j αj dj +α,
∑
j αj +β) for some (α1, . . . , αg) ∈ N

g and some (α, β)
degree of a minimal generator ofN . If we setD = max{d1, . . . , dg}, thenN(i,v) �= 0
implies α ≤ i ≤ (v − β)D + α for some degree (α, β) of a minimal generator of
N . As the module N is finitely generated, it follows that {i ∈ Z : N(i,v) �= 0}
is finite for every v ∈ Z. To prove that ρN(v) is either eventually linear in v or
−∞, we present N as F/U where F is a finitely generated A-free bigraded module
and U is a bigraded A-submodule of F . Let < be a monomial order on F . Then
ρF/U (v) = ρF/ in<(U)(v). Hence we may assume right away that U is generated by
monomials (with coefficients). We can consider a bigraded chain of submodules

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Np = N

with cyclic quotients Ci = Ni/Ni−1 annihilated by a monomial prime ideal, i.e., an
ideal of the form pA+ J where p is a prime ideal of A0 and J is an ideal generated
by a subset of the variables Y1, . . . , Yg . It follows that

ρN(v) = max{ρCi (v) : i = 1, . . . , p}.

Since the maximum of finitely many eventually linear functions in one variable is
an eventually linear function, it is enough to prove the statement for each Ci . That
is, we may assume that, up to a shift (−w1,−w2) ∈ Z

2, the module N has the form
A/P with P = pA + J where p is a prime ideal of A0 and J is generated by a
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subset of the variables. With G = {i : Yi �∈ P }, we have

ρN(v) =
{

max{di : i ∈ G}(v − w2)+ w1 if G �= ∅ and v ≥ w2,

−∞ if G = ∅ and v > w2.

��

4 Regularity and Powers

We return to the notation of Sect. 1. For a finitely generated gradedR-moduleM and
a homogeneous ideal I of R we will study the behaviour of reg(I vM) as a function
of v ∈ N. For simplicity we will assume throughout that I vM �= 0 for every v. Let
us consider the Rees algebra Rees(I ) of I :

Rees(I ) =
⊕

v∈N
I v

with its natural bigraded structure given by

Rees(I )(i,v) = (I v)i .

The Rees module of the pair I,M

Rees(I,M) =
⊕

v∈N
I vM

is clearly a finitely generated Rees(I )-module naturally bigraded by

Rees(I,M)(i,v) = (I vM)i.

Let f1, . . . , fg be a set of minimal homogeneous generators of I of degrees, say,
d1, . . . , dg ∈ N. We may present Rees(I ) as a quotient of

B = R[Y1, . . . , Yg]

via the map

ψ : B → Rees(I ), Yi → fi ∈ Idi = Rees(I )(di ,1).

Actually B is naturally bigraded if we assign bidegree (i, 0) to x ∈ Ri as an element
of B and by set deg Yj = (dj , 1).
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Consider the extensionQRB ofQR to B and the Koszul homology

H(QRB,Rees(I,M)) = H(QR,Rees(I,M)) =
⊕

v∈N
H(QR, I

vM).

Since QRH(QR,Rees(I,M)) = 0 the module H(QR,Rees(I,M)) acquires
naturally the structure of finitely generated Z

2-graded B/QRB-module. Here

B/QRB = R0[Y1, . . . , Yg]

has a bigraded structure defined in Sect. 3. Now for i = 0, . . . , n we let

ti (M) = sup{j : Hi(QR,M)j �= 0}.

We have:

Theorem 4.1 Let I be a homogeneous ideal of R minimally generated by homo-
geneous elements of degree d1, . . . , dg and M be a finitely generated graded
R-module. Then there exist δ ∈ {d1, . . . , dg} and c ∈ Z such that

reg(I vM) = δv + c for v � 0.

Proof For i = 0, . . . , n consider the i-th Koszul homology module:

Hi = Hi(QR,Rees(I,M)) =
⊕

v∈N
Hi(QR, I

vM).

As already observed Hi is a finitely generated Z
2-graded B/QRB-module. Fur-

thermore ρHi (v) = ti (I vM). Therefore we may apply Lemma 3.3 and have that
either Hi(QR, IvM) = 0 for large v or ti (I vM) is a linear function of v for large
v with leading coefficient in {d1, . . . , dg}. As reg(I vM) = max{ti (I vM) − i : i =
0, . . . , n} we may conclude that reg(I vM) is eventually a linear function in v with
leading coefficient in {d1, . . . , dg}. ��

Theorem 4.1 has been proved in [11] and [17] when R is a polynomial ring
over a field and in [21] for general base rings. Our proof is a modification (and a
slight simplification) of the one given in [11]. Here and also in Sect. 2 our work was
largely inspired by the papers of Chardin on the subject, in particular by [7–10]. The
δ appearing in Theorem 4.1 can be characterized in terms of minimal reductions, see
[17, 21] for details. The nature of the others invariants arising from Theorem 4.1,
i.e., the constant term c and the least v0 such that the formula holds for each v ≥ v0,
have been deeply investigated in [1, 8, 10, 14, 15] and are relatively well understood
in small dimension but remain largely unknown in general.
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5 Linear Powers

Assume now that the minimal generators of I have all degree d and that the minimal
generators ofM have all degree d0. Hence I vM is generated by elements of degree
vd + d0 and therefore reg(I vM) ≥ vd + d0 for every v.

Definition 5.1 We say that I has linear powers with respect to M if reg(I vM) =
vd + d0 for every v.

When R0 is a field, I has linear powers with respect toM if and only if for every
v the matrices representing the maps in the minimal S-free resolution of I vM have
entries of degree 1.

We will give a characterization of linear powers in terms of the homological
properties of the Rees module Rees(I,M). Note that, under the current assumptions,
Rees(I ) and Rees(I,M) can be given a compatible and “normalized” Z

2-graded
structure:

Rees(I )(i,v) = (I v)vd+i ,
Rees(I,M)(i,v) = (I vM)vd+d0+i .

From the presentation point of view, this amounts to set deg Yi = (0, 1) so
that B = R[Y1, . . . , Yg] is a Z

2-graded R0-algebra with generators in degree
(1, 0), the elements of R1, and in degree (0, 1), the Yi’s. With the notations
introduced in Sect. 2, we have that Rees(I,M)(∗,v) = (I vM)(vd+d0). So, applying
Proposition 2.1:

reg(1,0) Rees(I,M) = max{reg Rees(I,M)(∗,v) : v ∈ N} = max{reg I vM−vd−d0 : v ∈ N}.

Summing up we have:

Theorem 5.2

(1) reg I vM ≤ vd + d0+ reg(1,0) Rees(I,M) for all v and the equality holds for at
least one v.

(2) I has linear powers with respect toM if and only if reg(1,0) Rees(I,M) = 0.

When R is the polynomial ring over a field andM = R Theorem 5.2 part (2) has
been proved in [5] extending earlier results of Römer [20].

Theorems 5.2 and 4.1 have been generalized to the case where the single
ideal I is replaced with a set of ideals I1, . . . , Ip and one looks at the regularity
reg(I v1

1 · · · I
vp
p M) as a function of (v1, . . . , vp) ∈ N

p. The main difference is
that reg(I v1

1 · · · I
vp
p M) is (only) a piecewise linear function unless each ideal Ii is

generated in a single degree, see [3, 4, 16] for details.
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The Eisenbud-Green-Harris Conjecture

Giulio Caviglia, Alessandro De Stefani, and Enrico Sbarra

1 An Introduction to the Conjecture

A very important problem in Commutative Algebra is the study of the growth of
the Hilbert function of an ideal in a given degree if one knows more than one step
of [its] history, cit. Mark Green [28]. A classical theorem, due to Macaulay [36],
answers this question by providing an estimate on the Hilbert function in a given
degree just by knowing its value in the previous one. This result is very useful, but
it is far from being optimal. For instance, there is no way of taking into account
any additional information about the ideal. The Eisenbud-Green-Harris, henceforth
EGH, Conjecture was first raised in [17, 18], and precisely addresses this matter. By
effectively using the additional data that the given ideal contains a regular sequence,
it predicts for instance more accurate growth bounds.

We will now introduce some notation and terminology in order to state the
EGH Conjecture. Throughout this article, A = ⊕

d�0Ad will denote a standard
graded polynomial ring K[x1, . . . , xn] over a field K , and m = (x1, . . . , xn) its
homogeneous maximal ideal. We consider A equipped with the lexicographic order
� induced by x1 > x2 > . . . > xn. Given polynomials g1, . . . , gs ∈ A, we will
denote by 〈g1, . . . , gs〉 theK-vector space generated by such elements to distinguish
it from the ideal that they generate, which we denote by (g1, . . . , gs). We denote the
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Hilbert function of a graded module M and its value in d by H(M) and H(M; d),
respectively. On the set of Hilbert functions we consider the partial order given by
point-wise inequality. Recall that a K-vector space V ⊆ Ad is called lex-segment if
there exists a monomial v ∈ V such that V = 〈u ∈ Ad | u monomial, u ≥ v〉.

The classical Macaulay Theorem states that, given any homogeneous ideal I , if
one lets Ld ⊆ Ad be the lex-segment of dimension equal toH(I ; d), then Lex(I ) =⊕
d�0 Ld is an ideal, that we call lex-ideal. In order to take into account that I

contains a regular sequence, we will introduce the so-called lex-plus-powers ideals.
Given an integer 0 < r � n, we let a = (a1, . . . , ar ) denote an ordered sequence

of integers 0 < a1 � . . . � ar , and we call it a degree sequence. We call the ideal
a = (xa1

1 , . . . , x
ar
r ) ⊆ A the pure-powers ideal of degree a. With any homogeneous

ideal I ⊆ A which contains an ideal f generated by a regular sequence f1, . . . , fr ,
of degree a = (a1, . . . , ar ), we associate the K-vector space

LPPa(I ) =
⊕

d�0

〈Ld + ad〉,

where Ld ⊆ Ad is the largest, hence unique, lex-segment which satisfiesH(I ; d) =
dimK 〈Ld + ad〉. As Macaulay Theorem proves that Lex(I ) is an ideal, the EGH
Conjecture predicts that LPPa(I ) is an ideal, which we call the lex-plus-powers
ideal associated with I with respect to the degree sequence a.

Conjecture 1.1 (EGH) Let I ⊆ A be a homogeneous ideal that contains a
homogeneous ideal f generated by regular sequence of degree a. Then LPPa(I )
is an ideal.

Observe that the EGH Conjecture is a generalization of Macaulay Theorem,
which corresponds to the case f = (f1) with respect to any 0 �= f1 ∈ I of degree
a1. Just like lexicographic ideals, lex-plus-powers ideals enjoy several properties of
extremality. For example, assuming that the EGH Conjecture is true in general, then
one can show that the growth of LPPa(I ) in each degree is smaller than that of I .
That is, H(mLPPa(I )) � H(mI ), see Lemma 2.14. This immediately translates
into an inequality β0j (LPPa(I )) � β0j (I ) between minimal number of generators
in each degree j . We point out that the more refined version of such inequality, i.e.,

βij (LPPa(I )) � βij (I ) for all i, j,

is currently unknown in general, and goes under the name of LPP-Conjecture, see
for instance [11, 19, 20, 37, 41, 44].

In the following, it will be useful to have several formulations of the EGH
Conjecture, which we will use interchangeably at our convenience.

An equivalent way of approaching the conjecture is degree by degree: given
a sequence a, for a non-negative integer d we say that a homogeneous ideal
I ⊆ A = K[x1, . . . , xn] satisfies EGHa(d) if there exists an a-lpp ideal J such
that dimK(Jd) = dimK(Id) and dimK(Jd+1) � dimK(Id+1). We say that I satisfies
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EGHa if it satisfies EGHa(d) for all non-negative integers d. One can readily
verify that Conjecture 1.1 holds true if and only if, for every degree sequence a,
every homogeneous ideal containing a regular sequence of degree a satisfies EGHa ,
see [9].

We conclude this introductory section by recalling a weaker version of the EGH
Conjecture, raised in [18]. Let a = (a1, . . . , an) be a degree sequence, and D be
an integer such that a1 � D �

∑n
i=1(ai − 1). Let b the unique integer such that∑b

i=1(ai − 1) � D <
∑b+1
i=1 (ai − 1), and set δ =∑b+1

i=1 (ai − 1)−D + 1 if b < n,
and δ = 1 otherwise.

Conjecture 1.2 (Cayley-Bacharach) Let f ⊆ A = K[x1, . . . , xn] be an ideal
generated by a regular sequence of degree a = (a1, . . . , an), and g /∈ f be a
homogeneous element of degree D � a1. Let I = f+ (g), and e be the multiplicity
of A/I . Then

e �
n∏

i=1

ai − δ
n∏

i=b+1

ai.

Conjecture 1.2 has been studied by several researchers, from very different points
of view; for instance, see [5, 24, 25, 31]. The validity of the EGH Conjecture in the
case r = n for almost complete intersections would imply Conjecture 1.2. For an
explicit instance of this, see Example 5.6.

This survey paper is structured as follows: in Sect. 2 we treat the case when the
given ideal already contains a pure-powers ideal, presenting a new proof of the
Clements-Lindström Theorem. Section 3 is very brief, and collects some statements
from the theory of linkage, together with a result which yields a reduction to
the Artinian case. In Sect. 4 we present proofs of several cases of the conjecture,
previously known in the literature. Finally, in Sect. 5 we collect some applications
of the techniques and the results illustrated before, together with several examples.

2 Monomial Regular Sequences and the
Clements–Lindström Theorem

The goal of this section is to prove the Clements-Lindström Theorem [14], a more
general version of the Kruskal-Katona Theorem [33, 34]. The proof presented here
relies on recovering a strong hyperplane restriction theorem for strongly-stable-plus-
powers and lpp ideals due to Gasharov [21, 22], see also [10, Theorem 2.2]. Our
strategy uses the techniques of [7], and is different from the standard one available
in the literature [14, 39, 40].

Recall that a monomial ideal J ⊆ A = K[x1, . . . , xn] is called strongly stable
if for every monomial u ∈ J and any variable xi which divides u, one has that
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x−1
i xju ∈ J for all 1 � j � i. The ideal J is said to be a-strongly-stable-plus-

powers, a-spp or, simply, spp for short, if there exist a strongly stable ideal S and a
pure power ideal a of degree a such that J = S + a. Clearly, a-lpp ideals are a-spp.

Theorem 2.1 Let I ⊆ A be a homogeneous ideal that contains a pure-powers ideal
a of degree a. Then

(i) LPPa(I ) is an ideal.
(ii) If I is a-spp, then H(I + (xin)) � H(LPPa(I )+ (xin)) for all i > 0.

We first prove Theorem 2.1 (i) for n = r = 2. Since strongly stable ideals in two
variables are lex-ideals, a-spp ideals are automatically a-lpp in this case.

We start by recalling a few properties of monomial ideals, which are special cases
of more general results derived from linkage theory, that we will discuss in Sect. 3.

Let I be a monomial ideal that contains a = (xa1
1 , xa2

2 ). When we view I as a
K[x1]-module, we have a decomposition

I =
⊕

i�0

x
di
1 K[x1] · xi2; (2.1)

observe that, since I is an ideal, one has di � di+1 for all i. Also observe
that I is spp if and only if di+1 + 1 � di for all i. Define the link I � = I �a
of I with respect to the ideal a to be the ideal I � = (a :A I). Notice that

I � = (xa1−d0
1 , x

a2
2 )∩ (xa1−d1

1 , x
a2−1
2 )∩· · ·∩ (xa1−da2−1

1 , x2) is an ideal generated by

the monomials xa1−di
1 x

a2−1−i
2 , i = 0, . . . , a2 − 1, and that as a K[x1]-module can

be written as

I � =
⎛

⎝
a2−1⊕

i=0

x
a1−da2−1−i
1 K[x1] · xi2

⎞

⎠⊕
⎛

⎝
⊕

i�a2

K[x1] · xi2
⎞

⎠ . (2.2)

Remark 2.2 (1) It is immediate from (2.2) that (I �)� = I .
(2) The Hilbert function of I � is determined by that of I . More precisely, if we let

R = A/a and s = a1+a2−2, thenH(R; d) = H(R/IR; d)+H(R/I�R; s−
d).

(3) The link of an a-lpp ideal is again an a-lpp ideal. Thus, we may as well prove
that I � is a-spp if I is a-spp. To this end, consider the decomposition of I as in
(2.1). Given any monomial xb1

1 x
b2
2 ∈ I � with 1 � b2 < a2, one just needs to

show that xb1+1
1 x

b2−1
2 ∈ I �. By (2.2), it is enough to verify that a1 − di + 1 �

a1 − di+1 for all i, which is equivalent to di+1 + 1 � di for all i. Finally, this is
true for all i, because I is spp by assumption.

We are now ready to prove the case n = 2 of Theorem 2.1 (i).

Proposition 2.3 Let a = (a1, a2), and I ⊆ A = K[x1, x2] be a homogeneous ideal
that contains a = (xa1

1 , x
a2
2 ). Then LPPa(I ) is an ideal.
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After taking any initial ideal, without loss of generality we may assume that I is
monomial. In fact, this operation preserves its Hilbert function, and the initial ideal
still contains a. Next, we give three different proofs of the above proposition.

In the first one, we make use of linkage.

Proof 1 We need to show that the K-vector space LPPa(I ) = ⊕
j�0〈Lj + aj 〉 is

indeed an ideal, and we do so by proving that LPPa(I ) agrees with an ideal J for
all degrees i � a2 − 1 and it agrees with an ideal J ′ for all degrees i � a2 − 1.
By Macaulay Theorem, there is a lex-ideal L with the same Hilbert function as I .
Consider the a-lpp ideal J = L+ a. By construction, for all j = 1, . . . , a2 − 1 one
has H(J ; j) = H(L; j) = H(I ; j).

Now we construct the ideal J ′ as follows. First consider the link I � = (a :A I).
Since I � ⊇ a, again by Macaulay Theorem there exists a lexicographic ideal L′ with
the same Hilbert function as I �. Thus, the a-lpp ideal L′ + a has the same Hilbert
function as I � in degrees j = 0, . . . , a1−1. We now let J ′ = (L′ +a)�. By Remark
2.2 (2), J ′ is an lpp ideal and, by Remark 2.2 (3) its Hilbert function in degrees
j � a2− 1 coincides with that of I . Therefore J ′ has the desired properties, and the
proof is complete. ��

In the second proof we use techniques borrowed from [37, Section 3], see also
[7, Section 4].

Proof 2 The Hilbert function of a monomial ideal is independent of the base field,
thus without loss of generality we may assume that K = C. It suffices to construct
an a-spp ideal with the same Hilbert function as I . Let ξ1, . . . , ξa2 the a2-roots of
unity over C, and observe that xa2

2 −xa2
1 = (x2−ξ1x1)(x2−ξ2x1) · · · (x2−ξa2x1) ∈

I . We consider the distraction D given by a family of linear forms {li}i�1 defined as
li = x2 − ξix1, for i = 1, . . . , a2, and li = x2 for all i > a2; see [3] for the theory
of distractions. Given a decomposition of I (0) = I = ⊕

i�0 I[i]xi2, we let J (0) be
the distracted ideal

J (0) = J =
⊕

i�0

I[i]
i∏

j=1

lj =
a2⊕

i=0

I[i]
i∏

j=1

lj ⊕
⊕

i�a2

K[x1] · xi2,

which shares with I the same Hilbert function, and the same Betti numbers as well.
Observe that the last equality is due to the fact that both xa2

1 and xa2
2 − xa2

1 are in
J , and therefore xa2

2 ∈ J . We let I (1) be in>(J (0)), where > is any monomial order
such that x1 > x2, and J (1) be the ideal obtained by distracting I (1) with D. We
construct in this way a sequence I (0), I (1),. . . ,I (h) of ideals with the same Hilbert
function, each of which contains a; we finally want to show that this sequence
eventually stabilizes at an ideal, we call it L, which is a-spp. To this end, observe
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that for all integers p � 0 we have

H
(
I
(h)
[0] ⊕ I (h)[1] x2 ⊕ · · · ⊕ I (h)[p] xp2

)
= H

⎛

⎝in>(I
(h)
[0] ⊕ I (h)[1] l1 ⊕ · · · ⊕ I (h)[p]

p∏

j=1

lj )

⎞

⎠

� H
(
I
(h+1)
[0] ⊕ I (h+1)

[1] x2 ⊕ · · · ⊕ I (h+1)
[p] x

p

2

)
.

(2.3)

In the above, we consider three modules whose Hilbert functions are computed as
homogenousK[x1]-submodules of the gradedK[x1]-moduleA = K[x1, x2], where
xd2 has degree d. Notice that the inequality in (2.3) is due to the inclusion of the

second module in the third one. Observe that I (0)[0] ⊆ I (1)[0] ⊆ . . . is an ascending

chain of ideals that will eventually stabilize, say at I (h0)[0] . Inductively, assume that

for all i = 0, . . . , p − 1 the ideals in I (hi−1)

[i] ⊆ I (hi−1+1)
[i] ⊆ . . . form a chain that

stabilizes, say at hi . The inclusion of the second into the third module of (2.3), for
any h > max{h0, . . . , hp−1}, yields that I (h)[p] ⊆ I (h+1)

[p] . Thus, for h � hp−1 we
have again a chain of ideals which will stabilize, say at hp. Repeat this process for
all p � a2− 1, so that for all h � h′ = max{h1, . . . , ha2−1} we have I (h) = I (h+1).
Let L = I (h′). Keeping in mind how L has been constructed, apply (2.3) to L to
obtain, for all p � 0

L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p]xp2 = in>

⎛

⎝L[0] ⊕ L[1]l1 ⊕ · · · ⊕ L[p]
p∏

j=1

lj

⎞

⎠

= L[0] ⊕ L[1]l1 ⊕ · · · ⊕ L[p]
p∏

j=1

lj ,

(2.4)

where the second equality can be verified by induction on p, using the first equality
and the fact that the least monomial with respect to > in the support of

∏p

j=1 lj is

x
p

2 .
Next, we prove that L is a-spp. By construction L ⊇ a, since each I (i) and J (i)

does; thus, we have to show that x1L[p] ⊆ L[p−1] that for all 0 < p � a2 − 1.
Again by induction on p, by (2.4) we have L[0] ⊕ L[1]x2 = L[0] ⊕ L[1](x2 − x1),
which implies x1L[1] ⊆ L[0]. Moreover, by induction and again by (2.4), L[0] ⊕
L[1]x2 ⊕ · · · ⊕ L[p]xp2 = L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p−1]xp−1

2 ⊕ L[p]∏p

j=1 lj . Since

lj = x2 − ξj x1 with j = 1, . . . , p, we have that
∏p

j=1 lj has a full support, i.e., its

support contains all of the monomials of degree p. In particular it contains x1x
p−1
2 .

It follows that x1L[p] ⊆ L[p−1], as desired. ��
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The third proof relies on an application of Gotzmann Persistence Theorem
[26, 27].

Proof 3 Let LPPa(I ) = L + a, where each Ld is the largest lex-segment such
that dimK(Ld + ad) = H(I ; d). In order to show that LPPa(I ) is an ideal we
have to show that, for every integer d � 0, we have H(A/(mL + a); d + 1) �
H(A/LPPa(I ); d + 1). For this, without loss of generality we can assume that
(LPPa(I ))j = aj for all j < d. Let k = dimK L̃d , where L̃d is the image in A/a
of the K-vector space Ld + ad . If k = 0 there is nothing to prove. Let us assume
k > 0, and study the following three cases separately: d < a2 − 1, d = a2 − 1,
and d � a2. If d < a2 − 1, then (LPPa(I ))d = Ld , (LPPa(I ))d+1 = Ld+1, and the
conclusion follows from Macaulay Theorem.

Now assume d = a2 − 1. If Ld+1 = Ad+1, then there is nothing to
show, so assume that Ld+1 � Ad+1. If xd+1

2 is a minimal generator of I , then
H(A/(mLd); d+1) � H(A/mI ; d+1) � H(A/I ; d+1)+1. SinceH(A/I ; d+
1) = H(A/L; d + 1)− 1, it follows that H(A/mL; d + 1) � H(A/L; d + 1), and
therefore m1Ld ⊆ Ld+1. A fortiori, we have that m1(LPPa(I ))d ⊆ (LPPa(I ))d+1,
and the proof of this case is complete. If xd+1

2 is not a minimal generator of I , then
dim(A/J ) = 0, where J = I�d . In particular, H(A/I ; j) � H(A/(xd1 , xd2 ); d) =
d. By Macaulay Theorem we have that H(A/I ; d + 1) � d. If equality holds, then
I has no minimal generators in degree d + 1, and thus H(A/J ; d + 1) = d as well.
By Gotzmann Persistence Theorem applied to J , we have that H(A/H ; j) = d for
all j � d, which contradicts the fact that dim(A/J ) = 0.

Finally, if d � a2, we first observe that once again k = H(A/I ; d) � d,
and that H(A/(mLd) + a; d + 1) = k − 1. Since k = H(A/I ; d), to conclude
the proof it suffices to show that k > H(A/I ; d + 1), since the latter is equal to
H(A/LPPa(I ); d + 1). It follows from Macaulay Theorem H(A/I ; d + 1) � k =
H(A/I ; d), since we have already observed that k � d. If equality holds, then by
Gotzmann Persistence Theorem applied to the ideal J = I�d we would have that
H(A/J ; j) = H(A/J ; d) = k > 0 for all j � d. In particular, this would imply
that dim(A/J ) > 0, in contrast with the fact that J contains (xa1

1 , x
a2
2 ), and hence it

is Artinian. ��
Remark 2.4

(1) Observe that Proof 1 can be adapted to any regular sequence of degree a =
(a1, a2) using properties of linkage analogous to those of Remark 2.2, see
Theorem 4.1.

(2) It is easy to see that, in Proof 2, we can also keep track of Betti numbers and
prove, in characteristic zero, that they cannot decrease when passing to the lex-
plus-powers ideal.

(3) In Proof 3 we do not actually use the fact that the regular sequence is monomial.
In fact, the same argument can be used to prove that any ideal which contains a
regular sequence of degree a = (a1, a2) satisfies EGHa .

We now move our attention from the case n = 2 to the general one.
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Proposition 2.5 Under the same assumptions of Theorem 2.1, there exists an a-spp
ideal with the same Hilbert function as that of I .

Proof We define a total order on the set S of monomial ideals with the same Hilbert
function as I , and which contain the pure-powers ideal a = (xa1

1 , . . . , x
ar
r ). First,

given any J ∈ S , we order the set of its monomials {mi} from lower to higher
degrees, and monomials of the same degree lexicographically. Now, given a second
ideal J ′ ∈ S and the set of its monomials {m′i}, we set J > J ′ if and only if
there exists i such that mj = m′j for all j � i and mi+1 > m′i+1. Observe that,
since J and J ′ have the same Hilbert function, we are forced to have degmj =
degm′j for all j . Let P be the maximal element of S; we claim that P is a-spp.
Assume by contradiction that there exists a monomial m ∈ P � a such that xi
divides m and x−1

i xjm /∈ P for some j < i. Write P = ⊕
q Pq · q, where each

q ∈ K[x1, . . . , x̂j , . . . , x̂i , . . . , xn] is a monomial, and Pq ⊆ K[xj , xi] is an ideal.
Notice that each Pq contains (x

aj
j , x

ai
i )K[xj , xi] since P ∈ S , and that Pq ⊆ Pq ′

whenever q divides q ′ since P is an ideal. By Proposition 2.3, for every q there
exists an (aj , ai)-spp idealQq ⊆ K[xj , xi] with the same Hilbert function as Pq .

Let now Q =⊕
q Qq · q, and observe that Q ∈ S . In fact, Q is clearly spanned

by monomials, and it contains a. Moreover, if q divides q ′ one gets H(Qq) =
H(Pq) � H(Pq ′) = H(Qq ′). Since Qq and Qq ′ are both (aj , ai)-spp, it follows
thatQq ⊆ Qq ′ , which in turn thatQ is an ideal. Since P is not a-spp, by our choice
of the indices i and j there exists q such that Pq is not (aj , ai)-spp. In particular, it
follows thatQ > P , which contradicts maximality of P . ��
Remark 2.6 As in the case of two variables, see Remark 2.4 (2), in the proof of
Proposition 2.5 one can keep track of how the Betti numbers change in order to
prove that, in characteristic zero, the Betti numbers of the a-spp ideal we obtain
cannot decrease. This fact is helpful in order to prove the LPP-Conjecture for ideals
that contain pure-powers.

We point out that, in all pre-existing proofs of Clements-Lindström Theorem 2.1
[14, 39, 40], one finds a preliminary reduction step that goes under the name of
compression. This step consists of assuming that Clements-Lindström Theorem
holds in n − 1 variables in order to construct an a-spp ideal J ⊆ A in n variables
that, for any i = 1, . . . , n, has a decomposition J = ⊕

j�0 J[j ]x
j
i , where J[j ] is

(a1, . . . , âi , . . . , ar )-lpp for all j . In our proof, this step corresponds to the reduction
provided by Proposition 2.5. Observe that the above ideal J is not necessarily a-lpp
globally in n variables, as the following example shows.

Example 2.7 Let n � 4 and consider the (2, 2)-spp ideal I = (x2
1 , x1x2, . . . ,

x1xn−1, x
2
2 , x2x3) in A = K[x1, . . . , xn]; then I is compressed, but not (2, 2)-lpp,

since the monomial x1xn is missing from its generators.

We introduce some notation and terminology, which will be used henceforth in
this section.
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Let A = K[x1, . . . , xn], m = (x1, . . . , xn), a = (a1, . . . , ar ) be a degree
sequence, and a = (x

a1
1 , . . . , x

ar
r ) be the corresponding pure-powers ideal. Fur-

thermore, let A = K[x1, . . . , xn−1], and m = (x1, . . . , xn−1)A. If r < n, we let
a = a and a = (xa1

1 , . . . , x
ar
r )A. Otherwise, if r = n, we let a = (a1, . . . , an−1)

and a = (xa1
1 , . . . , x

an−1
n−1 )A.

Given a K-vector space V ⊆ Ad generated by monomials, we say that V is a-
lpp if it is the truncation in degree d of an a-lpp ideal. Similarly, we say that V is
a-spp if it is the truncation in degree d of an a-spp ideal. Observe that a K-vector
subspace V = ⊕d

i=0 V[d−i]xin ⊆ Ad containing ad is a-spp if and only if V[i] is
a-spp for all i, and m1V[i] ⊆ V[i+1] for all i � max{d − an + 1, 0}; we will refer
to the latter property as stability. Moreover, if V ⊆ Ad is a-lpp, respectively a-spp,
then m1V + ad+1 is also a-lpp, respectively a-spp. Finally, if V,W ⊆ Ad are a-lpp
and dimK(V ) � dimK(W), then V ⊆ W .

Let L ⊆ Ad be a lex-segment and V = L + ad . If V �= Ad , there exists the
largest monomial u ∈ Ad � V with respect to the lexicographic order. In this case,
we let V + = V + 〈u〉; otherwise, we let V + = V = Ad . Either way, V + can be
written as L′ + ad , where L′ is a lex-segment, and therefore it is a-lpp.

If V �= ad we may write V = W ⊕ ad , with W �= 0 a vector space
minimally generated by monomials m1 � m2 � . . . � mt . In this case, we let
V − = 〈m1, . . . , mt−1〉 + ad ; otherwise, we set V − = V = ad .

The notion of segment we recall next is extracted from [7], and it will be crucial
in the proof of Theorem 2.1.

Definition 2.8 Let V ⊆ Ad be a K-vector space, written as V = ⊕d
i=0 V[d−i]xin.

Then, V is called an a-segment, or simply a segment, if it is a-spp and, for all i,

1. V[i] ⊆ Ai is a-lpp, and
2. V[i+j ] ⊆ mj (V[i])+ + ai+j for all 1 � j � d − i.

Note that, if V ⊆ Ad is a-lpp, then it is an a-segment.

Remark 2.9 If V ⊆ Ad is a segment, it immediately follows from the definition that
m1V + ad+1 ⊆ Ad+1 is also an a-segment.

Lemma 2.10 Let V and W be two a-segments in Ad . Then either V ⊆ W , or
W ⊆ V .

Proof Write V = ⊕d
i=0 V[d−i]xin and W = ⊕d

i=0W[d−i]xin. If the conclusion is
false, since V and W are segments we can find i �= j such that V[i] � W[i] and
V[j ] � W[j ]; say j < i. Since V[j ] is lpp, V[j ] ⊇ (W[j ])+, and therefore V[i] =
V[i] + ai ⊇ mi−jV[j ] + ai ⊇ mi−j (W[j ])+ + ai ⊇ W[i], which is a contradiction.

��
Definition 2.11 Let V ⊆ Ad be a K-vector space, written as V =⊕d

i=0 V[d−i]xin.
We define the dimension sequence δ(V ) = (dimK(V[d]), dimK(V[d] ⊕
V[d−1]), . . . , dimK(V )) ∈ N

d+1. On the set of all such sequences, we consider
the partial order given by point-wise inequality.
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Lemma 2.12 Let V ⊆ Ad be an a-spp K-vector space, written as V =⊕d
i=0 V[d−i]xin. Assume that

1. V[i] ⊆ Ai is a-lpp for all i, and
2. δ(V ) is minimal among all dimension sequences of a-spp K-vector subspaces
W = ⊕d

i=0W[d−i]xin ⊆ Ad such that dimK(W) = dimK(V ) and W[i] is a-lpp
for all i.

Then, V is a segment.

Proof Assume that V is not a segment; then, there exist i < j such that V[i] � Ai
and mj−i (V[i])+ + aj �⊇ V[j ], and choose i and j so that j − i is minimal. Observe
that necessarily i � max{d − an + 1, 0}, since otherwise V[i] = Ai . Since V[i]
and V[j ] are a-lpp, the fact that mj−i (V[i])+ + aj does not contain V[j ] implies
that mj−i (V[i])+ + aj is properly contained in V[j ]. In particular, the latter properly
contains aj , and we have that

mj−i (V[i])+ + aj ⊆ (V[j ])−. (2.5)

Now, define W = ⊕d
k=0W[d−k]xkn , where W[i] = (V[i])+, W[j ] = (V[j ])−, and

W[k] = V[k] for all k �= j, i. We claim thatW is an a-spp vector space.
In fact, let k � max{d − an + 1, 0}; by stability, if k �= j, j − 1, i, i − 1, then

m1W[k] = m1V[k] ⊆ V[k+1] = W[k+1]; if k = j , then m1W[j ] ⊆ m1V[j ] ⊆ V[j+1] =
W[j+1] and if k = i − 1, then m1W[i−1] = m1V[i−1] ⊆ V[i] ⊆ W[i].

By costruction, we have that mj−iW[i] ⊆ W[j ], see (2.5); therefore, if j − i = 1
we are done, again by stability.

Thus, we may assume that j − i > 1 and prove next that mk−iW[i] + ak =
W[k] for all i < k < j . Since j − i is minimal, we have that mk−iW[i] + ak =
mk−i (V[i])++ak ⊇ V[k] = W[k]. If the containment were strict, then we would have
mk−i (V[i])+ + ak ⊇ (V[k])+ and, again by minimality, mj−k(V[k])+ + aj ⊇ V[j ];
this would in turn imply mj−i (V[i])++aj = mj−k

(
mk−i (V[i])+ + ak

)+aj ⊇ V[j ],
contradicting our initial assumption on i and j .

The only case left to be shown is now m1W[j−1] ⊆ W[j ]. By applying what we
have proved above for k = j−1, we have that m1W[j−1]+aj = m1

(
mj−1−iW[i]

)+
aj = mj−iW[i] + aj ⊆ W[j ], as desired.

Thus, W is an a-spp vector space; furthermore, it is clear from definition that
each W[i] is an a-lpp. Finally, observe that δ(W) < δ(V ) by construction, which
contradicts the minimality of δ(V ), and we are done. ��
Proposition 2.13 For every d � 0 and every D � dimK(Ad) there exists a unique
segment V with dimK(V ) = D. Moreover, the sequence δ(V ) is the minimum of the
set of all sequences δ(W) of a-spp vector spacesW =⊕d

i=0W[d−i]xin ⊆ Ad which
have dimension D and such that eachW[i] is a-lpp.
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Proof By Lemma 2.12 we have that any vector space with minimal dimension
sequence is a segment, and by Lemma 2.10 any two such segments are comparable,
hence equal. ��

We already mentioned before that, if the EGH Conjecture held in full generality,
then LPPa(I ) would be the ideal with minimal growth among those containing a
regular sequence of degree a, and with Hilbert function equal to that of I . The proof
is easy and we include it here.

Proposition 2.14 Assume that EGH holds true. Let I ⊆ A be a homogeneous ideal
that contains a regular sequence of degree a. Then H(mLPPa(I )) � H(mI ).
Proof Let d � 0 be an integer, and let a′ = (a1, . . . , ar ) be the degree sequence
obtained from a by considering only the degrees ai such that ai � d. Let J =
(Id), and observe that LPPa(I )d = LPPa

′
(I )d = LPPa

′
(J )d . Moreover, since

Jd+1 = m1Id , we have H(LPPa
′
(J ); d + 1) = H(J ; d + 1) = H(mI ; d + 1).

Since m1LPPa
′
(J )d ⊆ LPPa

′
(J )d+1, we finally obtain thatH(mLPPa(I ); d+ 1) =

H(mLPPa
′
(J ); d + 1) � H(mI ; d + 1). ��

We would like to observe that, even if we do not know that EGH holds in general,
we can still get an minimal growth statement in a Clements-Lindström ring A/a,
under milder hypotheses.

Lemma 2.15 (Minimal Growth) Assume that every homogeneous ideal contain-
ing a satisfies EGHa . If a ⊆ I ⊆ A is such an ideal, then H(mLPPa(I ) + a) �
H(mI + a).

Proof Fix an integer d � 0, and let J = (Id)+a. Note that both I and J satisfy the
EGH, and LPPa(I )d = LPPa(J )d . Observe that Jd+1 = m1Jd + ad+1 = m1Id +
ad+1, and accordingly H(LPPa(J ); d + 1) = H(J ; d + 1) = H(mI + a; d + 1).
Now, since (mLPPa(J ) + a)d+1 = m1(LPPa(J ))d + ad+1 ⊆ (LPPa(J ))d+1, we
may conclude that H(mLPPa(I )+ a; d + 1) � H(LPPa(J ); d + 1) = H(mI + a;
d + 1). ��

We are finally in a position to prove the main result of this section. The simple
idea underlying the new proof we present here is to demonstrate Clements–
Lindström Theorem using Strong Hyperplane Restriction, like Green proved
Macaulay Theorem using generic hyperplane section; this also motivates why
Part (ii) has been assimilated into the statement.

Proof of Theorem 2.1 By adding sufficiently large powers of the variables
xr+1, . . . , xn, we may assume that r = n. After taking any initial ideal, and by
Proposition 2.5, we may assume that I is an a-spp monomial ideal. By induction,
we may also assume that both Part (i) and Part (ii) hold true in polynomial rings
with less than n variables, since the case n = 1 is trivial. In particular, any lpp ideal
of A has Minimal Growth, see Lemma 2.15.
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We write I =⊕
i�0 I[i]xin; for all i, we let J[i] = LPPa(I[i]), which by induction

is an ideal of A. Next, we prove that

J =
⊕

i�0

J[i]xin

is also an a-spp ideal. First of all, observe that I[k] ⊆ I[k+1] for all k, since I is an
ideal. This implies that H(J[k]) = H(I[k]) � H(I[k+1]) = H(J[k+1]). Since the
ideals J[k] and J[k+1] are lpp, it follows that J[k] ⊆ J[k+1], which, in turn, translates
into J being an ideal. Since I is a-spp, for all i < an − 1 we have m1I[i+1] ⊆ I[i]
and a ⊆ I[i]; thus

H(J[i]) = H(I[i]) � H(m1I[i+1] + a) � H(m1J[i+1] + a),

where the last inequality follows from Lemma 2.15. This yields that that m1J[i+1] ⊆
J[i] for all i < an − 1, and J is a-spp by stability.

Given an a-spp vector space V ⊆ Ad , denote by σ(V ) the segment contained in
Ad which has the same dimension as V . Let J = ⊕

d�0
Jd be the homogeneous ideal

we constructed above and let

σ(J ) =
⊕

d�0

σ(Jd).

We claim that σ(J ) is the a-lpp ideal we are looking for.
First of all we show that it is an ideal. Fix a degree d � 0, and write Jd =⊕d
i=0(Jd)[d−i]xin, σ(Jd) = ⊕d

i=0 σ(Jd)[d−i]xin; for notational simplicity, in the
following we let σ[d−i] = σ(Jd)[d−i]. By stability, we then have

m1Jd + ad+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m1(Jd)[d] + ad+1

)⊕
(⊕d

i=0(Jd)[d−i]xi+1
n

)
, if d < an − 1,

(
m1(Jd)[d] + ad+1

)⊕
(⊕an−2

i=0 (Jd)[d−i]xi+1
n

)
⊕
(⊕d

i=an Ad−ix
i
n

)
,if d � an − 1,

and

m1σ(Jd)+ ad+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m1σ[d] + ad+1

)⊕
(⊕d

i=0 σ[d−i]xi+1
n

)
, if d < an − 1,

(
m1σ[d] + ad+1

)⊕
(⊕an−2

i=0 σ[d−i]xi+1
n

)
⊕
(⊕d

i=an Ad−ix
i
n

)
, if d � an − 1.
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When d < an − 1, we set σ[an−1] = (Jd)[an−1] = 0. From the above equalities
we thus get

dimK(m1Jd + ad+1)− dimK(m1σ(Jd)+ ad+1) =
= (

dimK(m1(Jd)[d] + ad+1)− dimK(m1(σ[d] + ad+1))
)+

(
dimK(σ[an−1])− dimK((Jd)[an−1])

)
.

(2.6)
Since σ(Jd) is a segment, σ[d] ⊆ A is a-lpp and its dimension sequence

δ = δ(σ (Jd)) is minimal for the Proposition 2.13. Moreover, the a-lpp vector
space Ld ⊆ Ad with the same Hilbert function as (Jd)[d] has Minimal Growth,
and σ[d] ⊆ Ld by the minimality of δ. Therefore,

dimK(m1(Jd)[d] + ad+1) � dimK(m1Ld + ad+1) � dimK(m1σ[d] + ad+1).

Recall that the last entry of the dimension sequence is the dimension of the vector
space itself; thus, since σ(Jd) and Jd have the same dimension and δ(Jd) � δ we
get dimK(σ[an−1]) � dimK((Jd)[an−1]). An application of (2.6) now yields

dimK(m1Jd + ad+1) � dimK(m1σ(Jd)+ ad+1).

Since J is an ideal that contains a, we have that m1Jd + ad+1 ⊆ Jd+1 and, thus,

dimK(m1σ(Jd)+ ad+1) � dimK(Jd+1) = dimK(σ(Jd+1)).

By Remark 2.9, we know that m1σ(Jd)+ ad+1 is a segment, and so is σ(Jd+1) by
definition; then, it follows that m1σ(Jd) ⊆ σ(Jd+1). We may finally conclude that
σ(J ) is an ideal, which is a-spp by construction, and has the same Hilbert function
as I .

Next, we observe that σ(J ) satisfies Part (ii) of the theorem, since H(σ(J ) +
(xin); d) is just the i-th entry of δ(σ (Jd)), H(J + (xin); d) is the i-th entry of δ(Jd),
and δ � δ(Jd).

By construction, σ(J ) is the ideal with all the required properties, once we have
proved the following claim.

Claim σ(J ) is a-lpp.

Proof of the Claim By contradiction, there exists a degree d such that σ(Jd) is
an a-spp D-dimensional vector space which is not lpp; thus, we may consider a
counterexample of degree d and of minimal dimension D for which the operator σ
does not return an a-lpp vector space of dimension D inside Ad ; then, if we apply
σ to any (D − 1)-dimensional a-spp vector space of Ad , we obtain an a-lpp vector
space, but there is an a-spp vector space of dimensionD which is transformed by σ
into an a-spp vector space V + 〈v〉 which is not lpp. Thus, V is a-lpp, V + 〈v〉 is
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a-segment, and we write them as

V =
d⊕

i=0

V[d−i]xin, V + 〈v〉 =
d⊕

i=0

Ṽ[d−i]xin.

Let also w be the monomial such that V + 〈w〉 is the a-lpp vector subspace of
dimension D of Ad and observe that w > v. Write v = vxtn and w = wxsn, where
v,w are monomials in A.

Since V + 〈v〉 is a segment, we have that t � s.
If t = s we immediately get a contradiction, since by construction v andw would

both be the largest monomial of degree d − t which is not contained in V[d−t].
Therefore, we may assume that t > s, and a = deg(w) = d − s > d − t =

deg(v) = b. Observe that v ∈ Ṽ[d−t], and that d − t < an. Moreover ma−bṼ[d−t] ⊆
Ṽ[d−s] holds by stability applied to V + 〈v〉. We write w = xi1 · · · xia and v =
xj1 · · · xjb , with i1 � . . . � ia and j1 � . . . � jb. Since w > v we have two
cases, either v divides w, or xi1 · · · xib > v. In both cases, it is easy to see that
w ∈ ma−bṼ[d−t] ⊆ Ṽ[d−s], and thus w ∈ V + 〈v〉, which is a contradiction. ��

The proofs of Theorem 2.1 (i) previously available in the literature do not include
Part (ii), the Strong Hyperplane Section of Gasharov. One advantage of our approach
is that, with little additional effort, one can show that the Betti numbers of an a-spp
ideal are at most those of the corresponding a-lpp ideal; see [8, 42]. Furthermore,
combining this fact with Remark 2.6, one recovers the LPP-Conjecture for ideals
containing pure-powers ideals in characteristic zero, which is the main result of [37,
Section 3]. Note that, in [37], the authors also provide a characteristic-free proof
that settles the LPP-Conjecture for ideals that contain pure-powers.

3 Artinian Reduction and Linkage

In this brief section we collect some results which will be useful in what follows.
We start with Proposition 10 in [9], which offers in many cases a way to prove the
EGH Conjecture in the Artinian case only.

Proposition 3.1 Let f ⊆ A = K[x1, . . . , xn] be an ideal generated by a regular
sequence of degree a, and � be a linear A/f-regular form. Let also A = A/(�), and
f = fA. If every homogeneous ideal of A containing f satisfies EGHa , then every
homogeneous ideal of A containing f satisfies EGHa .

Proof Let I ⊆ A be a homogeneous ideal that contains f and for i � 0 we let
Ii = (I :A �i)+ (�). By assumption, there exist a-lpp ideals Ji ⊆ K[x1, . . . , xn−1]
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with the same Hilbert function as Ii/(�). Now, we define

J =
⊕

i�0

Jix
i
n,

and we claim that J is an ideal with the same Hilbert function as I ; since a ⊆ J0 ⊆
J , the conclusion will then follow from Theorem 2.1.

By considering the short exact sequences 0 −→ A/(I :A �j )(−1)
·�−→ A/(I :A

�j−1) −→ A/Ij−1A −→ 0 for all j , a straightforward computation yields that
H(J ) = H(I).

What it is left to be shown is that J is an ideal. Let as before m = (x1, . . . , xn−1);
since Ji is an ideal of A, we have mJi ⊆ Ji for all i and, accordingly, mJ ⊆ J . The
condition xnJ ⊆ J translates into the containments Ji ⊆ Ji+1 for all i � 0. Since
each Ji is an a-lpp ideal, it suffices to show that H(Ji) � H(Ji+1), which holds
true since Ii ⊆ Ii+1. ��

We now recall some results from the theory of linkage. In Sect. 2 we introduced
the following notation: given a homogeneous ideal I ⊆ A = K[x1, . . . , xn]
containing an ideal f generated by a regular sequence of degree a = (a1, . . . , an),
we let I �f = (f :A I), and call it the link of I with respect to f, which is an ideal
that contains f. Obviously, the link depends on f; however, when it is clear from the
context which f we consider, we denote I �f simply by I �.

Proposition 3.2 Let a = (a1, . . . , an) and A, I , f be as above; let also R = A/f
and s =∑n

i=1(ai − 1). Then,

(i) (I �)� = I .
(ii) H(IR; d) = H(R; d)−H(I�R; s − d).

(iii) type (R/IR) = μ(I�R), i.e., the dimension of the socle of R/IR equals the
minimal number of generators of its linked ideal.

In particular, if I = (f + (g)) is an almost complete intersection, then the ideal
I � = (f :A g) defines a Gorenstein ring, and viceversa. Moreover, if deg(g) = D,
then soc((f :A g)R) is concentrated in degree s −D.

Proof Observe that the functor (−)∨ = HomR(−, R) is the Matlis dual, since R is
Gorenstein Artinian. The statements that we want to prove are a direct consequence
of Matlis duality, see [4, Sections 3.2 and 3.6]. It is well known that a module and
its Matlis dual have the same annihilator. In particular, since (A/I)∨ ∼= I �/f, we
obtain that I = annA(A/I) = annA(I �/f) = (I �)�, which proves (i). For (ii),
recall that in the graded setting one has ((A/I)∨)d ∼= (A/I)s−d , for all d ∈ Z.
Since (A/I�)∨ ∼= I/f, the claim follows from the graded short exact sequences of
K-vector spaces 0 → (I/f)d → (A/f)d → (A/I)d → 0. Part (iii) is again a
consequence of Matlis duality. ��

We conclude this part with an easy lemma.
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Lemma 3.3 Let a = (a1, . . . , ar ) and b = (b1, . . . , br ) be degree sequences
satisfying ai � bi for all i = 1, . . . , r . If an ideal I satisfies EGHa , then it satisfies
EGHb.

Proof By assumption, J = LPPa(I ) is a a-lpp ideal with the same Hilbert function
as I . By our assumption on the degree sequences, J also contains the pure-powers
ideal (xb1

1 , . . . , x
br
r ). Therefore, by Theorem 2.1, LPPb(J ) is a b-lpp ideal with the

same Hilbert function as I . ��

4 Results on the EGH Conjecture

We collect in the following the most relevant cases when EGH is known to be true.
We start with a very recent result, Theorem 4.1, proved by the first two authors in [6,
Theorem A], which improves an older result due Maclagan and the first author, [9,
Theorem 2]. Indeed, as we show in this section, from Theorem 4.1 one can derive
with little effort all of the significant known cases of the EGH Conjecture which
take into account only hypotheses on the degree sequence a and not on the ideal I .
A further generalization can be found in [6], see Theorem 3.6.

Theorem 4.1 Let I ⊆ A be a homogeneous ideal which contains a regular
sequence of degree a = (a1, . . . , ar ) and assume that ai �

∑i−1
j=1(aj − 1) for

all i � 3; then, I satisfies EGHa .

Proof For brevity’s sake, we present here only the proof of the weaker statement
[9, Theorem 2], that is, we will assume that ai >

∑i−1
j=1(aj − 1) for all i � 3.

Observe that, by Proposition 3.1, we may let r = n and work by induction on n.
Let a = (a1, . . . , an−1); by induction, suppose that every ideal of A containing a
regular sequence of degree a satisfies EGHa(d) for all d.

Clearly, for d < an−1, we have that EGHa(d) is equivalent to EGHa(d). Thus,
let d + 1 ≥ an, so that s − (d + 1) < an − 1; by induction, I � satisfies EGHa and
the previous case yields that I � satisfies EGHHa s − (d + 1) for all d + 1 ≥ an. By
Proposition 3.2 (ii), we know that H(IR; d) = H(R; d)−H(I�R; s − d), where
R = A/f and s =∑n

i=1(ai − 1). It now follows that I satisfies EGHa(d) also for
all d + 1 ≥ an, and the proof is complete. ��

As we have already observed in Remark 2.4 (1), Theorem 4.1 yields the EGH for
r � 2.

One big advantage of Theorem 4.1 is that it can be applied in order to obtain
growth bounds for the Hilbert function which are at least as good as the ones given
by Macaulay Theorem. This can be done for any homogenous ideal, regardless of
the degree sequence. The key observation to see this is the following.

Lemma 4.2 Assume that |K| = ∞ and that I contains an ideal f generated by
a regular sequence of degree a = (a1, . . . , ar ). If b = (b1, . . . , br ) is a degree
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sequence such that bi � ai for all i, then I contains an ideal g generated by a
regular sequence of degree b.

Proof We proceed by induction on r � 1. Let r = 1 and observe that Ib1 �= 0 since
b1 ≥ a1. It follows that there exists a regular element g1 ∈ I of degree b1.

By induction, we have constructed a homogeneous ideal g′ = (g1, . . . , gr−1),
which is unmixed and generated by a regular sequence of degrees b1, . . . , br−1.
Observe that, since I contains f1, . . . , fr , we have that ht(IjA) � r for all j � ar .
In particular, the ideal g′ + IbrA has height at least r , since br � ar . Thus, by
prime avoidance, we find an element gr ∈ Ibr which is regular modulo g′ and
g = (g1, . . . , gr ) is the ideal we were looking for. ��

As another application of the theory of linkage to the EGH Conjecture, we now
present a result due to Chong [13], which settles the conjecture for Gorenstein ideals
of height three.

Proposition 4.3 Let I be a homogeneous ideal that contains an ideal f generated
by a regular sequence of degree a = (a1, . . . , an). Assume that b = (b1, . . . , bn)

is a degree sequence such that bi � ai for all i, and I �f satisfies EGHb; then I
satisfies EGHa .

Proof Let s = ∑n
i=1(ai − 1) and I � = I �f ; by hypothesis there exists a b-lpp

ideal J with the same Hilbert function as I � that also contains the pure-powers ideal
a = (xa1

1 , . . . , x
ar
r ), since ai � bi for all i. Consider now J �a ; by Proposition 3.2 (ii)

for all d � 0 we have

H(I/f; d) = H(A/f; d)−H(I�/f; s − d)
= H(A/å; d)−H(J/å; s − d) = H(J �å /å; d).

By Theorem 2.1, there exists an a-lpp ideal with the same Hilbert function as J �a ,
and we are done. ��

Observe that in the above proof we used Theorem 2.1 to transform the monomial
ideal J �a into an a-lpp ideal. In fact, it can be proved in general that J �a is already
a-lpp whenever J is a-lpp, see for instance [45, Theorem 5.7], or [11, Proposition
3.2].

Sequentially bounded licci ideals were first introduced in [13], and are those
ideals to which Proposition 4.3 can be applied repeatedly in order to prove the EGH
Conjecture. We recall the main definitions here.

Definition 4.4 Let I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal, and set I0 =
I . We say that I is linked to a complete intersection, or licci for short, if there exist
ideals Ij = (Ij−1)

�
fj

where f1, . . . , fs are ideals of the same height as I generated
by regular sequences of degrees a1, . . . , as , such that Is is generated by a regular
sequence of degree as+1.

We say that I is sequentially bounded licci if the above sequence also satisfies
a1 � . . . � as+1.
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We also recall that I is said to be minimally licci if it is licci and, in addition, for
each j the regular sequence generating fj+1 can be chosen to be of minimal degree
among all the regular sequences contained in Ij . Observe that fj ⊆ Ij , therefore
minimally licci ideals are sequentially bounded licci. It was proved by Watanabe
[46] that height three Gorenstein ideals are licci. Later on, Migliore and Nagel show
that such ideals are also minimally licci [38]. We see next how these facts together,
combined with Proposition 4.3, yield the main result of [13].

Theorem 4.5 Let I ⊆ A be a sequentially bounded licci ideal, where the first link
of I is performed with respect to a regular sequence of degree a; then I satisfies
EGHa .

In particular, if I is a Gorenstein ideal of height 3 containing a regular sequence
of degree a = (a1, a2, a3), then I satisfies EGHa .

Proof We prove the first part only for n = r , and we refer the reader to the original
paper for the reduction to this case; this is shown in [13, Proposition 10], where the
proof runs along the same lines as that of Proposition 3.1.

Since Is is a complete intersection of degree as+1 by assumption, it trivially
satisfies EGHas+1

; therefore Proposition 4.3 implies that Is−1 satisfies EGHas , and
its repeated application to the sequence of linked ideals eventually yields that I
satisfies EGHa1

, that is EGHa . ��
Remark 4.6 The height 3 Gorenstein case proved by Chong is also related to a
previous result due to Geramita and Kreuzer concerning the Cayley-Bacharach
Conjecture in P

3 [24, Corollary 4.4]. In fact, EGH for a height 3 Gorenstein ideal I
is equivalent to EGH for its linked ideal I �, which is an almost complete intersection
by Proposition 3.2 (iii). As pointed out in the introduction, EGH for almost complete
intersections implies the Cayley-Bacharach Conjecture 1.2.

Next, we present a result due to Francisco [20, Corollary 5.2] which settles
EGHa(D) for almost complete intersections (f + (g)) in the first relevant degree,
namely D = deg(g).

Theorem 4.7 Let f ⊆ A be an ideal generated by a regular sequence of degree a =
(a1, . . . , ar ), and let g /∈ f be an element of degree D � a1 such that I = f + (g).
Then, I satisfies EGHa(D).

Proof We may assume that K is infinite. First, we reduce to the Artinian case by
arguing as follows: we choose some N > D + 1 and homogeneous elements of
degree N such that f1, . . . , fr , fr+1, . . . , fn is a full regular sequence of degree
a′ = (a1, . . . , ar , N, . . . , N). In this way, proving EGHa(D) for I is equivalent to
proving EGHa′(D) for I + (fr+1, . . . , fn). Thus, for the rest of proof r = n and
A/f is Artinian.

Now, let b be the unique integer such that
∑b
i=1(ai − 1) � D <

∑b+1
i=1 (ai − 1).

It is then easy to see that J = a+ (h), where h = xa1−1
1 · · · xab−1

b · xD−
∑b
i=1(ai−1)

b+1 ,
is the smallest a-lpp ideal with H(J ;D) = H(I ;D).
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To conclude the proof, it suffices to show that H(J ;D + 1) � H(I ;D + 1). To
this end, let s = ∑n

i=1(ai − 1), and consider the links I � = I �f = (f :A I) and
J � = J �a = (a :A J ). The natural graded short exact sequences

0→ A/I�(−D)→ A/f→ A/I → 0 and 0→ A/J �(−D)→ A/a→ A/J → 0

show that we only have to prove that H(J �; 1) � H(I�; 1). A direct computation
shows that

J � = a : (h) = (x1, . . . , xb, x

∑b+1
i=1 (ai−1)−D+1

b+1 , x
ab+2
b+2 , . . . , x

an
n ),

that is, H(J �; 1) = b.
Suppose, by contradiction, that I � contains c linear forms, with c > b; then, by

Prime Avoidance we can find a homogeneous ideal g ⊆ I � generated by a regular
sequence of degree (1, . . . , 1, ac+1, . . . , an) such that the socle degree of A/g is∑n
i=c+1(ai−1) <

∑n
i=b+1(ai−1) � s−D. Thus,H(A/I�; s−D) � H(A/g; s−

D) = 0 which is not possible, since the ring A/I� is Gorenstein of socle degree
s −D by Proposition 3.2 (iii). ��
Remark 4.8 It is easy to see by means of Lemma 4.2 that the condition D � a1 in
the statement of Theorem 4.7 can always be met.

Observe that, again by Proposition 3.2 (ii), the statement of Theorem 4.7 is
equivalent to proving EGHa(s − D − 1) for the ideal I � = I �f . Since the socle
of A/I� is concentrated in degree s−D, this is equivalent to controlling the growth
of the Hilbert function of a Gorenstein ring from socle degree minus 1 to the socle
degree. For other results of this nature, see for instance [43].

The next result we present is due to Abedelfatah, see [1] and [2]; it can be viewed
as a generalization of the Clements-Lindström Theorem to ideals that contain a
regular sequence generated by products of linear forms. Below we provide the proof
of the general version, cf. [2, Theorem 3.4].

Theorem 4.9 Let f ⊆ A be an ideal generated by a regular sequence of degree
a = (a1, . . . , ar ). Assume that f ⊆ P , where P is an ideal generated by products of
linear forms. Then, any ideal I ⊆ A that contains P satisfies EGHa .

Proof By induction we may assume that the claim is true for ideals in polynomial
rings with less than n variables, since the base case n = 1 is trivial.

Let s be the smallest degree of a minimal generator p of P . Since s � a1, by
Lemma 3.3 it suffices to show that I satisfies EGHa′ , where a′ = (s, a2, . . . , ar ).
Moreover, by Theorem 2.1, it is enough to prove that, for every degree d � 0, there
exists a monomial ideal J that contains (xs1, x

a2
2 , . . . , x

ar
r ) such that H(I ; d) =

H(J ; d) and H(I ; d + 1) = H(J ; d + 1).
We write p = �1 · · · �s , where �i are linear forms which we order as follows:
For k = 1, . . . , s, let I (0)k denote the image ideal of I in A/(�k) and choose �1

so that H(I (0)1 ; d) = mink{H(I (0)k ; d)}.
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Inductively, given �1, . . . , �j , for k = j + 1, . . . , s we let I (j)k denote the image

ideal of (I :A (�1 · · · �j )) in A/(�k) and choose �j+1 so that H(I (j)j+1; d − j) =
mink{H(I (j)k ; d − j)}.

Now, with some abuse of notation, we let Ak = A/(�k) for k = 1, . . . , s; for
notational simplicity, we also set Ij = I (j)j+1 for j = 0, . . . , s − 1. By construction,
we thus have

H(Ij ; d − j) � H(Ij+1; d − j) for all j = 0, . . . , s − 1. (4.1)

Moreover, for all j = 1, . . . , s − 1, the short exact sequences

provide that

H(A/I ; i) =
s−1∑

j=0

H(Aj+1/Ij ; i − j), for all i. (4.2)

Let ã = (a2, . . . , an) and Ã = K[x2, . . . , xn]. Observe that Ak ∼= Ã for all k,
thus, by induction, we can find ã-lpp ideals J[j ] in Ã with the same Hilbert function

as Ij , for j = 0, . . . , s−1. Consider now J =⊕s−1
j=0 J[j ]x

j

1⊕Axs1, and let Jd denote
the degree d component of J . If we show, and we shall do, that m1Jd ⊆ Jd+1, that
is, J is closed under multiplication from degree d to degree d + 1, then the proof is
complete, since H(A/J ; i) = H(A/I ; i) for all i by (4.2).

To this end, we clearly have that (x2, . . . , xn)1(J[j ])d−j ⊆ (J[j ])d−j+1, since
each J[j ] is an ideal in Ã. It is left to show that x1Jd ⊆ Jd+1, which translates into
(J[j ])d−j ⊆ (J[j+1])d−j for all j = 0, . . . , s − 1; since such ideals are both ã-lpp,
this is yielded by (4.1). ��
Corollary 4.10 The EGH Conjecture is true for monomial ideals.

Another interesting known case, of different nature, is when the regular sequence
that defines f is a Gröbner basis with respect to some monomial order. In fact, in this
situation, the initial forms of the sequence are a regular sequence of monomials.

Proposition 4.11 Let f be an ideal ofA generated by a regular sequence f1, . . . , fr
of degree a, such that {f1, . . . , fr } is a Gröbner basis with respect to some monomial
order �. Then, every homogeneous ideal of A containing f satisfies EGHa .

Proof Let I be a homogeneous ideal that contains f. Let us consider the set S
of all homogeneous ideals of A with the same Hilbert function as I that contain
a monomial regular sequence g1, . . . , gr of degree a. Observe that S is not
empty since, by assumption, the initial ideal of I contains the regular sequence of
monomials given by the initial forms of f1, . . . , fr , which has degree a.
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Since the monomials g1, . . . , gr are pairwise coprime, we may write gi =∏
j∈Bi x

bij
j , for some subsets Bi ⊆ {1, . . . , n} with Bi ∩Bi′ = ∅ if i �= i′, and we

let |g1, . . . , gr | =∑r
i=1 |Bi | denote the cardinality of the support of g1, . . . , gr .

Now, we choose an element J of S which contains a regular sequence h1, . . . , hr
with minimal support and we will show that |h1, . . . , hr | = r . In this way we will
have that each hk is the ak-th power of a variable, which we may assume being equal
to xakk ; the conclusion will then follow by Theorem 2.1.

Clearly |h1, . . . , hr | � r . If we assume by way of contradiction that the
inequality were strict, then there would exist i ∈ {1, . . . , r} and 1 � j < j ′ � n

such that xjxj ′ |hi . Consider then the change of coordinates ϕ defined by

xk �→ xk, for all k �= j ′, and xj ′ �→ xj + xj ′ ,

let J ′ = in�(ϕ(J )), where � denotes the lexicographic order, and let h′k =
in�(ϕ(hk)) ∈ J ′ for k = 1, . . . , r . It is immediate to see that h′1, . . . , h′r is still
a monomial regular sequence of degree a; since J ′ has the same Hilbert function as
I , it belongs to S. However, h′k = hk for all k �= i, whereas h′i has one less variable
than hi in its support. In particular, |h′1, . . . , h′r | < |h1, . . . , hr |, which contradicts
the minimality of the support of h1, . . . , hr , and we are done. ��

Clearly, one can generalize the above by using a weight order ω, as long as the
given regular sequence form a Gröbner basis with respect to the induced order �ω
and the ideal of the initial forms of the sequence satisfies the EGH Conjecture.

Contrary to the “special” case in which the regular sequence f1, . . . , fr is a
Gröbner basis, as far as we know the “generic” version of the conjecture is still
open. We record this fact as a question.

Question 4.12 Let a = (a1, . . . , ar ) be a degree sequence. Does there exist a
non-empty Zariski open set U ⊆ P(Aa1) × P(Aa2) × · · · × P(Aar ) of general
forms of degree a such that, for every [f1, . . . , fr ] ∈ U , any ideal I containing
f = (f1, . . . , fr ) satisfies EGHa?

In [32, Proposition 4.2], Herzog and Popescu show that, once a regular sequence
of degree a = (2, 2 . . . , 2) is fixed, then any generic ideal generated by quadrics
that contains it satisfies EGHa . We would like to warn the reader that Question 4.12
addresses a different kind of “genericity”. In fact, we are not fixing the regular
sequence beforehand, but we are asking whether the EGH Conjecture holds for any
ideal containing a general regular sequence.
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Remark 4.13

(1) When f is a general complete intersection, then the set of monomials ofAwhich
do not belong to the monomial complete intersection of the same degree as
f forms a K-basis of A/f, and this is well-known. This observation could be
helpful in giving a positive answer to Question 4.12.

(2) It is currently not known, though, whether or not, after a general change of
coordinates ϕ : A→ A the set of monomials of A which do not belong to the
monomial complete intersection of the same degree as f is aK-basis of A/ϕ(f),
when f is a complete intersection. A positive answer in this matter would make
Question 4.12 even more interesting. In fact, in light of the first part of the
remark, it would provide a strategy to attack the EGH Conjecture at once.

There are some other very special cases when EGH is known to hold that can be
found in the literature; we complete this section with two of them.

A special case of interest is when I contains a regular sequence of quadrics, and
this is the assumption on I in the original statement of the conjecture. In this case,
EGH is known to be true in low dimension; for n � 4, it can be proven by a direct
application of linkage; see also [12]. The validity of the conjecture for n = 5 was
first claimed in [44], but a proof was never provided until recently, when Güntürkün
and Hochster finally settle the case of five quadrics in [23, Theorem 4.1]. We present
an alternative proof of their result which relies on the techniques we used so far.

Theorem 4.14 I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal containing a
regular sequence of degree a = (2, 2, 2, 2, 2); then, I satisfies EGHa .

Proof We may assume that K = K . By Proposition 3.1 we may assume that n =
5, A/I is Artinian and f ⊆ I is an ideal generated by a regular sequence of five
quadrics; notice that the socle degree s of A/f is s = 5.

By Proposition 3.2 (ii) it suffices to show that I satisfies EGHa(j) for j = 0, 1, 2;
this is clearly true for j = 0, 1 and we are left with the case j = 2.

If H(I ; 2) = 6, then we are done by Theorem 4.7. Since the locus of reducible
elements in P(Sym2(A1)) has dimension 2n − 2 = 8, if H(I ; 2) � 7 then I must
contain a reducible quadric Q = �1�2. Proceeding as in the proof of Theorem 4.9,
we construct ideals J[0] and J[1] in Ã = K[x2, . . . , x5] such that J = J[0]⊕J[1]x1⊕
Ax2

1 is a monomial vector space which contains a = (x2
1 , . . . , x

2
5), m1J2 ⊆ J3,

H(A/J ; i) = H(A/I ; i) for all i, and the conclusion follows from an application
of Theorem 2.1. ��

In [15], Cooper proves some cases of the EGH Conjecture when r is small,
including a = (a1, a2, a3) with a1 = 2, 3 and a2 = a3. We present a proof of
the case a = (3, a, a), which is based on the techniques of [6].

Proposition 4.15 Let I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal containing
a regular sequence of degree a = (3, a, a). Then, I satisfies EGHa .

Proof We may assume, as accustomed, that K is infinite and, by Proposition 3.1,
that r = n = 3. Therefore, let f = (f1, f2, f3) ⊆ I be an ideal generated by a
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regular sequence of degree a; since the socle degree ofA/I is 2a, by Proposition 3.2
(ii), we only have to show that I satisfies EGHa(d) for all d < a.

Let a = (3, a), and observe that I satisfies EGHa by Theorem 4.1. Thus, since
EGHa(d) is equivalent to EGHa(d) for all d < a − 1, we only have to prove that
EGHa(a − 1) holds.

Let Q = (f1, f2, u1, . . . , uc) ⊆ I , where u1, . . . , uc are the pre-images of a
K-basis of (I/f)a−1. First, assume that f3 /∈ Q; thus,Q satisfies EGHa(a− 1) and,
therefore, if J denotes the smallest a-lpp ideal such thatH(Q; a−1) = H(J ; a−1),
we then have H(Q; a) � H(J ; a). Observe that J = J + (xa3 ) is an a-lpp ideal
such that H(J ; a − 1) = H(J ; a − 1) and H(J ; a) = H(J ; a) + 1. We then have
that

H(I ; a) ≥ H(Q+ (f3); a) = H(Q; a)+ 1 � H(J ; a)+ 1 = H(J ; a),

and this case is done.
Otherwise, f3 ∈ Q and, accordingly, ht(Q) = 3. By Prime Avoidance we

may assume that f1, vc, f2 forms a regular sequence of degree a′ = (3, a − 1, a)
when a �= 3; when a = 3, we may take the sequence vc, f1, f2 of degree
a′ = (2, 3, 3) instead. Either way, I satisfies EGHa′ by Theorem 4.1 and, therefore,
there exists a a′-lpp ideal J with the same Hilbert function as I . In particular, since
a � a′, the monomial ideal J also contains a = (x3

1 , x
a
2 , x

a
3 ), and we conclude by

Theorem 2.1. ��

5 Applications and Examples

In this section, we present some applications of the EGH Conjecture, supported by
several examples. For our computations, it is convenient to introduce the following
integers.

Definition 5.1 Let a = (a1, . . . , ar ) be a degree sequence, and h, d be non-negative
integers with h � n and d � 1. For r < i � n, we let ai = ∞ and xaii = 0. Also,
we let

[
h

d

]

a

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dimK

(
K[xn−h+1, . . . , xn]

(x
ai
i | n− h+ 1 � i � n)

)

d

if h � 1;

0 if h = 0.

Whenever a is clear from the context, we will omit it from the notation.
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Remark 5.2 Notice that

[
h

d

]

a

actually depends on n: for instance

[
1
2

]

(2)

=
{

0 if n = 1;
1 otherwise.

The next definition is based on the Macaulay representation, cf. [4, Section 4.2],
but it takes also into account the additional information brought by the degree
sequence.

We adopt the standard convention that∞− 1 = ∞ and a �∞ for all a ∈ Z.

With the above notation, given an integer 0 < k �
[
n

d

]
, we may write

k =
[
kd

d

]
+
[
kd−1

d − 1

]
+ . . .+

[
k1

1

]
,

where kd � kd−1 � . . . � k1 � 0 and #{t | kt = i} �
{
an−i − 1 for 0 � i < n;
1 for i = n.

Such an expression is called the (a, n)-Macaulay representation of k in base d. As
for the classical Macaulay representation, which corresponds to the choice ai = ∞
for all i, the (a, n)-Macaulay representation of k in base d exists, and it is unique;
for instance, see [16, 29, 45].

Finally, given the a-Macaulay representation of k in base d, we let

k〈d〉a =
[
kd

d + 1

]
+
[
kd−1

d

]
+ . . .+

[
k1

2

]
.

Observe that, given any a-lpp ideal J ⊆ A with k = H(A/J ; d), then H(A/mJ +
å; d + 1) = k〈d〉a .

Since m1Jd ⊆ Jd+1, the k〈d〉a represents the maximal growth in degree d + 1 of
the quotient by an a-lpp ideal which has Hilbert function equal to k in degree d, as
it happens in the classical case.

Next, we present a proof of the following enhanced version of Macaulay
Theorem, see for instance [16, 45], which is a direct consequence of Theorem 2.1.

Theorem 5.3 Let a = (a1, . . . , ar ) be a degree sequence, a the corresponding
pure-powers ideal, and R = A/a. Let H : N −→ N be a numerical function; then,
H is the Hilbert function of R/I for some homogeneous ideal I of R if and only if

H(d + 1) � H(d)〈d〉a for all d ≥ 1

Proof Let I ⊆ R be a homogeneous ideal and J its lift to A. By Theorem 2.1,
L = LPPa(J ) is an ideal with the same Hilbert function as I , and from the fact that
m1Jd ⊆ Jd+1 we get that H(A/J ; d + 1) = H(A/L; d + 1) � H(A/L; d)〈d〉a =
H(A/J ; d)〈d〉a .
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Conversely, let H be a numerical function that satisfies the growth condition,
d be a non-negative integer, and let V ⊆ Ad be an a-lpp K-vector space such
that dimK(Ad/V ) = H(d). Consider the a-lpp ideal J = (V ) + a; then H(d)〈d〉a
coincides with the dimension of (A/J )d+1 which, by assumption, is at least H(d +
1). By adding appropriate monomials to Jd+1 if necessary, we can make J into an
a-lpp K-ideal such that dimK((A/J )d+1) = H(d + 1). Arguing in this way for all
d, we obtain a monomial ideal I containing a, which in fact is an a-lpp ideal, with
Hilbert function H . ��
There are implementations of these results in software systems such as Macaulay2,
see for instance the one authored by White [47].

Example 5.4 Let A = K[x1, x2, x3], and let I ⊆ A be a homogeneous ideal which
contains a regular sequence of degree a = (3, 3, 4). Suppose that, regarding its
Hilbert function, we only know that H(A/I ; 5) = 5, and that we would like to
estimate H(A/I ; 6). Classically, this is achieved by means of Macaulay Theorem,
which provides H(A/I ; 6) � 5. However, since EGHa holds by Theorem 4.1, we
know that H(I) = H(LPPa(I )), therefore Theorem 5.3 yields that H(A/I ; 6) �
5〈5〉a = 2.

The following result was observed by Liang [35].

Proposition 5.5 Let I ⊆ A = K[x1, x2, x3] be an ideal which contains an ideal f
generated by a regular sequence of degree (a1, a2) and let μ(I) denote its minimal
number of generators; then, μ(I) � a1 · a2.

Proof Observe that any ideal containing f satisfies EGH(a1,a2) by Theorem 4.1,
therefore by Lemma 2.15 we have H(I/mI ) � H(L/mL), where L =
LPP(a1,a2)(I ). Thus, we may as well bound μ(L). Notice that, if u = xi1x

j

2x
k
3

is a minimal generator of J , then 0 � i < a1 and 0 � j < a2, since J contains

a = (xa1
1 , x

a2
2 ). Moreover, if v = xi′1 xj

′
2 x

k′
3 is another minimal monomial generator

of J , then necessarily i′ �= i or j ′ �= j . Therefore, there are at most a1 · a2 possible
choices for i and j , as desired. ��
Proposition 5.5 can be applied to bound the number of defining equations of
curves in P

3. In fact, such a curve is defined by a homogeneous height two ideal
P ⊆ K[x0, x1, x2, x3], which then contains a regular sequence of some degree
(a1, a2). Pick a general linear form � which is regular modulo P and let A = A/� ∼=
K[x1, x2, x3], and P = PA. Then μ(P ) = μ(P ), and use Proposition 5.5 on P ,
since the latter contains a regular sequence of degree (a1, a2).

As we mentioned in the introduction, see Conjecture 1.2, another application
of the EGH Conjecture is the Cayley-Bacharach Theorem. Its original formulation
states that a cubic C ⊆ P

2 which contains eight points that lie on the intersection
of two cubics, must contain the ninth point as well. Later on, this fact has been
extended and generalized in various ways. We illustrate a connection with the EGH
in the following example.
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Example 5.6 Let X ⊆ P
3 be a complete intersection of degree (3, 3, 3). We show

that a cubic hypersurface Y containing at least 22 of the 27 points of X, must
contain X.

To see this, let f = (f1, f2, f3) ⊆ A = K[x1, . . . , x4] be an ideal of definition
of X. Moreover, let g be a cubic defining Y , let I = f + (g) and, by way
of contradiction, assume that g /∈ f. Let |K| = ∞; after a general change of
coordinates, if necessary, we may write I sat = (I :A x∞4 ) and assume that x4 is
A/I sat-regular.

Clearly, g ∈ I sat. Next, we claim that we may assume that g /∈ f + (x4). In fact,
if this is not the case, there exists 0 �= g1 ∈ (I :A x4) ⊆ I sat of degree at most 2
such that g = f + g1x4, for some f ∈ f. The element g1 may or may not belong to
f + (x4). If it does, arguing as above, we obtain that I sat actually contains a linear
form �, which is not in f+ (x4), since x4 is A/I sat-regular. Either way, we found an
element g2 ∈ I sat of degree < 3 which does not belongs to f+ (x4). Multiplying it
by an appropriate power of x4, we obtain a form g3 of degree 3 which still belongs
to I sat, but does not belong to f+ (x4). Therefore, we may let g = g3, and our claim
is proven.

Henceforth, let A = A/(x4) and denote by f, I , g and I sat the images in A of
f, I, g and I sat respectively; moreover, let J = f+(g) ⊆ A. Then, we immediately
have

e(A/I) = e(A/I sat) = e(A/I sat) � e(A/J ).

By Proposition 4.15, LPP(3,3,3)(J ) is an ideal with the same Hilbert function as J .
Moreover, since g /∈ f by what we have seen above, the ideal LPP(3,3,3)(J ) must
contain the monomial x2

1x2. In particular,

e(A/I) � e(A/J ) = e(A/LPP(3,3,3)(J )) � e(A/(x3
1 , x

2
1x2, x

3
2 , x

3
3)) = 21.

However, our hypothesis guarantees that e(A/I) � 22, a contradiction.

We conclude the paper by illustrating how the combinatorial Kruskal-Katona
Theorem [33, 34], a characterization of all the possible f -vectors of simplicial
complexes�, is related to the EGH Conjecture for a = (2, 2, . . . , 2). For additional
details on what follows, see for instance [30, Section 6.4].
Recall that the f -vector f (�) = (f0, . . . , fr−1) of an (r − 1)-dimensional
simplicial complex � simply records in its entry fi−1 the number of faces of �
of dimension i − 1. As it is customary, we set f−1 = 1. Given positive integers
h, d, write its Macaulay representation h = (

hd
d

) + (
hd−1
d−1

) + . . . + (
h1
1

)
, where

hd � hd−1 � . . . � h1 � 0, and set

h(d) =
(
hd

d + 1

)
+
(
hd−1

d

)
+ . . .+

(
h1

2

)
;
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the Kruskal-Katona Theorem states that (f0, . . . , fr−1) is the f -vector of a
simplicial complex of dimension r − 1 if and only if fd+1 � f

(d+1)
d for each

d = 0, . . . , r − 2.
Given a simplicial complex �, its f -vector f (�) and its Stanley-Reisner ring

K[�], we have that K[�] = K[x1, . . . , xn]/J , where n = f0 and J = J� is
a square-free monomial ideal. If we let R = K[x1, . . . , xn]/I , where I = J +
(x2

1 , . . . , x
2
n), then it is easy to see that H(R; i) = fi−1 for all i � 0.

On the other hand, any monomial ideal I ⊆ A = K[x1, . . . , xn] containing
a = (x2

1 , . . . , x
2
n), can be written uniquely as I = J + a, where J is a square-free

monomial ideal. If we consider� = �J , then its f -vector f (�) = (f0, . . . , fr−1),
where fi = H(A/I ; i + 1) for all i � 0.

Finally, the crucial observation is that

[
k

d

]

a

=
(
k

d

)
when if a = (2, 2, . . . , 2).

Therefore, the numerical condition of Theorem 5.3 can be restated as

fd = H(R; d + 1) � H(R; d)〈d〉a = H(R; d)(d) = f (d)d−1, for all d � 1,

which is precisely the condition of Kruskal-Katona Theorem.

Example 5.7 Let f = (4, 5, 2), and let us construct a simplicial complex � such
that f (�) = f . Consider the numerical function H : N → N defined as H(0) =
1, H(1) = 4, H(2) = 5, H(3) = 2, and H(d) = 0 for d > 3. By means of
Theorem 5.3, it can be checked that there exists a (2, 2, 2, 2)-lpp ideal I with Hilbert
function equal to H , namely, I = (x1x2) + (x2

1 , x
2
2 , x

2
3 , x

2
4). If we let J = (x1x2),

then � = �J is the following 2-dimensional simplicial complex

x3 x1

x4x2

and f (�) = f .

Example 5.8 If f = (4, 5, 3), then there is no simplicial complex � such that
f (�) = f , since there is no (2, 2, 2, 2)-lpp ideal of K[x1, x2, x3, x4] with Hilbert
function H satisfying H(2) = 5 and H(3) = 3 > H(2)〈2〉(2,2,2,2) = 2.



186 G. Caviglia et al.

References

1. Abed Abedelfatah. On the Eisenbud-Green-Harris conjecture. Proc. Amer. Math. Soc.,
143(1):105–115, 2015.

2. Abed Abedelfatah. Hilbert functions of monomial ideals containing a regular sequence. Israel
J. Math., 214(2):857–865, 2016.

3. Anna Maria Bigatti, Aldo Conca, and Lorenzo Robbiano. Generic initial ideals and
distractions. Comm. Algebra, 33(6):1709–1732, 2005.

4. Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

5. Giulio Caviglia and Alessandro De Stefani. A Cayley-Bacharach theorem for points in P
n.

Bull. London Math. Soc., 53: 1185–1195. https://doi.org/10.1112/blms.12492
6. Giulio Caviglia and Alessandro De Stefani. The Eisenbud-Green-Harris conjecture for fast-

growing degree sequences. arXiv: 2007.15467, 2020.
7. Giulio Caviglia and Manoj Kummini. Poset embeddings of Hilbert functions. Math. Z., 274(3-

4):805–819, 2013.
8. Giulio Caviglia and Manoj Kummini. Poset embeddings of Hilbert functions and Betti

numbers. J. Algebra, 410:244–257, 2014.
9. Giulio Caviglia and Diane Maclagan. Some cases of the Eisenbud-Green-Harris conjecture.

Math. Res. Lett., 15(3):427–433, 2008.
10. Giulio Caviglia and Enrico Sbarra. The lex-plus-powers inequality for local cohomology

modules. Math. Ann., 364(1-2):225–241, 2016.
11. Giulio Caviglia and Alessio Sammartano. On the lex-plus-powers conjecture. Adv. Math.,

340:284–299, 2018.
12. Ri-Xiang Chen. Some special cases of the Eisenbud-Green-Harris conjecture. Illinois J. Math.,

56(3):661–675, 2012.
13. Kai Fong Ernest Chong. An application of liaison theory to the Eisenbud-Green-Harris

conjecture. J. Algebra, 445:221–231, 2016.
14. G. F. Clements and B. Lindström. A generalization of a combinatorial theorem of Macaulay.

J. Combinatorial Theory, 7:230–238, 1969.
15. Susan M. Cooper. Subsets of complete intersections and the EGH conjecture. In Progress in

commutative algebra 1, pages 167–198. de Gruyter, Berlin, 2012.
16. Susan M. Cooper and Leslie G. Roberts. Algebraic interpretation of a theorem of Clements

and Lindström. J. Commut. Algebra, 1(3):361–380, 2009.
17. David Eisenbud, Mark Green, and Joe Harris. Higher Castelnuovo theory. Number 218, pages

187–202. 1993. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992).
18. David Eisenbud, Mark Green, and Joe Harris. Cayley-Bacharach theorems and conjectures.

Bull. Amer. Math. Soc. (N.S.), 33(3):295–324, 1996.
19. Christopher A. Francisco and Benjamin P. Richert. Lex-plus-powers ideals. In Syzygies and

Hilbert functions, volume 254 of Lect. Notes Pure Appl. Math., pages 113–144. Chapman &
Hall/CRC, Boca Raton, FL, 2007.

20. Christopher A. Francisco. Almost complete intersections and the lex-plus-powers conjecture.
J. Algebra, 276(2):737–760, 2004.

21. Vesselin Gasharov. Green and Gotzmann theorems for polynomial rings with restricted powers
of the variables. J. Pure Appl. Algebra, 130(2):113–118, 1998.

22. Vesselin Gasharov. Hilbert functions and homogeneous generic forms. II. Compositio Math.,
116(2):167–172, 1999.

23. Sema Güntürkün and Melvin Hochster. The Eisenbud-Green-Harris Conjecture for defect two
quadratic ideals. Math. Res. Lett., 27(5): 1341–1365, 2020.

24. Anthony V. Geramita and Martin Kreuzer. On the uniformity of zero-dimensional complete
intersections. J. Algebra, 391:82–92, 2013.

25. Anthony V. Geramita, Martin Kreuzer, and Lorenzo Robbiano. Cayley-Bacharach schemes
and their canonical modules. Trans. Amer. Math. Soc., 339(1):163–189, 1993.

https://doi.org/10.1112/blms.12492
https://arxiv.org/abs/2007.15467


The Eisenbud-Green-Harris Conjecture 187

26. Gerd Gotzmann. Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten
Ringes. Math. Z., 158(1):61–70, 1978.

27. Mark Green. Restrictions of linear series to hyperplanes, and some results of Macaulay and
Gotzmann. In Algebraic curves and projective geometry (Trento, 1988), volume 1389 of
Lecture Notes in Math., pages 76–86. Springer, Berlin, 1989.

28. Mark L. Green. Generic initial ideals. In Six lectures on commutative algebra (Bellaterra,
1996), volume 166 of Progr. Math., pages 119–186. Birkhäuser, Basel, 1998.

29. Curtis Greene, and Daniel J. Kleitman. Proof techniques in the theory of finite sets. Studies in
combinatorics, pp. 22–79, MAA Stud. Math., 17, Math. Assoc. America, Washington, D.C.,
1978.

30. Jürgen Herzog and Takayuki Hibi. Monomial ideals, volume 260 of Graduate Texts in
Mathematics. Springer-Verlag London, Ltd., London, 2011.

31. James Hotchkiss, Chung Ching Lau, and Brooke Ullery. The gonality of complete intersection
curves. J. Algebra, 560:579–608, 2020.

32. Jürgen Herzog and Dorin Popescu. Hilbert functions and generic forms. Compositio Math.,
113(1):1–22, 1998.

33. G. Katona. A theorem of finite sets. In Theory of graphs (Proc. Colloq., Tihany, 1966), pages
187–207, 1968.

34. Joseph B. Kruskal. The number of simplices in a complex. In Mathematical optimization
techniques, pages 251–278. Univ. of California Press, Berkeley, Calif., 1963.

35. Yihui Liang. Private communication.
36. F. S. MacAulay. Some Properties of Enumeration in the Theory of Modular Systems. Proc.

London Math. Soc. (2), 26:531–555, 1927.
37. Jeff Mermin and Satoshi Murai. The lex-plus-powers conjecture holds for pure powers. Adv.

Math., 226(4):3511–3539, 2011.
38. Juan Migliore and Uwe Nagel. Minimal links and a result of Gaeta. In Liaison, Schottky

problem and invariant theory, volume 280 of Progr. Math., pages 103–132. Birkhäuser Verlag,
Basel, 2010.

39. Jeffrey Mermin and Irena Peeva. Lexifying ideals. Math. Res. Lett., 13(2-3):409–422, 2006.
40. Jeffrey Mermin and Irena Peeva. Hilbert functions and lex ideals. J. Algebra, 313(2):642–656,

2007.
41. Jeffrey Mermin, Irena Peeva, and Mike Stillman. Ideals containing the squares of the variables.

Adv. Math., 217(5):2206–2230, 2008.
42. Satoshi Murai. Borel-plus-powers monomial ideals. J. Pure Appl. Algebra, 212(6):1321–1336,

2008.
43. Ania Otwinowska. Sur la fonction de Hilbert des algèbres graduées de dimension 0. J. Reine

Angew. Math., 545:97–119, 2002.
44. Benjamin P. Richert. A study of the lex plus powers conjecture. J. Pure Appl. Algebra,

186(2):169–183, 2004.
45. Benjamin P. Richert and Sindi Sabourin. The residuals of lex plus powers ideals and the

Eisenbud-Green-Harris conjecture. Illinois J. Math., 52(4):1355–1384, 2008.
46. Junzo Watanabe. A note on Gorenstein rings of embedding codimension three. Nagoya Math.

J., 50:227–232, 1973.
47. Jay White. A macaulay2 package for computing lpp ideals. Available at https://github.com/

Macaulay2/Workshop-2017-Berkeley/blob/master/LPPIdeals/LPPFromIdeal.m2.

https://github.com/Macaulay2/Workshop-2017-Berkeley/blob/master/LPPIdeals/LPPFromIdeal.m2
https://github.com/Macaulay2/Workshop-2017-Berkeley/blob/master/LPPIdeals/LPPFromIdeal.m2


Fibers of Rational Maps and Elimination
Matrices: An Application Oriented
Approach

Laurent Busé and Marc Chardin

Dedicated to David Eisenbud on the occasion of his seventy-fifth
birthday.

1 Introduction

In geometric modeling or closely related domains, parameterized curves or surfaces
are used intensively. Actually, 2D and 3D geometric objects are often represented by
assembling pieces of algebraic rational curves and surfaces that are called rational
Bézier curves and surfaces. Typical examples go from the letter fonts stored in a
computer to a complex CAD model of mechanical pieces (see e.g. [20, Chapter 3]
and [23, 34]). In this context, intersection problems between rational curves and
surfaces are central questions to be solved. An important problem is to decide
whether a point belongs to a given rational curve or surface. There is a huge
literature on this topic with quite different types of techniques (see [34, Chapter
5] and references therein). Among them, the development of algebraic methods to
turn the parametric representation of an algebraic curve or surface into an implicit
representation received a lot of attention. This so-called implicitization problem is
quite useful, because the membership problem we just mentioned can be decided
by means of an evaluation operation, which is much simpler. Mathematical tools for
solving the implicitization problem go back to the elimination theory as developed
by Sylvester, Cayley, Dixon and others (see e.g. [21, 37]). A more modern version,
based on resultant theory, can be found in many recent papers and books (see
e.g. [17, 24, 29]).

From a practical point of view, the implicitization of a rational curve or surface by
means of polynomial equation(s), typically the implicit equation F(x0, x1, x2) = 0
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of a rational planar curve, is not enough for solving intersection problems on
geometric models. Indeed, as already mentioned, in this field, geometric models
are built from pieces of rational curves and surfaces. Therefore, given a point on
a parameterized curve or surface, it is necessary to determine its pre-image(s) via
the parameterization in order to decide if it belongs to the piece that is used (see
e.g. [35]). It is clear that an implicit equation does not allow to do that directly,
as it only detects if a point belongs to the entire algebraic curve or surface. In
what follows, we will focus on tools and methods from commutative algebra and
algebraic geometry that have been developed in order to not only describe implicit
equations of the image of a rational map, but also to analyze and determine the fibers
of these rational maps, especially the finite fibers.

The setting we will focus on in this survey is the following. Suppose given a
rational map ψ : X ��� P

r−1
k , where X will be typically a (product of) projective

space(s) of dimension ≤ 3 (r = 3, 4) over a field k, and assume that it is generically
finite onto its image. Then, we would like to detect and compute the finite fibers
of ψ . The tools that we will present are deeply rooted in elimination theory with
a particular focus on elimination matrices. The simplest examples of such matrices
are the famous Sylvester matrix, Dixon matrices [21] or Macaulay matrices [29, 31].
The key observation here is to lift the rational map ψ as a projection from its graph
� to P

r−1, turning this way our problem into the study of a projection (elimination)
map. More precisely, there is a diagram

Γ

π1
π2

X ×k P
r−1
k

X
ψ

P
r−1
k

and we will describe how the fibers of π2 can be analyzed by means of elimination
matrices.

The paper is organized as follows. In Sect. 2 we set notation and we introduce
blowup algebras associated to a rational map ψ , namely the Rees and symmetric
algebras, and recall their connection to the graph of ψ . Section 3 is devoted
to elimination techniques. We first show how Fitting ideals associated to some
graded components of blowup algebras are connected to the image and fibers of
a rational map. Then, we explain how the choice of the graded components to be
considered is governed by the control of the vanishing of some local cohomology
modules. This section ends with an important result showing that for finite fibers
the control of this vanishing can be done globally (and not for each point). In
Sect. 4 we derive the first consequences of the above-mentioned methods in the
case of curve parameterizations, i.e. the case where the source is a projective line.
Besides the computation of the fibers of such maps, we also provide an estimate
of the Castelnuovo-Mumford regularity of rational curves as a by-product of our
approach. Section 5 deals with the case of hypersurface parameterizations without
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base point, i.e. morphisms from P
n−1 to P

n. Here, the emphasis is on the use of
non linear equations of the Rees algebra in order to get more compact elimination
matrices. Then, the case of surface parameterizations is discussed in Sect. 6, where
the presence of finitely many base points is considered. There is also a detailed
discussion on the enumeration and determination of positive dimensional fibers of
such parameterizations. Finally, the paper ends with Sect. 7 where the challenging
case of three-dimensional generically finite and dominant rational maps is treated.
This setting is actually motivated by the computation of the Euclidian distance of a
point to a parameterized 3D surface, an important problem in geometric modeling.
It will also be the occasion to illustrate how to deal with blowup algebras over
multigraded rings.

Works of David Eisenbud were very inspiring while exploring this subject and
the title of his beautiful book named ‘The Geometry of Syzygies” fits perfectly our
approach, even though he probably had in mind other strong and fruitful relations
between geometry and syzygies while choosing this title.

2 Graph of a Rational Map

Given a rational map, the determination of its image or of the parameters cor-
responding to one point of its image (the fiber) relies, at least in the algebraic
approach that we present, on the choice of compactifications for the source and
the target. It turns out in practice that a good choice for compactifying the source
could help in speeding up the computations, this choice being adapted to the type of
parametrization that is used. For this reason, in this survey we will focus on rational
maps of the form

ψ : X ��� P
r−1
k (1)

x �→ (f1(x) : · · · : fr(x)),

where X is a toric variety given in terms of its Cox ring, over a field k. A very
important case is when X = P

n−1
k is itself a projective space, but choosing for X a

product of projective spaces is also often used.
Recall that a Cox ring is an extension of the usual construction used in the case

of a projective space or a product of such spaces [18]. It is given by a grading on a
polynomial ringR by an abelian groupG (that corresponds to the Picard group ofX)
and a specific monomial ideal B that defines the empty set inX. The points of X (in
the scheme sense, in other words irreducible reduced subvarieties) correspond toG-
graded prime ideals and there is a one-to-one correspondence between subschemes
of X and G-graded R-ideals that are B-saturated. Coherent G-graded R-modules
correspond to coherent sheaves on X and graded pieces of their local cohomology
with respect to B correspond to sheaf cohomology of corresponding twists of this
coherent sheaf, in a very similar way as in the case of a projective space.
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Thus, the rational map ψ , as defined by (1), corresponds to a tuple of homoge-
neous polynomials (f1, . . . , fr ) of the same degree d ∈ G. This tuple is uniquely
determined, up to multiplication by an element in k\{0}, assuming that the fi’s have
no common factor. To understand image and fibers of ψ , it is no surprise that the
graph of ψ plays a very important role. As we will now see, this graph corresponds
to the notion of Rees algebra.

2.1 Graph and Rees Algebra

For an ideal I in a ring R, the Rees algebra is defined as the subalgebra⊕t≥0I
tT t ⊆

R[T ]. From this description, it is clear that it is a domain if R is a domain. When
I = (f1, . . . , fr ) is a graded ideal in the graded ring R and the fi’s are of the same
degree d, the Rees algebra admits a bigrading as follows. Let S := R[T1, . . . , Tr ]
with the bigrading (i.e.G×Z-grading) deg(Ti) := (0, 1) and deg(x) := (deg(x), 0)
for x ∈ R, then there is a bigraded onto map

S = R[T1, . . . , Tr ] → RI := ⊕t I t (td)
Ti �→ fi ∈ I (d)0 = Id .

This grading gives (RI )μ,t = (I t )μ+td for t ≥ 0. Moreover, RI = S/P for some
G × Z-graded prime ideal P whose elements are called the equations of the Rees
algebra RI .

As a key property, the Rees algebra RI defines the graph of ψ . To prove it,
notice that the defining ideal of the Rees algebra P ⊆ S contains the elements
Gij := fiTj−fjTi for any i < j . In particular, off V (I), the Rees algebra coincides
with the graph of ψ . Thus, the closure � of the graph in X × P

r−1
k is the closure of

the variety defined by the Gij ’s in (X \ V (I))× P
r−1
k , which is the one defined by

RI , as RI is a domain. We notice that another more geometrical way to state this,
is that the Koszul relationsGij define a subscheme of X×P

r−1
k = ProjG×Z(S) that

contains the graph of ψ (more precisely the Zariski closure � of this graph) as an
irreducible component. The following lemma is useful to determine cases where the
equationsGij define the Rees algebra (Micali proved that a similar result holds over
any commutative ring; see [32, Théorème 1]).

Lemma 2.1 Let R be a Cohen-Macaulay local domain and I = (f1, . . . , fr ) be
a complete intersection ideal of codimension r . Then the defining ideal P of RI is
generated by the elements Gij := fiTj − fjTi .
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Proof Consider the (2× r)-matrix

M :=
[
f1 · · · fr
T1 · · · Tr

]
.

Let J := I2(M) = (Gij ). The ideals P and J coincide off V (I.S), which is of
codimension r in S. As P is of codimension r − 1, it follows that J has depth at
least r−1. Hence the Eagon-Nortcott complex associated toM is a free S-resolution
of J := (Gij ). Thus S/J is Cohen-Macaulay as well, hence unmixed. As J and P
coincide off V (I.S), it follows that J = P. ��

2.2 Symmetric Algebra

The elements in P of T -degree 1, that we can write P∗,1, correspond to linear forms∑
i aiTi with ai ∈ R such that

∑
i aifi = 0, that is to the first syzygies of the given

generators of I , written as linear forms of the Ti’s with coefficients in R, in place
of a r-tuple of elements in R. The surjection S/(P∗,1)→ S/P is an incarnation of
the canonical map SymR(I) → RI , whose kernel is the non linear part of P (the
torsion of the symmetric algebra).

It is important to notice that, locally at a prime q ∈ Spec(R)where I is a complete
intersection, the symmetric and Rees algebras coincide, by Lemma 2.1. This shows
that the schemes in X × A

r
k defined by SymR(I) and RI coincide whenever this

holds for any q ∈ ProjG(R/I). In other words,

Proposition 2.2 If ProjG(R/I) is locally a complete intersection in X, then

RI = SymR(I)/H
0
B(SymR(I)).

We notice that the case ProjG(R/I) = ∅, i.e. I contains a power of B, is contained
in the above proposition.

3 Elimination Matrices and Fibers of Projections

In this section we assume that X is a product of projective spaces and that the
subscheme � ⊂ X×Pr−1

k is given by finitely many equations that are homogeneous
with respect to the Z

s-grading of the coordinate ring R of X. We denote by
J ⊂ S = R[T1, . . . , Tr ] the ideal generated by these equations, by S the quotient
ring R[T1, . . . , Tr ]/J and by B the irrelevant ideal associated to X. We also set
A := k[T1, . . . , Tr ].
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3.1 Elimination Ideal

Consider the canonical projection π2 : X × P
r−1
k → P

r−1
k . It is a classical result

that π2(�) is closed in P
r−1
k and is defined by the elimination ideal

A(J ) := (J : B∞) ∩ A.

An interesting fact is that the elimination ideal can be connected to the graded
components of the quotient ring S .

Lemma 3.1 Assume that ν ∈ N
s is such thatH 0

B(S)ν = 0, then A(J ) = annA(Sν).
Moreover, there exists an integer nν such that

A(J )nν ⊆ Fitt0A(Sν) ⊆ A(J )

where Fitt0A(Sν) denotes the initial Fitting ideal of the A-module Sν .

Proof S ′ := S/H 0
B(S) is generated over A/A(J ) = (S ′)0 by the variables of R

and, as B is contained in the ideal generated by any of these s sets of variables of
R (B is the intersection of the ideals Bi generated by the sets of variables), S ′ is
saturated with respect to Bi . In particular, for any ν ∈ N

s there exists a non zero
divisor of degree ν on S ′, proving the claimed equality. The inclusions derive from
any finite presentation of the A-module Sν . ��

Now, for any ν ∈ N
s such that H 0

B(S)ν = 0, denote by Mν a presentation matrix
of the A-module Sν :

Ab
Mν−−→ Aa → Sν → 0.

As a consequence of Lemma 3.1, for any point p ∈ P
r−1
k the corank of Mν(p) (the

evaluation of Mν at the point p) is positive if and only if p ∈ π2(�). This result can
actually be refined as follows.

3.2 Finite Fibers

Let p ∈ P
r−1
k and denote by Sp the specialization of S at p. From the definition

of Mν and the stability of Fitting ideals under arbitrary base change (which is not
the case for annihilators), for any ν, the corank of Mν(p) is nothing but the Hilbert
function of Sp in degree ν. Thus, if the fiber of p under π2 is finite then its Hilbert
polynomial is a constant which is equal to the degree of this fiber. The next result
shows that the degree ν such that the Hilbert function of Sp reaches its Hilbert
polynomial is globally controlled by the vanishing of the local cohomology of S .
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Theorem 3.2 Let ν ∈ N
s be such that H 0

B(S)ν = H 1
B(S)ν = 0 and suppose given

p ∈ P
r−1
k such that the fiber π−1

2 (p) ⊂ X is finite (a scheme of dimension zero or
empty), then

corank(Mν(p)) = deg(π−1
2 (p)).

Sketch of Proof First, Grothendieck-Serre’s formula (see e.g. [5, Proposition 4.26])
shows that, for any ν ∈ Z

s ,

dimk(Sp)ν = deg(π−1
2 (p))+

∑

i≥0

(−1)i dimk H
i
B(Sp)ν,

and by Grothendieck vanishing theorem HiB(Sp) = 0 for i > 1, as π−1
2 (p) is of

dimension zero or empty (in which case it also holds for i = 1).
Let p be the graded ideal defining the point p and let kp := Ap/pAp be its

residue field. Since HiB(S ⊗A Ap)ν = HiB(S)ν ⊗A Ap, we may replace A by Ap, S
by S ⊗A Ap and S by S ⊗A Ap to assume that A is local with residue field kp.

Next one uses a construction as in [15, Lemma 6.2] to show the existence, for
any finitely generated S-module M and A-module N , of two spectral sequences
with same abutment and second terms:

′
2E
p
q = HpB (TorAq (M,N)) and ′′

2E
p
q = TorAq (H

p
B (M),N).

As the support in S of TorAq (M,N) sits inside the one ofM ⊗A N , one deduces by

choosing M := S and N := kp, first that max{i |HiB(S) �= 0} = max{i |HiB(S ⊗A
kp) �= 0} = 1, and then that H 1

B(S)ν = 0 ⇔ H 1
B(S ⊗A kp)ν = 0 and H 0

B(S)ν =
H 1
B(S)ν = 0 ⇒ H 0

B(S ⊗A kp)ν = 0. ��

4 When the Source Is P1

In this section we focus on maps whose source is a projective line, which covers
the case of rational curves embedded in a projective space of arbitrary dimension.
We first describe how fibers of curve parameterizations can be obtained from
elimination matrices, following the methods introduced in Sect. 3. Then, in the
second part of this section we derive an upper bound for the Castelnuovo-Mumford
regularity of rational curves by means of similar elimination techniques. The
definition of Castelnuovo-Mumford regularity is also quickly reviewed.
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4.1 Matrix Representations

For simplicity, we deviate from general notations and write R := k[x, y]. We
suppose given a rational map

ψ : P1
k → P

r−1
k

(x : y) �→ (f1 : · · · : fr)

where the fi’s are homogeneous polynomials inR of degree d ≥ 1 without common
factor. Then, the image of ψ is a curve C ⊂ P

r−1
k and ψ is a morphism, in other

words it has no base point. A classical intersection theory formula yields the equality

deg(ψ) deg(C) = d.

In this setting, the equations of the symmetric algebra of I = (f1, . . . , fr ) define
the graph of ψ , because, as we assume that the fi’s have no common factor, ψ is
a morphism. By Hilbert-Burch Theorem, these equations have the following nice
structure: these exist non-negative integers μ1, . . . , μr−1 such that

∑r−1
i=1 μi = d

and R/I has a minimal finite free resolution of the form

The columns of the map  yield a basis of the first syzygy module of I . It follows
that the forms L1, . . . , Lr−1 defined as

⎡

⎢⎣
L1
...

Lr−1

⎤

⎥⎦ = t 

⎡

⎢⎣
T1
...

Tr

⎤

⎥⎦

are defining equations of the symmetric algebra SymR(I). Therefore, for any integer
ν the multiplication map

⊕r−1
i=1Rν−μi [T1, . . . Tr ](−1)r−1 (L1,...,Lr−1)−−−−−−−→ Rν[T1, . . . Tr ]

is a presentation of SymR(I)ν by free gradedA-modules (recallA = k[T1, . . . , Tr ]).
We denote by Mν its matrix in some bases and set B := (x, y).
Proposition 4.1 For all ν ≥ maxi �=j {μi+μj },H 0

B(SymR(I))ν = H 1
B(SymR(I))ν =

0. Hence the matrix Mν satisfies

corank(Mν(p)) = deg(ψ−1(p)), ∀p ∈ P
r−1
k .



Fibers of Rational Maps and Elimination Matrices 197

Proof As L1, . . . , Lr−1 form a complete intersection in P
1
k × P

r−1
k , the claimed

vanishing of the local cohomology modules follows from the comparison of two
spectral sequences associated to the Čech-Koszul double complex of L1, . . . , Lr−1
(see [28, §2.10]). The property on the corank of the matrix Mν(p) then follows from
Theorem 3.2. ��
Example 4.2 (Plane Curves) In the case r = 3, the map ψ defines a curve C in the
projective plane and μ1+μ2 = d. In suitable bases, the matrix Md−1 is nothing but
the Sylvester matrix associated to L1 and L2 and we recover here classical results.
In particular, its determinant is equal to F deg(ψ), where F is an implicit equation of
C.

Example 4.3 (Twisted Cubic) Consider the following map whose image is the
twisted cubic

ψ : P1
k → P

3
k

(x : y) �→ (x3 : x2y : xy2 : y3).

In this case μ1 = μ2 = μ3 = 1 and we get the matrix

M1 =
(−T2 −T3 −T4

T1 T2 T3

)
.

Applying Proposition 4.1, we deduce that the twisted cubic is a smooth curve and
ψ is an isomorphism, because corank(M1(p)) ≤ 1 for any p ∈ P

3
k .

4.2 Regularity Estimate for Rational Curves

As illustrated above, presentation matrices of the graded components of the
symmetric algebra SymR(I) provide an interesting computational tool to manip-
ulate rational curves. Let us recall the notion of Castelnuovo-Mumford regularity,
which controls degrees of generators of an ideal, and much more: degrees of all
syzygies (as we will see) and degrees of generators of Groebner bases for reverse
lexicographic order and general coordinates.

4.2.1 The Four Equivalent Definitions of Castelnuovo-Mumford
Regularity

Assume A is a Noetherian ring (hence S = A[x1, . . . , xn] as well) and M is a
finitely generated graded S-module. And assume further that deg(xi) = 1 for all i
and deg(a) = 0 for a ∈ A (standard grading). In what follows, we will denote by
K•(f ;N) the Koszul complex associated to a sequence of elements f on a graded
module N .
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As K•(x1, . . . , xn; S) is a resolution of the S-module A = S/(x1, . . . , xn), by
definition of Tor functors one has first

TorSi (M,A) , Hi(K•(x1, . . . , xn;M)).

By Noetherianity, TorSi (M,A) is a finitely generated graded A-module (hence not
zero in only finitely many degrees). If N is a graded module, we set

end(N) := sup{μ | Nμ �= 0} ∈ Z ∪ {±∞},

write S+ := (x1, . . . , xn) and define

ai(M) := end(H iS+(M)) ∈ Z∪ {−∞}, bj (M) := end(TorSj (M,R)) ∈ Z∪ {−∞}.

Recall that, as M is finitely generated, it is generated in degrees at most b0(M),
and this estimate is optimal. We are now ready to introduce regularity (see [16,
Proposition 2.4] and [15, §2]).

Theorem 4.4 LetM �= 0 be a finitely generated graded S-module. Then,

reg(M) := max
i
{ai(M)+ i} = max

j
{bj (M)− j} = min

FM•
{sup
j

{b0(F
M
j )− j}}

= min
FM•
{max
j≤n {b0(F

M
j )− j}} ∈ Z,

where FM• runs over graded free S-resolutions ofM .

Notice that ai(M) = −∞ unless 0 ≤ i ≤ n and that bj (M) = −∞ unless
0 ≤ j ≤ n. However, FMj could be non zero for any j , even if FM• is a minimal

resolution over a local ring A, unless A is local regular (in which case FMj = 0 for

j > n+ dimA, if FM• is minimal).

Remark 4.5

(1) If A is local (or *local: graded with a unique graded maximal ideal) and FM• is
a minimal graded free S-resolution ofM , then

reg(M) = max
j
{b0(F

M
j )− j} = max

j≤n {b0(F
M
j )− j}.

(2) If d := cdS+(M) := max{i | HiS+(M) �= 0} denotes the cohomological
dimension ofM relatively to S+, then

reg(M) = max
n−d≤j≤n{bj (M)− j}.
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For instance, whenever A is a field andM is Cohen-Macaulay of dimension d,

reg(M) = bn−d(M)− n+ d.

Recall that for a Noetherian local ring (A,m) and a finitely generated A-module
M , cdm(M) = dimM := dim(A/annA(M)): the cohomological dimension with
respect to the maximal ideal is the dimension of the support of the module.

Let us briefly present the geometrical interpretation of the cohomological
dimension with respect to S+. For any prime ideal p ∈ Spec(A), set kp :=
Ap/pAp = Frac(A/p). The stalk of F := M̃ at V (p) is the sheaf defined on
P
n−1
Spec(Ap)

by M ⊗A Ap. The fiber of F at the corresponding point is the sheaf

defined on P
n−1
kp

by M ⊗A kp, with the usual abuse of notations Pn−1
kp
:= P

n−1
Spec(kp)

.
The following result shows in particular that, in our situation, the cohomological
dimension is the maximal dimension of the fibers of the family of sheaves given by
F (plus one, as there is a difference of 1 between the dimension of a graded module
and the one of the sheaf on the projective space it represents).

Lemma 4.6 ([15, Proposition 6.3])

(1) For any p ∈ Spec(A),

HiS+(M)⊗A Ap , HiS+(M ⊗A Ap).

(2) If (A,m, k) is local, then

d : = max
p∈Spec(A)

{dim(M ⊗A Ap/pAp)} = max{i | HiS+(M ⊗A k) �= 0}

= max{i | HiS+(M) �= 0}, andHdS+(M)⊗A k , HdS+(M ⊗A k).

Hence, by (1) and (2), cdS+(M) is the maximal dimension over the prime ideals
p of A (equivalently among the maximal ideals) of the modulesM ⊗A Ap/pAp. In
other words, it is one more than the maximal dimension of support of the fibers of
the family of sheaves F over Spec(A).

The notion of regularity extends to Cox rings, taking cohomology with respect to
B or more generally with respect to any graded S-ideal; we refer the reader to [33]
and [5].

4.2.2 The Regularity Estimate for Rational Curves

For the case of rational curves in a projective space, the next result gives another
application of the matrices introduced in Sect. 4.1, for Castelnuovo-Mumford
regularity estimation. The proof is very much related to the original argument of
L’vovsky [30], which itself relies on work of Gruson, Lazarsfeld and Peskine [25];
our presentation has a more ring theoretic flavor.
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Theorem 4.7 Let ψ : P1
k −→ P

r−1
k be a morphism defined by (f1, . . . , fr ) and

IC be the defining ideal of the image of ψ . If ψ is birational to its image, then∑r−1
i=1 μi = d and

reg(IC) ≤ max
i �=j {μi + μj }.

In particular, reg(S/IC) ≤ deg(C) − codim(C) if the fi’s are linearly independent
(in other words, if the curve C is not sitting in any hyperplane).

Proof Let ρ := maxi �=j {μi + μj }. From Proposition 4.1, it follows that
H 0
(x,y)(SI )μ = 0 for μ ≥ ρ − 1, in particular (SI )μ = (RI )μ for μ ≥ ρ − 1. This

provides a presentation for the A-module (RI )ρ−1:

where, for j corresponding to xayb ∈ A[x, y]ρ−1−μi one has xaybLi =∑ρ
i=1 x

i−1yρ−iLij (T1, . . . , Tr ). We now use the graded presentation of the A-
module (RI )ρ−1 as above

where ! is the matrix of the linear forms Lij . The ideal J := Fitt0A((RI )ρ−1)

is an ideal of A generated in degree ρ (by the maximal minors of !). Let
n := (T1, . . . , Tr ) be the graded irrelevant ideal of A. The conclusion will derive
easily from the two following observations: (1) J = IC ∩ a with V (a) supported
on the finitely many points of C where ψ is not locally invertible (and thus an
isomorphism), (2) reg(J sat ) ≤ ρ.

Indeed, J sat = IC ∩ a′ with V (a) = V (a′), and the exact sequence

0→ IC/J
sat → S/J sat → S/IC → 0

provides an exact sequence

and an isomorphism H 2
n(S/IC) , H 2

n(S/J
sat ), proving that reg(IC) ≤ reg(J sat ).

To prove (1) notice that if z ∈ C is such that π := � → C is locally an
isomorphism at z = V (p), then RI ⊗A Ap , (A/IC)p[x]—in other words,
the defining ideal of RI over (A/IC)[x, y] contains an equation f x + gy with
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f, g ∈ A/IC and g �∈ p. Hence, for any μ ≥ 0, (RI ⊗A Ap)μ , Ap/(IC)p admits a
presentation

where the entries of � are generators of IC ⊗A Ap. It follows that J ⊗A Ap =
IC ⊗A Ap, as Fitting ideals are independent of the presentation. This proves (1).

We now prove (2). The Eagon-Northcott complex E• of the matrix ! has the
form:

We consider the double complex C•n(E•) to estimate the regularity of H0(E•) =
A/J , where the notation C•n(−) stands for the Čech complex with respect to the
ideal n. Setting Hi := Hi(E•), the two spectral sequences have respective second
pages:

As a consequence, H 2
n(A/J ) , Hn−2(H

n
n (E•)) and Hn−1(H

n
n (E•))μ = 0 implies

that H 1
n(A/J )μ = 0. But Hnn (Ep) , Hnn (A(−ρ − p + 1)ap ) for p ≥ 1 vanishes

in degrees > ρ + p − 1 − n. This shows that H 1
n(A/J )μ = 0 for μ > ρ − 2 and

H 2
n(A/J )μ = 0 for μ > ρ − 3. Hence reg(S/J sat ) ≤ ρ − 1, as claimed. ��

5 Morphisms from P
n−1
k

to P
n
k

A morphism has no base point and hence has only finite fibers. In this section, we
will consider morphisms associated to hypersurface parameterizations and present
some results that partially extend to more general situations, in particular to rational
maps whose base locus is of dimension zero (see [8, Section 4]). We keep notations
as in Sect. 2; we consider a morphism

ψ : Pn−1
k → P

n
k

x = (x1 : · · · : xn) �→ (f1(x) : · · · : fn+1(x)),
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and set R := k[x1, . . . , xn], A := k[T1, . . . , Tn+1].
The original approach of Jouanolou in this situation was to notice first

that the Rees algebra is the saturation of the symmetric algebra, i.e. RI =
SymR(I)/H

0
m(SymR(I)) with m = (x1, . . . , xn), and second that SymR(I)

admits a resolution by the approximation complex of cycles, whose graded
components provide free A-resolutions of SymR(I)μ,∗. Hence, given μ ≥ 0 such
thatH 0

m(SymR(I))μ,∗ = 0, one gets a (minimal) free A-resolution of the A-module
(RI )μ,∗, whose annihilator is the ideal of the image.

We briefly recall what the approximation complex (of cycles) is. The two
Koszul complexes K•(f ; S) and K•(T ; S) where f := (f1, . . . , fn+1) and T :=
(T1, . . . , Tn+1), have the same modules Kp = ∧p

Sn+1 , S(n+1
p ) and differentials

d
f• and dT• , respectively. Set Zp(f ; S) := ker(dfp ). It directly follows from the

definitions that dfp−1 ◦ dTp + dTp−1 ◦ dfp = 0, so that dTp (Zp(f ; S)) ⊂ Zp−1(f ; S).
The complex Z• := (Z•(f ; S), dT• ) is the Z-complex associated to the fi’s. Notice
thatZp(f ; S) = S⊗RZp(f ;R),Z0(f ;R) = R,Z1(f ;R) = SyzR(f1, . . . , fn+1),
and the map dT1 is defined by

dT1 : S ⊗R SyzR(f1, . . . , fn+1)→ S

(a1, . . . , an+1) �→ a1T1 + · · · + an+1Tn+1.

The following result, that holds for any finitely generated ideal I in a commuta-
tive ring R, shows the intrinsic nature of the homology of the Z-complex, it is a key
point in proving results on its acyclicity (see [27, Section 4]).

Theorem 5.1 H0(Z•) , SymR(I) and the homology modules Hi(Z•) are
SymR(I)-modules that only depend upon I ⊂ R, up to isomorphism.

Now, we consider graded pieces:

Zν• : · · · −→ A⊗k Z2(f ;R)ν+2d
dT2−→ A⊗k Z1(f ;R)ν+d

dT1−→ A⊗k Z0(f ;R)ν −→ 0

where Zp(f ;R)ν+pd is the part of Zp(f ;R) consisting of elements of the form∑
ai1···ip ei1 ∧· · ·∧ eip with the ai1···ip ’s all of the same degree ν. It is proved in [10,

Theorem 5.2 and Proposition 5.5] that (we refer the reader to [24, Appendix A] for
the notion of determinant of complexes):

Proposition 5.2 Z• is acyclic and for any ν ≥ (n−1)(d−1),H 0
m(SymR(I))ν,∗ =

0. Hence, for such an integer ν, Zν• is a minimal free A-resolution of (RI )ν and
det(Zν• ) = Hδ , where H is the equation of the image and δ the degree of the map
ψ onto its image.
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In addition, it can be seen that for these degrees ν, the fibers of ψ can be obtained
by means of elimination matrices. More precisely, let Mν be a matrix of the first map
of the complex Zν• , i.e. the map of free A-modules

Zν1 = A⊗k Z1(f ;R)ν+d
dT1−→ Zν0 = A⊗k Rν.

Proposition 5.3 Let ν ≥ (n− 1)(d − 1) and suppose given p ∈ P
n
k , then

corank(Mν(p)) = deg(ψ−1(p)).

Proof As the matrix Mν is a presentation matrix of the A-module SymR(I)ν,∗,
according to Theorem 3.2 one has to prove that Him(SymR(I))ν,∗ = 0 for i = 0, 1
and for all ν ≥ (n− 1)(d − 1). This follows from Proposition 5.2 for i = 0 and the
case i = 1 can be proved in the same vain; we refer the reader to the proof of [1,
Proposition 5]. ��

A useful structural result to go further, in particular to get more compact
elimination matrices, is the following. Recall that P denotes the defining ideal
of the Rees algebra RI in S = R[T1, . . . , Tn+1]. We define P〈�〉 as the ideal
generated by equations of the Rees algebra of T -degree at most �. In particular
SymR(I) = S/P〈1〉 and RI = S/P〈�〉 for �� 0.

Proposition 5.4 ([8, Corollary 1]) For every ν ≥ ν0(I ) := reg(I ) − d, the A-
module (RI )ν,∗ admits a minimal graded free A-resolution of the form

· · · → Zνi → · · · → Zν2 → Zν1 ⊕n�=2 (P〈�〉/P〈�− 1〉)ν → Zν0 (1)

with Zνi = A⊗k Zi(f ;R)ν+id .

Notice that Zν1 = (P〈1〉/P〈0〉)ν . In comparison with the admissible degrees in
Proposition 5.2, the gain is potentially quite big in terms of the range of degrees it
concerns due to the following:

Lemma 5.5 ([8, Corollary 3]) The threshold degree ν0(I ) defined in Proposi-
tion 5.4 satisfies the inequalities

⌊
(n− 1)(d − 1)

2

⌋
≤ ν0(I ) ≤ (n− 1)(d − 1).

Moreover, the equality on the left holds if the forms f1, . . . , fn+1 are sufficiently
general and k has characteristic 0.

Above the threshold degree ν0(I ) := reg(I ) − d = reg(R/I) + 1 − d, the
following nice property holds:

(P〈�〉/P〈�− 1〉)ν , (H1)ν+�d ⊗k A[−� ], ∀ν ≥ ν0(I ), ∀� > 1, (2)
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where the brackets stands for degree shifting in the Ti’s and H1 denotes the
first homology module of the Koszul complex K•(f ;R). It turns out that the
isomorphism (2) is very explicit: given a non-Koszul syzygy s := (h1, . . . , hn+1)

with deg(hi) = ν + (� − 1)d, which corresponds to an element in (H1)ν+�d , or
equivalently to the class of h1T1 + · · · + hn+1Tn+1 in P〈1〉/im(dT2 ), one can write
hi =∑

|α|=�−1 ci,αf
α as

deg(hi) ≥ ν0(I )+ (�− 1)d = reg(R/I)+ 1+ (�− 2)d ≥ reg(R/I�−1)+ 1

= end(R/I l−1)+ 1

(see [14, Theorem 1.7.1] for the last above inequality). The map sends s to
the element

∑
i

∑
α ci,αTiT

α . In the other direction, one writes (the class) of
an element of (P〈�〉/P〈� − 1〉)ν in the form

∑
i

∑
α bi,αTiT

α and maps it to
(
∑
α b1,αf

α, . . . ,
∑
α bn+1,αf

α). After checking that both maps are well-defined,
it is clear that one is the inverse of the other. They are called upgrading and
downgrading maps (which refers to the degree in the Ti’s of the elements).

One can interpret (2) as a description of the graded strands of RI , in degrees
at least the threshold degree ν0(I ), purely in terms of syzygies: the non-linear
equations are all obtained by upgrading some non-Koszul syzygies, and this is a one-
to-one correspondence. For the cases of small dimension, it was already observed
previously that incorporating quadratic relations allowed to work in degrees smaller
than (n− 1)(d − 1), hence provides matrix representations of smaller size (but with
quadratic, or linear and quadratic entries); see e.g. [6, 13, 19]. In the general case,
the following result holds.

Theorem 5.6 For every ν ≥ ν0(I ), a matrix Mν of the A-linear map (extracted
from (1))

⊕n�=1 (P〈�〉/P〈�− 1〉)ν −→ Rν[T ] = A(
ν+n−1
n−1 ) (3)

is a matrix representation of the fibers of ψ: for any p ∈ P
n
k , corank(Mν(p)) =

deg(ψ−1(p)). Furthermore, for � > 1, k-bases of (P〈�〉/P〈� − 1〉)ν,� and of
(H1)ν+�d are in one-to-one correspondence via the upgrading and downgrading
maps described above.

Proof The algebra S(ν) := S/(P∗,1 + P≥ν,∗) = SymR(I)/H
0
m(SymR(I))≥ν,∗

satisfies the equalitiesH 0
m(S

(ν))≥ν,∗ = 0 andHim(S
(ν)) = Him(SymR(I)) for i > 0.

As Him(SymR(I))≥ν,∗ = 0 for i > 0 by [8, Theorem 1], the conclusion follows
from [15, 6.3] since Him(S

(ν))≥ν,∗ = 0 for all i. ��
Remark 5.7 In the particular case of a general map from P

2
k to P

3
k (n = 3),

Theorem 5.6 provides a square matrix of quadrics which is a matrix representation
of the fibers: the determinant is the equation of the image and ideals of minors of
different sizes yield a filtration of fibers by their degrees; see [8, §5] for more details.
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6 When the Source Is of Dimension 2

In this section we consider the case of a rational map ψ : P2
k ��� P

3
k defined by

four homogeneous polynomials f1, . . . , f4 of the same degree d ≥ 1. Following
the discussion in Sect. 2.2, the geometric picture is reflected by the inclusions � ⊆
W ⊂ P

2
k×kP3

k , with � = Proj(RI ) andW = Proj(SI ). We are seeking informations
on both the image and the fibers of the second canonical projection π from � to P

3
k .

Following Proposition 2.2, whenever Proj(R/I) ⊆ P
2
k is empty or locally a

complete intersection (for instance reduced, as it is of dimension zero) then � = W .
Actually, components of W can be easily described: besides �, they only differ by
linear subspaces of the form {p} × Lp where p is a point where V (I) is not locally
a complete intersection. Two cases happen:

• V (I) is locally defined at p by the four equations, and not less, in which case
Lp = P

3
k and therefore π(W) = P

3
k ,

• V (I) is locally defined at p by three equations, in which case Lp is a hyperplane
whose equation is given by the specialization at p of any syzygy that does not
specialize to 0, equivalently the specialization of a local relation expressing one
fi in terms of the other three. It can be verified (see [7, Lemma 6]) that this
component has multiplicity equal to the difference between the Hilbert-Samuel
local multiplicity of the ideal and its colength (these being equal if and only if I
is locally a complete intersection).

We keep notations as above, in particular I = (f1, . . . , f4) is a graded ideal
of R generated in degree d. Recall that ai(M) := end(H im(M)) and a∗(M) :=
maxi{ai(M)}, with m = (x1, x2, x3). Finally, in a local ring the notation μ(N)
denotes the minimal number of generators of the module N .

In view of applying Theorem 3.2, a crucial step is to estimate the vanishing
degree of local cohomology with respect to m, which is reflected in the regularity of
SI as a Z-graded A[x1, x2, x3]-module (deg(xi) = 1).

Proposition 6.1 ([1, Proposition 5]) Assume that dim(R/I) ≤ 1 and μ(Ip) ≤ 3
for every prime ideal m � p ⊃ I , then a∗(SI )+ 1 ≤ ν0 := 2(d − 1)− indeg(I sat ),
and

reg(SI ) ≤ ν0,

unless I is a complete intersection of two forms of degree d.

Notice that if I is a complete intersection of two forms, it defines a surjective
map from P

2
k to P

1
k that has no finite fiber. We will be interested by the case where

ψ is generically finite. To understand and compute fibers, Fitting ideals plays a key
role.
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6.1 Fitting Ideals Associated to ψ

From the properties of matrix representations of ψ , we see that for all ν ≥ ν0 the
Fitting ideal Fitt0A((SI )ν) is supported onW and hence provides a scheme structure
onW . Following [36] and [22, V.1.3], it is called the Fitting image of SI by π .

Remark 6.2 Observe that by definition, the ideals Fitt0A((SI )ν) depend upon the
integer ν (they are generated in degree ν) whereas annA((SI )ν) = IZ , with Z :=
π(W) defined by the elimination ideal, for all ν ≥ ν0.

We can push further the study of Fitt0A((SI )ν) by looking at the other Fitting
ideals FittiA((SI )ν), i > 0, since they provide a natural stratification:

Fitt0A((SI )ν) ⊂ Fitt1A((SI )ν) ⊂ Fitt2A((SI )ν) ⊂ · · · ⊂ Fitt
(ν+2

2 )
A ((SI )ν) = A.

These Fitting ideals are actually closely related to the geometric properties of the
parameterization ψ . For simplicity, the Fitting ideals FittiA((SI )ν) will be denoted
Fittiν(ψ). We recall that Fittiν(ψ) ⊂ A is generated by all the minors of size

(
ν+2

2

)−i
of any A-presentation matrix of (SI )ν .
Example 6.3 Consider the following parameterization of the sphere

ψ : P2
C
��� P

3
C

(x1 : x2 : x3) �→ (x2
1 + x2

2 + x2
3 : 2x1x3 : 2x1x2 : x2

1 − x2
2 − x2

3).

It has two base points. Following Theorem 3.2 and Proposition 6.1, matrix repre-
sentations Mν have the expected properties for all ν ≥ 2− 1 = 1. The computation
of M1 yields

M1 =
⎛

⎝
0 T2 T3 −T1 + T4

T2 0 −T1 − T4 T3

−T3 −T1 − T4 0 T2

⎞

⎠ .

A primary decomposition of the 3× 3 minors of M1, i.e. Fitt01(ψ), gives

(T 2
1 − T 2

2 − T 2
3 − T 2

4 ) ∩ (T3, T2, T
2

1 + 2T1T4 + T 2
4 ),

which corresponds to the implicit equation of the sphere plus one embedded double
point (1 : 0 : 0 : −1). Now, a primary decomposition of the 2 × 2 minors of M1,
i.e. Fitt11(ψ), is given by

(T3, T2, T1 + T4) ∩ (T4, T
2

3 , T2T3, T1T3, T
2

2 , T1T2, T
2

1 ),
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which corresponds to the same embedded point (1 : 0 : 0 : −1) plus an
additional component supported at the origin. Finally, the ideal of 1-minors of M1,
i.e. Fitt21(ψ), is supported at V (T1, . . . , T4) and hence is empty as a subscheme of
P

3
k .

The point (1 : 0 : 0 : −1) is actually a singular point of the parameterization
ψ (but not of the sphere itself). Indeed, the line L = (0 : x2 : x3) is a P

1 that is
mapped to the point (x2

2 + x2
3 : 0 : 0 : −(x2

2 + x2
3)). In particular, the base points

of ψ , namely (0 : 1 : i) and (0 : 1 : −i), are lying on this line, and the rest of the
points are mapped to (1 : 0 : 0 : −1). Outside L at the source and P at the target, ψ
is an isomorphism.

Applying Theorem 3.2 with the estimate of Proposition 6.1 gives the following
result that explains the phenomenon just noticed in the example:

Theorem 6.4 Let π : W → P
3
k be the second canonical projection ofW ⊂ P

2
k×P3

k

and p ∈ P
3
k . If dimπ−1(p) ≤ 0 then, for all ν ≥ ν0 := 2(d − 1)− indeg(I sat ),

p ∈ V (Fittiν(ψ))⇔ deg(π−1(p)) ≥ i + 1. (1)

In other words, for any ν ≥ ν0, the Fitting ideals of a matrix representations
stratify the fibers of dimension zero (or empty) by their degrees. One could also
remark that the existence of base points improves the value of ν0 (indeg(I sat ) = 0
when V (I) = ∅); furthermore, it was proved in [7, Proposition 2] that the value of
ν0 is sharp in some sense.

6.2 One Dimensional Fibers

When p is such that the fiber has dimension one, then Theorem 3.2 does not apply
and in fact fails without further assumptions. In the special case we are considering,
one can nevertheless obtain good estimates for the regularity. One way to see this
uses the fact that such a fiber corresponds to a special form of the ideal, namely:

Lemma 6.5 ([1, Lemma 10]) Assume that the fi’s are linearly independent, the
fiber over p := (p1 : p2 : p3 : p4) ∈ P

3
k is of dimension 1, and its unmixed

component is defined by hp ∈ R. Let �p be a linear form with �p(p) = 1 and
set �i(T1, . . . , T4) := Ti − pi�p(T1, . . . , T4). Then, hp = gcd(�1(f ), . . . , �4(f ))

and

I = (�p(f ))+ hp(g1, . . . , g4)

with �i(f ) = hpgi and �p(g1, . . . , g4) = 0. In particular

(�p(f ))+ hp(g1, . . . , g4)
sat ⊆ I sat ⊆ (�p(f ))+ (hp).
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In [1, Theorem 12] an estimate on the regularity of the specialization of the
symmetric algebra and of its Hilbert function (the one of the fiber) is derived, which
is at least one less than the one given for fibers of dimension zero. However, this
does not provide a very easy way to determine or control the fibers of dimension
one.

We now turn to this question using Lemma 6.5 and Jacobian matrices. Let Z
be the finite set of points p ∈ P

3
k having a one-dimensional fiber. Notice that the

unmixed part (i.e. purely one-dimensional part) of a fiber of π : W → P
3
k or π ′ :

� → P
3
k are equal, as the fibers may only differ at points where V (I) is not locally

a complete intersection.
Choose a linear form � = λ1T1 + · · · + λ4T4, with λi ∈ k, not vanishing at

any point of Z (i. e. a plane that does not meet Z) with nonzero first coefficient (a
general form for instance) and set f := λ1f1+· · ·+λ4f4. Then for any point p ∈ Z
with a fiber whose unmixed part is defined by hp ∈ R, there exist gp,1, gp,2, gp,3
such that:

I = (f )+ (hp)(gp,1, gp,2, gp,3).

Examples show that for 4 forms of degree d, one can find birational morphisms with
a least 2d − 2 distinct one-dimensional fibers, hence at least this number of distinct
decompositions of this type (private communication of M. Chardin and Hoa Tran
Quang). On the other hand, the following result gives an upper bound and a way to
determine the one-dimensional fibers:

Theorem 6.6 ([12, 4.4]) Let J (f ) be the Jacobian matrix of the fi’s. Then the ideal
I3(J (f )) of maximal minors of this 3× 4 matrix is generated by 4 forms of degree
3(d−1). If not all zero, the GCD F of these 4 forms is divisible by

∏
z∈Z hz, hence:

∑

z∈Z
deg(hz) ≤ degF ≤ 3(d − 1)− indeg(Syz(I ))

(the degree of a homogeneous syzygy
∑
aifi = 0 is deg(ai) for any i).

We notice that if the characteristic is zero, the Jacobian ideal is not zero, and this
also holds if the characteristic of k doesn’t divide d and k(X) is separable over k(f )
(in other words π is generically étale). The simplest proof of this theorem is by
choosing the generators in the above form for a given z ∈ Z, then to verify that hz
divides each maximal minor (in fact a little more is true, see [12]) and to conclude
using the fact that hz and hz′ have no common factor if z �= z′. The improvement
from 3(d−1) comes from the fact that maximal minors provide a syzygy of the fi’s
via the Euler formula, thus a GCD F of high degree will provide a syzygy of small
degree for the fi’s.

Question 6.7 At this moment, we are not aware of an example with
∑
z∈Z deg(hz) >

2d − 2, and wonder if this can hold or not.
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Theorem 6.6 can be seen as a particular case of the following result for a rational
map ψ from P

m
k to P

n
k , defined on the complement �ψ of the base locus of ψ . It

could be used to detect subvarieties in P
m
k that are contracted to lower dimensional

ones by ψ (see [12, 2.3]):

Proposition 6.8 Suppose that V is a subvariety of Pmk such that V ∩ �ψ �= ∅ and
let r := dimV − dimψ(V ). Then V ⊂ V (Im−r+2(J (f ))), where Im−r+2(J (f )) is
the ideal generated by the (m− r + 2)-minors of J (f ).

7 When the Base Locus Is of Positive Dimension

In this section, we consider the case of a parameterization whose source is of
dimension three. This problem has been recently considered in [2] in order to
compute the orthogonal projections of a point in space onto a parameterized
algebraic surface. The main idea is to consider the congruence of the normal
lines of the surface. Indeed, given a rational surface in P

3
k parameterized by X,

its congruence of normal lines ! is a rational map from X × P
1
k to P

3
k and the

orthogonal projections of a point p ∈ P
3
k on X are in correspondence with the pre-

images of p via !. In comparison with the previous cases where the source was of
dimension one or two, here the base locus may have a one-dimensional component.
In what follows we review the results obtained in [2] with a particular focus on the
new techniques that are used to tackle this new difficulty. It will also provide us the
opportunity to illustrate how to work with blowup algebras over multigraded rings.

Thus, we consider a homogeneous parameterization

! : X × P
1
k ��� P

3
k (1)

ξ × (t : t) �→ (!1 : !2 : !3 : !4) ,

where X stands for the spaces P
2
k or P

1
k × P

1
k over an algebraically closed field

k, and the !i’s are homogeneous polynomials in the coordinate ring of X × P
1
k .

The coordinate ring RX of X is equal to k[w, u, v] or k[u, u; v, v], respectively,
depending on X. The coordinate ring of P1 is denoted by R1 = k[t, t] and hence
the coordinate ring of X × P

1
k is the polynomial ring R := RX ⊗k R1. The

polynomials!1, !2, !3, !4 are hence multihomogeneous polynomials of the same
degree (d, e), where d refers to the degree with respect to X, which can be either an
integer d if X = P

2
k , or a pair of integers (d1, d2) if X = P

1
k × P

1
k .

7.1 The Base Locus

We assume that ! is a dominant map. We denote by I the ideal of R = RX ⊗ R1
generated by the defining polynomials of the map !, i.e. I := (!1, !2, !3, !4).



210 L. Busé and M. Chardin

The irrelevant ideal of X × P
1
k is denoted by B; it is equal to the product of ideals

(w, u, v) · (t, t) if X = P
2
k , or to the product (u, u) · (v, v) · (t, t) if X = P

1
k × P

1
k .

The notation I sat stands for the saturation of the ideal I with respect to the ideal B,
i.e. I sat = (I : B∞).

The base locus of ! is the subscheme of X × P
1
k defined by the ideal I ; it is

denoted by B. Without loss of generality, B can be assumed to be of dimension
at most one, but the presence of a curve component is a possibility after factoring
out the gcd of the !i’s. When dim(B) = 1 we denote by C its top unmixed one-
dimensional curve component. We will need the following definition.

Definition 7.1 The curve C ⊂ X × P
1
k has no section in degree < (a, b) if for any

α < a and β < b, H 0(C,OC(α, β)) = 0.

7.2 Fibers

As we already mentioned previously, a proper definition of the fiber of a point under
! requires to consider the graph of ! and its closure � ⊂ X × P

1
k × P

3
k . Thus, the

fiber of a point p ∈ P
3
k is the subscheme

Fp := Proj(ReesR(I)⊗ κ(p)) ⊂ X × P
1
k, (2)

where κ(p) denotes the residue field of p. As the equations of the Rees algebra
ReesR(I) are in general very difficult to get we also consider the corresponding
symmetric algebra SymR(I) of the ideal I and hence, as a variation of (2) we
introduce the subscheme

Lp := Proj(SymR(I)⊗ κ(p)) ⊂ X × P
1
k (3)

that we call the linear fiber of p. We emphasize that the fiber Fp is always contained
in the linear fiber Lp of a point p, and that they coincide if the ideal I is locally a
complete intersection at p (see Proposition 2.2).

7.3 The Main Theorem

Theorem 3.2 can be used to analyze finite linear fibers of ! following the ideas
we introduced in previous sections. In particular, a similar analysis of the regularity
of these fibers can be done, but there is an additional difficulty that is appearing
if there exists a curve component, C in the base locus B. In order to describe the
multidegrees for which the matrices M(μ,ν) (see Theorem 3.2) of the map ! yields
a representation of its finite fibers, we introduce the following notation.
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Notation 7.2 Let r be a positive integer. For any α = (α1, . . . , αr ) ∈ (Z∪ {−∞})r
we set

E(α) := {ζ ∈ Z
r | ζi ≥ αi for all i = 1, . . . , r}.

It follows that, for any α and β in (Z ∪ {−∞})r , E(α) ∩ E(β) = E(γ ) where
γi = max{αi, βi} for all i = 1, . . . , r , i.e. γ is the maximum of α and β component-
wise.

Theorem 7.3 ([2, Theorem 8]) Assume that we are in one of the two following
cases:

(a) The base locus B is finite, possibly empty,
(b) dim(B) = 1, C has no section in degree < (0, e) and locally at every point

q ∈ Proj(R) = X × P
1
k , the ideal Iq is generated by at most three elements.

Let p be a point in P
3
k such that Lp is finite, then

corank M(μ,ν)(p) = deg(Lp)

for any degree (μ, ν) such that

• if X = P
2
k , (μ, ν) ∈ E(3d − 2, e − 1) ∪ E(2d − 2, 3e − 1).

• if X = P
1
k × P

1
k ,

(μ, ν) ∈ E(3d1 − 1, 2d2 − 1, e − 1) ∪ E(2d1 − 1, 3d2 − 1, e − 1)

∪ E(2d1 − 1, 2d2 − 1, 3e − 1).

7.4 Idea of the Proof of the Main Theorem

If the base locus B of ! is composed of finitely many points, then the proof of
Theorem 7.3 goes along the same lines as the usual strategy developed in [4, 10,
11]. However, if there exists a curve component in B then an additional difficulty
appears. Indeed, if dim(B) = 0 then H 2

B(Hi) = 0 for all i, where Hj denotes the
homology module of the Koszul complex K• of the !i’s over R and HiB(−) the
local cohomology modules with respect to the irrelevant B. If dim(B) = 1 then it
is necessary to control the multidegree at which these homology modules vanish.
Following [2], we describe the main steps and tools to determine such multidegrees.

Proposition 7.4 ([2, Proposition 10]) For any integer i, let Ri ⊆ Z
r be a subset

satisfying

∀j ∈ Z : Ri ∩ Supp(HjB(Ki+j )) = ∅.
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Then, if dimB ≤ 1 the following properties hold for any integer i:

• For all μ ∈ Ri−1, H 1
B(Hi)μ = 0.

• There exists a natural graded map δi : H 0
B(Hi)→ H 2

B(Hi+1) such that (δi)μ is
surjective for all μ ∈ Ri−1 and is injective for all μ ∈ Ri .

In particular,

H 0
B(Hi)μ , H 2

B(Hi+1)μ for all μ ∈ Ri−1 ∩Ri .

The regions Ri are obtained by the computation of cohomology of a product of
projective spaces that is as follows in our case (recall that the Koszul modules Ki+j
are direct sums of shifted copies of R):

Lemma 7.5 ([11, §6]) First, HiB(R) = 0 for all i �= 2, 3, 4. In addition, if X = P
2
k

then RX = k[w, u, v] and

H 2
B(R) , RX ⊗ Ř1, H

3
B(R) , ŘX ⊗ R1, H

4
B(R) , ŘX ⊗ Ř1

where Ř1 = 1
t t
k[t−1

, t−1] and ŘX = 1
wuv
k[w−1, u−1, v−1].

If X = P
1
k × P

1
k then RX = R2 ⊗ R3, where R2 = k[u, u], R3 = k[v, v], and

H 2
B(R) ,

⊕

{i,j,k}={1,2,3},
j<k

Ři ⊗ Rj ⊗ Rk,

H 3
B(R) ,

⊕

{i,j,k}={1,2,3},
j<k

Ri ⊗ Řj ⊗ Řk, H 4
B(R) , Ř1 ⊗ Ř2 ⊗ Ř3

where Ř2 and Ř3 are defined similarly to Ř1.

For the control of vanishing degrees ofH 2
B(Hi), a key ingredient is Serre duality.

To be more precise, we have the following lemma that we state in a little more
generality, when P = P

n1
k × · · · × P

nr
k is a product of projective spaces.

Lemma 7.6 ([2, Lemma 13]) Assume that dim(B) = 1 and that the s + 1 forms
!1, . . . , !s+1 are of the same degree δ. Let C be the unmixed curve component of
B and set p := s − dimP+ 2 and σ := (s + 1)δ− (n1 + 1, · · · , nr + 1). Then, for
all μ ∈ Z

r ,

H 2
B(Hp)μ , H 0(C,OC(−μ+ σ ))∨.

In particular, if C has no section in degree < μ0, for some μ0 ∈ Z
r , then

H 2
B(Hp)μ = 0 for all μ ∈ E((s + 1)δ − (n1, · · · , nr )− μ0).
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Proof As locally at a closed point x ∈ P, the !i’s contain a regular sequence of
length s − 1, and of length s unless x ∈ C, by [9, §1-3] there are isomorphisms

H̃p(σ ) , ˜Exts−1
S (S/I, ωS) , ˜Exts−1

S (S/IC, ωS) , ωC
from which we deduce that

H 2
B(Hp) ,

⊕

μ

H 1(C, ωC(μ− σ )). (4)

Now, applying Serre’s duality Theorem [26, Corollary 7.7] we get

H 1(C, ωC(μ− σ )) , H 0(C,OC(−μ+ σ ))∨,

which concludes the proof. ��
Lemma 7.7 ([2, Lemma 14]) In the setting of Lemma 7.6, let s = dimP and let I ′
be an ideal generated by s general linear combinations of the !i’s. If I sat = I ′sat
then for all μ ∈ Z

r there exists an exact sequence

H 0(C,OC(−μ− δ + σ ))∨ → H 2
B(H1)μ→ H 2

B(S/I)μ−δ → 0.

In particular, if C has no section in degree < μ0, for some μ0 ∈ Z
r , then

H 2
B(H1)μ = 0, ∀μ ∈ E(sδ − (n1, · · · , nr )− μ0) ∩ (δ +R−2).

Proof We will denote by H ′i the ith homology module of the Koszul complex
associated to I ′ ⊂ R. By [9, Corollary 1.6.13] and [9, Corollary 1.6.21] we have the
following graded exact sequence

0→ M → H ′1 → H1 → H ′0(−δ)→ N → 0 (5)

with the property that the modulesM and N are supported on V (B), which implies
that HiB(M) = HiB(N) = 0 for i ≥ 1.

This implies that the sequence

H 2
B(H

′
1)→ H 2

B(H1)→ H 2
B(H

′
0)(−δ)→ 0

is exact. By Lemma 7.6, H 2
B(H

′
1)μ , H 0(C,OC(−μ − δ + σ ))∨ and one verifies

that the equalities H 2
B(H

′
0)(−δ)μ = H 2

B(S/I)(−δ)μ = 0 hold for all μ− δ ∈ R−2.
��

From here, the proof of Theorem 7.3 follows by the usual consideration of the
Čech-Koszul spectral sequences associated to the approximation complex of cycles
of I and comparison between cohomology of Koszul cycles and homologies (see
[2, §4.2] for more details).
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7.5 Curve with No Section in Negative Degree

To apply Theorem 7.3 it is necessary that the curve component in the base locus,
if any, has no section in negative degrees. Therefore, we now discuss when such a
property holds.

A reduced irreducible scheme of positive dimension in a projective space has no
section in negative degrees, this is due to the fact that the section ring is finite over
R and has no non-zero nilpotent element. Over a product of projective spaces it is
typically not the case that the section ring is finitely generated, unless the scheme
is a product of projective schemes. However, for instance using Veronese-Segre
embeddings, one can easily show that it has no section in degrees < 0 (all degrees
are strictly negative), which is sufficient for several applications.

An interesting question is anyhow to understand in which multidegrees a scheme
could have sections in a product of projective spaces, and a closely related question
(equivalent for schemes satisfying S2) is to determine in what twists the top
cohomology of the canonical module is not zero. Another related issue is to
understand, for a projective scheme, if it has sections in negative degrees and what
is the geometric meaning of these. In this direction, we reproduce a result (together
with a proof) showing that symbolic powers of prime ideals determine schemes with
no sections in negative degrees (unless it is of dimension zero).

Lemma 7.8 Let k be a field, C a geometrically reduced curve in P
n
k and t > 0.

Then, the natural map

H 0(Pnk ,OC(t) (ν))→ H 0(Pnk ,OC(t−1) (ν))

is injective for ν < t − 1. In particular H 0(Pnk ,OC(t) (ν)) = 0 for ν < 0 and
H 0(Pnk ,OC(t) ) = H 0(Pnk ,OC).

Proof This is clear for t = 1. Let t ≥ 2. Write I for the defining ideal of C,
I (j) for its j-th symbolic power and ωA/I(j) := Extn−1

A (A/I (j), ωA). For any ν,
(ωA/I (j) )ν = H 0(Pnk , ωC(j) (ν)) and setting −∨ := Homk(−, k),

H 0(Pnk ,OC(j )(ν)) = H 1(Pnk , ωC(j) (−ν))∨ = H 2
m(A/I

(j))∨−ν .

Consider the exact sequence

As ExtnA(A/I
(t−1), ωA) has finite length and the other three modules are Cohen-

Macaulay of dimension two, it gives rise to an exact sequence,

and it remains to show that H 2
m(Extn−1

A (I (t−1)/I (t), ωA))ν = 0 for ν > 1− t .
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First notice that

Extn−1
A (I (t−1)/I (t), ωA) , Extn−1

A (I t−1/I t , ωA) , Extn−1
A (Symt−1

A (I/I 2), ωA),

as I is generically a complete intersection. There is an exact sequence

where K is supported on the locus where C is not a complete intersection.
Furthermore, locally on the smooth locus of C, δ is split injective. One deduces
an exact sequence,

with Kt supported on the non complete intersection locus of C and coker(δt ) of
dimension two. This in turn gives an exact sequence

(ωA/I [t − 1])(n+t−1
n )→ Extn−1

A (Symt−1
A/I (I/I

2), ωA)→ ExtnA(coker(δt ), ωA).

As ExtnA(coker(δt ), ωA) is of dimension at most 1, it follows that the natural map

H 2
m((ωA/I [t − 1]))(n+t−1

n )→ H 2
m(Extn−1

A (Symt−1
A/I (I/I

2), ωA))

is onto. On the other hand, H 2
m(ωA/I )ν , H0(P

n
k ,OC(−ν))∨ = 0 for ν > 0 as C is

reduced. Therefore H 2
m(Extn−1

A (Symt−1
A/I (I/I

2), ωA))ν = 0 for ν > 1 − t , and the
result follows. ��

As, by Bertini theorem, the general hyperplane section Y = X∩H of a (geomet-
rically) reduced scheme X is a (geometrically) reduced scheme of dimension one
less and Y (t) = X(t) ∩H , the exact sequence

gives by induction on the dimension:

Theorem 7.9 If X is a geometrically reduced scheme with all irreducible compo-
nents of positive dimension and t > 0, then

H 0(Pnk ,OX(t) (ν)) = 0, ∀ν < 0,

and H 0(Pnk ,OX(t) ) = k if X is equidimensional and connected in codimension one.

In the case X is irreducible and locally a complete intersection, and k has
characteristic zero, the above result follows from the generalization of Kodaira
vanishing proved in [3, Theorem 1.4]: H�(Pnk ,OX(t) (ν)) = 0 for all ν < 0 and
� < codim(Sing(X)).
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Intersection Ideals of Grade 3
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1 Introduction

Let R be a commutative Noetherian local ring. A celebrated result of Buchsbaum
and Eisenbud [10] states that every Gorenstein ideal in R of grade 3 is generated
by the 2m × 2m Pfaffians of a (2m + 1) × (2m + 1) skew symmetric matrix.
Later, Avramov [2] and Brown [6] independently proved a similar result for almost
complete intersections. Their proofs are based on the fact that an almost complete
intersection ideal is linked to a Gorenstein ideal; this means that their descriptions
of the resolutions depend on certain choices, so they are not coordinate free.
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In this paper we take three approaches to almost complete intersection ideals of
grade 3. They involve different languages, so they can be appreciated by different
audiences. However we show how these three approaches intertwine and influence
each other.

The first approach uses only commutative and linear algebra. The main theorems
about grade 3 almost complete intersection ideals in the local ring R are stated
in Sect. 2. They are proved in Sect. 3 and Appendices A–C by specialization from
the generic case. In the generic case we use the Buchsbaum–Eisenbud Acyclicity
Criterion and a computation with Pfaffians inspired by the Buchsbaum–Eisenbud
Structure Theorems, see Remark 3.4, to construct the minimal free resolutions. We
emphasize that our description of the resolutions in the generic case does not depend
on linkage; this avoids an implicit change of basis present in [6], see Remark 3.8
Under this first and purely algebraic approach all statements are given full proofs;
the next two approaches offer interpretations of the same statements.

The second approach, taken in Sect. 4, is to provide canonical equivariant
forms of almost complete intersections. The ideals one obtains depend on a skew
symmetric matrix and three vectors. This view of almost complete intersections was
reached by analyzing the generic ring R̂gen constructed by Weyman [27]. The idea
was to look for an open set in R̂gen of points where the corresponding resolution is
a resolution of a perfect ideal. This set can be explicitly described as the points
where localization of certain complex over R̂gen is split exact. Calculating this
“splitting form” of an ideal of grade 3 with four generators led to our form of
almost complete intersection. One could use the geometric technique of calculating
syzygies to prove the acyclicity of these complexes but they are identical to those
from the commutative algebra approach so we do not follow through on that. The
advantage of this method is that one can give a geometric interpretation of the zero
set of almost complete intersection ideals. Moreover the fact, first noticed in [2], that
the skew symmetric matrix associated to an almost complete intersection ideal can
be chosen with a 3 × 3 block of zeros on the diagonal is particularly natural under
this approach.

Finally, in Sect. 5, we give a geometric interpretation of both Gorenstein ideals
and almost complete intersections of grade 3. It turns out that they are intersections
of the so-called big open cell with two Schubert varieties of codimension 3 in
the connected component of the orthogonal Grassmannian OGr(n, 2n) of isotropic
subspaces of dimension n in a 2n-dimensional orthogonal space. It is interesting
that in this construction the two Schubert varieties appear together with a regular
sequence by which they are linked. This pattern generalizes from theDn root system
to E6, E7 and E8; see Sam and Weyman [24]. We show that the defining ideals are
exactly the same as in commutative algebra approach, but we indicate how one
could see the graded format of the finite free resolutions just from representation
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theory viewpoint. Also, the fact about three submaximal Pfaffians forming a regular
sequence get a clear geometric interpretation, as one can see geometrically that their
zero set has codimension 3.

2 Almost Complete Intersections Following Avramov
and Brown

For a grade 3 perfect ideal a in a commutative Noetherian local ring (R,m, k), the
minimal free resolution of the quotient ring R/a has the form

F = 0 −→ F3 −→ F2 −→ F1 −→ F0 ,

and we refer to the rank of F3 as the type of R/a; if R is Cohen–Macaulay, then this
is indeed the Cohen–Macaulay type. Throughout the paper we treat quotients of odd
and even type separately.

By a result of Buchsbaum and Eisenbud [10] the minimal free resolution F has
a structure of a skew commutative differential graded algebra. This structure is not
unique, but the induced skew commutative algebra structure on TorR∗ (R/a, k) is
unique. It provides for a classification of quotients R/a as worked out Weyman [26]
and by Avramov, Kustin, and Miller [3].

To state the main theorems about grade 3 almost complete intersection ideals in
local rings we introduce some matrix-related notation.

Notation 2.1 Let M be an m × n matrix with entries in a commutative ring. For
subsets

I = {i1, . . . , ik} ⊆ {1, . . . , m} and J = {j1, . . . , jl} ⊆ {1, . . . , n}

with i1 < · · · < ik and j1 < · · · < jl we write M[i1 . . . ik; j1 . . . jl] for the
submatrix ofM obtained by taking the rows indexed by I and the columns indexed
by J . At times, it is more convenient to specify a submatrix in terms of removal
of rows and columns: The symbol M[i1 . . . ik; j1 . . . jl] specifies the submatrix of
M obtained by removing the rows indexed by I and the columns indexed by J .
These notations can also be combined: For example, M[i1 . . . ik; j1 . . . jl] is the
submatrix obtained by taking the rows indexed by the complement of I and the
columns indexed by J .

For an n× n skew symmetric matrix T , the Pfaffian of T is written Pf(T ). For a
subset {i1, . . . , ik} ⊆ {1, . . . , n} the Pfaffian of the submatrix T [i1 . . . ik; i1 . . . ik] is
written Pfi1...ik (T ) while the Pfaffian of T [i1 . . . ik; i1 . . . ik] is written Pfi1...ik (T ).

Theorem 2.2 Let n � 5 be an odd number. Let (R,m, k) be a local ring and a ⊂ R
a grade 3 almost complete intersection ideal such that R/a is of type n − 3. There
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exists an n× n skew symmetric block matrix

U =
(
O B

−BT A

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 t14 t15. . .

0 0 0 t24 t25. . .

0 0 0 t34 t35. . .

−t14 −t24 −t34 0 t45. . .

−t15 −t25 −t35 −t45 0 . . .
...

...
...

...
...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

with entries in m such that the minimal free resolution of R/a,

F = 0 −→ Rn−3 ∂3−→ Rn
∂2−→ R4 ∂1−→ R ,

has differentials

∂3 =
(
B

A

)
,

∂2 =

⎛

⎜⎜⎝

Pf(A) 0 0 −Pf234(U) Pf235(U) · · · Pf23n(U)

0 Pf(A) 0 −Pf134(U) Pf135(U) · · · Pf13n(U)

0 0 Pf(A) −Pf124(U) Pf125(U) · · · Pf12n(U)

Pf1(U) −Pf2(U) Pf3(U) −Pf4(U) Pf5(U) · · · Pfn(U)

⎞

⎟⎟⎠ ,

and

∂1 =
(−Pf1(U) Pf2(U) −Pf3(U) Pf(A)

)
.

In particular, a is generated by Pf1(U), Pf2(U), Pf3(U), and Pf(A). Moreover, the
multiplicative structure on TorR∗ (R/a, k) is of class H(3, 2) if R/a is of type 2 and
otherwise of class H(3, 0).

The proof of this theorem is given in 3.7 and the next theorem is proved in 3.12.

Theorem 2.3 Let n � 6 be an even number. Let (R,m, k) be a local ring and
a ⊂ R a grade 3 almost complete intersection ideal such that R/a is of type n− 3.
There exists an n × n skew symmetric block matrix U as in Theorem 2.2 such that
the minimal free resolution of R/a,

F = 0 −→ Rn−3 ∂3−→ Rn
∂2−→ R4 ∂1−→ R ,
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has differentials

∂3 =
(
B

A

)
,

∂2 =

⎛

⎜⎜⎜⎝

0 0 0 −Pf1234(U) Pf1235(U) · · · −Pf123n(U)

Pf13(U) −Pf23(U) 0 Pf34(U) −Pf35(U) · · · Pf3n(U)

−Pf12(U) 0 Pf23(U) −Pf24(U) Pf25(U) · · · −Pf2n(U)

0 Pf12(U) −Pf13(U) Pf14(U) −Pf15(U) · · · Pf1n(U)

⎞

⎟⎟⎟⎠ ,

and

∂1 =
(
Pf(U) Pf12(U) Pf13(U) Pf23(U)

)
.

In particular, a is generated by Pf(U), Pf12(U), Pf13(U), and Pf23(U). Moreover,
the multiplicative structure on TorR∗ (R/a, k) is of class T.

The proofs Theorems 2.2 and 2.3 have been deferred to the next section because
we obtain them by specialization of statements about generic almost complete
intersections.

3 Generic Almost Complete Intersections

In this section and the appendices we deal extensively with relations between
Pfaffians of submatrices T [i1 . . . ik; i1 . . . ik] of a fixed skew symmetric matrix T . It
is, therefore, convenient to have the following variation on the notation from 2.1:

pfT (i1 . . . ik) = Pfi1...ik (T ) and pfT (i1 . . . ik) = Pfi1...ik (T ) . (3.0.1)

It emphasizes the subset, which changes, over the matrix, which is fixed; for
homogeneity we set pfT = Pf(T ).

Setup 3.1 Let n be a natural number and R = Z[τij | 1 � i < j � n] the
polynomial algebra in indeterminates τij over Z. Let T be the n×n skew symmetric
matrix with entries T [i; j ] = τij = −T [j ; i] for 1 � i < j � n and zeros on the
diagonal. It looks like this:

T =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 τ12 τ13 τ14 . . .

−τ12 0 τ23 τ24. . .

−τ13 −τ23 0 τ34. . .

−τ14 −τ24 −τ34 0 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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Lemma 3.2 Adopt the setup from 3.1 and denote by M the ideal generated by the
indeterminates τij . Let ∂ : Rn−3 −→ Rn be the linear map given by the matrix
T [1 . . . n; 4 . . . n]. One has ∂(Rn−3) ∩M2Rn = ∂(MRn−3).

Proof Let g4, . . . , gn and f1, . . . fn be the standard bases for the free modules Rn−3

and Rn. Let x =∑n
i=4 aigi be an element of Rn−3; one has

∂(x) =
n∑

i=4

ai

( i−1∑

j=1

τjifj −
n∑

j=i+1

τij fj

)
=

n∑

j=1

( j−1∑

i=4

−aiτij +
n∑

i=j+1

aiτji

)
fj .

Thus, if ∂(x) is contained in M2Rn, then all the elements aiτij and aiτji belong to
M2, which implies that the every ai is in M. Thus, ∂(Rn−3) ∩M2Rn is contained
in ∂(MRn−3), and the opposite containment is trivial. ��

3.1 Quotients of Even Type

Theorem 3.3 Let n � 5 be an odd number; consider the ring R and the n × n
matrix T from 3.1. The homomorphisms given by the matrices

∂3 = T [1 . . . n; 4 . . . n] ,

∂2 =

⎛

⎜⎜⎜⎝

pfT (123) 0 0 − pfT (234) pfT (235) · · · pfT (23n)
0 pfT (123) 0 − pfT (134) pfT (135) · · · pfT (13n)
0 0 pfT (123) − pfT (124) pfT (125) · · · pfT (12n)

pfT (1) − pfT (2) pfT (3) − pfT (4) pfT (5) · · · pfT (n)

⎞

⎟⎟⎟⎠ ,

and

∂1 =
(− pfT (1) pfT (2) − pfT (3) pfT (123)

)
,

define an exact sequence

F = 0 −→ Rn−3 ∂3−→ Rn ∂2−→ R4 ∂1−→ R .

That is, denoting by An the ideal generated by the entries of ∂1, the complex F is a
free resolution of R/An. Moreover, the ideal An is perfect of grade 3.

The proof of this theorem relies on a series of technical results that we defer to
Appendix C. The proof shows how they come together.

Proof It follows from Lemma C.1 that F is a complex. The expected ranks of the
homomorphisms ∂3, ∂2, and ∂1 are n−3, 3, and 1. To show that the complex is exact
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at Rn−3, Rn, and R4 it suffices by the Buchsbaum–Eisenbud Acyclicity Criterion
[8] to verify the inequalities

gradeR(In−3(∂3)) � 3 , gradeR(I3(∂2)) � 2 , and gradeR(I1(∂1)) � 1 ,

where as usual Ir (∂) denotes the ideal generated by the r × r minors of ∂ . By
Lemma C.2 the ideal I1(∂1) = An has grade at least 3. By Lemma C.3 the radical√
An is contained in

√
In−3(∂3), so gradeR(In−3(∂3)) � gradeR(An) � 3 holds.

By Proposition C.4, the generators of I3(∂2) are products of generators of the ideals
In−3(∂3) and I1(∂1) = An. It follows that the radical

√
I3(∂2) contains

√
An, so one

also has gradeR(I3(∂2)) � 3. Thus, F is a free resolution of R/An; in particular,
the projective dimension of R/An is at most 3. As the grade of An is at least 3, it
follows that An is perfect of grade 3. ��

The following commentary also applies to the proof of Theorem 3.9.

Remark 3.4 The proof of Theorem 3.3 is based on establishing containments
among radicals to ensure that the rank conditions in the Buchsbaum–Eisenbud
Acyclicity Criterion are met; per [9, Theorem 2.1] the conclusion that F is exact
implies that the radicals

√
In−3(∂3),

√
I3(∂2), and

√
I1(∂1) agree.

The inspiration for the pivotal Proposition C.4 came from the same paper, namely
from the Buchsbaum–Eisenbud Structure Theorems which, in the guise of [9,
Corollary 5.1], say that for F to be a resolution the equality In−3(∂3)I1(∂1) = I3(∂2)

must hold. The vehicle for the proof of Proposition C.4 is a relation between the sub-
Pfaffians and general minors of a skew symmetric matrix; it was first discovered by
Brill [4] and reproved by us in [11] using Knuth’s [17] combinatorial approach to
Pfaffians in the same vein as in Appendices A–C.

As noticed in [2] one can replace the upper left 3× 3 block in T with a block of
zeros without changing the ideal An.

Lemma 3.5 Let n � 5 be an odd number and T = (tij ) an n × n skew symmetric
matrix with entries in a commutative ring R. Let U be the matrix obtained from T
by replacing the upper left 3× 3 block by a block of zeros; i.e.

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 t14 t15 . . .

0 0 0 t24 t25. . .

0 0 0 t34 t35. . .

−t14 −t24 −t34 0 t45. . .

−t15 −t25 −t35 −t45 0 . . .
...

...
...

...
...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

There is an equality of ideals in R,

(
Pf1(T ) , Pf2(T ) , Pf3(T ) , Pf123(T )

) = (
Pf1(U) , Pf2(U) , Pf3(U) , Pf123(U)

)
.
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Proof Notice that Pf12i (T ) = Pf12i (U) holds for i ∈ {3, . . . , n}. Lemma A.2
applied with u1 . . . uk = 2 . . . n and � = 1 now yields

Pf1(T ) =
n∑

i=3

t2i (−1)i−1 Pf12i (T )

= t23 Pf123(U)+
n∑

i=4

t2i (−1)i−1 Pf12i (U) = t23 Pf123(U)+ Pf1(U) .

Similarly, one gets

Pf2(T ) =
n∑

i=3

t1i (−1)i−1 Pf12i (T )

= t13 Pf123(U)+
n∑

i=4

t1i (−1)i−1 Pf12i (U) = t13 Pf123(U)+ Pf2(U)

and

Pf3(T ) = t12 Pf123(T )+
n∑

i=4

t1i (−1)i−1 Pf13i (T )

= t12 Pf123(U)+
n∑

i=4

t1i (−1)i−1 Pf13i (U) = t12 Pf123(U)+ Pf3(U) .

The asserted equality of ideals is immediate from these three expressions. ��
Proposition 3.6 Let n � 5 be an odd number. Consider the ring R and the n × n
matrix T from 3.1 as well as the ideal An from Theorem 3.3. Let U be the matrix
obtained from T by replacing the upper left 3× 3 block by a block of zeros; i.e.

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 τ14 τ15 . . .

0 0 0 τ24 τ25. . .

0 0 0 τ34 τ35. . .

−τ14 −τ24 −τ34 0 τ45. . .

−τ15 −τ25 −τ35 −τ45 0 . . .
...

...
...

...
...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The homomorphisms given by the matrices

∂3 = U[1 . . . n; 4 . . . n] ,

∂2 =

⎛

⎜⎜⎜⎝

pfU (123) 0 0 − pfU (234) pfU (235) · · · pfU (23n)
0 pfU (123) 0 − pfU (134) pfU (135) · · · pfU (13n)
0 0 pfU (123) − pfU (124) pfU (125) · · · pfU (12n)

pfU (1) − pfU (2) pfU (3) − pfU (4) pfU (5) · · · pfU (n)

⎞

⎟⎟⎟⎠ ,

and

∂1 =
(− pfU (1) pfU (2) − pfU (3) pfU (123)

)
,

define a free resolution L = 0 −→ Rn−3 ∂3−→ Rn ∂2−→ R4 ∂1−→ R of R/An. In
particular, the ideal An is generated by pfU (1), pfU (2), pfU (3), and pfU (123).

Proof By Lemma 3.5 one has

(
pfU (1), pfU (2), pfU (3), pfU (123)

) = (
pfT (1), pfT (2), pfT (3), pfT (123)

) = An .

Next we show how to obtain the free resolution L from the resolution F from
Theorem 3.3. To distinguish the differentials on the resolutions we introduce
superscripts L and F . Consider the matrix

S =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
τ23 −τ13 τ12 1

⎞

⎟⎟⎠ with inverse S−1 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
−τ23 τ13 −τ12 1

⎞

⎟⎟⎠ .

As in the proof of Lemma 3.5 one has

pfT (1) = τ23 pfU (123)+ pfU (1) , (1)

pfT (2) = τ13 pfU (123)+ pfU (2) , (2)

pfT (3) = τ12 pfU (123)+ pfU (3) , and (3)

pfT (123) = pfU (123) . (4)

These identities show that one has ∂L1 = ∂F1 S. Thus, the matrices

∂F3 , S−1∂F2 , and ∂F1 S

determine a free resolution of R/An. As the submatrices ∂L3 = U [1 . . . n; 4 . . . n]
and ∂F3 = T [1 . . . n; 4 . . . n] agree, it suffices to show that ∂L2 = S−1∂F2 holds.
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For indices 1 � i � n one has

pfT (12i) = pfU (12i) , pfT (13i) = pfU (13i) , and pfT (23i) = pfU (23i) .

It follows that the first three rows in the matrices ∂L2 , ∂F2 , and S−1∂F2 agree. We now
focus of the fourth rows of ∂L2 and S−1∂F2 . The first three entries in the fourth rows
agree by the identities (1), (2), and (3). Now fix j ∈ {4, . . . , n}. Another application
of Lemma A.2 yields

pfT (j) = τ12 pfT (12j)− τ13 pfT (13j)

+
j−1∑

i=4

(−1)iτ1i pfT (1ij)+
n∑

i=j+1

(−1)i−1τ1i pfT (1ij) .

One has pfT (1ij) = τ23 pfT (123ij)+pfU (1ij), again by Lemma A.2, and therefore

pfT (j)− τ12 pfT (12j)+ τ13 pfT (13j)

= τ23

( j−1∑

i=4

(−1)iτ1i pfT (123ij)+
n∑

i=j+1

(−1)i−1τ1i pfT (123ij)
)

+
j−1∑

i=1

(−1)iτ1i pfU (1ij)+
n∑

i=j+1

(−1)i−1τ1i pfU (1ij)

= τ23 pfT (23j)+ pfU (j) ,

where the last equality follows from two applications of Lemma A.2. This identity
shows that the fourth row entries of ∂L2 and S−1∂F2 agree in column j . ��

One could also establish Proposition 3.6 as follows: After invoking Lemma 3.5,
repeat the proof of Theorem 3.3 noticing at every step that the conclusions remain
valid after evaluation at τ12 = τ13 = τ23 = 0.

3.7 Proof of Theorem 2.2 An almost complete intersection ideal of grade 3 is
by [10, Proposition 5.2] linked to a Gorenstein ideal of grade 3, and Brown [6,
Proposition 4.3] uses this to show that there exits a skew symmetric matrix T with
entries in m such that a is generated by the Pfaffians Pf1(T ), Pf2(T ), Pf3(T ), and
Pf123(T ). Lemma 3.5 shows than one can replace the upper left 3 × 3 block in T
with zeroes and arrive at the asserted block matrix U .

Adopt Setup 3.1. Let R→ R be given by τij �→ tij ; it makesR an R-algebra and
maps Pfaffians of submatrices of T to the corresponding Pfaffians of submatrices of
U , i.e. pfT (123) maps to Pf123(U) etc. Let F be the free resolution of R/An from
Theorem 3.3. As one has R/a = R/An ⊗R R and a has grade 3 it follows from
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Bruns and Vetter [7, Theorem 3.5] that

F = F ⊗R R (0)

is a free resolution of R/a over R, and it is minimal as the differentials are given by
matrices with entries in m.

We now establish parts of a multiplicative structure on F : just enough to
determine the multiplicative structure on the k-algebra TorR∗ (R/a, k). Let e1, . . . , e4,
f1, . . . , fn, and g1, . . . , gn−3 be the standard bases for the free modules F1, F2, and
F3. From the three obvious Koszul relations one gets

∂2(e4e1) = Pf123(U)e1 + Pf1(U)e4 = ∂2(f1) ,

∂2(e4e2) = Pf123(U)e2 − Pf2(U)e4 = ∂2(f2) , and

∂2(e4e3) = Pf123(U)e3 + Pf3(U)e4 = ∂2(f3) .

Thus one can set

e4e1 = f1 , e4e2 = f2 , and e4e3 = f3 . (1)

These three products in F induce non-trivial products in TorRR/a(∗, k). Applying
Lemma A.2 the same way as in the proof of Lemma 3.5 one gets:

∂2(e1e2) = −Pf1(U)e2 − Pf2(U)e1 = ∂2

( n∑

i=4

t3ifi

)
,

∂2(e2e3) = Pf2(U)e3 + Pf3(U)e2 = ∂2

( n∑

i=4

t1ifi

)
, and

∂2(e3e1) = −Pf3(U)e1 + Pf1(U)e3 = ∂2

( n∑

i=4

t2ifi

)
.

Thus one can set

e1e2 =
n∑

i=4

t3ifi , e2e3 =
n∑

i=4

t1ifi , and e3e1 =
n∑

i=4

t2ifi . (2)

The products (2) induce trivial products in TorR∗ (R/a, k). We have now accounted
for all products of elements from F1, so R/a is of class H(3, q), where q denotes
the dimension of the subspace TorR1 (R/a, k) ·TorR2 (R/a, k) of TorR3 (R/a, k); see [3,
Theorem 2.1].
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For j ∈ {1, 2, 3} one has

∂3(e4fj ) = Pf123(U)fj − e4
(

Pf123(U)ej ± Pfj (U)e4
) = 0

by (1). Since ∂3 is injective, one has

e4f1 = e4f2 = e4f3 = 0 .

For j ∈ {4, . . . , n} one gets

∂3(e4fj ) = Pf123(U)fj

+ (−1)j e4
(

Pf23j (U)e1 + Pf13j (U)e2 + Pf12j (U)e3 Pfj (U)e4
)

= (−1)j
(

Pf23j (U)f1 + Pf13j (U)f2 + Pf12j (U)f3
)− Pf123(U)fj ,

(3)

again by (1). Thus, for n � 7 one has ∂3(e4fj ) ∈ m2F2. In this case it follows from
Lemma 3.2 and (0) that there is an element xj ∈ mF3 with ∂3(xj ) = ∂3(e4fj ), so
by injectivity of ∂3 one has e4fj = xj ; in particular this product induces a trivial
product in TorR∗ (R/a, k). For n = 5 one has j ∈ {4, 5} and (3) specializes to

∂3(e4f4) = t15f1 + t25f2 + t35f3 − t45f4 = ∂3(g2) and

∂3(e4f5) = −(t14f1 + t24f2 + t34f3 + t45f5) = −∂3(g1) .

As ∂3 is injective, this shows that in this case one has

e4f4 = g2 and e4f5 = −g1 .

To prove the assertion about the multiplicative structure on TorR∗ (R/a, k), it suffices
to show that there are no further non-zero products in TorR1 (R/a, k) · TorR2 (R/a, k).
To this end it suffices by Lemma 3.2 and (0) to shows that ∂3(eifj ) belongs to m2F2
for indices 1 � i � 3 and 1 � j � n. For 1 � i, j � 3 one has

∂3(eifj ) = (−1)i Pfi (U)fj − ei
(

Pf123(U)ej + (−1)j−1 Pfj (U)e4
)
.

This is indeed in m2F2 as Pfi (U) and Pfj (U) belong to m2, and eiej ∈ mF2 by (2).
For indices 1 � i � 3 and 4 � j � n one has

∂3(eifj ) = (−1)i Pfi (U)fj

− ei(−1)j−1( Pf23j (U)e1 + Pf13j (U)e2 + Pf12j (U)e3 + Pfj (U)e4
)
.
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As above Pfi (U) and Pfj (U) belong to m2, and the products eie1, eie2, and eie3
belong to mF2 by (2). ��

3.2 Quotients of Odd Type

Remark 3.8 In Brown’s work [6], the statements to the effect that all almost
complete intersection ideals come from skew symmetric matrices—Propositions 4.2
and 4.3 in loc. cit. as cited in our proofs of Theorems 2.2 and 2.3—are separated
from the descriptions of the free resolutions: Propositions 3.2 and 3.3 in loc. cit. The
proofs of all four statements in [6] rely on the fact from [10] that almost complete
intersection ideals are linked to Gorenstein ideals, but compare the proofs of [6,
Propositions 3.2 and 4.2] for almost complete intersections of odd type: The linking
sequence used in the description of the free resolution is different from the one used
to associate a skew symmetric matrix; a change of basis argument is thus required to
reconcile the two. Our explicit construction of the free resolution in the generic case,
Theorems 3.3 and 3.9, allows us to avoid such issues in the proofs of Theorems 2.2
and 2.3.

Theorem 3.9 Let n � 6 be an even number; consider the ring R and the n × n
matrix T from 3.1. The homomorphisms given by the matrices

∂3 = T [1 . . . n; 4 . . . n] ,

∂2 =

⎛

⎜⎜⎜⎝

0 0 0 − pfT (1234) pfT (1235) · · · − pfT (123n)

pfT (13) − pfT (23) 0 pfT (34) − pfT (35) · · · pfT (3n)

− pfT (12) 0 pfT (23) − pfT (24) pfT (25) · · · − pfT (2n)

0 pfT (12) − pfT (13) pfT (14) − pfT (15) · · · pfT (1n)

⎞

⎟⎟⎟⎠ ,

and

∂1 =
(
pfT pfT (12) pfT (13) pfT (23)

)

define an exact sequence

F = 0 −→ Rn−3 ∂3−→ Rn ∂2−→ R4 ∂1−→ R .

That is, denoting by An the ideal generated by the entries of ∂1, the complex F is a
free resolution of R/An. Moreover, the ideal An is perfect of grade 3.

Proof The proof of Theorem 3.3 applies, one only needs to replace the references
to C.1–C.4 with references to C.5–C.8. ��
Lemma 3.10 Let n � 6 be an even number and T = (tij ) an n×n skew symmetric
matrix with entries in a commutative ring R. Let U be the matrix obtained from T
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by replacing the upper left 3× 3 block by a block of zeros; see Lemma 3.5. There is
an equality of ideals in R

(
Pf(T ) , Pf12(T ) , Pf13(T ) , Pf23(T )

) = (
Pf(U) , Pf12(U) , Pf13(U) , Pf23(U)

)
.

Proof First notice that one has

Pf12(T ) = Pf12(U), Pf13(T ) = Pf13(U), and Pf23(T ) = Pf23(U). (1)

Lemma A.2 applied with u1 . . . uk = 1 . . . n and � = 1 yields

Pf(T ) =
n∑

i=2

t1i (−1)i Pf1i (T )

= t12 Pf12(T )− t13 Pf13(T )+
n∑

i=4

t1i (−1)i Pf1i (T ) .

(2)

For i � 4 the same lemma applied with u1 . . . uk = 2 . . . n \ i and � = 2 yields

Pf1i (T ) = t23 Pf123i (T )+ Pf1i (U) . (3)

From (2), (3), and further applications of A.2 one now gets

Pf(T )− t12 Pf12(T )+ t13 Pf13(T )

= t23

n∑

i=4

t1i (−1)i Pf123i (T )+
n∑

i=4

t1i (−1)i Pf1i (U)

= t23 Pf23(T )+ Pf(U) .

(4)

The asserted equality of ideals is immediate from (1) and (4). ��
Proposition 3.11 Let n � 6 be an even number. Consider the ring R and the n× n
matrix T from 3.1 as well as the ideal An from Theorem 3.9. Let U be the matrix
obtained from T by replacing the upper left 3 × 3 block by a block of zeros; see
Proposition 3.6. The homomorphisms given by the matrices

∂3 = U[1, . . . , n; 4, . . . , n] ,

∂2 =

⎛

⎜⎜⎜⎝

0 0 0 − pfU (1234) pfU (1235) · · · − pfU (123n)
pfU (13) − pfU (23) 0 pfU (34) − pfU (35) · · · pfU (3n)
− pfU (12) 0 pfU (23) − pfU (24) pfU (25) · · · − pfU (2n)

0 pfU (12) − pfU (13) pfU (14) − pfU (15) · · · pfU (1n)

⎞

⎟⎟⎟⎠
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and

∂1 =
(
pf[ U ] pfU (12) pfU (13) pfU (23)

)

define a free resolution L = 0 −→ Rn−3 ∂3−→ Rn ∂2−→ R4 ∂1−→ R of R/An. In
particular, the ideal An is generated by pf[ U ], pfU (12), pfU (13), and pfU (23).

Proof By Lemma 3.10 one has

(
pf[ U ], pfU (12), pfU (13), pfU (23)

) = (
pfT , pfT (12), pfT (13), pfT (23)

) = An .

As in the proof of Proposition 3.6, we proceed to show how the free resolution L is
obtained from the resolution F from Theorem 3.9. To distinguish the differentials
on the resolutions we introduce superscripts L and F . Consider the matrix

S =

⎛

⎜⎜⎝

1 0 0 0
−τ12 1 0 0
τ13 0 1 0
−τ23 0 0 1

⎞

⎟⎟⎠ with inverse S−1 =

⎛

⎜⎜⎝

1 0 0 0
τ12 1 0 0
−τ13 0 1 0
τ23 0 0 1

⎞

⎟⎟⎠ .

Notice that one has

pfT (12) = pfU (12), pfT (13) = pfU (13), and pfT (23) = pfU (23). (1)

As in the proof of Lemma 3.10 one gets

pfT = τ23 pfT (23)+ pf[ U ] . (2)

These identities yield ∂L1 = ∂F1 S. Thus, the matrices ∂F3 , S−1∂F2 , and ∂F1 S
determine a free resolution of R/An. As the matrices ∂L3 and ∂F3 agree, it suffices
to show that ∂L2 = S−1∂F2 holds.

By (1) the first three columns of the matrices ∂L2 , ∂F2 , and S−1∂F2 agree. For
indices 1 � i � n one has pfT (123i) = pfU (123i), so also the top rows in the
matrices ∂L2 , ∂F2 , and S−1∂F2 agree. Now fix i ∈ {4, . . . , n}. The (4, i) entry in the
matrix S−1∂F2 is

τ23(−1)i−1 pfT (123i)+ (−1)i pfT (1i) .

To see that this is indeed (−1)i−1 pfU (123i), the (4, i) entry in ∂L2 , apply
Lemma A.2 with u1 . . . uk = 2 . . . n \ i and � = 2 to get

pfT (1i) = τ23 pfT (123i)+ pfU (1i) .
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Similar applications of Lemma A.2 yield the identities

pfT (2i) = τ13 pfT (123i)+ pfU (2i) and pfT (3i) = τ12 pfT (123i)+ pfU (3i) ,

which show that also the (3, i) and (2, i) entries in the two matrices agree. ��
3.12 Proof of Theorem 2.3 An almost complete intersection ideal of grade 3 is

by [10, Proposition 5.2] linked to a Gorenstein ideal of grade 3, and Brown [6,
Proposition 4.2] uses this to show that there exits a skew symmetric matrix T with
entries in m such that a is generated by the Pfaffians Pf(T ), Pf12(T ), Pf13(T ), and
Pf23(T ). Lemma 3.10 shows than one can replace the upper left 3 × 3 block in T
with zeroes and arrive at the asserted block matrix U . Adopt Setup 3.1 and let F be
the free resolution of R/An from Theorem 3.9. As in the proof of Theorem 2.2 one
sees that

F = F ⊗R R (0)

is a minimal free resolution of R/a over R.
As in the proof of Theorem 2.2 we proceed to determine enough of a multiplica-

tive structure on F to recognize the multiplicative structure on TorR∗ (R/a, k). Let
e1, . . . , e4, f1, . . . , fn, and g1, . . . , gn−3 be the standard bases for the free modules
F1, F2, and F3. From the three obvious Koszul relations one gets

∂2(e2e3) = Pf12(U)e3 − Pf13(U)e2 = ∂2(−f1) ,

∂2(e3e4) = Pf13(U)e4 − Pf23(U)e3 = ∂2(−f3) , and

∂2(e4e2) = Pf23(U)e2 − Pf13(U)e4 = ∂2(−f2) .

Thus one can set

e2e3 = −f1 , e3e4 = −f3 , and e4e2 = −f2 . (1)

These three products in F induce non-trivial products in TorR∗ (R/a, k). Repeated
applications of Lemma A.2 yield:

∂2(e1e2) = Pf(T )e2 − Pf12(U)e1

= −
( n∑

i=4

t3i (−1)i Pf123i (U)
)
e1 +

( n∑

i=4

t3i (−1)i Pf3i (U)
)
e2

= ∂2

( n∑

i=4

t3ifi

)
,
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∂2(e1e3) = Pf(T )e3 − Pf13(U)e3 = ∂2

( n∑

i=4

t2ifi

)
, and

∂2(e1e4) = Pf(T )e4 − Pf23(U)e1 = ∂2

( n∑

i=4

t1ifi

)
.

Thus one can set

e1e2 =
n∑

i=4

t3ifi , e1e3 =
n∑

i=4

t2ifi , and e1e4 =
n∑

i=4

t1ifi . (2)

The products (2) induce trivial products in TorR∗ (R/a, k). We have now accounted
for all products of elements from F1. To prove that R/a is of class T it suffices to
show that all products of the form eifj induce the zero product in TorR∗ (R/a, k);
see [3, Theorem 2.1]. To this end, it suffices by Lemma 3.2 and (0) to shows that
∂3(eifj ) belongs to m2F2 for all indices 1 � i � 4 and 1 � j � n. One has

∂3(eifj ) = ∂1(ei)fj − ∂2(fj )ei .

For all i one has ∂1(ei) ∈ m2, and for 1 � j � 3 also ∂2(fj ) belongs to m2. For
4 � j � n one has

∂2(fj )ei = (−1)j−1( Pf123j (U)e1 − Pf3j (U)e2 + Pf2j (U)e3 − Pf1j (U)e4
)
ei .

This too is in m2F2 as the coefficients Pf1j (U), Pf2j (U), and Pf3j (U) belong to m2

and the product e1ei is in mF2. ��

4 The Equivariant Form of the Format (1, 4, n, n − 3)

In this section we give an equivariant interpretation of generic four generated perfect
ideals of codimension three. These ideals were already considered from a purely
algebraic point of view in Sect. 3, and they will be treated as linear sections of
Schubert varieties in Sect. 5.

4.1 Quotients of Even Type

Let n = 2m + 3 where m is a natural number. Consider a 2m × 2m generic skew
symmetric matrix A = (cij ) and a 3× 2m generic matrix B = (uki). Thus we work
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over a ring

A = SymZ(
∧2
F ⊕ F ⊗G) ∼= Z[cij , uki]

where F = Z
2m and G = Z

3 are free Z-modules. The ring A has an obvious
bigrading with |cij | = (1, 0) and |uki | = (0, 1).
Proposition 4.1 Let {g1, . . . , g2m} be a basis for F and set

C =
∑

1�i<j�2m

cij gi ∧ gj and uk =
2m∑

i=1

ukigi for 1 � k � 3 .

We denote by Cj the j th exterior power in
∧2j

F . The ideal

In = (Cm,Cm−1 ∧ u1 ∧ u2, C
m−1 ∧ u1 ∧ u3, C

m−1 ∧ u2 ∧ u3)

is a grade 3 almost complete intersection ideal of type 2m = n− 3.

Proof The exterior powers Cj have a natural description in terms of Pfaffians of the
matrix A,

Cj =
∑

1�i1<···<i2j�2m

Pfi1...i2j (A) · gi1 ∧ . . . ∧ gi2j .

Plugging these in, we see that we get the generators of the ideals described in this
proposition from the matrix U in Proposition 3.6 via the substitutions cij = τi+3,j+3
and ui,j = τi,j+3. ��

Let us work out the minimal free resolution of the ideal defined above.

Proposition 4.2 Let n = 2m + 3 and In be the ideal from Proposition 4.1. The
minimal graded free resolution of the cyclic A-module A/In is

F• : 0 −→ F ⊗ (
2m∧
F)⊗2 ⊗

3∧
G⊗A(−2m+ 1,−3)

∂3−→

(

2m∧
F)⊗2 ⊗

2∧
G⊗A(−2m+ 1,−2)⊕

2m∧
F ⊗

2m−1∧
F ⊗

3∧
G⊗A(−2m

+2,−3)
∂2−→

2m∧
F ⊗A(−m, 0)⊕

2m∧
F ⊗

2∧
G⊗A(−m+ 1,−2)

∂1−→ A.
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The differentials ∂3, ∂2, ∂1 are described in the proof below. For every field k the
resolution F• ⊗Z k is minimal over

Ak = SymZ(
∧2
F ⊕ F ⊗G) ∼= k[cij , uki] ,

with F = F ⊗Z k andG = G⊗Z k. The ideal In⊗Z k is thus perfect of grade three.

Proof Let us first describe the differentials in the complex F• in this setting. The
last differential ∂3 is just a (2m+ 3)× 2m matrix with the 2m× 2m block given by
the matrix A and the 3× 2m block given by the matrix B. The differential ∂2 can be
expressed in block form as

∂2 =
(
A11 A12

A21 A22

)

where A21 is given by multiplication by the representation
∧2m

F occurring in the
degree (m, 0) component of A. The matrix A22 is given by multiplication by the
representation

∧2m−1
F ⊗ G occurring in the degree (m − 1, 1) of A. The matrix

A11 is given by multiplication by the representation
∧2m

F ⊗∧2
G occurring in

the degree (m − 1, 2) component of A and A12 is given by multiplication by the
representation

∧2m−1
F ⊗ ∧3

G occurring in the degree (m − 2, 3) component
of A. The relations coming from the second summand are three Koszul relations
between the last generator and the three others. The differential ∂1 is given by the
generators of In.

The matrices of the differentials are:

∂3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11 u12 u13 . . . u1 2m

u21 u22 u23 . . . u2 2m

u31 u32 u33 . . . u3 2m

0 c12 c13 . . . c1 2m

−c12 0 c23 . . . c2 2m
...

...
...

. . .
...

−c1 2m −c2 2m −c3 2m . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂2 =

⎛

⎜⎜⎝

−x1 −x2 −x3 w1 w2 . . . w2m

x4 0 0 v{2,3} 1 v{2,3} 2 . . . v{2,3} 2m
0 x4 0 v{1,3} 1 −v{1,3} 2 . . . −v{1,3} 2m
0 0 x4 v{1,2} 1 v{1,2} 2 . . . v{1,2} 2m

⎞

⎟⎟⎠ ,

and

∂1 =
(
x1 x2 x3 x4

)

with entries as defined below
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x1 = Cm, x2 = Cm−1∧ u2 ∧ u3 , x3 = Cm−1∧ u1 ∧ u3 , x4 = Cm−1∧
u1 ∧ u2 , v{α,β} i =

∑

j

uγj Pfij (C) , and wi =
∑

j,k,l

±�j,k,l Pfijkl(C) .

Here �j,k,l is a 3× 3 minor of the 3× (2m) matrix B on columns j, k, l. Finally γ
is the complement of {α, β} in the set {1, 2, 3}.

The exterior powers Cj have a natural description in terms of Pfaffians of the
matrix A,

Cj =
∑

1�i1<···<i2j�2m

Pfi1...i2j (A) · gi1 ∧ . . . ∧ gi2j .

Plugging these in, we see that we get the generators of the ideals described in
Proposition 4.1 from the matrix U from Proposition 3.6 via the substitution cij =
τi+3,j+3 and ui,j = τi,j+3. Using this substitution we see our complex is just the
complex described in Proposition 3.6. ��

Notice that the representation theory dictates what the differentials should be,
as each component of ∂3, ∂2, ∂1 is determined by the equivariance property with
respect to GL(F )× GL(G) up to a non-zero scalar.

4.2 Quotients of Odd Type

There is a nice analogue in the odd case. Let n = 2m + 4 where m is a natural
number. Consider a (2m+ 1)× (2m+ 1) generic skew symmetric matrix A = (cij )
and a 3 × (2m + 1) generic matrix B = (uki). Thus we work over a ring A =
SymZ(

∧2
F ⊕ F ⊗ G) ∼= Z[cij , uki] where F = Z

2m+1 and G = Z
3 are free

Z-modules.

Proposition 4.3 Let {g1, . . . , g2m+1} be a basis for F and set

C =
∑

1�i<j�2m+1

cij gi ∧ gj and uk =
2m+1∑

i=1

ukigi for 1 � k � 3 .

Again we denote by Cj the j -th exterior power of C in
∧2j

F . The ideal

In = (Cm−1 ∧ u1 ∧ u2 ∧ u3, C
m ∧ u1, C

m ∧ u2, C
m ∧ u3)

is a grade 3 almost complete intersection of type 2m+ 1 = n− 3.

Proof The exterior powers Cj have a natural description in terms of Pfaffians of the
matrix A.
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Cj =
∑

1�i1<···<i2j�2m

Pfi1...i2j (A) · gi1 ∧ . . . ∧ gi2j .

Plugging these in, we see that we get the generators of the ideals described in this
proposition from the matrix U in Proposition 3.11 via the substitution cij = τi+3,j+3
and ui,j = τi,j+3. ��
Let us work out the minimal free resolution of the ideal defined above.

Proposition 4.4 Let n = 2m + 4 and In be the ideal from Proposition 4.3. The
minimal graded free resolution of the cyclic A-module A/In is

F• : 0 −→ F ⊗ (
2m+1∧

F)⊗2 ⊗
3∧
G⊗A(−2m,−3)

∂3−→

(

2m+1∧
F)⊗2 ⊗

2∧
G⊗A(−2m,−2)⊕

2m+1∧
F ⊗

2m∧
F ⊗

3∧
G⊗A(−2m+ 1,−3)

∂2−→
2m+1∧

F ⊗
3∧
G⊗A(−m+ 1,−3)⊕

2m+1∧
F ⊗G⊗A(−m,−1))

∂1−→ A .

The differentials ∂3, ∂2, ∂1 are described in the proof below. For every field k the
resolution F• ⊗Z k is minimal over

Ak = Symk(
∧2
F ⊕ F ⊗G)) ∼= k[cij , uki] ,

with F = F ⊗Z k andG = G⊗Z k. The ideal In⊗Z k is thus perfect of grade three.

Proof Let us describe the differentials of the resolution in this setting. The last
differential ∂3 is just a (2m+ 3)× 2m matrix with the 2m× 2m block given by the
matrix A and the 3 × 2m block given by three vectors. The differential ∂2 can be
expressed in block form as

∂2 =
(
A11 A12

A21 A22

)

where A21 is zero. The matrix A22 is given by multiplication by the representation∧2m
F occurring in the degree (m, 0) component of A. The matrix A11 is given by

multiplication by the representation
∧2m+1

F ⊗ G occurring in the degree (m, 1)
component of A and A12 is given by multiplication by the representation

∧2m
F ⊗∧2

G occurring in the degree (m − 1, 2) component of A. The differential ∂1 is
given by the generators of In.



240 L. W. Christensen et al.

The matrices of differentials are:

∂3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11 u12 u13 . . . u1 2m+1

u21 u22 u23 . . . u2 2m+1

u31 u32 u33 . . . u3 2m+1

0 c12 c13 . . . c1 2m+1

−c12 0 c23 . . . c2 2m+1
...

...
...

. . .
...

−c1 2m+1 −c2 2m+1 −c3 2m+1 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂2 =

⎛

⎜⎜⎝

0 0 0 w1 w2 . . . w2m+1

x3 x4 0 v11 v12 . . . v1 2m+1

−x2 0 x4 v21 v22 . . . v2 2m+1

0 −x2 −x3 v31 v32 . . . v3 2m+1

⎞

⎟⎟⎠ ,

and

∂1 =
(
x1 x2 x3 x4

)

where

x1 = Cm−1 ∧ u1 ∧ u2 ∧ u3 , x2 = Cm ∧ u1 , x3 = Cm ∧ u2 , x4 = Cm ∧ u3 ,

wi = ±Pfi (C) , and vγ i =
∑

j,k

±�j,kα,β Pfijk(C) .

Here�j,kα,β is a 2× 2 minor of the 3× (2m+ 1) matrix B on rows α, β and columns
j, k. Finally γ is the complement of {α, β} in the set {1, 2, 3}.

In order to prove exactness, notice that the exterior powers Cj have a natural
description in terms of Pfaffians of the matrix A.

Cj =
∑

1�i1<···<i2j�2m

Pfi1...i2j (A) · gi1 ∧ . . . ∧ gi2j .

Plugging these in we see that we get the generators of the ideals described in
Proposition 4.3 from the matrix U from Proposition 3.11, with substitutions cij =
τi+3,j+3 and ui,j = τi,j+3. Using this substitution we see our complex is just the
complex described in Proposition 3.11. ��

Notice that the representation theory dictates what the differentials should be,
as each component of ∂3, ∂2, ∂1 is determined by the equivariance property with
respect to GL(F )× GL(G) up to a non-zero scalar.



Almost Complete Intersection Ideals of Grade 3 241

5 Schubert Varieties in Orthogonal Grassmannians vs.
Almost Complete Intersection and Gorenstein Ideals
of Codimension 3

In this section we discuss connections between the ideals described in the previous
sections and Schubert varieties in the isotropic Grassmannian of even dimensional
orthogonal space. We start with a 2n-dimensional vector space W over a field k. We
denote by Q(·, ·) a non-degenerate quadratic form on W that admits a hyperbolic
basis {e1, e2, . . . , en, ēn, . . . , ē2, ē1}. We deal with the special orthogonal group
SO(W) of isometries of W of determinant 1, and its double cover Spin(W). The
maximal torus T ∼= (k∗)n is contained in SO(W) as the diagonal matrices t acting
on W as follows

t(ei) = tiei and t(ēi ) = t−1
i ēi for 1 � i � n .

We consider the lattice of integral weights for T , which is a free Z-module with
coordinate basis {ε1, . . . , εn}. We identify εi with the weight of ei under this action;
the weight of ēi is −εi .

There is an associated root system of type Dn with roots

{±εi ± εj | 1 � i < j � n} .

Simple roots are αi = εi − εi+1 for 1 � i � n − 1 and αn = εn−1 + εn. If R(Dn)
is a Z-submodule of Zn generated by roots, then the fundamental weights ωi in the
dual Z-module (Zn)∗ are generators of the dual lattice �, called the weight lattice,
defined by ωi(αj ) = δi,j . We see that

ωi = ε1 + · · · + εi for 1 � i � n− 2 ,

ωn−1 = 1
2

∑n
i=1 εi , and

ωn = 1
2

∑n−1
i=1 εi − 1

2εn .

5.1 The Action of the Weyl Group

The Weyl group W(Dn) acts on � by linear maps that permute the roots. It is a
subgroup of index 2 in a hyperoctahedral group. W(Dn) is generated by simple
reflections s1, s2, . . . , sn. For 1 � i � n − 1 the reflection si simply permutes εi
and εi+1, and sn acts as follows: sn(εi) = εi for 1 � i � n − 2, sn(εn−1) = −εn,
and sn(εn) = −εn−1. It contains the permutation group W(An−1) on n elements
generated by simple reflections s1, . . . , sn−2, sn.
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Over the field of complex numbers, one can classify representations of the group
SO(W) and its double cover Spin(W). First, the category of representations of the
Spin group is semi-simple, so every representation is a direct sum of irreducible
ones. The irreducible representations are so-called highest weight representations
V (λ), where λ = ∑n

i=1 λiωi is an integral linear combination of fundamental
weights with non-negative coefficients λi . The representations of Spin(W) are direct
sums of only those irreducibles V (λ) for which λ written in terms of εi’s belongs
to �. Over other fields, and over Z, one can define appropriate analogues of highest
weight representations.

We are interested in two particular representations: the half-spinor representa-
tions V (ωn−1) and V (ωn). They are closely connected, as we will show, to the
space of skew symmetric matrices. To that end we recall some generalities about
homogeneous spaces.

Let us work over an algebraically closed field k. Let G be a reductive algebraic
group and let Pi ⊂ G be a parabolic subgroup stabilizing a fundamental weight ωi ∈
�. It is well-known that there is a canonical embedding of G/Pi into P(V (ωi)). To
describe this embedding, consider the Weyl group W , which naturally acts on �,
and in it the stabilizerWωi of the ith fundamental weight. For each w ∈ W/Wωi , let
.
w ∈ W be the unique minimal length representative. There is a cell decomposition

G/Pi =
⊔

w∈W/Wωi
B
.
wPi

called the Bruhat decomposition, where B is the Borel subgroup contained in Pi .
The embedding G/Pi ↪→ P(V (ωi)) is given by b

.
w �→ [b .wωi]. In fact, we know

that G/P = G · vωi , where vωi is the highest weight vector in V (ωi).
The cardinality of W/Wωi is the same as the cardinality of the orbit W · ωi .

Now, if the fundamental weight ωi is minuscule, then this number coincides with
the dimension dimk V (ωi) of the fundamental representation. This implies that the
Bruhat graph of the Bruhat interval in the Coxeter group (W, S) corresponding to
the minimal length representatives of the elements in W/Wωi coincides with the
crystal graph associated to the representation V (ωi).

Throughout the rest of this section we are interested in the case of a root system of
type Dn and the parabolic subgroup Pn−1, the homogeneous space Spin(2n)/Pn−1
is one of the two connected components of the isotropic Grassmannian OGr(n, 2n).

It is well-known, see for example Laksmibai and Raghavan [18, Section 3.3],
that the homogeneous coordinate ring of the connected component of OGr(n, 2n),
considered as a projective subvariety of the projective space P(V (ωn−1)), has a
decomposition
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k[OGr(n, 2n)] =
⊕

d�0

V (dωn−1) .

into irreducible representations of Spin(W), so each graded component of this
ring is irreducible. The half-spinor representation V (ωn−1) is a representation
of dimension 2n−1 whose weights with respect to the Cartan subalgebra are
(± 1

2 , . . . ,± 1
2 ) with an even number of minuses. It has a twin representation

V (ωn) of dimension 2n−1 whose weights with respect to the Cartan subalgebra are
(± 1

2 , . . . ,± 1
2 ) with an odd number of minuses. Both half-spinor representations are

constructed from the Clifford algebra of the quadratic formQ.
It is also known—Kostant’s Theorem, see Garfinkle’s dissertation [14]—that

as a factor of Symk(V (ωn−1)) the coordinate ring k[OGr(n, 2n)] is generated by
quadratic equations. The generators of k[OGr(n, 2n)] are the spinor coordinates;
they can be indexed by the cosets W(Dn)/W(An−1). We denote by qw the spinor
coordinate corresponding to w ∈ W(Dn)/W(An−1); the Schubert varieties in
OGr(n, 2n) are also indexed by W(Dn)/W(An−1). There is a natural partial order
on these coordinates, which in the case of Schubert varieties corresponds to the
inclusion order. This partially ordered set has two combinatorial interpretations; it
is a set of 2n−1 elements.

The first interpretation ofW(Dn)/W(An−1) is as the set PEn of even cardinality
subsets of {1, 2, . . . , n}. The Weyl group W(Dn) acts on this set as follows. For
1 � i � n − 1 the simple reflection si acts by switching the numbers i and i + 1.
This means the subset is fixed by si if it contains both or none of the numbers i
and i + 1. The reflection sn acts non-trivially only on subsets either containing or
not intersecting the subset {n − 1, n}. It either adds the numbers n − 1 and n or
takes them away. For a subset I ∈ PEn let �(I ) denote the length of a minimal
representative of the corresponding coset in W(Dn)/W(An−1). For a reflection si
such that si(I ) �= I one can prove that �(I ) = �(si(I )) ± 1. The partial order is
generated by comparing I and si(I ) according to the length. In the case at hand,
there is a concrete description: The induced partial order PEn compares subsets of
a given cardinality as usual by setting

{i1, . . . , ir } � {i1, . . . , ij−1, ij + 1, ij+1, . . . , ir }

for 1 � i1 < i2 < · · · < ir and ij + 1 < ij+1. The partial order is generated by
these inequalities together with the inequalities {i1, . . . , ir } � {i1, . . . , ir , n− 1, n}
for 1 � i1 < · · · < ir < n− 1; this includes ∅ � {n− 1, n}.
Example 5.1 The induced partial order on PE4 is illustrated below where the arrows
are directed such that si(I ) � I holds.
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∅

{3, 4}
s2

s4

{2, 4}
s1 s3

{1, 4}
s3

{2, 3}
s1

{1, 3}
s2

{1, 2}

{1, 2, 3, 4}
s4

In the second interpretation one views W(Dn)/W(An−1) as a W(Dn)-orbit of
the weight—thought of as assigning an integer to each node of the Dynkin diagram
Dn—under the natural action ofW(Dn) on these weights. The action of the simple
reflection si on a weight

an−1

a1 a2 · · · an−3 an−2

an

changes ai to −ai and adds ai to the value at all neighboring nodes. The partial
order is generated by setting si(w) > w if and only if si(w) �= w and the node w(i)
is positive.

Example 5.2 The bijection between the set PE4 and theW(D4)-orbit of the weight

w = 0
0 0

1

is as follows

∅ ↔ w = 0
0 0

1
{3, 4} ↔ s4(w) = 0

0 1 −1

{2, 4} ↔ s2s4(w) = 1
1 −1

0
{1, 4} ↔ s1s2s4(w) = 1−1 0

0

{2, 3} ↔ s3s2s4(w) = −1
1 0

0
{1, 3} ↔ s3s1s2s4(w)

s1s3s2s4(w)
= −1
−1 1

0

{1, 2} ↔ s2s3s1s2s4(w) = 0
0 −1

1
{1, 2, 3, 4} ↔ s4s2s3s1s2s4(w) = 0

0 0 −1

Notice that this bijection commutes with the Weyl group action and preserves the
associated partial order.
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5.2 Schubert Varieties

It is known, see for example [18, Section 3.3], that the defining ideal in
k[OGr(n, 2n)] of every Schubert variety �w is generated by spinor coordinates
qv for v �� w in the associated partial order. In our case this translates as follows.
Consider the big open cell Y in OGr(n, 2n) consisting of points with Plücker
coordinate pid �= 0. Recall the hyperbolic basis {e1, . . . , en, ēn, . . . , ē1} of W. To
every subspace V ∈ OGr(n, 2n) and every basis {v1, . . . , vn} of V we associate
an n × 2n matrix M whose ith row consists of the coordinates of the vector vi
written in the basis {e1, . . . , en, ēn, . . . , ē1}. The big open cell Y in OGr(n, 2n)
discussed above consists of subspaces V such that for every basis {v1, . . . , vn} of V
the corresponding matrix M has a minor corresponding to columns e1, . . . , en not
equal to zero. The set Y is an affine space of dimension

(
n
2

)
as for V ∈ Y we can

find a unique basis of V such that the corresponding matrix has a form

M =

⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 0 x1 2 · · · x1 n−1 x1 n

0 0 · · · 1 0 −x1 2 0 · · · x2 n−1 x2 n
...
...
. . .
...
...

...
...

. . .
...

...

0 1 · · · 0 0 −x1 n−1 −x2 n−1 · · · 0 xn−1 n

1 0 . . . 0 0 −x1 n −x2 n . . . −xn−1 n 0

⎞

⎟⎟⎟⎟⎟⎠
.

We refer to the skew symmetric n × n block as X. The restrictions to Y of the
spinor coordinates correspond to sub-Pfaffians of X of all possible sizes; see for
example Manivel [19]. More precisely, the weights of the half-spinor representation
correspond to the subsets I of the set {1, . . . , n} of even cardinality. For a given
I , the corresponding weight is a vector wI = (± 1

2 , . . . ,± 1
2 ) with n coordinates

and an even number of minuses occurring in the positions determined by I . The
corresponding spinor coordinate qI restricts to Y as the Pfaffian of the skew
symmetric matrix obtained by picking from a generic n× n skew symmetric matrix
the rows and columns determined by I . Thus, the quadratic equations generating
the defining ideal of the homogeneous coordinate ring k[OGr(n, 2n)] are just the
quadratic equations in Pfaffians of all sizes of a generic skew symmetric matrix.

There are more facts that are known about Schubert varieties, the reference for
this is [18, Chapter 7]. The half-spinor representation V (ωn−1) is an example of
so-called minuscule representation. This means all its weight vectors are in one
W(Dn)-orbit. This implies that the defining ideals of Schubert varieties and their
unions behave in the optimal way described below. For each cofinal subset U of the
partially ordered set PEn we consider the ideal JU in k[Y ], the coordinate ring of
Y , generated by the spinor coordinates from that subset. This set of ideals forms a
distributive lattice L1 with the join and meet operations given by + and ∩. On the
other hand we can form a lattice L2 of the cofinal subsets in PEn with operations
of join and meet given by ∪ and ∩. The first part of the next statement follows from
of [18, Section 7.2]; the assertion about JU being radical follows from Brion and
Kumar [5, Corollary 2.3.3].
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Proposition 5.3 The lattices L1 and L2 are isomorphic. Moreover, the ideal JU is
the defining ideal of the union of the Schubert varieties it defines set-theoretically.
Thus all ideals JU are radical.

Notice also that if we change the half-spinor representation V (ωn−1) to the other
one, i.e. V (ωn) then the lattice of Schubert varieties will change to the poset POn
of odd sized subsets of {1, . . . , n}. The action of the Weyl group W(Dn) and the
poset structure are similar to those on PEn. We refer the reader to [18, Section 7.2].

To give an interpretation of the Schubert varieties of codimension 3 in concrete
terms, we adopt the notation from the notes by Coskun [12, Lecture 5]. Let
OGr(n, 2n) be one of the two connected components of the orthogonal Grassman-
nian of n-dimensional isotropic subspaces in a 2n-dimensional vector space W. As
above denote byQ a non-degenerate quadratic form on W that admits a hyperbolic
basis. Fix an isotropic flag

F• : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = F⊥n ⊂ F⊥n−1 ⊂ · · · ⊂ F⊥1 ⊂W .

Here Fn is isotropic and F⊥i denotes the orthogonal complement of Fi . The Schubert
varieties in OGr(n, 2n) are parameterized by sequences λ,

n− 1 � λ1 > λ2 > · · · > λs � 0 ,

of strictly decreasing integers where s has the same parity as n; notice that s � n

holds. The sequence λ determines a unique sequence λ̃ of strictly decreasing integers

n− 1 � λ̃s+1 > λ̃s+2 > · · · > λ̃n � 0

satisfying the condition that there is no i, j such that λi + λ̃j = n − 1. In other
words, we obtain λ̃ by removing from the sequence n−1, n−2, . . . , 0 the numbers
n− 1− λ1, . . . , n− 1− λs .

The Schubert variety �λ = �λ(F•) is defined as the closure of the locus

�
(0)
λ (F•) =

⎧
⎨

⎩V ∈ OGr(n, 2n)

∣∣∣∣∣∣

dimk(V ∩ Fn−λi ) = i, for 1 � i � s

dimk(V ∩ F⊥λ̃j ) = j, for s < j � n

⎫
⎬

⎭ .

The codimension of �λ is |λ| =∑
i λi . The cells �(0)λ (F•) are exactly the orbits of

the Borel subgroupB of the spin group Spin(2n) acting on the connected component
of OGr(n, 2n).

Remark 5.4 In order to connect with the previous description, let us indicate how
the partitions λ translate to the subsets PEn and POn. The partition (λ1, . . . , λs)

such that

n− 1 � λ1 > . . . > λs � 0
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corresponds to the set w(λ) of s minuses in places n− λ1, n− λ2, . . . , n− λs . This
set is either in PEn or POn depending on parity of n.

The variety�λ(F•) in Coskun’s notation is then is then equal to the variety�w(λ)
in the notation of this section.

It is well-known—see for example the works [20–23] by Mehta, Ramanan,
Ramanathan, and Srinivas—that the Schubert varieties are defined over Z and
are normal and arithmetically Cohen-Macaulay and so are the affine varieties
Yλ = �λ ∩ Y . Our goal in this section is to explicitly describe the varieties Yλ
of codimension 3 in the affine space Y , i.e. the subvarieties Yλ such that |λ| = 3.

5.3 Spinor Coordinates

Finally we describe the bijection between the spinor coordinates and the Pfaffians
of the matrix X.

For n even and I ∈ PEn the corresponding spinor coordinate qI is a square root
of the minor of the matrix M with columns corresponding to ei with i ∈ I and ēI
with i /∈ I . This is the Pfaffian of the submatrix ofX obtained by removing the rows
and columns with indices n+1−i for i ∈ I . The first spinor coordinate corresponds
to the subset ∅, and it is the Pfaffian of X.

For n odd we consider the elements I ∈ POn. The corresponding spinor
coordinate qI is the Pfaffian of the submatrix of X obtained by removing the rows
and columns with indices n+1−i for i ∈ I . The first spinor coordinate corresponds
to the subset {n}, and it is the Pfaffian of the submatrix obtained fromX by removing
the first row and column, i.e. the matrix X[1̄; 1̄] in the notation from 2.1.

5.4 The Case of Even n

Let us intersect our Schubert varieties with the open cell Y .
For n = 2 there are evidently no Schubert varieties of codimension 3, but for

n � 4 there are precisely two of them, namely�(3,0) and�(2,1). For n = 4 it is easy
to see they are both complete intersections, one given by x1 2 = x1 3 = x1 4 = 0 and
the other by x1 2 = x1 3 = x2 3 = 0. We now assume n � 6.

We start with the intersection Y(3,0). The rank conditions related to the flags
F⊥j are easily seen to be empty because our subspace is isotropic. The condition
dimk(V ∩Fn−3) � 1 means exactly that the rank of the submatrixX[1 . . . n; 4 . . . n]
has to be less than n − 3. This is the matrix of the third differential of the almost
complete intersection ideal of format (1, 4, n, n−3) described in Theorem 3.3. Note
that the other condition dimk(V ∩ Fn) � 2 holds as the matrix X has to be singular
and therefore of rank at most n − 2. So the defining ideal of the Schubert variety
Y(3,0) is almost complete intersection of odd type.
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We turn to the intersection Y(2,1). Again the rank conditions related to the flags
F⊥j are empty because our subspace is isotropic, so we get the conditions dimk(V ∩
Fn−2) � 1 and dimk(V ∩ Fn−1) � 2. The first condition is now redundant. The
second condition means that the rank of the submatrix of X[1 . . . n; 2 . . . n] has to
be at most n − 3. This means that the submaximal Pfaffians Pf1i (X) of the matrix
X[1̄; 1̄] vanish for 2 � i � n. It follows that the rank of this matrix is at most
n − 4, so the rank of X[1 . . . n; 2 . . . n] is at most n − 3. We conclude that Y(2,1) is
the subvariety given by vanishing of Pfaffians Pf1i (X); in other words, the defining
ideal is a generic Gorenstein ideal of codimension 3.

5.5 The Case of Odd n

For n � 3 there are evidently no Schubert varieties of codimension 3, but for n � 5
there are precisely two of them, namely�(3) and�(2,1,0). Let us intersect them with
the open cell Y .

We start with the intersection Y(3). The rank conditions related to the flags F⊥j are
easily seen to be empty because our subspace is isotropic. The condition dimk(V ∩
Fn−3) � 1 means that the rank of the submatrixX[1 . . . n; 4 . . . n] has to be less than
n− 3. But this is the matrix of third differential of the almost complete intersection
ideal of format (1, 4, n, n − 3) described in Theorem 3.9. So the defining ideal of
the Schubert variety Y(3) is an almost complete intersection of even type.

We turn to the intersection Y(2,1,0). Again the rank conditions related to the
flags F⊥j are empty because our subspace is isotropic. This leaves us with the
conditions dimk(V ∩ Fn−2) � 1 and dimk(V ∩ Fn−1) � 2. This just means that
submaximal Pfaffians of the matrix X are zero, so we get a generic Gorenstein ideal
of codimension 3.

5.6 Minimal Free Resolutions

Let us look at the minimal free resolutions of the coordinate rings of the codi-
mension 3 varieties Yλ from the point of view of Schubert varieties. The defining
equations of Schubert varieties have a general description in terms of ideals JU ; we
recall its meaning in our case. The Schubert varieties of codimension 3 correspond
to elements

w′ = snsn−2sn−1 and w′′ = sn−3sn−2sn−1 ,
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as these are the only two elements of length 3 inW(Dn)/W(An−1). The generators
of the corresponding ideals are:

(qid, qsn−1 , qsn−2sn−1 , qsn−3sn−2sn−1 , . . . , qsn−i ...sn−3sn−2sn−1 , . . . , qs1...sn−3sn−2sn−1) ,

where there are n generators in total, and

(qid, qsn−1 , qsn−2sn−1 , qsnsn−2sn−1) .

Identifying these generators with the corresponding Pfaffians, we see that for n odd
the first ideal generated by the submaximal Pfaffians of X. The second ideal gives
the almost complete intersection ideal described in Theorem 3.3. For even n, the
first ideal gives the Pfaffian of X and submaximal Pfaffians of X[1̄; 1̄]; in this case
the first generator is redundant. The four generator ideal gives the almost complete
intersection ideal described in Theorem 3.9.

There is one more statement one can make which plays an important role. It is
be proved in terms of commutative algebra Lemmas C.2 and C.6. Here we give a
geometric reasoning proving the statement.

Proposition 5.5 The ideal generated by the first three spinor coordinates,

(qid, qsn−1 , qsn−2sn−1) ,

in the partial order on the homogeneous coordinate ring k[OGr(n, 2n)] of the
orthogonal Grassmannian is generated by a regular sequence. Therefore, these
coordinates restricted to the open cell Y also generate an ideal generated by a
regular sequence in k[Y ]. Moreover, these elements generate a radical ideal.

Proof Let B be a Borel subgroup of the group Spin(2n). The almost complete
intersection ideal (qid, qsn−1 , qsn−2sn−1) in k[OGr(n, 2n)] is B-equivariant. This
means that its vanishing locus is a union of Schubert cells. It follows that this
vanishing set consists of the closure of the union of two Schubert varieties of
codimension 3. It is therefore an ideal of depth three generated by three elements.
Such ideal is then generated by a regular sequence, as the ring k[OGr(n, 2n)] is
Cohen-Macaulay. The ideal is radical by of [5, Corollary 2.3.3]. The result for k[Y ]
follows by localization. ��

This result means we have an occurrence of the situation described by Ulrich
[25]. The ideal (qid, qsn−1 , qsn−2sn−1) is the intersection Iw′ ∩ Iw′′ , and thus the ideals
Iw′ and Iw′′ are linked via the regular sequence (qid , qsn−1 , qsn−2sn−1). This is exactly
the procedure described in [6]. By this argument, we can describe the format of the
resolutions of our almost complete intersections.

Set R = k[Y ] and n = 2m+ 2 for some natural number m. The resolution of the
Gorenstein ideal Iw′ has format

0 −→ R(−2m− 1) −→ R2m+1(−m− 1) −→ R2m+1(−m) −→ R ;
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we link by a regular sequence of elements of degrees m, m, and m+ 1. Looking at
the mapping cone

0 R(−2m − 1) R2m+1(−m − 1) R2m+1(−m) R

0 R(−3m − 1) R2(−2m − 1) ⊕ R(−2m) R(−m − 1) ⊕ R2(−m) R

we deduce that the other ideal has a resolution with the format

0 −→ R2m−1(−2m− 1) −→ R2m+2(−2m) −→ R(−m− 1)⊕ R3(−m) −→ R

which is exactly the format of the resolution from Sect. 3.
Let us do this calculation for odd n = 2m+3. The resolution of Gorenstein ideal

of codimension 3 has format

0 −→ R(−2m− 3) −→ R2m+3(−m− 2) −→ R2m+3(−m− 1) −→ R

and we link by a regular sequence with degrees m + 1,m + 1,m + 1. Looking at
the mapping cone

0 R(−2m − 3) R2m+3(−m − 2) R2m+3(−m − 1) R

0 R(−3m − 3) R3(−2m − 2) R3(−m − 1) R

we deduce that the other ideal has a resolution with the format

0 −→ R2m(−2m− 2) −→ R2m+3(−2m− 1) −→ R(−m)⊕ R3(−m− 1) −→ R

which is exactly the format of the resolution from Sect. 3.
Next we interpret the matrices of the free resolutions of almost complete

intersections in terms of spinor coordinates. Before we start, let us comment on
the defining ideals of the coordinate rings k[OGr(n, 2n)] thought of as factors of the
symmetric algebra on the half-spinor representation. By Kostant’s Theorem [14]
these ideals are defined by quadratic equations, therefore, they are generated by the
kernel of the map

S2(V (ωn−1)) −→ V (2ωn−1) .
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One has the following formula, see Adams [1, p. 25],

S2(V (ωn−1) = V (2ωn−1)⊕
⊕

i�1

V (ωn−4i ) .

We use the notation from Sect. 4 for the differentials in our complexes.
Let us start with the case of odd n = 2m+3. The generators of our ideal in terms

of Plücker coordinates are

x1 = p1̄,2̄,...,2m,2m+1,2m+2,2m+3

x2 = p1̄,2̄,...,2m,2m+1,2m+2,2m+3

x3 = p1̄,2̄,...,2m,2m+1,2m+2,2m+3

x4 = p1̄,2̄,...,2m,2m+1,2m+2,2m+3 .

The entries of the second differential ∂2 are as follows. The elementwi is the Plücker
coordinate with 2m + 2 bars, the only number without bar is 2m + 1 − i. The
element v{α,β} i is a Plücker coordinate with 2m bars. The numbers without bars are
2m+ 1− i, 2m+ α, 2m+ β.

The entries of the matrix ∂3 are also Plücker coordinates. The element uαi is a
Plücker coordinate with two bars, at numbers 2m+1−i and 2m+4−α. The element
cij is a Plücker coordinate with two bars, at numbers 2m+ 1− i and 2m+ 1− j .

The gradings of the basis vectors in the modules of the complex are: The basis
element in F0 = R has weight (02m+3). In the following we use 1m to denote
(1, 1, . . . , 1) with m coordinates. The basis elements in F1 = R ⊕R3 have weights

(( 1
2 )

2m,− 1
2 ,− 1

2 ,− 1
2 ), ((

1
2 )

2m,− 1
2 ,

1
2 ,

1
2 ), ((

1
2 )

2m, 1
2 ,− 1

2 ,
1
2 ), ((

1
2 )

2m, 1
2 ,

1
2 ,− 1

2 ) .

The basis elements in F2 = R2m ⊕ R3 have weights

(12m−1, 0, 03), (12m−2, 0, 1, 03), . . . , (0, 12m−1, 03),

(12m, 0, 0,−1), (12m, 0,−1, 0), (12m,−1, 0, 0) .

Finally the basis vectors in F3 = R2m have weights ( 1
2 , . . . ,

1
2 ,

3
2 ,

1
2 , . . . ,

1
2 , (− 1

2 )
3).

The composite ∂1∂2 is easily explained. It is a 1×(2m+3)matrix. Its entry in the
ith row is the Plücker coordinate with the weight with 2m− 1 entries of −1’s and 4
zeros in positions 2m+ 1− i, 2m+ 1, 2m+ 2, 2m+ 3. This entry is zero because
it corresponds to the extremal weight vector in the representation V (ω2m−1) which
occurs in the 2nd symmetric power of V (ω2m+2).

The composite ∂2∂3 is a 4 × 2m matrix with the weights in the first
row being (0, 0, . . . , 0,−1, 0, . . . , 0, 0, 0, 0), where −1 appears in positions
1, . . . , 2m; the entries in the second row are (0, 0, . . . , 0,−1, 0, . . . , 0, 0, 1, 1),
where −1 appears in positions 1, . . . , 2m; the entries in the third row are
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(0, 0, . . . , 0,−1, 0, . . . , 0, 1, 0, 1), where −1 appears in positions 1, . . . , 2m,
finally the entries in the fourth row are (0, 0, . . . , 0,−1, 0, . . . , 0, 1, 1, 0), where
−1 appears in positions 1, . . . , 2m.

The interpretation of the identity ∂2∂3 = 0 from this point of view requires further
analysis.

Similarly we treat the even case n = 2m + 4. The generators of the ideal Iw′′ in
terms of Plücker coordinates are

x1 = p1̄,2̄,...,2m+4

x2 = p1̄,2̄,...,2m,2m+1,2m+2,2m+3,2m+4

x3 = p1̄,2̄,...2m,2m+1,2m+2,2m+3,2m+4

x4 = p1̄,2̄,...,2m,2m+1,2m+2,2m+3,2m+4 .

The entries of the second differential ∂2 are as follows. The elementwi is the Plücker
coordinate with 2m bars, the only numbers without bar are 2m + 2 − i and 2m +
2, 2m+ 3, 2m+ 4. The element vαi is a Plücker coordinate with 2m+ 2 bars. The
numbers without bars are 2m+ 2− i, 2m+ 1+ α.

The entries of the matrix ∂3 are also Plücker coordinates. The element uαi is a
Plücker coordinate with two bars, at numbers 2m+1−i and 2m+4−α. The element
cij is a Plücker coordinate with two bars, at numbers 2m+ 1− i and 2m+ 1− j .

The gradings of the basis vectors in the modules of the complex are: The basis
element in F0 = R has weight (02m+4). The basis elements in F1 = R ⊕ R3 have
weights

(( 1
2 )

2m+4), (( 1
2 )

2m+1, 1
2 ,
−1
2 ,
−1
2 ), ((

1
2 )

2m+1,− 1
2 ,

1
2 ,− 1

2 ), ((
1
2 )

2m+1,− 1
2 ,− 1

2 ,
1
2 ) .

The basis elements in F2 = R2m ⊕ R3 have weights

(12m, 0, 03), (12m−1, 0, 1, 03), . . . , (0, 12m, 03),

(12m+1, 0, 0,−1), (12m+1, 0,−1, 0), (12m+1,−1, 0, 0) .

Finally the basis vectors in F3 = R2m have weights ( 1
2 , . . . ,

1
2 ,

3
2 ,

1
2 , . . . ,

1
2 , (− 1

2 )
3).

The composite ∂1∂2 is easily explained. It is a 1 × (2m + 4) matrix. Its entry in
the ith row is the Plücker coordinate with the weight with 2m entries of −1’s and 4
zeros in positions 2m+ 2− i, 2m+ 2, 2m+ 3, 2m+ 4. This entry is zero because
it corresponds to the extremal weight vector in the representation V (ω2m) which
occurs in the 2nd symmetric power of V (ω2m+3).

The composition ∂2∂3 is a 4 × (2m + 1) matrix with the weights in the
first row being (0, 0, . . . , 0,−1, 0, . . . , 0, 1, 1, 1), where −1 appears in positions
1, . . . , 2m+ 1; the entries in the second row are (0, 0, . . . , 0,−1, 0, . . . , 0, 1, 0, 0),
where −1 appears in positions 1, . . . , 2m + 1; the third row entries are
(0, 0, . . . , 0,−1, 0, . . . , 0, 0, 1, 0), where −1 appears in positions 1, . . . , 2m + 1;
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finally the entries in the fourth row are (0, 0, . . . , 0,−1, 0, . . . , 0, 0, 0, 1), where
−1 appears in positions 1, . . . , 2m+ 1.

The interpretation of the identity ∂2∂3 = 0 from this point of view requires further
analysis.

Appendix

A Pfaffian Identities Following Knuth

For the benefit of the reader, we quote from [11] a short introduction to Knuth’s [17]
combinatorial approach to Pfaffians.

Let T = (tij ) be an n× n skew symmetric matrix with entries in a commutative
ring. Assume that T has zeros on the diagonal; this is, of course, automatic if the
characteristic of the ring is not 2. Set P[ij ] = tij for i, j ∈ {1, . . . , n} and extend P
to a function on words in letters from {1, . . . , n} as follows:

P[i1 . . . im] =
{

0 if m is odd
∑

sgn
( i1...i2k
j1...j2k

)
P[j1j2] · · ·P[j2k−1j2k] if m = 2k is even

where the sum is over all partitions of {i1, . . . , i2k} in k subsets of cardinality 2.
The order of elements in each subset is irrelevant as the difference in sign P[jj ′] =
−P[j ′j ] is offset by a change of sign of the permutation; see [17, Section 0]. The
value of P on the empty word is by convention 1, and the value of P on a word with
a repeated letter is 0. The latter is a convention in characteristic 2 and otherwise
automatic.

The function P computes the Pfaffians of submatrices of T . Indeed, for a subset
{i1, . . . , ik} ⊆ {1, . . . , n} with elements i1 < · · · < ik one has

pfT (i1 . . . ik) = P[i1 . . . ik] ,

in the notation introduced in 2.1 and (3.0.1).

A.1 Overlapping Pfaffians Let α, β, and γ be disjoint words in letters from
{1, . . . , n}. For b a letter in β, the formula [17, (5.0)] reads

P[αβ]P[αγ ] =
∑

i∈β
sgn

( β
bi(β\bi)

)
P[αβ \ bi]P[αγ bi]

+
∑

j∈γ
sgn

( β
b(β\b)

)
sgn

( γ
j (γ \j)

)
P[αjβ \ b]P[αbγ \ j ] .

(A.1.1)

We record a number of special cases of this formula.
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For β = b the formula (A.1.1) reduces to

P[αb]P[αγ ] =
∑

j∈γ
sgn

( γ
j (γ \j)

)
P[αj ]P[αbγ \ j ] . (A.1.2)

For γ = c the formula (A.1.1) reduces to

P[αβ]P[αc] =
∑

i∈β
sgn

( β
bi(β\bi)

)
P[αβ \ bi]P[αcbi]

+ sgn
( β
b(β\b)

)
P[αcβ \ b]P[αb] .

(A.1.3)

With γ empty the formula (A.1.1) reduces to

P[αβ]P[α] =
∑

i∈β
sgn

( β
bi(β\bi)

)
P[αβ \ bi]P[αbi] . (A.1.4)

With α and γ empty the formula (A.1.1) reduces to

P[β] =
∑

i∈β
sgn

( β
bi(β\bi)

)
P[β \ bi]P[bi] . (A.1.5)

In this first appendix we derive some consequences of (A.1.1) that facilitate the
computations in Appendices B and C. The first lemma is just the classic Laplacian
expansion of the Pfaffian of a skew symmetric submatrix of T .

Lemma A.2 For integers 1 � u1 < · · · < uk � n and every integer � with
1 � � � k one has

(−1)�−1 pfT (u1 . . . uk) =
�−1∑

i=1

(−1)i tuiu� pfT (u1 . . . uk \ uiu�)

+
k∑

i=�+1

(−1)i tu�ui pfT (u1 . . . uk \ uiu�) .

Proof With β = u1 . . . uk and b = u� the formula (A.1.5) yields

P[β]

=
�−1∑

i=1

(−1)i+� P[β \ u�ui]P[u�ui] +
k∑

i=�+1

(−1)i+�−1 P[β \ u�ui]P[u�ui]

=
�−1∑

i=1

(−1)i+�−1 P[β \ u�ui]P[uiu�] +
k∑

i=�+1

(−1)i+�−1 P[β \ u�ui]P[u�ui] .��
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Lemma A.3 For integers 1 � u1 < · · · < uk � n and for every integer � with
1 � � � k one has

�−1∑

i=1

(−1)i tuiu� pfT (u1 . . . ui−1ui+1 . . . uk)

=
n∑

i=�+1

(−1)i tu�ui pfT (u1 . . . ui−1ui+1 . . . uk) .

Proof First assume that � � 2 holds. With α = u�, b = u1, and γ = u2 . . . uk \ u�
the equation (A.1.2) yields

P[u�u1]P[u�γ ]

=
�−1∑

j=2

(−1)j P[u�uj ]P[u�u1γ \ uj ] +
k∑

j=�+1

(−1)j−1 P[u�uj ]P[u�u1γ \ uj ] ,

which after reordering and multiplication by a sign becomes

P[u1u�]P[u2 . . . uk]

=
�−1∑

j=2

(−1)j P[uju�]P[u1 . . . uk \ uj ] +
n∑

j=�+1

(−1)j−1 P[u�uj ]P[u1 . . . uk \ uj ] ,

and that can be rewritten as

�−1∑

j=1

(−1)j P[uju�]P[u1 . . . uk \ uj ] =
k∑

j=�+1

(−1)j P[u�uj ]P[u1 . . . uk \ uj ] .

Next assume that � = 1 holds. With α = u1, b = u2, and γ = u3 . . . uk
Eq. (A.1.2) yields

P[u1u2]P[u1γ ] =
k∑

j=3

(−1)j−1 P[u1uj ]P[u1u2γ \ uj ]

which can be rewritten as

k∑

j=2

(−1)j P[u1uj ]P[u1 . . . uk \ uj ] = 0 .

��
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Lemma A.4 For integers 1 � u1 < · · · < uk � n and every integer � with
1 � � � k one has,

(−1)�−1 pfT pfT (u1 . . . uk) =
k∑

i=1

(−1)i pfT (uiu�) pfT (u1 . . . uk \ uiu�) .

Proof With α = 1 . . . n \ u1 . . . uk , β = u1 . . . uk , and b = u� the formula (A.1.4)
yields

P[αβ]P[α] =
�−1∑

i=1

(−1)i+� P[αβ \ u�ui]P[αu�ui]

+
k∑

i=�+1

(−1)i+�−1 P[αβ \ u�ui]P[αu�ui] ,

which after reordering and multiplying by a sign becomes

P[1 . . . n]P[1 . . . n \ u1 . . . uk]

=
k∑

i=1

(−1)i+�−1 P[1 . . . n \ u�ui]P[1 . . . n \ (u1 . . . uk \ u�ui)] . ��

Lemma A.5 For integers 1 � u1 < · · · < uk � n and every integer � with
1 � � � k − 1 one has

�−1∑

i=1

(−1)i pfT (u1 . . . uk \ ui) pfT (uiu�) =
k∑

i=�+1

(−1)i pfT (u1 . . . uk \ ui) pfT (u�ui) .

Proof With α = 1 . . . n \ u1 . . . uk , b = uk , and γ = u1 . . . uk−1 \ u� formula
(A.1.2) yields

P[αuk]P[αγ ] =
�−1∑

j=1

(−1)j−1 P[αuj ]P[αukγ \ uj ]

+
k−1∑

j=�+1

(−1)j P[αuj ]P[αukγ \ uj ] ,
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which after reordering and multiplication by a sign can be rewritten as

(−1)k−1 P[1 . . . n \ u1 . . . uk−1]P[1 . . . n \ u�uk]

=
�−1∑

j=1

(−1)j−1 P[1 . . . n \ (u1 . . . uk \ uj )]P[1 . . . n \ uju�]

+
k−1∑

j=�+1

(−1)j P[1 . . . n \ (u1 . . . uk \ uj )]P[1 . . . n \ u�uj ] .

This can also be written

�−1∑

j=1

(−1)j P[1 . . . n \ (u1 . . . uk \ uj )]P[1 . . . n \ uju�]

=
k∑

j=�+1

(−1)j P[1 . . . n \ (u1 . . . uk \ uj )]P[1 . . . n \ u�uj ] . ��

Lemma A.6 For integers 1 � u1 < · · · < uk � n one has

k∑

i=1

(−1)i pfT (ui) pfT (u1 . . . ui−1ui+1 . . . uk) = 0 .

Proof With α = 1 . . . n \ u1 . . . uk , b = u1, and γ = u2 . . . uk Eq. (A.1.2) yields

P[αu1]P[αγ ] =
k∑

j=2

(−1)j P[αuj ]P[αu1γ \ uj ] ,

which after reordering and multiplication by a sign becomes

k∑

j=1

(−1)j P[1 . . . n \ u1 . . . uj−1uj+1 . . . uk]P[1 . . . n \ uj ] = 0 . ��

Lemma A.7 For integers 1 � u < v < w < x < y < z � n one has

pfT (y) pfT (uvwxz)− pfT (z) pfT (uvwxy)

= pfT (uyz) pfT (vwx)− pfT (vyz) pfT (uwx)

+ pfT (wyz) pfT (uvx)− pfT (xyz) pfT (uvw) .

Proof With α = 1 . . . n \ uvwxyz, β = uvwxy, b = y, and c = z Eq. (A.1.3)
yields
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P[αβ]P[αz] − P[αzβ \ y]P[αy] =
∑

i∈β
sgn

( β
yi(β\yi)

)
P[αβ \ yi]P[αzyi] ,

which expands into

P[αuvwxy]P[αz] − P[αzuvwx]P[αy] = P[αvwx]P[αzyu]
− P[αuwx]P[αzyv]
+ P[αuvx]P[αzyw]
− P[αuvw]P[αzyx] .

After reordering and multiplication by (−1)u+v+w+x+y+z it becomes

−P[1 . . . n \ z]P[1 . . . n \ uvwxy] + P[1 . . . n \ y]P[1 . . . n \ uvwxz]
= P[1 . . . n \ uyz]P[1 . . . n \ vwx]

− P[1 . . . n \ vyz]P[1 . . . n \ uwx]
+ P[1 . . . n \ wyz]P[1 . . . n \ uvx]

+ P[1 . . . n \ xyz]P[1 . . . n \ uvw] .
��

Lemma A.8 For integers 1 � u < v < w < x < y < z � n one has

pfT (xy) pfT (uvwz)− pfT (xz) pfT (uvwy)+ pfT (yz) pfT (uvwx)

= pfT (uv) pfT (wxyz)− pfT (uw) pfT (vxyz)+ pfT (vw) pfT (uxyz) .

Proof With α = 1 . . . n \ uvwxyz, β = uvwx, b = x, and γ = yz Eq. (A.1.1)
yields

P[αuvwx]P[αyz]
= −P[αvw]P[αyzxu] + P[αuw]P[αyzxv]
− P[αuv]P[αyzxw] − P[αyuvw]P[αxz] + P[αzuvw]P[αxy]
= P[αvw]P[αuxyz] − P[αuw]P[αvxyz] + P[αuv]P[αwxyz]
+ P[αuvwy]P[αxz] − P[αuvwz]P[αxy] ,
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which after reordering and multiplication by a sign becomes

P[1 . . . n \ yz]P[1 . . . n \ uvwx] − P[1 . . . n \ xz]P[1 . . . n \ uvwy]
+ P[1 . . . n \ xy]P[1 . . . n \ uvwz]

= P[1 . . . n \ vw]P[1 . . . n \ uxyz] − P[1 . . . n \ uw]P[1 . . . n \ vxyz]
+ P[1 . . . n \ uv]P[1 . . . n \ wxyz] . ��

Lemma A.9 For integers 1 � u < x < y � n and 1 � v < w < x one has

pfT (uxy) pfT (uvw)− pfT (u) pfT (uvwxy)

= pfT (uvx) pfT (uwy)− pfT (uwx) pfT (uvy) .

Proof With α = 1 . . . n \ uvwxy, β = vwxy, and b = x Eq. (A.1.4) yields

P[αβ]P[α] =
∑

i∈β
sgn

( β
xi(β\xi)

)
P[αβ \ xi]P[αxi] ,

which expands into

P[αvwxy]P[α] = P[αwy]P[αxv] − P[αvy]P[αxw] + P[αvw]P[αxy] .

After reordering and multiplication by (−1)v+w+x+y this expression becomes

P[1 . . . n \ u]P[α] = −P[1 . . . n \ uvx]P[1 . . . n \ uwx]
+ P[1 . . . n \ uwx]P[1 . . . n \ uvy]

+ P[1 . . . n \ uxy]P[1 . . . n \ uvw] . ��

B Minors via Pfaffians Following Brill

The formula in the next theorem was first discovered by Brill [4]; the theorem stated
here is [11, Theorem 2.1].

Theorem B.1 Let T be an n × n skew symmetric matrix. Let {i1, . . . , im} and
{j1, . . . , jm} be subsets of {1, . . . , n} with i1 < · · · < im and j1 < · · · < jm,
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and set ρ = i1 . . . im and σ = j1 . . . jm. The following equality holds:

det(T [i1 . . . im; j1 . . . jm])
= (−1)�m2 �

∑

0�k��m2 �
(−1)k

∑

|ω|=2k
ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ] .

Notice that only subwords ω of ρ that contain ρ ∩ σ contribute to the sum above.
The two lemmas proved below are applied in Appendix C to calculate the

maximal minors of the matrices ∂3 from Theorems 3.3 and 3.9.

Lemma B.2 Let n � 5 be an odd number. For integers 1 � r1 < r2 < r3 � n one
has

det
(
T [r1r2r3; 123])

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pfT (r1r2r3) pfT (123) if r2 � 3

pfT (r1r2r3) pfT (123)− pfT (123r2r3) pfT (r1) if r1 � 3 < r2

pfT (r1r2r3) pfT (123)− pfT (23r1r2r3) pfT (1)

+ pfT (13r1r2r3) pfT (2)− pfT (12r1r2r3) pfT (3) if 3 < r1 .

Proof Consider the words

ρ = 1 . . . n \ r1r2r3 and σ = 4 . . . n

of length n− 3. One has ρ ∩ σ = σ \ r1r2r3, and Theorem B.1 yields

det(T [r1r2r3; 123])

= (−1)
n−3

2

n−3
2∑

k=
⌈ |σ\r1r2r3|

2

⌉
(−1)k

∑

|ω|=2k
σ\r1r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ] . (1)

If r2 � 3 holds, then one has |ρ ∩ σ | = n− 3 or |ρ ∩ σ | = n− 4. In either case
the shortest word ω contributing to the sum (1) has length n− 3. Thus, ω = ρ is the
only contributing word and one gets

det(T [r1r2r3; 123]) = P[ρ]P[σ ] = pfT (r1r2r3) pfT (123) .

If r1 � 3 < r2 holds, then one has |ρ ∩σ | = n− 5. As n− 5 is even, the shortest
subwords ω of

ρ = (123 \ r1)(σ \ r2r3)
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that contribute to the sum (1) have length n − 5, so ω = σ \ r2r3 is the only one.
Now one has

det(T [r1r2r3; 123])

= (−1)
n−3

2

n−3
2∑

k= n−5
2

(−1)k
∑

|ω|=2k
σ\r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ]

= (−1)
n−3

2

(
(−1)

n−5
2 sgn

( ρ
σ\r2r3(123\r1)

)
P[σ \ r2r3]P[(123 \ r1)σ ]

+ (−1)
n−3

2 P[ρ]P[σ ]
)

= − sgn
( ρ
σ\r2r3(123\r1)

)
P[σ \ r2r3]P[(123 \ r1)σ ] + P[ρ]P[σ ]

= −P[σ \ r2r3]P[(123 \ r1)σ ] + P[ρ]P[σ ]
= − pfT (123r2r3) pfT (r1)+ pfT (r1r2r3) pfT (123) .

If 3 < r1 holds, then one has |ρ ∩ σ | = n − 6. As n − 6 is odd, the shortest
subwords ω of

ρ = 123(σ \ r1r2r3)

that contribute to the sum (1) have length n− 5. Now one has

det(T [r1r2r3; 123])

= (−1)
n−3

2

n−3
2∑

k= n−5
2

(−1)k
∑

|ω|=2k
σ\r1r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ]

= (−1)
n−3

2

(
(−1)

n−5
2

∑

|ω|=n−5
σ\r1r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ]

+ (−1)
n−3

2 P[ρ]P[σ ]
)

= −
(

sgn
( ρ

1(σ\r1r2r3)23
)
P[1σ \ r1r2r3]P[23σ ]

+ sgn
( ρ

2(σ\r1r2r3)13
)
P[2σ \ r1r2r3]P[13σ ]

+ sgn
( ρ

3(σ\r1r2r3)12
)
P[3σ \ r1r2r3]P[12σ ]

)
+ P[ρ]P[σ ]

= P[1σ \ r1r2r3]P[23σ ] − P[2σ \ r1r2r3]P[13σ ] + P[3σ \ r1r2r3]P[12σ ]
+ P[ρ]P[σ ]
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= − pfT (23r1r2r3) pfT (1)+ pfT (13r1r2r3) pfT (2)

− pfT (12r1r2r3) pfT (3)+ pfT (r1r2r3) pfT (123) . ��

Lemma B.3 Let n � 6 be an even number. For integers 1 � r1 < r2 < r3 � n one
has

det
(
T [r1r2r3; 123])

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r3 = 3

pfT (123r3) pfT (r1r2) if r2 � 3 < r3

pfT (12r2r3) pfT (13)− pfT (13r2r3) pfT (12) if 1 = r1 � 3 < r2

pfT (12r2r3) pfT (23)− pfT (23r2r3) pfT (12) if 2 = r1 � 3 < r2

pfT (13r2r3) pfT (23)− pfT (23r2r3) pfT (13) if 3 = r1 < r2
pfT (1r1r2r3) pfT (23)− pfT (2r1r2r3) pfT (13)

+ pfT (3r1r2r3) pfT (12)− pfT (123r1r2r3) pf[ T ] if 3 < r1 .

Proof Consider the words

ρ = 1 . . . n \ r1r2r3 and σ = 4 . . . n

of length n− 3. One has ρ ∩ σ = σ \ r1r2r3 and Theorem B.1 yields

det(T [r1r2r3; 123])

= (−1)
n−4

2

n−4
2∑

k=
⌈ |σ\r1r2r3|

2

⌉
(−1)k

∑

|ω|=2k
σ\r1r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ] . (1)

If r3 = 3 holds, then one has |ρ ∩ σ | = |σ | = n− 3, so the sum (1) is empty. i.e.

det(T [123; 123]) = 0 .

If r2 � 3 < r3 hold, then one has |ρ ∩ σ | = n− 4, so the shortest subwords ω of

ρ = (123 \ r1r2)(σ \ r3)
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contributing to the sum (1) have length n − 4. Thus, ω = σ \ r3 is the only
contributing word, and one gets

det(T [r1r2r3; 123]) = P[σ \ r3]P[(123 \ r1r2)σ ] = pfT (123r3) pfT (r1r2) .

If r1 � 3 < r2 holds, then one has |ρ ∩ σ | = n− 5, which is odd. Therefore, the
shortest subwords ω of

ρ = (123 \ r1)(σ \ r2r3)

contributing to the sum (1) have length n− 4. Hence, one gets

det(T [r1r2r3; 123])
=

∑

r∈123\r1
sgn

( ρ
(rσ\r2r3)(123\rr1)

)
P[rσ \ r2r3]P[(123 \ r1r)σ ] . (2)

For r1 = 1 this specializes to

det(T [1r2r3; 123]) =
∑

r∈23

sgn
( ρ
(rσ\r2r3)(23\r)

)
P[rσ \ r2r3]P[(23 \ r)σ ]

= − pfT (13r2r3) pfT (12)+ pfT (12r2r3) pfT (13) .

The specialization of (2) with r1 = 2 is

det(T [2r2r3; 123]) =
∑

r∈13

sgn
( ρ
(rσ\r2r3)(13\r)

)
P[rσ \ r2r3]P[(13 \ r)σ ]

= − pfT (23r2r3) pfT (12)+ pfT (12r2r3) pfT (23) .

The specialization of (2) with r1 = 3 is

det(T [3r2r3; 123]) =
∑

r∈12

sgn
( ρ
(rσ\r2r3)(12\r)

)
P[rσ \ r2r3]P[(12 \ r)σ ]

= − pfT (23r2r3) pfT (13)+ pfT (13r2r3) pfT (23) .

If 3 < r1 holds, then one has |ρ ∩ σ | = n − 6, which is even. Therefore, the
shortest subwords ω of

ρ = 123(σ \ r1r2r3)
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that contribute to the sum (1) have length n − 6, which means that ω = σ \ r1r2r3
is the only one. Thus one has

det(T [r1r2r3, 123])

= (−1)
n−4

2

n−4
2∑

k= n−6
2

(−1)k
∑

|ω|=2k
σ\r1r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ]

= −P[σ \ r1r2r3]P[123σ ] +
∑

|ω|=n−4
σ\r1r2r3⊆ω⊆ρ

sgn
( ρ
ω(ρ\ω)

)
P[ω]P[(ρ \ ω)σ ]

= −P[σ \ r1r2r3]P[123σ ] + P[23σ \ r1r2r3]P[1σ ]
− P[13σ \ r1r2r3]P[2σ ] + P[12σ \ r1r2r3]P[3σ ]

= − pfT (123r1r2r3) pf[ T ] + pfT (1r1r2r3) pfT (23)

− pfT (2r1r2r3) pfT (13)+ pfT (3r1r2r3) pfT (12) . ��

C Generic Almost Complete Intersections: The Proofs

In this final appendix we provide the detailed computations that underpin the
theorems in Sect. 3.

C.1 Quotients of Even Type

Lemma C.1 Let n � 5 be an odd number and adopt the setup from 3.3. The

sequence 0 −→ Rn−3 ∂3−→ Rn ∂2−→ R4 ∂1−→ R −→ 0 is a complex.

Proof The product ∂1∂2 is a 1× n matrix; the first three entries are evidently 0. For
i ∈ {4, . . . , n} the ith entry is

±(− pfT (1) pfT (23i)+ pfT (2) pfT (13i)− pfT (3) pfT (12i)+ pfT (123) pfT (i)
)
,

which is zero by Lemma A.6 applied with u1 . . . uk = 123i.
The product ∂2∂3 is a 4× (n−3)matrix. Let i ∈ {4, . . . , n}; the entry in position

(1, i − 3) is

τ1i pfT (123)+
i−1∑

j=4

(−1)j−1τji pfT (23j)−
n∑

j=i+1

(−1)j−1τij pfT (23j) .
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Applied with u1 . . . uk = 14 . . . n and u� = i, Lemma A.3 shows that this quantity
is zero. Similarly, Lemma A.3 applied with u1 . . . uk = 24 . . . n and u� = i shows
that the entry in position (2, i−3) is zero, and an application with u1 . . . uk = 3 . . . n
and u� = i shows that the entry in position (3, i − 3) is zero. The entry in position
(4, i − 3) is

i−1∑

j=1

(−1)j−1τji pfT (j)−
n∑

j=i+1

(−1)j−1τij pfT (j) .

Applied with u1 . . . uk = 1 . . . n and u� = i, Lemma A.3 shows that also this
quantity is zero. ��

Józefiak and Pragacz [16] calculate the grade of ideals generated by Pfaffians;
we combine this with a classic result of Eagon and Northcott [13] to obtain the next
lemma and Lemma C.6, which deals with the case of even n.

Lemma C.2 Let n � 5 be an odd number and adopt the setup from 3.3. The
Pfaffians pfT (1), pfT (2), and pfT (123) form a regular sequence in R.

Proof The (n− 3)× (n− 3) Pfaffians of the matrix T [3 . . . n; 3 . . . n] generate by
[16, Corollary 2.5] an ideal of grade 3 in the subring R′ = Z[τij | 3 � i < j � n]
of R; they are the Pfaffians pfT (12i) for 3 � i � n. As pfT (123) is a regular
element in the domain R′, the Pfaffians pfT (12i) for 4 � i � n generate an ideal
of grade 2 in S ′ = R′/ pfT (123). In S = R/ pfT (123) one has,

pfT (1) =
n∑

i=4

(−1)i−1τ2i pfT (12i) and pfT (2) =
n∑

i=4

(−1)i−1τ1i pfT (12i) .

Indeed, the first equality follows from Lemma A.2 applied with u1 . . . uk = 2 . . . n
and � = 1; the same lemma applied with u1 . . . uk = 13 . . . n and � = 1 yields the
second equality. Now it follows from [13, Lemma 6] that pfT (1) and pfT (2) form a
regular sequence in B. ��
Lemma C.3 Let n � 5 be an odd number and adopt the setup from 3.3. The ideal
generated by the (n− 3)× (n− 3) minors of the matrix ∂3 contains the elements

(pfT (1))
2 , (pfT (2))

2 , (pfT (3))
2 , and (pfT (123))2 .

Proof One has (pfT (1))
2 = det(T [2 . . . n; 2 . . . n]) and expansion of this determi-

nant along the first two columns, see Horn and Johnson [15, 0.8.9], yields:

det(T [2 . . . n; 2 . . . n]) =
∑

2�i<j�n
± det(T [ij ; 23]) det(T [1ij ; 123])

=
∑

2�i<j�n
± det(T [ij ; 23]) det(∂3[1ij ; 1 . . . n− 3]) .
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Similarly, one gets

(pfT (2))
2 = det(T [13 . . . n; 13 . . . n])
=

∑

3�j�n
± det(T [1j ; 13]) det(∂3[12j ; 1 . . . n− 3])

+
∑

3�i<j�n
± det(T [ij ; 13]) det(∂3[1ij ; 1 . . . n− 3])

and

(pfT (3))
2 = det(T [124 . . . n; 124 . . . n])
=

∑

1�i<j�n
i �=3 �=j

± det(T [ij ; 12]) det(∂3[1ij ; 1 . . . n− 3]) .

Finally, one trivially has

(pfT (123))2 = det(T [123; 123]) = det(∂3[123; 1 . . . n− 3]) .
��

Proposition C.4 Let n � 5 be an odd number and adopt the setup from 3.3. For
integers 1 � r1 < r2 < r3 � n and 1 � s1 < s2 < s3 � 4 one has

det(∂3[r1r2r3; 1 . . . n− 3]) det(∂1[1; s1s2s3]) = ± det(∂2[s1s2s3; r1r2r3]) .

Proof First notice that one has det(∂3[r1r2r3; 1 . . . n − 3]) = det(T [r1r2r3; 123]).
With the notation

LHS = det(T [r1r2r3; 123]) det(∂1[1; s1s2s3]) and

RHS = det(∂2[s1s2s3; r1r2r3])

the goal is to prove that LHS = ±RHS holds. Set

ρ = 1 . . . n \ r1r2r3 and {s} = {s1, s2, s3} .

The possible values of s3 are 3 and 4, and we treat these cases separately.
Case I. Assuming that s3 = 3 holds one has s = 4 and, therefore,

det(∂1[1; 123]) = pfT (123) . (1)
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Because the first three columns of the matrix ∂2 are special, our argument depends
on the size of the intersection {1, 2, 3} ∩ {r1, r2, r3}. We therefore consider four
subcases determined by the (in)equalities

r3 = 3 , r2 � 3 < r3 , r1 � 3 < r2 , and r1 < 3 . (2)

Subcase I.a. If r3 = 3 holds, then (1) and Lemma B.2 yield

LHS = (pfT (123))2 pfT (123) ,

and evidently one has RHS = (pfT (123))3.
Subcase I.b. If r2 � 3 < r3 hold, then (1) and Lemma B.2 yield

LHS = pfT (r1r2r3)(pfT (123))2 .

Expanding the determinant along the first column one has

±RHS = det

⎛

⎜⎜⎝

δ1r1 pfT (123) 0 pfT (23r3)

δ2r1 pfT (123) δ2r2 pfT (123) pfT (13r3)

0 δ3r2 pfT (123) pfT (12r3)

⎞

⎟⎟⎠

= δ1r1 pfT (123)
(
δ2r2 pfT (123) pfT (12r3)− pfT (13r3)δ3r2 pfT (123)

)

+ δ2r1 pfT (123)δ3r2 pfT (123) pfT (23r3)

= (pfT (123))2

· (δ1r1δ2r2 pfT (12r3)− δ1r1δ3r2 pfT (13r3)+ δ2r1δ3r2 pfT (23r3)
)
.

For all three choices of r1 < r2 in {1, 2, 3} one gets RHS = ±(pfT (123))2

pfT (r1r2r3) as desired.
Subcase I.c. If r1 � 3 < r2 hold, then (1) and Lemma B.2 yield

LHS = (
pfT (r1r2r3) pfT (123)− pfT (123r2r3) pfT (r1)

)
pfT (123) .

In view of Lemma A.9 this can be rewritten as

LHS = δ1r1
(

pfT (12r2) pfT (13r3)− pfT (13r2) pfT (12r3)
)

pfT (123)

+ δ2r1
(

pfT (12r2) pfT (23r3)− pfT (23r2) pfT (12r3)
)

pfT (123)

+ δ3r1
(

pfT (13r2) pfT (23r3)− pfT (23r2) pfT (13r3)
)

pfT (123) .
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Expansion of the determinant along the first column yields the matching expression

±RHS = det

⎛

⎜⎜⎝

δ1r1 pfT (123) pfT (23r2) pfT (23r3)

δ2r1 pfT (123) pfT (13r2) pfT (13r3)

δ3r1 pfT (123) pfT (12r2) pfT (12r3)

⎞

⎟⎟⎠

= δ1r1 pfT (123)
(

pfT (13r2) pfT (12r3)− pfT (13r3) pfT (12r2)
)

− δ2r1 pfT (123)
(

pfT (23r2) pfT (12r3)− pfT (23r3) pfT (12r2)
)

+ δ3r1 pfT (123)
(

pfT (23r2) pfT (13r3)− pfT (23r3) pfT (13r2)
)
.

Subcase I.d. If 3 < r1 holds, then (1) and Lemma B.2 yield

LHS = (
pfT (r1r2r3) pfT (123)− pfT (23r1r2r3) pfT (1)

+ pfT (13r1r2r3) pfT (2)− pfT (12r1r2r3) pfT (3)
)

pfT (123) .

Expansion of the determinant along the first column yields the second equality in
the computation below. The third equality follows from Lemma A.9 while the fifth
follows from Lemmas A.6 and A.7. Finally, the last equality follows from another
application of Lemma A.6.

±RHS = det

⎛

⎜⎜⎜⎝

pfT (23r1) pfT (23r2) pfT (23r3)

pfT (13r1) pfT (13r2) pfT (13r3)

pfT (12r1) pfT (12r2) pfT (12r3)

⎞

⎟⎟⎟⎠

= pfT (23r1)
(

pfT (13r2) pfT (12r3)− pfT (13r3) pfT (12r2)
)

− pfT (13r1)
(

pfT (23r2) pfT (12r3)− pfT (23r3) pfT (12r2)
)

+ pfT (12r1)
(

pfT (23r2) pfT (13r3)− pfT (23r3) pfT (13r2)
)

= pfT (23r1)
(

pfT (123r2r3) pfT (1)− pfT (123) pfT (1r2r3)
)

− pfT (13r1)
(

pfT (123r2r3) pfT (2)− pfT (123) pfT (2r2r3)
)

+ pfT (12r1)
(

pfT (123r2r3) pfT (3)− pfT (123) pfT (3r2r3)
)

= pfT (123r2r3)
(

pfT (23r1) pfT (1)− pfT (13r1) pfT (2)+ pfT (12r1) pfT (3)
)

− pfT (123)
(

pfT (23r1) pfT (1r2r3)

− pfT (13r1) pfT (2r2r3)+ pfT (12r1) pfT (3r2r3)
)
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= pfT (123r2r3) pfT (123) pfT (r1)

− pfT (123)
(

pfT (123r1r3) pfT (r2)

− pfT (123r1r2) pfT (r3)+ pfT (r1r2r3) pfT (123)
)

= − pfT (123)
(

pfT (r1r2r3) pfT (123)− pfT (123r2r3) pfT (r1)

+ pfT (123r1r3) pfT (r2)− pfT (123r1r2) pfT (r3)
)

= − pfT (123)
(

pfT (r1r2r3) pfT (123)− pfT (23r1r2r3) pfT (1)

+ pfT (13r1r2r3) pfT (2)− pfT (12r1r2r3) pfT (3)
)
.

Thus LHS = ±RHS holds, also in this subcase.
Case II. Assuming now that s3 = 4 holds, one has s ∈ {1, 2, 3} and hence

det(∂1[1; s1s2s3]) = (−1)s pfT (s) . (3)

As in Case I the argument is broken into subcases following the (in)equalities (2).
Subcase II.a. If r3 = 3 holds, then (3) and Lemma B.2 yield

LHS = ±(pfT (123))2 pfT (s) ,

and evidently one has RHS = ±(pfT (123))2 pfT (s).
Subcase II.b. If r2 � 3 < r3 hold, then (3) and Lemma B.2 again yield

LHS = ± pfT (r1r2r3) pfT (123) pfT (s) .

This has to be compared to

RHS = ± det

⎛

⎜⎜⎜⎜⎜⎝

δ1r1 pfT (123) 0 pfT (23r3)

δ2r1 pfT (123) δ2r2 pfT (123) pfT (13r3)

0 δ3r2 pfT (123) pfT (12r3)

(−1)r1−1 pfT (r1) (−1)r2−1 pfT (r2) pfT (r3)

⎞

⎟⎟⎟⎟⎟⎠
[s1s24; 123] .

Notice that the zeros in the matrix stand for δ3r1 pfT (123) and δ1r2 pfT (123); the
determinant is thus symmetric in the three possible choices of {s1, s2} ⊂ {1, 2, 3}.
By this symmetry it is sufficient to treat the choice {s1, s2} = {1, 2}. In this case one
has s = 3 and, therefore,

LHS = ± pfT (r1r2r3) pfT (123) pfT (3) . (4)



270 L. W. Christensen et al.

Expansion of the determinant along the first column yields

±RHS = det

⎛

⎜⎜⎝

δ1r1 pfT (123) 0 pfT (23r3)

δ2r1 pfT (123) δ2r2 pfT (123) pfT (13r3)

(−1)r1−1 pfT (r1) (−1)r2−1 pfT (r2) pfT (r3)

⎞

⎟⎟⎠

= δ1r1 pfT (123)
(
δ2r2 pfT (123) pfT (r3)+ (−1)r2 pfT (13r3) pfT (r2)

)

+ (−1)r2δ2r1 pfT (123) pfT (23r3) pfT (r2)

+ (−1)r1δ2r2 pfT (123) pfT (23r3) pfT (r1) .
(5)

For {r1, r2} = {1, 2} one has LHS = ± pfT (12r3) pfT (123) pfT (3). In the next
computation, which shows that this agrees with ±RHS, the last equality follows
from Lemma A.6.

±RHS = pfT (123)
(

pfT (123) pfT (r3)

+ pfT (13r3) pfT (2)
)− pfT (123) pfT (23r3) pfT (1)

)

= pfT (123)
(

pfT (123) pfT (r3)− pfT (23r3) pfT (1)+ pfT (13r3) pfT (2)
)

= pfT (123)(− pfT (3) pfT (12r3)) .

For {r1, r2} = {1, 3} one has LHS = ± pfT (13r3) pfT (123) pfT (3), see (4), and (5)
specializes to the same expression. Similarly, for {r1, r2} = {2, 3} one has LHS =
± pfT (23r3) pfT (123) pfT (3) and (5) specializes to the same expression.

Subcase II.c. If r1 � 3 < r2 hold, then (3) and Lemma B.2 yield

LHS = ±( pfT (r1r2r3) pfT (123)− pfT (123r2r3) pfT (r1)
)

pfT (s) .

This has to be compared to

RHS = ± det

⎛

⎜⎜⎜⎜⎜⎝

δ1r1 pfT (123) pfT (23r2) pfT (23r3)

δ2r1 pfT (123) pfT (13r2) pfT (13r3)

δ3r1 pfT (123) pfT (12r2) pfT (12r3)

(−1)r1−1 pfT (r1) pfT (r2) pfT (r3)

⎞

⎟⎟⎟⎟⎟⎠
[s1s24; 123] .

This determinant is symmetric in the three possible choices of {s1, s2} ⊂ {1, 2, 3}.
It suffices to treat the case {s1, s2} = {1, 2}, where one has s = 3 and, therefore,

LHS = ±( pfT (r1r2r3) pfT (123)− pfT (123r2r3) pfT (r1)
)

pfT (3) . (6)
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Expanding the determinant along the first column one gets

±RHS = det

⎛

⎜⎜⎝

δ1r1 pfT (123) pfT (23r2) pfT (23r3)

δ2r1 pfT (123) pfT (13r2) pfT (13r3)

(−1)r1−1 pfT (r1) pfT (r2) pfT (r3)

⎞

⎟⎟⎠

= δ1r1 pfT (123)
(

pfT (13r2) pfT (r3)− pfT (13r3) pfT (r2)
)

− δ2r1 pfT (123)
(

pfT (23r2) pfT (r3)− pfT (23r3) pfT (r2)
)

+ (−1)r1−1 pfT (r1)
(

pfT (23r2) pfT (13r3)− pfT (23r3) pfT (13r2)
)
.

For r1 = 1 this expression specializes to

±RHS = pfT (123)
(

pfT (13r2) pfT (r3)− pfT (13r3) pfT (r2)
)

+ pfT (1)
(

pfT (23r2) pfT (13r3)− pfT (23r3) pfT (13r2)
)

= pfT (13r2)
(

pfT (123) pfT (r3)− pfT (23r3) pfT (1)
)

+ pfT (13r3)
(

pfT (23r2) pfT (1)− pfT (123) pfT (r2)
)

= pfT (13r2)
(

pfT (13r3) pfT (2)− pfT (12r3) pfT (3))

+ pfT (13r3)(pfT (12r2) pfT (3)− pfT (13r2) pfT (2)
)

= (
pfT (13r3) pfT (12r2)− pfT (13r2) pfT (12r3)

)
pfT (3)

= (
pfT (1r2r3) pfT (123)− pfT (123r2r3) pfT (1)

)
pfT (3) ,

where the third equality follows from Lemma A.6 and the last equality holds by
Lemma A.9. This matches (6).

For r1 = 2 a parallel computation using the same lemmas yields

RHS = ±( pfT (123r2r3) pfT (2)− pfT (2r2r3) pfT (123)
)

pfT (3) ,

which again matches (6).
For r1 = 3 the RHS expression specializes to

±RHS = pfT (3)
(

pfT (23r2) pfT (13r3)− pfT (23r3) pfT (13r2)
)

= (
pfT (123r2r3) pfT (3)− pfT (3r2r3) pfT (123)

)
pfT (3) ,

where the second equality holds by Lemma A.9. This matches (6).
Subcase II.d. If 3 < r1 holds, then (3) and Lemma B.2 yield

LHS = ±( pfT (r1r2r3) pfT (123)− pfT (23r1r2r3) pfT (1)

+ pfT (13r1r2r3) pfT (2)− pfT (12r1r2r3) pfT (3)
)

pfT (s) .
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This has to be compared to

RHS = ± det

⎛

⎜⎜⎜⎜⎜⎝

pfT (23r1) pfT (23r2) pfT (23r3)

pfT (13r1) pfT (13r2) pfT (13r3)

pfT (12r1) pfT (12r2) pfT (12r3)

pfT (r1) pfT (r2) pfT (r3)

⎞

⎟⎟⎟⎟⎟⎠
[s1s24; 123] .

This determinant is symmetric in the three possible choices of {s1, s2} ⊂ {1, 2, 3}.
It is sufficient to treat the case {s1, s2} = {1, 2}, where one has s = 3 and, therefore,

LHS = ±( pfT (r1r2r3) pfT (123)− pfT (23r1r2r3) pfT (1)

+ pfT (13r1r2r3) pfT (2)− pfT (12r1r2r3) pfT (3)
)

pfT (3) .
(7)

Expansion along the third row yields

±RHS = det

⎛

⎜⎜⎝

pfT (23r1) pfT (23r2) pfT (23r3)

pfT (13r1) pfT (13r2) pfT (13r3)

pfT (r1) pfT (r2) pfT (r3)

⎞

⎟⎟⎠

= pfT (r1)
(

pfT (23r2) pfT (13r3)− pfT (23r3) pfT (13r2)
)

− pfT (r2)
(

pfT (23r1) pfT (13r3)− pfT (23r3) pfT (13r1)
)

+ pfT (r3)
(

pfT (23r1) pfT (13r2)− pfT (23r2) pfT (13r1)
)

= pfT (r1)
(

pfT (123r2r3) pfT (3)− pfT (3r2r3) pfT (123)
)

− pfT (r2)
(

pfT (123r1r3) pfT (3)− pfT (3r1r3) pfT (123)
)

+ pfT (r3)
(

pfT (123r1r2) pfT (3)− pfT (3r1r2) pfT (123)
)

= (
pfT (r1) pfT (123r2r3)

− pfT (r2) pfT (123r1r3)+ pfT (r3) pfT (123r1r2)
)

pfT (3)

− (
pfT (r1) pfT (3r2r3)

− pfT (r2) pfT (3r1r3)+ pfT (r3) pfT (3r1r2)
)

pfT (123)

= (
pfT (1) pfT (23r1r2r3)− pfT (2) pfT (13r1r2r3)

+ pfT (3) pfT (12r1r2r3)
)

pfT (3)− pfT (3) pfT (r1r2r3) pfT (123)

where the last two equalities follow from Lemmas A.6 and A.9. ��
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C.2 Quotients of Odd Type

The proofs of C.5–C.8 below are, if anything, slightly simpler than the proofs of
C.1–C.4.

Lemma C.5 Let n � 6 be an even number and adopt the setup from 3.9. The

sequence 0 −→ Rn−3 ∂3−→ Rn ∂2−→ R4 ∂1−→ R is a complex.

Proof The product ∂1∂2 is a 1× n matrix; the first three entries are evidently 0. For
i ∈ {4, . . . , n} the ith entry is

±( pfT pfT (123i)− pfT (12) pfT (3i)+ pfT (13) pfT (2i)− pfT (23) pfT (1i)
)
,

which is zero by Lemma A.4 applied with u1 . . . uk = 123i and u� = i.
The product ∂2∂3 is a 4× (n−3)matrix. Let i ∈ {4, . . . , n}; the entry in position

(1, i − 3) is

i−1∑

j=4

(−1)j−1τji pfT (123j)−
n∑

j=i+1

(−1)j−1τij pfT (123j) .

Applied with u1 . . . uk = 4 . . . n and u� = i, Lemma A.3 shows that this quantity is
zero. The entry in position (2, i − 3) is

τ1i pfT (13)− τ2i pfT (23)+
i−1∑

j=4

(−1)j τji pfT (3j)−
n∑

j=i+1

(−1)j τij pfT (3j) .

Applied with u1 . . . uk = 124 . . . n and u� = i, Lemma A.3 shows that this quantity
is zero. Similarly, Lemma A.3 applied with u1 . . . uk = 134 . . . n and u� = i shows
that the entry in position (3, i−3) is zero, and an application with u1 . . . uk = 2 . . . n
and u� = i shows that the entry in position (4, i − 3) is zero. ��
Lemma C.6 Let n � 6 be an even number and adopt the setup from 3.9. The
Pfaffians pfT (12), pfT (13), and pfT (23) form a regular sequence in R.

Proof The (n− 4)× (n− 4) Pfaffians of the matrix T [4 . . . n; 4 . . . n] generate by
[16, Corollary 2.5] an ideal of grade 3 in the subring R′ = Z[τij | 4 � i < j � n] of
R; they are the Pfaffians pfT (123i) for 4 � i � n. Applied with u1 . . . uk = 3 . . . n
and � = 1, Lemma A.2 yields

pfT (12) =
n∑

i=4

(−1)iτ3i pfT (123i) .
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Similarly, applied with u1 . . . uk = 24 . . . n and � = 2 the same lemma yields

pfT (13) =
n∑

i=4

(−1)iτ2i pfT (123i) .

Finally, with u1 . . . uk = 14 . . . n and � = 1 one gets

pfT (23) =
n∑

i=4

(−1)iτ1i pfT (123i) .

Now it follows from [13, Lemma 6] that pfT (12), pfT (13), and pfT (23) form a
regular sequence in R. ��
Lemma C.7 Let n � 6 be an even number and adopt the setup from 3.9. The ideal
generated by the (n− 3)× (n− 3) minors of the matrix ∂3 contains the elements

(pfT )
2, (pfT (12))2 , (pfT (13))2 , and (pfT (23))2 .

Proof One has (pfT )
2 = det(T ) and expansion of this determinant along the first

three columns, see [15, 0.8.9], yields:

det(T ) =
∑

1�i<j<k�n
± det(T [ijk; 123]) det(T [ijk; 123])

=
∑

1�i<j<k�n
± det(T [ijk; 123]) det(∂3[ijk; 1 . . . n− 3]) .

Similarly, expanding along the first column one gets

(pfT (12))2= det(T [3 . . . n; 3 . . . n])=
n∑

i=3

±T [i; 3] det(∂3[12i; 1 . . . n− 3]) ,

(pfT (13))2= det(T [24 . . . n; 24 . . . n])=
∑

2�i�n
i �=3

±T [i; 2] det(∂3[13i; 1 . . . n− 3]) ,

and

(pfT (23))2= det(T [14 . . . n; 14 . . . n]) =
∑

1�i�n
i �=2,3

±T [i; 1] det(∂3[23i; 1 . . . n−3]) . ��
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Proposition C.8 Let n � 6 be an even number and adopt the setup from 3.9. For
integers 1 � r1 < r2 < r3 � n and 1 � s1 < s2 < s3 � 4 one has

det(∂3[r1r2r3; 1 . . . n− 3]) det(∂1[1; s1s2s3]) = ± det(∂2[s1s2s3; r1r2r3]) .

Proof Notice that det(∂3[r1r2r3; 1 . . . n− 3]) = det(T [r1r2r3; 123]) holds and set

LHS = det(T [r1r2r3; 123]) det(∂1[1; s1s2s3]) and

RHS = det(∂2[s1s2s3; r1r2r3]) .

The goal is now to prove that LHS = ±RHS holds. Set

ρ = 1 . . . n \ r1r2r3 and {s} = {s1, s2, s3} .

The possible values of s1 are 1 and 2, and we treat these cases separately.
Case I. Assuming that s1 = 1 holds, one has s ∈ {2, 3, 4}. By symmetry it

suffices to treat the case s = 4. In this case one has

det(∂1[1; s1s2s3]) = pfT (23) . (1)

Because the first three columns of the matrix ∂2 are special, our argument depends
on the size of the intersection {1, 2, 3} ∩ {r1, r2, r3}. We therefore consider four
subcases determined by the (in)equalities

r3 = 3 , r2 � 3 < r3 , r1 � 3 < r2 , and r1 < 3 . (2)

Subcase I.a. If r3 = 3 holds, then Lemma B.3 yields LHS = 0, and ∂2 has a zero
row, so RHS = 0 holds as well.

Subcase I.b. If r2 � 3 < r3 hold, then (1) and Lemma B.3 yield

LHS = pfT (123r3) pfT (r1r2) pfT (23) .

Expansion of the determinant along the first row yields

±RHS = det

⎛

⎜⎜⎜⎝

0 0 pfT (123r3)

δ1r1 pfT (13)− δ2r1 pfT (23) −δ2r2 pfT (23) − pfT (3r3)

−δ1r1 pfT (12) δ3r2 pfT (23) pfT (2r3)

⎞

⎟⎟⎟⎠

= pfT (123r3) pfT (23)
(
δ1r1

(
δ3r2 pfT (13)− δ2r2 pfT (12)

)− δ2r1δ3r2 pfT (23)
)

= ± pfT (123r3) pfT (23) pfT (r1r2) .
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Subcase I.c. If r1 � 3 < r2 hold, then (1) and Lemma B.3 yield

LHS = pfT (23) ·

⎧
⎪⎪⎨

⎪⎪⎩

pfT (12r2r3) pfT (13)− pfT (13r2r3) pfT (12) if r1 = 1

pfT (12r2r3) pfT (23)− pfT (23r2r3) pfT (12) if r1 = 2

pfT (13r2r3) pfT (23)− pfT (23r2r3) pfT (13) if r1 = 3 .

This has to be compared to

± RHS

= det

⎛

⎜⎜⎝

0 pfT (123r2) pfT (123r3)

δ1r1 pfT (13)− δ2r1 pfT (23) − pfT (3r2) − pfT (3r3)

−δ1r1 pfT (12)+ δ3r1 pfT (23) pfT (2r2) pfT (2r3)

⎞

⎟⎟⎠

= −δ1r1
(

pfT (13)
(

pfT (123r2) pfT (2r3)− pfT (123r3) pfT (2r2)
)

+ pfT (12)
(− pfT (123r2) pfT (3r3)+ pfT (123r3) pfT (3r2)

))

+ δ2r1 pfT (23)
(

pfT (123r2) pfT (2r3)− pfT (123r3) pfT (2r2)
)

+ δ3r1 pfT (23)
(− pfT (123r2) pfT (3r3)+ pfT (123r3) pfT (3r2)

)
.

Lemma A.5 applied with u1 . . . uk = 123r2r3 and � = 2 and � = 3 yields

− pfT (23r2r3) pfT (12)+ pfT (12r2r3) pfT (23)

= pfT (123r3) pfT (2r2)− pfT (123r2) pfT (2r3)

and

− pfT (23r2r3) pfT (13)+ pfT (13r2r3) pfT (23)

= pfT (123r3) pfT (3r2)− pfT (123r2) pfT (3r3) .

The first of these identities immediately yields LHS = ±RHS in case r1 = 2, and for
r1 = 3 the second identity yields the same conclusion. In case r1 = 1 one applies
both identities to see that LHS = ±RHS holds.

Subcase I.d. If 3 < r1 holds, then (1) and Lemma B.3 yield

LHS = (
pfT (1r1r2r3) pfT (23)− pfT (2r1r2r3) pfT (13)

+ pfT (3r1r2r3) pfT (12)− pfT (123r1r2r3) pfT
)

pfT (23) .

Expansion of the determinant along the third row yields the second equality in
the computation below. The third equality follows from three applications of
Lemma A.5 with u1 . . . uk = 123r2r3/123r1r3/123r2r2 and � = 3. The fifth follows



Almost Complete Intersection Ideals of Grade 3 277

from Lemma A.5 applied with u1 . . . uk = 23r1r2r3 and � = 1 and Lemma A.4
applied with u1 . . . uk = 123r1r2r3 and � = 2.

±RHS = det

⎛

⎜⎜⎝

pfT (123r1) pfT (123r2) pfT (123r3)

pfT (3r1) pfT (3r2) pfT (3r3)

pfT (2r1) pfT (2r2) pfT (2r3)

⎞

⎟⎟⎠

= pfT (2r1)
(

pfT (123r2) pfT (3r3)− pfT (123r3) pfT (3r2)
)

− pfT (2r2)
(

pfT (123r1) pfT (3r3)− pfT (123r3) pfT (3r1)
)

+ pfT (2r3)
(

pfT (123r1) pfT (3r2)− pfT (123r2) pfT (3r1)
)

= pfT (2r1)
(

pfT (23r2r3) pfT (13)− pfT (13r2r3) pfT (23)
)

− pfT (2r2)
(

pfT (23r1r3) pfT (13)− pfT (13r1r3) pfT (23)
)

+ pfT (2r3)
(

pfT (23r1r2) pfT (13)− pfT (13r1r2) pfT (23)
)

= pfT (13)
(

pfT (23r2r3) pfT (2r1)

− pfT (23r1r3) pfT (2r2)+ pfT (23r1r2) pfT (2r3)
)

− pfT (23)
(

pfT (13r2r3) pfT (2r1)

− pfT (13r1r3) pfT (2r2)+ pfT (13r1r2) pfT (2r3)
)

= pfT (13) pfT (2r1r2r3) pfT (23)− pfT (23)
(

pfT (3r1r2r3) pfT (12)

+ pfT (1r1r2r3) pfT (23)− pfT (123r1r2r3) pfT
)
.

Up to a sign, this is LHS.
Case II. Assuming that s1 = 2 holds one has s = 1 and, therefore,

det(∂1[1; 234]) = pfT . (3)

As in Case I the argument is broken into subcases following the (in)equalities (2).
Subcase II.a. If r3 = 3, then (3) and Lemma B.3 yield LHS = 0, and one has

RHS = det

⎛

⎜⎜⎝

pfT (13) − pfT (23) 0

− pfT (12) 0 pfT (23)

0 pfT (12) − pfT (13)

⎞

⎟⎟⎠

= pfT (13) pfT (23) pfT (12)− pfT (23) pfT (12) pfT (13) = 0 .

Subcase II.b. If r2 � 3 < r3 hold, then (1) and Lemma B.3 yield

LHS = pfT (123r3) pfT (r1r2) pfT .
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In the computation below, the last equality follows from Lemma A.4 applied with
u1 . . . uk = 123r3 and � = 4; it shows that LHS and RHS agree up to a sign.

± RHS

= det

⎛

⎜⎝
δ1r1 pfT (13)− δ2r1 pfT (23) −δ2r2 pfT (23) pfT (3r3)

−δ1r1 pfT (12) δ3r2 pfT (23) − pfT (2r3)
δ2r1 pfT (12) δ2r2 pfT (12)− δ3r2 pfT (13) pfT (1r3)

⎞

⎟⎠

= δ1r1δ2r2 pfT (12)
(

pfT (13) pfT (2r3)− pfT (23) pfT (1r3)− pfT (12) pfT (3r3)
)

+ δ1r1δ3r2 pfT (13)
(

pfT (23) pfT (1r3)− pfT (13) pfT (2r3)+ pfT (12) pfT (3r3)
)

− δ2r1δ3r2 pfT (23)
(

pfT (23) pfT (1r3)− pfT (13) pfT (2r3)+ pfT (12) pfT (3r3)
)

= ± pfT (r1r2)
(

pfT (23) pfT (1r3)− pfT (13) pfT (2r3)+ pfT (12) pfT (3r3)
)

= pfT (r1r2) pfT pfT (123r3) .

Subcase II.c. If r1 � 3 < r2 hold, then (3) and Lemma B.3 yield

LHS = pfT ·

⎧
⎪⎪⎨

⎪⎪⎩

pfT (12r2r3) pfT (13)− pfT (13r2r3) pfT (12) if r1 = 1

pfT (12r2r3) pfT (23)− pfT (23r2r3) pfT (12) if r1 = 2

pfT (13r2r3) pfT (23)− pfT (23r2r3) pfT (13) if r1 = 3 .

This has to be compared to

±RHS = det

⎛

⎜⎜⎝

δ1r1 pfT (13)− δ2r1 pfT (23) pfT (3r2) pfT (3r3)

−δ1r1 pfT (12)+ δ3r1 pfT (23) − pfT (2r2) − pfT (2r3)

δ2r1 pfT (12)− δ3r1 pfT (13) pfT (1r2) pfT (1r3)

⎞

⎟⎟⎠

= δ1r1
(

pfT (13)
(− pfT (2r2) pfT (1r3)+ pfT (1r2) pfT (2r3)

)

+ pfT (12)
(

pfT (3r2) pfT (1r3)− pfT (1r2) pfT (3r3)
))

− δ2r1
(

pfT (23)
(− pfT (2r2) pfT (1r3)+ pfT (1r2) pfT (2r3)

)

− pfT (12)
(− pfT (3r2) pfT (2r3)+ pfT (2r2) pfT (3r3)

))

− δ3r1
(

pfT (23)
(

pfT (3r2) pfT (1r3)− pfT (1r2) pfT (3r3)
)

− pfT (12)
(− pfT (3r2) pfT (2r3)+ pfT (2r2) pfT (3r3)

))
.

For r1 = 1 it follows from two applications of Lemma A.4, namely with u1 . . . uk =
12r2r3/13r2r3 and � = 1, that LHS and RHS agree up to a sign. For r1 = 2 one gets
the same conclusion by applying Lemma A.4 with u1 . . . uk = 12r2r3/23r2r3 and
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� = 1. For r1 = 3 one gets the desired conclusion from Lemma A.4 applied with
u1 . . . uk = 13r2r3/23r2r3 and � = 1.

Subcase II.d. If 3 < r1 holds, then (3) and Lemma B.3 yield

LHS = (
pfT (1r1r2r3) pfT (23)− pfT (2r1r2r3) pfT (13)

+ pfT (3r1r2r3) pfT (12)− pfT (123r1r2r3) pfT
)

pfT .

Expansion of the determinant along the first column yields the second equality
in the computation below. The third equality follows from three applications of
Lemma A.4. The fifth follows from two applications of Lemma A.4 with u1 . . . uk =
123r1r2r3/123r1 and � = 4. The last equality follows from Lemma A.8.

± RHS

= det

⎛

⎜⎝
pfT (3r1) pfT (3r2) pfT (3r3)

pfT (2r1) pfT (2r2) pfT (2r3)
pfT (1r1) pfT (1r2) pfT (1r3)

⎞

⎟⎠

= pfT (3r1)
(

pfT (2r2) pfT (1r3)− pfT (2r3) pfT (1r2)
)

− pfT (2r1)
(

pfT (3r2) pfT (1r3)− pfT (3r3) pfT (1r2)
)

+ pfT (1r1)
(

pfT (3r2) pfT (2r3)− pfT (3r3) pfT (2r2)
)

= pfT (3r1)
(

pfT (12r2r3) pfT − pfT (12) pfT (r2r3)
)

− pfT (2r1)
(

pfT (13r2r3) pfT − pfT (13) pfT (r2r3)
)

+ pfT (1r1)
(

pfT (23r2r3) pfT − pfT (23) pfT (r2r3)
)

= (
pfT (1r1) pfT (23r2r3)− pfT (2r1) pfT (13r2r3)+ pfT (3r1) pfT (12r2r3)

)
pfT

+ (− pfT (1r1) pfT (23)+ pfT (2r1) pfT (13)− pfT (3r1) pfT (12)
)

pfT (r2r3)

= (
pfT (123r1r2r3) pfT − pfT (r1r2) pfT (123r3)+ pfT (r1r3) pfT (123r2)

− pfT (r2r3) pfT (123r1)
)

pfT

= (
pfT (123r1r2r3) pfT − pfT (12) pfT (3r1r2r3)+ pfT (13) pfT (2r1r2r3)

− pfT (23) pfT (1r1r2r3)
)

pfT .

Up to a sign, this is LHS. ��
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1 Introduction

The Eigenvalue Theorem is a standard result in computational algebraic geometry.
Given a field F and polynomials f1, . . . , fs ∈ F [x1, . . . , xn], it is well known that
the system

f1 = · · · = fs = 0 (1.1)

has finitely many solutions over the algebraic closure F of F if and only if

A = F [x1, . . . , xn]/〈f1, . . . , fs〉

has finite dimension over F (see, for example, Theorem 6 of [7, Ch. 5, §3]).
A polynomial f ∈ F [x1, . . . , xn] gives a multiplication map

mf : A −→ A.

A basic version of the Eigenvalue Theorem goes as follows:

Theorem 1.1 (Eigenvalue Theorem) When dimF A <∞, the eigenvalues of mf
are the values of f at the finitely many solutions of (1.1) over F .
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For A = A⊗F F , we have a canonical isomorphism of F -algebras

A =
∏

a∈VF (f1,...,fs )

Aa,

whereAa is the localization ofA at the maximal ideal corresponding to a. Following
[12, Thm. 3.3], we get a more precise version of the Eigenvalue Theorem:

Theorem 1.2 (Stickelberger’s Theorem) For every a ∈ VF (f1, . . . , fs), we have
mf (Aa) ⊆ Aa , and the restriction of mf to Aa has only one eigenvalue f (a).

This result easily implies Theorem 1.1 and enables us to compute the character-
istic polynomial of mf . Namely, the multiplicity of a as a solution of (1.1) is

μ(a) = dimF Aa,

and then Theorem 1.2 tells us that the characteristic polynomial of mf is

det(mf − x I) =
∏

a∈VF (f1,...,fs )

(f (a)− x)μ(a). (1.2)

Furthermore, since the trace of a matrix can be read off from its characteristic
polynomial, (1.2) gives the formula

Tr(mf ) =
∑

a∈VF (f1,...,fs )

μ(a)f (a). (1.3)

This trace formula will play an important role in what follows.
The name “Stickelberger’s Theorem” in Theorem 1.2 is from [12]. Versions

of Theorems 1.1 and 1.2 also named “Stickelberger’s Theorem” can be found in
the papers [11, 26, 32], and [23] has a “Stickelberger’s Theorem” for positive-
dimensional solution sets. A “Stickelberger’s Theorem” that focuses on (1.2) and
(1.3) can be found in [2]. A common feature of these papers is that no reference
to Stickelberger is given! An exception is [11], which refers to the wrong paper of
Stickelberger.

There is an actual theorem of Ludwig Stickelberger lurking in the background, in
the paper Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper
[28] that appeared in the proceedings of the first International Congress of Math-
ematicians, held in Zürich in 1897. This paper includes Theorems I–XIII, most
dealing with traces and properties of the discriminant of a number field.
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In [28], Stickelberger fixes a number field � of degree n and discriminant D.
Here are two of the theorems from [28]:

Theorem 1.3 (Theorems VII and XIII of [28]) If a prime p does not divide D,
then the Legendre symbol

(
D
p

)
satisfies

(D
p

)
= (−1)n−m,

where pO = p1 · · · pm is the prime factorization in the ring O of algebraic integers
of �.

This result is well known in number theory. See, for example, [5] and [15]. But
for our purposes, Stickelberger’s most interesting theorem in [28] involves the trace
function of O modulo an ideal a containing a prime p. This is the map

Tra : O −→ Fp

where multiplication by α ∈ O gives a Fp-linear map mα : O/a→ O/a with trace

Tra(α) = Tr(mα) ∈ Fp.

When a = pO, we write Trp(α) instead of TrpO(α). Here is Stickelberger’s
theorem:

Theorem 1.4 (Theorem III of [28]) Let p be prime with factorization pO =
pe11 · · · pemm , where p1, . . . , pm are distinct primes. Then for any α ∈ O, we have

Trp(α) =
m∑

i=1

eiTrpi (α).

Given the similarity to the trace formula (1.3), it becomes clear why Stickel-
berger’s paper is relevant to the Eigenvalue Theorem. The link was made explicit
in 1988 when Günter Scheja and Uwe Storch published Lehrbuch der Algebra [24].
However, even though Scheja and Storch invoke Stickelberger’s name, they do not
refer to his 1897 paper [28].

In what follows, we will say more about Stickelberger and his mathematics in
Sect. 2 and explore the history of the Eigenvalue Theorem in Sect. 3. Section 4 will
describe how Stickelberger and the Eigenvalue Theorem came together in 1988
under the influence of Scheja and Storch, and Sect. 5 will explain the unexpected
role played by real solutions. We end with some final remarks in Sect. 6
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2 Ludwig Stickelberger

Ludwig Stickelberger was a Swiss mathematician born in 1850 in the canton of
Schaffhausen and died in 1936 in Basel. He got his PhD from Berlin in 1874 under
the direction of Ernst Kummer and Karl Weierstrass. After spending a few years at
the forerunner of ETH in Zürich, Stickelberger went to the University of Freiburg
in 1879. He retired in 1919 but remained in Freiburg as an “Honorarprofessor” until
1924, when he returned to Switzerland.

Stickelberger’s mathematical work is described in a 1937 article [14] written
by his Freiburg colleague Lothar Heffter. Stickelberger’s mathematical output was
modest: besides his dissertation, he published 12 papers during his lifetime, four
jointly written with Frobenius. One unpublished manuscript from 1915 appeared
posthumously in 1936. Heffter gives a brief description of each paper in [14].

His papers cover a range of topics, including quadratic forms, real orthogonal
transformations, differential equations, algebraic geometry, group theory, elliptic
functions, and algebraic number theory. Heffter comments that

. . . he definitely adopted Gauss’ point of view “Pauca sed matura" [few but mature]. He
recognized and filled essential gaps in fundamental theories, often having the last word
with the keystone of a development that gives the theory its final, simplest form.

Stickelberger’s best known result, published in 1890 in Mathematische Annalen
[29], concerns an element θ in the group ring Q[G], where G is the Galois group
Gal(Q(ζm)/Q) , (Z/mZ)× of the cyclotomic extension Q ⊆ Q(ζm). This gives
the ideal

I = (θZ[G]) ∩ Z[G] ⊆ Z[G].

It is customary to call θ the Stickelberger element and I the Stickelberger ideal.
Here is his theorem:

Theorem 2.1 (Stickelberger’s Theorem [29]) The Stickelberger ideal I annihi-
lates the class group of Q(ζm).

If you search MathSciNet for reviews that mention “Stickelberger” anywhere,
the vast majority involve the Stickelberger element, the Stickelberger ideal, and
their generalizations. When mathematicians say “Stickelberger’s Theorem”, they
are usually referring to Theorem 2.1. This is probably what led the authors of [11]
to cite [29] as the source for their version of the Eigenvalue Theorem.

In 1897, Stickelberger published the paper [28] discussed in the Introduction.
The main focus here is on properties of the discriminant D of a number field �.
Besides proving Theorem 1.3, Stickelberger’s results also imply that D ≡ 0, 1 mod
4. This standard fact appears in many textbooks on algebraic number theory (see, for
example, Exercise 7 on p. 15 of [20], where the congruence is called Stickelberger’s
discriminant relation).
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There are several ways to define D; the one most relevant to us uses a Z-basis
β1, . . . , βn of the ring O of algebraic integers of �. The trace function Tr : �→ Q

maps O to Z. Then the discriminant of � is defined to be

D = det(Tr(βiβj )) ∈ Z.

Given this definition, it is not surprising that Stickelberger begins [28] with some
properties of traces. He quickly gets to the trace formula given in Theorem 1.4,
which we propose calling the Stickelberger Trace Formula to distinguish it from the
more famous Stickelberger Theorem 2.1.

In Sect. 4, we will explain carefully how the Stickelberger Trace Formula relates
to the Eigenvalue Theorem. But first, we need to learn more about the evolution of
the Eigenvalue Theorem.

3 The Eigenvalue Theorem

A key feature of the Eigenvalue Theorem is that the quotient algebra A =
F [x1, . . . , xn]/〈f1, . . . , fs〉 is finite dimensional over F when f1 = · · · = fs = 0
has finitely many solutions over F . This was known by the end of the 1970s and is
what allows us to use linear algebra to find solutions. But getting from here to the
Eigenvalue Theorems 1.1 and 1.2 involved several independent discoveries, each
with its own point of view. In what follows, I will mention some but not all of the
relevant papers.

We begin in 1981 with Daniel Lazard’s paper Résolutions des systèmes
d’équations algébriques [18], which gives an algorithm to solve a zero-dimensional
system. To relate his approach to ours, observe that setting x = 0 in (1.2) gives the
formula

det(mf ) =
∏

a∈VF (f1,...,fs )

f (a)μ(a). (3.1)

For new variables U0, . . . , Un, let L = U0 + U1x1 + · · · + Unxn. Given a point
a = (a1, . . . , an) ∈ Fn, applying L to a gives

L(a) = U0 + U1a1 + · · · + Unan,

from which we can recover a. Thus, if we could somehow set f = L in (3.1), we
would get

det(mL) =
∏

a∈VF (f1,...,fs )

L(a)μ(a), (3.2)

which would give the solutions and their multiplicities.
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In [18], Lazard describes an algorithm for computing a projective version of the
right-hand side of (3.2). He replaces A with

AU = F [U0, . . . , Un, x0, . . . , xn]/〈F1, . . . , Fs〉,

where Fi(x0, . . . , xn) is the homogenization of fi(x1, . . . , xn) and L becomes
L = U0x0 + · · · + Unxn. The ring AU is graded with respect to x0, . . . , xn, and
multiplication by L between graded pieces of AU appears explicitly in §4 of [18].

The product in (3.2) is an example of a U -resultant, and (very large) determinan-
tal formulas for such resultants were known by the early twentieth century. Lazard’s
paper is important because of its efficient algorithm for computing this product. For
us, the key feature of [18] is the use of a multiplication map on a quotient algebra.

The next advance came in 1988 with the paper An elimination algorithm for
the computation of all zeros of a system of multivariate polynomial equations by
Winfried Auzinger and Hans Stetter [1]. For a system of n equations in x1, . . . , xn,
their initial is goal is to compute the right-hand side of (3.1) when f = b0+ b1x1+
· · · + bnxn. Coming from a background in numerical analysis, they begin with the
classical theory of resultants and describe an approach that works “in the general
case (without degeneracies)”.

In §5 of [1], Auzinger and Stetter construct matrices B(k), k = 1, . . . , n, whose
eigenvalues are the kth coordinates of the solutions, together with simultaneous
eigenvectors. They also explain how these eigenvectors enable one to find the
solutions. Eigenvalues and eigenvectors finally take center stage!

For us, §6 of [1] is the most interesting, for here, B(k) is interpreted as the matrix
of the linear map xk : A → A given by multiplication by xk . Then comes a key
observation: while the treatment so far assumes that there are no degeneracies, one
can avoid this assumption by simply defining B(k) to be the matrix of multiplication
by xk on A. Everything still works and we finally have the Eigenvalue Theorem!

A more complete treatment of this circle of ideas appears in the Central Theorem
(Theorem 2.27) in Stetter’s 2004 book Numerical Polynomial Algebra [27]. You
can also read about this in Using Algebraic Geometry [8], where §2.4 discusses
the Eigenvalue Theorem and the role of eigenvectors, and §3.6 makes the link to
resultants when there are no degeneracies. We should also mention the 1992 paper
Solutions of systems of algebraic equations and linear maps on residue class rings
[31] by Yokoyama, Noro and Takeshima that draws on ideas of Lazard, Auzinger
and Stetter, together with papers of Kobayashi.

In the Historical and Bibliographical Notes to Chapter 2 of [27], Stetter writes

The fundamental relation between the eigenelements of multiplication in the quotient ring
and the zeros of the ideal must have been known to algebraists of the late 19th and early 20th
centuries, in the language of the time. . . . There are quotations of a theorem of Stickelberger
from the 1920s, which is equivalent to Theorem 2.27, but its relevance remained concealed.

Sorting out what was known 100 years ago is not an easy task. The only name
mentioned by Stetter is our friend Stickelberger, though as we have seen, the date is
1897, not the 1920s.
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It is now time to turn to Stickelberger, even though the above discussion omits
some important papers from the early 1990s that are relevant to the ideas behind the
Eigenvalue Theorem. We will consider this work in §5 when we study real solutions
of a polynomial system.

4 Scheja and Storch 1988

In 1988, Günter Scheja and Uwe Storch published the two-volume algebra text
Lehrbuch der Algebra. In Volume 2, §94 deals with trace forms (Spurformen) and
is where Stickelberger enters the picture:

Beispiel 7 (Die Sätze von Stickelberger)

(see [24, p. 795]). But before giving the theorems, they observe that

In some cases, the fine structure of the trace form of a finite free algebra can be described
with the help of simple features of the algebra itself.

They begin with a “simple lemma” that goes as follows. Let A be a finite-
dimensional F -algebra with maximal ideals m1, . . . ,mr . The localizations Ami
have residue fields Li , A/mi and satisfy

A ,
r∏

i=1

Ami .

For each i, define λi by the equation

dimF Ami = λi[Li : F ] (4.1)

Note also that α ∈ A gives F -linear multiplication maps mα : A → A and mα :
Li → Li .

Theorem 4.1 (Lemma 94.6 in [24]) Assume that Li is a separable extension of F
for 1 ≤ i ≤ r . Then for α ∈ A, the multiplication maps mα defined above satisfy

TrA(mα) =
r∑

i=1

λiTrLi (mα).

Proof Since A , Am1 × · · · × Amr , we can reduce to the case where A is local
with maximal ideal m and residue field L = A/m. Then (4.1) can be written

dimF A = λ [L : F ].

In the F -algebra A, the separable hull Asep ⊆ A consists of all elements of A whose
minimal polynomial over F is separable. Since F ⊆ L is separable by hypothesis,
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the composition

Asep ↪−→ A −→ A/m = L

is an isomorphism of fields by Corollary 91.14 of [24].
Thus A is a vector space over Asep of dimension λ. A basis {β1, . . . , βλ} of A

over Asep gives a direct sum

A = Asepβ1 ⊕ · · · ⊕ Asepβλ.

To compute the trace of mα : A → A over F , first assume α ∈ Asep. Then mα is
compatible with the direct sum decomposition, which easily implies

TrA(mα) = λTrAsep(mα).

Via the isomorphism Asep , L, this becomes

TrA(mα) = λTrL(mα). (4.2)

Now suppose α ∈ A is arbitrary. Since Asep , L = A/m, there is α′ ∈ Asep such
that α = α′ + β with β ∈ m. Note that m is nilpotent since A is finite-dimensional
over F . Then mα = mα′ +mβ implies

TrA(mα) = TrA(mα′)+ TrA(mβ)

= λTrL(mα′)+ 0

= λTrL(mα′)+ λTrL(mβ) = λTrL(mα),

where the second line follows from (4.2) with α′ and the fact that mβ is nilpotent,
and the third line follows since mβ is the zero map on L. We conclude that (4.2)
holds for all α ∈ A, and the theorem follows. ��

A key feature of the proof is that everything becomes clear once we understand
the structure of A, i.e., the “simple features of the algebra itself”.

Scheja and Storch then use Theorem 4.1 to prove various results of Stickelberger,
including the Stickelberger Trace Formula given in Theorem 1.4. For this reason,
it makes sense to call Theorem 4.1 the Stickelberger Trace Formula in honor of
Stickelberger’s contribution.

Here is an easy consequence of Theorem 4.1.

Corollary 4.2 With the notation and assumptions of Theorems 1.1 and 1.2, we have

Tr(mf ) =
∑

a∈VF (f1,...,fs )

μ(a)f (a).

Proof Maximal ideals m1, . . . ,mr of A = A ⊗F F correspond to solutions
a1, . . . , ar in VF (f1, . . . , fs). In the notation of Sect. 1, the localization Aai has
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residue field Li , F via the map Aai → F defined by f �→ f (ai). It follows that
TrLi (mf ) = f (ai). Furthermore, for Aai , the λi in (4.1) is multiplicity μ(ai). Then
the desired formula for Tr(mf ) is an immediate consequence of Theorem 4.1. ��

Corollary 4.2 is the trace formula (1.3) from the Introduction. There, we deduced
(1.3) from the version of “Stickelberger’s Theorem” given in [12]. We now see how
this follows from Theorem 4.1, which is Scheja and Strorch’s version of the actual
Stickelberger Trace Formula from 1897.

This is nice, but where are the eigenvalues? After all, our main concern is the
relation between Stickelberger and the Eigenvalue Theorem. Fortunately, the trace
formula given in Corollary 4.2 is powerful enough to determine the eigenvalues of
mf when F has characteristic zero. Here is the precise result:

Proposition 4.3 With the notation and assumptions of Theorems 1.1 and 1.2, the
following are equivalent when char(F ) = 0:

(1) For every f ∈ F [x1, . . . , xn],

Tr(mf ) =
∑

a∈VF (f1,...,fs )

μ(a)f (a).

(2) For every f ∈ F [x1, . . . , xn],

det(mf − x I) =
∏

a∈VF (f1,...,fs )

(f (a)− x)μ(a).

Proof We proved (2)⇒ (1) in the discussion leading up to (1.3). As for (1)⇒ (2),
let M be the diagonal matrix whose diagonal entries are f (a) repeated μ(a) times,
for each a ∈ VF (f1, . . . , fs). Then for any integer � ≥ 0, we have

Tr(M�) =
∑

a∈VF (f1,...,fs )

μ(a)f (a)� = Tr(mf �) = Tr((mf )
�),

where the second equality uses (1) with f � and the third equality follows from
mfg = mf ◦mg . ThusM� and (mf )� have the same trace for all � ≥ 0.

It has been known since 1840 that in characteristic zero, the characteristic
polynomial of a matrix is determined by the traces of its powers (a formula for
the coefficients in terms of the traces is given in [19]).1 Thus the previous paragraph
implies that M and mf have the same characteristic polynomial, and (2) follows
immediately. ��

We now have a direct path from Stickelberger to the characteristic zero version
of the Eigenvalue Theorem. Our final task is to explore how Stickelberger’s name

1 If char(F ) = p > 0, then A = λIp has Tr(A�) = 0 for all � ≥ 0, independent of λ, while
det(A− x I) = (λ− x)p = λp − xp .
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began to appear in the literature following the 1988 publication of Scheja and
Storch’s book [24].

In Theorem 1.2, we stated “Stickelberger’s Theorem” from the 1999 book
chapter [12] by Gonzalez-Vega, Roullier and Roy. Their Corollary 3.6 states the
formulas for the trace, determinant and characteristic polynomial of mf given
in (1.3), (3.1) and (1.2) respectively. Not surprisingly, there is no reference to
Stickelberger. Nor is there a reference to Scheja and Storch!

However, there is a reference to the 1995 paper [13] by Gonzalez-Vega and
Trujillo, which includes the following result (reproduced verbatim):

Theorem 1 (Stickelberger Theorem) Let K ⊂ F be a field extension with F

algebraically closed, h ∈ K[x] and J be a zero dimensional ideal in K[x]. If
VF(J ) = {Δ1, . . . , Δs} are the zeros in F

n of J then there exists a basis of F[x]/J
such that the matrix of Mh, with respect to this basis, has the following block
structure:

⎛

⎜⎜⎜⎝

H1 0 . . . 0
0 H2 . . . 0
...
...

...

0 0 . . . Hs

⎞

⎟⎟⎟⎠ where Hi =

⎛

⎜⎜⎜⎝

h(Δi) $ . . . $

0 h(Δi) . . . $
...

...
...

0 0 . . . h(Δi)

⎞

⎟⎟⎟⎠

The dimension of the i-th submatrix is equal to the multiplicity of Δi as a zero of
the ideal J .

As far as I know, this is the first explicit mention of “Stickelberger’s Theorem” in
the literature. As usual, Stickelberger does not appear in the references to [13], and
there is also no reference to Scheja and Storch. To see why, we look to Trujillo’s
1997 PhD thesis [30]. She states a version of Theorem 1 and says:

The version presented here was introduced by L. Stickelberger ([SS88]) in 1930

So we have a direct link between “Stickelberger’s Theorem” and Scheja and Storch,
though the date 1930 is not correct.

Trujillo also notes that this result was rediscovered independently in 1991 by
Pedersen, Roy and Szpirglas (see [22]) and by Becker and Wörmann (see [4]). The
references to [12] and [13] cite these authors. Hence we need to examine [22] and
[4]. These papers deal with solutions over R, which leads to our next topic.

5 Counting Real Solutions

Given a finite-dimensional F -algebra A, multiplication by α ∈ A gives a F -linear
map mα : A→ A as usual. In §94 of [24], Scheja and Storch define the trace form
to be the symmetric bilinear form TA on A defined by

TA(α, β) = Tr(mαβ) ∈ F.
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When F = R, the type of TA is (p, q), where p = # positive eigenvalues and q = #
negative eigenvalues, and the signature is σ(TA) = p − q. Scheja and Storch apply
the Stickelberger Trace Formula (Theorem 4.1) to determine the type of TA:

Theorem 5.1 (Theorem 94.7 of [24]) If A is a finite-dimensional R-algebra, then
the trace form TA has type (r1 + r2, r2), where r1 (resp. r2) is the number maximal
ideals m ⊆ A with quotient A/m , R (resp. C).

Proof For maximal ideals m1, . . . ,mr ofAwith quotientsL1, . . . , Lr , Theorem 4.1
implies that

TA =
r∑

i=1

λiTLi . (5.1)

Using the bases {1} of R ⊆ R and {1,√−1} of R ⊆ C, one easily computes that

matrix of TLi =

⎧
⎪⎪⎨

⎪⎪⎩

(1) Li = R (happens r1 times)(
2 0

0 −2

)
Li = C (happens r2 times).

Since λi > 0 for all i, (5.1) implies that TA is represented by a diagonal matrix with
r1 + r2 positive entries, r2 negative entries, and possibly many zero entries. The
theorem follows. ��

Over R, there is a bijective correspondence between symmetric bilinear forms
and quadratic forms. Thus one can speak of the type and signature of a quadratic
form. In what follows, the quadratic form associated to TA will be denotedQA, so

QA(α) = TA(α, α) = Tr(mα2).

An immediate consequence of Theorem 5.1 is the following wonderful result
about real solutions of a zero-dimensional polynomial system over R.

Corollary 5.2 Assume 〈f1, . . . , fs〉 ⊆ R[x1, . . . , xn] is a zero-dimensional ideal.
Set A = R[x1, . . . , xn]/〈f1, . . . , fs〉 and let

S = {a ∈ R
n | f1(a) = · · · = fs(a) = 0}

be the set of real solutions of f1 = · · · = fs = 0. Then the quadratic form QA has
signature

σ(QA) = #S = the number of real solutions.

Proof The maximal ideals m of A come in two flavors: the r1 maximal ideals with
A/m , R correspond to real solutions, hence elements of S, and the r2 maximal
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ideals with A/m , C correspond to complex-conjugate pairs of nonreal solutions.
Thus

#S = r1 = (r1 + r2)− r2 = σ(QA),

where the last equality follows sinceQA has type (r1 + r2, r2) by Theorem 5.1. ��
There is a long history of using quadratic forms to study the number of real

solutions, going back to the work of Jacobi, Hermite and Sylvester in the nineteenth
century. In 1936, Krein and Naimark wrote a nice survey of these developments. An
English translation of their paper was published in 1981 as [16].

Historically, real positive solutions were preferred (in one variable, negative solu-
tions where called false roots by Cardan). More generally, given h ∈ R[x1, . . . , xn],
one can ask for solutions a ∈ R

n of f1 = · · · = fs = 0 that satisfy h(a) > 0 or
h(a) < 0. An easy adaptation of the proofs of Theorem 5.1 and Corollary 5.2 leads
to the following result:

Theorem 5.3 Assume 〈f1, . . . , fs〉 ⊆ R[x1, . . . , xn] is a zero-dimensional ideal.
Set A = R[x1, . . . , xn]/〈f1, . . . , fs〉 and let

S = {a ∈ R
n | f1(a) = · · · = fs(a) = 0}

be the set of real solutions of f1 = · · · = fs = 0. If h ∈ R[x1, . . . , xn], then the
quadratic formQA,h defined by

QA,h(α) = Tr(mα2h)

has signature

σ(QA,h) = #{a ∈ S | h(a) > 0} − #{a ∈ S | h(a) < 0}.

Proof As in the proof of Theorem 5.1, the Stickelberger Trace Formula from
Theorem 4.1 easily implies

QA,h =
r∑

i=1

λiQLi,h.

The r1 indices with Li , R correspond to elements a ∈ S, and the isomorphism is
given by evaluation at a. Thus we can rewrite the above sum as

QA,h =
∑

a∈S
λih(a)QR +

∑

Li,C
λiQLi,h.
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The first sum is a quadratic form of signature

#{a ∈ S | h(a) > 0} − #{a ∈ S | h(a) < 0}.

Hence it suffices to show that QLi,h has signature zero when Li , C. Such an
isomorphism (there are two) is given by evaluation at one of the corresponding pair
of complex-conjugate roots of the system. Call this root b and set h(b) = u + iv.
We leave it as an exercise for the reader to show that for the basis {1,√−1}, the
corresponding bilinear form is represented by the symmetric matrix

(
2u −2v
−2v −2u

)
,

which has eigenvalues ±2|h(b)|. ThusQLi,h has signature zero, and we are done.
��

This path from Stickelberger to Corollary 5.2 and Theorem 5.3 is lovely but not
what happened historically. Instead, Paul Pedersen [21] and Eberhard Becker [3]
discovered these results independently in 1991, with no knowledge at the time of
§94 of Scheja and Storch. In 1993, Pedersen joined forces with Marie-Françoise
Roy and Aviva Szpirglas to write [22], where the authors comment that

The structure theory for finite dimensional algebras which we shall present was first
developed by Stickelberger (see [SS 88]).

While they never say “Stickelberger’s Theorem”, this is the first instance I could find
of Stickelberger. Naturally, there is no reference to a paper of his, though the citation
to Scheja and Storch is clear. A year later, in 1994, Becker and Thorsten Wörmann
published [4], which includes [22] in its references. Thus the link to Stickelberger
via Scheja and Storch was established in the literature by 1993.

6 Conclusion

We have seen how Stickelberger’s 1897 paper influenced Scheja and Storch in 1988.
His name and the link to Scheja and Storch appeared in papers on real solutions
starting in 1993, and in 1995, we finally see the label Stickelberger’s Theorem
applied to the Eigenvalue Theorem, with the name becoming standard in the late
1990s. But in the process, the link to Stickelberger’s actual work got lost. The
purpose of this paper is to reestablish the connection and get a better sense of
Stickelberger’s contribution.

One thing to notice in the papers from the 1990s is the emphasis on structure.
In 1993, Pedersen, Roy and Szpirglas [22] use a structure theory for finite
dimensional algebras “first developed by Stickelberger”, and in 1995, Gonzalez-
Vega and Trujillo [13] state a “Stickelberger Theorem” that describes the structure
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of multiplication matrices. This is not what Stickelberger did; rather, in [28], he
proved a trace formula using the known factorization pO = pe11 · · · pemm .

The emphasis on structure is really due to Scheja and Storch in their version of
Stickelberger’s Trace Formula in Lemma 94.6 in [24]: the “fine structure of the trace
form” is a consequence of “simple features of the algebra itself". This is borne out by
their proof of the lemma. However, their treatment is abstract and non-constructive,
while the papers from the 1990s are interested in algorithms. In these papers, the
goal is not to describe the structure but rather to compute the structure. This is a
significant advance beyond what Stickelberger, Scheja and Storch did.

A striking feature of this story is wide range of mathematics involved:

• Abstract algebra: Günter Scheja and Uwe Storch.
• Algebraic number theory: Ludwig Stickelberger.
• Computer algebra: Daniel Lazard and Paul Pedersen.
• Numerical analysis: Winfried Auzinger and Hans Stetter.
• Real algebraic geometry: Eberhard Becker, Marie-Françoise Roy, Aviva Szpir-

glas and Thorsten Wörmann.

Of course, the names mentioned here are involved in other areas of research; what
the list represents is the perspectives they brought to the story of Stickelberger and
the Eigenvalue Theorem.

I draw two lessons from this diversity. First, polynomial systems have a wide
interest that touches on many areas of mathematics, and second, abstract algebra
provides a powerful language that enables us to understand the structure of what is
going on. As an algebraic geometer, I find this to be deeply satisfying.

A final comment is that the linear maps mf commute since mf ◦ mg = mfg .
This point of view features in the version of the Eigenvalue Theorem, valid over an
arbitrary field, that appears in [17, Theorem 2.4.3]. See also [17, Section 6.2.A].

As noted at the beginning of Sect. 3, my account of Stickelberger and the
Eigenvalue Theorem omits many fine papers. I apologize for any omissions or
inaccuracies on my part.

Acknowledgments I would like to thank Eberhard Becker, Hubert Flenner, Laureano Gonzalez-
Vega, Trevor Hyde, Stefan Kekebus, Michael Möller, Markus Reineke, Lorenzo Robbiano, Marie-
Françoise Roy and Hans Stetter for helpful correspondence about Stickelberger and the Eigenvalue
Theorem. I am grateful to David Eisenbud for all he has done for mathematics and society.

I also have a story to tell. In the late 1970s, I learned about the Eisenbud-Levine Theorem
[10], which computes the topological degree of a C∞ map germ as the signature of a certain
algebraically defined quadratic form (see [9] for a lovely exposition). The topological degree is
usually defined using singular cohomology. I was working on étale cohomology at the time, and
my paper [6] studied a question raised by David of whether étale cohomology can be used to define
the topological degree (it can’t). In reading the paper of Eisenbud and Levine, I learned about a
splendid 1975 paper of Scheja and Storch [25] on Spurfunktionen (trace functions). In their algebra
book [24], written thirteen years later, §94 is entitled Die Spurformen (Trace Forms). This is where
they make the connection between Stickelberger and the ideas behind the Eigenvalue Theorem. So
dedicating this paper to David is wonderfully appropriate.
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Multiplicities and Mixed Multiplicities
of Filtrations

Steven Dale Cutkosky and Hema Srinivasan

In this article we survey recent progress in the theory of multiplicities and mixed
multiplicities of filtrations. This theory is introduced and developed in the papers
[8–11] and [12]. In this article, we discuss results, overviews of proofs and context
of these papers.

Multiplicities and mixed multiplicities exist for filtrations of m-primary ideals,
and many of the foundational results of the theory of multiplicities and mixed
multiplicities ofm-primary ideals in a local ring are true for filtrations ofm-primary
ideals; especially, inequalities generalize to filtrations. The theorems of Rees [21]
and Teissier [27], Rees and Sharp [23] and Katz [14] characterizing equality of
multiplicity and of mixed multiplicities do not extend to arbitrary filtrations, but
they are true for divisorial and bounded filtrations.

Mixed multiplicities of filtrations of m-primary ideals and their basic properties
are derived by Cutkosky, Sarkar and Srinivasan in the paper [11] and overviewed in
Sect. 5 of this article. The characterization of equality of multiplicity for divisorial
and bounded filtrations of m-primary ideals is given in [8] and [9] and discussed in
Sects. 3 and 4 of this article. The Minkowski inequalities for filtrations ofm-primary
ideals are proven in [11] and presented in Sect. 6 of this paper. The characterization
of equality in the Minkowski inequality for divisorial and bounded filtrations of
m-primary ideals is given in [9] and discussed in Sects. 6 and 7 of this article.

All local rings will be Noetherian. The maximal ideal of a local ring R will be
denoted by mR . The length of an R-module N will be written as �(N) = �R(N).
The round up �x� of a real number x is the smallest integer n such that x ≤ n.

S. D. Cutkosky (�) · H. Srinivasan
Department of Mathematics, University of Missouri, Columbia, MO, USA
e-mail: cutkoskys@missouri.edu; srinivasanh@missouri.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Peeva (ed.), Commutative Algebra, https://doi.org/10.1007/978-3-030-89694-2_9

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89694-2_9&domain=pdf
mailto:cutkoskys@missouri.edu
mailto:srinivasanh@missouri.edu
https://doi.org/10.1007/978-3-030-89694-2_9


300 S. D. Cutkosky and H. Srinivasan

1 Filtrations

Let R be a local ring. An mR-filtration is a family of ideals I = {In}n∈N,

R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·

such that In is mR-primary for n > 0 and IiIj ⊂ Ii+j for all i, j .
The filtration I is said to be Noetherian if the ring ⊕n≥0In is a finitely generated

R-algebra.
We give a few important examples of mR-filtrations.

Example 1.1 Let I be an mR-primary ideal and I = {In}. This is the mR-filtration
of the powers of a fixed mR-primary ideal.

Example 1.2 Let R ⊂ S be local rings such that S dominates R (mS ∩ R = mR)
and I = {mnS ∩ R}.
Example 1.3 Let R be a local domain, μ a valuation with value group Z and
valuation ring Oμ with maximal ideal mμ such that R ⊂ Oμ and μ dominates
R (mμ ∩ R = mR). We define valuation ideals

I (μ)n = {f ∈ R | μ(f ) ≥ n},

and an associated mR-filtration I(μ) = {I (μ)n}.
Example 1.4 Let R be an excellent local domain and ϕ : X → Spec(R) be the
normalization of the blowup of anmR-primary ideal with prime exceptional divisors
E1, . . . , Er . Let νEi be the valuation with valuation ring OX,Ei . The valuations of
this type are the mR-valuations. They are the Rees valuations of the ideal blown up
([22, Statement (G)]).

For a1, . . . , ar ∈ N and D = a1E1 + · · · + arEr (a Weil divisor), let

I (mD) = �(X,OX(−ma1E1 − · · · −marEr)) ∩ R
= I (νE1)ma1 ∩ · · · ∩ I (νEr )mar .

(1)

The mR-filtration I(D) = {I (mD)} is called a divisorial mR-filtration.
The last line of Eq. (1) gives a definition of the filtration I(D) which is

independent of X.
A choice of a pair ϕ : X → Spec(R) and Weil divisor D = a1E1 + · · · + arEr

on X giving the filtration of (1) will be called a representation of the divisorial
mR-filtration {I (νE1)ma1 ∩ · · · ∩ I (νEr )mar }. We will abuse notation and call this a
representation of I(D).

Example 1.1 is always Noetherian. However, Examples 1.2, 1.3 and 1.4 are often
not Noetherian, even in regular local rings. An example is given in [3].

In a two-dimensional normal local ring R, the condition that the filtration of
valuation ideals of R is Noetherian for all mR-valuations dominating R is the
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condition (N) of Muhly and Sakuma [18]. It is proven in [4] that a complete normal
local ring of dimension two satisfies condition (N) if and only if its divisor class
group is a torsion group.

Let R be a local ring and I = {In} be an mR-filtration. The integral closure∑
n≥0 Int

n of the R-algebra
∑
n≥0 Int

n in the polynomial ring R[t] is the ring

∑

n≥0

Intn =
∑

n≥0

Jnt
n

where {Jn} is the mR-filtration

Jn = {f ∈ R | f r ∈ Inr for some r > 0}.

Here I denotes the integral closure of the ideal I . This is proven in [10, Lemma
5.5]. In the classical case that I = {In} is the filtration of the powers of a fixed
mR-primary ideal, we have that Jn = In for all n.

If I(D) is a divisorial mR-filtration, then ([10, Lemma 5.7])
∑
n≥0 I (nD)t

n is
integrally closed; that is,

∑

n≥0

I (nD)tn =
∑

n≥0

I (nD)tn.

Definition 1.5 An mR-filtration I = {In} is said to be bounded if there exists a
divisorial mR-filtration I(D) on R such that we have equality of R-algebras

∑

n≥0

Intn =
∑

n≥0

I (nD)tn.

The category of bounded mR-filtrations contains the classical mR-filtrations I =
{In} of the powers of a fixed mR-primary ideals ([10, Remark 5.6]).

2 Multiplicity of mR-Primary Ideals and of mR-Filtrations

Let R be a local ring of dimension d and I be an mR-primary ideal. For all m� 0,

�(R/Im) = e(I )
d! m

d + lower order terms

is a polynomial of degree m with rational coefficients, which is called the Hilbert
Samuel polynomial. The multiplicity of I is defined to be e(I ), which is always a



302 S. D. Cutkosky and H. Srinivasan

positive integer. A good exposition of multiplicity is given in [24, Chapter 11]. We
see that the multiplicity is the limit

e(I ) = lim
m→∞

�(R/Im)

md/d! .

This last formulation allows us to define multiplicities of filtrations.

Definition 2.1 Suppose that I = {In} is an mR-filtration on a local ring R. Then
the multiplicity of I is

e(I) = lim sup
m→∞

�(R/Im)

md/d! .

Since I1 is an mR-primary ideal, there exists c > 0 such that mcnR ⊂ I1 so that

mcnR ⊂ In for all n, thus �(R/In) ≤ �(R/mcnR ) for all n and thus the sequence �(R/In)
nd

is bounded, and so the limsup of the sequence exists.
Rings for which all multiplicities exist as a limit have a simple characterization.

Theorem 2.2 ([5, Theorem 1.1] and [6, Theorem 4.2]) Suppose that R is a local
ring of dimension d, and N(R̂) is the nilradical of the mR-adic completion R̂ of R.
Then the limit

lim
n→∞

�R(R/In)

nd
(1)

exists for any mR-filtration I = {In} if and only if dimN(R̂) < d.

The problem of existence of such limits (1) has been considered by Ein,
Lazarsfeld and Smith [13] and Mustaţă [19]. When the ring R is a domain and
is essentially of finite type over an algebraically closed field k with R/mR = k,
Lazarsfeld and Mustaţă [17] showed that the limit exists for all mR-filtrations.
Cutkosky [6] proved it in the complete generality stated above in Theorem 2.2.
Lazarsfeld and Mustaţă use in [17] the method of counting asymptotic vector space
dimensions of graded families using “Okounkov bodies”. This method, which is
reminiscent of the geometric methods used by Minkowski in number theory, was
developed by Okounkov [20], Kaveh and Khovanskii [15] and Lazarsfeld and
Mustaţă [17]. We also use this wonderful method. The fact that dimN(R) = d

implies there exists a filtration without a limit was observed by Dao and Smirnov.
As can be seen from this theorem, one must impose the condition that the

dimension of the nilradical of the completion R̂ of R is less than the dimension
of R to ensure the existence of limits. The nilradical N(R) of a d-dimensional local
ring R is

N(R) = {x ∈ R | xn = 0 for some positive integer n}.
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We have that dimN(R) = d if and only if there exists a minimal prime P of R such
that dimR/P = d andRP is not reduced. In particular, the condition dimN(R̂) < d
holds if R is analytically unramified; that is, R̂ is reduced. Thus dimN(R̂) < d if R
is excellent and reduced.

Example 2.3 The multiplicity of an mR-filtration can be any nonnegative real
number. Here is a very simple example showing that any positive real number can
be realized as a limit. Let k be a field and R = k[[x]] be a power series ring. Given
λ ∈ R>0 let In = (x�nλ�) and I = {In} where �λ� is the round up of λ. Then
e(I) = λ.

Examples of mR-filtrations I(μ) where μ is an mR-valuation on a normal local
domain such that the multiplicity e(I(μ)) is irrational are given in [11] and [8].

3 Rees’s Theorem

The following theorem by Rees [21] characterizes when the Rees algebras of two
mR-primary ideals have the some integral closure. An exposition is given in [24,
Theorem 11.3.1].

Theorem 3.1 (Rees [21]) Suppose that R is a formally equidimensional local ring
and I ′ ⊂ I are mR-primary ideals. Then the following are equivalent

1) e(I ′) = e(I )
2) There is equality of integral closures

∑
n≥0(I

′)ntn =∑
n≥0 I

ntn

3) I ′ = I .

The statements 2) and 3) are equivalent on any local ring R and 2) implies 1) is
true on any local ring R. The original statement of Rees is that 1) is equivalent to 3).
We have added the equivalent condition 2) since this condition is the generalization
of 3) to filtrations.

This theorem suggests the following question for filtrations.

Question 3.2 Suppose that I ′ ⊂ I are mR-filtrations. Are the conditions

1) e(I ′) = e(I)
2) There is equality of integral closures

∑
n≥0 I

′
nt
n =∑

n≥0 Int
n

equivalent?

Writing I ′ = {I ′n} and I = {In}, the condition I ′ ⊂ I means that I ′n ⊂ In for all
n.

It is shown in [11, Theorem 6.9] and [8, Appendix] that 2) ⇒ 1) is true for
arbitrary mR-filtrations (if dimN(R̂) < d). However 1) ⇒ 2) is false for arbitrary
mR-filtrations, as shown in the following simple example from [11], which appears
after the statement of [11, Theorem 6.9].



304 S. D. Cutkosky and H. Srinivasan

Example 3.3 Let R be a regular local ring and I ′ = {mn+1
R } ⊂ I = {mnR}. Then

e(I ′) = e(I) but
∑
n≥0 I

′
nt
n �=∑

n≥0 Int
n.

We prove in [10] that 3.2 does have a positive answer for bounded mR-filtrations
(Definition 1.5).

Theorem 3.4 (Rees’s theorem for bounded filtrations)([10, Theorem 13.1] and [10,
Theorem 14.4]) Suppose that R is an analytically irreducible or excellent local
domain and I(1) and I(2) are boundedmR-filtrations such that I(1) ⊂ I(2). Then
the following are equivalent

1) e(I ′) = e(I)
2) There is equality of integral closures

∑
n≥0 I

′
nt
n =∑

n≥0 Int
n.

4 Outline of the Proof of Rees’s Theorem for Filtrations

In this section, we suppose that R is a d-dimensional normal excellent local domain.

4.1 Multiplicities of Filtrations

We summarize [10, Section 6] and [10, Section 7]. We use the method of counting
asymptotic vector space dimensions of graded families by computing volumes of
convex bodies associated to appropriate semigroups introduced in [17, 20] and [15].
Let ν be a valuation of the quotient field K of R which dominates R and has value
group isomorphic to Z

d . Further suppose that ν(f ) ∈ N
d for 0 �= f ∈ R. Then we

can associate to an mR-filtration I = {In} a semigroup �(I) ⊂ N
d+1 defined by

�(I) = {(ν(f ), n) | f ∈ In}. Let �(I) be the intersection of the closure of the real
cone generated by �(I) with R

d × {1}. Similarly, we define �(R) to be the subset
of Rd constructed from �(R) by replacing In with R for all n.

For c ∈ R>0, let

H−c = {(x1, . . . , xd) ∈ R
d | x1 + · · · + xd ≤ c}.

Suppose that μ is an mR-filtration. In [10, Section 6] and [10, Section 7] we
construct a valuation ν as above such that ν = (μ,−) (ν is composite with μ)
and so that there is a constant c > 0 such that

�(I) \ (�(I) ∩H−c ) = �(R) \ (�(R) ∩H−c ). (1)
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Then�(I)∩H−c and�(R)∩H−c are compact convex sets and by equation (34)
of [10],

eR(I)
d! = δ[Vol(�(R) ∩H−c )− Vol(�(I) ∩H−c )] (2)

where δ = [Oν/mν : R/mR].

4.2 The Integral Closure of a Filtration I and the Convex Sets
�(I)

Suppose that I ′ ⊂ I are mR-filtrations. Then we have �(I ′) ⊂ �(I), so we have
eR(I) = eR(I ′) if and only if �(I ′) = �(I).

If I ′ is a Noetherian mR-filtration, and I is an mR-filtration such that I ′ ⊂ I,
then we have that eR(I ′) = eR(I) if and only if �(I ′) = �(I) which holds if and
only if

∑
m≥0 Imt

m = ∑
m≥0 I

′
mt
m. This is proven as follows. By taking suitable

Veronese subalgebras, we reduce to the case where I and I ′ are the filtrations
of powers of fixed mR-primary ideals I and I ′, so that this follows from Rees’s
Theorem [21] (Theorem 3.1) for normal excellent local domains.

For arbitrary mR-filtrations I ′ ⊂ I such that
∑
Imtm = ∑

m≥0 I
′
mt
m we have

that eR(I ′) = eR(I) (and �(I ′) = �(I)), as shown in [11, Theorem 6.9] and [8,
Appendix]. However, as we showed in Example 3.3, there exists a non-Noetherian
mR-filtration I ′ and a NoetherianmR-filtration I such that I ′ ⊂ I, eR(I ′) = eR(I),
so that �(I ′) = �(I), but

∑
m≥0 Imt

m is not a subset of
∑
m≥0 I

′
mt
m.

4.3 The Invariant γμ(I)

The invariant γμ(I) is introduced in [8] and [10, Subsection 5.1]. Suppose that
I = {In} is an mR-filtration and μ is an mR-valuation. Define

τμ,m(I) = μ(Im) = min{μ(f ) | f ∈ Im} ∈ Z>0,

and define

γμ(I) = inf
m

τμ,m(I)
m

.

Let I(D) be a divisorial mR-filtration on R. Let ϕ : X → Spec(R) be the blow
up of an mR-primary ideal with prime exceptional divisors E1, . . . , Er such that X
is normal with a representation D = a1E1 + · · · + arEr with a1, . . . , ar ∈ N. Let
νEi be the mR-valuation with valuation ring OX,Ei . Let γEi (D) = γνEi (I(D)). We
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have that γEi (D) > 0 for all i, but γEi can be an irrational number ([8, Theorem
15.2]). We have the important inequality

γEi (D) ≥ ai (3)

for all i. Let �x� be the round up of a real number x (the greatest integer in x). If
b1E1 + . . . + brEr with b1, . . . , br ∈ R is a real divisor, then define the integral
divisor

�b1E1 + · · · + brEr� = �b1�E1 + · · · + �br�Er.

If F is an (integral) Weil divisor on X then OX(F ) denotes the associated reflexive
rank 1 sheaf on X (c.f. [7, Section 3.2]).

For all m ∈ N we have that

�(X,OX(−�mγE1(D)E1 + · · · +mγEr (D)Er�)
= �(X,OX(−ma1E1 − · · · −marEr)) = I (mD). (4)

Heremai is the prescribed order of vanishing of elements of I (mD) along Ei while
mγEi (D) is asymptotically the actual order of vanishing along Ei .

We have the following fundamental statement.

If I ′ ⊂ I and eR(I ′) = eR(I) then γμ(I ′) = γμ(I) for all mR-valuations μ.
(5)

This is proven in [10, Theorem 7.3] by taking the valuation ν used to compute �
to be composite with μ, so ν(f ) = (μ(f ),−) ∈ N

d for f ∈ R. The condition
eR(I ′) = eR(I) implies �(I ′) = �(I) and γμ(I ′), γμ(I) are the smallest points
of the projections of �(I ′), respectively �(I) onto the first coordinate of Rd .

4.4 Rees’s Theorem for Divisorial mR-Filtrations

We now indicate the proof in [10, Section 7] that if I(D1) ⊂ I(D2) are divisorial
mR-filtrations such that e(I(D2)) = e(I(D1)), then I(D2) = I(D1).

Let X → Spec(R) be a representation of D1 and D2, and write D1 = ∑
aiEi

and D2 =∑
biEi as Weil divisors on X.

By Theorem (5), γEi (D1) = γEi (D2) for 1 ≤ i ≤ r . Thus I (mD1) = I (mD2)

for all m ∈ N by (4).
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5 Mixed Multiplicities of mR-Primary Ideals
and of mR-Filtrations

Mixed multiplicities of mR-primary ideals where defined by Battacharya [1], Rees
[21], Risler and Teissier [25]. A good exposition of this subject is given in [24,
Chapter 17]. Let R be a d-dimensional local ring and let I1, . . . , Ir be mR-primary
ideals in a local ring R. Then for all n1, . . . , nr ∈ N with n1 + · · · + nr � 0,
�(R/I

n1
1 · · · Inrr ) is a polynomial of total degree d with rational coefficients. The

mixed multiplicities e(I [d1]
1 , . . . , I

[dr ]
r ) of the ideals I1, . . . , Ir are defined by the

writing

�(R/I
n1
1 · · · Inrr ) = H(n1, . . . , nr )+ terms of lower total degree

for n1, . . . , nr � 0 where H(n1, . . . , nr ) is a homogeneous polynomial of total
degree d written as

H(n1, . . . , nr ) =
∑

d1+···+dr=d

e(I
[d1]
1 , . . . , I

[dr ]
r )

d1! · · · dr ! n
d1
1 · · · ndrr .

The mixed multiplicities e(I [d1]
1 , . . . , I

[dr ]
r ) are always positive integers.

We see that the polynomial H(n1, . . . , nr ) is equal to the function

lim
m→∞

�(R/I
mn1
1 · · · Imnrr )

md
= H(n1, . . . , nr )

for all n1, . . . , nr ∈ N, so that this limit computes the mixed multiplicities. This
formula is generalized to arbitrary mR-filtrations in our paper [11].

Theorem 5.1 ([11, Theorem 6.6]) Suppose that R is a d-dimensional local
ring such that dimN(R̂) < d and I(1) = {I (1)i}, . . . , I(r) = {I (r)i} are
mR-filtrations. Then there exists a homogeneous polynomial H(x1, . . . , xr ) ∈
R[x1, . . . , xr ] of degree d such that for all n1, . . . , nr ∈ N,

lim
m→∞

�(R/I (1)mn1 · · · I (r)nmr )
md

= H(n1, . . . , nr ).

Now define the mixed multiplicities e(I(1)[d1], . . . , I(r)[dr ]) of the mR-filtrations
I(1), . . . , I(r) from the coefficients of the polynomial H(n1, . . . , nr ) of Theo-
rem 5.1 by the writing

H(n1, . . . , nr ) =
∑

d1+···+dr=d

e(I(1)[d1], . . . , I(r)[dr ])
d1! · · · dr ! n

d1
1 · · · ndrr .
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The mixed multiplicities e(I(1)[d1], . . . , I(r)[dr ]) of mR-filtrations are always
nonnegative real numbers ([12, Proposition 1.3]).

Theorem 5.1 extends to define mixed multiplicities of finitely generated mod-
ules with respect to mR-filtrations. With the assumptions of Theorem 5.1, [11,
Theorem 6.6] shows that if M is a finitely generated R-module, then the function

limm→∞
λ(M/I (1)mn1 ···I (r)mnrM)

md
is a homogeneous polynomial of degree d for

n1, . . . , nr ∈ N. We define the mixed multiplicities of M with respect to the mR-
filtrations I(1), . . . , I(r) by the expansion

P(n1, . . . , nr ) := limm→∞
�(M/I (1)mn1 ···I (r)mnr M)

md

= ∑
d1+···+dr=d

1
d1!···dr !eR(I(1)

[d1], . . . , I(r)[dr ];M)nd1
1 · · · ndrr .

(1)

The following Associativity Formula for mR-filtrations generalizes the classical
theorem for mR-primary ideals (c.f. [24, Theorem 17.4.8]).

Theorem 5.2 (Associativity Formula [11, Theorem 6.8]) Suppose that R is a
Noetherian local ring of dimension d with dimN(R̂) < d. Suppose that M is a
finitely generated R-module and I(1) = {I (1)i}, . . . , I(r) = {I (r)i} are mR-
filtrations. Let P be a minimal prime of R. Then dimN(R̂/P ) < d. For any
d1, . . . , dr ∈ N with d1 + · · · + dr = d,

eR(I(1)[d1], . . . , I(r)[dr ];M) =
∑
�RP (MP )eR/P ((I(1)R/P )[d1], . . . ,

(I(r)R/P )[dr ];R/P )

where the sum is over the minimal primes of R such that dimR/P = d and
I(j)R/P = {I (j)iR/P }.

The first step in the construction of mixed multiplicities for mR-filtrations is to
construct them for NoetherianmR-filtrations. In this case the associated multigraded
Hilbert function is a quasi polynomial, whose highest degree terms are constant,
rational numbers, as we show in [11, Proposition 3.5]. We next restrict in [11,
Section 4] to the case thatR is analytically irreducible. Using methods of volumes of
Newton-Okounkov bodies adapted to our situation, we show in [11, Proposition 4.3]
and [11, Corollary 4.4] that the coefficients of the polynomials Pa(n1, . . . , nr ) of (1)
for successive Noetherian approximations Ia(1), . . . , Ia(r) of I(1), . . . , I(r), all
have a limit as a→∞. We then defineG(x1, . . . , xn) to be the real polynomial with
these limit coefficients, and show in [11, Theorem 4.5] that for n1, . . . , nr ∈ Z+,
G(n1, . . . , nr ) is the function P(n1, . . . , nr ) of (1) for the filtrations I(1), . . . , I(r).
In [11, Section 5], we reduce Theorem 5.1 to the case where R is analytically
irreducible so that Theorem 5.1 follows.
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6 The Minkowski Inequalities

The Minkowski inequalities for mixed multiplicities of mR-primary ideals in local
rings were proven by Teissier [25], [26] and Rees and Sharp [23]. An exposition is
in [24, Section 17.7]. We generalize these inequalities to show that they are also true
for mR-filtrations in our paper [11].

Theorem 6.1 (Minkowski Inequalities for Filtrations [11, Theorem 6.3]) Sup-
pose that R is a d-dimensional local ring with dimN(R̂) < d, and I(1) = {I (1)j }
and I(2) = {I (2)j } are mR-filtrations. Let ei = eR(I(1)[d−i], I(2)[i]) for 0 ≤ i ≤
d. Then

1) e2
i ≤ ei−1ei+1 for 1 ≤ i ≤ d − 1

2) eied−i ≤ e0ed for 0 ≤ i ≤ d
3) edi ≤ ed−i0 eid for 0 ≤ i ≤ d
4) eR(I(1)I(2)))

1
d ≤ e

1
d

0 + e
1
d

d , where I(1)I(2) = {I (1)j I (2)j }.
We write out the last inequality without abbreviation as

eR(I(1)I(2)))
1
d ≤ eR(I(1)) 1

d + eR(I(2)) 1
d (1)

where I(1)I(2) = {I (1)mI (2)m}. This equation is often called “The Minkowski
Inequality”.

The inequality (1) was proven by Mustaţă [19] for regular local rings with
algebraically closed residue field.

There is a beautiful characterization of when equality holds in the Minkowski
inequality (1) by Teissier [27] (for Cohen-Macaulay normal two-dimensional
complex analytic R), Rees and Sharp [23] (in dimension 2) and Katz [14] (in
complete generality).

Theorem 6.2 (Teissier [27], Rees and Sharp [23], Katz [14]) Suppose that R is a
d-dimensional formally equidimensional local ring and I (1), I (2) are mR-primary
ideals. Then the following are equivalent

1) The Minkowski equality

eR(I (1)I (2))
1
d = e(I (1)) 1

d + e(I (2)) 1
d

holds
2) There exist positive integers a and b such that

∑

n≥0

I (1)antn =
∑

n≥0

I (2)bntn

3) There exist positive integers a and b such that I (1)a = I (2)b.
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The conditions 2) and 3) are equivalent on any local ring and 2) implies 1) is true
on any local ring. The original statement of Teissier, Rees and Sharp and Katz is
that 1) is equivalent to 3).

The Teissier, Rees and Sharp, Katz Theorem leads to the question of whether the
following conditions are equivalent for mR-filtrations I(1) and I(2).
Question 6.3 Suppose that I(1) and I(2) are mR-filtrations. Are the conditions

1) The Minkowski equality

eR(I(1)I(2))
1
d = e(I(1)) 1

d + e(I(2) 1
d

holds
2) There exist positive integers a and b such that

∑

n≥0

I (1)antn =
∑

n≥0

I (2)bntn

equivalent?

If I(1) and I(2) aremR-filtrations on a local ring R such that dimN(R̂) < d and
condition 2) holds then the Minkowski equality 1) holds, but the converse statement,
that the Minkowski equality 1) implies condition 2) is not true for mR-filtrations,
even in a regular local ring, as follows from Example 3.3.

In our paper [10], it is shown that 1) and 2) are equivalent for bounded mR-
filtrations (Definition 1.5) on an analytically irreducible or excellent local domain,
giving a complete generalization of the Teissier, Rees and Sharp, Katz Theorem for
bounded mR-filtrations.

Theorem 6.4 ([10, Theorem 13.2] and [10, Theorem 14.5]) Suppose that R is a
d-dimensional analytically irreducible or excellent local domain and I(1) and I(2)
are bounded mR-filtrations. Then the following are equivalent

1) The Minkowski equality

e(I(1)I(2)) 1
d = e(I(1)) 1

d + e(I(2)) 1
d

holds
2) There exist positive integers a, b such that there is equality of integral closures

∑

n≥0

I (1)antn =
∑

n≥0

I (2)bntn

in R[t].
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7 An Overview of the Proof of the Characterization
of the Minkowski Equality

In this section, we give an overview of the proof of Theorem 6.4.
We suppose that R is a d-dimensional normal excellent local domain. The proof

of Theorem 6.4 reduces to this case.
We mention some positivity results about multiplicities and mixed multiplicities

of mR-filtrations that we will need. Suppose that I(1), . . . , I(r) are mR-filtrations
on an analytically irreducible local domain such that e(I(j)) > 0 for all j . It is
shown in [12, Theorem 1.4] that then e(I(1)[d1], . . . , I(r)[dr ]) > 0 for all the mixed
multiplicities. Suppose that I(D) is a divisorial mR-filtration. Then e(I(D)) > 0
by [8, Proposition 2.1].

Theorem 6.4 follows from the following theorem.

Theorem 7.1 ([10, Theorem 11.1], [10, Theorem 11.4]) Suppose that R is a d-
dimensional normal excellent local domain. Let I(D1) and I(D2) be divisorial
mR-filtrations. Let X → Spec(R) be a representation of D1 = ∑

αiEi and D2 =∑r
i=1 βiEi . Then I(D1) and I(D2) satisfy the Minkowski equality if and only if

γEi (D2)

γEi (D1)
= γEj (D2)

γEj (D1)
for 1 ≤ i, j ≤ r. (1)

When this condition holds, we have that

γEi (D2)

γEi (D1)
= e(I(D2))

1
d

e(I(D1))
1
d

∈ Q (2)

for 1 ≤ i ≤ r .
By Theorem 7.1, when the Minkowski equality holds, we can write

e(I(D2))
1
d

e(I(D1))
1
d

= a
b

with a, b ∈ Z>0,

so that by (4),

I (amD1) = �(X,OX(−�∑r
i=1maγEi (D1)Ei�)

= �(X,OX(−�∑r
i=1mbγEi (D2)Ei�) = I (bmD2)

for all m ∈ N. Thus
∑
n≥0 I (amD1)t

n =∑
n≥0 I (bmD2)t

n.
The equivalence of (1) with the Minkowski Equality is proven in [10, Theorem

11.1] and the rationality of the real number of (2) is proven in [10, Theorem 11.4].
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We will now give an outline of the proof that the Minkowski equality implies (1).
Let

f (n1, n2) = lim
m→∞

�(R/I (mnD1)I (mn2D2))

md
.

Since the Minkowski equality holds, also using the Minkowski inequalities in
Theorem 6.1, we calculate that

f (n1, n2) = 1

d! (e
1
d

0 n1 + e
1
d

d n2)
d (3)

where e0 = e(I(D1)) and ed = e(I(D2)).
Let μ be anmR-valuation and let ν : R→ N

d be a valuation of the quotient field
of R which dominates R such that ν = (μ,−) (ν is composite with μ) as in Sect. 4.
For n1, n2 ∈ N, let �(n1, n2) be the semigroup

�(n1, n2) = {(ν(f ),m) | f ∈ I (mn1D1)I (mn2D2)} ⊂ N
d+1.

Let�(n1, n2) be the intersection in R
d+1 of the closure (in the Euclidean topology)

of the real cone generated by �(n1, n2) with R
d × {1}. Let �(R) = �(0, 0) and

�(R) = �(0, 0). We will denote the volume of a compact convex subset � of Rd

by Vol(�).
By the methods of Sect. 4, we obtain the following theorem.

Theorem 7.2 ([10, Section 8]) There exists ϕ ∈ R>0 such that letting

H− ,n1,n2
= {(x1, . . . , xd) ∈ R

d | x1 + · · · + xd ≤ ϕe
1
d

0 n+ ϕe
1
d

d n2},

� (n1, n2) = �(n1, n2) ∩H− ,n1,n2

and

�̃ (n1, n2) = �(R) ∩H− ,n1,n2

we have that

f (n1, n2) = δ[Vol(�̃ (n1, n2))− Vol(� (n1, n2))] (4)

for all n1, n2 ∈ N, where δ = [Oν/mν : R/mR].
We have that�(R) is a closed convex cone with vertex at the origin since ν(1) =

0 ([10, Lemma 7.1]). Thus

Vol(�̃ (n1, n2) = (n1e
1
d

0 + n2e
1
d

d )
dϕdVol(�(R) ∩ {(x1, . . . , xd) |

x1 + · · · + xd ≤ 1}). (5)
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Define

h(n1, n2) = Vol(� (n1, n2)).

We have that

h(n1, n2) = Vol(�̃ (n1, n2))− f (n1,n2)
δd!

= λ(e
1
d

0 n1 + n2e
1
d

d )
d + n2e

1
d

d

for some λ ∈ R>0 by (4), (3) and (5). Let

g(n1, n2) = Vol(n1� (1, 0)+ n2�ϕ(0, 1)),

where n1, n2 ∈ R≥0 and n1� (1, 0)+ n2�ϕ(0, 1) is the Minkowski sum

n1� (1, 0)+ n2�ϕ(0, 1) = {n1(a1, b1)+ n2(a2, b2) | (a1, b1) ∈ � (1, 0) and

(a2, b2) ∈ � (0, 1)}.

The function g(n1, n2) is a homogeneous real polynomial of degree d ([2, Section
29, page 42]). We have

n1� (1, 0)+ n2� (0, 1) ⊂ � (n1, n2)

for all n1, n2 ∈ N, from which we deduce that

g(n1, n2) ≤ h(n1, n2)

for all n1, n2 ∈ R. We have

g(1, 0) = h(1, 0) > 0 and g(0, 1) = h(0, 1) > 0

so for 0 < t < 1,

h(1− t, t) 1
d = (1− t)h(1, 0) 1

d + th(0, 1) 1
d

= (1− t)g(1, 0) 1
d + tg(0, 1) 1

d

≤ g(1− t, t) 1
d

≤ h(1− t, t) 1
d

where the equality of the first line follows from our expression for h(n1, n2) in
(3) and the inequality between the second and third lines is the Brunn-Minkowski
inequality of convex geometry ([2, Page 94], [16]). Thus we have equality in
the Brunn-Minkowski inequality which implies that � (1, 0) and � (0, 1) are
homothetic; that is, there exists a map T (2x) = c2x + 2γ of Rd (with c > 0) such
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that T (� (1, 0)) = � (0, 1). We have just enough information about these sets to
calculate that

c = e
1
d

d

e
1
d

0

and 2γ = 0. Thus

e
1
d

d � (1, 0) = e
1
d

0 � (0, 1).

Now recalling that ν = (μ,−), where μ is an mR-valuation, we see that γμ(D1)

is the smallest point of the projection of �(1, 0) onto the first real axis and γμ(D2)

is the smallest point of the projection of �(0, 1) onto the first real axis. Taking
μ = νEj , we obtain that

γEj (D1)

e
1
d

0

= γEj (D2)

e
1
d

d

for 1 ≤ j ≤ r , from which we obtain the statement of (1) and the first part of the
statement of (2) of Theorem 7.1.

8 Examples

The above concepts and results are analyzed in [9] and [10]. An example of a
blowup ϕ : X → Spec(R) of an mR-primary ideal in a normal and excellent three
dimensional local ring R which is a resolution of singularities is constructed in [9].
The map ϕ has two prime exceptional divisors E1 and E2. The function

f (n1, n2) = lim
m→∞

�R(R/I (mn1E1 +mn2E2))

m3

is computed in [9] and is reproduced here.

Theorem 8.1 ([9, Theorem 1.4]) For n1, n2 ∈ N,

f (n1, n2) =

⎧
⎪⎪⎨

⎪⎪⎩

33n3
1 if n2 < n1

78n3
1 − 81n2

1n2 + 27n1n
2
2 + 9n3

2 if n1 ≤ n2 < n1

(
3−

√
3

3

)

(
2007
169 − 9

√
3

338

)
n3

2 if n1

(
3−

√
3

3

)
< n2.
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Thus f (n1, n2) is not a polynomial, but it is “piecewise a polynomial”; that is, R2≥0
consists of three triangular regions determined by lines through the origin such
that f (n1, n2) is a polynomial function within each of these three regions. The
line separating the second and third regions has irrational slope, and the function
f (n1, n2) has an irrational coefficient in the third region. The middle region is the
ample cone and is also the Nef cone.

We compute the functions γE1 and γE2 in [9, Theorem 4.1], as summarized in
the following theorem. Observe that γE1 is an irrational number in the third region.

Theorem 8.2 ([9, Theorem 4.1]) Let D = n1E1 + n2E2 with n1, n2 ∈ N, an
effective exceptional divisor on X.

1) Suppose that n2 < n1. Then γE1(D) = n1 and γE2(D) = n1.

2) Suppose that n1 ≤ n2 < n1

(
3−

√
3

3

)
. Then γE1(D) = n1 and γE2(D) = n2.

3) Suppose that n1

(
3−

√
3

3

)
< n2. Then γE1(D) = 3

9−√3
n2 and γE2(D) = n2.

In all three cases, −γE1(D)E1 − γE2(D)E2 is nef on X.

The divisors for which Minkowski’s inequality holds has a simple classification,
as is shown in [10].

Corollary 8.3 ([10, Corollary 1.3]) Suppose that D1 and D2 are effective integral
exceptional divisors on X. If D1 and D2 are in the first region of Theorem 8.2, then
Minkowski’s equality holds between them. If D1 and D2 are in the second region,
then Minkowski’s equality holds between them if and only ifD2 is a rational multiple
ofD1. IfD1 andD2 are in the third region, then Minkowski’s equality holds between
them. Minkowski’s equality cannot hold between D1 and D2 in different regions.

Theorem 8.2 allows us to compute the mixed multiplicities of any two divisors
D1 = a1E1 + a2E2 and D2 = b1E1 + b2E2 by interpreting mixed multiplicities as
anti positive intersection multiplicities (as explained in [8] and [9]).

In particular, we can compare f (n1, n2) with the polynomial

P(n1, n2) = lim
m→∞

�R(R/I (mn1E1)I (mn2E2))

md

which computes the mixed multiplicities of themR-filtrations I(E1) and I(E2). We
have that

P(n1, n2) = 1
3!e(I(E1)

[3])n3
1 + 1

2!e(I(E1)
[2], I(E2)

[1])n2
1n2

+ 1
2!e(I(E1)

[1], I(E2)
[2])n1n

2
2 + 1

3!e(I(E2)
[3])n3

2
= 33n3

1 + ( 891
26 + 99

26

√
3)n2

1n2 + ( 12042
338 − 27

338

√
3)n1n

2
2

+
(

2007
169 − 9

√
3

338

)
n3

2.
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Stanley-Reisner Rings

Ralf Fröberg

1 Introduction

Sometimes a breakthrough in mathematics is made when somebody realizes that
results in one branch of mathematics can be applied to problems in another branch.
The rings now called Stanley-Reisner rings or face rings is a good example. To
each simplicial complex a factor ring of a polynomial ring is defined. These rings
were independently defined by Mel Hochster and Richard Stanley to be able to
use commutative algebra on combinatorial problems. Hochster wrote an influential
paper, [86]. He also gave the problem to characterize Cohen-Macaulay face rings to
his student Reisner, who solved this problem in his thesis, see [108]. From Reisner’s
result it followed that face rings of spheres were Cohen-Macaulay, and this was
the missing piece for Stanley to be able to prove “The upper bound conjecture for
spheres”, [115]. Now there are hundreds of papers on Stanley-Reisner rings, and
this article is a try to describe the algebraic side of the story.

2 Simplicial Complexes and Stanley-Reisner Rings

2.1 Stanley-Reisner Rings

Let V = {v1, v2, . . . , vn} be a finite set. A simplicial complex � on V is a set of
subsets of V such that vi ∈ V for all i and closed under subsets. The elements F of
V are called faces, and dim(F ) = |F | − 1. A maximal face is called a facet. The
dimension of � is the largest dimension of a facet. The complex is pure if all facets
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have the same dimension. In the sequel we just use V = {1, . . . , n} = [n] as the
finite set.

Definition 1 For a finite simplicial complex � with vertices {1, . . . , n}, and a field
k, the Stanley-Reisner ring (or face ring) is k[x1, . . . , xn]/I = k[�], where I is
generated by all squarefree monomials xi1 · · · xik for which {i1, . . . , ik} is NOT a
face of �.

In this way we get a 1-1 correspondance between squarefree monomial ideals
and simplicial complexes.

One much studied source for simplicial complexes is finite posets (partially
ordered sets). We suppose that the poset has a max and a min. The faces are the
chains in the poset when the max and the min are removed. This is the order complex
of the poset. If all maximal chains have the same length, the poset is called pure (or
graded).

2.2 Edge Rings and Clutters

There is another much studied construction of squarefree monomial ideals, edge
ideal of a graph. Let G be a graph with vertex set V = {xi}, i ∈ [n] and edge
set E. Here the ideal is I (G) = (xixj ; {i, j} ∈ E), the edge ideal of G, and
K[x1, . . . , xn]/I (G) is called the edge ring. This was introduced by Villarreal in
[133] and followed by [114].

Although edge ideals were not introduced as Stanley-Reisner ideals, they could
be.

Definition 2 A set of vertices {i1, . . . , it } in a graph is independent if there is no
edge between vertices in the set. Since a subset of an independent set is independent,
the independent sets constitute a simplicial complex, the independent complex of the
graph.

Definition 3 A clique of a graph is a complete subgraph. Since a subset of a clique
is a clique, the set of all cliques constitute a simplicial complex, the clique complex.

The edge ring of G is the Stanley-Reisner ring of the independence complex of
G, or, which is the same, the clique complex of the complementary graph Ḡ. These
complexes have only quadratic relations. A complex with only quadratic relations
is called a flag complex. It is determined by its 1-skeleton.

Edge rings has been generalized to clutters. A clutter (or a simple hypergraph),
is a family of subsets,“edges”, of the vertices of size at least two, in which none of
the sets contains another. Thus “edges” can consist of more than two vertices. There
is a 1-1 correspondance between clutters and simplicial complexes.
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2.3 Facet Rings

A facet ideal, introduced by Faridi in [46] of a simplicial complex is generated by
{xi1 · · · xit } for all facets {i1, . . . , it }. Facet ideals can of course also be viewed as
edge ideals of clutters.

Stanley-Reisner rings, edge rings of clutters, and facet rings, being different ways
to look at simplicial complexes, give us possibilities to use commutative algebra on
combinatorial problems.

3 Hilbert Series and Hochster’s Formula

3.1 Hilbert Series

We continue by describing some close connections between a simplicial complex
and its Stanley-Reisner ring.

Definition 4 Let � be a simplicial complex of dimension d. The f -vector of � is
f (�) = (f−1, f0, . . . , fd), where fi is the number of faces of dimension i in� (or
the number of faces of cardinality i + 1). (f−1 = 1 counting the empty set.)

A Stanley-Reisner ring is standard graded, k[�] = R = ⊕i≥0Ri , R0 = k,
R generated by R1, RiRj = Ri+j . It is even multigraded, graded over Nn, so if
α, β ∈ N

n, then RαRβ ∈ Rα+β ..

Definition 5 The Hilbert series of a graded k-algebra R = ⊕∞i=0 dimk Ri is
R(Z) = ∑

i≥0 dimk(Ri)Zi . If R is N
n-graded, the multigraded Hilbert series is

R(Z1, . . . , Zn) = ∑
(i1...,in)∈Nn dimk R(i1,...,in)Z

i1
1 · · ·Zinn . Thus dimk R(i1,...,ik) is 0

or 1 depending on wether the image of xi11 · · · xinn is 0 or not.

The following is easy.

Lemma 6 Let R be a face ring of embedding dimension n and let R̄ =
R/(x2

1 , . . . , x
2
n). Then R(Z) = R̄(Z)/(1− Z)).

Proposition 7 Let � be a simplicial complex with f -vector (f−1, . . . , fd). Then

k(�)(Z) = f−1 + f0Z/(1− Z)+ · · · + fdZd+1/(1− Z)d+1.

In particular, dim(k[�]) = dim(�)+ 1.

Proof R̄(Z) = f−1 + f0Z + · · · + fdZd+1, so the first statement follows from the
lemma. The dimension of the ring equals the order of the pole Z = 1.

For future use we also define the h-vector of a simplicial complex.
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Definition 8 If the Hilbert series of k[�] is (
∑d+1
i=0 hiz

i)/(1 − Z)d+1, then
(h0, . . . , hd+1) is the h-vector of �.

The h-vector contains the same information as the f -vector.

3.2 Homology

To get a closer connection between combinatorics of simplicial complexes and
algebra, we need to define homology of simplicial complexes.

Let � be a simplicial complex on [n]. For a field k, let Cq(�) be the k-vector
space with all ordered q-faces [i1, . . . , iq ] as basis, and dq : Cq(�) → Cq−1(�)

defined by

dq([i1, . . . , iq ]) =
q∑

j=1

(−1)j−1[i1, . . . , ij−1, îj , ij+1, . . . , iq ],

where îj means omit ij . The homology of

0→ Cdim(�)→ · · · → C0(�)→ C−1(�) = k→ 0,

i.e., H̃q(�; k) = kerdq/imdq+1, is the reduced simplicial homology of �.
In general h̃0 = dimk(H̃0) counts the number of connected components minus

1, and h̃i = dimk(H̃i) counts the number of “i-dimensional holes” in � if i > 0, if
� is interpreted geometrically.

3.3 Hochster’s Formula

Let R = k[x1, . . . , xn]/I = S/I , I generated by monomials. Then R is Nn-graded.
The Koszul complex KR respects this ordering, and the homology H∗(KR) =
TorS∗(R, k) is N

n-graded. (If you are unfamiliar with the Koszul complex, see e.g.
[106, Chapter I:14].)

It is not hard (see e.g. [58, Lemma]) to see that the homology of a face ring can
be non-zero only in square-free degrees, i.e., in degrees (i1, . . . , in) with ij ≤ 1 for
all j . For J ⊆ {1, 2, . . . , n}, let δ(J ) = (d1, d2, . . . , dn), where di = 1 if i ∈ J and
di = 0 otherwise (so di = 1 on the support of J ). Let dimk TorSi (R, k)δ(J ) = βi,δ(J ),∑
|δ(J )|=j βi,δ(J ) = βi,j , and

∑
δ(J ) βi,δ(J ) = βi , the Betti numbers.

Lemma 9 ([86, Theorem 5.1]) Let KR(J) be the part of KR which is of degree
δ(J ). Then

Hi,δ(J ) = Hi(KR(J )) , H̃|J |−i−1(�J ),



Stanley-Reisner Rings 321

where |J | denotes the number of elements in J and �J denotes the induced
simplicial complex on J .

Proof Let�∗J denote the dual of�J . We will define a map of k-spaces f : KR(J)→
�∗J such that f ((KR(J ))i = �

|J |−i−1
J . Suppose that d1 < d2 < · · · < dr

and e1 < e2 < · · · < es , where {d, . . . , dr } ∪ {e1, . . . , es} = J , then
f (xd1 · · · xdr Te1 · · ·er ) = ±{d1, . . . , dr }∗. With an appropriate choice of signs
this is an isomorphism of complexes. Thus H̃ |J |−i−1(�J ) = Hi(KR(J )). Since
H̃ |J |−i−1(�J ) = H̃|J |−i−1(�J ) over a field, we get the result.

Example 10 Let� beC5, a cycle with 5 vertices. The facets are {1, 2}, {2, 3}, {3, 4},
{4, 5}, and {5, 1}. The minimal nonfaces are {1, 3}, {1, 4}, {2, 4}, {2, 5}, and {3, 5},
so the Stanley-Reisner ring is k[�] = k[x1, . . . , x5]/(x1x3, x1x4, x2x4, x2x5, x3x5)

= S/I . The f -vector is (1, 5, 5), so the Hilbert series is 1+5Z/(1−Z)+5Z2/(1−
Z)2 = (1+3Z+Z2)/(1−Z)2. The dimension of the ring is 2, since the complex has
dimension 1, so the h-vector is (1, 3, 1). The induced complexes with 1 or 4 vertices
have no homology. Also the complexes with 2 or 3 consecutive vertices have no
homology. There are 5 subsets with two vertices, namely {1, 3}, {1, 4}, {2, 4}, {2, 5}
and {3, 5} with homology H̃0 one-dimensional. These give β1,2 = 5 (corresponding
to the minimal generators of the ideal). Likewise there are 5 subsets with 3 vertices,
e.g. {1, 2, 4}, with H̃0 one-dimensional. These give β2,3 = 5. Finally the whole
complex has H̃1 one-dimensional, which gives β3,5 = 1.

Corollary 11 ([86, Corollary 5.3]) Let R be a face ring of Krull dimension d and
embedding dimension n. Then R is a Cohen-Macaulay ring if and only if for i =
0, 1, . . . , d − 2 we have Hi(�J ) = 0 for all i and J with |J | = n− d + i + 2.

Proof We always have depth(R) ≤ dim(R) and the ring is CM (Cohen-Macaulay)
if and only if we have equality. Now depth(R) = max{g;Hn−g �= 0}. We have
Hn−d+1(KR) = 0 if and only if Hn−d+1(KR(J )) = 0 for all J with |J | > n− d +
i + 1. This is equivalent by Hochster’s lemma to H̃|J |−n+d−2(�J ) = 0 for all J
with |J | > n−d+1, i.e. to H̃i(�J ) = 0 for all i and all J with |J | = n−d+ i+2.

Example 12 (Continuation) Since for all i, H̃i(�) = 0 for all subsets with 5 + i
vertices, the ring k[�] is CM.

We will soon give a more efficient criterion for a face ring to be CM, but first we
will draw a conclusion.

Corollary 13 If k[�] is CM, then all facets of � have the same dimension.

Proof We observe that if (xi1 , . . . , xik ) is a minimal prime in k[�], then [n] \
{i1, . . . , ik} is a facet of � and vice versa. If k[�] is CM all minimal primes have
the same dimension, which is equivalent to that all facets have the same dimension.
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4 Reisner’s Criteria

This is one of the most cited results on Stanley-Reisner rings, and the reason for the
name. First some preliminaries.

Definition 14 Let F be a face in the simplicial complex �. The link of F is
lk�(F ) = {G ∈ �,G ∩ F = ∅,G ∪ F ∈ �}.

Here is the more efficient criterion for a simplicial complex to be CM.

Theorem 15 ([108]) Let R = k[�] be the face ring of �. Then the following are
equivalent

(i) R is CM.
(ii) H̃i(�) = 0 if i < dim� and H̃i(lk�(σ )) = 0 if i < dim lk�(σ ) for all

simplices σ ∈ �.
(iii) � has CM links of vertices and H̃i(�) = 0 if i < dim�.

There is a much cited corollary to Reisner’s theorem, namely that CMness
depends on the field. His example is the minimal triangulation of the projective
plane. Then the Stanley-Reisner ring is CM if and only if char(k) �= 2, see [108].

There is also an explicit formula for the local cohomology of a Stanley-Reisner
ring k[�] with respect to the graded maximal ideal M in [86]. Expressed in the
multigraded Hilbert series it looks like this.

Theorem 16 HiM(k[�])(Z1, . . . , Zn) =∑
F∈� dimk H̃i−|F |−1(lk�F)

∏
j∈F Z

−1
j /

(1− Z−1
j )

Some early papers on Cohen-Macaulay complexes are [20, 117–119], and [13].
The last two papers treat posets. In this case the Cohen-Macaulay property is
equivalent to that all intervals have no homology except in the highest dimension. It
is shown that certain classes of posets (such as locally semimodular) are CM, and
that certain operations preserve CMness.

There is another way to study Cohen-Macaulay complexes, avoiding homologi-
cal algebra. It uses the fact that k[�] is CM if and only if there is a linear system of
parameters f1, . . . , fd such that k[�] is free over k[f1, . . . , fd ], see [60] and [92].

5 Gorenstein, Buchsbaum Rings, and Serre’s Condition Sr

5.1 Gorenstein Rings

To give a characterization of Gorenstein complexes, we have to introduce some new
terminology.



Stanley-Reisner Rings 323

Definition 17 A cone point of � is a vertex that is part of all facets of �. The core
of a simplicial complex is the complex which consists of those faces that are disjoint
to the core of �.

Thus the core of � is a simplicial complex on those vertices which do not occur
in a minimal system of generators of the ideal of nonfaces. If R is the face ring of
core(�) and the cone points are i1, . . . , ik , then the face ring of� is R[xi1 , . . . , xik ].
Theorem 18 ([116, 117]) The face ring of � is Gorenstein if and only if for all
F ∈ core(�) we have

(i) dimk H̃i(lkcore�(F )) = 1 if i = dim lkcore�(F )

(ii) dimk H̃i(lkcore�(F )) = 0 if i < dim lkcore�(F )

If furthermore � = core(�), k[�] is called Gorenstein∗.

Example 19 With this theorem it is easy to check that if � = C5, k[�] is
Gorenstein.

5.2 Buchsbaum Rings

We also mention the characterization of Buchsbaum complexes, i.e., complexes
with Buchsbaum Stanley-Reisner ring, see [120], and a characterization of Stanley-
Reisner rings satisfying Sr , see [122].

If R is CM, then lR(R/q) = eq(R) for all parameter ideals q, where lR denotes
length and eq multiplicity with respect to q.

Definition 20 R is a Buchsbaum ring if lR(R/q) − eq(R) is independent of the
parameter ideal q.

Theorem 21 ([120]) A complex� is Buchsbaum over the field k if it is pure, and if
for all F ∈ �, F �= ∅, and for all i < dim(lk�(F )) we have H̃i(lk�(F ; k)) = 0.

5.3 Rings Satisfying Sr

Definition 22 A ring R satisfies Serre’s condition Sr if for all P ∈ Ass(R) we have
depth(R) ≥ min{r, dimRP }.
Theorem 23 [122] let k[�] have dimension d − 1. Then k[�] satisfies Sr if and
only if for all F ∈ �with |F | ≤ d−i−2 and all i,−1 ≤ i ≤ r−2 H̃i(lk�F ; k) = 0.

There is a survey article on this, see [107].



324 R. Fröberg

5.4 (Locally) Complete Intersection

A Stanley-Reisner ring is a complete intersection if and only if the generators
of the ideal are pairwise relatively prime. A graded ring R is locally a complete
intersection if RP is a complete intersection for all primes P . For Stanley-Reisner
rings k[�] this means that k[lk�{v}] is a complete intersection for each v.

Theorem 24 ([126, Theorem 1]) Let � be connected with dim(�) ≥ 2 (resp.
dim(�) = 1). If k[�] is a locally a complete intersection, then it is a complete
intersection (resp. an n-gon for n ≥ 3 or an n-pointed path for some n ≥ 2).

The converse is trivially true.

Definition 25 If � is a simplicial complex and i ≤ dim�. the i’th skeleton, �(i),
of � is the subcomplex of all faces of dimension ≤ i of �. The pure i’th skeleton,
�[i], of � is the subcomplex of � whose facets are the faces of dimension i in �.

Now we can formulate the following. One can find the result in e.g. [56, Theorem
8].

Theorem 26 The depth of k[�] is max{i; k[�(i)] is CM.

6 Shellability

The concept of shellability apparently first occurred in [29].

6.1 Pure Shellability

Definition 27 A pure simplicial complex� of dimension d is called pure shellable
if the facets can be ordered F1, F2, . . . , Fm such that the subcomplex generated
by F1, . . . , Fj intersects Fj+1 in a pure complex of dimension d − 1 for j =
1, 2, . . . , m− 1.

The following was proved in [50], also see [119].

Theorem 28 If � is pure shellable, then � is CM.

In some vague sense it seems that “most” Cohen-Macaulay complexes are pure
shellable. Since shellability is often rather easy to prove, it has been the most
common way to show CM-ness by showing that the complex is pure shellable.
Shellable posets (i.e. the order complex is shellable) are treated in [19]. Generalizing
earlier results, it is shown that a class of posets, called admissible, containing upper
semimodular and supersolvable are shellable. Furthermore that some operations on
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poset, such as taking intervals, direct product, and barycentric subdivision preserve
shellability.

There are some other concepts close to shellability.

Definition 29 A simplicial complex � is homotopy CM if the homotopy groups
πi(lk�F) are trivial for all F ∈ � and i < dim(lk�F).

Definition 30 A simplicial complex � is constructible if it satisfies the following
recursive conditions

(1) A simplex is constructible.
(2) If�1,�2, and�1∩�2 are constructible and dim(�1) = dim(�2) = dim(�1∩

�2)+ 1, then �1 ∪�2 is constructible.

It is shown in [19, Appendix] that Pure shellable⇒ Constructible⇒ Homotopy
CM⇒ CM over Z. If a complex is CM over Z, it is CM over all fields.

Some variants of shellability, CL-shellability and EL-shellability are studied in
[22].

6.2 Non-pure Shellability

Shellability was greatly generalized to cover the nonpure case in two papers, [23]
and [24]. Most properties of pure shellability were generalized. Furthermore doubly
indexed f - and h-vectors were defined. The usual h-vector has positive values in
the Cohen-Macaulay case, since one can factor out with a linear regular sequence
(at least after extending the field which doesn’t change the Hilbert series) to get an
Artinian ring with Hilbert series

∑
hiZ

i , so the hi’s are dimensions. In the shellable
case they show that the doubly indexed h-vector is positive. These two papers have
become the natural sources to refer to with respect to shellability.

Definition 31 A simplicial complex � is called (nonpure) shellable if the facets
can be ordered F1, F2, . . . , Fm such that the subcomplex generated by F1, . . . , Fj
intersects Fj+1 in a pure complex of dimension dimFj+1−1 for j = 1, 2, . . . , m−
1. In the sequel we mean non-pure shellable when we write shellable.

Here is an example from [23].

Theorem 32 ([23]) If � is shellable, both all skeletons and all pure skeletons of �
and links to all faces are shellable.

Dress has an alternative criterion for shellability in [39].

Definition 33 Let M be a module over a commutative ring R and let (0) ⊂ M0 ⊂
M1 ⊂ · · · ⊂ Mn = M be a filtration. The filtration of M is called clean if for all
i we have Mi/Mi−1 = R/Pi , with Pi a minimal prime over Ann(M). A module is
clean if it has a clean filtration.
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Theorem 34 A simplicial complex � is nonpure shellable if and only if k[�] is
clean.

The theory on clean face rings has continued and been extended in e.g. [87] and
[82].

There are many papers on shellability for different classes of complexes, and
shellability is still used very actively. Almost all articles refer to [23].

In the sequel we mean nonpure shellable if we write shellable.

7 Eagon-Reiner’s Theorem

Although Alexander duality had been used before, Eagon and Reiner discovered the
full potential of it. They found that the homologies of k[�] in Hochster’s theorem
could be expressed in the homologies of links of faces of the Alexander dual �∗.
Eagon-Reiner’s article has been one of the most influential since Reisner’s result.

Definition 35 If� is a simplicial complex, its Alexander dual is�∗ = {[n]\σ, σ /∈
�}.

The following is easy to prove.

Theorem 36 If R = k[x1, . . . , xn]/I and I is minimally generated by
m1, . . . , mk , where mi = xi11 · · · xi1k1 , then the Alexander dual has face ring
R = k[x1, . . . , xn]/I ∗, where I ∗ = ∩ki=1(xi11, . . . , xi1k1).

The following gives the essence of Alexander duality.

Theorem 37 Let δ be a multidegree and k[�] = S/I (�). We have

∑
dimk TorSi (k[�], k)δZδ =

∑

F∈�∗
dimk H̃i−2(lk�∗F ; k)Z[n]\δ

Definition 38 A graded algebra k[x1, . . . , xn]/I = S/I is said to have a t-linear
resolution if (TorSi (S/I, k)j = 0 for j �= t + i − 1. This means that all minimal
generators of I have degree t , and that the matrices describing all higher syzygies
only contain linear elements. A resolution is linear, if it is t-linear for some t .

The following is the most used corollary.

Corollary 39 ([42, Proposition 1]) Let � be a simplicial complex with n vertices.
Then k[�] has a t-linear resolution if and only if the face ring of �∗ is CM of
dimension n− t , and vice versa.

Example 40 If � = C5, we have shown that k[�] is CM of dimension 2. Thus
k[�∗] = k[x1, . . . , x5]/(x2x4x5, x2x3x5, x1x3x5, x1x3x4, x1x2x4) has a 3-linear
resolution.
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The following are easy consequences:

Corollary 41

1. (� \ v)∗ = lk�∗v and vice versa.
2. H̃i−1(�

∗; k) = H̃n−i−1(�; k)
3. fi(�∗) =

(
n
i−1

)− fn−i−1(�)

Terai has an article, [122], which contains several new results and new proofs of
known results on Alexander duality. Among other things, the following is proved.

Theorem 42 ([122]) The projective dimension of k[�] equals the regularity of
k[�∗].

The regularity of k[�] = S/I (�) is max{j ; (TorSi (R, k))i+j �= 0.

Example 43 If � = C5, then k[�] has projective dimension 2 which equals the
regularity of k[�∗].

Another consequence of Alexander duality is shown in [123], namely that the
second Betti number of a face ring does not depend on the characteristic of the field.

There is a more elementary proof of Alexander duality in [21].

8 Polarization

Let I be a monomial ideal, not necessarily squarefree. Several authors have
described a method to get a squarefree monomial ideal with most properties
common with I .

Theorem 44 Let I be a monomial ideal in k[x1, . . . , xn] = S. There exists an N
and a squarefree ideal I ′ ⊂ [y1, . . . , yN ] and a linear regular sequence f1, . . . , fN
in S[y1, . . . , yN ]/I ′ such that S[y1, . . . , yN ]/(I ′ + (f1, . . . , fN)) is isomorphic to
S/I .

Proof Let I = (M1, . . . ,Mr) = (xi11 M
′
1, . . . , x

is
1 M
′
s ,Ms+1, . . . ,Mr) be a mono-

mial ideal where neitherM ′i , i = 1, . . . , s norMi , i = s + 1, . . . , r are divisible by

x1, and let I ′ = (x11x
i1−1
1 M ′1, . . . , x11x

is−1
1 M ′s ,Ms+1, . . . ,Mr) ⊂ S/I [x11]. Then

S[x11]/(I ′ + (x11 − x1)) , S/I and x11 − x1 is a nonzero divisor. Continuing like
this with all variables, we get the result.

The construction to get a squarefree ideal is called polarization. Most homologi-
cal invariants are preserved, such as being CM or Gorenstein. Also Betti numbers are
preserved. There are results about general monomial ideals from their polarization
in [47]. In particular primary decomposition is studied.

Example 45 The monomial ideal (x1, x2, x3)
2 has polarization (x11x12, x11x21, x11

x31, x21x31, x21x22, x31x32)
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9 Resolutions, Betti Numbers, Regularity

9.1 Resolutions

By polarization it follows that it is just as hard to find resolutions of all monomial
rings as it is for all squarefree. We will first mention some methods which applies
for all, not only squarefree, monomial rings. The simplest is the Taylor resolution,
[121]. Let J = (m1, . . . , mr) be a monomial ideal in S = k[x1, . . . , xn]. The Taylor
complex is

0 −→ Vr −→ Vr−1 −→ · · · −→ V0 −→ S/J,

where Vk = ⊕I⊂[r],|I |=kSeI . We have d(eI ) = ∑k
j=1(−1)j−1MI/MI\ij eI\ij if

I = {i1, . . . , ik}, i1 < · · · < ik . HereMI = lcm{mi; i ∈ I }. This is a resolution, but
seldom minimal. It is described closer in e.g [106] and [74]. Methods giving smaller,
but still not minimal, resolutions are described in [93]. Even smaller resolutions, but
still not minimal in general are described in [15] and generalized in [17]. Other
methods to get resolutions are described in [61] and [88]. There are surveys on
resolutions of monomial ideals in [106] and [96]. In [6] a resolution of a squarefree
ideal in the exterior algebra is constructed from a resolution of the ideal in the
symmetric algebra.

Next we will mention resolutions which apply only for some class of ideals. We
need some definitions.

Definition 46 Let I be a monomial ideal. For a monomial M we set supp(M) =
{i; xi |M} and m(M) = max{i; i ∈ supp(M)}. I is called stable if for all minimal
generators M and all i ≤ m(M) we have xi(M/xm(M)) ∈ I . I is called strongly
stable if for allM ∈ I and xj |M , we have xiM/xj whenever i < j .

Definition 47 A monomial ideal is Borel-fixed if it is invariant under the Borel
subgroup of GL(n.k) consisting of upper triangular invertible matrices.

Definition 48 A monomial ideal I is called a lexsegment ideal if for each degree d,
if m ∈ I , deg(m) = d, then all other monomials of degree d which are larger than
m in the lexicographic ordering, also belong to I .

We have that Lexsegment ideals⇒ Strongly stable ideals⇒ Borel fixed ideals.
If char(k) = 0 Borel fixed ideals are strongly stable. Let g(I) be the image of I
for a general linear combination. Then the ideal of leading monomials, gin(I ), is
strongly stable, [16, 59].

Definition 49 A monomial ideal I is called squarefree stable if for all minimal
generatorsM and all i < m(M), i /∈ supp(M), we have xi(M/xm(M)) ∈ I .

Stable ideals were defined in [43], and squarefree stable in [8].
A resolution for stable ideals is constructed in [43]. A corresponding resolution

for squarefree stable ideals is studied in [8] and further generalized to so called
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weakly stable ideals in [9]. More similarities of squarefree stable ideals to stable
ideals are discussed in [10], where the corresponding ring to Stanley-Reisner rings
in the exterior algebra is studied.

Another method to get resolutions for some classes of ideals is to use iterated
mapping cones. They are used in [84] for certain ideals with linear quotients (defined
below), and in [33] for some ideal constructed from lexicographic ideals by cutting
some powers.

Sometimes one can split the monomial ideal in two simpler, I = K ∪ J , and get

βi,j (I ) = βi,j (K)+ βi−1,j (J ∩K),

[52]. This has been used in several articles, e.g. [66] for edge ideals and generalized
to clutters in [68]. There is a survey in [67].

9.2 Linear and Pure Resolutions

Stanley-Reisner rings with 2-linear resolution has been characterized in [56]. Then
all generators of the ideal is of degree 2, and the complex � is determined by its
1-skeleton, a graph G(�).

Definition 50 A graph is chordal if every cycle of length at least 4 has a chord.

Theorem 51 ([56]) k[�] has a 2-linear resolution if and only if the complement
graph G(�) to G(�) is chordal.

Example 52 Let� be the octahedron with facets {1, 2, 3}, {1, 3, 4}, {1, 4, 5}, {1, 5, 2},
{6, 2, 3}, {6, 3, 4}, {6, 4, 5}, {6, 5, 2}. ThenG(�) has facets {1, 6}, {2, 4}, {3, 5} and
clearly is chordal, thus k[�] has a 2-linear resolution.

The result of the theorem has been partially extended to rings with pure
resolution in two papers by Bruns and Hibi, [31] and [32]. (A graded algebra
k[x1, . . . , xn]/I = S/I has a pure resolution if for each i (TorSi (S/I, k))j �= 0
for at most one j .) Note that, in the Cohen-Macaulay case, the Betti numbers are
determined by shifts in a pure resolution, see [81].

Let α and β be two monomials in k[x1, . . . , xn]. In [7] ideals I (α, β) generated
by all monomials {m;α ≤ m ≤ β} in lexicographic order, are treated, and it is
determined when they have linear resolution.

Definition 53 The a-invariant of a graded algebra R of dimension d is defined in
terms of local cohomology with respect to the graded maximal ideal m, a(R) =
max{n ∈ Z; (Hdm)n �= 0}.

Let A = k[�] be a d-dimensional Buchsbaum Stanley–Reisner ring of embed-
ding dimension n. The following was proved by Hibi, [85].
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Theorem 54 A has t-linear resolution if and only if the following two conditions
are satisfied:

(i) H̃i(�; k) = 0 for all i �= t − 2.
(ii) a(k[lk�{i}]) ≤ t − d for all i = 1, . . . , n

This was improved by Terai and Yoshida, [125], who showed that (i) could be
replaced by H̃t−1(�; k) = 0.

A Ferrer’s graph is a bipartite graph G on {x1, . . . , xm} and {y1, . . . , yn} such
that if (xr , ys) ∈ G, then (xi, yj ) ∈ G for 1 ≤ i ≤ r and 1 ≤ j ≤ s. In [37] it is
shown that a bipartite graph without isolated vertices has a 2-linear resolution if and
only if it is a Ferrer’s graph.

In [9] it is shown that weakly stable ideals (and thus squarefree stable ideals)
generated by monomials of the same degree have linear resolutions.

It is not possible to get a purely combinatorial description of complexes with
3-linear resolution. The example of Reisner, the minimal triangulation of the
projective plane, has a ring with 3-linear resolution exactly when char(k) �= 2.
Nevertheless partial generalizations to t-linear resolutions has been given, see e.g.
[36, 44, 66, 137], and [101].

9.3 Betti Numbers and Regularity

Recursive methods to determine Betti numbers of different classes of Stanley-
Reisner rings are discussed in [66]. Bounds for Betti numbers for general Stanley-
Reisner rings and for those generated in degree 2 are determined in [104].

Definition 55 For a graded algebra R = S/I , S = k[x1, . . . , xn], the regularity is

max{j ; (TorSi (R,K))i+j } �= 0.

Bounds on the regularity of edge rings are given in e.g. [69] ([70]) and [18].
There is a survey in [63].

9.4 Infinite Resolutions

If R = k[x1, . . . , xn]/I = S/I is a graded algebra the minimal R-resolution of k
is infinite (except when I = 0). Also for these resolutions one can, by polarization,
restrict to squarefree monomial ideals. The series PRk (t) =

∑
i≥0 dimk TorRi (k, k)t

i

is often called the Poincaré series of R. Serre [111] asked if the Poincaré series
always is a rational function. This was disproved by Anick [4] (also [5]). But if I is
generated by monomials, the series is rational [12]. If I is generated by monomials
of degree 2, the resolution is linear (S/I is a Koszul algebra) [57].



Stanley-Reisner Rings 331

10 Linear Quotients

Definition 56 A monomial ideal I = (M1, . . . ,Mk) has linear quotients if
(M1, . . . ,Mi) : Mi+1 (in some order) is generated by a subset of the variables
for all i.

The main reference for ideals with linear quotients is the paper [84] by Herzog
and Takayama. They give a lot of examples of monomial rings with linear quotients,
among those stable ideals, squarefree stable ideals, and matroidal ideals.

Definition 57 A monomial ideal is polymatroidal if for each pair of minimal

generators u = ∏n
j=1 x

aj
j and v = ∏n

j=1 x
bj
j with ai > bi there exists a k, with

ak < bk , such that xku/xi is another minimal generator.

Definition 58 A polymatroidal monomial ideal is called matroidal if it is square-
free.

Polymatroidal ideals have linear quotients, see [35]. Polymatroidal ideals that are
CM are classified in [76].

The following is easy to see.

Theorem 59 The squarefree monomial I (�) has linear quotients if and only if �∗
is nonpure shellable.

In case all minimal generators of I (�) have the same degree, �∗ is pure
shellable, so k[�∗] is CM. Thus I (�) has a linear resolution according to Eagon-
Reiner.

The theory of ideals with linear quotients has continued in e.g. [113].

11 Componentwise Linear Ideals and Sequentially CM
Complexes

Componentwise linear ideals were introduced by Herzog and Hibi in [73]. For a
graded ideal I , let I(d) be the ideal generated by the elements of degree d in I .

Definition 60 I is componentwise linear if I(d) has a linear resolution for all d.

Examples of componentwise linear ideals are stable ideals, see [73].
For a squarefree monomial ideal I , let I[d] be generated by the squarefree

monomials of degree d in I .

Definition 61 I is squarefree componentwise linear if I[d] has a linear resolution
for all d.

Theorem 62 ([73]) A squarefree monomial that is squarefree componentwise lin-
ear is componentwise linear.
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From the long Tor-sequence coming from

0 −→ (x1, . . . , xn)I −→ I −→ I/(x1, . . . , xn)I −→ 0

it follows that if I has a linear resolution, then also (x1, . . . , xn)I has a linear
resolution. (Note that I/(x1, . . . , xn)I is a direct sum of the field, placed in the
degree of the generators of I .) Thus

Theorem 63 If I has a linear resolution, then I is componentwise linear.

Also Betti numbers of componentwise linear ideals are treated in [73]. They
show:

Theorem 64 If I is a componentwise linear ideal, then βi,i+j (I ) = βi(I(j)) −
βi(mI(j−1))

There are more results on componentwise linear ideals in e.g. [54, 77], and [1].

Theorem 65 If I is a squarefree componentwise linear ideal, then βi,i+j (I ) =
βi(I[j ])− βi(mI[j−1])

Stanley gave the following definition, and showed that a shellable complex has a
sequentially CM ring.

Definition 66 ([116, Chapter III:2]) A graded module M over a polynomial ring
is sequentially Cohen-Macaulay if there exists a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that eachMi/Mi−1 is Cohen-Macaulay for all i, and the dimensions increase:

dimM1/M0 < dimM2/M1 < · · · < dimMr/Mr−1.

The following theorem extends the Eagon-Reiner theorem.

Theorem 67 ([73, 83]) k[�] is componentwise linear if and only if the Alexander
dual k[�∗] is sequentially CM.

Duval, [41], shows the following.

Theorem 68 ([41, Theorem 3.3]) k[�] is sequentially CM if and only if all pure
skeletons of � are CM.

Using this one can show

Theorem 69 A shellable complex is sequentially CM.

There is an alternative characterization of sequentially CM complexes.

Definition 70 Let �〈m〉 be the subcomplex of � generated by all facets of
dimension ≥ m.
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Theorem 71 � is sequentially CM if and only if H̃r ((lk�F)〈m〉) = 0 for all F ∈ �
and all r < dim(lk�F).

Björner et al. [25] contains a lot on sequentially CM complexes and posets.

12 Powers and Symbolic Powers of Stanley-Reisner Ideals

In [79] the authors study monomial ideals I such that I k has a linear resolution
for all k. If I = (M1, . . . ,Mr) ⊂ S = k[x1, . . . , xn], then R(I) = ⊕j I j tj =
S[M1t, . . . ,Mr t] ⊂ S[t] is the Rees algebra of I . Let f : S[y1, . . . , yr ] → R(I),
where f (xi) = xi, f (yj ) = Mjt . If deg(xi) = (1, 0), deg(yj ) = (0, 1) we get
a bigraded resolution of the kernel. They give a short proof of the fact that if the
regularity with respect of the x-variables is 0, then all powers of I have linear
resolution. (This was earlier proved in [110].) Their main result is that if I is
generated in degree 2, then I has a linear resolution if and only if S/I has linear
quotients and if and only if all powers of I have linear resolution.

In [132] it is proved that all symbolic powers of a squarefree monomial ideal are
CM if and only if the complex is a matroid.

Let I ⊂ S = k[x1, . . . , xn] be an ideal.

Definition 72 Themth symbolic power of I is I (m) = S ∩ (∩P∈AssI I
mSP ). In case

I is radical, e.g. a Stanley-Reisner ideal, I (m) consist of the elements that vanish to
order m on V (I). The symbolic Reesalgebra is ⊕mI (m).

The symbolic Reesalgebra is not Noetherian in general, but it is for squarefree
monomial ideals, [94]. For all monomial ideals it is normal and CM, see [78].
Minimal generators for the Rees algebra for some edge rings are determined in
[40].

In many articles the ordinary and symbolic powers and integral closure of powers
of Stanley-Reisner ideals are compared, e.g. [26, 65, 127], and [51].

Investigations on when symbolic powers are CM has been done e.g. in [98, 99,
109], and [124].

Associated primes to powers and symbolic powers are studied in e.g. [53, 78],
and [64].

Finite length cohomology in [62].

13 Shifting

Algebraic shifting was introduced by Kalai [89].

Definition 73 Let� be a complex on [n].� is called shifted if for all r, s, 1 ≤ r <
s ≤ n and all faces in F ∈ � such that r ∈ F , s /∈ F we have F \ {r} ∪ {s} ∈ �.
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A shifting operation on a complex � gives a complex Shift(�) such that

(1) Shift(�) is shifted
(2) If � is shifted, then Shift(�) = �
(3) � and Shift(�) have the same f-vector
(4) If � is a subcomplex of �, then Shift(�) ⊂ Shift(�)

Shifting a complex has become a common mean to get an easier complex
preserving f -vector. Different kinds of shifting operations and connections to
generic initial ideals and lexsegment ideals is described in [72]. Shifting has been
used in e.g. [1, 11, 103], and [105].

14 Edge Ideals, Path Ideals, Facet Ideals

14.1 Edge Ideals of Graphs and Clutters

Much work has been done to classify CM graphs. Since this seems too ambitious,
one has restricted to e.g. trees [133], bipartite graphs, [75] and [131], or chordal
graphs, [80] and [55].

The presentation of the Rees algebra of an edge ideal is determined in [135]. In
[45] it is shown that bipartite CM edge rings are shellable. In [136] all unmixed
bipartite edge rings are classified. A subset C of the vertices is called a vertex cover
if every edge is incident to C. The graph is unmixed if all minimal vertex covers
have the same size.

There is a description of a package for calculating on edge ideals in Macaulay 2
in [129]. There is a survey on edge rings in [128], and [14] is a survey on regularity
for edge ideals and their powers.

Chordal graphs were generalized to clutters in [137], where it is shown that they
are shellable. In [44] another generalization of chordal graphs is discussed.

There is a survey in [102]. In [91] multipartite uniform (all parts have the same
size) CM edge ideals are classified.

14.2 Facet Ideals

A special kind of facet ideals, those for simplicial trees, is studied in [48, 49], and
[139]. A facet F is called a leaf if it is the only facet, or if for there is a facetG �= F
such that F ∩H ⊂ F ∩G for each facet H �= F . A facet ideal is called a simplicial
tree if each nonempty subcomplex has a leaf.
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14.3 Vertex Decomposability

Definition 74 A simplicial complex � is vertex decomposable if either it is a
simplex or it has a vertex v (shedding vertex) such that

(1) Both � \ v and lk�v are vertex decomposable
(2) No face of lk�v is a facet of � \ v

Vertex decomposable complexes are shellable, and thus sequentially CM, see e.g
[138]. It is shown that chordal rings are vertex decomposable.

In [38] many earlier results are reproved or extended with easy proofs. They
show e.g. that Ferrer’s graphs, cycles with a triangle attached to an edge, and graphs
with whiskers (a new edge) attached to each vertex are vertex decomposable and
thus shellable and sequentially CM. Further that graphs with complement a tree are
pure and shellable, thus CM. The homology of C5-free vertex decomposable are
studied in [90]. In [130] it is proved that bipartite sequentially graphs are vertex
decomposable. In [95] it is shown that for well-covered graphs CM implies vertex
decomposable. A graph is well-covered if it is unmixed without isolated vertices
and with 2ht(I (G) = |V |.

Further in [100] the concept vertex splittable is introduced, and it is shown that
� is vertex decomposable if and only if the Alexander dual is vertex splittable. This
is used to get a Betti splitting and to show that the dual has linear quotients. There
are more on vertex decomposable ideals in [38].

14.4 Path Ideals

The original edge ideals were generalized by Conca and de Negri in [34] to path
ideals and path algebras. Given an integer t , and a directed graph, the ideal is
generated by {xi1 · · · xit } for all paths (i1, . . . , it ) in the graph. (Thus, edge ideals
correspond to t = 2.) They showed, among other things, that the Rees algebra of
a rooted tree is normal and CM. The study has continued in e.g. [71] and [27, 28].
Later path ideals of cycles and lines have been investigated, see [2, 112], and [3].

15 Books

There are several books containing material on Stanley-Reisner rings. We mention
books by Stanley, Bruns-Herzog, Villarreal, and Miller-Sturmfels. In [116, Chapter
3] f- and h-vectors, Gorenstein complexes, canonical modules of Stanley-Reisner
rings, Buchsbaum complexes, and doubly CM complexes are treated. A complex
� is doubly CM if it is CM and for each vertex v, � \ v = {F ∈ �; v /∈ F } is
CM. In [116, Chapter 4] shellable complexes and sequentially CM rings as well as
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flag complexes are treated. In [30, Chapter 5] one finds results on local cohomology
and canonical module of Stanley-Reisner rings, as well as Gorenstein complexes
and Betti numbers. [134, Chapter 6 and 7] deals with Stanley-Reisner rings and
edge ideals. In [97] there are chapters on Borel-fixed ideals, cellular resolutions,
and Alexander duality.
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1 Introduction

Symbolic powers arise from the theory of primary decomposition. It is often
surprising to the novice algebraist that the powers of an ideal can acquire associated
primes that were not associated to the ideal itself. In that sense, the symbolic powers
of I are more natural.

Definition 1.1 Let R be a Noetherian ring and I an ideal in R with no embedded
primes. The n-th symbolic power of I is the ideal

I (n) :=
⋂

P∈Ass(R/I)

I nRp ∩ R.

This is the ideal obtained by intersecting the components in a primary decompo-
sition of I corresponding to the associated primes of I , which by assumption are all
minimal. When I does have embedded primes, there are two possible definitions of
symbolic power to chose from: either taking P to range over the associated primes
of I , or over the minimal primes of I . To avoid this, we will focus on the case of
ideals with no embedded primes. Note that the symbolic powers of a prime ideal are
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already very interesting, and thus our assumption that I has no embedded primes is
fairly mild.

When I is a radical ideal in R = k[x1, . . . , xd ], where k is a perfect field, I (n)

coincides with the set of polynomials that vanish to order n on the variety defined
by I [32, 92, 118]. In general, we always have I (1) = I , by definition, and it is
easy to show that In ⊆ I (n) always holds. However, given an ideal I and some
n > 1, determining whether the equality In = I (n) holds can be a very difficult
question. This stems from the fact that computing primary decompositions is a
difficult problem; as Decker, Greuel, and Pfister write in [24], “providing efficient
algorithms for primary decomposition of an ideal [...] is [...] still one of the big
challenges for computational algebra and computational algebraic geometry". In
fact, even if one restricts to monomial ideals, the problem of finding a primary
decomposition is NP-complete [68]. This is one of the reasons why many innocent
sounding questions one could ask about symbolic powers remain open.

Nevertheless, there exist sufficiently efficient methods for computation of sym-
bolic power ideals using computer algebra systems such as Macaulay2 [57]. Some
of these methods are used in the Macaulay2 package SymbolicPowers; we refer to
[25] for an account of the functionality offered by this package.

Symbolic powers are ubiquitous throughout commutative algebra, with connec-
tions to virtually all topics in the field. For a more general survey on symbolic
powers, we direct the reader to [21]. In this survey, we focus on symbolic Rees
algebras.

2 Symbolic Rees Algebras

The symbolic powers of I form a graded family of ideals, meaning that I (a)I (b) ⊆
I (a+b) for all a and b. Thanks to this simple property, we can package together all
the symbolic powers of I to form a graded ring. This is the so called symbolic Rees
algebra of I , which contains much information about I and its symbolic powers,
and the main character in this survey.

Definition 2.1 (Symbolic Rees Algebra) LetR be a Noetherian ring and I an ideal
in R. The symbolic Rees algebra of I , also known as the symbolic blow-up ring
of I , is the graded ring

Rs(I ) := R[I t, I (2)t (2), . . .] =
⊕

n�0

I (n)tn ⊆ R[t].

The indeterminate t of degree one is helpful in keeping track of the degree of
elements in the symbolic Rees algebra. It helps distinguish an element f ∈ I (n),
which we write f tn, from the element f ∈ I , which we write f t .
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This construction is akin to that of the Rees algebra of I , which is the graded ring

R(I ) := R[I t, I 2t2, . . .] =
⊕

n�0

Intn ⊆ R[t].

The study of Rees algebras is very rich and presents its own challenges (see
[112] for an overview), and yet the symbolic Rees algebra of I is often much
more complicated than the ordinary Rees algebra. While the study of symbolic Rees
algebras is certainly inspired by Rees algebras, there is a crucial difference: R(I ) is a
finitely generated R-algebra, while Rs(I ) may fail to be an algebra-finite extension
of R. Indeed, the Rees algebra of I is generated over R in degree 1, by a (finite)
generating set of I , that is, R(I ) is a standard graded Noetherian ring, i.e., generated
as an R-algebra by elements of degree 1. In contrast, the symbolic Rees algebra
may require infinitely many generators. As we will see, the symbolic Rees algebra
of I is a finitely generated R-algebra if and only if Rs(I ) is a Noetherian ring.
Even if Rs(I ) is Noetherian, it may be generated in different degrees; we introduce
the generation type in Sect. 3.2 to quantify this. The symbolic Rees algebra of I is
generated in degree 1 precisely if In = I (n) for all n ∈ N, in which case R(I ) and
Rs(I ) coincide. Sufficient criteria for this equality are presented in [67] and [100].

2.1 A Brief History

Although symbolic Rees algebras appear implicitly in the 1950s in work of Rees,
Zariski, Nagata, and others surveyed below, this class of algebras did not acquire
a name until several decades later. To our knowledge, the terminology “symbolic
Rees algebra” appears for the first time in Huneke’s paper [72] in 1982, while the
monograph [112] by Vasconcelos proposes the alternative terminology “symbolic
blowup algebra”.

The first example of an ideal whose symbolic Rees algebra is not finitely
generated appears in Rees’ counterexample to Zariski’s Formulation of Hilbert’s
14th Problem (Question 2.2).

Question 2.2 (Hilbert’s 14th Problem) Let k be a field. For all n � 1, and all
subfields K of k(x1, . . . , xn), is K ∩ k[x1, . . . , xn] finitely generated over k?

An important special case that provided the original motivation for this question
concerns the ring of invariants of a linear action of a group of matrices on a
polynomial ring over a field. For R = k[x1, . . . , xn], a polynomial ring with
coefficients in a field k equipped with a linear action of a group G ⊆ GLn(k),
one studies the subring of G-invariant polynomials

RG = {f ∈ R | g · f = f for all g ∈ G}.
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A fundamental question in invariant theory is whether RG is finitely generated as
a k-algebra. For finite groups, an affirmative answer is due to E. Noether [93]. The
finite generation of RG is the particular case of Question 2.2 whereK is the subfield
of elements of the fraction field of R fixed by G.

We point the reader to the surveys [39, 90] for more on Hilbert’s 14th problem,
and we will instead focus on the connections between symbolic Rees algebras and
this famous question. The foundation of this connection was laid by Zariski in the
early 1950s in [119] by interpreting the rings K ∩ k[x1, . . . , xn] as rings of rational
functions on a nonsingular projective variety X with poles restricted to a specified
divisor D. Such varieties X can be obtained geometrically by the procedure of
blowing up, and D is usually taken to be the exceptional divisor of the blow up X.

Zariski [95] formulated a more general version of Question 2.2, by taking
any integrally closed domain that is finitely generated over k in place of R =
k[x1, . . . , xd ]. The first counterexample to Zariski’s version of Question 2.2 was
given by Rees [95], and this is where the connection with symbolic Rees algebras
first appears. The crux of Rees’ proof, while not written in the language of symbolic
Rees algebras, consists of showing that if P is a height 1 prime ideal in the affine
cone over an elliptic curve with infinite order in the divisor class group, then its
symbolic Rees algebra is not finitely generated. We give a numerical example to
illustrate the principles used by Rees.

Example 2.3 (Rees) Consider the elliptic curveC cut out by the equation x3−y2z−
2z3 in the projective plane P

2
Q

. The point p = (3, 5, 1) is a rational point on this
curve which has infinite order with respect to the group law on C [80, Example
2.4.6(3)]. Consider the coordinate ring R = Q[x, y, z]/(x3 − y2z − 2z3) of C and
the ideal P = (x − 3z, y − 5z) of R which defines p. Then [95] yields that RS(P )
is not a finitely generated Q-algebra.

By contrast, consider the point q = (2, 3, 1) on the elliptic curve with coordinate
ring S = Q[x, y, z]/(x3 − y2z + z3). The point q has order six with respect to
the group law of this curve [80, Example 2.4.2], and examining the ideal Q =
(x − 2z, y − 3z) defining this point with Macaulay2 [57] yields

Q(6) = (12x2 − 6xy + y2 − 6xz− 6yz+ 9z2),

which is a principal ideal. Moreover, Q(6n) = (Q(6))n for all n � 0, which as we
will see in Proposition 3.1 implies that RS(Q) is a finitely generated Q-algebra.

In the late 1950s, Nagata found the first example of an ideal I in a polynomial
ring whose symbolic Rees algebra is not finitely generated, giving a counterexample
to Hilbert’s 14th Problem [91]. In fact, he constructed a ring of invariants which
is not a finitely generated algebra. The ideal constructed by Nagata defines a set
of 16 points in the projective plane, and hence is not a prime ideal like in the
example provided by Rees. Nagata’s method is to relate the structure of Rs(I ) to
an interpolation problem in the projective plane, namely, that for each m � 1, there
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does not exist a curve of degree 4m having multiplicity at least m at each of 16
general points of the projective plane.

In the 1980s, Roberts constructed new examples of symbolic Rees algebras that
are not finitely generated based on Nagata’s examples. His work shows that Rs(I )
may fail to be finitely generated even when I is a prime ideal in a regular ring [98],
thus answering a question of Cowsik in the negative [18]. Roberts’ examples are
prime ideals in a polynomial ring over a field of characteristic 0, and later Kurano
[79] showed that if we consider the same examples as in [98] in prime characteristic
p, their symbolic Rees algebras are in fact Noetherian. Roberts’ examples [98],
while prime, are not analytically irreducible, meaning that these prime ideals do not
stay prime after passing to the completion; he later improved this by providing an
example that was in fact analytically irreducible [99].

Still, as shown below, finite generation has powerful consequences for some
symbolic Rees algebras, and thus it is natural to ask when this occurs. Huneke
gave a general criterion for a symbolic Rees algebra of a height 2 prime ideal in
a three-dimensional regular local ring to be finitely generated [72, 74], which we
will discuss in more detail in Sect. 3.

In the early 1980s, Cowsik showed that if I determines a curve in A
n
k , where k

is an infinite field, and the symbolic Rees algebra of I is finitely generated, then I
is a set-theoretic complete intersection [18]. This has been exploited to show that
certain curves are indeed set-theoretic complete intersections in [33]. A modern
generalization of Cowsik’s result states that, if the symbolic Rees algebra of an
ideal I is finitely generated, the arithmetic rank of I , that is, the least number of
generators of an ideal whose radical agrees with the radical of I , is bounded above
by the polynomial order of growth for the number of generators of I (n) as a function
of n; see [27, Proposition 2.3].

One interesting case is that of space monomial curves, which are Zariski closures
of images of maps of the form A

1 → A
3, t �→ (ta, tb, tc). We abbreviate this by

referring to a monomial curve as (ta, tb, tc). The defining ideals of space monomial
curves were known to be set theoretic complete intersections since 1970 [59], and
thus one could hope that in fact their symbolic Rees algebras are always finitely
generated. This is, however, false: Goto, Nishida, and Watanabe [54] found the first
counterexamples, a family of choices of (a, b, c) which give infinitely generated
symbolic Rees algebras over a field in characteristic 0. We record this interesting
family of examples below.

Example 2.4 (Goto–Nishida–Watanabe) Let P be the defining ideal in the power
series ring k�x, y, z� over a field k of the space monomial curve

x = t7n−3, y = t (5n−2)n, z = t8n−3 where n � 4 and n �≡ 0(mod 3).

For example, when n = 4, our curve is parametrized by x = t25, y = t72, z = t29,
and

P = (y3 − x4z4, x11 − yz7, x7y2 − z11).
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Then Rs(P ) is a non-Cohen-Macaulay Noetherian ring if char k > 0, and Rs(P ) is
not a Noetherian ring if char k = 0.

Other examples where Rs(P ) is not Cohen-Macaulay with P the defining ideal
of (ta, tb, tc) in prime characteristic were already known by [51].

Recently, Sannai and Tanaka [109] showed that there are primes ideals with non-
finitely generated symbolic Rees algebras over any field:

Theorem 2.5 (Sannai–Tanaka, 2019 [109]) Let k be a field. There exists a prime
ideal p in k[x1, . . . , x12] such that Rs(P ) is not Noetherian.

The late 1980s and early 1990s saw a program to classify when these symbolic
Rees algebras are (or are not) finitely generated [86, 103, 108]. Most notably,
Cutkosky gave criteria which say, for example, that over any field, Rs(P ) is finitely
generated whenever (a + b + c)2 > abc. Cutkosky’s work [19, Lemma 7] also
uncovered a deep connection to a different geometric problem: that Rs(P ), where
P defines (ta, tb, tc), is Noetherian if and only if a certain space—the blow-up
at a general point of the weighted projective space P(a, b, c)—is a Mori dream
space—meaning its Cox ring is Noetherian. Using this connection, González Anaya,
González, and Karu [40–42, 49, 50] have more recently found several large families
of examples in characteristic 0 that in particular recover the original family of
examples of Goto–Nishida–Watanabe of Non-noetherian Rs(P ); in fact, they give
a complete characterization of when Rs(P ) is (non)Noetherian for large families
of curves of type (ta, tb, tc). The smallest of their examples to date are the curves
(t7, t15, t26) and (t12, t13, t17), each of these examples being smallest in a different
manner. For more examples of this kind, see also [58]. The original family of Non-
noetherian examples in [54] has also been generalized via different methods in [76].

Finally, the story of symbolic Rees algebras of space monomial curves has deeper
connections to Hilbert’s 14th Problem: Kurano and Matsuoka showed that whenever
the symbolic Rees algebra of the defining ideal P of (ta, tb, tc) is not Noetherian,
then in fact Rs(P ) is a counterexample to Hilbert’s 14th Problem [77].

Even when the symbolic Rees algebra Rs(P ) of the curve (ta, tb, tc) in indeed
Noetherian, it may still be generated in various degrees. As a corollary of a result
of Huneke’s [73, Corollary 2.5], we know P (n) = Pn for all n � 1, or equivalently
Rs(P ) is generated in degree 1, exactly when P is a complete intersection. In the
language of Sect. 3.2, we say that Rs(P ) has generation type 1. Herzog and Ulrich
characterized when the symbolic Rees algebra Rs(P ) is generated in degree up to
2, or has generation type 2, and showed that this implies that P is self-linked [70].
The cases when Rs(P ) has generation type 3 [53] and 4 [96, 97] have also been
completely characterized; these characterizations are all in terms of the Hilbert-
Burch matrix of P .

With the subject of finite generation presenting such a difficult problem, the
literature on other ring-theoretic properties of Rs(I ) is not as vast. Watanabe [117]
asked whether Rs(I ) must be Cohen-Macaulay whenever it is Noetherian, where
I is a divisorial ideal in a strongly F-regular ring R. Watanabe constructed an
example [117, Example 4.4] of a divisorial ideal I in an F-rational ring whose Rees
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algebra is Noetherian but not Cohen-Macaulay. When R is strongly F-regular, Singh
showed that the answer to Watanabe’s question is affirmative provided that a certain
auxiliary ring is finitely generated over R [106]. The construction of this auxiliary
ring is an iterated symbolic Rees algebra.

In positive characteristic, the symbolic Rees algebra of the canonical module ω =
ωR of a local, normal, complete ringR plays an important role in studying Frobenius
actions on the injective hull of the residue field. A significant construction in this
context is the anticanonical cover

⊕
n�0 HomR(ω(n), R). The number of generators

for this ring as an algebra over R, if finite, bounds the Frobenius complexity of R as
shown by Enescu and Yao [37].

The research and literature surrounding symbolic Rees algebras is abundant and
growing at a steady rate. While we cannot do complete justice to this topic by
presenting an exhaustive review, we expand in some directions which are closest
to our interests in the following sections.

3 Criteria for Noetherianity

In this section we discuss criteria for finite generation, and equivalently Noethe-
rianity, of symbolic Rees algebras and structural invariants of finitely generated
symbolic Rees algebras.

3.1 Noetherianity

The most comprehensive criterion, described below in Proposition 3.1 (4) ⇔ (1),
states that, under mild hypotheses, finite generation of a symbolic Rees algebra
Rs(I ) is equivalent to the fact that there exists a Veronese subalgebra

⊕
n�0 I

(kn)tkn

isomorphic to the (ordinary) Rees algebra R(I (k)) =⊕
n�0(I

(k))ntn. An equivalent
assertion is that a Veronese subalgebra of Rs(I ) admits a standard grading.

The various parts of the following criterion appear in different places in the
literature: the equivalence of (1) and (3) is developed in [95] and (4) appears in
work of Schenzel [104, Theorem 1.3]. We include a proof since this result is central
to our discussion.

Proposition 3.1 (Standard Graded Subalgebra Criterion) Let R be a Noethe-
rian ring and I an ideal in R. The following are equivalent:

(1) Rs(I ) is a finitely generated R-algebra.
(2) Rs(I ) is a Noetherian ring.
(3) There exists d such that for all n � 1,

I (n) =
∑

a1+2a2+···+dad=n
I a1

(
I (2)

)a2 · · ·
(
I (d)

)ad
.
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Furthermore, when these equivalent conditions hold, then

(4) There exists k such that I (kn) = (
I (k)

)n
for all n � 1.

Conditions (1)–(4) are equivalent whenever R is an excellent ring.

Proof The fact that (1) implies (2) is a consequence of Hilbert’s Basis Theorem.
Moreover, since Rs(I ) is an N-graded algebra and Rs(I )0 = R is a Noetherian
ring, the equivalence between (1) and (2) is a general fact about graded R-algebras;
see for example [8, Proposition 1.5.4] for a proof. Statement (3) says that Rs(I ) is
generated in degree up to d as an R-algebra, and thus is equivalent to (1).

To show that (3) implies (4), we follow [95, Lemma 2], where in fact a stronger
statement is proved. We will show that k can in fact be taken to be k = d · d!.

First, suppose that n � k. For each choice of a1 + 2a2 + · · · + dad = n � d · d!,
we must have iai � d! for some i, by the pigeonhole principle. Moreover, q := d!

i

is an integer, so

I a1
(
I (2)

)a2 · · ·
(
I (d)

)ad =
(
I (i)

)q
I a1

(
I (2)

)a2 · · ·
(
I (i)

)ai−q · · ·
(
I (d)

)ad

⊆ I (d!)I (n−d!).

In particular, I (n) ⊆ I (d!)I (n−d!) for all n � d · d!, but since I (d!)I (n−d!) ⊆ I (n)
holds because symbolic powers form a graded family, in fact we have shown that
I (n) = I (d!)I (n−d!).

Now consider any n � 1. Since nk � k = d · d!, then

I (kn) = I (d!)I (kn−d!) =
(
I (d!)

)2
I (kn−2d!) = · · · =

(
I (d!)

)d
I (kn−d·d!)

⊆ I (d·d!)I (kn−d·d!),

so that

I (kn) = I (d·d!)I (kn−d·d!) = I (k)I (k(n−1)).

By induction, the statement follows.
On the other hand, if (4) holds, then the algebra

A :=
⊕

n�0

I (kn)tkn =
⊕

n�0

(
I (k)tk

)n ⊆ Rs(I ) ⊆ R[t]

is finitely generated. The fact that (4) implies the remaining equivalent statements
will follow once we show that Rs(I ) is a finitely generated algebra over A. To do
that, we follow the argument in [104, (2.2)].
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Let B denote the integral closure of A inside R[t]. Recall1 that B is the subring
of R[t] given as follows:

B =
{
f ∈ R[t] : f d + ad−1f

d−1 + · · · + a1f + a0 = 0 for some fi ∈ A
}
.

We claim that Rs(I ) =⊕
I (n)tn ⊆ B. To show that, consider u ∈ I (i)t i . Then

uk ∈
(
I (i)

)k
t ik ⊆ I (ki)tki =

(
I (k)tk

)i
,

so that u is a root of T k − uk . Since uk ∈ A, u is integral over A, which implies that
u ∈ B. Since Rs(I ) is generated by such elements, we conclude that Rs(I ) ⊆ B.
Moreover, B is a finitely generated module over A, by [105, Remark 12.3.11 or
Theorem 9.2.2]. Therefore, Rs(I ) must be finitely generated over A by the Artin-
Tate theorem [1]. ��

For Proposition 3.1 (4)⇒ (3), the condition we need is that the integral closure
of a finitely generated R-algebra B in a finite extension is a finitely generated
algebra over B; rings with this property are called Nagata rings (see [82, Chapter
13]). This holds wheneverR is excellent or analytically unramified, and in particular
every polynomial or power series ring over a field has this property.

Remark 3.2 The proof of Proposition 3.1 shows that when the symbolic Rees
algebra is Noetherian and generated in degree up to d, then for k = d · d!, we
do have I (kn) = (

I (k)
)n

for all n � 1. In fact, it is shown in [95, Lemma 2] that
if the symbolic Rees algebra is generated in degrees a1, . . . , as , and r is the least
common multiple of a1, . . . , as , then we can take k = sr .

Under mild assumptions, part (3) of Proposition 3.1 above might be rewritten, as
follows:

Lemma 3.3 Let R be an excellent ring, and I an ideal in R. Suppose that k is such
that I (kn) = (

I (k)
)n

for all n � 1. Then there exists A � 1 such that for all n � 1,
if n = qk + r , with 0 � r < k, then

I (n) =
A∑

a=0

(
I (k)

)q−a
I (ak+r).

Proof As before, note that the R-algebra

B :=
⊕

n�0

I (kn)tkn =
⊕

n�0

(
I (k)tk

)n ⊆ R[t]

is finitely generated, and that Rs(I ) is finitely generated over B.

1 The book [105] is a comprehensive reference on the subject of integral closure.
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Suppose that Rs(I ) is generated over B in degrees a1, . . . , ad . Then

⊕

n�0

I (n)tn = Rs(I ) = I (a1)ta1B ⊕ · · · ⊕ I (ad )tadB =
⊕

m�1

I (ai )
(
I (k)

)m
tai+km.

Finally, the theorem follows once we collect the pieces in degree n. ��
While very useful, the criteria in Proposition 3.1 often prove challenging to apply

because they require checking infinitely many equalities of ideals. The next results
of Huneke [74, Theorems 3.1 and 3.25] present ideal-theoretical criteria for the
symbolic Rees ring Rs(P ) of a height two prime P of a three-dimensional regular
ring R to be Noetherian, which are relatively simple to apply. These criteria suffice
to establish that every affine space curve of degree three as well as every monomial
space curve of degree four have Noetherian symbolic Rees algebras.

Proposition 3.4 (Multiplicity Criterion) Let R be a regular local ring with
dim(R) = 3 and infinite residue field and let P be a height two prime ideal of
R. The following are equivalent:

(1) Rs(P ) is a finitely generated R-algebra.
(2) There exist k, l � 1, f ∈ P (k), g ∈ P (l) and x �∈ P such that

λ(R/(f, g, x)) = klλ (R/(P + (x)) .

(3) There exist f.g ∈ P such that
√
(f, g) = P and the leading forms f ∗, g∗ of

f, g in the associated graded ring of PRP form a regular sequence.

It is possible to extend this criterion to reduced ideals of height two that are not
necessarily prime. For example, by [61, Proposition 3.5], if an ideal I defines a set
of s points in P

2 and if there exist m ∈ N and f, g ∈ I (m) such that f, g form a
regular sequence and deg(f ) deg(g) = m2s, then Rs(I ) is a Noetherian ring. This
criterion can be applied to show that any set of s � 8 points in P

2 gives rise to a
Noetherian symbolic Rees algebra. However, the converse implication is no longer
valid, as shown in [94].

It turns out that the analytic spread �(I ) of I , which is defined to be the
Krull dimension of the special fiber ring of I , R(I )/mR(I ), plays an important
role in the study of symbolic Rees algebras. Its contribution is due to work of
McAdam on asymptotic primes of I . For the rest of this section, we assume
R is an excellent domain, although a weaker condition, locally quasi-unmixed,
would suffice. Brodmann shows in [12] that the following set, known as the set
of asymptotic primes of I , is finite:

A∗(I ) :=
⋃

n�0

Ass(In).
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McAdam [84, Theorem 3] (see also [85, Proposition 4.1]) shows that P ∈ A∗(I ) if
and only if �(IRP ) = dim(RP ). Setting

J =
⋂

P∈A∗(I )\Min(I )

P

yields another description of the symbolic powers of I as saturations: I (n) = In :
J∞. We are now ready to state another criterion for finite generation of the symbolic
Rees algebra. This appears for primary ideals in work of Katz and Ratliff [78,
Theorem A], and in the form presented here in [15, Theorem 2.6].

Proposition 3.5 (Analytic Spread Criterion) Let (R,m) be an excellent domain.
Then Rs(I ) is a finitely generated R-algebra if and only if for all P ∈ V (J ) we
have that

�
(
(I : J∞)RP

)
< dim(RP ).

In a similar vein, Goto, Herrmann, Nishida, and Villamayor give a sufficient cri-
terion for the symbolic Rees algebra to be Noetherian in terms of an equimultiplicity
condition of some symbolic power. Their result in [47, Theorem 3.3] states that if
�(I (n)) = ht(I (n)) for some natural number n and ideal I in an unmixed local ring,
then Rs(I ) is Noetherian.

A large class of ideals with finitely generated symbolic Rees algebra is the class
of monomial ideals. While none of the above criteria apply to show this, finite
generation of the respective symbolic Rees algebras follows from Gordan’s lemma,
which says that the set of all lattice points in a rational cone is a finitely generated
affine semigroup. This approach is taken by Herzog, Hibi, and Trung in [62,
Proposition 1.4]. For squarefree monomial ideals, finite generation of the symbolic
Rees algebra was previously shown in work of Lyubeznik; see [81, Proposition 1].

3.2 Generation Type and Standard Veronese Degree

In this section, we explore the maximum degree of elements required to generate the
symbolic Rees ring as an R-algebra and the minimum degree of a standard graded
Veronese subalgebra.

Following Bahiano [2], we define

Definition 3.6 The generation type of a symbolic Rees algebra Rs(I ) is the value

gt(Rs(I )) := inf{d | Rs(I ) = R[I t, I (2)t2, . . . , I (d)td ]}.
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Note that gt(Rs(I )) ∈ N ∪ {∞} and gt(Rs(I )) ∈ N if and only if Rs(I ) is a
Noetherian ring. A challenging problem is to determine or bound this invariant for
interesting classes of ideals.

Problem 3.7 Find effective bounds on gt(Rs(I )), when finite, in terms of invariants
of I .

This problem has been studied predominantly in combinatorial contexts, when I
is a monomial ideal [2, 62, 83]; it has also been studied for the ideal defining a
space monomial curve [53, 96, 97], and in some cases of more general monomial
curves, for example in [26]. For a monomial ideal I , finding a minimal set of algebra
generators for Rs(I ) translates into finding a Hilbert basis for an appropriate convex
polyhedron [83, Corollary 3.2]. This is a computationally intensive problem, which
can nevertheless be approached with the aid of specialized software [11, 111].

When I is a monomial ideal and I (n) = In for each n ∈ N, i.e. when all the
symbolic powers are the integral closures of the corresponding ordinary powers,
then [36, Corollary 3.11] yields gt(Rs(I )) � dim(R) − 1. When I is the edge
ideal of a simple graph, [2] yields gt(Rs(I )) � (dim(R) − 1)(dim(R) − ht(I )).
However, for arbitrary monomial ideals the best known bound seems to be given by
[62, Theorem 5.6]:

gt(Rs(I )) �
(dim(R)+ 1)(dim(R)+3)/2

2dim(R)
.

Proposition 3.1 reveals the importance of standard graded Veronese subalgebras
of the symbolic Rees algebra. We introduce a new invariant that captures the least
degree where they occur.

Definition 3.8 The standard Veronese degree of an ideal I is the value

svd(I ) := inf{k | (I (k))n = I (kn) for all n ∈ N}.

As before, svd(I ) < ∞ is equivalent to Rs(I ) being a Noetherian ring by
Proposition 3.1, and the proof of this proposition yields the upper bound svd(I ) �
gt(Rs(I )) · gt(Rs(I ))!. Remark 3.2 yields a sharper upper bound. For particular
families of ideals, specific upper bounds can be found in the literature, for example
for some space monomial curve families [86] and for ideals defining Fermat-type
point configurations [94] (cf. Example 4.6).

We explore these invariants for a specific family of monomial ideals below, with
an eye towards evaluating the optimality of these bound.

Example 3.9 Let n and h � n − 1 be positive integers and let In,h denote
the following monomial ideal in the polynomial ring Rn = k[x1, . . . , xn] with
coefficients in a field k

In,h :=
⋂

1�i1<i2<···<ih�n
(xi1 , xi2 , · · · , xih).
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This family of ideals is known as monomial star configurations. Then the following
hold:

Rs(I ) = Rn[xi1xi2 · · · xin−h+mtm, 1 � m � h, i1 < i2 < · · · < in−c+m � n],
(3.1)

gt(Rs(In,h)) = h, and svd(In,h) is divisible by lcm(1, 2, . . . , h).

Proof The description of the symbolic Rees algebra in (3.1) is established using
different notation in [62, Proposition 4.6].

It follows that the generation type of this algebra is h, provided that the
unique algebra generator of degree h,

∏n
i=1 xi ∈ I (h), listed in (3.1) cannot be

decomposed as a product of squarefree monomials m1,m2, . . . , ms with s > 1,
mi = xi,1xi,2 · · · xi,n−h+ai ∈ I (ai ). This would yield a1 + · · · + as = h and because
the degrees of these monomials are deg(mi) = n− h+ ai we obtain the following
impossible inequality

deg(m1)+· · ·+deg(ms) � a1+· · ·+as+s(n−h) = h+s(n−h) > n = deg
n∏

i=1

xi.

Continuing to a discussion of the standard Veronese degree, let us first observe
that the lowest degree of a nonzero element of I (m)n,h is α(I (m)n,h ) = m+ (n− h)�mh �.
A simple calculation now verifies that when m

h
is not an integer, then α(I (mk)n,h ) <

kα(I
(m)
n,h ) = α((I (m)n,h )

k) whenever k > h. This restricts the possible values for r :=
svd(In,h) to multiples of the height h. However, further restrictions on r are imposed
by consideration of the manner in which our family of ideals contracts with respect
to the inclusions Rn−i ⊂ Rn. Specifically, for all h, n,m there are identities

I
(m)
n,h ∩ Rn−i =

⋂

1�i1<i2<···<ih�n
(xi1 , xi2 , · · · , xih)m ∩ Rn−i

=
h⋂

j=h−i

⋂

1�i1<i2<···<ij�n−i
(xi1 , xi2 , · · · , xij )m

= I (m)n−i,h−i ∩ I (m)n−i,h−i+1 ∩ · · · ∩ I (m)n−i,h

= I (m)n−i,h−i ,

where we make the convention that In,u = Rn whenever u < 0. Similarly one
deduces

Imn,h ∩ Rn−i = (In,h ∩ Rn−i )m = Imn−i,h−i .
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If I (rm) = (I (r))m for all m ∈ N then for 0 � i � h− 1 we deduce the identities

I
(rm)
n,h ∩ Rn−i = (I (r)n,h)m ∩ Rn−i , i.e.,

I
(rm)
n−i,h−i = (I (r)n−i,h−i )m.

By the previous reasoning, we see that r must be divisible by all integers 1 � h−i �
h, thus lcm(1, 2, . . . , h) divides r . ��

We conjecture that for the family of ideals in Proposition 3.9 there is in fact an
equality svd(In,h) = lcm(1, 2, . . . , h). This prompts the following question:

Question 3.10 Can the bound in Remark 3.2 be improved for all monomial ideals
I to

svd(I ) � the lcm of the degrees of any set of algebra generators for Rs(I )?

At this time we are unaware of any ideals that satisfy svd(I ) < gt(I ). Hence we
ask:

Question 3.11 Does the inequality gt(I ) � svd(I ) hold for every ideal I?

4 Applications to Containment Problems and Asymptotic
Invariants

4.1 The Containment Problem

Containments of the form In ⊆ I (n) are a direct consequence of Definition 1.1,
which further implies that I b ⊆ I (a) if and only if b � a. Containments of the
converse type I (a) ⊆ I b are a lot more interesting. Together these form the basis for
comparison of the ordinary and symbolic ideal topologies, which has been pioneered
by Schenzel [102] and later Swanson [110]. This line of inquiry is nowadays known
as the containment problem:

Question 4.1 (Containment Problem) Let R be a ring and let I be an ideal of R
without embedded primes. For which pairs a, b does the containment I (a) ⊆ I b
hold?

If for each value of b there is a pair a, b answering the above question, then the
families {I (n)}n and {In}n are cofinal, and induce equivalent topologies. In [110],
Swanson shows that the equivalence of ordinary and symbolic ideal topologies is
linear, that is, if {I (n)}n and {In}n are cofinal then there is a constant c, possibly
depending on I , such that I (cn) ⊆ In for all n � 1. When the ambient ring is
regular, this constant can be expressed explicitly, in terms of the big height of I ,
the largest height of on associated prime of I . In fact, in this case the constant c can
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even be taken uniformly, depending only on R, as shown by the following important
results [34, 60, 87].

Theorem 4.2 (Ein–Lazarsfeld–Smith, Hochster–Huneke, Ma–Schwede) Let R
be a regular ring and I an ideal in R. If h is the big height of I , then I (hn) ⊆ In for
all n � 1. In particular, if d = dim(R), then I ((d−1)n) ⊆ In for n � 1.

If we remove the regular assumption, and ask that R be a complete normal local
domain, it is still an open problem in general to determine whether there exists a
uniform constant c, depending only on R, such that P (cn) ⊆ Pn for all n � 1
and all primes P . When P is a prime ideal in a complete normal local domain, the
P -symbolic and P -adic topologies are equivalent [101]. More generally, if R is an
excellent Noetherian domain, the P -symbolic and P -adic topologies are equivalent
for every prime P if and only if going down holds between R and its integral
closure [66]. Some of the recent progress on this problem in [63–65, 114–116] is
also described in some detail in [21].

More surprisingly, the containment problem is not settled even in the regular
case. In fact, the containments provided by Theorem 4.2 are not necessarily best
possible. In fact, examining the proof of the above theorem in [60] one sees that
in the case of positive characteristic, char(R) = p, it relies on containments of
the form I (hq) ⊆ I [q], where q = pe for e ∈ N and I [q] denotes the qth Frobenius
power of I . The stronger containment I (hq−q+1) ⊆ I [q] follows in this context using
localization and the pigeonhole principle as explained in [60, p.351]. This yields the
following improved containments:

Proposition 4.3 Let R be a regular ring, I an ideal of R, and h the big height of
I . If char(R) = p > 0, the containments I (hq−h+1) ⊆ I q hold for q = pe and for
each integer e � 1.

This leads to the question of whether similar improvements can be carried over
to arbitrary characteristic and arbitrary exponents. Harbourne proposed this as a
conjecture in [4, 61] for homogeneous ideals, which we write here for radical ideals.

Conjecture 4.4 (Harbourne) Let I be a radical homogeneous ideal in a polynomial
ring, and let h be the big height of I . Then the containments I (hn−h+1) ⊆ In hold
for all n � 1.

Remark 4.5 To compare Conjecture 4.4 to Theorem 4.2, it is instructive to note that
Theorem 4.2 implies that I (n) ⊆ I � nh � for n � 1, while Harbourne’s Conjecture 4.4
asks if I (n) ⊆ I � nh � for all n � 1.

There are various cases where Conjecture 4.4 is known to hold: if I is a monomial
ideal [4, Example 8.4.5] or more generally if I defines an F-pure ring [43], if I
corresponds to a general set of points in P

2 [9] or P3 [31], and if I defines a matroid
configuration [46], that is, a union of codimension c intersections of hypersurfaces
such that any subset of at most c + 1 of the equations of these hypersurfaces forms
a regular sequence. Moreover, versions of Conjecture 4.4 hold in some singular
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settings as well [52]. Despite that, asking that Conjecture 4.4 holds for any radical
ideal in a regular ring turns out to be too general.

Example 4.6 (Dumnicki–Szemberg–Tutaj-Gasińska [29], Harbourne–Seceleanu
[69]) Let n � 3 be an integer and let k be a field of with char(k) �= 2 that contains
n distinct roots of unity. Let R = k[x, y, z], and consider the ideal

I = (x(yn − zn), y(zn − xn), z(xn − yn))

defining n2 + 3 points in P
2
k , namely the 3 coordinates points together with the n2

points defined by the complete intersection (xn − yn, yn − zn). For this ideal h = 2
but I (3) �⊆ I 2, thus Conjecture 4.4 is not satisfied for n = 2.

Example 4.6 is particularly interesting because it shows that Conjecture 4.4 can
fail even for ideals with Noetherian symbolic Rees algebra. Indeed, in [94] it is
shown that the symbolic Rees algebras of the ideals in Example 4.6 are finitely
generated. On the other hand, the family of space monomial curves in Example 2.4,
which have (big) height 2, satisfy I (4) ⊆ I 3 by [56, Example 4.7]. This is a stronger
containment than the one proposed by Conjecture 4.4, and yet these ideals have
Non-noetherian symbolic Rees algebras.

In [69], Harbourne and Seceleanu show that the containment I (hn−h+1) ⊆ In
can fail for arbitrarily high values of n that grow with the dimension of R, if R
is a polynomial ring of characteristic p > 0. However, in characteristic 0 all the
known counterexamples to Conjecture 4.4 found to date [5, 14, 28, 29, 75, 88] are
for the value n = 2. There are moreover no prime counterexamples to Harbourne’s
Conjecture 4.4. We emphasize this by asking:

Question 4.7 (Harbourne Conjecture for Primes) If P is a prime ideal in a regular
ring and ht(P ) = h, then do the containments P (hn−h+1) ⊆ Pn hold for all n � 1?

For example, in characteristic other than 3, it is know that all space monomial
curves (ta, tb, tc) satisfy this containment for n = 2 [56, Theorem 4.1], and also
for n � 0 [44, Corollary 4.3]. There are also no known counterexamples to the
following asymptotic version of Harbourne’s conjecture formulated in [56].

Conjecture 4.8 (Stable Harbourne Conjecture) Let R be a regular ring and I a
radical ideal of R with big height h. Then there exists N > 0 such that the
containment I (hn−h+1) ⊆ In holds for all n � N .

This stable version of Harbourne’s Conjecture does hold for various classes of
ideals in equicharacteristic rings, including examples with Non-noetherian symbolic
Rees algebra. In Sect. 4.3, we will discuss ideals with expected resurgence, and all
of these satisfy the Stable Harbourne Conjecture.



Symbolic Rees Algebras 359

4.2 Noetherian Symbolic Rees Algebras and the Containment
Problem

We now consider the implications of having a Noetherian symbolic Rees algebra on
the Containment Problem 4.1. The first easy implication is that I satisfies a version
of Harbourne’s Conjecture with the big height replaced by the generation type.

Lemma 4.9 Let R be a Noetherian ring and I an ideal in R with gt(I ) = d. Then
for all n � 1,

I (dn−d+1) ⊆ In.

In particular, I satisfies Harbourne’s Conjecture whenever gt(I ) � bight(I ).

Proof Fix n � 1. By Lemma 3.1, it is enough to show that for all choices of
a1, . . . , an � 0 such that a1 + 2a2 + 3a3 + · · · + dad = dn− d + 1,

I a1
(
I (2)

)a2 · · ·
(
I (d)

)ad ⊆ I dn−d+1.

To see this holds, note that
(
I (i)

)ai ⊆ I ai for each i, so that

I a1
(
I (2)

)a2 · · ·
(
I (d)

)ad ⊆ I a1+a2+···+ad .

For each such choice of a1, . . . , ad ,

d (a1 + · · · + ad) � a1 + 2a2 + · · · + dad = dn− d + 1,

so that

a1 + · · · + ad � d(n− 1)+ 1

d
.

Since a1 + · · · + ad is an integer, we conclude that

a1 + · · · + ad � (n− 1)+ 1 = n.

��
Moreover, if Rs(I ) is Noetherian, it suffices to check the containments for n �

gt(I ) in Conjecture 4.4 to conclude Harbourne’s Conjecture holds for I :

Lemma 4.10 Let R be a Noetherian ring and I an ideal in R such that gt(I ) = d.
If h is an integer such that

I (i) ⊆ I
⌈
i
h

⌉
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for all i � d, then for all n � 1,

I (hn−h+1) ⊆ In.

Proof Given n � 1,

I (hn−h+1) =
∑

a1+2a2+···+dad=hn−h+1

I a1
(
I (2)

)a2 · · ·
(
I (d)

)ad
.

It is enough to show that for all a1, . . . , ad � 0 such that a1 + 2a2 + · · · + dad =
hn− h+ 1, the ideal

J := I a1
(
I (2)

)a2 · · ·
(
I (d)

)ad

is contained in In. By assumption, I (i) ⊆ I � ih � for each i. Therefore, J ⊆ IN ,
where

N �
d∑

i=1

ai

⌈
i

h

⌉
�

d∑

i=1

iai

h
= hn− h+ 1

h
.

Since N is an integer, we must have

N �
⌈
hn− h+ 1

h

⌉
= n.

��
For example, as a consequence of Lemma 4.10 and [56, Theorem 4.4], Har-

bourne’s Conjecture holds for space monomial curves of generation type up to 6.
In a similar vein, one may ask if the Stable Harbourne Conjecture holds when

Rs(I ) is Noetherian. Here is some evidence in that direction (cf. [55, Theorem
5.28]).

Theorem 4.11 Let I be a radical ideal of big height h in a regular ring R
containing a field. If svd(I ) divides h, then I (hn−h+1) ⊆ In for all n� 0.

Proof First, notice there is nothing to show in the case when h = 1, so we assume
h � 2. By Lemma 3.3, there exists an integer A � 1 such that for all n � 1,

I (hn−h+1) =
A∑

a=0

(
I (h)

)n−1−a
I (ha+1).
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In prime characteristic p, consider e such that q := pe � A+ 1. Whenever n � q,
we have hn− h+ 1 � hq − h+ 1 � hA+ 1, and thus

I (hn−h+1) =
A∑

a=0

(
I (h)

)n−1−a
I (ha+1) =

A∑

a=0

(
I (h)

)n−q (
I (h)

)q−1−a
I (ha+1)

⊆ I (h(n−q))I (hq−h+1).

Now as we have mentioned above, I (hq−h+1) ⊆ I q and I (h(n−q)) ⊆ In−q by [60];
the latter is true more generally, but the first statement requires specifically that we
are in characteristic p and q = pe. Combining these two containments with the line
above, we conclude that

I (hn−h+1) ⊆ I (hq−h+1)I (h(n−q)) ⊆ I qIn−q = In.

To prove the statement in equicharacteristic 0, we need [71, Theorem 1.2], which
says that there exists N > 0 such that

(
I (2)

)n ⊆ In+1 for all n � N . Fix such N ,
and let n � N + A+ 1. Then

I (hn−h+1) =
A∑

a=0

(
I (h)

)n−1−a
I (ha+1) =

A∑

a=0

(
I (h)

)N (
I (h)

)n−1−N−a
I (ha+1).

By [34, 60], I (ha+1) ⊆ I a . Moreover,
(
I (h)

)n−1−N−a ⊆ In−1−N−a since I (h) ⊆ I .

By choice of N ,
(
I (h)

)N ⊆ (
I (2)

)N ⊆ IN+1. Therefore,

I (hn−h+1) =
A∑

a=0

(
I (h)

)N (
I (h)

)n−1−N−a
I (ha+1) ⊆

A∑

a=0

IN+1In−1−N−aI a = In.

��
So if the big height of an ideal I is divisible by its standard Veronese degree,

then I satisfies the stable Harbourne Conjecture 4.8. The ideals in Example 3.9, for
example, do not have this property although they satisfy Conjecture 4.8. Thus we
ask:

Question 4.12 Which ideals satisfy the condition that bight(I ) is divisible by
svd(I )?

In prime characteristic, there are other cases where the Noetherianity of Rs(I )
implies the Stable Harbourne Conjecture 4.8; for example, see [55, Theorem 5.19
and Theorem 5.23].
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4.3 Asymptotic Invariants

One way to study symbolic powers and the containment problem is through the
development of asymptotic invariants. This is an idea pioneered by Bocci and
Harbourne in [9, 10] with the definition of the resurgence of an ideal, and extended
in [48] with the definition of the asymptotic resurgence. We present these invariants
and their relationship to the symbolic Rees algebra below.

Definition 4.13 The resurgence of an ideal I and the asymptotic resurgence are
given, respectively, by

ρ(I) = sup
{a
b
| I (a) �⊆ I b

}
and ρ̂(I ) = sup

{a
b
| I (at) �⊆ I bt for t � 0

}
.

The importance of (asymptotic) resurgence to containment problems lies in the
fact that, by definition, if a, b are positive integers with a > ρ(I)b, then I (a) ⊆ I b.

If I is an ideal of a regular ring and has big height h, Theorem 4.2 implies that
1 � ρ(I) � h and since the definitions yield ρ̂(I ) � ρ(I) we deduce that 1 �
ρ̂(I ) � h as well. If we have equality of ordinary and symbolic powers I (n) = In
for all n � 1, then ρ̂(I ) = ρ(I) = 1. However, the resurgence attaining its lowest
possible value of 1 does not guarantee equality of the ordinary and symbolic powers.

Example 4.14 (DiPasquale–Drabkin [20]) The ideal I = (abc, aef, cde, bdf ) of
the polynomial ring R = k[a, b, c, d, e, f ] satisfies ρ(I) = 1 and I (n) = In +
(abcdef )In−2 for n � 2. In particular, the ordinary and symbolic powers do not
coincide for any n � 2.

At the other end of the spectrum, whether the (asymptotic) resurgence attains
its largest possible value equal to the big height has implications on the stable
Harbourne Conjecture 4.8. First, it follows easily from the definition that Conjec-
ture 4.8 holds for ideals with ρ(I) < bight(I ) (see [56, Remark 2.7]); moreover, it
is sufficient to show that ρ̂(I ) < bight(I ).

Theorem 4.15 (Grifo–Huneke–Mukundan [44, Proposition 2.11]) Let I be
a radical ideal in either a regular local ring containing a field, or a quasi-
homogeneous radical ideal in a polynomial ring over a field. If ρ̂(I ) < bight(I ),
then the containment I (hn−h+1) ⊆ In holds for all n� 0.

Ideals satisfying ρ(I) < bight(I ) have been termed ideals with expected
resurgence in [44]. Classes of ideals with expected resurgence include: those
defining general points in P

n [6, Theorem 4.2], locally complete intersection ideals
I a polynomial ring that are minimally generated by forms of degree lower than
bight(I ) [44, Theorem 3.1], ideals I of a local or standard graded regular ring
(R,m, k) which contains a field so that R/I is Gorenstein, I (n) = In : m∞ and
either k has positive characteristic or the symbolic Rees algebra of I is Noetherian
[45].
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Because of these considerations it becomes important to develop methods for
determining the (asymptotic) resurgence of an ideal. In order to do this, it is helpful
to investigate another asymptotic invariant.

Definition 4.16 Let I be an ideal of a graded ring and denote by α(I) the smallest
degree of a nonzero homogeneous from in I . The Waldschmidt constant of I is the
value

α̂(I ) = lim
n→∞

α(I (n))

n
= inf

n

α(I (n))

n
.

For homogeneous ideals of a polynomial ring, the following inequalities discov-
ered by Bocci and Harbourne often hold the key to computing resurgence.

Theorem 4.17 (Bocci–Harbourne [9, Theorem 1.2.1]) Let I be a homogeneous
ideal of a polynomial ring. Then there is an inequality

α(I)

α̂(I )
� ρ(I).

If, in addition, I defines a zero-dimensional subscheme, then

ρ(I) � reg(I )/α̂(I ),

where reg(I ) denotes the Castelnuovo-Mumford regularity of I .

However, resurgences and Waldschmidt constants remain elusive invariants. In
the case of ideals having Noetherian symbolic Rees algebras, however, one can get
a better handle on these invariants by expressing them in terms of finitely many
symbolic power of ideals.

Theorem 4.18 (Drabkin–Guerrieri [23, Theorem 3.6], DiPasquale–Drabkin
[20, Proposition 2.2, Corollary 3.6]) Suppose I is an ideal of a polynomial ring
which has Noetherian symbolic Rees algebra. Then the Waldschmidt constant,
asymptotic resurgence, and the resurgence of I are rational numbers and can be
computed as follows

α̂(I ) = min
n�gt(I )

α(I (n))

n
,

ρ̂(I ) = max
1�i�r,1�j�gt(I )

{
jνi(I )

νi(I (j))

}
, and

ρ(I) =
{

max(a,b)∈finite set
{
a
b
| I (a) �⊆ I b} if ρ(I) �= ρ̂(I )

ρ̂(I ) otherwise,
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where ν1, . . . , νr denote the distinct Rees valuations2 of I and the finite set in the
last displayed equation is given explicitly in [20, Proposition 2.2].

Remark 4.19 If I is an ideal of a polynomial ring which has Noetherian symbolic
Rees algebra, then in fact the Waldschmidt constant is determined by a single sym-
bolic power corresponding to the standard Veronese degree. Indeed, Definition 4.16
and Proposition 3.1(3) yield α̂(I ) = α(I (svd(I )))/ svd(I ).

Ideals with irrational values of the Waldschmidt constant are expected to abound.
Indeed, Nagata’s conjecture [91] would imply that the Waldschmidt constant of
a radical ideal I defining s general points in P

2 is α̂(I ) = √s, often producing
an irrational value. However, no examples of ideals with confirmed irrational
Waldschmidt constant, resurgence, or asymptotic resurgence have been constructed
yet. Thus we propose the following task.

Problem 4.20 Provide examples of ideals with irrational Waldschmidt constant,
resurgence, or asymptotic resurgence.

The lower bound α̂(I ) � α(I)/(d − 1) holds for homogeneous ideals in a
d dimensional polynomial ring, and it follows easily from the containments in
Theorem 4.2. The details can be found in [61], but the lower bound itself—although
phrased in a different language—appears in work of Waldschmidt [113] and Skoda
[107]. Improvements on this lower bound have been proposed by Chudnovsky [16]
and Demailly [22] in relation to the difficult question of finding the least degree of
a homogeneous polynomial vanishing at a given set of points in projective space
to a prescribed order. The validity of the bounds suggested by Chudnovsky and
Demailly follows if one can establish containments of the symbolic power ideals
deeper within the ordinary powers than provided by Theorem 4.2. We make these
containments precise in Question 4.21 below, while also abstracting the bounds
suggested by Chudnovsky and Demailly to the more general setting of homogeneous
radical ideals in Question 4.22.

Question 4.21 Let I be either a radical ideal of big height h in a regular local ring
(R,m), or a homogeneous radical ideal of big height h in a polynomial ring R with
maximal homogeneous ideal m. Do the following containments

I (rh) ⊆ mr(h−1)I r (4.1)

I (r(h+m−1)) ⊆ mr(h−1)
(
I (m)

)r
(4.2)

hold for all m, r � 1?

Note that (4.1) is the particular case of (4.2) withm = 1. These first appeared as a
question for ideals of points in [61, Question 4.2.3], and the more general version for

2 For details on Rees valuations and their applications the reader is invited to consult [105, §10.1].
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radical ideals of big height h appeared in [13, Conjecture 2.9]. Both containments
are satisfied for squarefree monomial ideals by [13, Corollary 4.3], where in fact
a stronger statement was shown [13, Theorem 4.2]. Similar containment for the
defining ideal of a general set of points in P

2 were investigated in [3].
The validity of the containments in Eqs. (4.1) and (4.2) of Question 4.21 would

imply the bounds for Waldschmidt constants of homogeneous radical ideals given
in (4.3) and (4.4) respectively of the following question.

Question 4.22 (Chudnovsky and Demailly Type Bounds on the Waldschmidt Con-
stant) Let I be a homogeneous radical ideal of big height h in a polynomial ring R.
Do the following inequalities

α(I (n))

n
� α(I)+ h− 1

h
and thus α̂(I ) � α(I)+ h− 1

h
(4.3)

α(I (n))

n
� α(I (m))+ h− 1

m+ h− 1
and thus α̂(I ) � α(I (m))+ h− 1

h
(4.4)

hold for all n,m � 1?

An affirmative answer to Question 4.22 (4.1) has been given for ideals defining
general points in P

2 in [61], for ideals defining general sets of projective points
of sufficiently large cardinality in [30], for very general sets of points in arbitrary
projective spaces in [38], and for ideals defining sufficiently many general sets
of points in projective space in [6], where Question 4.21 (4.1) is shown to
hold for r � 0. Question 4.22 (4.4) is answered in the affirmative for general
points in P

2 by Esnault and Viehweg [35] and for very general sets of projective
points of sufficiently large cardinality in arbitrary projective spaces by work of
Malara, Szemberg and Szpond [89], extended by Chang and Jow [17]. Recently, an
affirmative answer to Question 4.22 (4.4) has also been established for sufficiently
large general sets of points in arbitrary projective spaces by Bisui, Grifo, Hà and
Nguyễn in [7], where an affirmative answer to Question 4.21 (4.2) is also provided
in the same context for infinitely many values of r , although not for all r or even
r � 0. Outside of the context of points, the answer to all of these questions
is also affirmative for generic determinantal ideals and the defining ideals of star
configurations in any codimension [7].

However, both of the above questions remain open in the form stated here, and
are open even for ideals having Noetherian symbolic Rees algebra.

Remark 4.23 Suppose that I has a finitely generated symbolic Rees algebra. Since
the limit in the definition of α̂(I ) exists, we obtain

α̂(I ) = lim
n→∞

α(I (svd(I )n))

svd(I )n
= α(I

(svd(I )))

svd(I )
.



366 E. Grifo and A. Seceleanu

Alternatively, since α̂(I ) is also given as an infimum, one can compute α̂(I ) by
taking

α̂(I ) = min

{
α(I),

α(I (2))

2
, . . . ,

α(I gt(I ))

gt(I )

}
.

As a consequence, the containments (4.1) and (4.2) of Question 4.22 can be reduced
to checking only those instances with r � gt(I ) or, alternatively, only the case
r = svd(I ). Similarly, the inequalities (4.3) and (4.4) of Question 4.22 reduce to
checking

α(I (n))

n
� α(I)+ h− 1

h
and

α(I (n))

n
� α(I (m))+ h− 1

m+ h− 1
for 1 � n

� gt(I ) and m � 1

or, equivalently,

α(I (svd(I )))

svd(I )
� α(I)+ h− 1

h
and

α(I (svd(I )))

svd(I )
� α(I (m))+ h− 1

m+ h− 1
for m � 1.
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The Alexander–Hirschowitz Theorem
and Related Problems

Huy Tài Hà and Paolo Mantero

Dedicated to David Eisenbud, on the occasion of his 75th
birthday.

1 Introduction: The Alexander–Hirschowitz Theorem

The polynomial interpolation problem originates from the simple fact that a
polynomial in one variable over C is completely determined by its zeros. In
fact, given r ≤ d distinct points x1, . . . , xr on the affine line A

1
C

and positive
integers m1, . . . , mr such that m1 + . . . + mr = d + 1, a polynomial f (x) =
a0 + a1x + · · · + adxd of degree d is uniquely determined by the following (d + 1)
vanishing conditions on its derivatives, namely f (j)(xi) = 0 for all i = 1, . . . , r and
j = 0, . . . , mi−1. Equivalently, the matrix arising from these vanishing conditions,
which determines the parameters a0, . . . , ad , has maximal rank. A natural question,
that has been studied for a long time, is: what happens in higher dimension, meaning
for polynomials in several variables?

The problem is much more difficult for several variables, even when the
multiplicities m1, . . . , mr are all equal and the ambient space is a projective space
over the complex numbers. The aim of this paper is to explore a fundamental result
due to Alexander and Hirschowitz, obtained in a series of papers [1–4, 35] (and
simplification to its proof given by Chandler in [11, 12]), which shows that, if
m1 = · · · = mr = 2 and the points are chosen to be general points in a projective
space, then the same phenomenon happens for homogeneous polynomials in several
variables, except for a few identified exceptional cases.
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Before proceeding, it may be useful to clarify our intention with this survey.
There are already a few surveys discussing part of this topic in the literature. For
instance, the surveys by C. Ciliberto [14] and J. Harris [33] introduce (Hermite)
interpolation problems and related results, and include brief discussions of some of
the geometric ideas behind the Alexander–Hirschowitz theorem. A survey by R. A.
Lorentz [36] discusses these topics from a more Numerical Analysis perspective.
A survey by M. C. Brambilla and G. Ottaviani [7] discusses the history and
presents many details of the core arguments needed in the proof of the Alexander–
Hirschowitz theorem.

These existing surveys assume advanced knowledge and tools from Algebraic
Geometry, and are written in languages that may be more familiar to an algebraic
geometer (cf. [7]) or an analyst (cf. [36]). Some of the stated facts from these
surveys may not appear so obvious for a young reader who is not specifically
well trained in algebraic geometry; for instance, the use of curvilinear subschemes
and the semi-continuity of Hilbert function. Furthermore, the recent large body of
work on symbolic powers of ideals in commutative algebra has drawn our attention
and convinced us that it is a good time to reintroduce the Alexander–Hirschowitz
theorem to commutative algebraists.

For these reasons, and partly due to a personal interest, our survey is intended for
an audience consisting of young commutative algebraists. We aim to present a self-
contained proof of the Alexander-Hirschowitz theorem and, particularly, to provide
all details that may not be easy to see for commutative algebraists who are new to
this research area. We will follow an approach similar to the one of [7]. However, our
style of presentation reflects our choices in using algebraic notions and techniques.
At the same time, we still identify and appreciate the fundamental geometric ideas
at the core of the proof.

We should mention that, to the best of our knowledge, there is no survey or paper
with a completely self-contained proof of the Alexander–Hirschowitz theorem.
While [7] does include many details of the core argument, its emphasis is geared
towards techniques that historically have been used to approach the Interpolation
Problem, and the tight connections of this problem with secant varieties. We have
also discovered in the literature a few computational inaccuracies and incorrect
statements; while they are minor, yet a rechecking was required. Additionally, we
shall include all necessary tools in a few appendices; there we state basic results
on symbolic powers of ideals, secant varieties, Hilbert functions, generic points,
curvilinear schemes and the semi-continuity of Hilbert function.

The proof we present in this survey incorporates all up-to-date simplifications
of the arguments in the original proof of the Alexander–Hirschowitz theorem,
including, for instance, the work done by K. Chandler [11, 12], and Brambilla and
Ottaviani [7] (regarding the case of cubics).

We shall now give a number of important notations and terminology needed to
state the Alexander–Hirschowitz theorem. Fix a positive integer n and let R =
C[x0, . . . , xn] = C[Pn] be the homogeneous coordinate ring of P

n = P
n
C

. For
a zero-dimensional subscheme X ⊆ P

n, let IX ⊆ R denote its defining ideal.
It is a basic fact the Hilbert function HR/IX of R/IX is bounded above by its
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multiplicity e(R/IX) and the Hilbert function of R (see Corollary C.5). Particularly,

HR/IX(d) ≤ min
{
e(R/IX),

(
n+d
d

)}
for all d ∈ N. We say that a zero-dimensional

subscheme X in P
n has maximal Hilbert function in degree d, or simply is AHn(d),

if

HR/IX(d) = min

{
e(R/IX),

(
n+ d
d

)}
.

This is equivalent to what is often referred to as imposing independent conditions on
degree d hypersurfaces in P

n. This latter name however could be slightly misleading
because the given property is equivalent to the linear system of equations associated
to the points having maximal rank; it is not equivalent to the stronger property
that these equations are linearly independent. Thus, we choose to use the notation
AHn(d), which has essentially been used already in [7, 11].

Another basic fact about Hilbert function of zero-dimensional subschemes in P
n,

see Propositions C.3 and C.4, is that HR/IX(d) = e(R/IX) for all d � 0. Thus, we
say that X is multiplicity d-independent if

HR/IX(d) = e(R/IX).

In the known literature, this property is commonly referred to as being simply d-
independent. We add the word “multiplicity” to the terminology to emphasize the
fact that the Hilbert function of R/IX at degree d equals its multiplicity, in this
case, and to avoid the potential confusion between the similar-sounding properties
of imposing independent conditions in degree d and being d-independent.

Let Y = {P1, . . . , Pr } be a set of distinct points in P
n and suppose that the

defining ideal of Pi is pi ⊆ R for all i = 1, . . . , r . Then, the defining ideal of Y
is IY = p1 ∩ · · · ∩ pr . A celebrated theorem of Zariski and Nagata (Theorem B.5)
implies that the symbolic square I (2)Y = p2

1 ∩ · · · ∩ p2
r consists of all homogeneous

polynomials in R passing through each point of Y at least twice. Let X be the zero-
dimensional subscheme in P

n defined by I (2)Y . We call X the set of r double points
supported on Y , and write X = 2Y = {2P1, . . . , 2Pr } for simplicity of notation.
X = 2Y is called a general set of r double points if Y is a general set of r simple
points (see Definition D.2 for the precise definition of general sets of simple points).

We are ready to state the main theorem surveyed in this paper.

Theorem 1.1 (Alexander-Hirschowitz) Let n, d be positive integers. Let X be
a general set of r double points in P

n
C

. Then, X is AHn(d) with the following
exceptions:

(1) d = 2 and 2 ≤ r ≤ n;
(2) d = 3, n = 4 and r = 7; and
(3) d = 4, 2 ≤ n ≤ 4 and r = (

n+2
2

)− 1.

Our proof of Theorem 1.1 follows an outline similar to the one of [7]. Theo-
rem 1.1 is proved by double-induction, on n and d. For sporadic small values of n
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and d the inductive hypotheses are not satisfied. Some of these sporadic cases are
indeed the exceptions appearing in the statement, but the other ones are not and
they are checked to be AHn(d) on an ad hoc basis. In general, for the inductive
step, two fundamental ingredients of the proof are the so-called méthode d’Horace
différentielle and the use of zero-dimensional schemes of prescribed length and
with support on a set of points. Their refined and delicate use is at the core of the
simplifications of the original proof.

We now outline the structure of this survey. In Sect. 2, we present the proof
of Theorem 1.1 for d ≥ 4 and n ≥ 2, when induction works. This is the most
technical section of the paper. We will summarize the main ideas behind the core
inductive argument before giving the details of this inductive step in Theorem 2.9.
Theorem 2.9 is then employed to prove Theorem 1.1 as well as other results in the
survey. In Sect. 3, we discuss the exceptional cases, leaving out some details when
n = 2 and when d = 3 until later in Sects. 4 and 5. In Sect. 4, we give the proof of
Theorem 1.1 when n = 2, i.e., for points on the projective plane. We have chosen to
write a proof which employs Theorem 2.9 to provide the reader with another illus-
tration of the use of this core inductive argument. In Sect. 5, we conclude the proof
of the Alexander–Hirschowitz theorem by examining the case when d = 3, i.e., for
cubics. The paper continues with a list of open problems and questions in Sect. 6.

As mentioned, we end the paper with a number of short appendices to com-
plement the previous sections. In Appendix A, we briefly illustrate the connection
between the (homogeneous, Hermite) double interpolation problem and computing
the dimension of certain secant varieties as well as determining the Waring rank
of forms. In Appendix B, we recall the definition of symbolic powers and the
statement of a fundamental theorem of Zariski and Nagata drawing the connection
between symbolic powers of ideals of points and the interpolation problems. Since
this paper is largely about the Hilbert function of zero-dimensional subschemes in
P
n, we have included an appendix about Hilbert functions and, especially, the lower

semi-continuity property of Hilbert function; see Appendices C and D. The proof
of Theorem 1.1 uses a number of known facts about Hilbert schemes of points and
curvilinear subschemes, which may not be obvious for an algebraist (they were not
obvious for us), so we include an appendix about Hilbert schemes and curvilinear
subschemes; see Appendix E.

Finally, for sake of clarity, we have chosen to work over C, however, a large
number of results would still be valid over any perfect field (and using divided
powers rather than the usual derivatives, in case the characteristic of the field is
positive).

2 The General Case (d ≥ 4 and n ≥ 3)

In this section, we discuss the core inductive argument for the proof of Theorem 1.1.
It is known, see Proposition C.4, that if X is a set of r double points in P

n then
e(R/IX) = r(n + 1). Thus, a set X of r double points in P

n is AHn(d) if and
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only if

HR/IX(d) = min

{(
n+ d
n

)
, r(n+ 1)

}
.

The following observations allow us to specialize, i.e., to deduce the statement of
Theorem 1.1 by constructing a specific set X of r double points in P

n which is
AHn(d), and to consider at most two values of r .

Remark 2.1 Fix n, d ∈ Z+.

• (Corollary D.4) If there exists one collection of r double points in P
n that is

AHn(d), then any general set of r double points in P
n is AHn(d).

• (Corollary D.5) To prove that any set of r general double points in P
n is AHn(d),

it suffices to verify the statement for the following two (possibly coinciding)
values of r:

⌊
1

n+ 1

(
n+ d
d

)⌋
≤ r ≤

⌈
1

n+ 1

(
n+ d
d

)⌉
.

A key ingredient for the inductive argument of Theorem 1.1 is the so-called
Castelnuovo’s Inequality which we now recall.

Lemma 2.2 (Castelnuovo’s Inequality) Let R be a polynomial ring. Let I be a
homogeneous ideal and let � be a linear form in R. Set Ĩ = I : �, R = R/(�), and
I = IR. Then,

HR/I (d) ≥ HR/Ĩ (d − 1)+HR/(I)sat(d). (2.1)

Additionally, the equality holds for every d if and only if I is saturated in R.

Proof From the standard exact sequence

0 −→ R/I : �(−1)
·�−→ R/I −→ R/(I, �) −→ 0,

and the fact that I ⊆ (I )sat, one obtains

HR/I (d) = HR/Ĩ (d − 1)+HR/I (d) ≥ HR/Ĩ (d − 1)+HR/(I)sat(d).

It is also clear that the equality holds for every d if and only if HR/I (d) =
HR/(I)sat(d) for all d, which is the case if and only if I = (I )sat. ��

An intuitive natural approach to Theorem 1.1 is to apply Casteluovo’s Inequality
to obtain a proof by induction on n ≥ 1. Indeed, Terracini already employed this
method to study the case of n = 3 by partly reducing to the case of n = 2. We shall
capture the modern version of Terracini’s argument.
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Theorem 2.3 (Terracini’s Inductive Argument) Fix integers r ≥ q ≥ 1 and d ∈
Z+ satisfying either

r(n+ 1)−
(
d + n− 1

n

)
≤ qn ≤

(
d + n− 1

n− 1

)
or

(
d + n− 1

n− 1

)
≤ qn ≤ r(n+ 1)−

(
d + n− 1

n

)
.

Let L be a hyperplane in P
n. If

(1) a set of q general double points in L , P
n−1 is AHn−1(d), and

(2) the union of a set of r − q general double points in P
n and a set of q general

simple points in L is AHn(d − 1),

then a set of r general double points in P
n is AHn(d).

Proof Without loss of generality, we may assume that xn = 0 is the equation of
L. Let R = C[x0, . . . , xn], and let R = C[x0, . . . , xn−1] , R/(xn). Let Y1 be a
set of q general simple points in L , P

n−1, with defining ideal IY1 ⊆ R. If we
consider Y1 as a set of points in P

n, then its defining ideal is IY1 := (IY1, xn)R. Let
Y2 be a set of r−q general simple points in P

n−L with defining ideal IY2 ⊆ R. Let

I = I (2)Y1
∩I (2)Y2

be the defining ideal of 2Y = 2Y1∪2Y2, and I = IR. By Remark 2.1

and Corollary C.5, it suffices to show that HR/I ≥ min
{(
n+d
n

)
, r(n+ 1)

}
.

Since Y1 ⊆ L and none of the points in Y2 lies on L, we have

Ĩ := I : xn = (I (2)Y1
: xn) ∩ (I (2)Y2

: xn) = IY1 ∩ I (2)Y2
,

which is the defining ideal of the union of a set of q general simple points in H and

r − q general double points in P
n. Next we show that (I )sat = IY1

(2)
. First, observe

that ht(I ) = dim(R) − 1, so (I )sat is the intersection of the minimal components
of I . These minimal components are the images in R of the minimal components
of (I, xn). Now, the primes containing (I, xn) = (I (2)Y1

∩ I (2)Y2
, xn) are precisely the

primes containing xn and either IY1 or IY2 . Since for any p ∈ Min(IY2) we have xn /∈
p, then (p, xn) = (x0, . . . , xn) is the maximal ideal ofR and, thus, it is not a minimal
prime of (I, xn) (which has height n). On the other hand, for any p ∈ Min(IY1) we
have ht(p) = n and xn ∈ p, so p ∈ Min(I, xn). It follows that the minimal primes
p of (I, xn) are precisely the minimal primes of IY1 and when we localize at any of

them we get (I, xn)p = (I (2)Y1
, xn)p. It follows that (I, xn)sat = (I (2)Y1

, xn)
sat and, by

taking images in R, we derive that (I )sat = IY1

(2)
.

Now, by assumptions (1) and (2), we have

HR/Ĩ (d − 1) = min

{(
n+ d − 1

n

)
, q + (n+ 1)(r − q)

}
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and

H
R/I

sat(d) = min

{(
(n− 1)+ d
n− 1

)
, qn

}
.

These inequalities together with Lemma 2.2 yield

HR/I (d) ≥ HR/Ĩ (d − 1)+H
R/I

sat(d)

= min
{(
n+d−1
n

)
, q + (n+ 1)(r − q)

}
+min

{(
n−1+d
n−1

)
, qn

}
.

Now, if r(n + 1) − (
d+n−1
n

) ≤ qn ≤ (
d+n−1
n−1

)
, then min

{(
n+d
n

)
, r(n+ 1)

}
=

r(n+ 1), and

min

{(
n+ d − 1

n

)
, q + (n+ 1)(r − q)

}
+min

{(
n− 1+ d
n− 1

)
, qn

}

= q + (n+ 1)(r − q)+ qn = r(n+ 1).

Thus,

HR/I (d) ≥ r(n+ 1) = min

{(
n+ d
n

)
, r(n+ 1)

}
.

Similarly, if
(
d+n−1
n−1

) ≤ qn ≤ r(n+ 1)− (
n−1+d
n

)
holds, then

HR/I (d) ≥ min
{(
n+d−1
n

)
, q + (n+ 1)(r − q)

}
+min

{(
n−1+d
n−1

)
, qn

}

= (
n+d−1
n

)+ (
n−1+d
n−1

)

= (
n+d
n

)

= min
{(
n+d
n

)
, r(n+ 1)

}
.

This concludes the proof. ��
Assumption (1) in Theorem 2.3 is usually provided by the inductive hypothesis.

Assumption (2) is more delicate, because we have a mix of double points and simple
points—Proposition C.13 provides the tool to handle this situation. What prevents
one from using Theorem 2.3 to prove Theorem 1.1 is the fact that there may not
be an integer q satisfying both of the numerical assumptions of Theorem 2.3. For
instance, to prove the case where n = 3 and d = 6, by Remark 2.1, we need to prove
that a set of r = 21 general double points satisfies AH3(6). To apply Theorem 2.3,
we need to find q ∈ Z with 84− 56 ≤ 3q ≤ 28, i.e. q = 28/3. Thus, Theorem 2.3
is not applicable. There are in fact infinitely many choices of n and d for which we
run into the same problem, i.e., when we cannot apply Theorem 2.3 directly.
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The méthode d’Horace différentielle of [2] is designed to overcome this diffi-
culty. For a subscheme X ⊆ P

n and a hyperplane L defined by a linear form �,
we use X̃ to denote the residue of X with respect to L; that is, the subscheme of
P
n defined by the ideal IX : �. The underlying ideas of the méthode d’Horace

différentielle are:

Step 1. Fix a hyperplane L , P
n−1 in P

n. For a suitable choice of q and ε, choose
a general collection 2! of r − q − ε double points not in L, a general
collection 2� of q double points in L, and a general collection 2� of ε
double points in L.

Step 2. By induction on the dimension, the sets 2�∪2�|L and!∪2�∪2�|L have
maximal Hilbert function in degree (d − 1) in L , P

n−1. One shows that
to prove the theorem it suffices to prove that 2� is multiplicity [I2!∪2�]d -
independent (see Definition 2.5 below).

Step 3. The last statement in Step 2 is proved using deformation. For t =
(t1, . . . , tε) ∈ Kε we take a flat family of general points �t lying on a
family of hyperplanes {Lt1, . . . , Ltε } having � as a limit when t −→ 0,
and the problem reduces to showing that 2�t is multiplicity [I2!∪2�]d -
independent for some t.

Step 4. To establish this latter fact, the existence of t in Step 3, we argue by
contradiction and another deformation argument reduces the problem to
understanding the Hilbert function of schemes of the form 2! ∪ 2�∪�t,
for a suitable curvilinear subscheme �t supported on �t and contained
in 2�t (see Appendix E for basic facts about curvilinear schemes). Since
�t is a family of curvilinear schemes, the family has a limit which can
be used in the process. Finally, arguments employing the semi-continuity
of the Hilbert function, the Castelnuovo inequality (2.1) and the material
developed in Step 2 allows us to arrive at the desired conclusion.

The deformation argument in Step 4 of the méthode d’Horace différentielle is
possible by the use of curvilinear subschemes and, particularly, Lemma 2.7, which
we shall now introduce.

Definition 2.4 Let V be a C-vector space of homogeneous polynomials of the same
degree in R = C[x0, . . . , xn] and let I ⊆ R be a homogeneous ideal. Let I ∩ V
denote the C-vector space of forms (necessarily of the same degree) belonging to
both I and V .

Recall that a zero-dimensional subscheme X ⊆ P
n is multiplicity d-independent

if HR/IX(d) = e(R/IX).
Definition 2.5 Let X ⊆ P

n be a zero-dimensional subscheme and let V a C-vector
space of homogeneous polynomials of the same degree in R.

(1) The Hilbert function of X (or IX) with respect to V is defined to be

hPn(X, V ) = dimC V − dimC(IX ∩ V ).
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(2) We say that X (or IX) is multiplicity V -independent if

hPn(X, V ) = e(R/IX).

This definition generalizes multiplicity d-independence in the sense that X is
multiplicity Rd -independent if and only if X is multiplicity d-independent. We now
prove a couple of basic facts.

Lemma 2.6 Let X ⊆ P
n be a zero-dimensional subscheme and let V a C-vector

space of homogeneous polynomials of the same degree in R. Then

(1) hPn(X, V ) ≤ min{HR/IX(d), dimC V };
(2) if X is multiplicity V -independent then X is multiplicity d-independent;
(3) if X is multiplicity d-independent then so is Y , for any zero-dimensional

subscheme Y of X.

Proof (1) Let [IX]d := IX∩Rd , thus we have (IX∩V ) = [IX]d ∩V andHIX(d) =
dimC[IX]d . By definition hPn(X, V ) = dimC V − dimC(IX ∩ V ) ≤ dimC V , so we
only need to prove hPn(X, V ) ≤ HR/IX(d). From the short exact sequence of vector
spaces

0 −→ IX ∩ V −→ [IX]d ⊕ V −→ [IX]d + V −→ 0,

and the additivity of dimension of vector spaces we obtain that hPn(X, V ) =
dimC([IX]d + V )−HIX(d), which is at most HR/IX(d) because [IX]d + V ⊆ Rd .

(2) By (1) and the fact that HR/IX(d) ≤ e(R/IX) for every d (see Proposi-
tion C.3) we have hPn(X, V ) ≤ HR/IX(d) ≤ e(R/IX). So if X is multiplicity
V -independent then hPn(X, V ) = e(R/IX) = HR/IX(d) and, particularly, X is also
multiplicity d-independent.

(3) Since R/IX and R/IY are one-dimensional Cohen-Macaulay modules, the
short exact sequence

0 −→ IY /IX −→ R/IX −→ R/IY −→ 0

implies that IY /IX is a one-dimensional Cohen-Macaulay module and e(IY /IX) =
e(R/IX) − e(R/IY ). Now, by the above short exact sequence and Proposition C.3,
we obtain

HR/IY (d) = e(R/IX)−HIY /IX (d) ≥ e(R/IX)−[e(R/IX)−e(R/IY )] = e(R/IY ).

Since HR/IY (d) ≤ e(R/IY ), by Proposition C.3, we conclude that HR/IY (d) =
e(R/IY ). ��

Let Z be a set of finitely many simple points, we shall now prove that to check
whether a scheme X contained in 2Z is V -independent it suffices to consider
curvilinear subschemes of X. This reduction and the fact that curvilinear schemes
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form a dense open subset of the Hilbert scheme (see Proposition E.7) play an
important role in the proof of Theorem 2.9.

Lemma 2.7 (Curvilinear Lemma) Let X ⊆ P
n be a zero-dimensional scheme

contained in a finite union of double points and let V be a C-vector space of
homogeneous polynomials of degree d in R. Then X is multiplicity V -independent
if and only if every curvilinear subscheme of X is multiplicity V -independent.

Proof Suppose first that X is multiplicity V -independent, then X is multiplicity
d-independent by Lemma 2.6(2) and hPn(X, V ) = e(R/IX) = HR/IX(d).

Particularly, V contains all homogeneous polynomials of degree d that are not in
IX. Let Y ⊆ X be any zero-dimensional subscheme, then clearly V contains all
homogeneous polynomials of degree d that are not in IY , and Y is multiplicity d-
independent by Lemma 2.6(3). Therefore,

hPn(X, V )− hPn(Y, V ) = dimC(IY ∩ V )− dimC(IX ∩ V ) = HR/IX(d)
−HR/IY (d) = e(R/IX)− e(R/IY ).

Since by assumption hPn(X, V ) = e(R/IX), then hPn(Y, V ) = e(R/IY ), and so Y
is multiplicity V -independent.

Suppose now that every curvilinear subscheme of X is multiplicity V -
independent. We shall use induction on the number r of points in the support
of X and e(R/IX) to show that hPn(X, V ) = e(R/IX).

CASE 1: X is supported at a single point P ∈ P
n. If e(R/IX) = 1 then X = {P }

and the statement is trivial. If e(R/IX) = 2 then, locally at P , X ∼= Spec(T ) where
T is a local C-algebra of vector space dimension 2 over C. This implies that the
maximal ideal m of T is of vector space dimension 1 over C and m2 = 0. It follows
that T ∼= C[t]/(t2). As a consequence (see Lemma E.2), X is a curvilinear scheme.
Therefore, X is multiplicity V -independent by the hypotheses.

Assume that e(R/IX) > 2. Let Y ⊆ X be any subscheme with e(R/IY ) =
e(R/IX) − 1. Clearly, hPn(Y, V ) ≤ hPn(X, V ). Observe that any curvilinear
subscheme of X restricts to a curvilinear subscheme of Y . Thus, by the induction
hypothesis, we conclude that Y is multiplicity V -independent. That is,

hPn(Y, V ) = e(R/IY ) = e(R/IX)− 1.

Particularly, this implies that hPn(X, V ) ≤ e(R/IX) = hPn(Y, V ) + 1. Thus, to
show that X is multiplicity V -independent it suffices to construct a subscheme Y of
X such that e(R/IY ) = e(R/IX)−1 and hPn(X, V ) = hPn(Y, V )+1 (equivalently,
hPn(X, V ) > hPn(Y, V )).

To this end, let ζ ⊆ X be a subscheme of multiplicity 2. As shown above
ζ is a curvilinear subscheme of X. Thus, ζ is multiplicity V -independent, i.e.,
hPn(ζ, V ) = 2. On the other hand, hPn(P, V ) ≤ HR/IP (d) = 1, by Lemma 2.6(1).
Therefore, there exists a homogeneous polynomial f in V that vanishes at P but
not on ζ . Set Z = V(f ) be the zero locus of f , and define Y = X ∩ Z. Since
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X is contained in 2P , by imposing the condition that f = 0 on Y , we have
e(R/IY ) = e(R/IX) − 1. Furthermore, f vanishes on Y but not on X, and so
hPn(X, V ) > hPn(Y, V ). The assertion follows in this case.

CASE 2: X is supported at r points P1, . . . , Pr for r ≥ 2. By induction on r , we
may assume that the statement is true for schemes supported at r − 1 points.

Let I := IX = q1 ∩ . . .∩ qr be an irredundant primary decomposition of I = IX
and let pi = √qi for every i. Let q := qr , let Q be its associated scheme and
let Z ⊆ X be the scheme defined by IZ := q1 ∩ . . . ∩ qr−1. By assumption, every
curvilinear scheme contained inX is V -independent, and then so is every curvilinear
scheme contained in Z. Since Z is supported at r−1 points, by inductive hypothesis
we have

hPn(Z, V ) = e(R/IZ).

Claim 1 X is V -independent if one proves thatQ is V ∩ [IZ]d -independent.

Proof of Claim 1 To prove that X is V -independent we compute

hPn(X, V ) = dimC V −HIZ∩q∩V (d)
= [dimC V −HIZ∩V (d)] + [HIZ∩V (d)−HIZ∩q∩V (d)]
= hPn(Z, V )+ [HIZ∩V (d)−HIZ∩q∩V (d)]
= e(R/IZ)+ [HIZ∩V (d)−HIZ∩q∩V (d)].

If Q is V ∩ [IZ]d -independent, then HIZ∩V (d)−HIZ∩q∩V (d) = e(R/q), and thus
hPn(X, V ) = e(R/IZ)+ e(R/q) = e(R/I).
Claim 2 It suffices to prove that Z ∪ Q′ is V -independent for any curvilinear
schemeQ′ ⊆ Q.

Proof of Claim 2 Let q′ ⊇ q be the defining ideal ofQ′ ⊆ Q. By Claim 1 it suffices
to prove that Q is V ∩ [IZ]d -independent. By the base case of induction, it suffices
to prove that Q′ is V ∩ [IZ]d -independent for any curvilinear scheme Q′ ⊆ Q. We
compute hPn(Q′, V ∩ [IZ]d):

hPn(Q
′, V ∩ [IZ]d) = [dimC V −HIZ∩q′∩V (d)] − [dimC V −HIZ∩V (d)]

= hPn(Z ∪Q′, V )− hPn(Z, V )
= hPn(Z ∪Q′, V )− e(R/IZ).

Therefore, if Z∪Q′ is V -independent, then hPn(Z∪Q′, V ) = e(R/IZ∩q′) and, by
the above computation, hPn(Q′, V ∩ [IZ]d) = e(R/IZ ∩ q′)− e(R/IZ) = e(R/q′),
proving thatQ′ is V ∩ [IZ]d -independent. This establishes Claim 2.

Claim 3 It suffices to show that for any curvilinear scheme Z′ ⊆ Z one has Z′ is
V ∩ [q′]d -independent.
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Proof of Claim 3 Recall that by Claim 2 it suffices to prove Z ∪ Q′ is V -
independent. We observe that

hPn(Z ∪Q′, V ) = dimC V −HIZ∩q′∩V (d)
= [dimC V −Hq′∩V (d)] + [Hq′∩V (d)−HIZ∩q′∩V (d)]
= hPn(Q′, V )+ hPn(Z, V ∩ [Q′]d).

Since Q′ ⊆ Q ⊆ X is curvilinear, Q′ is V -independent by the assumption, i.e.,
hPn(Q

′, V ) = e(R/q′). Thus, it suffices to prove that hPn(Z, V ∩[Q′]d) = e(R/IZ),
because then, by the above computation, hPn(Z ∪Q′, X) = e(R/q′)+ e(R/IZ) =
e(R/IZ ∩ q′), exhibiting that Z ∪Q′ is V -independent.

Since Z is supported at r − 1 points, by the inductive hypothesis, to prove that Z
is V ∩ [Q′]d -independent it suffices to show that Z′ is V ∩ [Q′]d -independent for
any curvilinear subscheme Z′ ⊇ Z. This proves Claim 3.

We conclude the proof of Lemma 2.7 by showing thatZ′ is V∩[q′]d -independent.
First, we compute hPn(Z, V ∩ [q′]d):

hPn(Z, V ∩ [q′]d) = Hq′∩V (d)−HIZ′∩q′∩V (d)
= [dimC V −HIZ′∩q′∩V (d)] − [dimC V −Hq′∩V (d)]
= hPn(Z′ ∪Q′, V )− hPn(Q′, V ).

Since Q′ ⊆ Q ⊆ X is curvilinear, hPn(Q′, V ) = e(R/q′) by the assumption. Since
Q′ and Z′ are curvilinear and have disjoint support (because Ass(R/q′) = {pr}
and Ass(R/IZ′) ⊆ Ass(R/IZ) = {p1, . . . , pr−1}), we have that Z′ ∪Q′ is locally
curvilinear at points of the support, and so it is curvilinear. SinceZ′∪Q′ ⊆ Z∪Q =
X, hPn(Z′ ∪Q′, V ) = e(R/IZ′ ∩ q′) by the assumption. Therefore,

hPn(Z
′, V ∩ [q′]d) = e(R/IZ′ ∩ q′)− e(R/q′) = e(R/IZ′),

and Lemma 2.7 is established. ��
Recall that, by Remark 2.1, to prove Theorem 1.1 for values of n, d not in the

list of exceptional cases, it suffices prove that a general set of r double points has
AHn(d) for

⌊ 1

n+ 1

(
n+ d
n

)⌋
≤ r ≤

⌈ 1

n+ 1

(
n+ d
n

)⌉
.

When r takes one of these two (sometimes coinciding) values, we let q and ε be
the quotient and remainder of the division of r(n + 1) − (

n+d−1
n

)
by n. For ease

of references, we now provide the values of q and ε for a few special choices of n
and d.
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We start with the case where d = 4.

n Value of r � := r(n+ 1)− (
n+d−1
n

)
Value of q Value of ε Value of r − q − ε

n = 2 r = 5 � = 5 q = 2 ε = 1 r − q − ε = 2

n = 3 r = 8 � = 12 q = 4 ε = 0 r − q − ε = 4

r = 9 � = 16 q = 5 ε = 1 r − q − ε = 3

n = 4 r = 14 � = 35 q = 8 ε = 3 r − q − ε = 3

n = 5 r = 21 � = 70 q = 14 ε = 0 r − q − ε = 7

n = 6 r = 30 � = 126 q = 21 ε = 0 r − q − ε = 9

n = 7 r = 41 � = 208 q = 29 ε = 5 r − q − ε = 7

r = 42 � = 216 q = 30 ε = 6 r − q − ε = 6

n = 8 r = 55 � = 330 q = 41 ε = 2 r − q − ε = 12

n = 9 r = 71 � = 490 q = 54 ε = 4 r − q − ε = 13

r = 72 � = 500 q = 55 ε = 5 r − q − ε = 12

For d = 5 and we get the following table.

n Value of r � := r(n+ 1)− (
n+d−1
n

)
Value of q Value of ε Value of r − q − ε

n = 2 r = 7 � = 6 q = 3 ε = 0 r − q − ε = 4

n = 3 r = 14 � = 21 q = 7 ε = 0 r − q − ε = 7

n = 4 r = 25 � = 55 q = 13 ε = 3 r − q − ε = 9

r = 26 � = 60 q = 15 ε = 0 r − q − ε = 11

n = 5 r = 42 � = 126 q = 25 ε = 1 r − q − ε = 16

n = 6 r = 66 � = 252 q = 42 ε = 0 r − q − ε = 24

n = 7 r = 99 � = 462 q = 66 ε = 0 r − q − ε = 33

We now prove a few basic numeric facts that will be employed later.

Lemma 2.8 For fixed integers n ≥ 2, d ≥ 4 and 0 ≤ r ≤
⌈

1
n+1

(
n+d
n

)⌉
, let q ∈ Z

and 0 ≤ ε < n be such that nq + ε = r(n+ 1)− (
n+d−1
n

)
. Then,

(1) nε + q ≤ (
n+d−2
n−1

)
,

(2)
(
n+d−2
n

) ≤ (r − q − ε)(n+ 1),
(3) r − q − ε ≥ n+ 1, for d = 4 and n ≥ 8.
(4) q ≥ ε.
Proof (1) We prove the equivalent statement that n(nε + q) ≤ n(n+d−2

n−1

)
. Clearly,

nq ≤ r(n+ 1)− (
n+d−1
n

)
. Since r ≤

⌈
1
n+1

(
n+d
n

)⌉
, we have (n+ 1)r ≤ (

n+d
n

)+ n,
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and so

n2ε + nq ≤ n2(n− 1)+
(
n+ d
n

)
+ n−

(
n+ d − 1

n

)
= n2(n− 1)

+
(
n+ d − 1

n− 1

)
+ n. (2.2)

The right-hand side is at most n
(
n+d−2
n−1

)
except when d = 4 and 3 ≤ n ≤ 5. In

these three cases however the inequality still holds, as one can check directly with
given values of q and ε in the above tables.

(2) Since (r − q − ε)(n+ 1) = r(n+ 1)− (nq + ε)− (nε + q), we have

(r − q − ε)(n+ 1) =
(
n+ d − 1

n

)
− (nε + q) ≥

(
n+ d − 1

n

)
−
(
n+ d − 2

n− 1

)

=
(
n+ d − 2

n

)
,

where the middle inequality follows from (1).
(3) We prove the equivalent statement that (r − q − ε)(n + 1) ≥ (n + 1)2 for

d = 4 and n ≥ 8. By the computation in (2), (r − q − ε)(n+ 1) ≥ (n+ 1)2 holds
if and only if

(
n+3
n

)− (nε + q) ≥ (n+ 1)2. This holds if and only if

(n+ 1)

(
(n+ 3)(n+ 2)

6
− (n+ 1)

)
≥ nε + q ⇐⇒

(
n+ 1

3

)
≥ nε + q.

By Eq. (2.2), nε + q ≤ 1
n

(
n2(n− 1)+ (

n+3
4

)+ n
)

. The right-hand side is at most
(
n+1

3

)
if and only if n3 − 10n2 + 3n− 10 ≥ 0. This inequality holds for all n ≥ 10.

For the cases n = 8, 9 the inequality is easily checked using the above table.
(4) Assume by contradiction that q < ε. Then, r(n + 1) − (

n+d−1
n

) = nq +
ε < (n + 1)ε ≤ (n + 1)(n − 1). From the definition of r , one also sees that
r(n+1) >

(
n+d
n

)−(n+1), and so r(n+1) ≥ (
n+d
n

)−n. As a consequence, we have(
n+d
n

)−n ≤ r(n+1) < (n+1)(n−1)+(n+d−1
n

)
. Thus,

(
n+d−1
n−1

)
< (n+1)(n−1)+n.

Since (n+1)(n−1)+n−1 = (n+2)(n−1), this leads to
(
n+d−1
n−1

) ≤ (n+2)(n−1).

It is well-known that
(
n+d−1
n−1

)
increases as d increases, so the left-hand side is at

least
(
n+3
n−1

) = (
n+3

4

)
. In particular, (n+3)(n+2)(n+1)n

24 ≤ (n + 2)(n − 1). Therefore,
f (n) ≤ 0, where f (n) := (n+ 3)(n+ 1)n− 24(n− 1).

On the other hand, it is easily seen that f (n) is increasing for n ≥ 2 and f (2) =
6 > 0, thus f (n) > 0 for every n ≥ 2, yielding a contradiction. ��

We are ready to present the core inductive argument for Theorem 1.1. The
proof follows the four steps we outlined when we illustrated the méthode d’Horace
différentielle.
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Theorem 2.9 For fixed n ≥ 2, d ≥ 4 and
⌊ 1

n+ 1

(
n+ d
n

)⌋
≤ r ≤

⌈ 1

n+ 1(
n+ d
n

)⌉
, let q ∈ Z and 0 ≤ ε < n be such that nq + ε = r(n + 1) − (

n+d−1
n

)
.

Suppose that

(i) q general double points are AHn−1(d),
(ii) r − q general double points are AHn(d − 1),

(iii) r − q − ε general double points are AHn(d − 2).

Then, r general double points are AHn(d).

Proof By Remark 2.1, it suffices to construct a set of r double points in P
n which

is AHn(d). This set of r double points arises in the form 2! ∪ 2� ∪ 2�t, for some
family of parameters t, where the sets!,� and �t are constructed as in the outlined
steps. To understand the construction better, we shall use 21 double points in P

3 and
degree 6 as our running example; in this particular situation, r = 21, d = 6, q = 9
and ε = 1.
Step 1. We first fix a hyperplane L , P

n−1 in P
n, with defining equation � = 0.

We take a set of q + ε general points in L, let � = {γ1, . . . , γε} be a subset of ε of
these points, and let � be the set consisting of the remaining q points. Finally, we
take a set! of r−q− ε general points in P

n outside of L. (In our running example,
� consists of a single point in L, � of 9 general points in L, and ! of 11 general
points outside of L.)
Step 2. By (ii), we have

H
R/(I

(2)
! ∩I (2)� )

(d − 1) = min

{
(n+ 1)(r − q),

(
n+ d − 1

n

)}
= (n+ 1)(r − q),

where the rightmost equality holds because Lemma 2.8(4) yields
(
n+d−1
n

) = (n +
1)(r − q) − ε + q ≥ (n + 1)(r − q). Now, if we consider �|L instead of �, then
the linear system associated to [I (2)! ∩ I (2)�|L ]d−1 is obtained by removing ε equations

from the linear system of equations defined by [I (2)! ∩ I (2)� ]d−1 (more precisely, the
ones corresponding to setting the partial derivatives with respect to � equal to 0).
One then obtains

H
R/(I

(2)
! ∩I (2)�|L )

(d−1) = min

{
(n+ 1)(r − q)− ε,

(
n+ d − 1

n

)}
= (n+1)(r−q)−ε

(= 47 for the running example), and then H
I
(2)
! ∩I (2)�|L

(d − 1) = (
n+d−1
n

) −
H
R/(I

(2)
! ∩I (2)�|L)

(d − 1) = q (= 9 in the running example).

Claim 1. H
R/(I

(2)
! ∩I (2)�|L∩I�)

(d − 1) = e(R/(I (2)! ∩ I (2)�|L ∩ I�)) =
(
n+d−1
d−1

)
.

(that is, H
R/(I

(2)
! ∩I (2)�|L∩I�)

(5) = (3+6−1
3

) = 56 for the running example.)
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Notice that Claim 1 implies that 2!∪2�|L∪� is multiplicity (d−1)-independent.
The rightmost equality in the claim holds because

(
n+d−1
d−1

) = (
n+d−1
d−1

) − ε + q =
e(R/(I

(2)
! ∩ I (2)�|L ∩ I�)). To conclude the proof it then suffices to show that

H
R/(I

(2)
! ∩I (2)�|L∩I�)

(d − 1) = (
n+d−1
d−1

) = HR(d − 1), i.e. [I (2)! ∩ I (2)�|L ∩ I�]d−1 = 0.

If we restate the paragraph before the Claim in terms of linear algebra, we see that
the solution set of the linear system defined by [2! ∪ 2�|L]d−1 is a q-dimensional
vector space. Now, for each simple general point in P

n that we are adding to 2! ∪
2�|L, we are adding a general linear equation to this system, so we are reducing
the dimension of the solution set by 1. Thus, if we add q general simple points in
P
n to 2! ∪ 2�|L, then the corresponding ideal contains no forms of degree d − 1.

It follows that if we add q points to 2! ∪ 2�|L, and these q additional points lie
on L, then the defining equation � of L divides the equation of any hypersurface of
degree d − 1 passing through 2! ∪ 2�|L and these q points. In particular, any form

F ∈ [I (2)! ∩ I (2)�|L ∩ I�]d−1 is divisible by �, and we can write F = F1�.
Since � ∈ I� (because � ⊆ L) and � is regular on R/I! (because none of the

points of ! lies on L), we have that F1 is a degree (d − 2) form in

(I
(2)
! ∩ I (2)�|L ∩ I�) : � = I

(2)
! ∩ (I (2)�|L : �) ⊆ I

(2)
! .

However, by (iii), we know that H
I
(2)
!

(d − 2) = max
{

0,
(
n+d−2
n

)− (r − q − ε)
(n+ 1)} = 0. Therefore, F1 = 0, and so F = 0. Hence, [I (2)! ∩ I (2)�|L ∩ I�]d−1 = 0,
and Claim 1 is proved.

To prove the theorem we need to prove the following equality

H
R/(I

(2)
� ∩I (2)! ∩I (2)� )

(d) = min

{
(n+ 1)r,

(
n+ d
n

)}
.

We now proceed by considering two different cases depending on which of
the two possible values the right-hand side may take. Since, by assumption,⌊ 1

n+ 1

(
n+ d
n

)⌋
≤ r ≤

⌈ 1

n+ 1

(
n+ d
n

)⌉
, it can be easily seen that

• min
{
(n+ 1)r,

(
n+d
n

)} = (n+ 1)r holds precisely if r =
⌊ 1

n+ 1

(
n+ d
n

)⌋
,

• min
{
(n+ 1)r,

(
n+d
n

)} = (
n+d
n

)
> r(n + 1) holds if r =

⌈ 1

n+ 1

(
n+ d
n

)⌉
>

⌊ 1

n+ 1

(
n+ d
n

)⌋
.

The running example of 21 double points in P
3 falls in the first possibility.
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CASE 1: r =
⌊ 1

n+ 1

(
n+ d
n

)⌋
. In this case, r(n+ 1) ≤

(
n+ d
n

)
, nq + ε ≤

(
n+d−1
n−1

)
, and by the above observation we need to show that

H
R/(I

(2)
� ∩I (2)! ∩I (2)� )

(d) = (n+ 1)r.

Claim 2. H
R/(I

(2)
� ∩I (2)! )

(d) = e(R/(I (2)� ∩ I (2)! )) = (n+ 1)(r − ε).
Castelnuovo’s inequality (2.1) gives H

R/(I
(2)
� ∩I (2)! )

(d) ≥ H
R/(I�∩I (2)! )

(d − 1) +
H
R/I

(2)
�|L
(d). By Claim 1 and Lemma C.12(1), H

R/(I
(2)
! ∩I�)(d − 1) = (n + 1)(r −

q − ε)+ q. By assumption (ii) and the inequality nq ≤ (
n+d−1
n−1

)
, we have

H
R/I

(2)
�|L
(d) = min

{
nq,

(
n− 1+ d
n− 1

)}
= nq = e(R/I (2)�|L).

Thus, H
R/(I

(2)
� ∩I (2)! )

(d) ≥ (n+ 1)(r − q − ε)+ q + nq = (n+ 1)(r − ε). Since the

other inequality always holds by Corollary C.5, Claim 2 is proved.
To finish this case it suffices to prove that I (2)� is multiplicity [I (2)� ∩ I (2)! ]d -

independent, because then

H
R/(I

(2)
� ∩I (2)! ∩I (2)� )

(d) = H
R/(I

(2)
� ∩I (2)! )

(d)+ e(R/I (2)� ) = (n+ 1)(r − ε)+ (n+ 1)ε

= (n+ 1)r.

Instead of proving this statement directly, we will use deformation to consider a
family of general points �t having � as a limit (as we shall explain in the upcoming
Step 3).

For now, we observe the following fact. As before, if we add ε general points of
L to 2�|L then we are adding ε general equations to the linear system determined
by [I (2)�|L]d , and so

H
R/(I

(2)
�|L∩I�)

(d) = min

{
nq + ε,

(
n− 1+ d
n− 1

)}
= nq + ε. (2.3)

(In our running example, H
R/I

(2)
�|L∩I�

(d) = (3)(9)+ 1 = 28.)

Step 3. For t = (t1, . . . , tε) ∈ Kε , consider a flat family of general points �t =
{γ1,t1, . . . , γε,tε } in P

n and a family of hyperplanes {Lt1, . . . , Ltε } such that

(1) the point γi,ti lies in Lti , for all i = 1, . . . , ε,
(2) γi,ti �∈ L for any ti �= 0 and any i = 1, . . . , ε,
(3) L0 = L and γi,0 = γi ∈ L for any i = 1, . . . , ε.

(For the running example, we have a family of general points �t = {γt } ⊆ P
3 and a

family of hyperplanes Lt , for t ∈ K .)
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Step 4. To prove I (2)� is multiplicity [I (2)� ∩ I (2)! ]d -independent, by Corollary C.5
and Theorem D.9 it suffices to prove that there exists t = (t1, . . . , tε) ∈ Kε such
that I (2)�t

is multiplicity [I (2)� ∩ I (2)! ]d -independent, because then

(n+ 1)r ≥ H
R/(I

(2)
� ∩I (2)! ∩I (2)� )

(d) ≥ H
R/(I

(2)
� ∩I (2)! ∩I (2)�t

)
(d) = (n+ 1)r.

Suppose, by contradiction, that such a t does not exist. Then, by Lemma 2.7, for
each t = (t1, . . . , tε), there exist curvilinear ideals Ji,ti such that I (2)γi,ti ⊆ Ji,ti ⊆ Iγi,ti
and, by letting Jt =⋂ε

i=1 Ji,ti , we then have

H
R/(I

(2)
� ∩I (2)! ∩Jt)

(d) < H
R/(I

(2)
� ∩I (2)! )

(d)+ e(R/Jt) = (n+ 1)(r − ε)+ e(R/Jt).

(2.4)

(For the running example, there is a single point γt , so Iγt is a linear prime and Jt is

a curvilinear ideal Jt with I (2)γt ⊆ Jt ⊆ Iγt and H
R/(I

(2)
� ∩I (2)! ∩Jt )(6) < (3+ 1)(20)+

e(R/Jt ) = 80+ e(R/Jt ).)
Since Jt is a curvilinear ideal, by Proposition E.7, for every i = 1, . . . , ε the

family {Ji,ti } has a limit Ji,0. Let J0 =⋂ε
i=1 Ji,0.

Let A := {i ∣∣ � /∈ Ji,0}, B := {i
∣∣ � ∈ Ji,0} and A′ := {i ∈ A ∣∣ � ∈ √

Ji,0}. We
set a = |A|, a′ = |A′|, and b := |B|. For each t ∈ Kε , set JAt =

⋂
i∈A Ji,ti , and

JBt =
⋂
i∈A Ji,ti , in particular Jt = JAt ∩ JBt . We also set IA

′
� =

⋂
i∈A′ Iγi .

By the semi-continuity of Hilbert function and (2.4), there exists an open
neighborhood U of 0 such that for any t ∈ U , we have the equalities e(R/JBt ) =
e(R/JB0 ), e(R/J

A
t ) = e(R/JA0 ) (so e(R/Jt) = e(R/J0)), and

H
R/(I

(2)
� ∩I (2)! ∩JA0 ∩JBt )(d) = HR/(I (2)� ∩I (2)! ∩JAt ∩JBt )(d) < (n+ 1)(r − ε)+ e(R/Jt),

(2.5)

(for the running example, we have H
R/(I

(2)
� ∩I (2)! ∩JA0 ∩JBt )(d) < 82), and

H
R/(I

(2)
� ∩I (2)! ∩(JA0 :�)∩JBt )(d − 1) = H

R/(I
(2)
� ∩I (2)! ∩(JA0 :�)∩JB0 )(d − 1).

We want to show H
R/(I

(2)
� ∩I (2)! ∩JA0 ∩JBt )(d) ≥ (n + 1)(r − ε) + e(R/Jt), which

would then contradict (2.5). For any t ∈ U , the Castelnuovo inequality gives

H
R/I

(2)
� ∩I (2)! ∩JA0 ∩JBt (d) ≥ HR/I�∩I (2)! ∩(JA0 :�)∩JBt (d − 1)+H

R/(I
(2)
�|L∩I

A′
�|L)
(d),

where R ∼= R/(�) and IA
′

�|L is the defining ideal of {γi | i ∈ A′} in R.
We examine the first summand which, by the choice of U , equals

H
R/(I

(2)
� ∩I (2)! ∩(JA0 :�)∩JB0 )(d−1) for every t ∈ U . By Claim 1, the ideal I�∩I (2)! ∩I (2)�|L
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is multiplicity (d − 1)-independent, so –by Lemma 2.6– the larger ideal
I� ∩ I (2)! ∩ (JA0 : �) ∩ JB0 is multiplicity (d − 1)-independent too. Thus,

H
R/(I�∩I (2)! ∩(JA0 :�)∩JB0 )(d − 1) = e(R/(I� ∩ I (2)! ∩ (JA0 : �) ∩ JB0 )) (2.6)

= e(R/(I� ∩ I (2)! ))+ e(R/(JA0 : �) ∩ JB0 )
= q + (n+ 1)(r − q − ε)+ e(R/(JA0 : �) ∩ JB0 )
= q + (n+ 1)(r − q − ε)+ e(R/J0)− a′,

where a′ is the cardinality of {i ∈ A | � is not regular on R/Ji,0}. The last
equality holds because e(R/J0) = e(R/J0 : �) + e(R/(J0, �)) = e(R/JA0 :
�)+ e(R/(J0, �)) = e(R/(JA0 : �))+ e(R/JB0 )+ a′.

Now, the inclusion 2�|L ∪ {γ i
∣∣ i ∈ F } ⊆ 2�|L ∪ � and (2.3) allow the use of

Lemma C.12(1) to deduce that

H
R/(I

�|(2)
L

∩IA′�|L)
(d) ≥ e

(
R/

(
I
�|(2)L ∩ I

A′
�|L

))
= nq + a′.

Putting all these together, we obtain that, for any t ∈ U ,

H
R/I

(2)
� ∩I (2)! ∩JA0 ∩JBt (d) ≥ HR/I�∩I (2)! ∩(JA0 :�)∩JBt (d − 1)+H

R/I
(2)
�|L∩I

A′
�

(d)

≥ q + (n+ 1)(r − q − ε)+ e(R/J0)− a′ + (nq + a′)
= (n+ 1)(r − ε)+ e(R/J0) = (n+ 1)(r − ε)+ e(R/Jt).

(For the running example, this implies one of the following inequalities
H
R/(I

(2)
� ∩I (2)! ∩J0)

(6) ≥ 80 + e(R/Jt ) or H
R/(I

(2)
� ∩I (2)! ∩Jt )(6) ≥ 80 + e(R/Jt ).)

This is a contradiction to (2.4), and we are done.

CASE 2: r >
⌊ 1

n+ 1

(
n+ d
n

)⌋
. In this case, r =

⌈ 1

n+ 1

(
n+ d
n

)⌉
, and we have

r(n+ 1) >

(
n+ d
n

)
and nq + ε >

(
n+ d − 1

n− 1

)
.

First, one considers the case where nq ≥ (
n+d−1
n−1

)
. Then by (i), we have

H
R/I

(2)
�|L
(d) = min

{
nq,

(
n+ d − 1

n− 1

)}
=
(
n+ d − 1

n− 1

)
.
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On the other hand, by (ii), we have

H
R/(I

(2)
� ∩I (2)! )

(d − 1) = min

{
(n+ 1)(r − q),

(
n+ d − 1

n

)}
.

For any set � of q − ε general points in P
n one has H

R/(I�∩I (2)� ∩I (2)! )
(d − 1) =

(
n+d−1
n

) = e(R/(I� ∩ I (2)� ∩ I (2)! )). As in the proof of Claim 1, this yields that for
any subset �′ ⊆ � consisting of q − ε points one has H

R/(I�′∩I (2)� ∩I (2)! )
(d − 1) =

(
n+d−1
n

)
. By Lemma C.12(2), one obtainsH

R/(I�∩I (2)� ∩I (2)! )
(d−1) = (

n+d−1
n

)
. Thus,

by the Castelnuovo inequality, we get

H
R/(I

(2)
� ∩I (2)� ∩I (2)! )

(d) ≥ H
R/(I�∩I (2)� ∩I (2)! )

(d − 1)+H
R/I

(2)
�|L
(d)

=
(
n+ d − 1

n

)
+
(
n+ d − 1

n− 1

)
=
(
n+ d
n

)
.

Hence, the desired equality holds and 2� ∪ 2! ∪ 2� satisfies AHn,d .

We may now assume that 0 < ν :=
(
n+ d − 1

n− 1

)
− nq < ε, and let �′ =

{γ1, . . . , γν} ⊆ �. By a similar argument (or similar to the proof of Claim 1), it
can be shown that

H
R/(I

(2)
�|L∩I�′ |L)

(d) =
(
n+ d − 1

n− 1

)
= nq + ν.

Thus, by Lemma C.12(2), one has

H
R/(I

(2)
�|L∩I�|L)

(d) = min

{
nq + ε,

(
n+ d − 1

n− 1

)}
=
(
n+ d − 1

n− 1

)
.

To show that 2� ∪ 2! ∪ 2� satisfies AHn,d we need to prove

H
R/(I

(2)
� ∩I (2)� ∩I (2)! )

(d) =
(
n+ d
n

)
.

Let t and �t be defined as in Case 1. By the semi-continuity of the Hilbert function,
there exists a neighborhood U of 0 such that for t ∈ U we have

H
R/(I

(2)
� ∩I (2)! ∩I�)(d) = HR/(I (2)� ∩I (2)! ∩I�t )

(d).

Claim 3. To finish the proof it suffices to find an ideal K ⊇ I (2)�t
such that K is

multiplicity [I (2)� ∩ I (2)! ]d -independent, and e(R/K) = nε + ν.
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Assume such an idealK exists. The first assumption givesH
R/(I

(2)
� ∩I (2)! ∩K)(d) =

H
R/(I

(2)
� ∩I (2)! )

(d) + e(R/K). Also, by Claim 2, H
R/(I

(2)
� ∩I (2)! )

(d) = (n + 1)(r − ε).
Finally, e(R/K) is precisely the amount needed to ensure thatH

R/(I
(2)
� ∩I (2)! ∩K)(d) =(

n+d
n

)
, because one has

H
R/(I

(2)
� ∩I (2)! ∩K)(d) = (n+ 1)(r − ε)+ e(R/K) = (n+ 1)(r − ε)+ nε + ν

= (n+ 1)r − ε + ν = (n+ 1)r − (nq + ε)+ (nq + ν)
= (

n+d−1
n

)+ (
n+d−1
n−1

) = (
n+d
n

)
.

Now,

H
R/(I

(2)
� ∩I (2)! ∩I�)(d) = HR/(I (2)� ∩I (2)! ∩I�t )

(d) =
(
n+ d
n

)
,

where the rightmost equality follows from Lemma C.12(2). This proves Claim 3.
Finally, it is easily seen thatK := I (2)

�′ ∩I(�−�′)|L satisfies the desired properties.
This concludes the proof of the theorem. ��

Modulo the exceptional cases, which are considered in the following sections,
we now give a complete proof of the Alexander–Hirschowitz theorem.

Theorem 2.10 (Alexander–Hirschowitz) For every n ≥ 1 and d ≥ 1, a set X of r
general double points in P

n
C

is AHn(d), with the following exceptions:

(1) d = 2 and 2 ≤ r ≤ n;
(2) d = 3, n = 4 and r = 7;
(3) d = 4, 2 ≤ n ≤ 4 and r = (

n+2
2

)− 1.

Proof By Remarks C.9 and C.10, we may assume that r ≥ 2 and d ≥ 2. The
statement for n = 1 is proved in Proposition C.11. The case where n = 2 is treated
in Sect. 4. Thus, we may also assume that n ≥ 3. The exceptional cases are discussed
in Sects. 3, 4 and 5. Furthermore, it will be shown that for fixed d and n, the given
value of r is the only exceptional case of r general double points not being AHn(d).
Finally, for n and d not in the list of exceptional cases, by Lemma 2.1, we only need
to consider values of r such that

⌊
1

n+ 1

(
n+ d
d

)⌋
≤ r ≤

⌈
1

n+ 1

(
n+ d
d

)⌉
.

Our argument proceeds by considering small values of d and then using induction
together with Theorem 2.9. The statement for d = 2 is proved in Lemma 3.1. The
statement for d = 3 is examined in Sect. 5. Therefore, we may assume now that
n ≥ 3 and d ≥ 4.

We will use induction on n to prove the assertion for d = 4. Note that the
statement for d = 4 and 3 ≤ n ≤ 4 is proved in Lemma 3.2. On the other hand,



394 H. T. Hà and P. Mantero

if the statement has been shown for 5 ≤ n ≤ 7, then Theorem 2.9 applies to prove
the desired assertion for all n ≥ 8 too. This is because condition (i) holds by the
induction hypothesis on n, condition (ii) holds as shown in Sect. 5, and condition
(iii) holds because, for n ≥ 8, by Lemma 2.8(3) we have r − q − ε ≥ n + 1, and
thus AHr−q−ε(2) holds as shown in Lemma 3.1. It remains to consider d = 4 and
5 ≤ n ≤ 7. We shall leave this case until later in the proof.

In general, for d ≥ 5, the proof proceeds by a double induction on d and n.
Observe that if the statement has been proved for d = 5, 6 and n = 3, 4, then
Theorem 2.9 applies to prove the statement for all d ≥ 5 and n ≥ 3. Therefore, we
only need to establish the desired assertion for d = 5, 6 and n = 3, 4.

We conclude the proof by analyzing the needed cases, i.e. when d = 4 and
5 ≤ n ≤ 7, or when d = 5, 6 and n = 3, 4. Most cases are also proved by applying
Theorem 2.9.
Case 1: d = 4, n = 5. In this case, we need to consider r = 21 general double
points in P

5, q = 14 and ε = 0. Direct Macaulay 2 [26] computation can be used to
verify that the assertion holds.
Case 2: d = 4, n = 6. In this case, we need to consider r = 30 general double
points in P

6, q = 21 and ε = 0. Theorem 2.9 applies because 21 general double
points are AH5(4) by Case 1, and 9 general double points are AH6(3) (as shown in
Sect. 5) and AH6(2) (by Lemma 3.1).
Case 3: d = 4, n = 7. In this case, we need to consider r = 41 or 42 general double
points in P

7, q = 29 or 30 and ε = 5 or 6. Direct Macaulay 2 [26] computation
shows that 41 and 42 general double points in P

7 are indeed AH7(4).
Case 4: d = 5, n = 3. In this case, we need to consider r = 14 general double
points in P

3, q = 7 and ε = 0. Theorem 2.9 applies because 7 general double points
are AH2(5) (by Theorem 4.1), AH3(4) (by Lemma 3.2), and AH3(3) (as shown in
Sect. 5).
Case 5: d = 5, n = 4. In this case, we need to consider r = 25 or 26 general double
points in P

4, q = 13 or q = 15, and ε = 3 or 0. For r = 25, q = 13 and ε = 3,
Theorem 2.9 applies because 13 general double points are AH3(5) by Case 4, 12
general double points are AH4(4) (by Lemma 3.2), and 9 general double points are
AH4(3) (as shown in Sect. 5). For r = 26, q = 15 and ε = 0, Theorem 2.9 applies
because 15 general double points are AH3(5) by Case 4, 11 general double points
are AH4(4) (by Lemma 3.2) and AH4(3) (as shown in Sect. 5).
Case 6: d = 6, n = 3. In this case, we need to consider r = 21 general double
points in P

3, q = 9 and ε = 1. Theorem 2.9 applies because 9 general double points
are AH2(6) (by Theorem 4.1), 12 general double points are AH3(5) by Case 4, and
11 general double points are AH3(4) (by Lemma 3.2).
Case 7: d = 6, n = 4. In this case, we need to consider r = 42 general double
points in P

4, q = 21 and ε = 0. Theorem 2.9 applies because 21 general double
points are AH3(6) by Case 6, and 21 general double points are AH4(5) by Case 5
and AH4(4) (by Lemma 3.2). ��
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3 The Exceptional Cases

In this section, we consider the exceptional cases listed in Theorem 1.1 and show
that they are indeed the only exceptional cases for given n and d. We begin by
considering the case where d = 2.

Lemma 3.1 A set of r ≥ 1 general double points in P
n is not AHn(2) if and only if

2 ≤ r ≤ n.

Proof A single double point is AHn(2) (e.g. by Remark C.9), so we may assume
r ≥ 2. First we prove that a set of r ≥ n+ 1 general double points in P

n is AHn(2).
Let Y = {P1, . . . , Pr } denote a set of r ≥ n+1 general points in P

n and letX = 2Y .
It is easily seen that X is AHn(2) if and only if IX contains no quadrics.

By Lemma C.12, it suffices to show that IX contains no quadrics when r = n+1.
When r = n + 1, by a change of variables, we can assume that Pi is the i-th
coordinate point, for i = 1, . . . , n + 1. That is, Pi = [0 : · · · : 0 : 1 : 0 : · · · : 0],
where the value 1 appears at the i-th position. In this case, IY is the squarefree
monomial ideal

IY = p0 ∩ . . . ∩ pn = (xixj | 0 ≤ i < j ≤ n)

where pi = (xj | 0 ≤ j ≤ n, j �= i) for every i = 0, . . . , n. It is well-known

that IX = I (2)Y = (xixj xh | 0 ≤ i < j < h ≤ n) (e.g. [21, Cor. 3.8], or [37,
Cor. 4.15(a)]). Thus, IX indeed contains no quadrics.

To conclude the proof we need to show that any set X of 2 ≤ r ≤ n general
double points in P

n is not AHn(2). Since r ≤ n, we may assume that Pi is the i-th
coordinate point for 1 ≤ i ≤ r . We first claim that IX contains precisely

(
n−r+2

2

)

linearly independent quadrics. Indeed, again, let pi be the defining ideal of Pi , for
i = 1, . . . , r . It is easy to see that (xr , xr+1, . . . , xn) ⊆ pi for all i = 1, . . . , r .
Thus, (xr , . . . , xn)2 ⊆⋂r

i=1 p
2
i = IX. By modularity law, it follows that

IX =
(
Ir−1,r

)(2) + (xr , . . . , xn)2

where
(
Ir−1,r

)(2) = ⋂
0≤j1<j2<...,<jr−1≤r−1(xj1 , . . . , xjr−1)

2 (this is called the
second symbolic power of the star configuration of codimension r − 1 in the
variables x0, . . . , xr−1). It is known that Ir−1,r is generated by all squarefree

quadrics in x0, . . . , xr−1 (e.g. [41, Thm 2.3]), and
(
Ir−1,r

)(2) is generated in degree
3 and higher (see e.g. [21, Cor. 3.8]). It follows that the quadrics in IX are precisely
the

(
n−r+2

2

)
quadrics contained in (xr+1, . . . , xn)

2, proving the claim.
Now, our claim on IX(2) implies that X is AHn(2) only if

(
n− r + 2

2

)
=
(
n+ 2

2

)
−HR/IX(2) = max

{
0,

(
n+ 2

2

)
− r(n+ 1)

}
.
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Since
(
n−r+2

2

)
> 0, this is only possible if

(
n−r+2

2

) = (
n+2

2

) − r(n + 1), which
implies r2− r = 0, and thus gives a contradiction. Therefore, X is not AHn(2). ��

We continue with the cases d = 4 and 2 ≤ n ≤ 4.

Lemma 3.2 Suppose that 2 ≤ n ≤ 4. Then, a set of r general double points in P
n

is not AHn(4) if and only if r = (
n+2

2

)− 1.

Proof Let Y = {P1, . . . , Pr } be a set of r general points in P
n and let X = 2Y . We

shall first show that for r = (
n+2

2

)−1,X is not AHn(4). Indeed, since r <
(
n+2

2

)
, IY

contains a nonzero quadric, sayQ. Then,Q2 is a nonzero quartic in I 2
Y ⊆ I (2)Y = IX.

This implies that HR/IX(4) ≤
(
n+4

4

) − 1. It is easy to check that for 2 ≤ n ≤ 4,
(
n+4

4

)− 1 <
[(
n+2

2

)− 1
]
(n+ 1) = r(n+ 1). Therefore, X is not AHn(4).

We shall now show that r = (
n+2

2

) − 1 is indeed the only exceptional case. The
statement for n = 2 is proved in Theorem 4.1. Suppose that 3 ≤ n ≤ 4.

For n = 3, by Corollary D.5, it suffices to prove that a set of 8 general double
points and a set of 10 general double points in P

3 are both AH3(4). Similarly, for
n = 4, it suffices to establish AH4(4) property for a set of 13 general double points
and a set of 15 general double points in P

4.

n = 3 and r = 8. Observe that
⌊

1
3+1

(4+3
3

)⌋ = 8 = r , so Theorem 2.9 applies if its

hypotheses are satisfied. In this case, we have q = 4 and ε = 0. Thus, condition
(i) holds because 4 general double points in P

2 are AH2(4) (by Theorem 4.1), and
condition (iii) holds because 4 general double points are AH3(2) (by Lemma 3.1).
To prove that condition (ii) holds, we need to show that 4 general double points are
AH3(3). This follows from Sect. 5.

We can also prove this statement directly by considering the 4 coordinate points
in P

3. Let I be the defining ideal of these coordinate points. Then, I = (xixj |
0 ≤ i < j ≤ 3), and it can be checked that I (2) is minimally generated by the
four squarefree monomials of degree 3. In particular, HR/I(2) (3) = 16 which is the
expected dimension, so condition (ii) of Theorem 2.9 holds.

In the remaining 3 cases, i.e. when n = 3 and r = 10, or when n = 4 and r = 13
or 15 we cannot apply Theorem 2.9 because r is not one of the two possible values
needed to apply the theorem. We will instead use Theorem 2.3.
n = 3 and r = 10. We shall apply Theorem 2.3 for q = 6. Clearly, 6 general double
points is AH2(4) (by Theorem 4.1). Thus, it remains to show that the union of 4
general double points and 6 general simple points on a hyperplane is AH3(3).

Let Y1 be the set of the four coordinate points in P
3. As shown above, we have

H
R/I

(2)
Y1

(2) = 10 and H
R/I

(2)
Y1

(3) = 16.
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Let L be a hyperplane not containing any point of Y1. By taking I = I
(2)
Y1

,
Proposition C.13(2) holds for any u satisfying

HR/I (3)+ u ≤ HR/I (2)+
(

3+ 3− 1

3− 1

)
,

i.e., whenever 16 + u ≤ 10 + 10, i.e., u ≤ 4. Therefore, if we let Y0 be a set of
u = 4 general points on L, then I (2)Y1

∩ IY0 does not contain any cubic. Now, let Y2

be obtained by adding two points to Y0, then I (2)Y1
∩ IY2 ⊆ I (2)Y1

∩ IY0 contains no
cubics. That is, 2Y1 ∪ Y2 is AH3(3).
n = 4 and r = 13. We shall apply Theorem 2.3 for q = 8. So one may take Y1 to be
the set of the 5 coordinate points of P4 and L to be a hyperplane not containing any
of these points. Then IY1 is again generated by all squarefree monomials of degree

2 in R, and I (2)Y1
by the squarefree monomials of degree 3. It follows that Y1 is

AH4(3), and in particular H
R/I

(2)
Y1

(3) = 25. Then inequality (2) of Proposition C.13

then becomes 25+ q ≤ 15+ 20, so if we add 10 general simple points in L to 2Y1
we obtain a scheme containing no cubics.

In particular, if we take Y2 to be a set of q = 8 general points on L, then
assumption (2) of Theorem 2.3 is satisfied, so Y1 ∪ Y2 is a set of 13 points in P

4

which is AH4(4). By Lemma D.4 any set of 13 general points is AH4(4).
n = 4 and r = 15. We shall apply Theorem 2.3 for q = 10. Clearly, a set of q = 10
general double points is AH3(4) as shown above. Thus, it suffices to show that the
union of 5 general double points and 10 general simple points in a hyperplane is
AH4(3). This follows by the same argument of the previous case. ��

We conclude this section with the case where d = 3 and n = 4.

Lemma 3.3 A set of r general double points in P
4 is AH4(3) if and only if r �= 7.

Proof We first prove that a set of 7 general double points in P
4 is not AH4(3). Let

Y = {P1, . . . , P7} ⊆ P
4 be a set of 7 general points, a simple computation shows

that 2Y is AH4(3) if and only if I (2)X contains no non-zero cubic.
By a result of Castelnuovo (e.g. [18, Thm 1]), given any set of t + 3 points in

general position in P
t , there exists a unique rational normal curveCt passing through

all of them, whose equations are given by the 2× 2 minors of a 1-generic matrix. In
particular, there is a (unique) rational normal curve C4 passing through our 7 points
in P

4, whose equation, in an appropriate coordinate system, is

I := I2
(
x0 x1 x2 x3

x1 x2 x3 x4

)
.

One can check directly that I (2) contains (precisely) one cubic, namely

x3
2 − 2x1x2x3 + x0x

2
3 + x2

1x4 − x0x2x4.

Thus, a set of 7 general double points in P
4 is not AH4(3).
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Alternatively, it is also known that I = I2
⎛

⎝
x0 x1 x2

x1 x2 x3

x2 x3 x4

⎞

⎠ and it can be seen that

f = det

⎛

⎝
x0 x1 x2

x1 x2 x3

x2 x3 x4

⎞

⎠ is singular at all points of C4.

By Corollary D.5, to conclude it suffices to show that sets of r = 6 and r = 8
general double points in P

4 are AH4(3). As Theorem 2.9 could only be applied if
r = 7, then we invoke Theorem 2.3 in both cases. First, observe that by Lemma 3.1,
sets of 5 general double points in P

4 are AH4(2). If r = 6, to apply Theorem 2.3 we
need q with 15 ≤ 4q ≤ 18, thus q = 4. Then, assumption (1) holds for the reasons
stated in the proof of Lemma 3.2 (the case where n = 3 and r = 8), and (2) holds
because r − q = 2 general double points are AH4(2) (because 5 double coordinate
points are, and because of Lemma C.12(1)) and by Proposition C.13 (we need to
add u = q = 4 general points to the two double points).

The case r = 8 is proved similarly. In this case, one may take q satisfying 15 ≤
4q ≤ 25. If we take q = 4 then, as above, assumption (1) of Theorem 2.3 is satisfied.
For assumption (2), we need to prove there exists no quadric through a set Z of 4
general double points and 4 general simple points. However it is easily seen that the
only quadric through 4 general double points in P

4 is the square of the hyperplane
containing them. Since the remaining 4 simple points are general, we may take them
outside this hyperplane, so there is no quadric in IZ .

An application of Theorem 2.3 now finishes the proof. ��
We end this section by noting that the case of cubics, i.e., when d = 3, for an

arbitrary value of n is much more subtle. Section 5 is devoted to handle this case.

4 The Case of P2 (n = 2)

This section focuses on the double points in P
2. Particularly, we shall identify

all exceptional cases when n = 2. While one could prove this case with more
elementary arguments, we have chosen to employ Theorem 2.9 to provide the reader
with a further illustration of its application.

Theorem 4.1 Let X be any set of r general points in P
2. Then 2X is AH2(d) for

every d ≥ 1, except for the exceptional cases of r = 2 and d = 2, and r = 5 and
d = 4.

Proof Let R = C[x, y, z] be the homogeneous coordinate ring of P
2. We shall

consider different cases based on the values of d.
Case 1: d = 1. It suffices to prove the assertion for r = 1 since the degree of a
double point in P

3 is 3 = HR(1). This case follows from Remark C.9.
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Case 2: d = 2. The assertion is true for r = 1 by Remark C.9. The case where
r = 2 is an exceptional case by Lemma 3.1. Suppose that r ≥ 3. Since the degree
of 3 double points in P

2 is 9, which is bigger than 6 = HR(2), then 2X is AH2(2) if
and only if there exists no conic in P

2 it suffices to prove that there is no conic in P
2

with r double points. Clearly, it suffices to prove it when r = 3. By Bézout theorem,
the equation of every conic with 3 double points is divisible by the equations of the
three lines connecting 2 of these points—this gives a contradiction.
Case 3: d = 3. The statement is true for r = 1, again by Remark C.9. When r = 2
we need to show that H

R/I
(2)
X

(3) = 4. Observe that by Bézout theorem, a cubic

with 2 double points must contain the line connecting these points. That is, this
cubic factors as a line and a conic going through these 2 points. Since the Hilbert
function of 2 general points in P

2 is 1, 2, 2, . . . , it follows that the space of conic
going through these 2 points has dimension 4. Particularly, the space of cubic with
2 double points has dimension 4. Thus, the assertion is true for r = 2.

Observe further that by Bézout theorem, a cubic with 3 double points must
contain 3 lines connecting 2 of these points, and so there is a unique such cubic,
which is the union of the 3 lines. It follows thatH

I
(2)
X

(3) = 10−1 = 9 = e(R/I (2)X ),
therefore, the assertion is true for r = 3.

Suppose that r ≥ 4. Since the degree of 4 double points is 12 > 10 = HR(3),
it suffices to show that there is no cubic containing 4 double points. By Bézout
theorem again, if such a cubic existed then it would contain the 6 lines connecting
any 2 of these 4 points, a contradiction.
Case 4: d ≥ 4. Recall that, from Theorem 2.9, a set of r general double points in P

2

with
⌊

1
3

(
d+2

2

)⌋ ≤ r ≤
⌈

1
3

(
d+2

2

)⌉
is AH2(d) if

(1) q general double point in P
1 is AH1(d) (which holds by Proposition C.11),

(2) r − q general double points in P
2 are AH2(d − 1), and

(3) r − q − ε general double points in P
2 are AH2(d − 2),

where q ∈ N0 and 0 ≤ ε ≤ 1 are such that 2q + ε = 3r − (
d+1

2

)
.

When d = 4, Remark 2.1 says there are no exceptions if the case r = 1
3

(4+2
2

) = 5
is not an exceptional case. However, it is an exceptional case (and in fact in this case
q = 2, ε = 1, so condition (3) of Theorem 2.9 is not satisfied—because it is the
exceptional case of 2 double points in degree 2). By Lemma C.12, we need to show
that the cases r = 4, 6 are not exceptional cases.

When r = 4, the first numerical condition in Theorem 2.3 is 2 ≤ 2q ≤ 5,
so 1 ≤ q ≤ 2. Taking q = 1, assumption (1) of Theorem 2.3 is satisfied by
Proposition C.11. On the other hand, a set of r − q = 3 general double points in P

2

isAH2(3) by the above and there is precisely one cubic passing through all the three
points twice. So there is no cubic passing through them twice and passing through
an additional general simple point (which we can take to be outside the cubic).
Therefore, assumption (2) is satisfied too, and this case follows by Theorem 2.3.

When r = 6 the proof is very similar. The second numerical condition in in
Theorem 2.3 is 5 ≤ 2q ≤ 8, so 3 ≤ q ≤ 4. We take q = 3 so again we have
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r − q = 3, and then assumptions (1) and (2) of Theorem 2.3 are satisfied as above,
thus proving that r = 6 is not an exceptional case, and concluding the case d = 4.

For d = 5, by Remark 2.1 it suffices to prove that a set of r = 7 general
double points is AH2(5). In this case Theorem 2.9 applies, because the induction
hypotheses (1)–(3) are satisfied with the only possible exception of (2) when
r − q = 5 (as it reduces to the exceptional case of 5 double points in degree 4),
i.e. q = 2. Since 2q + ε = 3r − 15, then ε = 2, which is a contradiction.

For d = 6, by Remark 2.1 we need to prove that sets of r = 9, 10 general
double points in P

2 are AH2(6). The induction hypotheses (1)–(3) of Theorem 2.9
are satisfied except possibly assumption (3) when r − q − ε = 5 (in this case (3)
reduces to the exceptional case of 5 double points in degree 4). Since 2q + ε =
3r − 21, we get q = 2r − 16 and ε = 11 − r . Since r ≤ 10 and 0 ≤ ε ≤ 1, we
must have r = 10, ε = 1 and q = 4. This particularly shows that Theorem 2.9
applies when r = 9, so the case r = 9 and d = 6 is not an exceptional case. As a
consequence, there is a unique sextic containing 9 general double points (since the
degree of 9 double points is 27). On the other hand, the Hilbert function of 9 general
points is 1, 3, 6, 9, 9, . . . , and so there is only one cubic passing through 9 general
points. Thus, the unique sextic with 9 general double points is the double cubic
passing through these 9 general points. As the remaining point is general, we can
take it outside the sextic, resulting in no sextic passing through 10 general double
points.

Since there are no exceptional cases in degrees 5 and 6, by Theorem 2.9, we
conclude that there is no exceptional cases in any degree d ≥ 5, finishing the
proof. ��

5 The Case of Cubics (d = 3)

In this section, we consider the case of cubics for any value of n. The main result in
this section extends Lemma 3.3 and completes the case where d = 3.

Theorem 5.1 Suppose that n ≥ 2. A set of r general double points in P
n is not

AHn(3) if and only if n = 4 and r = 7.

Proof The case where n = 2 was already proved in Sect. 4. The case of n = 4 has
been discussed in Lemma 3.3. For n ≥ 3 and n �= 4 we proceed by considering two
possibilities depending on the congruence of n modulo 3.

CASE 1: n ≡ 0, 1 (mod 3). In these cases (n+ 2)(n+ 3) is a multiple of 6. Thus,
1
n+1

(
n+3

3

) = (n+2)(n+3)
6 ∈ Z and by Remark 2.1, it suffices to show that a set of

r = (n+2)(n+3)
6 general double points in P

n is AHn(3).
We shall use induction on n to show that the ideal of r general double points

in P
n contains no cubics. The first base case, when n ≡ 0 (mod 3), is n = 3. By

Remark 2.1, the assertion amounts to showing that a setX of 5 general double points
in P

3 is AH3(3), ie., its defining ideal contains no cubics. Without loss of generality
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we may write X = Y ∪ {Q} where Q = [1 : 1 : 1 : 1], Y = {P0, P1, P2, P3}
and Pi = [ei] = [0 : . . . : 1 : 0 . . . : 0] for 0 ≤ i ≤ 3. Then Y is a star
configuration of 4 points, and a basis of [I (2)Y ]3 is {x0x1x2, x0x1x3, x0x2x3, x1x2x3}
(see, e.g., [21, Cor. 3.8]). So any cubic f in I (2)X ⊆ I (2)Y is a linear combination
of these basis elements. It is easily seen that imposing that the partial derivatives
(∂/∂xi)f (Q) = 0 forces f = 0.

The other base case, when n ≡ 1 (mod 3), is n = 7 and r = 15. This can be
computed directly (and verified via Macaulay 2 [26] computations).

Suppose now that n ≥ 6 and n �= 7. The inductive hypothesis applies to n1 = n−
3. So we let r1 be the integer obtained by replacing n by n1 = n−3 in the formula for
r , i.e. r1 = n(n−1)

6 . Let L be a codimension 3 linear subspace in P
n, after possibly a

change of variables we may assume the defining ideal ofL is pL = (xn−2, xn−1, xn).
Let X be a set of r1 general double points in L together with r − r1 = n+ 1 general
double points outside ofL. By the semi-continuity of Hilbert function (Remark 2.1),
it is enough to show that IX contains no cubics. Consider a pointQ in the support of
X that lies in L, and let q be its defining ideal. Clearly, q ⊇ pL. Thus, we can write
q = q+ pL, where q is a linear prime in R1 = C[x0, . . . , xn−3] , R/PL. It follows
from [28, Theorem 3.4] that

q(2) = q(2) + q · pL + p
(2)
L .

Particularly, it implies that q(2) + pL = q(2) + pL is the defining ideal of the double
point 2Q in L. Thus, by letting X be the set of r1 general double points of X in L,
considered as a subscheme of L , P

n−3, we obtain

IX + pL ⊆ IX + pL.

Moreover, by the induction hypothesis applied to X ⊆ L , P
n−3, we have

[
IX

]
3 =

(0). Therefore, IX + pL/pL contains no cubics. Hence, by considering the exact
sequence

0 −→ IX ∩ pL −→ IX −→ IX + pL/pL −→ 0,

to prove that IX contains no cubics, it remains to show that IX ∩ pL contains no
cubics. This is the content of Claim 5.1.1 below. ��
Claim 5.1.1 Suppose that n ≥ 3 and n �= 4. Let L be a codimension 3 linear
subspace of Pn and let X be the union of r1 = n(n−1)

6 general double points in L
and n+ 1 general double points outside of L. Then, IX ∩ pL contains no cubics.

Proof of Claim 5.1.1 We use also induction on n to prove the assertion. The base
case n = 3 holds because, by the above, IX contains no cubics. The other base case
n = 7 can be verified directly, or by Macaulay 2 [26] computations. Assume that
n ≥ 6. For the inductive step, let M be a codimension 3 linear subspace of Pn such
that L ∩ M has codimension 6 in P

n (any general codimension 3 linear subspace
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would work). Let pM be the defining ideal of M . We specialize to the following
situation:

• r2 := (n−3)(n−3−1)
6 = (n−3)(n−4)

6 of the points of X in L are general double
points in L ∩M;

• the r1 − r2 = n− 2 remaining points of X in L lie outsideM;
• n− 2 of the n+ 1 points of X lying outside of L are general double points inM;
• and the last 3 points of X outside of L are general double points outside L ∪M .

By the semi-continuity of Hilbert function, it suffices to show that IX ∩ pL
contains no cubics in this particular case. From the short exact sequence

0 −→ IX ∩ pL ∩ pM −→ IX ∩ pL −→ (IX ∩ pL)+ pM/pM −→ 0,

it suffices to prove the other two terms of this exact sequence contain no cubics. As
before, observe that

(IX ∩ pL)+ pM ⊆ (IX ∩ pL)+ pM,

where X denotes the set of points of X lying in M , P
n−3, and L denotes the

codimension 3 subspace L ∩ M of M , P
n−3. As above, it can be seen that, in

M , X is the union of r2 general double points lying in L and n − 2 general double
points outside of L. Thus, by the induction hypothesis, the ideal (IX∩pL)+pM/pM
of R/pM , C[y0, . . . , yn−3] contains no cubics. Hence, it remains to show that
IX ∩ pL ∩ pM contains no cubics. This follows from Claim 5.1.2 below. ��
Claim 5.1.2 Suppose that n ≥ 3 and n �= 4. Let L,M be two general codimension
3 linear subspaces of P

n. Let X ⊆ P
n be the union of r2 = (n−3)(n−4)

6 general
double points in L∩M , n− 2 general double points in L \M , n− 2 general double
points inM \L, and 3 general double points outside of L∪M . Then, IX ∩ pL ∩ pM
contains no cubics.

Proof of Claim 5.1.2 Let Z be the set of double points obtained by removing the
r2 double points in L ∩M from X. Clearly, IZ ⊇ IX. We shall prove the stronger
statement that IZ ∩ pL ∩ pM contains no cubics. The statement for n = 3, 5, 6, and
7 can be verified by direct computations (e.g. using Macaulay 2 [26]). We shall use
induction to prove the statement for n ≥ 8.

Let N be another general codimension 3 linear subspace of Pn and let pN be its
defining ideal. We specialize the points as follow: we take n− 5 of the n− 2 double
points of Z lying in L to be in L ∩ N , we take n − 5 of the n − 2 double points of
Z lying inM to be inM ∩N , and we take the 3 general double points of Z outside
of L ∪M to be in N , P

n−3. By the semi-continuity of Hilbert function, it suffices
to show that for this special configuration of Z, the ideal IZ contains no cubics.

Consider the following short exact sequence

0 −→ IZ ∩ pL ∩ pM ∩ pN −→ IZ ∩ pL ∩ pM −→ IZ ∩ pL ∩ pM + pN/pN −→ 0.
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By an argument similar to the proof of Claim 5.1.1, we have IZ ∩ pL ∩ pM + pN ⊆
IZ ∩ pL ∩ pM + pN , where • represents the restrictions to N , P

n−3. The induction
hypothesis applies to Z, so IZ ∩pL∩pM +pN/pN contains no cubics. Therefore, to
establish the desired statement, it remains to show that IZ ∩ pL ∩ pM ∩ pN contains
no cubics. This follows from Claim 5.1.3 below, noting that n− 5 ≥ 3. ��
Claim 5.1.3 Suppose that n ≥ 5. Let L,M , and N be general codimension 3 linear
subspaces of Pn. LetX ⊆ P

n be the union of 3 general double points in L\(M∪N),
3 general double points inM \ (L∪N), and 3 general double points inN \ (L∪M).
Then IX ∩ pL ∩ pM ∩ pN contains no cubics.

Proof of Claim 5.1.3 Direct computations (e.g. via Macaulay 2 [26]) verify the
statement for n = 5 and n = 6. (Notice that in [7, Prop. 5.2] it is incorrectly
stated that when n = 6 the ideal pL ∩ pM ∩ pN contains no quadrics.) Assume
that n ≥ 7. Without loss of generality, we may assume that pL = (x0, x1, x2)

and pM = (x3, x4, x5), so pL ∩ pM = pLpM ; in particular, pL ∩ pM is minimally
generated by 9 quadrics, so HR/pL∩pM (2) = HR(2)− 9

Let κ := pL ∩ pM ∩ pN , so we need to show that IX ∩ κ contains no cubics.
We shall first show that κ contains no quadrics. Indeed, if n ≥ 8 then we may

assume that pN = (x6, x7, x8). In this case, κ = pLpMpN is generated in degree 3.
On the other hand, if n = 7 then we may assume that pN = (x6, x7, x0 − x3). Now,
consider the short exact sequence

0 −→ R/κ −→ R/pL ∩ pM ⊕ R/pN −→ R/(pL ∩ pM)+ pN −→ 0.

Since R/ (pL ∩ pM) + pN = R/pLpM + pN = R/(x0, x1, x2)(x3, x4, x5), x0 −
x3, x6, x7) is isomorphic to B := C[x1, . . . , x5]/(x1, x2, x3)(x3, x4, x5), then we
have

HR/κ(2) = HR/pL∩pM (2)+HR/pN (2)−HB(2) = (HR(2)− 9)+ 15−HB(2)
= 27+ 15−HB(2).

Since B contains all the quadrics in C[x1, . . . , x5] except for the 9 generators of
the ideal (x1, x2, x3)(x3, x4, x5), then HB(2) = 15− 9 = 6. Therefore, HR/κ(2) =
42− 6 = 36 = HR(2), showing that [κ]2 = 0.

Now, by the above short exact sequence, since dimR ≥ 5 one has depthR/κ ≥ 2.
Let h be a general linear form in R and let H be the hyperplane in P

n defined by h;
since depthR/κ ≥ 2, we may assume h is regular on R/κ . Let R = R/(h) and κ be
the image of κ in R. From the standard short exact sequence

0 −→ R/κ −→ R/κ −→ R/κ −→ 0

one obtains that depthR/κ ≥ 1, i.e. κ is saturated in R.
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We now specialize the configuration so that all 9 double points of X are on the
hyperplane H , P

n−1 and let I = IX ∩ κ for simplicity of notation. Consider the
short exact sequence

0 −→ (I : h)(−1) −→ I −→ (I, h)/(h) −→ 0.

Since the points in X are lying on H , we have I : h = κ : h = κ . Thus, this
sequence can be rewritten as

0 −→ κ(−1) −→ I −→ (I, h)/(h) −→ 0.

As we have shown, κ has no quadrics, so κ(−1) has no cubics. Hence, to show that
I contains no cubics, it remains to show that the image I of I in R has no cubics.
This is indeed true by induction on n, since I ⊆ (I )sat and (I )sat is the defining ideal
of X in H , P

n−1. ��
CASE 2: n ≡ 2 (mod 3). In this case, (

n+3
3 )
n+1 = n2+5n+6

6 = (n+1)(n+4)
6 + 1

3 , and

since n ≡ 2 (mod 3), we know (n+1)(n+4)
6 is an integer. So, we let r0 = (n+2)(n+3)

6 −
1
3 = (n+1)(n+4)

6 and set δ = (
n+3

3

)− r0 = n+1
3 . By Remark 2.1, to prove the desired

statement, it suffices to show that sets of r = r0 and r0 + 1 general double points
are AHn(3). To this end, it is enough to show that a schemeX ⊆ P

n consisting of r0
general double points and a general subscheme η supported at another general point
with degree δ is AHn(3). Indeed, it is easy to see that X has multiplicity exactly(
n+3

3

)
. Thus, by a proof similar to the one of Lemma C.12, it can be shown that if X

is AHn(3) then so is a set of r0 general double points in P
n. On the other hand, a set

of r0+1 general double points contains X as a subscheme, so its Hilbert function in
degree d is at least that of X, which is

(
n+3

3

)
, i.e. it is already maximal. Particularly,

a set of r0 + 1 general double points also has maximal Hilbert function in degree 3.
As in Case 1, we shall use induction on n ≥ 2 to show that X is AHn(3). The

case n = 2 is proved in Theorem 4.1. The induction step proceeds along the same
lines as Case 1. The only difference is at Claim 5.1.1, which shall be replaced by
the following

Claim 5.1.4 Suppose that n ≥ 2. Let L be a general codimension 3 linear subspace
in P

n. Let X ⊆ P
n the union of r ′1 = (n−2)(n+1)

6 general double points in L, (n+ 1)
general double points outside of L, and a general subscheme η supported at a point
Q ∈ L and of multiplicity δ such that η ∩ L has multiplicity δ − 1 = n−2

3 . Then,
IX ∩ pL contains no cubics.

Proof of Claim 5.1.4 One proceeds by induction exactly as in the proof of
Claim 5.1.1. ��

The proof of Theorem 5.1 is now completed.
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6 Open Problems

In this section we discuss a few open problems. Let us state clearly that there
are many other interesting questions outside the ones that we include here. For
instance, as indicated by Appendix A below, the polynomial interpolation is closely
connected to secant varieties and Waring rank. Thus, there are many other problems
and questions that are of interest to researchers working in these areas or studying,
for example, containment problems for ordinary and symbolic powers of ideals,
other interpolation problems and invariants associated to symbolic powers of ideals.

However, to keep this section aligned with the other sections, we restrict
ourselves to problems and questions related to the Alexander–Hirschowitz theorem.
It is implicit that this small set of problems and conjectures is far from being com-
prehensive, and it should be considered as a sample –aimed at young researchers–
of the many problems in this active area of research.

We begin by observing that Theorem 1.1 describes the Hilbert function of I (2)Y
for every set Y of general points in P

n with a finite list of exceptions (the Hilbert
functions in these cases can be worked out individually). A starting point is asking
for a characterization of the Hilbert function of I (2)Y for any set of points Y in P

n.
To state this general problem, for n ≥ 1 and r ≥ 1, let Hn(r) be the set of all

Hilbert functions H
R/I

(2)
Y

where Y is a set of r points in P
n.

Problem 6.1 Characterize the numerical functions which are Hilbert functions of
I
(2)
Y for some set Y of points in P

n, i.e. for every n ≥ 1 characterize all elements in

Hn :=
⋃

r≥1

Hn(r) =
{
H
R/I

(2)
Y

| Y is a set of points in P
n
}
.

In this generality, so far this has been a very challenging problem, see, for
instance, the surveys of Gimigliano [25] and Harbourne [29]. Since Problem 6.1
is easy for points in P

1 (see Proposition C.11), and, to the best of our knowledge,
it is still open in P

2 (see [24] and [23] for some recent work in this direction), then
one might attempt to tackle this first nontrivial case:

Problem 6.2 Characterize the numerical functions which are Hilbert functions of
I
(2)
Y for some set Y of points in P

2, i.e. characterize all elements in

H2 :=
{
H
R/I

(2)
Y

| Y is a set of points in P
2
}
.

In investigating a family of Hilbert functions, it is natural to determine the
existence of “minimal” and “maximal” elements. In fact, we can define a partial
order on Hn(r) by setting

H
R/I

(2)
Y

≤ H
R/I

(2)
Z

if H
R/I

(2)
Y

(d) ≤ H
R/I

(2)
Z

(d) for every d ≥ 1.



406 H. T. Hà and P. Mantero

Notice that every H ∈ Hn(r) satisfies

H(d) ≤ min

{(
n+ d
d

)
, r(n+ 1)

}

and, by Theorem 1.1, equality holds for any general set of points (with a few
exceptions). Therefore, Theorem 1.1 in particular proves the existence of maximal
elements in Hn(r) (with a few exceptions), and numerically characterizes what these
maximal Hilbert functions are. It is a natural problem to determine the potential
existence and characterization of minimal elements of Hn(r).
Problem 6.3 Fix n, r ≥ 1.

(a) Prove the existence of a minimal element in Hn(r).
(b) Determine the minimal element in Hn(r).

A partial answer to Problem 6.3 was given for double points in P
2 in [22, 24],

where the problem is solved when r = (
t
2

)
or r ≤ 11. E

Another natural approach in examining the Hilbert function of double points is
to specify that the points are lying on a given subscheme, e.g. on a rational normal
curve or a conic.

Problem 6.4 For n ≥ 1, let Cn be the rational normal curve in P
n. For any r ≥ 1,

determine the Hilbert function of R/I (2)Y where Y is a set of r general points on Cn.

If the rational normal curve Cn is replaced by a conic then Problem 6.4 has a
satisfactory answer, given by Geramita, Harbourne and Migliore [23].

Another problem along the lines of the Alexander–Hirschowitz theorem is to
determine the Hilbert functions of sets of general double points in multiprojective
spaces. In general, however, points in multiprojective spaces are harder to under-
stand than points in projective spaces. (e.g., a set of points in P

n1 × · · · × P
nk does

not need to be Cohen–Macaulay.) Much work has been put forward to understand,
in general, numerical invariants and properties of points in the first nontrivial case
of a multiprojective space, i.e., P1 × P

1, (see, e.g., [27]).
While the Hilbert function for a general set of double points in P

1×P
1 is known

(see [42]), that for an arbitrary set of double points in P
1×P

1 is not yet completely
classified.

Problem 6.5 Let R = C[x0, . . . , x3] and fix any r ≥ 1. Determine the possible
Hilbert functions of R/I (2)Y where Y is any set of r points in P

1 × P
1.

We observe, in passing, that similarly to how the Alexander-Hirschowitz theorem
is closely related to the study of secant varieties of Veronese embeddings of P

n,
Problem 6.5 is intimately connected to the study of secant varieties of Segre-
Veronese varieties (cf. [8]).

In general, understanding the symbolic square I (2)Y of a set Y of simple points is
far from being a completed task. Since for certain questions I 2

Y is more understood
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than I (2)Y , a possible approach is to compare I (2)Y and I 2
Y , or simply to consider the

module I (2)Y /I
2
Y .

For instance, Galetto, Geramita, Shin and Van Tuyl [21] defined a first possible
measure aimed at quantifying the gap between the m-th symbolic power of an ideal
and the m-th ordinary power. They dubbed this measure the m-th symbolic defect of
an ideal J , and they defined it to be

sdef(J,m) := μ(J (m)/Jm).

(Here, μ(M) denotes the minimal number of generators of a finitely generated R-
moduleM .) The problem of determining symbolic defects of an ideal is open, even
for the defining ideal of a general set of points.

Problem 6.6 Compute sdef(IY , 2) for any set Y of general simple points in P
n.

Problem 6.6 seems to be open even in P
2.

Problem 6.7 Compute sdef(IY , 2) for any set Y of general simple points in P
2.

A first partial result towards Problem 6.7 is [21, Thm 6.3], where the authors
determined the second symbolic defect when |Y | ≤ 9 and |Y | �= 6. These are
precisely the set of points whose second symbolic defect is either 0 or 1. They also
proved that if |Y | = 6 of |Y | > 10, then sdef(IY , 2) > 1, however, the precise value
is not known.

Inspired by studies on symbolic defects of an ideal, we can consider a similar
invariant defined by examining the Hilbert function instead of the minimum number
of generators. Particularly, for m ∈ N, define the m-th symbolic HF-defect of an
ideal J to be the Hilbert function of J (m)/Jm, i.e.

sHFdef(J,m) := HJ(m)/Jm.

Problem 6.8 Compute sHFdef(IY , 2) for any set Y of general points in P
n.

Equivalently, compute the Hilbert function HR/I 2
Y

for any set Y of general points
in P

n.

The equivalence of the statements given in Problem 6.8 follows because
H
I
(2)
Y /I 2

Y

= HR/I 2
Y
−H

R/I
(2)
Y

, and by Theorem 1.1 we already know H
R/I

(2)
Y

.

Most of the above problems are aimed at understanding symbolic squares of
ideals of points; however, the most natural, important and challenging question
raised by Theorem 1.1 is to prove an analogue of Theorem 1.1 for any symbolic
power of any ideal defining a set of general points in P

n.

Problem 6.9 Let n ≥ 1 and R = C[x0, . . . , xn]. For every fixed m ≥ 3, determine
the Hilbert function of R/I (m)Y for a set Y of general points in P

n.
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Problem 6.9 is one of the main open problems in interpolation theory. Even the
case where m = 3 is still wide open.

Problem 6.10 Let n ≥ 1 and R = C[x0, . . . , xn]. Determine the Hilbert function
of R/I (3)Y for a set Y of general points in P

n.

As we have seen in Theorem 1.1, one expects to have a finite list of exceptional
cases, for which the general statement does not hold. A starting point toward
Problem 6.10 is to determine a similar list of exceptional cases for triple general
points.

Problem 6.11 Let n ≥ 1 and R = C[x0, . . . , xn]. Determine all the potential
exceptional cases for Problem 6.10, i.e., find a finite list L such that if 3Y , for a
general set of points Y ⊆ P

n, is not AHn(d) then Y ∈ L.

A well-known conjecture, often referred to as the SHGH Conjecture, raised (and
refined) over the years by Segre, Harbourne, Gimigliano and Hirschowitz, provides
the first step toward a solution to Problem 6.11 by predicting what these exceptional
cases are expected to be. We shall state a special case of this conjecture, namely, the
uniform points in P

2. See, for instance, [9] for a more general statement and details
on the SHGH Conjecture.

An irreducible homogeneous polynomial F ∈ R = C[x, y, z] is said to be
exceptional for a set Y = {P1, . . . , Pr } of points in P

2 if

deg(F )2 −
r∑

i=1

n2
i = −3 deg(F )+

r∑

i=1

ni = −1,

where ni is the highest vanishing order of F at Pi , for i = 1, . . . , r , i.e. ni =
max{t ∈ N0 | F ∈ pti} (and pi is the defining ideal of Pi)

Conjecture 6.12 (SHGH Conjecture) Let Y be a general set of points in P
2 and

let m ∈ N. Then, mY is not AHn(d) if and only if there exists an irreducible
homogeneous polynomial F ∈ R that is exceptional for Y such that F s , for some
s > 1, divides every homogeneous polynomial of degree d in I (m)Y .

The ultimate goal naturally would be to determine the Hilbert function of every
non-uniform symbolic power of any set Y of general points in P

n (i.e., the Hilbert
function of pm1

1 ∩ . . .∩ pmrr , where Y = {P1, . . . , Pr } is a set of general points in P
n

and pi is the defining ideal of Pi for every i).
Harbourne [31] showed that this problem would be solved if one is able to

determine α(pm1
1 ∩ . . . ∩ pmrr ) for every choice of the multiplicities mi ∈ Z+. Here,

for any homogeneous ideal J ,

α(J ) := min {d ≥ 0 | [J ]d �= 0} ,
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is the initial degree of J . Hence, the problem of determining the initial degree of
symbolic powers of ideals of points would solve the ultimate problem on interpola-
tion. However, as one may expect, determining α is usually very challenging, even
in the uniform case and even for points in P

2. For instance, the following celebrated
conjecture of Nagata, which arose from his work on Hilbert’s 14-th problem [39],
remains open.

Conjecture 6.13 (Nagata’s Conjecture) For any set Y of r ≥ 10 general points in
P

2, and any m ≥ 2 one has

α(I
(m)
Y ) > m

√
r.

Conjecture 6.13 was proved by Nagata when r is a perfect square. A large
body of literature is dedicated to this conjecture (cf. [30] and references therein
and thereafter). Connections have also been made with other problems, for instance
symplectic packing problems (see, e.g., [5, Section 5]). Nevertheless, the conjecture
still seems out of reach at the moment. The interested reader will find in the literature
many variations and different viewpoints on Nagata’s Conjecture, e.g., in [10].

Given the difficulty in establishing the bound predicted by Nagata’s conjecture,
it is natural to ask for weaker bounds. In this direction, we mention that for an
arbitrary set of points Y in P

n, a weaker bound for α(I (m)Y ) was formulated by G. V.
Chudnovsky in [13].

Conjecture 6.14 (Chudnovsky) Let Y be an arbitrary set of points in P
n. For every

m ≥ 1, we have

α(I
(m)
Y )

m
≥ α(IY )+ n− 1

n
.

Chudnovsky’s conjecture has been established for

• points in P
2 (see [13, 32]),

• general points in P
3 (see [16]),

• points on a quadric (see [20]),
• very general points in P

n (in [17] for large number of points, and in [20] for any
number of points),

• large number of general points in P
n (see [6]).

Very recently, in a personal communication with the authors, R. Lazarsfeld
suggested a geometric intuitive evidence for why one may expect the existence
of counterexamples to Conjecture 6.14. Thus, instead of trying to prove Con-
jecture 6.14, one may look for counterexamples. It should be noted that partial
results stated earlier suggest that a potential counterexample should be a special
configuration and have high singularity outside of the given set of points.
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A Appendix: Secant Varieties and the Waring Problem

In this section, we briefly describe the connection between the polynomial inter-
polation problem, particularly the Alexander–Hirschowitz theorem, and studies on
secant varieties and the big Waring problem for forms.

Throughout this section, let V be a vector space of dimension (n + 1) over C.
Then P

n can also be viewed as P(V ), the projective space of lines going through the
origin in V . For f ∈ V \ {0}, let [f ] denote the line spanned by f in V and, at the
same time, the corresponding point in P(V ).

Let S be the symmetric algebra of V . Then S is naturally a graded algebra, given
by S = ⊕

d≥0 S
dV , where the d-th symmetric tensor SdV is a C-vector space of

dimension
(
n+d
n

)
. Note that the dual R = S∗ is the polynomial ring C[x0, . . . , xn]

identified as the coordinate ring of P(V ).

Definition A.1 Let V be a (n+ 1)-dimensional vector space over C.

(1) The d-th Veronese embedding of P(V ) is the map νd : P(V )→ P(SdV ), given
by

[v] �→ [vd ] = [v ⊗ · · · ⊗ v︸ ︷︷ ︸
d times

].

Equivalently, νd is the map P
n→ P

N , where N = (
n+d
d

)− 1, defined by

[a0 : · · · : an] �→ [ad0 : ad−1
0 a1 : · · · : adn ],

where the coordinates on the right are given by all monomials of degree d in
the ai’s.

(2) The d-th Veronese variety of P(V ), denoted by V nd , is defined to be the image
νd(P(V )).

Lemma A.2 Let f ∈ V \ {0}. The tangent space T[f d ](V nd ) of V nd at the point [f d ]
is spanned by

{[f d−1g] ∈ P(SdV )
∣∣ g ∈ V }.

Proof Let g ∈ V \{0}. The line � passing through [f ] ∈ P(V ), whose tangent vector
at [f ] is given by [g], is parameterized by ε �→ [f + εg]. The image of this line via
the Veronese embedding νd is given by ε �→ [(f + εg)d ]. As f d corresponds to the
value ε = 0, then the tangent vector of νd(�) at νd([f ]) is

[ d
dε

∣∣∣
ε=0
(f + εg)d] = [df d−1g] = [f d−1g].

The statement then follows. ��
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Lemma A.3 Let f ∈ V \ {0}.
(1) There is a one-to-one correspondence between hyperplanes in P(SdV ) contain-

ing [f d ] and hypersurfaces of degree d in P(V ) containing [f ].
(2) There is a one-to-one correspondence between hyperplanes in P

(SdV ) contain-
ing T[f d ](V nd ) and hypersurfaces of degree d in P(V ) singular at [f ].

Proof (1) Let z0, . . . , zN , where N = (
n+d
d

) − 1 be the homogeneous coordinates
of P(SdV ). The equation for a hyperplane H in P(SdV ) has the form

a0z0 + · · · + aNzN = 0.

By replacing zi with the corresponding monomial of degree d in the xi’s, this
equation gives a degree d equation that describes a degree d hypersurface in
P(V ). Clearly, this hypersurface is the preimage ν−1

d (H) of H . Furthermore, since
ν−1
d ([f d ]) = [f ], if H passes through [f d ] then ν−1

d (H) contains [f ].
(2) Let {e0, . . . , en} be a basis of V whose dual basis in R is {x0, . . . , xn}. By a

linear change of variables, we may assume that f = e0. That is, [f ] = [1 : 0 : · · · :
0] ∈ P

n
K . Then, the defining ideal of [f ] is (x1, . . . , xn).

It follows from Lemma A.2 that T[f d ](V nd ) is spanned by

{[ed0 ], [ed−1
0 e1], . . . , [ed−1

0 en]}.

As before, the equation for a hyperplane H in P(SdV ) has the form a0z0 + · · · +
aNzN = 0. By using lexicographic order, we may assume that z0, . . . , zn are
variables corresponding to monomials xd0 , x

d−1
0 x1, . . . , x

d−1
0 xn. Then, H contains

T[f d ](V nd ) if and only if a0 = · · · = an = 0. It follows that the equation

for ν−1
d (H) is a linear combination of monomials of degree d not in the set

{xd0 , xd−1
0 x1, . . . , x

d−1
0 xn}. Particularly, these monomials have degree at least 2 in

the variables x1, . . . , xn. Hence, ν−1
d (H) is singular at [f ]. ��

We obtain an immediate corollary.

Corollary A.4 LetX = {[f1], . . . , [fk]} ⊆ P(V ) be a set of points. Let m1, . . . ,mk
be the defining ideal of these points. Then, there is a bijection between the vector
space of degree d elements in

⋂k
i=1 m

2
i and the vector space of hyperplanes in

P(SdV ) containing the linear span of T[f d1 ](V
n
d ), . . . , T[f dk ](V

n
d ).

Proof The conclusion follows from Lemma A.3, noticing that m2
i is the ideal of

polynomials in R singular at [fi] ∈ P(V ) for all i = 1, . . . , k. ��
Recall that if I is any (homogeneous) ideal in R, then [I ]d = I ∩Rd is the vector

space of all homogeneous equations of degree d in I .
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Corollary A.5 LetX = {[f1], . . . , [fk]} ⊆ P(V ) be a set of points. Let m1, . . . ,mk
be the defining ideals of the points in X. Then,

dimC

[ k⋂

i=1

m2
i

]
d
= N − dim〈T[f d1 ](V

n
d ), . . . , T[f dk ](V

n
d )〉.

Proof The conclusion is an immediate consequence of Corollary A.4 and basic
linear algebra facts. ��
Definition A.6 Let X be a projective variety. For any nonnegative integer r , the
r-secant variety of X, denoted by σr(X), is defined to be

σr(X) =
⋃

P1,...,Pr∈X
〈P1, . . . , Pr 〉

Zariski closure
.

Note that σr(V nd ) is an irreducible variety for all r .

Remark A.7 Let X ⊆ P
N be a projective scheme of dimension n. Then,

dim σr(X) ≤ min{rn+ r − 1, N} = min{(n+ 1)r − 1, N}.

When the equality holds we say that σr(X) has expected dimension.

Lemma A.8 (First Terracini’s Lemma) Let Y ⊆ P
n be a projective scheme. Let

p1, . . . , pr be general points in Y . Let z ∈ 〈p1, . . . , pr 〉 be a general point in the
linear span of p1, . . . , pr . Then,

Tz(σr(Y )) = 〈Tp1(Y ), . . . , Tpr (Y )〉.

Proof Let Y (τ) = Y (τ1, . . . , τn) be a local parametrization of Y . Let Yj (τ )
represent the partial derivative with respect to τj , for j = 1, . . . , n. Suppose that
pi corresponds to τ i = (τ i1, . . . , τ in) in this local parametrization.

By definition, Tpi (Y ) is spanned by the tangent vectors Y (τ i) + εYj (τ i), for
j = 1, . . . , n. Thus, 〈Tp1(Y ), . . . , Tpr (Y )〉 is the affine span of {Y (τ i), Yj (τ i)

∣∣ i =
1, . . . , r, j = 1, . . . , n}.

On the other hand, a general point z in σr(Y ) is parametrized by Y (τk) +∑r−1
i=1 γiY (τi). By considering partial derivatives at z, it can be seen that Tz(σr(Y ))

is also the affine span of {Y (τ i), Yj (τ i)
∣∣ i = 1, . . . , r, j = 1, . . . , n}. The lemma

is proved. ��
The following theorem establishes the equivalence between being AHn(d) for

double points and having expected dimension for secant varieties.

Theorem A.9 A set of r general double points in P
n is AHn(d) if and only if σr(V nd )

has expected dimension.
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Proof Let X = {q1, . . . , qr } be a set of r general simple points in P
n, and

let m1, . . . ,mr be their defining ideals. Set pi = νd(qi) for i = 1, . . . , r . By
Corollary A.5, we have

dimC

[ r⋂

i=1

m2
i

]
d
= N − dim〈Tp1(V

n
d ), . . . , Tpr (V

n
d )〉.

It follows that

hPn(2X, d) =
(
n+ d
d

)
− dimC

[ r⋂

i=1

m2
i

]
d

= dim〈Tp1(V
n
d ), . . . , Tpr (V

n
d )〉 + 1.

By the genericity assumption of the points and the fact that σr(V nd ) is an irreducible
variety, Lemma A.8 now gives

hPn(2X, d) = dim σr(V
n
d )+ 1.

The conclusion now follows, noting that hPn(2X, d) ≤ min{(n + 1)r,
(
n+d
n

)} and

dim σr(V nd ) ≤ min{(n+ 1)r − 1,
(
n+d
n

)− 1}. ��
Via its connection to secant varieties of Veronese varieties, the interpolation

problem is also closely related to the big Waring problem for forms.

Definition A.10 Let F ∈ R be a homogeneous polynomial of degree d. The Waring
rank of F , denoted by rk(F ), is defined to be the minimum s such that

F = �d1 + · · · + �ds
for some linear forms �1, . . . , �s ∈ R1.

The Waring problems for forms ask for bounds or precise values for the Waring
rank of homogeneous polynomials.

Definition A.11 Let n, d be positive integers and R = C[x0, . . . , xn].
(1) Set G(n, d) := min{s ∈ N

∣∣ rk(F ) ≤ s for a general element F ∈ Rd}.
(2) Set g(n, d) := min{s ∈ N

∣∣ rk(F ) ≤ s for any element F ∈ Rd}.
The Big Waring Problem and Little Waring Problem, respectively, are to deter-

mineG(n, d) and g(n, d). It is easy to see that g(n, d) = max{rk(F ) ∣∣ F ∈ Rd}. The
connection between G(n, d) and secant varieties comes from the following result.

Lemma A.12 G(n, d) = min{r ∣∣ σr(V nd ) = P(SdV )}.
Proof Fix a basis {e0, . . . , en} of V whose dual basis in R is {x0, . . . , xn}. Let θ :
R → S be the natural isomorphism defined by xi �→ ei . Consider a form F ∈ Rd .
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By definition, rk(F ) ≤ r if and only if there exist linear forms �1, . . . , �r ∈ R1 such
that

F = �d1 + · · · + �dr (A.1)

Let h′i = θ(�i) for i = 1, . . . , r . Then, (A.1) holds if and only if θ(F ) = hd1 +
· · · + hdr . By scalar scaling if necessary, this is the case if and only if [θ(F )] =
〈[hd1 ], . . . , [hdr ]〉.

By the definition of σr(V nd ) (being the Zariski closure of the union of
secant linear subspaces), it then follows that σr(V nd ) = P(SdV ) if and only if⋃
P1,...,Pr∈V nd 〈P1, . . . , Pr 〉 contains a general point of P(SdV ). Hence, rk(F ) ≤ r

for a general element F ∈ Rd if and only if σr(V nd ) = P(SdV ). ��

B Appendix: Symbolic Powers

Considering the considerable literature on symbolic powers of ideals, we have
included in this appendix only a minimal amount of definitions and results. We
refer the interested reader to the recent, comprehensive survey on the subject [15].

Definition B.1 Let R = C[x0, . . . , xn] and let I be an ideal with no embedded
associated primes. For every m ∈ Z+, the m-th symbolic power of I is the R-ideal

I (m) =
⋂

p∈Ass(R/I)

(
ImRp ∩ R

)
.

Additionally, one sets I (0) = R.

For every integer m ≥ 2 and ideal I , one has Im ⊆ I (m) and in general this is a
strict inclusion. A notable exception is when I is a complete intersection, in which
case, Im = I (m) for every m ≥ 1.

The following result gives a way to compute symbolic powers of ideals of points.

Proposition B.2 Let X = {P1, . . . , Pr } be a set of simple points in P
n, i.e. its

defining ideal IX = p1 ∩ . . . ∩ pr in R = C[x0, . . . , xn] is a radical ideal. Then for
every m ≥ 1

I
(m)
X = pm1 ∩ · · · ∩ pmr .

Definition B.3 Let P be a point in P
n with defining ideal p. For m ≥ 1, we write

mP for the subscheme of Pn with defining ideal pm. One often calls mP a fat point
subscheme of Pn.

If P1, . . . , Pr are points in P
n with defining ideals p1, . . . , pr , then the defining

ideal of the fat point schemeX = m1P1+m2P2+. . .+mrPr is IX := pm1
1 ∩. . .∩pmrr .
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Example B.4 (The defining ideal of 3 non-collinear double points in P
2) Let X =

{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} ⊆ P
2 be the three coordinate points in P

2, and
let IX = (x1, x2) ∩ (x0, x2) ∩ (x0, x1) = (x0x1, x0x2, x1x2) ⊆ C[x0, x1, x2] be its
defining ideal. The defining ideal of mX is

I
(m)
X = (x1, x2)

m ∩ (x0, x2)
m ∩ (x0, x1)

m.

For instance, 2X is defined by I (2)X = (x1, x2)
2 ∩ (x0, x2)

2 ∩ (x0, x1)
2, and by

computing this intersection one obtains

I
(2)
X = (x0x1x2)+ I 2

X.

In particular, I 2
X �= I (2)X . (In fact, more generally, xt0x

t
1x
t
2 ∈ I (2t)X for all t ∈ Z+.)

An important theorem proved by Zariski [43] and Nagata [40] (and generalized
by Eisenbud and Hochster [19]) provides a first illustration of the geometric
relevance of symbolic powers of ideals: they consist of all hypersurfaces vanishing
with order at least m on the variety defined by I .

Theorem B.5 (Zariski-Nagata) Let I be a radical ideal inR = C[x0, . . . , xn] and
let s ≥ N. Then,

I (s) =
⋂

m∈Max(R), I⊆m
ms .

= {f ∈ R | all partial derivatives of f of order ≤ s − 1 lie in I }.

Example B.6 Let X, IX and R be as in Example B.4. We have claimed that
x0x1x2 ∈ I (2)X . One can check this easily using Zariski–Nagata theorem. Each of
the partial derivatives of x0x1x2 with respect to one of the variables is a minimal
generator of IX. Thus, all partial derivatives of order at most 1 of x0x1x2 lie in IX,
and so by Zariski–Nagata theorem, x0x1x2 ∈ I (2)X .

More geometrically, V (x0x1x2) is the union of the three lines V (x0) ∪ V (x1) ∪
V (x2). Each of the points at the intersection of two of the three lines are singular
points. Since these three intersections are the points of X, it follows by Zariski–
Nagata theorem that x0x1x2 ∈ I (2)X .

C Appendix: Hilbert Function

In this section, we record some basic properties of Hilbert functions, especially
relative to sets of points. We start with a simple lemma potentially allowing the
use of Linear Algebra to investigate interpolation problems.
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Lemma C.1 Let P ∈ P
n be a point with defining ideal p ⊆ R = C[x0, . . . , xn].

Then [pm]d consists of all solutions of a homogeneous linear system of
(
n+m−1
n

)

equations in
(
n+d
n

)
variables. In particular, the rank of this linear system is

HR/pm(d).

Proof Let F be a generic homogeneous equation of degree d in n+ 1 variables, i.e.

F =
∑

M∈Td
cMM ∈ C[{cM}, x0, . . . , xn]

where Td consists of all the
(
n+d
d

)
monomials of degree d in R.

By Zariski–Nagata’s theorem, the equation F vanishes with multiplicity m at a
point P ∈ P

n ⇐⇒ all the (m − 1)-order (divided power) derivatives of F vanish
at P .

Now, consider any (m − 1)-th partial order derivative of F with respect to
the xi’s and substitute the coordinates of P in for the variables. We obtain a
linear combination of the coefficients cM ’s; this linear combination is zero if and
only if that partial derivative of F vanish at P . Therefore, there is a bijective
correspondence between the solutions to the system of these

(
n+m−1
n

)
linear

equations in the unknowns cM ’s and all hypersurfaces of degree d passing through
P at least m times. This proves the statement. ��

The Hilbert function of a graded ring counts the number of linearly independent
forms in a given degree.

Definition C.2 Let R = C[x0, . . . , xn], and let M = ⊕
i≥0Mi be a graded R-

module (e.g., M = R/I where I is a homogeneous ideal). Then, Mi is a C-vector
space for every i ≥ 0. The Hilbert function of M is the function HM : Z≥0 → N,
given by

HM(d) := dimCMd.

For any a ∈ Z,M(a) is defined as the graded R-module whose degree j component
is [M(a)]j = Ma+j .

In general, for d large, the Hilbert function of M agrees with a polynomial of
degree dim(M) − 1, which is called the Hilbert polynomial of M . Its normalized
leading coefficient is an integer e(M) called the multiplicity of M . WhenM is one-
dimensional and Cohen-Macaulay, HM(d) is non-decreasing and eventually equals
the multiplicity ofM . We recapture this property in the following proposition.

Proposition C.3 Let R = C[x0, . . . , xn] and let M be a Cohen-Macaulay graded
R-module with dim(M) = 1. Then HM(d − 1) ≤ HM(d) for all d ∈ N, and
HM(d) = e(M) for d � 0. In particular, HM(d) ≤ e(M) for every d ∈ N.

Proof Since dim(M) = 1, then the Hilbert polynomial of M is just the constant
function e(M), so HM(d) = e(M) for d � 0.
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Since M is Cohen-Macaulay there exists a linear form x ∈ R that is regular on
M . Let R = R/(x) be the Artinian reduction of R, and let M = M/(x)M . The
short exact sequence

0 −→ M(−1)
·x−→ M −→ M −→ 0

and the additivity of Hilbert function under short exact sequence yield HM(d) =
HM(d) − HM(d − 1). As HM(d) is of course non-negative for every d ∈ N, then
HM(d − 1) ≤ HM(d) for all d ∈ N. ��

To complement the previous result, one can use the so-called Associativity
Formula for e(R/I) to prove the following statement computing the multiplicity
of any set of fat points in P

n.

Proposition C.4 Let Y = {P1, . . . , Pr } be a set of points in P
n, and let X =

{m1P1, . . . , mrPr}. Then

e(R/IX) =
r∑

i=1

(
n+mi − 1

n

)
.

By counting equations and variables, one immediately obtains an upper bound
for the Hilbert function of any ideal associated to (possibly fat) points.

Corollary C.5 Let X = {m1P1, . . . , m1Pr } be a set of points in P
n with multiplic-

ities m1, . . . , mr . Then

HR/IX(d) ≤ min

{(
d + n
n

)
,

r∑

i=1

(
n+mi − 1

n

)}
,

or, equivalently, HIX(d) ≥ max
{

0,
(
d+n
n

)−∑r
i=1

(
n+mi−1

n

)}
.

Proof By Propositions C.3 and C.4 we have HR/IX(d) ≤ e(R/IX) =∑r
i=1

(
n+mi−1

n

)
. One also has HR/IX(d) ≤ HR(d) =

(
d+n
n

)
. ��

When the equality in Corollary C.5 is achieved, we obtain the definition of
AHn(d), or maximal Hilbert function in degree d. In other papers, this property
is often referred to as X imposes independent conditions on degree d hypersurfaces
in P

n.

Definition C.6 Let X = {m1P1, . . . , mrPr } ⊆ P
n be a set of r points with

multiplicities m1,m2, . . . , mr . We say that X is AHn(d) (or has maximal Hilbert
function in degree d), if

HR/IX(d) = min

{(
d + n
n

)
,

r∑

i=1

(
n+mi − 1

n

)}
.
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The number min
{(
d+n
n

)
,
∑r
i=1

(
n+mi−1

n

)}
is called the expected codimension in

degree d (for r general points in P
n with multiplicities m1, . . . , mr ).

The easiest situation in Definition C.6 is when m1 = · · · = mr = 1, i.e., the
points in X are all simple points.

Theorem C.7 A set X of r general simple points in P
n is AHn(d) for every d ≥ 1.

Proof The statement follows from a simple observation, via Lemma C.1, that the
condition HR/IX(d) = min{(n+d

d

)
, r} is an open condition. ��

Example C.8 Let X = {P1, 2P2, 4P3} ⊆ P
3, then e(R/IX) = 25, and X is AH3(d)

if and only if

HR/IX(d) = min

{(
d + 3

3

)
, 1+ 4+ 20

}

i.e., if its Hilbert function is HR/IX = (1, 4, 10, 20, 25, 25, 25, . . .).

Other simple situations, where we can quickly prove that the property AHn(d)
holds, are when X is supported at a single point, i.e. r = 1, or when d = 1, or
n = 1.

Remark C.9 A single double point X = {2P } in P
n is AHn(d) for all n and d.

Proof After a change of coordinates we may assume that IP = (x1, . . . , xn), so
IX = I (2)P = I 2

P . If d = 1 then [I (2)P ]1 = 0, soH
R/I

(2)
P

(1) = n+1 = min{n+1, n+
1}. If d ≥ 2 then [R/I (2)P ]d = 〈xd0 , xd−1

0 x1, . . . , x
d−1
0 xn〉. Thus,

H
R/I

(2)
P

(d) = n+ 1 = min

{(
n+ d
d

)
, n+ 1

}
,

and the statement follows. ��
Remark C.10 Any set 2Y of r double points (not necessarily general) in P

n is
AHn(1).

Proof For any r ≥ 1, one needs to show that

H
I
(2)
Y

(1) = max{0,
(
n+ 1

n

)
− r(n+ 1)} = 0.

Let P ∈ Y be any point, then [I (2)Y ]1 ⊆ [I (2)P ]1 = [I 2
P ]1 = (0). Thus, I (2)Y contains

no linear forms. ��
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Proposition C.11 Let Y be a set of r distinct simple points in P
1. Then mY is

AH1(d) for every d,m ∈ Z+.

Proof Notice that the defining ideal of any point in P
1 is just a principal prime ideal

generated by a linear form. Thus, if Y = {P1, . . . , Pr } then IY is a principal ideal
generated by a form of degree r . It follows that I (m)Y = ImY ⊆ R = C[x0, x1] is a

principal ideal of degree rm, so I (m)Y
∼= R(−rm). Thus, H

I
(m)
Y

(d) is

max

{
0,

(
d + 1− rm

1

)}
= max {0, d + 1− rm} = max

{
0,

(
d + 1

d

)
− rm

}

Therefore, mY is AH1(d). ��
The following lemma allows us to restrict attention to only a finite number of

values of r in proving the Alexander-Hirschowitz theorem.

Lemma C.12 LetX be a set of r points in P
n, with multiplicitiesm1, . . . , mr , which

is AHn(d).

(1) If HR/IX(d) =
(
d+n
n

)
, then X′ is also AHn(d) for any larger set X′ ⊇ X

consisting of r ′ ≥ r points of X with multiplicities m′1 ≥ m1, . . . , m
′
r ′ ≥ mr ′ .

(2) If HR/IX(d) =
∑r
i=1

(
n+mi−1

n

) = e(R/IX), then X′ is also AHn(d) for any
subset X′ ⊆ X consisting of r ′ ≤ r points of X with multiplicities m′1 ≤
m1, . . . , m

′
r ′ ≤ mr ′ .

Proof

(1) Since X ⊆ X′ then IX′ ⊆ IX. By assumption [IX]d = 0, thus also [IX′ ]d = 0,
which implies that HR/IX′ (d) =

(
d+n
n

)
.

(2) SinceX′ is a subscheme ofX andX is multiplicity d-independent, the assertion
is a direct consequence of Lemma 2.6.

��
We conclude this appendix by stating a numerical characterization of when it is

possible to find simple points to be added to a given scheme in order to change its
Hilbert function by a prescribed value.

Proposition C.13 ([11, Lemma 3]) Let I be a saturated homogeneous ideal in
R = C[x0, . . . , xn], and let � be a linear form that is regular on R/I . TFAE:

(1) There exists a set Y0 of u points in V (�) such that

HR/(I∩IY0 )
(t) = HR/I (t)+ u.

(2) HR/I (t)+ u ≤ HR/I (t − 1)+ (
n+t−1
t

)
.
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D Appendix: Semi-continuity of the Hilbert Function
and Reduction to Special Configurations

The starting point of the proof of Theorem 1.1 is the observation that to establish
the AHn(d) property for a general set of double points, in non-exceptional cases, we
only need to exhibit a specific collection of double points with the AHn(d) property.
This is because Hilbert functions have the so-called lower semi-continuity property.
This is the content of this appendix.

We begin by defining generic points and the specialization of points. Throughout
this appendix, we shall fix a pair of positive intgers n and r . Recall that R =
C[x0, . . . , xn] is the homogeneous coordinate ring of P

n. Let z = {zij
∣∣ 1 ≤

i ≤ r, 0 ≤ j ≤ n} be a collection of r(n + 1) indeterminates, and let C(z) be
the purely transcendental field extension of C be adjoining the variables in z. Let
S = C(z)[x0, . . . , xn] be the homogeneous coordinate ring of Pn

C(z).

Set-up D.1

(1) By the generic set of r points, we mean the set Z = {Q1, . . . ,Qr }, where
Qi = [zi0 : · · · : zin], for i = 1, . . . , r , are points with the generic coordinates
in P

n
C(z)

. Let IZ ⊆ S denote the defining ideal of Z.

(2) Let λ = (λij ) ∈ A
r(n+1)
C

be such that for each i = 1, . . . , r , λij �= 0 for some
j . Define the set Z(λ) = {Q1(λ), . . . ,Qr(λ)} of points in P

n, with Qi(λ) =
[λi0 : · · · : λin]. Let Iλ ⊆ R be the defining ideal of Z(λ).

We call Z(λ) the specialization of the generic points at λ, and call Iλ the
specialization of the ideal IZ at λ.

To define precisely the notions of general points and very general points one often
employs Chow varieties. However, one can also use dense Zariski-open subsets of
Ar(n+1) (see, e.g., [20, Lemma 2.3]) for these purposes, and this is the point of view
we take.

Definition D.2 One says that a property P
• holds for a general set of r points of Pn

C
if there is a dense Zariski-open subset

U ⊆ A
r(n+1)
C

such that P holds for Z(λ) for all λ ∈ U ;
• holds for a very general set of r points of Pn

C
if P holds for Z(λ) for all λ ∈

U where U is an intersection of countably many dense Zariski-open subsets of
A
r(n+1)
C

.

The lower semi-continuity of Hilbert functions that we shall use is stated in the
following theorem.

Theorem D.3 (Lower-Semi-Continuity of the Hilbert Function) Assume Set-
up D.1. Then, for any m, d ∈ N, we have

H
I
(m)
Z

(d) ≤ H
I
(m)
Y

(d)
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for any set Y of r points in P
n. Moreover, for fixed m ≥ 1 and d ≥ 1, the equality

H
I
(m)
Z

(d) = H
I
(m)
Y

(d) holds for a general set of points Y ⊆ P
n.

Proof Note that every set Y of r points in P
n can be viewed as a specialization Z(λ)

of the generic set of r points. The proof is similar to the proof of [20, Thm 2.4]. For
every s ≥ 1, set

Ws := {λ ∈ A
r(n+1)
C

| H
I
(m)
λ

(d) ≥ s}.

We claim thatWs is a Zariski-closed subset of Ar(n+1)
C

for any s ≥ 1.
To see it, let f =∑

|α|=d Cαxα ∈ R[Cα] be a generic homogeneous polynomial
of degree d, where xα are the monomials of degree d in R. Let ∂βxα denote the
partial derivative of xα with respect to β.

Now, let Dm,d be the matrix with columns indexed by all monomials in Rd , rows
indexed by all partial derivatives β with |β| ≤ m− 1, and whose rows are

[
∂βx

d
0 . . . ∂βzi

α . . . ∂βx
d
n

]
.

Let [Bm,d ]λ be the r by 1 block matrix

Bm,d =

⎡

⎢⎢⎢⎣

Dm,d(P1)

Dm,d(P2)
...

Dm,d(Pk)

⎤

⎥⎥⎥⎦

where Dm,d(P1) is the specialization of the matrix Dm,d at the point Pi , i.e. we
replace x0, . . . , xn by λi,0, . . . , λi,n, respectively.

Then the forms f = ∑
|α|=d Cαxα of degree d in I (m)λ are in a bijective

correspondence with the non-trivial solutions to the system of equations (in the
variables Cα)

[Bm,d ]λ ·
[
C(d,...,0) . . . Cα . . . C(0,...,d)

]T = 0.

It follows that λ ∈ Ws if and only if the null-space of this linear system has
dimension at least s, which is holds if and only if the number r

(
m+n
m−1

)
of rows

of [Bm,d ]λ is less than
(
d+n
n

) − (s − 1) or r
(
m+n
m−1

) ≥ (
d+n
n

) − (s − 1) and

rk[Bm,d ]λ <
(
d+n
n

)− (s − 1). In either case we have a closed condition in A
r(n+1).

This proves the claim.
To prove the inequality in the statement we prove that when one takes s0 :=

H
I
(m)
Z

(d), then Ws0 also contains a dense Zariski-open subset, thus showing that

Ws0 is the entire space.
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Indeed, let f1, . . . , fs0 be linearly independent forms of degree d in I (m)Z . We
may assume that each fi ∈ C(z)[x0, . . . , xn]. Let M be the matrix whose i-th
row consists of the coefficients of each monomial xα in fi . By assumption M has
maximal rank, i.e. s0, so at least one of the minors of size s0 ofM does not vanish. It
follows that there exists a dense Zariski-open subset Ũt of specializations z �−→ λ

ensuring that the specialization does not make this minor vanish, thus for any λ ∈ Ũ
we have that (f1)z �→λ, (f2)z �→λ, . . . , (fs0)z �→λ are s0 linearly independently forms

of degree d in I (m)λ . This concludes the proof of the first part.
The equality now follows from this last paragraph, as it is shown in there that for

any λ ∈ Ũd one has that s0 := HI(m)Z

(d) = H
I
(m)
λ

(d). ��
We obtain the following immediate consequences of Theorem D.3.

Corollary D.4 Fix positive integers n, r , d and m. TFAE:

(1) There exists a set Y of r points in P
n such that mY is AHn(d).

(2) For any set Y of r general points in P
n, mY is AHn(d).

Corollary D.5 Fix n, d ∈ Z+. Then every set Y of r general double points in P
n is

AHn(d) if and only if there exist sets of r double points in P
n which are AHn(d) for⌊

1
n+1

(
d+n
n

)⌋ ≤ r ≤
⌈

1
n+1

(
d+n
n

)⌉
.

Similarly, if a set of r0 general points is not AHn(d), then any set of r �= r0
general double points in P

n is AHn(d) if and only if there exist sets of r0 − 1 and
r0 + 1 double points in P

n that are AHn(d).

Proof The desired statements are direct consequences of Corollary D.4 and
Lemma C.12. ��

In the last part of this section we prove a semi-continuity results in the more
general setting of flat families of projective schemes.

Definition D.6 Let f : X→ Y be a morphism of schemes, and let F be a sheaf of
OX-modules. We say that F is f -flat at x ∈ X if the stalk Fx , seen as an OY,f (x)-
module, is flat. We say that F is f -flat if it is f -flat at every point in X.

Definition D.7 A family of (closed) projective schemes f : X→ Y is a morphism
f of (locally) Noetherian schemes which factors through a closed embedding X ⊆
P
r × Y = P, for some r . The family is flat if OX if f -flat.

Let p be a point in Y . Let C(p) be the residue field of the local ring OY,p.
Let Xp = X ×Y Spec(OY,p) and let Pp = P ×Y Spec(OY,p). For example, if
Y = Spec(A) and X = Proj(R/I), where R = A[x0, . . . , xr ] and I ⊂ R is a
homogeneous ideal, then Xp = Proj((R/I)⊗A C(p)) and Pp = Proj(R ⊗A C(p)).
Note that, in general, the defining ideal of Xp in Pp may not be the same as
I ⊗AC(p); rather, it is the image of the canonical map (I ⊗A C(p)→ R ⊗A C(p)).

The following result is well-known; see, for example, [34, Theorem III.12.8].
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Theorem D.8 Let f : X → Y be a family of projective schemes and let F be
a coherent sheaf over X which is also f -flat. Then, for each i ≥ 0, the function
Y → Z defined by

p �→ dimC(p)(H
i(Xp,Fp))

is upper semicontinuous on Y .

Theorem D.9 Let f : X→ Y be a flat family of projective schemes. Then, for any
degree d ≥ 0, the function Y → Z defined by

p �→ hPp(Xp, d)

is lower semicontinuous on Y .

Proof Let I be its ideal sheaf of the embedding X ⊆ P. Let p ∈ Y be any point
and let A = OY,p. We have a short exact sequence 0→ I → OP → OX → 0. By
tensoring with C(p), we obtain the following short exact sequence

0→ I ⊗A C(p)→ OPp → OXp → 0.

Particularly, this shows that I⊗AC(p) is the ideal sheaf of the embeddingXp ⊆ Pp.
Set Ip = I ⊗A C(p). We then have

hPp(Xp, n) = h0(OPp(n))− h0(Ip(n)).

Observe that OX is f -flat, and so I is also f -flat. Therefore, by Theorem D.8, the
function p �→ h0(Ip(n)) is an upper semicontinuous function on Y . The conclusion
now follows, since h0(OPp(n)) is constant on Y . ��

E Appendix: Hilbert Schemes of Points and Curvilinear
Subschemes

We end the paper with our last appendix giving basic definitions and properties
of curvilinear subschemes that allow the deformation argument in the méthode
d’Horace différentielle to work.

Definition E.1 A finite zero-dimensional scheme Z is said to be curvilinear if Z
locally can be embedded in a smooth curve. That is, for every point P in Z, the
dimention TP (Z) of the tangent space is at most 1.

Lemma E.2 Let Z be a zero-dimensional scheme supported at one point P . Then
Z is curvilinear if and only if Z , Spec C[t]/(t l), where l is the degree of Z.
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Proof Without loss of generality, assume that (x1, . . . , xn) are local parameters at
P . Let C be a smooth curve to which Z can be embedded in. Clearly, P ∈ C. Let
IC = (f1, . . . , fs) be the defining ideal of C in OP = C[x1, . . . , xn] (particularly,
s ≥ n − 1). Since C is smooth at P , the Jacobian matrix of C at P has rank n −
1. Thus, by a change of variables and a re-indexing, if necessary, we may further
assume that fi = xi + gi , for i = 1, . . . , n− 1, and g1, . . . , gn−1 ∈ OP .

Let IZ be the defining ideal of Z in OP . Since Z can be embedded in C, we have
IC ⊆ IZ . Therefore, locally at P , OZ is a quotient ring of C[xn]. It follows that,
locally at P , OZ ∼= C[xn]/(xln) for some l.

The converse is clear by the same arguments. Observe further that localizing at
P (a minimal prime in OZ) does not change the multiplicity of OZ , or equivalently,
the degree of Z. Hence, deg(Z) = l. ��
Corollary E.3 LetZ be a curvilinear subscheme of a double point. Then the degree
of Z is either 1 or 2.

Proof By Lemma E.2, we have Z ∼= Spec C[t]/(t l). Since Z is contained in a
double point, we must have l is equal to 1 or 2. Hence, deg(Z) is either 1 or 2. ��
Remark E.4 Let Z be a zero-dimensional scheme with irreducible components
Z1, . . . , Zr . Then, Z is curvilinear if and only if Z1, . . . , Zr are curvilinear.

The next lemma gives another way of seeing curvilinear schemes.

Lemma E.5 Let Z be a zero-dimension scheme supported at one point P . Then, Z
is curvilinear if and only if, locally at P , the OZ is generated by one element, that
is, OZ = C[f ] for some f ∈ OZ .

Proof By Lemma E.2, if Z is curvilinear then, clearly, OZ is generated by one
element. Suppose, conversely, that OZ = C[f ] for some f ∈ OZ . Since Z is zero-
dimensional, we must have f l = 0 for some l. By taking the smallest such l, we
then have OZ ∼= C[t]/(t l), and so Z is curvilinear by Lemma E.2. ��

The main result about curvilinear subschemes that we shall use is that they form
an open dense subset in the Hilbert scheme of zero-dimensional subscheme of a
given degree in P

n. Particularly, this allows us to take the limit of a family of
curvilinear subschemes. For this, we shall need the following lemma.

Lemma E.6 Let A be a Noetherian ring, let B be a free A-algebra of rank n. Then
the set

{p ∈ Spec A | the K(p)-algebra B ⊗A K(p) is generated by one element}

is an open subset U of SpecA. Here, KK(p) is the residue field Ap/pAp at p.

Proof Let U := {p ∈ Spec(A) | the K(p)-algebra B⊗AK(p) is generated by one
element}. Clearly, if p ∈ U and q ⊆ p then q ∈ U . Thus, by Nagata’s topological
criterion (e.g. [38, Thm 24.2]), to prove that U is open it suffices to show that if
p ∈ U , then there exists a non-empty open subset of V (p) contained in U .
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Write B = A[T1, . . . , Tr ]/J , since p ∈ U then (after possibly relabelling) we
may assume that there exist a1, . . . , ar−1 ∈ A\p and g1, . . . , gr−1 ∈ A[T1, . . . , Tr ]
with Ti /∈ supp(gi) for any i = 1, . . . , r − 1 such that

(a1T1 + g1, . . . , ar−1Tr−1 + gr−1) ⊆ J.

Clearly, for any q ∈ V (p) \ [V (a1) ∪ V (a2) ∪ . . . ∪ V (ar)] we have q ∈ U ; this
concludes the proof. ��

We are now ready to state and prove the density result of curvilinear subschemes.

Proposition E.7 Let Hl denote the Hilbert scheme of zero-dimensional subscheme
of degree l in P

n and let Hcurv
l denote the subset of Hl consisting of curvilinear

subschemes of degree l in P
n. Then Hcurv

l is an open dense subset of Hl .

Proof The statement follows from Lemmas E.5 and E.6. ��
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1 Introduction

Let k be a field and let S be a standard graded k-algebra. For a homogeneous ideal
Q ⊆ S, we call the functions depth S/Qt and depth S/Q(t), for t ≥ 1, the depth
function and the symbolic depth function ofQ, respectively.

Depth is an important cohomological invariant (cf. [1, 4, 30]). For instance, we
can compute the projective dimension via depth by the Auslander and Buchsbaum
formula:

pd S/Q = dim S − depth S/Q.

However, our understanding of the depth function and the symbolic depth function
of ideals has been quite limited. This is partly because there are no effective methods
to compute and/or to compare the depth of powers and symbolic powers of an
arbitrary ideal. The aim of paper is to present recent studies, which have led to
satisfactory solutions to the problem of classifying depth functions and symbolic
depth functions of homogeneous ideals in polynomial rings.
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It is a classical result of Brodmann [3] that the depth function of an ideal in a
Noetherian ring is asymptotically a constant function. From a few initially known
examples, the depth function of an ideal appeared to be a non-increasing function.
As more examples surfaced, it became a surprising fact that the depth function
may otherwise exhibit wild behaviors; see [2, 10, 12, 21]. Herzog and Hibi [12]
conjectured that the eventual behavior, as shown by Brodmann’s result, is the only
condition for the depth function of homogeneous ideals in polynomial rings. In
Sect. 2, we survey results in our recent joint work with H.D. Nguyen and T.N. Trung
[7], in which we establish the conjecture of Herzog and Hibi in its full generality.

Symbolic depth functions are much less understood compared to depth functions.
For instance, there is no similar result to that of Brodmann for the eventual behavior
of symbolic depth functions of ideals. This is because the symbolic Rees algebra
Rs(Q) := ⊕

t≥0Q
(t), which governs the behavior of symbolic powers of Q, is

not always finitely generated. If Rs(Q) is finitely generated then depth S/Q(t) is
an asymptotically periodic function. In Sect. 3, we survey recent results of the
second author and H.D. Nguyen in [24, 25], which shows that any positive and
asymptotically periodic numerical function is the symbolic depth function of a
homogeneous ideal in a polynomial ring.

In both Sects. 2 and 3, we shall thoroughly explain the ideas and techniques
which have led to the surveyed results in [7] and [24, 25]. We believe that they
may provide effective tools for the study of other numerical invariants, such as
the projective dimension, the Castelnuovo-Mumford regularity and the number of
associated primes of powers and symbolic powers of homogeneous ideals.

We end the paper with Sect. 4, where we discuss a number of open questions
on depth functions and symbolic depth functions, and related problems on the
projective dimension of powers and symbolic powers of homogeneous ideals. For
unexplained notions and terminology we refer the readers to [4].

2 Ordinary Depth Functions

One of the main motivations for the study of depth functions of ideals is the
following classical result of Brodmann [3].

Theorem 2.1 [3, Theorem (2)] Let S be a Noetherian ring and let Q ⊆ S be an
ideal. Then, depth S/Qt is asymptotically a constant function, i.e., depth S/Qt =
depth S/Qt+1 for all t � 0.

The first systematic study on depth functions of homogeneous ideals was carried
out by Herzog and Hibi [12]. In their work, Herzog and Hibi observed that
Theorem 2.1 is only a special case of a more general phenomenon, which we shall
now describe. Note that a graded S-algebra R is said to be standard graded if it is
generated over S by homogeneous elements of degree one. For a graded module E,
we denote by Et its degree t component.
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Theorem 2.2 [12, Theorem 1.1] Let R be a finitely generated standard graded
S-algebra. Let E be a finitely generated graded R-module. Then, depthEt =
depthEt+1 for all t � 0.

For an ideal Q ⊆ S, let R(Q) := ⊕
t≥0Q

t be the Rees algebra of Q. Then,
R(Q) is a finitely generated standard graded S-algebra. Thus, Theorem 2.2 applies
to imply Theorem 2.1.

Thanks to Theorem 2.1, to investigate all possible depth functions, we only need
to focus on convergent non-negative numerical functions, i.e. functions f : N →
Z≥0 with the property that f (t) = f (n+ 1) for t � 0.

Herzog and Hibi [12, Theorem 4.1] showed that any non-decreasing convergent
non-negative numerical function is the depth function of a monomial ideal. This
result was astonishing because, as mentioned, depth functions of homogeneous
ideals initially tend to be non-increasing. Also in [12], Herzog and Hibi exhibited
monomial ideals whose depth functions display unusual behaviors. These results
seemed to suggest that the beginning of the depth function of a homogeneous deal
in a polynomial ring can be arbitrarily wild. In fact, at the end of [12], Herzog and
Hibi made the following conjecture.

Conjecture 2.3 (Herzog-Hibi) Let f be any convergent non-negative numerical
function. There exists a homogeneous idealQ in a polynomial ring S such that f is
the depth function ofQ, i.e., f (t) = depth S/Qt for all t ≥ 1.

In a later work, Bandari, Herzog and Hibi [2] showed that the depth function
can have an arbitrary number of local maxima and local minima, which provided a
strong evidence for Conjecture 2.3. Until then, the constructions of particular depth
functions were all more or less ad hoc.

There was a more general attempt by the authors, together with T.N. Trung,
in [10, Theorem 4.9] to show that any non-increasing convergent non-negative
numerical function is the depth function of a monomial ideal. An important new
ingredient in [10] is the following result on the depth function of sums of ideals.

LetA and B be polynomial rings over a field k with disjoint sets of variables. Let
I ⊆ A and J ⊆ B be nonzero proper homogeneous ideals. By abuse of notations,
we shall also use I and J to denote their extensions in the tensor product R :=
A⊗k B.

Proposition 2.4 [10, Corollary 3.6(i)] Assume that depth I i−1/I i ≥ depth I i/I i+1

for i ≤ t − 1. Then,

depthR/(I + J )t = min
i+j=n−1

{depth I i/I i+1 + depth J j /J i+1}.

The proof of [10, Theorem 4.9] contained an error, discovered by Matsuda,
Suzuki and Tsuchiya in [21]. It only gave the desired conclusion for a large class
of non-increasing convergent non-negative numerical functions, as established in
[21, Theorem 2.1]. However, a modification of this approach has finally led to a
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complete characterization of depth functions of monomial ideals, which confirms
Conjecture 2.3.

Theorem 2.5 [7, Theorem 4.1] Let f : N→ Z≥0 be any convergent non-negative
numerical function and let k be any field. There exists a monomial ideal Q in a
polynomial ring S over k such that f is the depth function ofQ.

The key idea in [7] is that depth functions are additive, i.e., the sum of two depth
functions is again a depth function. This makes use of the following result of Hoa
and Tam [15].

Lemma 2.6 [15, Lemmas 1.1 and 2.2] LetA andB be polynomial rings over k with
disjoint sets of variables. Let I ⊆ A and J ⊆ B be nonzero proper homogeneous
ideals, which are also seen as their extensions in R = A⊗k B. Then,

(i) I ∩ J = IJ , and
(ii) depthR/IJ = depthA/I + depthB/J + 1.

By setting S = R/(x − y) and Q = (IJ, x − y)/(x − y), where x and y are
arbitrary variables in A and B, respectively, Lemma 2.6 gives rise to the following
result.

Proposition 2.7 [7, Proposition 2.3] Let I ⊆ A and J ⊆ B be homogeneous ideals
as in Lemma 2.6. There exists a homogeneous ideal Q in a polynomial ring S such
that for all t ≥ 1,

depth S/Qt = depthA/I t + depthB/J t .

Moreover, if I and J are monomial ideals then Q can be chosen to be a monomial
ideal.

We will use the additivity of depth functions to construct a monomial ideal
whose depth function is any given convergent non-negative numerical function. The
construction is based on the following simple arithmetic observation.

To ease on notations, we shall identify a numerical function f : N → Z with
the sequence of its values f (1), f (2), . . . . Let f be a convergent non-negative
numerical function which is not the constant function 0, 0, . . . . Then f can be
written as a sum of numerical functions of the following two types:

Type I: 0, . . . , 0, 1, 1, . . .
Type II: 0, . . . , 0, 1, 0, 0, . . . .

Note that if f is the constant function 0, 0, . . . then f is the depth function of the
maximal homogeneous ideal in any polynomial ring over k.

By Proposition 2.7 and the above observation, to prove Theorem 2.5 we only
need to construct monomial ideals that admit any function of both Types I and II as
their depth functions. Functions of Type I are non-decreasing convergent functions,
and so they are the depth functions of monomial ideals, as constructed in [12,
Theorem 4.1]. For functions of Type II, we shall make use of monomial ideals
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whose depth functions are of the form 1, . . . , 1, 0, 0, . . . , which exist as shown by
[10, Example 4.10] and [21, Proposition 1.5].

As before, let A and B be polynomial rings over k with disjoint sets of variables,
and letR = A⊗kB. Let I ⊆ A and J ⊆ B be monomial ideals with depth functions
0, . . . , 0, 1, 1, . . . and 1, . . . , 1, 0, 0, . . . , where the first 1 of the former function
and the last 1 of the later function are at the same position. By Proposition 2.7,
the function depthR/((IJ )t , x − y) is of the form 1, . . . , 1, 2, 1, 1, . . . for some
variables x, y. If we can find variables x′ and y′ such that x′−y′ is a non-zerodivisor
in R/((IJ )t , x − y) for all t ≥ 1, then

depthR/((IJ )t , x − y, x′ − y′) = depthR/((IJ )t , x − y)− 1

is of the form 0, . . . , 0, 1, 0, 0, . . . , i.e., of Type II. Clearly, we can identify S =
R/(x− y, x′ − y′) with a polynomial ring and (IJ, x− y, x′ − y′)/(x− y, x′ − y′)
with a monomial ideal in S. To find such variables x′ and y′ we need to know the
associated primes of the ideal ((IJ )t , x − y) for all t ≥ 1. This is given in the next
proposition.

For an idealQ, denote the set of the associated primes and the set of the minimal
associated primes ofQ by Ass(Q) and Min(Q), respectively.

Proposition 2.8 [7, Proposition 3.2] Let I ⊆ A and J ⊆ B be proper monomial
ideals in polynomial rings. Let x and y be variables in A and B, respectively. Then,
Ass(IJ, x − y) is given by

{(p, x − y)| p ∈ Ass(I )} ∪ {(q, x − y)| q ∈ Ass(J )} ∪

⎛

⎜⎜⎝
⋃

p∈Ass(I ),x∈p
q∈Ass(J ),y∈q

Min(p+ q)

⎞

⎟⎟⎠ .

Using Proposition 2.8 one can give sufficient conditions for the existence of
variables x′, y′ such that x′−y′ is a non-zerodivisor inR/((IJ )t , x−y) for all t ≥ 1
[7, Proposition 3.5]. It turns out that the monomial ideals I and J , as exhibited in
[12, Theorem 4.1] and [10, Example 4.10], satisfy these conditions. This completes
the construction of monomial ideals with depth functions of Type II and, therefore,
the proof of Theorem 2.5.

The following concrete example illustrates the construction of monomial ideals
with depth functions of Type II.

Example 2.9 Let A = k[x, y, z] and I = (xd+2, xd+1y, xyd+1, yd+2, xdy2z), for
some d ≥ 2. By [12, Theorem 4.1] we have

depthA/I t =
{

0 if t ≤ d − 1,

1 if t ≥ d.
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Let B = k[w, u, v]. Let J be the integral closure of the ideal (w3d+3, wu3d+1v,

u3d+2v)3 or J = (wd+1, wud−1v, udv). By [10, Example 4.10] we have

depthB/J t =
{

1 if t ≤ d,
0 if t ≥ d + 1.

Let R = k[x, y, z,w, u, v]. By Proposition 2.7, we have

depthR/((IJ )t , y − u) =
{

1 if t �= d,
2 if t = d.

Using Proposition 2.8, it is easy to check that z − v is a non-zerodivisor modulo
((IJ )t , y − u) for all t > 0. Therefore,

depthR/((IJ )t , y − u, z− v) =
{

0 if t �= d,
1 if t = d.

If we set S = k[x,w, u, v] and Q = (xd+2, xd+1u, xud+1, ud+2, xdu2v)J , which
is obtained from IJ by setting y = u and z = v, then

depth S/Qt = depthR/((IJ )t , y − u, z− v).

Hence, the depth function ofQ is of Type II.

Theorem 2.5 also settles affirmatively a long standing question of Ratliff in [28,
(8.9)], that has remained open since 1983.

Question 2.10 (Ratliff) Given a finite set � of positive integer, do there exist a
Noetherian ring S, an ideal Q and a prime ideal P ⊇ Q in S such that P is an
associated prime ofQt if and only if t ∈ �?

Specifically, the following corollary is an immediate consequence of Theo-
rem 2.5.

Corollary 2.11 Let � be a set of positive integers which either is finite or contains
all sufficiently large integers. There exists a monomial idealQ in a polynomial ring
S, with maximal homogeneous ideal m, such that m ∈ Ass(Qt ) if and only if t ∈ �.

Corollary 2.11, furthermore, gives a monomial ideal as a counterexample to the
following question, which was also due to Ratliff [28, (8.4)]. This question was
answered negatively by Huckaba [16, Example 1.1], in which the given ideal was
not a monomial ideal.

Question 2.12 (Ratliff) LetQ be an arbitrary ideal in a Noetherian ring S. Let P ⊇
Q be a prime ideal such that P ∈ Ass(Qm) for some m ≥ 1 and P ∈ Ass(Qt ) for
all t � 0. Is P ∈ Ass(Qt) for all t ≥ m?
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3 Symbolic Depth Functions

Let Q be an ideal in a Noetherian ring S. For t ≥ 0, the t-th symbolic power of Q
is the ideal

Q(t) :=
⋂

p∈Min(Q)

(Qtp ∩ S).

In other words, Q(t) is the intersection of the primary components of the minimal
associated primes of Qt . We remark here that there is another variant of symbolic
powers, in which Min(Q) is replaced by Ass(Q), that has also been much
investigated. IfQ is a radical ideal in a polynomial ring then these definitions agree.
Symbolic powers of homogeneous ideals are much harder to study compared to their
ordinary powers. This is seen from, for example, the fact that the generators ofQ(t)

in general cannot be derived merely from the generators ofQ.
Inspired by Theorem 2.1, one may incline to ask if the symbolic depth function

is also necessarily a convergent numerical function; that is, if depth S/I (t) =
depth S/I (t+1) for all t � 0. Theorem 2.2 does not apply in this case because the
symbolic Rees algebra

Rs(Q) :=
⊕

t≥0

Q(t)

is not always a standard graded S-algebra; it needs not even be finitely generated
(see, for instance, [6, 17, 29]). An application of Theorem 2.2, when the symbolic
Rees algebra ofQ is finitely generated, gives us the following result.

Proposition 3.1 LetQ be a homogeneous ideal in a polynomial ring S. Assume that
Rs(Q) is a finitely generated S-algebra. Then, depth S/Q(t) is an asymptotically
periodic function, i.e., it is periodic for t � 0.

By [13, Theorem 3.2], Rs(Q) is finitely generated if Q is a monomial ideal.
Therefore, the symbolic depth functions of monomial ideals are asymptotically
periodic. For several classes of squarefree monomial ideals, it is known that their
symbolic depth functions are actually convergent functions (cf. [5, 14, 19, 32]). It
was an open question whether the symbolic depth function of any monomial ideal
is convergent [14, p. 308].

Remark 3.2 It is an easy observation that if depth S/Q(t) = 0 for some t > 0 then
depth S/Q(t) = 0 for all t > 0. Therefore, we shall only consider positive symbolic
depth functions.

In this section, we survey is a recent result of the second author and H.D. Nguyen
[24], which shows that any asymptotically periodic positive numerical function is
the symbolic depth function of a homogeneous ideal. In particular, there are plenty
monomial ideals whose symbolic depth functions are not necessarily convergent.
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Theorem 3.3 [24, Theorem 6.1] Let k be a field and let φ : N → N be an
asymptotically periodic positive numerical function. Then, there exist a polynomial
ring S over a purely transcendental extension of k and a homogeneous idealQ ⊆ S
which admits φ as its symbolic depth function, i.e.,

depth S/Q(t) = φ(t) for all t ≥ 1.

The proof of Theorem 3.3 is inspired by that of Theorem 2.5. The key idea
is to construct any asymptotically periodic positive numerical function from basic
symbolic depth functions by using closed operations within the class of symbolic
depth functions.

Once again, let A and B be polynomial rings over k with disjoint sets of
variables, and let R = A ⊗k B. Let I ⊆ A and J ⊆ B be nonzero proper
homogeneous ideals. It follows from Lemma 2.6(i) that

(IJ )(t) = I (t) ∩ J (t) = I (t)J (t).

This, together with Lemma 2.6(ii), implies that

depthR/(IJ )(t) = depthA/I (t) + depthB/J (t) + 1.

As in the study of depth function, at this point, we need to find a Bertini-type
theorem to get the additivity property of symbolic depth functions. That is, for a
given polynomial ring R = k[x1, . . . , xn] and a homogeneous ideal K ⊆ R, we
need to find a linear form f ∈ R such that for all t ≥ 1, f is a non-zerodivisor of
K(t) and if we set S = R/(f ) andQ = (K, f )/(f ), then

S/Q(t) , R/(K(t), f ).

The first difficulty in finding such a result is that f has to be the same for all
symbolic powers K(t), which form an infinite families of ideals.

The method employed in [24] to address this issue is using generic hyperplane
section. Let u = {u1, . . . , un} be a collection of indeterminates and let R(u) =
R⊗k k(u), where k(u) = k(u1, . . . , un) is a purely transcendental extension of k.
Set

fu := u1x1 + · · · + unxn.

We call fu a generic linear form. The associated primes of the ideal (K(t), fu)
were already studied in a more general setting in [14]. Using results from [14], the
following Bertini-type theorem was given in [24].

Proposition 3.4 [24, Proposition 5.3] Let R be a polynomial ring over k and let
K ⊆ R be an ideal with depthR/K(t) ≥ 2 for some
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t ≥ 1. Let S = R(u)/(fu) and Q = (K, fu)/(fu). Then fu is a regular element on
K(t)R(u) and

S/Q(t) , R(u)/(K(t), fu).

Proposition 3.4 has the following consequences on symbolic depth functions.

Corollary 3.5 Let φ(t) be a symbolic depth function over a field k such that φ(t) ≥
2 for all t ≥ 1. Then φ(t) − 1 is also a symbolic depth function over a purely
transcendental extension of k.

Corollary 3.6 Let φ(t) and ψ(t) be symbolic depth functions over a field k. Then
φ(t)+ψ(t)−1 is a symbolic depth function over a purely transcendental extension
of k.

Corollaries 3.5 and 3.6 particularly show that the operations

φ(t) := φ(t)− 1,

(φ ∗ ψ)(t) := φ(t)+ ψ(t)− 1

are closed in the set of symbolic depth functions with values ≥ 2 and the set of all
symbolic depth functions, respectively.

It is not hard to see that any asymptotically periodic positive numerical function is
obtained from finitely many functions of the following types by using the operations
φ with φ(t) ≥ 2 for all t ≥ 1 and φ ∗ ψ :

Type A: 1, . . . , 1, 2, 2, . . . , which is a monotone function converging to 2,
Type B: 1, . . . , 1, 2, 1, 1, . . . , which has the value 2 at only one position,
Type C: 1, 1, 1, . . . or 1, . . . , 1, 2, 1, . . . , 1, 1, . . . , 1, 2, 1, . . . , 1, . . . , which is a

periodic function with a period of the form 1, . . . , 1, 2, 1, . . . , 1, where 2 can be
at any position.

The proof of Theorem 3.3 now reduces to showing that all functions of types A, B
and C are symbolic depth functions of homogeneous ideals. In fact, any function of
types A, B or C is the symbolic depth function of a monomial ideal. This is the most
difficult part of the arguments in [24].

By focusing on monomial ideals, whose symbolic powers are then also monomial
ideals, one can invoke a formula of Takayama [31], which relates local cohomology
modules of a monomial ideal with the reduced homology groups of certain
simplicial complexes. Since depth can be characterized by the vanishing of the local
cohomology modules, the study of symbolic depth functions can be reduced to the
investigation of combinatorial properties of monomial ideals.

To be more precise, let R = k[x1, . . . , xn] be a polynomial ring over k and let m
be its maximal homogeneous ideal. Let K ⊆ R be a monomial ideal. Note that

depthR/K = min{i | Him(R/K) �= 0}.
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Since R/K has a Nn-graded structure, the local cohomology modulesHim(R/K)
also have a Z

n-graded structure. For a ∈ Z
n, let Him(R/K)a denote the degree a

component of Him(R/K). Takayama [31] gave a formula to relate the dimension
and vanishing of Him(R/K)a to that of the reduced homology groups of certain
simplicial complex �a(K), which depends on the primary component of K . The
simplicial complex �a(K) is a subcomplex of the Stanley-Reisner simplicial
complex �(K) of the squarefree monomial ideal

√
K . Particularly, the facets of

�a(K) are facets of �(K) if a ∈ N
n. (See [22] for more details and a different

interpretation of Takayama’s formula.)
A consequence of Takayama’s formula is the following criterion for

depthR/K ≥ 2.

Proposition 3.7 (cf. [24, Proposition 1.4]) Let K be an unmixed ideal in R. Then
depthR/K ≥ 2 if and only if �a(K) is connected for all a ∈ N

n.

On the other hand, if K has a minimal prime M such that dimR/M = 2, then
depthR/K ≤ 2 (see, e.g., [4, Proposition 1.2.13]). SinceK andK(t) share the same
minimal primes, in this case, we also have 1 ≤ depthR/K(t) ≤ 2 for all t ≥ 1.
Hence, the symbolic depth function of K is a 1–2 functions. Note that �(K) =
�(K(t)) for all t ≥ 1. If we choose K such that �(K) has only one disconnected
subcomplex �′ whose facets are facets of �(K), then we only need to check when
�a(K

(t)) = �′ for all a ∈ N
n in order to know when depthR/K(t) = 1. An instance

when this observation applies is given in the following proposition, in which for
a monomial ideal with 1–2 symbolic depth function we can test which symbolic
powers has depth exactly 2.

Proposition 3.8 [24, Proposition 3.7] Let R = k[x, y, z, u, v] be a polynomial
ring. LetM,P,Q be primary monomial ideals of R such that

√
M = (x, y, z),
√
P = (x, y),

√
Q = (z).

LetK = M ∩ (P, u)∩ (Q, v). Then depthR/K(t) ≤ 2 and depthR/K(t) = 2 if and
only ifMt ⊆ P t +Qt for all t > 1.

For the ideal K in Proposition 3.8, we have �(K) = 〈{u, v}, {z, v}, {x, y, u}〉,
which consists of two disjoint facets {z, v} and {x, y, u} that are connected by the
facet {u, v}. Therefore,�′ = 〈{z, v}, {x, y, u}〉 is the only disconnected subcomplex
of �(K) whose facets are facets of �(K).

Proposition 3.8 allows us to construct monomial ideals admitting any given
function of Types A, B, C as symbolic depth functions and, thus, completes the
proof of Theorem 3.3. This construction is illustrated in the following examples.
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Example 3.9 [24, Lemma 4.2] Let m ≥ 2 be a fixed integer and let R =
k[x, y, z, u, v]. Consider the ideal

K = (x2m−2, ym, z2m)2 ∩ (x2m−1, y2m−1, u) ∩ (z, v).

Then, the symbolic depth function of K is of Type A, i.e.,

depthR/K(t) =
{

1 if t ≤ m− 1,
2 if t ≥ m.

Example 3.10 [24, Lemma 4.3] Let m ≥ 1 be a fixed integer and let R =
k[x, y, z, u, v]. Consider the ideal

K = (x2m, y2m, xym−1z, z2m)2 ∩ (xm, ym, u) ∩ (z2m+2, v).

Then, the symbolic depth function of K is of Type B, i.e.,

depthR/K(t) =
{

2 if t = m,
1 if t �= m.

For functions of Type C, we first note that the existence of the symbolic depth
function 1, 1, 1, . . . is trivial, for example, with R = k[x, y] and K = (x). The
construction of other symbolic depth functions of Type C is much more subtle
because these functions are periodic. (For instance, the construction depends on the
period of the given function.) The existence of ideals with symbolic depth functions
of Type C is summarized in the following result.

Theorem 3.11 [24, Theorem 4.4] Let m ≥ 2 and 0 ≤ d < m be integers. There
exists a monomial ideal K in R = k[x, y, z, u, v] such that

depthR/K(t) =
{

2 if t ≡ d modulo m,

1 otherwise.

4 Open Questions

In this section, we discuss open problems and questions related to depth functions
and symbolic depth functions that we would like to see answered.

The following question arises naturally from the relationship between depth and
projective dimension:

“Which numerical functions describe the projective dimension of powers and symbolic
powers of homogeneous ideals in polynomial rings?”
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This question seems to be very difficult. We could not give the answer even in the
following basic situation.

Question 4.1 Let Q be a homogeneous ideal in a polynomial ring S. Suppose that
pdQ = 1 and pdQt = 1 for all t � 0. Is it true that pdQt = 1 for all t ≥ 1?

It follows from the Auslander-Buchsbaum formula and Brodmann’s result that
the projective dimension of powers of an ideal is a convergent function. Inspired by
Theorem 2.5 and Question 4.1, we raise the following question.

Question 4.2 Let g : N → Z be a convergent function such that g(t) ≥ 2 for
all t ≥ 1. Does there exist a monomial ideal Q in a polynomial ring S such that
g(t) = pdQt for all t ≥ 1?

As a consequence of Theorem 2.5, we can give partial answer to Question 4.2.

Corollary 4.3 Let g : N → Z≥0 be any convergent numerical function. There
exists a monomial idealQ and a number c such that pdQt = g(t)+ c for all t ≥ 1.

The constant c in Corollary 4.3 can be computed as follows. Let m = maxt≥1 g(t).
Then f (t) = m − g(t) is a convergent numerical function. Let n be the number of
variables of a polynomial ring S which contains a homogeneous ideal Q such that
depth S/Qt = f (t) for all t ≥ 1. Then pdQt = g(t)+ c for c = n−m− 1. To this
end, it is of interest to have an answer to the following question.

Question 4.4 What is the smallest number of variables of a polynomial ring which
contains a homogeneous ideal with a given depth function f (t)?

Note that the proof of Theorem 2.5 uses a large number of variables compared to
the values of f (t).

In making use of Corollaries 3.5 and 3.6, the ideals constructed in Theorem 3.3
are non-monomial ideals in polynomial rings over purely transcendental extensions
of the given field k. Using the theory of specialization [20, 26, 27], we can
construct such ideals in polynomial rings over any uncountable field. This is
because the Bertini-type result, Proposition 3.4, holds without having to go to purely
transcendental extensions of the ground field; see [24, Proposition 5.8]. This leads
us to the following question.

Question 4.5 Given a field k and an asymptotically periodic positive numerical
function φ(t), do there exist a polynomial ring S over k and a monomial ideal
Q ⊂ S such that depth S/Q(t) = φ(t) for all t ≥ 1?

The analogous question for the depth function of homogeneous ideals has a positive
answer by Theorem 2.5.

Again, due to the relationship between depth and projective dimension and
inspired by Theorem 3.3, we raise the following question on projective dimension
of symbolic powers.
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Question 4.6 Let g : N → N be an asymptotically periodic function such that
g(t) ≥ 2 for all t ≥ 1. Does there exist a monomial ideal Q in a polynomial ring S
such that g(t) = pdQ(t) for all t ≥ 1?

As a consequence of Theorem 3.3, we obtain a partial answer to Question 4.6.

Corollary 4.7 Let φ : N→ Z≥0 be an asymptotically periodic numerical function.
Let k be a field and let m = maxt≥1 φ(t). Then, there exist a positive integer c, a
polynomial ring S in m+ c+ 2 variables over a purely transcendental extension of
k, and a homogeneous idealQ in S such that pdQ(t) = φ(t)+ c for all t ≥ 1.

Similarly to Corollary 4.3, the constant c in Corollary 4.7 is determined by the
number of variables of a polynomial ring S which contains a homogeneous idealQ
with the given symbolic depth function.

The proof of Theorem 3.3 uses a large number of variables. However, all
constructed examples of symbolic depth functions of types A, B, C (except
1, 1, 1, . . . ) are ideals of height 2 in polynomial rings in 5 variables. It is naturally
of interest to consider the following question.

Question 4.8 Let φ(t) be an asymptotically periodic positive numerical function
and m = maxt≥1 φ(t). Does there exist a polynomial ring S in m+ 3 variables that
contains a height 2 homogeneous ideal Q such that depth S/Q(t) = φ(t) for all
t ≥ 1?

Theorem 3.3 classifies a large class of symbolic depth functions. It remains
an open problem to determine if Theorem 3.3 indeed covers all symbolic depth
functions.

Question 4.9 Does there exist a homogeneous ideal whose symbolic depth function
is not asymptotically periodic?

According to Proposition 3.1, if such an ideal existed, its symbolic Rees algebra
would have to be non-Noetherian. To find non-Noetherian symbolic Rees algebras
is a difficult problem that is related to Hilbert’s fourteenth problem; see, for instance,
[29]. To the best of our knowledge, there are only examples of non-Noetherian
symbolic Rees algebras for one-dimensional ideals (cf. [6, 17, 29]). In this case,
we have depth S/I (t) = 1 for all t ≥ 1, whence the symbolic depth function is a
constant function.

It was shown in [23, 24] that the symbolic depth function of a squarefree
monomial ideal Q is almost non-increasing, in the sense that depth S/Q(s) ≤
depth S/Q(t) for s � t . There are examples of ideals generated by squarefree
monomials of degrees ≥ 3 whose symbolic depth functions need not be monotone
[24].

Question 4.10 Is the symbolic depth function of the edge ideal of a graph a non-
increasing function?
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The analogous question for the depth function of the edge ideal of a graph is also an
open question (cf. [11, 12]). Note that the depth function of a squarefree monomial
ideal in general needs not be non-increasing; see [8, 18].

Beside powers and symbolic powers of an ideal, the integral closures of powers
have been extensively investigated. It is also a classical result of Brodmann [3]
that for an ideal Q in a Noetherian ring S, depth S/Qt is asymptotically a constant
function, i.e., the function depth S/Qt is a convergent numerical function.

Question 4.11 For which convergent numerical function f : N→ Z≥0 does there
exist a homogeneous ideal Q in a polynomial ring S such that depth S/Qt = f (t)
for all t ≥ 1?

The monomial generators of Qt can be derived from that of Q by combinatorial
means; see, for instance, [9]. This fact was used in [24] to examine the depth of
integrally closed symbolic powers of monomial ideals.

Acknowledgments We thank Irena Peeva for inviting us to contribute a paper to this special
volume.

The first author acknowledges supports from Louisiana Board of Regents, grant #
LEQSF(2017–19)-ENH-TR-25. The second author is partially supported by grant 101.04-
2019.313 of the Vietnam National Foundation for Science and Technology Development.

The second author is also partially supported by Vietnam Academy of Science and Technology
under grant number NVCC01.17/22-22.

References

1. M. Auslander and D. A. Buchsbaum. Homological dimension in Noetherian rings. Proc. Nat.
Acad. Sci. U.S.A., 42:36–38, 1956.

2. S. Bandari, J. Herzog, and T. Hibi. Monomial ideals whose depth function has any given
number of strict local maxima. Ark. Mat., 52(1):11–19, 2014.

3. M. Brodmann. The asymptotic nature of the analytic spread. Math. Proc. Cambridge Philos.
Soc., 86(1):35–39, 1979.

4. W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1993.

5. Constantinescu, M. R. Pournaki, S. A. Seyed Fakhari, N. Terai, and S. Yassemi. Cohen-
Macaulayness and limit behavior of depth for powers of cover ideals. Comm. Algebra,
43(1):143–157, 2015.

6. S. D. Cutkosky. Symbolic algebras of monomial primes. J. Reine Angew. Math., 416:71–89,
1991.

7. H. T. Hà, H. D. Nguyen, N. V. Trung, and T. N. Trung. Depth functions of powers of
homogeneous ideals. Proc. Amer. Math. Soc., 149: 1837–1844, 2021.

8. H. T. Hà and M. Sun. Squarefree monomial ideals that fail the persistence property and non-
increasing depth. Acta Math. Vietnam., 40(1):125–137, 2015.

9. H. T. Hà and N. V. Trung. Membership criteria and containments of powers of monomial ideals.
Acta Math. Vietnam., 44(1):117–139, 2019.

10. H. T. Hà, N. V. Trung, and T. N. Trung. Depth and regularity of powers of sums of ideals. Math.
Z., 282(3–4):819–838, 2016.

11. J. Herzog and A. Asloob Qureshi. Persistence and stability properties of powers of ideals. J.
Pure Appl. Algebra, 219(3):530–542, 2015.



Depth Functions and Symbolic Depth Functions of Homogeneous Ideals 443

12. J. Herzog and T. Hibi. The depth of powers of an ideal. J. Algebra, 291(2):534–550, 2005.
13. J. Herzog, T. Hibi, and N. V. Trung. Symbolic powers of monomial ideals and vertex cover

algebras. Adv. Math., 210(1):304–322, 2007.
14. L. T. Hoa, K. Kimura, N. Terai, and T. N. Trung. Stability of depths of symbolic powers of

Stanley-Reisner ideals. J. Algebra, 473:307–323, 2017.
15. L. T. Hoa and N. D. Tam. On some invariants of a mixed product of ideals. Arch. Math. (Basel),

94(4):327–337, 2010.
16. S. Huckaba. On linear equivalence of the P-adic and P-symbolic topologies. J. Pure Appl.

Algebra, 46(2–3):179–185, 1987.
17. C. Huneke. On the finite generation of symbolic blow-ups. Math. Z., 179(4):465–472, 1982.
18. T. Kaiser, M. Stehlík, and R. Škrekovski. Replication in critical graphs and the persistence of

monomial ideals. J. Combin. Theory Ser. A, 123:239–251, 2014.
19. K. Kimura, N. Terai, and S. Yassemi. The projective dimension of the edge ideal of a very

well-covered graph. Nagoya Math. J., 230:160–179, 2018.
20. W. Krull. Parameterspezialisierung in Polynomringen. Arch. Math., 1:56–64, 1948.
21. K. Matsuda, T. Suzuki, and A. Tsuchiya. Nonincreasing depth functions of monomial ideals.

Glasg. Math. J., 60(2):505–511, 2018.
22. N. C. Minh and N. V. Trung. Cohen-Macaulayness of monomial ideals and symbolic powers

of Stanley- Reisner ideals. Adv. Math., 226(2):1285–1306, 2011.
23. J. Montaño and L. Núñez Betancourt. Splittings and symbolic powers of squarefree monomial

ideals. To appear in Int. Math. Res. Notices.
24. H. D. Nguyen and N. V. Trung. Depth functions of symbolic powers of homogeneous ideals.

Invent. Math., 218(3):779–827, 2019.
25. H. D. Nguyen and N. V. Trung. Correction to: Depth functions of symbolic powers of

homogeneous ideals. Invent. Math., 218(3):829–831, 2019.
26. D. V. Nhi. Specializations of direct limits and of local cohomology modules. Proc. Edinb.

Math. Soc. (2), 50(2):459–475, 2007.
27. D. V. Nhi and N. V. Trung. Specialization of modules. Comm. Algebra, 27(6):2959–2978,

1999.
28. L. J. Ratliff, Jr. A brief survey and history of asymptotic prime divisors. Rocky Mountain J.

Math., 13(3):437–459, 1983.
29. P. C. Roberts. A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian.

Proc. Amer. Math. Soc., 94(4):589–592, 1985.
30. J.-P. Serre. Algèbre locale. Multiplicités, volume 11 of Cours au Collège de France, 1957–

1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics.
Springer-Verlag, Berlin-New York, 1965.

31. Y. Takayama. Combinatorial characterizations of generalized Cohen-Macaulay monomial
ideals. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 48(96)(3):327–344, 2005.

32. N. Terai and N. V. Trung. Cohen-Macaulayness of large powers of Stanley-Reisner ideals. Adv.
Math., 229(2):711–730, 2012.



Algebraic Geometry, Commutative
Algebra and Combinatorics: Interactions
and Open Problems

B. Harbourne

Dedicated to David Eisenbud, on the occasion of his 75th
birthday.

2010 Mathematics Subject Classification Primary: 14H50, 14J26, 13F20,
14N20; Secondary: 13B22, 13D02, 52C30

1 Introduction

We survey three topics of recent research interest, in each case starting with a
question, conjecture or result of David Eisenbud. A theme that will recur throughout
this survey is that of the longstanding, still open and interesting question of what
singularities a plane curve of given degree can have. Indeed, the numerical question
of what vectors (d, t2, t3, . . . , td ) arise for reduced plane curves is an open problem
(here d is the degree of the curve, and tk is the number of points of multiplicity
exactly k). This is open even when restricted to curves all of whose components are
lines (i.e., line arrangements). In fact, just classifying complex line arrangements
with t2 = 0 is an open problem (see Problem 2.14).

This survey is divided into three parts, corresponding to work on semi-effectivity,
on the containment problem of symbolic powers of ideals of fat points in their
ordinary powers, and on splitting types of rank 2 bundles on rational curves.

The discussion on semi-effectivity starts with a question of Eisenbud and M.
Velasco about computability of semi-effectivity of divisors on the blow upX of Pn at
a finite set of points. This leads to the SHGH Conjecture in the case of points in P

2.
For points in P

n more generally, it leads to a consideration of Waldschmidt constants
of ideals of fat point subschemes of P

n, and to conjectures of G.V. Chudnovsky
and J.-P. Demailly, and then to questions about semi-effectivity index, bounded
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negativity and H -constants, instances of which are of interest even for curves given
by line arrangements.

The discussion on the containment problem evolves out of a conjecture of
Eisenbud and B. Mazur. This leads to questions of C. Huneke, one of which
(Question 3.3) is now known to have a negative answer, thanks to examples
coming from line arrangements. All known examples showing that Question 3.3
has a negative answer and giving counterexamples to a more general conjecture
of the author subsuming Question 3.3 (viz., Conjecture 3.4) are very constrained.
This led to a conjecture of E. Grifo (see Conjecture 3.6) which proposes that
Conjecture 3.4 holds asymptotically. Grifo’s conjecture is related to how large the
value of asymptotic quantities known as resurgences can be. Other open problems
relate to the relationship between the minimal values of various versions of the
resurgence, some of which involve questions relating to integral closure of ideals.

The discussion on splitting types begins with a result of Eisenbud and A. Van
de Ven on splitting types of certain rational space curves. The discussion then turns
to the work of M.-G. Ascenzi on splitting types for rational plane curves which
more recently has led to the concept of an Ascenzi curve (a concept of interest
in computational applications; see [31, 61, 99, 100]). This work is related to a
conjecture on polynomial interpolation known as the SHGH Conjecture. Splitting
types also come up in a different way in work on unexpected curves, a concept
which was partly motivated by wanting to understand the SHGH Conjecture better.
Unexpected curves arise in association to special finite point sets Z ⊂ P

2; the
splitting type in this context is defined in terms of the line arrangement comprising
the lines dual to the points of Z.

Throughout this survey, K will denote an algebraically closed field. We will
indicate when we need K to be the complex numbers, but there are times when
it will be of interest to allow K to be an arbitrary algebraically closed field, even
possibly of positive characteristic.

2 Semi-effectivity

Around 2009, a problem of Eisenbud and M. Velasco was circulating by email. The
context was that π : X → P

n was the blow up of distinct points p1, . . . , pr ∈ P
n.

Thus the divisor class group of X is the free abelian group on the class [H ] of a
hyperplane H and the classes [E1], . . . , [Er ] where Ei is the blow up of pi . To
simplify notation, when referring to a divisor class F = d[H ] − m1[E1] − · · · −
mr [Er ], we will dispense with the brackets and just write F = dH − m1E1 −
· · ·−mrEr (thereby relying on the discernment of the reader to distinguish between
divisor classes and divisors in those rare cases where it might matter).

We will say F is semi-effective if sF is the class of an effective divisor for some
s > 0. The following problem is still open.
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Problem 2.1 (Eisenbud-Velasco Problem) Given integers mi > 0 and a divisor
class F = dH −m1E1 − · · · −mrEr , give a finite procedure to determine whether
|sF | is nonempty for some s > 0 (i.e., whether F is semi-effective).

2.1 Waldschmidt Constants

Problem 2.1 relates directly to Waldschmidt constants, a concept introduced in
[110] but which was gaining renewed interest in 2009. Some background is needed
in order to define Waldschmidt constants. Given points p1, . . . , pr ∈ P

n and
positive integers mi , a subscheme Z ⊂ P

n is defined by the ideal I (Z) =
∩iI (pi)mi ⊂ K[Pn] = K[x0, . . . , xn], where I (pi) is the ideal generated by
all homogeneous polynomials (i.e., forms) that vanish at pi . The scheme Z is
called a fat point subscheme and is denoted Z = m1p1 + · · · + mrpr . The ideal
I (Z) is homogeneous; the K-vector space span of the homogeneous elements of
I (Z) of degree t is denoted [I (Z)]t . The connection to F in Problem 2.1 is that
dim |F | + 1 = h0(X,OX(F )) = dimH 0(X,OX(F )), and there is a natural K-
vector space isomorphism H(X,OX(sF )) ∼= [I (sZ)]sd [70, Proposition 4.1.1].

To make use of this connection, given a fat point subscheme Z = m1p1 + · · · +
mrpr and a rational number t > 0, it will be convenient to define the Q-class
F(Z)t = tH −m1E1− · · ·−mrEr . We will say F(Z)t is semi-effective if mt is an
integer for some integer m > 0 for which |m(F(Z)t )| = |F(mZ)mt | �= ∅ (i.e., for
which H 0(X,OX(F (mZ)mt )) = [I (mZ)]mt �= (0)).

A quantity of interest with respect to I (Z) is the least integer t ≥ 0 such that
(0) � [I (Z)]t . This least t is denoted α(I (Z)); thus α(I (Z)) is the least degree
t such that there is a form F �= 0 of degree t in I (Z). The Waldschmidt constant
α̂(I (Z)) for I (Z) is an asymptotic version of α(I (Z)):

α̂(I (Z)) = inf
{α(I (mZ))

m
: m ≥ 1

}
.

This infimum is actually a limit [19, Lemma 2.3.1] (also see [69, Example 1.3.4]),
so

α̂(I (Z)) = lim
m→∞

α(I (mZ))

m
.

On the one hand, if d > α̂(I (Z)), then for some s > 0 we have [I (sZ)]sd �= (0),
so |sF | �= ∅ and hence F is semi-effective. On the other, if d < α̂(I (Z)), then
for all s > 0 we have [I (sZ)]sd = (0), so F is not semi-effective. However, it
is unclear how to tell whether or not F is semi-effective when d = α̂(I (Z)), so
computing α̂(I (Z)) is not a complete solution when α̂(I (Z)) turns out to be an
integer. There is also the issue of how does one compute α̂(I (Z)).
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Although integer values of α̂(I (Z)) occur, in most cases α̂(I (Z)) is in fact not
an integer. It is believed that examples of Z exist for which α̂(I (Z)) is not even
rational, but no examples for which an irrational value can be proved are currently
known.

Problem 2.2 Confirm that fat point schemes Z occur for which α̂(I (Z)) is not
rational.

When Z = p1 + · · · + pr ⊂ P
2 with the points pi being generic and r > 9

not a square, it is (in different words) a still open conjecture of M. Nagata that
α̂(I (Z)) = √r [90]. At the same time that he made the conjecture, Nagata showed
that F(Z)√r is not semi-effective when r = s2 is a square bigger than 9. In this case
we have α̂(I (Z)) = √r = s.

A complete solution to Problem 2.1 can be given in the special case that n = 2
when the points pi are generic, assuming the SHGH Conjecture [60, 71, 80, 101].
Given any divisor class F on X when n = 2, without assuming any conjectures,
there is a routine [72] based on quadratic Cremona transformations which results
in either a nef divisor G with G · F < 0 (and hence F is not semi-effective) or a
reduction to the case that F is a nonnegative integer linear combination of the classes
H ,H−E1, 2H−E1−E2, 3H−E1−E2−E3, . . . , 3H−E1−· · ·−Er . In the latter
case, one version of the SHGH Conjecture is that h0(X,OX(F )) = max(0, (F 2 −
F · KX)/2 + 1), where −KX = 3H − E1 − · · · − Er . It is not hard to see that a
nonnegative integer linear combination F of the classesH ,H −E1, 2H −E1−E2,
3H−E1−E2−E3, . . . , 3H−E1−· · ·−Er satisfies ((mF)2−mF ·KX)/2+1 > 0
for some m > 0 if and only if either F 2 > 0, or F 2 = 0 and −F ·KX ≥ 0.

Thus a complete solution to Problem 2.1 in the case of n = 2 and generic points
pi ∈ P

2 reduces to determining when a nonnegative integer linear combination F of
the classesH ,H−E1, 2H−E1−E2, 3H−E1−E2−E3, . . . , 3H−E1−· · ·−Er
is semi-effective. If either F 2 > 0, or F 2 = 0 and −F · KX ≥ 0, then F is semi-
effective; the converse is true if the SHGH Conjecture is true.

Much less can be said in general about when |F | is nonempty for F = dH −
m1E1−· · ·−mrEr in the case of general fat points in P

n for n > 2. Conjectures have
been given for n = 3 ([86, 87]). For n > 3 conjectures are lacking, but work has
been done (as a starting point see, for example, [16, 21, 83, 92] and the references
therein).

2.2 Computing and Bounding Waldschmidt Constants

Given a fat point subschemeZ ⊂ P
n, no algorithm is known for computing α̂(I (Z))

in general, but bounds are known which allow one, in principle, to compute α̂(I (Z))
arbitrarily accurately, and these bounds have given rise to additional open problems.
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One bound is obvious from the definition, namely

α̂(I (Z)) ≤ α(I (mZ))
m

holds for all m ≥ 1. Since α̂(I (Z)) is a limit, this bound approaches α̂(I (Z)) from
above as m grows.

A fundamental lower bound due to M. Waldschmidt and H. Skoda [102, 110] is

α(I (Z))

n
≤ α̂(I (Z)).

While the original proof was quite hard, this is an easy consequence of the
containment result I (mnZ) ⊆ I (Z)m of [51, 81]. (The original statement was
in terms of symbolic powers, so I (Z)(s) ⊆ I (Z)m for all s ≥ nm, but in the
context of an ideal I (Z) of fat points, we can take I (sZ) as the definition of
the sth symbolic power I (Z)(s) of I (Z).) Indeed, I (mnZ) ⊆ I (Z)m implies
α(I (mnZ)) ≥ α(I (Z)m) = mα(I (Z)), so α(I (mnZ))/(mn) ≥ α(I (Z))/n, and
taking limits gives the result.

A refinement of the Waldschmidt-Skoda lower bound [111, Lemme 7.5.2] is

α(I (mZ))

m+ n− 1
≤ α̂(I (Z)).

This follows (see [74]) by a similar argument from the containment I (s(m + n −
1)Z) ⊆ I (mZ)s [51, 81].

Given the points pi , α(Z) is in principle computable for every Z, and since
both α(I (mZ))

m+n−1 and α(I (mZ))
m

converge to α̂(I (Z)) as m → ∞, we see that we
can in principle determine by computation semi-effectivity of F(Z)t whenever
t �= α̂(I (Z)); viz., F(Z)t is semi-effective if t > α̂(I (Z)) and F(Z)t is not semi-
effective if t < α̂(I (Z)). If t �= α̂(I (Z)), one can confirm this by computing
α(I (mZ))
m+n−1 and α(I (mZ))

m
for sufficiently large m, but when t = α̂(I (Z)), one will

never be sure whether t = α̂(I (Z)) or whether t �= α̂(I (Z)) and one just has not
yet checked for large enough values of m.

A further refinement of the Waldschmidt-Skoda lower bound was conjectured by
Chudnovsky [26], which he proved for n = 2 but which remains open in general:

Conjecture 2.3 (Chudnovsky) Let Z ⊂ P
n be a fat point subscheme. Then

α(I (Z))+ n− 1

n
≤ α̂(I (Z)).
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Demailly [36, p. 101] extended this to the following still open conjecture:

Conjecture 2.4 (Demailly) Let Z ⊂ P
n be a fat point subscheme. Then

α(I (mZ))+ n− 1

m+ n− 1
≤ α̂(I (Z)).

Both, Conjectures 2.3 and 2.4, would follow if certain containments were true.
This will be discussed in more detail in §3. See [6, 13, 17], [14, 23, 24, 30, 44,
50, 54, 59, 67, 88, 92, 108] for selected articles exhibiting partial progress on these
conjectures and on work on computing Waldschmidt constants of ideals.

2.3 Index of Semi-effectivity

Semi-effectivity raises additional questions of current interest; see, for example,
[11]. Let Z ⊂ P

n be a fat point scheme and d an integer such that F(Z)d is semi-
effective. Call the least integer m > 0 such that |m(F(Z)d)| = |F(mZ)md | �= ∅

the semi-effectivity index of F(Z)d .
When n = 2, one can show the semi-effectivity index can be arbitrarily large.

Example 2.5 Let s > 3 be an integer and let r = s2 and t = s+1. Let p1, . . . , pr be
general points in P

2 and letZ = p1+· · ·+pr . Then it is known that |F(mZ)mt | �= ∅

if and only if (F (mZ)mt )2 − F(mZ)mt · KX ≥ 0 [28, 55, 96]; i.e., if and only if
m2(2s+1)+m(3s+3−s2) ≥ 0. When s ≥ 4, the leastm ≥ 1 for which this occurs
ism = �(s/2)−1�. Thus the semi-effectivity index for F(Z)t is approximately s/2.

Example 2.6 Assuming the SHGH Conjecture, one can even find F(Z)t with
arbitrarily large semi-effectivity index for any fixed r > 9 [27].

Example 2.7 In Examples 2.5 and 2.6 we have (F (Z)t )2 > 0. For an example of
F(Z)t with semi-effectivity index 2 such that 2(F (Z)t ) is the class of a reduced
irreducible curve of negative intersection (see [11, Example 3.2]), take the image
C of a general map of P1 → P

2 with image of degree 2d with d ≥ 3. Then C
has

(2d−1
2

)
nodes. Take Z to be the set of nodes with each nodal point taken with

multiplicity 1. Then F(Z)d is not the class of an effective divisor because 2(F (Z)d)
is the class of the proper transform C′ of C, and C′ has negative self-intersection.
For d = 3 we get a sextic with 10 nodes; see [82, p. 26, p. 51] for a specific such
curve (see [11, Example 3.1]).

The following problem seems to be open:

Problem 2.8 Determine whether there exists a fat point subscheme Z ⊂ P
2 and an

integer t such that F(Z)t has semi-effectivity index m > 2 where m(F(Z)t ) is the
class of a reduced irreducible curve of negative self-intersection.
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Line arrangements give examples F(Z)t with various values of the semi-
effectivity indexm and various negativity conditions but in these casesm(F(Z)t ) is
the class of a reducible curve.

Example 2.9 Let C ⊂ P
2 be the union of s > 2 general lines for s even, so s = 2a.

Let Z = p1 + · · · + pr , r =
(
s
2

)
, be the singular points of C. Note that each

of the s lines goes through s − 1 of the points, and each point pi is on exactly
2 of the lines. Let C′ be the proper transform of C on the blow up X → P

2 of
the points pi . Let L1, . . . , Ls be the s lines and let L′j be the proper transform
of Lj , so C′ = L′1 + · · · + L′s . Then C′ · L′j = s − 2(s − 1) = 2 − s < 0
and 2(F (Z)a) = [C′]. For i > 0, i(F (Z)a) · L′ < 0 so if i(F (Z)a) is the class
of an effective divisor, then each of L′j must be a component of i(F (Z)a), hence
i(F (Z)a) − [C′] = (i − 2)(F (Z)a) is the class of an effective divisor, so i ≥ 2.
Thus F(Z)a has semi-effective index 2. Note that the intersection matrix (L′i ·L′j ) of
C′ is diagonal (since the components L′j are disjoint) and thus (L′i · L′j ) is negative

definite (since (L′j )2 = 2− s < 0).

Example 2.10 ([11, Example 3.4]) Now assume F ⊂ K is a finite field with q
elements. Then P

2
F

has q2 + q + 1 points and q2 + q + 1 lines. Let p be any of
the points. Let Z be all of the points but p, so |Z| = q2 + q. There are q2 lines that
do not contain p. Together they give a curve C of degree q2 whose singular locus is
Z, and the multiplicity of C at each point of Z is q. Thus q(F (Z)q) is the class of
the proper transform C′ of C with respect to the blow up X → P

2 of the points of
Z. If L′ is the proper transform of any of the q2 lines comprising the components
of C, then C′ · L′ = (L′)2 = 1− (q + 1) = −q so, arguing as in Example 2.9, we
see F(Z)q has semi-effectivity index q and C′ has a negative definite intersection
matrix.

Examples of complex line arrangements giving rise to classes F(Z)t with semi-
effectivity index m > 2 (in particular m = 3) such that m(F(Z)t ) is the class of a
reduced curve with negative definite intersection matrix are especially interesting.

Example 2.11 ([11, Example 3.3]) Consider the curve C defined in P
2 over the

complex numbers by (xn − yn)(xn − zn)(yn − zn) = 0 for n = 3s for s ≥ 1.
Then C consists of 3n lines, with n2 triple points and 3 points of multiplicity n (i.e.,
t3 = 12 but t2 = 0 if n = 3, and t3 = n2 and tn = 3, but t2 = 0 if n > 3). Take
Z to be the singular points where the triple points are taken with multiplicity 1 and
the 3 points of multiplicity n are taken with multiplicity s. Take X to be P

2 blown
up at the points of Z. Then 3(F (Z)s) is the class of the proper transform C′ of C;
C′ consists of the disjoint union of the proper transforms of the components of C
(each of which is a line, and hence goes through n + 1 of the points of Z and thus
the proper transform of each line has self-intersection−n). Thus i(F (Z)s) is not the
class of an effective divisor for 0 < i < 3, so the semi-effectivity index of F(Z)s is
3. The intersection matrix of C′ is negative definite since it is the disjoint union of
the proper transforms of the lines, which have negative self-intersection.
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Two more related examples can be given, but in neither case is the intersection
matrix of m(F(Z)t ) negative definite and in the second case m(F(Z)t ) is not
reduced. They come from examples of complex line arrangements having no simple
crossings (i.e., any point where two lines cross is also on at least one additional line,
so t2 = 0).

Example 2.12 There is a curve C due to F. Klein [8, 9, 85] consisting of 21 lines
whose singular locus consists of 21 quadruple points and 28 triple points (i.e., t3 =
28 and t4 = 21; in particular, there are no double points so t2 = 0). Each of the
21 lines goes through 4 of the triple points and 4 of the quadruple points. Let Z
be the 49 singular points and let X → P

2 be the blow up of the points of Z. Let
E3,i , 1 ≤ i ≤ 28, be the exceptional curves of the 28 triple points, and let E4,i ,
1 ≤ i ≤ 21, be the exceptional curves of the 21 quadruple points. If L′ is the proper
transform of any of the 21 lines, then i(F (Z)7) · L′ = −i, so if i(F (Z)7) is the
class of an effective divisor, then L′ is a component of the effective divisor. Since
3(F (Z)7) is the class of C′ + E4,1 + · · · + E4,21, where C′ is the proper transform
of C and thus consists of the proper transforms of the 21 lines, we see that F(Z)7
has semi-effectivity index 3. The intersection matrix is not negative definite since
C′ + 4(E4,1 + · · · + E4,21) has positive self-intersection.

Example 2.13 There a curve C due to A. Wiman [8, 9, 112] consisting of 45 lines
whose singular locus consists of 36 quintuple points, 45 quadruple points and 120
triple points (i.e., t3 = 120, t4 = 45 and t5 = 36; there are no double points so t2 =
0). Each of the 45 lines goes through 8 of the triple points, 4 of the quadruple points
and 4 of the quintuple points. LetZ be the 201 singular points and letX→ P

2 be the
blow up of the points of Z. Let E3,i , 1 ≤ i ≤ 120, be the exceptional curves of the
120 triple points, let E4,i , 1 ≤ i ≤ 45, be the exceptional curves of the 45 quadruple
points and letE5,i , 1 ≤ i ≤ 36, be the exceptional curves of the 36 quadruple points.
If L′ is the proper transform of any of the 45 lines, then i(F (Z)15) · L′ = −i, so if
i(F (Z)15) is the class of an effective divisor, then L′ is a component of the effective
divisor. Since 3(F (Z)15) is the class ofC′+E4,1+· · ·+E4,45+2(E5,1+· · ·+E5,36),
where C′ is the proper transform of C and thus consists of the proper transforms of
the 45 lines, we see that F(Z)15 has semi-effectivity index 3, but 3(F (Z)15) is not
the class of a reduced divisor. The intersection matrix is not negative definite since
C′ + 4(E4,1 + · · · + E4,45)+ 5(E5,1 + · · · + E5,36) has positive self-intersection.

The preceding three examples come from complex line arrangements having
no simple crossings (i.e., t2 = 0). It is interesting to ask what other such line
arrangements there are. There is of course the trivial arrangement, consisting of
3 or more lines through a point. It is well known that t2 > 0 for any nontrivial
arrangement of lines over the reals [8]. Over the complex numbers, the only
nontrivial examples currently known are those of Examples 2.11, 2.12 and 2.13;
no examples have been found since the example of Klein in 1879 and of Wiman in
1896. This leads to an open problem relevant also to some of the topics that will be
discussed later.
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Problem 2.14 Classify all reduced curves in the complex projective plane which
are unions of 2 or more lines but which have no singular points of multiplicity 2
(i.e., such that t2 = 0).

Examples Z ⊂ P
2 where F(Z)t can have arbitrarily large semi-effectivity index

m even though m(F(Z)t ) has negative definite intersection matrix can be given but
in these cases some of the points of Z are infinitely near and m(F(Z)t ) is the class
of a non-reduced curve [11, Example 3.5].

Note that the surfaces X on which these negative definite examples live are not
all the same. These examples obtain larger and larger semi-effectivity indices by
blowing up more and more points of P2. This raises the following question, which
is open regardless of the characteristic of K:

Question 2.15 Can one blow up a fixed number of points of P2, possibly infinitely
near, to obtain a surfaceX having a sequence F1, F2, F3, . . . of classes of increasing
semi-effective index mi such that each miFi has negative definite intersection
matrix?

If we require only that F 2
i < 0 and not that the intersection matrix of miFi

be negative definite, then Question 2.15 has an affirmative answer if the SHGH
Conjecture is true (see [11, Example 1.2])

2.4 Bounded Negativity Conjecture

If Question 2.15 were to have an affirmative answer, then we would have a sequence
of classes miFi of effective divisors Ci with 0 > (m1F1)

2 > (m2F2)
2 >

(m3F3)
2 > . . ..

Such an example would be interesting in terms of semi-effectivity indices, but
it would be even more interesting if the curves Ci were all reduced, or reduced
and irreducible. A conjecture relevant to this is known as the Bounded Negativity
Conjecture. This is a still open folklore conjecture. It is not known who first
proposed it, but it has an oral tradition that goes back at least to F. Enriques [10].
We state two versions:

Conjecture 2.16 (Bounded Negativity Conjecture) Let X be any smooth complex
projective rational surface. Then there is a bound BX such that for every reduced
curve C ⊂ X we have C2 ≥ BX.

A second equivalent [10, Proposition 5.1] version is:

Conjecture 2.17 (Bounded Negativity Conjecture) Let X be any smooth complex
projective rational surface. Then there is a bound bX such that for every reduced
irreducible curve C ⊂ X we have C2 ≥ bX.

Remark 2.18 Examples of nonrational surfaces in positive characteristics have been
known for some time for which the boundsBX and bX do not exist; see [79, Exercise
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V.1.10]. It is now known that such failure of bounded negativity is a very general
positive characteristic phenomenon: in positive characteristic, after blowing up an
appropriate finite set of points, every smooth projective surface has unbounded
negativity [25]. Previous to [25], the main fact known was that if X is a smooth
projective surface in any characteristic such that −KX is semi-effective, then it
follows by adjunction that bounded negativity holds for X. Indeed, given a reduced,
irreducible curve C ⊂ X, we then have C2 = 2gC − 2 − C · KX, so C2 ≥ −2
unless C is a component of −mKX, where m is the index of semi-effectivity of
−KX, but−C ·mKX is bounded below since |−mKX| has only finitely many fixed
components.

Remark 2.19 If X is obtained by blowing up r distinct points of P2, and if bX is
a lower bound for C2 for reduced irreducible curves C, then we can take BX =
rbX [10, Proposition 5.1]. Here we note that if the points are generic, the SHGH
Conjecture implies that bX = −1, hence BX = −r is optimal (take C to be the
union of the exceptional curves of the points blown up). IfX is obtained by blowing
up r ≤ 9 distinct points of P2, using C2 + C · KX = 2gC − 2 and the fact that
−KX is the class of an effective divisor, it follows that we can take bX = −8. (We
get C2 ≥ −2 unless C is a component of −KX, in which case we have C2 ≥ −8,
where C2 = −8 comes from taking C to be the proper transform of the line through
9 collinear points.)

The concept of H -constants was introduced to explore the Bounded Negativity
Conjectures (see for example [8, 48, 93, 103]). Given a reduced singular curve C ⊂
P

2, let S = {p1, . . . , pr } be the set of singular points of C, letmi be the multiplicity
of pi and let d be the degree of C.

Define

H(C) = d
2 −∑

m2
i

r
= (C

′)2

r
,

where X is the surface obtained by blowing up the points pi and C′ ⊂ X is the
proper transform of C.

Example 2.20 If C is the image of P1 in P
2 under a general map of degree d > 2

(and hence as discussed above has
(
d−1

2

)
singular points, all nodes), then

H(C) = d
2 − 4

(
d−1

2

)
(
d−1

2

) = −2+ 6d − 4

d2 − 3d + 2
.

The results of [25] give examples in positive characteristic of irreducible reduced
singular curves C ⊂ P

2 with H(C) ≤ −2, but no examples are currently known in
characteristic 0.

Question 2.21 Does there exist an irreducible reduced singular complex curve C ⊂
P

2 with H(C) ≤ −2?
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Remark 2.22 If the answer is negative, then for the blow up X of P2 at r distinct
points we would have the bounds bX = −2r and BX = −2r2.

At the extreme opposite to irreducible curves we can consider H(C) for totally
reducible curves C; i.e., reduced curves C which are unions of lines. Given a curve
C consisting of d ≥ 2 lines, so for k > 1, tk is the number of points which are
on exactly k lines. Then the number of singular points of C is

∑
k≥2 tk and an easy

counting argument gives
(
d
2

) =∑
k≥2

(
tk
2

)
. Using this we obtain

H(C) = d −
∑
k≥2 ktk∑

k≥2 tk
.

Example 2.23 ([8]) If the lines of which C is composed are defined over the reals,
then one can show H(C) > −3. If we denote by Cr the union of the lines
determined by the edges of a regular r-gon together with the lines of bilateral
symmetry of the r-gon, then

lim
r→∞H(Cr) = −3.

If the lines of which C is composed are defined over the complex numbers, then
one can show H(C) > −4. For such a C, the most negative value for H(C)
currently known is for the arrangement of 45 lines discussed in Example 2.13,
which gives H(C) = −225

67 or about −3.358. Part of what makes H(C) as negative
as it is, is the fact that t2 = 0. Thus Problem 2.14 is relevant here. If there were
other line arrangements with t2 = 0 than those currently known, they might give
more negative values for the H -constant than Wiman’s curve gives. (The curves
in Example 2.11 have H > −3 but approach −3 in the limit, while the curve in
Example 2.12 has H = −3.)

Remark 2.24 If one considers reduced but not irreducible complex curves which are
not unions of lines it is possible to get values of H -constants less than the H(C) =
−225

67 given by the Wiman line arrangement, but they are rare. For example, [94]
gives an example with H(C) = −1173/347 ≈ −3.38, while [95] gives examples
of curves C with ordinary singularities whereH(C) is arbitrarily close to but bigger
than −25/7 ≈ −3.571 (using an approach similar to that used later by [25]). The
most negative values currently known haveH(C) arbitrarily close to but bigger than
−4 (see [12, 97, 98]). No examples are yet known with H(C) ≤ −4.

This raises the following question:

Question 2.25 Does there exist a reduced singular curve C ⊂ P
2 over the complex

numbers with H(C) ≤ −4?

If the answer is negative, then for the blow up X of P2 at r distinct points over
the complex numbers we would have the bound BX = −4r .
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Fig. 1 Grünbaum’s rational
simplicial configuration
A(37, 3) of 37 lines (only 36
are shown; the 37th is the line
at infinity)

Here is another open problem:

Problem 2.26 Determine the infimum of H(C) when C is a union of lines defined
over the rationals.

Example 2.27 The most negative value of H(C) currently known when C is a
union of lines defined over the rationals is H(C) = −503/181 ≈ −2.779, where
C consists of 37 lines with t2 = 72, t3 = 72, t4 = 24, t6 = 10 and t8 = 3.
This arrangement (shown in Fig. 1) is denoted A(37, 3) in Grünbaum’s list of real
simplicial arrangements of lines [65]. (A real arrangement of lines being simplicial
means that the lines give a simplicial decomposition of the real projective plane.
Simplicial arrangements are hard to find. Only three infinite families and 42 sporadic
examples are currently known, and none of the sporadic examples have more than
37 lines. The infinite families are: the arrangements where all but one of the lines
go through a single point; the arrangements described above corresponding to the
sides and lines of symmetry of regular n-gons for odd n; and the arrangements
corresponding to the sides and lines of symmetry of regular n-gons for even n with
the addition of the line at infinity. Only 37 of the 42 known sporadic cases are given
in [65]. Four more were found in 2011 [32] and another in 2020 [33].)

Remark 2.28 If K is a finite field of q elements, then P
2 has q2 + q + 1 lines and

q2 + q + 1 points. If we take C to be the union of all of the q2 + q + 1 lines, then
the singular set of C consists of all of the q2 + q + 1 points, and each point has
multiplicity q + 1, so we get H(C) = −q. Thus over an algebraically closed field
K of positive characteristic p, there are line arrangements C where H(C) can be
arbitrarily negative.



Open Problems 457

3 Containment Problems

The Containment Problem concerns studying containments of symbolic powers of
an ideal in their ordinary powers. For a prime ideal P in a Noetherian commutative
ring R, the mth symbolic power P (m) is just the P -primary component of the
primary decomposition of Pm. For a fat point subscheme Z ⊂ P

n we have
R = K[Pn], a polynomial ring, and we recall the mth symbolic power (I (Z))(m)

can be defined most easily as (I (Z))(m) = I (mZ).
Related to Wiles proof of the Fermat Conjecture, Eisenbud and Mazur proposed

the following still open conjecture ([52]; see [35] for discussion):

Conjecture 3.1 (Eisenbud and Mazur) Let K be the field of complex numbers and
let P ⊂ R = K[[x0, . . . , xn]] be a prime ideal. Then P (2) ⊆ MP , where M =
(x0, . . . , xn).

3.1 Related Containment Problems

A natural thing to do is to replaceM by P , K by any field, and R by K[x0, . . . , xn].
Examples show that P (2) ⊆ P 2 can fail, so one needs to make P (2) a little smaller
to have a reasonable problem; how much smaller depends on the height. This line
of thinking is suggestive of a version of a still open problem proposed around 2000
by Huneke (see [35, Question 2.21]):

Question 3.2 (Huneke) Does there exist a prime ideal P ⊂ K[x0, . . . , xn] of height
2 such that the containment P (3) ⊆ P 2 fails?

About the same time Huneke also asked:

Question 3.3 (Huneke) Does there exist a finite set of points Z = p1 + · · · + pr ⊂
P

2 such that the containment I (3Z) ⊆ I (Z)2 fails?

Note by [51, 81] that P (4) ⊆ P 2 always holds for height 2 primes (so it is
compelling to ask if P (3) ⊆ P 2 also holds), and that we always have I (mZ) ⊆
I (Z)r when m ≥ rn for a fat point subscheme Z ⊂ P

n. The bound m ≥ rn is
optimal in the sense that if c < n, then there are Z and m and r with m ≥ rc for
which I (mZ) ⊆ I (Z)r fails [19].

However, there are other senses in which the bound m ≥ rn for ensuring
I (mZ) ⊆ I (Z)r might not be optimal. For example, perhaps there is a c depending
only on n such thatm ≥ rn− c implies I (mZ) ⊆ I (Z)r . It is easy to find examples
of Z for which I ((nr − n)Z) ⊆ I (Z)r fails, so the author proposed the following
conjecture [7]:

Conjecture 3.4 Let Z ⊂ P
n be a fat point subscheme. Then I ((nr − n + 1)Z) ⊆

I (Z)r holds for all r > 0.
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The first failure found is for n = r = 2 and thus also answers Question 3.3
negatively. In this case Z is the set of singular points of the curve (x3 − y3)(x3 −
z3)(y3 − z3) in the complex projective plane [49]. In fact, the reduced scheme Z of
singular points for any of the known nontrivial examples of complex curves given
by unions of lines with t2 = 0 (see the discussion after Problem 2.14) give failures
of I (3Z) ⊆ I (Z)2. (This is another reason why Problem 2.14 is of interest.)

Given a failure of containment, one can construct more using flat extensions
[2]. Failures of I (3Z) ⊆ I (Z)2 for a fat point subscheme Z ⊂ P

2 occur also
in positive characteristics [18], over the reals [34] and even over the rationals
[46]. Some failures of containment are related to both line arrangements and
hyperplane arrangements arising from complex reflection groups; see [43]. Failures
of I ((nr − n + 1)Z) ⊆ I (Z)r for various r and n occur in positive characteristics
[78] but no examples over the complex numbers are known when n > 2 or r > 2.
The next simplest open case is n = 2 and r = 3. Thus we have the following open
problem:

Problem 3.5 Let Z ⊂ P
2 be a fat point subscheme over the complex numbers.

Must I (5Z) ⊆ I (Z)3 hold?

In fact, regardless of K, in all cases checked I ((nr − n + 1)Z) ⊆ I (Z)r holds
for r � 0. This suggests the following conjecture (it is a version of a conjecture of
Grifo [63]):

Conjecture 3.6 (Grifo) Let Z ⊂ P
n be a fat point subscheme. Then I ((nr − n +

1)Z) ⊆ I (Z)r holds for all r � 0.

Note that the difference between I (mZ) ⊆ I (Z)r with m = nr versus m =
nr−n+1 is that in the second casem is smaller, and thus I (mZ) is bigger. Another
approach to the optimality of I (nrZ) ⊆ I (Z)r is instead of replacing I (nrZ) by
something bigger, one might replace I (Z)r by something smaller. This is one of the
approaches taken in [74], which proposed the following still open conjecture (and
which has a flavor similar to Conjecture 3.1):

Conjecture 3.7 (Harbourne and Huneke) Let Z ⊂ P
n be a fat point subscheme

and let M = (x0, . . . , xn), where K[Pn] = K[x0, . . . , xn]. Then I (nrZ) ⊆
M(n−1)r I (Z)r holds for all r > 0.

If this conjecture is true, then so is Conjecture 2.3, using the same argument as
used near the beginning of §2.2 to prove the Waldschmidt-Skoda bound; see [74],
which also asked:

Question 3.8 (Harbourne and Huneke) Let Z ⊂ P
n be a fat point subscheme and

let M = (x0, . . . , xn), where K[Pn] = K[x0, . . . , xn]. Does I (r(m + n − 1)Z) ⊆
M(n−1)r I (mZ)r hold for all r > 0?

In the same way, if this conjecture is true, then so is Conjecture 2.4 (see [74]).
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To study containments I (mZ) ⊆ I (Z)r , the notion of the resurgence was
introduced by [19]. Given a fat point subscheme Z ⊂ P

n, define the resurgence
ρ(I (Z)) as

ρ(I (Z)) = sup
{m
r
: I (mZ) �⊆ I (Z)r

}
.

Subsequently an asymptotic version was introduced [66]:

ρ̂(I (Z)) = sup
{m
r
: I (mtZ) �⊆ I (Z)rt , t � 0

}
.

(A second version of asymptotic resurgence was also introduced in [66], but by [15]
it is the same as this one.)

Although values of resurgences have been computed in some special cases (see,
for example, [19, 23, 37, 46, 66, 84]), it is typically quite hard to compute ρ(I (Z)).
However, by [19, 66] we have

1 ≤ α(I (Z))
α̂(I (Z))

≤ ρ̂(I (Z)) ≤ ρ(I (Z)) ≤ min
{
n,

reg(I (Z))

α̂(I (Z))

}
,

where reg(I (Z)) is the Castelnuovo-Mumford regularity.
Examples are known with ρ̂(I (Z)) < ρ(I (Z)) ([46]; see also [41, Corollary

4.14] and [42]) and with ρ̂(I (Z)) = 1 (see [20] and [41, Corollary 4.16]), but no
examples are known with 1 = ρ̂(I (Z)) < ρ(I (Z)) (cf. [41, Corollary 4.17]) or
with either ρ̂(I (Z)) = n or ρ(I (Z)) = n for n > 1. This raises the following open
questions (see [75]):

Question 3.9 Does there exist a fat point subscheme Z ⊂ P
n with 1 = ρ̂(I (Z)) <

ρ(I (Z))?

Question 3.10 Does there exist a fat point subscheme Z ⊂ P
n with ρ̂(I (Z)) = n

or ρ(I (Z)) = n for n > 1?

In relation to Question 3.10, if ρ̂(I (Z)) < n (and hence also if ρ(I (Z)) < n),
then Grifo’s Conjecture holds for Z (see [63, Remark 2.7] and [64, Proposition
2.11]).

There is some evidence that the answer to Question 3.9 is also negative. In
particular, using a version of the Briançon-Skoda Theorem, one can show that
ρ̂(I (Z)) = 1 implies ρ(I (Z)) = 1 for fat point subschemes Z ⊂ P

2 [75, Corollary
2.9].

The proof uses ideas involving integral closure (thereby bringing in the Briançon-
Skoda Theorem as a tool). In fact, one can show [41] that

ρ̂(I (Z)) = sup
{m
r
: I (mZ) �⊆ I (Z)r

}
,

where I (Z)r is the integral closure of I (Z)r .
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This suggests defining an integral closure version of the resurgence, namely

ρint (I (Z)) = sup
{m
r
: I (Z)m �⊆ I (Z)r

}
.

One can then show [75, Corollary 2.10] that ρ(I (Z)) = 1 if and only if
ρint (I (Z)) = ρ̂(I (Z)) = 1. But for a fat point subscheme Z ⊂ P

2 one can show
[75, Corollary 2.8] (as a consequence of a version of the Briançon-Skoda Theorem)
that ρint (I (Z)) = 1, and hence we obtain for P2 that ρ(I (Z)) = 1 if and only if
ρ̂(I (Z)) = 1.

This thus raises the following question [75]:

Question 3.11 Does there exist a fat point subscheme Z ⊂ P
n for n > 2 with

ρint (I (Z)) > 1?

We close this section with another open problem.

Problem 3.12 Let Z be the set of 49 singular points of Klein’s curve of degree 21
which is a union of lines with t2 = 0 (see Example 2.12). Compute ρ̂(I (Z)).

For Z as in Problem 3.12, computing ρ̂(I (Z)) is equivalent to computing
α̂(I (Z)) (see [9, Theorems 1.1, 1.4]).

4 Splitting Types

A locally free sheaf on a smooth rational curve C splits as a sum of line bundles.
Thus a rank 2 bundle V will be isomorphic to OC(a)⊕OC(b) for some a and b (the
couple (a, b) with a ≤ b is called the splitting type of V ). This raises the question
of what values of a and b can occur, based on some knowledge of V and C.

This was answered by Eisenbud and Van de Van [53] in the case that V is the
normal bundle of C where C is a smooth rational curve in P

3 of degree d ≥ 4 (and
K has characteristic 0). The answer they found was that the splitting type (a, b)
satisfied a+ b = 4d− 2 with d+ 3 ≤ a ≤ 2d− 1 and that every such splitting type
occurs for some C.

4.1 Ascenzi Curves and the SHGH Conjecture

Ascenzi [4] (a 1985 PhD student of Eisenbud at Brandeis) studied a related
problem. Given a reduced irreducible rational curve C ⊂ P

2 of degree d and the
normalization morphism π : C′ → C ⊂ P

2 (so C′ is smooth), Ascenzi studied
the pullback π∗(T ) of the tangent bundle T of P2. For expositional efficiency, it is
convenient to express her results in terms of the splitting type (a, b) of π∗(T (−1))
(where T (−1) = T ⊗ OP2(−1)). One can show that a + b = d and 0 ≤ a, b and
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we may assume a ≤ b. In this situation we will call (a, b) the splitting type of C
and also of C′. For the special case that d = 1 we have (a, b) = (0, 1). For d > 1
we always have a > 0.

There are significant applications where what is wanted is to know whether a
rational curve C ⊂ P

2 of degree dC is balanced, meaning the splitting type (a, b)
satisfies 0 ≤ b − a ≤ 1. Ascenzi [4] showed a general plane rational curve is
balanced. Ascenzi also showed that each pair (a, b) satisfying a + b = d > 1 and
0 < a ≤ d/2 arises as the splitting type for some C of degree dC = d.

The type is heavily affected by the multiplicities of the singular points of C. For
example, if C has a point of multiplicity m, then Ascenzi showed that

min(m, dC −m) ≤ a ≤ min(dC −m, dC/2).

Note that we get tighter bounds on a the largerm is. In particular, ifm is small, then
we get only m ≤ a ≤ dC/2, but if m is big enough we get dC − m ≤ a ≤ dC − m
and hence a = dC − m. Thus there is a point where m is big enough to determine
a. Indeed, if 2m + 1 = dC , then a = m while if 2m + 1 > d, then a = dC − m.
Putting these together we get that if 2m + 1 ≥ dC , then Ascenzi’s bounds imply
a = min(m, dC −m) and hence b = max(m, dC −m).

Thus it makes sense to focus on the maximum multiplicity, hence let mC be the
multiplicity of the point of maximum multiplicity of C. We now make a definition:
if 2mC + 1 ≥ dC , the curve C is said to be Ascenzi (see [61, Definition 1.1]).

If C is Ascenzi, it follows it is balanced if 2mC ≤ dC + 1, otherwise it is
unbalanced. Thus we know which Ascenzi curves are balanced and that a general
plane rational curve of degree d is balanced. Note that a general plane rational
curve C has mC = 2, and so cannot be Ascenzi if dC > 5. Moreover, we have
the following fact.

Proposition 4.1 The double points of a general plane rational curve C are not
themselves general if dC ≥ 6.

Proof The curve C has
(
d−1

2

)
double points. Let d = dC . If the points were general,

we could fix
(
d−1

2

) − 1 of the double points and choose different points p and p′
for the last one. We thus get two curves, C and C′, where both are singular at the(
d−1

2

) − 1 fixed points but C is singular at p and C′ is singular at p′. We get C ·
C′ ≥ 4

(
d−1

2

) − 4 and this is more than d2 when d > 6, which implies C = C′, a
contradiction. Thus the double points cannot be general if d > 6. So now say d = 6.
It is easy to see that there is a unique cubic through 9 general points and it is known
that there is a unique sextic through 9 general points of multiplicity 2 (see [72] or
[73]). Indeed the sextic is the cubic doubled. In any case, the 10th double point of a
sextic with 10 cannot be general. ��

This suggests it might be of interest to invert the problem. Instead of studying
the singularities of general plane rational curves, we can study plane rational curves
whose singular points are general. The splitting type of such curves turns out to be
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relevant to determining the Betti numbers of ideals I (Z) of fat point subschemes
Z ⊂ P

2 when the points of Z are general.
Let Z = m1p1 + · · · + mrpr ⊂ P

2 be a fat point subscheme. The minimal free
graded resolution of I (Z) ⊂ R = K[P2] is of the form

0→ F1 → F0 → I (Z)→ 0,

where F0 = ⊕iGiR and F1 = ⊕j SjR are graded R-modules, with {Gi} being a
minimal set of homogeneous generators for I (Z) and {Sj } being a minimal set of
homogeneous syzygies. Finding the Betti numbers of I (Z) amounts to finding how
many Gi and Sj there are of each degree. Let γt be the number of elements Gi
there are of degree t , and let σt be the number of elements Sj there are of degree
t . The Hilbert function of I (Z) is defined to be HI(Z)(t) = dim[I (Z)]t . Likewise,
the Hilbert function of Fi is HFi (t) = dim[Fi]t . If we know HI(Z), then finding γt
amounts to finding the dimension of the cokernel of the multiplication map μZ,t :
[I (Z)]t ⊗ [R]1 → [I (Z)]t+1 for each t ≥ 0. Knowing γt allows us to compute the
Hilbert function of F0 as HF0(t) =

∑
s≤t γs

(
t−s+2

2

)
. Then we have σt = HF0(t) −

HI(Z)(t).
If the points pi are general, we can, assuming the SHGH Conjecture, obtain

HI(Z). Computing the dimension of the cokernel of μZ,t in any degree t > α(Z),
reduces (assuming the SHGH Conjecture) to the case of μiZ′,it+1, where F(Z′)t =
C is a smooth rational curve of self-intersection −1 with t = α(Z′) and 1 ≤ i ≤ t
(see [62]).

When the points pi are general, given t it is known exactly which multiplicities
mi give rise to a fat point subscheme Z = m1p1 + · · · + mrpr such that F(Z)t is
the class of a smooth rational curve C of self-intersection −1 with t = α(Z); they
can be enumerated recursively for each t (see [91]). For such a Z, this raises the
following problem:

Problem 4.2 ([62, Problem 3.2]) Let the points pi be general and let Z = m1p1+
· · · + mrpr ⊂ P

2 be a fat point subscheme such that F(Z)t = C is the class of
a smooth rational curve of self-intersection −1 with t = α(Z). Find the minimal
number of homogeneous generators for I (iZ) in degree s = it + 2 for 1 ≤ i ≤ t .

A still open conjectural answer has been proposed:

Conjecture 4.3 ([62, Conjecture 3.4]) Let the points pi be general and let Z =
m1p1+· · ·+mrpr ⊂ P

2 be a fat point subscheme such that F(Z)t = C is the class
of a smooth rational curve of self-intersection −1 with t = α(Z). The minimal
number of homogeneous generators for I (iZ) in degree s = it + 2 for 1 ≤ i ≤ t is(
i−a

2

)+ (
i−b

2

)
, where (a, b) is the splitting type of C.

This conjecture holds when C is Ascenzi by [62, Theorem 3.3], but when C is
not Ascenzi one faces two hurdles: the first is that the conjecture is still mostly open
in those cases, and the second is that we do not know the splitting type in those
cases.
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For the blow up X of P2 at r < 9 generic points, there are only finitely many
classes of smooth rational curves C with C2 = −1, and each is Ascenzi, but for
r = 9 generic points there are infinitely many such C, of which only finitely many
are Ascenzi; see [61]. Conjecture 1.7 of [61] proposes a formula for their splitting
types (there is not even a conjecture when r > 9):

Conjecture 4.4 Let X be the blow up of P
2 at 9 general points. Let H be the

pullback to X of the class of a line. Let C be a smooth rational curve on X with
C2 = −1, and assume C is the proper transform of a plane curve C. Let (a, b) be
the splitting type of C (so a+b = C ·H is the degree of C). If there is a divisor class
A such that 2A = C +KX +H , then bC − aC = 2; otherwise, 0 ≤ bC − aC ≤ 1.

Recent work of Ascenzi [5] developing a recursive procedure for determining
splitting types for non-Ascenzi curves suggests progress on this conjecture is within
reach.

4.2 Unexpected Curves

Splitting types associated to line arrangements [38, 56, 89] also arise as an important
feature in research on unexpected curves [29, 39, 40, 57]. This burgeoning area has
taken off in several directions [45, 47, 58, 76, 77, 104–106, 109]. Here we will focus
on the original setting [29] of plane curves of degree d = m + 1 having a general
point p of multiplicitym and containing a reduced subscheme Z′ = p1+· · ·+pr ⊂
P

2 of points, where mp fails to impose independent conditions on [I (Z′)]d .
One motivation for the concept of unexpected curves is the SHGH Conjec-

ture. This conjecture proposes an answer to the question of when a fat point
subscheme Z = m1p1 + · · · + mrpr ⊂ P

2 with [I (Z)]d �= (0) fails to
impose independent conditions on the vector space [R]d = [K[P2]]d of forms
of degree d. A form F which vanishes at a point pi to order mi must satisfy(
mi+1

2

)
linear conditions; if K has characteristic 0, these conditions are that all

partial derivatives of order up to mi − 1 must vanish at pi . Thus [I (Z)]d ⊂
[R]d is the solution set of

∑
i

(
mi+1

2

)
linear conditions, hence dim[I (Z)]d ≥

max
(

0, dim[R]d −∑
i

(
mi+1

2

)) = max
(

0,
(
d+2

2

)−∑
i

(
mi+1

2

))
. These conditions

are independent for d � 0 (indeed for d + 1 ≥ ∑
i mi), but can fail to be

independent in general even in cases when [I (Z)]d �= (0), and it is of interest to
understand when this can happen.

It is hoped that insight into this problem can be gained by making it broader. One
way to do that is to consider vector subspaces V ⊂ [R]d and fat point subschemes
Z such that [I (Z)]d ∩V �= (0) yet Z fails to impose impose independent conditions
on V . The paper [29] that introduced this approach focused on the case where V =
[I (Z′)]d for d = m+ 1 and Z′ = p1 + · · · + pr ⊂ P

2, with Z = mp for a general
point p, hence [I (Z′)]d ∩ V = [I (mp + Z′)]d .
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We say that Z′ has unexpected curves in degree d = m+ 1 if for a general point
p we have

dim[I (mp + Z′)]d > max

(
0, dim[I (Z′)]d −

(
m+ 1

2

))
.

One can also define unexpected hypersurfaces in P
n more generally. The reason

for starting with n = 2, where Z′ ⊂ P
2 is a finite reduced scheme of points, V =

[I (Z′)]d , Z = mp and d = m + 1, is that it was an example of this kind that first
arose and prompted the definition of the concept of unexpectedness, and tools were
at hand for trying to understand examples of this kind better.

One of the principal tools is that of the splitting type. Given Z′ = p1+· · ·+pr ⊂
P

2, let Li be the line dual to the point pi , and let CZ′ be the curve CZ′ = L1 ∪ · · · ∪
Lr . The curve CZ′ is defined by a single reduced form F of degree r . Let L be a
general line. Assume K has characteristic 0 and take K[P2] to be K[x, y, z]. We

have the sheaf map O3
P2

∇F−→ OP2(d − 1) given by the matrix ∇F = [Fx, Fy, Fz]
of partials of F . This gives the exact sheaf sequence

0→ D→ O3
P2
∇F−→ OP2(d − 1)

where D is a rank 2 bundle, called the derivation bundle. By Grothendieck’s splitting
lemma, the restriction DL of D to L is thus isomorphic to OL(−a) ⊕ OL(−b)
for some integers 0 ≤ a ≤ b. We refer to (a, b) as the splitting type of CZ′ ,
denoted (aZ′ , bZ′). (See [29, Appendix] for the definition when K has positive
characteristic.)

Example 4.5 Let Z′ = p1 + p2. We may, up to choice of coordinates, assume CZ′
is defined by F = xy, so ∇F = [y, x, 0], hence the global sections of D(t) consist
of expressions of the form (Gx,−Gy,A) where G is a form of degree t − 1 and A
is a form of degree t , so D already splits as OP2(−1)⊕OP2 , thus (a, b) = (0, 1).

Let (a, b) = (aZ′ , bZ′) be the splitting type of CZ′ . The relevance to unexpected
curves is [29, Lemma 3.3], which says that

dim[I (jp + Z′)]j+1 = max(0, j − a + 1)+max(0, j − b + 1). (4.1)

Note that (a, b) always satisfies a+b+1 = |Z′|, where |Z′| is the number of points
of Z′.

One of the main results of [29] is:

Theorem 4.6 ([29, Theorem 1.2]) Let Z′ ⊂ P
2 be a finite set of points. Let

(a, b) = (aZ′ , bZ′) be the splitting type of CZ′ . Then Z′ admits an unexpected curve
of some degree if and only if 2a + 2 < |Z′| = a + b + 1 but no subset of a + 2
(or more) of the points is collinear. Moreover, if Z′ admits an unexpected curve
of some degree, the degrees j for which Z′ has an unexpected curve are precisely
a < j ≤ |Z′| − a − 2 = b − 1.
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We thus have:

Corollary 4.7 Let Z′ ⊂ P
2 be a finite set of points. Let (a, b) = (aZ′ , bZ′) be

the splitting type of CZ′ . If Z′ admits an unexpected curve of degree m + 1, then
b − a > 1 and 2m− b − a − 1 = 2m− |Z′| < b − a − 4.

Proof We have b − a > 1 since 2a + 2 < |Z′| = a + b + 1. We also have
m+ 1 = j ≤ |Z′| − a − 2 = b− 1, so 2m+ 2 ≤ 2b− 2 = (|Z′| − a − 1)+ b− 2
so 2m+ 1− |Z′| ≤ b− a− 4 hence 2m− b− a− 1 = 2m− |Z′| < b− a− 4. ��
Example 4.8 If Z′ has an unexpected curve and has splitting type (a, b), then a ≥ 2
with a = 2 if and only if K has characteristic 2. Indeed, there cannot be unexpected
curves of degree less than 3 for any Z′ (and hence by Theorem 4.6 we must have
a + 1 ≥ 3). To see this, note from the definition that an unexpected curve of
degree d = m + 1 must have m > 0, but a general point of multiplicity 1 always
imposes independent conditions on [I (Z′)]d , so in fact we need m > 1. Thus the
first possibility is m = 2, and indeed there is a Z′ with a cubic unexpected curve; it
occurs for a unique Z′ [3] and it is irreducible. In this case Z′ consists of the 7 points
of the Fano plane andm = 2 (so K has characteristic 2; see [39] for a proof that there
is no unexpected cubic in characteristic 0) and CZ′ has splitting type (a, b) = (2, 4).
If q is a power of a prime, there is in a similar way an unexpected curve of degree
q + 1 having a general point of multiplicity q with Z′ consisting of the q2 + q + 1
points of P2 defined over a field F ⊂ K of q elements; see [22, Theorem 13.6].

Example 4.9 There is in characteristic 0 a unique Z′ having an unexpected quartic
[39]. In this case Z′ is the set of 9 points obtained by projectivizing the B3 root
system; see [38, 76]. (We will refer to the line arrangement dual to Z′ also as B3; it
is shown in Fig. 2.) In this case CZ′ has splitting type (a, b) = (3, 5) and we get an
irreducible unexpected quartic.

Example 4.10 Assuming K has characteristic 0, an unexpected quintic must be
irreducible. Suppose Z′ is a point set having a reducible unexpected quintic, so
CZ′ has degree d = m+1 = 5 and a general point of multiplicitym = 4. Since CZ′
is not irreducible, by [29] there is an unexpected quartic CZ′′ for a subset Z′′ ⊆ Z′
with either Z′′ = Z′ or |Z′′| = |Z′| − 1, but |Z′′| = 9 by Example 4.9 so |Z′| is
either 9 or 10. Since the splitting type (a, b) for Z′ satisfies a + b + 1 = |Z′|, we
have 9 ≤ a + b+ 1 ≤ 10, and we have a ≥ 3 by Example 4.8. By Corollary 4.7 we
have b− a > 1 which together with 9 ≤ a + b+ 1 ≤ 10 and a ≥ 3 means (a, b) is
either (3, 5) or (3, 6). But by Corollary 4.7 we have 2m− b − a − 1 < b − a − 4,

Fig. 2 The real (in fact
rational) supersolvable
configuration B3 of 9 lines
(only 8 are shown; the 9th is
the line at infinity)
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Fig. 3 The real (and rational)
supersolvable configuration
A8 of 13 lines (only 12 are
shown; the 13th is the line at
infinity) from [29,
Proposition 6.15]

which for (a, b) = (3, 5) and m = 4 is −1 < −2, so (3, 5) is ruled out. This leaves
(a, b) = (3, 6) and |Z′| = 10. But then by Theorem 4.6 we’d have a 10 point set Z′
with an unexpected quartic, contradicting Example 4.9. Thus an unexpected quintic
must be irreducible. In fact, if Z′ is a point set having an irreducible unexpected
quintic, then 11 ≤ |Z′| ≤ 12 and examples occur with both 11 and 12 points [40].
In contrast to the case of unexpected quartics, it is not known exactly which point
sets Z′ give rise to an unexpected quintic.

Example 4.11 Assuming K = C is the field of complex numbers, let Z′ be the 13
point set corresponding to the line arrangement A8 shown in Fig. 3. The equation of
CZ′ is xyz(x2 − y2)(x2 − z2)(x2 − 4z2)(y2 − z2)(y2 − 4z2). By [29, Proposition
6.15] Z′ has a unique irreducible unexpected curve of degree 6.

Example 4.12 Assuming K = C is the field of complex numbers, the point set Z′
dual to the line arrangement defined by the linear factors of (xs −ys)(xs − zs)(ys −
zs) has splitting type (a, b) = (s + 1, 2s − 2). By [29, Proposition 6.12], it has an
unexpected curve of degree a + 1 exactly when s ≥ 5, and the curve is unique and
irreducible.

Remark 4.13 We noted above that the curves (xs−ys)(xs−zs)(ys−zs) have t2 = 0
when s ≥ 3. In fact, the other known nontrivial examples of complex curves given
by unions of lines with t2 = 0 (i.e., Klein’s curve and Wiman’s; see the discussion
preceding Problem 2.14) also give Z′ having unexpected curves (see [29]). This is
yet another reason why Problem 2.14 is of interest!

Examples 4.9, 4.10, 4.11, 4.12 show over the complex numbers that there are
irreducible unexpected curves of all degrees d ≥ 4. The examples shown in Figs. 2
and 3 are the first two of an obvious infinite family of line arrangements, each of
which has two interesting features, namely it is supersolvable and dual to point a set
Z having an unexpected curve.

A line arrangement L of two or more lines is said to be supersolvable if there is
a point q where two or more lines cross such that for every other point q ′ where two
or more of the lines cross, then Lqq ′ ∈ L; i.e., the line Lqq ′ through the points q and
q ′ is a line of the arrangement. Such a point q is called a modular point. We write
dL for the number |L| of lines in L, and we write mL for the maximum number
of coincident lines in L. When L is supersolvable, every point on mL lines of L
is a modular point (see [107, Lemma 2.1] or [68, Lemma 2]). For example, the B3
configuration shown in Fig. 2 has three modular points (all three have multiplicity 4;
one is the point at the center of the figure while the other two are at infinity, where
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the horizontal and vertical lines converge). The A8 configuration shown in Fig. 3
has two modular points (both have multiplicity 6 and are where the horizontal and
vertical lines converge at infinity).

By [39, Theorem 3.7], if Z′ is the set of points dual to a supersolvable line
arrangement L, then Z′ has an unexpected curve if and only if dL > 2mL, and
in this case the splitting type of L is (a, b) = (mL − 1, dL −mL). Thus, when L is
supersolvable and dL > 2mL, Z′ has an unexpected curve of each degree d in the
range mL ≤ d ≤ dL −mL − 1.

It is an open problem to classify line arrangements L whose dual points Z′
have unexpected curves. Even doing this for supersolvable line arrangements is
open. (However, see [1, 68] for a partial classification of complex supersolvable
line arrangements.)

A less ambitious open problem is as follows:

Problem 4.14 For each a ≥ 3, what range of values of b occur such that (a, b) is
the splitting type for a complex line arrangement L whose dual points Z′ have an
unexpected curve? Said differently, for each degree d, what range of values of |Z′|
occur such that Z′ has an unexpected curve of degree d?

Getting good bounds on b given a seems challenging. There is however the
following fact:

Theorem 4.15 Let L be a complex supersolvable line arrangement of splitting type
(a, b) such that the dual points Z′ have an unexpected curve of degree d.

(a) Then a + 2 ≤ b ≤ 2a − 1.
(b) Moreover,

3d

2
+ 3 ≤ |Z′| ≤ 3(d − 1).

Proof

(a) We have a+1 ≤ d ≤ b−1, so a+2 ≤ b. We also have dL > 2mL [39], so by the
results of [68], all of the modular points of L have the same multiplicity. Thus
we also have dL ≤ 3mL−3 by [1]. By [39] we have (a, b) = (mL−1, dL−mL).
From dL ≤ 3mL − 3 we now get b = dL −mL ≤ 2mL − 3 = 2a − 1.

(b) We have a + 1 ≤ d ≤ b − 1 by Theorem 4.6, and we have b ≤ 2a − 1 by (a),
so |Z′| = a + b + 1 ≤ d + b ≤ d + 2a − 1 ≤ d + 2(d − 1) − 1 = 3(d − 1).
From d ≤ b − 1 ≤ 2a − 2 we get (d + 2)/2 ≤ a so we have (3d/2) + 3 =
(d + 2)/2+ d + 2 ≤ a + b + 1 = |Z′|. ��

Remark 4.16 For the B3 line arrangement we have a = 3, b = 5, |Z′| = 9 and
d = 4. In this case we get 5 = a + 2 ≤ b ≤ 2a − 1 = 5 and 9 = 3d

2 + 3 ≤ |Z′| ≤
3(d − 1) = 9.

For the case of a complex unexpected quintic, so d = 5, by [40] we have 11 ≤
|Z′| ≤ 12 and both extremes occur. Theorem 4.15 gives 10.5 ≤ |Z′| ≤ 12 for Z′
dual to complex supersolvable line arrangements.
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For the A8 line arrangement we have a = 5, b = 7, |Z′| = 13 and d = 6. In this
case we get 7 = a+2 ≤ b ≤ 2a−1 = 9 and 12 = 3d

2 +3 ≤ |Z′| ≤ 3(d−1) = 15.

Remark 4.17 Note that a + 1 ≤ d ≤ b − 1 and a + 2 ≤ b hold for any line
arrangement L whose dual points Z′ have an unexpected curve. In order to extend
Theorem 4.15 to complex line arrangements generally, it is clear from the proof that
we need an upper bound on b in terms of a. Suppose that the general singular point
p of an unexpected curve was in general regular (i.e., had distinct tangents). Let Cp
be the unexpected curve of degree a + 1 whose general point of multiplicity a is p
(by Eq. (4.1), Cp is unique). Choose a point p′ close to p. Then by the structural
results of [29], Cp and Cp′ would not in general have any components in common,
and the branches of the singularities at p and p′ would have a(a − 1) intersections
points near p. Thus by Bezout’s Theorem the intersection of Cp with Cp′ would
give (a + 1)2 ≥ a(a − 1)+ |Z′| = a(a − 1)+ (a + b + 1), or 2a ≥ b. Mimicking
the proof of Theorem 4.15(b) now gives (3d + 5)/2 ≤ |Z′| ≤ 3d − 2.

Problem 4.18 Let L be a complex line arrangement and Z′ the points dual to L.
Assume L has splitting type (a, b) and that Z′ has an unexpected curve C of degree
d. Is it true that that C in general has only regular singularities? Is it true that a+2 ≤
b ≤ 2a and (3d + 5)/2 ≤ |Z′| ≤ 3d − 2?
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49. M. Dumnicki, T. Szemberg, H. Tutaj-Gasińska. Counterexamples to the I (3) ⊂ I 2 contain-

ment, J. Algebra 393 (2013) 24–29.
50. M. Dumnicki and H. Tutaj-Gasińska. A containment result in P
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and conjectured that even rings of mixed-characteristic possess such modules. This
conjecture was proved by André [1], see also Bhatt, thereby settling a number of the
homological conjectures. In fact, by results of Hochster and Huneke [23, 24], and
André [1] there exist even big Cohen-Macaulay algebras over any local ring. The
reader will find a survey of these developments in [25, 35].

In this work we introduce three versions of the Cohen-Macaulay property that
apply also to complexes of modules, discuss various constructions that give rise
to them, and present some consequences that follow from their existence. In fact
such complexes have come up earlier, in the work of Roberts [41, 42], recalled in
Sect. 4.3, and in recent work of Bhatt [4], though only in passing. What we found
is that results that were proved using big Cohen-Macaulay modules can often be
proved using one of their complex variants. This assertion is backed up the material
presented in Sects. 3 and 5. Moreover, as will be apparent in the discussion in Sect. 4,
the complex versions are easier to construct, and with better finiteness properties.
It thus seems worthwhile to shine an independent light on them. Let us begin by
defining them.

We say that a complexM over a local ring R with maximal ideal m has maximal
depth if depthR M = dimR, where depth is as in Sect. 2.4; we ask also that H(M) be
bounded and the canonical map H0(M)→ H0(k⊗L

R M) be non-zero. Any complex
that satisfies the last condition has depth at most dimR, whence the name “maximal
depth”. An R-module has maximal depth precisely when it is big Cohen-Macaulay.
The depth of a complex can be computed in terms of its local cohomology modules,
Him(M), with support on m. Thus depthR M = dimR means that Him(M) is zero
for i < dimR, and nonzero for i = dimR. A complex of maximal depth is big
Cohen-Macaulay if Him(M) = 0 for i > dimR as well. When in addition the R-
module H(M) is finitely generated, M is maximal Cohen-Macaulay (MCM). Thus
an MCM module is what we know it to be. These notions are discussed in detail in
Sect. 3 and 4.

When R is an excellent local domain with residue field of positive characteristic,
R+, its integral closure in an algebraic closure of its field of fractions, is big Cohen-
Macaulay. This was proved by Hochster and Huneke [23], see also Huneke and
Lyubeznik [26], when R itself contains a field of positive characteristic. When R
has mixed characteristic this is a recent result of Bhatt [4]. Thus for such rings there
is a canonical construction of a big Cohen-Macaulay module, even an algebra. See
also the work of André [2] and Gabber [14] concerning functorial construction of
big Cohen-Macaulay algebras; see also [37, Appendix A]. On the other hand, R+ is
never big Cohen-Macaulay when R contains the rationals and is a normal domain
of Krull dimension at least 3, by a stadard trace argument. As far as we know, in
this context there are no such “simple” models of big Cohen-Macaulay modules, let
alone algebras. See however Schoutens’ work [44].

When R is essentially of finite type containing a field of characteristic zero, the
derived push-forward of the structure sheaf of a resolution of singularities of SpecR
is an MCM complex [41]. What is more, this complex is equivalent to a graded-
commutative differential graded algebra; see 4.3. This is noteworthy because when
such a ring R is also a normal domain of dimension ≥3 it cannot have any MCM
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algebras, by the same trace argument as for R+. For a local ring R with a dualizing
complex there are concrete constructions of MCM complexes; see Corollaries 4.6
and 4.9 and the paragraph below. However we do not know any that are also
differential graded algebras. In [5] Bhatt gives examples of complete local rings,
containing a field of positive characteristic, that do not have any MCM algebras.

As to applications, in Sect. 3 we prove the New Intersection Theorem and its
improved version using complexes of maximal depth, extending the ideas from
[27] where they are proved using big Cohen-Macaulay modules. It follows from the
work of Hochster [22] and Dutta [9] that the Improved New Intersection Theorem
is equivalent to the Canonical Element Theorem. In Sect. 4 we use results from
loc. cit. to prove that for local rings with dualizing complexes the Canonical Element
Theorem implies the existence of MCM complexes. An interesting point emerges:
replacing “module” with “complex” puts the existence of big Cohen-Macaulay
modules on par with the rest of the homological conjectures.

In Sect. 5 we paraphrase Boutot’s proof of his theorem on rational singularities to
highlight the role of MCM complexes. We also give a new proof of a subadditivity
property for multiplier ideals. On the other hand, there are applications of MCM
modules that do require working with modules; see 4.15. Nevertheless, it is clear to
us that big Cohen-Macaulay complexes and MCM complexes have their uses, hence
this survey.

2 Local Cohomology and Derived Completions

In this section, we recall basic definitions and results on local cohomology and
derived completions. Throughout R will be a commutative noetherian ring. By
an R-complex we mean a complex of R-modules; the grading will be upper or
lower, depending on the context. In case of ambiguity, we indicate the grading; for
example, given an R-complex M , the supremum of H(M) depends on whether the
grading is upper or lower. So we write sup H∗(M) for the largest integer i such that
Hi (M) �= 0, and sup H∗(M) for the corresponding integer for the upper grading.

We write D(R) for the (full) derived category of R viewed as a triangulated
category with translation �, the usual suspension functor on complexes. We take
[11, 33] as basic references, augmented by Avramov and Foxby [3] and Roberts
[41], except that we use the term “semi-injective” in place of “q-injective” as in
[33], and “DG-injective”, as in [3]. Similarly for the projective and flat analogs.

2.1 Derived I -torsion

Let I an ideal in R. The I-power torsion subcomplex of an R-complexM is

ΓIM := {m ∈ M | Inm = 0 for some n ≥ 0}.



478 S. B. Iyengar et al.

By m ∈ M we mean that m is inMi for some i. The corresponding derived functor
is denoted RΓI (M); thus RΓI (M) = ΓIJ where M

∼−→ J is any semi-injective
resolution ofM . In fact, one can compute these derived functors from any complex
of injective R-modules quasi-isomorphic toM; see [33, §3.5]. By construction there
is a natural morphism RΓI (M)→ M in the D(R). The R-modules

HiI (M) := Hi (RΓI (M)) for i ∈ Z

are the local cohomology modules of M , supported on I . Evidently, these modules
are I -power torsion. Conversely, when the R-module H(M) is I -power torsion, the
natural map RΓI (M)→ M is an isomorphism in D(R); see [11, Proposition 6.12],
or [33, Corollary 3.2.1].

In what follows we will use the fact that the class of I -power torsion complexes
form a localizing subcategory of D(R); see [11, §6], or [33, §3.5]. This has
the consequence that these complexes are stable under various constructions. For
example, this class of complexes is closed under L ⊗L

R (−) for any L in D(R).
Thus, for any R-complexes L andM the natural map

RΓI (L⊗L
R M) −→ L⊗L

R RΓI (M) (2.1)

is a quasi-isomorphism.

2.2 Derived I -completion

The I -adic completion of an R-complex M with respect to the ideal I , denoted
ΛIM , is

ΛIM := lim
n�0

M/InM .

This complex is thus the limit of the system

· · · −→ M/In+1M −→ M/InM −→ · · · −→ M/IM .

The canonical surjections M → M/InM induce an R-linear map M → ΛIM .
If this is an isomorphism we say that M is I-adically complete, or just I-complete,
though we reserve this name mainly for modules. The left-derived completion with
respect to I of an R-complexM is the R-complex

LΛI (M) := ΛIP where P , M is a semi-projective resolution.
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This complex is well-defined in D(R), and there is a natural morphism

M −→ LΛI (M) .

We sayM is derived I-complete if this map is a quasi-isomorphism; equivalently if
each Hi (X) is derived I -complete; see [11, Proposition 6.15], or [46, Tag091N]

The derived I -complete modules from a colocalizing subcategory of D(R), and
this means that for N in D(R) the natural map

LΛI (RHomR(N,M)) −→ RHomR(N,LΛ
I (M))

is a quasi-isomorphism. In particular, when F is a perfect complex, we have an
isomorphim in D(R)

F ⊗L
R LΛI (M) , LΛI (F ⊗L

R M). (2.2)

These isomorphisms will be useful in what follows. It is a fundamental fact, proved
by Greenlees and May [16], see also [11, Proposition 4.3] or [33, §4], that derived
local cohomology and derived completions are adjoint functors:

RHomR(RΓI (M),N) , RHomR(M,LΛ
I (N)) . (2.3)

One can take this as a starting point for defining derived completions, which works
better in the non-noetherian settings; see [46]. This adjunction implies that the
natural maps are quasi-isomorphisms:

LΛI (RΓI (M))
,−−→ LΛI (M) and RΓI (M)

,−−→ RΓI (LΛ
I (M)) . (2.4)

The result below, due to A.-M. Simon [45, 1.4], is a version of Nakayama’s
Lemma for cohomology of complete modules. It is clear from the proof that we
only need X to be derived I -complete; see [46, Tag09b9].

Lemma 2.1 For any R-complex X consisting of I -complete modules, and integer
i, if I Hi (X) = Hi (X), then Hi (X) = 0.

Proof The point is that Zi , the module of cycle in degree i, is a closed submodule
of the I -complete module Xi , and hence is also I -complete. Moreover Hi (X) is the
cokernel of the map Xi+1 → Zi , and a map between I -complete modules is zero if
and only if its I -adic completion is zero. This translates to the desired result. ��
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2.3 Koszul Complexes

Given a sequence of elements r := r1, . . . , rn in the ring R, and an R-complex M ,
we write K(r;M) for the Koszul complex on r with coefficients inM , namely

K(r;M) := K(r;R)⊗R M .

Its homology is denoted H∗(r;M). For a single element r ∈ R, the complex

K(r;M) can be constructed as the mapping cone of the homothety map M
r−→ M .

In particular, one has an exact sequence

0 −→ M −→ K(r;M) −→ �M −→ 0 (2.5)

of R-complexes. The Koszul complex on a sequence can thus be constructed as
an iterated mapping cone. From Lemma 2.1 one gets the result below. Recall that
sup H∗(−) denotes the supremum, in lower grading.

Lemma 2.2 Let R be a noetherian ring and X a derived I -complete R-complex.
For any sequence r := r1, . . . , rn in I one has

sup H∗(r;X) ≥ sup H∗(X) .

Proof When X is derived I -complete so is K(r;X) for any r ∈ I . It thus suffices
to verify the desired claim for n = 1. Replacing X by ΛIP , where P is a semi-
projective resolution of X, we can assume X, and hence also K(r;X), consists of
I -complete modules. The desired inequality is then immediate from the standard
long exact sequence in homology

· · · −→ Hi (X)
r−→ Hi (X) −→ Hi (r, X) −→ Hi−1(X) −→ · · ·

arising from the mapping cone sequence (2.5) and Lemma 2.1. ��
To wrap up this section we recall the notion of depth for complexes.

2.4 Depth

The I-depth of an R-complexM is

depthR(I,M) := inf{i | HiI (M) �= 0}.

In particular, depthR(I,M) = ∞ if HI (M) = 0. When the ring R is local, with
maximal ideal m, the depth ofM refers to the m-depth ofM .
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Depth can also be computed using Ext and Koszul homology:

depthR(I,M) = inf{i | ExtiR(R/I,M) �= 0} ,

and if a sequence r := r1, . . . , rn generates I , then

depthR(I,M) = n− sup{i | Hi (r;M) �= 0}

This last equality can be expressed in terms of Koszul cohomology. All these results
are from [13], though special cases (for example, whenM is anR-module) had been
known for much longer.

Remark 2.3 Let R be a commutative ring, I an ideal in R, and M an R-complex.
Set s = sup H∗(M).

(1) depthR(I,M) ≥ −s and equality holds if ΓI (Hs(M)) �= 0.
(2) When R is local and F is a finite free complex, one has

depthR(F ⊗R M) = depthR M − proj dimR F

For part (1) see [13, 2.7]. When F is the resolution of a module andM = R, part (2)
is nothing but the equality of Auslander and Buchsbaum. For a proof in the general
case see, for example, [13, Theorem 2.4].

3 Complexes of Maximal Depth and the Intersection
Theorems

In this section we introduce a notion of “maximal depth” for complexes over local
rings. The gist of the results presented here is that their existence implies the
Improved New Intersection Theorem, and hence a whole slew of “homological
conjectures”, most of which have been recently settled by André [1].

A module of maximal depth is nothing but a big Cohen-Macaulay module
and Hochster proved, already in [21], that their existence implies the homological
conjectures mentioned above. On the other hand, the Canonical Element Conjecture,
now theorem, implies that R has a complex of maximal depth, even one with finitely
generated homology. This will be one of the outcomes of the discussion in the
next section; see Remark 4.13. No such conclusion can be drawn about big Cohen-
Macaulay modules.



482 S. B. Iyengar et al.

3.1 Complexes of Maximal Depth

Throughout (R,m, k) will be a local ring, with maximal ideal m and residue field k.
We say that an R-complexM has maximal depth if the following conditions hold:

(1) H(M) is bounded;
(2) H0(M)→ H0(k ⊗L

R M) is nonzero; and
(3) depthR M = dimR.

The nomenclature is based on that fact that depthR M ≤ dimR for any complexM
that satisfies condition (2) above. This inequality follows from Lemma 3.1 applied
with F := K , the Koszul complex on a system of parameters for R. Condition (3)
can be restated as

Him(M) = 0 for i < dimR and HdimR
m (M) �= 0 . (3.1)

Clearly when M is a module it has maximal depth precisely when it is big Cohen-
Macaulay; condition (2) says that M �= mM . Note also that if a complex M has
maximal depth then so doesM⊕�−nN for anyR-moduleN and integer n ≥ dimR.

Lemma 3.1 LetM be an R-complex with the natural map H0(M)→ H0(k⊗L
R M)

nonzero. For any R-complex F with Hi (F ) = 0 for i < 0, if H0(F )⊗R k is nonzero,
then so is H0(F ⊗L

R M).

Proof We can assumeM is semi-projective, so the functor −⊗L
R M is represented

by −⊗R M . By hypothesis there exists a cycle, say z, inM0 whose image in k ⊗R
M = M/mM is not a boundary. Consider the morphism R → M of R-complexes,
where r �→ rz. Its composition R → M → k ⊗R M factors through the canonical
surjection R→ k, yielding the commutative square

R M

k k ⊗R M.

The dotted arrow is a left-inverse in D(R) of the induced k → k ⊗R M . It exists
because k → H(k ⊗R M) is nonzero, by the choice of z, and the complex k ⊗R M
is quasi-isomorphic to H(k ⊗R M) in D(k), and hence in D(R). Applying F ⊗L

R −
to the diagram above yields the commutative square in D(R) on the left:

F F ⊗L
R M

F ⊗L
R k F ⊗L

R (k ⊗R M)

H0(F ) H0(F ⊗L
R M)

H0(F ⊗L
R k) H0(F ⊗L

R (k ⊗R M))
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The commutative square on the right is obtained by applying H0(−) to the one on
the left. In this square, the hypotheses on F imply that the vertical map on the left is
nonzero, so hence is its composition with the horizontal arrow. The commutativity
of the square then yields that H0(F ⊗L

R M) is nonzero. ��
The following result is due to Hochster and Huneke for rings containing a field,

and due to André in the mixed characteristic case.

Theorem 3.2 (André [1], Hochster and Huneke [23, 24]) Each noetherian local
ring possesses a big Cohen-Macaulay algebra. ��

As has been said before, the existence of big Cohen-Macaulay algebras, and
hence big Cohen-Macaulay modules, implies many of the homological conjectures.
In particular, it can be used to give a quick proof of the New Intersection Theorem,
first proved in full generality by P. Roberts [43] using intersection theory; see also
[40]. Here is a proof that uses only the existence of complexes of maximal depth; the
point being that they are easier to construct than big Cohen-Macaulay modules. Our
argument is modeled on that of [27, Theorem 2.5], which uses big Cohen-Macaulay
modules.

Theorem 3.3 Let R be a local ring. Any finite free R-complex

F := 0→ Fn→ · · · → F0 → 0

with H0(F ) �= 0 and lengthR Hi (F ) finite for each i satisfies n ≥ dimR.

Proof Let M be an R-complex of maximal depth. As H(F ) is of finite length, the
R-module H(F ⊗R M) is m-power torsion, so 2.3(1) yields the second equality:

proj dimR F = depthR M − depthR(F ⊗R M)
= depthR M + sup H∗(F ⊗R M)
≥ depthR M

= dimR

The first one is by 2.3(2). The inequality is by Lemma 3.1, noting that H0(F )⊗R k
is nonzero by Nakayama’s lemma. ��

One can deduce also the Improved New Intersection Theorem 3.6 from the exis-
tence of complexes of maximal depth, but the proof takes some more preparation.

Lemma 3.4 Let R be a local ring and M an R-complex. If M has maximal depth,
then so does LΛI (M) for any ideal I ⊂ R.

Proof Condition (1) for maximal depth holds because H(M) bounded implies
H(LΛI (M)) is bounded; this follows, for example, from (2.3) and the observation
RΓI (R) has finite projective dimension. As to the other conditions, the main point
is that for any R-complex X such that H(X) is I -power torsion, the canonical map
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M → LΛI (M) in D(R) induces a quasi-isomorphism

X ⊗L
R M

,−−→ X ⊗L
R LΛI (M).

This can be deduced from (2.2) and (2.4). In particular, takingX = RΓm(R), where
m is the maximal ideal of R, yields

RΓm(M) , RΓm(LΛ
I (M)) ,

so that depthR M = depthR LΛI (M). Moreover, taking X = k gives the
isomorphism in the following commutative diagram in D(R):

M k ⊗L
R M

LΛI(M) k ⊗L
R LΛI(M)

�

that is induced by the morphism M → LΛI (M). Since M has maximal depth, the
map in the top row is nonzero when we apply H0(−), and so the same holds for the
map in the bottom row. Thus LΛI (M) has maximal depth. ��
Lemma 3.5 Let (R,m, k) be a local ring andM a derived m-complete R-complex
of maximal depth. Set d := dimR. The following statements hold:

(1) For any system of parameters r1, . . . , rd for R, one has

depthR(K(r1, . . . , rn;M)) = n for each 1 ≤ n ≤ d.

In other words, the depth ofM with respect to the ideal (r1, . . . , rn) is n.
(2) For any p ∈ SpecR one has

depthRp
Mp ≥ dimRp ,

and equality holds when the map H0(M) → H0(k(p) ⊗L
R M) is nonzero, in

which case the Rp-complexMp has maximal depth.

Proof

(1) Set r = r1, . . . , rd . The hypothesis that M has maximal depth and the depth
sensitivity of the Koszul complex K(r;R) yield Hi (r;M) = 0 for i ≥ 1. One
has an isomorphism of R-complexes

K(r;M) ∼= K(rn+1, . . . , rd;K(r1, . . . , rn;M)) .
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Since M is derived complete with respect to m, it follows from Lemma 2.2,
applied to the sequence rn+1, . . . , rd and X := K(r1, . . . , rn;M), that

Hi (K(r1, . . . , rn;M)) = 0 for i ≥ 1.

On the other hand, since the natural map H0(M) → H0(k ⊗L
R M) is nonzero,

Lemma 3.1 applied with F = K(r1, . . . , rn;R), yields

H0(K(r1, . . . , rn;M)) �= 0 .

Thus the depth sensitivity of K(r1, . . . , rn;M) yields the equality in (1).
(2) Set h := height p and choose a system of parameters r := r1, . . . , rd for R such

that the elements r1, . . . , rh are in p. One has

depthRp
Mp ≥ depthR(K(r1, . . . , rh),M) ≥ h .

where the first inequality is clear and the second one holds by (1). The natural
map M → k(p)⊗L

R M factors through Mp, so under the additional hypothesis
Lemma 3.1 implies depthRp

Mp ≤ h. We conclude thatMp has maximal depth.
��

Given the preceding result, we argue as in the proof of [27, Theorem 3.1] to
deduce the Improved New Intersection Theorem:

Theorem 3.6 Let R be a noetherian local ring and F := 0→ Fn→ · · · → F0 →
0 a finite free R-complex with H0(F ) �= 0 and length Hi (F ) finite for each i ≥ 1. If
an ideal I annihilates a minimal generator of H0(F ), then n ≥ dimR− dim(R/I).

Proof Let M be an R-complex of maximal depth. By Lemma 3.4, we can assume
M is derived m-complete, so Lemma 3.5 applies. Set s := sup H∗(F ⊗R M) and
note that s ≥ 0, by Lemma 3.1.

Fix p in AssR Hs(F ⊗R M), so that depthRp
Hs(F ⊗R M)p = 0. The choice of

p implies that H(F ⊗R M)p is nonzero, and hence H(F )p and H(M)p are nonzero
as well. Therefore one gets

proj dimRp
Fp = depthRp

Mp − depthRp
(F ⊗R M)p

= depthRp
Mp + s

≥ dimRp + s
(3.2)

The equalities are by 2.3 and the inequality is by Lemma 3.5(2).
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Suppose s ≥ 1. We claim that p = m, the maximal ideal of R, so (3.2) yields

proj dimR F ≥ dimR ,

which implies the desired inequality.
Indeed if p �= m, then since lengthR Hi (F ) is finite for i ≥ 1, one gets that

Fp , H0(F )p, which justifies the equality below:

depthRp ≥ proj dimRp
H0(F )p = proj dimRp

Fp ≥ dimRp + s

The first inequality is a consequence of the Auslander-Buchsbaum equality 2.3(2),
the second one is from (3.2). We have arrived at a contradiction for s ≥ 1.

It remains to consider the case s = 0. Set X := F ⊗R M . Since H0(F ) is finitely
generated, Nakayama’s Lemma and Lemma 3.1 imply that each minimal generator
of H0(F ) gives a nonzero element in H0(X). One of these is thus annihilated by
I , by the hypotheses. Said otherwise, ΓIH0(F ) �= 0. Since sup H∗(X) = 0, this
implies depthR(I,X) = 0, by Remark 2.3, and hence one gets the equality below

depthR X ≤ depthR(I,X)+ dim(R/I) = dim(R/I)

The inequality can be verified by arguing as in the proof of [27, Proposition 5.5(4)]:
Let a := a1, . . . , al be a set of generators for the ideal I , and let b := b1, . . . , bn be
elements in R whose residue classes in R/I form a system of parameters. SinceM
is derived m-complete, so is X and hence also K(a;X). Then Lemma 2.2 applied
to the sequence b and complex K(a;X) yields

sup H∗(a, b;X) ≥ sup H∗(a;X) ;

this gives the desired inequality. Finally it remains to invoke the Auslander-
Buchsbaum equality once again to get

proj dimR F = depthR M − depthR X ≥ dimR − dim(R/I) .

This completes the proof. ��

4 MCM Complexes

In this section we introduce two strengthenings of the notion of complexes of
maximal depth, and discuss various constructions that yield such complexes. As
before let (R,m, k) be a local ring, of Krull dimension d.
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4.1 Big Cohen-Macaulay Complexes

We say that an R-complex M is big Cohen-Macaulay if the following conditions
hold:

(1) H(M) is bounded;
(2) H0(M)→ H0(k ⊗L

R M) is nonzero.
(3) Him(M) = 0 for i �= dimR;

If in addition H(M) is finitely generated, M is maximal Cohen-Macaulay; usually
abbreviated to MCM. Condition (2) implies in particular that H0(k ⊗L

R M) is
nonzero, and from this it follows that Him(M) �= 0 for some i. Thus condition
(3) implies depthR M = dimR; in particular, a big Cohen-Macaulay complex has
maximal depth, in the sense of 3.1 and HdimR

m (M) �= 0. However (3) is more
restrictive, as the following observation shows.

Lemma 4.1 If M is an MCM R-complex, then Hi (M) = 0 for i �∈ [0, dimR];
moreover, H0(M) �= 0.

Proof The last part of the statement is immediate from condition (2).
Set d = dimR. Let K be the Koszul complex on a system of parameters for R.

Then one has isomorphisms

K ⊗R M , K ⊗L
R RΓm(M) , K ⊗L

R �
−d Hdm(M)

where the first one is from (2.1), since K ⊗R M is m-power torsion, and the second
isomorphism holds by the defining property (3) of a big Cohen-Macaulay complex.
Hence

inf H∗(K ⊗R M) ≥ 0 and sup H∗(K ⊗R M) ≤ d .

By our hypotheses, the R-module Hi (M) is finitely generated for each i, and since
K is a Koszul complex on d elements, a standard argument leads to the desired
vanishing of Hi (M). ��

Any nonzero MCM R-module is MCM when viewed as complex. However, even
over Cohen-Macaulay rings, which are not fields, there are MCM complexes that are
not modules; see the discussion in (3.1). In the rest of this section we discuss various
ways MCM complexes can arise, or can be expected to arise. It turns out that often
condition (2) is the one that is hardest to verify. Here is one case when this poses
no problem; see 4.3 for an application. The main case of interest is where A is a dg
(=differential graded) R-algebra.

Lemma 4.2 Let A be an R-complex with a unital (but not necessarily associative)
multiplication rule such that the Leibniz rule holds and i := inf H∗(A) is finite. If
Hi (A) is finitely generated, then the identity element of A is nonzero in H0(A⊗L

R k).



488 S. B. Iyengar et al.

Proof One has Hi (A ⊗L
R k)
∼= Hi (A) ⊗R k and the latter module is nonzero, by

Nakayama’s lemma and the finite generation hypothesis. We haveA⊗L
Rk = A⊗RT

where T is a Tate resolution of k; see [48]. So A ⊗R T is also a (possibly non-
associative) dg algebra. Thus if the identity element were trivial in H(A⊗R T ), then
H(A⊗R T ) = 0 holds, contradicting Hi (A⊗L

R k) �= 0. ��
The MCM property for complexes has a simple interpretation in terms of their

duals with respect to dualizing complexes.

4.2 Dualizing Complexes

LetD be a dualizing complex for R, normalized1 soDi is nonzero only in the range
[0, d], where d := dimR and always with nonzero cohomology in degree 0. Thus
D is an R-complex with H(D) finitely generated, and RΓm(D) , �−dE, where
E is the injective hull of k; see [41, Chapter 2, §3] see also Chapter V. For any
R-complexM set

M† := RHomR(M,D) .

One version of the local duality theorem is that the functor M �→ M† is a
contravariant equivalence when restricted to Db(modR), the bounded derived
category of finitely generated R-modules; see [41, Chapter 2, Theorem 3.5]. For
M in this subcategory, this gives the last of following quasi-isomorphisms:

RHomR(M
†, E) = RHomR(RHomR(M,D),E)

, RHomR(RHomR(M,D),�
d RΓm(D))

, �d RΓm(RHomR(RHomR(M,D),D))

, �d RΓm(M)

The rest are standard. Passing to cohomology yields the usual local duality:

HomR(H
i (M†), E) ∼= Hd−im (M) for each i. (4.1)

When R is m-adically complete, one can apply Matlis duality to express Hi (M†) as
a dual of Hd−im (M).

We also need to introduce a class of maps that will play an important role in the
sequel: For any R-module N let ζ iN denote the composition of maps

1 In [18, 41], a dualizing complex is normalized to be nonzero in [−d, 0].
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ExtiR(k,N)
∼=−−→ ExtiR(k,RΓm(N)) −→ ExtiR(R,RΓm(N)) ∼= Him(N) (4.2)

where the one in the middle is induced by the surjection R → k. We will be
particular interested in ζ dN . If this map is nonzero, then dimR N = dimR, but the
converse does not hold.

Proposition 4.3 With D as above and M an R-complex with H(M) finitely
generated, set N := H0(M†). Then M is MCM if and only if M† , N and the
map ζ dN is nonzero, for d = dimR.

Proof Given the hypothesis on the local cohomology onM , it follows that Hi (M†)

is nonzero for i �= 0 and henceM† , N . Moreover, this quasi-isomorphism yields

RΓm(N) , RΓm(RHomR(M,D)) , RHomR(M,RΓm(D)) , �−d HomR(M,E) .

Therefore the map (4.2) is induced by (to be precise, the degree 0 component of the
map in cohomology induced by) the map

RHomR(k,HomR(M,E)) −→ HomR(M,E)

By adjunction, the map above is

RHomR(k ⊗L
R M,E) −→ HomR(M,E)

That is to say, (4.2) is the Matlis dual of the map H0(M) → H0(k ⊗L
R M). This

justifies the claims.
Clearly, these steps are reversible: ifN is a finitely generated R-module such that

the map (4.2) is nonzero, the R-complex RHomR(N,D) is MCM. ��
Here then is a way (and the only way) to construct MCM complexes when R has

a dualizing complex: Take a finitely generatedR-moduleN for which ζ dN is nonzero;
then the complex RHomR(N,D) is MCM. It thus becomes important to understand
the class of finitely generated R-modules for which the map ζ dN is nonzero.

To that end let F be a minimal free resolution of k, and set

� := Coker(Fd+1 → Fd) ;

this is the dth syzygy module of k. Since minimal free resolutions are isomorphic as
complexes, this � is independent of the choice of resolution, up to an isomorphism.
The canonical surjection F → F�d gives a morphism in D(R):

ε : k −→ �d� . (4.3)

We view it as an element in ExtdR(k,�). The map ζ d� below is from (4.2).
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Lemma 4.4 One has ζ d�(ε) = 0 if and only if ζ d� = 0 if and only if ζ dN = 0 for all
R-modules N .

Proof Fix an R-module N . Any map f in HomR(�,N) induces a map

f∗ : ExtdR(k,�) −→ ExtdR(k,N) .

Let F be a resolution of k as above, defining �. Any map k → �dN in D(R) is
represented by a morphism of complexes F → �dN , and hence factors through the
surjection F → F�d , that is to say, the morphism ε. We deduce that any element of
ExtdR(k,N) is of the form f∗(ε), for some f in HomR(�,N).

In particular, ExtdR(k,�) is generated by ε as a left module over EndR(�). This
observation, and the linearity of the ζ d� with respect to EndR(�), yields ζ d� = 0 if
and only if ζ d�(ε) = 0. Also each f in HomR(�,N) induces a commutative square

Extd
R(k,Ω) Hd (Ω)

Extd
R(k, N) Hd (N)

f∗

ζd
Ω

Hd (f)

ζd
N

Thus if ζ d� = 0 we deduce that ζ dN(f∗ε) = 0. By varying f we conclude from the
discussion above that ζ dN = 0. ��

We should record the following result immediately. It is one formulation of the
Canonical Element Theorem; see [22, (3.15)]. The “canonical element” in question
is ζ d�(ε); see Lemma 4.4.

Theorem 4.5 For any noetherian local ring R, one has ζ d� �= 0. ��
Here then is first construction of an MCM R-complex.

Corollary 4.6 If R has a dualizing complex the R-complex �† is MCM. ��
Remark 4.7 Suppose R has a dualizing complex. Given Proposition 4.3 and
Lemma 4.4 it follows that �† is MCM if and only if there exists some R-complex
M that is MCM. Therefore, the Canonical Element Theorem, in all its various
formulations [22], is equivalent to the statement that R has an MCM R-complex!

We now describe another way to construct an MCM complex. Let D be a
dualizing complex for R and set ωR := H0(D); this is the canonical module of R.

Lemma 4.8 One has ζ d� �= 0 if and only if ζ dωR �= 0.

Proof We write ω for ωR . Given Lemma 4.4 we have to verify that if ζ d� �= 0, then
ζ dω �= 0. Let E be an injective hull of k, the residue field of R. Since this is a faithful
injective, there exists a map α : Hdm(�)→ E such that α ◦ ζ d� �= 0.
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It follows from local duality 4.1, applied to M = �, that α is induced by a
morphism f : � → D; equivalently, an R-linear map f : � → ω. This gives the
following commutative diagram

Extd
R(k, Ω) Hd (Ω)

Extd
R(k, N) Hd (ω) E

f∗

ζd
Ω

Hd (f) α

ζd
ω

Since α ◦ ζ d� �= 0 we conclude that ζ dω �= 0, as desired. ��
Corollary 4.9 If R has a dualizing complex, the R-complex ωR† is MCM. ��

The preceding result prompts a natural question.

Question 4.10 When is the dualizing complex itself an MCM complex?
Let R be a local ring with a dualizing complexD, normalized as in 4.2. The local

cohomology of D has the right properties, so, by Proposition 4.3, the R-complex
D is MCM precisely when ζ dR is nonzero. Easy examples involving non-domains
show that this is not always the case; Dutta [10] asked: Is ζ dR nonzero whenever R
is a complete normal domain? Recently, Ma, Singh, and Walther [38] constructed
counterexamples.

On the other hand, when R is quasi-Gorenstein, that is to say, when ωR is free,
it follows from Corollary 4.9 that D is MCM.

Here is a broader question, also of interest, concerning the maps ζ iN : It is easy to
check that this is nonzero when i = depthR N . What conditions on N ensure that
this is the only i for which it is true? By taking direct sums of modules of differing
depths, we obtain modules N with ζ iN nonzero for more than a single i.

Example 4.11 When (R,m, k) is a regular local ring and N is a finitely generated
R-module, thenN is Buchsbaum if and only if ζ iN is surjective for each i < dimR N .
So any non-CM Buchsbaum R-module would give an example.

Remark 4.12 Let F , k be a free resolution of k and r := r1, . . . , rn elements such
that (r) is primary to the maximal ideal. The canonical surjection R/(r) → k lifts
to a morphism of complexes K(r;R)→ F . Applying HomR(−, N) induces maps

ExtiR(k,N) −→ Hi (r;N)

It is easy to verify that ζ iN factors through this map. What is more, if s is another
sequence of elements such that r ∈ (s), then the map above factors as

ExtiR(k,N) −→ Hi (s;N) −→ Hi (r;N)

Thus if any of maps above are zero, so is ζ iN .
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We would like to record a few more observations about MCM complexes.

Remark 4.13 Let (R,m, k) be an arbitrary noetherian local ring. Then its m-
adic-completion, R̂, has a dualizing complex, and hence an MCM R̂-complex, as
discussed above. Since any MCM R̂-complex is a big Cohen-Macaulay complex
over R, we conclude that R has a big Cohen-Macaulay complex, and, in particular,
a complex of maximal depth.

Remark 4.14 Assume R has a dualizing complex and that M is an MCM R-
complex. It is easy to check using Proposition 4.3 thatMp is an MCM Rp-complex
for p in SpecR, as long as condition (2) defining MCM complexes holds at p. For
example, if A is dg R-algebra that is MCM as an R-complex, then since Ap is a dg
Rp-algebra, Lemma 4.2 implies that it is an MCM Rp-complex.

Remark 4.15 While MCM complexes have their uses, as the discussion in Sect. 3
makes clear, they are not always a good substitute for MCM modules. Indeed, in
[21, §3] Hochster proves if every local ring has an MCM module, then the Serre
positivity conjecture on multiplicities is a consequence of the vanishing conjecture;
see also [25, §4]. Hochster’s arguments cannot be carried out with MCM complexes
in place of modules. The basic problem is this: Given a finite free complex F , over
a local ring R, with homology of finite length, if M is an MCM R-module, then
H(F⊗RM) is concentrated in at most one degree; this need not be the case whenM
is an MCM complex. Indeed this is clear from Iversen’s Amplitude inequality [28],
which is a reformulation of the New Intersection Theorem, and reads:

amp(F ⊗L
R X) ≥ amp(X)

where F is any finite free complex with H(F ) �= 0 and X is an R-complex with
H(X) bounded. Here amp(X) := sup H∗(X) − inf H∗(X), the amplitude of X. By
the way, the Amplitude Inequality holds even when H(X) is unbounded [13].

4.3 Via Resolution of Singularities

The constructions of MCM complexes described above are independent of the
characteristic of the ring, but proving that they are MCM is a non-trivial task, for it
depends on knowing that one has MCM complexes to begin with; see Remark 4.7.
Next, we describe a complex that arises from a completely different source that one
can prove is MCM independently. The drawback is that it is restricted to algebras
essentially of finite type and containing the rationals. We first record a well-known
observation about proper maps.

Lemma 4.16 Let R be any commutative noetherian ring and π : X → Spec(R) a
proper map from a noetherian scheme X. Viewed as an object in D(R) the complex
Rπ∗OX is equivalent to a dg algebra with cohomology graded-commutative and
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finitely generated. When R contains a field of characteristic zero, the dg algebra
itself can be chosen to be graded-commutative.

Proof By Grothendieck [17, Theorem 3.2.1], since OX is coherent and π is proper,
Rπ∗OX is coherent and hence its cohomology is finitely generated. Next, we explain
why this complex is equivalent, in D(R), to a dg algebra. The idea is that OX is a
ring object in D(X) and there is a natural morphism

Rπ∗F ⊗L
R Rπ∗G −→ Rπ∗(F ⊗L

X G)

so Rπ∗OX is ring object in D(R). One can realize this concretely as follows.
Let {Ui}ni=1 be an affine cover of X. Then the Čech complex computing Rπ∗OX

is equivalent to the total complex associated to the co-simplicial commutative ring

It remains to point out that the Alexander-Whitney map makes the normalization of
a co-simplicial ring a dg algebra, with graded-commutative cohomology. Moreover,
since R contains a field of characteristic zero, it is even quasi-isomorphic to a
graded-commutative dg algebra. ��

The statement of the next result, which is due to Roberts [41], invokes the
resolution of singularities in characteristic zero, established by Hironaka. The proof
uses Grothendieck duality for projective maps [18] and the theorem of Grauert and
Riemenschneider [15] on the vanishing of cohomology. Given these, the calculation
that is needed is standard; see the proof of [19, Proposition 2.2 ] due to Hartshorne
and Ogus. It will be clear from the proof that the result extends to any context where
one has sufficient vanishing of cohomology; see [41, Theorem 3.3].

Proposition 4.17 Let (R,m, k) be an excellent noetherian local ring containing
a field of characteristic zero, and admitting a dualizing complex. Let π : X →
Spec(R) be a resolution of singularities. The R-complex Rπ∗OX is MCM and
equivalent to a graded-commutative dg algebra.

Proof Given Lemmas 4.16 and 4.2 it remains to verify that Hjm(Rπ∗OX) = 0 for
j �= d, where d := dimR. Let D be a dualizing complex for R and π !D = ωX,
the dualizing sheaf for X. Since the R-complex Rπ∗OX has finitely generated
cohomology, local duality 4.1 yields the first isomorphism below

Hjm(Rπ∗OX) ∼= Extd−jR (Rπ∗OX,D)
∨

∼= Extd−jX (OX, π !D)∨

= Hd−j (X, ωX)
∨
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The second isomorphism is by coherent Grothendieck duality [18]. It remains to
invoke the Grauert-Riemenschneider vanishing theorem [15]—see Murayama [39,
Theorems A&B] for the version that applies in the present generality—to deduce
that the last module in the display is 0 for all j �= d. ��

Here is a natural question, growing out of Proposition 4.17. A positive answer
might have a bearing on the theory of multiplier ideals; see Theorem 5.3.

Question 4.18 When R contains a field of positive characteristic, or is of mixed
characteristic, does it have an MCM R-complex that is also a dg algebra? What
about a graded-commutative dg algebra?

5 Applications to Birational Geometry

In this section we prove two celebrated results in birational geometry using MCM
complexes constructed via Proposition 4.17. The first one generalizes Boutot’s
theorem on rational singularities [8]; the argument is only a slight reworking of
Boutot’s proof, emphasizing the role of the derived push-forward as an MCM
complex. Related circles of ideas can be found in the work of Bhatt, Kollár, Kovács,
and Ma [6, 30, 31, 34].

Theorem 5.1 Let ρ : Z→ SpecR be a map of excellent schemes containing a field
of characteristic zero, admitting dualizing complexes, and such that R → Rρ∗OZ
splits in D(R). If Z has rational singularities, then so does R.

Proof We may assume (R,m) is local. Note that the condition implies R→ ρ∗OZ
is injective so in particular R is reduced (as Z is reduced). Take π : X→ SpecR to
be a resolution of singularities. Then there is a (reduced) subscheme of X×SpecR Z

that is birational over Z for each irreducible component of Z. Let Y be a resolution
of singularities of that subscheme. Thus there is a commutative diagram:

Y X

Z Spec R.

σ π

ρ

This induces a commutative diagram

R Rρ∗OZ

Rπ∗OX Rρ∗ Rσ∗OY .

∼=
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The right vertical map is an isomorphism since Z has rational singularities. Now
since R → Rρ∗OZ splits in D(R), chasing the diagram shows that R → Rπ∗OX
splits in D(R). In particular, we know that the induced map

Him(R) ↪→ Him(Rπ∗OX)

is split-injective for all i. Because Rπ∗OX is a MCM complex, by Proposition 4.17,
it follows that Him(R) = 0 for i < d, that is to say, R is Cohen-Macaulay.
Finally, the Matlis dual of the injection above yields a surjective map π∗ωX 	 ωR .
Therefore π∗ωX ∼= ωR since X→ SpecR is birational.

Putting these together yields ω•R ∼= Rπ∗ω•X, where ω•R and ω•X are the normalized
dualizing complex of R and X respectively. Applying RHomR(−, ω•R) and using
Grothendieck duality yields R ∼= Rπ∗OX. Thus R has rational singularities. ��

Here is an application.

Corollary 5.2 If (R,�) is KLT, then R has rational singularities.

Proof Let π : Y → X = SpecR be a log resolution of (R,�). Since (R,�) is
KLT, we know that �KY − π∗(KX +�)� is effective and exceptional, thus

R = π∗OY (�KY − π∗(KX +�)�) = Rπ∗OY (�KY − π∗(KX +�)�) ,

where the second equality follows from relative Kawamata-Viehweg vanishing [32,
Theorem 9.4.1]; see [39, Theorems A&B] for the general version. Then the
composition of maps

R→ Rπ∗OY → Rπ∗OY (�KY − π∗(KX +�)�) ∼= R ,

is an isomorphism, that is to say, the map R→ Rπ∗OY splits in D(R). Theorem 5.1
then implies R has rational singularities. ��

Our second application is a new proof of the subadditivity property of multiplier
ideals [32]. The first proof in the generality below is due to Jonsson and Mustaţă [29,
Theorem A.2]. Our idea of using the MCM property of Rπ∗OX to prove this comes
from the analogous methods in positive and mixed characteristic [36, 47].

Theorem 5.3 Let (A,m) be an excellent noetherian regular local ring containing
a field of characteristic zero. Given ideals a, b in A and numbers s, t ∈ Q≥0, one
has J (A, asbt ) ⊆ J (A, as)J (A, bt ).
Proof We first claim that we may assume that a, b are both principal ideals. This
type of reduction is standard for multiplier ideals [32, Proposition 9.2.26], but we do
not know a reference for the case of mixed multiplier ideals J (A, asbt ). However the
argument is the same and we now sketch it. Indeed, fix general elements f1, . . . , fk
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in a and g1, . . . , gl in b for k > s and l > t and set

D1 = 1

k

∑
Div(fi) = 1

k
Div(

∏
(fi))

D2 = 1

l

∑
Div(gi) = 1

l
Div(

∏
(gi)) .

For a log resolution π : X → SpecA of (A, a, b) with OX(−F) = a · OX and
OX(−G) = b ·OX, we have that

π−1∗ Div(fi)+ Fexc = π∗Div(fi) and π−1∗ Div(gi)+Gexc = π∗Div(gi).

where π−1∗ denotes the strict transform and Fexc and Gexc are the π -exceptional
parts of F and G. Since the fi and gi are generic, the associated divisors and their
strict transforms are reduced. A straightforward computation then shows that

�sF � =
⌊ s
k

∑
π∗Div(fi)

⌋
and �tG� =

⌊
t

l

∑
π∗Div(gi)

⌋
.

Thus J (A, asbt ) = J (A, (
∏
fi)

s/k(
∏
gi)

t/ l), and likewise J (A, as) =
J (A, (

∏
fi)

s/k) and J (A, bt ) = J (A, (
∏
gi)

t/ l). Therefore we may assume
that a and b are principal.

Now we assume a = (f ) and b = (g). Let R be the normalization of
A[f 1/ds , g1/dt ] where ds and dt are the denominators of s and t ; thus f s, gt

are elements in R. Let π : X → SpecR be a resolution of singularities. Thus
X→ SpecA is a regular alteration; we write π also for this map.

In what follows, to simplify notation, we write E for Hdm(A). Given an element
r ∈ R let 0rE be the kernel of the composite map

E = Hdm(A) −→ Hdm(R)
r−→ Hdm(R) −→ Hdm(Rπ∗OX)

Now suppose that a power rm of r lives in A (for instance r = f s or r = gt ). Then
by Blickle et al. [7, Theorem 8.1] we have that Tr(J (ωR, r)) = J (A, (rm)1/m). By
local duality it is easy to see that

J (A, (rm)1/m) = annA 0rE .

In particular, J (A, f s) = annA 0f
s

E and J (A, gt ) = annA 0g
t

E .
We next claim that the following inclusion holds:

{η ∈ E | J (A, f s) · η ⊆ 0g
t

E } ⊆ 0f
sgt

E . (5.1)
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Indeed, suppose J (A, f s)η ⊆ 0g
t

E , then J (A, f s) · gtη = 0 in Hdm(Rπ∗OX). Note
that gtη makes sense in Hdm(Rπ∗OX) as the latter is a module over R. Thus

gtη ∈ annHdm(Rπ∗OX) J (A, f
s) ∼= HomA(A/J (A, f

s),Hdm(Rπ∗OX)) .

Next, because Rπ∗OX is MCM, by Proposition 4.17, one gets the equality below

h−i (Rπ∗OX ⊗L
A E)

∼= Hd−im (Rπ∗OX) = 0

for all i ≥ 1. Thus we conclude that gtη is in the module

HomA(
A

J (A, f s)
,Hdm(Rπ∗OX)) ∼= h0

(
RHomA(

A

J (A, f s)
,Rπ∗OX ⊗L

A E)

)

∼= h0
(

Rπ∗OX ⊗L
A RHomA(

A

J (A, f s)
, E)

)

∼= h0
(

Rπ∗OX ⊗L
A annE J (A, f

s)
)
.

The second isomorphism follows from [12, Proposition 1.1 (4)], noting that A is
regular thus every bounded complex is isomorphic to a bounded complex of flat
modules in D(A), and the third isomorphism follows from the fact that E is an
injective A-module.

Consider the following composite map; again, the second multiplication by f s

map makes sense since we can view Rπ∗OX as a complex over R and not merely
over A:

E→ h0
(

Rπ∗OX ⊗L
A E

) ·f s−→ h0
(

Rπ∗OX ⊗L
A E

)
.

Its kernel is annE J (A, f s), by Matlis duality. Thus the composition of the natural
induced maps

Rπ∗OX ⊗L
A annE J (A, f

s)→ Rπ∗OX ⊗L
A E

·f s−→ Rπ∗OX ⊗L
A E

is zero in h0. In particular, since gtη is in h0 of the source of this composite map,
we deduce that, viewed as an element in target, namely in

h0
(

Rπ∗OX ⊗L
A E

) ∼= Hdm(Rπ∗OX)

it is killed by f s . Therefore f sgtη = 0 in Hdm(Rπ∗OX) and hence η ∈ 0f
sgt

E .
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This justifies (5.1).

Finally, for any z ∈ annE J (A, f s)J (A, gt ), we have J (A, f s)z ⊆ 0g
t

E and thus

z ∈ 0f
sgt

E by (5.1). Therefore

annE J (A, f
s)J (A, gt ) ⊆ 0f

sgt

E

and hence by Matlis duality J (A, f sgt ) ⊆ J (A, f s)J (A, gt ). ��
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Subadditivity of Syzygies of Ideals and
Related Problems

Jason McCullough

1 Introduction

Graded free resolutions are highly useful vehicles for computing invariants of ideals
and modules. Even when restricting to finite minimal graded free resolutions of
graded ideals and modules over a polynomial ring, there are questions regarding the
structure of such resolutions that we do not yet understand. The aim of this survey
paper is to collect known results on the degrees of syzygies of graded ideals and
pose some open questions.

Let K be a field and let S = K[x1, . . . , xn] denote a standard graded polynomial
ring over K. If M is a finitely generated, graded S-module, let βi,j (M) =
dimk TorSi (M, k)j denote the graded Betti numbers of M , and let t i (M) =
sup{j |βi,j (M) �= 0} denote the ith maximal graded shift of M . Thus t i (M)
denotes the maximal degree of an element in a minimal generating set of the ith
syzygies of M . The shifts t i (M) are primarily of interest due to their connection
with another invariant, the regularity reg(M) of M; indeed one can take reg(M) =
max{t i (M) − i} as a definition of the regularity of M . The underlying question
considered in this paper is the following:

Question 1.1 Which sequences of integers (t0, t1, . . . , tm) can be realized as
(t0(S/I), t1(S/I), . . . , tm(S/I)) for some graded ideal I ⊆ S?

Note that the more general question in which S/I is replaced by an arbitrary graded
module M is not so interesting. One of the main results of Boij-Söderberg theory,
proved by Eisenbud, Fløystad, and Weyman [23] in characteristic 0 and Eisenbud
and Schreyer [26] in all characteristics, shows that every strictly increasing sequence
t0 < t1 < · · · < tc of integers with c ≤ n can be realized as the shifts of some
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graded, Cohen-Macaulay, pure S-module of codimension c. On the other hand, one
sees immediately that the same statement is not true for cyclic modules S/I . Indeed,
the sequence (0, 1, 3, 4) cannot be realized as the maximal graded shifts of any
cyclic module S/I . If it could, then I would be generated by linear forms (since
t1(S/I) = 1) and yet would have minimal quadratic syzygies, which is impossible;
any such S/I would be resolved by a Koszul complex with linear differential maps.
This degree sequence (0, 1, 3, 4) can be realized by the resolution of Coker(M),
whereM is a generic 2× 4 matrix. (See Example 2.1.) This explains restricting our
attention to ideals and cyclic modules.

After a section to collect notation and background, there are four main sections
to this paper, each dealing with refinements to Question 1.1. In Sect. 3, we consider
effective bounds on reg(S/I) in terms of some initial segment of the maximal shifts.
Thought of another way, we address the question of how much of the resolution of
an ideal must be computed to get a reasonable bound on its regularity. In Sect. 4,
we consider the subadditivity property of maximal graded shifts; that is, when
ta(S/I) + tb(S/I) ≥ ta+b(S/I) for all a, b ≥ 1. It is not hard to find examples
where this property fails, but for specific classes of ideals, subadditivity has been
proved or conjectured. In Sect. 5, we consider bounds on maximal graded shifts for
arbitrary ideals. In Sect. 6, we focus specifically on ideals generated by quadrics
with linear resolutions for a fixed number of steps. We examine geometric and
combinatorial conditions which guarantee resolutions of this form. In the final
Sect. 7, we collect some open questions and pose some new problems that we hope
will inspire future work in the area.

2 Background

In this section we fix notation used throughout this paper. Let K denote a field and
let S = K[x1, . . . , xn] denote a polynomial ring over K. We assume throughout that
S is standard graded, i.e. deg(xi) = 1 for 1 ≤ i ≤ n. We write Si for the K-vector
space spanned by all degree i homogeneous polynomials so that S = ⊕

i≥0 Si
as K-vector spaces. We write S(−j) for a rank one free module with generator
in degree j so that S(−j)i = Si−j . We consider the resolutions of graded ideals
I = (f1, . . . , fm) and graded modules M of S. Note that I is graded if it has a set
of homogeneous generators. We write F• for the minimal graded free resolution of
M so that Fi =⊕

j S(−j)βij (M). The numbers βij (M) are the graded Betti numbers

of M and can alternatively be computed as βij = dimk TorSi (M, k)j . (We drop the
moduleM from the notation when it is clear from context.) In particular, the graded
Betti numbers are isomorphism invariants of M . It is convenient to keep track of
the graded Betti numbers in a matrix called the Betti table; by convention, we place
βi,i+j (M) in position (i, j). One of the advantages of the Betti table is that it allows
us to quickly read off the projective dimension and regularity of the module being
resolved. More precisely, we may define reg(M) = max{j − i |βij (M) �= 0} and
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pd(M) = max{i |βi,j (M) �= 0}. Thus reg(M) is the index of the last nonzero row
in the Betti table ofM and pd(M) is the index of the last nonzero column.

If we want to study the structure of minimal, graded free resolutions more closely,
we can consider the maximal and minimal graded shifts ofM . For each i ≥ 0, set

t i (M) = sup{j |βij (M) �= 0}

and

t i (M) = inf{j |βij (M) �= 0}.

In other words, t i (M) (t i (M)) denotes the maximal (resp. minimal) degree of an
element in a minimal generating set of the ith syzygy module ofM . WhenM = S/I
is a cyclic module, t1(S/I) denotes the maximal degree of a minimal generator of
I . A moduleM is called pure if t i (M) = t i (M) for all 0 ≤ i ≤ pd(M).

Example 2.1 Let S = K[x1, . . . , x8] and letM = Coker(A), where

A =
(
x1 x2 x3 x4

x5 x6 x7 x8

)
.

is a generic matrix. M is resolved by a Buchsbaum-Rim complex [21, Appendix
A2.6] with the following Betti table.

0 1 2 3
0: 2 4 - -
1: - - 4 2

In particular, M is a pure module with t0(M) = t0(M) = 0, t1(M) = t1(M) = 1,
t2(M) = t2(M) = 3, and t3(M) = t3(M) = 4. This is the example mentioned in
the introduction.

In a minimal graded free resolution, it is clear that the minimal graded shifts
are strictly increasing, that is t i−1(S/I) < ti(S/I) for all 1 ≤ i ≤ pd(S/I). The
maximal graded shifts are strictly increasing up to ht(I ).

Proposition 2.2 ([50, Proposition 2.2], [4, Lemma 5.1]) Let I be a standard
graded ideal in a polynomial ring S = K[x1, . . . , xn] over a field K. For all
1 ≤ i ≤ ht(I ), one has

t i−1(S/I) < ti(S/I).

To see that t i−1(S/I) ≥ t i (S/I) is possible for i > ht(I ), see Example 3.11. For
the remainder of the paper, we primarily focus on the maximal graded shifts t i (S/I)
for graded cyclic modules S/I .
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3 Effective Bounds on Regularity

In this section we consider bounds on the regularity of ideals in terms of some
initial segment of the maximal graded shifts. Fix a graded ideal I and write d(I)
for the maximal degree of an element in a minimal generating set of I . We recall
that reg(S/I) = max{t i (S/I) − i} and so in particular reg(S/I) ≥ d(I) − 1 =
t1(S/I) − 1. A natural question is to what extent reg(S/I) can exceed d(I).
Without referencing the number of variables, no such bound is possible—an ideal I
generated by a complete intersection of n quadrics has d(I) = 2 and reg(S/I) = n.
If we fix the number of variables to be n, then there is a well-known doubly
exponential upper bound on regularity, due to Bayer and Mumford in characteristic
0, and later Caviglia and Sbarra in all characteristics.

Theorem 3.1 ([7, Proposition 3.8], [14, Corollary 2.7]) Let I be a graded ideal
in S = K[x1, . . . , xn]. Then

reg(I ) ≤ (2d(I))2n−2
.

Recall that reg(I ) = reg(S/I) + 1. For recent improvements to the above bound,
see [15, Corollary 2.3]. Examples based on a construction of Mayr and Meyer [48]
due to Bayer and Mumford [7] show that the above bound is close to best possible.
(See also [8] and [43].) Thus even by referencing the number of variables, the best
bound on the regularity of a cyclic module in terms of the first maximal graded
shift is doubly exponential. One could hope that by taking more of the resolution
into account, one might be able to formulate a tighter bound on the regularity of
ideals. The construction of Ullery in the next subsection shows that, if we do not
reference the length of the resolution or number of variables, this is not possible.
However, if we do take into account the length of the resolution, one can achieve
at least a polynomial bound on regularity in terms of the first half of the maximal
graded shifts.

Theorem 3.2 ([49, Theorem 4.7]) Let I ⊂ S = K[x1, . . . , xn] be a homogenous
ideal. Set h = �n2 �. Then

reg(S/I) ≤
h∑

i=1

t i (S/I)+
∏h
i=1 t i (S/I)

(h− 1)! .

The proof of the previous result follows from a careful analysis of the Boij-
Söderberg decomposition of the Betti table of S/I . A similar idea also proves [49,
Theorem 4.4] and hints that stronger statements might be true; see Conjecture 7.5.
Note that this result requires no hypotheses on the ideal I .

Using different techniques, the author proved that there is a linear bound on
reg(S/I) in terms of the first pd(S/I) − codim(I ) maximal graded shifts in the
resolution.
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Theorem 3.3 ([50, Corollary 3.7]) Let I ⊂ S = K[x1, . . . , xn] be a graded ideal
with p = pd(S/I) and c = codim(I). Then

reg(S/I) ≤ max
1≤i≤p−c{t i (S/I)+ (p − i)t1(S/I)} + p.

Note that again there are no assumptions on the ideal I . In the Cohen-Macaulay
case, the result follows from a result of Eisenbud, Huneke, and Ulrich; see
Theorem 5.1. The above result follows by reverse induction on p. Ideals in the next
subsection show that the above result cannot be substantially improved; there are
quadratic ideals of codimension c with linear resolutions for arbitrarily many steps
but whose last c + 1 steps have arbitrarily large degree. See Example 4.1.

One could also hope for better bounds on regularity under some hypotheses on
the ideal I . If S/I is Cohen-Macaulay, we have the following natural bound given
by Huneke, Migliore, Nagel, and Ulrich.

Theorem 3.4 ([39, Remark 3.1]) Let S = K[x1, ..., xn] be a polynomial ring over
a field K, and let I be a graded ideal in S of height c such that S/I is Cohen-
Macaulay. Then reg(S/I) ≤ c(d(I ) − 1), with equality if and only if S/I is a
complete intersection generated by c forms of degree d(I). In particular,

reg(S/I) ≤ n(d(I )− 1)

for all ideals I with S/I Cohen-Macaulay.

On the other hand, if I is merely prime with fixed d(I), even the first syzygies
can have arbitrarily large degree.

Theorem 3.5 ([13, Theorem 6.2]) Fix a positive integer s ≥ 9 and field K. There
exists a nondegenerate prime ideal P in a polynomial ring S over K with d(P ) = 6
and t1(P ) = s.
In the following two subsections, we show some of the limits on these sort of
regularity bounds by showing to what extent the maximal graded shifts of ideals
and cyclic modules mimic those of arbitrary graded modules. The prime ideals in
the previous theorem are derived from the following construction of Ullery, which
we recast as idealizations.

3.1 Ullery’s Designer Ideals via Idealizations

We first recall the idealization construction. Fix a ring R and an R-module M . The
idealization (sometimes called the Nagata idealization or trivial extension) of R by
M is the ring denotedR
M , which isR×M as an abelian group with multiplication
given by (r, x) · (s, y) = (rs, ry + sx) for r, s ∈ R and x, y ∈ M . Idealizations are
commonly used for constructing Gorenstein rings, whenM is the canonical module
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of R, but here we will be interested in the situation that R = S is a polynomial
ring and M is a finitely generated graded S-module. The following is an algebraic
description of certain designer ideals of Ullery described in [61].

Fix an increasing sequence of integers 2 = d1 < d2 < d3 < · · · < dn and
set S = K[x1, . . . , xn]. As previously mentioned, there is a pure, Cohen-Macaulay
module M with maximal (and minimal) graded shifts t0(M) = 1 and t i (M) = di
for 1 ≤ i ≤ n. Denote by A the first differential in the minimal free resolution
of M so that M = Coker(A). Note that by our choice of shifts, A is a matrix of
linear forms. We then consider the standard graded ring S
M . IfM hasmminimal
generators, then we can represent S
M as a homogeneous quotient of the standard
graded polynomial ring T = S[y1, . . . , ym] = K[x1, . . . , xn, y1, . . . , ym]. To be
precise, let y denote the row matrix (y1, . . . , ym). Then S 
 M ∼= T/I , where
I = (y1, . . . , ym)

2 + (y · A). If we write I ′ = (y1, . . . , ym)
2 and I ′′ = (y · A), then

we have a graded short exact sequence of T -modules:

0→ I

I ′
→ T

I ′
→ T

I
→ 0.

The middle term T/I ′ has free resolution E• with the structure of an Eagon-
Northcott complex. In particular, it is a linear free resolution after the first step of
lengthm. The first term in the short exact sequence has a free resolution of the form
K•(x; T ) ⊗S F•, where K•(x; T ) denotes the Koszul complex on T with respect
to x1, . . . , xn, and F• is the minimal free resolution of Syz1(M). In particular,
much of the structure of the free resolution of M is passed to the resolution of
I/I ′. Let ϕ• : K•(x; T ) ⊗S F• → E• be a map of complexes lifting the inclusion
I/I ′ → T/I ′. It follows from standard homological arguments that Cone(ϕ•) is a
T -free resolution of T/I . By analyzing the structure of this resolution one can show
that it is in fact minimal. For details we refer the reader to [61].

As a consequence of the preceding discussion, we have the following special case
of a result of Ullery:

Theorem 3.6 ([61, Theorem 1.3]) Let M be a graded S = K[x1, . . . , xn]-module
minimally generated in degree 0 by m elements with strictly increasing maximal
shifts di := t i (M). Let I be the defining ideal of S 
 M in the polynomial ring
T = S[y1, . . . , ym] as above. Then

t i (T /I) =
{
di + 1 for 1 ≤ i ≤ n
dn + i − n+ 1 for n+ 1 ≤ i ≤ n+m.

In particular, for any strictly increasing sequence of integers 2 ≤ d1 < d2 < · · · <
dn, there exists an ideal I in a polynomial ring T with t i (T /I) = di for 1 ≤ i ≤ n.

Thus the maximal shifts of a graded ideal can realize any increasing sequence of
integers (beginning with d1 ≥ 2) as an initial segment at the expense of a long linear
tail of the corresponding resolution. We illustrate this with an example.
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Example 3.7 Fix integers p, r ≥ 1. We show how to construct an ideal
generated by quadrics which has linear syzygies for p steps and a (p + 1)th
syzygy of degree p + r + 3. Let S = K[x1, . . . , xp+2] and let M =
Extp+2

S (S/(x1, . . . , xp+2)
r+1, S)(−p − r − 2). Then M is a pure, Cohen-

Macaulay S-module with maximal shifts (0, 1, 2, . . . , p, p + 1, p + r + 2).
As M has m = (

p+r+1
r

)
minimal generators, we set T = S[y1, . . . , ym] and

I = (y1, . . . , ym)
2 + (y · A), where A is the linear presentation matrix of M .

Then S 
 M(−1) ∼= T/I , and t i (T /I) = i + 1 for 1 ≤ i ≤ p + 1 and
tp+2(T /I) = p + r + 3.

When p = 1 and r = 3, the moduleM has Betti table:

0 1 2 3
0 : 10 24 15 -
1 : - - - -
2 : - - - -
3 : - - - 1

while T/I has Betti table:

0 1 2 3 4 5 6 · · · 11 12 13
0 : 1 - - - - - - - - -
1 : - 79 585 2220 5403 9150 11178 · · · 174 15 -
2 : - - - - - - - - - -
3 : - - - - - - - - - -
4 : - - - 1 10 45 120 · · · 45 10 1

It is easy to see the copy of K•(y1, . . . , y10; T ) in the 4-linear strand.

Remark 3.8 WhenM = J is an ideal, the construction of the resolution of T/J can
also be found in [51], where Peeva and the author constructed counterexamples to
the Eisenbud-Goto Conjecture by way of Rees-like algebras. The Rees-like algebra
of J is S[J t, t2] ⊆ S[t]. As S[J t, t2]/(t2) ∼= S 
 J , the graded Betti table of
the defining ideal of S[J t, t2] is the same as that of I above. (Although a different
grading is used there to make S[I t, t2] a positively graded ring.)

We will return to the study of quadratic ideals with linear syzygies in Sect. 6.

3.2 Graded Bourbaki Ideals

We saw in Sect. 3.1 that we could construct ideals whose resolutions shared many
properties with a given module. Bourbaki ideals give another way to construct ideal
analogues of modules while preserving much of the structure of the free resolution.
While Bourbaki ideals exist in a much wider context, we limit our attention to
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graded Bourbaki ideals over polynomial rings and refer the interested reader to [11,
Chapter VII, §4.9, Theorem 6] for the more general result.

Let S = K[x1, . . . , xn] and let M be a finitely generated, torsionfree S-module.
A Bourbaki sequence forM is a short exact sequence of the form

0→ F → M → I → 0,

where F is a finitely generated free S-module and I is an ideal of S. Bourbaki
sequences always exist and in the graded setting we can be a bit more precise.

Theorem 3.9 ([36, Theorem 1.2]) Let K be an infinite field and let S =
K[x1, . . . , xn]. Let M be a finitely generated, graded, torsionfree S-module
generated in degree 0 with rank(M) = r . Then there is a graded Bourbaki sequence
of the form:

0→ Sr−1 → M → I (−m)→ 0,

where m ∈ Z and I is a graded height two ideal of S.

As a result, we have the following corollary

Corollary 3.10 Let M be a finitely generated, graded, torsionfree S-module gen-
erated in degree 0. Then there exists an integer m and a height two graded ideal I
such that

t i+1(S/I) = t i (I ) = t i (M)+m,

for all i ≥ 0. In particular, for any strictly increasing sequence of integers d1 <

d2 < · · · < dn, there exists a graded height two ideal I and an integerm (depending
on d1, d2, . . . , dn) such that t i (S/I) = di +m.

In other words, we can construct ideals with any pattern of maximal shifts up
to an added constant. We can also use Bourbaki ideals to construct ideals whose
maximal graded shifts are not strictly increasing.

Example 3.11 Let S = K[x1, x2, x3] and set M = S/(x, y, z)(+1) ⊕
S/(x3, y3)(+3) so that Syz1(M) is torsionfree and has the following Betti table.

0 1 2
0 : 5 3 1
1 : - - -
2 : - 1 -
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The coresponding graded, height two Bourbaki ideal I ⊆ T associated to M has
following Betti table.

0 1 2 3
0 : 1 - - -
1 : - - - -
2 : - - - -
3 : - 4 3 1
4 : - - - -
5 : - - 1 -

Note that t2(T /I) = 7, while t3(T /I) = 6.

4 Subadditivity of Syzygies

Again let S = K[x1, . . . , xn], and fix a graded S-ideal I . Then I is said to satisfy
the subadditivity condition if

ta(S/I)+ tb(S/I) ≥ ta+b(S/I)

for all integers a, b ≥ 1 with a + b ≤ pd(S/I). This is a natural condition
from the perspective of the Koszul homology algebra. Write Hi(x, S/I) to denote
the ith Koszul homology of S/I with respect to x1, . . . , xn. Since βi,j (S/I) =
dimk Hi(x, S/I)j , we can interpret the Betti table of S/I as a bigraded decompo-
sition of the Koszul homology algebra H∗(x; S/I), with the obvious multiplicative
structure coming from the Koszul complex. In particular, if ta+b(S/I) > ta(S/I)+
tb(S/I), then there is a generator of the Koszul homology algebra in homological
degree a + b.

If I is generated by a homogeneous regular sequence f1, . . . , fc, then it
follows easily from the structure of the Koszul complex K(f1, . . . , fc; S) that S/I
satisfies the subadditivity condition [52, Proposition 4.1]. On the other hand, the
subadditivity condition fails in general, even for Cohen-Macaulay quotients S/I .

Example 4.1 This example is a modification of [25, Example 4.4]. Let K be a
field and S = K[x1, x2, x3, x4]. Consider the ideals C = (x4

1 , x
4
2 , x

4
3 , x

4
4) and

I = C + (x1 + x2 + x3 + x4)
4. As � = x1 + x2 + x3 + x4 is a strong

Lefschetz element for S/C [34, Theorem 3.35], it follows that the h-vector of S/I is
(1, 4, 10, 20, 30, 36, 34, 20). Let L = C : I . Using the Lefshchetz property, we see
that L has no generators in degree ≤ 4, except for those of C. As reg(S/C) = 12,
the map (S/C)5 → (S/C)9 via multiplication by �4 is surjective. Thus there is
a dimK(S/C)5 − dimK(S/C)9 = 40 − 20 = 20 dimensional kernel to this map
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corresponding to 20 generators of L in degree 5. Consider the graded short exact
sequence

0→ (S/L)(−4)→ S/C → S/I → 0.

As S/C is resolved by a Koszul complex, t1(S/C) = 4. The degree 5 generators
of L force t1(S/L(−4)) = t1(S/L) + 4 ≥ 9. (Actually we get equality here but
the inequality is all we need.) It follows from the long exact sequence of Tor that
t2(S/I) ≥ 9 while t1(S/I) = 4. Thus the subadditivity property fails for S/I . The
full sequence of maximal graded shifts of S/I is (0, 4, 9, 10, 11).

To construct examples where the subadditivity property fails later in the res-
olution, we can replicate copies of the ideal I in new sets of variables, four
at a time. Their ideal sum is resolved by the tensor product of the copies of
the resolution of S/I . For example, taking 3 copies of S/I and tensoring the
corresponding resolutions, we get the following sequence of maximal graded shifts:
(0, 4, 9, 13, 18, 22, 27, 28, 29, 30, 31, 32, 33). The subadditivity property fails at
each of the underlined positions (9 �≤ 4+ 4, 18 �≤ 4+ 13, 27 �≤ 13+ 13).

Since the subadditivity condition holds for complete intersections but fails for
Cohen-Macaulay ideals, It is natural to ask if it holds for Gorenstein ideals. Some
positive results are given by Srinivasan and El Khoury in [27]. However, Gorenstein
ideals failing the subadditivity condition were constructed by Seceleanu and the
author in [52]. More precisely, they proved the following:

Theorem 4.2 [52, Theorem 4.3] Let K be an infinite field and m ≥ 2 an integer.
Then there exists a quadratic, Artinian, Gorenstein ideal I in a polynomial ring S
over K such that I has first syzygies in degreem+2. In particular, the subadditivity
property fails for S/I .

The ideals in this construction also come from idealizations but of a different sort.
The key is to construct a quadratic Artinian K-algebra A whose defining ideal J has
arbitrarily large first syzygies and has the superlevel property. A standard graded
K-algebra R is called superlevel if its canonical module ωR is linearly presented
over R. In this case, it is sufficient to check that the last differential in the resolution
of the defining ideal of A is linear. It follows from a result of Mastroeni, Schenck,
and Stillman [47, Theorem 3.5] that the idealization G = A
 ωA(− reg(A)− 1) is
Gorenstein, Artininian, and quadratic, and while we do not know the full structure
of the defining ideal, minimal syzygies of J induce minimal syzygies of the defining
ideal of G.

Nevertheless, there are notable classes of ideals where the subadditivity property
is expected or even conjectured:

(1) Monomial ideals,
(2) Koszul algebras,
(3) Toric ideals.
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If I ⊆ S is a monomial ideal, the Taylor resolution has maximal graded shifts
satisfying the subadditivity property, but this resolution is not minimal in general.
When one trims this down to a minimal free resolution, it is not clear that the
subadditivity property is preserved, although it is expected and partial results are
known. The most general result is the following theorem of Herzog and Srinivasan:

Theorem 4.3 ([37, Corollary 4]) Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal.
Then

t1(S/I)+ ta(S/I) ≥ ta+1(S/I)

for all integers 0 ≤ a < pd(S/I).

Note that the monomial ideal hypothesis is necessary as we have previously seen
this inequality fails for arbitrary (even Gorenstein) ideals.

Specific classes of monomials have been shown to satisfy the full subadditivity
condition, including facet ideals of simplicial forests [28], edge ideals of certain
graphs and hypergraphs [9], and monomial ideals with DGA resolutions [41]; see
also [1]. The general case remains open.

The subadditivity property of Koszul algebras was studied by Avramov, Conca,
and Iyengar [3, 4], where they explicitly conjecture the subadditivity property and
extended work of Backelin [5], Kempf [42] and others. Recall that a standard graded
ring R = S/I is called Koszul if R/R+ ∼= K has a linear free resolution over R,
where R+ denotes the homogeneous maximal ideal; equivalently, tRi (K) = i for all
i ≥ 0. While subadditivity is still open in general for Koszul algebras, many slightly
weaker results on the maximal graded shifts are known.

If I is generated by quadratic monomials, Conca [16] observed that the following
inequalities follow from the Taylor resolution of R = S/I :

(1) t i (R) ≤ 2i for all i ≥ 0.
(2) If t i (R) < 2i for some i, then t i+1(R) < 2(i + 1).
(3) t i (R) < 2i if i > dim(S)− dim(R).

Therefore, these same properties hold by a deformation argument whenever I has a
quadratic Gröbner basis and it is natural to ask if these properties hold for arbitrary
Koszul algebras. Kempf [42, Lemma 4] (and also Backelin [6]) proved that (1)
above holds for all Koszul algebras. Items (2) and (3) were proved by Avramov,
Conca, and Iyengar [3, Main Theorem]. In a later paper, under mild hypotheses,
they proved the following improvements.

Theorem 4.4 ([4, Theorem 5.2]) Suppose R = S/I is a Koszul K-algebra with
Char(K) = 0. Let m = min{i ∈ Z | t i (R) ≥ t i+1(R)}. Then

(1) If max{a, b} ≤ m, then

ta+b(R) ≤ max{ta(R)+ tb(R), ta−1(R)+ tb−1(R)+ 3}.
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(2) In particular, if max{a, b} ≤ m then

ta+1(R) ≤ ta(R)+ 2

and

ta+b(R) ≤ ta(R)+ tb(R)+ 1.

Moreover, we may drop the condition max{a, b} ≤ m when R is Cohen-Macaulay,
since in this case ht(I ) = m = pdS(R).

Minimal free resolutions of toric ideals have similar combinatorial descriptions
to those of monomial ideals; for example, see [55, Section 67]. It seems natural to
study the subadditivity property for toric ideals. This problem seems wide open.

5 General Syzygy Bounds

As noted in the previous section, the subadditivity condition fails for arbitrary ideals;
however, there are several slightly weaker bounds on syzygy degrees that hold with
greater generality. In their paper [25], Eisenbud, Huneke, and Ulrich studied the
regularity of Tor modules and obtained consequences for ideals I ⊂ S such that
dim(S/I) ≤ 1. Note that such results instantly extend to ideals I such that S/I has
Cohen-Macaulay defect at most 1; one extends to an infinite base field and then kills
a general sequence of linear forms to reduce to this case. In particular, the following
two weak convexity results hold when S/I is Cohen-Macaulay.

Theorem 5.1 ([25, Corollary 4.1]) Suppose I ⊂ S = K[x1, . . . , xn] is a graded
ideal such that dim(S/I) − depth(S/I) ≤ 1. Set p = pdS(S/I). Then for any
0 ≤ i ≤ p,

tp(S/I) ≤ tp−i (S/I)+ t i (S/I).

Theorem 5.2 ([25, Corollary 4.2(a)]) Suppose I ⊂ S = K[x1, . . . , xn] is a
graded ideal such that dim(S/I) − depth(S/I) ≤ 1. Set p = pdS(S/I). Suppose
that f1, . . . , fc is a homogeneous regular sequence in I , where di = deg(fi). Then

tp(S/I) ≤ tp−c(S/I)+
c∑

i=1

di .

Both of these results follow from a more general result on the regularity of Tor
that requires the hypothesis that dim(S/I)− depth(S/I) ≤ 1; however, it is natural
to ask if either of the above results holds without the assumption that dim(S/I) −
depth(S/i) ≤ 1; see Conjectures 7.5 and 7.6. While this remains open, slightly
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weaker statements do hold without assumptions on the ideal I . The author used
similar techniques as those used for Theorem 3.2 to show that

tp(S/I) ≤ max
1≤i≤p−1

{
t i (S/I)+ tp−i (S/I)

}
,

where p = pd(S/I) [49, Theorem 4.4]. Shortly thereafter, Herzog and Srinivasan
proved the following stronger statement:

Theorem 5.3 ([37, Corollary 3]) Let I ⊂ S = K[x1, . . . , xn] be a graded ideal
and set p = pd(S/I). Then

tp(S/I) ≤ t1(S/I)+ tp−1(S/I).

This result follows from a more general statement [37, Proposition 2], which
considers the dual complex of the minimal free resolution of I . Similar techniques
yields the stronger statement in Theorem 4.3 for monomial ideals; see Sect. 7.2 for
potential stronger statements.

6 Quadratic Ideals and Linear Syzygies

Historically, there has been significant interest in conditions on nondegenerate
projective varieties that force the resolutions of the vanishing ideals to be as simple
as possible. There are many classical theorems guaranteeing that a variety X is
defined by quadrics q1, . . . , qt either ideal theoretically (IX = (q1, . . . , qt )), set
theoretically (IX = √(q1, . . . , qt )), or scheme-theoretically (IX = (q1, . . . , qt )

sat).
See [31, 53, 58, 59]. Green and Lazarsfeld [29] wrote that “one expects that
theorems on generation by quadrics will extend to—and be clarified by—analogous
statements for higher syzygies.” In this section we consider the stronger condition
that IX is generated by quadrics ideal theoretically and has linear resolution for p−1
steps. In many geometric situations, it is natural to assume that the corresponding
variety is projectively normal, i.e. that S/IX is a normal ring. Following Green and
Lazarsfeld [30], we define property Np, sometimes called the Green-Lazarsfeld
property, as follows. An ideal I ⊆ S = K[x1, . . . , xn] satisfies property Np for
some integer p ≥ 0 if S/I is normal and βSi,j (I ) = 0 for j �= i + 2 and
0 ≤ i < p. A projective variety X (with fixed embedding) satisfies property Np
if its homogeneous vanishing ideal IX does. Note that properties N0 and N1 are
what Mumford termed “normal generation” and “normal presentation” respectively
in [53]. AssumingX is projectively normal and nondegenerate, the ideal IX satisfies
property Np if and only if t i (S/IX) = i + 1 for 1 ≤ i ≤ p − 1.

We first consider geometric or combinatorial conditions that ensure an ideal
satisfies property Np. The first example of this type is the following result of Green.
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Theorem 6.1 ([31, Theorem 4.a.1]) Let X ⊆ P
n
C

be a smooth projective curve of
degree d and genus g. If d ≥ 2g + 1+ p, then IX satisfies property Np.

This theorem was recovered by Green and Lazarsfeld as a result of the following
theorem on points in projective space:

Theorem 6.2 ([29, Theorem 1]) Suppose that X ⊆ P
n
C

consists of 2n + 1 − p
points in linear general position (no n+ 1 lying on a hyperplane). Then IX satisfies
property Np.

Specifically regarding curves with their canonical embedding, Green’s Conjec-
ture predicts that the Np property is connected with the Clifford index.

Conjecture 6.3 ([31, Conjecture 5.1]) Let X ⊂ P
g

C
be a smooth curve in its

canonical embedding. Then the Clifford index Cliff(X) is equal to the least integer
p for which property Np fails for IX.

See [22, Section 9A] or [46, Section 1.8] for a precise definition of the Clifford
index. Note that the hyperelliptic case is simple as X is then a rational normal
curve with a linear free resolution. Green and Lazarsfeld [31, Appendix] showed
that if Cliff(X) = p, then property Np fails, so the content of the theorem is
the reverse implication. Voisin [62, 63] showed that Green’s Conjecture holds for
general curves. More recently, a shorter proof of the general case, which also
applies in characteristic p � 0 was given by Aprodu, Farkas, Papadima, Raicu,
and Weyman [2] via the theory of Koszul Modules, while Green’s Conjecture can
fail in small characteristics [60].

For related statements regarding higher dimensional varieties, we refer the reader
to the survey [20] by Ein and Lazarsfeld.

Of particular interest are the resolutions of Segre and Veronese varieties. We
restrict our discussion to the case when char(K) = 0, as the resolutions can change
in certain small characteristics; see [35]. In the case of Veronese embedding, Green
proved the following via a Koszul vanishing argument.

Theorem 6.4 ([32, Theorem 2.2]) Let Vd,r denote the defining ideal of the image

of Pr in P(
r+d
d )−1 under the dth Veronese embedding. Then Vd,r satisfies property

Nd .

Ottoviani and Paoletti [54] later conjectured that if d ≥ 3, then property N3d−3
should hold while showing that N3d−2 failed. When d = 2, the ideals V2,r are
generated by the 2 × 2 minors of a symmetric (r + 1) × (r + 1) matrix, whose
resolutions are described by Józefiak, Pragacz, and Weyman [40] via representation
theoretic techniques. It follows that V2,r satisfies propertyN5 and failsN6 for r ≥ 3,
while V2,2 has a linear free resolution. (i.e. satisfies property Np for all p.) See
Sect. 7 for more on this problem, and see the paper [12] by Bruce, Erman, Goldstein,
and Yang for an interesting computational approach.

The situation for Segre embeddings is better understood as resolutions, again in
characteristic 0, are given by Lascoux [45] and Pragacz and Weyman [56]. Such
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ideals are generated by the 2× 2 minors of a generic matrix. The next result follows
from their construction.

Theorem 6.5 Let I denote the defining ideal of the Segre embedding P
a−1 ×

P
b−1 → P

ab−1 with a, b ≥ 3. Then I satisfies property N3 and fails property
N4.

When a = 2 or b = 2, it is well known that the resolution of I is linear. For a
more detailed treatment of representation theoretic techniques for computing free
resolutions, we refer the reader to the book [65] of Weyman. For summaries of
related statements on the Np property, see [57] and [46].

Especially in combinatorial settings it may not be natural to assume normality;
we can also generalize the situation to arbitrary degree. Following [24], we say that
an ideal I ⊆ S = K[x1, . . . , xn] satisfies property Nd,p if βSi,j (I ) = 0 for j �= d+ i
and 0 ≤ i < p. Thus I satisfies property Np if and only if S/I is normal and I
satisfies property N2,p.

When I is a square-free monomial ideal, we can identify it with its Stanley-
Reisner complex �I whose faces correspond to the monomials not in I . In the
specific case when I is generated in degree two, we can identify I with a graph
whose vertices correspond to the variables and whose edges {i, j} correspond to
monomial generators xixj of I . We write I (G) for the edge ideal of the graph G
and I� for the square-free monomial ideal corresponding to the simplicial complex
�. We write I∨ = I�∨ for the ideal corresponding to the Alexander dual of the
squarefree monomial ideal I .

The following result shows that property N2,p for an edge ideal of a graph can
be detected combinatorially.

Theorem 6.6 ([24, Theorem 2.1],[66, Corollary 3.7]) Let G be a graph and let
p ≥ 2. Then the following are equivalent:

(1) I (G) satisfies property N2,p.
(2) S/I (G)∨ satisfies Serre’s property Sp.
(3) G has no induced k-cycle for 4 ≤ k ≤ p + 2.

The equivalence of items (1) and (2) is a result of Terai and Yanagawa [66]; the
equivalence of (1) and (3) is a result of Eisenbud, Green, Hukek, and Popescu [24]
and holds when p = 1.

Assuming one has such an edge ideal, Dao, Huneke, and Schweig [19] proved
the following logarithmic bound on the regularity.

Theorem 6.7 ([19, Theorem 4.1]) Let G be a graph on n vertices such that I (G)
satisfies property N2,p for some integer p ≥ 2. Then

reg(S/(I (G)) ≤ log p+3
2

(
n− 1

p

)
+ 2.

For some time it was an open question as to whether there was a bound,
independent of the number of variables, on the regularity of quadratic monomial
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ideals satisfying propertyN2,p [19, p. 8]. The following theorem of Constantinescu,
Kahle, and Varbaro, improving earlier work [17], shows that this is not the case.

Theorem 6.8 ([18, Corollary 6.12]) Suppose Char(K) = 0 and fix positive
integers p and r . Then there exists a quadratic square-free monomial ideal I ⊆
S = K[x1, . . . , xN(p,r)] satisfying property N2,p with

reg(S/I) = r.

These ideals are constructed via an interesting connection between the regularity
of certain edge ideals and the virtual projective dimension of hyperbolic Coxeter
groups. It is worth noting though that the construction requires a large number of
variables. Also, unlike Ullery’s construction in Sect. 3.1, the jump in syzygy degrees
cannot happen all at once by Theorem 4.3.

Finally, we recall that Avramov, Conca, and Iyengar proved that Koszul ideals
satisfying property N2,p also satisfy a regularity bound.

Theorem 6.9 ([4, Theorem 6.1]) Let I ⊆ S = K[x1, . . . , xn] be a graded ideal
such that S/I is Koszul and satisfies property N2,p for some p ≥ 1. Then

reg(S/I) ≤ 2

⌊
n

p + 1

⌋
+ 1.

We consider potential stronger regularity bounds in the next section.

7 Questions and Conjectures

We end by collecting a number of open questions and conjectures related to the
subadditivity type problems.

7.1 Subadditivity of Syzygies

First, we recall the main open cases for the subadditivity condition.

Conjecture 7.1 ([4, Conjecture 5.5]) Let S/I be a Koszul algebra. Then S/I
satisfies the subadditivity condition.

While it is not explicitly conjectured in print, the results in [28, 37] strongly
indicate that we should expect the subadditivity condition to hold for all monomial
ideals. We make this conjecture here.

Conjecture 7.2 Let M ⊆ S be a monomial ideal. Then S/M satisfies the subaddi-
tivity condition.
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Given the combinatorial nature of resolutions of toric ideals, it seems natural to
expect that they also satisfy the subadditivity condition. The author knows of no
counterexamples to the following conjecture.

Conjecture 7.3 Let I ⊆ S be a toric ideal (meaning prime and generated by
binomials). Then S/I satisfies the subadditivity condition.

As both monomial ideals and toric ideals have Z
m-gradings for some integer m,

we could strengthen both of the previous conjectures to ask about subadditivity of
the multi-graded Betti numbers. It would also be interesting to find other classes of
ideals where the subadditivity condition holds. We state this formally as a problem.

Open-ended Problem 7.4 Find other classes of ideals that satisfy the subadditivity
condition.

7.2 Weak Convexity of Syzygies

The results of Eisenbud, Huneke, and Ulrich [25] hold for ideals I ⊆ S with
Cohen-Macaulay defect at most 1; that is, dim(S/I)− depth(S/I) ≤ 1. The author
previously conjectured that several of these results hold in greater generality. We
record these here.

Conjecture 7.5 ([49, Question 5.1]) Let I ⊆ S be a graded ideal and let p =
pd(S/I). Then for any integer 0 ≤ i ≤ p,

tp(S/I) ≤ t i (S/I)+ tp−i (S/I).

This appears to be open even when p = 4 and i = 2. Note that Theorem 5.3 shows
the conjecture holds in the case i = 1.

Conjecture 7.6 ([50, Conjecture 1.4]) Let I ⊆ S be a graded ideal and suppose
f1, . . . , fc ∈ I is a homogeneous regular sequence. Set di = deg(fi) for 1 =
1, . . . , c and p = pd(S/I). Then

tp(S/I) ≤ tp−c(S/I)+
c∑

i=1

di .

7.3 Syzygy Bounds on Regularity

We know that the subadditivity condition fails in general for Cohen-Macaulay
ideals; see Example 4.1. More precisely, there are Cohen-Macaulay ideals generated
in fixed degree and with arbitrarily large first syzygies. What is not clear is whether
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resolutions of Cohen-Macaulay ideals can exhibit more extreme behavior beyond
the first two steps.

Question 7.7 Let I ⊆ S be a graded ideal such that S/I is Cohen-Macaulay. Fix an
integer 0 ≤ i ≤ pd(S/I). Does the following inequality hold:

t i (S/I) ≤ max{i · t1(S/I), i
2
· t2(S/I)}?

Ullery’s designer ideals show that the Cohen-Macaulay hypothesis cannot be
removed from the previous question.

7.4 Syzygies of Quadratic Ideals

Recall that property Nd holds for the dth Veronese embedding of Pn
K

and property
N3d−2 fails. Ottoviani and Paoletti have conjectured that this is sharp.

Conjecture 7.8 ([54]) For integers n ≥ 2 and d ≥ 3 and a field K of characteristic
0, the defining ideal of the dth Veronese embedding of Pn

K
satisfies Np if and only

if p ≤ 3d − 3.

When d = 2 and n ≥ 3, it follows from work of Józefiak, Pragacz, and Weyman
[40] that property N5 holds and N6 fails. When n = 1 (and when d = n = 2), the
corresponding resolution in linear, i.e. property Np holds for all p. When n = 2,
the conjecture holds by work of Birkenhake [10] and Green [31]. When d = 3, the
conjecture holds by work of Vu [64]. All other cases are open.

Finally, we recall the following question of Constantinescu, Kahle, and Varbaro
regarding the regularity of linearly presented quadratic ideals. In the more restrictive
Koszul setting, this question was previously posed by Conca [16, Question 2.8].

Question 7.9 ([18, Question 1.1]) Does there exist a family of quadratically gener-
ated, linearly presented, graded ideals In ⊆ K[x1, . . . , xn] such that

lim
n→∞

reg(In)

n
> 0?

We may replace n with pd(In) as one can mod out by a regular sequence of linear
forms to reduce to the above question. One expects that no such families of ideals
exist, so we pose the following stronger question:

Question 7.10 If In ⊆ K[x1, . . . , xn] is a family of quadratic, homogeneous,
linearly presented (i.e. satisfying property N2,2) ideals, is

lim sup
n→∞

reg(In)√
n

<∞?
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Clearly a positive answer to Question 7.10 gives a negative answer to Question 7.9.
Let’s calibrate on some examples.

(1) Let Vd,r denote the defining ideal of the dth Veronese embedding of P
r in

P
(
r+1
d )−1

in characteristic 0. This ideal satisfies property Nd by Theorem 6.4.
One checks that reg(Vd,r ) = r−� r+1

d
�+2, while codim(Vd,r ) =

(
r+d
d

)−r−1.

Setting d = 2 and taking an Artinian reduction (so that n = (
r+2

2

) − r − 1),
we see that the above lim sup is a limit with value

√
2 as n approaches∞. Note

also that this example shows that the stronger question asking if families of
N2,p ideals satisfy

lim sup
n→∞

reg(In)
p
√
n

<∞

fails for p = 3, since V2,r satisfies property N3; see above.
(2) If G1,r is the defining ideal of the Grassmannian of lines in P

r , it is known
that reg(G1,r ) = r − 3 [44, Theorem 5.3], while G1,r is Cohen-Macaulay with
codim(G1,r ) =

(
r−2

2

)
[38, Corollary 3.2]. Again taking an Artinian reduction

and letting r tend to∞ we get a limit of
√

2.
(3) If In ⊆ K[x1, . . . , xn] is a quadratic monomial ideal satisfying property N2,2,

then by Theorem 6.7, reg(In) ≤ log 5
2

(
n−1

2

)
+ 2. It follows that the above

lim sup is 0 for all such families of monomial ideals.
(4) Finally, we can construct quadratic, linearly presented ideals Ir with regularity r

via the idealization construction in Sect. 3.1. However, the projective dimension

of such ideals is r
2+3r

2 + 4, which is quadratic in r , meaning the above lim sup
is always finite.

See also [4, Section 6] and [33] for relevant examples and computations.
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Applications of Liaison

J. Migliore and U. Nagel

Dedicated to David Eisenbud on the occasion of his 75th
birthday

1 Introduction

Liaison theory has a long and rich history, with several periods of pronounced
activity in the last century and a half. Many important questions have been answered,
and important questions still remain. We refer the reader to [59, 61] and [65] for
detailed treatments of liaison theory, and the authors of this paper hope to update
[61] in the coming years to account for the progress made in the intervening years
since its original publication, of which there is quite a bit.

What is less chronicled, though, are the many areas in which liaison techniques
have been applied. In this paper we have selected a handful of examples of such
applications. We begin, in Sect. 2, by giving enough of a background to make the
subsequent sections readable, and then we describe just a few of the many directions
in which these tools have led to interesting, and perhaps surprising, contributions.
The table of contents lists the topics that we will cover, and will not be repeated
here.

One of the breakthroughs in liaison theory came in 1983 by Lazarsfeld and Rao
[56], and in a sense it was intended as a warning that a classical idea for applying
liaison was more limited than was previously known. They say: Classically, linkage
was seen as a method for producing interesting examples of space curves starting
from simpler ones. . . . A priori, one could hope—as some of the classical geometers
apparently did—that techniques of liaison could be used to study space curves
inductively, by linking a given curve to a (possibly very special) curve of lower

J. Migliore (�)
Department of Mathematics, University of Notre Dame, Notre Dame, IN, USA
e-mail: migliore.1@nd.edu

U. Nagel
Department of Mathematics, University of Kentucky, Lexington, KY, USA
e-mail: uwe.nagel@uky.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Peeva (ed.), Commutative Algebra, https://doi.org/10.1007/978-3-030-89694-2_17

523

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89694-2_17&domain=pdf
mailto:migliore.1@nd.edu
mailto:uwe.nagel@uky.edu
https://doi.org/10.1007/978-3-030-89694-2_17


524 J. Migliore and U. Nagel

degree or genus. Believing that at least for general curves such an approach is
fundamentally flawed, Harris suggested that a general curve should in various
senses be minimal in its liaison class. Our results may be seen, then, as giving
additional support (if any is needed) to the philosophy that there is no easy way to
get one’s hands on a “general” curve.

In a sense, the book of Martin-Deschamps and Perrin [59] showed that this result
of Lazarsfeld and Rao was not restricted to general space curves, but in fact was just
part of a beautiful and much larger picture for space curves. The paper [4], appearing
at about the same time, showed that it was not even restricted to space curves.

The applications in this paper illustrate the fact that nevertheless, the classical
ideas were not so far off. In many situations liaison can be used to study general
objects, and in any case it can be used to produce examples of varieties or ideals
with very nice properties, or to produce interesting results of other kinds.

For many applications, it is essential to use a more general concept of liaison.
Classically and in the references above, complete intersections were used to link
subschemes. However, in [81] it is already discussed that one could use, more
generally, arithmetically Gorenstein subschemes to link. Several decades went by
before a systematic investigation of Gorenstein liaison was initiated in [52]. It led to
a flurry of new results whose power we illustrate in some of the following sections.

We end the paper with a short list of open questions from liaison theory, hoping
that they supplement the descriptions of known applications as a motivation for
further study in liaison theory, and that their eventual resolution will in turn lead to
new applications. We also include a long list of references for the interested reader.

2 Background

Let R = k[x0, . . . , xn], where k is at least an infinite field. In different parts of the
paper we make different assumptions about k.

Definition 2.1 Let C1, C2, X ⊂ P
n be subschemes of the same dimension, with X

arithmetically Gorenstein. Assume that IX ⊂ IC1 ∩ IC2 and that IX : IC1 = IC2 and
IX : IC2 = IC1 . Then C1 and C2 are said to be (directly) algebraically G-linked by

X, and we say that C2 is residual to C1 in X. We write C1
X∼ C2. If X is a complete

intersections, we say that C1 and C2 are (directly) algebraically CI-linked.

Suppose two subschemes C1 and C2 of Pn are directly G-linked by an arithmeti-
cally Gorenstein subscheme X, and assume that the last twist in the minimal free
resolution of X is −t . Then it was shown in [81] that there is a short exact sequence
of sheaves

0→ IX → IC1 → ωC2(n+ 1− t)→ 0. (2.1)



Applications of Liaison 525

Of course this gives a short exact sequence on global sections, since IX has
vanishing first cohomology. If furthermore C1 and C2 are arithmetically Cohen-
Macaulay, and if we know a minimal free resolution for IX and one for IC1 , then a
mapping cone gives a free resolution for the canonical module of C2, and the dual
of this resolution is a free resolution for IC2 . (Something more general holds, but we
will not need it here.) This construction for the free resolution of IC2 is called the
mapping cone construction.

In some sense, the theories of CI-linkage and G-linkage have moved in different
directions, although in codimension two in projective space they coincide. Two
important properties that these two kinds of linkage have in common are the
invariance of the deficiency module under (even) liaison, and the formula for the
Hilbert function of the residual scheme in the arithmetically Cohen-Macaulay case.

We will see in a moment that the invariance of the deficiency modules implies
that the property of being arithmetically Cohen-Macaulay is preserved under liaison.
Accepting this for now, we first mention the Hilbert function formula. Suppose
V and V ′ are arithmetically Cohen-Macaulay schemes of codimension c directly
linked by an arithmetically Gorenstein scheme X. It turns out that linkage is also
preserved under general hyperplane sections, including Artinian reductions, so
we can assume that J and J ′ are Artinian ideals directly linked by an Artinian
Gorenstein ideal I in a polynomial ring R.

Let c = (1, c, c2, . . . , cs−1, cs) be the Hilbert function of R/I (i.e. the h-vector
of X). Note that c is symmetric. Let a = (1, a1, . . . , at ) be the Hilbert function of
R/J and let a′ = (1, a′1, . . . , a′u) be the Hilbert function of R/J ′. Note that a1 ≤ c,
with equality if and only if V is non-degenerate (and similarly for V ′). By Davis et
al. [20, Theorem 3] (see also [61, Corollary 5.2.19]) we have the following result.

Theorem 2.2 Under the above assumptions and notation, the h-vector of V2 is
given by

a′i = cs−i − as−i
for i ≥ 0.

If C is a subscheme of Pn of dimension r , then for 1 ≤ i ≤ r we will denote by
Mi(C) the i-th deficiency module, i.e. the graded R-module

Mi(C) =
⊕

t∈Z
Hi(IC(t)).

Recall that C is arithmetically Cohen-Macaulay (ACM) if and only if Mi(C) = 0
for all 1 ≤ i ≤ r .

It was shown by Hartshorne and by Rao (cf. for instance [84]) that in any
codimension (assuming dimension r ≥ 1), up to shift Mi(C) is an invariant of
the even liaison class of C. There is also a result relating the modules under an
odd number of links, involving dual modules. We omit this here, but note that it
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follows from this that the property of being arithmetically Cohen-Macaulay is thus
an invariant of a liaison class.

In fact, the whole configuration of modules is invariant up to shift. However,
except in one case (see below), they do not uniquely determine the even liaison
class, and in codimension ≥3 we know very little about what invariant(s) uniquely
determine an even liaison class.

In [9, Proposition 1.4], it was shown that in fact there is a left-most shift for this
configuration of modules within an even liaison class:

Proposition 2.3 Let L be an even liaison class of dimension r subschemes of Pn

(1 ≤ r ≤ n − 2). Then there exists X ∈ L such that for all V ∈ L and for all
1 ≤ i ≤ r , we have

Mi(V ) ∼= Mi(X)(−d) for some d ≥ 0.

Note that it is the same value of d for each of the modules. This motivates the
following partition of a non-ACM even liaison class according to the shift of the
modules:

Definition 2.4 Let L be an even liaison class of dimension r subschemes of Pn.
Then L0 is the set of subschemes whose associated modules attain the leftmost
possible shift, and Lh is the set of subschemes whose associated modules are shifted
h places to the right of the leftmost shift.

We now consider curves in P
3. As a special case, if C is a curve in P

3, we set

M(C) =
⊕

t∈Z
H 1(IC(t)).

This is the Hartshorne-Rao module of C. It serves (at least) two purposes in this
paper:

• It is invariant for the even liaison class of C (Hartshorne-Rao), and in fact up to
shift it determines the even liaison class (Rao—see Theorem 2.5);

• It measures the failure of C to be ACM In particular,

C is ACM if and only if M(C) = 0.

For codimension two subschemes of a smooth arithmetically Gorenstein variety
(in particular, codimension two subschemes of Pn), we have necessary and sufficient
conditions for two subschemes to be in the same even liaison class (cf. [74, 77, 84]).
However, for the purposes of this paper we focus on the necessary and sufficient
condition found by Rao for curves in P

3.
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Theorem 2.5 (Rao [83])

(i) Let C,C′ be curves in P
3 whose homogeneous ideals are unmixed (i.e. the

curves are locally Cohen-Macaulay and equidimensional). Then C and C′ are
in the same even liaison class if and only ifM(C) ∼= M(C′)(δ) for some δ ∈ Z.

(ii) Let M be a graded module of finite length over k[x0, x1, x2, x3]. Then there
exists a curve C ⊂ P

3 and a positive integer δ such thatM ∼= M(C)(−δ).
Rao has also solved this question for locally Cohen-Macaulay, codimension two

subschemes of projective space [84] in terms of stable equivalence classes of vector
bundles. We omit the details here, except to remark that both Nagel [74] and Nollet
[77] extended the result to codimension two subschemes that are equidimensional
but not necessarily locally Cohen-Macaulay.

We also remark that among curves in P
3 (and indeed, among codimension two

subschemes of P
n), the ACM subschemes form an even liaison class. In higher

codimension, it is an interesting question to determine which ACM subschemes are
licci (the CI-liaison class of a complete intersection), or glicci (the G-liaison class
of a complete intersection). We do not deal with this question in this paper except
to mention an important open question in the last section.

Next we recall the construction of Liaison Addition, which was discovered and
first proved by Phil Schwartau in his Ph.D. thesis in 1982 [86]. We note that while
Schwartau never published his thesis, the result has been generalized in the literature
[9, 31, 46]. Below we state the version proved in his thesis, very slightly revised to
agree with our terminology.

Theorem 2.6 (Schwartau, [86] Theorem 50) Let C,C′ be codimension two sub-
schemes of Pn. Let F ∈ IC and F ′ ∈ IC′ be homogeneous polynomials such that
(F, F ′) forms a regular sequence, defining a complete intersection Y . Assume that
degF = d, degF ′ = d ′. Let I = F ′ · IC + F · IC′ . Then

(i) I is a saturated ideal.
(ii) As sets, I defines C ∪ C′ ∪ Y . This is also true as schemes if pairwise C, C′

and Y have no common component.
(iii) Let X be the scheme defined by the saturated ideal I . Then for 1 ≤ i ≤ n− 2

we have

Mi(X) = Mi(C)(−d ′)⊕Mi(C′)(−d).

(iv) In particular, if C and C′ are ACM then so is X.
(v) The Hilbert function of X satisfies

hX(t) = hY (t)+ hC(t − d ′)+ hC′(t − d).

The ideal I (or the subscheme X) is called the liaison addition of C and C′.
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The construction of Basic Double Linkage was introduced by Lazarsfeld and
Rao [56] in 1982 in the context of curves in P

3. We first state it in the context of
codimension two subschemes of Pn.

Theorem 2.7 (Lazarsfeld-Rao [56]) Let C ⊂ P
n be a codimension 2 subscheme.

Let F ∈ IC and let A be a form such that (F,A) is a regular sequence. Let Y be the
complete intersection subscheme defined by (F,A).

Consider the ideal J = A · IC + (F ). Then:

(i) J = A · IC + (F ) is a saturated ideal, defining a scheme X.
(ii) If IC is unmixed then X is CI-linked to C in two steps.

(iii) In particular:

– if C is ACM then so is X.
– If C ∈ Lh and degA = a then X ∈ Lh+a .

(iv) If C and Y have no common component then X = C ∪ Y as schemes.

The ideal J (resp. subscheme X) is called a Basic Double Link of IC (resp. of C).

Notice that this version of basic double linkage can be viewed as a special case
of Liaison Addition, by taking C′ to be the empty set, with ideal R. This theorem
has been generalized, and we next give a more general version. This version was
discovered by the two authors with Kleppe, Miró-Roig and Peterson [52].

Theorem 2.8 ([52] Lemma 4.8, Proposition 5.10) Let S ⊂ P
n be a generically

Gorenstein, ACM subscheme. Let C ⊂ S be an equidimensional subscheme of
codimension 1 in S, and let A ∈ R be a homogeneous element of degree d such
that IS : A = IS . Let

J = A · IC + IS.

(i) J is unmixed (in particular saturated). Let Y be the scheme defined by J , so
we have J = IY .

(ii) deg(Y ) = d · deg(S)+ deg(C).
(iii) Y is ACM if and only if C is ACM.
(iv) Let CA be the subscheme of S cut out by A. We have ICA = IS + (A). As

sets, Y = C ∪ CA, and if A does not vanish on any component of C then this
equality is also true as schemes.

(v) C and Y are evenly G-linked in two steps. When S is a complete intersection,
C and Y are evenly CI-linked in two steps.

The ideal J (resp. the subscheme Y ) is called a Basic Double G-link of IC (resp.
of C).

Remark 2.9 We want to highlight the second half of item (v) of the above theorem.
When S is a complete intersection, then Y is not only G-linked in two steps, but in
fact CI-linked in two steps. In this case we call Y a Basic Double CI-link of C.
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Example 2.10 As a first application, basic double linkage can be used in a simple
way to show that powers of complete intersections are saturated and Cohen-
Macaulay, and with a little more work, to find their graded Betti numbers. This was
carried out in [36]. The main tool is [36, Lemma 1.4], which applies Theorem 2.8
above and says the following.

Let F1, . . . , Fr be a regular sequence in R = k[x0 . . . , xn] with degFi = di . Set I =
〈F1, . . . , Fr 〉 and J = 〈F2, . . . , Fr 〉. Then for each positive integer s,

I s = J s + F1 · I s−1.

Furthermore, we have the following short exact sequence

0→ J s(−d1)→ I s−1(−d1)⊕ J s → J s + f1 · I s−1 = I s → 0.

Using this sequence and induction, it is not hard to see that R/I s is Cohen-
Macaulay (so in particular I s is saturated), and using a mapping cone and an
inductive argument, with a bit of work one gets the graded Betti numbers.

The original significance of Theorem 2.8 is that it showed how Gorenstein liaison
can be thought of as a theory about divisors. Indeed, Corollary 5.14 of [52] gives
that if S as above satisfies property G1 and C is a divisor, then a divisor in the
linear system |C + tH | (where H is the hyperplane section class and t ∈ Z) can
be obtained from C in two Gorenstein links. The analogous statement for complete
intersection liaison was already known (for instance [59]). Hartshorne has further
explored the consequences of this point of view (e.g. [45]). See also [62].

As we saw above, in codimension two it is fairly well understood what deter-
mines an even liaison class, while in higher codimension it is wide open. Another
natural question is whether the even liaison classes (say with fixed codimension)
have a common structure. This question has a long history [4, 9, 11, 44, 46, 56, 57,
59, 74, 77]. The following was proposed in general in [9], although as we will see,
the only positive result is in codimension two.

Definition 2.11 ([9] Definition 1.8) Let L be an even liaison class of dimension r
subschemes of Pn. Then L has the Lazarsfeld-Rao (LR)-Property if the following
conditions hold.

(a) If V1, V2 ∈ L0 then there is a deformation from one to the other through
subschemes all in L0.

(b) Given V0 ∈ L0 and V ∈ Lh (h ≥ 1), there exists a sequence of subschemes
V0, V1, . . . , Vt such that for all i, 1 ≤ i ≤ t , Vi is a basic double link of Vi−1
and V is a deformation of Vt through subschemes all in Lh.

Remark 2.12 This definition was motivated by the paper [56] of Lazarsfeld and
Rao, who proved that this structure holds for a “general” curve in P

3. Their
motivation was not so much to prove a general structure theorem as it was to prove a
conjecture of Harris that a “general” curve is the smallest in its (even) liaison class.

The first broad case not covered by Lazarsfeld and Rao [56] where this
structure was proven was for arithmetically Buchsbaum curves in P

3 ([8]; see also
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Remark 2.14). Much more generally, this structure (and more) was shown to hold
for even liaison classes of unmixed curves in P

3 by Martin-Deschamps and Perrin
[59], and at about the same time for locally Cohen-Macaulay, equidimensional
codimension two subschemes of Pn by Ballico, Bolondi, and Migliore [4]. We quote
the latter result since we will refer to it.

Theorem 2.13 ([4] Theorem 2.4) Every even liaison class of codimension two,
locally Cohen-Macaulay, equidimensional subschemes of Pn has the Lazarsfeld-
Rao property.

Earlier, a very special case (but the first for dimension ≥ 2) was proven in [9].
It was generalized to unmixed codimension two subschemes by Nollet [77] and
(separately) by Nagel [74].

It is known [46, 57] that a G-liaison class in codimension ≥ 3 does not have such
a structure. It is an open question whether it holds for CI-liaison in codimension
≥ 3.

Remark 2.14 As already noted, for a curve C, M(C) is a graded module over the
polynomial ring, i.e. multiplication by a linear form L induces a homomorphism
from any component M(C)t to the next. However, it sometimes happens that
this multiplication is trivial for all L and all t . In this case, C is said to be a(n)
(arithmetically) Buchsbaum curve.

Ignoring the shift, any finite sequence (d1, . . . , ds) of non-negative integers (say
d1, ds �= 0) is the sequence of dimensions (up to shift) of the components of
many possible graded modules of finite length, of which one, say M , is the one
with trivial multiplication by linear forms. Ballico and Bolondi [3] have studied
how these structures fit together, although we will not go into this here. By Rao’s
theorem (Theorem 2.5), there is a curve C so that M(C) is some shift of M . By
Basic Double Linkage, all rightward shifts of this module also exist for some curves
in P

3. Of course if (d1, . . . , ds) �= (e1, . . . , et ) then the modules, and hence the
corresponding even liaison classes, are distinct. Thus each of these tuples represents
a unique Buchsbaum even liaison class. A good deal of work has gone into studying
Buchsbaum even liaison classes and Buchsbaum curves, some of which will be
described here in passing. We also refer to work of Amasaki (e.g. [1]) on this subject.

Buchsbaum curves have provided a setting in which progress on several interest-
ing questions was made, and liaison tools have played an important role. They arise
in several ways in this paper.

Another liaison tool that has been very useful in the literature, in the construction
of arithmetically Gorenstein subschemes of projective (and graded Artinian Goren-
stein algebras) with desired properties, is often referred to as sums of linked ideals.
We briefly describe the background. Although this method has been in existence for
a long time, our exposition here is mostly from [32] and [66], and we will describe
these applications in Sect. 3.

It is well known that the sum of the ideals of two geometrically linked,
arithmetically Cohen-Macaulay subschemes of Pn is arithmetically Gorenstein of
height one greater, whether they are CI-linked [81] or G-linked (cf. [61]). Harima



Applications of Liaison 531

[38, Lemma 3.1], has computed the Hilbert function of the Gorenstein ideals so
obtained in the case of CI-linkage under a special numerical assumption. Here we
would like to record this result in a more general way, more in line with our needs.

Lemma 2.15 Let V1
X∼ V2, where X is arithmetically Gorenstein, V1 and V2 are

arithmetically Cohen-Macaulay of codimension c with saturated ideals IV1 and IV2 ,
and the link is geometric (meaning that V1 and V2 have no common components).
Then IV1 + IV2 is the saturated ideal of an arithmetically Gorenstein scheme Y
of codimension c + 1. The Hilbert functions are related by Theorem 2.2. Then the
sequence di = (ai + a′i − ci) is the first difference of the h-vector of Y .

Example 2.16 A twisted cubic curve V1 in P
3 is linked to a line V2 by the complete

intersection of two quadrics. The intersection of these curves is the arithmetically
Gorenstein zeroscheme Y consisting of two points. This is reflected in the following
diagram of h-vectors:

X : 1 2 1
V1 : 1 2
V2 : 1
�Y : 1 0 −1

adding the second and third rows and subtracting the first to obtain the fourth, and
so the h-vector of Y is (1,1), obtained by “integrating” the vector (1, 0 − 1). The
notation �Y serves as a reminder that the row is really the first difference of the
h-vector of Y .

It is well known that the h-vector of an arithmetically Gorenstein subscheme of
projective space is symmetric, and a lot of work has been done to try to describe
the symmetric sequences (1, h1, . . . , he = 1) that arise as the h-vector of an
arithmetically Gorenstein scheme (which from now on we will call Gorenstein
sequences). Note that the h-vector of an arithmetically Cohen-Macaulay (e.g.
arithmetically Gorenstein) scheme is the Hilbert function of its Artinian reduction.
Some of this work involves restricting to certain classes of arithmetically Gorenstein
schemes, for instance reduced ones. It is also interesting to understand how “non-
unimodal” a Gorenstein sequence can be, and many papers have explored this.

An important special case of a Gorenstein sequence is a so-called SI-sequence:

Definition 2.17 A symmetric sequence of integers h = (1, h1, . . . , h1, 1) is an SI-
sequence if

(i) h is an O-sequence (i.e. it satisfies Macaulay’s growth condition, and hence is
the Hilbert function of some Artinian algebra);

(ii) the positive part of the first difference, (1, h1 − 1, h2 − h2, . . . ) is again an
O-sequence. In this case we say that h is a differentiable O-sequence.

Definition 2.18 An Artinian graded algebraR/I is said to have the strong Lefschetz
property (SLP) if there exists a linear form � such that for all i and all d the
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homomorphism ×�d : [R/I ]i → [R/I ]i+d has maximal rank. It has the weak
Lefschetz property (WLP) if the above holds just for the case d = 1.

Remark 2.19 Notice that SI-sequences are always unimodal. They are important for
(at least) two reasons:

• When h1 = 3, they are exactly the set of Hilbert functions of Artinian Gorenstein
algebras [87, 92].

• In any codimension they are exactly the set of Hilbert functions of Artinian
Gorenstein algebras with the Weak Lefschetz Property [38].

Interestingly, in codimension 3 it is not known if all Artinian Gorenstein algebras
have the Weak Lefschetz Property, in spite of the two bullet points above.

3 Stick Figures, Zeuthen’s Problem and Configurations
of Linear Subvarieties

The question of when an irreducible flat family of subschemes of projective space
contains an element that is a union of linear varieties is a very classical one. In
this case we say that any element of the family specializes to the union of linear
varieties. Throughout this section we assume that our union of linear varieties is
equidimensional.

The most desirable kind of union of linear varieties is one for which the
singularities are as “nice” as possible. We will see that different terminology has
been used in different situations. For curves, these are universally called stick
figures,” i.e. configurations of lines where at most two lines meet in a point. In
higher dimension, we also want the components to meet “nicely,” depending on the
situation.

• In [10] the authors defined a good linear configuration of codimension two in P
n

to be a union of codimension two linear varieties such that the intersection of any
three has dimension at most n− 4. This was mentioned also in [32, Remark 2.5].

• In [32] the authors defined a good linear configuration of codimension three in
P
n “in the obvious way” without specifying it, but it is clear that it was meant

that the intersection of any three of the codimension three linear components has
dimension at most n− 5.

• In [66] the authors defined a generalized stick figure to be a union of linear
varieties of any dimension d such that the intersection of any three components
has dimension at most d − 2 (where the empty set is taken to have dimension
−1).

The latter clearly includes all the previous special cases, so in this section from now
on we will use the term “generalized stick figure,” except for the case of curves
where we simply use “stick figure.”
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3.1 Stick Figure Curves in P
3

Returning to families, the most celebrated such problem is the Zeuthen problem.
Indeed, quoting [43], “at the suggestion of H.G. Zeuthen, the Royal Danish
Academy of Arts and Sciences proposed in 1901 a prize problem with a gold medal
[78] p. 29:

To determine if every family of space curves—after the customary division—contains limit
curves which are composed of lines. In the case of a negative answer there should also be an
investigation of conditions for the existence of such limit curves, and possible restrictions
on the results which have been found using such limit curves.”

The first result in this direction was given by Gaeta [25], who showed that any
arithmetically Cohen-Macaulay curve in P

3 specializes to a stick figure.
The Zeuthen problem was solved in full by Hartshorne [43] (his solution

appeared in 1997), where he gives a careful discussion of the history of the problem,
partial results, and the significance of a possible positive answer. He points out that
“(F)rom the earliest work on this problem, it has been understood that a “curve
composed of lines” should be taken to mean a stick figure, . . . and that “limits”
should preserve the arithmetic genus, so that we are dealing with flat families.”

In this subsection we mention a partial result on space curves predating
Hartshorne’s complete solution and generalizing Gaeta’s work. In the next
subsection we will give some results on arithmetically Gorenstein subschemes
of higher codimension. These results used different ideas from liaison.

In the spirit of Zeuthen’s problem, we first give a result for space curves. We
refer to Remark 2.14 for the definition of Buchsbaum curves and Buchsbaum even
liaison classes.

Theorem 3.1 ([10] Proposition 3.4) Every Buchsbaum curve in P
3 specializes to

a stick figure.

The proof is based on the following simple idea. Let C be a stick figure in P
3 and

assume that C lies on a surface S consisting of a union of planes, no three containing
the same line. Assume further that no component of C lies in the singular locus of
S. Let H be a general plane. Then the union of C and S ∩H is again a stick figure.
Notice that C ∪ (S ∩H) is a basic double link of C.

Let L be an even liaison class of Buchsbaum curves (i.e. an even liaison class
all of whose elements are Buchsbaum with the same Hartshorne-Rao module). If
we can show that L contains a minimal element C0 ∈ L0 that is a stick figure, then
the above idea, combined with the Lazarsfeld-Rao property (Theorem 2.13), shows
that every C ∈ L (and hence every Buchsbaum curve in P

3, since L is an arbitrary
Buchsbaum liaison class in P

3) specializes to a stick figure. (Actually, it is a little
more subtle than this. The construction also needs the observation that the sequence
of basic double links described in part (b) of Definition 2.11 can be chosen to be
strictly increasing, in a sense that we omit here. See [61, Example 6.4.12] and [9,
Corollary 5.3].)



534 J. Migliore and U. Nagel

So it remains to show that L0 contains a stick figure. This is done in [10] using
Liaison Addition (Theorem 2.6) and induction (see in particular [10, Lemma 3.3]).
One first notes that a set of two skew lines is a stick figure, and its Hartshorne-Rao
module is one-dimensional (occurring in degree 0). One then builds up any finite
length module with trivial R-multiplication using Liaison Addition, using surfaces
of suitably chosen degree (but as efficiently as possible). The fact that if the choices
are as efficient as possible then the stick figure so constructed is minimal in its even
liaison class is a consequence of the description of Buchsbaum curves in [6], [7] and
[30].

Example 3.2 Let us construct a Buchsbaum curve C that is a stick figure, and such
that M(C) is a module whose dimensions are (1, 0, 2) (meaning 1-dimensional in
some degree, 0 in the next degree, and 2-dimensional in the next). Let C1 and C2 be
two sets of two skew lines, chosen generally. Let Fi ∈ ICi (i = 1, 2) be surfaces of
degree 2, each a union of planes. Then by Theorem 2.6, F2 · IC1 + F1 · IC2 is the
saturated ideal of a stick figure Y of degree 8, with dimM(Y) = 2, and the only
non-zero component is 2-dimensional occurring in degree 2. (The fact that it is a
stick figure of degree 8 is from the geometric interpretation of Liaison Addition and
is left to the reader.)

Now let C3 again be a sufficiently general choice of two skew lines, and let
F3 be a union of four planes containing C3, chosen so that one plane contains
one component of C3, one contains the other component, and the other two are
chosen generally. Then F1F2 · IC3 + F3 · IY defines a stick figure, C. Its module
M(C) is the direct sum of a shift of M(Y) and a shift of M(C3). What are these
shifts? M(Y) is 2-dimensional in degree 2, and it gets shifted to the right by
deg(F3) = 4 to degree 6. M(C3) is 1-dimensional in degree 0 and gets shifted by
deg(F1)+deg(F2) = 4 to degree 4. ThusM(C) has the desired dimensions, with the
1-dimensional component coming in degree 4. The fact that this is the minimal shift
among modules in the even liaison class of C follows from [30, Corollary 3.10]. See
also [7] for relevant facts about the even liaison class of a Buchsbaum curve.

3.2 Arithmetically Gorenstein Generalized Stick Figures
of Codimension Three

It is known from work of Stanley [87] and Buchsbaum and Eisenbud [14] exactly
what Hilbert functions can occur for codimension three arithmetically Gorenstein
subschemes, and in fact from their work we also know what sets of graded Betti
numbers can occur. (From now on we will refer to Betti diagrams as a way of
collecting the graded Betti numbers for a given graded module, in what is now a
standard way. For Gorenstein algebras we will refer to Gorenstein Betti diagrams.)
Concerning the Hilbert functions, the corresponding Gorenstein sequences are the
SI-sequences (Remark 2.19). Diesel [21] described an algorithm to find all possible
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Betti diagrams given the SI-sequence. She also showed that the Gorenstein algebras
for such a Hilbert function form an irreducible family.

Although the possible Betti diagrams for a given Hilbert function were known,
it was not known “how nice” the arithmetically Gorenstein subschemes are for
any such Betti diagram. In particular, does each such irreducible family contain
a reduced set of points in the case of arithmetically Gorenstein zero-dimensional
schemes in P

3, a stick figure in the case of curves in P
4, or a generalized stick

figure in the case of codimension three subschemes in P
n? This was shown in the

affirmative in [32], and in fact not only for each family but indeed for each possible
Betti diagram.

Theorem 3.3 ([32] Theorem 2.1, Corollary 2.4, Remark 2.5) For any Gorenstein
Betti diagram for codimension three subschemes of Pn, there is a arithmetically
Gorenstein generalized stick figure having that Betti diagram.

The idea of the proof is as follows. We begin with a possible Gorenstein Betti
diagram. From this diagram one finds the Betti diagram of a suitable arithmetically
Cohen-Macaulay codimension two subscheme V1, a suitable complete intersection
X containing it, and the Betti diagram of the residual scheme V2 (using the
mapping cone construction mentioned above), so that the sum of the linked ideals
is arithmetically Gorenstein and has the desired Gorenstein Betti diagram. This is
done using a certain mapping cone, building off of the resolutions for the linked
curves. (So far this is all numerical.) Then we use Gaeta’s result mentioned above
(generalized to P

n) to arrange that V1,X and V2 are all generalized stick figures. This
gives that IV1 + IV2 defines an arithmetically Gorenstein generalized stick figure of
codimension three with the desired Betti diagram.

With this result for codimension three Gorenstein subschemes, it is natural to
wonder what we can say about higher codimension.

3.3 Arithmetically Gorenstein (Generalized) Stick Figures
of Any Codimension

Recall from Remark 2.19 that in codimension three, the h-vector of a (codimension
three) arithmetically Gorenstein subscheme is always an SI-sequence. We also noted
that in higher codimension, the SI-sequences are exactly the Hilbert functions of
Artinian Gorenstein algebras with the Weak Lefschetz Property. In this setting,
though, the Artinian Gorenstein algebras with the same Hilbert function do not in
general form an irreducible family.

Remark 3.4 It has also been asked (and we conjecture) whether a general Artinian
reduction of a reduced, arithmetically Gorenstein subscheme of projective space
necessarily has the Weak Lefschetz Property in characteristic zero [67, Question
3.8]. Of course since Artinian Gorenstein algebras exist with non-unimodal Hilbert
function, the extension of such an ideal in a larger polynomial ring defines a non-
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reduced arithmetically Gorenstein subscheme whose general Artinian reducton does
not have the Weak Lefschetz Property. Also, Mats Boij has shown us an example
of a reduced, arithmetically Gorenstein set of points in projective space such that
a special Artinian reduction fails to have the Weak Lefschetz property. Thus the
assumptions general and reduced are important in this question. In any case, the
problem of classifying all possible Hilbert functions of Artinian Gorenstein algebras
is probably intractable, and the problem of classifying the Hilbert functions of
reduced, arithmetically Gorenstein subschemes of projective space is still open.
Thus the fact that we at least do know precisely the Hilbert functions of Artinian
Gorenstein algebras with the Weak Lefschetz Property is a very welcome result.

In view of Remark 3.4, it is natural to wonder whether every SI-sequence also
occurs as the h-vector of a reduced, arithmetically Gorenstein subscheme, and then
it is worth asking if it also occurs for a generalized stick figure. In this subsection
we are also interested in the question of whether there is a set of maximal graded
Betti numbers among arithmetically Gorenstein subschemes with the given Hilbert
function which have general Artinian reduction with the Weak Lefschetz Property.

The story starts with the paper [28] of A.V. Geramita, T. Harima and Y.S.
Shin. In that paper they used CI-liaison to construct certain Artinian Gorenstein
algebras with the Weak Lefschetz Property (and as such, whose Hilbert function is
an SI-sequence). They were not interested in generalized stick figures or reduced
arithmetically Gorenstein algebras, and most importantly they did not produce an
example for every possible SI-sequence. They did, however, prove the extremality
of the graded Betti numbers for the class of algebras that they constructed. The paper
[66] goes beyond these results (and in fact Remark 10.2 of [66] shows that CI-links
are not enough to produce all SI-sequences).

In fact, [66] was innovative in the application of liaison in two ways. First, it was
one of the first papers that applied G-liaison (rather than CI-liaison) to construct
interesting objects. Second, and more surprisingly, the approach was in some sense
the reverse of the usual one: instead of starting with a scheme and producing a
Gorenstein scheme containing it to produce a desired link, the approach was to first
produce a totally reducible (i.e. union of linear varieties) arithmetically Gorenstein
scheme and find within it a suitable arithmetically Cohen-Macaulay subscheme,
and then perform the desired G-link. The scheme with the desired Hilbert function
is then obtained as a sum of G-linked ideals.

The first main result of [66] is the following. We will return to this paper when
we discuss simplicial polytopes.

Theorem 3.5 ([66] Theorem 1.1) Let h = (1, c, h2, . . . , hs−2, c, 1) be an SI-
sequence and let K be an arbitrary field containing sufficiently many elements.
Then for every integer d ≥ 0 there is a reduced arithmetically Gorenstein union
of linear varieties, G ⊂ P

c+d , of dimension d, whose general Artinian reduction
has the Weak Lefschetz Property, and whose h-vector is h.
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Remark 3.6

1. Of course the assumption that K has sufficiently many elements depends on the
choice of h.

2. The theorem does not, unfortunately, guarantee that the arithmetically Gorenstein
scheme produced is a generalized stick figure, only that it is reduced. However,
the “large” Gorenstein scheme referred to before the statement of the theorem
is a generalized stick figure, and this is what guarantees that when it is used to
produced a sum of linked ideals, the result will again be reduced. The authors
conjecture that the schemes are, in fact, again generalized stick figures [66,
Remark 6.5].

As mentioned, the arithmetically Gorenstein union of linear varieties produced in
Theorem 3.5 also has an extremality property. We remark that the schemes produced
in [28] also have such a property.

Theorem 3.7 Fix an SI-sequence h. The scheme produced in Theorem 3.5 with
h-vector h has maximal graded Betti numbers among arithmetically Gorenstein
subschemes of P

n whose general Artinian reductions have the Weak Lefschetz
Property and Hilbert function h.

In a way analogous to the approach of [28], the idea is to arrange that the linked
varieties are not only arithmetically Cohen-Macaulay, but in fact have extremal Betti
numbers for their (prescribed) Hilbert functions.

4 The Singular Locus of a Hyperplane Arrangement

In this section we will assume that k has characteristic zero.
If A is a hyperplane arrangement in P

n, it is defined by a product, F , of linear
forms such that none is a scalar multiple of another. Let

J = 〈Fx0 , Fx1 , . . . , Fxn〉

be the Jacobian ideal, generated by the partial derivatives of F . Note that J is not
necessarily saturated, and that the saturation J sat is not necessarily unmixed. It does,
however, have height two. Consider a primary decomposition of J ,

J = q1 ∩ · · · ∩ qs ∩ . . .

where q1, . . . , qs are all the primary components of height 2. For each such primary
ideal, let pi be the associated prime. Then set

J top =
⋂

1≤i≤s
qi and

√
J =

⋂

1≤i≤s
pi .
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Both J top and
√
J are unmixed ideals of height 2. We denote by Xtop the scheme

defined by J top and by Xred the scheme defined by
√
J .

Remark 4.1 Although the saturation of J can still have embedded components, it is
interesting to study the unmixed singular locus of A, and this could refer to either
Xtop (which is not necessarily reduced) or to Xred . The results described here are a
contribution to this.

As a first step to studying the schemes Xtop and Xred , one asks if they are
necessarily ACM. If they are not, are there conditions that guarantee that they are
ACM? And in terms of the invariantsMi(C) (which we saw in Sect. 2 is a measure
of the failure to be ACM), how far can these schemes be from being ACM? In this
section we address all of these questions.

We first give a version of Liaison Addition (Theorem 2.6) in the language of
arrangements, that we will use in the rest of this section.

Theorem 4.2 (Arrangement Version of Liaison Addition in P
3) Let A1 =⋃s1

i=1Hi and A2 = ⋃s2
i=1H

′
i be plane arrangements in P

n with corresponding

schemes Xtopi , Xredi (i = 1, 2).

(∗) Assume that no plane of A1 contains a component of Xred2 and vice versa.

Let A = A1 ∪A2, with schemes Xtop and Xred . Then for each 1 ≤ i ≤ n− 2,

Mi(Xtop) ∼= Mi(X
top

1 )(−s2)⊕Mi(X
top

2 )(−s1).

Similarly,

Mi(Xred) ∼= Mi(Xred1 )(−s2)⊕Mi(Xred2 )(−s1).

In particular, ifXtop1 andXtop2 (resp.Xred1 andXred2 ) are ACM then alsoXtop (resp.
Xred ) is ACM.

We also give a version of Basic Double Linkage (Theorem 2.7) in the language
of arrangements.

Theorem 4.3 (Arrangement Version of Basic Double Linkage in P
n) Let A be

an arbitrary hyperplane arrangement in P
n with corresponding schemes Xtop and

Xred . Let H be a plane not containing any component of Xred . Let A′ = A ∪ H ,
with corresponding schemes Y top and Y red . Then Xtop and Y top are linked in two
steps, as are Xred and Y red . In particular:

(i) We have isomorphisms

Mi(Y top) ∼= Mi(Xtop)(−1) and Mi(Y red) ∼= Mi(Xred)(−1)

for 1 ≤ i ≤ dimX = dimY .
(ii) Xtop (resp. Xred ) is ACM if and only if Y top (resp. Y red ) is ACM.



Applications of Liaison 539

A very special case of Theorem 4.3 is the following.

Corollary 4.4 ([26]) Let A be a hyperplane arrangement in P
n and assume that

no three hyperplanes contain the same codimension two linear subvariety. Then
Xtop = Xred is ACM.

Proof One simply notes that the intersection of two planes is ACM, and then applies
Theorem 4.3 successively for the remaining planes. ��
Remark 4.5 The schemes described in Corollary 4.4 are called codimension two
star configurations. Theorem 2.8 can be used to extend this result. Assume that the
intersection of any j of the hyperplanes of A is either empty or of codimension
j . Then for any 1 ≤ c ≤ min(s, n) let Vc(A) be the union of the codimension c
linear varieties defined by the intersections of these hyperplanes, taken c at a time.
In [26] these were called codimension c star configurations. Then it was shown in
[26] (among other results) that Vc(A) is also ACM. The machinery of Theorem 2.8
can also be used to give Hilbert functions and Betti numbers of Vc(A), which we
omit here.

Our first main result is obtained by combining Liaison Addition (Theorem 4.2)
and Basic Double Linkage (Theorem 4.3). It says that under a condition on the
hyperplanes, Xtop and Xred are both ACM.

Theorem 4.6 ([69]) Let A be a hyperplane arrangement in P
n. Assume that

( ∗ )

{
no linear factor of F is in the associated prime of any two non-reduced components

of Jtop.

Then both R/J top and R/
√
J are Cohen-Macaulay (i.e. Xtop and Xred are ACM).

If (∗) fails then both Xtop and Xred may fail to be ACM.

Remark 4.7 In 1983, Hiroaki Terao [90] conjectured that the freeness of a hyper-
plane arrangement is a combinatorial property, i.e. whether it is determined from
its intersection lattice. The above result does not address freeness. Nevertheless,
notice that (∗) is a combinatorial property of the intersection lattice of A. Thus one
can also ask whether the property that Xtop (resp. Xred ) is Cohen-Macaulay is a
combinatorial property of the intersection lattice of A. Theorem 4.6 says that the
answer is yes provided that condition (∗) holds, so the issue is whether it is true
without condition (∗).

We now focus on arrangements in P
3. As indicated in Theorem 4.6, if condition

(∗) fails then it is possible for either Xtop or Xred or both to fail to be ACM. The
first example, where Xtop fails, was given in [73, Example 4.5] for hyperplane
arrangements in P

3, and in their example Xred is ACM. Experimenting with
subarrangements of their example, we were able to find examples for Xred to fail
to be ACM while Xtop is ACM, and examples where both fail to be ACM. In all
cases, the dimension of the Hartshorne-Rao module was 1. As such, these curves
are automatically Buchsbaum.
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This leads to the question of by how much the Cohen-Macaulay property can fail
to hold, and one answer is provided by another application of Liaison Addition:

Theorem 4.8 Let r ≥ 1 be a positive integer. Then:

(i) There exists a positive integer N and an arrangement A in P
3, such that

dimM(Xtop)i =
{
r if i = N;
0 if i �= N

(ii) The same result holds for Xred , although the value of N is not necessarily the
same.

(iii) For each h ≥ 1 we can replace N by N + h and obtain the same result.
(iv) The curves obtained above are all in the same even liaison class.

The proof involves making sufficiently general “copies” of the curves described
before the statement of the theorem, and applying Liaison Addition r − 1 times,
keeping careful track of the degrees. Then part (iii) is obtained by basic double
linkage using general linear forms (i.e. adding general hyperplanes to A). The
conclusion (iv) is a direct application of Rao’s theorem (Theorem 2.5). Notice that
the curves described here are again automatically Buchsbaum, having only one non-
zero component in the Hartshorne-Rao module.

Remark 4.9 It is natural to ask which other even liaison classes arise among the
schemes Xtop or Xred for arrangements in P

3. We have found several examples
to show that the curves in Theorem 4.8 are not the only non-ACM examples.
However, a classification remains out of reach. We would be very interested to know,
for example, whether any arithmetically Buchsbaum curve whose Hartshorne-Rao
module is non-zero in more than one degree can arise in this way.

5 The Eisenbud-Green-Harris Conjecture
and Cayley-Bacharach

It is hard to imagine a more appropriate topic, in a paper on applications of liaison
theory, than a description of the paper “An application of liaison theory to the
Eisenbud-Green-Harris conjecture” [16] by Ernest Chong.

The classical Cayley-Bacharach theorem (see [22, Exercise 21.24]) says the
following. Let Z be a reduced complete intersection of two plane cubics in P

2.
Let P ∈ Z be any point and let Y = Z\P . If F is any cubic vanishing at the eight
points of Y , then F must also vanish at P . Another way to say this is that the Hilbert
function of Z and the Hilbert function of Y agree in degrees ≤ 3. More precisely,
the Hilbert function ofZ is (1, 3, 6, 8, 9, 9, . . .) and the Hilbert function of any eight
points of Z must be (1, 3, 6, 8, 8, . . . ).
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Remark 5.1 It is beyond the scope of this paper to discuss all the different directions
beyond this result that have been studied, but we make a few comments.

The classical Cayley-Bacharach theorem has led to the notion of the Cayley-
Bacharach property for a set of points, defined as follows. It is not hard to show that
given any reduced subset of degree d in any projective space P

n (not only P
2) with

Hilbert function

(1, n+ 1, h2, . . . , ht−1, ht = d, d, . . . ),

with ht−1 < d, there must be at least one subset of d − 1 points with the truncated
Hilbert function

(1, n+ 1, h2, . . . , ht−1, ht − 1 = d − 1, d − 1, . . . ).

(See for instance [29].) The set Z has the Cayley-Bacharach property if this is true
for every choice of d − 1 points. A standard fact, which follows easily from liaison
(specifically from Theorem 2.2) is that any arithmetically Gorenstein set of points
in any projective space has the Cayley-Bacharach property. One generalization has
been the notion of the uniform position property, which has been important in the
study of the genus of space curves (see for instance [40]). A set of points Z in P

n

has the uniform position property if, for any fixed cardinality p, all subsets of p
points have the same Hilbert function (which must be the truncation at level p of
the Hilbert function of Z).

The Cayley-Bacharach property has been studied in many papers, for example
[15] and [53] (both of which use liaison as a tool).

The fact that the Cayley-Bacharach property is closely related to liaison has been
studied for many years (see for instance [20]), but in 1996 David Eisenbud, Mark
Green and Joe Harris wrote the beautiful paper [23], starting with historical versions
of this result and developing the theory until they arrived at several versions of what
is now called the Eisenbud-Green-Harris (EGH) conjecture. We refer the reader to
[23] for all of the beautiful intricacies and interrelations between the different ideas,
and here we will focus on the version addressed by Chong.

Let S = k[x1, . . . , xn], where k is an infinite field. The version of the conjecture
quoted by Chong is the following.

Conjecture 5.2 (Eisenbud-Green-Harris Conjecture [23]) Let 2 ≤ e1 ≤ · · · ≤
en be integers. If I � S is a homogeneous ideal that minimally contains an
(e1, . . . , en)-regular sequence of forms, then there exists a homogeneous ideal
J � S containing xe11 , . . . , x

en
n , such that I and J have the same Hilbert function.

Some special cases of this conjecture have been proven (we refer to [16] for
a partial list). Chong’s idea is to prove it for a new special case using a result of
the current authors in [68]. His main theorem proves it for height three Gorenstein
ideals:



542 J. Migliore and U. Nagel

Theorem 5.3 ([16] Theorem 1) Let 2 ≤ e1 ≤ e2 ≤ e3 be integers. If
I � k[x1, x2, x3] is a homogeneous Gorenstein ideal that minimally contains an
(e1, e2, e3)-regular sequence of forms, then there exists a monomial ideal J in
k[x1, x2, x3] containing xe11 , x

e2
2 , x

e3
3 , such that I and J have the same Hilbert

function.

As noted, Chong’s idea was to use liaison to prove this result. First, it follows
immediately from Theorem 2.2 that if I1 and I2 are two Cohen-Macaulay ideals
(of any codimension) with the same Hilbert function, and if c1 and c2 are complete
intersections in I1 and I2, respectively, of the same type, then the linked ideals c1 : I1
and c2 : I2 have the same Hilbert function.

The key ingredient of Chong’s proof is the notion of minimal linkage, which we
now describe. Given an ideal I , there is certainly an initial degree d1 in which I is
non-zero (i.e. the initial degree of I ). Then there is a smallest degree d2 ≥ d1 such
that I contains a regular sequence of type (d1, d2). Continuing in this way, there is
a smallest c-tuple (where c is the codimension of I ) (d1, d2, . . . , dc) for which I
contains a regular sequence of those degrees. Certainly such a regular sequence can
be used to perform a link of I := I1, obtaining a residual ideal I2.

Next, one can apply the same construction to the residual I2. The resulting tuple
is lexicographically smaller than or equal to the original one. One sequentially
applies this construction (in [60] it was called the minimal link procedure) until
one of two things happens. Either the smallest tuple is no smaller than the one just
before, or else one arrives at a complete intersection ideal.

In the former case, if R/I is not Cohen-Macaulay one can hope that the final
ideal is minimal in its even liaison class, in the sense of Definition 2.11. It was
shown in [68] that among curves in P

3, in some even liaison classes this is true,
and in others it is not true. In the latter case, i is said to be licci (i.e. in the linkage
class of a complete intersection) in particular, and hence R/I is Cohen-Macaulay.
We now focus on the Cohen-Macaulay situation.

In codimension two, Gaeta proved that this procedure always leads to a complete
intersection. In codimension 3, an example was given in [27] of a licci ideal that
could not be minimally linked to a complete intersection, but no proof was given.
This was remedied in [47], where it was even shown that for the Hilbert function
(1, 3, 6, 8, 7, 6, 2) there exist three ideals I1, I2, I3 such that all three quotients have
this Hilbert function, but one is not licci, one is licci but cannot be linked to a
complete intersection by minimal links, and one is licci and can be linked to a
complete intersection by minimal links. The latter two even have the same graded
Betti numbers.

This all goes to show that it is interesting to study what properties of an ideal
give that it can be minimally linked to a complete intersection. (The example just
mentioned shows that the Hilbert function and the graded Betti numbers are not
enough, in general.) One such property is that of being Gorenstein of codimension
three.
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J. Watanabe showed in [91] that any such ideal is licci, but he did not consider
minimal links. Watanabe’s result is extended to minimal links:

Theorem 5.4 ([68] Theorem 6.3) If I ⊂ k[x1, x2, . . . , xn] (n ≥ 3) is a homoge-
neous Gorenstein ideal then I can be minimally linked to a complete intersection.

We now return to Chong’s nice idea to use this result to prove Theorem 5.3. He
first weakens the notion of minimal links down to a complete intersection.

Definition 5.5 Let I be a licci ideal of height r . Suppose there exists a sequence of
CI-links

I = I0 J1∼ I1 J2∼ · · · Js∼ Is
where Is is a complete intersection. Say the type of Ji is a(i) ∈ Z

r+, and assume

a(1) ≥ · · · ≥ a(s)

in the lexicographic order. Then I is said to be a sequentially bounded licci ideal. If,
furthermore, J1 is a minimal link, we say that I is a sequentially bounded licci ideal
that admits a minimal first link.

Chong then proves the following important theorem.

Theorem 5.6 Let 2 ≤ e1 ≤ · · · ≤ en be integers. If I � S = k[x1, . . . , xn] is
a sequentially bounded licci ideal that admits a minimal first link and minimally
contains an (e1, . . . , en)-regular sequence of forms, then there exists a monomial
ideal J � S containing xe11 , . . . , x

en
n such that I and J have the same Hilbert

function.

The proof is a bit technical, but essentially the existence of the specified sequence
of links starting with I down to a complete intersection allows one to construct a
numerically equivalent sequence of links using monomial ideals.

Once this is established, Theorem 5.3 follows immediately from Theorem 5.4.

6 The Genus of Space Curves

A very classical problem, going back well over a century, is to classify the smooth
curves in P

3 (also called space curves). In particular, one can ask which pairs (d, g)
occur for a smooth space curves, and what role is played by the least degree of
a surface containing the curve. Furthermore, what Hilbert functions can arise for
such curves, or for their general hyperplane sections? This can also be extended
from smooth curves to locally Cohen-Macaulay, equidimensional curves (see for
example [42]), but we consider here only the smooth case.
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As of about 1980, two outstanding references for much of what was known at
the time were Hartshorne’s book [41] (Chapter IV, section 6) and Harris’s Montreal
Notes [39]. And of course one can extend all this to curves in P

n, where open
questions remain. It is very far beyond the scope of this paper to describe this rich
history, but two results in fact are connected (and use) liaison, and we will describe
these. The first was written by J. Harris [40] and appeared in 1980, and the second
was written by R. Maggioni and A. Ragusa and appeared in 1988.

The first complete answer to the question of which pairs (d, g) occur for smooth,
non-degenerate space curves is due to Gruson and Peskine [35], and we omit the
slightly technical statement. A weaker question is to ask for a bound on the genus
of a smooth curve of degree d, and this was settled many years ago:

g(C) ≤

⎧
⎪⎨

⎪⎩

( d2 − 1)2, d even

( d−1
2 )

(
d−3

2

)
, d odd

with equality if and only if C lies on a quadric surface and is either a complete
intersection (in the even case) or residual to a line (in the odd case) in a suitable
complete intersection with a quadric. See [40] or [44]. The latter attributes this result
to [6].

Among curves not lying on a quadric but lying on a cubic surface there is a new
bound:

g(C) ≤

⎧
⎪⎨

⎪⎩

d2

6 − d
2 + 1, d ≡ 0 (mod 3)

d2

6 − d
2 + 1

3 , d ≡ 1, 2 (mod 3)

and Harris notes that these three values represent (respectively) (i) the genus of the
complete intersection of a cubic and a surface of degree d

3 , (ii) the genus of the
residual to a conic in a complete intersection of a cubic and a surface of degree d+2

3 ,
or (iii) the genus of the residual to a line inside a complete intersection of a cubic
and a surface of degree d+1

3 (see [40]).
Notice that in some sense what matters is not so much that the extremal curves

in the latter case fail to lie on a quadric surface as that they do lie on an irreducible
cubic surface. So, for instance, if d = 10 then such a curve may lie on a quadric
surface, but then (by Bezout’s theorem) it has no hope of lying on an irreducible
cubic surface. If d = 5, on the other hand, then the argument is a little bit more
subtle: Bezout’s theorem does not rule out the possibility thatC lie on both a quadric
surface and an irreducible cubic surface, but the residual must be a line, which is
arithmetically Cohen-Macaulay, so C also must be arithmetically Cohen-Macaulay
and we must have that C has genus 2, which is extremal using either formula.

Harris’s idea was to extend this to higher degree surfaces. He produces a formula
(which we will not repeat here, but which is analogous to the two formulas above)
which gives an upper bound for the genus of a smooth curve lying on an irreducible
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surface of degree k. His argument breaks into two cases, namely d > k(k − 1) and
d ≤ k(k − 1), as one might guess from the preceding paragraph. Furthermore,
he shows that the extremal curves are always residual, in a suitable complete
intersection, to a plane curve of degree n = � d−1

k
� + 1.

Central to Harris’s argument was an approach using hyperplane sections, and
studying the Hilbert function (or more precisely the h-vector) of the corresponding
points in H = P

2. It was in this paper that he introduced the crucial notion of
points being in uniform position, meaning that all subsets of m points (for any m)
have the same Hilbert function. One also says that the points have the Uniform
Position Property. Harris showed that the general hyperplane section of a reduced,
irreducible curve C ⊂ P

3 has this property. Furthermore, he shows that the h-vector
of the general hyperplane section of C is of (what has come to be called) decreasing
type. This means that the beginning of the h-vector agrees with the polynomial ring,
i.e. (1,2,3,4,...), then is possibly flat at the highest point, and after that
is strictly decreasing. So for example (1,2,3,4,5,5,5,3,2) is of decreasing
type, while (1,2,3,4,5,5,5,3,2,2) is not.

A more general bound for the genus (now for curves in P
r ) was given in [39], by

Eisenbud and Harris. In this book the authors ask what may be the Hilbert function
of the general hyperplane section of a reduced, irreducible curve in P

r . Furthermore,
what may be the Hilbert function of a set of points in P

r−1 with the Uniform Position
Property? And are the two answers the same?

This question was the launching point for the second liaison-related result that
we describe here, namely the paper [58] of R. Maggioni and A. Ragusa. In this paper
the authors show that when r = 3, the answers are indeed the same and the possible
h-vectors are exactly those of decreasing type. Part of this of course was done by
Harris, and the task remaining for the authors was to show that given an h-vector
of decreasing type, there exists a smooth curve (in fact an arithmetically Cohen-
Macaulay smooth curve) whose general (in fact arbitrary) hyperplane section has
the given h-vector.

As mentioned, the proof uses liaison. One starts with an h-vector h of decreasing
type. From h one can read the least degree, a1, of a minimal generator of the ideal
IC of any arithmetically Cohen-Macaulay curve C with this h-vector. One can also
read the degree, a2, where such curve would have its second minimal generator. In
general it is not necessarily true that IC contains a regular sequence of type (a1, a2),
but it is true if C is irreducible, and it is true for the general hyperplane section of C.
One then formally produces the “residual” h-vector to h, by a complete intersection
of type (a1, a2), using Theorem 2.2. Call this sequence h′.

Next, the authors construct a reduced, ACM union of lines, C′, in P
3 whose h-

vector is h′. They show that C′ lies on a smooth surface, S, of degree a1. They do
this with a variation of Bertini’s theorem. Finally, they look at the general residual
to C′ in a complete intersection of S and a surface of degree a2; that is, they look at
the linear system |a2H−C′| on S and show that the general element is smooth. This
general element is the desired smooth arithmetically Cohen-Macaulay curve C.
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Remark 6.1 In the above argument we have ignored the issue of why we need
decreasing type. As the authors remark, in this case it can never happen that C
(with h-vector h) lies in a complete intersection of type (a1, a2).

7 Liaison and Graded Betti Numbers

Liaison theory has been used in a number of contexts in order to achieve information
on minimal free resolutions. We will highlight a few instances.

It is useful to recall a module version of the exact sequence of sheaves (2.1). Let
I, J be ideals of a polynomial ring R = k[x0, . . . , xn] that are directly linked by a
Gorenstein ideal c ⊂ R, that is, c : I = J and c : J = I . Then there is a short exact
sequence (see, e.g., [74, Lemma 3.5])

0→ c ↪→ I → ωR/J (−t)→ 0, (7.1)

where t is the integer such that ωR/c ∼= R/c(t) and ωR/J ∼= ExtcR(M,R)(−t) is
the canonical module of R/J with c = n+ 1− dimR/J , the codimension of J . If
R/J is Cohen-Macaulay then the Betti numbers of R/J and those of its canonical
module determine each other. Explicitly, if

0→ Fc → · · · → F1 → R→ R/J (7.2)

is a graded minimal free resolution of R/J over R, then dualizing with respect to R
gives a graded minimal free resolution of ExtcR(M,R),

0→ R→ F ∗1 → · · · → F ∗c → ExtcR(M,R)→ 0.

Consider an ideal I of R that is minimally generated by s homogeneous
polynomials of degrees d1, . . . , ds . This is not enough information to determine
the Hilbert function of R/I . However, if the generators of I are sufficiently general
polynomials with the specified degrees, then the Hilbert function of R/I depends
only on the integers n, d1, . . . , ds . In fact, Fröberg’s conjecture (see [24]) predicts
this Hilbert function. This conjecture is known in a number of cases, but open in
general.

The graded Betti numbers of such ideals are much less understood. In fact, one
can show that the graded Betti numbers of an ideal I generated by sufficiently
general forms are determined by n and the generator degrees d1, . . . , ds . However,
even in interesting special cases there is not even a conjecture that gives a precise
description of the minimal graded free resolution of I . Note that the ideal I is
resolved by a Koszul complex if s ≤ n+1. Thus the first interesting case is s = n+2,
that is, I is an almost complete intersection. Although even in this case the graded
Betti numbers are not known in general, many partial results have been established
by the first author and Miro-Roig in [63] (see also [64]). Most notably, if n = 2
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and so s = 4 the Betti numbers have been determined in [63, Theorems 4.2]. In any
case, the authors obtain very good upper bounds on the Betti numbers. The basic
strategy is to use induction on the number of variables.

Consider a complete intersection c and an almost complete intersection I =
(c, f ). Then I is linked by c to a Gorenstein ideal J = c : I = c : f . Using
duality, the exact sequence (7.2) becomes

0→ R/J (− deg f )→ R/c→ R/I → 0. (7.3)

Now assume that f and the generators of c are sufficiently general. ThenR/c has the
Strong Lefschetz Property, and thus so does R/(c : f ) = R/J because f is generic.
Moreover, one gets [R/J ]j = [R/c]j if j ≤ 1

2 (d0 + · · · + dn − n − 1 − deg f ),
where d0, . . . , dn are the degrees of the generators of c. Let � ∈ R be a generic
linear form. The last equality implies [R/(J, �)]j = [R/(c, �)]j if j ≤ 1

2 (d0+· · ·+
dn − n− 1− deg f ). Using that R/J has the Weak Lefschetz Property, one knows
the Hilbert function of R/(J, �). Moreover, R/(c, �) is isomorphic to a quotient
of R/�R ∼= k[x0, . . . , xn−1] by an almost complete intersection whose generators
have degrees d0, . . . , dn. Thus, by induction on nwe have information on the graded
Betti numbers of R/(c, �), and so on the graded Betti numbers of R/(J, �) in low
degrees. Invoking [66, Proposition 8.7], this gives upper bounds on the graded Betti
numbers of R/J in low degrees. Since the resolution of R/J is self-dual as R/J is
Gorenstein, one obtains upper bounds on all graded Betti numbers of R/J . Finally,
using Sequence (7.3), this gives information on the resolution of R/I . The base case
for the induction is n = 2, where R/J is a Gorenstein ideal of codimension three.
Thus, its minimal free resolution is known by work of Diesel [21].

It turns out that the obtained bounds are optimal in several situations, once
cancellations in the mapping cone procedure are taken into account. In general,
it is a difficult problem to establish if a cancellation occurs or not. Since I is a
generic complete intersection, one may hope that its minimal free resolution has few
if any ghost terms, that is, free summands that appear in consecutive homological
degrees. Note that ghost terms cannot be entirely avoided. For example, if I has
two generators of degree 5 and one generator of degree 10, there is a Koszul
syzygy of degree 10 producing a ghost summand R(−10). A natural conjecture,
due to Iarrobino [48], predicted that these Koszul syzygies are the only source
of ghost terms. However, this is too optimistic. Consider, for example, a generic
almost complete intersection I in three variables with generator degrees 4, 4, 4, 8.
Its minimal free resolution has the form (see [63, Example 4.3]):

0→
R(−10)
⊕

R(−11)2
→

R(−8)3

⊕
R(−9)2

⊕
R(−10)

→
R(−4)3

⊕
R(−8)

→ I → 0.
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It has a ghost term R(−10), which is not a consequence of a Koszul syzygy. The
presence of ghost terms makes it challenging to predict the minimal free resolution
when the number of variables is large.

More recently, liaison theory has been used with regards to a conjecture of
Mustaţă [72] on the minimal free resolution of a general set of points X on an
irreducible subvariety S ⊂ P

n. Essentially, the conjecture posits that the top part of
the Betti diagram of R/IX is the Betti diagram of R/IS and the bottom part has only
two rows with no ghost terms. Although it is not true in general, this conjecture has
motivated several investigations.

Assume X is a general set of points on a surface S of P3. In this case, Mustaţă’s
conjecture has been established if S is a smooth quadric [33], a smooth cubic (see
[70] and [71]) or a general quartic surface [5]. The last two results use liaison
theory in order to prove the conjecture by induction on the number of points on
X. Once the result is shown for a certain number of points this set is linked by a
suitable Gorenstein set of points to a larger set of points. Sequence (7.1) is used
to guarantee that the new set of points satisfies the conjecture as well. Establishing
the existence of suitable Gorenstein sets of points is rather subtle. Thus, in [5] the
conjecture is first shown for sets of points on a carefully constructed quartic surface.
Semicontinuity implies then the desired result on a general quartic surface.

As indicated in Theorem 3.5 above, a different set of tools from liaison theory
has been used in order to construct reduced Gorenstein schemes with prescribed
properties. In fact, the methods also provide information on their graded Betti
numbers.

A key is to use geometric linkage. Suppose ideals I and J are geometrically
linked, that is, I and J do not have associated prime ideals in common and I ∩ J is
a Gorenstein ideal of codimension, say, c. Then Sequence (7.1) implies

ωR/J (−t) ∼= I/I ∩ J ∼= (I + J )/J.

It follows that I +J is a Gorenstein ideal of codimension c+1 that fits into an exact
sequence

0→ ωR/J (−t)→ R/J → R/(I + J )→ 0. (7.4)

As pointed out above, if R/J is Cohen-Macaulay, then a resolution of R/J
determines a resolution of its canonical module ωR/J . Using Sequence (7.4), one
obtains upper bounds on the graded Betti numbers of I + J . If the Castelnuovo-
Munford regularity of J is large enough compared to the regularity of I ∩ J ,
then these bounds are sharp by Migliore and Nagel [66, Corollary 8.2]. This is an
important ingredient of the following result.

Theorem 7.1 ([66, Theorem 8.13]) LetA be a graded Gorenstein k-algebra whose
Artinian reduction has the Weak Lefschetz Property. Then for any integers i, j , there
is an upper bound on dimk[TorRi (A, k)]j depending on the Hilbert function of A.
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Moreover, given any Hilbert function of a graded Gorenstein k-algebra of
positive dimension whose Artinian reduction has the Weak Lefschetz Property, there
is a reduced Gorenstein algebra with these properties such that the above bounds
are equalities for every i and j , provided the field k has sufficiently many elements,

The Gorenstein algebras proving sharpness of the bounds are constructed using
sums of geometrically G-linked ideals. The bounds are a consequence of [66,
Proposition 8.7] that compares the graded Betti numbers of an Artinian Gorenstein
algebra with those of A/�A, where � ∈ [A]1 is sufficiently general. Since A/�A
is Cohen-Macaulay its graded Betti numbers are bounded above by whose of R/L
where L is a lexicographic ideal such that R/L has the same Hilbert function as A.
The graded Betti numbers of a lexicographic ideal were explicitly computed in [75,
Proposition 3.8].

The above result has consequences for the theory of simplicial polytopes.
Consider a d-dimensional simplicial polytope P . Let �(P ) its boundary complex.
The Stanley-Reisner ring k[P ] = R/I�(P ) is a Gorenstein ring of dimension d.
The so-called g-theorem classifies face vectors of simplicial polytopes, equivalently,
Hilbert functions of k[P ]. In particular, Stanley showed in [88] that a general
Artinian reduction of k[P ] has the Weak Lefschetz Property if k has characteristic
zero.

Theorem 7.2 ([66, Theorem 9.5]) Suppose k has characteristic zero. If P is a d-
dimensional simplicial polytope then there is an upper bound for any graded Betti
number of the Stanley-Reisner ring k[P ] that depends only on the face vector of P .

Moreover, for every face vector of a simplicial polytope, there is a simplicial
polytope with the given face vector such that the above bounds are all simultane-
ously sharp.

As pointed out in [75], any empty simplex of a simplicial polytope P corresponds
to a minimal generator of the monomial ideal I�(P ). Hence, Theorem 7.2 implies a
conjecture by Kalai, Kleinschmidt and Lee on the number of empty simplices of a
simplicial polytope (see [75, Theorem 2.3]). Additional work is needed to establish
the following result:

Theorem 7.3 ([75, Corollary 4.16]) Let P be a d-dimensional simplicial polytope
with n vertices, which is not a simplex. Then P has at most

(
g+k
g−1

)+ (
g+k−1
g−1

)
empty

simplices of dimension ≤ k, where g = n− d − 1.

8 Gröbner Bases and Rees Algebras

Suppose I ⊂ R is a homogeneous ideal with a generating set G whose initial
monomials (with respect to some monomial ordering on R) generate a monomial
ideal I ′. Using Buchberger’s classical criterion in order to decide whether G is a
Gröbner basis of I is often not feasible. In interesting cases, liaison theory offers an
alternate approach. In fact, if I and I ′ can be linked to complete intersections of the
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same type and both chains of links have the same pattern, then this implies that both,
R/I and R/I ′, are Cohen-Macaulay ideals with the same Hilbert function. Hence
the inclusion I ′ ⊂ I must be an equality, and G is indeed a Gröbner basis of I .

In order to implement this basic idea it is often enough to leave out every other
ideal in a chain of direct links by using suitable generalizations of basic double links
as discussed in Theorems 2.7 and 2.8. Here we give a more algebraic version.

Definition 8.1

(i) Let a ⊂ I ⊂ R be homogeneous ideals such that codim a + 1 = codim I and
R/a is Cohen-Macaulay. If f ∈ R is homogeneous with a : f = a, then the
ideal f I + a is called a basic double link of degree deg f on a.

(ii) Let a, I, J be unmixed homogeneous ideals of R such that a ⊂ I ∩ J ,
codim a + 1 = codim I = codim J and R/a is Cohen-Macaulay. If there is
an isomorphism of graded R-modules J/a ∼= (I/a)(−t), then it is said that J
is obtained from I by an elementary biliaison of height t on a.

The above names are motivated by the following result.

Theorem 8.2

(a) Suppose J = f I + a is a basic double link of I height t = deg f .

(i) If I is a perfect ideal, then so is J . Moreover, their Hilbert functions are
related by

hR/J (j) = hR/I (j − t)+ hR/a(j)− hR/a(j − t) for all j ∈ Z.

In particular, I and J have the same codimension.
(ii) If I is unmixed and R/a is generically Gorenstein then J is unmixed and

Gorenstein linked to I in two steps.

(b) Suppose J is obtained from I by an elementary biliaison of height t .

(i) The Hilbert functions are related by

hR/J (j) = hR/I (j − t)+ hR/a(j)− hR/a(j − t) for all j ∈ Z.

(ii) If I and J are unmixed and R/a is generically Gorenstein then I and J are
Gorenstein linked to I in two steps.

Proof

(a) Claim (i) is part of [52, Lemma 4.8] and (ii) is shown in [52, Proposition 5.10]
(b) The first assertion is an immediate consequence of the definition. The second

assertion is shown in [45].
��

The concepts of basic double links and elementary biliaison are closely related.
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Remark 8.3

(i) If f I + a is a basic double link of I , then there is a graded isomorphism
(I/a)(− deg f ) ∼= J/a. Thus, basic double linkage is a special case of
elementary biliaison.

(ii) If J is obtained from I by an elementary biliaison of height t , then there are
homogeneous polynomials f, g ∈ R with deg f = t+deg g, a : f = a = a : g
and f I+a = gJ +a. Thus, I and J are related via two basic double links, and,
by Theorem 8.2(a), J can be obtained (not optimally) from I by four Gorenstein
links.

The above result implies a sufficient condition for a set of polynomials to be a
Gröbner basis (with respect to a given term order) for the ideal that they generate.
We denote by in(I ) the initial ideal of I with respect to the chosen term order.

Lemma 8.4 ([34, Lemma 1.12]) Fix a monomial order on R. Consider an ideal J
that is obtained from I by an elementary biliaison of height t on a. If the initial ideals
in(I ) and in(a) are perfect and there is a monomial ideal J ′ ⊂ J that is obtained
from in(I ) by an elementary biliaison of height t on in(a), then J ′ = in(J ).

Following [34], we illustrate the use of this Gröbner basis criterion in a simple
well-known case.

Theorem 8.5 Let X = (xi,j ) be an m × n matrix with m ≤ n whose entries are
distinct variables. Then the set of maximal minors of X forms a Gröbner basis of
the ideal Im(X), generated by the maximal minors of X.

Sketch of Proof Fix a monomial order such that the product of the variables on the
main diagonal of any maximal minor is its initial monomial, and denote by J ′ the
ideal generated by these monomials. We want to show that in(Im(X)) = J ′.

We use induction on |X| = mn. If m = 1, then J ′ = I1(X) is generated by
variables.

Let m ≥ 2. If n = m, then Im(X) is a principal ideal. Let n ≥ m + 1. Denote
by Z the m × (n − 1) matrix obtained from X by deleting the last column, and let
Y be the (m − 1) × (n − 1) matrix obtained from Z by deleting the last row. The
induction hypothesis implies that the maximal minors of Y and of Z are Gröbner
bases of Im−1(Y ) and Im(Z). It follows by inspection that

J ′ = in(Im−1(Y ))+ xm,n in(Im(Z)).

Since xm,n does not appear in Y , we get in(Im−1(Y )) : xm,n = in(Im−1(Y )).
Moreover, we have codim Im−1(Y ) = m − n + 1 = 1 + codim Im(Z). Hence
J ′ is a basic double link of in(Im−1(Y )) of height one on in(Im(Z)). The proof of
[52, Theorem 3.6] shows that Im(X) is obtained from Im−1(Y ) by an elementary
biliaison of height one on Im(Z). Hence Lemma 8.4 gives J ′ = in Im(X). ��
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Even if a linkage pattern of an ideal is not known, variations of the above aproach
can be productive. We illustrate the idea by explicitly determining equations of some
blow-up algebras. If I is an ideal of R, then its Rees algebra is the ring R[I t] =⊕
j≥0 I

j tj ⊂ R[t], where t is a new variable. The special fiber ring of I ⊂ R is the
algebra

F(I ) =
⊕

j≥0

I j /mI j ∼= R[I t] ⊗R R/m,

where m = (x0, . . . , xn) is the unique maximal homogeneous ideal of R. Both rings
are finitely generated k-algebras, and so they are quotients of polynomial rings by
suitable ideals. One often refers to generators of these ideals as equations of the
Rees algebra and the special fiber ring, respectively. Determining these equations is
typically a challenging problem. We describe a solution for some important classes
of monomial ideals.

Given a partition λ = (λ1, . . . , λn), let μ = (μ1, . . . , μn) ∈ Z
n be a vector such

that 0 ≤ μ1 ≤ · · · ≤ μn < λn and μi ≥ i − 1 for i = 1, . . . , n. Set m = λ1.
Following [18], define a generalized Ferrers ideal Iλ−μ as

Iλ−μ := (xiyj | 1 ≤ i ≤ n,μi < j ≤ λi) ⊂ k[x1, . . . , xn, y1, . . . , ym].

It is isomorphic to a Ferrers ideal as considered in [17]. Substituting yj �→ xj gives
the specialized Ferrers ideal

Iλ−μ := (xixj | 1 ≤ i ≤ n,μi < j ≤ λi) ⊂ K[x1, . . . , xmax{n,m}].

Note that any squarefree strongly stable monomial ideal corresponds to a unique
ideal Iλ−μ with μ = (1, 2, . . . , n).

The above ideals can be visualized using a suitable tableau. Form a skew shape
Tλ−μ, obtained from the Ferrers diagram Tλ by removing the leftmost μi boxes
in row i. Then the generators of Iλ−μ and Iλ−μ correspond to the boxes of the
Tλ−μ, where the rows are labelled by x1, . . . , xn and the columns by y1, . . . , ym
and x1, . . . , xm, respectively. We may also label a box in position (i, j) of Tλ−μ by
a variable Ti,j . Thus, it corresponds to a polynomial ring

k[Tλ−μ] := K[Tij | 1 ≤ i ≤ n,μi < j ≤ λi].
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The symmetrized tableau Sλ−μ is obtained by reflecting Tλ−μ along the main
diagonal. It may have holes along the main diagonal. For example, if λ =
(6, 6, 6, 6, 6) and μ = (1, 4, 4, 5, 5), one gets

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6

Tλ−μ

x1

x2

x3

x4

x5

x1 x2 x3 x4 x5 x6

T12 T13 T14 T15 T16

T12 T25 T26

T13 T35 T36

T14 T46

T15 T25 T35 T56

T16 T26 T36 T46 T56
Sλ−μ

Observe that in general neither Tλ−μ nor Sλ−μ is a ladder. Denote by I2(Tλ−μ)
and I2(Sλ−μ) the ideals in K[Tλ−μ] generated by the determinants of 2 × 2
submatrices of Tλ−μ and Sλ−μ, respectively. For instance, if λ = (5, 5, 4) and
μ = (1, 3, 3) we obtain

T12 T13 T14 T15

T24 T25

T34

Tλ−μ

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25
Sλ−μ

and so

I2(Tλ−μ) = (T14T25 − T15T24)

and

I2(Sλ−μ) = (T14T25 − T15T24, T12T34 − T13T24).

We need one further construction. Given vectors λ,μ ∈ Z
n as above, set

λ′ = (λ1 + 1, λ1 + 1, λ2 + 1, . . . , λn + 1) ∈ Z
n+1

and

μ′ = (1, μ1 + 1, μ2 + 1, μn + 1) ∈ Z
n+1.
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Augment the tableau Sλ−μ with a new top row and a new leftmost column. Leave the
new northwest corner empty and fill the new top row with the variables x1, . . . , xm
from left to right and the leftmost column with x1, . . . , xm from top to bottom. Up
to the names of the variables, the augmented tableau is the same as Sλ′−μ′ .

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25

Sλ−μ

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25

The augmented tableau Sλ′−μ′

Theorem 8.6 ([19, Theorem 4.2 and Corollary 4.6]) The special fiber ring and
the Rees algebra of Iλ−μ are determinantal rings.

More precisely, there are graded isomorphisms

F(Iλ−μ) ∼= k[Tλ−μ]/I2(Sλ−μ)

and, if μ1 ≤ n,

R[Iλ−μt] ∼= F(Iλ′−μ′) ∼= k[Tλ′−μ′ ]/I2(Sλ′−μ′).

By Nagel et al. [19, Remark 4.5], the above result also gives a description of
the special fiber ring and the Rees algebra of a generalized Ferrers ideal Iλ−μ as
established first in [17]. In particular, one has F(Iλ−μ) ∼= K[Tλ−μ]/I2(Tλ−μ).

As explained in [19, Remark 4.5], the assumption μ1 ≤ n for the second
isomorphism is harmless. Its proof is similar to that of the first isomorphism. The
latter is shown as follows. By Nagel et al. [19, Theorem 2.4] the 2-minors of Tλ−μ
and Sλ−μ form a Gröbner basis of I2(Tλ−μ) and I2(Sλ−μ), respectively. Their initial
ideals can be obtained from ideals generated by variables via sequences of basic
double links, which, in particular, allows one to determine the codimension of these
ideals (see [19, Theorem 3.3]). Consider now the algebra epimorphism

π : k[Tλ−μ]	 k[xixj | xixj ∈ Iλ−μ] ∼= F(Iλ−μ),

induced by π(Tij ) = xixj . Since π maps all 2-minors of Sλ−μ to zero we get
I2(Sλ−μ) ⊂ kerπ . Both ideals are prime ideals (see [19, Proposition 3.5]). Thus, the
desired equality follows if the two ideals have the same codimension. This is indeed
true as a comparison of the codimension of I2(Sλ−μ) and dimF(Iλ−μ) reveals.
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9 Vertex Decomposability

The use of liaison-theoretic methods to study simplicial complexes has been
pioneered in [76]. The starting point is a well-known bijection between squarefree
monomial ideals and simplicial complexes.

Recall that a simplicial complex � on n vertices is a collection of subsets of
[n] = {1, . . . , n} that is closed under inclusion. The elements of � are called the
faces of �. The dimension of a face F is |F | − 1. The Stanley-Reisner ideal of
� is I� = (

∏
i∈F xi | F ⊆ [n], F �∈ �) ⊂ R = k[x1, . . . , xn], and the

corresponding Stanley-Reisner ring is k[�] = R/I�. Note that the dimensions of
� and k[�] determine each other because dim� = dim k[�] − 1. We say that �
has an algebraic property such as Cohen-Macaulayness if K[�] has this property.
For more details on simplicial complexes, Stanley-Reisner rings and their algebraic
properties we refer to the books of Bruns-Herzog [13] and Stanley [89].

Following [76, Definition 2.2], a squarefree monomial I is said to be squarefree
glicci if I can be linked in an even number of steps to a complete intersection I ′
generated by variables such that every other ideal in the chain linking I to I ′ is a
squarefree monomial ideal. In other words the simplicial complex � corresponding
to I can be “linked” to a simplex in an even number of steps, where every other step
corresponds to a simplicial complex.

Example 9.1 Denote by� the simplicial complex on [4] consisting of 4 vertices. Its
Stanley-Reisner ideal is I� = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4). It is squarefree
glicci because

I� = x4 · (x1, x2, x3)+ (x1x2, x1x3, x2x3)

implies that I� is a basic double link of (x1, x2, x3).

Provan and Billera introduced in [82] an important property of a simplicial
complex. To state it recall that, given a vertex j of a simplicial complex �, the
link of j is

lk�(j) = {G ∈ � | {j} ∪G ∈ �, {j} ∩G = ∅},

and the deletion with respect to j is

�−j = {G ∈ � | {j} ∩G = ∅}.

A pure simplicial complex � is said to be vertex decomposable if � is a simplex or
equal to {∅}, or there exists a vertex j such that lk�j and �−j are both pure and
vertex-decomposable and dim� = dim�−j = dim lk�j + 1.

Every vertex decomposable simplicial complex is shellable, and so Cohen-
Macaulay. Thus, the following concept, introduced in [76, Definition 3.1], is less
restrictive. A pure simplicial simplex � �= ∅ on [n] is said to be weakly vertex
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decomposable if there is some j ∈ [n] such that� is a cone over the weakly vertex-
decomposable deletion �−j or there is some j ∈ [n] such that lk�(j) is weakly
vertex decomposable and �−j is Cohen-Macaulay of the same dimension as �.

We now relate these combinatorial concepts via liaison theory. For a simplicial
complex � on [n], consider any vertex j ∈ [n]. Then the cone over the link lk�(j)
with apex j considered as complex on [n] has as Stanley-Reisner ideal Jlk�(j) =
I� : xj . Denote by J�−j ⊂ R the extension ideal of the Stanley-Reisner ideal of
�−j considered as a complex on [n] \ {j}. Note that xj does not divide any of the
minimal generators of J�−j , thus J�−j : xj = J�−j . Furthermore, it follows that

I� = xjJlk�(j) + J�−j . (9.1)

Comparing with Definition 8.1 and Theorem 8.2, this equation implies that � is a
basic double link of the cone over its link lk�(j) and Gorenstein linked to it in two
steps if � is pure and if the deletion �−j is Cohen-Macaulay and has the same
dimension as � when both are considered as complexes on [n]. These observations
lead to the following result.

Theorem 9.2 ([76, Theorem 3.3]) If� is a weakly vertex decomposable simplicial
complex, then � is squarefree glicci. In particular, � is Cohen-Macaulay.

This result applies to a number of well-studied classes of simplicial complexes. In
fact, it is known that any pure shifted complex, any matroid complex, any Gorenstein
complex and any 2-Cohen-Macaulay complex (see [2] for the definition) is weakly
vertex decomposable.

It has been observed in [76] that in general both of the properties considered in
the above theorem depend on the characteristic of the ground field.

Example 9.3 ([76, Example 5.5])

(i) Consider a tringulation� of the real projective plane P2 with six vertices. Using
the notation from [13, p. 236], its Stanley-Reisner ideal in k[x1, . . . , x6] is

I� = (x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6).

If char k �= 2 this is a 2-dimensional Cohen-Macaulay complex, whereas � is
not Cohen-Macaulay if char k = 2.

(ii) Let R = k[x1, . . . , x7] and denote by a the extension ideal of I� in R. Set
J = (x1, . . . , x4) ⊂ R. Consider the squarefree monomial ideal

I = x7J + a.

Since R/a is Cohen-Macaulay if and only if char k �= 2, I is a basic double
link of the complete intersection J if char k �= 2. It follows that in this case I is
squarefree glicci and that the induced simplicial complex �′ is weakly vertex-
decomposable. However, if char k = 2 then �′ is not Cohen-Macaulay and so
neither (squarefree) glicci nor weakly vertex decomposable.
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Example 9.3(i) also gives rise to a challenging problem. One of the main open
questions in liaison theory is whether every Cohen-Macaulay ideal is glicci. In view
of the above dependence of the Cohen-Macaulayness of k[�] on the characteristic,
the following problem was proposed in [76, Problem 5.3]:

Problem 9.4 Decide whether the Stanley-Reisner ideal of the above triangulation
of P2

R
is glicci if char k �= 2.

Recently, in [50] Klein and Rajchgot established a vast generalization of
Theorem 9.2. To discuss it, it is useful to rewrite Eq. (9.1) as

I� = Jlk�(j) ∩ (xj , J�−j ). (9.2)

Note that (xj , J�−j ) = (xj , I�) is the Stanley-Reisner ideal of the deletion �−j
when it is considered as a simplicial complex on [n]. We also observed that Jlk�(j) =
I� : xj . Knutson, Miller, Yong introduced in [49] geometric vertex decomposition
as an analog of the decomposition in Eq. (9.2) for an ideal I ⊂ R = k[x1, . . . , xn]
that is not necessarily homogeneous. We need some notation.

Let y be any variable of R. Any nonzero polynomial f ∈ R can be uniquely
written as f = ydq + r with polynomials q, r ∈ R and d ∈ N0 such that no
monomial in q �= 0 is divisible by y, no monomial in r is divisible by yd if d > 0
and r = 0 if d = 0. Set iny f = ydq and define the initial ideal of I with respect to
y as

iny I = (iny f | f ∈ I ) ⊂ R.

A monomial order < on R is said to be y-compatible if in< f = in<(inf f ) for
every f �= 0 in R. Consider now a Gröbner basis G of an ideal I ⊂ R with respect
to a y-compatible order. Write each element of G as above, that is,

G = {ydi qi + ri | 1 ≤ i ≤ s},

and so in particular iny(ydi qi + ri) = ydi qi . Define the following ideals of R:

by,I = (qi | 1 ≤ i ≤ s) and ay,I = (qi | di = 0).

Note that these definitions do not depend on the choice of Gröbner basis G because
one has by Knutson et al. [49, Theorem 2.1],

by,I =
⋃

i≥1

(iny I : yi) and (y, ay,I ) = (y, iny I ).
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Definition 9.5 ([49]) If

iny I = by,I ∩ (y, ay,I ) (9.3)

then this is called a geometric vertex decomposition of I with respect to y.

Comparing with Eq. (9.2) and the discussion below it, it follows that Eq. (9.2)
is a geometric vertex decomposition of I� with respect to xj . Using the definition
of a vertex decomposable simplicial complex as a role model, one says (see [50,
Definition 2.6]) that an unmixed ideal I of R is geometrically vertex decomposable
if (i) I = R or I is generated by variables, or (ii) for some variable y of R, iny I =
by,I ∩(y, ay,I ) is a geometric vertex decomposition and the contractions of by,I and
ay,I to k[x1, . . . , ŷ, . . . , xn] are geometrically vertex decomposable. By induction,
it follows that every geometrically vertex decomposable ideal is radical.

Similarly to weakly vertex decomposable simplicial complexes, there are also
weakly geometrically vertex decomposable ideals, see [50, Definition 4.6]. Analo-
gously to Theorem 9.2, one has:

Theorem 9.6 ([50, Corollary 4.8]) Any weakly geometrically vertex decompos-
able ideal I ⊂ R is both radical and glicci. In particular, R/I is Cohen-Macaulay.

This result applies, for example, to Schubert determinantal ideals and homoge-
neous ideals of lower bound Cluster algebras [50, Propositions 5.2 and 5.3]. The key
observation for establishing Theorem 9.6 is that a geometric vertex decomposition
often gives rise to an elementary biliaison (see Definition 8.1(ii)).

Theorem 9.7 ([50, Theorem 4.1]) Suppose an unmixed ideal I ⊂ R has a
geometric vertex decomposition with respect to some variable y of R such that
neither by,I = ay,I nor by,I = R. If I, ay,I and I, ay,I are homogeneous then
there is a graded isomorphism I/ay,I ∼= (by,I /ay,I )(−1).

Remarkably, some form of converse to this result is true as well.

Theorem 9.8 ([50, Theorem 6.1]) Fix a y-compatible monomial order and con-
sider ideals I, b, a with a ⊂ I ∩ b. Suppose that y2 does not divide any term of
any element of the reduced Gröbner basis of I and that no term of any element
of the reduced Gröbner basis of a is divisible by y. If there is an isomorphism of
R/a modules I/a → b/a induced by multiplication with f

g
with

iny f
g
= y then

iny I = b ∩ (y, a) is a geometric vertex decomposition.

Combining these results with Lemma 8.4, allows one to determine Gröbner bases
of further classes of ideals (see [50, Corollary 4.13] and [51]).
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10 Unprojections

In 1983 Kustin and Miller introduced a construction of Gorenstein ideals in local
Gorenstein rings, starting from smaller such ideals. More precisely, given Goren-
stein ideals b ⊂ a with grades g and g − 1, respectively, in a Gorenstein local ring
R, in [54] they construct a new Gorenstein ideal I of grade g in a larger Gorenstein
ring R[v]. Here v is a new indeterminate. In [55] they give an interpretation for
their construction via liaison theory. The Kustin-Miller construction has been used
to produce many interesting classes of Gorenstein ideals. In birational geometry it
is known as unprojection (see, e.g., [12, 79, 80]). Following [37], we discuss a
modification of the Kustin-Miller construction in the case of graded rings within the
framework of Gorenstein liaison theory.

Let R be a graded Gorenstein k-algebra. Let a and b ⊂ a be homogeneous
Gorenstein ideals in R of codimension g and g − 1, respectively. The embedding
b ↪→ a induces the following commutative diagram, where the rows are minimal
free resolutions of R/b and R/a, respectively:

0 −−→ Bg−1 = R(−u)
bg−1−−→ .... −−→ B1

b1−−→ R −−→ 0⏐⏐�
⏐⏐�αg−1

⏐⏐�α1

⏐⏐�α0=id

0 −−→ Ag = R(−v)
ag−−→ Ag−1

ag−1−−−→ .... −−→ A1
a1−−→ R −−→ 0

(10.1)

Fixing bases for all the free modules, we identify the maps with their coordinate
matrices. As above, we denote by ωM the canonical module of a graded R-module
M . It is isomorphic to the k-dual of the local cohomology module H dimM

m (M).

Theorem 10.1 ([37, Theorem 3.1]) Assume d = u − v ≥ 0. Let y ∈ a be a
homogeneous element such that b : y = b. The embedding μ : (b, y) ↪→ a
induces an R-module homomorphism ωR/a → ωR/(b,y) that is multiplication by
some homogeneous element ω ∈ R. Its degree is d + deg y.

Assume there is a homogeneous element f ∈ R of degree d such that b : (ω +
fy) = b. Consider the ideal I obtained from a by the two Gorenstein links

a ∼(b,y)∼(b,ω+fy) I,

that is, I = (b, ω + fy) : [(b, y) : a]. Then I is a Gorenstein ideal with the same
codimension as a. It can be written as

I = b+ (α∗g−1 + (−1)gf a∗g) = (b, α∗g−1 + (−1)gf a∗g),

where α∗g−1 and a∗g are interpreted as row vectors and “+” indicates their
component-wise sum whose entries, together with generators of b, generate I .

Observe that a sufficiently general choice of the element f always gives a desired
element ω + fy in Theorem 10.1, at least if the field k is infinite.
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We illustrate the result by a simple example.

Example 10.2 Consider the complete intersections a = (x, y, z) and b = (x2 −
z2, y2 − z2) in the polynomial ring k[x, y, z], where k is a field of characteristic
zero. Linking a by b+(z2), we get as residual J = b+(z2, xyz). Choosing f = 5z,
we link J by b+ (xyz+ f z2) to

I = b+ (xf + yz, yf + xz, zf + xy) = (x2 − z2, y2 − z2, xz, yz, xy + 5z2).

Notice that for the second link we cannot take f = z because xyz + z3 is a zero
divisor modulo b.

Given a minimal free resolution of b, it is easy to determine minimal free
resolutions of the ideals (b, y) and (b, ω + fy) that are used for the links in
Theorem 10.1. Combined with the mapping cone procedure applied twice to
sequences as in (7.1), one obtains a free resolution of I . However, this resolution
is not minimal if g ≥ 3. In fact, by identifying the construction in Theorem 10.1 as
an elementary biliaison one gets a smaller free resolution.

Theorem 10.3 ([37, Theorem 4.1]) Adopt the notation and assumptions of Theo-
rem 10.1. Then there is a short exact sequence of graded R-modules

0 −−−→ ( / )(−d) −−−→ R/ −−−→ R/I −−−→ 0.

Moreover, the ideal I has a graded free resolution of the form

Notice that the maps in the constructed free resolution of I are described in the
proof of the statement.

Corollary 10.4 ([37, Proposition 4.3]) The homogeneous Gorenstein ideal I =
(b, α∗g−1 + (−1)gf a∗g) in Theorem 10.1 is obtained from a by an elementary
biliaison on b.

Proof The short exact sequence in Theorem 10.3 gives a graded isomorphism
a/b(−d) ∼= I/b. Since b is Gorenstein the claim follows directly from the definition
of an elementary biliaison. ��

The free resolution constructed in Theorem 10.3 is often minimal. In fact, if
the polynomial f is not a unit and each map αi in Diagram (10.1) is minimal
whenever 1 ≤ i ≤ g− 1, that is, Imαi ⊂ mAi , then the resolution of I described in
Theorem 10.3 is a graded minimal free resolution of I (see [37, Corollary 4.2]).
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We illustrate the versatility of the above construction by some examples. Even
if one starts with complete intersections the resulting Gorenstein ideal is more
complicated.

Example 10.5 ([37, Example 51]) Let R = k[x1, . . . , xn be a polynomial ring. For
an integer g with 2 ≤ g ≤ n, consider two ideals that are generated by regular
sequences

b = (xm1
1 , x

m2
2 , · · · , xmg−1

g−1 ) ⊂ (xn1
1 , x

n2
2 , · · · , x

ng
g ) = a.

If d :=
g−1∑
i=1
mi −

g∑
i=1
ni ≥ 0 then, for a sufficiently general polynomial f ∈ R of

degree d,

I = (xm1
1 , · · · , xmg−1

g−1 , f x
n1
1 , · · · , f x

ng−1
g−1 , f x

ng
g +

g−1∏

j=1

x
mj−nj
j )

is a Gorenstein ideal. Moreover, if mj > nj for each j = 1, . . . , g − 1, then the
resolution in Theorem 10.3 is a minimal free resolution of I .

The next example shows that every Artinian Gorenstein ideal whose
Castelnuovo-Mumford regularity is three can be obtained by one elementary
biliaison from a complete intersection.

Example 10.6 Consider an ideal I ⊂ R = k[x1, . . . , xn] such that R/I is a graded
compressed Gorenstein algebra with h-vector (1, n, 1). According to Sally [85,
Theorem 1.1], after a suitable change of coordinates any such ideal is of the form

I = (xixj | 1 ≤ i < j ≤ n)+ (x2
1 − c1x

2
n, . . . , x

2
n−1 − cn−1x

2
n),

where c1, . . . , cn−1 ∈ k are suitable units. It can be obtained by an elementary
biliaison as in Theorem 10.1 from a = (x1, . . . , xn) on bR, where b is a Sally ideal
in n− 1 variables, namely

b = (xixj | 1 ≤ i < j ≤ n− 1)+ (x2
1 −

c1

cn−1
x2
n−1, . . . , x

2
n−2 −

cn−2

cn−1
x2
n−1).

More precisely, there are the following links

a ∼(b,xn) (b, xn, x
2
n−1) ∼(b,x2

n−1−cn−1x
2
n)
I.

Note that (b, xn, x2
n−1) = (x1, . . . , xn−1)

2 + (xn).
We now consider some codimension four Gorenstein ideals with 9 generators

and 16 syzygies. Such Gorenstein ideals are investigated in depth from the point of
view of unprojections in [12].
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Example 10.7 Let R = k[a, b, c, d, e, f, x, y, z] be a polynomial ring in 9
variables over a field k. Consider a generic 3× 3 symmetric matrix A and a generic
skew-symmetric matrix B:

A =
⎡

⎣
a b c

b d e

c e f

⎤

⎦ and B =
⎡

⎣
0 x y

−x 0 z

−y −z 0

⎤

⎦ .

For λ �= 0 in k, define a 6× 6 skew-symmetric matrix N =
[
B A

−A λB
]

. The ideal a

generated by the 4×4 Pfaffians ofN is a homogeneous Gorenstein ideal of grade 4:

a =(b2 − ad + λx2, bc − ae + λxy, c2 − af + λy2, cd − be + λxz, ce − bf + λyz,
e2 − df + λz2, cx − by + az, ex − dy + bz, f x − ey + cz).

It is the defining ideal of the Segre embedding of P2×P
2 into P

8 and a typical case
of a Tom unprojection (see [12, 80]). In particular, a is equal to the ideal generated
by the 2×2 minors of a 3×3 generic matrix A+√−λB. Hence, the Gulliksen and
Negȧrd complex gives its minimal free resolution:

0 −−−→ R(−6) a4−−−→ R9(−4) a3−−−→ R16(−3) a2−−−→ R9(−2) a1−−−→ −−−→ 0.

In order to perform the construction of Theorem 10.1, we choose the first three listed
generators of a to define a complete intersection

b = (b2 − ad + λx2, bc − ae + λxy, c2 − af + λy2)

inside a. Then we link as follows:

a ∼(b,cd−be+λxz) (b, cd − be + λxz, ax) ∼(b,ax+(cd−be+λxz)) I.

Explicitly, the resulting ideal I is

I =(e2 − df − cx + by + az+ λz2, ce − bf + ay + λyz, cd − be + ax + λxz,
c2 − af + λy2, bc − ae + λxy, ac + λf x − λey + λcz, b2 − ad + λx2,

ab + λex − λdy + λbz, a2 + λcx − λby + λaz).
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It has the same Betti table as a. In fact, I is generated by the 4 × 4 Pfaffians of the
matrix

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 x y a b c

−x 0 1
λ
a + z b d e

−y − 1
λ
a − z 0 c e f

−a −b −c 0 λx λy

−b −d −e −λx 0 a + λz
−c −e −f −λy −a − λz 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the description of the minimal free resolution in Theorem 10.3, one
can compare the Castelnuovo-Mumford regularities of the ideals involved in
Theorem 10.1. In fact, one has (see the proof of [37, Corollary 4.4])

regI − rega = 2d.

In particular, we get regI ≥ rega, which is also expressed by saying that I has
been obtained from a by an ascending elementary biliaison. The last equation also
leads to an explicit example of a Gorenstein ideal that cannot be obtained using the
construction of Theorem 10.1 with a strictly ascending biliaison.

Example 10.8 ([37, Example 5.5]) Let I be a generic Artinian Gorenstein ideal in
R = k[x1, . . . , x5] with h-vector (1, 5, 5, 1), where k is an infinite field. It has the
least possible Betti numbers. Its graded minimal free resolution has the form

0→ R(−8)→ R10(−6)→ R16(−5)→ R16(−3)→ R10(−2)→ I → 0.
(10.2)

This is the key to showing that there are no Gorenstein ideals a and b to produce
I using a biliaison as in Theorem 10.1 that is strictly ascending, i.e., d > 0 or,
equivalently, a has smaller regularity than I .

11 Open Questions

We end with a short list of open questions from liaison theory. Besides being
important in and of themselves from a theoretical perspective, it is to be hoped
that their resolution will lead to further examples of beautiful and unexpected
applications.

1. It is well-known that if a homogeneous ideal I is glicci then it is Cohen-
Macaulay. What about the converse: is every Cohen-Macaulay ideal glicci? The
first result in this direction is still arguably the cleanest in that it is a direct
generalization of Gaeta’s theorem [52, Theorem 3.6]: if I is the ideal of maximal
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minors of a homogeneous t × (t + c) matrix, and if I has the expected height
c + 1, then I is glicci. As mentioned on page 557, this converse is one of the
main open questions in liaison theory and was first proposed in [52], page 18. See
Problem 9.4 above for a particular example. One can also ask, more generally,
whether for curves in P

n, n ≥ 4, the Hartshorne-Rao module determines the even
Gorenstein liaison class.

2. We have seen several applications of the LR property (see Definition 2.11 and
Theorem 2.13), and as noted above, this property is only known to hold in
codimension two. It was studied in the context of Gorenstein liaison in higher
codimension in [46], and the general conclusion was that there is no hope of
getting an analogous result in that setting. However, it seems to us to be quite
reasonable to hope that for CI-liaison in higher codimension, the analogous
property does hold. And since it had so many applications in codimension two,
one can furthermore expect many consequences in higher codimension.

3. We have seen above that questions about the genus of curves in P
n, and about

possible Hilbert functions of sets of points in uniform position, have used liaison
theory to make advances. One kind of measure of uniformity is given by the
Cayley-Bacharach property, and we saw above that Chong used liaison to say
something also here. It seems almost certain that Gorenstein liaison will open still
further doors for us in this direction. Is there in fact an approach via Gorenstein
liaison?

4. We saw above in Sects. 3 and 7 that liaison theory has been used to produce
a broad family of arithmetically Gorenstein unions of linear varieties in any
codimension, with important properties. Predominant among these are the fact
that the general Artinian reduction has the WLP, and the fact that the graded
Betti numbers are maximal in a precise sense. In the paper [67] is a discussion
of how this relates to the so-called g-conjecture and, perhaps, an even stronger
result as a consequence of a positive answer to the following open question: Does
the general Artinian reduction of an arithmetically Gorenstein set of points have
the WLP? SLP?

5. In several papers (see, e.g., [44, 45]) Hartshorne has studied aspects of the fol-
lowing open question: Can every Gorenstein ideal be produced by an ascending
elementary biliaison from another Gorenstein ideal? This is interesting in its own
right, but it would also give further applications along the lines of unprojection,
as described in Sect. 10.
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1 Introduction

Let G be a simple graph on n vertices. Denote I the edge ideal of G, i.e. squarefree
monomial ideal of S = k[x1, . . . , xn] generated by xixj where {i, j} is an edge
of G. By a celebrated result of Cutcosky, Herzog, and Trung [8] and Kodiyalam
[29] there exist natural numbers q and b(G) depending only on G such that
reg(I s) = 2s+ b(G) for all s ≥ q. The smallest such natural number q is called the
regularity stabilization index of I , denoted by rstab(G). For general graphs, studying
the behavior of the sequence {reg(In) | n ≥ 1} is a very challenging problem. In
particular, there is no description for rstab(G) or b(G) in terms of combinatorial
data ofG. For a comprehensive list of problems and known results for the regularity
of ordinary powers of edge ideals, we refer to [9] and its references. In this note,
we complement the discussion in [9] by focusing on the problem of computing
the regularity of symbolic powers of I and its relation to the regularity of ordinary
powers. Recently, explicit computation of the regularity of symbolic powers of edge
ideals has been carried out for certain classes of edge ideals verifying the following
conjecture of the first author.

Conjecture A Let I be the edge ideal of a simple graph G. Then, for all s ≥ 1,

reg(I (s)) = reg(I s).
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Table 1 Classes of graphs with known regularity of ordinary/symbolic powers

Graphs Ordinary powers Symbolic powers

Forests Beyarslan, Ha, T. Trung [6] I (s) = I s
Unicyclic graphs Alilooee et. al. [1] Fakhari [14]

Co-chordal graphs Herzog, Hibi, Zheng [24] ?

Very well-covered graphs Jayanthan, Selvaraja [28] ?

Gap-free and criket-free graphs Barnejee [2] ?

Gap-free and diamond-free graphs Erey [13] ?

Chordal graphs ? Fakhari [15]

Cameron-Walker graphs Barnejee, Beyarslan, Ha [4] Fakhari [16]

Graphs with α(G) = 2 Minh, Vu [34] Hoa, T. Trung [26]

Some bicyclic graphs Gu [21]; Cid-Ruiz et. al. [10] ?

We would like to note that, for general graphs, it is not known whether reg(I (s))
is asymptotically a linear function. On the other hand, by the result of [23], reg(I (s))
is asymptotically quasi-linear, and thus is bounded above by 2s+c for some constant
c depending only onG. Recall that, for a radical homogeneous ideal J of S, the s-th
symbolic powers of J , denoted by J (s) consists of polynomials vanishing at zeros
of J of order at least s. The difficulty in understanding the regularity of I (s) partly
comes from the fact that explicit description of the minimal generators of I (s) is
only available in very few classes, e.g. perfect graphs [40], unicyclic graphs [20].

We start our discussion by tabulating classes of graphs where the regularity of
ordinary/symbolic powers are known in the following.

A first natural problem arises

Problem 1.1 Verify Conjecture A for each class of graphs in Table 1.

It is noted that Conjecture A is also true for some the other class of graphs (see
[27]). We further note that except the case of dim�(G) = 1, where �(G) is the
independence complex of G, the computation of reg I s and reg I (s) is based on
analyzing the regularity of certain colon ideals. In this survey, we focus on the use
of degree complexes. We expect that exploiting this technique further would allow
us to expand the table to include more classes of graphs and to fill in the gap for
the symbolic powers. The fact that using degree complexes to study the regularity
of symbolic powers are very potential comes from the remark that a facet of the
degree complex�a(I

(s)) is also a facet of�(G) (see [26, 33]). We then propose the
following.

Problem 1.2 Using degree complexes to compute the regularity of symbolic
powers of edge ideals of graphs listed in Table 1.

To accomplish that, a related interesting problem is

Problem 1.3 Verify that extremal exponents of I (s) (see Definition 2.8) satisfies
|a| ≤ 2s − 2 for each s ≥ 1.
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On the other extreme, even when the regularity of powers of I is unknown, by
studying degree complexes of the ordinary/symbolic powers of edge ideals, together
with Nam, Phong, and Thuy, in [31], we prove Conjecture A for s = 2, 3. From the
proof, we note the following rigidity of regularity of intermediate ideals between I s

and I (s), for s = 2, 3.

Theorem 1.4 Let I be the edge ideal of a simple graph G. For s = 2, 3, let J =
I s + (f1, . . . , ft ) where fi are minimal monomial generators of I (s), then

reg(J ) = reg(I s) = reg(I (s)).

For simplicity of notation, for two monomial ideals I ⊂ J , we define Inter(I, J )
the set of monomial ideals L such that L = I + (f1, . . . , ft ) where fi are among
minimal monomial generators of J . We call this set intermediate ideals between I
and J . Theorem 1.4 says that all intermediate ideals in Inter(I s, I (s)) have the same
regularity for s = 2, 3.

In recent work, we complete Lu’s work [30] to compute the regularity of powers
of squarefree monomial ideals of dimension two and show that the rigidity of
regularity holds for intermediate ideals for all powers.

Theorem 1.5 Let � be an one-dimensional simplicial complex. Let I = I� be
the Stanley-Reisner ideal of �. Then for all s ≥ 1 and all intermediate ideal J in
Inter(I s, I (s)), we have

reg(J ) = reg(I s) = reg(I (s)).

We propose the following:

Conjecture B Let I be the edge ideal of a simple graph G. For all s ≥ 1, let J be
an intermediate ideal in Inter(I s, I (s)). Then

reg(J ) = reg(I s) = reg(I (s)).

Problem 1.6 Establish Conjecture B for classes of graphs listed in Table 1.

For general graphs, computing the regularity of powers is very challenging,
bounding rstab(G) and b(G) is of particular interest. In this note, we discuss recent
development on the following Conjecture of Alilooe-Barnejee-Bayerslan-Ha [3] and
its analog for symbolic powers [17].

Conjecture C Let I be the edge ideal of a simple graph G. Then

(1) reg(I s) ≤ reg(I )+ 2s − 2.
(2) reg(I (s)) ≤ reg(I )+ 2s − 2.

Note that Conjecture C implies all known upper bounds for the regularity of
powers of edge ideals, e.g. [19, 22]. In [31], we establish Conjecture C (1) for s =
2, 3 and obtain the same bound for symbolic powers for s = 2, 3, 4.
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Furthermore, using the results on mixed sums and fiber products, we note that if
Conjecture A/Conjecture C holds for I and J , it also holds for their mixed sum and
fiber product.

Now we explain the organization of the survey. In Sect. 2, we recall some
notation and basic facts about the symbolic powers of a squarefree monomial ideal,
the degree complexes, and Castelnuovo-Mumford regularity. In Sect. 3, we prove
the rigidity property for second and third powers. In Sect. 4, we discuss results
on intermediate ideals for two-dimensional squarefree monomial ideals. In Sect. 5
we discuss bounds on the regularity of ordinary/symbolic powers of edge ideals.
Finally, in Sect. 6, we note the results on mixed sums and fiber products of edge
ideals.

2 Castelnuovo-Mumford Regularity, Symbolic Powers and
Degree Complexes

In this section, we recall some definitions and properties concerning Castelnuovo-
Mumford regularity, the symbolic powers of a squarefree monomial ideal, and the
degree complexes of a monomial ideal. The interested reader is referred to [5, 11,
12, 39] for more details. The material in this section follows closely [31, Section 2].

2.1 Graph Theory

Throughout this paper, G denotes a finite simple graph over the vertex set V (G) =
[n] = {1, 2, . . . , n} and the edge setE(G). For a vertex x ∈ V (G), let the neighbour
of x be the subset NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)}, and set NG[x] =
NG(x) ∪ {x}. For a subset U of the vertices set V (G), NG(U) and NG[U ] are
defined by NG(U) = ∪u∈UNG(u) and NG[U ] = ∪u∈UNG[u]. If G is fixed, we
shall use N(U) or N [U ] for short.

An independent set in G is a set of vertices no two of which are adjacent to
each other. An independent set of maximum size will be referred to as a maximum
independent set of G, and the independence number of G, denoted by α(G), is the
cardinality of a maximum independent set in G.

A subgraph H is called an induced subgraph of G if for any vertices u, v ∈
V (H) ⊆ V (G) then {u, v} ∈ E(H) if and only if {u, v} ∈ E(G). For a subset U of
the vertices set V (G), we shall denote by G[U ] the induced subgraph of G on U ,
and denote by G− U the induced subgraph of G on V (G) \ U .

An induced matching is a subset of the edges that do not share any vertices and
it is an induced subgraph. The induced matching number ofG, denoted by μ(G), is
the largest size of an induced matching in G.
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A m-cycle in G is a sequence of m distinct vertices 1, . . . , m ∈ V (G) such that
{1, 2}, . . . , {m − 1,m}, {m, 1} are edges of G. We shall also use C = 12 . . . m to
denote the m-cycle whose sequence of vertices is 1, . . . , m.

An anticycle over [n] is the complement of a n-cycle for n ≥ 4. It is clear that
the independence number of an anticycle is always two.

2.2 Simplicial Complex

Let � be a simplicial complex on [n] = {1, . . . , n} that is a collection of subsets of
[n] closed under taking subsets. We put dimF = |F |−1, where |F | is the cardinality
of F . The dimension of � is dim� = max{dimF | F ∈ �}. It is clear that � can
be uniquely determined by the set of its maximal elements under inclusion, called
by facets, which is denoted by F(�).

A simplicial complex� is called a cone over x ∈ [n] if x ∈ B for any B ∈ F(�).
If � is a cone, then it is acyclic (i.e., has vanishing reduced homology).

For a face F ∈ �, the link of F and the star of F in � are the subsimplicial
complexes of � defined by

lk� F = {G ∈ � | F ∪G ∈ �,F ∩G = ∅} and st� F = {G ∈ � | F ∪G ∈ �}.

2.3 Stanley-Reisner Correspondence

Let S = K[x1, . . . , xn]. We now recall the Stanley-Reisner correspondence which
corresponds a squarefree monomial ideal of S and a simplicial complex � on [n].
For each subset F of [n], let xF =∏

i∈F xi be a squarefree monomial in S.

Definition 2.1 For a squarefree monomial ideal I , the Stanley-Reisner complex of
I is defined by

�(I) = {F ⊂ [n] | xF /∈ I }.

For a simplicial complex �, the Stanley-Reisner ideal of � is defined by

I� = (xF | F /∈ �).

The Stanley-Reisner ring of� is the quotient by the Stanley-Reisner ideal,K[�] =
S/I�.
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2.4 Castelnuovo-Mumford Regularity

Let m = (x1, . . . , xn) be the maximal homogeneous ideal of S = K[x1, . . . , xn] a
polynomial ring over a field K . For a finitely generated graded S-module L, let

ai(L) =
{

max{j ∈ Z | Him(L)j �= 0} if Him(L) �= 0

−∞ otherwise,

where Him(L) denotes the i-th local cohomology module of L with respect to m.
Then, the Castelnuovo-Mumford regularity (or regularity for short) of L is defined
to be

reg(L) = max{ai(L)+ i | i = 0, . . . , dimL}.

The regularity of L can also be defined via the minimal graded free resolution.
Assume that the minimal graded free resolution of L is

0←− L←− F0 ←− F1 ←− · · · ←− Fp ←− 0.

Let ti (L) be the maximal degree of graded generators of Fi . Then,

reg(L) = max{ti (L)− i | i = 0, . . . , p}.

From the minimal graded free resolution of S/J , we obtain reg(J ) = reg(S/J )+
1 for a non-zero and proper homogeneous ideal J of S.

2.5 Symbolic Powers

Let I be a non-zero and proper homogeneous ideal of S. Let {P1, . . . , Pr } be the
set of the minimal prime ideals of I . Given a positive integer s, the s-th symbolic
power of I is defined by

I (s) =
r⋂

i=1

I sSPi ∩ S.

For a monomial f in S, we denote ∂∗(f )
∂∗(xa)

the ∗-partial derivative of f with respect
to xa, which is derivative without coefficients. In general, ∂f/∂xa = c∂∗(f )/∂∗(xa)

for some constant c. We define

I [s] = (f ∈ S | ∂
∗f
∂∗xa ∈ I, for all xa with |a| ≤ s − 1),
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the s-th ∗-differential power of I . When I is a squarefree monomial ideal, the
symbolic powers of I is equal to the ∗-differential powers of I .

Lemma 2.2 Let I be a squarefree monomial ideal. Then I (s) = I [s].
For a monomial f in S, we denote Supp(f ), the support of f , the set of all

indices i ∈ [n] such that xi |f . For an exponent a ∈ Z
n, we denote Supp(a) = {i ∈

[n] | ai �= 0}, the support of a. For any subset V ⊂ [n], we denote

IV = (f | f is a monomial which belongs to I and Supp(f ) ⊆ V )

be the restriction of I on V . We have

Corollary 2.3 Let I be a squarefree monomial ideal and f be a monomial in S.
Denote V = Supp(f ). Then, f ∈ I (s) if and only if f ∈ I (s)V .

As a consequence of Corollary 2.3, we deduce a generalization of [20, Corollary
4.5] for squarefree monomial ideals.

Corollary 2.4 Let I be a squarefree monomial ideal in S. Let V ⊆ [n], and IV be
the restriction of I to V . Then for all s ≥ 1,

reg(I (s)V ) ≤ reg(I (s)).

Proof By Corollary 2.3, I (s)V is the restriction of I (s) to V . Let {t, . . . , n} = [n] \
V . Then, I (s)V + (xt , . . . , xn) = I (s) + (xt , . . . , xn). The conclusion follows from

Lemma 2.11 and the fact that xt , . . . , xn is a regular sequence with respect to S/I (s)V .
��

2.6 Edge Ideals and Their Symbolic Powers

Let G be a simple graph over the vertex set V (G) = [n] = {1, 2, . . . , n}. The edge
ideal of G is defined to be

I (G) = (xixj | {i, j} ∈ E(G)) ⊆ S.

For simplicity, we often write i ∈ G (resp. ij ∈ G) instead of i ∈ V (G) (resp.
{i, j} ∈ E(G)).

It is noted that the Krull dimension dim(S/I) = α(G).
A clique of size t in G is an induced subgraph of G which is a complete graph

over t-vertices. We also called a clique of size 3 a triangle.
Let J1(G) be the ideal generated by all squarefree monomials xixj xr where

{i, j, r} forms a triangle in G. Let J2(G) be the ideal generated by all squarefree
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monomials xixj xrxs where {i, j, r, s} forms a clique of size 4 inG and all squarefree
monomials xC where C is a 5-cycle of G.

We have the following expansion formula of the second and third symbolic
powers of an edge ideal. Note that the first formula is [40, Corollary 3.12]. And,
the second formula appeared in [31, Theorem 2.7].

Theorem 2.5 Let I be the edge ideal of a simple graph G. Then

I (2) = I 2 + J1(G).

Theorem 2.6 Let I be the edge ideal of a simple graph G. Then

I (3) = I 3 + IJ1(G)+ J2(G).

2.7 Degree Complexes

For a monomial ideal I in S, Takayama in [41] found a combinatorial formula for
dimK Him(S/I)a for all a ∈ Z

n in terms of certain simplicial complexes which are
called degree complexes. For every a = (a1, . . . , an) ∈ Z

n we set Ga = {i | ai <
0} and write xa = 'nj=1x

aj
j . Thus, Ga = ∅ whenever a ∈ N

n. The degree complex
�a(I ) is the simplicial complex whose faces are F \Ga, where Ga ⊆ F ⊆ [n], so
that for every minimal generator xb of I there exists an index i �∈ F with ai < bi .
It is noted that �a(I ) may be either the empty set or {∅} and its vertex set may be
a proper subset of [n]. Moreover, the degree complexes can be computed by using
tools from linear programming (see [32]). The next lemma is useful to compute the
regularity of a monomial ideal in terms of its degree complexes.

Lemma 2.7 Let I be a monomial ideal in S. Then

reg(S/I) = max{|a| + i | a ∈ N
n, i ≥ 0, H̃i−1(lk�a(I ) F ;K) �= 0

for some F ∈ �a(I ) with F ∩ Supp a = ∅}.

In particular, if I = I� is the Stanley-Reisner ideal of a simplicial complex � then
reg(K[�]) = max{i | i ≥ 0, H̃i−1(lk� F ;K) �= 0 for some F ∈ �}.
Remark Let I be a monomial ideal in S and a vector a ∈ N

n. In the proof of
Theorem 1 in [41], he showed that if there exists j ∈ [n] such that aj ≥ ρj =
max{degxj (u) | u is a minimal monomial generator of I } then�a(I ) is either a cone
over {j} or the void complex. Thus, we only consider some vectors a which belongs
to the finite set

�(I) = {a ∈ N
n | aj < ρj for all j = 1, . . . , n}.
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Definition 2.8 Let I be a monomial ideal in S. A pair (a, i) ∈ N
n × N is called an

extremal exponent of the ideal I , if reg(S/I) = |a| + i as in Lemma 2.7.

It is clear that if (a, i) ∈ N
n × N is an extremal exponent of I then xa /∈ I and

�a(I ) is not a cone over t with t ∈ Supp a. From the definition, it is easy to see the
following:

Lemma 2.9 Let I, J be proper monomial ideals of S. Let (a, i) be an extremal
exponent of I . If �a(I ) = �a(J ), then reg(I ) ≤ reg(J ). In particular, if J ⊆ I and
�a(I ) = �a(J ) for all exponent a ∈ N

n such that xa /∈ I then reg(I ) ≤ reg(J ).

Lemma 2.10 Let I be a monomial ideal in S and a ∈ N
n. Then

I�a(I ) =
√
I : xa.

In particular, xa ∈ I if and only if �a(I ) is the void complex.

We first deduce the following inequality on the regularity of restriction of a
monomial ideal.

Lemma 2.11 Let I be a monomial ideal and xj is a variable. Then

reg(I, xj ) ≤ reg I.

Proof Let (a, i) be an extremal exponent of (I, xj ). Then xj � xa (i.e. j /∈ Supp(a)).
It is noted that

√
(I, xj ) : xa = √I : xa + (xj ).

In other words, �a(I, xj ) is the restriction of �a(I ) to [n] \ {j}. Let F be a face of
�a(I ) such that H̃i−1(lk�a(I,xj ) F ) �= 0. Denote � = lk�a(I ) F , � = lk�a(I,xj ) F .
We have

� = � ∪ st�{j} and lk�{j} = � ∩ st�{j}.

The conclusion follows by looking at the Mayer-Vietoris sequence as follows

· · · −→ H̃i−1(lk�{j}) −→ H̃i−1(�)⊕ H̃i(st�{j}) −→ H̃i−1(�) −→ · · ·

It is noted that st�{j} = lk�{j} ∗ {j} is a cone over j . Therefore, H̃r (st�{j}) = 0
for all r . From this sequence, if the middle term is non-zero then either the term on
the left or the term on the right is non-zero. This completes our lemma. ��
Remark As in the proof of [6] (also see [35]), we may use the upper Koszul
complexes to deduce inequalities on Betti numbers.

The following lemma is essential to using the induction method in studying the
regularity of a monomial ideal [31, Lemma 2.14].
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Lemma 2.12 Let I be a monomial ideal and the pair (a, i) ∈ N
n×N be its extremal

exponent. If x is a variable that appears in
√
I : xa and x /∈ Supp a, then

reg(I ) = reg(I, x).

Since we shall deal with radical ideals of the colon ideals of monomial ideals,
the following simple observation will be useful later on.

Lemma 2.13 Let I be a monomial ideal in S generated by the monomials
f1, . . . , fs and a ∈ N

n. Then
√
I : xa is generated by

√
f1/ gcd(f1, xa),

. . . ,
√
fs/ gcd(fs, xa), where

√
xb =∏

i∈Supp b xi for each b ∈ N
n.

3 Intermediate Ideals for Second and Third Powers

Let G be a simple graph with vertex set [n] and I its edge ideal. In this section we
prove that reg(J ) = reg(I s) for all monomial ideal J ∈ Inter(I s, I (s)) for s = 2, 3
by using the same method in [31] with some more detailed statements.

Firstly, for s = 2, we have the following analog of [31, Lemma 3.1].

Lemma 3.1 Let J ⊆ L be intermediate monomial ideals in Inter(I 2, I (2)). Let
a ∈ N

n be such that xa /∈ L. Then

(1)
√
L : xa = √J : xa.

(2) reg(L) ≤ reg(J ).

Proof Part (2) follows from Part (1) and Lemma 2.9. Thus, we shall now prove Part
(1) which follows the same line as the proof of [31, Lemma 3.1].

Since L ⊇ J ⊇ I 2, we have
√
L : xa ⊇ √J : xa ⊇ √I 2 : xa. By Lemma 2.13,

it suffices to prove that f = √
g/ gcd(g, xa) ∈ √J : xa for a minimal monomial

generator g of L. By Theorem 2.5, we may assume that g = x1x2x3 where 123 is a
triangle in G. Since xa /∈ L, f �= 1. There are two cases:
Case 1: deg f ≥ 2. This implies that f ∈ I ⊆ √J : xa.
Case 2: deg f = 1. We may assume that f = x1. Thus x2x3 | xa. Since x2

1x2x3 ∈
I 2, f ∈ √J : xa as required. ��

Consequently, we have:

Theorem 3.2 Let J ∈ Inter(I 2, I (2)) be an intermediate ideal lying between I 2

and I (2). Then

reg(J ) = reg(I 2) = reg(I (2)).

Proof By Lemma 3.1, we have

reg(I (2)) ≤ reg(J ) ≤ reg(I 2).
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The conclusion follows from [31, Theorem 1.1] as reg(I (2)) = reg(I 2). ��
For s = 3, we have the following analog of [31, Lemma 4.1].

Lemma 3.3 Let J ⊆ L be intermediate monomial ideals lying between I 3 and
I (3). Let a ∈ N

n be such that xa /∈ L. Assume that
√
L : xa �= √J : xa. Let f be a

minimal squarefree monomial generator
√
L : xa such that f /∈ √J : xa. Then, we

have:

(1) There exists a triangle 123 in G such that x1x2x3 | xa and deg(f ) = 1 with
f � xa.

(2) reg(L) ≤ reg(J ).

Proof The proof is the same as the proof of [31, Lemma 4.1] and [31, Theorem 4.3].
We include the argument here for completeness. By Theorem 2.6 and Lemma 2.13,
there are three cases as follows.
Case 1: There exists a clique of size 4, C = 1234, of G such that

f = √
x1x2x3x4/ gcd(x1x2x3x4, xa).

If deg f ≥ 2 then Supp(f ) must contain at least two vertices i, j among Supp(C).
In particular, f ∈ I ⊆ √I 3 : xa, which is a contradiction. If deg f = 1, say
f = x1. This implies that x2x3x4 | xa. But, f 3xa ∈ I 3 by x3

1(x2x3x4) =
(x1x2)(x1x3)(x1x4) ∈ I 3, which is a contradiction.
Case 2: There exists a 5-cycle, C = 12345, of G such that

f = √
x1x2x3x4x5/ gcd(x1x2x3x4x5, xa).

Since f /∈ √I 3 : xa, f /∈ I . Furthermore, f | x1x2x3x4x5, we have three subcases.
Subcase 2.1: deg f = 3. We may assume that f = x1x3x5 then x2x4 | xa. In this

case f 2x2x4 ∈ I 3, which is a contradiction.
Subcase 2.2: deg f = 2. We may assume that f = x1x3 then x2x4x5 | xa. In this

case f 2x2x4x5 ∈ I 3, which is a contradiction.
Subcase 2.3: deg f = 1. We may assume that f = x1 then x2x3x4x5 | xa. In this

case f 2x2x3x4x5 ∈ I 3, which is a contradiction.
Case 3: There exists an edge uv and a triangle 123 in G such that

f = √
xuxvx1x2x3/ gcd(xuxvx1x2x3, xa),

note that u, v might belong to {1, 2, 3}. In particular, Supp(f ) ⊆ {u, v} ∪ {1, 2, 3}.
Since f /∈ √I 3 : xa, f /∈ I . In particular, |Supp(f ) ∩ {u, v}| ≤ 1 and |Supp(f ) ∩
{1, 2, 3}| ≤ 1. There are two subcases.

Subcase 3.1: deg f ≥ 2. Since f is squarefree, |Supp(f ) ∩ {u, v}| = 1 and
|Supp(f )∩ {1, 2, 3}| = 1. We may assume that f = x1xu. In particular xvx2x3 is a
divisor of xa. In this case, f 2xa ∈ I 3 by x2

ux
2
1xvx2x3 = xu(xuxv)(x1x2)(x1x3) ∈ I 3,

which is a contradiction.
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Subcase 3.2: deg f = 1. We first prove that Supp(f ) /∈ {1, 2, 3}. Assume by
contradiction that Supp(f ) ∈ {1, 2, 3}. We may assume that f = x1.

(1) If x1 ∈ {xu, xv}. Assume x1 = xu. It implies that xvx2x3 is a divisor of xa. By
(x1xv)(x1x2)(x1x3) ∈ I 3, we have x1 ∈

√
I 3 : xa.

(2) If x1 /∈ {xu, xv}. Then xuxvx2x3 is a divisor of xa. Since x2
1(xuxvx2x3) =

(xuxv)(x1x2)(x1x3) ∈ I 3, x1 ∈
√
I 3 : xa.

This is a contradiction. Thus Supp(f ) /∈ {1, 2, 3}. Therefore, x1x2x3 | xa.
Furthermore, Supp(f ) ∈ {u, v}. We may assume that f = xu. If u ∈ Supp(a),
then x2

u | xuxvx1x2x3. Thus u ∈ {1, 2, 3}, which is a contradiction. It implies the
statement of part (1).

Let (a, i) be an extremal exponent of L. By Lemma 2.9, we may assume that
�a(L) �= �a(J ). By part (1), there exists a variable xu such that xu ∈

√
L : xa,

and u /∈ Supp a. By Lemma 2.12, regL = reg(L, xu). Let I0, J1, L1, I1 be the
restriction of I 3, J, L, I (3) toW = [n]\{u}. Then I0 ⊆ J1 ⊆ L1 ⊆ I1. In fact, I0 =
I 3
W ; I1 = I (3)W and J1 ⊆ L1 are intermediate monomial ideals lying between I 3

W

and I (3)W . By induction, regL1 ≤ reg J1. Since xu is a regular element with respect
to S/L1, S/J1, this implies that regL = reg(L, xu) = reg(L1, xu) = regL1 ≤
reg J1 = reg(J1, x) ≤ reg J . This is our statement. ��
Consequently, we have:

Theorem 3.4 Let J ∈ Inter(I 3, I (3)) be an intermediate ideal lying between I 3

and I (3). Then

reg(J ) = reg(I 3) = reg(I (3)).

Proof By Lemma 3.3, we have

reg(I (3)) ≤ reg(J ) ≤ reg(I 3).

The conclusion follows from [31, Theorem 1.1] as reg(I (3)) = reg(I 3). ��

4 Intermediate Ideals for Edge Ideals of Small Dimensions

In this section, we provide examples where we can verify Conjecture B. The first
class where we can show the rigidity for all powers is the class of one-dimensional
simplicial complexes.

Theorem 4.1 ([34, Theorem 1.1]) Let � be an one-dimensional simplicial com-
plex. For any s ≥ 1, let J ∈ Inter(I s, I (s)) be an intermediate ideal lying between
I s and I (s). Then

reg(J ) = reg(I s) = reg(I (s)).
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There are two main steps in proving Theorem 4.1. The first one is bounding the
degrees of extremal exponents of the regular powers, the second one is the reduction
of the computation of the regularity of intermediate ideals to that of the regular
powers. The arguments can be extended to established Conjecture B for some small
two-dimensional simplicial complexes. In this survey, we give two simple cases
where we can reduce the computation of the intermediate ideals to the regular
powers.

Theorem 4.2 Let G be a simple graph with dim�(G) = 1 and degG(i) ≥ n − 3
for all i ∈ V (G) = [n] and I its edge ideal. Let s ≥ 2 be an integer and J an
intermediate ideal lying between I s and I (s). Then,

reg(J ) ≤ reg(I s).

Before proving Theorem 4.2, we introduce two lemmas (first appeared in [34])
that will be useful later on.

Lemma 4.3 Let J ∈ Inter(I s, I (s)) be an intermediate ideal lying between I s and
I (s). Let a ∈ N

n be an exponent such that xa /∈ J . Assume that f ∈ √J : xa and
that f /∈ I . Let F be a facet of �(I) that contains Supp(f ). Then

∑
i /∈F ai ≥ s.

Proof Assume by contradiction that
∑
i /∈F ai ≤ s − 1. Let b ∈ N

n be an exponent
such that bi = 0 for all i ∈ F , bi = ai for all i /∈ F . Then |b| ≤ s− 1. Furthermore,

Supp(
∂∗(f uxa)

∂∗(xb)
) ⊆ F

implying that f uxa /∈ I (s) for all u ≥ 1 by Lemma 2.2, which is a contradiction to
the fact that f ∈ √J : xa ⊆ √I (s) : xa. ��
Lemma 4.4 Let f ∈ S be a monomial and a ∈ N

n be an exponent such that∑
i∈N(Supp(f )) ai ≥ s. Then f ∈ √I s : xa.

Proof We have f |a|xa is divisible for

∏

i∈N(Supp(f )), ji∈Supp(f ) such that iji∈G
(xixji )

ai ∈ I s .

Thus f ∈ √I s : xa, as required. ��
Proof of Theorem 4.2 Let xa /∈ J be a monomial. Assume that

√
J : xa �=√

I s : xa. Let g be a minimal generator of
√
J : xa such that g /∈ √I s : xa. Since

α(G) = 2 and I ⊆ √I s : xa , we deduce that g /∈ I and thus deg(g) ≤ 2.
If deg(g) = 2, then Supp(g) is a facet of�(G). By Lemma 4.3,

∑
i /∈Supp(g) ai ≥

s. Furthermore, α(G) = 2 implies thatN(Supp(g)) = [n]\Supp(g). By Lemma 4.4,
g ∈ √I s : xa, which is a contradiction.
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If deg(g) = 1, write g = x1. By degG(1) ≥ n − 3, there are at most two non-
neighbors of 1. There are two cases. If x1 has less than two non-neighbors, then by
Lemma 4.3,

∑
i /∈NG[1] ≥ s. By Lemma 4.4, it follows that x1 ∈

√
I s : xa which is

a contradiction. Thus, we may assume that there are two non-neighbors of 1 called
2, 3. Since α(G) = 2, x2x3 ∈ I . By Lemma 4.3, a2+a4+· · ·+an ≥ s and a3+a4+
· · ·+an ≥ s. By Lemma 4.4, x|a|1 x

a ∈ I t where t = min(a2, a3)+a4+· · ·+an ≥ s,
which is a contradiction.

Therefore,
√
J : xa = √I s : xa. By Lemma 2.10, �a(I

s) = �a(J ) for any
xa /∈ J . Using Lemma 2.9, we have reg(J ) ≤ reg(I s). ��
Corollary 4.5 Let G be an anticycle over [n] (n ≥ 4) and I its edge ideal. Let
s ≥ 2 be an integer and J be an intermediate ideal lying between I s and I (s). Then,

reg(J ) = reg(I s) = reg(I (s)).

Proof If n = 4 then I is a complete intersection. Then, I s = I (s) = J . In this case,
we have

reg J = reg I s = 2s + 1

for all s ≥ 1.
If n ≥ 5 then G is a gap-free and criket-free (the definition as in [2]). So,

reg(I s) = 2s for any s ≥ 2 by Banerjee [2, Theorem 6.17]. Moreover,G satisfies the
condition of Theorem 4.2, we deduce that reg J ≤ reg I s = 2s. Since reg J ≥ 2s,
we have the required conclusion. ��

We now give an example of two-dimensional simplicial complexes.

Theorem 4.6 Let n = 6. Assume that

G = {1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}, {1, 6}, {3, 6}

(see the Fig. 1) and I its edge ideal. For each s ≥ 2, let J ∈ Inter(I s, I (s)) be an
intermediate ideal. Then, reg J = 2s.

Fig. 1 The graph G

2

34

5

6

1
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Proof It suffices to show that reg J ≤ 2s. Let (a, i) ∈ N
6 × N be an extremal

exponent of the ideal J . Note that

�(I) = {{2, 5, 6}, {2, 4, 6}, {1, 3}, {1, 4}, {3, 5}}.

We shall reduce the computation of the regularity of J to the regularity of
regular power I s . To do so, we shall show that �a(J ) = �a(I

s). Write a =
(a1, a2, . . . , a6). Assume by contradiction that �a(J ) �= �a(I

s). In other words,
there exists f ∈ √J : xa but f /∈ √I s : xa.

Since J ⊆ I (s), if f ∈ √J : xa, then f u · xa ∈ I (s) for some u large enough.
Since I ⊆ √I s : xa, f /∈ I . In particular Supp(f ) is an independent set.

By Lemmas 4.3, 4.4, with argument similar to that of the proof of Theorem 4.2,
we may assume that deg(f ) = 1.

By symmetry, x1 plays the same role as x3, x4 plays the same role as x5, there
are four cases:

Case 1: f = x1. By Lemma 4.3, a2 + a5 + a6 + min(a3, a4) ≥ s. As 2, 5, 6 ∈
NG(1), by Lemma 4.4, x|a|1 x

a belongs to I t ⊆ I s where t = a2 + a5 + a6 +
min(a3, a4), which is a contradiction.

Case 2: f = x2. By Lemma 4.3, a1 + a3 + min(a4, a5) ≥ s. Similarly, this
implies x2 ∈

√
I s : xa.

Case 3: f = x6. By Lemma 4.3, a1 + a3 + min(a4, a5) ≥ s. Similarly, this
implies x6 ∈

√
I s : xa.

Case 4: f = x4. By Lemma 4.3, a3+ a5+ a1 ≥ s and a2+ a3+ a5+ a6 ≥ s. If
a3 + a5 ≥ s, then x4 ∈

√
I s : xa. Assume that a3 + a5 = u < s. Then a1 ≥ s − u

and a2 + a6 ≥ s − u. This implies that xa1
1 x

a2
2 x

a6
6 ∈ I s−u. Thus x4 ∈

√
I s : xa.

By Lemma 2.9, reg J ≤ reg I s . SinceG is gap-free and cricket-free, by Banerjee
[2, Theorem 6.17], reg(I s) = 2s for any s ≥ 2. Thus reg J = 2s, which completes
our argument. ��
Remark In general, even for the case dim�(G) = 1, it is not true that �a(J ) =
�a(I

s) for all xa /∈ J . We refer to [34] for more details.

5 Bounds on Regularity of Powers/Symbolic Powers

In this section, we discuss bounds on the regularity of powers/symbolic powers of
edge ideals, paying attention to the recent development on the following Conjecture
of Alilooe-Barnejee-Bayerslan-Ha [3] and its analog for symbolic powers:

Conjecture C Let I be the edge ideal of a simple graph G. Then, for all s ≥ 1,

(1) reg(I s) ≤ reg(I )+ 2s − 2;
(2) reg(I (s)) ≤ reg(I )+ 2s − 2.
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In [7], Barnejee and Nevo establish Conjecture C for bipartite graphs, and Part
(1) for s = 2 for arbitrary graphs.

In [17], Fakhari study bounds on the regularity of symbolic powers of edge ideals,
and prove the following

Theorem 5.1 Let I be the edge ideal of a simple graph G. Then, for any s ≥ 2,

reg(I (s)) ≤ max{reg(I (s) + I s−1), reg(I )+ 2s − 2}.

Together with the result of Barnejee and Nevo, he deduced that Conjecture C (2)
for holds for s = 2, 3 for arbitrary graphs. This work also suggests that studying
regularity of regular powers helps in understanding regularity of symbolic powers.

In [31], by combining [31, Theorem 1.1] and Theorem 5.1 we prove that
Conjecture C (1) holds for s = 2, 3 and Conjecture C (2) holds for s = 2, 3, 4.

Theorem 5.2 Let I be the edge ideal of a simple graph G. Then

reg(I 3) ≤ 4+ reg(I ).

Theorem 5.3 Let I be the edge ideal of a simple graph G. Then

reg(I (4)) ≤ 6+ reg(I ).

For co-chordal graphs, we can proceed a bit further and extend the previous work
of Fakhari.

Theorem 5.4 LetG be a co-chordal graph and I its edge ideal. Then reg I (5) = 10.

Proof By Theorem 5.1, it suffices to proof that reg J ≤ 10 where J = I (5) + I 4.
By the result of Sullivant [40, Theorem 3.10], as co-chordal graphs are perfect,

J = I 4 + I (J1J1 + J3)+ J1J2,

where Ji is generated by cliques of sizes i + 2. We shall prove by induction on the
number of variables that reg J ≤ 8. Let (a, i) be an extremal exponent of J . By
Lemma 2.9 and the fact that reg I 4 = 8, we may assume that �a(J ) �= �a(I

4).
Let f ∈ √J : xa be such that f /∈ √I 4 : xa. Since I ⊆ √I 4 : xa, f /∈ I . By
Lemma 2.13, with argument similar to that of Lemma 3.3, we deduce that deg f = 1
and that f � xa. By Lemma 2.12, reg J = reg(J, f ) ≤ 8 by induction. ��
Remark Modifying [31, Example 4.2], we have an example of a co-chordal graph
and a monomial xa /∈ I (s) such that

√
I (s) : xa �= √I s : xa + (variables).

Indeed, let
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I = (x1x2, x2x3, x3x1, x1x4, x4x5, x2x6, x6x7, x1x6, x2x4, x4x6) and xa = x1x2x3x4x6,

then x5x7 is a minimal generator of
√
I (4) : xa but does not belong to

√
I 4 : xa.

Thus, verifying Conjecture A for co-chordal graphs requires more work.

Besides, there are a few other bounds given for the regularity of ordinary powers
of edge ideals. One expects that these bounds hold for symbolic powers. We single
out the bound given by Herzog and Hibi [22] to propose the following.

Problem 5.5 Let I be the edge ideal of a simple graph G. Then, for any s ≥ 1,

reg(I (s)) ≤ 2s + c,

where c is the dimension of the stable complex of G.

As in [22], to settle Problem 5.5 it suffices to establish Conjecture A for very-well
covered graphs.

6 Mixed Sum and Fiber Product

We shall provide the result on mixed sums and fiber products. From this, we shall
reduce Conjectures A and C to the case G is a connected graph.

Theorem 6.1 Let P = I + J be the mixed sum of two edge ideals I and J . The
following statements hold

(1) If Conjecture A holds for I and J then so is P .
(2) If Conjecture C holds for I and J then so is P .

Proof By Nguyen and Vu [36, Theorem 1.1] and Ha et al. [25, Theorem 1.1], we
have

regP s = max{reg I i + reg J s−i + 1, reg I i + reg J s−i+1}
regP (s) = max{reg I (i) + reg J (s−i) + 1, reg I (i) + reg J (s−i+1)}.

The conclusions follow. ��
A similar result holds for fiber products. The regularity of symbolic powers of

fiber products has been computed for squarefree monomial ideals by O’Rourke [38]
and for arbitrary radical ideals by Fakhari and Nguyen [18]. Precisely, we have

Lemma 6.2 Let F = I + J + mn be the fiber product of squarefree monomial
ideals I and J . Then

reg(F (s)) = max
i∈[1,s]{2s, reg(I (i))+ s − i, reg(J (i))+ s − i}.
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Proof The main idea in the work of [18] is that we have

F (s) = (I, n)(s) ∩ (J,m)(s).

We give a simple argument for equality in the case of squarefree monomial ideals
as below. Since F = (I, n)∩ (J,m), the left hand side is contained in the right hand
side.

Conversely, let f ∈ (I, n)(s)∩ (J,m)(s) be a monomial. Then for any xa we have
∂f/∂xa ∈ (I, n) ∩ (J,m) = F . Thus f ∈ F (s) as required.

Thus, we see that

reg(F (s)) = max{reg((I, n)(s)), reg((J,m)(s)), reg((I, n)(s) + (J,m)(s))+ 1}.

Note that

(I, n)(s) + (J,m)(s) = ms + ns ,

which has regularity 2s − 1. The conclusion follows from [25, Theorem 1.1]. ��
Theorem 6.3 Let F = I + J + mn be the fiber product of two edge ideals I and
J . The following statements hold

(1) If Conjecture A holds for I and J then so is F .
(2) If Conjecture C holds for I and J then so is F .

Proof Follows from Theorem 6.2 and [37, Theorem 5.1]. ��
Remark It is interesting if a similar statement holds for Conjecture B. It is not clear
to us to draw any conclusions from what we knew about mixed sums and fiber
products.
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1 Introduction

Throughout this paper, the term “ring” is short for “commutative noetherian ring
with identity.”

In algebraic topology, it is incredibly useful to know that the singular cohomol-
ogy of a manifold has a natural algebra structure. Similarly, in commutative algebra
the fact that certain Ext and Tor modules carry algebra structures is a powerful
tool. Both of these notions arise by considering differential graded (DG) algebra
structures on certain chain complexes. In short, a DG algebra is a chain complex
that is also a graded commutative ring, where the differential and multiplication are
compatible; see Sect. 2 for definitions and background material.

Avramov, Buchsbaum, Eisenbud, Foxby, Halperin, Kustin, and others pioneered
the use of DG algebra techniques in homological commutative algebra. The
idea is to prove results about rings by broadening one’s context to include vast
generalizations. A deep, rich sample of the theory and applications can be found
in Avramov’s lecture notes [14].
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The current paper is a modest follow-up to op. cit., documenting a few appli-
cations that have appeared in the twenty-some years since op. cit. appeared. To
be clear, we focus on applications: results whose statements make no reference to
DG algebras but whose proofs use them extensively. Furthermore, this survey is
by no means comprehensive. We focus on small number of some of our favorite
applications, limited by constraints of time and space.

Most of the sections below begin by describing an application with little
reference to DG algebras. This is followed by a certain amount of DG background
material, but generally only enough to give a taste for the material. The sections
conclude with an indication of how the DG technology helps to obtain the
application.

As we noted above, the work of David Eisenbud is foundational in this area,
especially the paper [39] with Buchsbaum; see 2.6. Those of us working in this area
owe him a huge debt of gratitude for this and other seminal work in the field.

2 Growth of Bass and Betti Numbers

In this section, let (R,m, k) be a local ring with d := depthR. The embedding
codepth of R, denoted c := ecodepthR, is defined to be e − d, where e := edimR
is the minimal number of generators of m. Cohen’s Structure Theorem states that the
m-adic completion R̂ admits a minimal Cohen presentation, i.e., there is a complete
regular local ring (P, p, k) and an ideal I ⊆ p2 such that R̂ ∼= P/I . Note that the
projective dimension pdP (R̂), i.e., the length of the minimal free resolution of R̂
over P , is equal to ecodepthR.

Fundamental invariants of a finitely generated R-module M are the Bass and
Betti numbers. These numerically encode structural information about the module
M , e.g., the minimal number of generators and relations and higher degree
versions of these. A hot topic of research in commutative algebra is the growth
of these sequences. In this section, we describe some recent progress by Avramov
on this subject including how he uses DG techniques to get information about
these invariants. Along the way, we also present foundational material about the
DG context.

Bass Numbers, Betti Numbers, and a Question of Huneke
Let M be a finitely generated R-module. For each integer i, the ith Bass number
and the ith Betti number ofM are defined to be, respectively

μiR(M) := rankk (Ext[R]ikM)
βRi (M) := rankk (Ext[R]iMk) = rankk

(
TorRi (M, k)

)
.
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The Bass series and the Poincaré series ofM are the formal power series

IMR (t) :=
∑

i∈Z
μiR(M)t

i PRM(t) :=
∑

i∈Z
βRi (M)t

i . (2.0.1)

In case thatM = R, the Bass numbers and Bass series are denoted μiR and IR(t).
In this section we are concerned with the following unpublished question of

Huneke; see [107]. This question is motivated in part by the fact thatR is Gorenstein
if and only if its Bass numbers are eventually 0.

Question 2.1 Let R be a Cohen-Macaulay local ring. If {μiR} is bounded, mustR be
Gorenstein? If {μiR} is bounded above by a polynomial in i, must R be Gorenstein?
If R is not Gorenstein, must {μiR} grow exponentially?

Very little progress has been made on this question. Christensen, Striuli, and
Veliche [45] conduct a careful analysis of several special cases of this and other
related questions. Other progress comes from Jorgensen and Leuschke [75] and
Borna, Sather-Wagstaff, and Yassemi [33, 107].

In this section, we focus on work of Avramov [16] on this question for non-
Gorenstein rings R with c = ecodepth(R) ≤ 3 which includes the following result.
The proof relies heavily on DG techniques as we explain in the next subsections.
This is a true application of DG tools, as the statement makes no mention of DG
algebras, though they are used extensively in the proof.

Theorem 2.2 ([16, Theorem 4.1]) If c ≤ 3 and R is not Gorenstein, then there is
a real number γR > 1 such that for all i ≥ 1

μd+iR ≥ γRμd+i−1
R (2.2.1)

with two exceptions for i = 2: If I = (wx,wy) or I = (wx,wy, z), where x, y ∈ P
is a regular sequence, w ∈ P , and z ∈ p2 is a P/(wx,wy)-regular element, then
μd+2
R = μd+1

R = 2. If R is Cohen-Macaulay, the inequality (2.2.1) holds for all i.

DG Algebra Resolutions and DG Modules
Let S be a ring. A associative, commutative differential graded S-algebra (DG S-

algebra for short) is a chain complex A = · · · → A2
∂A2−→ A1

∂A1−→ A0 → 0 such that
A* =⊕

i≥0Ai has the structure of a graded commutative S-algebra

• for all a, b ∈ A the equality ab = (−1)|a||b|ba holds, and a2 = 0 if the
homological degree |a| is odd
that satisfies the Leibniz rule

• for all a, b ∈ A we have ∂A(ab) = ∂A(a)b + (−1)|a|a∂Ab, i.e., the assignment
a ⊗ b �→ ab describes a chain map A⊗S A→ A.

The DG S-algebra A is called homologically degreewise noetherian if H0(A) is
noetherian, and each H0(A)-module Hi (A) is finitely generated.
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Examples of homologically degreewise noetherian DG S-algebras include S
itself, considered as a complex concentrated in degree 0, and the Koszul complex
KS(x) over S on a sequence x = x1, . . . , xn in S with the exterior algebra structure.

A morphism of DG S-algebras is a chain map f : A → B such that for all
a, a′ ∈ A we have f (aa′) = f (a)f (a′) and f (1) = 1. A quasiisomorphism of
DG algebras is a morphism that is a quasiisomorphism, i.e., such that the induced
map on homology is an isomorphism in each degree. A DG algebra resolution of

an S-algebra T is a quasiisomorphism F
,−→ T of DG S-algebras such that each Fi

is free over S. Several examples of DG algebra resolutions are given below starting
with 2.4.

In case that (S, n) is a local ring, a DG S-algebra A is called local if it is
homologically degreewise noetherian and H0(A) is a local S-algebra. In this case,

setting n0 to be the preimage of mH0(A) in A0, we let mA = · · ·
∂A2−→ A1

∂A1−→ n0 → 0
be the augmentation ideal of A. By definition it is a subcomplex of A. Moreover, it
is a DG ideal of A meaning that it absorbs multiplication by elements of A. In this
situation, we say that (A,mA,A/mA) is a local DG S-algebra. As an example, if
x ∈ n is a sequence of n elements, then K = KS(x) is a local DG S-algebra with
the augmentation ideal mK = 0→ S → · · · → Sn→ n→ 0 and K/mK ∼= S/n.

2.3 A construction of Tate [113] (see also Avramov [14, Proposition 2.2.8])
guarantees the existence of a DG algebra resolution F of R̂ over P , where each
Fi is finitely generated and free over P and Fi = 0 for all i > pdP (R̂).

Examples of DG algebra resolutions include the following.

2.4 If I is generated by a P -regular sequence (that is, if R is a formal complete
intersection), then the Koszul complex KP (I) on a minimal generating sequence
for I is a DG algebra resolution of R̂ over P .

2.5 If pdP (R̂) = 2, then it follows from the Hilbert-Burch Theorem [51,
Theorem 20.15] that there is an element f ∈ P and a matrix Y of size n× (n− 1)
such that the minimal P -free resolution of R̂ can be chosen with the form

0→ P⊕n−1 Y−→ P⊕n X−→ P → R̂→ 0

with X = f (det(Y1), . . . , (−1)j−1 det(Yj ), . . . , (−1)n−1 det(Yn)
)
, where Yj is the

minor obtained from Y by deleting the j -th row. Herzog [67] describes a DG algebra
structure on this resolution, as follows. Let {a1, . . . , an} be a basis for P⊕n and
{b1, . . . , bn−1} be a basis for P⊕n−1, and set

(ai)
2 = 0

ai · aj = −aj · ai =
n−1∑

t=1

(−1)i+j+t+1 det(Yij,t )f bt for i < j

where Yij,t denotes the minor obtained from Y by deleting rows i, j and column t .
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2.6 Assume pdP (R̂) = 3. Buchsbaum and Eisenbud [39] show that the minimal
free resolution of R̂ over P has the structure of a DG algebra, though the explicit
structure of the resolution is not given.

Let n denote the minimal number of generators for I , and assume that R is
Gorenstein (that is, I is a Gorenstein ideal). Then it is shown in op. cit. that the
minimal free resolution of R̂ over P is of the form

0→ P
Z−→ P⊕n Y−→ P⊕n X−→ P → R̂→ 0 (2.6.1)

for some n× n alternating matrix Y with entries in p and

X =
(

pf(Y1), . . . , (−1)j−1 pf(Yj ), . . . , (−1)n−1 pf(Yn)
)

where Yi denotes the matrix obtained from Y by deleting row i and column i. (Here,
pf is the Pfaffian; see [38] for details.) Also, Z = Hom[P ]XP .

An explicit DG algebra structure on (2.6.1) is given by Avramov [9] as follows.
Let {a1, . . . , an} be a basis for P⊕n in degree 1, let {b1, . . . , bn} be a basis for P⊕n
in degree 2, and let {c} be a basis for P in degree 3. Define

(ai)
2 = 0 ai · bj = bj · ai = δij c

ai · aj = −aj · ai =
n∑

t=1

(−1)i+j+t ρij t pf(Yij t )bt for i < j

where Yijt is the matrix obtained from Y by deleting rows i, j, t and columns i, j, t ,
and δij is the Kronecker delta, and

ρijt =
{
−1 i < t < j

1 otherwise.

There are many examples of DG algebra resolutions in the monomial situation.
We summarize a few here very briefly and point the reader to references for more
details. Let S = k[x1, . . . , xn] be a polynomial ring over a field k, and let I be a
monomial ideal in S, i.e., an ideal generated by monomials. A general DG algebra
resolution of S/I is given by Taylor [115] and Bayer, Peeva, and Sturmfels [32], but
it is not minimal in general. In the following cases the minimal free resolution of
S/I over S has a DG algebra structure: stable ideals (see Eliahou and Kervaire [52]
or Peeva [100]), matroidal ideals (see Sköldberg [111]), and ideals of the form I =
f J , where J is a monomial ideal in S and f is the least common multiple of the
generators of J (see Katthän [78]).

2.7 It is important to note for 2.3 that the minimal free resolution of R̂ over P may
not admit a DG algebra structure in general. Examples for this are given by Khinich
(as documented in [8]), Avramov [10], and Katthän [78]. The example of Katthän is
generic and disproves a claim by Bayer, Peeva, and Sturmfels [32].
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2.8 In contrast to 2.7, if R satisfies one of the following conditions, then the
minimal free resolution of R̂ over P admits a DG algebra structure:

(a) c ≤ 3, by 2.5–2.6;
(b) c = 4 and R is Gorenstein, by Kustin and Miller [79, 82];
(c) c = 4, R is Cohen-Macaulay, almost complete intersection, and 1/2 ∈ R, by

Kustin [81];
(d) R is complete intersection, by 2.4;
(e) R is one link from a complete intersection, by Avramov, Kustin, and Miller [31];
(f) R is two links from a complete intersection and is Gorenstein, by Kustin and

Miller [83].

The translation to DG algebras uses the following DG analogue of modules.

2.9 Let B be a DG S-algebra. A DG B-module is an S-complex M such that
M* = ⊕

i Mi is a graded A*-module satisfying the Leibniz rule. For the case of
S considered as a DG S-algebra, the DG S-modules are just the S-complexes. A
DG B-module M is homologically bounded if Hi (M) = 0 for all |i| � 0; it is
homologically finite if

⊕
i Hi (M) is a finitely generated H0(B)-module.

Let M be a DG B-module. The trivial extension B 
M is the DG algebra with
the underlying complex B ⊕M equipped with the product that is given as follows:

(b,m)(b′,m′) := (bb′, bm′ + (−1)|m||b′|b′m).

Avramov’s Machine
Some of our favorite applications of DG techniques use the following tool which
Kustin [80] calls Avramov’s machine.

2.10 Let x be a minimal generating sequence for m, and let y be a minimal
generating sequence for the maximal ideal p. Since P is a regular local ring, the
Koszul complex KP (y) is a minimal free resolution of k over P . Since KP (y) , k,
we obtain the following diagram of DG algebra quasiisomorphisms:

KR(x)
,−→ KR̂(xR̂)

∼=←− KP (y)⊗P R̂ ,←− KP (y)⊗P F ,−→ k ⊗P F =: A.
(2.10.1)

The assumptions on F in 2.3 imply that A is a finite-dimensional DG k-algebra. It
follows that TorP (R̂, k) inherits the structure of a finite-dimensional DG k-algebra;
this is the Tor algebra. If F is minimal, e.g., in any of the cases from 2.8, the algebra
A has zero differential, so A ∼= TorP (R̂, k).

Rationality of Poincaré series, which we discuss next, is an important application
of Avramov’s machine.

2.11 Consider the notation from 2.10. In this paragraph, assume that one of the
conditions (a), (b), (e), or (f) in 2.8 holds. Using the fact that the minimal free



Applications of Differential Graded Algebra Techniques in Commutative Algebra 595

resolution of R̂ over P has a DG algebra structure, Avramov, Kustin, and Miller [31]

give a factorization P
ϕ−→ Q

ψ−→ R̂ of the canonical map P → R̂ such that ϕ is
complete intersection and ψ is Golod (see, e.g., [12] for the definition). Then they
invoke a result of Levin [85] to conclude the following;

(∗) the Poincaré series of every finitely generated R-module is rational with
common denominator.

In case (d) of 2.8 where R is a complete intersection, conclusion (∗) was proved
for PRk (t) by Tate [113] and, in general, by Gulliksen [64] and Avramov [13]. In
case (c) of 2.8, conclusion (∗) was proved by Kustin and Palmer [84].

Growth Rates in Embedding Codepth at Most 3
With these tools in hand, the proof of Theorem 2.2 proceeds in the following steps.
First, consider the following structure result for the Tor algebra.

2.12 Assume that c ≤ 3. Using the notation from 2.10, we know that A is a finite-
dimensional DG algebra with zero differential. In this case, by Avramov et al. [31]
and Weyman [124], the ring R belongs to one of the following classes

Class c A B C D

C(c) ≤ 3 B
∧
k �k

c

S 2 B 
W k

T 3 B 
W C 
�(C/C≥2)
∧
k �k

2

B 3 B 
W C 
�C+
∧
k �k

2

G(r) 3 B 
W C 
 Hom[k]C�3k k 
�kr

H(p, q) 3 B 
W C ⊗k D k 
 (�kp ⊕�2kq) k 
�k

where W is a finitely generated positively graded k-vector space with B+W = 0
and 
 designates the trivial extension from 2.9. The ring R is in class S (that is, A
is of the form k 
W ) if and only if R is Golod; see [61]. If R is in class C(c), then
R is a complete intersection.

The next step in the proof of Theorem 2.2 is to connect the Poincaré and Bass
series of R to analogous series for A:

IR(t) = te · IA(t) PRk (t) = (1+ t)e · PAk (t)

where IA(t) and PAk (t) are the Bass series and the Poncaré series for A which are
defined in the DG setting as in (2.0.1). These equalities are based on work in [9, 23].

The third step in the proof of Theorem 2.2 is to analyze the Poincaré and Bass
series of A to draw the following conclusions about the corresponding series for R;
the proof then concludes from an analysis of the coefficients in the displayed series.

Theorem 2.13 ([16, Theorem 2.1]) Use the notation from 2.12. Assume that c ≤ 3
and set l := rankk A1−1, n := rankk A3, p := rankk(A1)

2, q := rankk(A1·A2), and
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r := rankk(δ2), where δ2 : A2 → Hom[k]A1A3 is defined by δ2(a2)(a1) := a2a1
for all a1 ∈ A1 and a2 ∈ A2. Then the following equalities hold for the Poincaré
series and Bass series of R:

PRk (t) =
(1+ t)e−1

g(t)
and IRR (t) = td ·

f (t)

g(t)

where f (t), g(t) ∈ Z[t] are described as follows, where p + q ≥ 1:

Class g(t) f (t)

C(c) (1− t)c(1+ t)c−1 (1− t)c(1+ t)c−1

S 1− t − lt2 1+ t − t2
T 1− t − lt2 − (n− 3)t3 − t5 n+ lt − 2t2 − t3 + t4
B 1− t − lt2 − (n− 1)t3 + t4 n+ (l − 2)t − t2 + t4
G(r) 1− t − lt2 − nt3 + t4 n+ (l − r)t − (r − 1)t2 − t3 + t4
H(0, 0) 1− t − lt2 − nt3 n+ lt + t2 − t3
H(p, q) 1− t − lt2 − (n− p)t3 + qt4 n+ (l − q)t − pt2 − t3 + t4

We end this section with the discussion of some properties of the class G(r)
including recent counterexamples to a conjecture of Avramov [16]. Consider the
notation from 2.12. Let n denote the minimal number of generators for I , and
assume that c = 3. In case that R is a Gorenstein ring which is not complete
intersection, it is known from work of J. Watanabe [123] that n ≥ 5 and n is odd.
Also, in this case, R belongs to the class G(2i+1) for some i ≥ 2 by Avramov [16].
In particular, R belongs to the class G(n).

Conversely, Avramov op. cit. conjectured that ifR is in the class G(r)with r ≥ 2,
then R is Gorenstein and therefore, the classes G(3) and G(2i) for all i ≥ 1 are
empty. Christensen, Veliche, and Weyman [46, 47] gave counterexamples to this
conjecture. More precisely, it is shown in the latter paper that if S is the power
series algebra in three variables over a field, then for every r ≥ 3 there is an ideal
I of S with type(S/I) = 2 such that S/I belongs to G(r). For counterexamples to
Avramov’s conjecture of arbitray type, see VandeBogert [116].

3 Friendliness and Persistence of Local Rings

In this section, let (R,m, k) be a local ring.

Vanishing of Ext and Tor, and Finiteness of Homological Dimensions
Let M,N be finitely generated R-modules. Following Avramov, Iyengar, Nasseh,
and Sather-Wagstaff [29], R is called Tor-friendly if TorRi (M,N) = 0 for all i �
0 implies that pdR M < ∞ or pdR N < ∞. We say that R is Tor-persistent if
TorRi (M,M) = 0 for all i � 0 implies that pdR M <∞. The ring R is Ext-friendly
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if Ext[R]iMN = 0 for all i � 0 implies that pdR M < ∞ or idR N < ∞, where
id is the injective dimension. Finally, R is Ext-persistent if Ext[R]iMM = 0 for all
i � 0 implies pdR M <∞ or idR M <∞.

Friendliness and persistence have been studied in numerous works; see for
instance [17, 18, 29, 70, 71, 73, 74, 76, 77, 94–97, 108, 109]. The main motivation
for this section is the following result in which the proofs of parts (a), (b), (c), (e),
and (f) use DG algebra techniques.

Theorem 3.1 ([29, Theorem 5.1, Lemmas 5.7 and 5.9]) Assume there exist a local
homomorphism R → R′ of finite flat dimension and a deformation R′ 
 Q, i.e., a
local surjection with kernel generated by a Q-regular sequence, where Q satisfies
at least one of the conditions

(a) edimQ− depthQ ≤ 3.
(b) Q is Gorenstein and edimQ− depthQ = 4.
(c) Q is Cohen-Macaulay, almost complete intersection, edimQ − depthQ = 4,

and 1
2 ∈ Q.

(d) Q is complete intersection.
(e) Q is one link from a complete intersection.
(f) Q is two links from a complete intersection and is Gorenstein.
(g) Q is Golod.
(h) Q is Cohen-Macaulay and multQ ≤ 7.

Then R is Tor- and Ext-persistent. Moreover, Q can be chosen to be complete, with
algebraically closed residue field, and with no embedded deformation; in this case,
Q is Tor-friendly.

One of the most important motivations for working on friendliness and persis-
tence is the following conjecture that is known as the Auslander-Reiten Conjec-
ture [7]. This conjecture stems from work of Nakayama [88] and Tachikawa [112]
on the representation theory of Artin algebras.

Conjecture 3.2 ([7, p. 70]) Let M be a finitely generated R-module that satisfies
the condition Ext[R]iMM ⊕ R = 0 for all i > 0. ThenM is a free R-module.

3.3 It is straightforward to show that if R is Ext-persistent, then it satisfies the
Auslander-Reiten Conjecture 3.2.

By Avramov et al. [29, Proposition 6.5], Tor-friendliness implies Ext-
friendliness. (In the context of complexes, these two notions are equivalent;
see [29, Propositions 3.2 and 6.5].) The question of whether all rings are Tor-
persistent is open. However, examples of rings that are not Ext-persistent (hence,
not Ext-friendly nor Tor-friendly) are straightforward to construct: for instance,
(k[x, y]/(x, y)2)⊗k (k[u, v]/(u, v)2).

Next, we describe some DG methods from [29, 30] used to prove Theorem 3.1.

Perfect DG Modules, Trivial Extensions, and DG Syzygies
In order to apply DG techniques in the above setting, the first tool we need is the
following DG analogue of finitely generated module of finite projective dimension.
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3.4 Assume that (B,mB) is a local DG algebra. A homologically finite DG B-
module M is called perfect is it satisfies one of the following equivalent conditions
(see [30] or [105]):

(i) M is quasiisomorphic to a DG B-module F such that the underlying graded
B*-module F* has a finite basis.

(ii) For all homologically bounded DG B-modules N , one has TorBi (M,N) = 0
for all i � 0.

(iii) TorBi (M,B/mB) = 0 for all i � 0.

The approach described below to understanding friendliness and persistence is
motivated in parts by work of Nasseh and Yoshino [97] who prove that the trivial
extension R 
 k is Tor-friendly. See 2.9 for the definition of trivial extensions. This
result is generalized to the DG setting as follows.

Theorem 3.5 ([30, Theorem 4.1]) Let A be a DG algebra that is quasiisomorphic
to B 
 W , where B is a homologically bounded local DG algebra, and W is a
homologically bounded DG k-module with H(W) �= 0. If M,N are homologically
finite DG A-modules with TorAi (M,N) = 0 for all i � 0, thenM or N is perfect.

The proof of Theorem 3.5 is similar to that of [97, Theorem 3.1]. In order to
translate loc. cit. to the DG setting, a DG version of the important notion of a syzygy
was needed. This is the DG module N in the following result which we expect to be
useful for other applications.

Proposition 3.6 ([30, Proposition 4.2]) Let (A,A+) be a local DG R-algebra. Let
M be a homologically finite DG A-module. Then there exists a short exact sequence

0→ N
α−→ F → M̃ → 0

of morphisms of DG A-modules such that

(1) M , M̃;
(2) the underlying graded A*-module F* has a finite basis; and
(3) Im(α) ⊆ A+ · F .

Friendliness and Persistence
An important consequence of Theorem 3.5 is the following result that is a bridge
between Ext vanishing over R and its corresponding DG algebra.

Theorem 3.7 ([30, Theorem 6.3]) Assume there exists a minimal Cohen presenta-
tion R̂ ∼= P/I such that the minimal free resolution of R̂ over P has the structure
of a DG algebra and the k-algebra A = TorP (R̂, k) is isomorphic to the trivial
extension B 
 W of a graded k-algebra B by a graded B-module W �= 0 with
B�1 ·W = 0. Then R is Tor-friendly.

The proof of this result, which we outline next, relies on Avramov’s machine 2.10
whence we also take our notation. To prove Theorem 3.7, one transfers Tor-
vanishing over R to Tor-vanishing over the Koszul complex K = KR(x) by base
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change. Then using the quasiisomorphisms (2.10.1), one transfers Tor-vanishing
over K to Tor-vanishing over A. Since the property of being perfect transfers from
A to K , then to R, the DG result Theorem 3.5 gives us the desired conclusion.

Next we sketch the proof of Theorem 3.1. Using standard base-change tech-
niques, one can assume without loss of generality that R = R′ and hence, R and
Q have a common residue field k. Furthermore, we can assume that Q is complete,
k is algebraically closed, and Q does not admit embedded deformation; see [29,
Lemma 5.7]. It suffices by Avramov et al. [29, Theorems 2.2 and 6.3] and 3.3 to
show that Q is Tor-friendly. Let Q̂ ∼= P/J be a minimal Cohen presentation, and
let F be a minimal free resolution of Q̂ over P . If Q satisfies one of the conditions
(a)–(g) in Theorem 3.1, then F admits a DG-algebra structure as we mentioned
in 2.8. For some of these cases, the Tor algebra TorP (Q̂, k) satisfies the assumptions
of Theorem 3.7. Hence, Q is Tor-friendly in those cases by Theorem 3.7. In the
remaining cases other methods are used to conclude thatQ is Tor-friendly.

Geller [59] and Morra [87] are working to apply Theorem 3.7 to other rings.

4 Bass Series of Local Ring Homomorphisms of Finite Flat
Dimension

In this section, let ϕ : (R,m, k)→ (S, n, �) be a local ring homomorphism.

Relations Among Bass Series
Assume in this paragraph that ϕ is flat. Then many properties of S are controlled
by the corresponding properties for R and the closed fibre1 S/mS. For instance, S
is Gorenstein if and only if R and S/mS are both Gorenstein. More generally, the
Bass series of S is related to the Bass series for R and S/mS by the formula

IS(t) = IR(t)IS/mS(t). (4.0.1)

In particular, for each i ∈ Z, we haveμi+depthR
R ≤ μi+depth S

S . If S/mS is Gorenstein,
then Grothendieck says that ϕ is Gorenstein [63, 7.3.1–7.3.2].

When ϕ is not flat, the properties in the previous paragraph can fail, e.g., for
the natural surjection R → k when R is not regular, i.e., when pdR k is not finite.
However, Avramov, Foxby, and Lescot [19, 20, 23] recognized that the full strength
of flatness is not needed:

Theorem 4.1 ([23, Theorems A, B, C]) Assume that ϕ is of finite flat dimension,
i.e., the R-module S has a bounded resolution by flat modules. For instance, this
holds if S = R/I , where I is an ideal of R with finite projective dimension.

1 or “fiber,” depending on your preference.
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(a) There is a formal Laurent series Iϕ(t) with non-negative integer coefficients
such that

IS(t) = IR(t)Iϕ(t). (4.1.1)

(b) For each i ∈ Z, the following inequality holds:

μ
i+depthR
R ≤ μi+depth S

S .

(c) Assume further that the closed fibre S/mS is artinian, and either ϕ is not flat or
S/mS is not a field. Then the following coefficient-wise inequality holds:

IS(t) � IR(t)
−(1+ t)+∑fdR(S)

i=0 lenS
(
TorRi (k, S)

)
t−i

1+ t −∑fdR(S)
i=0 lenS

(
TorRi (k, S)

)
t i+1

. (4.1.2)

Equality in (4.1.2) holds if and only if ϕ is Golod; see 2.11.

4.2 Here is some perspective on Theorem 4.1(c). If the closed fibre S/mS is
artinian, then the following coefficient-wise inequality holds:

PS� (t) �
PRk (t)

1+ t −∑fdR(S)
i=0 lenS

(
TorRi (k, S)

)
t i+1

. (4.2.1)

The ring homomorphism ϕ is called a standard Golod homomorphism if equality
holds in (4.2.1).

Assume either ϕ is not flat or S/mS is not a field. Then ϕ is a Golod homo-
morphism if and only if it is a standard Golod homomorphism; see Avramov [12].
Hence, in the finite flat dimension setting, Theorem 4.1(c) says that equality
in (4.1.2) holds if and only if equality in (4.2.1) holds if and only ϕ is Golod.

The proof of Theorem 4.1 uses the DG fibre introduced by Avramov [11].

The DG Fibre of ϕ
Assume that ϕ is of finite flat dimension. Let G

,−→ k and L
,−→ S be DG algebra

resolutions over R. (Note that the free modules in L will not be finitely generated
over R in general.) The DG fibre of ϕ is defined to be the local DG algebra

F(ϕ) := G⊗R S , G⊗R L , k ⊗R L

where the quasiisomorphisms come from the balance property for TorR(k, S). The
multiplication on F(ϕ) is inherited from G, S, k, and L. The degree 0 homology
module of F(ϕ) is the closed fibre S/mS. In case that ϕ is flat, F(ϕ) , S/mS.

The Bass series of ϕ, denoted Iϕ(t), is the Bass series IF(ϕ)(t) of the DG algebra
F(ϕ), which by Avramov et al. [23, Theorem A] is a formal Laurent series.
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In the case where ϕ is flat, the formulas (4.0.1) and (4.1.1) are the same. In this
case, they are a particular instance of the formula

I
M⊗RS
S (t) = IMR (t)IS/mS(t)

where M is finitely generated over S; one verifies this formula using the isomor-
phism

Ext[S]�M ⊗R S ∼= Ext[R]kM ⊗k Ext[S/mS]�S/mS

In the general finite flat dimension case, Theorem 4.1(a) follows from a similar
isomorphism. The innovative point in [23] that we want to emphasize here is the
replacement of the usual closed fibre S/mS by the DG fibre F(ϕ).

It is worth noting that Avramov and Foxby [21] established the conclusions of
Theorem 4.1 for a larger class of local ring homomorphisms using relative dualizing
complexes, but this work does not use DG techniques.

Gorenstein Homomorphisms
As we mentioned above, if ϕ is flat with Gorenstein closed fibre, then S is Goren-
stein if and only ifR is Gorenstein. In case ϕ has finite flat dimension, one should not
expect Gorensteinness of the closed fibre to guarantee the same conclusion. In part
to remedy this, Avramov and Foxby [19, 20] extend Grothendieck’s aforementioned
notion of a Gorenstein homomorphism:

The local ring homomorphism ϕ is called Gorenstein if there is an integer a
such that for all i we have μiR = μi+aS . In particular, if ϕ is Gorenstein, then
S is Gorenstein if and only if R is Gorenstein. If ϕ has finite flat dimension,
Gorensteinness of ϕ is equivalent to having the equality μiR = μi+depth S−depthR

S

for all i by Theorem 4.1(a).
In case that ϕ is flat, Gorensteinness of ϕ is equivalent to the Gorensteinness of

the closed fibre S/mS; see [20, (4.2) Proposition]. Hence, this notion of Gorenstein
homomorphisms is a generalization of Grothendieck’s Gorenstein homomorphisms.

The result op. cit. can be extended to the following characterization of Gorenstein
homomorphisms in terms of their DG fibres.

Theorem 4.3 ([20, (4.4) Theorem]) Assume that ϕ has finite flat dimension. Then
ϕ is Gorenstein if and only if the DG fibre F(ϕ) is a Gorenstein DG algebra (that
is, Iϕ(t) = td for some integer d).

As one might imagine, given the usefulness of the Gorenstein property for local
rings, Gorenstein DG algebras have been investigated separately; see Frankild,
Iyengar, and Jørgensen [56, 57].
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5 Ascent Property of pd-test Modules

In this section, let ϕ : (R,m, k)→ (S, n, �) be a flat local ring homomorphism.

Pd-test Modules
A useful, classical result states that the residue field k has the ability to test for
finite projective dimension: a finitely generated R-module N has finite projective
dimension if and only if TorRi (k,N) = 0 for i � 0. According to the following
definition, which was coined by O. Celikbas, Dao, and Takahashi [41], this says
that k is a pd-test R-module.

A finitely generated R-module M is called a pd-test module if for every finitely
generated R-module N with TorRi (M,N) = 0 for i � 0 we have pdR N <∞.

It is natural to ask how the pd-test property for a finitely generated R-moduleM
behaves under completion. This is related to the well-known fact that R is regular if
and only if R̂ is regular. It is straightforward to show that if M̂ is pd-test over R̂, then
M is pd-test over R. That is, the pd-test property descends from the completion. The
question of ascent is more subtle. It was posed in [41] and answered by O. Celikbas
and Sather-Wagstaff [42] using derived category techniques. The following more
general ascent result is proved by Sather-Wagstaff [105].

Theorem 5.1 ([105, Theorem 4.8]) Assume that the closed fibre S/mS of ϕ is
regular and the induced field extension k → � is algebraic. If a finitely generated
R-moduleM is pd-test over R, then S ⊗R M is a pd-test module over S.

Theorem 5.1 is proved using the following DG techniques.

Pd-test DG Modules
A homologically finite DG module M over a local DG algebra B is a pd-test DG
module if every homologically finite DG B-module N with TorBi (M,N) = 0 for all
i � 0 is perfect.

The following result is a special case of a DG version of Theorem 5.1. It plays
an essential role in the proof of Theorem 5.1.

Theorem 5.2 ([105, Theorem 4.6]) Let A be a finite-dimensional DG k-algebra
with A0 = k and H0(A) �= 0. Let k → � be an algebraic field extension, and set
B = �⊗k A. IfM is pd-test over A, then B ⊗A M is pd-test over B.

Before applying Theorem 5.2, we sketch its proof. Assume that N is a homolog-
ically finite DG B-module such that TorBi (B ⊗A M,N) = 0 for all i � 0. In case
that k→ � is a finite field extension, the assertion follows from a standard argument
using 3.4. Now consider the general case, where k → � is algebraic. By truncating
an appropriate resolution of N over B one can assume that N is finite-dimensional
over �. It then follows that the differential and scalar multiplication on N are
represented by matrices consisting of finitely many elements of �. Adjoining these
algebraic elements to k, one obtains an intermediate field extension k → k′ → �

such that k → k′ is finite. By construction of k′, with A′ = k′ ⊗k A, there is a
bounded DG A′-module L such that N ∼= B ⊗A′ L. At this point, the assumption of
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TorBi (B ⊗A M,N) = 0 for all i � 0 implies that TorA
′
i (A

′ ⊗A M,L) = 0 for all
i � 0. Since k → k′ is finite, it follows that L is perfect over A′, so N ∼= B ⊗A′ L
is perfect over B.

Outline of the Proof of Theorem 5.1
Assume that M is a pd-test module over R. We need to show that S ⊗R M is a
pd-test module over S. Assume that TorSi (S ⊗R M,N) = 0 for i � 0, where N
is a finitely generated S-module. Standard techniques reduce to the case where R
and S are complete with S/mS = �. Using the notation from 2.10 and applying [22,

(1.6) Theorem] we have a minimal Cohen presentation P ′ τ
′−→ S and a commutative

diagram of local ring homomorphisms

such that α is flat, τ ′ is surjective, P ′/pP ′ ∼= �, and S ∼= R ⊗P P ′. The last

isomorphism implies that F ′ := F ⊗P P ′ ,−→ S is a DG algebra resolution of S
over P ′. Note that ϕ(x) minimally generates n. Following the process of 2.10 for
the ring S, we get the next commutative diagram of morphisms of DG algebras

in which KR = KR(x), KS = KS(ϕ(x)), KP = KP (y), and KP
′ = KP ′(α(y)).

Note that the DG algebra � ⊗P ′ F ′ is isomorphic to � ⊗k A. Now, the pd-test
problem between R and S can be translated through the rows of this diagram to
a DG pd-test problem between A and � ⊗k A. At this point the assertion follows
from Theorem 5.2.

In case that � = k(x) is a transcendental extension of k, the same conclusion as
in the statement of Theorem 5.1 holds by a result of Tavanfar [114].

6 A Conjecture of Vasconcelos on the Conormal Module

Throughout this section, let I be an ideal of a ring R, and set S = R/I .
Ferrand [54] and Vasconcelos [117] show that properties of the ring S are often

reflected in the properties of the conormal module I/I 2 over S. This section focuses
on the following conjecture of Vasconcelos [119].
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Conjecture 6.1 ([119, (C1)]) If pdR S and pdS I/I
2 are finite, then I is locally

generated by a regular sequence.

This conjecture was settled in the affirmative for some special cases by Vasconce-
los [120], Gulliksen and Levin [65], and Herzog [68]. The following major progress
on this conjecture was made by Avramov and Herzog [25] using André-Quillen
homology and DG homological methods.

Theorem 6.2 ([25, Theorem 3]) Let k be a field of characteristic 0, and assume
R is a positively graded polynomial ring over k and I is homogeneous. Then the
following are equivalent:

(i) S is complete intersection;
(ii) I/I 2 is a free S-module;

(iii) pdS I/I
2 <∞.

In a recent paper, Briggs [34] establishes Conjecture 6.1 in its full generality.

Theorem 6.3 ([34, Theorem A]) Conjecture 6.1 holds in general.

6.4 Briggs’ proof for Theorem 6.3 relies on methods pioneered by Avramov and
Halperin [11, 24] on homotopy Lie algebras π∗(ϕ) arising from DG constructions.

Assume without loss of generality that (R,m, k) and (S, n, k) are local. Let
ϕ : R → S be the natural surjection. Fix a minimal model for ϕ which is a

factorization R→ A
,−→ S, where (A,mA) is a local DG R-algebra such that:

(a) The underlying algebra A* = R[X1, X2, . . .] is the free graded commutative
R-algebra, where each Xi is a set of variables of degree i; and

(b) ∂(mA) ⊆ m+m2
A.

The DG algebra A is also denoted R〈X〉.
A graded basis for each πi(ϕ) is dual to Xi , and each element z ∈ π2(ϕ)

corresponds to a derivation θz : A → mA of degree −2 as is described in [14, 34].
Let θz : A→ n be the composition of θz and the surjective quasiisomorphism mA→
n. Under the assumptions of Conjecture 6.1, one can find a certain factorization
of θz which implies that z is radical in π2(ϕ); see [34, proof of Lemma 2.6 and
Theorem 2.7]. Now [24, Theorem C] implies that ϕ is complete intersection, as
desired.

7 A Conjecture of Vasconcelos on Semidualizing Modules

In this section, (R,m, k) is a local ring.
Here we discuss a class of modules that are particularly well-suited for creating

dualities. They were originally introduced by Foxby [55] who called them PG
modules of rank 1. They are useful, e.g., for understanding Gorenstein dimensions,
in particular, Avramov and Foxby’s composition question for local ring homomor-
phisms of finite G-dimension [21, 106].
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Semidualizing Modules
A finitely generatedR-moduleC is called semidualizing if the homothety morphism
χRC : R → Hom[R]CC is an isomorphism and Ext[R]iCC = 0 for all i ≥ 1. A
semidualizing module of finite injective dimension is called a dualizing module. Let
S0(R) be the set of isomorphism classes of semidualizing R-modules.

This section is centered on the following conjecture posed by Vasconcelos [118].

Conjecture 7.1 ([118, p. 97]) If R is Cohen-Macaulay, then S0(R) is finite.

Note that if R is Ext-persistent, then R satisfies this conjecture. Moreover, in
this case, the only semidualizing R-modules are the free module of rank 1 and a
dualizing module, if one exists.

Christensen and Sather-Wagstaff [43] answered Conjecture 7.1 in the case where
R contains a field. Their proof reduces to the case of a finite-dimensional algebra,
then implicitly uses the following technology from geometric representation theory.

7.2 Assume that R is a finite-dimensional k-algebra, where k is algebraically
closed. The R-modules of a fixed length r are parametrized by an algebraic variety
ModRr . One can define an action of the general linear group GLkr on ModRr . The
isomorphism class of an R-module M is the orbit GLkr ·M , and the tangent space

TGLkr ·M
M to the orbit GLkr ·M atM is identified with a subspace of the tangent space

TModRr
M . A result of Voigt [122] (see also Brion [37] or Gabriel [58]) provides an

isomorphism Ext 1MM ∼= TModRr
M /TGLkr ·M

M . As in work of Happel [66], it follows
that if Ext 1MM = 0 (e.g., ifM is a semidualizing module), then the orbit GLkr ·M
is open in ModRr . Since ModRr is quasi-compact, it can contain only finitely many
open orbits, hence, S0(R) is finite.

Using a modification of these ideas, Nasseh and Sather-Wagstaff [93] establish
Conjecture 7.1 in total generality with no Cohen-Macaulay hypothesis.

Theorem 7.3 ([93, Theorem A]) For the local ring R, the set S0(R) is finite.

A DG Version of Voigt’s Theorem and the Proof of Theorem 7.3
To prove Theorem 7.3, we work with the following DG version of semidulazing
modules due to Christensen and Sather-Wagtaff [44].

LetA be a homologically degreewise noetherian DGR-algebra. A homologically
finite DG A-module C is semidualizing if the homothety morphism χAC : A →
RHomA(C,C) is an isomorphism in the derived category D(A). If A = R, a
semidualizing DG R-module C is called a semidualizing R-complex. A semidu-
alizing R-complex of finite injective dimension is called a dualizing complex. Let
S(A) denote the set of shift-isomorphism classes of semidualizing DG A-modules
in D(A).

Theorem 7.3 is a consequence of the following result because S0(R) ⊆ S(R).

Theorem 7.4 ([93, 4.2 and Theorem A]) Consider the notation of 2.10. The sets
S(A) and S(R) are finite.
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Using Grothendieck [62, Proposition (0.10.3.1)], we can assume in Theorem 7.4
that R is complete with algebraically closed residue field. Because of Avramov’s
machine 2.10, it suffices to show that S(A) is finite. To establish this finiteness, one
uses the following DG version of 7.2 above.

The set of finite-dimensional DG A-modules M with fixed underlying graded
k-vector space W is parametrized by an algebraic variety ModA(W). A product
GL(W)0 of general linear groups acts on ModA(W) and the isomorphism class of
M is the orbit GL(W)0 ·M under this action. See [93] for more details.

The DG version of Voigt’s result from 7.2 that enables us to prove Theorem 7.4
is the following.

Theorem 7.5 ([93, Theorem B]) Let W be a finite-dimensional graded k-vector
space. Given an elementM ∈ ModA(W), there is an isomorphism

TModA(W)
M /TGL(W)0·M

M
∼= YExt1A(M,M)

where YExt1A(M,M) denotes the Yoneda Ext group defined as the set of equivalence
classes of short exact sequences 0→ M → L→ M → 0.

As in 7.2, it follows from Theorem 7.5 that if YExt1A(M,M) = 0, then the orbit
GL(W)0 ·M is open in ModA(W). Since ModA(W) is quasi-compact, it follows that
there are only finitely many open orbits in it. Thus, it remains to show that a each
semidualizing DG A-module C satisfies YExt1A(C,C) = 0. This vanishing follows
from work of Nasseh and Sather-Wagstaff [92].

One can actually obtain a very tight connection between the sizes of S(A) and
S(R) using a lifting result in [91] that generalizes results of Auslander, Ding, and
Solberg [6] and Yoshino [125]. See Nasseh, Ono, and Yoshino [89, 90], Nasseh
and Yoshino [98], and Ono and Yoshino [99] for more general lifting results. Also,
Altmann and Sather-Wagstaff [1] utilize Avramov’s machine to extend results of
Gerko [60] from the realm of finite-dimensional algebras to arbitrary local rings.

8 Complete Intersection Maps and the Proxy Small Property

In this section, let ϕ : R→ S be a surjective ring homomorphism.
Here, we outline results of Briggs, Iyengar, Letz, and Pollitz [36] on questions

motivated by work of Dwyer, Greenlees, and Iyengar [50] and Pollitz [103].
A triangulated subcategory X of the derived category D(R) is called thick if it is

closed under direct summands and satisfies the following two-of-three property: for
each exact triangle L → M → N → in D(R) if two of the objects are in X , then
so is the third. The thick subcategory of D(R) generated by an R-complexM is the
smallest thick subcategory of D(R) (with respect to inclusion) that containsM . Note
that an R-complex is perfect if and only if it is in the thick subcategory generated by
R. If an R-complex N is in the thick subcategory generated by another R-complex
M , we say that N is finitely built fromM .
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A triangulated subcategory of D(R) is called localizing if it is closed under
arbitrary coproducts. Note that a localizing subcategory is thick. The localizing
subcategory of D(R) generated by an R-complex M is the smallest localizing
subcategory of D(R) that contains M . If an R-complex N is in the localizing
subcategory generated by another R-complexM , we say that N is built fromM .

A small complex M over a ring R is an R-complex such that Hom[D(R)]M−
commutes with arbitrary direct sums. Note that the perfect R-complexes are
precisely the small R-complexes (or the small objects in D(R)).

In [49], an R-complex M is proxy small if there exists a small R-complex N
such that N is finitely built from M , and M is built from N . Note that every small
R-complex is proxy small. Other examples of proxy small complexes include the
residue field of a local ring and modules of finite complete intersection dimension
over a local ring.

Let R be a local ring. The famous result of Auslander-Buchsbaum and Serre [4,
110] says that R is regular if and only if every homologically bounded R-complex
is small. The paper [50] contains a partial analogue of this statement for complete
intersection rings: if R is complete intersection, then every homologically bounded
R-complex is proxy small. Pollitz [103] proved the converse of this by showing
that if every homologically bounded R-complex is proxy small, then R is complete
intersection. Pollitz’s proof heavily uses DG methods relying on his version [102]
of Avramov and Buchweitz’s [17] support varieties over Koszul complexes. Due to
space restrictions here, we do not provide further details of this construction.

In the not necessarily local setting, [50] includes a more general statement
than the one mentioned above: if ϕ is complete intersection, then proxy smallness
ascends along ϕ, i.e., any S-complex that is proxy small over R is proxy small
over S. Briggs, Iyengar, Letz, and Pollitz [36] prove the following converse of this
statement.

Theorem 8.1 ([36, Theorem B]) Assume that ϕ has finite projective dimension. If
proxy smallness ascends along ϕ, then ϕ is complete intersection.

A consequence of this theorem [36, Corollary 4.1] is another proof of a
fundamental result of Avramov [15, (5.7.1) Lemma] used in his solution to Quillen’s

conjecture discussed in Sect. 9 below. More precisely, if R
ϕ−→ S

ψ−→ T are surjective
local homomorphisms such that fdS T < ∞, then ψ ◦ ϕ is complete intersection if
and only if ϕ and ψ are complete intersection.

The proof of Theorem 8.1 reduces to the case where (R,m) and (S, n) are local.
Set S̃ := R/I , where I is an ideal generated by a maximal R-regular sequence in
kerϕ \m kerϕ. The surjection R→ S is the composition of the natural surjections

R
ϕ̃−→ S̃

ϕ̇−→ S. To complete the proof it suffices to show that S is small over S̃;
indeed, then [38, Corollary 1.4.7] implies ϕ = ϕ̃ is complete intersection, as desired.

To show that S is small over S̃, let K = KS(n) be the Koszul complex on
a minimal generating set of n, and consider the restriction ϕ̇∗ : D(S) → D(S̃).
By Dwyer et al. [50, Remark 5.6], it suffices to prove that ϕ̇∗ (K) is a small
S̃-complex. This smallness follows from the next lemma which uses Hochschild
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cohomology for DG algebras as constructed by Avramov, Iyengar, Lipman, and
Nayak [28].

Lemma 8.2 ([36, Lemma 2.5]) Let A be a DG R-algebra, and let M and N be
DG A-modules. Let α be an element of the graded Hochschild cohomology algebra
HH∗(A | R). If N is (finitely) built from M , then the mapping cone N//α of an

induced morphism N
χN(α)−−−→ �|α|N is (finitely) built fromM//α. In particular, ifM

is proxy small then so isM//α.

9 Conjectures of Quillen on André-Quillen Homology

In this section, let ϕ : R→ S be a ring homomorphism.
Here, we describe Avramov’s solution [15] to a famous conjecture of

Quillen [104] and Avramov and Iyengar’s significant progress [27] on a second
one.

Quillen’s Conjectures
The nth André-Quillen homology of the R-algebra S with coefficients in an S-
module N is Dn(S |R,N) = Hn (L(S |R)⊗S N), where L(S |R) is the cotangent
complex of ϕ; see André [2], Iyengar [72], and Quillen [104] for definitions and
foundational properties.

The first of Quillen’s conjectures that we consider deals with locally complete
intersection homomorphisms. This notion was originally defined for maps that are
essentially of finite type or flat. Avramov’s solution of this conjecture hinges on the
following generalization of this notion.

Assume in this paragraph that ϕ : R→ (S, n) is a local ring homomorphism, and
let ϕ̀ : R → Ŝ be the composition of ϕ with the natural completion map S → Ŝ.

A Cohen factorization of ϕ̀ is a factorization into local ring homomorphisms R
ϕ̇−→

R′ ϕ′−→ Ŝ such that ϕ̇ is flat with regular closed fibre, ϕ′ is surjective, and R′ is

complete. If there is a Cohen factorization R → R′ ϕ
′
−→ Ŝ of ϕ̀ in which kerϕ′ is

generated by an R′-regular sequence, then ϕ is called complete intersection at n.
In general, the (not necessarily local) ring homomorphism ϕ : R → S is called

locally complete intersection if it is complete intersection at all prime ideals q of
S, i.e., for all such q, the induced local ring homomorphism ϕq : Rq∩R → Sq is
complete intersection at qSq. Also, ϕ is locally of finite flat dimension if fdR Sq <∞
for all prime ideals q of S. In case that R has finite Krull dimension this condition
is equivalent to fdR S <∞; see Auslander and Buchsbaum [5].

Now we can state the conjectures of Quillen [104] that we are concerned with.
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Conjecture 9.1 ([104, (5.6) and (5.7)]) Assume ϕ is essentially of finite type.

(a) If ϕ is locally of finite flat dimension and Dn(S |R,−) = 0 for all n � 0, then
it is locally complete intersection.

(b) If Dn(S |R,−) = 0 for all n� 0, then Dn(S |R,−) = 0 for all n ≥ 3.

Avramov’s Solution of Conjecture 9.1(a) via DG Techniques

Theorem 9.2 ([15, (1.3)]) Conjecture 9.1(a) holds without the essentially of finite
type assumption.

The proof of Theorem 9.2 reduces to the case where ϕ is surjective and local. In
this case, the proof hinges on the following spectral sequence [15, (4.2) Theorem]

2Ep,q = πp+q
(

Sym�q(� L(S |R)⊗S �)
)
(⇒ �〈X〉p+q

where � is the residue field of S, and the other notation including the DG algebra
�〈X〉 is from 6.4.

Very recently Briggs and Iyengar [35] improved upon Theorem 9.2 with the
following. The proof of this result also uses DG technology, but we do not discuss
it because of space constraints.

Theorem 9.3 ([35, Theorem A]) If ϕ is locally of finite flat dimension and one has
Dn(S |R,−) = 0 for some n ≥ 1, then ϕ is locally complete intersection.

Conjecture 9.1(b) for Algebra Retracts
Avramov and Iyengar [27] proved Conjecture 9.1(b) in the case where S is an
algebra retract of R, that is, where there is a ring homomorphism ψ : S → R

such that ϕ ◦ ψ = idS .

Theorem 9.4 ([27, Theorem I]) Assume that S is an algebra retract of R. Then the
following conditions are equivalent.

(i) Dn(S |R,−) = 0 for all n� 0.
(ii) Dn(S |R,−) = 0 for all n ≥ 3.

(iii) D3(S |R,−) = 0.
(iv) Dn(S |R,−) = 0 for some n ≥ 3 such that �n−1

2 �! is invertible in S.

Conjecture 9.1(b) fails in the non-noetherian case; see André [3] and Planas-
Vilanova [101]. This conjecture is still open in general for noetherian rings.

In the proof of Theorem 9.4, the following notion plays an essential role. A
local homomorphism ϕ : (R,m, k) → (S, n, �) is almost small if the kernel of
the homomorphism Torϕ(ϕ, �) : TorR(k, �) → TorS(�, �) of graded algebras is
generated by elements of degree 1.

DG techniques are crucial in the proof of Theorem 9.4. Key to this is a structure
theorem [27, 4.11 Theorem] for surjective almost small homomorphisms in terms
of DG algebra homomorphisms. From this one concludes [27, 5.6. Theorem] that
almost small homomorphisms have finite weak category; a notion motivated by the
works of Félix and Halperin [53]. As a result, information on the positivity and
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growth of deviations of almost small homomorphisms is revealed by Avramov and
Iyengar [27, 5.4. Theorem]. The local version of Theorem 9.4 follows from this via a
characterization of complete intersection local homomorphisms having finite weak
category in terms of the vanishing of the André-Quillen homology with coefficients
in the residue field; see [27, 6.4. Theorem]. A reduction to the local case then finishes
the proof.

10 Finite Generation of Hochschild Homology Algebras

Throughout this section, let ϕ : R→ S be a ring homomorphism.
We discuss work of Avramov and Iyengar [26] on finite generation of Hochschild

homology algebras. In it, they prove the converse of the Hochschild-Kostant-
Rosenberg Theorem using DG methods and André-Quillen homology; see [40, 72,
86] for definitions and facts that are used in this section.

The Hochschild homology algebra, denoted HH∗(S |R), is a graded commutative
algebra defined using shuffle products on the Hochschild complex. This satisfies
HH0(S |R) = S, and HH1(S |R) = Ω1

S|R is the S-module of Kähler differentials.
Recall that the R-algebra S is called regular if ϕ is flat and S ⊗R k is regular
for each homomorphism R → k from R to a field k. Hochschild, Kostant, and
Rosenberg [69] proved that if R is a perfect field and S is smooth over R (that is,
S is a regular R-algebra and essentially of finite type), then HH∗(S |R) is a finitely
generated S-algebra. Here is the aforementioned converse.

Theorem 10.1 ([26, Theorem (5.3)]) Assume that ϕ is flat and essentially of finite
type. If the S-algebra HH∗(S |R) is finitely generated, then S is smooth over R.

This result settles a conjecture of Vigué-Poirrier [121] who already established it
in the case where S = R[x1, . . . , xn]/I , and R is a field of characteristic 0, and I
is generated by a regular sequence. It was also known for positively graded S such
that S0 = R is a field of characteristic 0 by Dupont and Vigué-Poirrier [48].

The DG techniques used in the proof of Theorem 10.1 are confined to the
characteristic-0 case. Here Avramov and Iyengar use a version of Avramov’s
machine [26, 4.2] which gives a DG algebra A where H(A) is the Tor algebra
TorR(S, S).

Acknowledgments We are grateful to Josh Pollitz and Keller VandeBogert for helpful suggestions
about this survey.



Applications of Differential Graded Algebra Techniques in Commutative Algebra 611

References

1. H. Altmann and K. Sather-Wagstaff, On Gerko’s strongly Tor-independent modules, preprint
(2020), arXiv:2012.03361.

2. M. André, Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture
Notes in Mathematics, Vol. 32, Springer-Verlag, Berlin-New York, 1967. MR 0214644

3. , Examples of non-rigid cotangent complexes, J. Algebra 186 (1996), no. 1, 32–46.
MR 1418037

4. M. Auslander and D. A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68
(1958), 625–657. MR 0099978 (20 #6414)

5. , Homological dimension in noetherian rings. II, Trans. Amer. Math. Soc. 88 (1958),
194–206. MR 96720

6. M. Auslander, S. Ding, and Ø. Solberg, Liftings and weak liftings of modules, J. Algebra 156
(1993), 273–397. MR 94d:16007

7. M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc.
Amer. Math. Soc. 52 (1975), 69–74. MR 0389977

8. L. L. Avramov, The Hopf algebra of a local ring, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974),
253–277. MR 0349816

9. , Small homomorphisms of local rings, J. Algebra 50 (1978), no. 2, 400–453.
MR 485906

10. , Obstructions to the existence of multiplicative structures on minimal free resolutions,
Amer. J. Math. 103 (1981), no. 1, 1–31. MR 601460

11. , Local algebra and rational homotopy, Algebraic homotopy and local algebra
(Luminy, 1982), Astérisque, vol. 113, Soc. Math. France, Paris, 1984, pp. 15–43. MR 749041

12. , Golod homomorphisms, Algebra, algebraic topology and their interactions (Stock-
holm, 1983), Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 59–78.
MR 846439

13. , Modules of finite virtual projective dimension, Invent. Math. 96 (1989), no. 1, 71–
101. MR 981738

14. , Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996),
Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 1–118. MR 99m:13022

15. , Locally complete intersection homomorphisms and a conjecture of Quillen on the
vanishing of cotangent homology, Ann. of Math. (2) 150 (1999), no. 2, 455–487. MR 1726700
(2001a:13024)

16. , A cohomological study of local rings of embedding codepth 3, J. Pure Appl. Algebra
216 (2012), no. 11, 2489–2506. MR 2927181

17. L. L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete
intersections, Invent. Math. 142 (2000), no. 2, 285–318. MR 1794064 (2001j:13017)

18. L. L. Avramov, R.-O. Buchweitz, and L. M. Şega, Extensions of a dualizing complex by its
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76. D. A. Jorgensen and L. M. Şega, Nonvanishing cohomology and classes of Gorenstein rings,
Adv. Math. 188 (2004), no. 2, 470–490. MR 2087235 (2005f:13017)

77. , Independence of the total reflexivity conditions for modules, Algebr. Represent.
Theory 9 (2006), no. 2, 217–226. MR 2238367 (2007c:13022)

78. L. Katthän, The structure of DGA resolutions of monomial ideals, J. Pure Appl. Algebra 223
(2019), no. 3, 1227–1245. MR 3862675

79. A. R. Kustin, Gorenstein algebras of codimension four and characteristic two, Comm.
Algebra 15 (1987), no. 11, 2417–2429. MR 912779 (88j:13020)

80. , Classification of the Tor-algebras of codimension four almost complete intersec-
tions, Trans. Amer. Math. Soc. 339 (1993), no. 1, 61–85. MR 1132435

81. , The minimal resolution of a codimension four almost complete intersection is a DG-
algebra, J. Algebra 168 (1994), no. 2, 371–399. MR 1292771

82. A. R. Kustin and M. Miller, Algebra structures on minimal resolutions of Gorenstein rings of
embedding codimension four, Math. Z. 173 (1980), no. 2, 171–184. MR 583384 (81j:13013)

83. , Multiplicative structure on resolutions of algebras defined by Herzog ideals, J.
London Math. Soc. (2) 28 (1983), no. 2, 247–260. MR 713381

84. A. R. Kustin and S. M. Palmer Slattery, The Poincaré series of every finitely generated module
over a codimension four almost complete intersection is a rational function, J. Pure Appl.
Algebra 95 (1994), no. 3, 271–295. MR 1295961

85. G. Levin, Finitely generated Ext algebras, Math. Scand. 49 (1981), no. 2, 161–180 (1982).
MR 661889

86. J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992, Appendix
E by María O. Ronco. MR 1217970

87. T. Morra, DG algebra structures on resolutions of stanley-reisner ideals of certain simplicial
spheres, in preparation.

88. T. Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22
(1958), 300–307. MR 104718

89. S. Nasseh, M. Ono, and Y. Yoshino, Naïve liftings of DG modules, preprint (2021),
arXiv:2102.04634.

90. , The theory of j -operators with application to (weak) liftings of DG modules,
preprint (2020), arXiv:2011.15032.

91. S. Nasseh and S. Sather-Wagstaff, Liftings and quasi-liftings of DG modules, J. Algebra 373
(2013), 162–182. MR 2995021

92. , Extension groups for DG modules, Comm. Algebra 45 (2017), no. 10, 4466–4476.
MR 3640821

93. , Geometric aspects of representation theory for DG algebras: answering a question
of Vasconcelos, J. Lond. Math. Soc. (2) 96 (2017), no. 1, 271–292. MR 3687949

94. , Vanishing of Ext and Tor over fiber products, Proc. Amer. Math. Soc. 145 (2017),
no. 11, 4661–4674. MR 3691985

95. S. Nasseh, S. Sather-Wagstaff, R. Takahashi, and K. VandeBogert, Applications and homo-
logical properties of local rings with decomposable maximal ideals, J. Pure Appl. Algebra
223 (2019), no. 3, 1272–1287. MR 3862678

96. S. Nasseh and R. Takahashi, Local rings with quasi-decomposable maximal ideal, Math. Proc.
Cambridge Philos. Soc. 168 (2020), no. 2, 305–322. MR 4064107



Applications of Differential Graded Algebra Techniques in Commutative Algebra 615

97. S. Nasseh and Y. Yoshino, On Ext-indices of ring extensions, J. Pure Appl. Algebra 213
(2009), no. 7, 1216–1223. MR 2497570 (2010f:13016)

98. , Weak liftings of DG modules, J. Algebra 502 (2018), 233–248. MR 3774891
99. M. Ono and Y. Yoshino, A lifting problem for DG modules, J. Algebra 566 (2021), 342–360.

MR 4152766
100. I. Peeva, 0-Borel fixed ideals, J. Algebra 184 (1996), no. 3, 945–984. MR 1407879
101. F. Planas-Vilanova, On the vanishing and non-rigidity of the André-Quillen (co)homology, J.

Pure Appl. Algebra 120 (1997), no. 1, 67–75. MR 1466098
102. J. Pollitz, Cohomological supports over derived complete intersections and local rings, Math.

Z. (2021), to appear.
103. , The derived category of a locally complete intersection ring, Adv. Math. 354 (2019),

106752, 18. MR 3988642
104. D. Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra

(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, R.I.,
1970, pp. 65–87. MR 0257068

105. K. Sather-Wagstaff, Ascent properties for test modules, preprint (2019),
arXiv:1911.07708.

106. S. Sather-Wagstaff, Complete intersection dimensions and Foxby classes, J. Pure Appl.
Algebra 212 (2008), no. 12, 2594–2611. MR 2452313 (2009h:13015)

107. , Bass numbers and semidualizing complexes, Commutative algebra and its applica-
tions, Walter de Gruyter, Berlin, 2009, pp. 349–381. MR 2640315
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1 Introduction

Throughout this paper, we work over the field k = C of complex numbers. A variety
is a separated, reduced and irreducible scheme of finite type over C. Curves, surfaces
and threefolds are always assumed to be projective and possibly singular.

The notion of Castelnuovo-Mumford regularity can be traced back to Casteln-
uovo’s study on linear systems on a space curve [6] (see Example 2.3). Mumford
formally defined the notion of regularity in [35] and applied it to simplify the
construction of Quot schemes. Nowadays, Castelnuovo-Mumford regularity has
become a fundamental invariant in algebraic geometry, especially in the syzygy
theory. There are multiple ways to define Castelnuovo-Mumford regularity from
either the geometric point of view or the algebraic one. General references include
[11, Section 20.5] [12], [28, Section 1.8], and [35]. In this paper, we follow the
geometric approach to define the Castelnuovo-Mumford regularity for coherent
sheaves.

Definition 1.1 (Mumford [35]) Let F be a coherent sheaf on P
r . We say F is

m-regular if

Hi(Pr ,F(m− i)) = 0, for i > 0.
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The minimal such number, if exits, is called the Castelnuovo-Mumford regularity,
or simply regularity, of F and denoted by reg(F). If X ⊆ P

r is a closed subscheme
defined by the ideal sheaf IX, then the regularity of X is defined to be reg(X) =
reg(IX).

It is clear from the definition that the regularity governs higher cohomology
groups of a given sheaf. As an extremal case, one sees that the support of a coherent
sheaf F has dimension zero if and only if regF = −∞. LetX ⊆ P

r be a projective
subscheme defined by an ideal sheaf IX. One may attempt to define the regularity
of X by the regularity reg(OX) of the structure sheaf OX considered as an OPr -
module. However, this number is weaker than reg(IX) because from the short exact
sequence 0 → IX → OPr → OX → 0 we can only have regOX ≤ regIX − 1
and in general regIX cannot be bounded above by regOX. For instance if X = {x}
is a closed point in P

r , then regOX = −∞ while regIX = 1. But if X is k-normal,
i.e., the restriction morphism H 0(OPr (k)) → H 0(OX(k)) is surjective, and OX is
k-regular, then we can have X is (k + 1)-regular.

The regularity of X governs the degrees of defining equations of the variety.
Indeed, if X is m-regular, i.e., reg(X) ≤ m, then by the Castelnuovo’s result [35,
Lecture 14], we see that IX(m) is globally generated, which means that X can be
defined by several homogeneous polynomials of degree no more than m. An easy
example is that X is 1-regular if and only if X is a linear space. Conversely, the
regularity can also be bounded above by the degrees of defining equations. There is
an amazing general result says that for any ideal sheaf I on a projective space P

r ,
if I(d) is globally generated, then there is a doubly exponential upper bound of the
form (2d)2

r−1
for the regularity of I (see [14, 16] for characteristic zero, and see

[7] for characteristic free). An example constructed by Mayr-Meyer [33] shows that
such bound can actually be achieved. A slightly weaker upper bound of the form
(2d)r! is proved by Bayer-Mumford [5] by the cohomological method. Certainly,
with more information on the geometry or algebra of the scheme defined by the ideal
sheaf, one would expect a better bound, even a linear bound in terms of the degree
of defining equations. Typical example is when X is a complete intersection so its
ideal sheaf has a Koszul resolution, from which one can obtain a linear regularity
upper bound. A striking result of Betram-Ein-Lazarsfeld [3] establishes such linear
bound for any nonsingular variety: if X ⊆ P

r is a nonsingular projective variety of
codimension c defined by the equations of degree d1 ≥ d2 ≥ · · · ≥ dt (t ≥ c), then
regX ≤ d1+d2+· · ·+dc−c+1. The equality holds if and only ifX is a complete
intersection. This result has inspired research including [8, 9, 36] to seek singular
varieties for which the linear bound still holds.

On the other hand, rather than using the degrees of defining equations, classical
results of Castelnuovo for integral curves, completed by Gruson-Lazarsfeld-Peskine
[17], suggest another form of a linear optimal regularity bound involving geo-
metric invariants of the variety concerned. This bound was further conjectured by
Eisenbud-Goto [10] for arbitrary varieties as follows.



Regularity Bounds by Projection 619

Eisenbud-Goto Conjecture Let X ⊆ P
r be a nondegenerate projective variety.

Then

regX ≤ degX − codimX + 1.

In addition to the aforementioned work of [17] for integral curves, the conjec-
tured bound has also been established for connected curves [15] (see also [38]),
for nonsingular surfaces [27, 44], for normal surfaces with certain singularities
[37, 42], and for smooth threefolds in P

r with r ≥ 9 [45] and in P
5 [26]. Slightly

weaker bounds were obtained for lower dimensional smooth varieties in [24, 25], for
threefolds with rational or Du Bois singularities in [42], and for scrolls over curves
in [4, 43].

A breakthrough in recent research on the conjecture is the work of McCullough-
Peeva [34], in which they construct some singular varieties to show the conjecture
does not hold. According to the known results mentioned above, however, the bound
in the conjecture still attracts considerable attention and serves as a guidance in
finding optimal regularity bounds for varieties, especially for nonsingular varieties
or varieties with mild singularities.

One important method in establishing regularity bounds is the generic projection,
on which we focus our discussion in this paper. In his influential paper on surfaces
[27], Lazarsfeld set the cohomological framework of projection method in obtaining
regularity bound. This method is originated in Casteulnuovo’s work and developed
by many people including Pinkham [44] and Szpiro [50]. After that, Kwak extended
the projection method to some low dimensional nonsingular varieties and gave a
very nice summary on the method [24]. Here we will slightly generalize the setup
from the classic nonsingular case to the Cohen-Macaulay case, which may be useful
in the future.

The paper is organized as follows. In Sect. 2, we give the details of the
construction of general projection and related it to bounding the regularity of a
projective variety. In Sect. 3, we discuss the double-point formula of projection as
well as the complexity of fibers of projection. In the last section, we list several
regularity bounds obtained by the projection method and also discuss some other
important regularity bounds.

2 Construction of Projection

In this section, we give the details how one can use projection method to obtain a
regularity bound. We follow the approach used by Lazarsfeld in [27] and further
refined by Kwak in his several work [24, 25]. It has become rather standard to
use projection in the study of the regularity of smooth varieties, as summarized
by Greenberg and Kwak. The major obstruction in this method comes from the
complexity of fibers of projection. Here, we generalize the setup of this method
to the case of Cohen-Macaulay varieties. We have to replace the cohomological
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computation due to Lazarsfeld for the smooth case by the duality argument
introduced by Ein in his seminar talk to fit the Cohen-Macaulay case. Of course,
one still needs to understand the complexity of fibers of projection to eventually
obtain any meaningful result.

Let X ⊂ P
r be a nondegenerate closed subvariety of dimension n ≥ 1 and

degree d. So X is not contained in any hyperplane and d ≥ codimX + 1. We
always assume that X is Cohen-Macaulay and therefore it has a dualizing sheaf
ωX. To define a projection from X to a linear space, we choose a linear subspace
� in P

r of codimension m ≥ 1 as the projection center such that � ∩ X = ∅
(so dim� < codimX). Suppose that � is defined by the independent linear forms
l0, l1, · · · , lm−1. If I� is the ideal sheaf of �, then we see that the vector space
W = 〈l0, · · · , lm−1〉 spanned by those forms are exactly the space H 0(I�(1)) (in
this paper, we write the chomology group Hi(X,F) by dropping the underlying
space X as Hi(F) to save the space). So there is a surjective evaluation morphism

e : W ⊗ OPr (−1) −→ I�.

In addition, we have a decomposition of the vector space of linear forms

H 0(OPr (1)) = W ⊕ V, where V = H 0(O�(1)).

Let M be the blowing-up of P
r along the center � equipped with the natural

morphism p : M → P
r . The evaluation morphism e above yields an embedding

M
i
↪−→P(W ⊗ OPr (−1)) ∼= P

r × P
m−1,

where we identify P(W) = P
m−1. So the morphism p is the composition of the

embedding i with the projection to P
r . Let q be the composition of i with the

projection to P
m−1. We then form the following diagram

M = BlΛ P
r q−−−−→ P

m−1

p

⏐⏐�
P

r.
(2.0.1)

Let E be the exceptional divisor of M . The calculation on tautological bundles
shows that

OM(−E) = p∗OPr (−1)⊗ q∗OPm−1(1).

Since we have chosen�∩X = ∅, X can be viewed in a natural way as a subvariety
of the blowing-up M . The projection f of X from � to P

m−1 is defined to be the
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restriction of q to X, i.e.,

f = q|X : X −→ P
m−1.

We may also write the projection as f� if we need to emphasize the projection
center �. The image of f is denoted by X̄ = f (X). The crucial point in many
computation is that the morphism q turns the blowing-up M to be a projectivized
vector bundle over Pm−1 as described in the following proposition.

Proposition 2.1 There is a locally free sheaf

E = V ⊗ OPm−1 ⊕ OPm−1(1)

of rank r − m + 2 such that M ∼= P(E) with the tautological bundle O
P(E)(1) =

p∗OPr (1). For any k ≥ 0, one has an identification of vector bundles on P
m−1,

q∗p∗(OPr (k)) =
k⊕

i=0

Sk−iV ⊗ OPm−1(i).

Proof First of all, we claim that the morphism q : M → P
m−1 is a smooth

morphism with fibers identical to P
r−m+1. To see this, we use a representation

∧2W ⊗ OPr (−2) → W ⊗ OPr (−1) of I� truncated from the associated Koszul
resolution of I�. From it, we can deduce a surjective morphism

∧2 W ⊗ p∗OPr (−1)⊗ q∗OPm−1(−1) −→ IM −→ 0 (2.1.1)

where IM is the ideal sheaf ofM in P
r×Pm−1. Let y ∈ P

m−1 be a closed point and
assume that, without loss of generality, it is defined by the forms l1, · · · , lm−1. Let
P
r
y be the fiber of the projection P

r × P
m−1 → P

m−1 over the point y. Restricting

the morphism in (2.1.1) onto P
r
y , we deduce ∧2W⊗OPry

(−1) −→ IM ·OPry
−→ 0.

Note that for any form li ∧ lj in ∧2W , it maps to either 0 if i �= 0 and j �= 0, or lj if
i = 0 in the group H 0(IM ·OPry

(1)). Thus in the space P
r
y , the fiberMy ofM over

y is defined by the linear forms l1, · · · , lm−1, which proves the claim.
Now push down by q the short exact sequence 0 → OM → OM(E) →

OE(E)→ 0 to yield a short exact sequence

0 −→ OPm−1 −→ F −→ q∗OE(E) −→ 0.

As E ∼= P(I�/I
2
�)
∼= P(W ⊗ O�(−1)), it is easy to calculate that q∗OE(E) =

V ⊗ OPm−1(−1). Since Ext1(V ⊗ OPm−1(−1),OPm−1) = 0, the above short exact
sequence splits and therefore F = OPm−1 ⊕ V ⊗ OPm−1(−1). Now we can verify
by a standard approach that M ∼= P(F). Of course, twisting F to yield E, one still
hasM ∼= P(E) but gets the desired form of the tautological bundle as claimed in the
proposition. ��
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We look into the fibers appeared in the above construction. For a closed point
y ∈ P

m−1, write Ly = q−1(y) as the fiber of q over y. Similarly, we write Xy =
f−1(y) the fiber of f over y (note that if y is not in the image f (X) then Xy is
empty). By the proposition above, we know that Ly ∼= P(E⊗ k(y)) is the projective
space Pr−m+1 andH 0(OLy (k)) = SkE⊗k(y), where SkE means the k-th symmetric
product of E. Without loss of generality, let us assume that y is cut out by the linear
forms l1, , · · · , lm−1. Thinking of y as a dimension zero linear space, the skyscript
sheaf k(y)(k) has only one global section lk0 . This suggests that we can formally
write

OPm−1(k)⊗ k(y) ∼= C · lk0 .

Now the fiber Ly is also cut out by the forms l1, l2, · · · , lm−1 in the space P
r . The

base change suggests that

H 0(OLy (k)) = SkE⊗ k(y) = SkV ⊕ Sk−1V ⊗ C · l0 ⊕ · · · ⊕ C · lk0 .

Also note that Xy is indeed the scheme-theoretical intersection of X with Ly . In
addition, the projection center� is a hyperplane in the fiber Ly defined by the linear
form l0. As X ∩ � is empty, so is Xy ∩ � and therefore Xy must have dimension
zero. Hence the projection f is a finite morphism.

Certainly, different choices of the projection center � would yield different
projection. All such choice of the center can be parameterized by an open set of the
Grassmannian variety G(r −m, r) (containing all linear space � of codimension m
in P

r which does not touch X). In application, we would expect certain property P
could be a general phenomenon appeared in the most choice of the projection. To be
more precise, by saying that a general, or generic, projection f satisfies the property
P we mean that there exists an open set U in the Grassmannian G(r − m, r) such
that for all � ∈ U the projection of X from � satisfies the property P. Sometimes,
the property P is clear from the context so we would not state it all the time. As
an example, we show that a general projection is a birational map to its image if
m ≥ n+2. Indeed, let x ∈ X be a nonsingular point ofX. Let Sx be the variety swept
out by secant lines passing through the point x. We see that dim Sx = dimX+1 < r .
We can choose a general � to avoid both Sx and the tangent space Tx of X at x.
Then the projection f from� is injective and unramified at x which imlies that it is
isomorphic at x. Hence it is a birational map to its image.

The most important case in application is to projectX to a hyersurface, i.e., when
m = n+ 2. We will mainly focus on this case in the rest of the paper and therefore
we always assume m = n + 2 unless stated otherwise. For a general projection
f : X → P

n+1, we have seen that f is a finite birational map. The image X̄ is
therefore a degree d hypersurface. To bound the regularity of X, the cohomological
method used in [27] is to trace the natural morphism OPr (k) → OX(k) through
the projection for certain k ≥ 0. Indeed, pulling back by p and then pushing down
by q, we obtain the morphism q∗p∗(OPr (k)) → f∗OX(k). As we have calculated,
the sheaf q∗p∗(OPr (k)) =⊕k

i=0 S
k−iV ⊗ OPn+1(i) is actually a locally free sheaf.
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Instead of taking the whole sheaf q∗p∗(OPr (k)) as in [27], Greenberg and Kwak
refined Lazarsfeld’s method to take certain subspaces Vk−i ⊆ Sk−iV and to consider
the induced morphism

wk :
k⊕

i=0

Vk−i ⊗ OPn+1(i) −→ f∗OX(k), (2.1.2)

where V0 = S0V = C. Note that f∗OX(k) is a Cohen-Macaulay OPn+1 -module of
codimension one, as we assume that X is Cohen-Macaulay. Thus if wk is surjective,
the kernel sheaf would be locally free by the Auslander–Buchsbaum formula.
Furthermore, the duality theory (see for example [1]) gives

f∗ωX = Ext1O
Pn+1

(f∗OX,ωPn+1).

The subjectivity of wk plays a critical role in obtaining regularity bounds and if so
we can get the following proposition.

Proposition 2.2 Let X ⊂ P
r be a nondegenerate closed subvariety of dimension

n ≥ 1. Assume that X is Cohen-Macaulay and has the Kodaira vanishing property,
i.e., Hi(ωX(l)) = 0 for i > 0 and l > 0. Assume also that the morphism wk defined
in (2.1.2) is surjective. Twist wk by OPn+1(−k) and let E be the kernel sheaf of the
resulting morphism. So we obtain a short exact sequence

0 −→ E −→
k⊕

i=0

Vk−i ⊗ OPn+1(i − k) −→ f∗OX −→ 0. (2.2.1)

Then one has

(1) regE∗ ≤ −2 and

regX ≤ degX − dimV1 +
k∑

i=3

(i − 2) dimVi.

(2) E∗ is (−3)-regular if and only if the following three conditions hold

(i) H 1(OX) = 0.
(ii) the natural morphism V1 ⊕H 0(OPn+1(1)) −→ H 0(OX(1)) is surjective.

(iii) the natural morphism H 0(OPn+1(2)) ⊕ V1 ⊗ H 0(OPn+1(1)) ⊕ V2 −→
H 0(OX(2)) is injective.

In this case,

regX ≤ degX − 2 dimV1 − dimV2 +
k∑

i=4

(i − 3) dimVi.
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Proof Applying the functor Hom( , ωPn+1) to the short exact sequence (2.2.1) and
then tensoring with ω∗

Pn+1 yields

0 −→
k⊕

i=0

V ∗k−i ⊗ OPn+1(k − i) −→ E∗ −→ f∗ωX(n+ 2) −→ 0. (2.2.2)

We show E∗ is (−2)-regular first. Note that for 0 < j < n, we have
Hj(OPn+1(k−i−2−j)) = Hj(ωX(n−j)) = 0 which impliesHj(E∗(−2−j)) =
0. Twist the short exact sequence (2.2.2) by (−2 − n) and consider the associated
long exact sequence

Thus the connection map τn is injective and therefore Hn(E∗(−2 − n)) = 0.
Similarly, tensor the short exact sequence (2.2.2) by (−3 − n) and consider the
associated long exact sequence

Since X is nondegenerate in P
r , the restriction morphism H 0(OPr (1)) →

H 0(OX(1)) is injective. By the choice of V1, we see that the space H 0(OPn+1(1))⊕
V1 ⊗ H 0(OPn+1) is a subspace of H 0(OPr (1)). Hence the induced restriction
morphism H 0(OPn+1(1)) ⊕ V1 ⊗ H 0(OPn+1) → H 0(OX(1)) is also injective.
This implies that its dual morphism η∗n is surjective. As a consequence, we obtain
Hn+1(E∗(−3− n)) = 0. So we conclude that E∗ is (−2)-regular.

Next, we show E is (−3)-regular. We follow the same approach as above. So we
see thatHn−1(E∗(−2−n)) = 0 if and only if the condition (i) holds.Hn(E∗(−3−
n)) = 0 if and only if the condition (ii) holds. And Hn+1(E∗(−4 − n)) = 0 if and
only if the condition (iii) holds.

Finally, we calculate the regularity of X. From the short exact sequence (2.2.1),
we see that X is (regE−1)-normal and OX is (regE−1)-regular which imply that
regX ≤ regE. So it is enough to bound regE. Since E = ∧rankE−1E∗ ⊗ detE,
we have regE ≤ (rankE − 1) regE∗ − c1(E). It is easy to calculate that rankE =∑k
i=0 dimVk−i and

c1(E) = −d + c1
( k⊕

i=0

Vk−i ⊗ OPn+1(i − k)) = −d +
k∑

i=0

(i − k) dimVk−i ,
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where d = degX. So we obtain regE ≤ d−regE∗+∑k
i=0(k−i+regE∗) dimVk−i .

Hence if E∗ is (−2)-regular, we obtain the bound in (1). If E∗ is (−3)-regular, we
obtain the bound in (2). ��

In order to apply the above proposition, one needs to choose appropriate
subspaces Vi from SiV (we always choose V0 ∼= C) and then show the morphism
wk is surjective. All these depend on the complexity of fibers of the projection f .
Indeed, for any y ∈ X̄, tensoring the residue field k(y) with the morphism wk , we
obtain

wk,y : Vk ⊕ Vk−1 ⊗ C · l0 ⊕ · · · ⊕ C · lk0 −→ OXy (k)

The domain of wk,y is a subspace of H 0(OLy (k)). If we choose Vi = SiV , then the
domain of wk,y is exactly the space H 0(OLy (k)). To get the subjectivity of wk , one
needs wk,y is surjective for all y ∈ X̄, by base change. This in turn means that one
needs to know the regularity of the fiber Xy in the linear space Ly .

Example 2.3 (Regularity of Space Curves, a Theorem of Castelnuovo) In this
example, we use projection method to prove a classical result of Castelnuovo on
the regularity of space curve. Details can be found for instance in [50]. It has
been extended to arbitrary integral projective curves in the celebrated work [17]
by Gruson-Lazarsfeld-Peskine. Here we state the theorem by using the language of
Castelnuovo-Mumford regularity.

Castelnuovo’s Theorem Let X ⊂ P
3 be a nondegenerate nonsingular space curve, then

regX ≤ degX − 1.

To prove it, let us project X from a general point � in P
3 to P

2 to yield a projection
morphism f : X → P

2. As we already knew, the morphism f is always finite and
birational to its image. To apply Proposition 2.2, we need to determine a positive
integer k such that the morphism

wk : q∗p∗OP3(k) −→ f∗OX(k)

is surjective. Here we simply choose the vectors space Vi = SiV . Let y be a closed
point in the image of f . By base change, the subjectivity of wk is equivalent to the
subjectivity of the morphism

wk,y : OLy (k) −→ OXy (k)

for all y, where Ly and Xy are fibers of q and f over y respectively. We need to use
the following classical geometry of space curves, which can be found in [19]. It will
give us more information about the projection f .

(1) The tangent variety of X, which is a variety swept out by the tangent lines of
X, has dimension 2.
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(2) The trisecant lines of X, i.e., the lines intersecting X more than 3 points, do not
fill up the space P

3.

So we can arrange the center � such that it is not contained in the tangent variety
and it does not lie in any trisecant line. As a consequence, f maps all tangent lines
of X to lines in P

2 and it does not map any three points of X to a point in P
2. Each

fiber of f is either a reduced point or consists of two reduced points. Hence for any
closed point y ∈ P

2, the morphism on the fibers over y

w1,y : OLy (1) −→ OXy (1)

is surjective. So by base change, we obtain that the morphism

w1 : q∗p∗OP3(1) −→ f∗OX(1)

is surjective. Finally we apply Proposition 2.2 with the choice of V1 = V and k = 1
to obtain that regX ≤ degX − 1.

From the proof, we can apply this method to a nondegenerate nonsingular
projective curve in any space P

r . Two stated geometric results (1) and (2) still work
in this case. For arbitrary integral curve in P

r , the situation is complicated.

Remark 2.4 It is interesting to see how the idea of projection grow up in literature.
This remark comes from J. Park’s personal note in which he sorts out how the
projection method was developed from the original Castelnuovo’s work through the
work of Pinkham, Szpiro and Lazarsfeld. We keep use the notation in Example 2.3
and write d = degX.

Castelnuovo’s original proof is to show that X is (d − 2)-normal. Still use a
general projection f : X → P

2 with the image X̄ a degree d curve. Let D be the
non-isomorphic locus of f and let D̄ = f (D) which is a Weil divisor on X̄ (D
and D̄ will be discussed in the next section). Then to show X is (d − 2)-normal it
is enough to show D is (d − 2)-normal. On the other hand, it is easy to check that
D̄ is (d − 3)-normal in P

2. Write D̄ = ∑
pi as the sum of distinct points. By the

trisecant lemma, every f−1(pi) consists of two points qi and ri onX. So for pi , one
can choose a degree d−3 hypersurface in P

2 passing through all points in D̄ except
of pi . Lifting this hypersurface to P

3 and adding a hyperplane passing through qi
but not ri to create a degree (d − 2) hypersurface passing all points in D except
of qi . In this way, one shows that D is (d − 2)-normal. This idea was also used by
Pinkham in [44] for nonsingular surfaces.

The above argument has a cohomological interpretation by Szpiro [50]. By the
trisecant lemma again, the morphism OX̄(−1) ⊕ OX̄ → f∗OX is surjective. This

further implies the induced morphism on global sections H 0(OX̄(d − 3)⊕OX̄(d −
2)) → H 0(OX(d − 2)) is surjective, which means X is (d − 2)-normal. This
argument fails for higher dimensional varieties. The approach by Lazarsfeld, which
we follow in this paper, is to consider the morphism wk of (2.1.2) and its kernel
bundle. The advantage is that one can control both the normality and the regularity
of X at the same time.
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3 Complexity of Fibers of Projections

As discussed in the previous section, in order to show the surjectivity of the
morphism wk , one needs to show the surjectivity of the morphism wk,y on fibers for
each point y ∈ P

n+1. It is determined by the complexity of fibers, which we shall
discuss in this section. In addition, we will also discuss the double-point formula
associated to a projection. The application of the formula leads to several interesting
regularity bounds.

We keep using the same notation as in the previous section. Recall that X ⊆ P
r

is a Cohen-Macaulay closed subvariety of dimension n ≥ 1 and degree d, and f :
X→ P

n+1 is a general projection from the center�. Write X̄ to be the image of the
projection f , which is a degree d hypersurface in P

n+1. For the general choice of�,
we have seen that f is a finite birational morphism to X̄. Certainly, the singularities
of X̄ is closely related to the singularities ofX. IfX is nonsingular, which we assume
for the most part of this section, X is the normalization of X̄. There is a natural
inclusion of the sheaves OX̄ ↪→ f∗OX. The conductor ideal of OX̄ in OX is defined
by

C :=Hom(f∗OX,OY ) , ann(f∗OX/OY ).

It is an ideal sheaf in both OX and OX̄ with the property that C · OX = C ⊆ OX
and f∗C = C. The double locus of X̄ is the subscheme D of X̄ defined by the ideal
C, and the double locus of f is � = π−1(D) defined by the ideal C · OX. It is
clear that as sets D is the same as the singular locus of X̄ since it has a nonsingular
normalization X.

The conduct ideal and the double locus associated to a projection have been
studied for a long time. The subscheme D of X̄ is a Cohen-Macaulay subscheme of
pure codimension one [47]. The hypersurface X̄ is seminormal and the schemes D
and � are reduced [18, Theorem 3.7], [48, Theorem 1.1, Proposition 4.1]. Among
other things, the double-point formula says that the double locus � is actually an
effective divisor in a base point free linear system (see the following theorem). The
formula can be used in bounding regularity of X as well as the regularity of OX.
Further study on the positivity of double-point divisors can be found in [39, 40].

Theorem 3.1 (Double-Point Formula) Let X be a nonsingular projective variety
X ⊆ P

r of dimension n ≥ 1 and degree d. Let f : X → P
n+1 be a general

projection with the image X̄ = f (X). Let C be the conductor ideal of OX̄ in OX
defining the double locus D ⊆ X̄ and let � = f−1(D) ⊆ X. Then one has ωX ∼=
C⊗f ∗ωX̄. Therefore C is invertible onX and� is an effective divisor ofX satisfying

� ∼lin (d − n− 2)H −KX,

whereH is the hyperplane divisor onX induced by OPr (1). Furthermore, the linear
system |(d − n− 2)H −KX| is base point free.
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Proof The way to get double-point formula can be found in [21, Section V]. If one
varies the projection center of f , it is not hard to see the linear system |(d − n −
2)H −KX| is base point free (see also [13, Proposition 3.3]). ��
Remark 3.2 (Regularity of OX) As a direct consequence of double point formula,
one can immediately get the regularity bound for the structure sheaf. Indeed, since
the linear system |(d − n − 2)H − KX| is base point free, by Kodaira vanishing
theorem, one can show that regOX ≤ d − 1. Along this line, using inner projection,
i.e., project X from a point in X, Noma [39] shows that if X ⊆ P

r is nondegenerate
with n ≥ 2 and codimension ≥ 2 and is neither a scroll over a smooth projective
curve, the second Veronese surface, nor a Roth variety, then the linear system |(d −
r−1)H−KX| is semiample. By dealing with the exceptional cases in Noma’s work,
Kwak-Park [23] eventually prove the following

Theorem 3.3 (Kwak-Park) Let X ⊆ P
r be a non-degenerate nonsingular projective

variety of dimension n and degree d. Then reg(OX) ≤ d − r + n.

They also classify the extremal and the next extremal cases. Note that if Eisenbud-
Goto conjecture is assumed to hold for nonsingular varieties, then it will imply the
above regularity bound for OX. However, McCullough-Peeva’s counterexamples to
Eisenbud-Goto conjecture show that reg(OX) is not even bounded above by any
polynomial function of d if X is not nonsingular [34].

Remark 3.4 (Regularity Bound by Mumford) Mumford shows in [5] how one can
use the fact that the linear system |(d − n− 2)H −KX| is free to obtain a regularity
bound for X. This bound has been improved by many work including [3, 23, 41].
One can find more detailed discussion in [23]. It is interesting to review this bound
to see the role played by projection.

Theorem 3.5 (Mumford) Let X ⊆ P
r be a nondegenerate nonsingular projective variety

of dimension n ≥ 1 and degree d. Then

regX ≤ (n+ 1)(d − 2)+ 2.

To see the proof, we consider a general projection f : X → P
n+1 and use the

notation introduced in Theorem 3.1 above. Let ID be the ideal sheaf of D as a
subscheme of Pn+1. Since X̄ is a degree d hypersurface and D is defined by the
conductor ideal C in X̄ which is the same as f∗OX(−�), there exists a short exact
sequence 0 → OPn+1(−d) → ID → f∗OX(−�) → 0. From it, for any integer
l ∈ Z, the natural morphism H 0(ID(l))→ H 0(OX(l −�)) is surjective. These fit
into the following diagram

Thus multiplication with the divisor�mapsH 0(OX(l−�)) intoH 0(OX(l)) and the
image is contained in the image of θl . Write U as the subspace of H 0(OX(−KX +
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(d−n−2)H)) spanned by the divisors� for all possible general projections. Then
the natural morphism

α : U ⊗H 0(OX(l −�)) −→ H 0(OX(l))

satisfies the condition that imα ⊆ im θl . Hence to show the surjectivity of θl for
some l, it is enough to show the surjectivity of α. To this end, since U is base point
free, we can choose general n+1 sections from U which generate OX(�) and yield
an exact Koszul complex

0 −→ OX(l − (n+ 1)�) −→ · · · −→ ⊕OX(l −�) −→ OX(l) −→ 0.

The rest of the proof is to use appropriate positivity conditions and chase through
the above complex to obtain the desired vanishing in the definition of regularity.

One of the central problems about generic projection is to understand the
complexity of fibers. This is still widely open. In [31] J. Mather gave a description
of possible fiber algebra of projection of a nonsingular projective variety if the
dimension of the variety is in a nice range. In our situation of projecting X to a
hypersurface, X is in the nice range if the dimension n ≤ 14. In this case, a C-
algebraQ that can occur as a fiber algebra in the projection (i.e., there exists a fiber
Xy such that Xy = SpecQ) if it satisfies the following conditions:

(1) Q is finite dimension as a C-vector space.
(2) Q is the finite direct product Q = 'iQi where each Qi is the quotient of

C[[x1, · · · , xn]].
(3) −1 ≤ ι(Qi) ≤ 0, where ifQi = C[[x1, · · · , xn]]/I for an ideal I , then ι(Qi) =

n− the number of minimal generators of I .
(4) δQ+γQ ≤ n+1 where δQ is the length ofQ and γQ is a non-negative invariant

defined in [30].

Mather gave a complete list of such algebraQ. Based on his list, or using dimension
counting method, one even can see that fibers are curvilinear if the dimension of X
is small enough.

When the dimension of X is beyond the nice range, i.e., dimX > 14, results
of Mather [32] imply that the number of distinct points in the fiber of a general
projection of X to a hypersurface is at most dimX + 1 (for details see [2, Theorem
2.1]). More sophisticated results describing fibers were established by Beheshti-
Eisenbud [2, Corollary 1.2.].

Theorem 3.6 Let X ⊆ P
r be a nonsingular projective variety of dimension n ≥ 1,

and let f : X→ P
n+1 be a general projection. For y ∈ P

n+1, let Xy = f−1(y) be
the fiber over y.

(1) Xy contains at most n+ 1 distinct points.
(2) If n ≤ 14, then the length l(Xy) ≤ n+ 1.
(3) If n ≤ 5, then Xy is curvilinear.
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Proof (1) is from [32] and also by Beheshti and Eisenbud [2, Theorem 2.1] and [2,
Corollary 1.2.]. (2) is from [31]. (3) is by the list of fiber algebras in [31]. Or one
can show it by dimension counting. See also [25]. ��

It is clear now that one cannot expect the length of a fiber of a projection is
bounded above by the form of “dimension+1” of the variety, since the length could
be very large, as illustrated in an example by Lazarsfeld.

Example 3.7 (Lazarsfeld, Beheshti-Eisenbud) Let X be a nonsingular projective
variety of dimension n with �1

X nef. Consider a general projection f : X→ P
n+1.

It induces a morphism on tangent sheaves

df : TX −→ f ∗TPn+1 .

Note that �1
X ⊗ f ∗TPn+1 is ample. So by Lazarsfeld [29, 7.2.1] we see that the k-th

singular locus Sk(f ) = {x ∈ X | rank dfx ≤ n − k} is nonempty if n ≥ k(k + 1).
Take a point x ∈ Sk(f ) and let y = f (x). Consider the length of the fiber algebra
at the point x,

ef (x) = dimC(
OX,x

my · OX,x ),

where my is the maximal ideal of the local ring OPn+1,y . It is proved in [2,

Proposition 2.2] that ef (x) ≥
(
k + 1

�k/2�
)

. Hence if we take k = �√n� − 1, then

the length of the fiber over y is

l(f−1(y)) ≥
(
k + 1

�k/2�
)
=
( �√n�
� �
√
n�−1
2 �

)
.

Remark 3.8 (Invariant Defined by Beheshti-Eisenbud) In their work [2], Beheshti-
Eisenbud propose a new invariant to measure the complexity of fibers of general
projections. This invariant works for arbitrary projection of nonsingular projective
varieties. Here we focus on the situation of projecting a variety to a hypersurface.
Recall X ⊂ P

r is a nonsingular projective variety of dimension n and let f : X →
P
n+1 be a general projection. For a point y ∈ P

n+1, it is cut out by linear forms
l0, · · · , ln and those forms cut out a linear space L of codimension n + 1 in P

r .
Write Z = X ∩ L which is the fiber f−1(y) over the point y. LetW = 〈l0, · · · , ln〉
be the vector space spanned by the forms li . The evaluation map gives a surjective
morphism of sheaves

W ⊗ OPr (−1) −→ IL −→ 0

where IL is the ideal sheaf ofL in P
r . Tensoring with OL one deduces the conormal

sheaf of L in P
r as N∗

L/Pr
∼= W ⊗ OL(−1). The forms li define the subscheme Z
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in X so one has a surjective morphism W ⊗ OX(−1) → IZ/X. Restricting it on
Z, one deduces a surjective morphism W ⊗ OZ(−1) → N∗Z/X. Then by applying
Hom(_,OZ), one arrives at a short exact sequence

0 −→ NZ/X −→ W ⊗ OZ(1)
α−→ Q(X,L) −→ 0

where Q(X,L) is the quotient sheaf, which is supported along the scheme Z. The
invariant defined by Beheshti-Eisenbud is the number

q(X,L) = l(Q(X,L)),

the length of the sheaf Q(X,L). As the normal sheaf of L in P
r is NL/Pr ∼= W ⊗

OL(1), combining with the morphism α, we create a short exact sequence

0 −→ F −→ NL/Pr −→ Q(X,L) −→ 0,

where F is the kernel sheaf. Using the deformation method, Beheshti-Eisenbud
proves that h1(F (−1)) = 0. Hence the induced morphism on global sections

H 0(NL/Pr (−1)) −→ H 0(Q(X,L)(−1))

is surjective which means that

q(X,L) ≤ h0(NL/Pr (−1)) = n+ 1.

The good thing for the invariant q(X,L) is that even n is outside the nice range of
Mather, it is still bounded by n+ 1. It was also expected in [2, Conjecture 1.4.] that
one could bound the regularity of fibers by this invariant. In general, the regularity
of fibers was given by the following conjecture by Beheshti-Eisenbud.

Conjecture 3.9 ([2, Conjecture 1.3]) Let X ⊂ P
r be a smooth projective variety

of dimension n, and let f : X → P
n+1 be a general projection. Then for a fiber

Xy = f−1(y), one has regXy ≤ n+ 1.

As shown in Example 3.7, the length of a fiber in a projection could be very
large. To fix this problem, one possible invariant that could be used to measure
the complexity of fibers is the Loewy length. It works particularly well for low
dimensional varieties with mild singularities. Hopefully it could also be related to
the invariant introduced by Beheshti-Eisenbud.

Definition 3.10 For an Artinian local ring (A,m), we define the Loewy length ll(A)
of A to be the nonnegative number ll(A) := max{i | mi �= 0}. If m = 0, i.e., A is a
field, then we put ll(A) = 0.

For a dimension zero subscheme in P
r , the Loewy length of the scheme is

generally smaller than its length, especially when the scheme is nonreduced and has
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large embedding dimension. Suppose that X ⊆ P
r is a dimension zero subscheme.

The classical result says that regX ≤ l(X) where l(X) is the length of the structure
sheaf OX. Better bounds can be obtained if the position of X is considered. We give
a similar bound in the following theorem by using Loewy length.

Theorem 3.11 ([37, Theorem 2.2]) Let X ⊆ P
r be a zero dimensional subscheme

supported at distinct closed points p1, . . . , pt . For each 1 ≤ i ≤ t , set μi :=
ll(OX,pi ) to be the Loewy length of the local ring OX,pi . ThenX is (μ1+· · ·+μt+t)-
regular.

To apply the Loewy length in regularity problem, we need to use the notation
of reduction, which we recall here. Let (R,m) be a local Noetherian ring. An ideal
J ⊆ m is called a reduction of m if mk+1 = Jmk for some integer k ≥ 0. Moreover,
J is called a minimal reduction if it is a reduction minimal with respect to inclusion.
If J is a reduction of m, then J always contains a minimal reduction [20, Theorem
8.3.5]. Furthermore, if dimR = n and R/m = C, then there exists a nonempty
Zariski open subset U in the n-th Cartesian product (m/m2)n of the cotangent space
such that if x1, . . . , xn ∈ m with (x1 +m2, . . . , xn +m2) ∈ U , then (x1, . . . , xn) is
a reduction of m [20, Theorem 8.6.6].

Turning to geometric setting, let X ⊆ P
r be a projective variety of dimension

n, and p ∈ X be a point. Let L ⊆ P
r be a codimension k linear subspace passing

through p, and assume that L is cut out by linear forms l1, · · · , lk on P
r . Locally

at the point p, each form li gives an element l̄i of mX,p via the quotient mX,p =
mPr ,p/IX,p. Thus we obtain an ideal (ł̄1, . . . , l̄k) ⊆ mX,p generated by the elements
l̄i . We say that L is a reduction linear subspace at (X, p), or simply L is a reduction
at (X, p), if the ideal (l̄1, . . . , l̄k) is a reduction of mX,p. If L is reduction at (X, p),
then the intersection X ∩ L has dimension zero at p and k ≥ n. If one can find a
positive integer a such that maX,p ⊆ J for any minimal reduction J of mX,p, then
we have ll(OX∩L,p) ≤ a − 1. Indeed, in this case, locally at the point p, the ideal
(ł̄1, . . . , l̄k) ⊆ mX,p is a reduction ideal of mX,p, and hence, maX,p ⊆ (l̄1, . . . , l̄k)
since the latter contains a minimal reduction. As OX∩L,p = OX,p/(l̄1, . . . , l̄k), we
see immediately that maX∩L,p = 0 as desired. In application, the number a turns out
to depend on the singularities of the local ring.

To see how we can use Loewy length to bound the regularity of fibers of a
projection for singular cases, we recall rational singularities as well as Du Bois
singularities. For a projective variety X, we say that X has rational singularities
if X is normal and there exists a proper birational morphism f : Y → X from a
smooth variety Y such that Rif∗OY = 0 for i > 0. Let �•X be the Deligne-Du Bois
complex for X, which is a generalization of the de Rham complex for a nonsingular
variety (see [22, Chapter 6] for details). We say that X has Du Bois singularities if
the natural map OX → �0

X = Gr0
filt�

•
X. is a quasi-isomorphism. Note that if X has

rational singularities or log canonical singularities, thenX has Du Bois singularities
[22, Corollary 6.23 and Corollary 6.32].
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Proposition 3.12 Let X ⊂ P
r be a normal projective variety, p ∈ X be a point,

and L ⊂ P
r be a reduction linear subspace at (X, p). Then

(1) If dimX = 2 and X has Du Bois singularities then ll(OX∩L,p) ≤ 2.
(2) If dimX = 3, then the following hold:

(a) If X has rational singularities, then ll(OX∩L,p) ≤ 2.
(b) If X has Cohen-Macaulay Du Bois singularities, then ll(OX∩L,p) ≤ 3.

Proof Let J be a minimal reduction of the maximal ideal mX,p of the local ring
OX,p at p. If (X, p) is a 3-dimensional rational singularity, then it follows from
Briançon-Skoda type theorem (see [20, Theorem 3.2 (1)]) that m3

X,p ⊆ J . If (X, p)
is a 3-dimensional normal Cohen-Macaulay Du Bois singularity, then [49, Lemma
3.5] implies that m4

X,p ⊆ J . Thus the assertions follow immediately. ��
As application, we show that the conjectured bound for fibers in Conjecture 3.9

holds for surface Du Bois singularities and threefold rational singularities.

Proposition 3.13 Let X ⊂ P
r be a closed subvariety of dimension n. Consider a

general projection f : X → P
n+1. For y ∈ P

n+1, let Xy = f−1(y) be the fiber
over y.

(1) If n = 2 and X has normal Du Bois singularities, then regXy ≤ 3.
(2) If n = 3 and X has rational singularities, then regXy ≤ 4.

Proof The proof uses the classical method of dimension counting and the result
above. We do not give the details here. Instead, the complete proof can be found in
[42]. ��

4 Regularity Bounds

In this section, we discuss several regularity bounds. Some of them are optimal and
can be obtained by the generic projection method. In general, obtaining a regularity
bound is a difficult task. It requires better understanding of the geometry and
singularities of the varieties concerned. The current method for regularity bounds
is also limited and hopefully more research can be conducted in this area in the
future.

The study of the regularity bounds for a curve was initiated by Castelnuovo in his
work on linear system on curves (see Example 2.3). A complete result of optimal
regularity bounds for integral curves was established by Gruson-Lazarsfeld-Peskine.
We summarize their results in the following theorem.

Theorem 4.1 (Gruson-Lazarsfeld-Peskine [17]) Let X be a non-degenerate
reduced and irreducible projective curve in P

r of degree d, then

regX ≤ d − r + 2.
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Furthermore,X is (d−r+1)-irregular with r ≥ 3 if and only if one of the following
cases

(1) d = r and X is a rational normal curve (2-regular).
(2) d = r+1 andX is either a elliptic normal curve or a rational curve (3-regular).
(3) d ≥ r + 2 and X is a rational curve with a (d − r + 2)-secant line.

Remark 4.2 The regularity bound above was further proved by Giamo [15] for
a connected reduced curve which may have several irreducible components. In
[38], Noma extended the above result by obtaining a regularity bound involving
the arithmetic genus of the curve. The essential idea used in [17] is to resolve the
defining ideal of the curve by a Eagon-Nothcott complex which is almost exact
except at finitely many points. If the curve is nonsingular, then one can still use
the projection method to obtain the regularity bound, as shown in Example 2.3.
It would be interesting to know if the projection method can still be applied to a
singular curve or a connected curve to obtain the above regularity bound.

The major breakthrough of establishing optimal regularity bounds for higher
dimensional varieties was done by Lazarsfeld [27] for nonsingular surfaces (see
also Pinkham [44] for surfaces in P

5 ). He proves that if X is a nondegenerate
nonsingular projective surface in P

r (r ≥ 4), then regX ≤ degX− codimX+ 1, as
expected in Eisenbud-Goto conjecture. Extending this regularity bound to singular
varieties has attracted considerable attentions. Here we illustrate how one can use
the projection method discussed in Sect. 2 to yield a regularity bound for surfaces
with Du Bois singularities.

Theorem 4.3 (Niu-Park [42]) Let X be a nondegenerate normal surface in P
r

(r ≥ 4) with the Du Bois singularities. Then one has

regX ≤ degX − codimX + 1.

Proof The proof essentially follows the idea in [27] by using projection method.
Hence we consider a general projection f : X → P

3 from a center �. Write V =
H 0(I�(1)), the 4-dimensional vector space spanned by the linear equations of �.
Since X has normal Du Bois singularities, the Kodaira vanishing theorem holds for
X. For any y ∈ P

3, the regularity of the fiber Xy = f−1(y) is no more than 3 by
Proposition 3.13. By the base change, the morphism w2 : q∗p∗(OPr (2))→ OX(2)
is then surjective, which gives us a short exact sequence

0 −→ E −→ OP3⊕V⊗OP3(−1)⊕S2V⊗OP3(−2) −→ f∗OX −→ 0. (4.3.1)

By Proposition 2.2, we have regE∗ ≤ −2 and therefore regX ≤ degX−codimX+
1 as desired. ��
Remark 4.4 (Normal Surfaces) For an arbitrary singular surface, it is still unknown
if one can even have a reasonable regularity bound. This question is still widely
open. However, for a normal surface, one can use Rathmann’s method in his recent
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work [46] to establish the following regularity bound: let X ⊆ P
r be a non-

degenerate normal surface of degree d, then one has

regX ≤ d + r(r − 3)

2
(π − 1)− (r − 2)(r − 3)

2
χ,

where π is the sectional genus and χ = χ(OX). As indicated in the theorem above,
one may still hope that the regularity bound conjectured by Eisenbud-Goto would
hold for a normal surface. It is definitely worth the effort to conduct research on this
problem.

Beyond dimension two, obtaining optimal regularity bounds becomes more
and more difficult, even by using projection method. Along this line, Kwak has
pushed the projection method further to establish regularity bounds for nonsingular
varieties of dimension ≤ 6 [24, 25]. Unfortunately, there is still no clue if those
bounds are optimal (which is equivalent to give counterexamples for Eisenbud-Goto
conjecture).

Theorem 4.5 (Kwak) Let X ⊂ P
r be a nondegenerate nonsingular projective

variety of dimension 3 ≤ n ≤ 6. Then

regX ≤ degX − codimX + 1+ δn,

where δ3 = 1, δ4 = 4, δ5 = 9 and δ6 = 19.

It is natural to extend Kwak’s regularity bounds for singular varieties. The
difficulty is that if the singular locus has positive dimension, then it is rather hard
in projection to control the complexity of fibers which touch the singular locus. For
a threefold with rational singularities, we can use dimension counting to achieve
such control on fibers, since in this case, the singular locus has dimension at most
one. However, for dimension more than 3, using dimension counting becomes
unrealistic.

Theorem 4.6 (Niu-Park [42]) Let X ⊆ P
r be a non-degenerate projective three-

fold with rational singularities. Then

reg(X) ≤ degX − codimX + 2.

In addition to establish regularity bound for arbitrary varieties, it is also
interesting to look for varieties of special types for which one can obtain good
regularity bounds. A scroll over a curve is one of such varieties (see also the last
paragraph of [17]). It was first considered in Bertin’s work [4] and further discussed
in [42].

Theorem 4.7 (Niu-Park [43]) Let C be a smooth projective curve of genus g ≥ 0
and let E be a very ample vector bundle on C of rank n and degree d. Let
X = P(E) ⊆ P

r = P(V ) embedded by a base-point-free subspace V ⊆
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H 0(P(E),OP(E)(1)). X ⊆ P
r is a scroll of codimension e and degree d over a

smooth projective curve C of genus g ≥ 0. Then one has

reg(X) ≤ d − e + 1+ g(e − 1).

Remark 4.8 If the scroll is over P1, then the bound above is optimal and is the one
conjectured by Eisenbud-Goto. However, if the curve has positive genus, it is still
not clear what bound is optimal. Maybe, the first case one should look at is a scroll
over an elliptic curve.

Acknowledgments The author would like to thank Lawrence Ein, Jinhyung Park and Jin Tan for
suggestions and comments.
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The Zariski-Riemann Space of Valuation
Rings

Bruce Olberding

1 Introduction

In a 1961 letter to Serre, Grothendieck [10, p. 129] complained that Boubarki
included valuations in Chapter VI of Commutative Algebra, in the middle of the
book instead of the back, “among the things ‘not to be read’.” Valuations, wrote
Grothendieck, were “a huge mess” because of “endless scales and arpeggios on
compositions of valuations, baroque ordered groups, full subgroups of the above and
whatever.” Valuations do present a mess of various structures—fields, mappings,
rings, groups and orderings. Even the very abundance of available valuations in
contexts such as function fields can pose issues of hard-to-sort data. The present
article isn’t meant to address the opinion of valuations as an out-of-category tool
for the geometer or commutative algebraist—numerous applications in algebraic
geometry and commutative algebra could serve as such a defense—but instead to
survey some of the attempts to find order in another of the complicated aspects of
the theory, that of the topological and geometric nature of the totality of valuation
rings of a field, the Zariski-Riemann space of the field.

Instead of trying to inventory the current uses for the Zariski-Riemann space,
we give an idiosyncratic treatment that emphasizes some basic themes involving
the view of this space as a locally ringed space, with particular emphasis on the
connection between the topology and geometry of subspaces and the intersection of
the valuation rings in these subspaces. The article is thus meant as an introduction
to these topics, and to give a bit of intuition for the Zariski-Riemann space as a
topological or locally ringed space a bit of intuition for the Zariski-Riemann space
as a topological or locally ringed space.
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Let F be a field, and let k be a subring of F . A valuation subring of F/K is
a k-subalgebra V of F such that for each 0 �= t ∈ F , if t �∈ V then t−1 ∈ V ;
equivalently, V has quotient field F and the ideals of V are linearly ordered with
respect to set inclusion. The intersection of all valuation rings of F/k is the integral
closure of k in F . (We do not assume k itself has quotient field F .) Each valuation
ring arises from a valuation, a mapping from F to a totally ordered group G with
a symbol∞ adjoined. This connection with mappings permits arithmetical data to
be associated to points, ideals and rings, and while these maps are fundamental in
many applications, they are not explicitly needed for our purposes. For the treatment
of valuation rings via valuations, we instead refer to Bourbaki [6], to—what else?—
Chapter VI.

The set Zar(F/k) of all valuation rings of F/k is imbued with a topology,
the Zariski topology, which we will review in Sect. 3. We occasionally refer to
the Zariski-Riemann space of a domain R and write Zar(R). By this, we mean
Zar(Q(R)/R), where Q(R) is the quotient field of R. In any case, with this
topology, Zar(F/k) is often called the Zariski-Riemann space of F/k, for reasons
discussed by Nagata [51, p. 2]:

The name of Riemann is added because Zariski called this space ‘Riemann manifold’ in
the case of a projective variety, though this is not a Riemann manifold in the usual sense in
differential geometry. The writer believes that the motivation for the terminology came from
the case of a curve. Anyway, the notion has nearly nothing to do with Riemann, hence the
name ‘Zariski space’ is seemingly preferable. But, unfortunately, the term ‘Zariski space’
has been used in a different meaning [as a Noetherian topological space for which every
nonempty closed irreducible subset has a unique generic point]. Therefore we are proposing
the name ‘Zariski-Riemann space.’

In [82] Zariski implicitly used the Zariski-Riemann space in formulating his
definition of birational correspondence, an idea he developed in order to remedy
a lack of a rigorous way of relating points on two projective models of a function
field K/k. As Zariski [81, p. 402] put it, “It is true that the geometers have a fairly
good intuitive idea of what happens or what may happen to an algebraic variety
when it undergoes a birational transformation; but the only thing they know with
any certainty is what happens in a thousand and one special cases.” The idea then
was to use valuations to track points on successive blow-ups of projective models.
(We review projective models in Sect. 2.) The starting point is Chevalley’s theorem
that every local domain is dominated by a valuation ring. If the local ring is itself
not a valuation domain, then it will in fact be birationally dominated by infinitely
many valuation rings, each representing a different direction in which to blow up the
center of the valuation ring in the model. (The center of the valuation ring V in the
model is the local ring R in the model that is dominated by V , meaning that R ⊆ V
and the maximal ideal of R is contained in the maximal ideal of V .) Next is the
observation that no two points of the same projective model are the centers of the
same valuation ring. Zariski referred to this as “irredunance,” and in modern guise
it is the valuative criterion for separateness. Then, since the model is projective, it
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follows that every valuation ring of F/k is centered on some point in the model.
This is called “completeness” by Zariski and it expresses, via the valuative criterion
of properness, the fact that a projective model X is given by a proper morphism
X→ Spec(k).

Piecing this together, for each projective model X of F/k, there is a surjective
mapping Zar(F/k) → X that sends a valuation ring to its center in X. That the
map is well defined reflects the fact that X → Spec(k) is separated; that the map
is onto reflects the properness of X → Spec(k). The fact that Zar(F/k) → X is
well-defined and surjective is an important feature of the valuation rings of F/k,
and it is one of the things that allows for tracking points through successive blow-
ups, as well as for developing a birational correspondence between models of F/k.
Similarly, when considering modelsX of F/k that are not necessarily projective, the
Zariski-Riemann space Zar(F/k) reveals what’s missing from X. If X → Spec(k)
is not proper, the mapping Zar(F/k) → X is not well defined since there are
valuation rings in Zar(F/k) that do not have a center in X. These valuation rings
then are useful for filling in the missing points for X. This is the idea behind
Nagata compactification [51, 52], although modern treatments such as [11] perform
compactification without recourse to valuation rings.

Although X is a projective model, Zar(F/k) itself rarely is. However, there is a
natural way to view Zar(F/k) as a locally ringed space (see Sect. 3), and the map
Zar(F/k) → X then induces a morphism of locally ringed spaces. As a locally
ringed space, Zar(F/k) is a scheme only in very special circumstances. We show
in Theorem 5.2 this happens only if Zar(F/k) is the normalization of a projective
model. Among other things, this implies that if Zar(F/k) is a scheme, then each
valuation ring of F/k is a localization of the integral closure of a finitely generated
k-algebra. So, since Zar(F/k) is a locally ringed space that is typically not a scheme,
the question arises as to what its “signature” should be.

In Zariski’s case, he treated Zar(F/k) as a topological space, with special focus
on the quasicompactness of Zar(F/k). His approach to resolving singularities in
dimensions 2 and 3 included the step of replacing an infinite resolving system with a
finite one, a step that compactness made possible. In Sect. 3 we discuss the topology
on Zar(F/k) and the significance of compactness for this space. We also pinpoint
what type of topological space Zar(F/k) is: A spectral space whose specialization
order is a tree with a unique minimal element. The fact that Zar(F/k) is spectral
allows for a refinement to a Hausdorff topology, the patch topology, that is important
for many applications. This is discussed in Sect. 4.

In Sect. 5, the focus shifts to the structure of Zar(F/k) as a locally ringed space
and conditions under which Zar(F/k) is a scheme. This being rarely the case, the
more useful question is which subspaces of Zar(F/k) are affine schemes when given
the structure of a locally ringed space in a natural way. Affineness in Zar(F/k) then
remains the theme for the rest of the article.
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2 Projective Models

Let F be a field, and let k be a subring of F . The concept of a projective model
arises naturally when considering valuation rings. Let x1, . . . , xn ∈ F and V be a
valuation ring of F/k. Since the ideals of V form a chain, (x1, . . . , xn)V = xiV for
some i. Thus k[x1/xi, . . . , xn/xi] ⊆ V . A different choice of valuation ring could
produce a different choice for i, but at least one such choice is always possible, so
each valuation ring V of F/k contains one of the rings Di := k[x1/xi, . . . , xn/xi]
for some i. Moreover, if MV is the maximal ideal of V and P = MV ∩ Di , then
(Di)P ⊆ V and V dominates (Di)P . Letting i vary and collecting the localizations
of the Di at each prime ideal, we obtain a collection X of local subrings of F . This
collection,

X =
⋃

i

{(Di)p : p ∈ Spec(Di)},

is the projective model1 of F/k determined by x1, . . . , xn. The normalization of
the projective model X is the set of localizations at the prime ideals of the integral
closures Di , i ∈ {1, 2, . . . , n}, of the rings Di .

Thus, given a projective model X of F/k, each valuation ring in Zar(F/k)
dominates a local ring in the model, the center of the valuation ring in the model.
This suggests viewing the local rings in X as points. Indeed, the projective model X
admits a topology, the Zariski topology, that has as a basis of open sets the sets of
the form

{R ∈ X : x1, . . . , xn ∈ R}, where x1, . . . , xn ∈ F.

Since the points in X are local rings, there is an additional structure present on
X. Define a sheaf OX on X by OX(U) = ⋂

R∈U R for each open subset U of
X. (If U is empty, define OX(U) = F .) If x is a local ring in X, then x is both
a point in X and a stalk of the sheaf (the stalk at itself: OX,x = x). With this
sheaf, X becomes a projective integral scheme, and there is a closed immersion of
X into Pnk = Proj(k[X1, . . . , Xn]); see for example [60, Remark 2.1]. In fact, the
projective models of F/k are simply the projective integral schemes over Spec(k)
whose function fields are contained in F . If the subring k has quotient field F and
we choose elements x1, . . . , xn in k (not just F ), then the projective model of F/k
is the blow-up of Spec(k) at the ideal (x1, . . . , xn).

We constructed a projective model by first choosing elements x1, . . . , xn in F ,
and so each finite subset of F determines a projective model of F/k. The collection
of all projective models of F/k forms a directed system under the ordering of
domination: Let X, Y be a projective models of F/k. Then Y dominates X if for

1 We are following [84] here by not requiring the ringsDi to have quotient field F . In other settings,
the rings in the projective models are assumed to have quotient field F .
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each y ∈ Y , there is xy ∈ X such that OX,xy ⊆ OY,y and mX,xy = mY,y ∩ OX,xy .
(Here mX,xy denotes the maximal ideal of the local ring OX,xy .) The domination
map δYX : Y → X sends y to xy Since X and Y are projective models, the mapping
δYX is well-defined, continuous and closed [84, Lemma 5, p. 119]. (The map δYX when
coupled with the obvious sheaf map is a dominant morphism of schemes.)

The projective models of F/k form an inverse system with respect to domination
[84, Lemma 6, p. 119]. The important conclusion that can be deduced from all this
is: The inverse limit of this system is the Zariski-Riemann space of F/k. But in
which category?

To answer this, we need a topology on Zar(F/k) and a map from Zar(F/k) to
each projective model of F/k. For x1, . . . , xn ∈ F , let

U(x1, . . . , xn) = {V ∈ Zar(F/k) : x1, . . . , xn ∈ V },

and declare the set of all the U(x1, . . . , xn) to be a basis for a topology, the Zariski
topology for Zar(F/k). Now Zar(F/k) dominates each projective model X of F/k
in the sense that for each x ∈ X, there exists a valuation ring V ∈ X such that
OX,x ⊆ V and mX,x = MV ∩ OX,x , where MV is the maximal ideal of V [84,
pp. 119–120]. Let d : Zar(F/k) → X be the domination map that sends V to x.
The mapping d is surjective, continuous and closed [84, Lemma 4, p. 117]. (That
d is well-defined and surjective expresses the valuative criterion for properness [29,
Theorem II.4.7].)

Returning to the statement that the inverse limit of the system of projective
models of F/k is the Zariski-Riemann space of F/k, we can now state this more
precisely by asserting this in the category of topological spaces. We can do better
and locate this statement in the category of locally ringed spaces by defining a sheaf
of rings on Zar(R/k) in the obvious way: If U is an open subset of X = Zar(F/k),
then OX(U) =⋂

V∈U V , where OX(U) = F if U is empty. The stalks of this sheaf
are the valuation rings in Zar(F/k). With this additional structure, we arrive at the
conclusion that the locally ringed space (X,OX) is a “pro-scheme,” a projective
limit of schemes. While not stated in this terminology, the following proposition is
implicit in Zariski-Samuel [84, Theorem VI.41, p. 122]. For more details, see [59,
Proposition 3.3].

Theorem 2.1 (Zariski-Samuel) As locally ringed spaces, Zar(F/k) is the projec-
tive limit of the projective models of F/k.

The proof of the theorem shows that each valuation ring V of F/k is the union
of the local rings that are the centers of V in the projective models of F/k. This
elementary observation is not hard to show directly. In some contexts it is possible
to considerably restrict the types of projective models needed to obtain the valuation
rings in this way. For example, if k is a two-dimensional regular local ring with
quotient field F , then iterated blow-ups of closed points (quadratic transformations)
suffice; see Sect. 7.

Theorem 2.1 establishes the connection between Zar(F/k) and the projective
models of F/k, but it does not immediately reveal the nature of Zar(F/k) as either
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a topological space or a locally ringed space. In the next sections we focus on these
two aspects of Zar(F/k).

3 Topology of the Zariski-Rieman Space

As the results discussed in this section bear out, the topology of the Zariski-Riemann
space is now well understood in the sense that it is possible to say what kind
of topological space Zar(F/k) is, although as of yet there does not exist a full
characterization of spaces that arise as Zar(F/k) for some choice of F and k. This is
summarized in Corollary 3.3 and the discussion that follows it. The development of
this corollary is worth recounting because along the way it emphasizes different
features of Zar(F/k). We do so in this section, with the first theme being that
of compactness. A direct proof of compactness for Zar(F/k) can be found in
Matsumura [47, Theorem 10.5, p. 74]. While this proof has the virtue of being self-
contained, other arguments give more information about the nature of Zar(F/k), so
we discuss these in some detail.

The first appearance of the compactness of the Zariski-Riemann space occurs
in Zariski’s 1940 article [80], where he proves versions of local uniformization for
zero-dimensional valuations of function fields. As a step in the case in which the
base field k is the field C of complex numbers, Zariski proves the compactness
of the subspace X of Zar(F/k) consisting of valuation rings whose residue fields
are C. This is done by viewing X as a closed subspace of a product of copies of
the Riemann sphere C ∪ {∞}. As a closed subset of a product of compact spaces,
X is therefore compact by Tychonoff’s Theorem. In this special case, X is also
Hausdorff, a consequence of the fact that the valuation rings in X all have residue
field k = C. By comparison, Zar(F/k) is never Hausdorff if the field has a nontrivial
valuation ring.

Several years later in [83], Zariski gave a different proof. This time, still working
over a function field F/k but now with arbitrary base field k, he shows that the space
of valuation rings whose residue field is algebraic over k is the projective limit of the
closed points of the projective models2 of F/k. Specifically, he observes that the sets
of closed points in projective models of F/k form an inverse system. Since these
sets of closed points are quasicompact and T1, the inverse limit is quasicompact
by a theorem of Steenrood that had been published 8 years earlier. With these
observations, it remains to show that there is a homeomorphism from the spaceX of
valuation rings in Zar(F/k) whose residue fields are algebraic over k to this inverse
limit. However, Zariski proves something stronger, namely that the valuation rings
in X are the unions of the local rings of the closed points of the projective models.

2 In his articles in this time period, Zariski’s projective models consisted only of the closed points of
the projective models defined in Sect. 2. This was in keeping with the focus on classically defined
projective varieties.
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This is the precursor to Theorem 2.1, the fact that the locally ringed space Zar(F/k)
of all valuation rings of F/k (not just the residually algebraic ones) is the projective
limit of the projective models of F/k. But this had to wait for the right language,
as well as a shift of focus to the projective model and the space Zar(F/k) in their
entirety rather than the closed points of these spaces only, a shift that took place
with the replacement of classical varieties by schemes.

By 1960 when Zariski and Samuel’s text [84] was published, this shift had
taken place. Now the situation is in maximum generality and applies to the Zariski-
Riemann space of an arbitrary field. Specifically, F is a field and k is assumed only
to be a subring of F . With these assumptions, it is shown that Zar(F/k) is the
projective limit of the projective models with no restriction to closed points needed.
The language of locally ringed spaces is not used, but the arguments imply that as
locally ringed spaces, Zar(F/k) is a projective limit of the projective models, and
so we arrive at Theorem 2.1. One small adjustment is needed to the treatment in
[84]: the generic point of the projective models and the space Zar(F/k) is omitted
in [84] from the definitions of these spaces, but these points are needed in order for
the usual presheaf defined over open sets as intersections of local rings to be a sheaf.
With the generic point inserted, the full strength of the claim can be asserted in the
language of locally ringed spaces, as in Theorem 2.1.

Appealing again to Steenrod’s theorem, quasicompactness of Zar(F/k) now
follows from the quasicompactness of the projective models that comprise the
inverse limit. Rather than derive quasicompactness this way, Zariski and Samuel
give another proof. Like the arguments involving inverse limits, the proof implies
something considerably stronger for which only later would there be appropriate
language and context. Again, we work in full generality, where k is a subring of F .
It is shown in [84, Theorem 40, p. 113] that Zar(F/k) is embedded in a product of
copies of a three element set {−, 0,+}, where this set has the T0 topology whose
open sets are ∅, {0,+} and {−, 0,+}. The product here is indexed by the elements x
of F , and in the coordinate x, the embedding into the product sends a valuation ring
V to − if x �∈ V , 0 if x is a unit in V and + if x ∈MV . The set Zar(F/k) inherits a
Hausdorff topology from this product that is finer than the Zariski topology. The
set Zar(F/k) is shown to be a closed subspace of the product. The product is
quasicompact since it is a product of quasicompact spaces, so as a closed subspace
of a quasicompact space, Zar(F/k) is quasicompact in this finer topology and hence
is quasicompact in the Zariski topology.3 We will have more to say on this technique
in the next section.

More can be deduced from this line of reasoning. The three element sets are
finite T0 spaces, and the projective limit of finite T0 spaces is spectral, meaning
(a) the space is quasicompact and T0; (b) the quasicompact open subsets are closed
under finite intersection and form an open basis; and (c) every nonempty irreducible
closed subset has a generic point. Hochster [36] has shown that the topological
spaces that are spectral are precisely the spaces that occur as the prime spectrum

3 For applications of this technique to other contexts, see [61].
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of a commutative ring, hence the reason for the terminology. A closed subspace
of a spectral space is spectral, so the Zariski-Samuel argument proves Zar(F/k) is
not only quasicompact but spectral in the Zariski topology. Thus we arrive at a key
topological description of the Zariski-Riemann space as a spectral space.

But the fact that the Zariski-Riemann space is spectral is not stated in [84],
since its publication predates the concept, nor is it obvious that this is the case
from reading the proof. The first explicit proof that Zar(F/k) is spectral was given
by Dobbs, Federer and Fontana in [12], who proved this by verifying directly for
Zar(F/k), where k has quotient field F , each of the defining criteria for a space
to be spectral. This proof contributes a different understanding of the topological
features of Zar(F/k) because of how it directly addresses these features. For a
model-theoretic proof that Zar(F/k) is spectral, see the appendix of [39].

In the case in which F is the quotient field of the integral domain k, Dobbs and
Fontana gave in [13] a very different proof of the fact that Zar(F/k) is a spectral
space by exhibiting an integral domain whose prime spectrum is homeomorphic to
Zar(F/k), namely the Kronecker function ring of the domain k. We discuss this
construction in some detail because of its importance in understanding Zar(F/k),
and because it is not well known outside of multiplicative ideal theory, where it is a
fundamental tool.

Following Halter-Koch [28], we state the construction in its most general form,
where k is a subring of F that need not have F as its quotient field. Let T be an
indeterminate for F , and define for each valuation ring V ∈ Zar(F/K), a valuation
ring V ∗ of the field F(T ) by

V ∗ = V [T ]MV[T ], where MV is the maximal ideal of V.

Then V = V ∗ ∩F and the maximal ideal of V ∗ contracts in F to the maximal ideal
of V . The Kronecker function ring R of Zar(F/k) is the intersection of the rings
V ∗, where V varies over Zar(F/k). If the base ring k has quotient field F , then R is
the classical Kronecker function ring of k with respect to integral closure of ideals
(see [25, Section 26]):

R =
{
f

g
: f, g ∈ D[T ], g �= 0 and c(f ) ⊆ c(g)

}
.

Here c(−) is the content of a polynomial and I denotes the integral closure of the
ideal I in D. (Other operations on ideals, the e.a.b. star operations, give rise to
different Kronecker functions rings [25, Section 26].)

Regardless of whether k has quotient field F , the ring R has quotient field F(T )
and is a Bézout domain, meaning that every finitely generated ideal is principal;4

4 Desire for a ring extension of k with this property was what motivated Kronecker’s early version
of this construction, which in it original form was an alternate approach, one using divisors rather
than ideals, to repairing the failure of the Fundamental Theorem of Arithmetic for classes of orders
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see [16, Corollary 3.6], [28, Theorem 2.2] and [35, Corollary 2.2]. As a Bézout
domain, R has the property that the valuation rings of F(T )/R are exactly the
localizations of the ring R at its prime ideals. (Rings with this property, Prüfer
domains, are the subject of later sections.)

Piecing this together with facts from [13] and [35, Proposition 2.7], it is noted
in [59, Proposition 4.2] (see also [16, Corollary 3.6]) that this implies the following
theorem.

Theorem 3.1 The Zariski-Riemann space of F(T )/R consists of the localizations
of the ring R at its prime ideals. The mapping from Spec(R) to Zar(F/k) that sends
P ∈ Spec(R) to RP ∩ F is a closed bijective morphism of locally ringed spaces.

And so we obtain once more that Zar(F/k) is a spectral space, this time because
it is homeomorphic to the prime spectrum of a ring. Moreover, the Zariski-Riemann
space of F/k is the image of an affine scheme under a morphism of locally ringed
spaces. For more on the connection between topological properties of Zar(F/k) and
the Kronecker function ring R, see [16] and [59].

A spectral space X admits a partial ordering induced by specialization: If x, y ∈
X and y is in the closure of the set {x}, then x is a generalization of y and y is a
specialization of x. Specialization defines a partial order given by x ≤ y if and only
if y is a specialization of x. If X = Spec(R) for a ring R, then the specialization
order is simply the partial order on the set of prime ideals given by inclusion, while
for Zar(F/k) the specialization order is the reverse order of set inclusion.

The posets P that arise as the set of prime ideals of a Bézout domain are
characterized in [43, Theorem 3.1] as trees with unique minimal element for which
(a) every chain in P has an infimum and a supremum, and (b) if x, y ∈ P and x < y,
then there exist x1, y1 ∈ P such that x ≤ x1 < y1 ≤ y and there does not exist
an element of P properly between x1 and y1. These last two properties are always
satisfied for a partially ordered set of prime ideals of a commutative ring.

Corollary 3.2 A partially ordered set X is order isomorphic to Zar(F/k) with the
specialization order for some field F and subring k if and only if X is a tree with
unique minimal element and X satisfies (a) and (b).

Proof For necessity, apply [43, Theorem 3.1] and Theorem 3.1. Conversely,
suppose that X is a tree with unique minimal element and X satisfies (a) and (b).
By Lewis [43, Theorem 3.1], there exists a Bézout domain R whose poset of prime
ideals is isomorphic to the poset of elements of X. As partially ordered sets, the
Zariski-Riemann space Zar(R) with the specialization order is order isomorphic to
Spec(R). (This follows from the fact that Zar(R) is the set of localizations of the
Bézout domain R at its prime ideals.) Thus Zar(R) is order isomorphic to X. ��
Corollary 3.3 Let F be a field, and let k be a subring of F . Then Zar(F/k) is a
spectral space whose specialization order is a tree having a unique minimal element.

in algebraic number fields. See Fontana and Loper [23] for a discussion of this and for much more
on the Kronecker function ring construction.
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Proof By Theorem 3.1, Zar(F/k) is homeomorphic to the prime spectrum of a
Bézout domain. Now apply Corollary 3.2. ��

Having a converse to the corollary—a precise topological classification of the
Zariski-Riemann space—is equivalent to the difficult and longstanding problem of
characterizing the spectral spaces that occur as the prime spectrum of a Bézout
domain. A remarkable connection between the theory of Bézout domains and that
of lattice-ordered abelian groups, the Jaffard-Kaplansky-Ohm Theorem [24, Theo-
rem 5.3, p. 113], allows this problem to be reinterpreted as that of characterizing the
prime spectrum of lattice-ordered abelian groups, which in turn translates through
a duality between these groups and MV -algebras into the problem of describing
the prime spectrum of an MV -algebra. It is these last two versions of the problem,
which still remain open, that have received the most attention; see for example [78]
and it references.

In any case, in light of Theorem 3.1, saying any more about the nature of
Zar(F/k) as a spectral space is equivalent to saying more about the prime spectrum
of a Bézout domain, a lattice-ordered abelian group or anMV -algebra.

Although it is beyond the scope of this article, there is an interesting extension
of the topological point of view on Zar(F/k). In a series of articles, Finocchiaro,
Fontana and Spirito have shown that the Zariski-Riemann space of a domain can
be viewed as a subspace of the space of semi-star operations of finite type for
this domain. (A semistar operation is a type of closure operation on the monoid
of submodules of the quotient field of the domain.) This space is also a spectral
space in which reside other spaces of star operations and local rings. This approach
has a number of applications to multiplicative ideal theory. See [17, 19] for surveys
of extensive work done in this direction.

4 The Patch Topology

Although rarely Hausdorff themselves, spectral spaces admit a refinement to a
Hausdorff topology, called the patch or constructible topology, that plays a crucial
role in the theory of spectral spaces, as well as in the topology of the Zariski-
Riemann space. This topology on Zar(F/k) is the topology inherited from the
product of the three element spaces discussed in Sect. 3. But a direct definition is
possible too: A basis for the patch topology on a spectral spaceX is given by unions
of sets of the form U1 ∪ (X�U2), where U1, U2 are quasicompact open sets of
X. When interpreted for the Zariski-Riemann space Zar(F/k) of F/k, the patch
topology has basic open sets of the form

U(x1, . . . , xk; y1, . . . , ym) = {V ∈ Zar(F/k) : x1, . . . , xk ∈ V, y1, . . . , ym ∈MV },

where x1, . . . , xk, y1, . . . , ym ∈ F . These open sets are also closed in the patch
topology, and thus the topology has a basis of clopen sets. As such, the patch
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topology is zero-dimensional, Hausdorff and quasicompact. The subsets of a
spectral space that are closed in the patch topology are again spectral spaces. For
examples of the use of the patch topology in the context of Zariski-Riemann space,
see [15, 16, 18, 35, 39, 54, 59, 61–63]

Density in the Zariski topology of Zar(F/k) is not very useful because it is too
easy to satisfy. Each subset of Zar(F/k) containing F , and hence every nonempty
open subset, is dense in the Zariski topology. Similarly, closure in the Zariski
topology produces sets that can be too too large for applications. Having more closed
and open sets, the patch topology allows for more subtle distinctions and flexibility
with topological concepts. For example, finding patch dense subspaces of Zar(F/k)
is useful because of the following observation, which is a quick consequence of
the interpretation of the patch topology for Zar(F/k). It concerns a situation that
is in the spirit of tracking points on blowups by allowing for the replacement of an
arbitrary valuation ring with one from a dense subset.

Proposition 4.1 Let k be a Noetherian subring of the field F , and let X ⊆ Y ⊆
Zar(F/k). Then X is patch dense in Y if and only if for all finitely generated k-
subalgebras R of F and prime ideals P of R, whenever there is a valuation ring
in Y that contains R and is centered on P , then there is a valuation ring in X that
contains R and is centered on P .

In particular, if X is patch dense in Zar(F/k), then for each projective model Y
of F/k and point p of Y , whenever there is a valuation ring centered on p, then this
valuation ring can be replaced with one from X that is centered on p.

Maintaining still the assumption that k is a Noetherian ring, the patch closure of
a subset X in Zar(F/k) is the projective limit of the patch closures of the images
of X in the projective models of F/k under the domination map [59, Lemma 2.8].
In fact, the patch closure of X is the set of valuation rings in Zar(F/k) that are
centered in each projective model Y of F/k on a point y in Y for which the Zariski
closure of {y} in Y is the Zariski closure of a subset of the image of X in Y under
the domination map [59, Theorem 3.4].

The following theorem for function fields, due to Kuhlmann, exhibits some
important dense subspaces of Zar(F/k). Density in these cases is a consequence
of powerful existence theorems in [39] for valuations of function fields. To state
Theorem 4.2, we recall that an Abhyankar valuation ring of a function field F/k
is a valuation ring for which trdegkF = r + trdegkV/MV, where r is the rational
rank of the value group of V . A special class of Abhyankar valuation rings is the set
of prime divisors of F/k, those DVRs V for which trdegkV/MV = trdegkF − 1.
Throughout the rest of the paper, we refer also to the Krull dimension of V as the
rank of V . (The rank of V is thus the rank of the value group of V as an ordered
group.)

Theorem 4.2 (Kuhlmann [39, Corollaries 2, 4, 5, 6, 8, 10, 11]) If F/k is a finitely
generated field extension, then each of the following subsets of Zar(F/k) is dense
in the patch topology: the set of Abhyankar valuation rings of F/k; the set of prime
divisors of F/k; the set of valuation rings with finitely generated value group and
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residue field a finite extension of k; the set of discrete valuation rings with residue
field a finite extension of k; the set of valuation rings of maximal rank with residue
field a finite extension of k. If also k is perfect, then the set of discrete valuation
rings with residue field k and the set of valuation rings of maximal rank and residue
field k each lie patch dense in the space of all valuation rings of F/k with residue
field k.

Since the patch topology is Hausdorff, a valuation ring V in Zar(F/k) is a patch
limit point of a subset X of Zar(F/k) if and only if for all x1, . . . , xn ∈ V and
y1, . . . , ym ∈ MV , there are infinitely many valuation rings W in X with the xi
in W and the yj in MW . Patch limit points can also be interpreted using ultrafilter
limits; see [16].

Distinguishing patch limit points of a set of valuation rings is useful when dealing
with representations of an integrally closed domain. To simplify notation, define for
each subset X of Zar(F/k):

A(X) =
⋂

V∈X
V, J (X) =

⋂

V∈X
MV .

All the valuation rings that are patch limit points of a subset X of Zar(F/k) also
contain A(X) so that A(X) = A(X), where X is the patch closure of X. There
are optimal choices for these patch closed subsets in the sense that there is a patch
closed subset Y of X such that A(X) = A(Y ) and no proper patch closed subset
of Y gives a representation of A(X) [61, (4.2)]. (This representation need not be
unique [61, Example 4.3].)

An application of this idea is taken from [63, Corollary 3.6]: Suppose the field F
is countable and A is a completely integrally closed local subring of F/k that is not
a valuation ring of F/K . Then there is a patch closed representation of A that in the
patch topology is homeomorphic to the Cantor set.

A second example is the situation in which X is a nonempty subset of Zar(F/k)
such that J (X) �= 0. In this case, if A(X) is a completely integrally closed local
ring that is not a valuation ring of F/k, then there is a representation of A(X)
that is perfect (i.e., every point is a limit point) and patch closed in Zar(F/k)
[63, Theorem 3.5].

Moreover, the Baire Category Theorem implies in this case that A(X) = A(Y )
for every co-countable subset Y of X [63, Corollary 3.7]. The underlying theme
here is that there is in general a great deal of redundancy in the representation of an
integrally closed domain as an intersection of valuation rings. In fact, irredunance
among valuation rings in a representation is fairly special; see [55, 61] for example.
Irredundance is closely connected with whether a valuation ring is isolated in the
representing set with respect to the patch topology; see [61]. Being isolated in the
entire Zariski-Riemann space rather than a subspace is a property so strong that it
occurs only in very special circumstances:

Theorem 4.3 (Spirito [75, Theorem 3.4]) A valuation ring V ∈ Zar(F/k) is
isolated in the patch topology if and only if there are x1, . . . , xn ∈ F and a maximal
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ideal M of k[x1, . . . , xn] that is isolated in the patch topology such that V is the
integral closure of k[x1, . . . , xn]M .

So if V is isolated in the patch topology, then V appears on the normalization of a
projective model of F/k. Moreover, if V has rank 1 and k has quotient field F , then
V is isolated in the patch topology of Zar(F/D) if and only if V is a localization of
k and its center on k is isolated in the patch topology of Spec(k) [75, Theorem 5.2].

Finally, we mention a connection between patch closure and rank that is
important later for Theorem 6.7.

Theorem 4.4 ([62, Theorem 4.3]) Let X be a nonempty subset of Zar(F/k) such
that J (X) �= 0. If A(X) is a local ring that is not a valuation domain, then the patch
closure of X contains a valuation ring of rank > 1.

The preceding results are mostly concerned with subspaces of Zar(F/k), but we
can ask similar questions about the nature of the entire space Zar(F/k). Spirito [75,
Corollary 6.5] has shown that if D is a Noetherian local domain of dimension at
least 3, then the patch topology of Zar(D) is perfect. Ideas behind this lead to the
striking fact that for a countable local Noetherian domain D, the patch topology of
Zar(D) is determined by very little information aboutD. (In the theorem,D denotes
the integral closure of D.)

Theorem 4.5 (Spirito [75, Theorem 6.12]) Let D1 and D2 be two countable
Noetherian local domains. Then Zar(D1) and Zar(D2) are homeomorphic in the
patch topology if and only if (a) dim(D1) = dim(D2) = 1 and |Max(D1)| =
| Max(D2)|; (b) dim(D1) = dim(D2) = 2; or (c) dim(D1) ≥ 3 and dim(D2) ≥ 3.

5 Schemes in Zar(F/k)

The locally ringed space Zar(F/k) is a scheme only in special circumstances, as
we will demonstrate in this section. A more interesting question, that of which
subspaces of Zar(F/k) are affine schemes, is taken up in the next section. The
purpose of this section then is discuss the extreme case in which Zar(F/k) is itself
a scheme.

For each nonempty subset X of Zar(F/k), we let OX be the presheaf defined on
each Zariski open subset U ofX by OX(U) =⋂

V∈U V , whereOX(U) = F if U is
empty. The stalks of this presheaf are the valuation rings inX, and thus the valuation
rings serve as both points in the space and the stalks of the presheaf at these points.
It is straightforward to see that OX is a sheaf if and only if X is irreducible as a
topological space.

In order for (X,OX) to be a scheme over k, it is thus necessary that X be
irreducible. Second, if (X,OX) is a scheme, then there is an open cover {Uα} of
X such that for each α, Uα is a quasicompact open subset ofX for which (Uα,OUα )
is an affine scheme. This last condition requires that for each α, the localizations
of the ring OX(Uα) at its prime ideals are the valuation rings in Uα , and so Uα is
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the Zariski-Riemann space of OX(Uα). This calibration between the prime ideals
of OX(Uα) and the valuation rings in Uα is what rules out almost all Noetherian
examples while ruling in an important class of non-Noetherian rings, the Prüfer
rings of multiplicative ideal theory. These are precisely the integral domains for
which each localization at a prime ideal is a valuation ring.

The class of Prüfer domains has been thoroughly studied; see, for example, [22,
25, 41, 42]. There exist dozens of characterizations of such rings, among them that
a domain is Prüfer if and only if each localization at a maximal ideal is a valuation
domain. Necessarily, a Prüfer domain is integrally closed, and it is Noetherian if and
only if it a Dedekind domain. A valuation-free characterization, of which there are
many, is the original definition of Prüfer’s, that every non-zero finitely generated
ideal is invertible. Homologically, the Prüfer domains are the domains for which
torsion-free modules are flat.

This almost describes the conditions under which (X,OX) is a scheme. What
remains is the issue of which subspaces U of Zar(F/k) can occur as the Zariski-
Riemann space of a Prüfer domain with quotient field F . Necessarily, for U to be
such a subspace, if a valuation ring V is in U , then all the valuation rings between
V and F (which are in fact all the rings between V and F ) must be in U . In other
words, U is closed under generalizations. Less obviously, U must be patch closed.
This is because the fact thatU is the set of valuation rings containing OX(U) implies
that U is the intersection of the patch closed sets of the form U(x1, . . . , xn), where
x1, . . . , xn ∈ OX(U).

Thus a subspace U of Zar(F/k) is the Zariski-Riemann space of a Prüfer domain
with quotient field F only if U is closed in the patch topology and closed under
generalizations. By way of comparison, a subset of a spectral space is closed if
and only if it is patch closed and closed under specializations. This suggests
a dual topology on a spectral space, and hence on Zar(F/k) also, one whose
closed sets consist of patch closed sets that are closed under generalizations. This
topology, which is a familiar tool in the study of spectral spaces, appears unnamed in
Hochster’s paper, where he shows that a spectral space endowed with this topology
is again spectral. (And so, strikingly, if a poset can occur as the poset of prime ideals
of a commutative ring, so can the poset formed from reversing the ordering.) This
dual topology, which is called the inverse topology in [71], is used implicitly in the
next lemma.

Putting all this together, we arrive at

Lemma 5.1 Let X be a nonempty irreducible subspace of the Zariski-Riemann
space Zar(F/k) of F/k. Then (X,OX) is a scheme over k if and only if X is closed
under generalizations and X has a cover {Uα} of Zariski open sets in X that are
patch closed in Zar(F/k) and have the property that OX(Uα) is a Prüfer domain
with quotient field F .

Proof One direction is proved above. Conversely, suppose that X is closed under
generalizations and X has a cover {Uα} of Zariski open sets in X that are patch
closed in Zar(F/k) and have the property that OX(Uα) is a Prüfer domain with
quotient field F . We need only verify that (Uα,OUα ) is an affine scheme for each
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α. Since A = OX(Uα) is a Prüfer domain with quotient field F , all the valuation
rings in Uα arise as localizations of A. The only thing left to verify then is that
every localization of A at a prime ideal is in Uα . Since A is a Prüfer domain with
quotient field F , then the only patch closed subsets of the Zariski-Riemann space of
A that are closed under generalizations and whose valuation rings intersect to A is
the Zariski-Riemman space of A itself [59, Lemma 5.4(3)]. Thus Uα is the set of all
valuation rings between A and F , and since A is a Prüfer domain, every localization
ofA at a prime ideal is one of these, proving that (Uα,OUα ) is an affine scheme. ��
Theorem 5.2 The following are equivalent.

(1) Zar(F/k) is a scheme over k.
(2) Zar(F/k) is the normalization of a projective model of F/k.
(3) There exist x1, . . . , xn ∈ F such that for each i the integral closure of the ring

k[ x1
xi
, . . . , xn

xi
] in F is a Prüfer domain.

Proof

(1)⇒ (2) Suppose X = Zar(F/k) is a scheme over k. If U is a Zariski open
subset of X such that (U,OU) is an affine scheme, then for each basic open
subset U ′ of U , (U ′,OU ′) is also an affine scheme [59, Lemma 5.4(2)]. By
Lemma 5.1 and the fact that X is quasicompact, X has a finite cover {Ui} of
basic open sets Ui such that OX(Ui) is a Prüfer domain with quotient field F for
each i. For each i, write Ui = U(xi1, . . . , xin(i)), for some xi1, . . . , xin(i) ∈ F .
Since (Ui,OUi ) is an affine scheme, the integral closure OX(Ui) of
k[xi1, . . . , xin(i)] is by Lemma 5.1 a Prüfer domain with quotient field F .
Let M be the union of the affine models of F/k determined by the rings
k[xi1, . . . , xin(i)]; i.e. M is the collection of localizations of these rings at
their prime ideals. Since X is the set of localizations at prime ideals of the
normalizations of these rings, M is, in the language of [84], a complete model.
(Alternatively, as a scheme, M is proper over k by the valuative criterion.)
Therefore, by the Zariski-Samuel version of Chow’s Lemma [84, Lemma 7,
p. 121], M is dominated by a projective model N of F/k. Let N denote the
normalization of this model, and let M denote the normalization of M . If
V ∈ Zar(F/k) = M , then V is dominated by a local ring in N . However, the
only local ring that birationally dominates a valuation ring is the valuation ring
itself, so V ∈ N and hence Zar(F/k) ⊆ N . On the other hand, if R is a local ring
in N , then R birationally dominates a local ring in M , and since R is integrally
closed, this implies that R birationally dominates a local ring in M . The local
rings in M are valuation rings, so the valuation ring in M dominated by R is R
itself, which proves R ∈ Zar(F/k) and shows that N = Zar(F/k).

(2)⇒ (3) This is clear.
(3)⇒ (1) Assuming (3), it suffices by Lemma 5.1 to show that each V ∈

Zar(F/k) occurs as the localization of the integral closure of one of the rings
in (3). Let V ∈ Zar(F/k). Then (x1, . . . , xn)V = xi for some i since V is a
valuation ring. Therefore, the integral closure R of k[ x1

xi
, . . . , xn

xi
] is contained in
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V . Let P be the center of V in R. Then RP is by assumption a valuation domain,
and since V dominates RP , V = RP , which verifies (1).

��
In the case of function fields in at least one variable, we obtain the unsurprising

fact that the Riemann surface of a curve is the only Zariski-Riemann space that is a
scheme.

Corollary 5.3 If F/k is a finitely generated field extension, then Zar(F/k) is a
scheme if and only if the transcendence degree of F/k is ≤ 1.

Proof This follows from Theorem 5.2 and the fact that an integrally closed
Noetherian domain is a Prüfer domain if and only if it has Krull dimension ≤1. ��
Corollary 5.4 If X is a k-scheme in Zar(F/k) that is proper over k, then X =
Zar(F/k) and X is projective over k.

Proof If X is a k-scheme in Zar(F/k), the valuative criterion shows that X is
proper over k if each valuation ring in Zar(F/k) dominates a valuation ring in X.
A valuation ring birationally dominates another valuation ring only if the two rings
are equal. Thus X is proper over k if and only if X is the Zariski-Riemann space of
F/k. The corollary now follows from Theorem 5.2 ��

The next example shows it is possible for Zar(F/k) to be a projective scheme
that is not affine.

Example 5.5 Suppose k is a subfield of the field F and there is a valuation ring V
of F/k such that V/MV

∼= k(T ), where T is an indeterminate for k. (For example,
if F = k(S, T ), with S, T indeterminates for k, and V is the localization of k[S, S

T
]

at the height one prime ideal T k[S, S
T
], then V/MV

∼= k( ST ).) Let R = k +MV .
The ring R has quotient field F and every integrally closed subring of F properly
containing R is a Prüfer domain [14, Example 6.3]. The ring R is local but not a
valuation ring, and so there is 0 �= x ∈ F such that neither x nor x−1 is in V . The
integral closures of the rings R[x] and R[x−1] are Prüfer domains. Every valuation
ring of F containing R contains either R[x] of R[x−1], so by Theorem 5.2, the
Zarski-Riemann space of F/R is a projective scheme that is not affine.

In [27], Green defines a scheme to be a Prüfer scheme if it is normal, integral,
separated and the local ring at each closed point is a valuation ring. Any scheme in
Zar(F/k) is separated and therefore Prüfer under Green’s definition. Temkin and
Tyomkin [77] introduce the notion of a Prüfer algebraic space in their study of
relative Zariski-Riemann spaces. They call an integral quasicompact quasiseparated
algebraic space Prüfer if each proper birational morphism into it is an isomorphism.
An algebraic space is then Prüfer if it a finite disjoint union of reduced irreducible
components and each component is Prüfer. By the valuative criterion for properness,
any affine scheme in Zar(F/k) has the property that each proper birational
morphism into it is an isomorphism, and so the affine schemes in Zar(F/k) are
Prüfer in the sense of Temkin and Tyomkin also.
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6 Affine Schemes in Zar(F/k)

In this section we are interested in when a subspace of Zar(F/k) has the structure of
an affine scheme. While this is partly because of a desire to understand Zar(F/k) as
a locally ringed space, the real motivation is birational algebra and the assembly
of rings as intersections of valuation rings between an integral domain and its
quotient field. In the case of many of the main examples of rings assembled in
this way, the base domain k is a Noetherian domain, or even a finitely generated
algebra over a field, and still the ring obtained is a Prüfer domain, often quite
complicated in structure. Roughly, if Noetherian domains are what arise in F/k
when k is Noetherian and we take k-subalgebras of F without too many generators
(e.g., finitely many), then Prüfer domains are what arise from intersecting not too
many (but in general, many more than finitely many) valuation rings of F/k. The
“not too many” here is really a qualitative rather than quantitative statement, and
it is in formalizing this where the topology and geometry of the Zariski-Riemann
space can assist. In some cases, purely algebraic arguments can be given instead,
but the point of this section is to put the topological and geometric approach front
and center.

We begin with a lemma that is a slightly stronger version of a result due to
Sekiguchi (see [72, Propositions 10 and 11], [59, Lemma 5.4(3) and Proposition
6.1]), and which is not surprising in light of Lemma 5.1. It shows that affine schemes
in the Zariski-Riemann space are the Zariski-Riemann spaces of Prüfer domains.

Lemma 6.1 LetX be a nonempty subspace of the Zariski-Riemann space Zar(F/k)
of F/k. Then (X,OX) is an affine scheme (and implicitly OX is a sheaf) if and only
if X is patch closed in Zar(F/k) and closed under generalizations, and OX(X) is
a Prüfer domain with quotient field F . In this case, X is the Zariski-Riemann space
of OX(X).

Ultimately we are interested in the affineness of subspaces of Zar(F/k) because
the intersection of the rings in an affine subspace X produce Prüfer domains. As
discussed in Sect. 4, any subset ofX that is dense in the patch topology will produce
the same intersection as that of X, and so we want to be a little looser with the
terminology so as to apply the adjective “affine” to patch dense subspaces of an
affine scheme. To do so, we drop “scheme” and say a subsetX of Zar(F/k) is affine
if it contains F and the closure of X in Zar(F/k) with respect to the patch topology
and generalizations is an affine scheme. The reason for insisting that F ∈ X is so
that X has a generic point and hence is irreducible in the Zariski topology. This in
turn implies that the presheaf OX is a sheaf, and hence (X,OX) is a locally ringed
space. Since we are interested in the intersection of rings in X, there is no harm in
assuming F ∈ X.

In summary, affine subsets of Zar(F/k) are locally ringed spaces that are
easily reinterpreted as affine schemes by adding some patch limit points and
generalizations. More generally, any subset X of Zar(F/k) that contains F yields
a locally ringed space (X,OX), a fact that we will use implicitly at several points
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in this section when treating morphisms from X to, say, the projective line P1
k . In

particular, “morphism” is morphism in the category of locally ringed spaces.
So now the focus shifts to affine subsets and the intersection of the rings in

such sets. To simplify notation and to reflect this shift, we continue to write A(X)
for OX(X), i.e., A(X) = ⋂

V∈X V , as was done in Sect. 4. As expected, the
geometry of an affine subset of Zar(F/k) trivializes. For example, if k is integrally
closed in F , the Zariski-Riemann space Zar(F/k) is itself affine if and only if
Zar(F/k) → Spec(k) is an isomorphism of locally ringed spaces; if and only if
every projective model of F/k is affine. This last equivalence follows from the
following more general theorem that can be pieced together from Lemma 6.1 above,
Corollary 6.4 and Theorem 6.6 of [59] and Theorem 3.1 of [60]. By P1

k , we mean
the projective line Proj(k[X, Y ]).
Theorem 6.2 The following are equivalent for a subset X of Zar(F/k) with
F ∈ X.

(1) X is affine.
(2) A(X) is a Prüfer domain with quotient field F .
(3) Every projective model of F/k is dominated by an affine model dominated by

X.
(4) Every k-morphism φ : (X,OX)→ P1

k factors through an affine scheme.

Item (4) is the point of departure for the next theorem. The idea is to detect
affineness via the images of morphisms into P1

k . If these images all land in affine
schemes in P1

k , then X is affine by Theorem 6.2. This is the point of view taken in
[60], where this approach is used to give a single explanation for a disparate set of
results in the literature on when an intersection of valuation rings is a Prüfer domain.

Theorem 6.3 ([60, Corollary 3.6]) Let X be a subset of Zar(F/k) with F ∈ X. If
for each k-morphism φ : X→ P1

k there is a homogeneous polynomial f ∈ k[T0, T1]
of positive degree such that the image of φ is in (P1

k)f , then X is affine with torsion
Picard group.

That such a subset X is affine follows from Theorem 6.2, so the additional
strength here is that X has torsion Picard group, which, because of the affineness
of X, amounts to A(X) having torsion Picard group; i.e., for each nonzero finitely
generated ideal I of A(X), some power of I is principal. If there is n > 0 such
that each homogeneous polynomial f in the statement of the theorem has degree
≤ n, then this power is divisible by only such primes that appear as factors of n [60,
Remark 3.7]. Thus if n = 1, every finitely generated ideal of A(X) is principal and
so A(X) is a Bézout domain.

Theorem 6.3 can be strengthened if k a field that is algebraically closed in F . In
this case, if no k-morphism X→ P1

k has every closed point of P1
k in its image, then

X is affine with torsion Picard group [60, Theorem 4.2].
As a set, P1

k is the collection of nonmaximal homogeneous prime ideals in
k[X, Y ], so Theorem 6.3 trades the problem of determining when an intersection of
valuation rings is a Prüfer ring for the problem of homogeneous prime avoidance.
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With this in mind, here is how Theorem 6.3 can be applied to verify some of the
main sources of examples of Prüfer intersections. We only outline the proofs; for
more details see [60].

Corollary 6.4 (Nagata [50, (11.11), p. 121]) Finite subsets of Zar(F/k) contain-
ing F are affine.

Proof Any finite subset of a projective scheme is contained in an affine scheme, but
more to the point here, finiteness and prime avoidance allow the choice of a linear
polynomial f in Theorem 6.3, and so finite subsets X of Zar(F/k) are not only
affine but have the additional property that A(X) is a Bézout domain. ��

A little weaker version of the next corollary was first proved in [65] for the case
in which k is a field.

Corollary 6.5 If k is a local domain and X is a subset of Zar(F/k) containing F
that has cardinality less than that of the residue field of k, thenX is affine and A(X)
is a Bézout domain.

Proof Let φ : X → P1
k be a k-morphism. Use the fact that there are more units

in k than valuation rings in X to construct a homogeneous linear polynomial f ∈
k[T0, T1] that is not contained in any prime ideal in the image of φ. Then (P1

k)f is
an affine open set in P1

k containing the image of φ. Now apply Theorem 6.3. ��
The next corollary has a long pedigree and is one of the more surprising and

powerful sources of Prüfer domains and hence of affine sets in Zar(F/k). Versions
of this corollary have been proved by Dress [20], Gilmer [26, Theorem 2.2],
Roquette [68, Theorem 1], Loper [45] and Rush [69, Theorem 1.4].

Corollary 6.6 LetX be a subset of Zar(F/k) with F ∈ X. If there is a nonconstant
monic polynomial f ∈ k[T ] that has no root in the residue field of any V ∈ X, then
X is affine with torsion Picard group.

Proof The homogenization of f behaves as the “f ” in Theorem 6.3 and yields the
corollary. ��

In particular, if k is a non-algebraically closed subfield of the field F and
f (T ) ∈ k[T ] has no root in k, then the set of valuation rings of F/k whose residue
fields contain no root of f is affine. An important application of this is the absolute
real holomorphy ring of a formally real field, the intersection of the formally real
valuation rings of the field. Choosing f (X) = X2 + 1 in Corollary 6.6 shows that
this ring is a Prüfer domain. This was first proved by Dress [20], and there is now
an extensive literature on this ring and its applications. We briefly discuss this ring
in the last section.

The criteria discussed so far for determining affineness use geometric criteria,
either implicitly or explicitly. The next results are more topological in nature, and
with mild hypotheses can be made strictly topological, as is done in Corollary 6.9.

Theorem 6.7 ([62, Main Theorem]) A quasicompact set X of rank one valuation
rings in Zar(F/k) whose maximal ideals do not intersect to 0 is affine. In this case,
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the ring A(X) is a Bézout domain of Krull dimension 1 with nonzero Jacobson
radical.

Easy examples show that each of the hypotheses in the theorem (that X is
quasicompact, that the valuation rings in X have rank 1, and that maximal ideals
do not intersect to 0) is necessary; see [62, Example 5.7]. Notably, every integrally
closed Noetherian domain (or more generally, Krull domain) of Krull dimension>1
is an intersection of DVRs yet is not a Prüfer domain. In this case, the intersection
of the maximal ideals of the DVRs is 0.

The difficulty in applying the theorem is verifying quasicompactness. Indeed,
the point of the theorem is that under the assumptions on the valuation rings in
X, quasicompactness is equivalent to affineness. Theorem 6.7 follows from a more
general statement given in [62, Main Lemma]: The mappings X �→ A(X) and A �→
{AM : M ∈ Max(A)} define a bijection between the quasicompact sets X of rank
one valuation rings in Zar(F/k) with J (X) �= 0 and the one-dimensional Prüfer
domains A with nonzero Jacobson radical and quotient field F . An example in the
next section shows one way to apply these results. In any case, restating all this in
terms of affineness, we have

Corollary 6.8 Let X be a set of rank 1 valuation rings in Zar(F/k) such that
J (X) �= 0. Then X ∪ {F } is an affine scheme if and only if X is quasicompact;
if and only if X ∪ {F } is closed in the patch topology.

Proof Let A = A(X). If X ∪ {F } is an affine scheme, then by Lemma 6.1, the
set {AM : M ∈ Max(A)} is a quasicompact set of valuation rings in Zar(F/k),
and this set is X. The converse follows from Theorem 6.7. The last equivalence is a
consequence of the fact that if a subset Y of Zar(F ) consists of rank one valuation
rings and J (Y ) �= 0, then Y is quasicompact if and only if Y is closed in the patch
topology [62, Proposition 2.4]. ��

As shown in [62, Corollary 5.11], the corollary implies that if A is a domain
with quotient field F and A = A1 ∩ · · · ∩ An for one-dimensional Prüfer domains
A1, . . . , An with nonzero Jacobson radical, then A is a one-dimensional Prüfer
domain with nonzero Jacobson radical. If also each Ai is an almost Dedekind
domain (i.e., each localization of Ai at a maximal ideal is a DVR), then so is A.
In general, the intersection of two one-dimensional Prüfer rings need not be Prüfer.
For example, if R is a two-dimensional integrally closed Noetherian local domain,
then for any prime element r of R, R = R[1/r] ∩ R(r) and R is an intersection of
a PID and a DVR. Less elementary, each integrally closed domain R that is finitely
generated over a Dedekind domain or a field is an intersection of finitely many
Dedekind rings between R and its quotient field [64, Theorem 3.3]. It is an open
question whether every integrally closed domain is an intersection of two Prüfer
rings in its quotient field. For more on this problem, see [64] and its references.

In the case in which k is a domain with quotient field F , Theorem 6.7 can be
rephrased in purely topological terms. We have no application for this in mind,
but as a conceptual matter it seems worth noting that the topology of Zar(F/k)
alone can distinguish affineness in some cases. Recall the specialization order from
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Sect. 4, which is defined for a spectral space in terms of its topology. Interpreting the
specialization order for Zar(F/k), we have that for V1, V2 ∈ Zar(F/k), V1 ≤ V2 if
and only if V2 ⊆ V1. This is the order used in the following corollary.

Corollary 6.9 If k is a domain with quotient field F and X is a compact Hausdorff
subspace of Zar(F/k) whose points are minimal in Zar(F/k) with respect to not
being the least element of Zar(F/k), then X is affine and A(X) is a Bézout domain.

Proof The valuation rings in X are necessarily of rank 1 because they are minimal
with respect to not being the least element F of Zar(F/k). Since k is a domain that
has quotient field F and X is a set of rank one valuation rings, X is Hausdorff if
and only if J (X) �= 0 [62, Proposition 2.4(3)]. The corollary now follows from
Theorem 6.7. ��

The emphasis here has been on quasicompact subsets of rank one valuation rings.
Removing the rank one restriction and strengthening the quasicompact condition
to that of a subspace of Zar(F/k) being Noetherian in the Zariski topology, it is
possible to deduce strong consequences about the intersection of the valuation rings
in the subspace, but the resulting rings need not be Prüfer domains [56, 58, 61]. If k
is a Noetherian ring, then the projective models of F/k are Noetherian spaces with
respect to the Zariski topology, but this property is seldom inherited by Zar(F/k);
see [74].

It is not the case that affineness is always detectable topologically. This fails
dramatically. For example, suppose k is an integrally closed domain with quotient
field F and k is not a Prüfer domain. Then Zar(F/k) is not affine. As discussed in
Sect. 3, Zar(F/k) is homeomorphic to the Zariski-Riemman space of the Kronecker
function ring of F/k, and this ring is a Prüfer domain. In this case, the same
topological space occurs as the Zariski-Riemann space of a non-Prüfer domain and a
Prüfer domain. In the latter case the locally ringed space is affine while in the former
case the locally ringed space is not, although the base spaces are homeomorphic.

7 Example: Two-dimensional Noetherian Domains

The richness of the relationship between a subset of the Zariski-Riemann space and
the intersection of its valuation rings can be illustrated by a case that at first glance
seems promisingly tractable, that of the integrally closed rings between Z[X] and
Q[X]. An integrally closed ringR between these two rings is an intersection of Q[X]
and valuation rings of Q(X) containing Z[X]. How complicated can such a ring R
be?

Consider first the rings R of the form R = V ∩ Q[X], where V is a DVR
between Z[X] and its quotient field. Then R is either a Dedekind domain or a
two-dimensional Noetherian domain, depending on whether the residue field of
V is algebraic over a finite field or transcendental; see [2, Theorem 5.7] and
[46, Theorem 0.1]. As pointed out in [46, p. 92], this implies that R either has
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no valuation overrings other than V and those of Q[X] (and in particular Zar(R)
is affine), or “there is a staggering infinite collection” of valuation overrings of R
other than V and the valuation overrings of Q[X].

Moving beyond DVRs, if V is an irrational valuation ring, meaning that V has
rank one and its value group has rational rank more than 1, then Ohm [53, Section 5]
has shown that R is a two-dimensional completely integrally closed domain with a
unique height 2 maximal ideal, the center of V in R. This maximal ideal is the
radical of a principal ideal [53, Lemma 5.6], and so R is not Noetherian. Nor is R a
Prüfer domain since V is not a localization of R.

On the other hand, if V is a rational valuation ring, meaning its value group has
rational rank 1, and V is not a DVR, then V is a localization of R [31, Lemma 1.3],
and so V is not a Noetherian ring since V is not a DVR. This and the other
possible cases, which get quite a bit more complicated, are worked out by Loper
and Tartarone in [46]. For example, it is shown that in the present case where V is a
rational valuation ring that R is a Prüfer v-multiplication domain [46, Theorem 5.8].
(See [25] or [46] for the definition of Prüfer v-multiplication domain.) Precisely
when R is a Prüfer domain is determined by whether V is a certain limit of rings of
the formW ∩Q[X], whereW is a valuation ring constructed using key polynomials
[46, Proposition 4.1]. In the case in which V has rank two, there are criteria also for
when R is a Mori domain (a domain in which divisorial ideals satisfy the ascending
chain condition) [46, Theorem 5.6]. For some variations on these ideas where the
base ring is a two-dimensional regular local ring rather than Z[X], see [66].

So far we have only considered a ring of the form R = V ∩ Q[X], but of
course the driving question is a classification of all the integrally closed rings
between Z[X] and Q[X], the case in which V is replaced by an intersection of
possibly infinitely many valuation rings. This classification is the subject of Loper
and Tartarone’s work in [46], where the interplay between the types of valuation
rings in the representation of such an intermediate integrally closed ring is worked
out in detail. As the case of a single valuation makes clear, such a classification is
nuanced and depends on the types of valuation rings that comprise the intersection.

It is worth pointing out that hidden away in the current discussion and between
the rings Z[X] and Q[X] is the entrance to an entire branch of non-Noetherian
commutative ring theory, that of the theory of integer-valued polynomials. The
classical focus of this area of research is on the ring Int(Z) = {f (X) ∈ Q[X] :
f (Z) ⊆ Z)}.This ring and its generalizations have been the subject of study for
over a 100 years, and such rings remain an active area of investigation complete
with its own set of tools. The ring Int(Z) is a completely integrally closed Prüfer
domain of Krull dimension 2 that has a number of interesting properties. See [8]
and [9] for much more on these rings.

We shift attention to the general setting of two-dimensional Noetherian local
domains and use this case to illustrate some of the ideas considered in the previ-
ous sections, specifically affineness and compactness in Zar(F/k). The Zariski-
Riemann space of a one-dimensional normal Noetherian domain R is a simple
matter: The space consists of the localizations of R at its prime ideals. The valuation
theory of a two-dimensional Noetherian domain R is much more complicated, but
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it is still, in a sense, reachable from the domain itself, not through localization
this time but through a possibly infinite sequence of iterated blow ups of maximal
ideals and normalizations. This is well known in the case in which R is a two-
dimensional regular local ring because of a theorem due to Abhyankar [1] that shows
that each valuation ring in Zar(R) is a union of a sequence of iterated local quadratic
transforms, but it is perhaps not as well known in the case in which R is assumed to
be a two-dimensional normal Noetherian local domain.

More formally, let m denote the maximal ideal of such a ring R, and choose
x1, . . . , xn in m \m2 such that m = (x1, . . . , xn). A local quadratic transform of R
is a ring of the form R′ = R[x1/xi, . . . , xn/xi]P , where i ∈ {1, 2, . . . , n} and P is
a prime ideal of R[x1/xi, . . . , xn/xi] that contains m. Denote the integral closure of
R′ in F by R′. Then R′ is a Noetherian domain by the Krull-Akizuki Theorem [50,
Theorem 33.2, p. 115]. If P is a prime ideal of R′ containing m, then the Noetherian
local domain (R′)P is a normalized quadratic transform of R. A sequence of local
rings {Ri} (finite or infinite) is a normal sequence over R if R = R0 and Ri+1 is a
normalized quadratic transform ofRi for each i; see Zariski [79, p. 681] and Lipman
[44, p. 201]. If the base ring R is a regular local ring, then the normalization step is
not needed since a local quadratic transform of a regular local ring is a regular local
ring.

With (R,m) a two-dimensional normal Noetherian local domain, Lipman [44,
p. 202] has shown that the union of rings in an infinite normal sequence over R is
a valuation ring. Conversely, every valuation overring of R is the union of a unique
normal sequence over R [33, Proposition 2.1].5 Our focus here is on the prime
divisors V that dominate R (i.e., V is a DVR for which m ⊆ MV and V/MV has
transcendence degree 1 over R/m). Such a prime divisor occurs as the last term in a
uniquely determined finite normal sequence {Ri}ni=0 [33, Proposition 2.1]. The level
of V is n. Using an analysis of patch limit points in Zar(R) and Theorem 6.7, it is
shown in [33] that the prime divisors of bounded level form an affine set in Zar(R).

Theorem 7.1 ([33, Theorem 4.2]) Let d ≥ 0, and let X be a nonempty set of
prime divisors that dominate R and occur at level at most d. Then X is an affine set
in Zar(R) and A(X) is a Bézout domain with nonzero Jacobson radical.

The ring A(X) is an almost Dedekind domain [33, Theorem 4.2(1)], meaning
that the localization of A(X) at each maximal ideal is a DVR. In this case, each
such localization is in X. As long as X is infinite, A(X) will not be a Dedekind
domain. This is a consequence of the fact that a maximal ideal M of A is finitely
generated if and only if AM is a patch isolated point in X [33, Theorem 4.2(3)].

The DVRs in Theorem 7.1 dominate R and are prime divisors. Despite what
Theorem 7.1 might suggest, intersections of DVRs in the Zariski-Riemann space

5 If R is not two-dimensional, then the valuation overrings of R need not be reachable by normal
sequences, even if R is a regular local ring; see [73]. The structure of a union of iterated quadratic
transforms of a high-dimensional regular local ring is explored in [32, 34]. The patch topology
plays an important role in the form of capturing for each such union a “boundary valuation ring”
that is determinative for the structure of the union.
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of a two-dimensional Noetherian domain can be complicated. A good example
of this is Nagata’s one-dimensional completely integrally closed local domain
that is not a valuation ring [48, 49]. This ring, which had been conjectured by
Krull not to exist, is assembled from rank one valuation rings in an intricate way,
and it can be constructed as an overring of a polynomial ring in two variables
[57, Proposition 4.4]. By contrast, a theorem due to Heinzer [30] shows that
any finite character intersection of DVRs in the Zariski-Riemann space of a two-
dimensional Noetherian domain is a Noetherian domain. The crucial difference here
from Nagata’s example is that the collection of DVRs has finite character.

8 Example: Holomorphy Rings

Prüfer domains, which as we have seen arise from affine sets in the Zariski-Riemann
space, are generally easy to deal with on the local level since their localizations at
maximal ideals are valuation domains. What gives the Prüfer rings their complexity
are their global properties, and this complexity is both reflected in and expressive
of topological features of affine sets in the Zariski-Riemann space. To illustrate this
with an example, we discuss the case in which F/k is a function field in at least
two variables, k is a field of characteristic 0 that is not algebraically closed and
k is existentially closed in F , i.e., for each m, n > 0 and choice of polynomials
f1, . . . , fn, g in k[X1, . . . , Xm] such that f1, . . . , fn have a common zero in Fm

that is not a zero of g, then f1, . . . , fn also have a common zero in km that is not
a zero of g; equivalently, every finitely generated k-subalgebra A of L admits a k-
homomorphism φ : A→ k [4, Theorem 1.1]. There are two examples that motivate
this.

(a) If k is a real closed field and F is formally real, then k is existentially closed in
F .

(b) If k is a non-algebraically closed field of characteristic 0 and F is a finitely
generated field extension of k that is contained in a purely transcendental
extension of F , then k is existentially closed in F .

Statement (a) can be found in [5, Proposition 4.1.1]. For (b), see [67, Proposition 1].
The absolute k-holomorphy ring H of F/k is the intersection of all valuation

rings V of F/k such that k is existentially closed in the residue field of V . (There
is at least one such valuation ring, the field F .) Since k is not algebraically closed,
Corollary 6.6 implies that this intersection is a Prüfer domain with quotient field F .
For related constructions of holomorphy rings, see [7, 40]. As an aside, we mention
here an application of the ideas in [60, Corollary 4.4] that is related: If k is a real-
closed field and F is formally real, then for any valuation rings V1, . . . , Vn of F/k,
the ringH ∩V1∩· · ·∩Vn is a Prüfer domain with torsion Picard group and quotient
field F.

So far we have not used the strength of the hypothesis of existential closure or the
fact that we are in a function field. Where these become decisive is in the structure
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of the holomorphy ring. This is because existential closure guarantees an abundance
of valuation rings in the affine set that defines the holomorphy ring, and the ring
thus assembled as an intersection of these valuation rings has a complicated ideal
theory and prime spectrum.

As in [54], we say that a valuation ring V of F/k is good if P �= P 2 for each
nonzero prime ideal of V , k is existentially closed in the residue field V/MV of V ,
and V/MV is a finitely generated field extension of k. Let Gr,d denote the set of
good valuation rings in F/k such that V has rank r and the transcendence degree of
V/MV over k is d.

In [54, Lemma 3.3], it is shown that theorems of Kuhlmann from [39] similar
in spirit to Theorem 4.2 imply that if 0 ≤ d < n and 1 ≤ r ≤ n − d, where n
is the transcendence degree of F over k, then the set Gr,d is dense with respect to
the patch topology in the subspace of Zar(F/k) consisting of the valuation rings
such that k is existentially closed in V/MV . The consequences of this for the
absolute holomorphy ring, which are worked out in [54, Theorems 3.4 and 4.7],
are summarized in the following theorem. For the theorem we recall that a Zariski-
Samuel associated prime ideal of an ideal I of a commutative ring is a prime ideal
P for which P = √I : x for some element x of the ring. (Without the finiteness
condition of a Noetherian ring, the theory of associated primes is somewhat unruly.
There are at least seven inequivalent definitions of an associated prime ideal for
non-Noetherian rings; see [37]. All of these coincide for Noetherian rings.6)

Theorem 8.1 The absolute K-holomorphy ring H of F/k is a Prüfer domain
having Krull dimension n = trdegkF and quotient field F , andH is the intersection
of the valuation rings in Gr,d for each 0 ≤ d < n and 1 ≤ r ≤ n− d. Moreover:

(1) No nonzero prime ideal of H is the radical of a finitely generated ideal.
(2) No nonzero finitely generated ideal ofH has a Zariski-Samuel associated prime

ideal.
(3) If I is a proper nonzero finitely generated ideal ofH and 0 ≤ d < n, 0 < h ≤ n

and d + h ≤ n, then there exist infinitely many prime ideals of H of dimension
d and height h that are minimal over I .

(4) J−1 = H for all nonzero radical ideals J of H .

If also the function field F |K has 2 variables, then every prime ideal of H is an
intersection of maximal ideals [54, Proposition 3.11]. In any case, the conclusion
that we wish to draw here is that the highly non-Noetherian behavior of the prime

6 Although familiar, this is a powerful fact about Noetherian rings. David Eisenbud [21]: “The
book [of Demazure and Gabriel] seemed to be making an elementary logical mistake, leading to
the statement that if I is an ideal in a commutative Noetherian ring and if every element of I
annihilates some (possibly varying) element of the ring, then all of the elements of I annihilate
one fixed element of the ring. Absurd! Well, actually, this is one of the main lemmas in the theory
of primary decomposition. I think it was my excitement when I finally untangled the mystery that
first hooked me on commutative algebra.”
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ideals of H reflects the abundance of the valuation rings from which the ring is
assembled.

In many contexts, the finitely generated ideals in a Prüfer domain can be
generated by two elements. The only known examples in which this is not so involve
real holomorphy rings, where the problem of finding the number of generators
of an ideal in a holomorphy ring is motivated by classical problems involving
sums of squares in function fields; see for example [3, Theorem 1.21]. The first
such example, given by Schülting [70] in 1979, is the fractional ideal (1, X, Y )
of the real holomorphy ring of k(X, Y ), where k is a formally real field. Despite
the simple statement of the example, the proof that this fractional ideal cannot be
generated by two elements is intricate and lengthy. For direct proofs of this fact,
all of which involve geometric arguments, see [22, 65, 70]. Swan [76, Theorems 1
and 2] extended Schülting’s example to prove that for each integer n ≥ 1, there
is Prüfer domain of Krull dimension n that has an ideal that can be generated by
n+1 elements but not by n elements. Kucharz [38, Theorem 1] has shown that such
examples are ubiquitious: If F is a formally real function field of transcendence
degree n over a real closed field k, then the holomorphy ring of F/k has a finitely
generated ideal that cannot be generated by n elements.
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1 Introduction

The objective of this paper is to present an exposition of classical and modern
results concerning the number of real or complex points in the solution space of
a finite system of polynomial equations with real coefficients in arbitrary number
of variables. Let F1, . . . , Fm ∈ R[X1, . . . , Xn] and assume that the residue-class
R-algebra R[X1, . . . , Xn]/〈F1, . . . , Fm〉 is finite dimensional over R, then the set
of common zeros

VR(F1, . . . , Fm) := {(a1, . . . , an) ∈ Rn | Fj (a1, . . . , an) = 0 for all j = 1, . . . , m}

of F1, . . . , Fm in Rn is finite. The converse is not true, for example, for F1 =
X2

1 + 1, VR(F1) = ∅ is finite and R[X1, . . . , Xn]/〈F1〉 ∼−→ C[X2, . . . , Xn] is
not finite dimensional over R if n ≥ 2. However, for polynomials F1, . . . , Fm ∈
C[X1, . . . , Xn], the residue-class C-algebra C[X1, . . . , Xn]/〈F1, . . . , Fm〉 is finite
dimensional over C if and only if the set of common zeros VC(F1, . . . , Fm) of
F1, . . . , Fm in Cn is finite. Moreover, by the classical Hilbert’s nullstellensatz
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VC(F1, . . . , Fm) �= ∅ if and only if the ideal 〈F1, . . . , Fm〉 generated by F1, . . . , Fm
in C[X1, . . . , Xn] is a non-unit ideal. But, this is not true over the field R or more
generally over real closed fields. Therefore the natural questions one deals with are:
when exactly VK(F1, . . . , Fm) �= ∅ and how to find its cardinality, where K is an
arbitrary real closed field.

Many researchers have studied these problems and devised effective algorithms.
For example, already in the nineteenth century Sturm, Jacobi, Sylvester, Hermite
(see [9, 10]) Hurwitz proved fundamental results for counting real points (in small
number of variables n ≤ 2) by using the signature of appropriate quadratic forms,
see 3.2.

In Sect. 2, we collect standard results on symmetric bilinear and Hermitian forms
over a real closed field K and its algebraic closure CK = K[ i ] with i2 = −1.
However, for the sake of completeness, we recall them without proofs in the format
they are used in later sections. With these preliminaries at the end of Sect. 2, we
state the important Rigidity Theorem for quadratic forms (see [4]) which is used in
Sect. 4.

In Sect. 3, we collect some elementary concepts from commutative algebra and
recall the important Theorem 4.5 from [4] which relates the K-rational points of a
finite dimensional algebra A over a real closed field K with the type of the trace
form TrAK on A and derive some consequences.

In Sect. 4, we compute the cardinality of the K-rational points of finite alge-
bra over real closed field K . The main ingredient in this section is the Shape
Lemma 4.2 which guarantees a distinguished generating set for a radical ideal
A ⊆ K[X1, . . . , Xn] if the residue-class K-algebra K[X1, . . . , Xn]/A is finite
dimensional. Using the Shape Lemma 4.2 one can reduce the problem of counting
the number of K-rational points in VK(A) to the one variable case. In Theorem 4.5
using the results from Sect. 3, we relate type, signature and rank of a symmetric
bilinear form defined by using the trace form on A = K[X1, . . . , Xn]/A associated
to elements h ∈ A with the number of points in VK(A) and in VK(A). Finally, we
give a precise formulation and a proof of the following theorem of Pederson-Roy-
Szpirglas which is quoted from [16]:

Theorem ([16, Theorem 2.1]) Let K be a field, V be a finite affine algebraic
variety defined by the ideal I generated by f1, . . . , fm ∈ K[X1, . . . , Xn], R be
a real closed field such that K ⊆ R and C its algebraic closure, and given one
other polynomial h ∈ K[X1, . . . , Xn]. Then

σ(Qh) = # {x ∈ VR(I) | h(x) > 0} − # {x ∈ VR(I) | h(x) < 0},
ρ(Qh) = # {x ∈ VC(I) | h(x) �= 0},

where σ denotes the signature and ρ the rank of the quadratic formQh associated
to the symmetric bilinear form Bh : A × A → K , (f, f ′) �→ TrAK(hff

′) on A :=
K[X1, . . . , Xn]/〈f1, . . . , fn〉.
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2 Type, Signature and Classification of Hermitian Forms

The main aim of this section is to recall the classification of symmetric and
Hermitian forms on finite dimensional vector spaces over real closed field and its
algebraic closure, up to congruence. Most of these results can be found in standard
graduate text books, for instance see [18, Ch. V, §12], [17, Ch. IX] or [11, Ch. 11],
[1, Ch. 7], or [14, Ch. XV]. However, for setting the notation, terminology and for
the sake of completeness, we recall them without proofs in the format that they are
used in this article.

Notation 2.1 Let K be a real closed field.1 Then AutK = {idK} and the field
CK := K[i ], where i2= −1, of (complex) numbers over K , is the algebraic closure
of K with the Galois group Gal(CK |K) = {idCK

, κ}, where κ : CK → CK is the
(complex)-conjugation defined by i �→ −i.

Further, we denote by K either the field K with the identity map idK : K → K

as the involution, or the field CK with the (complex)-conjugation κ : CK → CK as
the involution. We denote κ by the standard bar-notation, i. e. a �→ a, a ∈ CK .

With these notation the term “Hermitian” means “real-symmetric” if K = K
and “complex-Hermitian” if K = CK . Recall that a square matrix C ∈ Mn(K)

is Hermitian if C = tC. Therefore it is real-symmetric in the case K = K and
complex-hermitian in the case K = CK .

Sylvester’s Law of Inertia 2.2 Let  be a Hermitian form on a finite dimensional
K-vector space V . Then there exists an orthogonal basis x = {x1, . . . , xn},
n := DimK V of V with respect to  such that the Gram’s matrix G (x) =
( (xi, xj ))1≤i,j≤n of  with respect to the basis x is a diagonal matrix

E
p,q
n := Diag (1, . . . , 1︸ ︷︷ ︸

p -times

,−1, . . . ,−1︸ ︷︷ ︸
q -times

,0 , . . . , 0︸ ︷︷ ︸
(n−p−q)-times

).

1 Real closed fields A field K is called real closed if it is real, i. e. for all a1, . . . , an ∈ K ,
a2

1+· · ·+a2
n=0 implies a1=· · ·=an=0 and if it has no nontrivial real algebraic extension L |K ,

L �= K . For example, the field R of real numbers is real closed. The algebraic closure of Q in R

is real closed. The field Q is real, but not real closed. In 1927, Artin-Schreier proved: A field K is
real if and only if there is an order ≤ on K such that (K,≤) is an ordered field. In particular, the
characteristic of a real field is 0.
Theorem (Euler-Lagrange) Let (K,≤) be an ordered field satisfying the properties: (i) Every
polynomial f ∈ K[X] of odd degree has a zero in K . (ii) Every positive element in K is a square
inK . Then the field K = K(i) obtained fromK by adjoining a square root i of −1 is algebraically
closed. In particular, K itself is real-closed. For a proof see [11, Ch. 11, §11.1]. (Remark: Since
the field R of real numbers is ordered and satisfies the properties (i) and (ii), the Euler-Lagrange
theorem proves the Fundamental Theorem of Algebra: The field C = R(i) of complex numbers
is algebraically closed . The Euler-Lagrange Theorem has a remarkable complement:—Theorem
(Artin–Schreier) Let L be an algebraically closed field. If K ⊆ L be a subfield of L such that
L |K is finite and K �= L, then L = K(i) with i2 + 1 = 0 and K is a real-closed field. For a proof
see [11, Ch. 11, §11.7].)
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Moreover, p is the maximum of the dimensions of subspaces of V on which  is
positive definite, and q is the maximum of the dimensions of subspaces of V on
which  is negative definite. In particular, p and q do not depend on the special
choice of the orthogonal basis x1, . . . , xn of V , p + q = rank  and  is non-
degenerate if and only if p + q = n.

Definition 2.3 The pair (p, q) as in the Sylvester’s Law of Inertia 2.2 is called the
type of the form  . The natural number p is called the (inertia -) index, the natural
number q is called the Morse - index, and the integer p − q is called the signature
of  . The type, signature and rank of a Hermitian form  are denoted by type  ,
sign  and rank  , respectively.

The type, signature and rank of a Hermitian matrix C = (cij )1≤i,j≤n ∈ Mn(K)

are, by definition, the type, signature and rank of the Hermitian form  C : Kn ×
Kn → K , (ei, ej ) �→ cij , 1 ≤ i, j ≤ n, defined by the matrix C, where ei , 1 ≤ i ≤
n, is the standard basis of Kn, respectively.

Recall that two square matrices C, C′ ∈ Mn(K) are said to be congruent if there
exists an invertible matrix A ∈ GLn(K) with C = tAC′A.

The matrix analog of the Sylvester’s Law of Inertia 2.2 is the following:

Corollary 2.4 Let  be a Hermitian form on an n-dimensional K-vector space
V with K-basis x = {x1, . . . , xn}. Then  is of type (p, q) if and only if the
Gram’s matrix G (x) is congruent to the matrix E

p,q
n , i. e. there exists an invertible

matrix A ∈ GLn (K) such that G (x) = tAE
p,q
n A . Two Hermitian matrices C and

C′ ∈ Mn(K) have the same type if and only if they are congruent. In particular, a
Hermitian matrix C ∈ Mn(K) has type (p, q) if and only if C is congruent to the
matrix E

p,q
n .

If K = K (real closed), then one can choose2 A ∈ GL+n (K), i. e. DetA > 0.
In the situation of Corollary 2.4, if  is non-degenerate, i. e. if p + q = n,
then DetG (x) = (−1)q |DetA|2, i. e. Sign (DetG (x)) = (−1)q. Therefore, the
signature of the Gram’s determinant DetG (x) determines the parity of q. From
this the following useful criterion for the determination of the type follows:

Hurwitz’s Criterion 2.5 (see [18, Ch. V, §12, 12.C.4]) Let be a Hermitian form
on an n-dimensional K-vector space V with a basis x = {x1, . . . , xn}. Suppose that
the principal minors

D0 := 1 and Di :=

∣∣∣∣∣∣∣

 (x1, x1)· · · (x1, xi)
...

. . .
...

 (xi, x1)· · · (xi, xi)

∣∣∣∣∣∣∣
, i = 1, . . . , n,

2 Use the following observation: Let V be an oriented vector space over a real-closed field K of
dimension n ∈ N+ and be a Hermitian form of type (p, q) on V . Then there exists an orientation
of V represented by a basis x1, . . . , xn of V such that the Gram’s matrix of is equal to the matrix
E
p,q
n .
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of the Gram’s matrix G (x) = ( (xi, xj )) ∈ Mn (K) of  with respect to the basis
x are all non-zero. Then the type of  is (n − q, q), where q is the number of sign
changes3 in the sequence 1 = D0,D1, . . . , Dn = DetG (x).

Corollary 2.6 Let  be a Hermitian form on an n-dimensional K-vector space V
with basis x = {x1, . . . , xn}. Then, with notation as in the Hurwitz’s Criterion 2.5,
we have :
(1)  is positive definite if and only if Di > 0 for all i = 1, . . . , n.
(2)  is negative definite if and only if (−1)i Di > 0 for all i = 1, . . . , n, i. e. at

every position in the sequence D0,D1, . . . , Dn there is a sign change.

Example 2.7 Let {v1, v2} be a basis of a 2-dimensional K-vector space V . For
a symmetric bilinear form  = 〈−,−〉 on V , let D1 = 〈v1, v1〉 and D2 =
Det

(〈v1, v1〉 〈v1, v2〉
〈v2, v1〉 〈v2, v2〉

)
= 〈v1, v1〉 〈v2, v2〉 − |〈v1, v2〉|2. Then the following table

shows the dependence of the signD1, signD2 and the type of  :

D1 + + – – + – 0 0 0 0

D2 + – + – 0 0 – 0 0 0

〈v1, v2〉 > 0 < 0 0

Type (2,0) (1,1) (0,2) (1,1) (1,0) (0,1) (1,1) (1,0) (0,1) (0,0)

Note that the case D1 = 0, D2 > 0 is not possible.

Example 2.8 Let z ∈ CK �K , π := (X− z)(X− z) ∈ K[X], A := K[X]/〈π〉 :=
K[x], where x is the image ofXmodulo 〈π〉. Further, letH ∈ K[X], h = h(x) ∈ A
be the image of H in A and let  h : A× A −→ K be the symmetric bilinear form
defined by  h(f, g) = TrAK(hfg), f , g ∈ A. Then the Gram’s matrix of  h with
respect to the basis {1, x}

G h(1, x) =
(

h(z)+ h(z) h(z) · z+ h(z) · z
h(z) · z+ h(z) · z h(z) · z2 + h(z) · z2

)
∈ M2(K)

is a symmetric matrix with D1 = h(z) + h(z) = 2 Re h(z) and D2 =
Det G h(1, x) = h(z) h(z) (z − z)2 = −4 |h(z)|2(Re z )2 < 0. Therefore, if
h(z) = 0 (and hence h(z) = 0 also, since H ∈ K[X]), then G h(1, x) = 0 ,
and if h(z) �= 0, then D2 < 0. Now, by the table in Example 2.7, it follows that
the type of  h is (0, 0) if h(z) = 0 and (1, 1) if h(z) �= 0.

3 Recall that we say that a sequence a0, . . . , an of non-zero real numbers changes the sign at the
i-th place if 0 ≤ i < n and ai ai+1 < 0. For an arbitrary sequence of real numbers b0, . . . , bm by
a change of signs means a change of signs in the sequence obtained by removing the zeros from
the original sequence.
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The type of a Hermitian form on a finite dimensional vector space V over CK can
also be determined by using the eigenvalues of the Gram’s matrix, see Theorem 2.10
below. Usual proofs given in the standard text books of this fact uses the Principal
Axis Theorem for self-adjoint operators (also known as the Spectral Theorem). We
give here a direct proof using the following interesting Lemma 2.9:

Lemma 2.9 Let K be a real closed field with notation as in 2.1, : V ×V → CK
be a positive definite CK -Hermitain form on a n-dimensional CK -vector space
V and let f : V → V be a CK -linear operator on V . Then there exists an
orthonormal basis x = (x1, . . . , xn) of V w. r. to  such that the matrix Mx

x(f )

of f w. r. to x is an upper triangular matrix.

Theorem 2.10 Let K be a real closed field with notation as in 2.1 and let C ∈
Mn(CK) be a Hermitian matrix. Then all the eigenvalues of C are in K and C is
of type (p, q), where p is the number of positive eigenvalues and q is the number
of negative eigenvalues of C, counted with their multiplicities in the characteristic
polynomial χC of C.

Corollary 2.11 Let K be a real closed field with notation as in 2.1 and let C ∈
Mn(CK) be a Hermitian matrix. Then the characteristic polynomial χC = c0 +
c1X+ · · · + cn−1X

n−1+ Xn belongs to K[X] and C is of type (p, q), where p
is the number of sign changes in the sequence c0, c1, . . . , cn−1, cn = 1 and q is
the number of sign changes in the sequence c0,−c1, . . . , (−1)n−1cn−1, (−1)ncn =
(−1)n. If c0 = c1 = · · · = cr−1 = 0 and cr �= 0, then p + q = n− r .
Proof Note that, since all the eigenvalues of C are real by Theorem 2.10, indeed
χC ∈ K[X]. The assertion is immediate from Theorem 2.10 and the classical
Descartes’ rule of signs. ��

We now recall (from [4]) that “being of type (p, q)” is an open property
(with respect to the strong topology4) which is an easy consequence of Hurwitz’s
Criterion 2.5:

4 Strong topology Let K be a real closed field (see Footnote 1). Then K is equipped with the
order topology which is determined by the base of the open intervals ] a, b [, a, b ∈ K , a < b.
The K-vector spaces Kn, n ∈ N, are endowed with the product topology (with the base given by
the open cuboids ] a1, b1 [× · · · ×] an, bn [, ai < bi , i = 1, . . . , n). With the ordered and product
topology, the addition, the multiplication and the inverse are continuous functions on K × K and
K× = K \ {0}, respectively. Further, polynomial functions (resp. rational functions F/G, F ,
G ∈ K[X1, . . . , Xn], G �= 0), in n variables are continuous K-valued functions on Kn (resp. on
Kn � VK(G), where VK(G) := {a ∈ K | G(a) = 0} is a zero set of the denominator G which is
closed in Kn).

The product topology on Kn transfers uniquely to every n-dimensional K-vector space by a K-
linear isomorphism f : V → Kn. Any other isomorphism g : V → Kn defines the same topology,
since gf−1 : Kn → Kn and (gf−1)−1 = fg−1 : Kn → Kn are continuous (polynomial)
maps. Therefore, polynomial and rational functions are also defined on any finite dimensional
vector space V by an isomorphism f : V → Kn. This topology on V may be characterized as the
smallest topology for which theK-linear functions V → K are continuous and is called the strong
topology on V , since it is stronger than the Zariski topology on V if V �= 0.
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Lemma 2.12 (cf. [4, Lemma 1.2]) Let K be a real closed field with notation as in
2.1 and Fij ∈ K[T ] be polynomials such that Fij =Fj i , 1 ≤ i, j ≤ n. Suppose that
the bilinear form defined by the symmetric matrix (Fij (s))1≤i,j≤n∈Mn(K) at s∈K ,
is non-degenerate, then there exists an ε > 0 such that the type of the symmetric
matrices (Fij (t))1≤i,j≤n is the same for all t ∈] s − ε, s + ε [. In particular, for
non-degenerate symmetric bilinear forms overK , “being of type (p, q)” is an open
property.

We end this section by noting the following important Rigidity Theorem for
symmetric bilinear forms (see [4]) which is proved by using Hurwitz’s Criterion
2.5, Lemma 2.12 and the Intermediate Value Theorem for polynomial functions.5

Rigidity Theorem for symmetric bilinear forms 2.13 (cf. [4, 1.3]) Let K be a
real closed field with notation as in 2.1 and letRij (t) = Rij (t1, . . . , tn), 1 ≤ i , j ≤
n, be rational functions on a line-connected6 subset U ⊆ Kn such that the matrices
R(t) = (Rij (t))1≤i,j≤n ∈ Mn(K), t ∈ U , are symmetric, i. e. Rij = Rji for all
1 ≤ i , j ≤ nwith Det R(t) �= 0 for all t ∈ U . Then all the matrices R(t) ∈ Mn(K),
t ∈ U , have the same type (p, q), or equivalently, the same signature p − q.

3 Trace Forms and Rational Points

In this section, we recall the results from [4] (based on the talk of Prof. U. Storch
at IIT Bombay in November 2009) on trace forms, their invariants such as rank,
type, signature and their relations with the number of rational points of a finite
algebra A over a real closed field. For detailed proofs of these results, the reader
is recommended to see [4, § 3].

Preliminaries 3.1 In this subsection, we recall the basic concepts from elementary
commutative algebra (see [2, 13, 15]) which are used in this article.

5 Intermediate Value Theorem for polynomial functions Let K be a real closed field and F ∈
K[T ] be a polynomial with coefficients in K such that F(a)F (b) < 0 for some a, b ∈ K . Then F
has a zero in [a, b]. In other words, the values F(t), t ∈ [a, b], have the same sign if F has no zero
on [a, b]. In particular, every polynomial of odd degree has a zero in K . A field with this property
is called a 2-field. Therefore, a real closed field is a 2-field. Furthermore, every monic polynomial
F over a real closed field K has a positive zero in K if F(0) < 0 (since F(x) > 0 for “large” x).
6 Line-connected subsets Let V be a vector space over a real closed fieldK . For two points x, y ∈
V , the subset [x, y] = [y, x] := {(1− t)x+ ty | t ∈ K, 0 ≤ t ≤ 1} ⊆ V is called the (closed) line-
segment connecting x and y. For x0, . . . , xr ∈ V , r ≥ 1, the subset [x0, . . . , xr ] := ∪ri=1[xi−1, xi ]
is called the broken line from x0 to xr . A subset V ′ ⊆ V is called line-connected if for any two
points x, y ∈ V ′ there is a broken line from x to y which lies entirely in V ′. Note that, if K = R

and U ⊆ V is open (in the strong topology, see Footnote 4), then the notion “line-connected” is
equivalent to the topological notion of “connected”. The only topologically connected subspaces
of K = Q are the singletons. If V is a line, i. e. 1-dimensional, and if x ∈ V , then V � {x} is not
line-connected. However, if DimKV ≥ 2, then V �{x} is always line-connected: If u,w ∈ V �{x}
are arbitrary points, there is always a point v ∈ V \ {x} such that [u, v,w] ⊆ V � {x}.
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LetA be an arbitrary commutative ring (with unity). The set SpecA (resp. SpmA)
of prime (resp. maximal) ideals in A is called the prime (resp. maximal) spectrum
of A. The nilradical nA :=

√
0 = ∩p∈SpecA p is the intersection of all prime ideals

in A. More generally, (Formal Nullstellensatz)
√
a = ∩p∈SpecA {p | a ⊆ p} for

every ideal a in A.
The Jacobson radical ofA, mA := ∩m∈SpmAm, is the intersection of all maximal

ideals in A.

(a) The K-Spectrum and the set of K-rational points of a K-algebra . (see
[15]) Let K be a field. Using the universal property of the polynomial
algebra K[X1, . . . , Xn], the affine space Kn can be identified with the set
HomK-alg(K[X1, . . . , Xn] ,K) ofK-algebra homomorphisms, where the point
a = (a1, . . . , an) ∈ Kn is identified with the substitution homomorphism
ξ a : K[X1, . . . , Xn] → K , Xi �→ ai . The kernel of ξ a is Ker ξ a = ma =
〈X1−a1, . . . , Xn−an〉 a maximal ideal inK[X1, . . . , Xn] and ξ a induces aK-
algebra isomorphism K[X1, . . . , Xn]/ma ∼−→ K . Moreover, every maximal
ideal m in K[X1, . . . , Xn] with K[X1, . . . , Xn]/m = K is of the type ma for
a unique point a = (a1, . . . , an) ∈ Kn, where the i-th component a i of a is
determined by the congruence relation Xi ≡ ai mod m.
The subset K-SpecK[X1, . . . , Xn] := {ma | a ∈ Kn} of SpmK[X1, . . . , Xn]
is called the K-spectrum of K[X1, . . . , Xn]. We have the identifications:

Kn ←−−−−→ HomK-alg(K[X1, . . . , Xn] ,K) ←−−−−→ K-SpecK[X1, . . . , Xn] ,
a ←−−−−−−−−−−−−−−−→ ξ a ←−−−−−−−−−−−−−−−−−−→ ma = Ker ξ a .

More generally, for any K-algebra A, the map

HomK-alg(A ,K) −→ {m ∈ SpmA | A/m = K}, ξ �−→ Ker ξ,

is bijective. Therefore, we make the following definition:
For any K-algebra A of finite type, the subset K-SpecA := {m ∈ SpmA |
A/m = K} is called the K- spectrum of A and is denoted by K-SpecA.

Further, if A
∼−→ K[X1, . . . , Xn]/A is a representation of the finite K-algebra

A, then the K-algebraic set VK(A) := {a ∈ Kn | F(a) = 0 for all F ∈ A}
defined by the ideal A is called the set of K- rational points of A.

Under the above bijective maps, we have the identification VK(A) =
HomK-alg(A ,K) = K-SpecA. For example, since C is an algebraically closed
field, SpmC[X] = C-SpecC[X], but R-SpecR[X] � SpmR[X]. In fact, the
maximal ideal m := 〈X2 + 1〉 ∈ SpmR[X] does not belong to R-SpecR[X].
More generally, a field K is algebraically closed if and only if SpmK[X] =
K-SpecK[X], see [2, 13] or [8, Theorem 2.10 , HNS 3].

(b) Local components of a finite algebra . Let A be a finite algebra over a field
K , i. e. A finite dimensional as a K-vector space of dimension DimKA. Then
SpmA = SpecA (since any finite K-algebra which is an integral domain is a
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field). Moreover, from the Chinese Remainder Theorem, it follows that SpmA
is a finite set. In particular, # SpmA ≤ DimKA and equality holds if and only
if A is isomorphic to the product K-algebra K DimKA ).
Further, let SpmA = {m1, . . . ,mr}. Then the unit group A× of A is A�⋃ r
i=1 mi and the canonical homomorphism A −→ ∏ r

i=1Ami is injective
(where Ap denotes the localization of A at a prime ideal p ∈ SpecA). In
our special case, it is also surjective and hence an isomorphism, cf. [17,
Corollary 55.16]. Therefore, A is the direct product of the local finite K-
algebras Ai := Ami , i = 1, . . . , r , which are called the local components of A.
Furthermore, we have: DimK A = ∑r

i=1 DimK Ai = ∑r
i=1 �(Ai) · [Ki : K],

where, for i = 1, . . . , r , Ki = A/mi is the residue class field of A at mi
and �(Ai) the (finite) length of Ai , i. e. the length � of a composition series
0 = a0 � a1 � · · · � a� = Ai with aj+1/aj ∼= A/mi , j = 0, . . . , �− 1.
For example, if K is a 2-field,7 then [Ki : K] is even if Ki is a non-trivial field
extension of K and, in particular, K-SpecA �= ∅ if DimK A is odd.
Further, mA = m1 ∩ · · · ∩ mr = ∩p∈SpecA p = nA and mA = nA = 0, i. e.
A is reduced, if and only if A = K1 × · · · × Kr is the product of its residue
class fields. Moreover, if all the field extensions Ki of K are separable, then A
is called a (finite) separable K-algebra.

The trace form 3.2 Let A be a finite algebra over a field K . The trace form on A
over K is the symmetric K-bilinear form Tr := TrAK : A × A → K , (f, f ′) �→
TrAK(ff

′) on A. It is a classical tool used to study the K-algebra A.
The decomposition of A = A1 × · · · × Ar into its local components (cf. 3.1 (b))

yields the orthogonal decomposition

TrAK = TrA1
K 7 · · · 7 TrArK

of the trace form, i. e. for every f = (f1, . . . , fr ), f ′ = (f ′1, . . . , f ′r ) ∈ A = A1 ×
· · · × Ar , we have TrAK(ff

′)=TrA1
K (f1f

′
1)+ · · · + TrArK (frf

′
r ).

The degeneration space A⊥=A⊥Tr={f ∈ A | Tr(Af )=0} is an ideal in A.
In Theorem 4.5, we will use the trace form  h : A × A → K , (f, f ′) �→

TrAK(hff
′), on A associated to an element h ∈ A. Note that if K is a real closed

field and if L |K is a finite field extension, then (since TrLK is non-degenerate) for
every h ∈ L, h �= 0, the symmetric bilinear forms  h on L are non-degenerate and
 1 = TrLK and  −1 = −TrLK .

For finite reduced R-algebras A = R[X1, . . . , Xn]/A, n ≤ 2, the trace forms
associated to elements of A has been studied by Hermite, see [9, 10].

Lemma 3.3 (cf. [4, Lemma 3.1]) Let A be a finite algebra over an arbitrary field
K and let A⊥ be the degeneration space of the trace form TrAK . Then the nilradical
(mA =) nA ⊆ A

⊥ . Moreover, equality holds if and only if all the residue class

7 A field K is called a 2-field if every polynomial of odd degree over K has a zero in K .
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fields of A are separable over K , i. e. if and only if the reduction Ared = A/nA is a
separable K-algebra. — In particular, the trace form is non-degenerate if and only
if A is a separable K-algebra.

Corollary 3.4 Let A be a finite separable algebra over an arbitrary field K . Then

rank TrAK = DimK(A/mA) =
r∑

i=1

[Ki : K].

Moreover, if K is an ordered field, then:

type TrAK =
r∑

i=1

type TrKiK and sign TrAK =
r∑

i=1

sign TrKiK .

Now, we state the following important and classical criterion for the existence of
K-rational points for real closed fields which is proved in [4].

Theorem 3.5 ([4, Theorem 3.2]) Let A be a finite algebra over a real closed field
K . Then:

sign TrAK = #K-SpecA.

In particular, K is a residue class field of A if and only if sign TrAK �= 0.

Example 3.6 Let K be a real closed field and CK=K[ i ], i2 =−1 (the algebraic

closure ofK). The Gram’s matrix of the trace form TrCK

K of CK overK with respect
to the basis {1, i} is the matrix

(
Tr (1) Tr (i)
Tr (i) Tr (−1)

)
=

(
2 0
0 −2

)
.

Therefore type TrCK

K = (1, 1) and sign TrCK

K = 0.

Corollary 3.7 Let A be a finite algebra over a real closed field K . Then the trace
form TrAK is positive definite if and only if A is separable over K and A splits over

K , i. e. there exists an isomorphism of K-algebras A
∼−→ K DimK A.

Corollary 3.8 Let K be a real closed field and f ∈ K[X] be a monic polynomial.
Then all zeros of f (in K) belong to K and are simple if and only if the trace form
TrAK of the K-algebra A := K[X]/〈f 〉 is positive definite.
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4 Counting Rational Points of Finite Affine Algebraic Sets

In this section we will apply results from Sect. 3 on trace forms to count the rational
points of finite affine algebraic sets over real closed fields. Our method is a modern
version of old results of Hermite and Sylvester who had used signatures of quadratic
forms to count real zeros of polynomials in one variable, see [9, 10, 19]. We use
elementary commutative algebra to treat the multivariate versions of these problems.

Notation and Consequences 4.1 Throughout this section, we use the following
notation and assumptions and their consequences:

Let K be a real closed field with notation as in 2.1 and A be a non-unit radical
ideal in the polynomial ring K[X1, . . . , Xn] over K , VK(A) := {a ∈ Kn |
F(a) = 0 for all F ∈ A} be the affine algebraic set in Kn defined by A and
A := K[X1, . . . , Xn]/A. Further, let 〈A〉 = AK[X1, . . . , Xn] be the extended
ideal in the polynomial ring K[X1, . . . , Xn] over K, VK(〈A〉) := {a ∈ Kn |
F(a) = 0 for all F ∈ A} be the affine algebraic set in Kn defined by 〈A〉 and
AK := K⊗ A = K[X1, . . . , Xn]/〈A〉. Then A is a reduced and hence AK is also
a reduced8 (since K is perfect).

Polynomials in K[X1, . . . , Xn] are denoted by capital letters F , G, H , . . . and
their images in the K-algebra A are denoted by small letters f , g, h, . . . .

Every element f ∈ A defines a (regular or polynomial) function on VK(A),
namely f : VK(A) −→ K , a �−→ f (a). Further, if f , g ∈ A, then, clearly:
f = g on VK(A) ⇐⇒ f = g in A ⇐⇒ F ≡ G (modA ), i. e. F −G ∈ A.
We assume that A is finite dimensional K-vector space and put DimK A :=m ∈

N+. Then AK is finite dimensional over K with DimK=m and VK(A)⊆VK(A)
are finite sets with #

(
VK(A)

)=m (since K is algebraically closed). Further, since
A ⊆ K[X1, . . . , Xn], it follows that if a ∈VK(A), then its conjugate a ∈VK(A),
too. Therefore, after renumbering we assume that:
4.1.a VK(A) = {a1, . . . , ar } ⊆ VK(A) = {a1, . . . , ar , ar+1 , ar+1 , . . . , ar+s ,
ar+s}, where r := #VK(A), r + s = # SpmA and m := r + 2s = DimK A =
DimKAK = #VK(A).

Furthermore, since K is a real closed field, CharK = 0. In particular, K is
infinite and hence by a linear change of coordinates (over K) (for instance, Yi = Xi
for all i = 1, . . . , n − 1 and Yn = Xn +∑n−1

i=1 Xi t
i for suitable t ∈ K avoiding

8 Let L |K be a separable field extension and A be a noetherian reduced K-algebra. Then L⊗K A
is also reduced.
PROOF Since A is noetherian and reduced, AssAA is finite and the natural ring homomorphism
A→∏

p∈AssAA A/p is injective. Therefore, without loss of generality, we may assume that L |K
is finite and A is an integral domain. Further, since L ⊗K A ⊆ L ⊗K Q(A), where Q(A) is the
quotient field of A, it is enough to prove that L ⊗K A ⊆ L ⊗K Q(A) is reduced. Since L |K is
separable, L = K[x] == K[X]/〈μx,K 〉, where μx,K ∈ K[X] is the minimal monic polynomial
of the primitive element x ∈ L which splits into distinct linear factors over the algebraic closure
K of K . Therefore μx,K also splits into distinct linear factors over the algebraic closure of Q(A),
too and L⊗K Q(A) = K[X]/〈μx,K 〉 ⊗K Q(A) = Q(A)[X]/〈μx,K 〉 is reduced. ��
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finitely many t ∈ K), we may assume that VK(A) is in general Xn-position, or
the ideal A is in general Xn-position (The intention is to separate all zeros in an
algebraic closure of K by their last coordinate), i. e.:
4.1.b The n-th coordinates ai n of the points ai = (ai1, . . . , ai n) ∈ Kn, i= 1, . . . , m
are distinct.

Note that VK(A)=VK(A) ∩Kn is the set of K-rational points of

VK(A)
∼−→K-SpecAK = SpmAK = SpecAK

(the first equality follows from Hilbert’s Nullstellensatz, see [13] or [8, Theo-
rem 2.10, HNS 3] ) and VK(A)

∼−→ K-SpecA ⊆ SpmA = SpecA, see 3.1 (a).
Further, since A and AK are reduced, the local components (see 3.1 (b)) of A
corresponding to the K-rational points ai ∈ VK(A), i = 1, . . . , r , are isomorphic
to K and corresponding to the points in {ar+j , ar+j | j = 1, . . . , s} = SpmA�
K-SpecA are isomorphic to K, but local components of AK corresponding to all
the points in VK(A) are all isomorphic to K. Therefore the explicit structures of the
K-algebra A and the K-algebra AK are determined by the algebra isomorphisms
which are defined by the substitutions:
4.1.c A

∼−→ Kr × Ks , h �→ (h (modm ))m∈SpmA, where r , s are as in 4.1.a
and
AK

∼−→ Km, f �→ (f (a))a∈VK(A) , where m := r + 2s.

Note that m = DimK A = DimKAK = #VK(A). Furthermore, the following
eigenvector theorem (see [5, Ch. 2, §4, Theorem 4.5]) follows directly from 4.1.c:
4.1.d For every h ∈ A, the eigenvalues of the K-linear map λh : A → A, f �→
hf are the values h(a1), . . . , h(ar ), h(ar+1), h(ar+1) . . . , h(ar+s), h(ar+s) of the
function h : VK(A)→ K.

For more efficient determination of the type and signature of the trace form TrAK ,
we need a nice basis of A over K . The following crucial key observation, so-called
Shape Lemma (see [5, 6, 12]), guarantees a distinguished generating set for a radical
ideal A in K[X1, . . . , Xn] whose residue-classs K-algebra K[X1, . . . , Xn]/A is
finite. We give a proof of the Shape Lemma by using the natural action of the Galois
group Gal(K|K) on VK(A).

Shape Lemma 4.2 Let K be an infinite perfect field and let A ⊆ K[X1, . . . , Xn]
be a non-unit radical ideal. Suppose that the K-algebra A := K[X1, . . . , Xn]/A
is a finite dimensional vector space over K with DimK A = m ∈ N+. Then
there exist polynomials g1, . . . , gn−1, gn ∈ K[X] (where X is an indeterminate
over K) such that gn �= 0 square free of degree m and that A is generated by
X1−g1(Xn) , . . . , Xn−1−gn−1(Xn), gn(Xn). In particular, x = {1, xn, . . . , xm−1

n }
is a K-basis of A , where xn is the image of Xn in A.

Proof Let K be an algebraic closure of K . Then, since K is perfect and A is
reduced,AK := K[X1, . . . , Xn]/〈A〉 is reduced, too (see Footnote No. 8). Further, it
is an m-dimensional K-vector space and VK(A) :={a ∈ K n | F(a)= 0 for all F ∈
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A} is a finite algebraic set in K
N

with # VK(A) = DimK AK = m. Further,
since K is infinite, by a linear change of coordinates (over K), we may assume
that (see the argument as in 4.1.b) the n-th projection map qn : VK(A) → K ,
(a1, . . . , an) �→ an is injective. Furthermore, since K is perfect, the field extension
K|K is a Galois extension. Let Gal(K|K) be its Galois group. The Galois group
Gal (K|K) operates on VK(A) and its images qi(VK(A)) under the i-th projections
qi : VK(A)→ K , (a1, . . . , an) �→ ai , i = 1, . . . , n, with the natural operations:

Gal (K|K)× VK(A) −→ VK(A), (σ, (a1, . . . , an)) �−→ (σ (a1), . . . , σ (an)) and

Gal (K|K)× qi(VK(A)) −→ qi(VK(A)), (σ, ai) �−→ σ(ai) , i = 1, . . . , n

Obviously,

(∗) W := qn(VK(A))=W1 8 · · · 8W�
is the union of orbits of this operation and each orbit Wk =VK(πk) is the zero set
of the irreducible polynomial πk ∈ K[X], k = 1, . . . , �, see [11] or [17, Ch. XI,
§93, 93.2]. Therefore, sinceK is perfect, the polynomial gn := π1 · · ·π� ∈ K[X] is
square free and W =VK(gn), deg gn = #W = #VK(A) = m, since qn is injective
(see 4.1.b).
4.2.a For all an ∈ qn(VK(A)), there exist polynomials gi ∈ K[X] with deg gi <
deg gn = m, i = 1, . . . , n−1, such that (g1(an), . . . , gn−1(an), an) is the unique
point lying over an.

To prove 4.2.a, let an ∈ qn(VK(A)) and (a1, . . . , an−1, an) be the unique point
(since qn is injective, see 4.1.b) lying over an. Renumbering in (*) above, we may
assume that W1 = {σj (an) | j = 1, . . . , d, σ1 = idK} is the orbit of an. Then
#W1 = d and for every i = 1, . . . , n − 1, the orbit of ai is contained in {σj (ai) |
j = 1, . . . , d} (note that the elements σj (ai), j = 1, . . . , d, may not be distinct).

Now, since σj (an), j = 1, . . . , d, are distinct elements in K , by Lagrange’s
Interpolation Formula,9 for each i = 1, . . . , n − 1, there exists a polynomial
gi ∈K[X], deg gi <d < deg gn, such that gi(σj (an))= σj (ai) for all j = 1, . . . , d.
Moreover, g1, . . . , gn−1∈K[X], since σ(gi) = gi for every σ ∈ Gal(K |K).

Finally we claim the equality A′ := 〈X1 − g1(Xn), . . . , Xn−1 − gn−1(Xn),

gn(Xn)〉 = A. To prove this note that the substitution homomorphism

K[X1, . . . , Xn−1, Xn] → K[Xn], Xi �→ gi(Xn), i = 1, . . . , n− 1 and Xn �→ Xn,

9 Lagrange’s Interpolation Formula: Let K be a field and let x1, . . . , xd ∈ K be distinct
elements. Then for arbitrary elements y1, . . . , yd ∈ K , there exists a polynomial g ∈ K[X] of
degree deg g < d such that g(xi) = yi for every i = 1, . . . , d. For a proof consider the polynomial
g :=∑d

i=1
yi
zi

∏
j �=i (X − xj ), where zi :=∏

j �=i (xi − xj ).
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induces a K-algebra isomorphism K[X1, . . . , Xn]/A′ ∼−→ K[Xn]/〈gn〉 and
K[X1, . . . , Xn]/A′ is reduced, since gn is separable over K . Therefore A′ is a
radical ideal. Further, from 4.2.a it follows that VK(A

′) = VK(A). Now, use
Hilbert’s Nullstellensatz (see [2, 13] or [15, Theorem 2.10 , HNS 2]) to conclude the
equality A′ = A. ��
Remark 4.3 The Shape Lemma 4.2 appeared first time in [6] which may be regarded
as a natural generalization of the Primitive Element Theorem. Further, it gives a very
useful presentation of the radical ideal A which allows to find the solution space
VK(A) immediately, namely:

VK(A) = {(g1(a), . . . , gn−1(a), a) ∈ Kn | gn(a) = 0 }.

In other words, the last coordinates are zeros of gn and for a fixed last coordinate an,
all the other coordinates are determined by evaluation of polynomials gn−1, . . . , g1
at an: gn(an) = 0, an−1 = gn−1(an), . . . , a1 = g1(an). This simple shape of the
solution space VK(A) is quite convenient to work with. The primary decomposition
of A is given by the prime factorization of the polynomial gn. Under the conditions
on the polynomials g1, . . . , gn−1, gn ∈ K[X] as in the proof of the Shape Lemma
4.2, one can easily verify that X1 − g1(Xn), . . . , Xn−1 − gn−1(Xn), gn(Xn)

form a reduced (= minimal) Gröbner basis of the radical ideal A relative to the
lexicographic order X1 > X2 > · · · > Xn. For a different proof of the Shape
Lemma 4.2 see [12, Theorem 3.7.25] and a detailed recipe for solving systems of
polynomial equations efficiently using the Shape Lemma 4.2 is also given in [12,
Theorem 3.7.26]. The Shape Lemma 4.2 also appeared in [5, Ex. 16, § 4, Ch. 2].

Consequence and identifications 4.4 Let K be a real closed field, K := CK =
K[ i ], i2 = −1, the algebraic closure of K (see 2.1) and let A ⊆ K[X1, . . . , Xn] a
radical ideal. Suppose thatA := K[X1, . . . , Xn]/A is a finite dimensionalK-vector
space.

Let g1, . . . , gn−1, g := gn ∈K[X] be the polynomials as in the statement of the
Shape Lemma 4.2 and let ϕ : A ∼−→ K[X]/〈g〉 be the K-algebra isomorphism
induced by the substitution homomorphism K[X1, . . . , Xn−1, Xn] → K[Xn],
Xi �→ gi(Xn), i = 1, . . . , n − 1 and Xn �→ Xn (see the proof of the Shape
Lemma 4.2). Then, since g is square-free and K is a real closed field (see Footnote
1), g = (X − a1) · · · (X − ar)π1 · · ·πs , ai ∈ K , i = 1, . . . r and πj =
(X − zj )(X − zj ) ∈ K[X], zj ∈K�K , j =1, . . . , s, where r , s and m= r+2s as
in 4.1.a, since ϕ is a K-algebra isomorphism.

We use the above K-algebra isomorphism ϕ to identify A with K[X]/〈g〉 and A
with 〈g〉. Let x be the image of X in A. Then x := {1, x, . . . , x m−1} is a K-basis
of A and with the above identification, we have the equalities VK(A)= VK(g)=
{a1, . . . , ar } ⊆ VK(A)=VK(g)={a1, . . . , ar , z1, z1, . . . , zs, zs}, r + 2s=m.

Further, forH ∈ K[X1, . . . , Xn], we put h(X) := H(g1(X), . . . , gn−1(X),X) ∈
K[X]. Then using the above identifications, we have h(x) ∈ A, and the values
H(ai ) ∈ K , i = 1, . . . , r , and H(ar+j ), H(ar+j ) ∈ K, j = 1, . . . , s are identified
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with the values h(ai) ∈ K , i = 1, . . . , r , and h(zj ), h(zj ) ∈ K, j = 1, . . . , s,
respectively.

Theorem 4.5 With the notation and consequences as in 4.1 and 4.4, let H ∈
K[X1, . . . , Xn], h be the image of H in A and let  h : A × A → K , (f, f ′) �→
TrAK(hff

′), be the trace form on A associated to the element h ∈ A (see 3.2).
Then :
(a) The Gram’s matrix G h(x) of  h with respect to the K-basis x, is a symmetric

matrix in Mm(K). Moreover, G h(x) = VDh
tV, where V ∈ GLm(K) is the

Vandermonde’s matrix10 of the elements a1, . . . , ar , z1, . . . , zs, z1, . . . , zs ∈
K and Dh ∈ Mm(K) is the diagonal matrix with diagonal entries
h(a1), . . . , h(ar), h(z1), . . . , h(zs), h(z1), . . . , h(zs).

(b) Let pH := # {a∈VK(A) | H(a) > 0 } , qH := # {a∈VK(A) | H(a) < 0 } and
let sH := # {j | j = 1, . . . , s, h(zj ) �= 0}= 1

2 #
[
VK(A)�

(
VK(A)∪VK(H)

)]
.

Then:

type  h=(pH + sH , qH + sH ) and

rank h= pH + qH + 2sH = #{a ∈ VK(A) | H(a) �= 0} = #
(
VK(A)� VK(H)

)
.

In particular, sign  h = pH − qH .

Proof Recall from 4.1 that:

VK(A) = {a1, . . . , ar } ⊆ VK(A) = {a1, . . . , ar , ar+1 , ar+1 , . . . , ar+s , ar+s},

where r := # VK(A), r+s = # Spm A andm = r+2s = DimK A = DimKAK =
# VK(A) and that VK(A) is in general Xn-position, see 4.1.a and 4.1.b.

(a) From the indentifications in 4.4, it follows that for 0 ≤ k , � ≤ m−1, the (k, �)-
entry in the Gram’s matrix G h(1, x, . . . , x

m−1) = (
 h(x

k, x�)
)

0≤k , �≤m−1 is:

4.5.1

TrAK(h(x) x
k+�−2) =

∑

z∈VK(g)

h(z) z k+�−2

=
r∑

i=1

h(ai) a
k+�−2
i +

s∑

j=1

(
h(zj ) z

k+�−2
j + h(zj ) z k+�−2

j

)
.

10 Vandermonde’s matrix For elements a1, . . . , am is a field K , the matrix V(a1, . . . , am) :=
(a
j
i ) 1≤i≤m

0≤j≤m−1
∈ Mm(K) is called the Vanderminde’s matrix of the elements a1, . . . , am. The

elements a1, . . . , am are pairwise distinct if and only if V(a1, . . . , am) ∈ GLm(K).



684 D. P. Patil and J. K. Verma

Now, by the Fundamental Theorem on Symmetric Polynomials (see [17, Theo-
rem 54.13], the right hand side of 4.5.1 is a polynomial in the coefficients of
h(X) and g(X) (with coefficients in Z) and hence belongs to K . Therefore
G h(1, x, . . . , x

m−1) is a symmetric matrix in Mm(K). Furthermore, using the
equation 4.5.1, the equality G h(1, x, . . . , x

m−1) = VDh
tV, where V and Dh are

as in the statement of (a), can be easily verified.

(b) The assertion about the rank follows from the equality rank h =
rankG (x) = rankDh, since V ∈ GLm(K). Further, the local decomposition
A
∼−→ Kr ×Ks (see 4.1.b) yields the orthogonal decomposition (see 3.2)

 h=( h)K1 7 · · · 7 ( h)Kr7 ( h)K1 7 · · · 7 ( h)Ks ,

where ( h)Ki = h|K , is the restriction of  h to the real component at ai ∈K with

Gram’s matrix G( h)Ki
(1)= (h(ai)) ∈ M1(K), i= 1, . . . , r and ( h)Kj = h|K, is

the restriction of  h to the non-real component K[X]/〈πj 〉 ∼−→ K at mj =〈πj 〉 ∈
Spm A�K-SpecA, j=1, . . . , s. Furthermore, clearly,

type ( h)
K
i =sign ( h)

K
i =sign h(ai)=sign H(ai ) for all i=1, . . . , r

and for each j = 1, . . . , s, by Example 2.8 (since πj =(X−zj )(X−zj ), zj ∈ K�K),

we have ( h)Kj = 0 if h(zj ) = 0 and type ( h)Kj = (1, 1) for all j = 1, . . . , s.
Therefore, by Corollary 3.4, we have:

type  h=
r∑

i=1

type ( h)
K
i +

r+s∑

j=r+1

type ( h)
K
j =(pH + s , qH + s)

and hence sign  h=pH−qH . ��
Remark 4.6 The Gram’s matrix G h(1, x, . . . , x

m−1) = (
Tr AK (h(x) x

k+�−2)
)

0≤k , �≤m−1 in the Theorem 4.5 (a) is a so-called Hankel matrix H(a0, . . . , a2m−2) :=
(ak+�−2)0≤k , �≤m−1 ∈ Mm(K) of the sequence a0, . . . , a2m−2 ∈ K . There are
efficient methods to determine rank, type and signature of a Hankel matrix by using
a theorem of Frobenius, for a proof see [7, Ch. X § 10, Theorem 24].

Corollary 4.7 (H e r m i t e) Let K be a real closed field, g ∈ K[X], deg g =
m ≥ 1, and A := K[X]/〈g〉. Then the type TrAK = (r + s , s), where TrAK :
A × A → K , (f, f ′) �→ TrK(ff ′) is the trace form on A, r = #VK(g) is
the number of zeros of g in K and s is the half of the number of zeros of g in
the algebraic closure K of K which are not in K . In particular, sign TrAK = r =
# VK(g).

Proof Using the notation as in the Theorem 4.5, note that TrAK =  1 is the trace
form associated to the constant polynomial 1 ∈K[X]. Therefore, by 4.5 (b), p1 =
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r=#VK(g), q1=0 and type TrAK = (p1+s, q1+s). Further, sign TrAK = p1−q1 =
r = # VK(g). Of course, the assertion also follows directly from Theorem 3.5. ��

With the notation as in 4.1, our main goal is to relate the cardinality # VK(A)
with the signatures of the trace forms on the finite K-algebra A associated to its
elements, see 3.2.

Notation 4.8 With the notation as in 4.1 and 4.4. Further, let H ∈ K[X1, ....., Xn]
and VK(H) := {a ∈ Kn | H(a) = 0} be the hypersurface in the affine n-space
Kn defined by H . Then the complement of VK(H) in Kn is the union of line-
connected subsets (in the strong topology on Kn, see Footnote 4) on which H takes
either all positive values or all negative values. With this we have the decomposition
Kn = VK(H) 8 H+ 8 H−, where H+ := {a ∈ Kn | H(a) > 0} and H− := {a ∈
Kn | H(a) < 0}.

Further, since VK(A) =
(
VK(A) ∩H+

)⊎ (
VK(A) ∩H−

)⊎
(VK(〈A,H 〉)),

we have:
4.8.a # VK(A) = #

(
VK(A) ∩H+

)+ #
(
VK(A) ∩H−

)+ # (VK(〈A,H 〉)) ,
and hence to compute # VK(A) , we can use arbitrary polynomial H ∈
K[X1, . . . , Xn] and compute the cardinalities # VK(A)∩H+, # VK(A)∩H− and
# VK(〈A,H 〉).

More precisely, we have:

Theorem 4.9 With the notation as in 4.1 and 4.8. For H ∈ K[X1, ....., Xn], let
pH = # VK(A) ∩ H+, qH = # VK(A) ∩ H− be as in Theorem 4.5) and let h
denote the image of H in A = K[X1, ....., Xn]/A and

 h : A×A→ K, (f, g) �→ TrAK(hfg)(resp. h2 : A×A→ K, (f, g) �→ TrAK(h
2fg))

be the trace form on A associated to the element h (resp. h2). Then :
(a) (Pederson-Roy-Szpirglas [16, Theorem 2.1] , see also [5, Ch. 2, § 5, Theo-

rem 5.2])

sign  h = pH − qH .

(b)

sign  h2 = pH + qH .

(c) Let B := 〈A,H 〉 be the ideal (in K[X1, . . . , Xn] ) generated by A and H .
Then the K-algebra B := K[X1, . . . , Xn]/B is finite over K and sign TrBK =
# VK(B).

(d) The three signatures sign  h, sign  h2 and sign TrBK uniquely determine the
natural numbers pH , qH and # VK(B) = VK(A) ∩ VK(H). In particular,
they determine the cardinality # VK(A) = pH + qH + # VK(B).



686 D. P. Patil and J. K. Verma

Proof

(a): Proved in Theorem 4.5 (b).
(b): Since H 2(a)=H(a)H(a)>0 for every a∈H+∪H− and VK(H 2)=VK(H),

from Theorem 4.5 (b) it follows that sign  h2 = pH + qH .
(c): Since the K-algebra B is a homomorphic image of the K-algebra A, B is

also finite over K . The equality sign TrBK = # VK(B) is immediate from
Theorem 4.5 (a) (H = 1) or Theorem 3.5.

(d): Immediate from the formula 4.8.a for #VK(A) and the parts (a), (b) and (c)
above.

��
Remark 4.10 The role of a polynomial H ∈ K[X1, . . . , Xn] in the Theorem 4.9 is
to count the exact number of points in VK(A) which lie in the signed components
H+ and H− determined by H . The system of linear equations

⎛

⎝
1 1 1
0 1 −1
0 1 1

⎞

⎠

⎛

⎝
rH

pH

qH

⎞

⎠ =
⎛

⎝
sign TrAK
sign  h
sign  h2

⎞

⎠ ,

where rH := # (VK(A,H)) = # (VK(A) − pH − qH , describes the results of
the Theorem 4.9: the first row combines the equality 4.8.a with 3.5, the second
row is the part (a) and the third row is the part (b). This is a first idea used in
the efficient parallel algorithm developed by Ben-Or, Kozen, and Reif (see [3]),
where they considered a family of polynomials H1, . . . , Hk ∈ K[X1, . . . , Xn] and
developed an efficient algorithm to count the number of points in VK(A) which
lie in each of the sign-component determined by some conjunction of conditions:
H1ε1 ∧ · · · ∧ Hk εk , where εj ∈ {< 0 , = 0 , > 0}, j = 1, . . . , k. For example, if
H1 = X1 , H2 = X2 ∈ R[X1, X2], then the sign-components are X1-axis, X2-axis
and four quadrants.
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1 Introduction

The goal of this article is to uncover a close relationship between Hermite
reciprocity and cohomological properties of Schwarzenberger bundles, and to
highlight their importance by connecting to a series of recent results in the literature.
Specifically, we discuss the applications of Hermite reciprocity to proving Green’s
conjecture for rational cuspidal curves [1], and for canonical ribbons [23]. We also
explain how to recover the description of the class group of a Hankel determinantal
ring and its property of having rational singularities [5], by working on the natural
desingularizations, via Schwarzenberger bundles, of the secant varieties to rational
normal curves.
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Classically, Hermite reciprocity is the statement that the composition of two
symmetric powers is commutative when applied to a 2-dimensional vector space,
that is, there exists a GL2(C)-equivariant isomorphism [16, Exercise 11.34]

Symm(Symn C2) ∼= Symn(Symm C2).

The existence of such an isomorphism can be proven combinatorially by computing
the characters of both sides. However, the isomorphism is not unique (it can be
chosen independently on each isotypic component), and it may not exist if we
replace C with a field k of arbitrary characteristic, when the representations involved
are no longer completely reducible. To get a correct statement for arbitrary fields,
one has to replace Symm with the divided power Dm. We explain in Sect. 2 how to
construct a commutative diagram of explicit SL2(k)-equivariant isomorphisms (see
also [16, Exercise 11.35])

∧m(Symm+n−1 k2)
� �

Dm(Symn k2) � Symn(Dm k2)

and we loosely refer to any one of them as Hermite (reciprocity) isomor-
phisms. Notice that we have relaxed the requirement of GL2-equivariance to
SL2-equivariance: this is only done to avoid twisting by appropriate powers of the
determinant representation det(k2) =∧2 k2 of GL2(k). For instance, to make
the diagonal isomorphisms in the above diagram respect the GL2-action, one would
need to tensor the bottom representations with (det(k2))⊗(

m
2).

We give two constructions of Hermite isomorphisms: the first one uses only
elementary multilinear algebra, while the second one uses Schwarzenberger bundles
and only some elementary facts of algebraic geometry. A third construction that
passes through (a truncation of) the ring of symmetric polynomials is explained in
[1, Section 3]. The fact that all of the constructions agree is a consequence of a
strong compatibility between the Hermite isomorphisms as we vary the parameters.
For instance, if we vary n then we get

⊕

n≥0

m∧
(Symm+n−1 k2) ,

⊕

n≥0

Symn(Dm k2) (1.1)

where the right side is manifestly a polynomial ring, the symmetric algebra
Sym(Dm k2). A natural action of Dm k2 on the left side makes it into a free
Sym(Dm k2)-module of rank one, with generating set

∧m
(Symm−1 k2) , k.
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The geometric approach to Hermite reciprocity, suggested by Rob Lazarsfeld, is
based on a construction considered in [30, Section 2]. Specializing it to the case of
P1, we get an incidence correspondence

(1.2)

where Z consists of pairs (0, p), where 0 is a subscheme of P1 of length m and
p ∈ 0. Letting

E = π1∗(π∗2 (OP1(m+ n− 1))),

one has that E is a vector bundle of rank m on Pm, with det(E) =∧m E = OPm(n).
It is noted in [30, (2.11)] that there exists an isomorphism

m∧
H0(P1,OP1(m+ n− 1)) , H0(Pm, det(E)),

and upon identifying the left side with
∧m
(Symm+n−1 k2) and the right side with

Symn(Dm k2), one discovers an instance of Hermite reciprocity. We treat this in
more detail in Sect. 2.2, where we note that E = Emn−1 is a Schwarzenberger
bundle, with presentation [25, Proposition 2]

0 −→ Symn−1 k2(−1) −→ Symm+n−1 k2 ⊗OPm −→ E −→ 0.

In the diagram (1.2), in can be shown that Z , P1 × Pm−1, and that the morphism
π1 is defined by a linear series of type (1, 1). As such, E arises as a special case
of the construction of [14, Theorem 6.1], and is therefore a supernatural vector
bundle. In Sect. 3 we give a similar realization, which appears to be new, for all
of the exterior powers

∧i E . We remark here that the natural generalizations of the
Schwarzenberger bundles, obtained by replacing P1 in (1.2) with a higher genus
curve, have been also notably used in the Ein–Lazarsfeld proof of the gonality
conjecture [6] and in the recent work of Ein–Niu–Park on secant varieties of
nonsingular curves [8].

In the final chapters we discuss two applications of Hermite reciprocity and
Schwarzenberger bundles. The first is to the study of secant varieties of rational
normal curves, and is developed in Sect. 4. These secant varieties have desingular-
izations given by the total space of Schwarzenberger bundles (see [25, Section 2],
[22, Section 6], [8, Section 3]). We review some basic known properties of the
secant varieties using what we have developed, such as showing that they are normal
Cohen–Macaulay varieties which have rational singularities, and showing that the
minimal free resolution of their homogeneous coordinate rings are given by the
Eagon–Northcott complex of a Hankel matrix. We also discuss the classification of
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the rank one maximal Cohen–Macaulay modules on these varieties and show that
there is always a distinguished one which is an Ulrich module and is self-dual. Most
of the properties of secant varieties that we present are classical, but the results on
rational singularities and on the rank one MCMs have been obtained only recently
[5], based on a more algebraic approach. In Sect. 5, we recast Hermite reciprocity
in terms of the self-duality of the rank one Ulrich module, and also show that it
characterizes the unique global section of an appropriate twist of a symmetric power
of E .

The second application of the ideas behind Hermite reciprocity is to give a
purely algebraic proof of Green’s conjecture for generic curves of genus g, and
is discussed in Sect. 6. There are two different approaches [1, 23], each of which
involves studying a mapping cone and showing that certain comparison maps are
surjective. Surprisingly, in both cases, by considering all g at once, the Tor groups
involved in these comparison maps can be given the structure of finitely generated
modules over polynomial rings, in the spirit of (1.1). This hidden structure is most
easily observed using Hermite reciprocity, and we explain the calculations leading
up to this observation, referring the reader to the original articles for the rest of the
technical aspects.

Notation Throughout we fix a field k. Since all of our results are independent of
characteristic and compatible with change of rings, one can work over a general
commutative ring with the proper rephrasing. We will make use of standard
multilinear functors: Dm denotes the m-th divided power functor, which is the
subspace of symmetric tensors in the m-th tensor power, Symm denotes the m-th
symmetric power functor, and

∧m denotes the m-th exterior power functor. For
any finite dimensional vector space V , we have a natural identification Dm(V ) =
Sym(V ∨)∨ (see [1, Section 3.1] for a quick discussion of the relevant constructions).

2 Hermite Reciprocity

Consider a 2-dimensional vector space U (which we identify with its dual space
U∨ after picking a volume form, i.e., a nonzero element of

∧2
U ). We let SL =

SL(U) ∼= SL2(k) denote the special linear group, i.e., the group of invertible
operators onU of determinant 1. The careful reader can upgrade all of the statements
in this paper to account for the general linear group GL(U) by inserting appropriate
powers of determinant characters, but we avoided this to simplify the notation.
In this section, we give two different constructions of the isomorphisms in the
following result and then we show that they agree with each other, and with the
isomorphisms constructed in [1, Section 3].
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Theorem 2.1 (Hermite Reciprocity) We have natural SL(U)-equivariant isomor-
phisms:

m∧
(Symn U) ∼= Symn−m+1(Dm U), (2.1a)

Dm(Symn−m U) ∼= Symn−m(Dm U). (2.1b)

2.1 An Algebraic Construction

Given vector spaces A and B, we have a canonical map

Dm A⊗
m∧
B →

m∧
(A⊗ B) (2.2)

given by realizing
∧m

B as the skew-symmetric tensors in B⊗m. More precisely, if∑
α aα1 ⊗ · · · ⊗ aαm is invariant and

∑
β bβ1 ⊗ · · · ⊗ bβm is skew-invariant, then∑

α,β(aα1 ⊗ bβ1)⊗ · · · ⊗ (aαm ⊗ bβm) is also skew-invariant. Similarly, we have a
canonical map

Dm A⊗ Dm B → Dm(A⊗ B).

In particular, we can define multiplication maps

Dm U ⊗
m∧
(Symd U)→

m∧
(Symd+1 U) (2.3a)

Dm U ⊗ Dm(Symd U)→ Dm(Symd+1 U) (2.3b)

by using the canonical maps above followed by either the functor
∧m or Dm applied

to the multiplication mapU⊗Symd U → Symd+1 U . If we do it twice, the resulting
map is invariant under swapping the copies of Dm U , so

⊕
d≥0

∧m
(Symd U) and⊕

d≥0 Dm(Symd U) acquire the structure of modules over Sym(Dm U).

Proposition 2.4 If U has basis {1, x}, then
⊕
d≥0

∧m
(Symd U) is a free

Sym(Dm U)-module of rank one. Ifm ≥ 1 then the generator is xm−1∧xm−2∧· · ·∧1
in degree m − 1, and if m = 0 then the generator is in degree 0. Similarly,⊕
d≥0 Dm(Symd U) is a free Sym(Dm U)-module of rank one generated in

degree 0.

Proof The m = 0 case is obvious, so we assume that m > 0. We claim that the
multiplication Dm U⊗∧m

(Symd U)→∧m
(Symd+1 U) is surjective if d ≥ m−1.

First, Dm U has a basis

{x(k) | 0 ≤ k ≤ m}
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where x(k) is the sum over all
(
m
k

)
ways of tensoring k copies of x and m− k copies

of 1. The multiplication map is then described by

x(k) ⊗ (xd1 ∧ · · · ∧ xdm) �→
∑

S⊆{1,...,m}
|S|=k

xd
′
1 ∧ · · · ∧ xd ′m

where d ′j = dj if j /∈ S and d ′j = dj + 1 if j ∈ S. Now consider an element

of the form xd1 ∧ · · · ∧ xdm with d1 > · · · > dm. Let j ≥ 0 be maximal such
that dj = d + 2 − j (we set j = 0 if di �= d + 2 − i for all i). We show how
xd1 ∧· · ·∧xdm is in the image of the multiplication map by induction on j . If j = 0,
then d + 1 /∈ {d1, . . . , dm}, so we can multiply xd1 ∧ · · · ∧ xdm by x(0). Otherwise,
if j > 0, multiply xd1−1 ∧ xd2−1 · · · xdj−1 ∧ xdj+1 · · · xdm by x(j). This is a sum of
the term we want together with terms covered by our induction hypothesis, so the
claim is proven.

It follows from the prove above that
⊕
d≥0

∧m
(Symd U) is a cyclic Sym(Dm U)-

module, generated by xm−1 ∧ xm−2 ∧ · · · ∧ 1 in degree m− 1. Since

dim
m∧
(Dm−1+d U) =

(
m+ d
d

)
= dim Symd(Dm(U)) for all d ≥ 0,

it follows that
⊕
d≥0

∧m
(Symd U) is a free module, as desired.

The symmetric case is similar: we just need to show that the multiplication
map Dm U ⊗ Dm(Symd U) → Dm(Symd+1 U) is surjective. We have a basis of
Dm(Symd U) consisting of the sum of the unique permutations of xd1 ⊗ · · · ⊗ xdm
where d ≥ d1 ≥ · · · ≥ dm ≥ 0, which we denote by xd1 · · · xdm . The product of
x(k) with xd1 · · · xdm is almost as before, namely, it is a sum (with coefficients) of
xd
′
1 · · · xd ′m where d + 1 ≥ d ′1 ≥ · · · d ′m ≥ 0 and (d ′1, . . . , d ′m) is obtained by adding

1 to k of the di and sorting. The exact coefficients will not be relevant, rather we
will show that xd1 · · · xdm is in the image of the multiplication map by induction on
how many exponents are equal to d + 1. If there are none, then this is the product
of x(0) and xd1 · · · xdm ∈ Dm(Symd U). Otherwise, if dk = d + 1 > dk+1, then
consider the product of x(k) with xd · · · xdxdk+1 · · · xdm ∈ Dm(Symd U). It will
contain xd+1 · · · xd+1xdk+1 · · · xdm with coefficient 1, and all other terms will have
less than k exponents equal to d + 1. These latter terms are in the image of the
multiplication map by induction, so we are done. ��
Proof of Theorem 2.1 By Proposition 2.4, the multiplication map

Symn−m+1(Dm U)⊗
m∧
(Symm−1 U)→

m∧
(Symn U)
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is an isomorphism, and
∧m
(Symm−1 U) , k is a trivial SL(U)-representation.

Similarly, the multiplication map

Symn−m(Dm U)⊗ Dm(Sym0 U)→ Dm(Symn−m U)

is an isomorphism and Dm(Sym0 U) , k. ��

2.2 Via Schwarzenberger Bundles

We let Pm = Proj(Sym(Dm U)). For d ≥ 1, consider the composition Symd U ⊗
OPm(−1)→ Symd U ⊗Symm U → Symd+m U . This has locally constant rank, so
we have a locally free sheaf Emd , the Schwarzenberger bundle on Pm defined by
the short exact sequence

0 −→ Symd U(−1) −→ Symd+m U ⊗OPm −→ Emd −→ 0. (2.5a)

It follows from (2.5a) that

rank(Emd ) = m and det(Emd ) = OPm(d + 1). (2.5b)

Proof of Theorem 2.1 The m-th exterior power of (2.5a) with d = n − m gives a
resolution Fn• of det(Emn−m) ∼= OPm(n−m+ 1) by locally free sheaves, where

Fni =
m−i∧
(Symn U)⊗ Di (Symn−m U)⊗OPm(−i), for i = 0, . . . , m.

Since the sheaves Fni have no cohomology for i = 1, . . . , m, it follows that

m∧
(Symn U) = H0(Pm,Fn0 ) = H0(Pm, det(Emn−m)) = Symn−m+1(Dm U),

proving (2.1a). To prove (2.1b), we note that det(Emn−m)⊗OPm(−1) ∼= OPm(n−m).
Since the sheaves Fni (−1) have no cohomology for i = 0, . . . , m − 1, it follows
that

Dm(Symn−m U) = Hm(Pm,Fnm(−1)) = H0(Pm, det(Emn−m)(−1)) = Symn−m(Dm U).

��
Remark 2.6 We have a natural identification between Pm and Hilbm(P1) (the
Hilbert scheme of m points on P1), where a point [f ] ∈ Pm with 0 �= f ∈ Symm U
corresponds to the zero locus of f ∈ H0(P1,O(m)). The incidence correspondence

Z = {([f ], [p]) ∈ Pm × P1 | f (p) = 0},
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is defined by an exact sequence

0 −→ OPm×P1(−1,−m) −→ OPm×P1 −→ OZ −→ 0, (2.6a)

where the defining equation of Z is given by the unique SL(U)-invariant subspace
in

H0(Pm × P1,OPm×P1(1,m)) = Dm U ⊗ Symm U.

In coordinates, if z0, . . . , zm are the coordinate functions in Pm, and x, y are those
in P1, then Z is defined by the equation

z0x
m + z1x

m−1y + · · · + zixm−iyi + · · · + zmym = 0.

We write π1 : Z −→ Pm and π2 : Z −→ P1 for the natural projections. Given
n ≥ m, it follows from (2.6a) that we have

Emn−m = π1∗(π∗2OP1(n)) = π1∗(OZ(0, n)).

In Sect. 3 we generalize the isomorphism above to all exterior powers of Schwarzen-
berger bundles, showing that they can be realized as direct images of line bundles
on a product of projective spaces.

2.3 The Isomorphisms Agree

We now prove that the Hermite reciprocity isomorphisms given in Sects. 2.1 and 2.2
agree with each other and also with the one given by Aprodu et al. [1, Lemma 3.3].
We focus on (2.1a). The proof for (2.1b) is similar, so we omit it. To do this, we
check that there is a commutative diagram

(2.7)

where the vertical maps are isomorphisms induced by the isomorphism in Sect. 2.2,
the bottom map is the natural multiplication, and the top map is (2.3a). Since the
Hermite reciprocity isomorphisms are characterized by the commutativity of (2.7),
as seen in the proof of [1, Lemma 3.3], we conclude by verifying the following.
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Proposition 2.8 The diagram (2.7) is commutative.

Proof The following square commutes (the vertical maps are the usual multiplica-
tion maps)

which induces a map on cokernels

Emn−m ⊗ U −→ Emn+1−m. (2.8a)

This in turn gives rise to natural maps

m∧
Emn−m ⊗ Dm U −→

m∧
(Emn−m ⊗ U) −→

m∧
Emn+1−m, (2.8b)

which lifts to a map of resolutions Fn• ⊗ Dm U −→ Fn+1• , as follows. For each
i = 0, . . . , m, the map Fni ⊗ Dm U −→ Fn+1

i is given as the composition

m−i∧
(Symn U)⊗ Di (Symn−m U)⊗ Dm U

→
(
m−i∧
(Symn U)⊗ Dm−i U

)
⊗
(

Di (Symn−m U)⊗ Di U
)

→
m−i∧
(Symn U⊗U)⊗Di (Symn−m U⊗U)→

m−i∧
(Symn+1 U)⊗Di (Symn−m+1 U),

where all maps are induced by multiplication and comultiplication. The map on
global sections

H0(Pm,Fn0 ⊗ Dm U) −→ H0(Pm,Fn+1
0 )

is the top map in (2.7), while the bottom map in (2.7) is the map induced from (2.8b)
by taking global sections, from which the commutativity follows. ��
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2.4 Compatibility of Hermite Isomorphisms

We end our discussion of Hermite reciprocity by constructing one last isomorphism
and discussing its compatibility with the ones from Theorem 2.1. We define α as the
composition

where the first isomorphism follows from the identification k ∼= ∧m
(Symm−1 U)

given by 1 �→ xm−1 ∧ · · · ∧ x ∧ 1, while the second map is induced by (2.2) and the
multiplication Symn−m U ⊗ Symm−1 U −→ Symn−1 U .

Theorem 2.9 The map α is an isomorphism, and we have a commutative diagram

where β comes from (2.1a) and γ from (2.1b).

Proof Fix m and consider the direct sum of the terms in the triangle over all n ≥ m
to get

where all 3 terms are free Sym(Dm U)-modules of rank one, and the maps α′, β ′, γ ′
are linear with respect to the Sym(Dm U)-action. Let ∗ denote the Sym(Dm U)-
action in all cases. For f ∈ Sym(Dm U), we have γ ′−1(f ) = f ∗ 1 where 1 ∈
k ∼= Dm(Sym0 U), and β ′−1(f ) = xm−1 ∧ · · · ∧ x ∧ 1 ∈ ∧m

(Symm−1 U). By
construction, α′(1) = xm−1 ∧ · · · ∧ x ∧ 1, so the triangle commutes. ��

3 Exterior Powers of Schwarzenberger Bundles

The goal of this section is to prove that exterior powers of Emd arise as special cases
of the construction of supernatural vector bundles from [14, Section 6].

Theorem 3.1 For 0 ≤ i ≤ m consider the multiplication map

μ : Pi × Pm−i −→ Pm.
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We have an isomorphism

i∧
Emd , μ∗O(d +m− i + 1, 0),

and in particular the bundle
∧i Emd has supernatural cohomology, with root

sequence

−1,−2, . . . ,−(m− i),−(m− i + d + 2), . . . ,−(m+ d + 1).

If i = 0 or i = m then there is nothing to prove, so we may assume that m ≥ 2
and 0 < i < m. Inside the product P = Pi × Pm, consider the locus (see also [13,
Section 2.1.8])

Z = {(f, g) | f divides g}.

with the reduced scheme structure. We have an isomorphism

φ : Pi × Pm−i , Z ⊂ P, (f, h) �→ (f, f h),

and under this isomorphism we have

φ∗(OZ(a, b)) = OPi×Pm−i (a + b, b).

The divisibility f |g is equivalent to the existence of a form h ∈ Symm−i U and
a scalar c ∈ k, not both 0, such that hf + cg = 0. It follows that Z can (set-
theoretically) be realized as the degeneracy locus (i.e., where the map fails to have
full rank) of a map of vector bundles

Symm−i U(−1, 0)⊕OP(0,−1) −→ Symm U ⊗OP,

(h⊗ f, c ⊗ g) �→ hf + cg.

We write α : P −→ Pi for the first projection, and observe that if we restrict the
domain of the morphism above to the first summand then we get from (2.5a) an
injective map

Symm−i U(−1, 0) ↪→ Symm U ⊗OP,

with cokernel given by α∗(E im−i ).
Lemma 3.2 Z is the zero scheme of the induced map

OP(0,−1) −→ α∗(E im−i ).
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Proof Since φ is a closed immersion, and φ∗(OP(1, 1)) = OPi×Pm−i (2, 1), we can
compute the degree of Z with respect to OP(1, 1) as the m-fold self-intersection of
OPi×Pm−i (2, 1). This is the coefficient of si tm−i in (2s + t)m, which is 2i

(
m
i

)
.

Since codimZ = i, the cohomology class of the zero locus of this
section is the top Chern class of α∗(E im−i )(0, 1). Writing the Chow ring of
P as Z[s, t]/(si+1, tm+1) (using [13, Theorem 2.10]), the top Chern class of
α∗(E im−i )(0, 1) is by Eisenbud and Harris [13, Proposition 5.17]

i∑

j=0

cj (E im−i , s)t i−j

where cj (E im−i , s) denotes the j th Chern class of α∗(E im−i ). Using (2.5a) and [13,
Theorem 5.3(c)], the Chern polynomial of α∗(E im−i ) is (see also [13, Section 9.3.3])

(1− s)m−i+1 =
i∑

j=0

(
m− i + j

j

)
sj .

Since Z has dimension m, the degree of the zero locus with respect to OP(1, 1) is
the coefficient of si tm in (1− s)m−i+1(s + t)m, which is

i∑

j=0

(
m− i + j

j

)(
m

i − j
)
=

i∑

j=0

(
m

i

)(
i

j

)
= 2i

(
m

i

)
.

This agrees with the degree of Z, and hence we conclude that Z is scheme-
theoretically the zero locus of the claimed map of vector bundles. ��
Proof of Theorem 3.1 We will prove the result by induction on m. From
Lemma 3.2, we obtain an exact Koszul resolution (using (2.5b))

0 −→ OP(0,−i) −→ α∗(E im−i )(0,−i + 1) −→ · · · −→
α∗(det(E im−i )) −→ OZ(m− i + 1, 0) −→ 0.

If we let β : P −→ Pm denote the second projection, then μ = β ◦ φ, and in
particular

F := μ∗(OPi×Pm−i (d +m− i + 1, 0)) = β∗(OZ(d +m− i + 1, 0))

is resolved by the push-forward along β of the earlier Koszul complex twisted by
OP(d, 0):

0 −→ OP(d,−i) −→ α∗(E im−i )(d,−i + 1) −→ · · · −→ α∗(det(E im−i ))(d, 0).
(3.3)
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By induction, we know that (
∧j E im−i )(d) has no higher cohomology, and

H0(Pi ,
j∧
(E im−i )(d)) = Symm−j+1+d(Dj U)⊗ Symd(Di−j U)

∼=
j∧
(Symm+d U)⊗ Di−j (Symd U),

where the last isomorphism follows from Hermite reciprocity. Since β is a finite
map, we get that β∗ is exact, and hence the sheaf F is resolved by a complex

· · · −→
j∧
(Symm+d U)⊗Di−j (Symd U)(−i+j) −→ · · · −→

i∧
(Symm+d U)⊗OPm.

We claim that the rightmost differential in the above complex can be identified
with the rightmost differential in the i-th exterior power of the 2-term resolution

Symd U(−1) −→ Symm+d U ⊗OPm

of Emd . Once shown, this implies that F ,∧i Emd .

To prove the claim, in the exact sequence (3.3), replace each term α∗(
∧j E im−i )

by its resolution α∗(
∧j
(Symm−i U(−1) → Symm U)). Then we get a double

complex mapping to the complex in question, and we take sections of the rightmost
two terms to get:

The vertical maps from the second row to the top row are surjective and the second
row comes from the ith exterior power of the 2-term complex O(−1) → Symm U
tensored with Symd(Di U). This implies that the differentials in the first row are
determined by the second row and the vertical maps, so it suffices to show that the
claimed differential for the first row gives a commutative square.

For j = i, i − 1, the vertical map

j∧
(Symm+d U)⊗Symd(Di U)(−i+j)→

j∧
(Symm+d U)⊗Di−j (Symd U)(−i+j)
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factors as

j∧
(Symm+d U)⊗ Symd(Di U)(−i + j)

→
j∧
(Symm+d U)⊗ Symd(Dj U)⊗ Symd(Di−j U)(−i + j)

→
j∧
(Symm+d U)⊗ Di−j (Symd U)(−i + j)

where in the second map we use the action of Sym(Dj U) on
⊕
n≥0

∧j
(Symn U)

from the previous section on the first two factors (which we denote by ∗). The
second factor is the identity map in both cases.

It suffices to consider the case d = 1 due to the associativity of ∗. The square
becomes

Pick ω ⊗ x(j) ⊗ f ∈∧i−1
(Symm U)⊗ Di U(−1). The bottom path is

ω ⊗ x(j) ⊗ f �→ ω ∧ f ⊗ x(j) �→ x(j) ∗ (ω ∧ f ),

while the top path is

ω ⊗ x(j) ⊗ f �→ x(j−1) ∗ ω ⊗ x ⊗ f + x(j) ∗ ω ⊗ 1⊗ f
�→ (x(j−1) ∗ ω) ∧ xf + (x(j) ∗ ω) ∧ f

where by convention, x(−1) = 0. The two final quantities agree, which proves the
claim. ��

4 Secant Varieties of Rational Normal Curves

In this section we give an SL-equivariant construction of the rank one maximal
Cohen–Macaulay modules over a Hankel determinantal ring B, and recover the
description of the divisor class group of B from [5, Section 3], as well as the
property of B having rational singularities. We formulate our results and arguments
geometrically, using the usual identification of Spec(B) with the affine cone �̂ over
a secant variety of a rational normal curve. In the process we recover well-known
properties of �̂, such as normality and the Cohen–Macaulay property, along with
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the explicit description of its equations and syzygy modules. The key ingredients
that we employ are the desingularization of �̂ via Schwarzenberger bundles, as
explained in [22, Section 6], and the Kempf–Weyman technique for constructing
syzygies, as explained in [33, Chapter 5]. We will assume that k is algebraically
closed in order to make valid set-theoretic arguments involving the k-points of our
varieties, but the careful reader may wish to rephrase the justifications in order to
remove this hypothesis.

Before going into more details, we establish some notation used throughout the
section. If F is a coherent locally free sheaf on a variety X, we consider the sheaf
of (graded) algebras

SymOX(F) = OX ⊕ F ⊕ Sym2(F)⊕ · · ·

and write PX(F) for Proj
X
(SymOX(F)). Similarly, we write AX(F) for

Spec
X
(SymOX(F)). When X is understood from the context, we simply write

Sym(F), P(F), and A(F).
We let Pn = P(Symn U), and note that its k-points [f ] ∈ Pn are represented by

non-zero elements f ∈ Dn U up to scaling. Every u ∈ U gives rise to a symmetric
tensor

u(n) = u⊗ u⊗ · · · ⊗ u ∈ Dn U,

the n-th divided power of u. We get an SL-equivariant map

P1 −→ Pn, [u] −→ [u(n)],

called the degree n Veronese embedding of P1. We denote its image by �,
which is a rational normal curve of degree n, and write �k for the k-secant
variety of �. Recall that this is the Zariski closure of the union of all linear spaces
Span(x1, . . . , xk), ranging over all choices of points x1, . . . , xk ∈ �. In particular,
we have �1 = �. We consider the affine space An+1 = A(Symn U), and write
�̂k ⊂ An+1 for the affine cone over �k . We let B denote the coordinate ring of �̂k
(or the homogeneous coordinate ring of�k), which is called a Hankel determinantal
ring in [5]. The following theorem summarizes some of the basic properties of �̂k:

Theorem 4.1 The variety �̂k is normal, Cohen–Macaulay, and has rational singu-
larities. Its divisor class group is isomorphic to Z/(n− 2k + 2)Z.

The conclusions of Theorem 4.1 are not new. Our goal to provide a unified proof
of this theorem based on properties of Schwarzenberger bundles and the Kempf–
Weyman geometric technique. For a more in-depth study of other aspects of the
theory, the reader can consult [4, 5, 9, 18, 32] or [13, Section 10.4].
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We consider the Schwarzenberger bundle E = Ekn−k on Pk = P(Dk U), along
with the diagram of spaces and maps

where ι is the closed immersion induced by the surjection Symn U ⊗ OPk 	 E in
(2.5a), the maps p, q are the projections to the two factors, and π = q ◦ ι. The map
ψ = p ◦ ι is the structure map of the geometric vector bundle Y over Pk , whose
k-points correspond to pairs (f, [g]), where f belongs to the dual of the fiber of E
at [g] ∈ Pk . To make this more explicit, we use the perfect pairing

〈−,−〉: Dd U × Symd U −→ k,

which exists for each d ≥ 0 and is SL-equivariant. It will be important to note that
if we think of P ∈ Symd U as a homogeneous polynomial of degree d on U∨ = U ,
then for each u ∈ U , the evaluation of P at u is computed by

P(u) = 〈u(d), P 〉. (4.2a)

We can construct more generally a contraction map

〈−,−〉: Dd U × Symr U −→ Dd−r U for d ≥ r ≥ 0,

induced by the comultiplication Dd U → Dd−r U ⊗ Dr U and the pairing Dr U ×
Symr U −→ k. Suppose now that [g] ∈ Pk , where 0 �= g ∈ Symk U . If we restrict
(2.5a) to the fiber at [g] and dualize, we can identify the fiber of E∨ at [g] with the
kernel of the contraction

〈−, g〉 : Dn U −→ Dn−k U. (4.2b)

This yields the explicit description of the k-points in Y as

Y = {(f, [g]) : 0 �= g ∈ Symk U, f ∈ ker〈−, g〉 : Dn U −→ Dn−k U}. (4.3)

The connection between Schwarzenberger bundles and secant varieties is given as
follows.

Lemma 4.4 The image of π is �̂k ⊆ An+1.

Proof Consider a general point (f, [g]) ∈ Y , where g ∈ Symk U is a homogeneous
polynomial with distinct roots u1, . . . , uk ∈ U . It follows from (4.2a) that
u
(n)
1 , . . . , u

(n)
k belong to the kernel of the map (4.2b), and since they are linearly

independent, they must generate the fiber of E∨ at [g]. We conclude that f ∈
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Span{u(n)1 , . . . , u
(n)
k }, hence f ∈ �̂k . Conversely, since every general point f ∈ �̂k

belongs to Span{u(n)1 , . . . , u
(n)
k } for some distinct u1, . . . , uk ∈ U , it follows by

considering g ∈ Symk U with roots u1, . . . , uk , that f ∈ Im(π). This shows
that Im(π) is dense in �̂k , but since π is a projective morphism, it follows that
Im(π) = �̂k . ��

We will see shortly that π is in fact birational, and therefore it provides a
resolution of singularities of �̂k . We make the usual identification between quasi-
coherent sheaves on affine space and their global sections, and let

S = OAn+1 , B = O�̂k , B̃ = π∗OY .

Proposition 4.5 We have that B̃ = B has an SL-equivariant minimal graded free
resolution F• over S, whose terms are given by

F0 = S, Fi = Di−1(Symk U)⊗
i+k∧
(Symn−k U)⊗S(−i−k) for i = 1, . . . , n−2k+1.

Proof Since the natural map S −→ B̃ factors through B, in order to prove
that B̃ = B, it suffices to check that S surjects onto B̃. We do so by applying
[33, Theorem 5.1.2] with V = Pk , V = OPk , X = An+1, η = E , and ξ =
Symn−k U(−1). We get a complex F• of free S-modules, with

Fi =
⊕

j≥0

Hj

⎛

⎝Pk,
i+j∧
(Symn−k U(−1))

⎞

⎠⊗ S(−i − j)

=
⊕

j≥0

Hj
(

Pk,OPk (−i − j)
)
⊗
i+j∧
(Symn−k U)⊗ S(−i − j),

whose homology groups vanish in positive degrees, and satisfy

H−i (F•) = Hi (Y,OY ) =
⊕

d≥0

Hi (Pk,Symd E), for i ≥ 0.

To identify the terms in the complex F•, we note that a line bundle OPk (d) has
no intermediate cohomology and

H0(Pk,OPk (d)) =
{

Symd(Dk U) if d ≥ 0,

0 otherwise,

Hk(Pk,OPk (d)) =
{

D−d−k−1(Symk U) if d ≤ −k − 1,

0 otherwise.
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It follows that F0 = S, and the only other non-zero terms are

Fi = Di−1(Symk U)⊗
i+k∧
(Symn−k U)⊗ S(−i − k) for i = 1, . . . , n− 2k + 1.

We conclude that Hi (F•) = 0 for i < 0, and that F• gives a minimal free resolution
of B̃. Since F0 = S, the natural map S −→ B̃ is surjective, hence B̃ = B, as
desired. ��

To make the results of Proposition 4.5 even more explicit, consider for a moment
the general situation of a k-linear map

ϕ : V1 −→ V0 ⊗W,

whereW,V0, V1 are finite dimensional k-vector spaces of dimensions k+ 1, n+ 1,
andm+1 respectively. After choosing bases forW,V0, V1, we can represent ϕ either
as an (m+ 1)× (n+ 1) matrix A of linear forms in Sym(W) , k[y0, . . . , yk], or as
an (m + 1)× (k + 1) matrix A′ of linear forms in Sym(V0) = k[z0, . . . , zn]. Such
matrices occur frequently, for instance in the study of Rees algebras, when one is
the presentation matrix of an ideal, while the other is the Jacobian dual [26, 29].
Of interest to us is the encoding of ϕ as a morphism of sheaves on PW , Pk

V1 ⊗OPW(−1) −→ V0 ⊗OPW . (4.6)

Taking the (k + 1)-st symmetric power yields a Koszul complex K•

0 −→
k+1∧
V1⊗OPW (−k−1) −→ · · · −→ V1⊗Symk V0⊗OPW (−1) −→ Symk+1 V0⊗OPW −→ 0.

The intermediate sheaves in the above complex have no cohomology, and the
hypercohomology spectral sequence involves precisely one interesting map

(4.7)

If we think of the basis of
∧k+1

V1 as being indexed by collections of (k + 1) rows
of the matrixA′, then this map associates to every such collection the corresponding
(maximal) (k + 1)× (k + 1) minor of A′.

We specialize this discussion to the case when V1 = Symn−k U (where m =
n− k + 1), V0 = Symn U ,W = Dk U , and the map ϕ is induced by the dual of the
contraction map discussed earlier. If we choose the standard monomial bases on the
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three vector spaces, and denote them x• on V1, z• on V0, y• onW , then we have

ϕ(xi) =
k∑

j=0

zi+j ⊗ yj for i = 0, . . . , n− k. (4.8)

The matrix A′ then takes the form

A′ =

⎡

⎢⎢⎢⎣

z0 z1 · · · zk
z1 z2 · · · zk+1
...

...
. . .

...

zn−k zn−k+1 · · · zn

⎤

⎥⎥⎥⎦

which is called a Hankel (or catalecticant) matrix. The map (4.6) is the
presentation of E from (2.5a), and therefore K• is a resolution of Symk+1 E . The
map (4.7) is the degree (k+1) component of the differential d1 : F1 −→ F0 (whose
cokernel is Bk+1 = H0(Pk,Symk+1 E)). Since F1 is generated by its degree (k+ 1)
component, it follows that the image of d1 (which is the defining ideal of �̂k) is the
ideal I generated by the (k + 1) × (k + 1) minors of the Hankel matrix A′. The
complex F• is the Eagon–Northcott complex associated with A′.

Corollary 4.9 The variety �k is arithmetically Cohen–Macaulay. Its dimension
and degree are computed by:

dim(�k) = 2k − 1, deg(�k) =
(
n− k + 1

k

)
for 1 ≤ k ≤ n+ 1

2
.

Proof We will prove shortly that the Hilbert series of B can be expressed in lowest
terms as

HSB(t) =
∑k
i=0

(
n−2k+i
i

) · t i
(1− t)2k . (4.9a)

This implies that dim(�k)+ 1 = dim(B) = 2k, and setting t = 1 in the numerator
we obtain

deg(�k) =
k∑

i=0

(
n− 2k + i

i

)
=
(
n− k + 1

k

)

(the sum is the number of monomials of degree≤ k in (n+1−2k) variables, which
by homogenization, is the number of monomials of degree exactly k in (n+ 2− 2k)
variables, which is the right side). Since B has codimension (n+ 1− 2k), equal to
the projective dimension as computed by the resolution in Proposition 4.5, it follows
that B is a Cohen–Macaulay module, hence �k is arithmetically Cohen–Macaulay.
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To prove (4.9a), we use the minimal free resolution of B from Proposition 4.5 to
obtain

HSB(t) =
1+∑n−2k+1

i=1 (−1)i
(
i−1+k
k

)(
n−k+1
i+k

) · t i+k
(1− t)n+1 .

If we write F(t) for the numerator, then (4.9a) is equivalent to F(t) = G(t), where

G(t) = (1− t)n+1−2k ·
k∑

i=0

(
n− 2k + i

i

)
· t i .

Since F(t) andG(t) have constant term 1, to show they coincide it suffices to check
that F ′(t) = G′(t). We have

F ′(t) =
n−2k+1∑

i=1

(−1)i
(
i − 1+ k

k

)(
n− k + 1

i + k
)
(i + k) · t i+k−1

=
n−2k+1∑

i=1

(−1)i
(
n− k
k

)(
n− 2k

i − 1

)
(n− k + 1) · t i+k−1

j=i−1= −(n− k + 1)

(
n− k
k

)
· tk ·

n−2k∑

j=0

(−1)j
(
n− 2k

j

)
· tj

= −(n− k + 1)

(
n− k
k

)
· tk · (1− t)n−2k.

Using the product rule for G′(t) and dividing by (1− t)n−2k , we obtain

G′(t)
(1− t)n−2k = −(n− 2k+ 1) ·

(
k∑

i=0

(
n− 2k + i

i

)
· t i

)
+ (1− t) ·

(
k∑

i=0

(
n− 2k + i

i

)
i · t i−1

)
.

In the above sum, the coefficient of t i vanishes for 0 ≤ i ≤ k− 1 due to the identity

−(n− 2k + 1)

(
n− 2k + i

i

)
+
(
n− 2k + i + 1

i + 1

)
(i + 1)−

(
n− 2k + i

i

)
i = 0,

while the coefficient of tk is

−(n− 2k + 1)

(
n− k
k

)
−
(
n− k
k

)
k = −(n− k + 1)

(
n− k
k

)
.

This shows that F ′(t) = G′(t), concluding the proof. ��
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Corollary 4.10 The morphism π is birational onto �̂k . The variety �̂k is normal
with rational singularities.

Proof Since dim(Y ) = dim(�̂k), it follows that π : Y −→ �̂k is generically finite.
Combining this with the equality π∗OY = O�̂k established in Proposition 4.5, we
see that π is birational [27, Tag 03H2], hence it provides a resolution of singularities
of �̂k . The fact that �̂k is normal with rational singularities is now a consequence
of [33, Theorem 5.1.3(c)], and of the description of the sheaf cohomology groups
of OY explained in the proof of Proposition 4.5. ��

Returning to the explicit presentation (4.8) of the bundle E , and using the affine
coordinates z0, . . . , zn on An+1, and the projective coordinates y0, . . . , yk on Pk as
before, it follows that Y is defined as a subvariety in An+1 × Pk by the condition

⎡

⎢⎢⎢⎣

z0 z1 · · · zk
z1 z2 · · · zk+1
...

...
. . .

...

zn−k zn−k+1 · · · zn

⎤

⎥⎥⎥⎦ ·

⎡

⎢⎢⎢⎣

y0

y1
...

yk

⎤

⎥⎥⎥⎦ = 20.

Representing each element of An+1 as a Hankel matrix M , and each element of Pk

as a non-zero column vector 2v up to scaling, we get

Y = {(M, [2v]) : M · 2v = 20}, and π : Y −→ An+1 is given by π(M, [2v]) = M.

Since the generic element M ∈ �̂k has rank k, we have that ker(M) is one-
dimensional, hence the non-zero vector 2v in ker(M) is uniquely defined up to
scaling. This gives a more concrete interpretation of the fact that π is birational onto
�̂k . It also shows that the locus where π fails to be an isomorphism is identified with
the set of Hankel matrices of rank ≤ (k − 1), that is, with �̂k−1. We are now ready
to prove the final conclusion of Theorem 4.1.

Proposition 4.11 The class group of �̂k is isomorphic to Z/(n− 2k + 2)Z.

Proof We let U = �̂k \ �̂k−1, define

Z = π−1(�̂k−1) ⊂ Y,

and note that as remarked earlier that π establishes an isomorphism between Y \ Z
and U . We will show that Z is a divisor on Y , defined by a section of ψ∗(OPk (−n+
2k − 2)) (see also [22, Proposition 6.14]). Since �̂k−1 has codimension two inside
�̂k , it follows that

Cl(�̂k) = Cl(U) = Cl(Y \ Z).

https://stacks.math.columbia.edu/tag/03H2
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Moreover, we have an exact sequence

Z −→ Cl(Y ) −→ Cl(Y \ Z) −→ 0,

where the first map sends 1 to [Z] [27, Tag 02RX]. Since Y is a vector bundle over
Pk , it follows that Cl(Y ) = Z, generated by the pullback of a hyperplane class
along ψ [27, Tag 02TY] and [27, Tag 0BXJ]. Since Z is cut out by a section of
ψ∗(OPk (−n+ 2k − 2)), [Z] generates the subgroup (n− 2k + 2)Z ⊂ Z = Cl(Y ),
from which the desired conclusion follows.

To prove that Z has the desired properties, we consider the natural map on Pk

Symk−1 U ⊗ Ekn−2k+1 −→ E, (4.11a)

defined analogously to (2.8a) by the multiplication Symn−k+1 U ⊗ Symk−1 U −→
Symn U . Pulling back along ψ and applying the natural map ψ∗(E) −→ OY , we
obtain a morphism

of vector bundles of rank k on Y . Since det(Ekn−2k+1) = OPk (n− 2k + 2), we have
that det(�) defines a section of ψ∗(OPk (−n+ 2k − 2)), so to conclude we need to
check that Z is the degeneracy locus of�. The restriction of� to the fiber at a point
(f, [g]) ∈ Y as in (4.3) is given by a map

Symk−1 U −→ ker

(
Dn−k+1 U

〈−,g〉−→ Dn−2k+2 U

)
, h �→ 〈f, h〉.

This map drops rank precisely when there exists a non-zero h ∈ Symk−1 U with
〈f, h〉 = 0, that is, when (f, [h]) ∈ APk−1(Ek−1

n−k+1). By Lemma 4.4, this happens if
and only if f ∈ �̂k−1, or equivalently (f, [g]) ∈ Z.

Thus, det(�) defines Z set-theoretically. Hence n − 2k + 2 gives an upper
bound on the size of the class group of �̂k . But we will construct n − 2k + 2
different representatives in Lemma 4.13, so in fact, det(�) must define Z scheme-
theoretically as well. ��

It is noted in [5, Remark 3.7] that each class in Cl(�̂k) is represented by a
rank one MCM (maximal Cohen–Macaulay) module, and an explicit construction
is given in terms of ideals of minors of Hankel matrices. For an SL-equivariant
realization of these MCM modules we argue using the Kempf–Weyman geometric
technique. We define

Mr = π∗(ψ∗(OPk (r))) = H0(Y, ψ∗(OPk (r))) for r = 0, . . . , n−2k+1, (4.12)

and prove the following (note thatM0 = B).

https://stacks.math.columbia.edu/tag/02RX
https://stacks.math.columbia.edu/tag/02TY
https://stacks.math.columbia.edu/tag/0BXJ
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Lemma 4.13 Up to isomorphism, the rank one maximal Cohen–Macaulay B-
modules areM0, . . . ,Mn−2k+1. The minimal number of generators ofMr is

μ(Mr) =
(
r + k
k

)
,

andMn−2k+1 is an Ulrich module.

We recall that an MCM module M is called Ulrich (short for maximally
generated maximal Cohen–Macaulay) if μ(M) equals the multiplicity of M ,
see [3, 19] for basic information and references.

Proof Since Mr is the direct image of a line bundle on the desingularization Y of
�̂k , it follows thatMr is a rank one B-module. To see thatMr is Cohen–Macaulay,
we apply [33, Corollary 5.1.5]. With the notation in loc. cit., if V = OPk (r) then we
have that V∨ = OPk (2n− k − r). We then have to check that

Riπ∗(ψ∗V∨) = 0 for i > 0.

Equivalently, we have to show that for each d ≥ 0,

Hi (Pk,Symd E ⊗OPk (2n− k − r)) = 0 for i > 0.

By our assumption on r , we have 2n−k− r+1 ≥ 0. The 2-step resolution (2.5a) of
E induces for each d ≥ 0 a resolution of Symd(E), where the i-th step is isomorphic
to a direct sum of line bundles of the form OPk (−i). This implies that Symd(E) is
a 0-regular sheaf. Therefore it is also (2n − k − r + 1)-regular, hence the desired
vanishing statement holds.

To calculate μ(Mr), we consider the minimal free resolution F r• ofMr . As in the
proof of Proposition 4.5, we have using [33, Theorem 5.1.2] that

F r0 =
⊕

j≥0

Hj
(

Pk,OPk (−j + r)
)
⊗

j∧
(Symn−k U)⊗ S(−j)

= H0
(

Pk,OPk (r)
)
⊗ S = Symr (Dk U)⊗ S.

The space of minimal generators of Mr is then Symr (Dk U), which has dimension(
r+k
k

)
. Since the numbers μ(Mr) are distinct, it follows that the modules Mr are

pairwise non-isomorphic. Since B is normal, the class group of B is isomorphic
to the group of isomorphism classes rank 1 reflexive B-modules [27, Tag 0EBM].
Since the class group of B has size (n− 2k + 2), it follows that every rank 1 MCM
B-module is isomorphic toMr for some r .

Since Mr is a rank one MCM module supported on �̂k , it follows from
Corollary 4.9 that its multiplicity is

(
n−k+1
k

)
. This quantity agrees with μ(Mr)

precisely when r = n− 2k + 1, proving thatMn−2k+1 is Ulrich. ��

https://stacks.math.columbia.edu/tag/0EBM


712 C. Raicu and S. V. Sam

5 Self-Duality for the Rank One Ulrich Module

In this section we analyze the Ulrich module Mn−2k+1 in Lemma 4.13, and prove
that it is self-dual. To explain this, we note that the definition (4.12) can be extended
to arbitrary r ∈ Z, but the resulting modules will typically fail to be Cohen–
Macaulay. With the notation in Lemma 4.13, if V = OPk (n − 2k + 1) then
V∨ = OPk (−1), so in factM−1 is MCM and is the dual ofMn−2k+1. We will show
that the section det(�) constructed in the proof of Proposition 4.11 gives rise to an
isomorphismM−1 , Mn−2k+1 which is given at the level of minimal generators by
Hermite reciprocity.

Theorem 5.1 The graded modules M−1 and Mn−2k+1 are generated in a single
degree, with spaces of minimal generators

k∧
(Symn−k U) and Symn−2k+1(Dk U)

respectively. There is an isomorphismM−1 , Mn−2k+1 which restricts to (2.1a) on
the space of minimal generators.

Proof We begin by describing the minimal free resolutions Fn−2k+1• and F−1• of
Mn−2k+1 and M−1 respectively. We obtain using [33, Theorem 5.1.2] that (up to a
shift in grading)

Fn−2k+1
i = H0

(
Pk,

i∧
(Symn−k U(−1))⊗OPk (n− 2k + 1)

)
⊗ S(−i)

=
i∧
(Symn−k U)⊗ Symn−2k+1−i (Dk U)⊗ S(−i), and

F−1
i = Hk

(
Pk,

i+k∧
(Symn−k U(−1))⊗OPk (−1)

)
⊗ S(−i)

=
i+k∧
(Symn−k U)⊗ Di (Symk U)⊗ S(−i), for i = 0, . . . , n− k + 1.

By taking i = 0 we obtain the desired description for the spaces of minimal gen-
erators of Mn−2k+1 and M−1. Since μ(Mn−2k+1) = μ(M−1) and Mn−2k+1,M−1
are rank one MCMs, it follows from Lemma 4.13 that they must be isomorphic.
Before describing the isomorphism, we make explicit the graded structure of the
two modules, which is induced by the usual identification of OY with the sheaf of
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graded algebras Sym(E) on Pk . We have that

(Mn−2k+1)d = H0(Pk,Symd E ⊗OPk (n− 2k + 1)), and

(M−1)d = H0(Pk,Symd+k E ⊗OPk (−1)).

To construct an isomorphism, we note that the section det(�) of ψ∗(OPk (−n +
2k − 2)) in Proposition 4.11 defines an injective morphism of invertible sheaves
on Y

δ : ψ∗(OPk (n− 2k + 1)) −→ ψ∗(OPk (−1)).

Making the identification of the source and target with sheaves of graded Sym(E)-
modules, we see that in degree d the map is given by

δd : Symd E ⊗OPk (n− 2k + 1) −→ Symd+k E ⊗OPk (−1).

Since δd is injective, the same is true for H0(Pk, δd) : (Mn−2k+1)d −→ (M−1)d .
Since the source and target are finite dimensional vector spaces, we see that δ
induces an isomorphism betweenMn−2k+1 andM−1. To conclude, we need to check
that δ0 induces (2.1a).

Note that δ0 ⊗OPk (1) is constructed from (4.11a), as the composition

O(n− 2k + 2) ,
k∧
(Ekn−2k+1) ,

k∧
(Symk−1 U)⊗

k∧
(Ekn−2k+1) −→ Symk(E).

The presentation (2.5a) induces a resolution F• of
∧k
(Ekn−2k+1), with

Fi = Di (Symn−2k+1 U)⊗
k−i∧
(Symn−k+1 U)⊗OPk (−i),

and a resolution G• of Symk(E), with

Gi =
i∧
(Symn−k U)⊗ Symk−i (Symn U)⊗OPk (−i).

We lift δ0 ⊗OPk (1) to a map of complexes F• −→ G•, using the comultiplication

k ,
k∧
(Symk−1 U) −→

i∧
(Symk−1 U)⊗

k−i∧
(Symk−1 U),
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and the natural maps

Di (Symn−2k+1 U)⊗
i∧
(Symk−1 U) −→ Di (Symn−2k+1 U ⊗ Symk−1 U)

−→ Di (Symn−k U)

and

k−i∧
(Symn−k+1 U)⊗

k−i∧
(Symk−1 U) −→ Symk−i (Symn−k+1 U ⊗ Symk−1 U)

−→ Symk−i (Symn U).

We get a morphism of exact complexes

and note that the sheaves Fi (−1) and Gi (−1) have no cohomology for 0 ≤ i ≤ k−1,
while Fk(−1), Gk(−1) only have top cohomology. Taking hypercohomology we
obtain a commutative square

The vertical map α is by construction the isomorphism in Sect. 2.4, while γ is the
Hermite isomorphism (2.1b), as constructed in Sect. 2.2. We wrote the bottom map
as an equality, because this is how we identify (M−1)0 with

∧k
(Symn−k U). It

follows from Theorem 2.9 that

H0(Pk, δ0) = α ◦ γ−1 = β−1,

is the inverse of the Hermite isomorphism (2.1a), concluding our proof. ��
In [28, Proposition 1.2], it is shown that Sym2(E2

n−2)⊗OP2(−n+2) has non-zero
global sections. We show that in fact it has only one non-zero section up to scaling,
and that this property extends to higher rank Schwarzenberger bundles as follows.

Proposition 5.2 For n ≥ 2k−1 we have that H0(Pk,Symk(E)⊗OPk (−n+2k−2))
is one-dimensional.

Proof The proof of Theorem 5.1 shows that H0(Pk,Symk(E) ⊗ OPk (−n + 2k −
2)) contains at least one non-zero section, and that any such section yields an
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isomorphism Mn−2k+1 , M−1. Suppose now that s1, s2 are non-zero sections,
writeM = Mn−2k+1, and let s = s−1

1 ◦ s2 denote the induced automorphism ofM .
SinceM is a rank one reflexive module, we have an isomorphism HomB(M,M) ,
B. Moreover, identifying M with a fractional ideal, we can represent s as the
multiplication by an element in the fraction field Frac(B), which we also denote
by s. Since sM ⊆ M and M is a finitely generated B-module, it follows from the
Cayley–Hamilton theorem that s is integral over B. By Theorem 4.1, B is normal,
hence s ∈ B. Since M is graded, and multiplication by s is an isomorphism on
M , it follows that s must have degree 0, that is, s ∈ k. It follows that s1, s2 are
proportional, concluding our proof. ��

The following remark explains how to think of the unique, up to scaling, non-zero
section of Symk(E)⊗OPk (−n+ 2k − 2) as Hermite reciprocity.

Remark 5.3 Using the resolution G• of Symk(E) in the proof of Theorem 5.1, we
can identify H0(Pk,Symk(E)⊗OPk (−n+ 2k− 2)) as the kernel of the natural map

Hk(Pk,Fk(−n+ 2k − 2)) −→ Hk(Pk,Fk−1(−n+ 2k − 2)).

We have

Hk(Pk,Fk(−n+ 2k − 2)) =
k∧
(Symn−k U)⊗ Dn−2k+1(Symk U)

= Homk

(
Symn−2k+1(Dk U),

k∧
(Symn−k U)

)
.

Our results can be summarized as saying that H0(Pk,Symk(E) ⊗ OPk

(−n + 2k − 2)) is naturally identified with the subspace of Homk(
Symn−2k+1(Dk U),

∧k
(Symn−k U)

)
spanned by the inverse of the Hermite

isomorphism (2.1a).

The isomorphism between Mn−2k+1 and M−1 lifts to an isomorphism between
their free resolutions, leading up to a series of SL-isomorphisms that extend
Theorem 2.1.

Corollary 5.4 For each i = 0, . . . , n−k+1 we have SL-equivariant isomorphisms

i∧
(Symn−k U)⊗ Symn−2k+1−i (Dk U) ,

i+k∧
(Symn−k U)⊗ Di (Symk U).

Proof The two sides of the isomorphism above correspond to the minimal genera-
tors of the free modules Fn−2k+1

i and F−1
i in the resolutions of Mn−2k+1 and M−1

constructed in the proof of Theorem 5.1. ��
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6 Syzygies of Canonical Curves

In this section we summarize some recent applications of Hermite reciprocity to
Green’s conjecture for generic canonical curves (see [17] for the original reference,
and [7, 10] and [11, Chapter 9] for some expository accounts). The first proof
is due to Voisin [30, 31] (using different methods), and a streamlined version of
Voisin’s arguments was recently explained in [21]. The approaches we discuss here
are more elementary and also deal with the problem in positive characteristics.
Throughout the section we work over an algebraically closed field k and assume
that char(k) �= 2.

Let C be a smooth curve of genus g ≥ 3 over k, and let ωC be its canonical
bundle. The canonical ring SC = ⊕

n≥0 H0(C, ω⊗nC ) is finitely generated over the
g-dimensional polynomial ring S = Sym(H0(C, ωC)) and hence we can define the
graded Betti numbers

βi,j (C, ωC) = dimk TorSi (k, SC)j .

Green’s conjecture asserts that, when char(k) = 0, we have βi,i+2(C, ωC) = 0
for i < Cliff(C), where Cliff(C) is the Clifford index of C. We do not need the
definition of the Clifford index here, but instead note that for most curves, we have
Cliff(C) = d − 2 where d is the gonality of C (recall that the gonality of an
algebraic curve C is the minimum degree of a non-constant map from C to P1; here
“most” means that it holds for a Zariski open subset of the locus of curves of each
fixed gonality in the moduli space of curves).

To show that Green’s conjecture holds generically, that is, for a non-empty
Zariski open subset of curves in the moduli space of curves, one can appeal to
degeneration techniques and check that it is satisfied by a single (smoothable)
curve. Several examples of such curves have been proposed over the years,
including rational cuspidal curves suggested independently by Buchweitz–Schreyer
and O’Grady, and ribbon curves put forward by Bayer and Eisenbud [2]. We discuss
these examples separately in Sects. 6.1 and 6.2 below. Examples of Schreyer show
that Green’s conjecture does not hold in positive characteristic [24], but a careful
analysis of cuspidal and ribbon curves allows one to keep track effectively of the
characteristics where Green’s conjecture holds generically.

6.1 Rational Cuspidal Curves

This section follows [1]. A rational curve with g simple cusps has genus g and can be
smoothed out, i.e., there exist flat families whose special fiber is a rational cuspidal
curve C and whose generic fiber is smooth. The upper bound for the Clifford
index of a genus g curve is �(g − 1)/2�. This means that it suffices to show that
βi,i+2(C, ωC) = 0 for i < �(g − 1)/2�. We can realize C as a hyperplane section
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of the tangential variety of the rational normal curve in its g-uple embedding, so the
computation can equivalently be done for the tangential variety. The advantage of
the latter is that it has SL2-symmetry.

To be precise, the tangential variety Tg is the union of all tangent lines to the
rational normal curve � in Pg = P(Symg U). We have an inclusion of sheaves over
P1 = P(U) given by (Symg−2 U)(−2) → Symg U ⊗ OP1 whose cokernel J is
the bundle of principal parts of OP1(g) [13, Section 7.2]. This induces a map
P(J )→ Pg which is birational onto Tg .

It turns out that there is a short exact sequence

0→ k[Tg] → k̃[Tg] → ω�(−1)→ 0,

where k[Tg] is the homogeneous coordinate ring of Tg , k̃[Tg] is its normalization,
and ω� is the canonical module of the homogeneous coordinate ring of �. Hence we
can use [33, Theorem 5.1.2] with V = P1,X = A(Symg U), ξ = (Symg−2 U)(−2),
and V = OP1 to compute Tor groups for k̃[Tg] over S = Sym(Symg U):

TorSi (k, k̃[Tg])i+1 = D2i U ⊗
i+1∧
(Symg−2 U) for i = 0, . . . , g − 2.

All other Tor groups vanish except TorS0 (k, k̃[Tg])0 = k. The canonical module
ω� can be realized as

⊕
n≥0 H0(P1,OP1(ng+g−2)), so again using [33, Theorem

5.1.2] with V = P1,X = A(Symg U), ξ = (Symg−1 U)(−1), and V = OP1(g−2),
its Tor groups can be computed:

TorSi (k, ω�(−1))i+1 = TorSi (k, ω�)i =
i∧
(Symg−1 U)⊗Symg−2−i (U) for i = 0, . . . , g−2.

Using the long exact sequence on Tor, our goal then is to show that the map

TorSi (k, k̃[Tg])i+1 → TorSi (k, ω�(−1))i+1 (6.1)

is surjective for i ≤ �(g − 1)/2�. Using our computations above, the terms are

D2i U ⊗
i+1∧
(Symg−2 U)→

i∧
(Symg−1 U)⊗ Symg−2−i (U).

Describing these maps directly is quite subtle! What is done in [1] is to realize

i∧
(Symg−1 U)⊗Symg−2−i (U) = ker

(
Di+1 U ⊗

i+1∧
(Symg−1 U)

(2.3a)−→
i+1∧
(Symg U)

)
,
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and rewrite (6.1) as the (middle) homology of a 3-term complex

D2i U ⊗
i+1∧
(Symg−2 U)→ Di+1 U ⊗

i+1∧
(Symg−1 U)

(2.3a)−→
i+1∧
(Symg U),

where the first map comes from the inclusion D2i U → Di+1 U⊗Di+1 U , followed
by (2.3a). Taking the direct sum over all g as in Sect. 2.1, and using the Hermite
isomorphism, this gets identified with a 3-term complex of free modules over S̃ =
Sym(Di+1 U):

D2i U ⊗ S̃(−2) −→ Di+1 U ⊗ S̃(−1) −→ S̃,

which a subcomplex of the Koszul complex for the maximal ideal of S̃. The (middle)
homology is a Weyman module W(i+1), which is a special case of a Koszul
module considered in [1]. Using general vanishing results for Koszul modules, for
which we refer the reader to [1, Section 2], one gets that (6.1) is surjective when
i ≤ �(g − 1)/2� (and char(k) = 0 or char(k) ≥ g+2

2 ), as desired.

6.2 Ribbon Curves

This section follows [23]. A ribbon structure on a varietyX is a non-reduced scheme
whose structure sheaf is a square-zero extension of OX by some line bundle on X
[2, Section 1]. We will be interested in ribbon structures on P1, which are called
rational ribbon curves. They offer more flexibility than cuspidal curves, in that
they allow us to keep track not only of the genus, but also of the gonality.

Given an integer a ≤ (g − 1)/2, we consider the projective space

Pg = P(Syma U ⊕ Symg−1−a U).

We have the Veronese embeddings v1 : P1 → P(Syma U) and v2 : P1 →
P(Symg−1−a U) into the corresponding subspaces, and for each x ∈ P1 we get
a line joining v1(x) and v2(x). The rational normal scroll S(a, g− 1− a) is the
union of these lines as we vary over x ∈ P1 [12]. Let B be the coordinate ring of
S(a, g − 1 − a). There is a ribbon structure X (a, g − 1 − a) on S(a, g − 1 − a),
called a K3 carpet, whose coordinate ring A fits into a short exact sequence

0→ ωB → A→ B → 0

where ωB is the canonical module of B. Most importantly, a hyperplane section of
the K3 carpet X (a, g − 1 − a) gives a genus g canonically embedded ribbon that
can be smoothed out to a curve of Clifford index a. As in Sect. 6.1, we can reduce
to the study of the syzygies of the K3 carpet, which like Tg , has SL2-symmetry.
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The multiplication map

U ⊗ (Syma−1 U ⊕ Symg−2−a U)→ Syma U ⊕ Symg−1−a U

gives a 2 × (g − 1) matrix whose entries are linear forms in Pg , and the Eagon–
Northcott complex for this matrix gives a minimal free resolution for B. Hence, if
we let

S = Sym(Syma U ⊕ Symg−1−a U)

denote the coordinate ring of Pg , then we have for i ≥ 1

TorSi (k, B)i+1 = Di−1 U ⊗
i+1∧
(Syma−1 U ⊕ Symg−2−a U),

TorSi (k, ωB)i+2 = Symg−3−i U ⊗
i∧
(Syma−1 U ⊕ Symg−2−a U).

As in the previous section, using the long exact sequence on Tor, our goal becomes
to show that the connecting homomorphism

TorSi+1(k, B)i+2 → TorSi (k, ωB)i+2 (6.2)

is surjective for i < a. However, it is better to view all the Tor groups as being
bigraded, using the usual decomposition of exterior powers

n∧
(V ⊕W) =

⊕

n′+n′′=n

n′∧
V ⊗

n′′∧
W,

with V = Syma−1 U andW = Symg−2−a U . The map then looks like

⊕

u+v=i
u,v≥−1

Di U ⊗
u+1∧
(Syma−1 U)⊗

v+1∧
(Symg−2−a U)→ (6.3)

⊕

u+v=i
Symg−3−i U ⊗

u∧
(Syma−1 U)⊗

v∧
(Symg−2−a U), (6.4)

and we can concentrate on a specific (u, v)-bigraded component, while taking the
direct sum over all a, g. Via Hermite reciprocity as in Sect. 2.1, the source (6.3)
becomes a free module over S̃ = Sym(Du+1 U⊕Dv+1 U), more precisely Du+v U⊗
S̃(−1,−1). The target (6.4) also becomes a finitely generated S̃-module, though this
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is not at all obvious! In fact, it can be identified with the (middle) homology of

Du+v+2 U ⊗ S̃(−1,−1) −→ Du+1 U ⊗ S̃(−1, 0)⊕ Dv+1 U ⊗ S̃(0,−1) −→ S̃,

where the maps are now completely transparent (Du+v+2 U embeds into Du+1 U ⊗
Dv+1 U and Dv+1 U ⊗Du+1 U via comultiplication). LettingQu,v = Du+v+2 U ⊕
Du+v U (or rather an appropriate SL2-equivariant extension of the summands) leads
to a subcomplex of the (bi-graded) Koszul complex of S̃:

Qu,v ⊗ S̃(−1,−1) −→ Du+1 U ⊗ S̃(−1, 0)⊕ Dv+1 U ⊗ S̃(0,−1) −→ S̃.

Its middle homology is the bi-graded Weyman module W(u+1,v+1), a special
instance of a bi-graded Koszul module, for which appropriate vanishing
theorems are established in [23, Section 3]. Based on this, it can be shown that
the desired surjectivity of (6.2) holds when char(k) = 0 or char(k) ≥ a, but we
refer to [23] for details.

We finish by noting that this improves the approach via cuspidal curves in two
ways. First, the bound on the characteristic for generic curves is slightly better than
the one given by rational cuspidal curves since there we have a = �(g − 1)/2�, and
in particular it confirms a conjecture from [15]. Second, this allows us to prove that
generic Green’s conjecture holds for each gonality, and not just the maximum value.

Acknowledgments We thank Giorgio Ottaviani, Rob Lazarsfeld and Jerzy Weyman for helpful
discussions. Experiments with the computer algebra software Macaulay2 [20] have provided
numerous valuable insights.
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1 Generation Problem

In this article, we consider the following problem.

Problem 1.1 Let R be a commutative noetherian ring. Let M,N be objects of the
module category modR (resp. the derived category Db(R)). Then:

(1) Clarify whetherM can be built out of N by taking short exact sequences (resp.
exact triangles) etc.

(2) If M can be built out of N , then compute the number of required short exact
sequences (resp. exact triangles).

Problem 1.1 naturally arises for the purpose to understand the structure of the
module category modR and the derived category Db(R). The author has been
studying Problem 1.1 for more than 10 years. Item (1) of Problem 1.1 will be done
by classifying the subcategories closed under short exact sequences (resp. exact
triangles) etc. The number appearing in item (2) of Problem 1.1 corresponds to
dimensions of subcategories.

The organization of this article is as follows. In Sect. 2, we recall the basic
definitions and fundamental properties, which are used later. In Sects. 3 and 4, we
discuss classification and dimensions of subcategories, respectively.
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2 Preliminaries

The following notation is used throughout this article.

Notation 2.1

(1) Let R be a commutative noetherian ring with identity.
(2) We denote by modR the category of finitely generated R-modules. We denote

by Db(R) the bounded derived category of modR, that is, the derived category
of bounded complexes of finitely generated R-modules.

(3) By module, we mean finitely generated module. By subcategory, we mean full
subcategory closed under isomorphism.

(4) Recall that an R-moduleM is called maximal Cohen–Macaulay if

depthRp
Mp ≥ dimRp

for all p ∈ SpecR. Here, the depth of the zero module over a local ring is∞
by definition, so an R-module M is maximal Cohen–Macaulay if and only if
depthMp = dimRp for all p ∈ SuppM . Denote by MCM(R) the subcategory
of modR consisting of maximal Cohen–Macaulay modules.

(5) Let (R,m, k) be a local ring of dimension d. Denote by Spec0 R the punctured
spectrum of R, namely,

Spec0 R = SpecR \ {m}.

Denote by SingR the singular locus of R, which is by definition the set of
prime ideals p of R such that the local ring Rp is not regular. Denote by μ(−)
the number of elements in the minimal system of generators, that is to say,

μ(M) = dimk(M ⊗R k)

for each R-moduleM . Denote by edimR the embedding dimension of R, i.e.,

edimR = μ(m) = dimk m/m
2.

Denote by codimR the (embedding) codimension of R, that is,

codimR = edimR − depthR.

By e(−) we denote the (Hilbert–Samuel) multiplicity, namely,

e(I ) = lim
n→∞

d!
nd
�R(R/I

n+1)
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for an m-primary ideal I of R, and set e(R) = e(m). By ��(−) we denote the
Loewy length, namely,

��(M) = inf{n ≥ 0 | mnM = 0}

for an R-moduleM . Note that ��(M) <∞ if and only ifM has finite length.
(6) For an additive category C, the bounded (resp. right bounded) homotopy

category is denoted by Kb(C) (resp. K-(C)), i.e., the homotopy category of
bounded (resp. right bounded) complexes of objects in C.

(7) For an abelian category A, we denote by projA the subcategory of A consisting
of projective objects, and we set projR = proj(modR).

(8) The (first) syzygy of an object M ∈ A is by definition the kernel of an
epimorphism from a projective object of A to M , and denoted by �M . For
an integer n ≥ 1 we inductively define the nth syzygy of M by �nM =
�(�n−1M), and set �0M = M . For each M ∈ A and each n ≥ 0 the
object�nM is uniquely determined up to direct summands which are projective
objects.

(9) For an additive category C and a subcategory X of C, the additive closure of
X is defined as the smallest subcategory of C containing X and closed under
finite direct sums and direct summands, and denoted by addX . Note that for an
objectM ∈ A one has

M ∈ addX ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

there exist a finite number of objects

X1, . . . , Xn ∈ X such thatM is

(isomorphic to) a direct summand of

the direct sum X1 ⊕ · · · ⊕Xn.

When X consists of a single object X, we write addX. Hence, we have

addR = projR.

Next we recall the definition of a resolving subcategory.

Definition 2.2 Let A be an abelian category with enough projective objects. A
subcategory X of A is called resolving if it satisfies the following conditions.

(a) X contains projA.
(b) X is closed under direct summands. That is, every direct summand (in A) of

every X ∈ X belongs to X .
(c) X is closed under extensions. That is, for an exact sequence

0→ L→ M → N → 0

of objects of A, if L,N ∈ X , thenM ∈ X .
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(d) X is closed under kernels of epimorphisms. That is, for an exact sequence

0→ L→ M → N → 0

of objects of A, ifM,N ∈ X , then L ∈ X .

Remark 2.3

(1) Condition (d) in Definition 2.2 can be replaced with the following condition.

(d)’ X is closed under syzygies. That is, for any X ∈ X one has �X ∈ X .

(2) When A = modR, condition (a) in Definition 2.2 can be replaced with the
following condition.

(a)’ R belongs to X .

(3) The subcategory projA is the smallest resolving subcategory of A, while the
biggest one is A itself.

Here are some examples of a resolving subcategory of the abelian category
modR with enough projective objects.

Example 2.4

(1) If R is a Cohen–Macaulay ring, then MCM(R) is a resolving subcategory of
modR. (The converse also holds true.)

(2) Set (−)∗ = HomR(−, R). Recall that an R-moduleM is called totally reflexive
if the canonical mapM → M∗∗ is an isomorphism (i.e.,M is reflexive) and

ExtiR(M,R) = ExtiR(M
∗, R) = 0

for all positive integers i. The subcategory G(R) of modR consisting of totally
reflexive modules is resolving.

(3) Denote by mod0 R the subcategory of modR consisting of modules which
are locally free on the punctured spectrum of R. Then mod0 R is a resolving
subcatgeory of modR.

Next we recall the definitions of thick subcategories of an abelian category and a
triangulated category.

Definition 2.5

(1) Let A be an abelian category, and let C be a subcategory of A. A subcategory
X of C is called thick if it satisfies the following conditions.

(a) X is closed under direct summands. That is, every direct summand (in A)
of every X ∈ X belongs to X .

(b) X is closed under short exact sequences in C. That is, for an exact sequence

0→ L→ M → N → 0
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in A with L,M,N ∈ C, if two of L,M,N belong to X , then so does the
third.

(2) Let T be a triangulated category. A subcategory T of X is called thick if it
satisfies the following conditions.

(a) X is closed under direct summands. That is, every direct summand (in T )
of every X ∈ X belongs to X .

(b) X is closed under exact triangles. That is, for an exact triangle

L→ M → N → �L

in T , if two of L,M,N belong to X , then so does the third.

Remark 2.6 Every thick subcategory of the abelian category modR that contains R
is a resolving subcategory of modR.

Here are several examples of a thick subcategory.

Example 2.7

(1) The homotopy category Kb(projR) of projective modules is a thick subcategory
of the triangulated category Db(R).

(2) The category G(R) of totally reflexive modules is a thick subcategory of the
category MCM(R) of maximal Cohen–Macaulay modules.

(3) Set

MCM0(R) = MCM(R) ∩mod0(R).

Then MCM0(R) is a thick subcategory of MCM(R).
(4) Denote by flR (resp. fpdR) the subcategory of modR consisting of modules of

finite length (resp. modules of finite projective dimension). Both flR and fpdR
are thick subcategories of modR.

Finally, we recall the definition of a singularity category.

Definition 2.8 The Verdier quotient

Dsg(R) = Db(R)

Kb(projR)

of the derived category Db(R) by the homotopy category Kb(projR) is called the
singularity category or stable derived category of R. Note by definition that Dsg(R)

is a triangulated category as well.

The singularity category has been introduced by Buchweitz [19]. There are
many studies on singularity categories by Orlov [44–47] in connection with the
Homological Mirror Symmetry Conjecture.
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3 Classification of Subcategories

The study of classification of subcategories has started by Gabriel [28] in the 1960s,
who classified the Serre subcategories of the module category of a commutative
noetherian ring. In the 1990s, Auslander and Reiten [7] classified the contravariantly
finite resolving subcategories of the module category of an artin algebra of finite
global dimension. In the 2000s, Hovey [31] classified the wide subcategories of the
module category of the quotient of a regular coherent ring by a finitely generated
ideal.

For triangulated categories, a lot of classification theorems have been obtained
for thick subcategories. Devinatz, Hopkins and Smith [26] and Hopkins and Smith
[30] classified the thick subcategories of compact objects in the stable homotopy
category, and then Hopkins and Neeman [29, 41] classified the thick subcategories
of the derived category of perfect complexes over a commutative noetherian ring.
Thomason [56] extended this to quasi-compact quasi-separated schemes. Benson,
Carlson and Rickard [15] classified the thick tensor ideals of the stable category
of finite dimensional representations of a finite group. Benson, Iyengar and Krause
[16] extended this to the derived category, while Friedlander and Pevtsova [27] and
Benson, Iyengar, Krause and Pevtsova [17] extended it to finite group schemes.

Furthermore, Balmer [10] defined the Balmer spectrum of a tensor triangulated
category, and classified the thick tensor ideals of a tensor triangulated category
by using the topological structure of the Balmer spectrum. This result is the
fundation of tensor triangular geometry, which was invented by Balmer himself and
introduced in his ICM lecture [12]. This theory spreaded to commutative algebra,
algebraic geometry, modular representation theory, stable homotopy theory, motif
theory, noncommutative topology, symplectic geometry and so on, and various
results have been obtained; see [9–14] and references therein.

Thus, classification theory of subcategories is a research theme shared by a lot
of areas of mathematics, and has been studied actively and widely through the
interactions between those areas.

Here, we consider an example to explain how powerful classification of subcate-
gories is.

Example 3.1 LetR = k[x, y] be a polynomial ring in two variables x, y over a field
k. For an R-moduleM we write1

〈M〉 =
{
N ∈ modR

∣∣∣∣
N can be built out ofM by taking

direct summands, extensions and syzygies

}
.

1 The notation 〈−〉 here is only to simply explain this example, which is different from the one
appearing in Definition 4.1.
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(1) There exists an exact sequence

0→ (x, y)/(x2, y)→ R/(x2, y)→ R/(x, y)→ 0

of R-modules. Note that (x, y)/(x2, y) is isomorphic to R/(x, y), and (x2, y)

is the first syzygy of R/(x2, y). Hence

R/(x2, y) ∈ 〈R/(x, y)〉

follows.
(2) Suppose that R/(xy) belongs to 〈R/(x)〉. Then localization at the prime ideal

(y) of R shows that (R/(xy))(y) beolongs to 〈(R/(x))(y)〉. Here, (R/(xy))(y) is
isomorphic to the residue field R(y)/yR(y), while we have (R/(x))(y) = 0. It is
deduced that R(y)/yR(y) is a projective R(y)-module, which is a contradiction.
Thus,

R/(xy) /∈ 〈R/(x)〉

follows.
(3) There exists an exact sequence

0→ R/(xy)
f−→ R/(x)⊕ R/(xy2)

g−→ R/(xy)→ 0 (3.1.1)

of R-modules, where f and g are defined by

f (a) =
(
a

ay

)
, g(

(
b

c

)
) = c − by

Thus

R/(x) ∈ 〈R/(xy)〉

follows.

In general, it is quite difficult to find such an exact sequence as (3.1.1), and also
there is no way to see at the beginning whether such an exact sequence exists or not.
This problem will be settled if we can classify all the subcategories of modR closed
under direct summands, extensions and syzygies, that is to say, all the resolving
subcategories of modR. We will actually do this later; see Example 3.22.

In what follows, we consider classifications of subcategories of the module
category modR, the derived category Db(R) and the singularity category Dsg(R)

of a commutative noetherian ring R. We begin with recalling the definition of a
contravariantly finite subcategory.

Definition 3.2 Let C be an additive category, and let X be a subcategory of C.
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(1) Let f : X→ C be a morphism (in C) from an objectX ∈ X to an object C ∈ C.
We say that f is a right X -approximation of C if for every object X′ ∈ X and
every morphism f ′ : X′ → C there exists a morphism g : X′ → X such that
f ′ = fg.

(2) We say that X is contravariantly finite if every object of C admits a right X -
approximation.

Remark 3.3

(1) The name “contravariantly finite” comes from the fact that for each object
C ∈ C the contravaiant functor HomC(−,M) from C to the category of abelian
groups is a finitely generated object of the functor category of C.

(2) Dual notions also exist. Namely, a left X -approximation and a covariantly finite
subcategory are defined dually (but we do not use them in this article).

We state a couple of examples of a contravariantly finite subcategory.

Example 3.4

(1) Let X be an R-module. Then the additive closure addX is a contravariantly
finite subcategory of modR.

Indeed, take any objectM ∈ C. Then HomR(X,M) is a finitely generated R-
module. Choose a system of generators f1, . . . , fn of HomR(X,M). Consider
the homomorphism

f = (f1, . . . , fn) : X⊕n→ M.

The module X⊕n belongs to addX. Let g : Y → M be any homomorphism
of R-modules such that Y ∈ addX. Then Y is a direct summands of X⊕m for
some m ≥ 0. Let

π = (π1, . . . , πm) : X⊕m 	 Y

be a splitting of the inclusion map θ : Y ↪→ X⊕m. Then each gπi belongs to
HomR(X,M), and

gπi =
n∑

j=1

ajifj
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for some aji ∈ R. We have gπ = f · A, where A = (aij ) is an n × m matrix.
We get g = gπθ = fAθ , and thus g factors through f . This shows that f is a
right (addX)-approximation ofM .

(2) Let R be a Cohen–Macaulay local ring with a canonical module. Then
MCM(R) is a contravariantly finite subcategory of modR. This is a direct
consequence of the so-called Cohen–Macaulay approximation theorem due to
Auslander and Buchweitz [6].

To be more precise, let M be an R-module. Then the Cohen–Macaulay
approximation theorem asserts that there exists an exact sequence

0→ Y → X
f−→ M → 0

of R-modules such that X is maximal Cohen–Macaulay and Y has finite injec-
tive dimension. We claim that the map f is a right MCM(R)-approximation
of M . In fact, let X′ be any maximal Cohen–Macaulay R-module. Applying
the functor HomR(X′,−) to the above short exact sequence induces an exact
sequence

HomR(X
′, X) HomR(X′,f )−−−−−−−→ HomR(X

′,M)→ Ext1R(X
′, Y ).

Since X′ is maximal Cohen–Macaulay and Y has finite injective dimension, we
have Ext1R(X

′, Y ) = 0. This implies that the map HomR(X′, f ) is surjective.
Thus the claim follows.

The contravariantly finite resolving subcategories of the module category of a
Gorenstein ring can be determined completely, as follows. In view of Remark 2.3
and Examples 3.4 and 2.4, we observe that those three subcategories which appear
in the theorem are contravariantly finite resolving subcategories.

Theorem 3.5 ([53, Theorem 1.2]) Let R be a henselian local ring. If R is
Gorenstein, then the contravariantly finite resolving subcategories of modR are
the following three subcategories of modR.

⎧
⎪⎪⎨

⎪⎪⎩

projR,

MCM(R),

modR.

This theorem is a consequence of the following more complicated result. Here,
pdR and idR stand for the projective dimension and the injective dimension,
respectively. A typical example of an R-module G as below is a nonfree totally
reflexiveR-module, or more generally, anR-module of infinite projective dimension
but of finite Gorenstein dimension in the sense of Auslander and Bridger [5].
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Proposition 3.6 ([53, Theorem 1.3]) Let R be a henselian local ring with residue
field k. Let X be a resolving subcategory of modR such that the R-module k has a
right X -approximation. Assume that there exists anR-moduleG ∈ X with pdR G =
∞ and ExtiR(G,R) = 0 for i � 0. LetM be anR-module such that for eachX ∈ X
satisfies Ext�0

R (X,M) = 0 for i � 0. Then idR M <∞.

This proposition together with the theorem called “Bass’ conjecture” yields the
following corollary, which deduces Theorem 3.5.

Corollary 3.7 ([53, Theorem 1.4]) Let R be a henselian local ring. Let X �=
modR be a contravariantly finite resolving subcategory of modR. Assume that
there exists an R-module G ∈ X with pdR G = ∞ and ExtiR(G,R) = 0 for i � 0.
Then R has to be Cohen–Macaulay, and one obtains an equality X = MCM(R).

This corollary yields as a by product another proof of the following result due to
Christensen, Piepmeyer, Striuli and the author [20].

Corollary 3.8 ([53, Corollary 1.5]) Let R be a complete local ring over an alge-
braically closed field of characteristic zero. Then the following are equivalent.

(1) The local ring R is a simple hypersurface singularity.
(2) There exist at least one but only finitely many isomorphism classes of nonfree

indecomposable totally reflexive R-modules.

Sketch of Proof of Corollary 3.8 Suppose that there exist only finitely many iso-
morphism classes of indecomposable totally reflexive R-modules. Then there exists
a totally reflexiveR-moduleG such that G(R) = addG, and Example 3.4(1) implies
that the resolving subcategory G(R) of modR is contravariantly finite. Applying
Corollary 3.7, we observe that R is Gorenstein and G(R) = MCM(R). Hence R
has finite representation type. It is known that a Gorenstein complete local ring of
finite representation type over an algebraically closed field of characteristic zero is
nothing but a simple hypersurface singularity. �

To state our next result, we recall the definitions of several notions.

Definition 3.9

(1) Let I be an ideal of R. We say that I is quasi-decomposable if I contains
an R-regular sequence x = x1, . . . , xn such that the R-module I/(x) is
decomposable.

(2) Let X be a subset of SpecR. We say that X is specialization-closed if for every
p ∈ X and every q ∈ SpecR with p ⊆ q one has q ∈ X. It is well-known and
easy to see that X is specialization-closed if and only if it is a (possibly infinite)
union of closed subsets of SpecR in the Zariski topology.

(3) Let P be a property of local rings. Let X be a subset of SpecR. We say that X
satisfies P if for all p ∈ X the local ring Rp satisfies the property P.

(4) Let (R,m) be a local ring, and let I be an ideal of R. We say that I is a Burch
ideal if mI �= m(I : m). We call R a Burch ring if there exist a maximal R̂-
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regular sequence x = x1, . . . , xt , a regular local ring S and a Burch ideal J of
S such that R̂/(x) ∼= S/J . Here, R̂ stands for the m-adic completion of R.

(5) Let R be a Cohen–Macaulay local ring. Then, as is well-known (and easy to
see), the inequality

e(R) ≥ codimR + 1

holds. We say that R has minimal multiplicity if the equality holds. When the
residue field of R is infinite, R has minimal multiplicity if and only if there
exists a parameter idealQ of R such that m2 = Qm.

The following classification theorem on resolving subcategories and thick sub-
categories holds.

Theorem 3.10 ([21, 40, 52, 54]) Let (R,m) be a Cohen–Macaulay local ring.
Suppose that it satisifies one of the following three conditions.

(a) The local ring R is a hypersurface.
(b) The maximal ideal m of R is quasi-decomposable, and Spec0 R is either a

hypersurface or has minimal multiplicity.
(c) The local ring R is a Burch ring, and Spec0 R is either a hypersurface or has

minimal multiplicity.

Then there are one-to-one correspondences:

{
Thick subcategories of MCM(R)

containing R

}

1−1←→
{

Thick subcategories of modR
containing R

}

1−1←→
{

Thick subcategories of Db(R)

containing R

}

1−1←→
{

Resolving subcategories of modR
contained in MCM(R)

}

1−1←→ {
Thick subcategories of Dsg(R)

}

1−1←→
{

Specialization-closed subsets of SpecR
contained in SingR

}
.

A local ring with quasi-decomposable maximal ideal is nothing but a local ring
that deforms to a fiber product over the residue field. The class of local rings
satisfying conditions (b) and (c) in Theorem 3.10 contains the class of Cohen–
Macaulay local rings with minimal multiplicity, so that it contains the class of
non-Gorenstein rational singularities of dimension two.



734 R. Takahashi

Theorem 3.10 can be thought of as a higher-dimensional version of the theorem
of Benson, Carlson and Rickard which is mentioned before. The bijections giving
the one-to-one correspondences can be described explicitly.

Key roles are played in the proof of the above theorem by the following two
results.

Lemma 3.11 ([21, Proposition 7.6], [40, Lemma 4.4], [52, Proposition 5.9]) Let
(R,m, k) be a Cohen–Macaulay local ring of dimension d. Suppose that it satisifies
one of the following three conditions.

(a) The local ring R is a hypersurface.
(b) The maximal ideal m is quasi-decomposable, and Spec0 R is either a hypersur-

face or has minimal multiplicity.
(c) The local ring R is a Burch ring, and Spec0 R is either a hypersurface or has

minimal multiplicity.

LetM be a nonfree maximal Cohen–Macaulay R-module. Then the d-th syzygy�dk
of the R-module k belongs to the resolving closure ofM .

Lemma 3.12 ([52, Theorem 2.4]) Let R be a Cohen–Macaulay local ring of
dimension d. LetM be an R-module of depth t . Assume thatM is locally free on the
punctured spectrum of R. ThenM belongs to the extension closure of the R-module⊕d
i=t �ik.

Here, the resolving closure of an R-module M means the smallest resolving
subcategory of modR containingM . The extension closure ofM means the smallest
subcategory of modR which contains M and is closed under direct summands and
extensions.

Applying the above lemmas, we can also improve a theorem of Keller, Murfet
and Van den Bergh [37] on maximal Cohen–Macaulay modules over a completion,
and recover a theorem of Huneke and Wiegand [34] and a theorem of Nasseh and
Sather-Wagstaff [39] on rigidity of vanishing of Tor. Recall that a local ring R is
said to have an isolated singularity if Rp is a regular local ring for all nonmaximal
prime ideals p of R.

Corollary 3.13 (Keller, Murfet and Van den Bergh, [52, Corollary 3.8]) Let
(R,m) be a Cohen–Macaulay local ring whose m-adic completion R̂ has an
isolated singularity (e.g., let R be an excellent Cohen–Macaulay local ring with
an isolated singularity). Then the natural functor

Dsg(R)→ Dsg(R̂)

is an equivalence up to direct summands.

Corollary 3.14 (Huneke and Wiegand, [52, Corollary 7.3]) Let R be a hypersur-
face local ring. LetM and N be R-modules. Suppose that

TorRn (M,N) = TorRn+1(M,N) = 0

for some n ≥ 0. Then eitherM or N has finite projective dimension.
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Corollary 3.15 (Nasseh and Sather-Wagstaff, [40, Corollary 6.2]) LetR = S×k
T be a fiber product, where S and T are local rings with common residue field k
and S �= k �= T . LetM and N be R-modules.

(1) Assume that either S or T has depth zero and

TorRn (M,N) = 0

for some n ≥ 5. Then eitherM or N is free.
(2) Assume that

TorRn (M,N) = TorRn+1(M,N) = 0

for some n ≥ 5. Then either pdR M ≤ 1 or pdR N ≤ 1.

The Ext version of the above corollary is also obtained; see [40, Corollary 6.3].
Furthermore, we can get similar vanishing results on Tor and Ext for local rings with
quasi-decomposable maximal ideal and for Burch rings; see [40, Corollaries 6.5 and
6.6] and [21, Corollary 7.13 and Remark 7.14].

Stevenson [50, 51] classified the thick subcategories of the singularity category
and the derived category of a complete intersection (more precisely, a quotient of a
regular ring by a regular sequence), using Theorem 3.10(a) and a theorem of Orlov
[45]. In the following, we explain Stevenson’s classification theorem of the thick
subcategories of the singularity category.

Let R be the residue ring of a regular local ring (S, n) by an S-regular sequence
x = x1, . . . , xc. We may assume that the xi are all in n2, so that c = codimR. Then
the generic hypersurface of R is defined as the graded ring

G = S[y1, . . . , yc]
(x1y1 + · · · + xcyc) ,

where y1, . . . , yc are indeterminates over S with degree 1 and the elements of S
have degree 0. The classification theorem of Stevenson is stated as follows.

Theorem 3.16 (Stevenson) Let R be the quotient of a regular local ring S by an
S-regular sequence x = x1, . . . , xc. Let G be the generic hypersurface of R. Then
there is a one-to-one correspondence

{
Thick subcategories

of Dsg(R)

}
1−1←→

{
Specialization-closed subsets

of the singular locus of ProjG

}
.

To state our next theorem, we need to introduce a certain N-valued function on
the set of prime ideals.
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Definition 3.17 A function f : SpecR→ N is called grade-consistent if it satisfies
the following two conditions.

(1) For all prime ideals p, q of R with p ⊆ q, one has f (p) ≤ f (q).
(2) For all prime ideals p of R one has f (p) ≤ grade p.

Using grade-consistent functions and specialization-closed subsets of the singu-
lar locus of ProjG whereG is the generic hypersurface, we can completely classify
the resolving subcategories of the category of finitely generated modules over a local
complete intersection.

Theorem 3.18 ([23, Theorem 1.5]) Let R be a quotient of a regular local ring by
a regular sequence. Let G be the generic hypersurface of R. Then there is a one-to-
one correspondence

{
Resolving subcategories

of modR

}

1−1←→
{

Grade-consistent functions
on SpecR

}
×
{

Specialization-closed subsets
of the singular locus of ProjG

}
.

The bijections giving the one-to-one correpondence in the above theorem can be
described explicitly.

Let us explain a bit how to obtain Theorem 3.18. It is a consequence of
the combination of the following Propositions 3.19 and 3.20 with Stevenson’s
Theorem 3.16. One can view Proposition 3.20 as a category version of the Cohen–
Macaulay approximation theorem due to Auslander and Buchweitz [6].

Proposition 3.19 ([23, Theorem 1.2]) There is a one-to-one correspondence

⎧
⎨

⎩

Resolving subcategories
of modR

contained in fpdR

⎫
⎬

⎭
1−1←→

{
Grade-consistent functions

on SpecR

}
.

Proposition 3.20 ([23, Theorem 7.4]) Let R be a locally complete intersection
ring. There exists a one-to-one correspondence

{
Resolving subcategories

of modR

}

1−1←→
⎧
⎨

⎩

Resolving subcategories
of modR

contained in fpdR

⎫
⎬

⎭×
⎧
⎨

⎩

Resolving subcategories
of modR

contained in MCM(R)

⎫
⎬

⎭ .

Applying Proposition 3.19, we also obtain the following corollary.
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Corollary 3.21 ([23, Theorem 1.7]) The following are equivalent for two modules
M and N over a regular ring R.

(1) One can build N out ofM by taking direct summands, extensions and syzygies.
(2) One has pdRp

Np ≤ sup{pdRp
Mp, 0} for each prime ideal p of R.

Corollary 3.21 recovers and categorifies the main theorem of the ICM lecture of
Auslander [3] in 1962. Also, it gives an answer to Problem 1.1.

Now Example 3.1 can be explained as follows by using the above corollary.

Example 3.22 Let R = k[x, y] be the polynomial ring in two variables x, y over a
field k.

(1) PutM = R/(x, y) and N = (x2, y). Consider the maximal ideal m = (x, y) of
R. Then it holds that

pdRm
Nm = 1 ≤ 2 = pdRm

Mm,

pdRp
Np = 0 for all p ∈ SpecR with p �= m.

It is observed that

pdRp
Np ≤ sup{pdRp

Mp, 0}

for all prime ideals p of R. By virtue of Corollary 3.21, we see that N can be
built out ofM by taking direct summands, extensions and syzygies.

(2) Put M = R/(x) and N = R/(xy). Consider the prime ideal p = (y) of R. We
see that pdRp

(R/(xy))p = 1, while pdRp
(R/(x))p = −∞ as p does not belong

to the support of R/(x). It follows that

pdRp
Np �≤ sup{pdRp

Mp, 0}.

Applying Corollary 3.21, we observe that N cannot be built out ofM by taking
direct summands, extensions and syzygies.

(3) Put M = R/(xy) and N = R/(x). If p is a prime ideal of R with
pdRp

(R/(x))p = 1, then we must have p = (x), and pdRp
(R/(xy))p = 1.

It is easy to observe from this that

pdRp
Np ≤ sup{pdRp

Mp, 0}

for all prime ideals p of R. Thanks to Corollary 3.21, we see that N can be built
out ofM by taking direct summands, extensions and syzygies.

As the final topic of this section, we consider classification of subcategories of the
category D-(R), the right bounded derived category of modR, that is, the derived
category of right bounded complexes of finitely generated R-modules. This is a
tensor triangulated category with tensor product − ⊗L

R −. The category D-(R) is
equivalent as a tensor triangulated category to the homotopy category K-(projR).
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We define a compact ideal of D-(R) as a thick tensor ideal (i.e., a thick subcategory
closed under X ⊗L

R − for each X ∈ D-(R)) generated by bounded complexes. We
can completely classify the compact ideals of D-(R).

Theorem 3.23 ([38, Theorem A]) There is a one-to-one correspondence

{
Compact ideals

of D-(R)

}
1−1←→

{
Specialization-closed subsets

of SpecR

}
.

Denote by Dperf (R) the derived category of perfect complexes over R, that is,
bounded complexes of finitely generated projective R-modules, or in other words,
complexes of finite projective dimension. The category Dperf (R) is also a tensor
triangulated category with tensor product − ⊗L

R −. The category Dperf (R) is
equivalent as a tensor triangulated category to Kb(projR). Restricting the above
theorem, we recover the celebrated Hopkins–Neeman theorem [41, Theorem 1.5]
stated below.

Corollary 3.24 (Hopkins–Neeman) There is a one-to-one correspondence

{
Thick subcategories

of Dperf (R)

}
1−1←→

{
Specialization-closed subsets

of SpecR

}
.

The proof of Theorem 3.23 also extends the Hopkins–Neeman smash nilpotence
theorem on Kb(projR) ∼= Dperf (R) to K-(projR) ∼= D-(R). For the details, we
refer the reader to [38, Theorem 2.7].

4 Dimensions of Subcategories

The notion of the dimension of a triangulated category has been introduced by
Rouquier [49]. Bondal and Van den Bergh [18] proved that the bounded derived
category of coherent sheaves on a smooth proper commutative/noncommutative
algebraic variety has finite dimension, and by using it proved that a contravariant
cohomological functor of finite type to the category of vector spaces is repre-
sentable. Rouquier [48] applied the notion of the dimension of a triangulated
category to representation dimension. Representation dimension has been intro-
duced by Auslander [4] to measure how far a given artin algebra is from finite
representation type, and many representation theorists including Oppermann [43]
have investigated it so far. Rouquier computed the dimension of the singularity
category of an exterior algebra of a vector space to give the first example of an
artinian ring of representation dimension more than three.

On the other hand, Rouquier [49] proved that the bounded derived category of
coherent sheaves on a separated scheme of finite type over a perfect field has finite
dimension. Recently, Neeman [42] proved that the bounded derived category of
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coherent sheaves on a separated scheme that is essentially of finite type over a
separated excellent scheme of dimension at most two has finite dimension. This
clarifies that even in the mixed characteristic case the derived category has finite
dimension in many cases.

In what follows, we consider the dimensions of the derived category Db(R) and
the singularity category Dsg(R), and analogues for abelian categories. We begin with
stating the definitions of the dimension and radius of a subcategory of a triangulated
category or an abelian category.

Definition 4.1 Let T be a triangulated category.

(1) For a subcategory X of T we denote by 〈X 〉 the smallest subcategory of T
containing X and closed under finite direct sums, direct summands and shifts.
That is,

〈X 〉 = add{�iX | i ∈ Z, X ∈ X }.

When X consists of a single object X, we simply write 〈X〉.
(2) For two subcategories X ,Y of T , we denote by X ∗ Y the subcategory of T

consisting of objectsM admitting an exact triangle

X→ M → Y → �X

with X ∈ X and Y ∈ Y . We set X 9 Y = 〈〈X 〉 ∗ 〈Y〉〉.
(3) Let C be a subcategory of T , and set

〈C〉r =

⎧
⎪⎪⎨

⎪⎪⎩

0 (r = 0),

〈C〉 (r = 1),

〈C〉r−1 9 C = 〈〈C〉r−1 ∗ 〈C〉〉 (r ≥ 2).

When C consists of a single object C, we simply write 〈C〉r .
(4) Let X be a subcategory of T . We define the dimension and radius of X as

follows.

dimX = inf{n ≥ 0 | X = 〈G〉n+1 for some G ∈ T }
radiusX = inf{n ≥ 0 | X ⊆ 〈G〉n+1 for some G ∈ T }

Definition 4.2 Let A be an abelian category with enough projective objects.

(1) For a subcategory X of A, we denote by [X ] the smallest subcategory of A
containing projA and X and closed under finite direct sums, direct summands
and syzygies. That is,

[X ] = add(projA ∪ {�iX | i ≥ 0, X ∈ X }).
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When X consists of a single object X, we simply write [X].
(2) For two subcategories X ,Y of A, we denote by X ◦ Y the subcategory of A

consisting of objectsM ∈ A admitting a short exact sequence

0→ X→ M → Y → 0

with X ∈ X and Y ∈ Y . We put X • Y = [[X ] ◦ [Y]].
(3) Let C be a subcategory of A, and put

[C]r =

⎧
⎪⎪⎨

⎪⎪⎩

0 (r = 0),

[C] (r = 1),

[C]r−1 • C = [[C]r−1 ◦ [C]] (r ≥ 2).

When C consists of a single object C, we simply write [C]r .
(4) Let X be a subcategory of A. We define the dimension and radius of X as

follows.

dimX = inf{n ≥ 0 | X = [G]n+1 for some G ∈ A}
radiusX = inf{n ≥ 0 | X ⊆ [G]n+1 for some G ∈ A}

The following theorem describes the relationship between the dimension of a
subcategory and an isolated singularity.

Theorem 4.3 ([24, Theorem 1.1]) Let (R,m) be a Cohen–Macaulay local ring.
Consider the following four conditions.

(a) The subcategory MCM0(R) of the abelian category modR has finite dimension.
(b) The ideal

⋂

i>0

⋂

M,N∈MCM0(R)

AnnR ExtiR(M,N)

of the local ring R is m-primary.
(c) The ideal

⋂

i>0

⋂

M,N∈MCM0(R)

AnnR TorRi (M,N)

of the local ring R is m-primary.
(d) The local ring R is an isolated singularity.

Then the implications (a) ⇔ (b) ⇒ (c) ⇒ (d) hold. If R is equicharacteristic and
excellent, then the four conditions (a), (b), (c), (d) are equivalent.
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When R is Gorenstein, a similar assertion holds for the stable category
MCM0(R) of MCM0(R), which is a triangulated category.

Let A be an abelian category with enough projective objects. By definition, there
is an inequality

radiusX ≤ dimX

for all subcategories X of A. Applying the above theorem, we see that the equality
does not necessarily hold.

Example 4.4 Let R = k[[x, y]]/(x2) be a homomorphic image of a formal power
series ring over a field k. Then for the prime ideal p = (x) the local ring Rp is not
regular, so R does not have an isolated singularity. According to Theorem 4.3, the
subcategory MCM0(R) of modR has infinite dimension. On the other hand, it is
observed from [2, Theorem 1.1] that MCM(R) has dimension (at most) one. Hence
MCM0(R) has radius (at most) one, and in particular, the strict inequality

radius MCM0(R) < dim MCM0(R)

holds.

Applying Theorem 4.3 to the case where MCM0(R) has dimension zero, we
immediately obtain the following corollary.

Corollary 4.5 ([24, Corollary 1.2]) Let R be a Cohen–Macaulay local ring.
Suppose that the number

#

{
M ∈ MCM(R)

∣∣∣∣
M is indecomposable, and

M is locally free on the puctured spectrum of R

}/

∼=
is finite. Then R is an isolated singularity.

In fact, under the assumption of the above corollary, we can choose a finite
number of modules M1, . . . ,Mn ∈ MCM0(R) whose isomorphism classes form
those of the indecomposable maximal Cohen–Macaulay R-modules that are locally
free on the puctured spectrum of R. Then setting

M = M1 ⊕ · · · ⊕Mn,

we observe that MCM0(R) = [M] = [M]1. Hence we obtain dim MCM0(R) =
0 < ∞. Applying Theorem 4.3, we deduce that the Cohen–Macaulay local ring R
has an isolated singularity.

Corollary 4.5 improves the following celebrated theorem [33].

Corollary 4.6 (Auslander–Huneke–Leuschke–Wiegand) Let R be a Cohen–
Macaulay local ring. Suppose that R has finite representation type. Then R is of an
isolated singularity.
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Recall that a Cohen–Macaulay ring R is said to have finite representation
type provided that there exist only a finite number of isomorphism classes of
indecomposable maximal Cohen–Macaulay modules over R.

Concerning the radius of a resolving subcategory, we have the following
conjecture.

Conjecture 4.7 Let R be a Cohen–Macaulay local ring. Let X be a resolving
subcategory of modR. Suppose that X has finite radius. Then X is contained in
the subcategory MCM(R) of maximal Cohen–Macaulay modules.

This conjecture holds true in the case where R is a complete intersection.

Theorem 4.8 ([22, Theorem I]) Let R be a local complete intersection. Let X
be a resolving subcategory of modR. If X has finite radius, then all the modules
belonging to X are maximal Cohen–Macaulay.

The proof of this theorem is long and contains a lot of ideas. Here we would like
to explain roughly how the theorem is proved. Recall that the (Auslander) transpose
of an R-module M , which is denoted by TrM , is defined as follows. Take an exact
sequence

P1
f−→ P0 → M → 0

with P0, P1 ∈ projR. Then TrM is by definition the cokernel of the R-dual f ∗ of
the map f . Hence there is an exact sequence

0→ M∗ → P ∗0
f ∗−→ P ∗1 → TrM → 0.

Proof (Sketch of Proof of Theorem 4.8) Let (R,m) be a complete intersection local
ring of dimension d. We may assume d > 0. Suppose that X contains an R-module
M which is not maximal Cohen–Macaulay. It follows from [2] thatM has reducible
complexity, and using this, we observe that the resolving closure of M contains an
R-module N such that

0 < pdR N <∞.

Hence N belongs to X . Using a technique given in [55], we may assume that N is
locally free on the punctured spectrum of R. Further replacing it with a syzygy, we
may assume pdR N = 1. Note that Ext1R(N,R) is a nonzero R-module with finite
length. We find a nonzero element σ in the socle of Ext1R(N,R). We get a short
exact sequence

σ : 0→ R→ L→ N → 0.
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Since X is resolving, it contains L. An exact sequence

0→ k→ Ext1R(N,R)→ Ext1R(L,R)→ 0

is induced, which shows

�R(Ext1R(L,R)) = �R(Ext1R(N,R))− 1.

It is observed that one may assume Ext1R(N,R)
∼= k. There are isomorphisms

TrN ∼= Ext1R(N,R)
∼= k, and hence Tr k = N ∈ X . Therefore TrK belongs to

X for all R-modules K of finite length. In particular,

Tr(R/mi ) ∈ X

for all i > 0.
Suppose that X has finite radius. Then there exist an R-moduleG and an integer

n > 0 such that X ⊆ [G]n. The module Tr(R/mi ) belongs to [G]n for all i > 0.
We may assume that R is complete. We see that

mi = AnnR R/m
i

= AnnR Ext1R(TrR/mi , R)

⊇
⋂

t>0

AnnR ExttR(Tr(R/mi ), R)

⊇ (AnnR ExtjR(G,R))
n for all 1 ≤ j ≤ d.

Applying Krull’s intersection theorem, we observe that AnnR ExtjR(G,R) is
nilpotent, and contained in every minimal prime ideal p of R. It follows that
ExtjRp

(Gp, Rp) �= 0 for all 1 ≤ j ≤ d. This contradicts the fact that Rp is an
artinian Gorenstein ring. �

The above proof actually shows that Theorem 4.8 holds for every local ring R
and an R-moduleM of finite complete intersection dimension. As a corollary of this
statement, we get the following result.

Corollary 4.9 Let R be a Gorenstein local ring. Consider the following six
conditions.

(1) The ring R is a hypersurface.
(2) The ring R is a complete intersection.
(3) Every resolving subcategory in MCM(R) is closed under R-duals.
(4) Every resolving subcategory in MCM(R) is closed under cosyzygies.
(5) The ring R is AB.
(6) The ring R satisfies Conjecture 4.7.
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Then the implications

hold true.

Here, a local ring R is called AB if there exists a constant C, depending only on
R, such that if Exti (M,N) = 0 for all i � 0, then Exti (M,N) = 0 for all i > C.
This notion is introduced by Huneke and Jorgensen [32]. The (first) cosyzygy�−1M

of a maximal Cohen–Macaulay moduleM over a Gorenstein local ring R is defined
by a short exact sequence

0→ M → F → �−1M → 0

of maximal Cohen–Macaulay R-modules with F free. For each n ≥ 0, the nth
cosyzygy �−nM is defined similarly to the nth syzygy. For each maximal Cohen–
MacaulayR-moduleM and each integer n ≥ 0, the nth cosyzygy�−nM is uniquely
determined up to free summands.

Applying the theorem of Rouquier [49] stated before to an affine scheme implies
that Db(R) has finite dimension if R is essentially of finite type over a perfect field.
The author [1] proved that the same statement holds true for a complete local ring
R over a perfect field. The following theorem improves this.

Theorem 4.10 ([36, Theorem 1.4]) Let R be either

(i) an equicharacteristic excellent local ring, or
(ii) a ring that is essentially of finite type over a field.

Then Db(R) has finite dimension.

Theorem 4.10 is, as far as the author knows, the strongest result on finite
dimension of the derived category of a local ring containing a field.

To prove the above theorem, first we need to make a simplified version of
Definition 4.2.

Definition 4.11 Let A be an abelian category.

(1) For a subcategory X of A, we denote by |X | the smallest subcategory of A
containing X and closed under finite direct sums and direct summands. That is,

|X | = addX .

When X consists of a single object X, we simply write |X|.
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(2) For two subcategories X ,Y of A, we put X ∗ Y = ||X | ◦ |Y||.
(3) Let C be a subcategory of A, and put

|C|r =

⎧
⎪⎪⎨

⎪⎪⎩

0 (r = 0),

|C| (r = 1),

|C|r−1 ∗ C = ||C|r−1 ◦ |C|| (r ≥ 2).

When C consists of a single object C, we simply write |C|r .
Next, we need to introduce the notion of a cohomology annihilator.

Definition 4.12 For an integer n ≥ 0 we set

can(R) = {
a ∈ R | a ExtnR(M,N) = 0 for allM,N ∈ modR

}

and call this the nth cohomology annihilator of R.

Also, we need the following two technical lemmas. For an integer n ≥ 0 we
denote by �n(modR) the subcategory of modR consisting of nth syzygies of R-
modules.

Lemma 4.13 ([36, Theorem 4.3]) Let R have Krull dimension d. Suppose that
there exist an R-module G and integers s, n ≥ 0 such that �s(modR) ⊆ |G|n.
Then there is an equality

SingR = V(cas+d+1(R)).

In particular, SingR is closed.

Lemma 4.14 ([36, Theorems 5.1 and 5.2]) Let R have Krull dimension d.

(1) Suppose that there exists aninteger s > 0 such that cas(R/p) �= 0 for all prime
ideals p of R. Then there exist an R-module G and an integer n ≥ 0 such that

�s+d−1(modR) ⊆ |G|n.

(2) Suppose that for all prime ideals p of R there exists an integer s ≤ dimR/p+1
such that cas(R/p) �= 0. Then there exist an R-module G and an integer n ≥ 0
such that

�d(modR) ⊆ |G|n.

Using the above two lemmas, we can show the following proposition.

Proposition 4.15 ([36, Theorem 5.3]) Let R be a d-dimensional excellent
equicharacteristic local ring.
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(1) There is an equality

SingR = V(ca2d+1(R)).

(2) There exist an R-module G and an integer n ≥ 0 such that

�3d+1(modR) ⊆ |G|n.

Proof of Proposition 4.15

(1) First we consider the case where R is complete. Fix a prime ideal p of R.
By virtue of a result of Gabber [35, IV, Théorème 2.1.1], the integral domain
R/p admits a separable Noether normalization. Then it follows from [57] that
cadimR/p+1(R/p) �= 0, which is shown by using the sum of the Noether
differents of R/p. Lemma 4.14(2) yields �d(modR) ⊆ |G|n for some R-
module G and some integer n ≥ 0. It follows from Lemma 4.13 that SingR =
V(ca2d+1(R)).

Next we consider the case where R is excellent. By the definition of
excellence, there exists an ideal I of R such that SingR = V(I ). Then

I R̂ ⊆ P ⇐⇒ I ⊆ P ∩ R ⇐⇒ P ∩ R ∈ SingR ⇐⇒ P ∈ SingR

as formal fibers are regular. Hence

V(I R̂) = Sing R̂ = V(ca2d+1(R̂))

by the complete case. Since R̂ is faithfully flat over R, we obtain V(I ) =
V(ca2d+1(R)).

(2) Fix a prime ideal p of R. By (1), we have

0 /∈ SingR/p = V(ca2 dimR/p+1(R/p)).

Hence ca2 dimR/p+1(R/p) �= 0. Then it is easy to see that ca2d+1(R/p) �= 0.
Lemma 4.14(1) yields �3d(modR) ⊆ |G|n for some R-module G and an
integer n. �

Proof of Theorem 4.10 Using Proposition 4.15(2), we easily see that the derived
category Db(R) has finite dimension. �

So far, we have stated results on finiteness of the dimension and radius. The
following theorem concretely gives an upper bound by using well-known invariants.
For a complete local ring

R = k[[x1, . . . , xn]]
(f1, . . . , ft )



Generation in Module Categories and Derived Categories of Commutative Rings 747

over a field k, the Jabobian ideal of R is by definition the ideal of R generated by
the c-minors of the Jacobian matrix of f1, . . . , ft , where c = codimR.

Theorem 4.16 ([25, Theorem 1.1]) Let R be a complete equicharacteristic
Cohen–Macaulay local ring with an isolated singularity. Let J be the Jacobian
ideal of R. Then there is an inequality

dim Dsg(R) < (μ(J )− dimR + 1) · ��(R/J ).

If the residue field of R is infinite, the inequality

dim Dsg(R) < e(J ).

holds as well.

In the above theorem, one can replace J with any m-primary ideal ofR contained
in the sum of the Noether differents of R.

The first inequality of Theorem 4.16 immediately recovers the following result
due to Ballard, Favero and Katzarkov [8, Proposition 4.11].

Corollary 4.17 (Ballard, Favero and Katzarkov, [25, Corollary 1.4]) Let k be
a field, and let R = k[[x1, . . . , xn]]/(f ) be a hypersurface complete local ring.
Suppose that R has an isolated singularity. Let

J =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
R

be the Jacobian ideal of R. Then the inequality

dim Dsg(R) < 2 ��(R/J )

holds true.

We end this article by giving an outline of the proof of Theorem 4.16.

Sketch of Proof of Theorem 4.16 We can show the following statements.

(a) Let R be a local ring with maximal ideal m and residue field k. Let I =
(x1, . . . , xn) be an m-primary ideal of R. Let M be an R-module. Set t =
depthR and l = ��(R/I). Then the Koszul complex K(x,M) belongs to
〈k〉(n−t+1)l in Db(R).

(b) Let x = x1, . . . , xn be a sequence of elements of R. Let M be an R-module.

Suppose that for all 1 ≤ i ≤ n the multiplication map M
xi−→ M is zero

in Dsg(R). Then M is a direct summand of the Koszul complex K(x,M) in
Dsg(R).
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(c) Let R be a complete equicharacteristic Cohen–Macaulay local ring. Let x be
an element in J . Let M be a maximal Cohen–Macaulay R-module. Then the

multiplication mapM
x−→ M is zero in Dsg(R).

(d) Suppose that the residue field of R is infinite. Then one can choose a minimal
reductionQ of J as a parameter ideal of R. It holds that

(ν(Q)− d + 1) · ��(R/Q) = ��(R/Q) ≤ �(R/Q) = e(J ).

The first inequality in the theorem follows from (a), (b) and (c), while the second
one is obtained by (d). �
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1 Introduction

A homological invariant named Gorenstein dimension (G-dimension for short) for
finitely generated modules over a commutative Noetherian ring was introduced in
[2] as a generalization of projective dimension, and it was further developed in [3].
G-dimension can be used to give a homological characterization of Gorenstein rings,
similar to the way projective dimension characterizes regular rings by the famous
theorem of Serre [32] and Auslander-Buchsbaum [4], which states that a ring is
regular if an only if every finitely generated module has finite projective dimension.
We refer the reader to [14] for an extensive survey of G-dimension.

Totally reflexive modules, also called modules of G-dimension zero, are the
building blocks for the theory of G-dimension, the same way that projective modules
are building blocks for the theory of projective dimension. The category of totally
reflexive modules over a ring reveals subtle information about the ring. For example,
it is shown in [15] that the property of having finitely many indecomposable totally
reflexive modules up to isomorphism characterizes simple hypersurface singularities
among all complete local rings.

The following conventions will be in effect throughout this paper.
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Notations and Definitions 1.1

1. (R,m, k) denotes a commutative Noetherian ring, which is either local with
maximal ideal m, or graded with a unique maximal homogeneous ideal m, and
k = R/m. All R-modules we consider will be finitely generated.

2. The socle of R, Soc(R) is the ideal (0 :R m) = {r ∈ R | r m = 0}
3. If R is Artinian andM is a finitely generated R-module, λ(M) denotes the length

ofM .
4. If R = k⊕R1⊕R2⊕· · ·⊕Rs is a standard graded Artinian algebra over a field

k, we say that R has Hilbert function (1, n1, n2, . . . , ns), where ni = dimk(Ri)

for 1 ≤ i ≤ s.
5. The embedding dimension of R is dimk(m/m

2)

6. The parameter ν(R) is defined by

ν(R) = inf{i | dim(mi/mi+1) <

(
n− 1+ i

i

)
},

where n is the embedding dimension of R. If S is defined as S = P/J , where
P = k[x1, . . . , xn], and J is a homogeneous ideal, then ν(S) is the lowest degree
of a minimal generator of J .

7. The canonical module of R is denoted ω(R).

We recall the following definitions:

Definition 1.2

1. A complex of R-modules (in homological notation) is a sequence

M : · · · di+2−→ Mi+1
di+1−→ Mi

di−→ Mi−1
di−1−→ · · · (1)

where Mi are R-modules, and di are R-module homomorphisms, such that
didi+1 = 0 for all i. We say that the complex M is minimal if im(di+1) ⊆ mMi
for all i.

2. The ith homology of M is

Hi(M) := ker(di)

im(di+1)

3. The complex M is called acyclic if Hi(M) = 0 for all i
4. ( )∗ denotes the functor HomR( , R). The dual complex M∗ is the (cohomolog-

ical) complex HomR(M, R), with maps d∗i : M∗i → M∗i+1.
5. The complex M is called totally acyclic if both M and M∗ are acyclic.
6. A finitely generated R-moduleM is called totally reflexive if there exists a totally

acyclic complex M such that every Mi is a finitely generated free module and
M = ker(d0).
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The definition in part (6.) above is usually stated with the requirement that Mi is
finitely generated projected instead of free; the two notions are equivalent when
(R,m) is a local ring.

Note that if a moduleM is itself free, we can take M be to the complex

· · · → 0→ M
d→ M → 0→ 0→ · · ·

with d being the identity function. Thus, every finitely generated free module is
totally reflexive.

Observation 1.3 If M = ker(d0), then for each integer i we can consider the
complex M(i) shifted by i, such thatM is the kernel of the ith differential in M(i).

Thus, every totally reflexive module can also be obtained as an ith syzygy, for
every i. In other words, M is an infinite syzygy. It follows that if R is Cohen–
Macaulay, every totally reflexive module is maximal Cohen–Macaulay.

The following gives an equivalent characterization of the total reflexivity prop-
erty:

Proposition 1.4 Let M be a finitely generated R-module. The following are
equivalent:

1. M is totally reflexive
2. M is reflexive (i.e.M ∼= M∗∗) , and

ExtiR(M,R) = 0 = ExtiR(M
∗, R)

for all i > 0.

It is natural to ask whether the total reflexivity property can be verified by
checking the vanishing of finitely many of the Ext modules in Proposition 1.4.
Yoshino [37] studied certain situations where the vanishing of ExtiR(M,R) for all
i > 0 implies total reflexivity. However, an example is provided in [24] to show
that this does not hold in general. More specifically, there exists a local Artinian
ring R and a reflexive R-module M such that ExtiR(M,R) = 0 for all i > 0, but
ExtiR(M

∗, R) �= 0 for all i > 0.
We recall the definition of G-dimension.

Definition 1.5 Let M �= 0 be a finitely generated R-module. The G-dimension
of M , G-dimR(M), is the smallest integer n ≥ 0 such that there exists an exact
sequence

0→ Gn→ Gn−1 → · · · → G0 → M → 0

such that Gi is totally reflexive for all 0 ≤ i ≤ n.
If no such n exists, then we say that G-dimR(M) = ∞.
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Since finitely generated free modules are totally reflexive, we have G-dimR(M) ≤
pdR(M).

The following result established in [3] gives the characterization of Gorenstein
rings in terms of G-dimension:

Theorem 1.6 Let (R,m, k) be a Noetherian local ring. The following conditions
are equivalent:

1. Every finitely generated R-module has finite G-dimension
2. k has finite G-dimension
3. R is Gorenstein

Moreover, if R is Gorenstein, then G-dimR(M) ≤ dim(R) for every finitely
generatedR-moduleM . In particular, ifR is Artinian Gorenstein, then every finitely
generated R-module is totally reflexive.

We also have an analog of the Auslander-Buchsbaum formula for G-dimension:

Theorem 1.7 ([3], 4.13) Let (R,m) be a Noetherian local ring and let M be a
finitely generated R-module. If G-dimR(M) <∞, then

G− dimR(M) = depth(R)− depth(M).

In particular, G-dimR(M) = pdR(M) whenever pdR(M) <∞.

Enochs and Jenda [19] studied the notion of Gorenstein projective modules,
which extends the theory of G-dimension beyond the setting of finitely generated
modules over Noetherian rings. They also introduced a theory of Gorenstein
injective dimension.

A different homological invariant called complete intersection dimension (or
c.i. dimension), which fits in between G-dimension and projective dimension, was
introduced in [7]. More precisely,

G− dimR(M) ≤ CI− dimR(M) ≤ pdR(M),

and equalitites hold to the left of any finite value in the above inequalitites. In
a different direction, projective dimension and Gorenstein dimension have been
extended to complexes (see [5, 13]). A notion of ring homomorphisms of finite
Gorenstein dimension was introduced in [6]. We will not pursue these directions in
the present survey.

In view of the commonalites between the theory of projective dimension and the
theory of G-dimension, it seems to relevant to ask for a measure of the difference
between the category of projective modules and the category of totally reflexive
modules over a given ring R. In the case when R is Gorenstein, but not regular,
every finitely generated module has finite G-dimension, while the finite projective
dimension property is quite special. In fact, from a representation theoretic point of
view, the category of finitely generated projective modules over a local ring is trivial,
because every projective module is free. The category of totally reflexive modules
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can be a lot more complicated in general; however, there are rings for which the two
categories coincide.

Definition 1.8 A Noetherian local ring (R,m) is called G-regular if every totally
reflexive R-module is free.

The following striking result from [15] can be thought of as a counterpart of
the work of Buchweitz, Greuel, and Schreyer [12], Herzog [18], and Yoshino [31],
characterizing Gorenstein rings of finite Cohen–Macaulay representation type as
simple singularities.

Theorem 1.9 ([15], Theorem B) If the set of isomorphism classes of indecompos-
able totally reflexive R-modules is finite, then R is either Gorenstein or G-regular.

In other words, every non-Gorenstein ring which is not G-regular has infinitely
many non-isomorphic indecomposable totally reflexive module. Direct sums of
totally reflexive modules are totally reflexive, which explains why the focus is on
the indecomposable ones.

The following two questions, prompted by the result of Theorem 1.9, constitute
the main focus of this survey:

Question 1.10 Among all non-Gorenstein local rings, which ones are G-regular?

If one non-free totally reflexive module is given, Theorem 1.9 states that there are
infinitely many such indecomposable modules. However, the proof of Theorem 1.9
is non-constructive. We ask:

Question 1.11 Given one indecomposable non-free totally reflexive moduleM over
a non-Gorenstein ring R, how can one construct infinitely many non-isomorphic
such modules?

If M is indecomposable totally reflexive, then so is every syzygy of M . Thus,
one can obtain the desired infinite family from one totally reflexive module that
has a non-periodic resolution. Unfortunately, many of the totally reflexive modules
that we are able to find in practice have periodic resolutions with period two, which
means that all their syzygies are isomorphic to the first two.

We will present a number of constructions that give rise tototally reflexive
modules over certain classes of rings. We usually focus on building minimal totally
acyclic complexes; totally reflexive modules can then be obtained as syzygies in
such complexes. The minimal property of the complex implies that the complex is
not split, and therefore the syzygy modules are not free.

The case of Artinian rings (R,m) with m3 = 0 has been studied extensively.
In this case, it turns out that once there is one non-free totally reflexive module, the
property of a module being totally reflexive holds generically. This will be explained
in more detail in Sect. 3. On the other hand, once the assumption m3 = 0 is removed,
the totally reflexive property is no longer generical.

We will also present large classes of rings that are G-regular.
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2 Totally Reflexive Modules Over Rings That Have an
Embedded Deformation

Definition 2.1 A local ring (Q, n) is an embedded deformation of R if there exists
aQ-regular sequence x = x1, . . . , xc contained in n2 such that R ∼= Q/(x).

It is shown in [7] that every ring that has an embedded deformation has non-free
totally reflexive modules.

Theorem 2.2 ([7], Theorem 3.2) Let a = (a1, . . . , am) and b be ideals in a
commutative ring Q, and x = x1, . . . , xc a Q-regular sequence contained in ab.
Let R = Q/(x).

There exists an exact complex of free R-modules (T, δ) such that δ(T) ⊆ (a +
b)T, there is a chain isomorphism HomR(T, R) ∼= �T, and

rankR(Tn) =

⎧
⎪⎪⎨

⎪⎪⎩

2cm
(
n+ c − 1
c − 1

)
for n ≥ 0

2cm
(−n+ c − 2

c − 1

)
for n < 0

In the statement above, �T stands for the shifted complex, (�T)n = Tn−1.
Applying the statement to the case when (Q, n) is a local ring, and a = b = n,
the resulting complex T has δ(T) ⊂ nT , hence it is a minimal complex and its
syzygy modules are not free. Note that HomR(T, R) ∼= �T implies that the dual
complex T∗ is also exact, and therefore T is totally reflexive.

The syzygies of the complex T above are in fact shown to have finite CI-
dimension in [7], which is a stronger property than total reflexivity.

3 Yoshino’s Conditions for Rings with m3 = 0

The simplest Artinian local rings (R,m) are the ones that satisfy m2 = 0. Every
syzygy in a minimal complex over these rings is a vector space. Therefore, if R
has non-free totally reflexive modules, then the residue class field k = R/m must
be totally reflexive, which means that R is Gorenstein (from Theorem 1.6). We
conclude that all local rings with m2 = 0 are either Gorenstein or G-regular.

The next simplest case is local rings with m3 = 0, which has been extensively
studied by numerous authors. Theorem 3.1 in [36] gives necessary conditions for the
existence of non-free totally reflexive modules for this case. It also gives information
about the totally reflexive R-modules, in case they exist.

Theorem 3.1 Let (R,m) be a non-Gorenstein local ring with m3 = 0. Assume that
R contains a field k isomorphic to R/m, and assume that there is a non-free totally
reflexive R-moduleM . Then:
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(1) R has a natural structure of homogeneous graded ring R = R0⊕R1⊕R2 with
R0 = k, dimk(R1) = r + 1, and dimk(R2) = r , where r is the type of R. In
other words, R has Hilbert function (1, r + 1, r).

(2) (0 :R m) = m2. In other words, there is no linear element in the socle of R.
(3) R is a Koszul algebra.
(4) M has a natural structure of graded R-module, and, if M is indecomposable,

then the minimal free resolution ofM has the form

· · · → R(−n− 1)b → R(−n)b → · · · → R(−1)b → Rb → M → 0

In other words, the resolution ofM is linear with constant Betti numbers.

The requirement that R is a Koszul algebra means that the minimal free R-
resolution of k = R/m is linear (every map is represented by a matrix with linear
entries). If R is represented as a quotient P/I of a polynomial ring P , the fact
that R is Koszul implies that I must be homogeneous generated by quadratics.
The converse is not true in general; however, if I has a Gröbner basis consisting
of quadratics (in particular if I is generated by quadratic monomials), then R is
Koszul. More information on the subject of Koszul algebras can be found in [20].

We emphasize the fact that the conditions in Theorem 3.1 are necessary for the
existence of non-free totally reflexive module, but they are far from sufficient.

The fiber product construction provides examples of rings that satisfy Yoshino’s
conditions from Theorem 3.1, but do not have non-free totally reflexive modules.
We describe this construction below.

Definition 3.2 Let (S,mS, k) and (T ,mT , k) be local Noetherian rings with the

same residue field k. Let S
πS−→ k

πT←− T denote the canonical projections of S and
T onto the residue field.

The fiber product of S and T over k is the ring

R := S ×k T = {(s, t) ∈ S × T |πS(s) = πT (t)}

More explicitly, if S = k[x1, . . . , xn]/I and T = k[y1, . . . , ym]/J , then

S ×k T ∼= P

IP + JP + (x1, . . . , xn)(y1, . . . , ym)

where P = k[x1, . . . , xn, y1, . . . , ym].
It is shown in [31] that fiber product rings are always G-regular, unless they are

Gorenstein. However, we can construct fiber product rings with m3 = 0 that satisfy
the conditions in Theorem 3.1, and are not Gorenstein.

It is shown in [29], Fact 2.9 that if S and T are Artinian rings and R = S ×k T ,
then λ(R) = λ(S) + λ(T ) − 1. It is clear that if m3

S = m3
T = 0, then m3

R = 0. If S
has Hilbert function (1, n, k) and T has Hilbert function (1,m, l), then R = S×k T
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will have Hilbert function (1, n + m, k + l − 1). Condition (1) in Theorem 3.1 is
satisfied provided that n+m = k + l.

For a concrete example, consider R = S ×k T , with

S = k[x1, x2, y1, y2]
(x1, x2)2 + (y1, y2)2

, T = k[z1, z2, w1, w2]
(z1, z2)2 + (w1, w2)2 + (z1w1)

The Hilbert function of S is (1, 4, 4), and the Hilbert function of T is (1, 4, 3), which
implies that the Hilbert function of R is (1, 8, 7). Moreover, R is a Koszul algebra
because its defining ideal is generated by quadratic monomials. In order to verify
condition (2) in (3.1), note that every linear element in R can be written as the image
of f + g with f ∈ k[x1, x2, y1, y2], g ∈ k[z1, z2, w1, w2], and it is a socle element
in R if and only if the images of f in S and g in T are socle elements. It can be
easily checked that S and T do not have linear elements in their socles. Therefore,
all the conditions (1)–(3) from Theorem 3.1 hold.

4 Exact Zero Divisors

The easiest examples of non-free totally reflexive modules are obtained when the
ring has exact zero divisors, which were introduced in [21]:

Definition 4.1 A pair (x, y) of elements of R is called a pair of exact zero divisors
if AnnR(x) = (y) and AnnR(y) = (x).
Example 4.2

1. (x, y) is a pair of exact zero divisors in R = k[x, y]/(xy)
2. (xn−1, x) is a pair of exact zero divisors in R = k[x]/(xn).
Observation 4.3 If (x, y) is a pair of exact zero divisors, then the complex

· · · ·x−→ R
·y−→ R

·x−→ · · ·

is totally acyclic.
Since R/(x) and R/(y) are syzygies in this complex, it follows that they are

totally reflexive modules.

Observation 4.4 If R is an Artinian local ring and x, y ∈ R are such that
AnnR(x) = (y), then (x, y) are a pair of exact zero divisors.

Proof The assumption that AnnR(x) = (y) implies that (x) is isomorphic to R/(y)
as an R-module. Therefore

λ((x))+ λ((y)) = λ(R).
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We can re-write this as

λ((y)) = λ(R/(x)).

Since xy = 0, we have an inclusion (y) ⊆ AnnR(x), and the equality follows by
noting that the two modules have the same length. ��

Therefore, an element x in an Artinian ring is an exact zero divisor provided
that AnnR(x) is a principal ideal. The exact zero divisor property is easy to verify in
practice for a given x ∈ R, whereas the total reflexivity of a given module in general
requires infinitely many verifications.

There are many interesting properties of exact zero divisors in the case of
Artinian rings with m3 = 0. Recalling Theorem 3.1, a ring with m3 = 0 that
has exact zero divisors must be a Koszul algebra. Therefore we can write R =
k[x1, . . . , xe]/q, where q is an ideal generated by quadratic forms. Moreover, R
must have Hilbert function (1, e, e − 1). For a fixed value of e, the algebras defined
by quadratic equations that have Hilbert function (1, e, e − 1) can be parametrized
by points in a Grassmanian variety. Let W denote the e(e + 1)/2-dimensional
vector space spanned by all quadratic monomials xixj with 1 ≤ i ≤ j ≤ e,
and let V denote the subspace of W spanned by the generators of q. Condition
(1) in Theorem 3.1 implies dimk(W/V ) = dimk(R2) = e − 1, and therefore
dimk(V ) = (e2 − e + 2)/2. Letting n = e(e + 1)/2,m = (e2 − e + 2)/2, the
ring R corresponds to the point in the Grassmaninan variety Grassk(n,m) given by
the subspace V ofW .

Theorem 8.4 and Remark 8.8 in [16] show that exact zero divisors are ubiquitous
in such rings:

Theorem 4.5 Let k be an infinite field, and e ≥ 2. Let n = e(e + 1)/2,m =
(e2 − e + 2)/2.

(a) There is a non-empty open set of Grassk(n,m) such that for every point in that
set corresponding to an m-dimensional subspace V of W , the algebra R =
k[x1, . . . , xe]/q, where q is the ideal generated by V , has exact zero divisors.

(b) Let R = k[x1, . . . , xe]/q satisfy the conditions in Theorem 3.1. If R has a pair
of exact zero divisors, then a generic linear form in R is an exact zero divisor.

In part (b) of the statement above, we are thinking of linear forms as parameter-
ized by points in kn corresponding to the coefficients of the linear form.

A related property was studied in [17]. The terminology Conca generator for this
property was introduced in [8].

Definition 4.6 Assume R = k ⊕ R1 ⊕ R2 is graded ring. An element x ∈ R1 is
called a Conca generator if x2 = 0 and R2 = xR1.

Conca showed that if R has a Conca generator, then it is G-quadratic, i.e. its
defining ideal has a Gröbner basis of quadratics (recall that this implies Koszul). He
also showed that a generic quadratic algebra R with dimk(R2) < dimk(R1) has a
Conca generator.
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Note that in the case dimk(R2) = dimk(R1) − 1, if x is a Conca generator, then
(x, x) is a pair of exact zero divisors. This is because the kernel of the linear map
R1 → R2 given by multiplication by x has dimension 1, and therefore AnnR(x) =
(x).

We also note that the existence of exact zero divisors in rings with m3 = 0 is
related to the weak Lefshetz property.

Definition 4.7 For R = ⊕n∈NRn a graded k-algebra, we say that R has the weak
Lefshetz property if there is a linear form l ∈ R1 (equivalently, for every generic
linear form l ∈ R1) such that the multiplication by l viewed as a linear map Rn →
Rn+1 has maximal rank (i.e. it is either injective or surjective) for all n.

In the case of graded rings R = k ⊕ R1 ⊕ R2, the Weak Lefschetz property
simply means that there exists l ∈ R1 such that R2 = lR1. If we have dimk(R2) =
dimk(R1) − 1, this is equivalent to AnnR(l) being a principal ideal, i.e. l is an
exact zero divisor. We refer the reader to [28] for a survey on the topic of the weak
Lefschetz property.

The following result extends Condition (1) from Theorem 3.1 to graded rings
that do not have m3 = 0.

Theorem 4.8 ([26], Theorem 2.9) Let S be a standard graded Artinian algebra.
Suppose that (x, y) is a pair of homogeneous exact zero divisors, and let D =
deg(x)+ deg(y).

Then the Hilbert series of S,HS(t) = ∑∞
i=0 dimk(Si)t

i ∈ Z[t] is divisible by
(tD − 1)/t − 1.

Equivalently, for each 0 ≤ a < b ≤ d − 1, we have

∑

i≡a (modD)

dimk(Si) =
∑

i≡b (modD)

dimk(Si)

The following Corollary of Theorem 4.8 gives a counterpart to Theorem 4.5,
showing that ubiquity of exact zero divisors no longer holds when the assumption
m3 = 0 is removed. In fact, generic algebras with m3 �= 0 do not have homogeneous
exact zero divisors. Before giving the statement, we recall the relevant definitions:

Definition 4.9 A standard graded Artinian algebra

R = k⊕ R1 ⊕ · · · ⊕ Rd
is called level if Soc(R) = Rd .

For R as above, d is called the socle degree, and r := dimk(Rd) is called the
socle dimension.

Definition 4.10 A standard graded level Artinian algebra with given codimension
e, socle degree d and socle dimension r is called compressed if it has maximal
Hilbert function among all standard graded level Artinian algebras with given
codimension, socle degree and socle dimension.
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The level algebras with given values of e, r, d can be parametrized using
Macaulay inverse systems. A generic level algebra with fixed e, r, d is compressed.
We refer the reader to [23] for details about compressed algebras.

Theorem 4.11 Let R be a compressed level algebra with codimnesion e, socle
dimension r and socle degree d. Then R does not have homogeneous exact zero
divisors unless R is Gorenstein (i.e. r = 1) with e ≤ 2 or d = 3, or R has Hilbert
function (1, e, e − 1).

5 Constructing Totally Reflexive Modules from Exact Zero
Divisors

Exact zero divisors have been used to construct more complicated totally reflexive
modules in [16].

For w, x, y, z ∈ R, and for all n ≥ 1, consider the n× n matrix

�n(w, x, y, z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

w y 0 0 0 · · ·
0 x z 0 0 · · ·
0 0 w y 0 · · ·
0 0 0 x z · · ·
0 0 0 0 w · · ·
...
...
...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem 5.1 ([16], Theorem 3.1) Let (R,m) be a local ring and assume thatw, x
are elements in m \m2, that form an exact pair of zero divisors. Assume further that
y and z are elements in m \m2 with yz = 0 and that one of the following conditions
holds:

(a) The elements w, x, and y are linearly independent modulo m2.
(b) One has w ∈ (x)+m2 and y, z ∈ (x)+m2.

For every n ≥ 1, the R-module Mn(w, x, y, z) is indecomposable, totally
reflexive, and non-free. Moreover,Mn(w, x, y, z) has constant Betti numbers equal
to n, and its minimal free resolution is periodic of period at most 2.

This result is usually applied in the case when m3 = 0 (if m3 �= 0, one of the
two elements x,w in a pair of exact zero divisors will typically be in m2, causing
condition (a) above to fail).

The theoretical importance of the construction given in Theorem 5.1 lies in the
fact that it reveales the structure of the category of totally reflexive modules to be
quite complex for rings with m3 = 0 that have exact zero divisors. The following
results, modeled on the Brauer-Thrall conjectures for modules of finite length over
a finitely dimensional algebra, are proved in [16] using the construction described
above.
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Theorem 5.2 Assume (R,m) is a local ring with m3 = 0. If there exist an exact
zero divisor in R, then there exists a family {Mn}n of indecomposable totally
reflexive modules such that λ(Mn) = nλ(R).

Moreover, if the residue field k = R/m is algebraically closed, then for each
n ≥ 1 there exists a family {Mn,a}a∈k of indecomposable totally reflexive modules
such that λ(Mn,a) = nλ(R) for each a ∈ k.

6 Lifting Totally Reflexive Modules

A common theme in commutative algebra is the transfer of properties between a
ring R and a quotient R/(x), when x ∈ R is a regular element.

The following is an easy consequence of the definition of totally reflexive
modules:

Observation 6.1 Let (R,m) be a local ring, and x ∈ m a regular element.

(a) IfM is a totally reflexive R-module, thenM/(x)M is a totally reflexive R/(x)-
module.

(b) If R has non-free totally reflexive modules, then so does R/(x).

It is natural to ask whether the converse of part (b) above holds. If x ∈ m2, then
Theorem 1.4 in [7] provides a construction of non-free totally reflexive modules
over R/(x), regardless of whether the original ring R has non-free totally reflexive
modules or not. This shows that the converse of Observation 6.1(b) does not hold in
general.

It turns out that the converse holds under the additional assumption x /∈ m2.
More precisely, we have:

Theorem 6.2 Let (R,m) be a local ring, and x ∈ m\m2 a regular element. Then
R has non-free totally reflexive modules if and only if R/(x) does.

This was proved in [34] using non-constructive methods. In [10], an explicit
construction is given for lifting a totally reflexiveR/(x)-module to a totally reflexive
R-module in the case when R is a standard graded algebra over a field.

Construction 6.3 Let S = k ⊕ S1 ⊕ S2 ⊕ · · · be a standard graded algebra, and
x ∈ S1 an S-regular element. Let R = S/(x).

Given a complex

· · · −→ Rbi+1
δi+1−→ Rbi

δi−→ Rbi−1
δi−1−→ · · · (1)

of free R-modules, we construct a complex

· · · −→ S2bi+1
εi+1−→ S2bi εi−→ S2bi−1

εi−1−→ · · · (2)
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as follows:
For each i, let δ̃i : Sbi → Sbi−1 be any lifting of δi to S. We think of maps between

free modules as matrices. Since δiδi+1 = 0, all the entries of δ̃i δ̃i+1 are mutliples of
x. For each i, there exists a matrixMi+1 with entries in S such that

δ̃i δ̃i+1 = xMi+1

We define

εi :=
[
δ̃i xIbi−1

Mi δ̃i−1

]
, if i is even

and

εi :=
[
δ̃i −xIbi−1

−Mi δ̃i−1

]
, if i is odd,

where each entry above represents a block, and Ibi−1 is the identity matrix.

It is shown in [10] that if (1) is totally acyclic, then so is (2).
Since the existence of totally reflexive R-modules can be established by looking

at the analogous problem for the ring R/(x), the rest of this survey will focus on the
case on Artinian local rings.

7 When Does a Generic Matrix Give Rise to a Totally
Reflexive Module?

We have seen in Theorem 4.5 that for graded algebra (R,m) with m3 = 0 that has
exact zero divisors, a generic choice of an x ∈ R1 is an exact zero divisor. One can
ask whether a similar phenomenon continues to hold for totally reflexive modules
which are not cyclic.

Under the assumption that m3 = 0, Yoshino’s result guarantees that every totally
reflexive module has a linear resolution with constant Betti numbers. Such a module
can be described as the cokernel of a square matrix A with entries in R1. For a fixed
b ≥ 1, the b × b matrices with entries in R1 can be parametrized by points in the
affine space kb

2n, where n is the embedding dimension of R, by associating a vector
of coefficients in kn to each linear form inR1, and then arranging the vectors coming
from the b2 entries of the matrix into a vector in kb

2n. The following was proved in
[10]:

Theorem 7.1 Let (R,m) be a standard graded non-Gorenstein algebra with m3 =
0 of embedding dimension n. Assume that there exists a non-free totally reflexive R-
module, which can be described as the cokernel of a b×b matrix of linear forms for
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some b ≥ 1. Then there is a countable intersection of Zariski open sets in kb
2n such

that for every matrix A corresponding to a vector in this intersection, the module
coker(A) is totally reflexive.

This phenomenom is specific to rings that have m3 = 0. Example 3.3 in [11]
shows that for a fixed b ≥ 1, the cokernel of a generic matrix with linear entries
in the ring R = k[x, y, z1, . . . , zn]/(x2, y2, (z1, . . . , zn)

2) is not a totally reflexive
R-module.

8 Other Constructions of Totally Reflexive Modules

We saw in Sect. 5 that exact zero divisors are used as building blocks for construct-
ing totally reflexive modules. However, there are rings that have do not have exact
zero divisors, but still have totally reflexive modules.

While there is no systematic way to construct totally reflexive modules over an
arbitrary ring in the absence of zero divisors, we present a construction that allows us
to put together totally reflexive modules over two rings, and obtain a totally reflexive
module over the new ring, which is a connected sum of the two original rings. This
construction is studied in [35] for rings with m3 = 0 that satisfy the conditions
in (3.1).

Construction 8.1 Let P1 = k[x1, . . . , xm], P2 = k[y1, . . . , yn] be two polynomial
rings over a field k, I1 ⊆ P1 and I2 ⊆ P2 be homogeneous ideas generated by
quadratics.

Let f ∈ P1 be a quadratic such that the image of f in R0 = P1/I1 is in the socle
of R0, and let g ∈ P2 be quadratic such that the image of g in S0 = P2/I2 is in the
socle of S0.

Let

R = P

I1P + I2P + (xiyj | 1 ≤ i ≤ m, 1 ≤ j ≤ n)+ (f − g)
Note that R is a connected sum of R0 and S0 in the sense of [1]. Although

connected sums have been primarily studied in the case of Gorenstein rings, our
interest here is in the non-Gorenstein case. The ring R can also be described as a
quotient of the fiber product:

R = R0 ×k S0

(f − g) ,

where the fiber product is the ring

R0 ×k S0 = P

I1P + I2P + (xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m)
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Although the construction above describes R as a connected sum of R0 and S0,
the totally reflexive modules over R are actually obtained from totally reflexive
modules over the rings R1 := P1/I1 + (f ) and S1 := P2/I2 + (g) rather than
R0 and S0.

Adopt the notation from (8.1). Let m0 denote the ideal generated by the images
of x1, . . . , xm in R0, and n0 denote the ideal generated by the images of y1, . . . , yn
in S0.

Assume m3
0 = n3

0 = 0. Recall that a totally reflexive module is a syzygy in
a totally acyclic complex. Under the assumption m3 = 0, all maps in a totally
acyclic complex can be represented by square matrices with linear entries (from
Theorem 3.1).

A map d : Rb → Rc with linear entries induces maps A : Rb1 → Rc2 and
B : Sb1 → Sb2 as follows. Thinking of maps as matrices, each entry in dij in the
matrix corresponding to d can be written as aij + bij , where aij is the image of a
linear form in k[x1, . . . , xm], and bij is the image of a linear form in k[y1, . . . , yn].
We take the matrix A that has the images of the corresponding aij ’s in R1 as entries,
and B the matrix that has the images of the corresponding bij ’s in S1 as entries.
Abusing notation, we will write d = A + B, where A,B are the maps described
above.

The following result from [35] gives the relationship between totally acyclic
complexes over R and totally acyclic complexes over the rings R1 and S1:

Theorem 8.2 ([35], Theorem 5.3) Let

· · · di+1−→ Rb
di−→ Rb

di−1−→ · · · (1)

be a complex of R-modules.
Write di = Ai +Bi where Ai : Rb1 −→ Rb1 and Bi : Sb1 −→ Sb1 are as explained

above.
Then

· · · Ai+1−→ Rb1
Ai−→ Rb1

Ai−1−→ · · · (2)

· · · Bi+1−→ Sb1
Bi−→ Sb1

Bi−1−→ · · · (3)

are also complexes.
Assume moreover that

(f )Rb0 ⊆ im(Ãi) and (g)Sb0 ⊆ im(B̃i) for all i (4)

where Ãi is a lifting of Ai to R0 and B̃i is a lifting of Bi to S0.
Then:

(a) The complex (1) is acyclic if and only if both complexes (2) and (3) are acyclic.
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(b) The complex (1) is totally acyclic if and only if both complexes (2) and (3) are
totally acyclic.

We think of this result as saying that R has totally reflexive modules if and only if
R1 and S1 have totally reflexive modules that can be “glued” together, in the sense
that (4) holds for the maps in their resolutions. Condition (4) is implied whenever (1)
is totally acyclic, provided thatR is not Gorenstein, so it is a necessary and sufficient
condition for two totally acyclic complexes (2) and (3) to give rise to a totally acyclic
complex (1).

For a fixed b ≥ 1, it is possible for R1 and S1 to have totally reflexive modules
with Betti numbers equal to b, but not satisfy (4) for any totally acyclic complexes
consisting of free modules of rank b. If this is the case, then R will not have totally
reflexive modules with Betti numbers equal to b.

However, under some additional assumptions, we one can use a totally acyclic
complex that does not satisfy (4) as a building block to construct totally acyclic
complexes consisting of free modules of larger rank that do satisfy (4). In particular,
we can exhibit examples of rings that do not have exact zero divisors, but have
non-free totally reflexive modules using this construction.

Example 8.3 Let

R0 = k[x1, x2, y1, y2, y3]
(x1, x2)2 + (y1, y2, y3)2 + (x1y2)

, S0 = k[x3, x4, x5, y4, y5]
(x3, x4, x5)2 + (y4, y5)2 + (x3y4)

Let f = x1y1 ∈ R0, g = x4y4 ∈ S0, and

R = k[x1, . . . , x5, y1, . . . , y5]
J

,

where

J = (x1, . . . , x5)
2 + (y1, . . . , y5)

2 + (x1, x2, y1, y2, y3) · (x3, x4, x5, y4, y5)

+(x1y2, x3y4, x1y1 − x4y4)

The rings R1, S1 have exact zero divisors, but condition (4) fails for every pair
of exact zero divisors in R1 and in S1. Indeed, a pair of exact zero divisors in R1
consists of elements of the form lx + ly, lx − ly where lx is a linear combination
of x1, x2 and ly is a linear combination of y1, y2, y3. When lifted to R0, we have
(l̃x + l̃y )(l̃x − l̃y ) = l̃2x − l̃2y=0. Therefore, the ring R does not have exact zero
divisors.

However, Example 4.5 in [35] shows that there are totally acyclic complexes
consisting of free modules of rank 2 over R1 and S1 that do satisfy (4), and therefore
the ring R has totally reflexive modules with Betti numbers equal to two.
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9 G-Regular Rings

Recall that a ring R is called G-regular if every totally reflexive R-module is free.
As explained in Sect. 6, we focus our attention on the case of Artinian rings.

The goal of this section is to describe classes of Artinian rings that are G-regular.
Gorenstein rings are never G-regular, because every maximal Cohen–Macaulay
module over a Gorenstein ring is totally reflexive. For this reason, all the results
in this section will assume that R is non-Gorenstein.

Numerous classes of G-regular rings have been established by various authors. A
stronger property called strong G-regularity was identified in [11]. It turns out that
this property is present in all the classes of G-regular rings that have been established
in literature. We do not know an example of a G-regular ring that is not strongly G-
regular.

Definition 9.1 Let (R,m) be a local ring and T be a finitely generatedR-module.

(a) T is called a test module for R if the only finitely generated R-modules N with
Tori (T ,N) = 0 for all i ≥ 1 are the free R-modules.

(b) R is called a strongly G-regular ring if it is Artinian and the canonical module
ωR is a test module.

Observation 9.2 If R is strongly G-regular, then it is G-regular.

Proof Let M be a totally reflexive R-module. Then ExtiR(M,R) = 0 for all i > 0.
By Matlis duality, it follows that TorRi (M,ωR) = 0 for all i > 0, and therefore M
is a free module. ��
The prototypical test module is the reside class field R/m. Some properties of test
modules have been studied in [12]. The following examples of test modules have
been established and used to prove strong G-regularity in [25]:

Proposition 9.3

(a) If (R,m) is a local ring with ν(R) ≥ 3, then any finitely generated module T
with m2 = 0 is a test module.

(b) If R = P/J is an Artinian ring, where P = k[x1, . . . , xn] and ν(R) � 0,
then T = R/aR is a test module for any ideal a ⊂ P generated by a maximal
regular sequence in P (recall that the parameter ν(R) has been defined in (1.1).

Most of the results that establish strong G-regularity rely on finding a direct
summand of a syzygy of the canonical module, and using the following easy
observation:

Observation 9.4

(a) IfM has a syzygy which is a test module, thenM is a test module.
(b) IfM has a direct summand which is a test module, thenM is a test module.



768 A. Vraciu

Theorem 9.6 below collects results from literature about various classes of rings
that are strongly G-regular. Although the strongly G-regular terminology has not
been used in the original statements, an examination of the proofs allows us to
conclude that it is present in all the classes of rings listed below. For each statement,
we give a reference to the original statement about G-regularity, and indicate the
reason why strong G-regularity also holds. Before stating the Theorem, we need the
following:

Definition 9.5 If R = S/J is a quotient of an Artinian Gorenstein ring S, then
cS(R) := λ(S) − λ(R). The Gorenstein colength of R is the minimum of cS(R)
when S is a Gorenstein Artinian ring mapping onto R.

Theorem 9.6 Let (R,m, k) be an Artinian non-Gorenstein local ring. Assume one
of the following:

(a) m2 = 0
(b) m3 = 0 and dimk(m/m

2) �= dimk(m
2)+ 1

(c) R is a fiber product S ×k T where S and T are Artinian k-algebras.
(d) R is a Golod ring.
(e) R = S/J where (S, n) is Gorenstein local ring (S, n) with embedding

dimension at least two, J is a proper ideal of S, cS(R) ≤ 4 and ν(S)� 0
(f) R = S/J where (S, n) is a standard graded Artinian Gorenstein algebra over

a field, J is a proper ideal of S, cS(R) = 5 and ν(S)� 0
(g) R = P/I where (P,m) is a regular local ring and I ⊆ P is a proper ideal

such that mI �= m(I :P m).

Then R is strongly G-regular.

Proof

(a) The statement that R is G-regular is Corollary 2.5 in [36]. Let S be the first
syzygy of ωR . We have S ⊆ mF for some free R-module F , which implies
mS = 0. Therefore S is a vector space, and R/m is a direct summand of S.
Strong G-regularity follows from Observation (9.4).

(b) The statement that R is G-regular is part of Theorem 3.1 in (3.1). Strong G-
regularity follows from Proposition 2.8 in [22].

(c) Strong G-regularity follows from Theorem 1.1 in [30]. Additionally, it follows
from Theorem 3.6 in [31] that m is a direct summand of a syzygy of ωR .

(d) G-regularity is proved in Example 3.5.2 in [9]. The argument in [9] actually
shows strong G-regularity. Assume that M is a finitely generated non-free R-
module such that TorRi (M,ωR) = 0 for all i ≥ 1. By Matlis duality, this is
equivalent to ExtiR(M,R) = 0 for all i ≥ 1. Let

P : · · · → Pn→ Pn−1 → · · · → P1 → P0 → M → 0

be the minimal free resolution of M . Lescot proved in [27] Theorem 6.5 that
rankR(Pn+1) > rankR(Pn) for all n > 0. In particular, rankR(P2) > rankR(P1).
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The dual complex

P∗ : 0→ M∗ → P ∗0 → P ∗1 → · · · → P ∗n → P ∗n+1 · · ·

is also exact.
Let n � 0, and choose N to be the cokernel of the map P ∗n → P ∗n+1. The

beginning of the minimal free resolution of N over R is given by

· · ·P ∗0 → P ∗1 → P ∗2 → · · · → P ∗n → P ∗n+1 → N → 0

and Lescot’s theorem implies that rankR(P ∗1 ) > rankR(P ∗2 ). This is a contra-
diction.

(e) and (f) are proved in [25], Theorem 7.5.
(g) G-regularity is proved in [18], Theorem 7.7. A brief analysis of the proof

convinces us that strong G-regularity also hold. Indeed, the assumption that R
is not Gorenstein implies that ωR is not free. Lemma 7.4 and Proposition 4.2 in
[18] show that there is a short exact sequence

0→ Syz1(ωR)→ K → ωnR → 0

for some n ≥ 1, where Syz1(ωR) denotes the first syzygy of ωR and K is a
module with the property that the second syzygy of K has a direct summand
isomorphic to R/m, and thereforeK is a test module. If N is an R-module with
TorRi (N, ωR) = 0, the short exact sequence above implies that TorRi (N,K) = 0
for all i ≥ 1, and therefore N is free. ��

Note 9.7 The condition ν(S) � 0 in parts (e) and (f) of Theorem 9.6 amounts to
saying that J is contained in a large enough power of the ideal generated by the
variables.

This requirement ν(S) � 0 can be made more explicit for certain values cS(R).
For example, if cS(R) = 1, it is shown in [33] that there is a direct summand
of a syzygy of ωR which is isomorphic to the residue class field R/m. Thus, the
requirement ν(S)� 0 is not needed in this case.

A further motivation for studying the strong G-regular property is given in
Theorem 2.9 in [11]:

Theorem 9.8 Let (R,mR), (S,mS) be local Artinian algebras over a field k, and
let T = R ⊗k S.

Assume that R is Gorenstein and S is strongly G-regular.
If F is a totally acyclic complex over T , then

FR := F ⊗T (R ⊗k S/mS)

is a totally acyclic complex over R.
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In other words, under the assumptions in Theorem 9.8, every totally acyclic complex
over T must specialize to a totally acyclic complex over R.
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David Eisenbud
has had a transformative impact on the interface of
commutative algebra with homological algebra and algebraic
geometry. With admiration and gratitude for his research
accomplishments, his prodigious mentoring activities, and his
outstanding service as emissary of mathematics to the world at
large, at MSRI and elsewhere, we dedicate this article to him on
occasion of his 75th birthday.

This article is a mixture of an introduction to local cohomology, and a survey
of the recent advances in the area, with a view towards1 relations to other parts
of mathematics. It thus proceeds at times rather carefully, with definitions and
examples, and sometimes is more cursory, aiming to give the reader an impression
about certain parts of the mathematical landscape. As such, it is more than a
reference list but less than a monograph. One possible use we envision is as a guide
for a novice, such as a beginning graduate student, to get an idea what the general
thrust of local cohomology is, and where one can read more about certain topics.
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the reader to [95, 247, 248] for connections with dualizing complexes which are
not discussed in this article. What we have put into the article is driven by personal
preferences and lack of expertise; we apologize to those offended by our choices.

Over time, several excellent survey articles on local cohomology and related
themes have been written, and we strongly recommend the reader study the
following ones. One should name [181] on the state of the art 20 years since, the
article [211] specifically geared at Lyubeznik numbers, and the survey [120].

In the more expository direction, we and many others have been fortunate to be
able to study Hochster’s unpublished notes (available on his website) and Huneke’s
point of view in [136]. These notes come with our highest recommendations
and have strongly influenced us and this article. For a treatment de-emphasizing
Noetherianness we point at [270].

We close this thread of thoughts with mentioning the books concerned with local
cohomology as main subject: the original account of Grothendieck as recorded by
Hartshorne [95], the classic [50] by Brodmann and Sharp, and the outgrowth [139]
of a summer school on local cohomology.

Some words on the prerequisites for reading this article are in order. Inasmuch
as pure commutative algebra is concerned, we imagine the reader be familiar with
the contents of the book by Atiyah and Macdonald [4] or an appropriate subset
of the book by Eisenbud [69]. For homological algebra one should know about
injective and projective resolutions, Ext and Tor and the principles of derived
functors, and perhaps a bit about spectral sequences at the level of Rotman [230].
Hartshorne’s opus [99] covers all that is needed on varieties, schemes and sheaves in
chapters 1–3.

1 Introduction

Notation 1.1 Throughout, A will denote a commutative Noetherian ring. On
occasion, A will be assumed to be local; then its maximal ideal is denoted by m
and the residue field by k.

We reserve the symbol R for the case that A is regular, while M will generally
denote a module over A. 9
Definition 1.2 For an ideal I ⊆ A the (left-exact) section functor with support in I
(also called the I-torsion functor) �I (−) and the local cohomology functors H •I (−)
with support in I are

�I : M � {m ∈ M|∃� ∈ N, I �m = 0}

and its right derived functors H •I (−). Since �I (−) is left exact, �I (−) agrees with
H 0
I (−). 9
Local cohomology was invented by Grothendieck, at least in part, for the purpose

of proving Lefschetz and Barth type theorems (comparisons between a smooth
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ambient variety and a possibly singular subvariety). The idea rests on the fact,
already exploited by Serre in [256], that the geometry of projective varieties is
encoded in the algebra of its coordinate ring. Grothendieck makes it clear in his
Harvard seminar that, for this purpose, studying general properties of the concept of
local cohomological dimension is of great importance [95, p. 79].

Definition 1.3 The local cohomological dimension lcdA(I) of the A-ideal I is

lcdA(I) = max{k ∈ N | HkI (A) �= 0}.

One can show, using long exact sequences and direct limits, that H>lcdA(I)
I (M)

vanishes for every A-moduleM . 9
It is an essential feature of the theory of local cohomology and its applications

that there are several different ways of calculating HkI (M) for any A-moduleM , all
compatible with natural functors. We review briefly three other approaches; for a
more complete account we refer to [139].

1.1 Koszul Cohomology

Let x ∈ A be a single element and consider the multiplication map A
x−→ A by

x, also referred to as the cohomological Koszul complex K•(A; x), so the displayed
map is a morphism from position 0 to position 1 in the complex. We writeHi(A; x)
for the cohomology modules of this complex.

Replacing x with its own powers, one arrives at a tower of commutative diagrams

A A

A A

A A

...
...

x

1 x

x2

1 x

x3

1 x

(1.1.0.1)

which induces maps on the cohomology level, x : Hi(A; x�) −→ Hi(A; x�+1)

and hence a direct system of cohomology modules over the index set N. It is an
instructive exercise (using the fact that N is an index set that satisfies: for all n, n′ ∈
N there is N ∈ N exceeding both n, n′) to check that the direct limit lim−→�

Hk(A; x�)
agrees with the local cohomology module Hk(x)(A).
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IfM is an A-module and the ideal I is generated by x1, . . . , xm then to each such
generating set there is a cohomological Koszul complex

K•(M; x1, . . . , xm) := M ⊗A
m⊗

i=i
K•(A; xi)

whose cohomology modules are denotedH •(M; x1, . . . , xm). Again, one can verify
that replacing each xi by powers of themselves leads to a tower of complexes whose
direct limit has a cohomology that functorially equals the local cohomologyH •I (M).
In particular, it is independent of the chosen generating set for I .

1.2 The Čech Complex

Inspection shows that the direct limit of the towerA
x−→ A

x−→ A
x−→ · · · is func-

torially equal to the localization A[x−1] which we also write as Ax . Thus, the limit
complex to the tower (1.1.0.1) is the localization complex A −→ Ax . In greater
generality, the module that appears in the limit complex Č•(M; x1, . . . , xm) of the
tower K•(M; x1, . . . , xm) −→ K•(M; x2

1 , . . . , x
2
m) −→ K•(M; x3

1 , . . . , x
3
m) −→

· · · in cohomological degree k is the direct sum of all localizations ofM at k of the
m elements x1, . . . , xm. Hence,

Č•(M; x1, . . . , xm) = lim−→�
K•(M; x�1, . . . , x�m)

and a corresponding statement links the cohomology modules on both sides.
The point of view of the Čech complex provides a useful link to projective

geometry. Indeed, suppose I ⊆ R = K[x1, . . . , xn] is the homogeneous ideal
defining the projective variety X in P

n
K

. Then the cohomological dimension cd(U)
of U = P

n
K
\X, the largest integer k for which Hk(U,−) is not the zero functor on

the category of quasi-coherent sheaves on U , equals lcdR(I)− 1. This follows from
the exact sequence

0 −→ �I (M) −→ M −→
⊕

k∈Z
�(Pn

K
\X, M̃(k)) −→ H 1

I (M) −→ 0

(1.2.0.1)

and the isomorphisms
⊕
k∈ZHi(PnK \X, M̃(k)) = Hi+1

I (M) for any R-moduleM
with associated quasi-coherent sheaf M̃ .
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1.3 Limits of Ext-modules

Again, let I = (x1, . . . , xm) be an ideal of A. The natural projections
A/I�+1 −→ A/I� lead to a natural tower of morphisms ExtkA(A/I,M) −→
ExtkA(A/I

2,M) −→ ExtkA(A/I
3,M) −→ · · · . An exercise involving δ-functors

(also known as connected sequences of functors) shows that the direct limit of this
system functorially agrees with HkI (M).

We have thus the functorial isomorphisms

HkI (M) , lim−→�
Hk(M; x�1, . . . , x�m) , HkČ•(M; x1, . . . , xm)

, lim−→�
ExtkA(A/I

�,M)

for all choices of generating sets x1, . . . , xm for I .

Remark 1.4

(1) The derived functor version of local cohomology shows thatH •I (−) andH •J (−)
are the same functor whenever I and J have the same radical.

(2) It follows easily from the Čech complex interpretation that local cohomology
satisfies a local-to-global principle: for any multiplicatively closed subset S of
A one has S−1 · HiI (M) = HiI (S−1A)

(S−1M), and so in particular HiI (M) = 0

if and only if HiIAp
(Mp) = 0 for all p ∈ SpecA.

(3) If I is (up to radical) a complete intersection in the localized ring Ap, then
HkI (A) ⊗A Ap is zero unless k = ht(IAp). If R is a regular local ring and
I reduced then I is a complete intersection in every smooth point. It follows
that for equidimensional I the support of HkI (R) with k > ht(I ) only contains
primes p contained in the singular locus of I .

(4) It is in general a difficult question to predict how the natural maps
ExtkA(A/I

�,M) −→ HkI (M) and Hk(M; x�1, . . . , x�m) −→ HkI (M) behave;
some information can be found in [28, 72, 202, 281].

(5) If φ : A′ −→ A is a ring morphism, and if M is an A-module and I ′ an
ideal of A′, then there is a functorial isomorphism between Hk

I ′(φ∗M) and
φ∗(HkI ′A(M)), where φ∗ denotes restriction of scalars from A to A′. The easiest
way to see this is by comparison of the two Čech complexes involved.

9
Remark 1.5 Let I be an ideal of a Noetherian commutative ring A. A sequence of
ideals {Ik} is called cofinal with the sequence of powers {I k} if, for all k ∈ N, there
are �, �′ ∈ N such that both I� ⊆ I k and I �

′ ⊆ Ik .
Sequences {Ik} cofinal with {I k} are of interest in the study of local cohomology

since

lim−→
k

ExtiR(R/Ik,M) ∼= lim−→
k

ExtiR(R/I
k,M) = HiI (M).
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This provides one with the flexibility of using sequences of ideals other than {In}.
In characteristic p > 0, the sequence of ideals defined next plays an extraordinary
part in the story.

Let A be a Noetherian commutative ring of prime characteristic p and I be
an ideal of A. The e-th Frobenius power of I , denoted by I [pe], is defined to be
the ideal generated by the pe-th powers of all elements of I . Since the Frobenius

endomorphism A
a �→ap−−−→ A is a ring homomorphism, I [pe] = (f pe1 , . . . , f

pe

t ) for
every set of generators {f1, . . . , ft } of I .

It is straightforward to check that {I [pe]} is cofinal with {I k} since A is
Noetherian and thus I is finitely generated. 9

1.4 Local Duality

Matlis duality over a complete local ring (A,m,k) provides a one-to-one correspon-
dence between the Artinian and the Noetherian modules over A; in both directions
it is given by the functor

D(M) := HomA(M,EA(k))

of homomorphisms into the injective hull of the residue field.2 Of course, one can
in principle apply D(−) to any module, but the property D(D(M)) = M is likely
to fail whenM does not enjoy any finiteness condition.

A natural question is what the result of applying D(−) to Him(A) should be or,
more generally, how to describe D(Him(M)) for Noetherian A-modulesM . It turns
out that when A “lends itself to duality”, then this question has a pleasing answer:

Theorem 1.6 Suppose (A,m,k) is a local Gorenstein ring. Then

D(Him(M))
∼= Extdim(A)−i

A (M,A)

for every finitely generated A-moduleM .

The original version is due to Grothendieck [95], and then expanded in
Hartshorne’s opus [94]. As it turns out, there are extensions of local duality to
Cohen–Macaulay rings with a dualizing module, and yet more generally to rings
with a dualizing complex. Duality on formal or non-Noetherian schemes and other
generalizations are discussed in [16].

In particular, Chapter 4 of [94] contains a discussion on Cousin complexes and
their connection to local cohomology, that we do not have the space to give justice
to. Further accounts in this direction can be found in [164, 247, 258, 259].

2 Strictly speaking, one should writeDA(−), but in all cases the underlying ring will be understood
from the context.
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2 Finiteness and Vanishing

2.1 Finiteness Properties

In general, local cohomology modules are not finitely generated. For instance, the
Grothendieck nonvanishing theorem says:

Theorem 2.1 Let (A,m) be a Noetherian local ring andM be a finitely generated
A-module. Then H dim(M)

m (M) �= 0. Moreover, if dim(M) > 0 then H dim(M)
m (M) is

not finitely generated.

Finiteness is more unusual yet than this theorem indicates. For example, over
a ring R of polynomials over C, a local cohomology module HkI (R) is a finite R-
module precisely if I = 0 and k = 0, or ifHkI (R) = 0. This lack of finite generation
prompted people to look at other types of finiteness properties, and in this section
we survey various fruitful avenues of research that pertain to finiteness.

In [91, exposé 13, 1.2] Grothendieck conjectured that, if I is an ideal in a
Noetherian local ring A, then HomA(A/I,H

j
I (A)) is finitely generated. Hartshorne

refined this finiteness of HomA(A/I,H
j
I (A)) and introduced the notion of cofinite

modules in [102].

Definition 2.2 Let A be a Noetherian commutative ring and I ⊆ A an ideal. An
A-moduleM is called I-cofinite if SuppA(M) ⊆ V (I) and ExtiA(A/I,M) is finitely
generated for all i. 9

In [102] Hartshorne constructed the following example which answered
Grothendieck’s conjecture on finiteness of HomA(A/I,H

j
I (M)) in the negative.

Example 2.3 Let k be a field and put A = k[x,y,u,v]
(xu−yv) . Set a = (x, y) and m =

(x, y, u, v). Then HomA(A/m,H 2
a(A)) is not finitely generated and hence neither

is HomA(A/a,H 2
a(A)).

We note in passing, that while the socle dimension of H 2
a(A) is infinite, it

is nonetheless a finitely generated module over the ring of k-linear differential
operators on A, [130]. 9

The ring A in Hartshorne’s example is not regular; one may ask whether local
cohomology modules HiI (R) of a Noetherian regular ring R are I -cofinite. Huneke
and Koh showed in [111] that this is not the case even for a polynomial ring over a
field.

Example 2.4 Let k be a field of characteristic 0 and let R = k[x1,1, . . . , x2,3] be the
polynomial ring over k in 6 variables. Set I to be the ideal generated by the 2 × 2
minors of the matrix (xij ).

The geometric origins and connections of this example, including a discussion of
the interaction of the relevant local cohomology groups with de Rham cohomology
and D-modules, can be found in Examples 2.14, 4.8 and Remark 4.9 below. In
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particular, Example 4.8 discusses that H 3
I (R) is isomorphic to the injective hull of

k over R, which means that HomR(R/I,H 3
I (R)) is the injective hull of k over R/I

and thus surely not finitely generated. 9
Huneke and Koh further proved in [111] that:

Theorem 2.5 Let R be a regular local ring and I be an ideal in R. Set b to
be the biggest height of any minimal prime of I and set c = lcdR(I), compare
Definition 1.3.

(1) If R contains a field of characteristic p > 0 and if j > b is an integer such that
HomR(R/I,H

j
I (R)) is finitely generated, then HjI (R) = 0.

(2) If R contains Q then HomR(R/I,HcI (R)) is not finitely generated.

In Example 2.4, it turns out that the socle HomR(R/m,H 3
I (R)) of H 3

I (R) is
finitely generated. It is natural to ask whether the socle of local cohomology of a
Noetherian regular ring is always finitely generated; as a matter of fact this was
precisely [133, Conjecture 4.3].

In [133], Huneke proposed a number of problems on local cohomology which
guided the study of local cohomology modules for decades.

Problem 2.6 (Huneke’s List)

1. When is HjI (M) = 0?

2. When is HjI (M) finitely generated?

3. When is HjI (M) Artinian?

4. If M is finitely generated, is the number of associated primes of HjI (M) always
finite?

9
Huneke remarked that all of these problems are connected with another question

5. What annihilates the local cohomology module HjI (M)?

More concretely, Huneke conjectured:

Conjecture 2.7 (Conjectures 4.4 and 5.2 in [133]) Let R be a regular local ring and
I be an ideal. Then

(1) the Bass numbers ExtiRp
(κ(p),H

j
I (Rp)) are finite for all i, j , and prime ideals

p, and
(2) the number of associated primes of HjI (R) is finite for all j .

9
Later in [176] Lyubeznik conjectured further that the finiteness of associated

primes holds for local cohomology of all Noetherian regular rings. Substantial
progress has been made on these conjectures. If the regular ring has prime
characteristic p > 0, then these conjectures were completely settled by Huneke and
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Sharp in [125]; in equi-characteristic 0, Lyubeznik proved these conjectures for two
large classes of regular rings in [176]; for complete unramified regular local rings
of mixed characteristic, these conjectures were first settled by Lyubeznik in [179]
(different proofs can also be found in [209] and [27]). The finiteness of associated
primes of local cohomology was also proved in [27] for smooth Z-algebras. We
summarize these results as follows.

Theorem 2.8 Assume that R is

(1) a Noetherian regular ring of characteristic p > 0, or
(2) a complete regular local ring containing a field of characteristic 0, or
(3) regular of finite type over a field of characteristic 0, or
(4) an unramified regular local ring of mixed characteristic, or
(5) a smooth Z-algebra.

Then the Bass numbers and the number of associated primes ofHjI (R) are finite for
every ideal I of R and every integer j .

Remark 2.9 When R is a smooth Z-algebra, then finiteness of Bass numbers was
not addressed in [27]. However, one can conclude readily from the unramified case
in [179] as follows. The Zariski-local structure theorem for smooth morphism says
that Z −→ R factors as a composition of a polynomial extension and a finite etale
morphism, which implies that locally R is an unramified regular local ring of mixed
characteristic. Since the finiteness of Bass numbers is a local problem, the desired
conclusion follows from the results in [179]. 9

Conjecture 2.7 is still open when R is a ramified regular local ring of mixed
characteristic. Theorem 2.8(1) was proved in [125] using properties of the Frobenius
endomorphism; this approach was later conceptualized by Lyubeznik to his theory
of F -modules in [177]. The proof of Theorem 2.8(2)–(5) uses D-modules (i.e.
modules over the ring of differential operators). Both F -modules and D-modules
will be discussed in the sequel.

For a non-regular Noetherian ring A, if dim(A) � 3 ([190]), or if A is a 4-
dimensional excellent normal local domain ([112]), then the number of associated
primes ofHjI (M) is finite for every finitely generatedA-moduleM , for every ideal I
and for all integers j . Once the restriction on dim(A) is removed, then the number of
associated primes of local cohomology modules can be infinite; such examples have
been discovered in [148, 264, 269]. Note that all these examples are hypersurfaces;
the hypersurface in [269] has rational singularities.

As local cohomology modules may have infinitely many associated primes in
general, one may ask a weaker question ([112, p. 3195]):

Question 2.10 Let A be a Noetherian ring, I be an ideal of A and M be a finitely
generated A-module. Does HjI (M) have only finitely many minimal associated

primes? Or equivalently, is the support of HjI (M) Zariski-closed? 9
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It is stated in [112] that “this question is of central importance in the study of
cohomological dimension and understanding the local-global properties of local
cohomology”.

When dim(A) � 4, then Question 2.10 has a positive answer due to [112]. If
μ(I) denotes the number of generators of I and A has prime characteristic p, it
was proved and attributed to Lyubeznik in [149] that Hμ(I)I (A) has a Zariski-closed
support. When A = R/(f ) where R is a Noetherian ring of prime characteristic
p with isolated singular closed points, it was proved independently in [163] and in
[116] that HjI (A) has a Zariski-closed support for every ideal I and integer j .

A classical result in commutative algebra (c.f. [33, Theorem 3.1.17]) says that
if A is a Noetherian local ring and M is a finitely generated A-module M that has
finite injective dimension, then

dim(M) � injdimA(M) = depth(A)

where injdimA(M) denotes the injective dimension of M over A. Interestingly, for
local cohomology modules over regular rings, the inequality seems to be reversed.
More precisely, the following was proved in [125] and [176]

Theorem 2.11 Assume that R is

(1) a Noetherian regular ring of characteristic p > 0, or
(2) a complete regular local ring of characteristic 0, or
(3) regular of finite type over a field of characteristic 0.

Then

injdimR(H
j
I (R)) � dim(SuppR(H

j
I (R)))

for every ideal I and integer j .

In [223], Puthenpurakal showed that if R = k[x1, . . . , xn] where k is a field of
characteristic 0 then injdimR(H

j
I (R)) = dim(SuppR(H

j
I (R))) for every ideal I .

Later this was strengthened in [322, Theorem 1.2] as follows: assume that either R
is a regular ring of finite type over an infinite field of prime characteristic p and M
is an F -finite F -module, or R = k[x1, . . . , xn] where k is a field of characteristic 0
andM is a holonomic3 D-module. Then

injdimR(M) = dim(SuppR(M)).

Subsequently [291] proved that, if M is either a holonomic D-module over a
formal power series ring R with coefficients in a field of characteristic 0, or an F -

3 The notions of holonomic D-modules and F -finite F -modules will be explained in the sequel;
local cohomology modules with argument R and R as discussed here are primary examples of
those.
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finite F -module over a Noetherian regular ring R of prime characteristic p, then

dim(SuppR(M))− 1 � injdimR(M) � dim(SuppR(M)).

When the regular ring R does not contain a field, the bounds on injective dimen-
sion of local cohomology modules of R are different. In [325], Zhou proved that, if
(R,m) is an unramified regular local ring of mixed characteristic and I is an ideal of
R, then injdimR(H

j
I (R)) � dim(SuppR(H

j
I (R)))+1 and injdimR(H

i
mH

j
i (R)) � 1.

Moreover, it may be the case that injdimR(H
i
mH

j
i (R)) = 1, as shown in [65, 117].

2.2 Vanishing

Problem 1 in Huneke’s list of problems in [133] asks: when is HjI (M) = 0?
Vanishing results on local cohomology modules have a long and rich history. Note
that HjI (M) = 0 for all j > t and all A-modules M if and only if HjI (A) = 0 for
j > t . Recall the notion of local cohomological dimension from Definition 1.3. For
a Noetherian local ring A, we set

mdim(A) = min{dim(A/Q) | Q is a minimal prime of A}

and we write embdim(A) for the embedding dimension (the number of generators
of the maximal ideal) of a local ring A. For an ideal I of A, we set

cA(I ) = embdim(A)−mdim(A/I).

Note that if A is regular then cA(I ) is called the big height, i.e. the biggest height of
any minimal prime ideal of I .

We now summarize the most versatile vanishing theorems on local cohomol-
ogy.

• (Grothendieck Vanishing) Let A be a Noetherian ring and M be a finitely
generated R-module. Then HjI (M) = 0 for all integers j > dim(M) and ideals
I . In particular, this implies that lcdA(I) � dim(A) for all ideals I .

• (Hartshorne–Lichtenbaum Vanishing) Let (A,m) be a Noetherian local ring and
I be an ideal ofR. Then lcdA(I) � dim(A)−1 if and only if dim(Â/(I Â+P)) >
0 for every minimal prime P of Â such that dim(Â/P ) = dim(A), where Â
denotes the completion of A. In particular, this implies that if A is a complete
local domain and

√
I �= m then lcdA(I) � dim(A)− 1. cf. [96].

• (Faltings Vanishing) Let R be a complete equi-characteristic regular local ring
with a separably closed residue field. Then
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lcdR(I) � dim(R)−
⌊

dim(R)− 1

cR(I )

⌋
,

cf. [75]. 4 This is bound is sharp according to [172].
• (Second Vanishing Theorem) Let R be a complete regular local ring that contains

a separably closed coefficient field and I be an ideal. Then lcdR(I) � dim(R)−2
if and only if dim(R/I) � 2 and the punctured spectrum of R/I is connected.
A version of this vanishing theorem for projective varieties was first obtained
by Hartshorne in [96, Theorem 7.5] who coined the name ‘Second Vanishing
Theorem’. The local version stated here was left as a problem by Hartshorne
in [96, p. 445]. Subsequently, this theorem was proved in prime characteristic
in [220], in equi-characteristic 0 in [213] (a unified proof for equi-characteristic
regular local rings can be found in [113]), and for unramified regular local rings
in mixed characteristic in [324].

• (Peskine–Szpiro Vanishing) Let (R,m) be a Noetherian regular local ring of
prime characteristic p and I be an ideal. Then lcdR(I) � dim(R)− depth(R/I),
cf. [220].

• (Vanishing via action of Frobenius) Let (R,m) be a regular local ring of prime
characteristic p and I be an ideal. Set d = dim(R). ThenHjI (R) = 0 if and only

if the Frobenius endomorphism on Hd−jm (R/I) is nilpotent. cf. [183].

There have been various extensions of the vanishing theorems mentioned above.
Most notably, [113] initiated an investigation on finding bounds of local cohomolog-
ical dimension under topological and/or geometric assumptions. For instance, [113,
Theorem 3.8] asserts that if A is a complete local ring containing a field and I is a
formally geometrically irreducible ideal such that 0 < cA(I) < dim(A) then

lcdA(I) � dim(A)− 1−
⌊

dim(A)− 2

cA(I )

⌋
. (2.2.0.1)

Furthermore, if A/I is normal then

lcdA(I) � dim(A)−
⌊

dim(A)+ 1

cA(I )+ 1

⌋
−
⌊

dim(A)

cA(I)+ 1

⌋
.

The bound on cohomological dimension in (2.2.0.1) was later extended to reducible
ideals in [184] as follows.

Theorem 2.12 Let (A,m,k) be a d-dimensional local ring containing k. Assume
d > 1. Let c be a positive integer, let t = �(d − 2)/c� and v = d−1−�(d − 2)/c�.
Let I be an ideal of A with c(I Â) � c. Let B be the completion of the strict
Henselization of the completion of A. Let I1, . . . , In be the minimal primes of
IB and let P1, . . . , Pm be the primes of B such that dim(B/Pi) = d. Let �i be

4 This is the floor function �x� = max{k ∈ Z, k � x}.
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the simplicial complex on n vertices {1, 2, . . . , n} such that a simplex {j0, . . . , js}
belongs to�i if and only if Ij0+· · ·+Ijs+Pi is not mB-primary. Let H̃t−1(�i; k) be
the (t−1)st singular homology group of�i with coefficients in k. Then lcdA(I) � v
if and only if H̃t−1(�i; k) = 0 for every i.

We ought to point out that the simplicial complex introduced in Theorem 2.12
has spurred a line of research on connectedness dimension, cf. [66, 155, 210, 299].

Also, [66] shows that the same bound as in (2.2.0.1) holds when A is a complete
regular local ring containing a field such that A/I has positive dimension and
satisfies Serre’s condition (S2). This result is in the spirit of a question raised by
Huneke in [133].

Question 2.13 (Huneke) Let R be a complete regular local ring with separably
closed residue field and I be an ideal of R. Assume that R/I satisfies Serre’s
conditions (Si) and (Rj ). What is the maximal possible cohomological dimension
for such an ideal? 9

In the same spirit as Huneke’s Question 2.13, one may ask about the possibility
of an implication

[depthR(R/I) � t] ?(⇒ [lcdR(I) � dim(R)− t]. (2.2.0.2)

In prime characteristic p, such implication holds due to Peskine–Szpiro Vanish-
ing. On the other hand, Peskine–Szpiro Vanishing can fail in characteristic 0.

Example 2.14 Let R be the polynomial ring in the variables x1,1, . . . , x2,3 over the
field K, localized at x = (x1,1, . . . , x2,3). Let I be the ideal of maximal minors
of the matrix (xi,j ). Then I is the radical ideal associated to the 4-dimensional
locus V of the 2 × 3 matrices of rank one, which agrees with the image of the
map K

2 × K
3 −→ K

2×3 that sends ((s, t), (x, y, z)) to (xs, ys, zs, xt, yt, zt). In
particular, I is the prime ideal associated to the image of the Segre embedding of
P

1
K
× P

2
K
↪→ P

5
K

.
Thus I is 3-generated of height 2 = 6 − 4, and in fact R/I is Cohen–Macaulay

of depth 4. Since the origin is the only singular point of V , the local cohomology
groups HkI (R) are supported at the origin for k �= 2 and zero for k �∈ {2, 3}.
Cohen–Macaulayness of R/I forces the vanishing of HkI (R) for k �= 2 in prime
characteristic, but if the characteristic of K is zero then H 3

I (R) is actually nonzero.
For a computational discussion involving D-modules see [92, 212, 215, 306, 310].
We will return to this situation in Example 4.8. 9

In Example 2.14, depth(R/I) = 4 but H 3
I (R) �= 0. This shows that the

implication (2.2.0.2) can fail in characteristic 0 when t � 4. When t � 2, the
implication (2.2.0.2) holds due the Second Vanishing Theorem and the Hartshorne–
Lichtenbaum Theorem. The case t = 3 is not completely settled, but there have been
positive results. In [298], continuing his work on the number of defining equations
in [297], Varbaro proved that if a homogeneous ideal I in a polynomial ring
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R = k[x1, . . . , xn] over a field k satisfies depth(R/I) � 3 then lcdR(I) � n − 3.
He also conjectured:

Conjecture 2.15 (Varbaro) Let R be a regular local ring containing a field and I
be an ideal of R. If depth(R/I) � 3, then lcdR(I) � dim(R)− 3. 9

The fact that Implication (2.2.0.2) can fail for complex projective threefolds
(Example 2.14) raises the question what exact features are responsible for failure
when t = 3. Clearly, more knowledge about the singularity is required than just
depthR(R/I).

Dao and Takagi prove Conjecture 2.15 in [66] when R is essentially of finite type
over a field. More specifically, they show the following facts about the inequality
lcdR(I) � dim(R) − 3. Suppose R is a regular local ring essentially of finite type
over its algebraically closed residue field of characteristic zero. Take an ideal I such
that R/I has depth 2 or more and H 2

m(R/I) is a K-vector space (i.e., it is killed by
m). Then lcdR(I) � dimR − 3 if and only if the torsion group of Pic(Spec(R/I))
is finitely generated on the punctured completed spectrum. In case that the depth of
R/I is at least 4, one even has lcdR(I) � dim(R)−4 if and only if the Picard group
is torsion on the punctured completed spectrum of R/I . In Example 2.14, the depth
of R/I is four, but the Picard group on the punctured spectrum is not torsion but Z.
Conjecture 2.15 remains open in general.

Both the Hartshorne–Lichtenbaum Vanishing Theorem and the Second Vanish-
ing Theorem may viewed as topological criteria for vanishing and have applications
to topology of algebraic varieties (cf. [175] and [136]). It would be desirable to have
an analogue of the Second Vanishing Theorem for non-regular rings. In [181, p. 144]
Lyubeznik asked the following questions.

Question 2.16 Let (A,m) be a complete local domain with a separably closed
residue field.

(1) Find necessary and sufficient conditions on I such that lcdA(I) � dim(A)− 2.
(2) Let I be a prime ideal. Is it true that lcdA(I) � dim(A)−2 if and only if (P+I )

is not primary to the maximal ideal for any prime ideal P of height 1?

9
Question 2.16(1) remains open. It turns out that Question 2.16(2) has a negative

answer due to [138, Proposition 7.7]:

Example 2.17 Let A = C[[x,y,z,u,v]]
(x3+y3+z3,z2−ux−vy) and I = (x, y, z). Then

(1) dim(A) = 3 and ht(I ) = 1;
(2) I + P is not primary to the maximal ideal for every height-1 prime ideal P ;
(3) H 2

I (A) �= 0.

9
Given the connections between local cohomology and sheaf cohomology

(cf. (1.2.0.1)), vanishing of sheaf cohomology can be interpreted in terms of local
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cohomology. The classical Kodaira Vanishing Theorem asserts that: If X is smooth
projective variety over a field K of characteristic 0, then Hi(X,O(j)) = 0 for
i < dim(X) and all j < 0. This result has an equivalent formulation in terms of
local cohomology: If R is a standard5 graded domain over a field K of characteristic
0 such that Proj(R) is smooth, then Hjm(R)<0 = 0 for all j < dim(R), where m
is the homogeneous maximal ideal of R. For ideal-theoretic interpretations and
connections with tight closure and Frobenius, we refer the interested reader to
[126, 267].

The Kodaira Vanishing Theorem fails for singular varieties in characteristic 0
and also fails for smooth varieties in characteristic p. It is proved in [28] that, if one
focuses on the range i < codim(Sing(X)), then the Kodaira Vanishing Theorem can
be extended to thickenings of local complete intersections. More precisely:

Theorem 2.18 LetX be a closed local complete intersection subvariety of Pn
K

over
a field K of characteristic 0 and let I be its defining ideal. Let Xt denote the scheme
defined by I t . Then

Hi(Xt ,OXt (j)) = 0

for all i < codim(Sing(X)), all t � 1, and all j < 0.
Or, equivalently, let S = K[x0, . . . , xn] and I be as above. Then

H�m(S/I
t )<0 = 0

for � < codim(Sing(X))+ 1 and all t � 1.

A natural question is whether the restriction on codim(Sing(X)) can be relaxed
or even removed. The following example from [29] shows that this is not the case.

Example 2.19 Let R = K[x, y, u, v,w] where K is a field of characteristic 0. Fix
an integer c � 2 and set I := (uy− vx, vy−wx)+ (u, v,w)c. Then one can check
that

(1) X = Proj(R/I) is local complete intersection in P
4
K

;
(2) H 2

m(R/I
t )−ct+1 �= 0;

(3) H 2
m(R/I

t )�−ct = 0.

9
Example 2.19 indicates that, if one removes the restriction on the homological

degree by codim(Sing(X)), the best vanishing result one can hope for is an
asymptotic vanishing bounded by a linear function of t . Such an asymptotic
vanishing turns out to be true, as shown in [29].

5 A standard graded algebra over a field K is a graded quotient of a polynomial ring over K with
the standard grading.
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Theorem 2.20 LetX be a closed local complete intersection subscheme of Pn over
a field of arbitrary characteristic. Then there exists an integer c � 0 such that for
each t � 1 and i < dim(X), one has

Hi(Xt ,OXt (j)) = 0, ∀ j < −ct.

When Proj(R/I) is a local complete intersection (here R = K[x0, . . . , xn] and
I is a homogeneous ideal of R), the local cohomology modules Hjm(R/I t ) have
finite length for j < dim(R/I) and consequentlyHjm(R/I t )�&0 = 0. This is one of
the underlying reasons for the vanishing in Theorems 2.18 and 2.20. Once the local
complete intersection assumption is dropped, Hjm(R/I t ) may not have finite length
and hence the vanishing may fail. However, since Hjm(R/I t ) are Artinian (even
when j = dim(R/I)), the socles HomR(R/m,H

j
m(R/I

t )) are finite dimensional
and vanish in all sufficiently negative degrees. Therefore, one can ask:

Question 2.21 Let R = K[x0, . . . , xn] and I be a homogeneous ideal of R. For
each j � 0, does there exist an integer c such that

HomR(R/m,H
j
m(R/I

t ))� = 0

for all t � 1 and all � < −ct? 9
For related questions and applications, we refer the interested reader to [323].

2.3 Annihilation of Local Cohomology

We now turn to the question: what annihilates the local cohomology module
H
j
I (M)?
If R is a Noetherian regular ring of prime characteristic p, then Huneke and

Koh proved in [111] that annR(H
j
I (R)) �= 0 if and only if HjI (R) = 0. The same

conclusion for Noetherian regular rings of characteristic 0 was established implicitly
in [176]. The aforementioned result due to Huneke–Koh was later generalized to
strongly F -regular domains in [30]. Inspired by the results due to Huneke–Koh and
Lyubeznik, Lynch [171] conjectured that dim(A/ annA(HδI (A))) = dim(A/H 0

I (A))

for every Noetherian local ring A, where δ = lcdA(I). This conjecture turns out to
be false in general, cf. [17] and [286]. Note that the rings in the counterexamples
in [17] and [286] are not equidimensional. In [120, Question 6] Hochster asks the
following.

Question 2.22 If A is a Noetherian local domain and I is an ideal of cohomologi-
cal dimension c, is HcI (A) a faithful A-module? 9
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In [110], Hochster and Jeffries answer this question in the affirmative in the
following cases:

• ch(A) = p > 0 and c equals the arithmetic rank of I , see Sect. 4.1 below;
• A is a pure subring of a regular ring containing a field.

In [65], Datta, Switala and Zhang answer Question 2.22 in the negative by the
following (equidimensional) example.

Example 2.23 Let R = Z2[x0, . . . , x5] and let I be the ideal of R generated by the
10 monomials

{x0x1x2, x0x1x3, x0x2x4, x0x3x5, x0x4x5, x1x2x5, x1x3x4, x1x4x5, x2x3x4, x2x3x5}.

Then cd(I ) = 4, but annR(H 4
I (R)) is the ideal generated by 2 ∈ R. 9

When (A,m) is a local ring, the annihilation ofHjm(A) is particularly interesting
for j < dim(A), and has a wide range of applications. We recall that an element
x ∈ A◦ is called a uniform local cohomology annihilator of A if xHjm(A) = 0
for j < dim(A), where A◦ = A \ ⋃p∈min(A) p. Since Hjm(A) may not be
finitely generated, it is not clear whether such a uniform annihilator should exist.
Surprisingly, in [327] Zhou proved that if A is an excellent local ring then A
admits a uniform local cohomology annihilator if and only if A is equidimensional.
If x is a uniform local cohomology annihilator then Ax is Cohen–Macaulay (cf.
[106, 326]); in fact, there is a deep connection between the existence of uniform
local cohomology annihilators and the Cohen–Macaulay locus. To explain this
connection, we need to recall some definitions from [134]. For a Noetherian ring
A, a finite complex of finitely generated free A-modules

G• : 0 −→ Gn
fn−→ Gn−1 −→ · · · −→ G1

f1−→ G0

is said

• to satisfy the standard condition on rank if rank(fi)+ rank(fi−1) = rank(Gi−1)

for 1 � i � n and rank(fn) = rank(Gn), where the rank of a map is the
determinantal rank;

• to satisfy the standard condition on height if ht(I (fi)) � i for all i, where I (fj )
is the ideal generated by the rank-size minors of fj which is viewed as a matrix.

For a Noetherian ring A, we denote by CM(A) the set of elements x ∈ A such
that for all finite complexes G• of finitely generated free A-modules satisfying
the standard conditions on rank and height, xHi(G•) = 0 for i � 1. Huneke
conjectured in [134] that if A is an equidimensional excellent Noetherian ring then
CM(A) is not contained in any minimal prime of A. Zhou proved this conjecture in
[327] by showing the following theorem.
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Theorem 2.24 Let A be an excellent local ring A. Then A admits a uniform local
cohomology annihilator if and only if CM(A) is not contained in any minimal prime
of A.

One may consider the uniform annihilation of local cohomology in a different
direction.

Question 2.25 Let (A,m) be a Noetherian local ring of characteristic p and I be
an ideal of A. Does there exist a constant B such that

mBp
e

H 0
m(A/I

[pe]) = 0

for all e � 1? 9
The special case of Question 2.25 where I is primary to a prime ideal of height

dim(A)−1 was explicitly asked by Hochster and Huneke in [106]; a positive answer
to this special case would have significant consequences in tight closure theory,
especially to the notion of F -regularity. Question 2.25 is wide open to the best
of our knowledge. The graded analog, when A is a standard graded ring over a
field of characteristic p and I is homogeneous, has also attracted attention. When
dim(A/I) = 1, the graded version was settled independently in [135] and [304].
Let A be a standard graded ring over a field and letM be a finitely generated graded
A-module. We set

aj (M) := max{� | Hjm(M)� �= 0}

for each integer j . Since Hjm(M) is Artinian, aj (M) < ∞ for each j . Hence
for a homogeneous ideal J , if a0(A/J ) � t , then mt+1H 0

m(A/J ) = 0. Con-
sequently, if there is an integer B such that a0(A/I

[pe]) � Bpe for all e, then
mBp

e+1H 0
m(A/I

[pe]) = 0 for all e. In general, it is an open question whether there
exists an integer B (independent of e) such that a0(R/I

[pe]) � Bpe for all e. On the
other hand, a0(M) may be considered as a partial Castelnuovo–Mumford regularity
since the regularity ofM is defined as

reg(M) := max{aj (M)+ j | 0 � j � dim(M)},

so that a0(M) � reg(M). Therefore, one may ask for a stronger conclusion on the
linear growth of reg(A/I [pe]) with respect to pe. Indeed, the following was asked
in [147, p. 212].

Question 2.26 Let A be a standard graded ring over a field of characteristic p and
I be a homogeneous ideal. Does there exist a constant C such that

reg(A/I [pe]) � Cpe

for all e? 9
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Some progress has been made: for cases of small singular locus see [46, 55] and
[321]; for rings of finite Frobenius representation type, see [160].

At the crux of the homological conjectures stands the existence of big Cohen–
Macaulay algebras: the assertion that each Noetherian complete local domain
(A,m) admits an algebra (not necessarily Noetherian) in which every system of
parameters ofA becomes a regular sequence. A beautiful result of Hochster–Huneke
in [107] says that if A is an excellent Noetherian local domain of characteristic
p then its absolute integer closure6 A+ is a big Cohen–Macaulay A-algebra. In
[114], Huneke and Lyubeznik gave a much simpler proof using annihilation of local
cohomology.

Theorem 2.27 Let A be a commutative Noetherian domain that contains a field of
characteristic p, let K be its field of fractions and K be the algebraic closure of K.
Let I be an ideal of A and let α be an element in HiI (R) such that the elements7

α, αp, . . . , αp
t
, . . . belong to a finitely generated submodule of HiI (A). Then there

is a module-finite extension A′ of A inside K such that the natural map HiI (A) −→
HiI (A

′) induced by A −→ A′ sends α to 0.

Since the module-finite extension A′ is constructed using the equations satisfied
by α, Theorem 2.27 is referred in the literature as an “equational lemma”. Using
Theorem 2.27, Huneke and Lyubeznik proved

Theorem 2.28 Let (A,m) be a commutative Noetherian domain that contains a
field of characteristic p, let K be its field of fractions and K be the algebraic closure
of K. Assume, furthermore, that A is a homomorphic image of a Gorenstein local
ring. For every module-finite extension A′ of A inside K, there exists module-finite
extension A′ ⊆ A′′ inside K such that the natural maps

Him(A
′) −→ Him(A

′′)

are the zero map for each i < dim(A).
In particular,

(1) Him(A
+) = 0 for i < dim(A);

(2) every system of parameter of A is a regular sequence on A+.

The Huneke–Lyubeznik equational lemma (or equivalently, the technique of
annihilating local cohomology with finite extensions) in characteristic p has
found many applications, for instance [34] and [52]. In equi-characteristic 0, such
annihilation of local cohomology is not possible once the dimension is at least 3:
every module-finite extension of a normal domain must split in equi-characteristic

6 The absolute integral closure of an integral domain A is defined to be the integral closure of A in
the algebraic closure of the field of fractions of A.
7 Here αp denotes f (α) where f is the natural action of Frobenius on HiI (A) induced by the
Frobenius endomorphism on A.
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0. The situation in mixed characteristic has long been a mystery. However, in a very
surprising turn of events, Bhatt proved in [35, Theorem 5.1] the following:

Theorem 2.29 Let (A,m) be an excellent Noetherian local domain with mixed
characteristic (0, p) and let A+ be an absolute integral closure of A. Then

(1) Him(A
+/pA+) = 0 for i < dim(A/pA) and Him(A

+) = 0 for i < dim(A).
(2) Every system of parameters of A is a Koszul regular sequence8 on A+.
(3) If A admits a dualizing complex, then there exists a module-finite extension

A −→ B with Him(A/pA) −→ Him(B/pB) being the 0 map for all i <
dim(A/pA).

For other connections between annihilators of local cohomology modules and
homological conjectures, we refer the reader to [229, 246].

3 D- and F -Structure

In this section we discuss some special structures that local cohomology have. In
positive characteristic the Frobenius endomorphism is the main tool, while in any
case they have a structure over the ring of differential operators.

3.1 D-Modules

Following Grothendieck’s approach in [90], we reproduce the definition of differ-
ential operators as follows. Let A be a commutative ring. The differential operators

D(A) =
⋃

j∈N
Dj (A)

on A (which is to say, the differential operators from A to A) are classified by
their order j (a natural number), and defined inductively as follows. The differential
operators D0(A) of order zero are precisely the multiplication maps ã : A −→ A

where a ∈ A; for each positive integer j , the differential operators Dj (A) of
order less than or equal to j are those additive maps P : A −→ A for which the
commutator

[ã, P ] = ã ◦ P − P ◦ ã

8 A sequence of elements z1 . . . , zt in a commutative ring C is a Koszul regular sequence if
Hi(K•(C; z1, . . . , zt )) = 0 for i > 0 where K•(C; z1, . . . , zt ) is the Koszul complex of C on
z1, . . . , zt .
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is a differential operator on A of order less than or equal to j − 1. If P ′ and P ′′ are
differential operators of orders at most j ′ and j ′′ respectively, then P ′ ◦P ′′ is again a
differential operator and its order is at most j ′ + j ′′. Thus, the differential operators
on R form an N-filtered subring D(R) of EndZ(R), and the order filtration is (by
definition) increasing and exhaustive.

When A is an algebra over the central subring k, we define D(A,k) to be the
subring of D(A) consisting of those elements of D(A) that are k-linear. Thus,
D(A,Z) = D(A) and D(A,k) = D(A) ∩ Endk(A). It turns out that if A is an
algebra over a perfect field F of prime characteristic, then D(A,F) = D(A), see,
for example, [177, Example 5.1 (c)].

By a D(A,k)-module, we mean a left D(A,k)-module, unless we expressly
indicate a right module. The standard example of a D(A,k)-module is A itself.
Using the quotient rule, localizations A′ of A also carry a natural D(A,k)-structure
and the formal quotient rule induces a natural map D(A,k) −→ D(A′,k). Suppose
a is an ideal of A. The Čech complex on a generating set for a is a complex of
D(A,k)-modules; it then follows that each local cohomology module Hka(A) is a
D(A,k)-module.

More generally, ifM is a D(A,k)-module, then each local cohomology module
Hka(M) is also a D(A,k)-module. This was used by Kashiwara as early as 1970
as inductive tool in algebraic analysis via reduction of dimension [144] and was
introduced to commutative algebra in [176, Examples 2.1 (iv)].)

If R is a polynomial or formal power series ring in the variables x1, . . . , xn over
a commutative ring k, then 1

ti !
∂ti

∂x
ti
i

can be viewed as a differential operator on R even

if the integer ti ! is not invertible. In these cases, D(R,k) is the free R-module with
basis elements

1

t1!
∂t1

∂x
t1
1

· · · 1

tn!
∂tn

∂x
tn
n

for (t1, . . . , tn) ∈ N
n ,

see [90, Théorème 16.11.2]. When R is a polynomial ring or formal power series
ring over a field k of characteristic 0, then the ring of differential operators

D(R,k) = R〈 ∂
∂x1

, . . . ,
∂

∂xn
〉,

is known as the Weyl algebra, a simple ring in the sense that it has no non-trivial
two-sided ideals.

If k is a field and if A is a singular k-algebra then the structure of D(R,A)
can be very complicated, even in characteristic zero. For example, the ring of
differential operators on the cone over an elliptic curve is not Noetherian and also
not generated by homogeneous operators of bounded finite degree, [32, 131]. In
most cases, differential operators on singular spaces are completely mysterious,
except for toric varieties, Stanley-Reisner rings and hyperplane arrangements, see
[121, 142, 200, 203, 293, 294].
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3.1.1 Characteristic 0

As references for background reading in this section we recommend [37, 132, 144,
145, 159].

Let k denote a field of characteristic 0 and fix n ∈ N. Let R denote either
k[x1, . . . , xn] or k[[x1, . . . , xn]], and let D denote D(R,k), unless specified
otherwise. The partial differential operator ∂

∂xi
is denoted by ∂i for each variable

xi .
Note that here the order of r∂e11 · · · ∂enn (r ∈ R) equals simply

∑
i ei . The order

(i.e., the filtration level) of an element
∑
cα,β �=0 cα,βx

α∂β ∈ D is the maximum

of the orders |β| of its terms xα∂β . Then we have Dj = {r∂e11 · · · ∂enn | r ∈
R,

∑
i ei � j}, an increasing and exhaustive filtration of D, called the order

filtration of D.
Using the order filtration {Dj }, one can form the associated graded ring,

gr(D) := D0 ⊕ D1

D0
⊕ · · · .

Since the only nonzero commutators of pairs of generators in D are the [∂i, xi] =
1 ∈ D0, it follows that gr(D) is isomorphic to a (commutative) ring of polynomials
R[ξ1 . . . , ξn] where ξi is the image of ∂i in D1/D0. Note that gr(D) is naturally the
coordinate ring on the cotangent space of kn, if R is a ring of polynomials. We use
this to construct varieties from D-modules as follows.

Definition 3.1 Let M be a D-module. A filtration of M with respect to the order
filtration {Dj } is a sequence of R-submodules {FiM} such that

(1) F0M ⊆ F1M ⊆ · · · ⊆ FiM ⊆ Fi+1M ⊆ · · · ;
(2)

⋃
i FiM = M;

(3) Dj · FiM ⊆ Fi+jM .

Such filtration is called a good filtration if the associated graded module
grF (M) := F0M ⊕ F1M

F0M
⊕ · · · is finitely generated over gr(D). 9

Every finitely generated D-module admits a good filtration {FiM}; for instance,
if M can be generated by m1, . . . , md , then setting FiM := ∑

j Dimj produces a

good filtration of M . Set J to be the radical of anngr(D)(grF (M)). This ideal J is
independent of the good filtration {FiM} (cf. [37, 1.3.4], [57, 11.1]), and is called
the characteristic ideal of M . The characteristic ideal of M induces the notion of
dimension ofM (as a D-module) and characteristic variety ofM .

Definition 3.2 Let M be a D-module with good filtration and let J be its charac-
teristic ideal. The dimension ofM is defined as

d(M) := dim(gr(D)/J ).
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The characteristic variety Ch(M) ofM is defined as the subvariety of Spec(gr(D))
defined by J . The set of the irreducible components of Ch(M), paired with their
multiplicities in gr(M) is called the characteristic cycle ofM . 9

It turns out that dimensions cannot be small:

Theorem 3.3 (Bernstein Inequality) Let M be a nonzero finitely generated D-
module. Then

n � d(M) � 2n.

The nonzero modules of minimal dimension form a category with many good
features.

Definition 3.4 A finitely generated D-moduleM is called holonomic if d(M) = n
orM = 0. 9
Example 3.5

(1) Set FiR = R for all i ∈ N. Then one can check that {FiR} is a good filtration
on R and grF (R) ∼= R. Hence

J =
√

anngr(D)(grF (R)) = (ξ1, . . . , ξn).

This shows that d(R) = n. Therefore, R is a holonomic D-module.

(2) Denote Hnm(R) by E and set η =
[

1
x1···xn

]
, the class of the given fraction inside

E. Set FiE = Di · η. Then one can check that {FiE} is a good filtration of E
and grF (E) ∼= k[ξ1, . . . , ξn] where ξi denotes the image of ∂i in D1/D0. Hence

J =
√

anngr(D)(grF (E)) = (x1, . . . , xn).

This shows that d(E) = n. Therefore, E = Hnm(R) is a holonomic D-module.9
We collect next some of the basic properties of holonomic D-modules.

Theorem 3.6

(1) Holonomic D-modules form an Abelian subcategory of the category of D-
modules that is closed under the formation of submodules, quotient modules
and extensions ([37, 1.5.2]).

(2) IfM is holonomic, then so is the localizationMf for every f ∈ R ([37, 3.4.1]).

Consequently, each local cohomology module HjI (M) ofM is holonomic.
(3) Each holonomic D-module admits a finite filtration in the category of D-

modules in which each composition factor is a simple D-module ([37, 2.7.13]).
(4) A simple holonomic D-module has only one associated prime ([37, 3.3.16]).
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Certain finiteness properties of HjI (R) are enjoyed by arbitrary holonomic D-
modules. In the following list, the first is a special case of Kashiwara equivalence;
the latter were established in [176, Theorem 2.4].

Theorem 3.7 Let R = k[[x1, . . . , xn]] and let m denote the maximal ideal. Let M
be a finitely generated D-module.

(1) If dim(SuppR(M)) = 0, thenM is a direct sum of copies of D/Dm.
(2) injdimR(M) � dim(SuppR(M)).
(3) IfM is finitely generated (as a D-module), thenM has finitely many associated

primes (as an R-module).
(4) IfM is holonomic, then the Bass numbers ofM are finite.

Similar statements hold when R = k[x1, . . . , xn].
Remark 3.8 Let S = k[y1, . . . , y2n] be the polynomial ring over k in 2n variables.
When R = k[x1, . . . , xn], we have seen that gr(D) ∼= S. The Poisson bracket on S
is defined as follows:

{f, g} =
n∑

i=1

(
∂f

∂yn+i
∂g

∂yi
− ∂g

∂yn+i
∂f

∂yi
).

An ideal a of S is said to be closed under the Poisson bracket if {f, g} ∈ a whenever
f, g ∈ a.

The Poisson bracket is closely related to symplectic structures on C
2n and

involutive subvarieties of C2n. A symplectic structure ω on C
2n is a non-degenerate

skew-symmetric form; the standard one is given by

[
0 −In
In 0

]

where In is the n × n identity matrix. Fix a symplectic structure ω on C
2n. Given

any subspaceW of C2n, its skew-orthogonal complement is defined as

W⊥ := {2v ∈ C
2n | ω( 2w, 2v) = 0 ∀ 2w ∈ W }.

A subspace W is called involutive if W⊥ ⊆ W . A subvariety X of C2n is called
involutive if the tangent space TxX ⊆ C

2n is a involutive subspace for every smooth
point x ∈ X. One can show that an affine varietyX ⊆ C

2n is involutive with respect
to the standard symplectic structure on C

2n if and only if its (radical) defining ideal
I (X) is closed under the Poisson bracket. 9

The following was conjectured in [88] by Guillemin–Quillen–Sternberg and
proved in [265] for sheaves of differential operators with holomorphic coefficients
on a complex analytic manifold by Kashiwara–Kawai–Sato. The first algebraic
proof was discovered by Gabber in [79].
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Theorem 3.9 Let R = k[x1, . . . , xn] and M be a holonomic D-module. Then the
characteristic ideal J ofM is closed under the Poisson bracket on gr(D).

Again, let R be either k[x1, . . . , xn] or k[[x1, . . . , xn]]. Then each D-module
M admits a (global) de Rham complex. This is a complex of length n, denoted
�•R⊗M (or simply�•R in the caseM = R), whose objects areR-modules but whose
differentials are merely k-linear. It is defined as follows [37, §1.6]: for 0 � i � n,
�iR⊗M is a direct sum of

(
n
i

)
copies ofM , indexed by i-tuples 1 � j1 < · · · < ji �

n. The summand corresponding to such an i-tuple will be writtenM dxj1∧· · ·∧dxji .
The k-linear differentials di : �iR ⊗M → �i+1

R ⊗M are defined by

di (m dxj1 ∧ · · · ∧ dxji ) =
n∑

s=1

∂s(m) dxs ∧ dxj1 ∧ · · · ∧ dxji ,

with the usual exterior algebra conventions for rearranging the wedge terms, and
extended by linearity to the direct sum. We remark that in the polynomial case we
are simply using the usual Kähler differentials to build this complex, whereas in the
formal power series case, we are using the m-adically continuous differentials (since
in this case the usual module �1

R/k
of Kähler differentials is not finitely generated

over R). An alternative way is to view �•R ⊗M as a representative of ωR ⊗LD M ,
where ωR is the right D-module D/(∂1, . . . , ∂n)D which is as R-module simply R.

The cohomology objects Hi(M ⊗ �•R) are k-spaces and called the de Rham
cohomology spaces of the left D-moduleM , and are denotedHidR(M). The simplest
de Rham cohomology spaces (the 0th and nth) ofM take the form

H 0
dR(M) = {m ∈ M | ∂1(m) = · · · = ∂n(m) = 0} ⊆ M
HndR(M) = M/(∂1 · (M)+ · · · + ∂n · (M)).

The de Rham cohomology spaces are not finite dimensional in general, even for
finitely generatedM . The following theorem is (for the Weyl algebra) a special case
of fact that the D-module theoretic direct image functor preserves holonomicity,
[132, Section 3.2]. It can be found in [37, 1.6.1]) for the polynomial case and in
[302, Prop. 2.2] for the formal power series case.

Theorem 3.10 LetM be a holonomic D-module. The de Rham cohomology spaces
HidR(M) are finite-dimensional over k for all i.

Let E denote Hnm(R). If R = k[[x1, . . . , xn]], then we use D(−) to denote
HomR(−, E) (this is the Matlis dual; it should not be confused with the holonomic
duality functor D which is quite different). If R = k[x1, . . . , xn], we consider the
following “natural” grading on R and on D:

deg(xi) = 1, deg(∂i) = −1, i = 1, . . . , n.
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Note that this is really a grading on D since the relations [∂i, xi] = 1 are
homogeneous of degree zero. ThenE inherits a grading from setting deg([ 1

x1...xn
]) =

−n. In this graded setting, we use ∗HomR to denote the graded Hom and useD∗(−)
to denote ∗HomR(−, E) (the graded Matlis dual).

It turns out that D(−) is a functor on the category of D-modules, that is
compatible with de Rham cohomology. The following theorem is a combination
of [288, Theorem 5.1] and [290, Theorem A].

Theorem 3.11

(1) Let R = k[[x1, . . . , xn]] andM be a holonomic D-module. Then

HidR(M)
∨ ∼= Hn−idR (D(M)), i = 1, . . . , n,

where (−)∨ denotes the k-dual of a k-vector space.
(2) Let R = k[x1, . . . , xn] and M be a graded D-module. Assume that

dimk(H
i
dR(M)) <∞. Then

(H idR(M))
∨ ∼= Hn−idR (D∗(M)).

As shown in [290, Example 3.14], D(M) may not be holonomic even if M is.
The duality statements in Theorem 3.11 show that the (graded) Matlis duals of
holonomic D-modules still have finite dimensional de Rham cohomology.

Remark 3.12 The idea of applying Matlis duality to local cohomology modules
already appears in the work of Ogus and Hartshorne. For example, Proposition 2.2 in
[213] states that in a local Gorenstein ring A with dualizing functor D(−), the dual
D(HiI (A)) of the local cohomology moduleHiI (A) is equal to the local cohomology

module H dim(A)−i
P (X,OX) where X is the completion of Spec(A) along I , and P

its closed point.
In much greater generality, Greenlees–May duality [87] states that (the derived

functor of sections with support in I ) R�I (−) and (the derived functor of comple-
tion along I ) L�I (−) are adjoint functors. See also [16, 164]. 9

We briefly discuss algorithmic aspects. The Weyl algebra is both left and right
Noetherian and has a Poincaré–Birkhoff–Witt basis of a polynomial ring in 2n
variables; this makes it possible to extend the usual Gröbner basis techniques to
D-modules, see for example [81].

When R is a polynomial ring over the rational numbers, algorithms have been
formulated that compute:

(1) the local cohomology modules HiI (R) in [306], but see also [39, 212, 215];

(2) the characteristic cycles and Bass numbers of HjI (R) when I is a monomial
ideal in [5, 6];

(3) an algorithm to compute the support of local cohomology modules in [13].
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In a nutshell, the algorithms are based on the fact that the modules that appear in
a Čech complex Č•(R; f1, . . . , fm) are holonomic and sums of modules generated
by fractions of the form (fi1 · · · fit )e for sufficiently small e ∈ Z. In general, e = −n
is sufficient by [242], but in the spirit of computability, it is desirable to know the
largest e that may be used. This number turns out to be the smallest integer root
of the Bernstein–Sato polynomial bf (s) of the polynomial f in question. Indeed,
as was shown by Bernstein in [31], for every polynomial f ∈ R there is a linear
differential operator P depending polynomially on the additional variable s such
that

P(x1, . . . , xn, ∂1, . . . , ∂n, s) • f s+1 = bP,f (s) · f s,

where 0 �= bP,f (s) ∈ k[s] with k a field of definition for f . Since k[s] is a PID,
Bernstein’s theorem implies there is a monic generator for the ideal of all bP,f (s)
that arise this way; this then is called the Bernstein–Sato polynomial bf (s). It was
shown to factor over the rational numbers in [146, 188] and is a fascinating invariant
of f as it relates to monodromy of the Milnor fiber, multiplier ideals, (Igusa,
topological, motivic) zeta functions, the log-canonical threshold and various other
geometric notions with differential background. See [158, 312] for more details
and [12] for a generalization of Bernstein-Sato polynomials to direct summands
of polynomial rings.

The polynomial bf (s) can be computed as the intersection of a left ideal (derived
from f1, . . . , fk) inside a Weyl algebra with one more variable t , with a “diagonal
subring” Q[t∂t ]. The idea of how to compute this intersection, and then to give a
presentation for the corresponding localization Rf , is due to Oaku. In [306] it was
realized how to read off the D-structure of the resulting local cohomology H 1

f (R)

and the process was scaled up to non-principal ideals. The algorithm in [215] is
different in nature and exploits the fact that local cohomology can be seen as certain
Tor-modules along the geometric diagonal in 2n-space. It is, however, still based
on the computation of certain b-functions that generalize the notion of a Bernstein–
Sato polynomial. To understand conceptually how exactly the singularity structure
of I influences the structure of the D-module HkI (R) remains a question of great
interest.

3.1.2 D-Modules and Group Actions

We start with discussing the ideal determining the space of matrices of bounded
rank, and then outline more recent developments that consider more general actions
by Lie groups.

Let for now K be a field, choose natural numbers m � n and set R = K[xij |
1 � i � m, 1 � j � n]. Let Im,n,t be the ideal generated by the t-minors of the
matrix (xij ). Then R/I is Cohen–Macaulay and I has height (m− t+1)(n− t+1),
compare [48, 49].
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Thus, in characteristic p > 0 one has vanishing HkIm,n,t (R) for any k �= (m −
t + 1)(n− t + 1), because of the Frobenius (via the Peskine-Szpiro vanishing result
in Sect. 2.2). In characteristic zero, by [49], lcdR(I) = mn − t2 + 1. Therefore,
lcdR(I)− depth(I, R) = (m+ n− 2t)(t − 1) > 0, unless m = n = t or t = 1.

Bruns and Schwänzl also proved in all characteristics that a determinantal variety
is cut out set-theoretically by mn − t2 + 1 equations, and no fewer. In fact, these
equations can be chosen to be homogeneous; their methods rest on results involving
étale cohomology. In particular, Im,n,t is a set-theoretic complete intersection if
and only if n = m = t . The same questions for the case of symmetric and
skew-symmetric matrices were answered completely in [19] by Barile. In many but
not all cases the number of defining equations agree with the local cohomological
dimension.

Consider now the integral version of Im,n,p inside RZ = Z[xij | 1 � i � m, 1 �
j � n]. By [168],HkIm.n,t (RZ) is a vector space over Q when k exceeds the height of
Im,n,t . Similar results are shown for the case of generic matrices that are symmetric

or anti-symmetric. As a corollary, Hmn−t2+1
a (A) vanishes for every commutative

ring A of dimension less than mn where a is the ideal of t-minors of any m × n
matrix over A. The initial version of this result (m = 2 = n − 1 = t) appeared in
[112].

If K is algebraically closed, Barile and Macchia study in [42] the number of
elements needed to generate the ideal of t-minors of a matrix X up to radical, if the
entries of X outside some fixed t × t-submatrix are algebraically dependent over K.
They prove that this number drops at least by one with respect to the generic case;
under suitable assumptions, it drops at least by k if X has k zero entries.

Notation 3.13 We now specialize the base field to C and letG be a connected linear
algebraic group acting on a smooth connected complex algebraic variety X. 9

Suppose R = C[x1, . . . , xn] andG is an algebraic Lie group acting algebraically
on X = C

n. There is a natural map

ψ : g −→ Der(Cn)

from the Lie algebra to the global vector fields on C
n, i.e., the derivations inside the

Weyl algebra D = D(R,C).
The induced action $ of G on R can be extended to an action on D that we also

denote by $. If M is a D-module with a G-action, it is equivariant if the actions of
G on D andM are compatible:

(g $ P ) • (g $ m) = g $ (P •m)

for all g ∈ G, P ∈ D, m ∈ M .
Differentiating theG-action onM one obtains an action of g onM . One can now

ask whether the Lie algebra element γ acts onM via differentiation of theG-action
the same way that ψ(γ ) acts onM as element of D. This is not necessarily the case.
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Example 3.14 Let G = C
∗ act on C by standard multiplication. The Lie algebra

Lie(G) has an equivariant generator γ that via ψ becomes x∂x ∈ D.
Let M = D/(x∂x − λ), with G-action inherited from the standard G-action on

D: g$x = g−1x, g$∂x = g∂x . Since x∂x−λ is g-invariant, this is indeed aG-action
onM . Since 1 ∈ D is G-invariant, the effect of γ on 1̄ ∈ M should be zero. On the
other hand, ψ(γ ) · 1̄ = λ̄. Thus, the two actions agree if and only if λ = 0.

Now note that there are other ways to act with G on M . Indeed, a C
∗-action is

the same as the choice of a Z-grading onM . Our choice above was deg(1̄) = 0; we
now consider the choice deg(1̄) = k ∈ Z. This corresponds to g $ 1̄ = gk 1̄, so that
γ must act on 1̄ as multiplication by k. We conclude that the two actions of γ agree
if and only if λ is an integer and the degree of 1̄ is λ. 9
Definition 3.15 The D-module M is strongly equivariant if the differential action
of G on M agrees with the effect of ψ on M . In other words, γ $ m = ψ(γ )m for
all λ ∈ g,m ∈ M . 9
Remark 3.16 Strong G-equivariance of a group acting on a variety X can be also
phrased as follows, see [132, Dfn. 11.5.2]: let π and μ be the projection and
multiplication maps

π : G×X −→ X,

μ : G×X −→ X,

respectively. ThenM is strongly equivariant if there is a DG×X-isomorphism

τ : π∗M −→ μ∗M

that satisfies the usual compatibility conditions onG×G×X, see [300, Prop. 2.6].
If such τ exists, it is unique. 9

Strongly G-equivariant DX-modules are rather special D-modules. A G-
equivariant morphism of smooth varieties with G-action automatically preserves
G-equivariance under direct and inverse images (since G is connected, see [301,
before Prop. 3.1.2]). IfG has finitely many orbits on X, strong equivariance implies
that the underlying D-module is regular holonomic; this is a growth condition of
the solution sheaf of the module and a critical component of the Riemann–Hilbert
correspondence. In this case, the simple and strongly equivariant DX-modules are
labeled by pairs consisting of a G-orbit G/H and a finite-dimensional irreducible
representation of the component group ofH (in other words, a simpleG-equivariant
local system on the orbit), [132, Prop. 11.6.1]. For example, if (C∗)n acts on C

n,
these simple modules are the modules H |S|IS (R) where R = C[x1, . . . , xn], S ∈ 2[n]
and IS = ({xs | s ∈ S}).

If I is an ideal of R and Y the corresponding variety, then I is G-stable if
and only if Y is. In this case, the localization of a strongly equivariant module
M at an equivariant g ∈ R is also strongly equivariant. It follows that all local
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cohomology modules HiI (M) are as well. In particular, this holds whenM is R or a
local cohomology module of R obtained in this way.

In [238], the authors initiated the study of the GL-equivariant decomposition of
the local cohomology modules of determinantal ideals characteristic zero. The main
result of the paper is a complete and explicit description of the character of this
representation. An important consequence is a complete and explicit description of
exactly which local cohomology modulesHjIm,n,t (R) vanish and which do not, in the
case t = n. This was then refined and extended to Pfaffians in [238]. The restriction
t = n was removed in [236]. Generalizations to symmetric and skew-symmetric
matrices were published in [207, 237].

In [227], Raicu obtains results on the structure of the G-invariant simple D-
modules and their characters for rank-preserving actions on matrices, extending
work of Nang [206, 207]. Remarkably, for the case of symmetric matrices, this
provides a correction to a conjecture of Levasseur. Raicu’s methods produce
composition factors for certain local cohomology modules. In [165] then this was
taken the furthest, to give character formulæ for iterated local cohomology modules.

A more general approach was used in [165, 169] in order to study decompositions
and categories of equivariant modules in the category of D-modules, specifically
with regards to quivers. These arise when when G acts on X with finitely many
orbits and more particularly when X is a spherical vector space and G is reductive
and connected. This leads to the study of the “representation type” of the underlying
quiver (shown to be finite or tame) and the quivers are described explicitly for
all irreducible G-spherical vector spaces of connected reductive groups using the
classification of Kac. An early paper on this regarding the determinantal case was
[205]. More recently, cases of exceptional representations and their quivers have
been studied: [166, 218].

Remark 3.17 Invariant theory has also recently been aimed at singularity invariants
such as multiplier and test ideals [137], and F -pure thresholds [201]. 9

3.1.3 Coefficient Fields of Arbitrary Characteristic

Let here k be a field and set R = k[x1, . . . , xn] or R = k[[x1, . . . , xn]]. We have
seen that D = D(R,k) is the free R-module with basis

1

t1!
∂t1

∂x
t1
1

· · · 1

tn!
∂tn

∂x
tn
n

for (t1, . . . , tn) ∈ N
n

When ch(k) = p > 0, the ring D is no longer left or right Noetherian. However,
some desirable properties of D-modules in characteristic 0 extend to the finite
characteristic case.
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Theorem 3.18 Let R = k[x1, . . . , xn] or R = k[[x1, . . . , xn]], where k is a field.
Then

(1) injdimR(M) � dim(SuppR(M)) for every D-moduleM ([180]).
(2) Rf has finite length in the category of D-modules for each f ∈ R ([178, 185]).

Consequently, local cohomology modules HjI (R) have finite length in the
category of D-modules.

In general, it is a difficult problem to calculate the length �D(H
j
I (R)), or even

just �D(Rf ). Some results are in [292] and [36]. The following upper bounds were
obtained in [157].

Theorem 3.19 Let k be a field and R = k[x1, . . . , xn].
(1) For each f ∈ R,

�D(Rf ) � (deg(f )+ 1)n.

(2) Assume an ideal I can be generated by f1, . . . , ft . Then

�D(H
j
I (R)) �

∑

1�i1···�ij�t
(deg(fi1)+ · · · + deg(fij )+ 1)n − 1.

Example 3.20 Let R = k[x1, x2, x3] and f = x3
1 + x3

2 + x3
3 . Then

�D(H
1
(f )(R)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ch(k) ≡ 2 (mod 3);
1 if ch(k) = 3;
2 if ch(k) ≡ 1 (mod 3);
2 if ch(k) = 0.

9
If ch(k) = 0 and R = k[x1, . . . , xn] or R = k[[x1, . . . , xn]], then Rf can always

be generated by 1/f n as a D-module, but may not be generated by 1/f . For instance,
let f,R be as in Example 3.20, then 1/f generates a proper D-submodule of Rf in
characteristic 0. On the other hand, in characteristic p, the situation is quite different
as shown in [9], and generalized to rings of F -finite representation type in [295].

Theorem 3.21 Let k be a field of characteristic p > 0 and let R = k[x1, . . . , xn]
or R = k[[x1, . . . , xn]]. Then Rf can be generated by 1/f as a D-module for every
f ∈ R.

We have seen that, when k is a field, R = k[x1, . . . , xn], and M is a D-module,
then injdimR(M) � dim(SuppR(M)). Thus, if dim(SuppR(M)) = 0, then M must
be an injective R-module. Let I be a homogeneous ideal of R and assume that
SuppR(H

j
I (R)) = {m} where m = (x1. . . . , xn). Then HjI (R)

∼= ⊕Hnm(R)μj ,
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a direct sum of finitely many copies of Hnm(R). Since both HjI (R) and Hnm(R)
are graded, a natural question is whether this isomorphism is degree-preserving. To
answer this question, the notion of Eulerian graded D-modules was introduced in
[204].

Recall that R = k[x1, . . . , xn] and D = D(R,k) are naturally graded via:

deg(xi) = 1, deg(∂i) = −1.

Definition 3.22 Denote the operator 1
ti !
∂ti

∂x
ti
i

by ∂ [ti ]i .

The t-th Euler operator Et is defined as

Et :=
∑

t1+t2+···+tn=t
t1�0,...,tn�0

x
t1
1 · · · xtnn ∂ [t1]1 · · · ∂ [tn]n .

In particular E1 is the usual Euler operator
∑n
i=1 xi∂i .

A graded D-module M is called Eulerian, if each homogeneous element z ∈ M
satisfies

Et · z =
(

deg(z)

t

)
· z

for every t � 1. 9
We collect some basic properties of Eulerian graded D-modules as follows.

Theorem 3.23 LetM be an Eulerian graded D-module. Then

(1) Graded D-submodules ofM and graded D-quotients ofM are Eulerian.
(2) If S is a homogeneous multiplicative system in R, then S−1M is Eulerian. In

particular,Mg is Eulerian for every homogeneous g ∈ R.

(3) The local cohomology modules HjI (M) are Eulerian for every homogeneous
ideal I .

(4) The degree-shiftM(�) is Eulerian if and only if � = 0.

It follows from Theorem 3.23 that, if SuppR(H
j
I (R)) = {m} for a homogeneous

ideal I , then HjI (R)
∼= ⊕Hnm(R)μj is a degree-preserving isomorphism. Conse-

quently,

H
j
I (R)�−n+1 = 0. (3.1.3.1)

This turns out to be a source of vanishing results for sheaf cohomology. For
example, (3.1.3.1) is one of the ingredients in [28] to prove Theorem 2.18 which
is an extension of Kodaira vanishing to a non-reduced setting.
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Extensions of Eulerian D-modules may not be Eulerian as shown in [204,
Remark 3.6]. In [224] the notion of generalized Eulerian D-module in characteristic
0 was introduced as follows. Fix integers w1, . . . , wn and set

deg(xi) = wi deg(∂i) = −wi
A graded D-module M is called generalized Eulerian if, for every homogeneous
element m ∈ M , there is an integer a (which may depend on m) such that

(E1 − deg(m))a ·m = 0.

It was shown that the category of generalized Eulerian D-modules is closed under
extension. This notion of generalized Eulerian D-modules turns out to be useful in
calculating de Rham cohomology of local cohomology modules in characteristic 0
(cf. [221, 224, 239]).

In characteristic p, the fact that HjI (R)
∼= ⊕Hnm(R)μj is a degree-preserving

isomorphism when SuppR(H
j
I (R)) = {m} was also established in [320] using F -

modules, a technique that we discuss next.

3.2 F -Modules

Let A be a Noetherian commutative ring of characteristic p. Then A is equipped
with the Frobenius endomorphism

F : A a �→ap−−−→ A.

The Frobenius endomorphism plays a very important role in the study of rings
of characteristic p. For instance, in [161], regularity of A is characterized by the
flatness of the Frobenius endomorphism.

Definition 3.24 (Peskine–Szpiro Functor) Let A be a Noetherian commutative
ring of characteristic p. For each A-module M , denote by F∗M the A-bimodule
whose underlying Abelian group is the same as M , whose left A-module structure
is the usual one: a · z = az for each z ∈ F∗M , and whose right A-module structure
is given via the Frobenius F : z · a := apz for each z ∈ F∗M .

The Peskine–Szpiro functor FA(−) from the category of left A-modules to itself
is defined via

FA(M) := F∗A⊗A M

for each A-moduleM , where the tensor product uses the right A-structure on F∗A.
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Geometrically, consider the morphism of spectra induced by the Frobenius
F : A −→ A. Then the right A-module structure of F∗(M) is obtained via
restriction of scalars along F , and hence agrees with the pushforward of M . On
the other hand, FA(M) is the pullback of a module under the Frobenius. 9

If A is regular, then it follows from [161] that F∗A is a flat A-module and hence
FA(−) is an exact functor.

Remark 3.25 Let R be a Noetherian regular ring of characteristic p and I be an
ideal of R.

(1) We have

FR(R
m) ∼= Rm,

FR(R/I) ∼= R/I [p].

Here I [p] is the Frobenius power from Remark 1.5
(2) Moreover,

FR(ExtjR(R/I, R))
∼= ExtjR(FR(R/I), FR(R))

∼= ExtjR(R/I
[p], R).

The natural surjection R/I [p] −→ R/I induces

β : ExtjR(R/I,R) −→ ExtjR(R/I
[p], R)

and by iteration produces a directed system

ExtjR(R/I,R)
β−→ ExtjR(R/I

[p], R) FR(β)−−−→ ExtjR(R/I
[p2], R) · · ·

which agrees with

ExtjR(R/I,R)
β−→ FR(ExtjR(R/I, R))

FR(β)−−−→ F 2
R(ExtjR(R/I, R)) · · ·

Since {I [pe]}e�0 and {I t }t�0 are cofinal (that is, the two families of ideals define

the same topology on the ring), the direct limit of this direct system is HjI (R).

(3) The previous items suggest thatHjI (R)may be built from the finitely generated

R-module ExtjR(R/I,R) using Frobenius, and hence it is natural to expect some

properties of HjI (R) to be reflected in ExtjR(R/I,R). Indeed, it was proved in
[125] that

AssR(H
j
I (R)) ⊆ AssR(ExtjR(R/I,R)), μ

i
p(H

j
I (R)) � μ

i
p(ExtjR(R/I,R))
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for every prime ideal p, where μip(M) denotes the i-th Bass number of an
R-module M with respect to p. (This was generalized to rings of F -finite
representation type in [295]).

Based on the idea of buildingHjI (R) using ExtjR(R/I,R), [163] describes a practical

algorithm to calculate the support of HjI (R); this algorithm has been implemented
in Macaulay2 [92]. 9

3.2.1 F -Modules

In order to conceptualize the approach in [125], Lyubeznik introduced the theory
of F -modules in [177]. Throughout 3.2.1, R is a regular (not necessarily local)
Noetherian ring of characteristic p > 0, and I is an ideal of R.

Definition 3.26 An F-module over R (or FR-module) is a pair (M, θM) where M
is an R-module and θM : M ∼−→ FR(M) is an R-module isomorphism, called the
structure morphism. (When the underlying ring is understood, we sometimes refer
simply to M as an “F -module”.) The category of FR-modules will be denoted by
FR (or F when R is clear from the context).

If R is graded, a graded F-module is an F -moduleM such thatM is graded and
the structure isomorphismM −→ FR(M) is degree-preserving. 9
Example 3.27 One can check that F∗R ⊗R R r ′⊗r �→r ′rp−−−−−−→ R is an R-linear
isomorphism. Hence R is an F -module; consequently so are all free R-modules.

Given any g ∈ R, one can check that F∗R ⊗R Rg
r ′⊗ r

gt
�→ r′rp

gtp−−−−−−−→ Rg is an R-linear
isomorphism. Hence Rg is an F -module.

When R = k[x1, . . . , xn] with standard grading, then for each graded R-module
M we define a grading on FR(M) = F∗R ⊗R M via

deg(r ′ ⊗m) = deg(r ′)+ p deg(m)

for all homogeneous r ′ ∈ R and m ∈ M .

In this setting, F∗R ⊗R R r ′⊗r �→r ′rp−−−−−−→ R is a degree-preserving R-linear
isomorphism and so R is a graded F -module. Likewise, if g ∈ R is homogeneous,

then F∗R ⊗R Rg
r ′⊗ r

gt
�→ r′rp

gtp−−−−−−−→ Rg is a degree-preserving R-linear isomorphism and
hence Rg is a graded F -module. 9
Definition 3.28 Let (M, θM) be an F -module. We say that M is F-finite if there
exists a finitely generated R-module M ′ and an R-linear map β : M ′ → FR(M

′)
such that

lim−→(M
′ β−→ FR(M

′) F
∗β−−→ F 2

R(M
′) −→ · · · ) ∼= M, (3.2.1.1)



808 U. Walther and W. Zhang

and the structure morphism θM is induced by taking the direct limit over � of
F�R(β) : F�R(M ′) → F�+1

R (M ′). In this case we call M ′ a generator of M and
β a generating morphism. A generator M ′ of an F -finite F -module M is called a
root if the generating morphism β : M ′ → FR(M

′) is injective.
A graded F -finite F -module is defined to be an F -finite F -module for which the

modules and morphisms in (3.2.1.1) can be chosen to be homogeneous. 9
Example 3.29 From Remark 3.25, one can see that every local cohomology module
H
j
I (R) is an F -finite F -module since it is the direct limit of

ExtjR(R/I,R)
β−→ FR(ExtjR(R/I, R))

FR(β)−−−→ F 2
R(ExtjR(R/I, R)) · · ·

and ExtjR(R/I,R) is finitely generated.
When R = k[x1, . . . , xn] and I is a homogeneous ideal of R, the local

cohomology modules HjI (R) are graded F -finite F -modules. 9
There is a fruitful analogy between (F -finite) F -modules and (holonomic) D-

modules. We collect some basic properties of F -modules, which are parallel to those
of D-modules, as follows.

Theorem 3.30 Let R be a Noetherian regular ring of characteristic p > 0.

(1) IfM is an F -module, then injdimR(M) � dim(SuppR(M)), [177, 1.4].
(2) F -finite F -modules form a full Abelian subcategory of the category of R-

modules that is closed under the formation of submodules, quotient modules,
and extensions, [177, 2.8].

(3) If M is an F -finite F -module, then so is the localization Mg for each g ∈ R,
[177, 2.9].

(4) A simple F -module has a unique associated prime, [177, 2.12].
(5) F -finite F -modules have finite length in the category of F -modules, [177, 3.2].

Remark 3.31 The theory of F -modules plays a crucial role in the extension of the
Riemann–Hilbert correspondence to characteristic p by Emerton and Kisin [70],
which is beyond the scope of this survey. 9

3.2.2 A{f }-Modules: Action of Frobenius

Let A be a Noetherian commutative ring of characteristic p. We will use A{f } to
denote the associative A-algebra with one generator f and relations f a = apf for
all a ∈ A.

Remark 3.32 LetM be an A-moduleM . The following are equivalent.

(1) M is an A{f }-module.
(2) M admits an additive map f : M −→ M such that f (am) = apf (m) for every

a ∈ A and m ∈ M; this f is called a Frobenius action onM .
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(3) M admits an A-linear map M −→ F∗M where F : A −→ A is the Frobenius
endomorphism on A.

(4) M admits an A-linear map F∗A ⊗A M −→ M where F : A −→ A is the
Frobenius endomorphism on A.

In (2), we still use f to denote the Frobenius action since multiplication on the left
by f onM is indeed a Frobenius action for each A{f }-moduleM .

Of course, the standard example of a Frobenius action is A with the p-th power
map. Note that the image f (M) is in general just a group, but acquires the structure
of a k-space when k is perfect.

The Frobenius on A induces a natural Frobenius action on each Hia(A) for
every ideal a; hence Hia(A) is an A{f }-module. In this paper, we always consider
Hia(A) as an A{f }-module with the Frobenius action f induced by the Frobenius
endomorphism on A. For this reason, some authors denote by F (instead of f ) the
Frobenius action on Hia(A) induced by the Frobenius endomorphism on A. 9
Definition 3.33 Given an A{f }-module M with Frobenius action f : M −→ M ,
the intersection

Mst :=
⋂

t�1

f t (M)

is called the f-stable part ofM .
An element z ∈ M is called f-nilpotent if f t (z) = 0 for some integer t .
An A{f }-module M is called f-torsion if every element in M is in the kernel

of some iterate of f , and it is called f-nilpotent if there is an integer t such that
f t (M) = 0. 9
Remark 3.34 When M = Hia(A) is a local cohomology module of A, the notions
of f -torsion and f -nilpotent are also denoted by F -torsion and F -nilpotent, respec-
tively, since the Frobenius action f is induced by the Frobenius endomorphism on
A.

Assume (A,m,k) is a local ring and x1 . . . , xd is a full system of parameters.
Then the Frobenius action f on Hdm(A) can be described as follows. Let η =
[ a

x
n1
1 ···x

nd
d

] be an element in Hdm(A), then

f (η) = [ ap

x
n1p

1 · · · xndpd
].

9
An A{f }-module that is also an Artinian A-module is called a cofinite A{f }-

module. Cofinite A{f }-modules enjoy an amazing property.

Theorem 3.35 Let A be a local ring of characteristic p > 0. Assume thatM is an
f -torsion cofinite A{f }-module. ThenM must be f -nilpotent.



810 U. Walther and W. Zhang

Theorem 3.35 was first proved by Hartshorne and Speiser in [124]. There,
Hartshorne and Speiser created a version of some of Ogus’ results from [213]
in characteristic p > 0. Their motivating question was to determine when the
cohomology of every coherent sheaf on the complement of a projective variety
be a finite dimensional vector space. Hartshorne and Speiser use the Frobenius
endomorphism on O

X̂
to supply the information given by the connection used by

Ogus in characteristic zero, and Z/p-étale cohomology turns up in place of de Rham
cohomology. Theorem 3.35 was later generalized by Lyubeznik in [177] (using the
HR,A-functor discussed in the sequel). It has found applications in [26, 54, 154] in
the study of singularities and invariants defined by Frobenius.

Theorem 4.6 in [183] reads as follows: if k is an algebraically closed field of
positive characteristic, and if (A,m,k) is a complete local ring with connected
punctured spectrum and k ⊆ A, then H 1

m(A) is f -torsion. Lyubeznik derives
this via a comparison with local cohomology in a complete regular local ring that
surjects onto A. In [283], this result is sharpened to a numerical statement over an
algebraically closed coefficient field: the number of connected components of the
punctured spectrum of A is one more than the dimension of the f -stable part of
H 1

m(A).
A general study of Frobenius operators started with [167] and later was carried

out by various authors: aside from Sharp’s article [260] we should point at [261]
by the same author, [26] which develops the notion of Cartier modules (which
are approximately modules with a Frobenius action), and [80]. The article [160]
contains positive results on finiteness dual to [255] as well as examples of failure.

Definition 3.36 Let (A,m,k) be a local ring of characteristic p > 0. Given a
cofinite A{f }-module W , a prime ideal p is called a special prime of W if it is
the annihilator of an A{f }-submodule ofW . 9

It is proved in [260, Corollary 3.7] and [68, Theorem 3.6] that if the Frobenius
action f : M −→ M on theA{f }-moduleM is injective thenM admits only finitely
many special primes. This will be useful when we discuss the F -module length of
local cohomology modules in the sequel.

Definition 3.37 ([68]) Let (A,m) be a Noetherian local ring of characteristic p.
Let f : Hjm(A) −→ H

j
m(A) denote the Frobenius action induced by the Frobenius

on A.
A submodule N of Hjm(A) is called F-stable if f (N) ⊆ N .
The ring A is called FH-finite if Hjm(A) admits only finitely many F -stable

submodules for each 0 � j � dim(A).
Also, A is called F-injective if the natural Frobenius action f : Hjm(A) −→

H
j
m(A) is injective for each integer j � dim(A). 9
The Frobenius action on local cohomology modules connects with a very

important type of singularities, that of F -rationality, which we recall next.

Definition 3.38 Let A be a Noetherian ring of characteristic p, let A◦ denote the
complement of the union of minimal primes in A and let a be an ideal of A. An
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element a ∈ A is in the tight closure of a if there is a c ∈ A◦ such that cap
e ∈ a[pe]

for all e � 0. Let a∗ denote the set of elements a ∈ A that are in the tight closure
of a; it is an ideal of A. An ideal a is called tightly closed if a = a∗.

A local ring A is called F-rational if a = a∗ for every parameter ideal a. 9
In her work to relate F -rationality (an algebraic notion) to rational singularity

(a geometric notion), Smith [266] proves the following characterization of F -
rationality using a Frobenius action.

Theorem 3.39 Let (A,m) be a d-dimensional excellent local domain of charac-
teristic p. Then A is F -rational if and only if A is normal, Cohen–Macaulay, and
Hdm(A) contains no non-trivial F -stable submodules.

In independent work of Smith, Mehta–Srinivas, and Hara, F -rationality was
shown to be the algebraic counterpart to the notion of rational singularities
[101, 198, 266]. The purpose of these studies was to establish a parallelism between
the concept of a rational singularity in characteristic zero, and invariants based on
the Frobenius for its models in finite (large) characteristic. The development of
such connections has a fascinating and distinguished history, and we recommend
the recent and excellent survey article [296] by two experts in the field.

A related construction goes back to [73]. For an element x ∈ A and a parameter
ideal I of A let I (x) be the ideal of elements c ∈ A that multiply xp

e
into I [pe]

for all large e (cf. Definition 3.38). Enescu shows in [73] that if A is F -injective
and Cohen–Macaulay, then the set of maximal elements in {I (x) : x �∈ I } does not
depend on I , is finite and consists only of prime ideals. These are called F-stable
primes, and the collection of them is denoted by FS(R). Enescu shows further that
for an F -injective Cohen–Macaulay complete local ring A, the F -stable primes can
be expressed in terms of F -unstability, introduced by Fedder and Watanabe. Enescu
and Sharp continued the study of properties of F -stable primes in [74, 260].

Along with FH-finiteness goes another property of rings that will come back to
us later:

Definition 3.40 A is called F-pure if (A
a �→ap−−−→ A) ⊗A M is injective for all A-

modulesM . 9
Remark 3.41 For background to this remark we refer to the excellent article [296].

A standard question on “deformation” in commutative algebra is to ask “If a
quotient A/(x) of A by a regular element has a nice property, is A forced to share
it?”.

It turns out that F -purity does not deform in this sense, [76, 262]. The reader
familiar with the concepts of F -regularity and F -rationality may know that F -
rationality deforms [108] while F -regularity does not [263] although it does so for
Q-Gorenstein rings [3, 108]. Very recently, Polstra and Simpson proved in [222]
that F -purity deforms in Q-Gorenstein rings.

It is still an open question whether F -injectivity deforms, but some progress
has been made. Fedder showed in [76] that F -injectivity deforms when the ring
is Cohen–Macaulay. In [115], it was proved that if R/xR is F -injective and
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H
j
m(A/(x

�)) −→ H
j
m(A/(x)) is surjective for all � > 1 and j thenA is F -injective.

Ma and de Stefani established deformation when the local cohomology modules
H •m(A) have secondary decompositions that are preserved by the Frobenius [63]. 9

In [68] it is proved that face rings of finite simplicial complexes are FH-finite.
They showed further that an F -pure and quasi-Gorenstein local ring is FH-finite,
and raised the question whether all F -pure and Cohen–Macaulay local rings are
FH-finite. Ma answered this question in the affirmative by proving the following
result in [186].

Theorem 3.42 Let (A,m) be a Noetherian local ring of characteristic p. If A is
F -pure, then A and all power series rings over A are FH -finite.

In the paper he also proved that if A is F -pure (even just on the punctured
spectrum) then H •m(A) is a finite length A{F }-module, and he also established
that the finite length property is stable under localization. With Quy, he introduced
more recently in [197] the notions F-full (when the Frobenius action is surjective)
and F-anti-nilpotent (when the action is injective on every A{F }-subquotient of
local cohomology). They established that F -anti-nilpotence implies F -fullness and
equals FH-finiteness of [68]. Inspired by ideas from [115], they prove the interesting
fact that both F -anti-nilpotence and F -fullness do deform.

The action of the Frobenius also ties in naturally with the action of the Frobenius
on the cohomology of projective varieties via the identification (1.2.0.1). For
example, the Segre product of a smooth elliptic curve E with P

1
K

has F -injective
coordinate ring (recall Definition 3.40) if and only if the curve is ordinary (the
group H 1(E;OE) is the degree zero part of H 2

m(A) and the Frobenius action is
the induced one; here A is the coordinate ring of E). Compare Example 4.2.

Hartshorne and Speiser in [124], and Fedder and Watanabe in [78] studied F -
actions on local cohomology with regards to vanishing of cohomology on projective
varieties, and with regards to singularity types of local rings respectively.

According to [273], a local ring (A,m) is F-nilpotent if the Frobenius action is
nilpotent on H<dim(A)

m (A) and 0∗
H

dim(A)
m (A)

(the tight closure of the zero submodule

ofH dim(A)
m (A)), and Srinivas and Takagi show that A is F -injective and F -nilpotent

if and only it is F -rational. In [219], Polstra and Quy characterize F -nilpotence
as (under mild hypotheses) being equivalent to the equality of tight and Frobenius
closure for all parameter ideals. This work extends the finite length case discussed in
[187] and is somewhat surprising since the complementary notion of F -injectivity
is not equivalent to the Frobenius-closedness of all parameter ideals, [226], but only
implied by it.

Ma also shows in [187], in his setting of finite length lower local cohomology,
that F -injectivity implies the ring being Buchsbaum (a generalization of Cohen–
Macaulay, [279]), and that the analogous statement in characteristic zero is true
in the sense that, if A is a normal standard graded K-algebra with K ⊇ Q that
is Du Bois and has finite length lower local cohomology, then A is Buchsbaum.
(A singularity X embedded inside a smooth scheme over the complex numbers is
du Bois, following Schwede’s paper [249], if and only if an embedded resolution
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π : Y −→ X of X = Spec(A) with reduced total transform E leads to an isomor-
phism OX = Rπ∗(OE). Initially, Du Bois singularities arose from Hodge-theoretic
filtrations of the de Rham complex in [58]; they include normal crossings and
quotient singularities). Du Bois singularities are closely related to (and conjecturally
equivalent to) singularities of dense F -injective type. Recall that, a finite Z-algebra
AZ is of dense F-injective type if its reductions Ap modulo p are F -injective for
infinitely many primes p ∈ Z. Schwede proved in [252] that if a finite Z-algebra AZ

is of dense F -injective type then the complex model AC = AZ ⊗Z C is Du Bois.
The other implication remains an open problem and was proved to be equivalent to
the Weak Ordinarity Conjecture (see [53] for details).

We close this section with a brief discussion on the very interesting topic of the
interaction of the Frobenius with Hodge theory, crossing characteristics. Suppose
A is a finitely generated graded C-algebra, and set X := Proj(A). It is known that
certain aspects of the Hodge theory of X are encoded in the combinatorics of the
resolution of singularities of X, [1, 59, 60]. In this context, Srinivas and Takagi
proposed and studied in [273] the following local conjecture.

Conjecture 3.43 If x is a normal isolated singularity on the n-dimensional C-
scheme X then the local ring at x is of F -nilpotent type if and only if for all
i < dim(X), the zeroth graded piece Gr0

F (H
i{x}(Xan,C)) of the Hodge filtration

is zero. 9
How much is still unknown in this fascinating area between characteristics can be
seen from the fact that the following conjectural statement is still open: let V be
an (n− 1)-dimensional projective simple normal crossings variety in characteristic
zero; then the Frobenius action onHi(Vp,OVp ) is not nilpotent for an infinite set of
reductions Vp modulo p of V . Srinivas and Takagi [273] prove the case n − 1 = 2
of this and derive from it the case n = 3 for the conjecture above.

3.2.3 The Lyubeznik Functor HR,A

Assume that A is a homomorphic image of a Noetherian regular ring R. The
approach of building HjI (R) using a finitely generated R-module results in a very
useful functor HR,A from the category of cofinite A{f }-modules to the category of
FR-finite FR-modules.

Remark 3.44 Let R = k[[x1, . . . , xn]] and E = Hn(x1,...,xn)
(R). Denote as before

the Matlis dual functor HomR(−, E) byD(−). Then there is a functorial R-module
isomorphism

τ : D(FR(M)) ∼= FR(D(M))

for all Artinian R-modulesM .
Let A be a homomorphic image of R. LetM be an A{f }-module. One can check

that
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α : FR(M) r⊗m�→rf (m)−−−−−−−→ M (3.2.3.1)

is an R-module homomorphism. Now, assume that M is a cofinite A{f }-module.
Taking the Matlis dual of α, we have an R-module homomorphism

β = τ ◦D(α) : D(M) −→ FR(D(M)),

and hence we have a direct system of Noetherian R-modules:

D(M)
β−→ FR(D(M))

FR(β)−−−→ F 2
R(D(M)) −→ · · ·

Analogously, let R = k[x1, . . . , xn] and denote the graded Matlis dual functor
∗HomR(−, E) by D∗(−). There is a functorial graded R-module isomorphism

τ : D∗(FR(M)) ∼= FR(D∗(M))

for all Artinian graded R-modulesM .
Let M be a graded A{f }-module. One can check that then (3.2.3.1) is a graded

R-module homomorphism. Now, assume thatM is a cofinite graded A{f }-module.
Taking the graded Matlis dual of α, we have a graded R-module homomorphism

β = τ ◦D∗(α) : D∗(M) −→ FR(D
∗(M)),

and hence we have a direct system of graded Noetherian R-modules:

D∗(M) β−→ FR(D
∗(M)) FR(β)−−−→ F 2

R(D
∗(M)) −→ · · ·

9
Definition 3.45 Let R be a complete regular local ring R of characteristic p and let
A be a homomorphic image of R. For each cofinite A{f }-moduleM , we define

HR,A(M) := lim−→(D(M)
β−→ FR(D(M))

FR(β)−−−→ F 2
R(D(M)) −→ · · · )

The graded version H∗R,A is defined analogously on homogeneous input. 9
Example 3.46 Let R = k[[x1, . . . , xn]] (or R = k[x1, . . . , xn] respectively) and
let I be an ideal of R (homogeneous, if R = k[x1, . . . , xn]). Set A = R/I . Hence
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H
j
m(A) is an A{f }-module according to Remark 3.32. Since Hjm(A) is Artinian, it

is a cofinite A{f }-module. Then one can check that

HR,A(Hjm(A)) ∼= Hn−jI (R)

(which reads

H∗R,A(H
j
m(A)) ∼= Hn−jI (R)

when R = k[x1, . . . , xn]). 9
Remark 3.47 The functor HR,A (resp. H∗R,A) from the category of cofinite (graded)
A{f }-modules to the category of (graded) F -finite F -modules is contravariant,
additive, and exact.

Given a cofinite (graded) A{f }-module M , HR,A(M) = 0 (or H∗R,A(M) = 0
respectively) if and only if the additive map ϕ : M −→ M in Remark 3.32 is
nilpotent.

Now Lyubeznik’s vanishing theorem in characteristic p follows from Exam-
ple 3.46: Hn−jI (R) = 0 if and only if the natural Frobenius (induced by the

Frobenius on R) on Hjm(A) is nilpotent. 9
The nilpotence of the action of Frobenius on Hjm(A) prompts the following

definition (cf. [183, Definition 4.1]).

Definition 3.48 Let (A,m) be a local ring of characteristic p. The F -depth of A is
the smallest i such that Him(A) is not f -nilpotent, where f is the natural action of
Frobenius on Him(A) induced by the Frobenius endomorphism on A. 9
Remark 3.49 One can show that (cf. [183, §4])

(1) depth(A) � F -depth(A) � dim(A),
(2) F -depth(A) = F -depth(Â),
(3) F -depth(A) = F -depth(Ared) where Ared = A/√(0).
In terms of F -depth, the vanishing theorem via Frobenius in characteristic p can be
restated as follows: let (R,m) be a regular local ring of characteristic p and I be an
ideal. Then

lcdR(I) = dim(R)− F -depth(R/I).

(Compare also the corresponding statement in characteristic zero, Theorem 4.12).9
In general, F -depth(A) can be different from depth(A) as shown in the following

example (cf. [183, §5]).

Example 3.50 Let k be a perfect field of characteristic p and let C ⊆ P
2
k

denote the
Fermat curve defined by x3 + y3 + z3. Let R = k[x0, . . . , x5] and I ⊆ R be the
defining ideal of C × P

1
k
⊆ P

5
k
. Set A = (R/I)m where m = (x0, . . . , x5).
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If 3 | (p − 2), then

F -depth(A) = 3 > 2 = depth(A).

See also Example 4.2. 9
Since F -finite F -modules have finite length in the category of F -modules, it is

natural to ask whether one can compute the length, especially for local cohomology
modules. It turns out that F -module length of local cohomology modules is closely
related to singularities defined by the Frobenius, and Lyubeznik’s functor HR,A is a
useful tool for studying this length. To illustrate this, let R be a regular local ring of
characteristic p. That HR,A sets up a link between the length of H ht(I )

I (R) and the
singularities of A = R/I was first discovered in [40]; this was later extended and
strengthened in [157] as follows, see also [36]

Theorem 3.51 Let R = k[[x1, . . . , xn]] (or R = k[x1, . . . , xn]), and set m =
(x1, . . . , xn). Let A = R/I be a reduced and equidimensional (and graded, if R =
k[x1, . . . , xn]) ring of dimension d � 1. Let c denote the number of minimal primes
of A.

(1) If A has an isolated non-F -rational point at m and k is separably closed, then

�FR (H
n−d
I (R)) = dimk(H

d
m(A)st)+ c.

(2) If the non-F -rational locus of A has dimension � 1 and k is separably closed,
then

�FR (H
n−d
I (R)) �

∑

dim(A/p)=1

dimκ(p)(H
d−1
pÂp

(Ap)st)+ dimk(H
d
m(A)st)+ c,

(3) If A is F -pure, then �FR (H
n−d
I (R)) is at least the number of special primes of

Hdm(A). Moreover, if A is F -pure and quasi-Gorenstein, then �FR (H
n−d
I (R))

is precisely the number of special primes of Hdm(A).

It remains an open problem whether one can extend Theorem 3.51 to the case of
a higher dimensional non-F -rational locus.

Recently, in [10], Àlvarez Montaner, Boix and Zarzuela computed �F (H
j
I (R))

and �D(H
j
I (R)) when R is a polynomial ring over a field and I is generated by

square-free monomials and pure binomials (i.e. I is a toric face ideal).

3.3 Interaction Between D-Modules and F -Modules

In characteristic p, the theories of D-modules and F -modules are entwined; it has
been fruitful to consider local cohomology modules from both perspectives.
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Remark 3.52 Let k be a field of characteristic p and let R = k[x1, . . . , xn] or
R = k[[x1, . . . , xn]]. It is clear from the definition that, if (M, θ) is an F -module,
the map

αe : M θ−→ FR(M)
FR(θ)−−−→ F 2

R(M)
F 2
R(θ)−−−→ · · · −→ FeR(M)

induced by θ is also an isomorphism.
This induces a D = D(R,k)-module structure onM . To specify the induced D-

module structure, it suffices to specify how ∂ [i1]1 · · · ∂ [in]n acts on M . Choose e such
that pe � (i1 + · · · + in)+ 1. Given z ∈ M , we consider αe(z) and we will write it
as
∑
rj ⊗ zj with rj ∈ Fe∗R and zj ∈ M . Then define

∂
[i1]
1 · · · ∂ [in]n · z := α−1

e (
∑
∂
[i1]
1 · · · ∂ [in]n rj ⊗ zj );

that this is legal is due to a simplification in the product rule in characteristic p:
(xpg)′ = xp(g)′.

Therefore, every F -module is also a D-module. 9
When R = k[x1, . . . , xn] with its standard grading, the D-module structure on

each graded F -module as in Remark 3.52 is also graded. Moreover, [204] proves
the following:

Theorem 3.53 Let R = k[x1, . . . , xn]. Every graded F -module is an Eulerian
graded D-module.

Since every F -module is a D-module, given an F -finite F -module M , one may
compare �F (M) and �D(M). A quick observation is that, since each filtration ofM
in F is also a filtration in D, one always has

�F (M) � �D(M).

It turns out that this inequality can be strict.

Theorem 3.54 (Proposition 7.5 in [157]) Let p be a prime number such that
7 | (p − 4). Let R = Fp[x, y, z, t] and f = tx7 + ty7 + z7. Then

�F (H
1
(f )(R)) = 3 < 7 = �D(H 1

(f )(R)).

On the other hand, the equality holds when hypotheses are added:

Theorem 3.55 Let R, I,A be as in Theorem 3.51. If A has an isolated non-F -
rational point at m and k is separably closed, then

�F (H
n−d
I (R)) = �D(Hn−dI (R)).
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F -modules and D-modules are deeply connected via a generating property. The
following is a special case of [9, Corollary 4.4].

Theorem 3.56 Let k be a field of characteristic p such that [k : kp] < ∞ and
let R = k[x1, . . . , xn] or R = k[[x1, . . . , xn]]. Let M be an F -finite F -module.
If z1, . . . , zt ∈ M generate a root of M , then z1, . . . , zt ∈ M generate M as a
D-module.

Theorem 3.56 plays a crucial role in proving that 1/g generates Rg as a D-
module in [9], and also in proving the finiteness of associated primes of local
cohomology of smooth Z-algebras in [27].

4 Local Cohomology and Topology

In this section we discuss the interaction of local cohomology with various themes
of topological flavor. The interactions can typically be seen as a failure of flatness
in some family witnessed by specific elements of certain local cohomology.

We start with a classical discussion of the number of defining equations for a
variety, then elaborate on the more recent developments that originate from this
basic question. We survey interactions with topology in characteristic zero, and with
the Frobenius map in positive characteristic. We discuss a collection of applications
of local cohomology to various areas: hypergeometric functions, the theory of
Milnor fibers, the Bockstein morphism from topology. We close with a discussion
on a set of numerical invariants based on local cohomology modules introduced by
Lyubeznik.

4.1 Arithmetic Rank

The main object of interest here is described in our first definition.

Definition 4.1 The arithmetic rank araA(I) of the A-ideal I is the minimum
number of generators for an ideal with the same radical as I :

araA(I) = min{� ∈ N | ∃x1, . . . , x� ∈ A,
√
I = √

(x1, . . . , x�)}.

Here,
√− denotes the radical of the given ideal. 9

The arithmetic rank of an ideal has been of interest to algebraists for as long as
they have looked at ideals. In a polynomial ring over an algebraically closed field
it answers the question by how many hypersurfaces the affine variety defined by
I is cut out. The problem of finding this number has a long history that is detailed
excellently in [173, 181]. Some ground-breaking contributions before the turn of the
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millennium included [49, 67, 96, 97, 124, 174, 213, 220, 268], and [162] contains a
gentle introduction to the problem.

4.1.1 Some Examples and Conjectures

Local cohomology is sensitive to arithmetic rank and relative dimension. Indeed, it
follows from the Čech complex point of view that

max{k ∈ N | HkI (A) �= 0} = lcdA(I) � araA(I),

while a standard theorem in local cohomology asserts that

min{k ∈ N | HkI (A) �= 0} = depthA(I,A),

where depthA(I,M) is the length of the longest M-regular sequence in I . If A is a
Cohen–Macaulay ring, depthA(I,A) is the height of the ideal.

There are examples where the arithmetic rank exceeds the local cohomological
dimension, but it is often not easy to verify this since the determination of lcdA(I)
and araA(I) is tricky.

Example 4.2

(1) LetE be an elliptic curve over any field of characteristic p > 0, and consider the
Segre embeddingE×P1

K
↪→ P

5
K

. The curveE is supersingular if the Frobenius
acts as zero on the one-dimensional space H 1(E,OE). It is known that if E is
defined over the integers then there are infinitely many p for which the reduction
Ep is supersingular [71], and infinitely many primes for which it is ordinary. For
example, for E = Var(x3 + y3 + z3), supersingularity is equivalent to p − 2
being a multiple of 3. By [124, Ex. 3], the local cohomological dimension of
the ideal defining E × P

1
K

in P
5
K

equals three if and only if E is supersingular
(and it is 4 otherwise). However, by [280], the arithmetic rank is always four,
independently of supersingularity (and even in characteristic zero).

(2) Let I ⊆ R = C[x11, x12, x13, x21, x22, x23] be the ideal describing the
image of the second Veronese map from P

2 to P
5 over the complex numbers.

Then lcdR(I) = 3 = ht(I ). On the other hand, as will be discussed in
Example 4.10, the arithmetic rank of I is 4, not 3. The underlying method, de
Rham cohomology, is the topic of Sect. 4.2. Replacing de Rham arguments with
étale cohomology, similar results hold in prime characteristic, Example 4.14.
This is an example where the étale cohomological dimension of the projective
complement U surpasses the sum of the dimension and the cohomological
dimension, ecd(U) = 6 > 2 + 3 = cd(U) + dim(U), compare also the
discussion around Conjecture 4.13. 9
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Finding the arithmetic rank in concrete cases can be extremely difficult; some of
the long-standing open problems in this area include general questions about “large”
ambient spaces, but also about concrete curves:

• Hartshorne’s conjecture ([97]: If Y = Proj(R/I) is a smooth s-dimensional
subvariety of P

n
C

, and s > 2n
3 , is then Y a global complete intersection (i.e.,

is Y the zero set of codim(Y ) many projective hypersurfaces that, at each point
of Y , are smooth and meet transversally)?

• Is the Macaulay curve in P
3
K

, parameterized as {(s4, s3t, st3, t4)}s/t∈P1
K

, a set-
theoretic complete intersection (i.e., does the defining ideal have arithmetic rank
2, realized by homogeneous generators)?
This question is specific to characteristic zero, as in prime characteristic p,
Hartshorne proved in [100] that the Macaulay curve is a set-theoretic complete
intersection for each p.

The (degree 5) Plücker embedding of the (6-dimensional) Grassmann variety
GrC(2, 5) of affine C-planes in C

5 into P
9
K

is not contained in a hyperplane, so
Bezout’s Theorem indicates that we are not looking at a complete intersection.
Thus, the factor 2/3 in the Hartshorne Conjecture is, in a weak sense, optimal.
Asymptotically, the coefficient must be at least 1/2, but Hartshorne writes in [97]: “I
do not know any infinite sequences of examples of noncomplete intersections which
would justify the fraction of the conjecture as n→∞”. On the other hand, even less
is known when dim(Y ) is small. For example, scores of articles have been devoted
to the study of monomial curves in P

3
C

; in larger ambient spaces [303] contains a
criterion for estimating arithmetic rank in terms of ideal transforms, the functors
lim−→�

Ext•A(I �,−).
Some of the major vanishing theorems in local cohomology came out of an

unsuccessful attempt to use local cohomology in order to show that certain curves
in P

3
K

cannot be defined set-theoretically by two equations. For example, let I ⊆
R = K[x1, . . . , x4] define an irreducible projective curve. In order for the arithmetic
rank of I to be 2, H 3

I (R) and H 4
I (R) should both be zero. That H 4

I (R) vanishes
follows from the Hartshorne–Lichtenbaum theorem. That H 3

I (R) is also always
zero is the Second Vanishing Theorem discussed in Sect. 2.2, in its incarnations
due to Ogus, Peskine–Szpiro, Hartshorne, and Huneke–Lyubeznik. In particular,
the desired obstruction to araA(I) = 2 cannot not materialize, but the attempt led to
the discovery of the Second Vanishing theorem.

On the positive side, Moh proved in [195] that in positive characteristic every
monomial curve in P

3
K

is defined set-theoretically by two binomials; compare also
[51, 56, 77, 100, 231]. The construction of the two binomials uses heavily the
Frobenius and, as one might expect, the equations that work in one characteristic
do not work in another [41]. In characteristic zero, Kneser proved that a curve in P

3
K

is cut out by three equations if it has a K-rational point, and monomial space curves
are cut out by three binomials by [41], but nothing better is known at this point.

There is recent progress on arithmetic rank and local cohomological dimension
in toric and monomial situations.
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In [297], Varbaro shows that if X is a general smooth hypersurface of projective
n-space of degree less than 2n then the arithmetic rank of the natural embedding
of the Segre product of X with a projective line is at most 2n. This generalizes an
observation that appeared in [280] where X is an elliptic curve. Moreover, Varbaro
continues, if X is a smooth conic in the projective plane then its Segre product with
projective m-space has arithmetic rank exactly 3m, as long as the characteristic is
not 2.

Toric varieties, by which we mean here the spectra of semigroup rings K[S]
where S ⊆ Z

d is a finitely generated semigroup, provide a standard testing ground
for theories and conjectures. Note that, for example, the Macaulay curve falls into
this category.

Barile and her coauthors have studied the question whether a toric variety is a
complete or almost complete intersection in [21, 22, 43, 44]. Building on this, [23]
shows that certain toric ideals of codimension two are not complete intersections,
and that their arithmetic rank is equal to 3. The combinatorial condition with
arithmetic flavor of being p-glued has been shown to be pertinent here. A semigroup
can be p-glued for exactly one prime p, [38]. That such examples might be possible
is explained in part by the fact that the depth of the semigroup ring may depend on
the chosen characteristic: Hochster’s theorem from [118] indicates for example how
Cohen–Macaulayness can toggle with p.

Monomial ideals and their local cohomology have been studied by Àlvarez-
Montaner and his collaborators, see [196] for notes to a lecture series. At the
heart of this work stands the Galligo–Granger–Maisonobe correspondence between
perverse sheaves and hypercubes detailed in [82]. Morally, this is similar to the
quiver encoding from Sect. 3.1.2 and will receive a second look in Sect. 4.4; compare
specifically [7] on the category of regular holonomic D-modules with support on a
normal crossing divisor and variation zero, and [11].

In [278] a technique is given how to find generators (up to radical) for ideals
that are intersections of ideals with given generators. Application to monomial
ideals relates to systematic search for the arithmetic rank of certain intersections,
compare [20]. Goresky and MacPherson noted in [86, 141] a formula on the singular
cohomology of the complement of a complex subspace arrangement. The article
[316] generalizes the formula to subspace arrangements over any separably closed
field using étale cohomology and sheaf theory. These results are then applied to
determine the arithmetic rank of monomial ideals. In [315], Yan studies a question
of Lyubeznik on the arithmetic rank of certain resultant systems and again uses étale
cohomology to get some lower bounds. More recently, Kimura and her collaborators
have produced a wealth of new information on arithmetic rank of monomial ideals,
cf. [156] and its bibliography tree.

4.1.2 Endomorphisms of Local Cohomology

As always, (A,m,k) is a Noetherian local ring and a an ideal ofA. In this subsection
we discuss some challenges that have arisen in the last two decades, connecting the
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question of finding the arithmetic rank to problems about D-modules, with the focus
on the question of determining whether a given ideal be a complete intersection.

We recall that the local cohomologcal dimension lcdA(a) is a lower bound for the
arithmetic rank araA(a) and that the two invariants may not be equal, Example 4.2.
Nonetheless, as work primarily of Hellus and Stückrad shows, local cohomology
modules contain information that can lead to the determination of arithmetic rank.
However, decoding it successfully is at this point a serious challenge.

The story starts with a result of Hellus from [103]. Denote E = EA(k) the
injective hull of the residue field. Suppose f1, . . . , fc are elements of a, and write for
simplicity bi for the A-ideal generated by f1, . . . , fi . Assuming that lcdA(a) = c,
Hellus showed that these elements generate a up to radical if and only if fi operates
surjectively on Hc+1−i

a (A/bi−1) for 1 � i � c. This has the following corollary
pertaining to set-theoretic complete intersections: if f1, . . . , fc is an A-regular
sequence (in our situation this means that Hia(A) = 0 unless i = c), then the
sequence generates a up to radical if and only if they form a regular sequence on
D(Hca(A)) where, as before,

D(M) := HomA(M,E)

is the Matlis dual. This is discussed from a new angle in [122]
This motivates (when only oneHia(A) is nonzero) the study of the multiplication

operators fi : D(Hca(A)) −→ D(Hca(A)), and in particular the associated primes
of D(Hca(A)). In fact, Hellus offers the following conjecture: if (A,m,k) is local
Noetherian,

Is AssA(D(H
i
bi
(A))) = {p ∈ SpecA | Hibi (A/p) �= 0} ? (4.1.2.1)

(One always has the inclusion ⊆ above, and in the equi-characteristic case,
the set {p ∈ Spec(A) | f1, . . . , fi is part of an s.o.p. for A/p} is contained in
AssA(D(Hibi (A)))—but this may not be an equality. In mixed characteristic, a
similar statement can be made). Hellus proceeds to show that this conjecture is
equivalent to AssA(D(Hibi (A))) being stable under generalization, and also gives
the following reformulation:

Problem 4.3 For all Noetherian local domains (A,m,k) and for all f1, . . . , fc ∈
A, show that the nonvanishing of Hi(f1,...,fi )

(A) implies that the zero ideal is

associated to D(Hi(f1,...,fi )
(A)). 9

Remark 4.4 A significant part of Problem 4.3 was resolved positively in [170].
Namely, if R is a regular Noetherian local ring of prime characteristic, then
AssR(D(HiI (R))) contains {0}, as long as HiI (R) is nonzero. In fact, it is shown for
all F -finite F -modulesM that {0} has to be associated to at least one ofM,D(M).
The proof is an explicit construction of an element that is not torsion.
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Motivated by their work in prime characteristic, they conjectured in [170,
Conjecture 1] that, if (R,m) is a regular local ring and I is an ideal such that
HiI (R) �= 0, then (0) ∈ AssR(D(HiI (R))). 9
Remark 4.5 Let R = Z2[[x0, . . . , x5]] and let I be the monomial ideal as in
Example 2.23. It follows from [65, Remark 5.3] that the arithmetic rank of I is
4; equivalently there are f1, . . . , f4 ∈ R such that H 4

I (R) = H 4
(f1,...,f4)

(R). By [65,

Proposition 5.5],H 4
I (R)

∼= ER̄(R̄/m)), where R̄ = R/(2) and m = (2, x0, . . . , x5).
Hence

D(H 4
(f1,...,f4)

(R)) = D(H 4
I (R))

∼= R̄.

Consequently the zero ideal is not associated to D(H 4
(f1,...,f4)

(R)). This answers
Hellus’ question in Problem 4.3 in the negative for unramified regular local rings of
mixed characteristic, and provides a counterexample to the conjecture of Lyubeznik
and Yildirim in mixed characteristic. 9

In [105], an example is given where arithmetic rank and local cohomological
dimension differ. What is special here is that lcdA(a) = 1; Hellus gives a criterion
for the arithmetic rank to be one, based on the prime avoidance property of
AssA(D(H 1

a(A))). In the same year and journal [104], he shows for Cohen–
Macaulay rings the curious identity Hca(D(H

c
a(R))) = D(R), provided that c =

lcdA(a) is also the grade of a. This was subsequently generalized in [152].
In [129], Hellus and Stückrad continue their study of associated primes of, and

regular sequences on, D(Hca(A)). They show that Hm(f1,...,fm)
(A) always surjects

onto Hm+n(f1,...,fm,g1,...,gn)
(A) for m > 0 and derive from this some insights about

the inclusion (4.1.2.1), and about Problem 4.3 when A is a complete domain
and a a 1-dimensional prime. In [127] the same authors show that in a complete
local ring, when a has the local cohomological behavior of a complete interection
(i.e., Hia(A) = 0 unless i = c), then the natural map A −→ EndA(Hca(A))
is an isomorphism. (In general, this map is not surjective and has a kernel). In
particular, no element of A annihilates Hca(A). By results mentioned above, this
means that if a behaves local cohomologically like a complete intersection and if
f1, . . . , fc is an A-regular sequence in a, then D(Hca(D(H

c
a(A)))) is an ideal of A

which, if computable, predicts whether a is a complete intersection. For more on
EndA(Hca(A)), see [153, 251, 253, 254].

In [128] it is investigated which ideals behave like a complete intersection from
the point of local cohomology, by establishing relations to iterated local cohomology
functors which then lead to Lyubeznik numbers (see Sect. 4.4). For example, if
a = (f1, . . . , fc) is an ideal of dimension d in a local Gorenstein ring, and if
a is a complete intersection outside the maximal ideal, then [Hia(A) = 0 unless
i = c] precisely when [Hdm(H

c
a(A)) = EA(k) and Him(H

c
a(A)) = 0 for i �= d].

In particular, the complete intersection property of a is then completely detectable
from Hca(A) alone. A new version of some of these ideas is given in a recent work
of Hartshorne and Polini, who introduce and investigate coregular sequences and
codepth in [122].



824 U. Walther and W. Zhang

4.2 Relation with de Rham and étale Cohomology

4.2.1 The Čech–de Rham Complex

Suppose I ⊆ RK := K[x1, . . . , xn] is generated by f1, . . . , fm and assume that K
is a field containing Q. The finitely many coefficients of f1, . . . , fm all lie in some
finite extension field k of Q, and because of flatness one has HiI (K[x1, . . . , xn]) =
HiIk
(k[x1, . . . , xn]) ⊗k K, where Ik = (f1, . . . , fm)Rk = I ∩ Rk with Rk =

k[x1, . . . , xn].
The finite extension k can be embedded into C and then, by flatness again,

HiI (C[x1, . . . , xn]) = HiIk(k[x1, . . . , xn])⊗k C. It follows that most aspects of the
behavior of local cohomology in characteristic zero can be studied over the complex
numbers.

Convention 4.6 In this subsection, k = C and I is an ideal of R = C[x1, . . . , xn].
The advantage of working over C is that one has access to topological notions and
tools. 9

The arithmetic rank of the ideal I is the smallest number of principal open affine
sets Uf that cover the complement UI = C

n \ Var(I ). Any Uf arises also as the
closed affine set defined by f · x0 = 1 inside C

n × C
1
x0

.
Complex affine space as well as all its Zariski closed subsets are Stein spaces.

This is a complex analytic condition that includes separatedness by holomorphic
functions, and a convexity condition about compact sets under holomorphic func-
tions. It implies, among other things, that a Stein space of complex dimension n has
the homotopy type of an n-dimensional CW-complex. In particular, a Stein space
S of complex dimension n cannot have singular cohomology HiSing(S;−) beyond
degree n. That complex affine varieties have this latter property is the Andreotti–
Frankel Theorem. (For example, a Riemann surface is Stein exactly when it is not
compact). In the “spirit of GAGA”, [256, 257], Stein spaces are the notion that
corresponds to affine varieties.

Now consider the complement UI = Uf1 ∪ · · · ∪ Ufm of the variety Var(I ).
It follows from the Mayer–Vietoris principle that HiSing(U ;−) = 0 for all i >
n+m− 1 and all coefficients. Being Stein is not a local property:

Example 4.7 Let I = (x, y) ⊆ C[x, y]. Then UI is homotopy equivalent to the
3-sphere and in particular cannot be Stein. 9

The Čech complex on a set of generators for I is always a complex in the category
of D-modules. Let ϕ : X −→ Y be a morphism of smooth algebraic varieties.
We refer to [132] for background and details on the following continuation of the
discussion on functors on D-modules in Sect. 3.

There are (both regular and exceptional) direct and inverse image functors
between the categories of bounded complexes of D-modules on X and Y . These
functors preserve the categories of complexes with holonomic cohomology. In
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particular, one can apply them to the structure sheaf, or to local cohomology
modules and Čech complexes.

If ι : U ↪→ X is an open embedding andM a DU -module, then the direct image
ofM under ι as D-module agrees with the direct image as O-module. For example,
in both categories there is an exact triangle

R�X\U(−) −→ id −→ ι∗((−)|U) +1−→ .

Let X = C
n and choose ϕ : X −→ Y be the projection to a point Y . Write

ωX = DX/(∂1, . . . ∂n) ·DX;

this gives the canonical sheaf of the manifold X a right DX-structure in a functorial
way. Then under ι : U ↪→ X, OU turns into a complex of sheaves that is represented
on global sections by the Čech complex on generators of the ideal I = (f1, . . . , fm)

describing X \ U . The D-module direct image under ϕ corresponds to the functor
ωX ⊗LDX (−) whose output is a complex of vector spaces. Applying this functor to

the Čech complex for I invites the inspection of a Čech–de Rham spectral sequence
starting with TorDX• (ωX,H

•
I (OX)). With R = �(X,OX), ωR = �(X,ωX), and

D = �(X,DX), the Grothendieck Comparison Theorem [89] asserts that on global
sections, the abutment of the spectral sequence is the reduced de Rham cohomology
of U ,

E
i,j

2 = TorDn−j (ωR,H iI (R))⇒ H̃
i+j−1
dR (U ;C). (4.2.1.1)

We note in passing that there are algorithmic methods that can compute the pages
of this spectral sequence as vector spaces over C, see [214, 215, 307, 308]. In the
sequence (4.2.1.1), the Tor-groups involved vanish for the index exceeding dimX,
and so the spectral sequence operates clearly inside the rectangle 0 � i � lcdR(I),
0 � j � n. However, it is actually limited to a much smaller, triangular region,
compare [239].

This now opens the door to direct comparisons between local cohomology groups
of high index and singular cohomology groups of high index; the de Rham type
arguments in the following example are written down in [123, 168], but are folklore
and were known to the authors of [213] and [98]. For example, Theorem 2.8 in
[213] shows that in a regular local ring R over Q with closed point p, the vanishing
of local cohomology HjI (R) for all j > r implies the vanishing of the local de
Rham cohomology groups Hip(Spec(R/I)) for all i < dim(R) − r (and is in fact

equivalent to it if one already knows that the support ofHjI (R) is inside p for j > r).

Example 4.8 We continue Example 2.14 with K = C. The open set U = C
6 \

Var(I ) consists of the set of 2 × 3 complex matrices of rank two. The closed set
V = Var(I ) is smooth outside the origin, as one sees from the GL(2,C)-action.
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Since dim(R/I) = 4, the height of I is 2 and so H 2+1
I (R) must be, if nonzero,

supported at the origin only, by Remark 1.4.
Since H 3

I (R) is also a holonomic D-module, D being the ring of C-linear
differential operators on R, Kashiwara equivalence ([132, §1.1.6]) asserts that
H 3
I (R) is a finite direct sum of λ copies of E, the R-injective hull of the residue

field at the origin. The number λ can be evaluated as follows.
Since I is 3-generated, H>3

I (R) = 0 and the Čech–de Rham spectral sequence
shows that Hi(U ;C) vanishes for i > 6 + 3 − 1 = 8. Moreover, an easy exercise
shows that TorDn−j (ωR,E) = 0 unless j = 0, and in that case returns one copy of
C so that the only possibly nonzero E2-entry in the spectral sequence (4.2.1.1) in
column 3 is the entry E3,6

2 = C
λ. The workings of the spectral sequence make it

clear that all differentials into and out of position (3, 6) on all pages numbered 2
and up vanish. So, Cλ = E3,6

2 = E3,6∞ = H 8(U ;C). We now compute this group
explicitly via the following argument taken from Mel Hochster’s unpublished notes
on local cohomology.

Let A be a point of U , representing a rank two 2 × 3 matrix. Consider the
deformation that scales the top row to length 1, followed by the deformation (based
on gradual row reduction) that makes the bottom row perpendicular to the top row
and then scales it to length 1 as well. Then the top row varies in the 5-sphere,
and for each fixed top row the bottom row varies in a 3-sphere. Let M be this
retract of U and note that, projecting to the top row, it is the total space of an
S3-bundle over S5. Both base and fiber are orientable, and the base is simply
connected. Thus,M is an orientable compact manifold of dimension 8 which forces
1 = dimCH

8(M;C) = dimCH
8(U ;C) = λ. 9

Remark 4.9 Already Ogus proved in [213] results that relate the local cohomology
module H 3

I (R) of Example 4.8 to topological information. We discuss this in and
after Theorem 4.12 below. In brief, the non-vanishing of H 3

I (R) is “to be blamed”
on the failure of the restriction map H 2

dR(P
5
C
) −→ H 2

dR(Y ) to be surjective. Here, Y
is the image of the Segre map and dimC(H

2
dR(Y )) = dimC(H

2
dR(P

1
K
× P

2
K
)) = 2 by

the Künneth theorem. 9
Example 4.10 (Compare [213, Exa. 4.6]) Let ι : P2

C
↪→ P

5
C

be the second Veronese
morphism, denote the target by X, the image by Z and write U := X \ Z. There is
a long exact sequence of singular (local) cohomology

H
p
Z (X;−) −→ Hp(X;−) −→ Hp(U ;−) +1−→

and a natural identification HpZ (X;−) ∼= (H
2 dimX−p
c (Z;−))∨ with compactly

supported cohomology, for any coefficient field, compare [140, §6.6]. Via Poincaré
duality, this allows to identify the map HpZ (X;−) −→ Hp(X;−) as the dual to
H2 dimX−p(Z;−) −→ H2 dimX−p(X;−). Now take Z/2Z as coefficients. Then,
since ι∗ sends the generator of H 2(X;Z) to twice the generator of H 2(Z;Z),
the long exact sequence shows that H 8(U ;Z/2Z) is nonzero. Thus, U cannot be
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covered by three affine sets and araA(I) � 4. (In fact, araA(I) = 4 as one finds
easily from experiments). 9

4.2.2 Algebraic de Rham Cohomology

In [98], Hartshorne defines and develops for (possibly singular) schemes over
a field of characteristic zero a purely algebraic (co)homology theory that he
connects to singular cohomology via comparison theorems. In a nutshell, the de
Rham cohomology HqdR(Y ) of Y embedded into a smooth scheme X is the q-
th hypercohomology on X of the de Rham complex on X, completed along Y .
Similarly, the de Rham homology Hq(Y ) of Y is the (2 dim(X)− q)-th local hyper-
cohomology group with support in Y of the de Rham complex onX. (We add here a
pointer to Remark 3.12). Hartshorne develops many tools of singular (co)homology:
Mayer–Vietoris sequences, Thom–Gysin sequences, Poincaré duality, and a local
(relative) version. With it, he shows foundational finiteness as well as Lefschetz
type theorems.

One of the most remarkable applications of his theory as it relates to local
cohomology is worked out in the thesis of Ogus, and based on the following
definition.

Definition 4.11 ([213, Dfn. 2.12]) Let Y be a scheme over a field of characteristic
zero. The de Rham depth dR-depth(Y ) of Y is the greatest integer d such that for
every point y ∈ Y (closed or not) one has

Hiy(Y ) = 0 for i < d − dim({y}).
9

This number never exceeds the dimension of Y as one sees by looking at a
closed point y. Ogus uses it in the following fundamental result; we point here
at Remark 3.49 for the corresponding result in positive characteristic and note the
formal similarities both of de Rham and F -depth, and the corresponding results on
local cohomological dimension.

Theorem 4.12 ([213, Thm. 2.13]) If Y is a closed subset of a smooth Noetherian
scheme X of dimension n over a field k of characteristic zero, then for each d ∈ N

one has

[lcd(X, Y ) � n− d] ⇔ [dR-depth(Y ) � d].
In particular, if Y = Spec(R/I) for some regular k-algebra R then n− lcdR(I) =
dR-depth(Y ) is intrinsic to Y and does not depend on X.

Now let Y be a projective variety over the field k of characteristic zero, embedded
into P

n
k
. Let R be the coordinate ring of P

n
k

and I the defining ideal of Y ; of
course, these are not determined by Y . Then Ogus obtains in [213, Thm. 4.1] the
equivalences
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[lcd(Pn
k
, Y ) � r] ⇔ [SuppR(H

i
I (R)) ⊆ m for i > r]

⇔ [dR-depth(Y ) � n− r].

In particular, for any such embedding, the smallest integer r such that H>rI (R) is
Artinian is intrinsic to Y .

One might wonder whether a similar result holds for lcd(R, I ) itself. With the
same notations as in the previous theorem, Ogus proves in [213, Thm. 4.4]:

[cd(Pn
k
� Y ) < r]

(that is, lcd(R, I ) � r) is equivalent to

[
[dR-depth(Y ) � n− r] and [HidR(P

n
k
)	 HidR(Y ) for i < n− r]

]
.

Note that these restriction maps are always injective, and surjectivity is preserved
under Veronese maps.

4.2.3 Lefschetz and Barth Theorems

Let X ⊆ P
n
C

be a projective variety and H ⊆ P
n
C

a hyperplane. Setting Y = X ∩H ,
the Lefschetz hyperplane theorem states that under suitable hypotheses the natural
restriction map

ρiX,Y : Hi(X;C) −→ Hi(Y ;C) (4.2.3.1)

is an isomorphism for i < dim(Y ) and injective for i = dim(Y ). In the original
formulation by Lefschetz, X is supposed to be smooth and H should be generic
(which then entails Y being smooth). Inspection showed that the relevant condition
is that the affine schemeX\Y be smooth, since then the relative groupsHi(X, Y ;C)
are zero in the required range.

It is clear that one can iterate this procedure and derive similar connections
between the cohomology of X and the cohomology of complete intersections on
X that are well-positioned with respect to the singularities of X. (Recall that any
hypersurface section can be cast as a hyperplane section via a suitable Veronese
embedding of X).

A rather more difficult problem is to establish connections when Y is not a
complete intersection. At the heart of the problem is the issue that in general X \ Y
will not be affine and thus might allow more complicated cohomology.

In [18], Barth developed theorems that connect, for Y ⊆ P
n
C

smooth (and of
small codimension), the surjectivity of ρi

P
n
C
,Y

to the surjectivity of corresponding

restrictions ρi
P
n
C
,Y
(F) of coherent sheaves F and hence to the cohomological

dimension of P
n
C
\ Y and the arithmetic rank of the defining ideal of Y . More
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precisely, he proved that surjectivity of ρi
P
n
C
,Y
(F) occurs for i � 2 dim(Y ) − n

and proved for F = OP
n
C

that surjectivity of ρi
P
n
C
,Y
(F) is equivalent to surjectivity

of ρi
P
n
C
,Y

in the sense of Eq. (4.2.3.1) above. As a corollary, he obtained a more

general form of the Lefschetz Hyperplane Theorem: if Pn
C
⊇ X, Y are smooth with

dim(X) = a, dim(Y ) = b then

ρiY,X∩Y : Hi(Y ;C) −→ Hi(X ∩ Y ;C)

is an isomorphism for i � min(2b − n, a + b − n − 1). It is worth looking at the
special case when X is the ambient projective space. For i = 0 the theorem then
generalizes the fundamental fact that a smooth subvariety of pure dimension a is
connected whenever 2a � n. But it also gives obstructions for embedding varieties
into projective spaces of given dimension, since it forces the singular cohomology
groups Hi(Y ;C) to agree with those of Pn

C
in the range i � 2 dim(Y ) − n. For

example, an Abelian variety Y of dimension b cannot be embedded in Y = P
2b−1
C

since with such embedding the map H 1(P2b−1;C) −→ H 1(Y ;C) should be
surjective.

Barth uses the special unitary group action on P
n
C

to “spread” the classes on
Y to classes on P

n
C

near Y . In order to glue them, he then needs a suitable
cohomological triviality of the complement of Y . In [213], Ogus gives an algebraic
version of Barth’s transplanting technique, and succeeds (in his Sect. 4) in proving
various statements that connect the isomorphy of the restriction maps of de Rham
cohomology of two schemes X ⊆ Y ⊆ P

n
k

to the de Rham depths of X, Y and
X � Y .

In [268], Speiser studies in varying characteristics the cohomological dimension
of the complement CY of the diagonal in Y ×Y . As a stepping stone he studies CP

n
K

for arbitrary fields. In any characteristic, the diagonal scheme is the set-theoretic
intersection of 2n − 1 very ample divisors. However, a big difference appears for
cohomological dimension: cd(CP

n
K
) = 2n− 2 when Q ⊆ K, but cd(CP

n
K
) = n− 1

in positive characteristic. The discrepancy is due to the Peskine–Szpiro Vanishing
since the diagonal comes with a Cohen–Macaulay coordinate ring.

In characteristic zero, Speiser’s results imply that the diagonal of projective space
is cut out set-theoretically by 2n−1 and no fewer hypersurfaces. More generally, for
Cohen–Macaulay Y , he shows in [268, Thm. 3.3.1] a similar vanishing result about
CY in positive characteristic over algebraically closed fields: the cohomological
dimension of Y × Y \ � is bounded by 2n − 2 whenever Y ⊆ P

n is a Cohen–
Macaulay scheme of dimension s � (n+ 1)/2.

4.2.4 Results via étale Cohomology

Suppose U is an open subset of affine space X = C
n whose closed complement

V = X \U is defined by the ideal I in the appropriate polynomial ring R. We have
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seen in (4.2.1.1) that the local cohomological dimension lcdR(I) is related to the de
Rham cohomology via the vanishing

[HidR(U ;C) = 0] whenever [i � lcd(I )+ n− 1 = cd(U)+ n]. (4.2.4.1)

We mention here a variant of this in arbitrary characteristic, involving étale
cohomology. This is a cohomology theory that interweaves topological data with
arithmetic information. We refer to [191, 193] for guidance on étale cohomology.

One significant difference to the de Rham case is that the basic version of étale
cohomology involves coefficients that are torsion (i.e., sheaves with stalk Z/�Z) of
order not divisible by p = ch(k).

In many aspects, over a separably closed field k, étale cohomology behaves
quite similar to de Rham or singular cohomology over the complex numbers. For
example, on non-singular projective varieties there is a version of Poincaré duality,
there is a Künneth theorem, and if a variety is defined over Z then its model over C
has singular cohomology group ranks equal to the corresponding étale cohomology
ranks of the reductions modulo p for most primes p.

The étale cohomology groups on a scheme X vanish beyond 2 dimX, and even
beyond dim(X) if X is affine, similar to the Andreotti–Frankel Theorem. So, it
makes sense to talk of étale cohomological dimension ecd(−), the largest index
of a non-vanishing étale cohomology group. The Mayer–Vietoris principle implies
that if V is a variety inside affine n-space X �= V over the algebraically closed field
k, cut out by the ideal I , then with U = X \ V one has

ecd(U) � n+ araA(I)− 1. (4.2.4.2)

Note that araA(I) � lcdR(I) = cd(U)+ 1.
In [181], Lyubeznik formulates the following conjecture.

Conjecture 4.13 Over a separably closed field k,

ecd(U) � dim(U)+ cd(U).

9
In this conjecture, U need not be the complement of an affine variety or even
smooth. Comparison with (4.2.4.1) shows that (for complements of varieties in
affine or projective spaces) the conjecture can be interpreted to say that étale
cohomology always provides a better lower bound for arithmetic rank than local
cohomological dimension does. At present, this conjecture seems wide open.
Varbaro shows in [297] that it holds over C in the case that U is the complement in
projective space Pn

C
\V of a smooth variety V with cd(Pn \V ) > codimPn(V )− 1.

Example 4.14 We continue Example 4.10. For K = C and all other field coeffi-
cients of characteristic not equal to 2, one has H 8(U ;K) = 0. Thus, we cannot
conclude that lcdR(I) � 4 in the way we concluded in Example 4.8. In fact, as
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Ogus [213, Exa. 4.6] proved, cd(U) = 2 (and so lcdR(I) = 3) and, in particular,
ecd(U) > dim(U)+ cd(U).

In finite characteristic different from 2, if one replaces “singular” by “étale”, the
same formal arguments as in Example 4.10 show that the arithmetic rank of the
defining ideal of the Plücker embedding is 4 while (since the coordinate ring is
Cohen–Macaulay) lcdR(I) = 3.

In characteristic 2, the arithmetic rank drops to 3 and the ideal is generated up
to radical by {txx tyy − txytxy, txxtzz − txztxz, tyytzz − tyztyz} since, for example,
txx tzz(txxtyy − txy txy)+ txy txy(txxtzz − txztxz)+ txx txx(tyytzz − tyztyz) = (txxtyz −
txy txz)

2 in characteristic 2. 9
Remark 4.15 In [297, Rmk. 2.13], Varbaro points out that Example 4.14 shows that
the étale cohomological dimension of the complement of an embedding of P2

k
into

P
5
k

depends on the embedding: for a subspace embedding it is at most 3+4 since the
subspace is covered by three affine spaces of dimension 5, but for the Veronese it is 8
(compare also [19] for arithmetic rank consequences that highlight variable behavior
in varying characteristic). This contrasts with his Theorem 2.4, which states that the
quasi-coherent cohomological dimension is independent of the embedding (intrinsic
to the given smooth projective subvariety).

Ogus proved in [213, Ex. 4.6] for any Veronese map of a projective space in
characteristic zero that the local cohomological dimension agrees with the height of
the defining ideal. In positive characteristic, the same follows from Peskine–Szpiro
[220, Prop. III.4.1]. In [216], Pandey shows that this is even true over the integers,
and by extension then over every commutative Noetherian ring. 9

Now, recall Speiser’s result from Sect. 4.2.3, on the arithmetic rank 2n − 1
of the diagonal of P

n
K
× P

n
K

. In [297] Varbaro shows that it remains true in
every characteristic as long as K is separably closed; note, however, that the
cohomological dimension of the complement is much smaller in finite characteristic,
always equal to n− 1. The main ingredient comes from Künneth theorems on étale
cohomology.

There are Lefschetz and Barth type results for étale cohomology. For example, in
[175, Prop 9.1], Lyubeznik proves the following: assume K to be separably closed,
of any characteristic, and pick two varieties Y ⊆ X withX \Y smooth. If ecd(U) <
2 dim(X) − r then Hiet(X,Z/�Z) −→ Hiet(Y,Z/�Z) is an isomorphism for i < r
and injective for i = r .

In the [297], Varbaro also investigates the interaction of étale cohomological
dimension with intersections: let K be an algebraic closed field of arbitrary
characteristic and let X and Y be two smooth projective varieties of dimension
at least 1. Set Z = X × Y ⊆ P

N
K

(any embedding) and U = PN \ Z. Then
ecd(U) � 2N − 3. In particular, if dimZ � 3 then Z cannot be a set-theoretic
complete intersection by (4.2.4.2).
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4.3 Other Applications of Local Cohomology to Geometry

4.3.1 Bockstein Morphisms

In this subsection we discuss a construction that originates (to our knowledge) in
topology but can, in principle, be used as a tool to study any linear functor in prime
characteristic.

For this we need the following concept. A collection of functors {F•} is a
covariant δ-functor (in the sense of Grothendieck) if for each short exact sequence
ofA-modules 0 −→ M ′ −→ M −→ M ′′ −→ 0 one obtains a functorial long exact
sequence

. . . −→ Fi (M ′) −→ Fi (M) −→ Fi (M ′′) −→ Fi+1(M ′) −→ · · ·

Now suppose that for some A-module M , multiplication by f ∈ A induces an

injection 0 −→ M
f−→ M

π−→ M/fM −→ 0. If F• is a covariant δ-functor that is

A-linear (i.e., each Fi is additive, and Fi (M
a·h−→ N) = Fi (M)

a·Fi (h)−→ Fi (N) for all
a ∈ A and all h ∈ HomA(M,N)) then there is an induced long exact sequence

· · · −→ Fi (M/fM)
δ

F,i
f−→ Fi+1(M)

f ·−→ Fi+1(M)
π

F,i+1
f−→ Fi+1(M/fM)

δ
F,i+1
f−→ · · ·

Now one can define a sequence of Bockstein morphisms

β
F,i
f : Fi (M/fM) −→ Fi+1(M/fM)

as the composition

β
F,i
f = πF,i+1

f ◦ δF,i
f .

Remark 4.16

(1) Clearly, f, i,F and the A/fA-module M/fM are ingredients of a Bockstein
morphism. However, while the notation does not indicate this, is also depends

on A and the avatar M
f−→ M for M/fM (or at least an infinitesimal avatar

0 −→ M/fM −→ M/f 2M −→ M/fM −→ 0). Bocksteins are not intrinsic
but arise from a specialization.

(2) It is possible to modify the constructions to include contravariant functors, or
A-modules N on which f acts surjectively.

9
The original version of a Bockstein morphism appeared in topology, where

A = Z, f is a prime number, M is an Abelian group without p-torsion, and F•
is singular homology (or cohomology) with coefficients M on a fixed space X.
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Generally, in this context there is a Bockstein spectral sequence that arises from
the short exact sequence of singular chains on X with coefficients in M,M and
M/pM respectively. It starts with E1

i,j = Hi+j (X;M/pM), the differential on the

E1-page is the Bockstein morphism, and it converges to the tensor product of Z/pZ
with the free part of Hi+j (X;M).

In [285], Bockstein maps were introduced and studied in local cohomology.
So, A is a Noetherian Z-algebra, I = (g = g1, . . . , gm) ⊆ A is an ideal, and
M is a p-torsion free A-module. In this setup there are several δ-functors F•
that arise naturally: the local cohomology functor Fi = HiI (−) with support in
I , the extension functors Fi = ExtiA(A/I

�,−), the Koszul cohomology functors
Fi = Hi(−;g). It is shown in [285] that in the same way that these three δ-
functors allow natural transformations, the three families of Bockstein morphisms
are compatible. Several examples are given, based (for example) on the arithmetic
of elliptic curves and on subspace arrangements.

One result of [285] states that when A is a polynomial ring over Z containing the
ideal I , then the Bockstein on H •I (R/pR) is zero except for a finite set of primes
p. On a more topological note, the same article investigates the interplay between
Bocksteins on local cohomology and those on singular homology in the context of
Stanley–Reisner rings. More precisely, let R = Z[x] be the Z

n-graded polynomial
ring on the vertices of the simplicial complex � on n vertices, and let m = (x)
be the graded maximal ideal. Hochster linked the multi-graded components of the
local cohomology H •m(M ⊗Z R/I) with the singular cohomology with coefficients
in M of a certain simplicial subcomplex of � determined by the chosen multi-
degree, [119]. Then [285] shows that the topological Bocksteins on these links are
compatible with the local cohomology Bocksteins via Hochster’s identification, and
that it behaves well with respect to local duality.

It follows easily from the definitions that the composition of Bocksteins βF,i+1
f ◦

β
F,i
f is zero; this is the origin of the Bockstein spectral sequence mentioned above.

Its ingredients are the Bockstein cohomology modules ker(βF,i+1
f )/ im(βF,i

f ). In

[225], this notion is used to study the extended Rees ringA[I t, t−1] of an m-primary
ideal in the local ring (A,m) as M , using t for f and F is the local cohomology
with support in m. The accomplishment consists in vanishing theorems for local
cohomology of the associated graded ring grI (A), extending earlier such results of
Narita, and Huckaba–Huneke [109, 208].

4.3.2 Variation of Hodge Structures and GKZ-Systems

Here we give a brief motivation ofA-hypergeometric systems and explain how local
cohomology of toric varieties enters the picture. We recommend [233, 271, 277] for
more detailed information and literature sources.
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Notation 4.17 Let {a1, . . . , an} = A ⊆ Z
d×n satisfy the following properties:

(1) the cone CA := R�0A spanned by the columns ofA inside Rd is d-dimensional
and its lineality (the dimension of the largest real vector space that it contains)
is zero;

(2) there exists a Z-linear functional

h : Zd −→ Z

such that h(aj ) = 1 for 1 � j � n;
(3) the semigroup NA :=∑n

j=1 Naj agrees with the intersection Z
d ∩ CA.

9
The graded (via h) semigroup ring

SA := C[NA]

gives rise to a projective toric variety YA ⊆ P
n−1
C

of dimension d − 1 and its cone
XA = Spec(SA) ⊆ C

n. They can be viewed as (partial) compactifications of the
(d − 1)-torus

T := HomZ(Z
d ,C∗)︸ ︷︷ ︸

=:T̃
/HomZ(Za0,C

∗),

and T̃ respectively, where a0 is a suitable element of Zd ∩ CA that induces h in the
sense that h(aj ) is the dot product 〈a0, aj 〉.

A global section FA,x ∈ �(YA,OYA(1)) is an element
∑

xj t
aj of the

Laurent polynomial ring C[t±1 , . . . , t±d ] that is equivariant under the action of
HomZ(Za0,C

∗). Its vanishing defines a hypersurface Zx inside T with complement
Ux = T \ Zx. Batyrev initiated the study of the Hodge theory of these objects
in his search for mirror symmetry on toric varieties and their hypersurfaces [24].
As is explained in Stienstra’s article [277], for understanding the weight filtration
on the cohomology of Zx it is useful to study Hodge aspects of the cohomology
H •(T̃, Z̃x;C) relative to the affine cone

Z̃x := T̃ ∩ Var(FA,x − 1).

A powerful tool in this endeavor is the idea of letting the section vary and studying
these cohomology groups as a family, viewing the coefficients of the Laurent
polynomial as parameters. For this, read the parameter x of FA,x as a point in C

n.
For any face τ of the cone CA let FτA,x be the subsum of FA,x of terms with support

on τ . Then x is non-degenerate if the singular locus of FτA,x does not meet T̃ for any
τ , including the case τ = A.
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For non-degenerate x, Hi(T̃, Z̃x;C) is nonzero only when i = d and there is
a natural identification of Hd(T̃, Z̃x;C) with the stalk of the solutions of a certain
natural D-module that we describe next.

For what is to follow, we assume that A satisfies condition 4.17(1) but not
necessarily 4.17(2) and 4.17(3), unless indicated expressly.

Let DA be the Weyl algebra C[x1, . . . , xn]〈∂1, . . . , ∂n〉 with subring OA =
C[x1, . . . , xn], and let LA be the Z-kernel of A. Define two types of operators

Ei :=
n∑

j=1

ai,j xj ∂j (Euler operators);

�u := ∂u+ − ∂u− (box operators).

Here, 1 � i � d and u ∈ LA with (u+)i = max{ui , 0} and (u−)i = max{−ui , 0}.
Then choose a parameter vector β ∈ C

d and define the hypergeometric ideal

HA(β) = DA · {Ei − βi}di=1 +DA · {�u}u∈LA
and the hypergeometric module

MA(β) := DA/HA(β)

to A and β. These modules were defined by Gelfand, Graev, Kapranov and
Zelevinsky in a string of articles including [83, 93] during their investigations
of Aomoto type integrals. The modules are always holonomic [2], and they are
regular holonomic if and only if A satisfies Condition 4.17.(2), [282]. We refer
to [271] for extensive background on hypergeometric functions, their associated
differential equations, and how they relate to hypergeometric modules MA(β) via
a dehomogenization technique investigated in [45]. The article [233] is a gentle
introduction to hypergeometric D-modules, combined with a survey on recent
applications to Hodge theory.

Let RA = C[∂1, . . . , ∂n]; while this is a subring of operators ofDA, one can also
view it as a polynomial ring in its own right. The ideal

IA := RA · {�u}u∈LA
that forms part of the defining equations for HA(β) is called the toric ideal; its
variety in Ĉ

n = SpecRA is the toric varietyXA. We use here the “hat” to distinguish
the copy of complex n-space that arises as SpecRA from that which arises as
SpecOA. The two are domain and target of the Fourier–Laplace transform FL(−)
which, on elements of DA, amounts to xj �→ ∂j , ∂j �→ −xj .

Local cohomology arises in two ways in the study of MA(β): in connection
with the dimension of the space of solutions, and in the limitations of a functorial
description ofMA(β) via a D-module theoretic pushforward.
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For any holonomic DA-moduleM there is a Zariski open set of Cn on whichM
is a connection; we call the rank of this connection the rank ofM . ForMA(β), this
open set is determined by the non-vanishing of the A-discriminant, a generalization
of the discriminant of a polynomial. In particular, it does not depend on β; we denote
it UA. If A satisfies Condition 4.17.(3) then the connection on UA has rank equal
to the simplicial volume in R

d of the convex hull of the origin and the columns of
A, [2, 83, 93]. Indeed, the hypothesis implies that the semigroup ring SA is Cohen–
Macaulay by Hochster’s theorem [118], and this allows a certain spectral sequence
to degenerate, which determines the rank. In fact, one can even produce the solutions
often in explicit forms, by writing down suitable hypergeometric series and proving
convergence [83, 271].

In the absence of Condition 4.17.(3), the situation can be more interesting since
then there may be choices of β with the effect of changing the rank [194]. That the
possibility of changing rank exists at all was discovered in [272]. A certain Koszul-
like complex based on the Euler operators Ei that appeared in [194] can be used to
substitute for the (now not degenerating) spectral sequence.

A natural question is which parameters β will show a change in rank. Because of
basic principles, the rank at special β can only go up [194]. Since SA is A-graded
via degA(∂j ) = aj ∈ ZA, so are its local cohomology modules Hi∂(SA) supported
at the homogeneous maximal ideal. Set

EA :=
d−1⋃

i=0

degA(H
i
∂(SA))

Zariski

,

the Zariski closure of the union of all A-degrees of nonzero elements in a local
cohomology module with i < d. Note that the union of these degrees can be seen
as witnesses to the failure of SA being Cohen–Macaulay: the union is empty if and
only if SA has full depth. In generalization of the implication of equal rank for all β
in the Cohen–Macaulay case, it is shown in [194] that

[rk(MA(β) > vol(A)] ⇔ [β ∈ EA].

Consider now the monomial map

ϕ = ϕA : T̃ −→ Ĉ
n,

t �→ (ta1, . . . , tan)

induced byA. The map is an isomorphism onto the image by Condition 4.17.(1), and
its closure is the toric variety XA. On T̃ one has for each β the (regular) connection
Lβ = DT/DT · {ti∂ti +βi}d1 . In [84], Gelfand, Kapranov and Zelevinsky proved that
if β is sufficiently generic then the Fourier–Laplace transform FL(MA(β)) agrees
with the D-module direct image ϕ+(Lβ), where the set of “good” β forms the
complement of a countably infinite and locally finite hyperplane arrangement called
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the resonant parameters, and given by all LA-shifts of the bounding hyperplanes of
the cone CA. In [284] this result was refined and completed to an equivalence

[MA(β) = ϕ+(Lβ)] ⇔ [β is not strongly resonant].

Here, following [284], β ∈ C
d is strongly resonant if and only if there is a finitely

generated RA-submodule of
⊕n
j=1H

1
∂j
(SA) containing β in the Zariski closure of

its A-degrees. (Since the local cohomology modules here are not coherent, being
strongly resonant is more special than being in the Zariski closure of the A-degrees
of the direct sum). Some further improvements have been made in [275, 276].

Remark 4.18 As it turns out, when Conditions 4.17 are in force in full strength, then
certain MA(β), including the case β = 0, are not just a regular DA-module but in
fact carry a mixed Hodge module structure in the sense of Saito, [241]. The Hodge
and weight filtrations of hypergeometric systems have been studied in [228, 232,
235], showing connections to intersection homology of toric varieties. See [233] for
a survey. 9

4.3.3 Milnor Fibers and Torsion in the Jacobian Ring

Let f be a non-unit in R = C[x1, . . . , xn] and put X := C
n = Spec(R). By the

ideal Jf we mean the ideal generated by the partial derivatives ∂f
∂x1
, . . . ,

∂f
∂xn

; this
ideal varies with the choice of coordinate system in which we calculate. In contrast,
the Jacobian ideal Jac(f ) = Jf + (f ) is independent.

If x ∈ Var(f ), let B(x, ε) denote the ε-ball around x ∈ Var(f ) ⊆ C
n. Milnor

[192] proved that the diffeomorphism type of the open real manifold

Mf,x,t,ε = B(x, ε) ∩ Var(f − t)

is independent of ε, t as long as 0 < |t | & ε & 1. Abusing language, for 0 < t &
ε & 1 denote byMf,x the fiber of the bundle

B(x, ε) ∩ {y ∈ C
n | 0 < |f (y)| < t} −→ f (y).

If f has an isolated singularity at x then the Milnor fiber Mf,x is a bouquet of
(n − 1)-spheres, and Hn−1(Mf,x;C) can be identified non-canonically with the
Jacobian ring R/ Jac(f ) as vector space; in particular, the Jacobian ring “knows”
the number of spheres in the bouquet.

We call f quasi-homogeneous under the weight (w1, . . . , wn) ∈ Q
n if∑n

i=1wi
∂
∂xi
(f ) = f . In this case, the Jacobian ring acquires a Q[s]-module

structure where s acts via the Euler homogeneity, compare [188]. This is actually
true for general isolated singularities, not just in the presence of homogeneity,
and the eigenvalues of the action of s turn out to be the non-trivial roots of the
local Bernstein–Sato polynomial of f at x. The s-action comes then from the
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Gauß–Manin connection. Compare also [143, 189, 242, 243, 312]. Compare [274]
for details on the Hodge structure on the cohomology of the Milnor fiber.

For non-isolated singularities, most of this must break down, since R/ Jac(f ) is
not Artinian in that case. Suppose from now on that f is homogeneous, and that x is
the origin. Note that now Jac(f ) = Jf ; we abbreviate Mf,x to Mf = Var(f − 1).
The Jacobian module

H 0
m(R/Jf ) = {g + Jf | ∃k ∈ N,∀i, xki g ∈ Jf }

has been studied in [217, 305] for various symmetry properties and connections with
geometry. Note that this finite length module agrees with the Jacobian ring in the
case of an isolated singularity, it can hence be considered a generalization of it in
more general settings.

If

η =
∑

i

xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

denotes the canonical (n − 1)-form on X, then (via residues) every class in
Hn−1(Mf ;C) is of the form gη for suitable g ∈ R, and if g ∈ R is the
smallest degree homogeneous polynomial such that gη represents a chosen class in
Hn−1(Mf ;C) then − deg(gη)/ deg(f ) is a root of the Bernstein–Sato polynomial
of f , [311]. Suppose the singular locus of f is (at most) 1-dimensional. Then by
[244, 245, 313], with 1 � k � d and λ = exp(2π

√−1k/d), the following holds:

dimC[H 0
m(Rn/ Jac(f ))]d−n+k � dimC grHodge

n−2 (Hn−1(Mf ;C)λ),

where the right hand side indicates the λ-eigenspace of the associated graded
object to the Hodge filtration on Hn−1(Mf ;C). Dimca and Sticlaru have used this
inequality to study nearly free divisors and pole order filtrations, [61, 62]. It would
be interesting to find more general inequalities of this type. The above estimate is
based on local cohomology of logarithmic forms introduced in [240]; such modules
have been calculated in [64] for generic hyperplane arrangements. See [312] for
more connections to monodromy and zeta-functions.

4.4 Lyubeznik Numbers

Let (R,m,k) be a commutative regular local Noetherian ring of dimension n that
contains its residue field. For any ideal I of R, Lyubeznik proved in [176] that the
k-dimension

λi,j (R, I ) := dimk(ExtiR(k,H
n−j
I (R)))
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is for each i, j ∈ N only a function of R/I and so does not depend on the
presentation of R/I as a quotient of a regular local ring.

In his seminal paper, Lyubeznik also showed that λi,j (R, I ) agrees with the socle

dimension inHim(H
n−j
I (R)), and hence with the i-th Bass number ofHn−jI (R)with

respect to m. In fact, Him(H
n−j
I (R)) is the direct sum of λi,j (R/I) many copies of

ER(k), the injective hull of k when viewed as R-module.
It follows from the local cohomology interpretation that λi,j (R, I ) =

λi,j (R̂, I R̂) is invariant under completion. By the Cohen structure theorems, every
complete local Noetherian ring containing its residue field is the quotient of a
complete regular Noetherian local ring containing its residue field. One can thus
define for every local Noetherian ring A the (i, j)-Lyubeznik number

λi,j (A) := λi,j (R, I )

via any surjection R 	 R/I = Â from a complete regular ring R onto the
completion of A.

Notation 4.19 Throughout this subsection, (R,m,k) is a regular local ring con-
taining its residue field, R̂ its completion along m, and I an ideal of R such that
A = R/I . Set d := dim(A). Field extensions R � K ⊗k R have no impact on
the Lyubeznik numbers, so that one can always assume k to be algebraically or
separably closed if necessary. Moreover, since �I (M) = �√I (M), one may assume
that A is reduced. 9

By Grothendieck’s vanishing theorem, λi,j (A) is zero if j < 0, and by the depth
sensitivity of local cohomology, λi,j (A) = 0 if j > dim(A), [139]. By construction,

the dimension of the support of Hn−jI (R) is contained in the variety of I , so that
λi,j (A) = 0 for all i > d.

We can thus write �(A) for the Lyubeznik table

�(A) :=
⎛

⎜⎝
λ0,0(A) . . . λ0,d (A)
...

...

λd,0(A) . . . λd,d(A)

⎞

⎟⎠

It has been shown in [125] in the case char(R) > 0, and then in [176] when Q ⊆ k

that the injective dimension of HkI (R) is always bounded above by the dimension

of its support. However, it is standard that the support of Hn−jI (R) is contained in
a variety of dimension at most j . This implies that the nonzero entries of �(A) are
on or above the main diagonal of �(A).

There is a Grothendieck spectral sequence

Him(H
j
I (R)) (⇒ H

i+j
m (R). (4.4.0.1)
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It follows directly from this spectral sequence that

• the alternating sum
∑
i,j (−1)i+j λi,j (A) equals 1;

• λ0,d (A) = λ1,d (A) = 0 for all A unless dim(A) � 1;
• if R/I is a complete intersection, then λi,j (A) vanishes unless i = j = d. (We

say that the Lyubeznik table is trivial).
• Moreover, following [15] let ρj (A) := −δ0,j +∑d−j

i=0 λi,i+j (A) be the reduced
sum along the j -th super-diagonal in �(A), where δ denotes the Kronecker-δ.
Then ρd(A) is always zero, and) non-vanishing of ρj (A) implies that of either
ρj−1(A) or ρj+1(A), compare [210].

In characteristic p > 0, the (iterated) Frobenius functor sends a free resolution of the
ideal I to a free resolution of the Frobenius power I [pe]. As the Frobenius powers of
I are cofinal with the usual powers, HkI (R) = 0 whenever k exceeds the projective
dimension of R/I . In particular, if I is perfect (i.e., R/I is Cohen–Macaulay), the
Lyubeznik table of R/I is trivial in positive characteristic. In characteristic zero,
this is not so; for example, the Lyubeznik table for the (perfect) ideal of the 2 × 2
minors of a 2× 3 matrix of indeterminates over k ⊇ Q is

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 1 0
· 0 0 0 0
· · 0 0 1
· · · 0 0
· · · · 1

⎞

⎟⎟⎟⎟⎟⎠

as one sees from the fact that I is 3-generated and H 3
I (R) = ER(k), compare

Example 2.14, or the computations in [306] (Single dots indicate a zero entry).

Definition 4.20 The highest Lyubeznik number of A is λd,d(A). 9
It follows directly from the spectral sequence that for d � 1, only λd,d(A) is

nonzero (and thus equal to 1).
Lyubeznik proved in [176] that λd,d(A) is always positive. For 2-dimensional

complete local rings, with separably closed residue field, it was shown in [150,
309] that the Lyubeznik table is independent of the 1-dimensional components of I .
Indeed, one has:

�(A) =
⎛

⎝
0 t − 1 0
· 0 0
· · t

⎞

⎠

where t is the number of components of the punctured spectrum of A. In any
dimension d, the number λd,d(A) is 1 if A is analytically normal [176] or has
Serre’s condition S2 [151]. On the other hand, λd,d(A) can be 1 without A being
Cohen–Macaulay or even S2, [151].
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More generally, consider the Hochster–Huneke graph of A: the vertices of
HH(A) are the d-dimensional primes of A and an edge links two such primes if
the height of their sum is 1. Then Zhang, generalizing the case d � 2 from [309]
and the case char(k) > 0 from [182], proved (in a characteristic-independent way)
in [318] that λd,d(A) agrees with the number of connected components of HH(A).
The main result in [318] has been extended to mixed characteristic in [324]. See also
[199, 250] for more on the relationship between connectedness and the structure of
local cohomology.

4.4.1 Combinatorial Cases and Topology

If I is a monomial ideal, then Alvarez, Vahidi and Yanagawa [8, 14, 15, 317] have
obtained the following results:

• Lyubeznik numbers of monomial ideals relate to linear strands of the minimal
free resolution of their Alexander duals;

• If A is sequentially Cohen–Macaulay (i.e., every ExtiR(A,R) is zero or Cohen–
Macaulay of dimension i) then both in characteristic p > 0 and also if I is
monomial then the Lyubeznik table is trivial.

• there are Thom–Sebastiani type results for Lyubeznik tables of monomial ideals
in disjoint sets of variables.

• Lyubeznik numbers of Stanley–Reisner rings are topological invariants attached
to the underlying simplicial complex.

In a different direction, consider the case when Ir,s,t is the ideal generated by
the (t + 1) × (t + 1) minors of an r × s matrix of indeterminates over the field k.
In positive characteristic, the Cohen–Macaulayness of R/I implies triviality of the
Lyubeznik table. In characteristic zero, however, these numbers carry interesting
combinatorial information related to representations of the general linear group.
Lörincz and Raicu proved in [165] the following. Write the Lyubeznik numbers
into a bivariate generating function

Lr,s,t (q, w) :=
∑

i,j�0

λi,j (Ar,s,t ) · qi · wj

with Ar,s,t = C[{xi,j |1 � i � r, 1 � j � s}]/Ir,s,t , with r > s > t . Then

Lr,s,t (q, w) =
t∑

i=0

qi
2+i(r−s) ·

(
s

i

)

q2
· wt2+2t+i(r+s−2t−2) ·

(
s − 1− i
t − i

)

w2
.

Here, the subscripts to the binomial coefficient indicate the Gaussian q-binomial

expression
(
a
b

)
c
= (1−ca)(1−ca−1)·...·(1−ca−b+1)

(1−cb)(1−cb−1)·...·(1−c) .
There is a similar formula for the case r = s > t .
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We now turn to topological interpretations on Lyubeznik tables. The earliest such
results were formulated by García López and Sabbah. Suppose A has an isolated
singularity at m. Then Hn−jI (R) is m-torsion for n− j �= d. Hence, by the spectral
sequence (4.4.0.1), �(A) is concentrated in the top row and the rightmost column,
and there are equalities λ0,j+δj+1,d = λj+1,d , using again Kronecker notation. It is
shown in [85] that, if the coefficient field is C, then λ0,j equals the C-dimension of
the topological local cohomology group of the analytic space Spec(V ) with support
in the vertex m.

This result was then generalized by Blickle and Bondu as follows. Suppose (over
C) that the constant sheaf on the spectrum of A is self-dual in the sense of Verdier
outside the vertex m. This is the case when m is an isolated singularity, but it also
occurs in more general cases. For example, on a hypersurface f = 0 this condition
is equivalent to the Bernstein–Sato polynomial of f having no other integral root
but −1, and −1 occurring with multiplicity one, [292]. Blickle and Bondu prove
in [25] that in this situation the same interpretation of �(A) can be made as in the
article by García López and Sabbah. In parallel, they also show that if the field has
finite characteristic, a corresponding interpretation can be made in terms of local
étale cohomology with supports at the vertex.

Lyubeznik numbers also contain information on connectedness of algebraic
varieties. For example, as mentioned before, for dim(A) = 2 over a separably closed
field, the Lyubeznik table is entirely characterized by the number of connected
components of the 2-dimensional part of the punctured spectrum.

Suppose A is equidimensional, with separably closed coefficient field k. Denote
by κ(A) the connectedness dimension of A, the smallest dimension t of a subvariety
Y in Spec(A) whose removal leads to a disconnection. Núñez-Betancourt, Spiroff
and Witt discuss in [210] the relationship between the number κ(A) and the
vanishing of certain Lyubeznik numbers. Their results generalize a consequence
of the Second Vanishing Theorem that can be phrased as: Hn−1

I (R) = 0 if and only
if κ(A) �= 0. To be precise, they show for an equidimensional ring A:

• [κ(A) � 1] ⇐⇒ [λ0,1(A) = 0];
• [κ(A) � 2] ⇐⇒ [λ0,1(A) = λ1,2(A) = 0];
• for i < dim(A), [κ(A) � i] ⇐( [λ0,1(A) = · · · = λi−1,i (A) = 0].
Earlier, Dao and Takagi, inspired by remarks of Varbaro, showed that over any field,
Serre’s condition S3 implies that λd−1,d = 0, [66], while in increasing generality it
was shown in [182, 309, 318] that [κ(A) � dim(A)−1] ⇔ [λd,d(A) = 1]. In [239]
are some other results on the effect of Serre’s conditions (St ) on �(A).

4.4.2 Projective Lyubeznik Numbers

Suppose X = Xk is a projective variety of dimension d − 1, with embedding
ι : X ↪→ P := P

n−1
k

via sections of the line bundle L = ι∗(OP(1)). With this
embedding comes a global coordinate ring �∗(P) of P and a homogeneous ideal
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defining the cone C(X) over X in the corresponding affine space. Let R be the
localization of �∗(P) at the vertex, and let I be the ideal defining the germ of C(X)
in R. A natural question is to ask:

Problem 4.21 To what extent are the Lyubeznik numbers of R/I dependent on the
embedding ι? 9
Certainly, if two such cones (R, I ) and (R′, I ′) arise from one another by an
automorphism of P, then the attached Lyubeznik tables are equal. It is less clear
from the definitions whether two embeddings that produce the same sheaf L on X,
or at least the same element in the Picard group, should give the same Lyubeznik
tables. And even more difficult is the question whether ι, ι′ should give rise to equal
Lyubeznik tables when Lι �= Lι′ in the Picard group.

We say that �(X) (or just λi,j (X)) is projective if each cone derived from a
projective embedding of X produces the same �-table (or at least the same λi,j ).
Positive known results include the following:

• If dim(X) � 1 then �(X) is projective by [309], since then each cone ring
is at most 2-dimensional, and connectedness of the punctured d-dimensional
spectrum of R/I is equivalent to connectedness of the (d − 1)-dimensional part
of X.

• If X is smooth and k = C, then each cone has an isolated singularity, so that the
Lyubeznik numbers can be expressed in terms of topological local cohomology
as in [85]. Switala proves in [287] that these data are actually intrinsic to X,
appearing as cokernels of the cup product with the Chern class of the embedding
on singular cohomology of X. By independence of Lyubeznik numbers under
field extensions, this also works when just Q ⊆ k.

• Since λ0,1(A) = 0 is equivalent to Hn−1
I (R) = 0, which in turn is equivalent to

connectedness of the punctured spectrum of A, λ0,1(X) is projective.
• Similarly, the simultaneous vanishing of λ0,1, λ1,2, . . . , λi−1,i is projective

since it measures by [210] the connectedness dimension of the cone, which
corresponds to connectedness dimension of X itself.

Consider the module Ei,j (ι) := Extn−iR (Extn−jR (R/I,�R),�R) where �R is the
canonical module of R. In [319], Zhang proves that in finite characteristic, the
degree zero part of Ei,j (ι) supports a natural action of Frobenius, whose stable part
is independent of ι and has k-dimension λi,j (R/I). In particular, � is projective in
positive characteristic.

In characteristic zero, after base change to C, the modules Him(H
n−j
I (R)) have

a natural structure as mixed Hodge modules. This has been exploited in [234] to
prove that in this setting, on the level of constructible sheaves via the Riemann–
Hilbert correspondence,

λi,j (R/I) = dimCH
iτ !pH−j (DQC).

Here, QC is the constant sheaf on the cone C = C(X) under any embedding of X,
D is Verdier duality (corresponding to holonomic duality), pH is taking perverse
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cohomology (corresponding to usual cohomology forD-modules via the Riemann–
Hilbert correspondence) and τ ! is the exceptional inverse image for constructible
sheaves under the embedding τ of the vertex into the cone. One can then recast this
as the dimension of the cohomology of a certain related sheaf on the punctured cone,
and this cohomology is the middle term in an exact sequence whose other terms
are kernels and cokerels of the Chern class of Lι on certain sheaves on X. These
sheaves are relatives of, but not always equal to, intersection cohomology ofX. This
difference is then exploited to construct examples of (reducible) varieties whose
Lyubeznik numbers are not projective. In [314], the construction was modified to
yield irreducible ones with non-projective �-table.

The construction of [234] starts with a variety whose Picard number is greater
than one, and from it constructs a suitable X. In [239] it is shown that if the rational
Picard group of X is Q then almost all Lyubeznik numbers of X are projective.
In particular, this applies to determinantal varieties so that the Lörincz–Raicu
computation in [165] determines the vast majority of the entries of the Lyubeznik
tables for such varieties under all embeddings.

Remark 4.22 A similar set (to Lyubeznik numbers) of invariants is introduced in
[47] (but see also [289]). It is shown that if I is an ideal in a polynomial ring over
the complex numbers then the Čech-to-de Rham spectral sequence whose abutment
is the reduced singular cohomology of the complement of the variety of I has terms
on page two that do not depend on the embedding of the variety of I into an affine
space, at least when suitably re-indexed. Using algebraic de Rham cohomology,
this is actually shown over all fields of characteristic zero. These Čech–de Rham
numbers are further investigated in [239] from the viewpoint of projectivity since,
if I is homogeneous, one can ask to what extent these numbers are defined by
the associated projective variety (rather than the affine cone). Reichelt et al. [239]
studies their behavior under Veronese maps, and the degeneration of the spectral
sequence. 9
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169. András C. Lőrincz and Uli Walther, On categories of equivariant D-modules, Adv. Math. 351
(2019), 429–478. MR 3952575



852 U. Walther and W. Zhang
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Which Properties of Stanley–Reisner
Rings and Simplicial Complexes
are Topological?

Volkmar Welker

1 Introduction

A (finite abstract) simplicial complex � is a subset of the power set 2� for some
finite non-empty groundset � such that A ⊆ B ∈ � implies A ∈ �. All simplicial
complexes will be non-empty. The simplicial complex {∅} is allowed. We call an
F ∈ � a face of � and an inclusionwise maximal face a facet of �. We also write
F̄ for the simplicial complex 2F and ∂F̄ for the simplicial complex F̄ \ {F }.

Let K be a field and S� = K[xω : ω ∈ �] be a polynomial ring over K. For
a subset A ⊆ � we write xA for

∏
ω∈A xω. The Stanley-Reisner ring or face ring

K[�] of � is the quotient S�/I� of S� by the Stanley-Reisner ideal I� = (xA :
A �∈ �,A ⊆ �). The set of monomials xN for (inclusionwise) minimal non-faces
N of � is a minimal monomial generating set of �.

Relabeling the vertices of� preserves the isomorphism type of K[�]. Hence ring
theoretic properties and invariants of K[�] are determined by the combinatorics of
� and by K. In this survey we will focus on properties and invariants of K[�] and
� determined by the topology of the geometric realization of � (and the field K).

Basic algebraic topology (see e.g. [9]) teaches us that every simplicial complex
comes with a topological space which is called its geometric realization. Recall, that
for the definition one chooses points pω ∈ R

d for some d, such that for F ∈ � the
pω, ω ∈ F , are affinely independent and conv(F ) ∩ conv(F ′) = conv(F ∩ F ′) for
F,F ′ ∈ �. Here for F ∈ � we denote by conv(F ) the geometric (#F − 1)-simplex
which is the set of all convex combinations

∑
ω∈F λωpω for λω ≥ 0, ω ∈ F , and∑

ω∈F λω = 1. Then |�| = ⋃
F∈� conv(F ) considered as a subspace of Rd is a

geometric realization of �. From algebraic topology we know that all geometric
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realizations are homeomorphic. Given a geometric realization |�| of � we write
|F̄ | for the subspace conv(F ) of |�|.

Clearly, the combinatorics of two simplicial complexes with homeomorphic
geometric realization can be quite different. Nevertheless, there are surprising
results demonstrating that not few properties of � or ring theoretic invariants and
properties of K[�] depend only on K and the homeomorphism type of |�|. These
are usually called topological invariants or topological properties of � or K[�].

In this article we survey properties and invariants that are topological and give
counterexamples for some others. We do not claim completeness but we do our
best to at least mention as many related results as possible. We also try to give
an overview of the methods from topological combinatorics used in the proofs.
For that reason we for example provide two proofs of Munkres’ result on the
topological invariance of depth Theorem 3.4. As far we know historically this result
is the first result on topological invariance. We assume the reader to be familiar
with basic algebraic topology (see e.g., [9]) and some methods from topological
combinatorics (see e.g., [2] or [20]). When proofs use heavy machinery from
commutative algebra we will confine ourselves to a brief outline of the proof and
references. For definitions and facts from commutative algebra used but not defined
in the paper we refer the reader to [7].

2 Dimension

In this section we study the Krull dimension of K[�]. For that we need to consider
K[�] as a standard graded K-algebra. As a K-vectorspace we have K[�] =⊕∞
r=0Ar where Ar is the K-vectorspace of cosets m + I� of monomials m in S�

of degree r . Now by A0 = K, ArAs ⊆ Ar+s and the fact that K[�] is generated by
A1 as a K-algebra it follows, that K[�] is a standard graded algebra.

Before we can demonstrate that the Krull dimension is a topological invariant we
need to introduce some combinatorial invariants of simplicial complexes and relate
them to the dimensions of the vectorspaces Ar , r ≥ 0.

Recall that the dimension of a face F of � is given by dim(�) = #F − 1.
We write dim(�) = maxF∈� dim(F ) for the dimension of � and set fi =
#{F ∈ � : dim(F ) = i} for all i ≥ −1. The f -vector of � is the vector
f� = (f−1, . . . , fdim(�)) whose entries are the non-zero fi .

We now show how the f -vector of a simplicial complex determines the
Hilbert-series of K[�]. Recall that the Hilbert-series of K[�] is Hilb(K[�]) =∑∞
r=0 dimK(Ar)t

r , where dimK(Ar) denotes the K-Vectorspace dimension of Ar .
It is well known (see [7, Exercise 10.11]) that the Hilbert-series of any standard
graded K-algebra is a rational function of the form h(t)

(1−t)d where d = dim(K[�]) is
the Krull-dimension of K[�] and h(t) a polynomial with h(1) �= 0.
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Theorem 2.1 Let � be a simplicial complex with f -vector f = (f−1, . . . , fdim(�))

then

Hilb(K[�]) =

dim(�)+1∑

i=0

t i (1− t)dim(�)+1−i fi−1

(1− t)dim(�)+1
.

In particular, dim(K[�]) = dim(�)+ 1.

Proof Since I� is an ideal generated by monomials, it follows that a polynomial
from K[�] lies in I� if and only if each monomial appearing with non-zero
coefficient in the polynomial lies in I�. Thus the cosets m + I� of the degree r
monomials m �∈ I� form a basis of Ar . Now m + I� = I� if and only if m
is divisible by xN for a minimal non-face N . Thus m + I� �= I� if and only if
the support supp(m) = {ω : xω divides m} of m lies in �. If i ≥ 0 then for
each i-dimensional face F ∈ � there are

(
r−1
i

)
monomials of degree r − (i + 1)

in the variables xω, ω ∈ F . If i = −1 the unique (−1)-dimensional face ∅ of
� corresponds to monomials with empty support and hence contributes only the
unique basis element of A0. It follows that for r ≥ 0

dimK(Ar) =
r−1∑

i=0

(
r − 1

i

)
fi =

∞∑

i=0

(
r − 1

i

)
fi

for arbitrary choices of fi when i > dim(�). It follows that

Hilb(K[�]) = f−1 +
∞∑

r=1

( ∞∑

i=0

(
r − 1

i

)
fi

)
t i

= f−1 +
∞∑

i=0

( ∞∑

r=1

(
r − 1

i

)
t r
)
fi

= f−1 +
∞∑

i=0

t i+1

(1− t)i+1
fi

=

dim(�)+1∑

i=0

t i (1− t)dim(�)+1−i fi−1

(1− t)dim(�)+1
.

In the representation of the Hilbert-series as a rational function the numerator
polynomial evaluates to fdim(�) �= 0 at t = 1. Thus the Krull dimension of K[�] is
given by the power of (1− t) in the denominator and hence is dim(�)+ 1. ��
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In particular, we see that proving the topological invariance of the Krull
dimension of K[�] and the dimension of � is equivalent. Before we deduce the
topological invariance of both dimensions, we prove the following lemma. It will
serve as the key argument in the proof of the invariance, which could also be
deduced by much simpler means. But the lemma will prove to be useful later
in more complicated situations. We will use the following notation. We write
link�(F ) = {G ∈ � : G ∩ F = ∅,G ∪ F ∈ �} for the link of F in
� and star�(F ) = {G ∈ � : F ∪ G ∈ �} for the (closed) star of F in
�. For two simplicial complexes � and �′ on disjoint ground sets we denote by
� ∗ �′ = {F ∪ F ′ : F ∈ �,F ′ ∈ �′} the join of � and �′. Using the textbook
definition (see [9, p.9]) of the join operation, we have that the join of the topological
spaces |�| ∗ |�′| and |� ∗ �′| are homeomorphic if �, �′ �= {∅}. In case we
(for example) have � = {∅} the textbook definition implies |�| ∗ |�′| = ∅ and
|� ∗�′| = |�′|. In order to avoid case distinctions we set |�| ∗ |�′| = |�′| in this
case and proceed analogously in case�′ = {∅}. Note that star�(F ) = F̄ ∗ link�(F )
and hence |star�(F )| = |F̄ | ∗ |link�(F )|. For a face F of � we write � \ F for the
simplicial complex {G ∈ � : F �⊆ G} and for a point x in |�| we write |�| − x
for |�| \ {x}. For a simplicial complex � we write H̃i(�,K) for the ith reduced
simplicial homology groups of � with coefficients in K and for a space X we write
H̃i(X,K) for the ith reduced singular homology group of X with coefficients in
K. Of course it is well known that H̃i(�,K) = H̃i(|�|,K). For two simplicial
complexes � ⊆ � we write Hi(�,�,K) for the simplicial homology of the pair
(�, �) with coefficients in K and Hi(X,A,K) for the singular homology with
coefficients in K of a pair (X,A) of topological spaces.

Lemma 2.2 Let � be a simplicial complex, F a face of � and x a point in the
relative interior of |F̄ |. Then |� \ F | is a deformation retract of |�| − x and

Hj(|�|, |�| − x,K) = H̃j−dim(F )−1(link�(F ),K). (1)

In particular, we have that

dim(�) = max
{
j : exists x ∈ |�| such that Hj(|�|, |�| − x,K) �= 0

}
. (2)

Proof Assume our geometric realization is given by points pω ∈ R
d , ω ∈ �. Since

x is from the relative interior of |F̄ | it follows that x =∑
ω∈F λωpω with all λω > 0

and
∑
ω∈F pω = 1. Let y = ∑

ω∈� μωpω ∈ |�| given as a convex combination
with {ω : μω > 0} ∈ �. From the fact that each barycentric coordinate defines
a continuous map on |�| it follows that f : y �→ minω∈F μω

λω
is a continuous map

on |�|. Clearly 0 ≤ f (y) ≤ 1, f (y) = 1 if and only if y = x and f (y) = 0 if
and only if y ∈ |� \ F |. Define the map g : |�| − x → |� \ F | as follows. For
y ∈ |�| − x set g(y) = 1

1−f (y) (y − f (y)x). One easily checks that g(y) ∈ |� \ F |
and g(y) = y for y ∈ |� \ F |. Continuity follows from the continuity of f . Now
the standard interpolation between f and the identity of |�| shows the claim (see
[12, Lemma 2.2] for detailed calculations).
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By excising |�| − |star�(F )| we get

Hj(|�|, |�| − x,K) = Hj(|star�(F )|, |star�(F )| − x,K).

Since star�(F ) is contractible, it is acyclic. Thus by the long exact sequence
in reduced homology we get that Hj(|star�(F )|, |star�(F )| − x,K) =
H̃j−1(|star�(F )| − x,K). Since star�(F ) \ F = ∂F̄ ∗ link�(F ) we know from the
first part that |∂F̄ | ∗ |link�(F )| is a deformation retract of |star�(F )| − x. Thus

H̃j−1(|star�(F )| − x,K) = H̃j−1(|∂F̄ )| ∗ |link�(F )|,K).

Now ∂F̄ is the boundary of an dim(F )-simplex and hence a triangulation of an
(dim(F )− 1)-sphere. From

H̃j−1(|∂F̄ )| ∗ |link�(F )|,K) = H̃j−1−(dim(F )−1+1)(|link�(F )|,K)
= H̃j−dim(F )−1(|link�(F )|,K)
= H̃j−dim(F )−1(link�(F ),K)

we now deduce (1).
For (2) consider the following argumentation. Let F be a face of �. Pick a point

x in the relative interior of |F̄ |. If F is a facet of dimension dim(F ) = dim(�). It
follows that link�(F ) = {∅}. From (2) we deduce Hj(|�|, |�| − x,K) �= 0 if and
only if j = dim(F ) = dim(�). For an arbitrary face F of � the we deduce from
dim(link�(F )) = dim(�) − dim(F ) − 1 that H̃j−dim(F )−1(link�(F ),K) = 0 for
j > dim(�). This implies (2) ��

We can now deduce the topological invariance of dimension and Krull dimen-
sion.

Theorem 2.3 Let � and �′ are simplicial complexes such that |�| and |�′| are
homeomorphic. Then the Krull dimensions of K[�] (resp. the dimensions of�) and
of K[�′] (resp. �′) coincide.

Proof By Theorem 2.1 it suffices to argue that for two simplicial complexes � and
�′ with homeomorphic geometric realizations we have dim(�) = dim(�′).

From the facts that |�| and |�′| are homeomorphic and that homeomorphic
spaces have isomorphic homology it follows that:

dim(�)
(2)= max

{
j : exists x ∈ |�| such that Hj(|�|, |�| − x,K) �= 0

}

|�|∼=|�′|= max
{
j : exists x ∈ |�′| such that Hj(|�′|, |�′| − x,K) �= 0

}

= dim(�′)

��
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The last property which we study in this section is the purity condition.
A simplicial complex � is called pure if all facets have the same dimension.

Theorem 2.4 Let � and �′ simplicial complexes such that |�| and |�′| are
homeomorphic. Then � is pure if and only if �′ is pure.

Proof From Lemma 2.2 we know that for a point x from the relative interior of |F̄ |
for a face F of � we have that

Hj(|�|, |�| − x,K) = H̃j−dim(F )−1(link�(F ),K). (3)

On the right hand side there can only be a non-zero contribution if j ≥ dim(F ).
Moreover, there is a non-trivial contribution for j = dim(F ) if and only if F
is a facet. Assume � is pure and F is a face of �. Then there is a facet G
of dimension dim(�) such that F ⊆ G. Thus for any x in the relative interior
of |F̄ | and every open neighborhood x ∈ U ⊆ |�| there is a y ∈ U such
that y is in the relative interior of |Ḡ|. In particular, for every x in the relative
interior of |F̄ | and every open neighborhood U of x in |�| there is a y ∈ U
such that Hdim(�)(|�|, |�| − x,K) = K. Assume �′ is not pure then there is a
face G of dimension < dim(�). But then for every x form the relative interior
of |Ḡ| there is a small neighbourhood which only contains points y from |Ḡ|.
For them Hdim(�)(|�|, |�| − y,K) = H̃dim(�)−dim(G)−1(link�(G),K) = 0 as
link�(G) = {∅}. ��

3 Minimal Free Resolution and Depth

In this section we review results from [13] which show the topological invariance
of the depth of K[�] using a formula by Hochster for the Betti-number of its
free resolution. Recall that the depth depth(K[�]) is the maximal number d of
elements f1, . . . , fd ∈ K[�] of positive degree such that fi is a non-zerodivisor
on K[�]/(f1, . . . , fi−1) for i = 1, . . . , d and K[�]/(f1, . . . , fd) �= 0 (see [7,
p.424ff]). We follow Munkres’ approach and study this invariant through its relation
to minimal free resolutions. In the next paragraphs we review some basic material
on minimal free resolutions. In particular, we will easily see that the minimal free
resolution as a whole is far from being a topological invariant of K[�].

A free resolution of K[�] over S� is an exact sequence:

· · · ∂i+1−−→ S
bi
�

∂i−→ · · · ∂2−→ S
b1
�

∂1−→ S
b0
�

∂0−→ K[�] → 0

where all maps are S�-module homomorphisms. It is well known that there is a free
resolution which minimizes all the bi simultaneously and that this resulution has
bi = 0 for i > |�|. Such a resolution is unique up to isomorphism and is called the
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minimal free resolution of K[�] over S� and the corresponding bi are called the
Betti-numbers of K[�] as an S�-module. We will write βi(K[�]) or βi for these bi .

For our purposes we need a more refined structure of the free resolution. For that
we use the multigraded structure of S� which is inherited by K[�]. For a monomial∏
ω∈� x

αω
ω we call (αω)ω∈� its multidegree. For α = (αω)ω∈� ∈ N

� we write xα

for
∏
ω∈� x

αω
ω . Then as vectorspaces

S� =
⊕

α∈N�
xαωK

and

K[�] =
⊕

α∈N�
Aα

where Aα = 0 if α �= (0)ω∈� and xα ∈ I� and xα + I� otherwise. We can speak
of the scalar multiples of xα in S� as the α-graded part of S� and of Aα as the
α-graded part of K[�]. For α ∈ N

� we write S�(−α) to denote the multigrading
on S� where the multiples xα ′ form the α′ + α graded part. Clearly, S�(−α) is an
N
�-graded S�-module. A multigraded free resolution of K[�] over S� is an exact

sequence:

· · · ∂i+1−−→
⊕

α∈N�
S�(−α)bi,α ∂i−→ · · · ∂2−→

⊕

α∈N�
S�(−α)b1,α

∂1−→
⊕

α∈N�
Sω(−α)b0,α

∂0−→ K[�] → 0

where all maps are multigraded S�-module homomorphisms. Again it is well known
that there is a free resolution which minimizes all the bi,α simultaneously and
which satisfies bi,α = 0 for i > |�|. This resolution is unique up to multigraded
isomorphism and is called the multigraded minimal free resolution of K[�] over S�
and the corresponding bi,α are called the multigraded Betti-numbers of K[�] as an
S�-module. We will write βi,α(K[�]) or βi,α for these bi,α .

It is also well known that βi,α = 0 unless α ∈ {0, 1}�. This for example follows
from the fact that the Taylor-resolution (see [7, Exercise 17.11]) is a free resolution
with bi,α = 0 for any α with an entry ≥ 2. Note that the Taylor-resolution is non-
minimal in most cases. We can identify α ∈ {0, 1}� with the set W of all ω with
αω = 1. We then write βi,W for βi,α (resp. βi,W (K[�]) for βi,α(K[�]).

The connection between the structure of the minimal free resolution of K[�] and
the geometry of � is provided through the following formula by Hochster. For its
formulation we denote for W ⊆ � by �W = {F ∈ � : F ⊆ W } the restriction of
� toW .
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Theorem 3.1 (Hochster Formula [10]) Let � be a simplicial complex over
ground set � and let W ⊆ �. Then for i ≥ 0 the multigraded Betti-number
βi,W (K[�]) is given as

βi,W (K[�]) = dimK

(
H̃#W−i−1(�W ,K)

)
.

The following is an immediate corollary.

Corollary 3.2 Let � and �′ be simplicial complexes over � and �′ respectively.
If |�| and |�′| are homotopy equivalent then βi+#�,�(K[�]) = βi+#�′,�′(K[�′])
for all i ≥ 0.

Proof By Theorem 3.1 we have

βi+#�,�(K[�]) = dimK

(
H̃#�−i−#�−1(��,K)

)

= dimK

(
H̃i−1(��,K)

)

= dimK

(
H̃i−1(|�|,K)

)

= dimK

(
H̃i−1(|�′|,K)

)

= dimK

(
H̃i−1(�

′
�′ ,K)

)

= dimK(H̃#�′−i−#�′−1(�
′
�′ ,K)

)

= βi+#�′,�′(K[�′])

��
On the other hand the set of topologies that arise among the restrictions �W for

subsets W of the ground set can be very different for simplicial complexes with
homeomorphic geometric realization.

For example consider for a simplicial complex � over ground set � and its
barycentric subdivision sd(�); that is the simplicial complex on group set � \ {∅}
with simplices {F0, . . . , Fi} being sets of non-empty faces of � which if suitable
numbered satisfy F0 ⊂ F1 ⊂ · · · ⊂ Fi . It is well known that |�| and |sd(�)|
are homeomorphic. Indeed the geometric realizations can be chosen such that
|�| = |sd(�)| by the following construction. Assume the geometric realization
|�| ⊆ R

d has simplices that are convex hulls of points pω ∈ R
d , ω ∈ �.

For F ∈ � \ {∅} set pF = 1
#F

∑
ω∈F pω. Then one can show that for a face

{F0, . . . , Fi} of sd(�) the pFi , i = 0, . . . , i are affinely independent and define
a geometric realization |sd(�)| of sd(�). When speaking of a simplicial complex
and its barycentric subdivision we will assume that the geometric realizations are
chosen in that way. In particular, |�| = |sd(�)|.
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Let � = ∂2{1,...,n} be the boundary of the (n − 1)-simplex. For any W ⊆
{1, . . . , n},W �= ∅, {1, . . . , n}, we have that�W is a simplex and hence contractible
and acyclic. For sd(�) any restriction to W = {F,F ′} for F,F ∈ � such that
F �⊆ F ′ and F ′ �⊆ F is a 0-sphere and hence has homology of rank 1 in dimension 0.
Similarly, for any face F ∈ �\{∅} andW = ∂F̄ we have that�W is a triangulation
of a (dim(F ) − 1)-sphere and hence has homology of rank 1 concentrated in
dimension dim(F )− 1.

Finally, we recall the relation of the depth of K[�] to its minimal free resolution.
The following is the Auslander-Buchsbaum formula (see [7, Theorem 19.9]) in our
context. Recall that the projective dimension of K[�] is the maximal i for which
βi(K[�]) �= 0.

Theorem 3.3 (Auslander–Buchsbaum Formula) Let � be a simplicial complex
over ground set �. Then

depth(K[�]) = #�− pd(K[�]).

Theorem 3.3 allowed Munkres to use Theorem 3.1 in order to deduce the
topological invariance of the depth from the invariance of the difference of the
cardinality of the ground set and the projective dimension. For that let us introduce
a homological version of depth. The following homological version of depth which
is obviously a topological invariant of a simplicial complex � over ground set �

hdepth(�) = min
i

{
H̃i(|�|,K) �= 0 or

Hi(|�|, |�| − x,K) �= 0 for some x ∈ |�|
}
+ 1.

Theorem 3.4 Let � be a simplicial complex over ground set �. Then

pd(K[�]) = #�− hdepth(�).

In particular, if�′ is a simplicial complex over ground set�′ such that |�| and |�′|
are homeomorphic then #�− pd(K[�]) = #�′ − pd(K[�′]).

Clearly, the second part of the theorem is an immediate consequence of the first.
We will prove the first part in the next section.

Finally, by Theorem 3.3 the following theorem is equivalent to Theorem 3.4

Theorem 3.5 Let � be a simplicial complex over ground set �. Then

depth(K[�]) = hdepth(�).

In particular, if�′ is a simplicial complex such that |�| and |�′| are homeomorphic
then depth(K[�]) = depth(K[�′]).
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We will present independent proofs of the two equivalent theorems Theorems 3.4
and 3.5. The first in Sect. 4 proves Theorem 3.4 and follows the lines of Munkres’
proof. For this proof one has to develop tools from topological combinatorics
which are of independent interest. In Sect. 5 we prove Theorem 3.5 in a rather
straightforward manner but use deep facts about local cohomology.

4 Munkres’ Proof of Theorems 3.4 and 3.5

First we define a covering of the barycentric subdivision of a simplicial complex
which carries a lot of structural information but which is not covered by most
texts on methods in topological combinatorics. For a simplicial complex � and a
face F ∈ � we denote by dblock�(F ) the subcomplex of sd(�) which consists
of all subsets of faces of the form {F = F0 ⊂⊆ · · · ⊂ Fi}. The simplicial
complex dblock�(F ) is called the dual block to F . By definition, dblock�(F ) is
a subcomplex of starsd(�)({F }). As we have observed before as a star of a simplicial
complex starsd(�)({F }) = {F } ∗ linksd(�)({F }). The dual block has a similar
decomposition as dblock�(F ) = {F } ∗ lblock�(F ), where lblock�(F ) consists
of all {F1 ⊂ · · · ⊂ Fi} ∈ sd(�) for which F is a proper subset of F1. In particular,
as a cone |dblock�(F )| is contractible and hence acyclic. We can also decompose
linksd(�)({F }) = sd(∂F̄ ) ∗ lblock�(F ). Thus

star�(F ) = {F } ∗ sd(∂F̄ ) ∗ lblock�(F ). (1)

Thus the pairs (starsd(�)(F ), linksd(�)(F )) and (dblock�(F ), lblock�(F ))
exhibit analogous structural properties. The following lemma, which is an analog of
Lemma 2.2, shows that these structural similarities lead to analogous homological
behavior.

Lemma 4.1 Let � be a simplicial complex and F ∈ � \ {∅} a face of �. For an
point x in the relative interior of |F̄ | we have

Hj(|�|, |�| − x,K) = H̃j−dim(F )−1(lblock�(F ),K).

Proof By excising |�| \ |dblock�(F )| we obtain

Hj(|�|, |�| − p,K) = Hj(|dblock�(F )|, |dblock�(F )| − x,K).

Since dblock�(F ) is contractible the long exact sequence in homology shows

Hj(|dblock�(F )|, |dblock�(F )| − x,K) = H̃j−1(|dblock�(F )| − x,K).
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Using (1) we obtain

|dblock�(F )| = |{F }| ∗ |sd(∂F̄ )| ∗ |lblock�(F )|.

Since x is taken from the relative interior of |F̄ | and |F̄ | = |sd(F̄ )| = |{F }| ∗
|sd(∂F̄ )| we can see analogous to the proof of Lemma 2.2 that |sd(∂F̄ )| ∗
|lblock�(F )| is a deformation retract of |dblock�(F )| − x = | ¯{F }| ∗ |sd(∂F̄ )| ∗
|lblock�(F )| − x. Thus

Hj(|�|, |�| − x,K) = H̃j−1(|sd(∂F̄ )| ∗ |lblock�(F )|,K).

From the fact that |sd(∂F̄ )| is a (dim(F )− 1)-sphere we infer

H̃j−1(|sd(∂F̄ )| ∗ |lblock�(F )|,K) = H̃j−dim(F )−1(|lblock�(F )|,K)
= H̃j−dim(F )−1(lblock�(F ),K).

��
Next we study collections of dual blocks. Let � be a simplicial complex. For a

face F ∈ � set mF = maxF⊆G∈� dim(G). It follows from dblock�(F ) = {F } ∗
lblock�(F ) and (1) that dim(dblock�(F )) = mF − dim(F ) ≤ dim(�) − dim(F ).
We call mF − dim(F ) also the codimension of F in � and set fcodim(F ) =
fdim(dblock�(F )) = dim(�) − dim(F ) which we call the formal codimension
of F and the formal dimension of dblock�(F ).

We collect in Db� all dblock�(F ) for F ∈ � \ {∅}. We say that a collection C ⊆
dblock�(F ) is a block-subcomplex if dblock�(F ) ∈ C and F ⊆ G ∈ � implies
that dblock�(G) ∈ C. For a block-subcomplex C ⊆ Db� we write C〈k〉 for the
collection of all dblock�(F ) ∈ C for F ∈ � \ {∅} such that fdim(dblock�(F )) ≤ k
or equivalently fcodim(F ) ≤ k. Note that C〈k〉 is also a block-subcomplex. If C is a
block-subcomplex then we call the set FaceC = {F ∈ � : dblock�(F ) ∈ C} the
face set of C. Clearly, C = {dblock�(F ) : F ∈ FaceC}.

For a block-subcomplex C ⊆ Db� we write |C| for

|
⋃

dblock�(F)∈C
dblock�(F )| ⊆ |sd(�)| = |�|.

Lemma 4.2 Let � be a simplicial complex and C ⊆ Db� a block-subcomplex.
Then for a number k ≥ 0 we have

Hi

(
Db
〈k〉
� ∪ C,Db

〈k−1〉
� ∪ C,K

)

=
⊕

F∈�\FaceC
fcodim(F )=k

Hi

(
dblock�(F ), ∂sd(F̄ ) ∗ lblock�(F ),K

)
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Proof For F,F ′ ∈ �we have that dblock�(F )∩dblock�(F ′) = if F ∪F ′ �∈ � and
dblock�(F ∪F ′) otherwise. Since dblock�(F ) = {F } ∗ lblock�(F ) it then follows
that

∣∣∣Db
〈k〉
� ∪ C

∣∣∣/
∣∣∣Db
〈k−1〉
� ∪ C

∣∣∣

is a wedge of the suspensions of |lblock�(F )| for F of formal codimension k and
such that F �∈ FaceC. Hence

Hi

(
Db
〈k〉
� ∪ C,Db

〈k−1〉
� ∪ C,K

)
=

⊕

F∈�\FaceC
fcodim(F )=k

H̃i−1(lblock�(F ),K).

Since dblock�(F ) is contractible and hence acyclic it follows that

H̃i−1(lblock�(F ),K) = Hi(dblock�(F ), lblock�(F ),K).

This completes the proof. ��
Consider a subcomplex � ⊆ � of a simplicial complex � such that � �= {∅}.

Note that in this situation � \ {∅} is a subset of the ground set of sd(�). Moreover,
sd(�) is a subcomplex of sd(�). Now if � is a proper subcomplex then sd(�)�\�
is the subcomplex of sd(�) with simplices {F0 ⊂ · · · ⊂ Fi} such that F0, . . . , Fi ∈
� \ �. We write Db�\� for the set of simplicial complexes dblock�(F )�\� for
F ∈ � \ �. Clearly, Db�\� is a block-subcomplex of Db�.

Lemma 4.3 Let� be a simplicial complex and � ⊂ � a proper subcomplex �= {∅}.
Assume that for some 0 ≤ M ≤ dim(�) we have that Hi(|�|, |�| − x,K) = 0 for
all x ∈ |�| and 0 ≤ i < M . Then

(i) Hj(|sd(�)|, |sd(�)�\�|,K) = 0 for 0 ≤ j < M − dim(�).
(ii) HM−dim(�)(|sd(�)|, |sd(�)�\�|,K) is isomorphic to the cokernel of

(2)

Proof Claim 1: For i ≤ j we have

Hi(|Db
〈j+dim(�)−M+1〉
� ∪Db�\�|, |Db

〈j+dim(�)−M〉
� ∪Db�\�|,K) = 0 (3)
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< Proof of Claim By Lemma 4.2 we know that the homology group on the left hand
side of (3) decomposes as a direct sum of groups Hi(dblock(F ), lblock(F ),K) =
H̃i−1(lblock�(F ),K) for faces F ∈ � of formal codimension

fcodim(F ) = dim(�)− dim(F ) = j + dim(�)−M + 1

that are not in �. By Lemma 4.1 we have that Hi−1(lblock�(F ),K) =
Hi+dim(F )(|�|, |�| − x,K) for any x in the interior of |F̄ |. By assumption this
group vanishes for i + dim(F ) < M . Now

i + dim(F ) = i + dim(�)− (j + dim(�)−M + 1) = M + (i − j)− 1.

SinceM + (i − j)− 1 < M for i ≤ j the assertion follows. >
Claim 2: For i ≤ j and � ≥ 1 we have

Hi

(
|Db
〈j+dim(�)−M+�〉
� |, |Db

〈j+dim(�)−M〉
� |,K

)
= 0. (4)

In particular,

Hi

(
|�|, |Db

〈j+dim(�)−M〉
� |,K

)
= 0. (5)

< Proof of Claim Since |Db
〈j+dim(�)−M+�〉
� | = |�| for � ≥ M − j we get (5) as a

direct consequence of (4).
We prove (4) by induction on �. For � = 1 the assertion coincides with Claim 1.

Let � ≥ 2. Set K = j + dim(�)−M and consider the long exact sequence

of the triple

(|Db
〈K+�〉
� |, |Db

〈K+�−1〉
� |, |Db

〈K〉
� |).

By induction we can deduce the vanishing all homology groups except for

Hi(|Db
〈K+�〉
� |, |Db

〈K〉
� |,K).

The fact that the sequence is exact then implies also the vanishing of this group. >



872 V. Welker

Claim 3: For i < dim(�)− dim(�) we have

Db
〈i〉
� ∪Db�\� = Db�\�.

< Proof of Claim For a face F of � the formal dimension of dblock�(F ) is at least
dim(�) − dim(�). This shows that |Db

〈i〉
� | ⊆ |Db�\�| for i < dim(�) − dim(�)

and implies the assertion. >
Now we are in position to prove part (i) and (ii) of the lemma.

< Proof of (i) For i < dim(�)− dim(�) we have

Hi(|sd(�)|, |sd(�)�\�|,K) = Hi(|Db�|, |Db�\�|,K)
Claim 3= Hi(|Db�|, |Db

〈j 〉
� ∪Db�\�|,K)

Claim 2= 0.

>
< Proof of (ii) Let � be such that |Db

〈j+dim(�)−M+�〉
� | = |Db�|. Setting i = j =

M − dim(�) in Claim 2 we obtain:

HM−dim(�)(
(
|Db�|, |Db

〈dim(�)−dim(�)〉
� |,K

)
= 0. (6)

Setting i = j = M − dim(�)+ 1 in Claim 2 we obtain

HM−dim(�)+1)(
(
|Db�|, |Db

〈dim(�)−dim(�)+1〉
� |,K

)
= 0. (7)

Using long exact sequences of triples in rows and columns and (7) to obtain the
0 on the top of the first column and (6) to obtain the 0 at the end of the second row
we derive the following commutative diagram with exact rows and columns. In the
diagram we write D for dim(�) and G for dim(�).

Note that the equality in the second column is a consequence of Claim 3.
Since |sd(�)| = |Db�| and |sd(�)�−�| = |Db�−�| it suffices to show that by

the exactness of the second row it follows that HM−G
(
|Db�|, |Db�−�|,K

)
is
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isomorphic to the image of (2). By the exactness of the diagram above it follows

that HM−G
(
|Db�|, |Db�−�|,K

)
is isomorphic to the cokernel of the left map in

the second row of the above diagram. From the fact that the diagram is commutative
and the exactness of the first column the assertion then follows. > ��
Lemma 4.4 Let � be a simplicial complex over ground set � such that � �= 2�.
Assume further thatM is a number such that for all x ∈ |�| and all i < M we have
Hi(|�|, |�| − x,K) = 0. Then the following are equivalent:

(i) There is an x ∈ |�| for which HM(|�|, |�| − x,K) �= 0.
(ii) There is a subcomplex � ⊆ �, � �= {∅} such that for every x in the relative

interior of |�| we have HM(|�|, |�| − x,K) �= 0.
(iii) There is a face F �= ∅ of � such that for every x in the relative interior of |F̄ |

we have HM(|�|, |�| − x,K) �= 0.
(iv) There is face F �= ∅ of � such that such that for � = F̄ we have

HM−dim(�)(|sd(�)|, |sd(�)�−�|,K) �= 0.

Proof The implications (iii)⇔ (ii)⇒ (i) and (v)⇒ (iv) are valid for trivial reasons.
First we show (i) ⇒ (iii). By Lemma 4.1 we know that the homology groups

HM(|�|, |�|−x,K) are isomorphic whenever x is chosen from the relative interior
of |F̄ | for a fixed face F of �. This implies the assertion.

Before we show (iv)⇔ (iii) we analyze

HM−dim(�)(|sd(�)|, |sd(�)�\�|,K)

more closely in case � = F̄ for a non-empty face F of �. By Lemma 4.3(ii) the
homology group is isomorphic to the cokernel of the map from (2). By Lemma 4.2
we know that

(A)

HM−dim(�)+1(|Db
〈dim(�)−dim(�)〉
� ∪Db�−�|,

|Db
〈dim(�)−dim(�)−1〉
� ∪Db�−�|,K)

is isomorphic to a direct sum of homology groups HM−dim(�)(lblock�(G),K)
for G ∈ � of formal codimension fcodim(G) = dim(�) − dim(�) or
equivalently of dimension dim(�). By � = F̄ only F ∈ � satisfies
this condition and it follows that the homology group is isomorphic to
HM−dim(�)(lblock�(F ),K).

(B)

HM−dim(�)(|Db
〈dim(�)−dim(�)+1〉
� ∪Db�\�|,

|Db
〈dim(�)−dim(�)〉
� ∪Db�\�|,K)
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is isomorphic to a direct sum of homology groups HM−dim(�)−1(lblock�(G),
K) for G ∈ � of formal codimension fcodim(G) = dim(�) − dim(�) + 1 or
equivalently of dimension dim(�)− 1. By � = F̄ it follows that the homology
group is isomorphic to the direct sum HM−dim(�)−1(lblock�(F \ {ω}),K) for
ω ∈ F .

Now we can prove (iv) ⇒ (iii). By assumption the cokernel of (2) is non-
trivial. Thus it follows from (A) that HM−dim(�)(lblock�(F ),K) is non-trivial. By
Lemma 4.1 the latter is isomorphic to HM(|�|, |�| − x,K) for any x in the interior
of |F̄ |. This implies (iii)

To prove (iii) ⇒ (iv) By Lemma 4.1 each group HM−dim(�)−1(lblock�(F \
{ω}),K) for ω ∈ F is isomorphic to HM−1(|�|, |�| − x,K) for x in the relative
interior of |F \ {ω}|. By assumption the latter group is trivial. Thus by (A) and (B)
the cokernel of (2) is isomorphic to HM−dim(�)(lblock�(F ),K). By Lemma 4.1 the
latter is isomorphic toHM(|�|, |�|−x,K) for x in the relative interior of |F̄ |. Thus
it is non-trivial by the hypothesis of (iii). Now the assertion follows. ��

We now show that hdepth is a homological version of depth.

Lemma 4.5 Let� be a simplicial complex over ground set � and T ⊆ �. Then

(i) H̃j−#T (|�| \ |�T |,K) = 0 for j < hdepth(�)− 1.
(ii) H̃j−#T (|�| \ |�T |,K) = 0 for j ≤ hdepth(�)− 1 if �T �= T̄ .

Proof If T = ∅ then �T = {∅} = ∅̄ and H̃j−#T (|�| \ |�T |,K) = H̃j (|�|,K)
which vanishes for j < hdepth(�)− 1 by definition.

If T = � then �T = � and then H̃j−#T (|�| \ |�T |,K) = H̃j−#�(∅,K) = 0
for all j − #� �= −1. Now hdepth(�) ≤ #� and therefore for j < hdepth(�)− 1
we have j − #� < −1. If � �= 2� = �̄ then hdepth(�) < #� and for j ≤
hdepth(�)− 1 we have j − #� < −1.

Let T �= ∅,�. Consider the long exact sequence

· · · → Hi+1(|�|, |�| \ |�T |,K)→ H̃i(|�| \ |�T |,K)→ H̃i(|�|,K)→ · · · .

The group on the right hand side vanishes for i < hdepth(�) − 1 by definition.
By Lemma 4.3(i) and the definition of hdepth(�) the group on the left hand side
vanishes for i+ 1 < hdepth(�)− 1− dim(�T ). Therefore, H̃i(|�|− |�T |,K) = 0
for i + 1 < hdepth(�)− 1− dim(�T ). Since dim(�T ) ≤ #T − 1 with equality if
and only if �T = T̄ the assertions (i) and (ii) follow. ��

We are now in position to prove the following proposition which will immedi-
ately implies Theorem 3.4.

Proposition 4.6 Let � be a simplicial complex on ground set �.
Then

(i) hdepth(�) = #�−maxi{βi(K[�]) �= 0} = #�− pd(K[�]).
(ii) Let ∅ �= W ∈ � and assume that Hhdepth(�)−|T |(|�|, |�| − x,K) �= 0 for some

x in the relative interior of |W̄ | then Hi(|�W |,K) = 0 for i �= 0.
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Proof (i)

Case 1: � = F̄ for some F ⊆ � is a full simplex.
Then K[�] = K[xω : ω ∈ � \ F ] and by simple homological algebra
βi(K[�]) = 0 for i > #� − #F and β#�−#F (K[�]) = 1 for i = #� − #F .
Thus pd(K[�] = #�− #F . Thus we need to show that hdepth(�) = #F .
If F = ∅ then H̃i(|�|,K) = 0 for i > −1 and K for i = −1. Obviously, there
are no x in the relative interior of |�|. Thus hdepth(�) = (−1)+ 1 = 0 = #F .
Now assume that F �= ∅. Since � = F̄ is a full simplex we have H̃i(|�|,K) =
Hi(|�|, |�| − x,K) = 0 for all x in the boundary of the simplex and all i ≥ −1.
If x is in the relative interior of |�| thenHi(|�|, |�|− x,K) is 0 for i < dim(F )
and K for i = dim(F ). Thus hdepth(�) = dim(F )+ 1 = #F .
Since in both cases hdepth(�) = #F the assertion (i) follows.

Case 2: � is not a full simplex.
By Hochster’s formula Theorem 3.1 we know that

βi,W = dimK

(
H̃#W−i−1(�W ,K)

)
and therefore

pd(K[�]) = max
i
{βi(K[�]) �= 0}

= max
i
{H̃#W−i−1(�W ,K) �= 0 for someW ⊆ �}.

Recall that H̃#W−i−1(�W ,K) = H̃#W−i−1(|�| − |��\W |,K). We apply
Lemma 4.5 to T = � \ W and deduce that H̃j−#�+#W(�W,K) = 0 for j <
hdepth(�)− 1. It follows that H̃#W−i−1(�W ,K) = 0 for i > #�− hdepth(�).
Hence we infer pd(K[�]) ≤ #�− hdepth(�).

It remains to show that there is a W ⊆ � such that H̃#W−i−1(�W ,K) �= 0 for
i = #�− hdepth(�).

If H̃hdepth(�)−1(�,K) �= 0 then for W = � one has H̃hdepth(�)−1(�W ,K) �= 0.
Thus for i = #W − hdepth(�) one has H̃#W−i−1(�W ,K) �= 0 and the assertion
follows.

If H̃hdepth(�)−1(�,K) = 0 then there is some x ∈ � such that Hi(|�|, |�| −
x,K) �= 0 for i = hdepth(�)−1 andHi(|�|, |�|−y,K) = 0 for i < hdepth(�)−1
and any y ∈ |�|. Thus we can apply Lemma 4.4 forM = hdepth(�)− 1. It follows
that There is face T �= ∅ of � such that such that for � = T̄ we have

Hhdepth(�)−1−dim(�)(|sd(�)|, |sd(�)�−�|,K)
= Hhdepth(�)−#T (|�|, |�| \ |�T |,K) �= 0.

ForW = �\T we obtain thatHhdepth(�)−#�+#W(|�|, |�W |,K) �= 0. Since−#�+
#W ≤ 0 we know from H̃hdepth(�)−1(�,K) = 0 that Hhdepth(�)−#�+#W(|�|,K) =
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0 = Hhdepth(�)−#�+#W(|�|,K) = 0. The long exact sequence

now shows that

0 �= Hhdepth(�)−#�+#W(|�|, |�W |,K) ∼= H̃hdepth(�)−#�+#W−1(|�W |,K).

Thus for i = #�− hdepth(�) we obtain H̃#W−i−1(|�W |,K) �= 0. ��

5 Local Cohomology Proof of Theorems 3.4 and 3.5

In this section we use local cohomology (see [4] for definitions and basic properties)
to prove Theorem 3.5 and hence Theorem 3.4. This verification is much shorter than
the one from Sect. 4 but builds on substantially more deep theory from commutative
algebra. Topologically, the simplification comes from the fact that here we can work
with links, which are easier to control than the induced subcomplexes used in the
previous section.

Let K[�] =⊕∞
r=0Ar be the vectorspace decomposition of K[�] as a standard

graded algebra as in Sect. 2. We write m =⊕∞
r=1Ar for the unique graded maximal

ideal of K[�] and Him(K[�]) for the ith local cohomology module of K[�]. The
local cohomology Him(K[�]) is itself a graded module and the following formula
by Hochster expresses its Hilbert series in homological terms (see e.g. [18, Theorem
4.1]).

Theorem 5.1 (Hochster Formula for Local Cohomology) Let � be a simplicial
complex over ground set �. Then

Hilb(H im(K[�])) =
∑

F∈�
dimK

(
H̃i−dim(F )−2(link�(F ),K)

) 1

(t − 1)#F
.

Local cohomology is a powerful tool which encodes many invariants of a module.
Here the following fact will be important. We formulate this very general fact for
Stanley-Reisner rings only (see [4, Chapter 6] for more details).

Theorem 5.2 Let � be a simplicial complex over ground set �. Then

dim(K[�]) = max
i
H im(K[�]) �= 0

and

depth(K(�)) = min
i
H im(K[�]) �= 0.
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Using Theorem 5.1 we immediately obtain the following corollary.

Corollary 5.3 Let � be a simplicial complex over ground set �. Then

dim(K[�]) = max
i
{H̃i−dim(F )−2(link�(F ),K) �= 0 for some F ∈ �}

and

depth(K[�]) = min
i
{H̃i−dim(F )−2(link�(F ),K) �= 0 for some F ∈ �}.

Now we already in position to prove Theorem 3.5.

Proof or Theorem 3.5 If F = ∅ then link�(F ) = � and

H̃i−dim(F )−2(link�(F ),K) = H̃i−1(�,K) = H̃i−1(|�|,K). (1)

If F �= ∅ and x is a point from the relative interior of |F̄ | then by Lemma 2.2 we
have:

H̃i−dim(F )−2(link�(F ),K) = Hi−1(|�|, |�| − x,K). (2)

The minimal i for which at least one of homology groups on the right hand side
of (1) or (2) is non-zero is exactly hdepth(�)− 1. Thus Theorem 3.5 follows. ��

6 Cohen–Macaulay, Gorenstein, Buchsbaum

A ring R is called Cohen–Macaulay if dim(R) = depth(R), i.e. its depth equals it
Krull dimension. As an immediate consequence of Theorem 2.3 and Theorem 3.5
we obtain the following result by Munkres (see [13, Corollary 3.4]).

Theorem 6.1 (Munkres) Let � and �′ be simplicial complexes such that |�| and
|�′| are homeomorphic. Then K[�] is Cohen–Macaulay if and only if K[�′] is
Cohen–Macaulay.

As a further consequence of Theorem 3.5 and (1) and (2) we obtain the following
criterion for Cohen–Macaulayness by Reisner [14].

Theorem 6.2 (Reisner’s Criterion) Let� be a simplicial complex over ground set
�. Then K[�] is Cohen–Macaulay if and only if for all F ∈ �

H̃i(link�(F ),K) = 0 for all i < dim(link�(F )).

In particular, if K[�] is Cohen–Macaulay then so is K[link�(F )] for all F ∈ �.
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For a Cohen–Macaulay K[�] the Betti-number βpd(K[�](K[�]) is called the
Cohen–Macaulay type of K[�]. The Cohen–Macaulay K[�] of type 1 are called
Gorenstein.

Example 6.3 Let � = {1, 2, 3, 4} and � the simplicial complex over � with facets
{1, 2, 3} and {2, 3, 4}. Then K[�] = S/I� = S�/(x1x4) and

0→ S�

(
x1x4

)

−−−−→ S�
m�→m+I�−−−−−−→ K[�] → 0

is the minimal free resolution. In particular, pd(K[�]) = 1 and β1(K[�]) = 1.
Thus by Theorem 3.3 we have depth(K[�]) = #� − 1 = 3. Since dim(�) = 2
it follows that dim(K[�]) = 3. Thus K[�] is Cohen–Macaulay and of type 1 and
therefore K[�] is Gorenstein.

Now consider �′ over ground set �′ = {1, 2, 3, 4, 5} with facets {1, 2, 3},
{2, 3, 4} and {1, 2, 5}. Then K[�] = S�′/I�′ = S�′/(x1x4, x3x5, x4x5). It can be
checked the minimal free resolution is given by

0→ S2
�′

⎛

⎝x3x4 −x1x4 0
0 x4 −x3

⎞

⎠

−−−−−−−−−−−−−−→ S3
�′

⎛

⎜⎜⎝

x1x4

x3x5

x4x5

⎞

⎟⎟⎠

−−−−−→ S�′
m�→m+I�′−−−−−−→ K[�′] → 0.

In particular, pd(K[�′]) = 2 and β2(K[�]) = 2. Thus by Theorem 3.3 we have
depth(K[�′]) = #�′ − 2 = 3. Since dim(�′) = 2 it follows that dim(K[�′]) = 3.
Thus K[�] is again Cohen–Macaulay but of type 2 and hence not Gorenstein.

Both |�| and |�′| are homeomorphic to a 2-ball. It follows that the Gorenstein
property is not topological.

The following will allow us to deduce the topological invariance of a property
which is slightly stronger than Gorenstein. A simplicial complex � is called
Gorenstein* (over K) if K[�] is Gorenstein and H̃dim(�)(�,K) �= 0. To study the
topological invariance of the Gorenstein* property, we need a few more definitions.
For a simplicial complex � we define its core core(�) as the induced subcomplex
�core(�) where core(�) is the set of all ω ∈ � such that star�(ω) �= �. It follows
that � = 2�\core(�) ∗ core(�) and dim(�) = dim(�core(�))+ #�− #core(�).

Theorem 6.4 Let� be a simplicial complex over ground set�. Then the following
are equivalent.

(i) K[�] is Gorenstein.
(ii) For all F ∈ core(�) we have

H̃i(linkcore(�)(F ),K) =
{
K if i = dim(linkcore(�)(F ))

0 if i < dim(linkcore(�)(F ))
.
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(iii) For all x ∈ |core(�)| we have

H̃i(|core(�)|,K) = Hi(|core(�)|, |core(�)| − x,K)

=
{
K if i = dim(linkcore(�)(F ))

0 if i < dim(linkcore(�)(F ))
.

Proof The equivalence of (ii) and (iii) again follows from Lemma 2.2.
The equivalence of (i) and (ii) is much harder and was originally proved in [16].

A detailed proof of this fact can be found in [5, Section 5.5.]. ��
It follows that if � is a simplicial complex for which K[�] is Gorenstein then

K[core(�)] is Gorenstein as well. Condition (ii) from Theorem 6.4 then implies
for F = ∅ that H̃dim(core(�))(core(�),K) �= 0 and hence core(�) is Gorenstein*.
Thus any simplicial complex � for which K[�] is Gorenstein has a decomposition
� = 2�\core(�) ∗ core(�) and core(�) is Gorenstein*.

Corollary 6.5 Let� be a simplicial complex over ground set� and�′ a simplicial
complex over ground set �′ such that

• core(�) = � and core(�′) = �′,
• |�| is homeomorphic to |�′|.
Then K[�] is Gorenstein* if and only if K[�′] is Gorenstein*.

Proof The result follows from Theorem 6.4(iii) and the fact that core(�) = � and
core(�′) = �′. ��

Next we consider the Buchsbaum property of K[�]. We refer the reader to [19]
for the general theory. For its definition we need the concept of a weak K[�]-
sequence. A sequence f1, . . . , fr of elements from the maximal graded ideal of
K[�] is called a weak K[�] sequence if m((f1, . . . , fi−1 : fi) ⊆ (f1, . . . , fi−1)

for i = 1, . . . , r . Now K[�] is called Buchsbaum if every system of parameters
is a weak K[�]-sequence. The following is an analog of Reisner’s criterion for
Buchsbaum rings proved by Schenzel in [15].

Theorem 6.6 Let� be a simplicial complex over ground set�. Then the following
are equivalent.

(i) K[�] is Buchsbaum.
(ii) For all F ∈ �, F �= ∅ we have H̃i(link�(F ),K) = 0 for i < dim(link�(F )).

(iii) For all x ∈ |�| we have Hi(|�|, |�| − x,K) = 0 for i < dim(�).

The equivalence of (ii) and (iii) is again in immediate consequence of Lemma 2.2.
The equivalence of (i) and (ii) is Theorem 3.2 in [15]. Its proof first shows a
characterization of Buchsbaum K[�] as those K[�] for which the localization at all
prime ideals different from the graded maximal ideal is Cohen–Macaulay. Using this
characterization the equivalence can be reduced to Reisner’s criterion Theorem 6.2.
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Since condition (iii) from Theorem 6.6 is obviously a topological property, we
obtain the following immediate corollary.

Corollary 6.7 Let � and �′ be simplicial complexes such that |�| and |�′| are
homeomorphic. Then K[�] is Buchsbaum if and only if K[�′] is Buchsbaum.

7 n-Purity, n-Cohen–Macaulay and n-Buchsbaum

A simplicial complex� over ground set� is called n-pure if for any subsetW ⊆ �
of cardinality #W < n we have that ��\W is pure and dim(�) = dim(��\W). In
particular, 1-pure is the usual pure property.

For n ≥ 3 the n-pure property is not topological.

Example 7.1 Let � be the simplicial complex over ground set � = {1, . . . , n+ 2}
for some n ≥ 1 with facets {i, j} for 1 ≤ i < j ≤ n. Then � is (n + 1)-pure.
The deletion of an vertex set of size < n + 1 leaves a connected 1-dimensional
simplicial complex. Consider �′ = sd(�) on ground set �′ = 2� \ {∅}. Clearly,
|�| and |�′| are homeomorphic. We set W = {{1}, {2}} and get that �′

�′\W is a
simplicial complex with two connected components. One component is a connected
1-dimensional simplicial complex and the other the 0-dimensional complex {{1, 2}}.
In particular, �′

�′\W is not pure. Thus �′ is not (n + 1)-pure for n + 1 ≥ 3 > 2 =
#W .

Theorem 7.2 Let � be a pure simplicial complex over ground set �. Then the
following are equivalent:

(i) � is 2-pure.
(ii) If F is a face of � such that Hdim(�)(|�|, |�| − x,K) = 0 for all x in the

relative interior of |F̄ | then dim(F ) ≤ dim(�)− 2.
(iii) For any simplicial complex �′ such that |�′| and |�| are homeomorphic and

for all faces F of �′ and all x from the relative interior of |F̄ | we have
Hdim(�′)(|�′|, |�′| − x,K) = 0.

Proof
(i)⇒ (ii)

Let F be a face of � of dimension dim(�)− 1. Since � is pure there must be a
facet G of dimension dim(�) containing F . Let ω be the unique vertex in G \ F .
Since ��\{ω} is of the same dimension as � it follows that there must be at least a
second facet containing F . In particular, writing 0 as dim(�)− dim(F )− 1 we get

Hdim(�)(|�|, |�| − x,K) Lemma 2.2= H̃0(link�(F ),K) �= 0

for every x in the relative interior of |F̄ |.
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Let F be a face of � of dimensions dim(�). It follows that

Hdim(�)(|�|, |�| − x,K) Lemma 2.2= H̃−1(link�(F ),K) = K �= 0

for any x in the relative interior of |F̄ |.
These two facts imply (ii).

(ii)⇒ (i)

By assumption, for a face F of dimension dim(�)− 1 we have that

Hdim(�)(|�|, |�| − x,K) = H̃0(link�(F ),K) �= 0.

As a consequence there are at least two facets containing F . This implies that for any
ω �∈ F there is a facet of dimension dim(�) containing F in ��\{ω}. In particular,
��\{ω} is pure.

(iii)⇒ (ii)

This is obvious.

(ii)⇒ (iii)

Since |�′| is homeomorphic to |�| it follows from Theorem 2.4 that �′ is
pure of the same dimension as �. Assume there is a face F of �′ such that
Hdim(�′)(|�′|, |�′| − x,K) = 0 for some x from the relative interior of |F̄ | and
dim(F ) ≥ dim(�′)− 1. If dim(F ) = dim(�′) then

Hdim(�)(|�|, |�| − x,K) Lemma 2.2= H̃−1(link�(F ),K) = K �= 0.

Thus we have dim(F ) = dim(�′)−1. Note that our assumptions imply that for any
x′ from the relative interior of |F | we have Hdim(�′)(|�′|, |�′| − x′,K) = 0. But
then (ii) shows that the homeomorphic image of the relative interior of |F̄ |, which is
an open dim(F )-ball, must be covered by the relative interiors of |Ḡ| for faces G of
� of dimension ≤ dim(�)− 2 < dim(F ). The latter is impossible in the geometric
realization of a simplicial complex. Thus (iii) follows. ��

The next corollary immediately follows from the fact that condition (iii) in
Theorem 7.2 only depends on the homeomorphism type of the geometric realization.

Corollary 7.3 Let � and �′ be two pure simplicial complexes such that |�| and
|�′| are homeomorphic. Then � is 2-pure if and only if �′ is 2-pure.

A simplicial complex � over ground set � is called n-Cohen–Macaulay (over
K) if for any subset W ⊆ � of cardinality #W < n we have that K[��\W ] is
Cohen–Macaulay and dim(�) = dim(��\W). In particular, 1-Cohen–Macaulay is
the usual Cohen–Macaulay property of K[�].
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If � and �′ are the simplicial complexes from Example 7.1 then the arguments
in the example show that for n ≥ 2 we have that K[�] is (n+ 1)-Cohen–Macaulay
but �′ is not. Thus for n ≥ 3 the property of being n-Cohen–Macaulay is not
topological.

In the thesis of J. Walker [21, Theorem 9.8] it is proved that 2-Cohen–
Macaulayness is indeed a topological property. Following the ideas from [12] we
will provide a proof of this result below. As a preparation we need to study properties
of links.

Lemma 7.4 If F is a face of � such that for any face F ⊆ G ∈ � we have
H̃i(link�(G),K) = 0 for i < dim(link�(G)) then for any face G′ ∈ link�(F ) we
have that H̃i(linklink�(F)(G

′),K) = 0 for i < dim(linklink�(F)(G
′)).

In particular, it follows that

(i) if K[�] is Cohen–Macaulay then so is K[link�(F )] for every F ∈ �.
(ii) if K[�] is Buchsbaum, then K[link�(F )] is Cohen–Macaulay for every ∅ �=

F ∈ �.
(iii) if K[�] is 2-Cohen–Macaulay then so is K[link�(F )].
Proof If G′ ∈ link�(F ) then G = F ∪G′ ∈ �. Then

link�(G) = {H ⊆ � : H ∩G = ∅ and H ∪G ∈ �}
= {H ⊆ � : H ∩G′ = ∅ and H ∪G′ ∈ link�(F )}
= linklink�(F)(G

′).

This implies the first assertion of the lemma. The claims (i) about the Cohen–
Macaulay and (ii) about the Buchsbaum property follow from Theorem 6.2 and
Theorem 6.6. For (iii) we argue as follows. By (i) we already know that K[link�(F )]
is Cohen–Macaulay for all F ∈ �. Let ω ∈ � and setW = � \ {ω}. If F ∩W �= ∅
then there is nothing to show. If F ∩W = ∅ then

(link�(F ))W = {G ⊆ W : G ∩ F = ∅ and G ∪ F ∈ link�(F )}
= {G ⊆ W : G ∩ F = ∅ and G ∪ F ∈ link�W (F )} = link�W (F ).

Now the facts that �W is Cohen–Macaulay and dim(�W) = dim(�) imply the
claim. ��

As a last prerequisite for a topological characterization of 2-Cohen–
Macaulayness we need the following simple fact about chain complexes.
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Lemma 7.5 Let � be a simplicial complex and H ⊆ K faces of �. Then there is a
commutative diagram

where the maps in the rows are given by the long exact sequences of the

pair (link�(H), link�(H) \ (K \H)) and the triple (�,� \K,� \H)

and the maps in the columns are isomorphisms.

Proof Consider for a simplicial complex �′ a face E of �′. For i ≥ −1 let
Ci+dim(E)+1(�

′,�′ \E,K) be the simplicial chain group in dimension i+dim(E)+
1 and the reduced simplicial chain group C̃i(link�(E),K) in dimension i. The first
chain group has as a basis the faces E′ of �′ such that E ⊆ E′ and dim(E′) =
i+dim(E)+1, the second a has as a basis faces E′′ ∈ link�(E) with dim(E′′) = i.
Now mapping E′′ to E′′ ∪ E establishes a bijection of the two bases which after
choosing appropriate orientations extends to an isomorphism of chain complexes.

This fact explains all isomorphism in the columns of the asserted diagram. It is
then easily checked that these isomorphisms commute with the exact sequences of
the pair and the triple. The assertion then follows (see [12, Theorem 2.1] for more
details). ��

Now we are in position to state and prove a result which will immediately imply
the result by Walker [21, Theorem 9.8]. For the formulation and the proof of the
next theorem we again mostly follow [12].

Theorem 7.6 Let � be a simplicial complex on ground set � such that K[�] is
Cohen–Macaulay. Then the following are equivalent

(i) � is 2-Cohen–Macaulay.
(ii) For all ∅ �= F ∈ � the map

H̃dim(�)(�,K)→ Hdim(�)(�,� \ F,K) (1)

from the long exact sequence of the pair (�,� \ F) is surjective.
(iii) For all ∅ �= F ∈ � we have H̃dim(�)−1(� \ F,K) = 0.
(iv) For all x ∈ |�| we have H̃dim(�)−1(|�| − x,K) = 0.
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Proof

(i)⇒ (ii)

We prove the assertion by induction on dim(F ) for arbitrary� for which K[�] is
2-Cohen–Macaulay. If dim(F ) = 0 then� \F = ��\F which is Cohen–Macaulay
of dimension dim(�) by assumption. It follows that H̃dim(�)−1(� \ F,K) = 0.
Hence by the exactness of the long exact sequence of the pair (�,� \ F) the map
in (1) must be surjective.

Now let F be a face of dimension dim(F ) > 0 and let ω ∈ F be some fixed
element. We setG = F \{ω}. From Lemma 7.4 we know that link�(G) is 2-Cohen–
Macaulay of dimension dim(�) − dim(G) − 1. Hence by induction we know that
the map

H̃i−dim(G)−1(link�(G),K)→ Hi−dim(G)−1(link�(G), link�(F ) \ {ω},K)

is surjective. Thus by Lemma 7.5 for H = G and K = F we obtain that the map

Hi(�,� \G,K)→ Hdim(�)(�,� \ F,K)

is surjective. Again by induction we know that the map

H̃dim(�)(�,K)→ Hdim(�)(�,�, \G,K)

is surjective.
By the naturality of the maps it follows that the composition map

H̃dim(�)(�,K)→ Hdim(�)(�,� \ F,K) is surjective.

(ii)⇒ (i)

Let ω ∈ � and F ∈ �.
If F ∪ {ω} �∈ � then link��\{ω}(F ) = link�(F ). Since � is Cohen–Macaulay it

follows from Theorem 6.2 that H̃i(link��\{ω}(F ),K) = 0 for i < dim(link��\{ω}) =
dim(link�(F )).

We are left with the case when G = F ∪ {ω} ∈ �. For that consider the
commutative diagram

H̃dim(Δ)(Δ) Hdim(Δ)(Δ, Δ \ G, K)

Hdim(Δ)(Δ, Δ \ F, K)

with maps induced by the long exact sequence of the pairs (�,� \G), (�,� \ F)
and the triple (�,� \ F,� \G). The map in the first row is surjective by (ii). Thus
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the diagonal map is surjective too. By Lemma 7.5 for H = F and K = G we
deduce that the map

H̃dim(�)−dim(F )−1(link�(F ),K)→ Hdim(�)−dim(F )−1(link�(F ), link�(F )\{ω},K)

is surjective as well. Since K[link�(F )] is Cohen–Macaulay it follows by Theo-
rem 6.2 that H̃i(link�(F ),K) = 0 for i < dim(�) − dim(F ) − 1. By Lemma 7.5
Hi(link�(F ), link�(F )\{ω},K) = H̃i−1(link�(G),K). Since K[link�(G)] is also
Cohen–Macaulay again by Theorem 6.2 we obtain H̃i−1(link�(G),K) = 0 for
i − 1 < dim(�)− dim(G)− 1 = dim(�)− dim(F )− 2.

Hence in the long exact sequence of the pair (link�(F ), link�(F ) \ {ω}). We
have that

H̃i(link�\{ω}(F ),K) = H̃i(link�(F ) \ {ω},K) = 0

for i < dim(�)− dim(F )− 1.
Now it follows from Theorem 6.2 that K[�\{ω}] is Cohen–Macaulay and hence

� is 2-Cohen–Macaulay.

(ii)⇔ (iii)

Consider the exact sequence

· · · → H̃dim(�)(�,K)→ Hdim(�)(�,� \ F,K)
→ H̃dim(�)(� \ F,K)→ H̃dim(�)−1(�,K)→

Since K[�] is Cohen–Macaulay we know by Theorem 6.2 that H̃dim(�)−1(�,K) =
0. It follows that H̃dim(�)(� \ F,K) = 0 if and only if the map H̃dim(�)(�,K)→
Hdim(�)(�,� \ F,K) is surjective.

(iii)⇔ (iv)

We know by Lemma 2.2 that |��\F | is a deformation retract of |�| − x for x
in the relative interior of |F̄ |. In particular, the homology groups of the two spaces
coincide. ��

The next corollary is an immediate consequence of the fact that condition (iv) of
Theorem 7.6 depends only on the homeomorphism type of |�|.
Corollary 7.7 (Walker) Let� and�′ be two simplicial complexes for which K[�]
and K[�′] are Cohen–Macaulay and such that |�| and |�′| are homeomorphic.
Then � is 2-Cohen–Macaulay if and only if �′ is 2-Cohen–Macaulay.

A simplicial complex� over ground set� is called n-Buchsbaum (over K) if for
any subset W ⊆ � of cardinality #W < n we have that K[��\W ] is Buchsbaum
and dim(�) = dim(��\W). In particular, 1-Buchsbaum is the usual Buchsbaum
property for K[�].
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Analogous to the case of the Cohen–Macaulay property n-Buchsbaum is not a
topological property for n ≥ 3.

For the n = 2 there is the following result [12, Theorem 4.3].

Theorem 7.8 Let � be a simplicial complex such that K[�] is Buchsbaum. Then
the following are equivalent.

(i) � is 2-Buchsbaum.
(ii) For any x ∈ |�| and any neighbourhood U of x in � there exists an open set

V such that

(a) x ∈ V ⊆ U .
(b) The inclusion |�| \ V ↪→ |�| − x induces an isomorphisms

H̃i(|�| − V,K)→ H̃i(|�| − x,K)

for all i ≥ 0.
(c) For any y ∈ V we have H̃dim(�)−1(|�| − y,K) = 0.

The proof of Theorem 7.8 in [12] is based on arguments similar to those
used in the proof of Theorem 7.6. But the deduction becomes more technical
and more involved. We refer the reader to the paper [12] for details. Condition
(ii) of the preceding result obvious only depends on the homeomorphism type of
|�|. Therefore, Theorem 7.8 immediately implies the following corollary (see [12,
Corollary 4.4]).

Corollary 7.9 (Miyazaki) Let � and �′ be two simplicial complexes for which
K[�] and K[�′] are Buchsbaum and such that |�| and |�′| are homeomorphic.
Then � is 2-Buchsbaum if and only if �′ is 2-Buchsbaum.

Building on condition (iv) of Theorem 7.6 one can define the class of
Buchsbaum* simplicial complexes. A simplicial complex � such that K[�]
is Buchsbaum is called Buchsbaum* (over K) if H̃dim(�)−1(|�|,K) =
H̃dim(�)−1(|�|,K) for all x ∈ �. By definition the Buchsbaum* property depends
only on the homeomorphism type of |�|. In the following results (see [1, Proposition
2.5, 2.8]) the relation of this property to the properties Gorenstein*, 2-Cohen–
Macaulay and 2-Buchsbaum is clarified.

Lemma 7.10 Let � be a simplicial complex.

(i) If K[�] is Cohen–Macaulay then

� is 2-Cohen–Macaulay⇔ � Buchsbaum*.

(ii) If K[�] is Gorenstein then

� Gorenstein* ⇔ � Buchsbaum*.

(iii) If � is Buchsbaum* then � is 2-Buchsbaum.
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The statement in (i) is immediate from the fact that by Theorem 6.2 we have that
H̃dim(�)−1(�,K) = 0 for a Cohen–Macaulay �. Statements (ii) and (iii) follow by
arguments similar to those used in the proof of Theorem 7.6

8 Other Properties

In this section we go over other properties of K[�] studied in the literature for which
the question of whether the property is topological or not was considered. We do not
think that the list is exhaustive but we have included all results known to us.

An interesting strengthening of the Cohen–Macaulay property was studied in
[11]. Here a simplicial complex � for which K[�] is Cohen–Macaulay is called
uniformly Cohen–Macaulay (over K) if K[� \F ] is Cohen–Macaulay and dim(� \
F) = dim(�) for every facet F of �. The authors show the following topological
characterization in [11, Theorem 1.1].

Theorem 8.1 Let � be a Cohen–Macaulay simplicial complex. Then the following
are equivalent.

(i) � is uniformly Cohen–Macaulay.
(ii) For every x ∈ |�| the map H̃dim(�)(|�|,K)→ H̃dim(�)(|�|, |�| − x,K) from

the long exact sequence of the pair (|�|, |�| − x) is an inclusion.

Clearly, condition (ii) from the theorem depends only on homeomorphism type
of |�| and hence the property is topological.

In commutative algebra the Cohen–Macaulay property of a ring is equivalent
to the ring having Serre’s property (Sd) for the Krull dimension d of the ring. We
refer the reader to [5, p. 62] for the definition of property (Sr) in general. It can
be shown, again using Hochster’s formula Theorem 5.1 on the local cohomology
of K[�], that K[�] has property (Sr) if and only if H̃i(link�(F ),K) = 0 for all
i < min{r − 1, dim(�) − dim(F ) − 1}. Clearly for r = d we recover Reisner’s
criterion Theorem 6.2 for the Cohen–Macaulay property of K[�]. In [22, Theorem
4.4] Yanagawa showed that the property (Sr) is topological for any r , which is a
vast generalization of Munkres’ result Theorem 6.1 on Cohen–Macaulayness.

Theorem 8.2 (Yanagawa) Let� and�′ be two simplicial complexes such that |�|
and |�′| are homeomorphic and r ≥ 0 a number. Then K[�] has property (Sr) if
and only of K[�′] has property (Sr).

The original proof from [22, Theorem 4.4] uses quite heavy machinery from
commutative algebra. Recently a short proof was given in [8, Corollary 3].

Equally natural as these weakenings and strengthenings of the Cohen–Macaulay
condition are generalizations of the Cohen–Macaulay condition towards pairs of
simplicial complexes. A pair (�, �) of simplicial complexes consists of two
simplicial complexes over the same ground set � such that � is a subcomplex of
�. For a relative simplicial complex (�, �) its Stanley-Reisner ideal is the ideal
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I�,� in K[�] generated by the monomials xF for F ∈ �\�. The relative simplicial
complex (�, �) is called Cohen–Macaulay (over K), if the S� module I�,� is.
As for rings the equality of depth and dimension defines Cohen–Macaulayness for
modules.

In [18] Stanley deduces the topological invariance of the Cohen–Macaulay
property from results in [17, Corollary 5.4]. Topological invariance here means that
the property only depends on the homeomorphism type of the pair (|�|, |�|). The
proof heavily relies on a relative version of Reisner’s criterion Theorem 6.2.

Theorem 8.3 (Stanley) Let (�, �) and (�′, �′) be two pairs of simplicial com-
plexes such that (|�|, |�|) and (|�|′, |�|′) are homeomorphic pairs of spaces. Then
I�,� is Cohen–Macaulay if and only if I�′,�′ is Cohen–Macaulay.

In the 90s motivated by a series of interesting non-pure simplicial complexes
arising in combinatorics, Stanley [18, p. 87] defined the notion of a sequentially
Cohen–Macaulay module. We do not want to work with the general definition here.
Using [18, Proposition 2.11] we rather define sequential Cohen–Macaulayness for
Stanley-Reisner rings K[�] only. Let � be a simplicial complex. For a number
0 ≤ i ≤ dim(�) let �i be the simplicial complex of all F ∈ � such that there is a
facet G ∈ � satisfying dim(G) = i and F ⊆ G. Then one calls K[�] sequentially
Cohen–Macaulay (over K) if for all 0 ≤ i ≤ dim(�) the relative simplicial complex

(�i,�i ∩ (�i+1 ∪ · · · ∪�dim(�))

is Cohen–Macaulay over K (see [3, 6] for equivalent formulations).
Stanley’s result on the sequential Cohen–Macaulay property follows from Theo-

rem 8.3.
In [21, Theorem 4.1.6] Wachs provides an obviously topological property which

is equivalent to sequential Cohen–Macaulayness.

Theorem 8.4 Let � be a simplicial complex. Then K[�] is sequentially Cohen–
Macaulay if and only if for all 0 ≤ j < i ≤ dim(�) and x ∈ |�i | we have

H̃j (|�i |,K) = Hj(|�i |, |�i | − x,K) = 0.

So either using Theorem 8.3 or using Theorem 8.4 we get the Stanley’s result as
a corollary.

Corollary 8.5 (Stanley) Let � and �′ be simplicial complexes such that |�| and
|�′| are homeomorphic. Then K[�] is sequentially Cohen–Macaulay if and only if
K[�′] is.

In a similar fashion sequential versions have been attached to other properties
of � or K[�]. In [8, Corollary 7] the topological invariance of the sequential (Sr)
properties is proved. In [3, Proposition 2.4] sequential connectivity and sequential
acyclicity are shown to be topological properties.
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