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Biosketch of David Eisenbud

David Eisenbud received his PhD in mathematics in 1970 from the University
of Chicago under Professor Saunders MacLane and Professor Chris Robson. He
was in the faculty at Brandeis University from 1970 until becoming Professor of
Mathematics at UC Berkeley in 1997. Eisenbud has been a visiting professor at
Harvard, and in Bonn and Paris.

His mathematical interests range widely over commutative and non-commutative
algebra, algebraic geometry, topology, and computer methods.

Eisenbud served as the director of the Mathematical Sciences Research Institute
from 1997 to 2007 and 2013 to 2022. He worked for the Simons Foundation between
2009 and 2011, creating the Foundation’s grant program in mathematics and the
physical sciences. He is currently on the board of directors of the Foundation, and is
also a director of Math for America, a foundation devoted to improving mathematics
teaching.

Eisenbud has been a member of the Board of Mathematical Sciences and their
Applications of the National Research Council, and the U.S. National Committee of
the International Mathematical Union.

He currently chairs the editorial board of the Algebra and Number Theory
journal, which he helped found in 2006. He serves on the board of the Journal
of Software for Algebra and Geometry, as well as Springer-Verlag’s book series
Algorithms and Computation in Mathematics and Graduate Texts in Mathematics.

In 2006, Eisenbud was elected a Fellow of the American Academy of Arts and
Sciences. He won the 2010 Leroy P. Steele Prize for Mathematical Exposition for his
book Commutative Algebra, with a View toward Algebraic Geometry and the 2020
Award for Distinguished Public Service, both from the American Mathematical
Society.

Eisenbud’s interests outside of mathematics include theater, music, and juggling.
He loves photography and music, and sings Bach, Brahms, Schubert, and Schumann
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David Eisenbud

I was born on April 8, 1947, to Leonard Eisenbud, a mathematical physicist (and
former student of Eugene Wigner), who was then working at the Oak Ridge National
Laboratory, and Ruth-Jean Eisenbud, a psychologist-psychoanalyst (and former
student of Robert White) with a large private practice.

The family soon moved to Long Island, where my father worked at Brookhaven
National Laboratory, and I developed an early love for the water—I have a photo of
my mother lying on the sand at the edge of the waves with me on her back, grinning.

When I was three, we moved to the Swarthmore area and stayed there eight
years. My father worked for a research lab, and we lived initially on the edge of the
property where the lab had a van de Graaf particle accelerator. I was captivated by
the big machine, which my father patiently explained. I attended a public elementary
school, and then the tiny progressive “School in Rose Valley.” I apparently had such
a poor sense of pitch in second grade that I was forbidden to sing with the rest of
the class, but my music teacher in Rose Valley rescued me and taught me to hold a
tune—a fateful development. Art was an unsolved problem for me too: terminally
stuck on what painting to contribute to a frieze about world history, my teacher took
pity and suggested I paint “The Dark Ages”—all black.

When [ was seven, my parents took me to my first Shakespeare play—Macbeth—
preceded by my first lobster dinner, at the original Bookbinders’ Restaurant, a
classic that is no more. My parents had prepared me for the play as best they could,
but my mother told me later that she worried how I would take all the violence. She
was relieved when I leaned over during the play and whispered “They forgot one of
the murders!” Whether or not I was correct, the experience began a lifelong love of
theatre (lobster, too).

We moved back to Long Island when [ was 11. There, my father helped found the
Stony Brook University physics department, where he worked until he retired, and
my mother joined the faculty of the NYU postdoctoral program in psychoanalysis. I
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had an academically excellent but socially difficult middle school experience at the
Friends Academy in Locust Valley, and then the opposite at the public Huntington
High School.

When I was about 12, I began announcing, without much apparent cause, that
I wanted to be a mathematician. I read Thomas’ Calculus at 13, and then began to
study mathematical topics proposed by one of my father’s colleagues—Mendelson’s
book on topology, Wilder’s book on the foundations of mathematics. Another
colleague introduced me to the games of Go and Shogi. My father showed me how
to use vectors and algebra to prove simple theorems in plane geometry, which I
found very exciting. I entered some science/math fairs with this, with an analogue
computation of logarithms, and with a calorimeter. I took folk guitar lessons, and
my first serious girlfriend introduced me to the flute—I briefly considered trying to
become a professional flutist (luckily, I stuck with math!).

Having exhausted the math and much else in high school I asked, late in my
junior year, to leave for college, and was accepted at the University of Chicago,
where I entered at 16 (not by any means exceptional there) and left with my PhD
at 23. Despite the famed breadth of education at Chicago, I quickly focused on
mathematics and music. Fortunately, the music came with some breadth, and I
had wonderful mentoring from the well-known musicologist Howard Mayer Brown
and from Brown’s political scientist partner Roger Strauss, in whose home we
practiced. I sang in Brown’s small chorus, and played early instruments—recorders,
krummbhorns, Quantz flute, bass viola da gamba—in Brown’s Collegium Musicum
all seven years I was in Chicago. The group was the first to systematically record
the pieces from the Historical Anthology of Music, a collection used by every
musicology graduate student, and we gave a formal concert each quarter in the
beautiful Bond Chapel. The most memorable concert for me was Schiitz’ Christmas
Oratorio, in which I played the recorder. (I listen to a recording of this piece every
December.) Music has remained a passion: after years of serious flute study, I started
voice lessons in 1982, focusing on German Lieder, and I still spend many hours a
week enjoying this art. The mathematician, pianist, and cellist Arthur Mattuck, my
music partner for years, referring to the characteristic subjects of these songs, once
wrote that I was “singing songs of puberty in a baritone Schuberty.”

Among the math courses I took as an undergraduate, three stand out as exciting
and inspiring. They could not have been less alike. The first was taught by Otto
Kegel, a postdoc who was a student (and then Assistent, in the German sense) in the
group of Reinhold Baer, in Frankfurt. Kegel taught a second semester linear algebra
course using sesquilinear instead of merely bilinear forms, and with other (too)
modern flourishes. In a subject where most objects are called V or W, Kegel was still
struggling with the transition from German, where the word for W is pronounced
“Vay.” These things, combined with Kegel’s almost illegible handwriting, made the
course extremely hard to follow. Nevertheless, Kegel imbued it with such wonderful
excitement that it was a peak experience.

The other two courses were excellent in a more standard way: in one, the famous
analyst Antoni Zygmund told a highly polished and perfected version of the story
of the Lebesgue integral, and in the other, Felix Browder laid down the basics
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of the theory of functions of one complex variable. To this day I am amazed by
the consequences that flow from a simple hypothesis in that subject. With my
inseparable undergraduate friend Joe Neisendorfer, I wrote notes for Browder’s
course (in pencil, and with plenty of erasures!).

I spent an exciting summer working at the University of Michigan as a counselor
for a high-school math program and being tutored by family friend Paul Halmos,
with problems from his manuscript Hilbert Space Problem Book. This gave me the
idea that I wanted to study operator theory. By the end of my third year at Chicago I
was taking only graduate math courses, and at the end of the year I officially became
a graduate student.

The next summer, my parents treated me to a few months abroad. I chose to go
and work with Otto Kegel, who was by this time back in Frankfurt. Kegel proposed
a research problem about the order automorphisms of infinite ordered sets. I was
possessed by the problem, and could talk of nothing else, no doubt tiresome to
those around me! Though I had taken a German class in college (and gotten a very
solid D), I unfortunately did not try to speak German, nor did I understand it—
with one exception: Saunders MacLane, whom I knew from Chicago, came to visit.
Though he spoke German easily, he had such thick American accent that he was
easy for me to understand. I was relieved when I was given, as office-mate, a young
English mathematician, but Bert Wehrfritz’ cockney accent was almost as much of a
problem for me as German. Peter Neumann was also a visitor to Frankfurt then, and
when I went to England at the end of the summer, he kindly invited me to Oxford
and took me to lunch at the High Table. In that hot weather I was living in a youth
hostel, and I’ll never forget that first time drinking cold hard cider from an ancient
silver mug.

Back in Chicago, I was uncertain what direction to study—neither permutation
groups nor operator theory were represented on the faculty. Advised by Neisendor-
fer to choose a thesis advisor first and subject second, I gravitated to Saunders
MacLane and—thus—category theory. However, this was not to be my thesis:
during MacLane’s sabbatical I made friends with J. C. (Chris) Robson, former
student of Alfred Goldie in Leeds, who was in Chicago as a postdoc with Israel
Herstein. In an intense and exciting (for me) collaboration, Robson and I developed
a noncommutative analogue of the theory of Dedekind domains.

At a memorable dinner that spring, the graduate student across the table from me
said something implying that the work with Robson would be my thesis. I began
to protest. . .when inspiration struck, and I realized how nice it would be to have a
thesis done without a “thesis neurosis”’! MacLane and Robson were generous, and |
was done. Since this was already at the end of the spring term, it made sense to take
an extra year, having only the (then) light responsibility of a graduate student and
the freedom of a postdoc.

In the spring of 1968, MacLane took me along to a conference on category
theory at the Batelle Institute in Seattle. David Buchsbaum, whose thesis had laid
the foundation of Abelian categories, was to give a series of lectures on commutative
algebra, and MacLane advised me to prepare for these lectures (at the time I knew
no commutative algebra at all) and follow them closely. I was strongly drawn to
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Buchsbaum for his great warmth and humanity and was also fascinated by his
treatment of homological commutative algebra.

I volunteered to write the notes for the lectures and worked with Buchsbaum
on them. Things were good in the first lectures—that treatment of the Koszul
complex is preserved in my own book on commutative algebra. But in the last
lectures, Buchsbaum turned to his thoughts on the resolution of lower-order
minors of a generic matrix, then an open problem. I found the lectures muddy,
impressionistic, and confusing, and suggested a reorganization. This did not go over
well! Buchsbaum and I ultimately agreed to simply leave that material out.

The contact with Buchsbaum was decisive: I decided I would like to go to work
near him, at Brandeis University, in Waltham near Boston. The academic job market
in 1970, when I got my PhD, was quite different than it is today. This was just at
the end of the period, sparked by the U.S. investment in research following Sputnik,
when jobs in the sciences and mathematics were plentiful. There was no “Mathjobs,”
and people applied to few places. I initially applied only to Brandeis, but Nathan
Jacobson, who knew of some of my work, wrote to Kaplansky to suggest that I
apply to Yale too, and I followed Kap’s advice. With offers from both places, I kept
to my plan and accepted Brandeis.

I had met Monika Schwabe, a medical student, at the wedding of my cousin
Bob to Monika’s college friend Karen in the spring of 1966. I was 19 and living in
Chicago. Monika was 23, living in NYC, and involved with others. I was interested,
but the relationship did not develop. However, a few years later Monika thought that,
after all, I had possibilities, and a courtship began. Ultimately Monika braved the
disapproval of her medical school and her mother to take a year off to live with me
in Chicago. At the end of the year, during a backpacking trip in the high Sierra, we
decided to get married, and Monika returned to finish medical school in New York.
In the Spring of 1970 I got my PhD, Monika got her MD, and we wed, in quick
succession. We packed up and moved to Boston to take up my job at Brandeis,
Monika’s residency in child psychiatry at the Beth Israel Hospital, and a new life in
an apartment in Central Square, Cambridge, a few blocks from the city hall where
my parents had been married.

It was not only the job market that was different in 1970. Brandeis had been
welcomed as the third member of the former Harvard-MIT colloquium, and the
talks rotated, every third week in each place. At least as important for Monika and
me as newcomers: there was a large and elaborate colloquium party, often with
30-50 people, nearly every week, at which we met “everyone” in the area. I was
only later aware how much this institution, immensely valuable to me as a young
mathematician, depended on the non-working spouses—wives, in every case—of
senior members of the community. While the mathematician husbands listened to
great (or not-so-great) talks, these women prepared and set out great quantities of
food and drink, and smilingly welcomed the guests—who were their friends, too.
The “job” of Faculty Wife is nearly gone, and largely unlamented, but in this regard,
it served the mathematical world well, and certainly not only in Boston.

Mathematically speaking I was quite lonely during the first half-year in Boston.
My thesis on noncommutative rings had led to a collaboration with Phillip Griffith
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(no s) about Artinian rings. Surprising as it now seems, at the time the only people
in the Boston area interested in finite dimensional algebras, or indeed in any non-
commutative algebra, were Bhama Srinivasan and the great but already elderly
Richard Brauer—not a community for me. After a semester I figured out what to
do: I went to Buchsbaum and brashly told him that I had a lot of energy that I
would like to use to work on a problem with him! He accepted this proposition, and
we began an intense collaboration of nearly 10 years, including some of my best
work. In my second year at Brandeis Graham Evans arrived for a second postdoc
at MIT. I knew Graham and his wife Kaye from graduate school—he graduated
a year ahead of me, and we were good friends. Monika and I had admired their
early married arrangements, unusual among the students then. During the summer,
I joined Graham most days in his office at MIT. We ran a seminar together that
included some odd characters. Once, one of the members came to the seminar
with a bowl of water and a towel; as the seminar began (I was the speaker), he
carefully washed and dried his face, folded his arms on his desk, put his head down,
and went to sleep. Graham had a secretary/technical typist to himself that summer,
and when we finally produced a manuscript (Basic Elements) she seemed glad to
have something to do at last: she drew a cherub, celebrating with a trumpet on the
cover page. More importantly, the next academic year we collaborated in solving a
famous problem, proving that Every Algebraic Set in n-space is the Intersection of
n Hypersurfaces. In the end, I think that this is what earned me tenure at Brandeis.

I had another stroke of good luck in my second year at Brandeis: an invitation
to a workshop in Oberwolfach. At that time there were (informally!) two kinds of
full professors in Germany: those with and those without an annual week reserved
in Oberwolfach for them, their groups of students, and their invitees. Baer had such
a week, and I had gone along the summer I visited Kegel. Now I was invited to
the annual workshop run by Kasch, Rosenberg and Zelinsky—(I later learned that
Kasch had noticed a paper I'd written as a graduate student giving a homological
proof of a known theorem about when subrings of Noetherian rings are Noetherian.)

I was even given the opportunity to speak, and I explained my newest paper
with Buchsbaum, What Makes a Complex Exact. Maurice Auslander, my senior
colleague at Brandeis, was in the audience, and seemed impressed as well. Ever
since, Oberwolfach has seemed a magical place for me, and I have made a point of
going back whenever I could—at least 30 times over the intervening 50 years. With
perhaps the best mathematical library on the planet, and a perfect setting for walks
and afternoon cake, it is a great place to work with others as well as to listen to talks.

After the workshop I was invited to go for a week to Regensburg to visit Juergen
Herzog, in the group under Ernst Kunz. I stayed with Juergen, and we became good
friends. It was in his household that I first had to try to speak German—a poor
showing. I lectured at the University (in English!), and Kunz was extremely kind to
me.

Monika and I spent the summer of 1972 traveling. In my mind from that summer
are the pleasure of the St. Andrews Mathematical Colloquium in Scotland (Halmos
was the principal speaker) and a lecture by Verdier on a very general form of
the Riemann-Roch theorem, in Aarhus, Denmark. I knew next to nothing about
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algebraic geometry, but I dared to approach Verdier afterwards and asked him what
the Riemann-Roch theorem was good for. I got no answer—the question left him
speechless with disbelief! We then spent the fall in Leeds, England where I visited
Chris Robson and Monika worked as a “Registrar” (= Resident) at High Royds
psychiatric hospital; she reported that all activity stopped, daily, for afternoon tea,
just as in the math department. The earliest notes for Commutative Algebra with a
View toward Algebraic Geometry, finally published in 1995, came from lectures I
gave there (on Noether normalization).

In our study of free resolutions Buchsbaum and I made many computations by
hand, using a method he knew. We hired Ray Zibman, an undergraduate, to program
it, and quickly learned that it was NOT an algorithm—without human curation
it often looped. At the same time Graham Evans at Urbana hired Mike Stillman
to program the computation of free resolutions of homogeneous ideals “up to a
given degree” by ordinary linear algebra. Fast forward to 1983, when Mike came to
graduate school at Harvard. There he met Dave Bayer and learned about Grobner
bases: soon the program Macaulay was born. Mike was later a postdoc with me, and
I felt that I was for many years Macaulay’s “uncle,” collaborating often with Bayer
and Stillman on computations (in recent years, collaborating with Mike and Dan
Grayson, I became a member of the Macaulay?2 team itself.) Macaulay, Macaulay?2,
and the computations they enabled have played a major role in my mathematical
career. As I said at a Bayer-Stillman 60th Birthday party, Macaulay is the only video
game to which I’ve ever been addicted!

Backing up to 1974, it was time for me to run the tenure gauntlet at Brandeis.
Given that I had a powerful advocate in Buchsbaum, one might think that it would be
an easy process, and perhaps compared to other tenure processes it was but. . .during
it one senior colleague told me outright that he would not vote for me—because
I might attract students away from him! Another threatened to vote against me
because of an old disagreement with Buchsbaum. These threats could have been
fatal, since at that time the Brandeis department operated on unanimity. After the
first threat I made a trip to Montpellier, where Buchsbaum was on sabbatical, to tell
him of the situation and seek his help—he calmed me down. In the end, neither of
the threats was realized, and the vote of the department was positive.

The university still had to grant me tenure, and the Dean proposed to delay a year
because of the number of cases pending. I was eager to put it all behind me, and in
the end the Dean (whom I didn’t yet know) backed down. Dining with Department
Chair Jerry Levine a week later, Jerry pointed out the Dean across the room and
asked whether I wanted to go and say hello, or perhaps say thank you, but the
situation was still so charged for me that I proposed to go and punch him, instead! (I
did not do it). These experiences left me highly sympathetic with the bright young
researchers who are regularly tortured before promotion.

Tenure gained, Monika and I went for a year to Paris. We traveled on the Queen
Mary, and I watched her with pleasure as she drowsed, pregnant with our first
child, on the deck. I had a Sloan Fellowship and was a visitor at the IHES; Monika
practiced her French as a visitor to the famous Salpétriere hospital and studied for
her psychiatric Board exams, scheduled the same day that Daniel was supposed to
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be born! Daniel was 3 days late, and Monika, though great with child, took and
passed the exam on schedule.

During the first days in Paris, I ran into Harold (Hal) Levine, a colleague from
Brandeis. Dining at an old-fashioned restaurant on the left bank of the Seine, he
told me a mathematical problem: how could one compute the local degree of a finite
map germ? After a few experiments, I had a glimmer of an idea, and over a sleepless
night I became sure: the degree would appear as the signature of a natural quadratic
form. Hal and I worked this out over the next days.

Arriving for the first time, in the late afternoon, at the Institut des Hautes Etudes
Scientifiques, the first person I encountered was Pierre Deligne, only three years my
senior but already famous for his proof of the Weil conjectures just a year before.
A person of the utmost kindness, Deligne made me feel at home. Though I was
in awe and addressed him with “vous,” he explained to me that all the French
mathematicians “se tutoyent”—that is, use the familiar form of “you”—to one
another, because, in the (rather recent) “old days” all the research mathematicians
in France had been graduates of one school, the Ecole Normale Superieur. The
former students treated each other familiarly (and no doubt lent a hand to each
other in careers—the “old boy” network realized on top of Napoleon’s system of
meritocracy.) Deligne also took me for a wild bicycle ride down paths in the forest
nearby—the first time I had done such a thing. I felt that I could ask Deligne
any mathematical question, and get an illuminating answer tuned to my state of
ignorance.

Of course I told Deligne about the computation of the local degree, the paper
with Hal. He immediately asked how we took care of a certain point...that I had
not noticed! I stumbled for a while, and finally came up with a plausible fix. Deligne
had far more technique than I, and he saw that it could be made rigorous—but I had
some learning to do to write the final version of the paper.

I once went with Monika to attend a presentation at the Salpétriere, and the event
left an impression beyond that of any math lecture: one after another, the presenting
pathologist would fish a tagged brain from a barrel, and begin slicing with a chef’s
knife until he came to the fatal lesion, meantime telling the patient’s final story
(“Entered hospital at 4pm complaining of terrible headache, dead at 6pm. .. Mais
oui!—now you see the cause!”)

Mathematically, I had hoped to work with Lucien Szpiro, the most active person
in French commutative algebra, but Szpiro ran a seminar listed on the bulletin board
as “by invitation only,” and when I asked for an invitation. . .he said, “No!” This
rebuff proved a blessing: I fell in with a group around Bernard Teissier, Norbert
A’Campo and Monique Lejeune-Jalabert, and began to broaden my interests into
singularity theory, initially from Milnor’s wonderful book. These became great
friends, from whom I found a warm welcome that offset Szpiro’s coldness.

When I wasn’t going to Teissier’s seminar at Paris 7, I would walk in the morning
across the Luxembourg gardens to the Metro and take the train to Bures-Sur-Yvette
and the IHES. Two seminar experiences stand out from that time:

Renee Thom was still active in that period, and at the first lecture of the year in his
seminar he was the speaker. He began by writing down a result on the blackboard
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and saying that the seminar that semester would be devoted to the consequences
of that result, of which the proof had been the subject of the previous semester.
Someone in the back of the room raised his hand and proposed a counterexample
to the theorem. This was discussed for a few minutes, and the conclusion was:
yes, it is a counterexample. Unfazed, Thom continued: “Now we will get to the
applications. . ..”

Late in my year in Paris, Daniel Quillen proved that projective modules over
polynomial rings are free, solving a famous problem that had been proposed by
Jean-Pierre Serre. The proof was, in the end, surprisingly direct, and I was appointed
to give an exposition in the main seminar — with Serre himself in the audience. That
I was nervous is a gross understatement, and indeed there came a point in the proof
when I clutched and couldn’t see how to proceed. . .for just a moment. In the end,
all was well.

Our son Daniel was born in June. Monika and I returned to Boston soon
afterwards. We had bought a small house in a beautiful setting, next to the Charles
River at its widest part in Newton, just opposite Brandeis. We could canoe through
most of the year—indeed, I took to commuting to Brandeis by canoe—and skate on
the ice the rest of the time. Since neither of us could bear the idea of moving out
of that spot, we eventually enlarged the house, and our daughter Alina was born.
Monika had by this time finished her training (in both Child and Adult psychiatry)
and had an active practice in a private office nearby.

During that period I taught a course from Milnor’s book on hypersurface
singularities and discovered what are now well-known as the matrix factorizations
associated with a hypersurface. (This suddenly became my most quoted paper in
2004, when some physicists discovered that matrix factorizations could be used
in String Theory.) I also chanced to hear a lecture at MIT by a young postdoc,
Joe Harris, which changed my direction again: Harris spoke about the equations
of canonical curves (are the quadrics generated by those of rank at most 4? Yes,
as Mark Green subsequently proved.) He explained that lots of rank 4 quadrics
come from special varieties, called rational normal scrolls, that contain the curves. I
recognized the equations of the scrolls as being determinantal, and since Buchsbaum
and I had often discussed determinantal ideals, I felt I had something to contribute.
We chatted briefly after the lecture. Not much came of the conversation until later,
though I did write my first algebraic geometry paper, using scrolls to give the
equations of hyperelliptic curves soon afterwards.

During those first 10 years at Brandeis, the work with David Buchsbaum was
by no means our only contact. David was deeply committed to Brandeis and to the
Brandeis math department, which he had helped to build, and we spoke a great deal
about department and university politics. Though I would not have guessed it then,
these lessons were the beginning of my interest in such topics, leading much later
to my work at MSRI and presidency of the American Mathematical Society. David
told me of past struggles on behalf of the department with deans and provosts; of
meetings with the President of Brandeis; and of tensions and repercussions within
the department itself.
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I found all this quite interesting, as a game of chess is interesting. But the first
time I was chair of the department, in 1981-1982, it felt very heavy when I had to
act myself! Worst of all were the negotiations over salaries. Brandeis math salaries
were very low (we thought) compared to what they should have been, and the
department’s egalitarian culture prevented much forward motion. It seemed strategic
to propose a larger increase for a smaller group, hoping to equalize another group
in the next round. In my naiveté I found it dismaying that no one was willing not
to be in the first group. . .so the plan caused only bad feelings, and never got off the
ground. That was the only time in my career when I regularly came home thinking
“I need a drink!”

Curiously, that first experience inoculated me against the stress: when I was
department chair again in the 90’s (and much later director of MSRI) I could more
easily act as if the issues were burningly important, and then turn away and be free
of the care when I didn’t need to be “on.” This skill has gotten stronger and stronger,
and served me well over the years—though there are still issues that can keep me
awake at night.

My second sabbatical was at the Sonderforschungsbereich (forerunner of the
Max Planck Institute) headed by Friedrich Hirzebruch at Bonn University. Monika,
who was born in Germany, was eager to spend a year nearer her origins and some
of her German family with our two children, then 1 and 3 years old, and this helped
determine the place. Chance again did its work in my favor: Antonius van de Ven,
a well-known Dutch algebraic geometer, was visiting for most of the period, and
we fell into a very pleasant collaboration. We would meet in the late morning at
the Institute and work together until hunger reached us around 3 or 4; then we
would stroll into town for food, and best of all, coffee and cake at one of the many
Konditoreien, on which van de Ven was expert.

Van de Ven taught me a great deal about algebraic geometry, as Buchsbaum
had about commutative algebra, and changed my direction again. Later in the year,
Walter Neumann also spent some time in Bonn, and we began a collaboration that
led to a year-long visit by Walter to Brandeis, and our book on knot theory.

It’s perhaps worth saying something about my earlier attempts to learn algebraic
geometry, as well. When I was a student at Chicago there was no algebraic geometer
on the faculty, but I listened to two one-quarter courses that were relevant. In one,
Kaplansky lectured from Chevalley’s book on algebraic curves. . .except that there
were no curves, only fields and valuations. I learned very little. Then the book
of Demazure and Gabriel appeared: schemes as functors. MacLane, who liked
anything with functors, convinced Swan to give a course on this approach. The
high point of the course, reached after a long slog, was to prove: The Grassmannian
Exists! Again, I learned nothing that could be called geometry.

When I came to Brandeis I was determined to keep trying. I listened to Paul
Monsky’s algebraic geometry course first. It was from the Weil foundations, already
a little old-fashioned. Big fields and small ones but...no geometry that I could
discern. Things went better as I listened to Mumford’s course from what was to
be his book, “Complex Projective Varieties I"—finally, some geometry! But I found
I still could not understand any of the frequent algebraic geometry seminars in the
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area, all cohomology and schemes. Then in 1977 Hartshorne’s book appeared. Since
my background in commutative algebra was by then strong, I found it relatively easy
to read, and over a summer I studied it end-to-end, doing nearly all the problems.
That fall, at last, the subject was open to me, though I still had not done anything
in it myself. I think of this 10-year effort, and eventual apprenticeship with van de
Ven, when people tell me of their troubles in learning this many-sided subject!

Returning from Bonn, I reconnected with Joe Harris, and enjoyed a long and
very fruitful collaboration with him around the applications of limit linear series—
in particular, the proof that the moduli space of curves of genus g > 24 is of general
type! Joe and I occasionally played Go—he was a much stronger player—and I
imagined us growing old together, playing Go in the sun in Harvard square. This
was not to be.

In the light of what was to come it is worth mentioning my two longest stays
in Berkeley before coming here in earnest in 1997. In 1986 we moved across the
country from Boston for a year’s sabbatical. We loved living in Berkeley, and it was
a particularly productive time for me mathematically. I was a member of what is
now called the “complementary program” at MSRI, though I was well-connected
to some of the people in the algebra program. At the end of the year Monika and
I wondered whether we should try to return—but there seemed no ready way. We
happily went back to Boston, and I to Brandeis. Again in 1994 I was a visitor to
MSRI, for 7weeks during a program related to algebraic geometry. I felt at the
time that the program badly lacked senior presence. For example, there were no
organizers in residence for most of the time I was there, and I was asked, even as
a short-term visitor, to run the main seminar. Nevertheless, Berkeley/MSRI was a
very attractive place to be (it helped that I house-sat in a wonderful old Berkeley
mansion).

Since my contact with MSRI was so slight, it seemed a great stretch when I
applied for the position of Director, a dark-horse candidate, 5 years later.

Before getting to that, I want to fill in a few relevant events. The first has to
do with my book, Commutative Algebra with a View Toward Algebraic Geometry,
published in 1995, and now by far my most quoted work. Writing this occupied me
off and on for over 20 years: the earliest written material (on Noether normalization)
is from a course I gave during my 1972 sabbatical in Leeds, and the ideas in my
exposition of the Koszul complex date from my still earlier writing of the notes for
Buchsbaum’s lectures in 1968. Some of the chapters carry distinctive memories.
For example, I can still picture a certain cafe near the Lago Maggiore where I sat
for many hours figuring out how to write about Gorenstein rings, after a memorable
workshop at the Monte Verita conference center! Springer was happy to publish the
book, but the proofreading was a nightmare: for a book with both “Algebra” and
“Algebraic” in the title, some typesetter decided that only one was necessary, and
changed all occurrences of “Algebraic” with the push of a button. Unfortunately,
I wasn’t experienced enough to simply say “No!—start again,” and instead spent
painful hours unsuccessfully trying to catch all the changes and change them back.
(As many readers will know, alas, many other slips remained.) Of course there are
things I would write differently if I were starting over, but I feel very good about the
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success the book has had. It won the AMS’ Steele Prize for Exposition in 2010. I
hope someday to write a short version.

I made a couple of mathematical visits to IMPA, in Rio, and something happened
during one of these visits that strongly influenced my future. I was a speaker at a
national meeting where Vladimir Arnol’d (Dima to his friends) was giving a series
of lectures; I listened with delight. I was lucky enough to stay in the same hotel, and
one day at breakfast he mentioned a conjecture that he had made, having to do with
the rigidity of algebras filtered by a sequence of ideals with 1-dimensional quotients.
I thought the conjecture should be false and produced a counterexample a few days
later. Arnol’d was very aware of the stylistic differences between the mathematics
in different countries, and I think he was surprised, not so much that there was a
counterexample, but that an American should have gotten his hands dirty enough to
find it!

Dima and I became good friends, and had some adventures together: for example,
during the conference there was a storm, despite which we went swimming together
in the sea near the hotel. The waves were big, and the water was very rough. We
were separated by a big wave, and when I dragged myself out onto the beach, I
looked around. . .and didn’t see Dima! I thought “Oh, no! has he drowned?” but he
appeared, intact, a few moments later. We didn’t go back in. . .. Later I visited Dima
and his wife Ella in their flat in Paris. Rather than going ’round the corner to buy
the wonderful cheese or croissants, Dima took me on a bike trip to collect berries
and wild vegetables on the outskirts of Paris. Visiting Paris, a little later, I was a
faithful member of his seminar. Though he sometimes didn’t let the lecturer finish
a sentence, his explanations were so good—and generally so much more intuitive
than the lecturer’s—that it was easy for me to forgive him. Another time Dima and
Ella visited Monika and me at our vacation cottage in New Hampshire. We all liked
to collect mushrooms—but Dima and Ella were far more efficient and far less fussy;
they came home with much bigger bags, worms and all.

I’'m convinced that Arnol’d’s warm letter of recommendation—because I was the
American who dared to challenge his conjecture, but also because of the work I had
done with Harold Levine on topological degree—was one of the main reasons I was
eventually hired at Berkeley and MSRI.

In 1996 I got a letter that changed my life, with the subject line “Retire in
Berkeley?” Here’s the background: on a visit to Berkeley a year or two before
I spent a very pleasant evening over dinner with Bernd Sturmfels and his wife,
Hyungsook Kim. I mentioned that Berkeley would be a great place to retire someday
(an idea that Marie France Vigneras had once put forward to me). Now Bernd
was suggesting that I apply for the job of MSRI Director! Brandeis had been in
hard times financially for years, and there had been serious cuts in the mathematics
department; I was thoroughly sick of fighting a losing battle to keep the department
strong, and the idea of moving to Berkeley was extremely attractive.

However, I wasn’t as sure that the administrative job of Director was a good fit
for me. I had made only two visits, both times as a peripheral member of programs.
And the administrative jobs I’d had—as department chair, as organizer of scientific
meetings—were far smaller and simpler than the MSRI Directorship. It seems that
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the search committee agreed: I was not the first choice for the position, but when the
first candidate withdrew, I was apparently the best candidate in a weak field. . .and
got the job! Next, I needed a Deputy Director. Hugo Rossi had been Chair at
Brandeis when I was first hired, and was now at the University of Utah. A wonderful
inspiration led me to phone and offer him the position, and he accepted 24 hours
later. Hugo was much a much more experienced administrator than I, and it proved
a successful partnership.

There were bad feelings at the time between the Board of Trustees, headed by
Elwyn Berlekamp, and the directorate, led by Bill Thurston. A charismatic and
immensely brilliant mathematician, Thurston had succeeded in broadening the focus
of MSRI in a very positive way, but the tension with the trustees was proving
destructive. Fortunately the differences were not very deep, and the rifts were soon
mended. Perhaps because of the contrast with Thurston, I got more credit than I
deserved.

An immediate problem I faced was a new policy at the NSF: after 15 years of reg-
ular renewals, the NSF had decided that in 2000 there should be a “recompetition”—
everyone in the world could apply to take the place of MSRI. The NSF was
quite aware of the difficulties that MSRI had had under Thurston, and I felt
that I might become “the Director who lost MSRI”! Our strongest competitor
seemed to be the American Institute of Mathematics (AIM): John Fry, a wealthy
businessman, had promised to put his money behind AIM, which was negotiating
a partnership with Stanford University—a formidable coupling. Fortunately for
MSRI, the AIM/Stanford partnership fell through. Moreover, Berlekamp and others
on the Board contributed money to show that MSRI could also get non-government
funding. To my great relief, MSRI won the recompetition.

My first two five-year terms at MSRI were intense and full of incident, which
will have to be reported elsewhere. Joe Buhler, Michael Singer, Robert Meggin-
son and Julius Zelmanowitz succeeded Hugo as Deputy Directors and I greatly
enjoyed working with them. A first serious fundraising project, carried out with
Development Director Jim Sotiros, gathered $12 million for a building expansion
and renovation that included the grand Simons Auditorium and many other features.
Ten years later architect William Glass and celebrated the achievement with a large-
format book describing that process and some of the ideas that went into the design.
When I retired from the Directorship in 2007, Jim Simons, whom I had recruited to
the Board, gave MSRI its first major endowment gift: $5 million outright plus $5
million to match.

In 2007 Robert Bryant became Director of MSRI, and I happily began life as a
regular Berkeley professor, but this did not last very long. Shortly before I retired
as Director, Jim Simons had inquired about my plans, and soon asked me whether
I would come to New York as Director of the Simons Foundation! At the time the
Foundation was a very much smaller and less active organization than today: there
was a group funding research on Autism, and a group running Math for America—
technically a separate foundation. After looking at the situation, I said no.

A couple of years later Jim asked me to come and found a new Division of
Mathematics and Physical Sciences (MPS) within the foundation, focusing on
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fundamental math, physics and computer science. By this time the Foundation had
developed further and was about to move into much bigger quarters. My task would
be to create a program that could grow over a few years to spend $40 million
annually. This was too exciting to pass up! Starting in 2010, I began to spend
about half time in NYC, and eventually worked on Foundation business full time.
Collaborating with Jim on plans for the MPS program while enjoying the wonderful
atmosphere created by Marilyn Simons’ management of the Foundation proved a
capstone experience.

In 2012-2013 MSRI hosted a year-long program on Commutative Algebra, and
already when I joined the Simons Foundation I had decided to return to Berkeley
for that program. Jim and Marilyn asked me to stay at the Foundation in New York.
Monika and I weighed the possibilities, but we ultimately decided that it would be
too disruptive for our family, and I declined. When I stepped down as Director of
MPS, Jim and Marilyn asked me to join the Board of the Foundation, and I was
delighted to continue in that role.

Robert Bryant’s term came to an end in the summer of 2013, and I put myself
forward as a candidate to succeed him. I have served as Director for two more terms,
but will retire from that job in August of 2022, 25 years after coming to MSRI.

Among the changes at MSRI that I've overseen in these years, several stand out.
First, some measurable increases: the number of Academic Sponsor departments
has gone from 28 to 110; the annual budget has gone from about $3 million in
1997-1998 to about $12 million in 2019-2020; and the building expansion roughly
doubled the floorspace of MSRI, now renamed Chern Hall in honor of the founding
director.

With these new resources, the major scientific programs (typically two in each
semester) have been significantly enriched. These already had an excellent reputa-
tion but, as mentioned above, they didn’t always have enough senior participation,
and this aspect has improved as we have moved resources from the “Complementary
Program” into the main programs and raised endowment and other funds to improve
the support of the members. We have emphasized long stays since these are the most
productive. We have greatly increased the number of graduate summer schools we
offer, now held all over the world, and started new programs emphasizing wide
participation from currently under-represented groups, so that (in non-pandemic
times) our building is full throughout the year. We have also added programs to
serve mathematics in other ways, such as the support of Numberphile, the Mathical
Book Prize, the National Math Festival, the prize for mathematical economics given
jointly with the Chicago Mercantile Exchange, and the twice-yearly Congressional
Briefings in Washington, DC. In these ways MSRI has strengthened both its core
missions and its impact on the wider community.

Many people share the credit for these achievements: MSRI has a strong and
well-functioning staff, and successive Deputy Directors, and especially Hélene
Barcelo, Deputy Director for the last 10 years, have contributed immensely.

Until about 2000, the National Science Foundation was essentially the only
financial supporter of MSRI, and it continues to be the most important source. Soon
after I came to MSRI, the NSA began to contribute significantly, and continues to
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do so. Now many private individuals and foundations add their support, amounting
to roughly half our budget, a healthy diversification.

I believe that a substantial endowment will be necessary to ensure MSRI’s
continued ability to serve the community no matter what shifts in federal funding
there may be over time. In 2007 we had virtually no endowment. In 2021 the
endowment (counting pledges) has reached about $75 million, and our current goal
is $100 million.

One sign of the current health of MSRI is the great strength of the field of
applicants to succeed me as Director in August 2022. I'm delighted that Tatiana
Toro, the Craig McKibben & Sarah Merner Professor of Mathematics at the
University of Washington was chosen, and that she has agreed to become MSRI’s
next Director! The Institute will be in good hands.

As for my own future, I'm looking forward to going back to the life of an
ordinary professor at Berkeley, and to being back in the classroom. Despite the
scarcity of time to concentrate on mathematics, I’ve managed to keep up research
over these 25 years. From my work in this period, I'm particularly proud of the
proof of the Boij-Soederberg conjecture and the analysis of Chow forms (both with
Frank Schreyer, continued in work with Daniel Erman); of matrix factorizations for
Cohen-Macaulay modules over complete intersections (with Irena Peeva); of the
work on residual intersections (with Marc Chardin and Bernd Ulrich); and of the
book on intersection theory, “3264 And All That” (with Joe Harris). I’ve had great
pleasure throughout my career in collaborations (you can find the full list of my
collaborators in my MathSci record), and I take a special pleasure in those with
former students, with many of whom I've kept a close relationship. I look forward
particularly to continuing collaborations and to advising of PhD students in the next
years.

Berkeley, CA, USA David Eisenbud
August 2021
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1 Introduction

The origin of the theory of D-modules can be found in the works of Kashiwara
[70] and Bernstein [9, 10]. The motivation behind Bernstein’s approach was to give
a solution to a question posed by I. M. Gel’fand [55] at the 1954 edition of the
International Congress of Mathematicians regarding the analytic continuation of the
complex zeta function. The solution is based on the existence of a polynomial in a
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single variable satisfying a certain functional equation. This polynomial coincides
with the b-function developed by Sato in the context of prehomogeneous vector
spaces and it is known as the Bernstein-Sato polynomial.

The theory of D-modules grew up immensely in the 1970s and 1980s and funda-
mental results regarding Bernstein-Sato polynomials were obtained by Malgrange
[91-93] and Kashiwara [71, 72]. For instance, they proved the rationality of the
roots of the Bernstein-Sato polynomial and related the roots to the eigenvalues of
the monodromy of the Milnor fiber associated to the singularity. Indeed this link is
made through the concept of V-filtrations and the Hilbert-Riemann correspondence.

The theory of D-modules burst into commutative algebra through the seminal
work of Lyubeznik [85] where he proved some finiteness properties of local
cohomology modules. Nowadays, the theory of D-modules is an essential tool used
in the area and has a prominent role. For example, the smallest integer root of
the Bernstein-Sato polynomial determines the structure of the localization [143],
and thus, using the Cech complex, it is a key ingredient in the computation of
local cohomology modules [107-109, 111]. In addition, several results regarding
finiteness aspects of local cohomology were obtained via the existence of the
Bernstein-Sato polynomial and related techniques [1, 106]. Finally, there are several
invariants that measure singularity that are related to the Bernstein-Sato polynomial
[36, 38, 51, 102].

In this expository paper we survey several features of the theory of Bernstein-
Sato polynomials relating to commutative algebra that have been developed over
the last fifteen years or so. For instance, we discuss a version of Bernstein-Sato
polynomial associated to ideals was introduced by Budur, Mustatd, and Saito [36].
We also present a version of the theory for rings of positive characteristic developed
by Mustata [100] and furthered by Bitoun [14] and Quinlan-Gallego [114]. Finally,
we treat a recent extension to certain singular rings [1, 2, 63]. In addition, we
discuss relations between the roots of the Bernstein-Sato polynomial and the poles
of the complex zeta function [9, 10] and also the relation with multiplier ideals and
jumping numbers [36, 38, 51].

In this survey we have extended a few results to greater generality than previously
in the literature. For instance, we prove the existence of Bernstein-Sato polynomials
of nonprincipal ideals for differentiably admissible algebras in Theorem 5.6. In
Proposition 8.2, we show that Walther’s proof [143] about generation of the
localization as a D-module also holds for nonregular rings. In Theorem 8.6 we
observe conditions sufficient for the finiteness of the associated primes of local
cohomology in terms of the existence of the Bernstein-Sato polynomial; this covers
several cases where this finiteness result is known. We point out that these results are
likely expected by the experts and the proofs are along the lines of previous results.
They are in this survey to expand the literature on this subject.

We have attempted to collect as many examples as possible. In particular, Sect. 4
is devoted to discuss several examples for classical Bernstein-Sato polynomials. In
Sect. 5, we also provide several examples for nonprincipal ideals. In addition, we
tried to collect many examples in other sections. We also attempted to present this
material in an accessible way for people with no previous experience in the subject.
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The theory surrounding the Bernstein-Sato polynomial is vast, and only a portion
of it is discussed here. Our most blatant omission is the relation of the roots of
Bernstein-Sato polynomials with the eigenvalues of the monodromy of the Milnor
fiber [90]. Another crucial aspect of the theory that is not touched upon here is mixed
Hodge modules [119]. We also do not discuss the different variants of the Strong
Monodromy conjecture which relate the poles of the p-adic Igusa zeta function or
the topological zeta function with the roots of the Bernstein-Sato polynomial [48,
68, 105]. We also omitted computational aspects of this subject [13, 107]. We do not
discuss in depth several recent results obtained via representation theory [83, 84].
We hope the reader of this survey is inspired to learn more and we enthusiastically
recommend the surveys of Budur [31, 33], Granger [57], Saito [122], and Walther
[52, 144] for further insight.

2 Preliminaries

2.1 Differential Operators

Definition 2.1 Let K be a field of characteristic zero, and let A be either

e A =K[xy,...,x4], a polynomial ring over K,
* A =K]xy,...,xq], a power series ring over K, or
e A =C{xy,..., x4}, thering of convergent power series in a neighborhood of the

origin over C.

The ring of differential operators D AlK is the K-subalgebra of Endj (A) generated

by A and 91, ..., dg, where 0; is the derivation %.

In the polynomial ring case, D AlK is the Weyl algebra. We refer the reader to
books on this subject [46], [96, Chapter 15] for a basic introduction to this ring and
its modules. The Weyl algebra can be described in terms of generators and relations
as

D — [K<-x17"'9-xd1817"'18d)
AR Gix; —xj0 =0 i j=1.....d)

)

where §;; is the Kronecker delta. As DA\[K is a subalgebra of End (A), x; € DA|[K
is the operator of multiplication by x;. The ring D AlK has an order filtration

i aj aq qby bq

Diy= @ Kxoxiioh ol
al,...,ade[N
by+-+bg<i

The associated graded ring of D AlK with respect to the order filtration is a
polynomial ring in 2d variables. Many good properties follow from this, for
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instance, the Weyl algebra is left-Noetherian, is right-Noetherian, and has finite
global dimension.

In the generality of Definition 2.1, the associated graded ring of D, with
respect to the order filtration is a polynomial ring over A.

Rings of differential operators are defined much more generally as follows.

Definition 2.2 Let K be a field, and R be a K-algebra.
. D‘;‘[K = Homg (R, R) g.End[K(R).
e Inductively, we define D;e\[K as

{8 € Endy(R) [opu—pode D;—l[f( forall u € D%lM}.

* Dpk =Uen D‘R‘M.
We call D RIK the ring of (K-linear) differential operators on R, and

DO

1
RIK S DR

2
\[KEDRHKE"'

the order filtration on D RIK-

We refer the interested reader to classic literature on this subject, e.g., [58, §16.8],
[16], [104], and [96, Chapter 15]. We now present a few examples of rings of
differential operators.

(i) If A is a polynomial ring over a field K, then

ag ad
D= @ ALl
AlK Coa! ag”
ay+-+aq<i
a;
where ’—' is the K-linear operator given by

a; .

" b bi\ » b b
’—'(xll ...xdd) = < ’)xll ...xl_f—“i ...xdd.
a;. a;

1

Here, we identify an element a € A with the operator of multiplication
by a. In particular, when K has characteristic zero, this definition agrees with
Definition 2.1.
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(i) If R is essentially of finite type over K, and W C R is multiplicatively closed,

then DfW_lm[l< = W*‘D;NK. In particular, for R = K[x1, ..., x4/,
. aal aad
— L 4
DRl[K - @ K[-xl5"'7xd]f al! ad!‘
aj+--+ag<i

(iii) If A is a polynomial ring over K, and R = A/a for some ideal a, then

o _BeDyli@ca

RIK — aDian

In general, rings of differential operators need not be left-Noetherian or right-
Noetherian, nor have finite global dimension [12].

We note that if R is an N-graded K-algebra, then Dy admits a compatible Z-
grading via deg(8) = deg(6(f)) — deg(f) for all homogeneous f € R.

Remark 2.3 The ring R is tautologically a left D j-module. Every localization of

Risa DRHK—module as well. For § € DR|[K’ and f € R, we define s f inductively

as 8/ = 8,and 80/ = 8U=D-S o f— fo5U~D-/ The action of D on W'R
is then given by

5.7 2’: WS (r)
- j+1
FTETT
t
ford € DR|[K’

Definition 2.4 Let a € R be an ideal and F = fi,..., fr € R be a set of
generators for a. Let M be any R-module. The Cech complex of M with respect
to F is defined by

reR,few.

é’(F;M): O—>M—>@Mfi —)@Mﬁfj — o= My..5, > 0,
i ij

where the maps on every summand are localization maps up to a sign. The local
cohomology of M with support on a is defined by
H (M) = H'(C*(F; M)).

This module is independent of the set of generators of a.

A ial H!' (R) = Ry
S a Special case, ) = R .
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The Cech complex of any left D rK-module with respect to any sequence of
elements is a complex of D, -modules, and hence the local cohomology of any
D R‘[K-module with respect to any ideal is a left D RI[K-module.

2.2 Differentiably Admissible [K-Algebras

In this subsection we introduce what is called now differentiably admissible
algebras. To the best of our knowledge, this is the more general class of ring
where the existence of the Bernstein-Sato polynomial is known. We follow the
extension done for Tate and Dwork-Monsky-Washnitzer K-algebras by Mebkhout
and Narvdez-Macarro [98], which was extended by the third-named author to
differentiably admissible algebras [106]. We assume that K is a field of characteristic
Zero.

Definition 2.5 Let A be a Noetherian regular K-algebra of dimension d. We say
that A is differentiably admissible if

(i) dim(Ay,) = d for every maximal ideal m C A,
(i) A/m is an algebraic extension of K for every maximal ideal m C A, and
(iii) Der Al isa projective A-module of rank d such that the natural map

Amn ®a DerAl[K — DerAml[K

is an isomorphism.
Example 2.6 The following are examples of differentiably admissible algebras:

(i) Polynomial rings over K.
(i) Power series rings over K.
(iii) The ring of convergent power series in a neighborhood of the origin over C.
(iv) Tate and Dwork-Monsky-Washnitzer K-algebras [98].
(v) The localization of a complete regular rings of mixed characteristic at the
uniformizer [86, 106].
(vi) Localization of complete local domains of equal-characteristic zero at certain
elements [112].

We note that in the Examples 2.6(i)—(iv), we have that Der AlK is free, because
there exists xy,...,xg € Rand 91,...,0,4 € DerA|[|< such that 9; (x;) = §; ; [94,
Theorem 99].

Theorem 2.7 ([106, Theorem 2.7]) Let A be a differentiably admissible K-
algebra. If there is an element f € A such that R = A/fA is a regular ring,
then R is a differentiably admissible K-algebra.
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Remark 2.8 ([106, Proposition 2.10]) Let A be a differentiably admissible K-
algebra. Then,

(i) DYy = (Deryy +A)", and

(i) DA|[I< = A(DerA‘[K).
Theorem 2.9 ([106, Section 2]) Let A be a differentiably admissible K-algebra.
Then,
i D Al B left and right Noetherian;
(ii) grpe K (DA\[K) is a regular ring of pure graded dimension 2d;
Al
(i) gl. dim(DAl[K) =d.
We recall that for Noetherian rings the left and right global dimension are equal.
In fact, this number is also equal to the weak global dimension [116, Theorem 8.27].
Definition 2.10 ([98]) We say that D AlK is a ring of differentiable type if
i) D AlK is left and right Noetherian,
(ii) grpe K (DA\[K) is a regular ring of pure graded dimension 2d, and
Al
(iii) gl. dim(DAl[K) =d.

By Theorem 2.9, the ring of differential operators of any differentiably admissi-
ble algebra is a ring of differentiable type.

2.3 Log-Resolutions

Let A = C[xq, ..., xq] be the polynomial ring over the complex numbers and set
X=Cc%A log-resolution of an ideal a C A is a proper birational morphism 7 :
X’ — X such that X’ is smooth, a - Oy = Oy (—Fy) for some effective Cartier
divisor F and F;; + E is a simple normal crossing divisor where E = Exc(mwr) =
Zle E; denotes the exceptional divisor. We have a decomposition F; = Fye +
Fuzy into its exceptional and affine parts which we denote

r N
Fr =) NiEi+ ) N}S;
i=1 j=1

with N;, N ; being nonnegative integers. For a principal ideal a = (/) we have that
Fr = n* f is the total transform divisor and S; are the irreducible components of
the strict transform of f. In particular N ; = 1 for all j when f is reduced.

The relative canonical divisor

,
K, = ZkiEi
i=1
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is the effective divisor with exceptional support defined by the Jacobian determinant
of the morphism 7.

There are many invariants of singularities that are defined using log-resolutions
but for now we only focus on multiplier ideals. We introduce the basics on these
invariants and we refer the interested reader to Lazarsfeld’s book [77]. We also want
to point out that there is an analytical definition of these ideals that we consider in
Sect. 10.

Definition 2.11 The multiplier ideal associated to an ideal « € A and A € R>g is
defined as

J(@") =m.0x ([Kx —AFz]) ={g € A | ordg,(7*g) > [Ae; — ki) Vil.

An important feature is that J(a*) does not depend on the log-resolution
7 : X' — X. Moreover we have R'm,Ox ([Kx — AF;]) = 0foralli > 0.

From its definition we deduce that multiplier ideals satisfy the following
properties:

Proposition 2.12 Let a, b C A be ideals, and 1., )" € R>q. Then,

(i) Ifa C b, then J(a*) € J(b%).
(i) Ifr < X, then J (") C J(a*).
(iii) There exists € > 0 such that J(a*) = J(a"), if ' € [A, A + €).

Definition 2.13 We say that A is a jumping number of a if
J (@) # T (@)

for every € > 0.

Notice that jumping numbers have to be rational and we have a nested filtration
A A A
A2J@H270@) 2202

where the jumping numbers are the A; where we have a strict inclusion and A1 =
Ict(a) is the so-called log-canonical threshold. Skoda’s theorem states that 7 (a*) =
a-J(a* 1) forall A > dim A.

Multiplier ideals can be generalized without much effort to the case where X is
a normal Q-Gorenstein variety over a field K of characteristic zero; one needs to
consider Q-divisors. Fix a log-resolution 7 : X’ — X and let Kx be a canonical
divisor on X which is Q-Cartier with index m large enough. Pick a canonical divisor
Ky in X’ such that 7, K x» = K x. Then, the relative canonical divisor is

1
Ky = Ky — —n*(mKx)
m

and the multiplier ideal of an ideal a € Oy is J(a*) = m.Ox ([K;, — AFz ).
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A version of multiplier ideals for normal varieties has been given by de Fernex
and Hacon [47]. In this generality we ensure the existence of canonical divisors that
are not necessarily Q-Cartier. Then we may find some effective boundary divisor A
such that Kx + A is Q-Cartier with index m large enough. Then we consider

1
= Kx — Z”*(m(KX +4)

and the multiplier ideal 7 (a*, A) = m,Ox' ([K; — AF7) which depends on A.
This construction allowed de Fernex and Hacon to define the multiplier ideal 7 (a*)
associated to a and A as the unique maximal element of the set of multiplier ideals
J(a*, A) where A varies among all the effective divisors such that Ky + A is Q-
Cartier. A key point proved in [47] is the existence of such a divisor A that realizes
the multiplier ideal as 7 (a*) = J (a*, A).

2.4 Methods in Prime Characteristic

In this section we recall definitions and results in prime characteristic that are used
in Sect. 6. We focus on Cartier operators, differential operators, and test ideals.

Let R be a ring of prime characteristic p. The Frobenius map F : R — R is
defined by r — r”. We denote by F¢R the R-module that is isomorphic to R as
an Abelian group with the sum and the scalar multiplication is given by the e-th
iteration of Frobenius. To distinguish the elements of F{ R from R we write them
as F¢ f. In particular, r - F¢ f = F£(r?* f). Throughout this subsection we assume
that F¢ R is a finitely generated R-module: that is, R is F-finite.

Definition 2.14 Let R be an F-finite ring.

(i) An additive map ¢ : R — R is a p®-linear map if Y (rf) = rP Y (f). Let Fr
be the set of all the p®-linear maps.
(ii) An additive map ¢ : R — R is a p~-linear map if ¢ (r?" f) = r¢)(f). Let Cr
be the set of all the p~¢-linear maps.
(iii) An additive map § : R — R is a differential operator of level e if it is RV -
linear. Let Dg) be the set of all differential operator of level e.

Differential operators relate to the Frobenius map in the following important
way. This alternative characterization of the ring of differential operators is used
in Sect. 6.

Theorem 2.15 ([131, Theorem 2.7], [148, Theorem 1.4.9]) Let R be a finitely
generated algebra over a perfect field K. Then

Dpy = |J DY = | Homge (R, R).
ee ee
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In particular, any operator of degree < p is R?-linear.

Remark 2.16 Suppose that R is a reduced ring. Then, we may identify FYR =
R'/?°. We have that

(i) F4 = Homg(R, FCR),
(ii) Cz = Homg(F{R, R), and
(iii) D’ = Homg(F¢R, FR).

Remark 2.17 Let A be a regular F-finite ring. Then,
e e ~ (e)

This can be reduced to the case of a complete regular local ring. In this case, one can
construct explicitly a free basis for Y A as A is a power series over an F'-finite field.

Then, it follows that C, F, and D' are free A-modules. From this it follows that
C4a = C4bif and only Dﬁf)a = D/(:)b for any two ideals a, b C A.

We now focus on test ideals. These ideals have been a fundamental tool to
study singularities in prime characteristic. They were first introduced by means of
tight closure developed by Hochster and Huneke [64—67]. Hara and Yoshida [60]
extended the theory to include test ideals of pairs. An approach to test ideals by
means of Cartier operators was given by Blickle et al. [21, 22] in the case that A is
a regular ring. Test ideals have also been studied in singular rings via Cartier maps
[19, 20, 128].

Definition 2.18 Let A be an F-finite regular ring. The test ideal associated to an
ideal a € A and A € Rx¢ is defined by

T4(ah) = U Cf\a“’m.
ecN

We note that the chain of ideals {C1'7"*1} is increasing [21], and so, 74(a*) =
CZCL“’EM fore > 0.
We now summarize basic well-known properties of test ideals.

Proposition 2.19 ([21]) Let A be an F-finite regular ring, a,b C A ideals, and
A, A € Rao. Then,

() Ifa C b, then tA(a)‘)/ C 1A (b*).
(i) Ifx < A, then t4(a*) C t4(a).
(ili) There exists € > 0, such that T4 (a*) = ta(a*), if A € [A, A + €).

In this way, to every ideal a C A is associated a family of test ideals T (a’)
parameterized by real numbers A € R.¢. Indeed, they form a nested chain of ideals.
The real numbers where the test ideals change are called F'-jumping numbers. To be
precise:
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Definition 2.20 Let A be an F-finite regular ring and let a € A be an ideal. A real
number A is an F'-jumping number of a if

ta(ah) # 4@ 7€)

for every € > 0.

3 The Classical Theory for Regular Algebras
in Characteristic Zero

3.1 Definition of the Bernstein-Sato Polynomial
of an Hypersurface

One basic reason that the ring of differential operators is useful is that we can use its
action on the original ring to “undo” multiplication on A: we can bring nonunits in A
to units by applying a differential operator. The Bernstein-Sato functional equation
yields a strengthened version of this principle. Before we state the general definition,
we consider what is perhaps the most basic example.

Example 3.1 Consider the variable x € K[x]. Differentiation by x not only sends x
to 1, but, moreover, decreases powers of x:

ot = (s+ Dx*  foralls € N. (3.1)

In this equation, we were able to use one fixed differential operator to turn any power
of x into a constant times the next smaller power. Moreover, the constant we obtain
is a linear function of the exponent s.

The functional equation arises as a way to obtain a version for Eq.3.1 for any
element in a K-algebra.

Definition 3.2 Let K a field of characteristic zero and A be a regular K-algebra. A
Bernstein-Sato functional equation for an element f in A is an equation of the form

8() S =b(s) f* forall s € N,

where 6(s) € D AI[K[s] is a polynomial differential operator, and b(s) € K[s] is a
polynomial. We say that such a functional equation is nonzero if b(s) is nonzero;
this implies that 6(s) is nonzero as well. We may say that (§(s), b(s)) as above
determine a functional equation for f.
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Theorem 3.3 Any nonzero element f € A satisfies a nonzero Bernstein-Sato
functional equation. That is, there exist 6(s) € DAHK[S] and b(s) € K[s] ~ {0}
such that

S =b(s)f*  forall s € N.

We pause to make an observation. Fix f € A, and suppose that (§1(s), b1(s))
and (82(s), ba(s)) determine two Bernstein-Sato functional equations for f:

8i(s) ST =bi(s)f* forall s € Nfori =1,2.
Let c(s) € K[s] be a polynomial. Then
(c($)81(5) + 82()) f*T! = (c()b1(s) + ba(s)) f*  forall s €N,
It follows that, for f € A,
{b(s) € K[s] | 38(s) € D 4[s] such that 8(s) £ = b(s) f* forall s € N}

is an ideal of K[s]. By Theorem 3.3, this ideal is nonzero.
Definition 3.4 The Bernstein-Sato polynomial of f € A is the minimal monic
generator of the ideal

{b(s) € K[s]|38(s) € D, kls] such that §(s) f**! = b(s) f* forall s € N} C K[s].

This polynomial is denoted b 7 (s).

The polynomial described in Definition 3.4 was originally introduced in inde-
pendent constructions by Bernstein [9, 10] to establish meromorphic extensions of
distributions, and by Sato [125, 126] as the b-function in the theory of prehomoge-
neous vector spaces.

3.2 The D-Modules DAl[K[s]fs and A¢[s]f*

For the proof of Theorem 3.3 and for many applications, it is preferable to consider
the Bernstein-Sato functional equation as a single equality in a D AlK [s]-module
where f* is replaced by a formal power “ f*.” We are interested in two such modules
that are closely related:

DA|ﬂ<[S]fs - Af[s]fs-
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We give a couple different constructions of each. For much more on these modules,
we refer the interested reader to Walther’s survey [144].

3.2.1 Direct Construction of A s[s] f*

Definition 3.5 We define the left D A/1K [s]-module A ¢[s]f 5 as follows:

* Asan Ay[s]-module, A r[s]f % is a free cyclic module with generator f*.
» Each partial derivative 9; acts by the rule

i (a(s) f*) = <8,~(a(s)) 4 M) 7

f
fora(s) € Ayl[s].

We often consider this as a module over the subring D A|[K[S] cD Af”K[s] by
restriction of scalars. To justify that this gives a well-defined D Af‘[K[s]-module
structure, one checks that 9; (x;a(s) f*) = x;0; (a(s) f*) + a(s) f5.

From the definition, we see that this module is compatible with specialization
s + n € Z. Namely, for all n € Z, define the specialization maps

Ot Af[s1f* — Ay by 6u(a(s) f*) =an) f"
and

T, DAfl[K[s] — DA_,»|U< by m,(8(s)) =d(n).
We then have 7, (8(s)) - 0, (a(s) f*) = 0,(8(s) - a(s) ). This simply follows from
the fact that the formula for 9; (a(s) f*) in the definition agrees with the power rule
for derivations when s is replaced by an integer n and f* is replaced by f”.
3.2.2 Local Cohomology Construction of A [s] f*
It is also advantageous to consider A ¢[s]f* as a submodule of a local cohomology
module.

Consider the local cohomology module H(lf_t)(A rlt]), where t is an indetermi-
nate over A. As an A p-module, this is free with basis

H:f]_til’[(fll)z]’[(fit)3j|""}: (3.2)
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indeed, these are linearly independent over A ¢, and we can rewrite any element

[ p(1)

(f — t)m_:| € Hl;_, (Aslt]), with p(1) € Aglr]

in this form by writing t = f — (f —t), expanding, and collecting powers of f —¢.
By Remark 2.3, H(lf_t)(Af[t]) is naturally a D, |,y x-module.

Consider the subring DAf”K[—B,t] - DAf[z]|[K' We note that —d;f commutes
with every element of D 471K and that —d,¢ does not satisfy any nontrivial algebraic
relation over Dy k> 80 Dy k[=01] = Dy kls] for an indeterminate s. We
consider H(lf,t)(Af[f]) asaD, f_l[K[s]—module via this isomorphism. Namely,

N s sy [a
(Oms +~-~+50)-[ ]—@m( WA o) [(f—r)n]’

a
(f=or
where the action on the right is the natural action on the localization.

Lemma 3.6 The elements

{(—3zl)n : [ﬁ] |ne IN}

are A ¢-linearly independent in H(lf_t)(A[t]) - H(lf_t)(Af[t]).

Proof We show by induction on n that the coefficient of (—d,1)" - [ﬁ] corre-

sponding to the element [W] in the A ¢-basis (3.2) is nonzero. This is trivial
if n = 0, and the inductive step follows from the formula
-1 _
_a,t.[ a ]z[(” ”‘}[ nfa 1] .
(f =0 (f =n" (f —ont

Proposition 3.7 The map

1
o Aflslff — H(lf_,)(Af[t]) given by a(a(s) f*) = a(—0o,1) - I:ﬁ:|

is an injective homomorphism of D A7K [s]-modules.

Proof Injectivity of « follows from Lemma 3.6. We just need to check that this map
is linear with respect to the action of D Af\[K[S]' We have that « is A ¢[s]-linear; we
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just need to check that « commutes with the derivatives 9;. We compute that

(50D D
a(a,f>—a(—f f>_ = [f_[}

= —9: P 1 = 0; !
—_z(f)t[ﬁ}— l|:f—t:|’

where in the penultimate equality we used that

1 N R
t[f—t}_(f_(f_))[f—t}_f[f—t]' :

We note that « is not surjective in general.
As Agf[s]f* is generated by f* asa D Afl[K[s]—module, Proposition 3.7 yields
the following result. '

Proposition 3.8 The D Afl[K[s]—module Arlslf $ is isomorphic to the submodule
DAfl[K[S] . [%] C H(;7t>(Af[t]), where s acts on the latter by —oxt.

3.2.3 Constructions of the Module D, k[s]f*

We now give three constructions of the submodule D, [s] S of the module
Ay[s1f°. The first is exactly as suggested by the notation.

Definition 3.9 We define D Al[K[s] f* as the D A‘[K[s]-submodule of Ar[s]f*® gen-
erated by the element f°.

Proposition 3.10 There is an isomorphism

D 4 kls]
{8(s) € DAl[K[s] | §(n) f" =0foralln e N}’

DA|[K[S]fs =

Proof We just need to show that the annihilator of f* in A ¢[s]f* is
(3(s) € D kls] | 8(n) f" = O forall n € N).
We can write §(s) f* as p(s) f* for some p(s) € A[s]. Observe that
P& ff =04 ps)=0
& p(n) =0foralln € N

< pm)f* =0foralln € N
& 0,(p(s) f5)=0foralln € N.



16 J. Alvarez Montaner et al.

Then, §(s) f* = 0 if and only if 0 = 6,(8(s) f°) = 8(n)f" forall n € N, as
required. O

Note that this is using characteristic zero in a crucial way: we need that a
polynomial that has infinitely many zeroes (or that is identically zero on N) is the
zero polynomial.

Remark 3.11 An argument analogous to the above shows that, for §(s) € D A\[K[S]’
the following are equivalent:

() 8()f* =0in Af[s1f*;
(i) 8(n)f" =0in A foralln € N;
(iii) 8(n)f" =0in Ay foralln € Z;
(iv) 8(n) f" =01in Ay for infinitely many n € Z.

Likewise, by shifting the evaluations, ones sees this is equivalent to:
V) S+ f fS=0in As[s]f*.

Finally, we observe that D Alk[s] f*¥ can be constructed via local cohomology
as in Sect. 3.2.2. By restricting the isomorphism of Proposition 3.8, we obtain the
following result.

Proposition 3.12 The D A‘[K[s]-module D Al[K[s] f* is isomorphic to the submodule
A|[K[s] [ ] - H(lf t)(A[t]), where s acts on the latter by —oxt.
Proposition 3.13 The following are equal:

(i) The Bernstein-Sato polynomial of f;
DA|[K [s1f* )
A|[K [s] ffs '

(iii) The minimal polynomial of the action of —0;t on [ ;1in

(ii) The minimal polynomial of the action of s on

Dyl=d:1]- 551
Dykl=aitl- fl75 ]

(iv) The monic element of smallest degree in K[s] N (Annps1(f*) + DA‘[K[s]f).

Proof The equality between the first two follows from the definition. The equality
between the second and the third follows from the previous proposition. For the
equality between the second and the fourth, we observe that

DA‘[K[S]fs Zcoker( AH}([S] _j) DA|[|<[5] )
Dyls1ff* Annps1(f*) Annp(f*)

D, kls]
Anl‘lD s](.f )+ DA‘lK[s]f
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Remark 3.14 For any rational number «, we can consider the D RHK—modules
DR‘Mf"‘ and Ay f* by specializing s > « in the D k[s]-modules DRl[K[s]fs and
Ay[s1f*. These modules are important in D-module theory, but we do not focus on
them in depth here.

We end this subsection with equivalent characterizations on A ¢[s]f § ®K(s)
K(s) for f to have a nonzero functional equation. This lemma plays a role in
Corollary 3.21 and Theorem 3.26.

Lemma 3.15 ([2, Proposition 2.18]) Fix an element f € A. Then, the following
are equivalent:

(i) There exists a Bernstein—Sato polynomial for f;
(i) Af[s1f* ®qy) K(s) is generated by f* as a D ) (s -module;
(iii) Af[s]f* QKps) K(s) is a finitely-generated DA(S)|[K(S)'m0d“l€~

Proof We first show that (i) implies (ii). For every m € Z, we have an isomorphism
of DA(S)I[K(S)-modules

Ym Affs BKis K(s) — Affs QK [s] K(s)

defined by

r(s)h ¢ r(s —m)h g
o I e S

Applying these isomorphism to the functional equation, we obtain that fLm ffe

Dy ik S

Since (ii) implies (iii) follows from definition, we focus in proving that (iii)
implies (i). First we note that (iii) implies that # f*. generates Ay f* ®Ksy K(s)
for some m € N. Then, f”ﬁfs IS DA(s)llK(s)fmes' Then, there exists 8(s) €
DA(S)|[K(S) such that

1 s 1 N

S T/ = S
After clearing denominators and shifting by —m — 1, we obtain a functional
equation. O

3.3 Existence of Bernstein-Sato Polynomials for Polynomial
Rings via Filtrations

In this subsection A = K[xy,...,x4] is a polynomial ring over a field, K, of
characteristic zero. This was proved in this case by Bernstein [9, 10]. We show the
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existence of the Bernstein-Sato polynomial using the strategy of Coutinho’s book
[46].
We define the Bernstein filtration of A, B:u[K as

i aj aq oby bq
K= @ K-xf e x§ear - a0
ar+--taqg+bi+-+bg<i

We note that

(i) dimy B;‘[K = (";f’) < 00,
(i) Dy = Use B

oo o i it
(iii) BIA\[KBAHK = BA\[K’ and

. i ¥ i+j—2
(iv) [BA|[K’BA|U<] < BA|[K :

We observe that the associated graded ring of the filtration, gr(B:‘l[K, D AI[K)’ is
isomorphic to K[xy, ..., x4, y1, - - ., Yal.

Given a left, D AIM—module, M, we say that a filtration I'* of K-vector spaces is
B;lk-compatible if

(i) dimy I'" < oo,

() M=J;enTI". and
R 4 »
(iii) BA\[KFJ cIri.

In this manuscript, by a D AHK—module, unless specified, we mean a left D AlK-
module.

We observe that gr(I"®, M) is a graded gr(B:”M, D AI[K)—module. Moreover, M is
finitely generated as a D, -module if and only if there exists a filtration I'* such
that gr(I"®, M) is finitely generated as a gr(B:”[K, D, )-module. In this case, we
say that I" is a good filtration for M.

Proposition 3.16 Let M be a finitely generated D A‘[K—module. Let G denote the

associated graded ring with respect to the Bernstein filtration. Let '} and 'S be
two good filtrations for M. Then,

\/Ann(; gr(l'y, M) = \/Ann(; gr(l's, M).

Thanks to the previous result we are able to define the dimension of a finitely
generated D AI[K-module M as

G
dimp(M) = dimg | ————— | .
Anng gr(I'*, M)
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Theorem 3.17 (Bernstein’s Inequality) Ler M be a finitely generated D AlK-
module. Then,

d <dimp(M) < 2d.
Definition 3.18 We say that a finitely generated D ajk-module, M, is holonomic if
either dimp (M) =d or M = 0.
Theorem 3.19 Every holonomic D A‘M-module has finite length as D Alk-module.

Proof Let Mo G M1 G --- G M, & M l?e a proper chain of D, -submodules.
Let I'® be a good filtration. We note that I'; = I'" N M} is a good filtration on M;.
In addition, sz = d:j(Fj.), where w : M; — M;/M;_; is the quotient map, is
a good filtration for M;/M;_;. We have the following identity of Hilbert-Samuel
multiplicities of graded gr(B:”[K, D A‘[K)-modules:

t

e(gr(l*, M) = Y e(er(T}, M;j/M;_1)).
Jj=1

Since the multiplicities are positive integers, we have thatt < e(gr(I"®, M)), and so,
the length of M as a DRl[K—module is at most e(gr(I"®, M)). O

Theorem 3.20 Given any nonzero polynomial f € A, Ay[s]f* OKps] K(s) is a
holonomic DA(S)‘[K(S)-module.

Proof Lett = deg(f). We set a filtration

1

L= 7i {g € A(s) | deg(g) =< (r + Di}f*.
We note that I'; is a good filtration such that the associated graded of A ¢[s] f § RK(s]
K(s) has dimension d. O

Corollary 3.21 ([10]) Given any nonzero polynomial f € A, the Bernstein-Sato
polynomial of f exists.

Proof This follows from Proposition 3.15 and Theorems 3.19 and 3.20. O

3.4 Existence of Bernstein-Sato Polynomials for Differentiably
Admissible Algebras via Homological Methods

In this subsection we prove the existence of Bernstein-Sato polynomials of dif-
ferentiably admissible K-algebras (see Sect.2.2). We assume that K is a field of
characteristic zero.
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Definition 3.22 Let A be a differentiably admissible K-algebra. Let M # 0 be a
finitely generated D 4 -module. We define

gradep, o (M) = inf{ | Ext{)mk(M, D k) # 0}.

We note that grade [K(M) < gl.dim(Dg k) =d.
Al

Remark 3.23 Given a finitely generated D A‘M-module, we can define the filtrations
compatible with the order filtration D;n[K’ good filtrations, and dimension as in

Sect. 3.3.

Proposition 3.24 ([16, Ch 2., Theorem 7.1]) Let A be a differentiably admissible
K-algebra. Let M # 0 be a finitely generated D AIM-module. Then,

dimDA‘[K(M) + grade, (M) = 2d.
In particular,
dlmDA\IK(M) >d.

We stress that the conclusion of the previous result is satisfied for rings of
differentiable type [98, 106].

Definition 3.25 Let A be a differentiably admissible K-algebra. Let M be a finitely
generated left (right) D Al[K—module. We say that M is in the left (right) Bernstein
class if either M = O or if dimp (M) = d.

Let M be a finitely generated D, -module. If M is in the Bernstein class
of DA\IK’ then ExtiDA‘ﬂ((M, DA|[K) # 0 if and only if i = d [16]. Then, the

functor that sends M to Ext% K (M, D A|IK) is an exact contravariant functor that
A

\
interchanges the left Bernstein class and the right Bernstein class. Furthermore,

M= EXt%A\[K (EXt%A\[K (M, DAllK)’ DA||K) for modules in the Bernstein class. Since

D RIK is left and right Noetherian, the modules in the Bernstein class are both
Noetherian and Artinian. We conclude that the modules in the Bernstein class have
finite length as D 4 c-modules [98, Proposition 1.2.5])

This class of Bernstein modules is an analogue of the class of holonomic
modules. In particular, it is closed under submodules, quotients, extensions, and
localizations [98, Proposition 1.2.7]).

Theorem 3.26 Let A be a differentiably admissible K-algebra of dimension d.
Given any nonzero element f € A, the Bernstein-Sato polynomial of f exists.

Sketch of proof In this sketch we follow the ideas of Mebkhout and Narvédez-
Macarro [98] (see also [106]). In particular, we refer the interested reader to their
work on the base change K to K(s) regarding differentiably admissible algebras
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[98, Section 2]. Let A(s) = A ® K(s). We observe that A(s) is not always
a differentiably admissible K(s)-algebra. Specifically, the residue fields of A(s)
might not be always algebraic. However, D, () s, satisfies the conclusions of
Theorem 2.9. In particular, the conclusions of Theorem 3.24 hold, and its Bernstein
class is well defined. We have that the dimension and global dimension of D, () ()
and DA|U< are equal. One can show that A ¢[s]f* Qs K(s) has a DA(x)|U<(s)'
submodule N is in the Bernstein class of D 4,y such that Ny = Af[s1f* ®y
K(s) [98, Proposition 1.2.7 and Proof of Theorem 3.1.1]. Then, there exists £ € N
such that f¢ f$ € N. Since N has finite length as D A(s)|ﬂ<(s)_m0dule the chain

¢ +1 02
DA(S)|[K(S)f fi2 DA(S)l[K(s)f fi2 DA(s)|[K(s)f ff2.

stabilizes. Then, there exists m € N and a differential operator §(s) € D A K(s)
such that

5(S)fl+m+1fs — fe+mfs-

After clearing denominators and a shifting, there exists 5(s)e D Ak [s] such that

SOV Ff5 = f*.

3.5 First Properties of the Bernstein-Sato Polynomial

A first observation about the Bernstein-Sato polynomial is that s 4+ 1 is always a
factor.

Lemma 3.27 For f € A, we have (s + 1) | by (s) if and only if f is not a unit.

Proof If f is a unit, then we can take f~! f$*t1 = 1 ¥ as a functional equation, so
b(s) = 1 is the Bernstein-Sato polynomial of f.

For the converse, by definition, we have 8(s) f f* = by(s) f* in A¢[s]f*. By
Remark 3.11, §(n) f*+! = br(n) f*in Ay forall n € Z. In particular, forn = —1,
we get (—1)1 = bf(—l)f’l. As 6(—1) € DA|[K’ we have 6(—1)1 € A. Thus,
br(—=1) =0,s0s + 1 divides b (s). |

Quite nicely, the factor (s + 1) characterizes the regularity of f.

Proposition 3.28 ([27]) For f € A, we have A/fA is smooth if and only if
br(s) =s+ 1.

Definition 3.29 The reduced Bernstein-Sato polynomial of a nonunit f € A is

br(s) =bp(s)/(s +1).
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The analogue of Proposition 3.13 for the reduced Bernstein-Sato polynomial is
as follows.

Proposition 3.30 The following are equal:
@) by(s),

DA|[K [s1f*
(i1) The minimal polynomial of the action of s on (s + 1)

DA|[K[S]ffs’
(iii)) The monic element of smallest degree in

KIs1N (Annpsy (f°) 4 D g k1 910, -+ 82 ()

Proof Once again, the first two are equivalent by definition.

Given a functional equation §(s) f f* = (s + 1)b(s) f*, we have that §(—1) €
DA|[K with §(=1) - 1 = 0. We can write §(s) = (s + 1)8'(s) + 8§(—1) for some
8'(s) € Dy kls], so 8(s) = (s + 1§ (s) + Zle 8;9; for some &; € D, . Then,
using that 9; (f f*) = (s + 1)3; (f) f*, we have

d d
(s+Db(s) f* = (S+1)5/(S)ffs+25i35ffs = (S+1)(5’(S)f+z 80 (fNSf*.

i=1 i=l

Thus, such a functional equation implies that l;(s)fs € DAl[K[s](f, a(f),...,
34(f)). Conversely, if I;(s)fs € DA‘M[S](f, 01(f),...,34(f)), again using that
H(ffH = (s + Do (f)fS, we can write (s + D)b(s) f* € DA‘[K[s]ffs. This
implies the equivalence of the first and the last characterizations. O

We may also be interested in the characteristic polynomial of the action of s.
Traditionally, with the convention of a sign change, the roots of the characteristic
polynomial are known as the b-exponents of f.

Definition 3.31 The b-exponents of f € A are the roots of the characteristic
D A|[K[S ]f s

DA|[K[s]ffs '

So far we have considered Bernstein-Sato polynomials over different regular
rings A but, a priori, it is not clear how they are related. Our next goal is to address
this issue. We start considering A = K][x1, ..., x4], a polynomial ring over a field

polynomial of the action of —s on (s + 1)

K of characteristic zero and denote by bE}qul(s) the Bernstein-Sato polynomial of

f € A. Given any maximal ideal m € A we also consider the Bernstein-Sato

polynomial over the localization Ay, that we denote b[;f[x]“‘ (s).

Proposition 3.32 We have:

bE(5) = tem{bEM (5) | m € A maximal ideal).
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DA|[K [s1f°
Proof Let b(s) € K[s] be a polynomial. The module b(s) ——————— vanishes if
D, KIs1f f
and only if it vanishes locally. The localization at a maximal ideal m C A is
D, kIs1f
b(s)AmBZT
DAm IK [s] ff
and the result follows. O

For a polynomial f € A we may also consider the Bernstein-Sato polynomial

beM (s) in the formal power series ring K[x1, ..., x4].
Proposition 3.33 Lerm = (x1,...,xq3) € A be the homogeneous maximal ideal.
We have:

pKixin ) = pEI ),

Proof B = K[xy, ..., xq] is faithfully flat over Ay, = K[x1, ..., xg]m. Since

D, kls1f® Dy ls1f*
B @4, b(s) 00 = b(s)
DAm‘[K[S]ff DB‘[K[S]ff
the result follows. O
When K = C we may also consider the ring C{x; — pi1,...,xq — pa} of
convergent power series in a neighborhood of a point p = (p1, ..., pa) € C%.

Corollary 3.34 We have

@ b5 (s) = temp s | p e €4,

(ii) bC{x P(s) = C”" 7Ls).

Proof Working over (D we have that all the maximal ideals correspond to points so
(i) follows from Proposition 3.32. For part (ii) we use the same faithful flatness
trick we used in Proposition 3.33 for C{x; — pi, ..., x4 — pa}. |

Let f € [l<[x1,.. ,X4] be a polynomial and L a field containing K. Let

gf[x](s) and bf (s) be the Bernstein-Sato polynomial of f in K[xy, ..., xs] and
L[x1, ..., xq] respectively.

[K[x

Proposition 3.35 We have b ls) = b[fL[X](s).

Proof Notice that buf[x](s) | b[K[x (s) so we have to prove the other divisibility
condition. Let {e;};c; be a basis of L as a K-vector space. We have

DA||]_[S]fS DA|[|<[S]fs A\ﬂ([s f
A —ley ———— ei.
DL ISIf f° %D, s1f f* EB( D, ls1f f*

el
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D, n [s1f°
Let b(s) € L[s] be such that b(s)D al”
A

LB = 0. Then b(s) = ) b;i(s) with
!

D, i [s1f*
only finitely many nonzero b;(s) € K[s] such that b; (s)% = 0. Since
Al -
U_[x

bE¥(s) | bi(s) for all i it follows that b *1(s) | bF(s). o

Remark 3.36 Let f € K[xy, ..., xq] be a polynomial with an isolated singularity

at the origin, where K is a subfield of C. Then we have bgf[x](s) = bgf[[x]] (s) =

b5 s).

Combining all the results above with the following fundamental result of Kashi-
wara [71], we conclude that the Bernstein-Sato polynomial of f € K[xy, ..., x4] is
a polynomial b7 (s) € Q[s].

Theorem 3.37 ([71, 92]) The Bernstein-Sato polynomial of an element f €
Clx1,...,xq}, or f € Klxy,...,xq] for K C C, factors completely over Q, and
all of its roots are negative rational numbers.

In Sect. 9 we will provide a refinement of this result given by Lichtin [80].

4 Some Families of Examples

Computing explicit examples of Bernstein-Sato polynomials is a very challenging
task. There are general algorithms based on the theory of Grobner bases over rings
of differential operators but they have a very high complexity so only few examples
can be effectively computed [78, 107, 110]. In this section we review some of the
scarce examples that we may find in the literature. The first systematic method of
producing examples can be found in the work of Yano [146] where he considered,
among others, the case of isolated quasi-homogeneous singularities (see also [25]).
The case of isolated semi-quasi-homogeneous singularities was studied later on by
Saito [120] and Briangon et al. [26].

A case that has been extensively studied is that of plane curves, see [29, 43—
45, 61, 73, 74, 147]. In particular, a conjecture of Yano regarding the b-exponents
of a generic irreducible plane curve among those in the same equisingularity class
has been recently proved by Blanco [18] (see also [4, 17, 45]). Finally we want to
mention that the case of hyperplane arrangements has been studied by Walther [143]
and Saito [124].

We start with some known examples where a Bernstein-Sato functional equation
8(s) f5*1 = b(s) f* can be given by hand:

(1) Let f = xlz 4+ x,% be a sum of squares. Then

1
RN DY (s-l—l)(s—i-g)f“.
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(ii) Let f = det(x;;) be the determinant of an n x n generic matrix and set 9;; :=
ﬁ,j. The classic Cayley identity states

det@ ) S = (s + (s +2)--- (s +n) .

There are similar identities for determinants of symmetric and antisymmetric
matrices [41].
(i) Let f = x]"---x," be a monomial. Then

e O S = 1_[1_[<S+—>f

1 i=1k=1

We warn the reader that it requires some extra work to prove that the above
polynomials are minimal so they are indeed Bernstein-Sato polynomials of the
corresponding f.

Let A = C{xy,..., x4} and assume that f has an isolated singularity at the
origin. In this case, Yano [146] uses the fact that the support of the holonomic D AIC"

[s
module M := (s+1 #ﬂ”s is the maximal ideal and thus it is isomorphic to a

number of copies of DA|C/DA|(E (X1, ..., xq) = H,‘é (A). Dualizing this module we
get the module of differential d-forms Q7 = DA|(C/<81’ ceey ad)DA‘@.

Proposition 4.1 ([146, Theorem 3.3]) The reduced Bernstein-Sato polynomial
b 7(s) of an isolated szngularlty S is the minimal polynomial of the action of s on
either Homp (E('M H (A)) or Q" ®p AC M.

Then, Yano’s method boils down to the following steps:

(i) Compute a free resolution of MasaD Al@-module
0« M« (D0 < D,0" <

(i) Apply the functor HomDA| C (—, H(A))
0 — Homp o (M, H(A) — (Hg(ANP — (Hg(A)" —

(iii)) Compute the matrix representation of the action of s and its minimal polyno-
mial.
Yano could effectively work out some cases depending on the following invariant
of the singularity:

L(f) :=min{L | 8§(s) = s* + 81sL7 + .- 48, € Annpp(f*), ord(8;) < i}.
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The existence of such a differential operator is given by Kashiwara [71, Theorem
6.3]. More precisely, he could describe step (1) in the cases L(f) = 1,2, and 3
where the case L(f) = 1 is equivalent to having a quasi-homogeneous singularity.

4.1 Quasi-Homogeneous Singularities

Let f =), cz()[)c‘l"l ---xp? € A be a quasi-homogeneous isolated singularity of

degree N with respect to a weight vector w = (wy,...,wy) € Q‘io. We have
x(f) = Nf where

d
X = Z w; X; 0;
i=1

is the Euler operator and x — Ns € Annps)(f*). Set fi/ =0i(f)fori=1,...,d.
Yano’s method is as follows:

(i) We have a free resolution

oo f)

0 M DAI(E

(Dye)" = O .

(i) We obtain a presentation HomDA‘C M, Hi(A) = {v € HL(A)| flv =
0 Vi}. _
(iii) The action of s on v € HomDA‘C M, H{]i(A)) is the same as the action of

% x . Notice that applying x to a cohomology class [W] is nothing but
1"
multiplying by the weight of this class.
Example 4.2 Consider the quasi-homogeneous polynomial f = x” 4+ y° € C{x, y}
of degree N = 35 with respect to the weight w = (5, 7). A basis of the vector space
{ve Hé(A) |x6v =0, y4v =0}

is given by the classes [x,#yj] with 1 < i < 6and 1 < j < 4. The action of

% X = %(Sx 0x + 7ydy) on these elements yields
1 1y 1271 1 1y 171
35X xy) 35 \xy »35% x2y ) 35\x2y )77
1 1 58 1
35% x6y4 ) T 35 \x6y4 )°

The matrix representation of the action of s = % x has a diagonal form with distinct
eigenvalues and thus the characteristic and the minimal polynomials coincide.
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The negatives of the roots of the reduced Bernstein-Sato polynomial b 7(s), or
equivalently, the roots of b f(—s) are

35735735735735735735735735735° 357357 35357357 35" 35 35’
44 46 48 51 53 58}

{12 17 19 22 24 26 27 29 31 32 33 34 36 37 38 39 41 43

3573573535357 35

Remark 4.3 In general, the diagonal form of the matrix representation of the action
of s has repeated eigenvalues so the minimal polynomial only counts them once.
Take for example the quasi-homogeneous polynomial f = x> + y> € C[x, y] of
degree N = 5 with respect to the weight w = (1, 1). The roots of b £(—s) are

2 3 4 { 6 7 8
55’5755 5]
Theorem 4.4 ([25, 146]) Let f € A be a quasi-homogeneous isolated singularity

of degree N with respect to a weight vector w := (Wi, ..., Wq) € Q‘io. Then, the
Bernstein-Sato polynomial of f is

b =6+ ] (s+ )

eWw

where W is the set of weights, without repetition, of the cohomology classes in {v €
HE(A) | flv=0 Vi}.

Recall from Proposition 4.1 that the reduced Bernstein-Sato polynomial b 7(s) of
an isolated singularity f is the minimal polynomial of the action of s on Q¢ ® D,

M. In the quasi-homogeneous case we have
Q! ®, ¢ MEZA/S, o [

Notice that the monomial basis of the Milnor algebra is dual, with the convenient
shift, of the cohomology classes basis of {v € fo{l (A)| f{v = 0 Vi}. In this case,

the action of s is —%(x + >0 wi).

4.2 Irreducible Plane Curves

Some of the examples considered by Yano deal with the case of plane curves
and his methods were used by Kato to compute the following example which is
a continuation of Example 4.2.
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Example 4.5 ([73]) The roots of b s (—s) for f = x7 + y> are
12 17 19 22 24 26 27 29 31 32 33 34
35°35735° 357353535 35" 35" 35 35" 35’

A

36 37 38 39 41 43 44 46 |48 || 51|53 58}

35°35735735°357357 3535735 [| 35| 35 (35

2—A

Notice that the roots are symmetric with respect to 1 and we point out that those A <
1 are jumping numbers of the multiplier ideals of f (see Sect. 10). Now consider a
deformation of the singularity,

7,5 3.3 52 4.3 5.3
fi=x"4+y —33x7y —t52x7y" — 143Xy —153X°y".

Then we have a stratification of the space of parameters where some of the roots of
by (—s) may change. More precisely, the boxed roots may change to the same root
shifted by 1.

{33 =0,t520=0,143 =0, 53 # 0}. Theroot changesto 35
{t,3 =0,152 =0, t43 # 0}. The roots gg gg change to 18

> 35
58 51 16
{t3,3=0,152 # 0, 143 = 0}. The roots 55, 35 change to 35 35

_ 58 5351 237718 16
{t3,3 =0, 15243 # 0}. The roots 3535 change to 35, 355 33+

58 53 48 23 18 13
{ts20 # 0, 6152 + 175t3 3 = 0}. The roots 35, 350 35 change to 3, 35, —g

58 53 51 48
{ts2 #0, 6152 + 175t3 3 7 0}. The roots 35, 35, 35, 35 change to 35, 35> 331 35

In this last stratum we have a Zariski open set where the roots are

35’135 (3535|3535 35"|35[35 35 35 35 3535 35 35 35
37 38 39 41 43 44 46}

{12 131617 | 18| 19 22 |23 | 24 26 27 29 31 32 33 34 36

35°35735735°357357 35

and thus they are in the interval [Ict( f), lct( )+ 1). We say that these are the generic
roots of the Bernstein-Sato polynomial of f;.

An interesting issue in this example is that, even though they have different
Bernstein-Sato polynomials, all the fibres of the deformation f; have the same
Milnor number so they belong to the same equisingularity class. Roughly speaking,
all the fibres have the same log-resolution meaning that they have the same
combinatorial information, which can be encoded in weighted graphs such as the
Enriques diagram [54, §IV.I], [42, S 3.9], the dual graph [42, §4.4], [142, §3.6] or
the Eisenbud-Neumann diagrams [53].
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From now on let f € C{x, y} be a defining equation of the germ of an irreducible
plane curve. A complete set of numerical invariants for the equisingularity class of
f is given by the characteristic exponents (n, By, ..., B;) where n € Z.g is the
multiplicity at the origin of f and the integersn < 1 < --- < B, can be obtained
from the Puiseux parameterization of f. To describe the equisingularity class of f
we may also consider its semigroup T' := (B, By.....B,) that comes from the
valuation of C{x, y}/(f) given by the Puiseux parametrization of f.

A quasihomogeneous plane curve f = x* 4 y? with a < b and ged(a, b) = 1
is irreducible with semigroup I' = (a, b). Adding higher order terms x’y/ with
bi + aj > ab does not change the equisingularity class but we do not need all the
higher order terms. Indeed, every irreducible curve with semigroup I' = (a, b) is
analytically isomorphic to one of the fibers of the miniversal deformation

f=xt4yt =) g xty,

where the sum is taken over the monomials x° yj suchthat 0 <i <a—-2,0<j <
b —2 and bi + aj > ab. This is the setup considered in Example 4.5.

Cassou-Nogues [44] described the stratification by the Bernstein-Sato polyno-
mial of any irreducible plane curve with a single characteristic exponent using
analytic continuation of the complex zeta function.

To construct a miniversal deformation of an irreducible plane curve with g
characteristic exponents is much more complicated and one has to use, follow-
ing Teissier [149], the monomial curve C' associated to the semigroup I' =
(Bo. Bi - .. B,) by the parametrization u; = tPi, i = 1,...,g. Teissier proved
the existence of a miniversal semigroup constant deformation of this monomial
curve. It turns out that every irreducible plane curve with semigroup I' is analytically
isomorphic to one of the fibres of the miniversal deformation of CT. To give explicit
equations in C{x, y} is more complicated and we refer to the work of Blanco [17]
for more details. For the convenience of the reader we illustrate an example with
two characteristic exponents.

Example 4.6 The semigroup of an irreducible plane curve f = (x¢ + y?)¢ + xiy/
with bi +aj =d is " = (ac, bc, d). All the fibres of the deformation

c
fi= (x" +y' 4+ tk,zxkyl> +xlyi Y by (e 4 yP)

bk+al>ab bck+act+dr>cd

have the same semigroup.

The ultimate goal would be to find a stratification by the Bernstein-Sato
polynomial of all the irreducible plane curves with a fixed semigroup but this turns
out to be a wild problem. However, one may ask about the roots of the Bernstein-
Sato polynomial of a generic fibre of a deformation of an irreducible plane curve
with a given semigroup. That is, to find the roots in a Zariski open set in the space
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of parameters of the deformation that we call the generic roots of the Bernstein-Sato
polynomial.

Amazingly, Yano [147] conjectured a formula for the generic b-exponents
(instead of the generic roots) of any irreducible plane curve. These generic b-
exponents can be described in terms of the semigroup I' but we use a simple
interpretation in terms of the numerical data of a log-resolution of f. Let 7 : X' —
C" be a log-resolution of an irreducible plane curve with g characteristic exponents.
Let F; be the total transform divisor and K the relative canonical divisor. In this
case we have g distinguished exceptional divisors, the so-called rupture divisors that
intersect three or more divisors in the support of F;. For simplicity we denote them
by Ei, ..., Eg with the corresponding values N; and k; in F; and K respectively.

Conjecture 4.7 ([147]) Let f € C{x, y} bea cleﬁtﬁng equa_tion of the germ of an
irreducible plane curve with semigroup I' = (B, By, ..., B,). Then, for generic
curves in some I"-constant deformation of f, the b-exponents are

8
ki+1+¢ =
U{m == |0 L<Ni Bidie € Z,eiii <7‘:/Z}
i=1 !

where e;_ = ged(Bo, By, - .-, Bi1)-

If we consider the irreducible plane curve studied by Kato in Example 4.5 we see
that Yano’s conjecture holds true.

Example 4.8 The Yano set associated to the semigroup I' = (5, 7) is

124+ ¢
{)‘1,5 = % ‘ 0<€<35 The€Z,50 0 & Z}

which gives the generic b-exponents given in Example 4.5.

From the stratification given by Cassou-Nogues [44] one gets that Yano’s
conjecture is true for irreducible plane curves with a single characteristic exponent
(see [45]). Almost thirty years later, Artal-Bartolo, Cassou-Nogues, Luengo, and
Melle-Herndndez [4] proved Yano’s conjecture for irreducible plane curves with
two characteristic exponents with the extra assumption that the eigenvalues of
the monodromy are different. Under the same extra condition, Blanco [17] gave
a proof for any number of characteristic exponents. Both papers use the analytic
continuation of the complex zeta function. The extra condition on the eigenvalues

of the monodromy being different ensures that the characteristic and the minimal

DAl(]:[S]fs

polynomial of the action of s on (s + 1)D—]ffs are the same.
ACIs].

[s
iC

The shortcomings of the analytic continuation techniques, which deal with the
Bernstein-Sato polynomial instead of the b-exponents, can be seen in examples such
as the following.
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Example 4.9 The Yano sets associated to the semigroup I' = (10, 15, 36) are

54¢
{xl,g = % ‘ 0<¢<30, 1500 & Z, 1011 ¢Z},
and
314¢
{)»2’5 = % ' 0<£€ <180, 36 2 &€ Z,50 2 & Z}.

We have that %, %, %, % appear in both sets. Therefore th.ey appear with rpulti-
plicity 2 as b-exponents but only once as roots of the Bernstein-Sato polynomial.

Blanco [18] has recently proved Yano’s conjecture in its generality. His work
uses periods of integrals along vanishing cycles on the Milnor fiber as considered
by Malgrange [90, 91] and Varchenko [140, 141]. In particular he extends vastly
the results of Lichtin [80] and Loeser [82] on the expansions of these periods of
integrals.

4.3 Hyperplane Arrangements

Let f € C[xi,...,xq4] be a reduced polynomial defining an arrangement of
hyperplanes so f = fi--- f; decomposes as a product of polynomials f; of degree
one. The Bernstein-Sato polynomial of f has been studied by Walther [143] under
the assumptions that the arrangement is:

* Central: f is homogeneous so all the hyperplanes contain the origin.
* Generic: The intersection of any d hyperplanes is the origin.

The main result of Walther, with the assistance of Saito [124] to compute the
multiplicity of —1 as a root, is the following.

Theorem 4.10 ([124, 143]) The Bernstein-Sato polynomial of a generic central

hyperplane arrangement f € Clx1, ..., xq] of degree £ > d is
20—d—2 .
+d
by(s) = (s + 14! iy
@=e ] (s+25

Example 4.11 The homogeneous polynomial f = x> + y> € C[x, y] considered
in Remark 4.3 defines an arrangement of five lines through the origin. Walther’s
formula gives

oz () () ()4
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It is an open question to determine the roots of the Bernstein-Sato polynomial of
a nongeneric arrangement. In this general setting, Leykin [143] noticed that —1 is
the only integer root of b 7 (s).

A natural question that arise when dealing with invariants of hyperplane arrange-
ments is whether these invariants are combinatorial, meaning that they only depend
on the lattice of intersection of the hyperplanes together with the codimensions of
these intersections, and it does not depend on the position of the hyperplanes. Unfor-
tunately this is not the case. Walther [145] provides examples of combinatorially
equivalent arrangements with different Bernstein-Sato polynomial.

Example 4.12 ([124, 145]) The following nongeneric arrangements have the same
intersection lattice

f=xyz(x +32)(x +y+2)(x +2y +32) 2x +y +2) 2x +3y +2)(2x + 3y +42),
g=xyz(x+52)(x +y+2)(x +3y+5)2x +y+2)2x +3y +2)2x + 3y +42).

However the Bernstein-Sato polynomials differ by the root — %:

O | ~.

4 . 16
bf(s)=(S+1)H(s+%)H(s+ )

j=2 j=3

4 ] 15 ]
bg(s):(s+1)j1_[2(s+§)l_[3<s+§)'

= ]j=

5 The Case of Nonprincipal Ideals and Relative Versions

In this section we study different extensions of Bernstein-Sato polynomials for
ideals that are not necessarily principal. Sabbah [118] introduced the notion of
Bernstein-Sato ideal B < K[sy, ..., s¢] associated to a tuple of elements F =
f1, ..., fe. More recently, Budur et al. [36] defined a Bernstein-Sato polynomial
bq(s) € K[s] associated to an ideal @ € A which is independent of the set of
generators. The approach to Bernstein-Sato polynomials of nonprincipal ideals has
been simplified by Mustatd [101].

In order to provide a description of the V -filtration of a holonomic D-module,
Sabbah introduced a relative version of Bernstein-Sato polynomials that is also
considered in the version for nonprincipal ideals [36]. This relative version is also
important to describe multiplier ideals (see Sect. 10).
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5.1 Bernstein-Sato Polynomial for General Ideals in
Differentiably Admissible Algebras

We start studying the Bernstein-Sato polynomial for general ideals using the recent
approach given by Mustatd [101]. In this section we show its existence for general
ideals in differentiably admissible algebras in Theorem 5.6.

Definition 5.1 Let K a field of characteristic zero, A be a regular K-algebra, and
a € A be a nonzero ideal. Let F = f1, ..., f¢ be a set of generators for a, and
g= fivi+---+ feye € Aly1, ..., yel. We denote by br(s) the monic polynomial
in K[s] of least degree among those polynomials b(s) € K[s] such that

8(s)g" ! = b(s)g* forall s € N,
where 8(s) € D, yK[s] is a polynomial differential operator. That is, b (s)

is the Bernstein-Sato polynomial of g.

Before we discuss properties of this notion of the Bernstein-Sato polynomial, we
show that the definition of b (s) does not depend on the choice of generators for a.

Proposition 5.2 ([101, Remark 2.1]) Let K a field of characteristic zero, A be a
regular K-algebra, and a C A be a nonzero ideal. Let F = f1,..., foand G =
g1, ..., 8m be two sets of generators for a. Then br(s) = bg(s).

Proof 1t suffices to show that br(s) = bg(s) = by (s), where H = F U G. This
follows from showing that b (s) = bg(s) when G = FUgforg € a.Letry,...,rg
such that g = r{ f1 + - - - + r¢ fe. We have that
Sivit foye+gyer1 = fiyi+ -+ foye + (i fi+ -+ refoyen
HiOn+riyesn) + -+ fe(ve +reyesn).

After a change of variables y; — y; + rjy¢+1, this polynomial becomes f. Since
the Bernstein-Sato polynomial does not change by change of variables, we conclude

that br(s) = bg (s). O

Given the previous result, we can define the Bernstein-Sato polynomial of a
nonprincipal ideal. Notice that fiyy + --- + feye is not a unit in A[yy, ..., ye]
so we may consider its reduced Bernstein-Sato polynomial bg(s) = bYFTQl)

Definition 5.3 Let K a field of characteristic zero, A be a regular K-algebra, and
a C A be a nonzero ideal. Let F = fj...., f¢ be a set of generators for a. We
define the Bernstein-Sato polynomial of a as the reduced Bernstein-Sato polynomial
of fiy1 + -+ feye. Thatis

ba(s) == bp(s).
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We point out that the previous definition is not the original given by Budur,
Mustatd, and Saito [36], which we discuss in the next subsection. This approach
given by Mustata [101] has a couple of differences. First, the existence of Bernstein-
Sato polynomials for nonprincipal ideals would follow from the existence of
certain Bernstein-Sato polynomials for a single element. This way in particular
gives the existence of Bernstein-Sato polynomials for nonprincipal ideals in any
differentiably admissible algebras (see Sect.3.4) such as power series rings over a
field of characteristic zero. Second, the treatment given by Mustatd [101] can be
done without using V -filtrations.

We now focus on showing the existence of Bernstein-Sato polynomial for
nonprincipal ideals in differentiably admissible algebras. We start recalling a
theorem from Matsumura’s book [94].

Theorem 5.4 ([94, Theorem 99]) Let (A, m, K) be a regular local commutative
Notherian ring with unity of dimension d containing a field Ko. Suppose that K
is an algebraic separable extension of Ko. Let A denote the completion of A with

respect to m. Let x1, ..., xq be a regular system of parameters of A. Then, A =
K[x1, . .., x4] is the power series ring with coefficients in K, and DerA|[K is afree A-
module with basis 91, . .., 04. Moreover, the following conditions are equivalent:

(1) 0; (i=1,...,d)maps A into A, equivalently, 0; € DerAl[KO;

(i) there exist derivations 81,...,84 € DerA‘[KO and elements f1,..., fqg € A
such that §; fj = 1ifi = j and 0 otherwise;
(iil) there exist derivations 81, ...,084 € DerAl[KO and elements f1 ..., fa € R such

that det(§; f]) Q/ m,;
@iv) DerAl[K0 is a free module of rank d (with basis 81, . .., 84);
W) rank(DerA‘[KO) =d.

We now show that a power series ring over a differentiably admissible K-algebra
is also a differentiably admissible K-algebra. We point out that this fact does not
hold for polynomial rings, as the residue field can be a transcendental extension of
R. A example of this is A = K[x], where n = (xy — 1) € A[y] is a maximal ideal
with residue field Frac(A).

Proposition 5.5 Let A be a differentiably admissible K-algebra of dimension d.
Then, the power series ring A[y] is also a differentiably admissible K-algebra of
dimension d + 1.

Proof Since every regular Noetherian ring is product of regular domains, we
assume without loss of generality that A is a domain. Let n be a maximal ideal
in A[ly]. Then, there exists a maximal ideal m C A such that n = mA[y] + (). It
follows that n is generated by a regular sequence of d 4 1 elements. We conclude
that (A[y])n is a regular ring of dimension d + 1. We also have that A[[y]/n = A/m
is an algebraic extension of K.

It remains to show that Der 4[]k is a projective module of rank d + 1 and
it behaves well with localization. We note that every derivation § in A can be
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extended to a derivation A[y] by 83 n2g fuy™) = Do d(fu)y". Let M =
A[y] ®4 Derajx ®A[y]dy < Deryfy - We note that the natural maps

My — A[yﬂn ®4 DerA[[y]]l[K - DerA[[Y]]n\[K

are injective. We fix n C A[y] a maximal ideal and a maximal ideal m C R such that
n=mA[y] + (y). We fix §1,...,84 € DerAml[K and elements f1,..., f, € mAny
such that §; f; = 1if i = j and O otherwise. We can do this by Theorem 5.4. Then,
81, ...,0q4, 0y satisfy Theorem 5.4(3). We conclude that 61, ..., 84, dy generate
Der 4 []alK: Then, the composition of the maps

Mn — A[y[n ®a4 Der ik — Deryp,q, K

is surjective. We conclude that they are isomorphic. Since
My = (Aly]n ®4n (DerA‘[K)m) ® Afy]nd,
is free of rank d + 1, we have that
(M)n = My = Derypp i

is free of rank d + 1. O

Theorem 5.6 Let A be differentiably admissible, and a C A. Then, the Bernstein-
Sato polynomial of a exists.

Proof Let f1, ..., f¢ be a set of generators for a. Let f = fiy; + - -+ feye €
Aly1, ..., ye]- There exists b(s) € K[s] ~ {0} and §(s) € A[y1, ..., ye]J[s] such
that

S ff=bs)f*

in A ¢[s]f* by Proposition 5.5 and Theorem 3.26. There exist finitely many g N¢,
JjeN,égjls]le DA‘[K[S], and gg ; € A[y1, ..., y¢] such that

98
8() = D 850515 5
B.Jj

because D Ayt ye]IK is generated by derivations by Remark 2.8, and by the
description of Der A1 ye]IK in the proof of Proposition 5.5. Then, there exists

hep,j € Asuchthat gg ; = Zae[]\lz ha.p.jy*. Then,

9B
LOEDIDS ha 18,160 5
ﬁ’j aE[NZ
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We have that

b(s)f* =8@)ff*

=3 hapjy” sﬂ,<s> ffs

B weN’

_Zzhaﬁjgﬁj(s)y ffs

B geN’

After specializing for r € N, we have that

a8
bV =" hapidp. j(r)y“mf‘“.

B qelN
Then,
o 35 t+1
Z Z ha.p,jdp.j(0)y 8_ﬁf =0
B.j lel#1Bl-1 Y
by comparing the degree in y, ..., y¢. Then,
o aﬁ s
Z Z ha,p,j88,j ()Y~ ff* =0.
, ayp
B.j lel#IB|—1
We have that

dy=3" D hap s 55

B.J lel=Igl-1

satisfies the functional equation and belongs to D, . yKls]. Then, the
Bernstein-Sato polynomial of a exists. O

5.2 Bernstein-Sato Polynomial of General Ideals Revisited

In this subsection we review the original definition of Bernstein-Sato polynomial of
an ideal given by Budur et al. [36]. Indeed they provide two equivalent approaches
depending on the ring of differential operators we are working with.
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Let K a field of characteristic zero, A be a regular K-algebra, and let F =
fi1,..., fe be a set of generators of an ideal a € A. Let § = {s;jj}1<i j<¢ be a
new set of variables satisfying the following relations:

(1) Sii = 8 fori = 1,...,£.
(ii) [sij, skel = 8jksie — BieSkjs
where §;; is the Kronecker’s delta function. Then we consider the ring K{(S)
generated by S and DA|[K<S> = DA|[K ®K K{S).
In this setting we have the following Bernstein-Sato type functional equation.

Definition 5.7 Let K be a field of characteristic zero and A a regular K-algebra. A
Bernstein-Sato functional equation in D A\|K<S> for F = fi1,..., f¢ is an equation
of the form

14
DGR f=bGi A O S

i=1
where §; (S) € DA\[K<S> and b(s) € K[s].

Definition 5.8 Let K be a field of characteristic zero and A a regular K-algebra.
Let F = fi1,..., fr be a set of generators of an ideal a € A. The Bernstein-
Sato polynomial bq(s) of a is the monic polynomial of smallest degree satisfying a
Bernstein-Sato functional equation in D AlK (S).

Budur, Mustatd, and Saito proved the existence of such Bernstein-Sato polyno-
mial. Moreover, they also proved that it does not depend on the set of generators of
the ideal so it is well-defined (see [36, Theorem 2.5]).

After a convenient shifting we can define the Bernstein-Sato polynomial of an
algebraic variety.

Theorem 5.9 ([36]) Let Z(a) C C? be the closed variety defined by an ideal a C A
and c be the codimension of Z(a) in C?. Then

bza)(s) :==ba(s —©)

depends only on the affine scheme Z(a) and not on q.

In this setting we also have that the Bernstein-Sato functional equation in
DA|[K<S> is an equality in A ¢[s, ..., 5,1 f*. The DAl[K(S)-module structure on this
module is given by

sija(st,...,sp) f° :=s,-a(s1,...,s,-—1,...,sj+1,...,sp)%fs
i
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where a(sy,...,sp) € Aglst,...,sp]. The DAI[K(S)-submodule generated by f*
has a presentation
D k()

DaiSH™ = Annps)(f*)’

and thus

D k() f* ~ D 4k (S)
DA|[K<S>(f1» cees fp)fs B AnnD(S)(fs) + DA‘[K<S>(flv cees fp)

We have an analogue of Proposition 3.13 that is used in order to provide algorithms
for the computations of these Bernstein-Sato polynomials [3].

Proposition 5.10 The Bernstein-Sato polynomial of an ideal a C A generated by
F = fi1,..., fo is the monic generator of the ideal

(ba(si + - +5p)) =Klsi + -+ + 5,1 N (Annps) (f°) + D,k (S)(f1, ..., 1))

Budur et al. [36, Section 2.10] gave an equivalent definition of Bernstein-Sato
polynomial of a using a functional equation in D AlK [s1,...,s¢]instead of D AlK (S).

Theorem 5.11 ([36]) Let K a field of characteristic zero, A be a regular K-algebra,
anda C A beanonzeroideal Let F = f1, ..., fi be a set of generators for a. Then,
ba(s) € K[s] is the monic polynomial of least degree, b(s) such that

5
b(si+--+s)fi' - f;" € Y Dpilst, - sed-[ ] <—l ,>ffl+°” e T
la|=1 w N

1

where a = (ay, ..., ap) € 2 |a| = a1 + - - -+ ag, (:,’L)=m '}1:_()1(51'—]')-

Mustatd [101, Theorem 1.1] uses this characterization to show that bq(s)
coincides with the reduced Bernstein-Sato polynomial of fiy; 4+ --- + feye €
Aly1, ..., yel.

One may be tempted to consider a general element A f1 + - - - 4+ A f¢ € a whose
log-resolution has the same numerical data as the log-resolution of the ideal a.

Example 5.12 Let a = (x*, xy2, y3) € C[x, y] be a monomial ideal and consider
a general element of the ideal g = x* 4+ xy% + y3. The roots of the Bernstein-Sato
polynomial b, (s) are

5 2 3 7 | 9 5 4 11 3
87 3? 4’ 8’ b 8? 4’ 3’ 87 2 b
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with —1 being a root with multiplicity 2. Meanwhile, the roots of the reduced
Bernstein-Sato polynomial b, (s) are

571911
8 8 7 8 8

The exceptional part of the log-resolution divisor F in both cases is of the form
3E1 +4E> +8Ej3. The roots of b, (s) are only contributed by the rupture divisor E3
but this is not the case for by (s).

5.2.1 Monomial Ideals

Let a € C[xy,...,xq] be a monomial ideal. Let Py C IR”;O be the Newton
polyhedron associated to a which is the convex hull of the semigroup

Ta={a=(ai,...,az) € N? | x?1~-~x(’;d€a}.

For any face Q of P, we define:

(i) Mg the subsemigroup of yAd generated by a — b witha e 'qand b € 'y N Q.
(i1) M’Q '=c+Mgpforcel'qyN Q.

M /Q is a subset of M that is independent of the choice of c. For a face Q of Pq

not contained in a coordinate hyperplane we consider a function L : RY — R with
rational coefficients such that Ly =1 on Q. Set

Ro ={Lg(a) | ae((1,...,1)+ (Mg ~ M;z)) NVpl,
where V) is the linear subspace generated by Q.

Budur, Mustatd, and Saito [35] gave a closed formula for the roots of the
Bernstein-Sato polynomial of a in terms of these sets Rg.

Theorem 5.13 ([35]) Leta C C[xy, ..., xq] be a monomial ideal. Let pq be the set
of roots of bq(—s). Then

PaZURQ
0

where the union is over the faces Q of P4 not contained in coordinate hyperplanes.

5.2.2 Determinantal Varieties

The theory of equivariant D-modules has been successfully used in recent years to
study local cohomology modules of determinantal varieties. These techniques have
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also been used by Ldrincz et al. [84] to determine the Bernstein-Sato polynomial of
the ideal of maximal minors of a generic matrix.

Theorem 5.14 ([84]) Let X = (x;;) be a generic m x n matrix with m > n. Let
a, © A = Clx;;] be the ideal generated by the n x n minors of X. The Bernstein-
Sato polynomials of the ideal a, and the corresponding variety are

m

bq, (s) = 1_[ (s+290).

{=m—n+1

n—1
bzn@) =[] +0.
=0

They also provided a formula for sub-maximal Pfaffians.

Theorem 5.15 ([84]) Let X = (x;;) be a generic 2n+1)x (2n+1) skew-symmetric
matrix, i.e. xij = 0,x;; = —xj;. Let by, € A = Clx;;] be the ideal generated by
the 2n x 2n Pfaffians of X. The Bernstein-Sato polynomials of the ideal by, and the
corresponding variety are

n—1

buy, () =[] s +2¢+3).
£=0

n—1

bz(os () = [ [ (s +20).

=0

5.3 Bernstein-Sato Ideals

In this subsection we consider the theory of Bernstein-Sato ideals associated to a
tuple of elements F' = f1, ..., f; developed by Sabbah [118].

Definition 5.16 Let K be a field of characteristic zero and A a regular K-algebra. A
Bernstein-Sato functional equation for a tuple F = f, ..., fy of elements of A is
an equation of the form

8(s1, ---,Szz)fflJrl -'-fgs”l =b(st, .50 fy

where §(s1, ..., 58¢) € DA‘[K[Sl,...,Sg] and b(sy,...,s0) € K[sq, ..., s¢].

All the polynomials b(sy, . . ., s¢) satisfying a Bernstein-Sato functional equation
form an ideal Br C K[sy, ..., s¢] that we refer to as the Bernstein-Sato ideal.
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14
=0

Remark 5.17 More generally, givena = (ay, ..., ap) € Z
the functional equations

we may also consider

8(s1, ... ,se)f]s]ﬂ] . ~f2z+a“ =b(sy,..., sz)fls1 e f;@ forall s; € N,

leading to other Bernstein-Sato ideals B% C K[sy, ..., s¢].

As in the case £ = 1 we first wonder about the existence of such functional
equations.

Theorem 5.18 ([118]) Let K be a field of characteristic zero, and let A be either
Klx1, ..., xq) or C{xy, ..., xq}. Any nonzero tuple F = fi, ..., fi of elements of
A satisfies a nonzero Bernstein-Sato functional equation and thus Br # O.

Sabbah [118] proved this result in the local analytic case A = C{xy, ..., xg}.
The proof in the polynomial ring case A = K[xy, ..., x4] is completely analogous
to the one given in Sect. 3.3 for the case £ = 1.

The Bernstein-Sato functional equation is an equality in A ¢[sy, ..., s¢] f* where
f= fi---feand f* = fi'--- f;*. We also have that the D 4 ls1, ..., sel-
submodule generated by f* has a presentation

DAl[K[Sl,...,Sg]

DAl[K[sl,...,s@]fs =

and, given the fact that

DA‘[K[Sla--wSZ]fS ~ DA‘M[Slv-"aSZ]

DAl[K[sli s ffY - Annpg, ..., sz](fs) + DAl[K[sli e vs(i]f.

we get an analogue of Proposition 3.13 that reads as

Proposition 5.19 The Bernstein-Sato ideal of F = f1, ..., fo is
Br =K[s1,...,s]N (AnnDA‘[K[sl,.‘.,sg](fs) + Dylst, ... self).
Some properties of Bernstein-Sato ideals are the natural extension of those

satisfied by Bernstein-Sato polynomials. We start with the ones considered in
Sect. 3.5. The analogue of Lemma 3.27 is the following result.

Lemma 5.20 ([30, 95]) Let F = fi,..., fo be a tuple where the f; are pairwise
without common factors. Then

Brc (4D e+ 1),

Equality is achieved if and only if A/(f1, ..., fe) is smooth.
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We summarize the relations between the Bernstein-Sato ideals when we change
the ring A in the following lemma. For the convenience of the reader we use
temporally the same notation as in Sect. 3.5.

Lemma 5.21 ([28]) We have:

. pKix] Kxlm

(i) BF = nm max idealBF e
(i) BES[X]‘“ = B [[x]], where m is the homogeneous maximal ideal.
(iii) Bg{xfp} = Bg:[[xip”, where p € C-.
@iv) Bl];[x] =L ®K BES[X] where L is a field containing K.

The first rationality result for Bernstein-Sato ideals is given by Gyoja [59] and
Sabbah [118] where they proved the existence of an element of Br which is a
product of polynomials of degree one of the form ajs; + --- + ags¢ + a, with
a; € Qg and a € Q.. This fact prompted Budur [32] to make the following:

Conjecture 5.22 The Bernstein-Sato ideal of a tuple F = fi, ..., f¢ of elements
in C{xy, ..., x4} is generated by products of polynomials of degree one

aisy+ - +agse +a,

witha; € Qspanda € Q.

Notice that this would imply that the irreducible components of the zero locus
Z(BF) are linear. The best result so far towards this conjecture is the following.

Theorem 5.23 ([87]) Every irreducible component of Z(BF) of codimension 1 is a
hyperplane of type ays1 + - -+ + ags¢ + a, with a; € Q=g and a € Q.. Every
irreducible component of Z(Br) of codimension > 1 can be translated by an
element of Z* inside a component of codimension 1.

Recall that the work of Kashiwara and Malgrange relates the roots of the
Bernstein-Sato polynomials to the eigenvalues of the monodromy and these eigen-
values are roots of unity by the monodromy theorem. An extension to the case of
Bernstein-Sato ideals of Kashiwara and Malgrange result has been given recently
by Budur [32] and Budur et al. [39]. There is also an extension of the Monodromy
theorem in this setting given by Budur and Wang [40] and Budur et al. [34].
Unfortunately these results are not enough to settle Conjecture 5.22.

The main difference with the classical case is that Bernstein-Sato ideals are not
necessarily principally generated. Briancon and Maynadier [30] gave a theoretical
proof of this fact for the following example. The explicit computation was given by
Balhoul and Oaku [7].
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Example 5.24 ([7, 30]) Let F = z,x* + y* 4+ zx?y? be a pair of elements in
C{x, y, z}. The local Bernstein-Sato ideal is nonprincipal

B = (1 4+ Do+ D2@s2 + Didsa +3) @2 + 551 +2),
(51 4+ D52 + D222 + Dldsz +3) sz + 5252 +3) ).

However, when we consider F in C[x, y, z] the global Bernstein-Sato ideal is

BEW = (14 (52 + 12252 + D@52+ 32 +3)As2 +9)).

The following example is also given by Balhoul and Oaku.

Example 5.25 ([7]) Let F = z, x> +y° 4+ zx?y> be a pair of elements in C[x, y, z].
Then the local and the global Bernstein-Sato ideals coincide and are nonprincipal.
Specifically, B is generated by (s 4+ 1)(s2 + 1)2(5sz +2)(552 +3)(5s2 +4)(5s2 +
6)(s1+2)(s1+3)(s1+dH(s1+5), (s1+D(s2+ 1)2(5S2 +2)(5s2+3)(552+4) (552 +
6)(5s2+7)(s1+2),and (s1+ 1)(s2+ 1)2(5s2 +2)(552+3)(Ss2+4)(Ss2+6) (552 +
T)(5s2 + 8).

There are interesting examples worked out in several computational articles
by Balhoul [6], Balhoul and Oaku [7], Castro-Jiménez and Ucha-Enriquez [139],
Andres et al. [3]. However, we cannot find many closed formulas for families of
examples. Maynadier [95] studied the case of quasi-homogeneous isolated complete
intersection singularities and we highlight the case of hyperplane arrangements.

5.3.1 Hyperplane Arrangements

Let f € Cl[xi,...,xq4] be a reduced polynomial defining an arrangement of
hyperplanes. The most natural tuple F = fi, - - -, fy associated to f is the one given
by its degree one components. The following result is an extension of Walther’s
work to this setting. It was first obtained by Maisonobe [88] for the case £ = d + 1
and further extended by Bath [8] for £ > d + 1. We point out that Bath also
provides a formula for other tuples associated to different decompositions of the
arrangement f.

Theorem 5.26 ([8, 88]) Let f = f1--- fo € Clx1, ..., xq), with€ > d + 1, be the
decomposition of a generic central hyperplane arrangement as a product of linear
forms. The Bernstein-Sato ideal of the tuple F = fi, ..., fiis

l 20—d—2
Br=|[[si+D [] i+ +s+i+ad
i=1 j=0
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5.4 Relative Versions

In this section we discuss a more general version of the Bernstein-Sato polynomials
in which the functional equation includes an element of a D-module M [97, 117].
As in the classical case, we consider this functional equation as an equality in a
given module that we define next.

Definition 5.27 Let A be a differentiably admissible K-algebra, and M a left D AlK-
module. For f € A ~ {0}, we define the left DAflk[s]-module Mf[s]fs as
follows:

(i) Asan A y[s]-module, My [s1f*® is isomorphic to Mg[s].
(i1) Each partial derivative d € Der AK acts by the rule

sa(s)d

B f*) = (a(s)a(v> + %) f*

fora(s) € Ay[s].

Alternative descriptions can be given analogously to Sect. 3.2, but we do not need
them here.

Theorem 5.28 ([98, Theorem 3.1.1], [117]) Let A be a differentiably admissible
K-algebra, M a left DA‘M-module in the Bernstein class, and f € A \ {0}. For any
element v € M there exists 5(s) € DAI[K[S] and b(s) € K[s] \ {0} such that

SvffS =b(s)vfs.

There are not many explicit examples of Bernstein-Sato polynomials in this
generality that we may find in the literature. Torrelli [135, 136] has some results
in the case that M is the local cohomology module of a complete intersection or
a hypersurface with isolated singularities. Reichelt et al. [115] studied the case of
hypergeometric systems.

In the case of M being the ring itself, we find the Bernstein-Sato polynomial of
f relative to an element 2 € A. Of course, when &7 = 1 we recover the classical
version.

Corollary 5.29 Let A be a differentiably admissible K-algebra and f € A ~ {0}.
For any element h € A there exists §(s) € DAl[K[s] and b(s) € K[s] \ {0} such that

SffS = b(s)hf*.

Definition 5.30 Let A be a differentiably admissible K-algebra, M a left D AlK-
module in the Bernstein class, f € A \ {0}, and v € M. We define the relative
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Bernstein-Sato polynomial b ,(s) to be the monic polynomial of minimal degree
for which there is a nonzero functional equation

Sf f* =bru(s)vf*.
A basic example shows that s = —1 need not always be a root of the relative
Bernstein-Sato polynomial b, (s).

Example 5.31 Let A = Cl[x], and take f = g = x. We have a functional equation
3,0 x = (s + 2)x*x for all s,

sos = —1isnotarootof by x(s). It follows from the next proposition that b, . (s) =
s+ 2.

We record a basic property of relative Bernstein-Sato polynomials that may be
considered as an analogue to Lemma 3.27.

Lemma 5.32 Let A be a differentially admissible K-algebra, and f, g € A ~\ {0}.
Ifge (f”fl) N (f™), then s = —n is a root of by ¢ ().

Proof Evaluating the functional equation at s = —n, we have
S(=nm)ff"g=b(=n)f"g.
Since g/f"~! € R, and g/f" ¢ R, we must have b(—n) = 0. O

We make another related observation.

Lemma 5.33 Let A be a differentially admissible K-algebra, and f, g € A \ {0}.
Then by, png(s) = by q(s +n) forall n.

Proof Given a functional equation

8)8f f* =brg()gf*,
shifting by n yields

S(s+mgf"ff =bpg(s +mgf" f*,

S0 by g(s +n)| by gng(s). Similarly, given a functional equation
8'&)gf" ff* =Dl yrg©)8f" f*,

we also have
§'(s —m)gf f* =bs.pngls —mgf*,

from which the equality follows. O
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This notion of relative Bernstein-Sato polynomials has been extended to the case
of nonprincipal ideals by Budur et al. [36] following the approach given in Sect. 5.2.

Theorem 5.34 ([36]) Let K a field of characteristic zero, A be a regular finitely
generated K-algebra, and a C A be a nonzero ideal. Let F = f1, ..., f¢ be a set of
generators for a and consider an element h € A. Then, bq ;(s) € K[s] is the monic
polynomial of least degree, b(s) such that

bt +sOhfi o [ e Y Dmsu.-.,sﬂﬂ(f;)hff‘*“‘ e
o !

Ja|=1

where o = (a1, ..., a0) € 2%, lal = a1 + -+ o, () = o 110 (55 — J).

m m!

5.5 V-Filtrations

In this subsection, we give a quick overview of the V-filtration and its relationship
with the relative versions of Bernstein-Sato polynomials. For further details regard-
ing V-filtrations we refer to Budur’s survey on this subject [31].

Definition 5.35 Suppose that K has characteristic zero. Let A be a regular Noethe-
rian K-algebra. Let T = 11, ..., t; be a sequence of variables, and let A[?q, ..., f¢]
be a polynomial ring over A. The V-filtration along the ideal (7") on the ring of
differential operators D 41 is the filtration indexed by integers i € Z defined by

Viry Daryk =18 € Dy = 8+ (T) S (T)/+ forall j € 7},

where (T)/ = A[T] for j < 0.

Remark 5.36 We consider Djiryk as a graded ring where deg(t;) = 1 and
deg(d;;) = —1. Then,

1 a ap b b
VinPark = @ Daw 11" 159" -,
a,beD\l(

lal—|b| =i

The V-filtration along the ideal (7)) on a D A[T”[K-module M is defined as
follows.

Definition 5.37 Suppose that K has characteristic zero. Let A be a regular Noethe-

rian K-algebra. Let T = 11, ..., ty be a sequence of variables, and let A[#q, ..., #]
be a polynomial ring over A. Let M be a D A[T”M-module. A V-filtration on M
along the ideal (T') = (11, ..., t¢) is adecreasing filtration {V("‘T)M }o on M, indexed

by o € Q, satisfying the following conditions.
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(i) Forallx € Q, V("‘T)M is a Noetherian V(OT)DA[T”M—submodule of M.

(ii) The union of the V("‘T)M, overall o € Q,is M.

(iii) V(“‘T) M = ﬂy<a V(VT)M f/or all &, and the set J consisting of all « € Q for
' which Vi M # U, ., Vir M is discrete.

(iv) Foralla e Qandall 1 <i <,

+1 -1
ti o VG M S VEY'M and 9, « Ve M C VET'M,

i.e., the filtration is compatible with the V -filtration on D AIT)K-

(v) Foralla > 0, YF_, (ti *VinM ) = Vi M.
(vi) Foralla € Q,

4
Z a[itl‘ — o
i=1

acts nilpotently on Vi) M/(U, -, V(yT)M )-

Proposition 5.38 ([31]) Suppose that K has characteristic zero. Let A be a regular
Noetherian K-algebra. Let T = t1,...,1t; be a sequence of variables, and let
Alt1, ..., t¢] be a polynomial ring over A. Let M be a finitely generated Dy rK-
module. If a V -filtration on M along (T) exists, then it is unique.

We now define the V -filtration on a D 4 -module M along F' = fi, ..., fi € A,
where M is a D g ¢-module. For this, we need the direct image of M under the graph

embedding i . We recall that this is the local cohomology module H(eTf F) (M[T)),
where (T — F) = (t; — fl,...,tg —f[).

Definition 5.39 Suppose that K has characteristic zero. Let A be a regular Noethe-
rian K-algebra. Given indeterminates 7 = t1,...,#, and F = f1,..., fr € A,
consider the ideal (T — F') of the polynomial ring A[T'] generated by t; — f1, ..., ty—
fe. Fora DAl[K—module M, let M’ denote the DA[T]HK—module H(ZTfF)(M[T]), and
identify M with the isomorphic module 0 :y;» (T — F) € M’. Suppose that M’
admits a V-filtration along (7)) over A[T']. Then the V -filtration on M along (T —F)
is defined, for o € Q, as

Vg M = V("‘T)M’ NM = 0:vg w (T = F)).

We point out that V-filtration over A along F only depends on the ideal a = (F)
and not on the generators chosen.

We now give a result that guarantees the existence of V-filtrations. We point
out that we have not defined regular or quasi-unipotent D A‘[K—modules. We omit
these definitions, but we mention that all principal localizations A y and all local
cohomology modules H' (A) of the ring A satisfy these properties.
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Theorem 5.40 ([72, 93]) Suppose that K has characteristic zero. Let A =
Klx1, ..., x4] be a polynomial ring and M be a quasi-unipotent regular holonomic
left DAl[K-module. Then, M has a V -filtration along F = fi, ..., fi € A.

Once we ensure the existence of V-filtrations we have the following characteri-
zation in terms of relative Bernstein-Sato polynomials.

Theorem 5.41 ([36, 117]) Suppose that K has characteristic zero. Let A =
Klx1, ..., x4] be a polynomial ring and M be a quasi-unipotent regular holonomic
left DAl[K—module. Then,

V("})M ={veM|a<cifbr),(—c) =0}

6 Bernstein-Sato Theory in Prime Characteristic

We now discuss Bernstein-Sato theory in positive characteristic. Throughout this
section, K is a perfect field of characteristic p > 0, and A = K[x,...,xg] is a
polynomial ring. The main purpose of this section is to discuss the theory developed
by Mustata [100], Bitoun [14], and Quinlan-Gallego [114].

Before we do so, as motivation, we briefly discuss the notion of the Bernstein-
Sato functional equation in positive characteristic. Note that for b(s) € K[s], we
have b(s) f* = c(s)f°® for all s € N if and only if b and ¢ determine the same
function from [, to K. This gives a recipe for many unenlightening functional
equations: we can take b(s) to be a function identically zeroon [ ,, e.g., s? — s, and
3(s) to be some operator that annihilates every power of f, e.g., the zero operator.
For this reason, the notion of Bernstein-Sato polynomial in characteristic zero is not
as well-suited for consideration in positive characteristic.

Instead, we return to an alternative characterization of the Bernstein-Sato poly-
nomial discussed in Sect. 3.2. As a consequence of Proposition 3.13, for polynomial
rings in characteristic zero, we can characterize the roots of the Bernstein-Sato

polynomial of f as the eigenvalues of the action of —d;7 on [ﬁ] in

Dy l=ai]- 1751
Dykl=d1f - [751

In characteristic p > 0, we consider the eigenvalues of a sequence of operators that
are closely related to —o;z.

Definition 6.1 Consider D,k as a graded ring, with grading induced by giving
each x; degree zero, and t degree 1. We set [D A[t]l[K]O to be the subring of
homogeneous elements of degree zero, and [D AlrKl=o0 to be the subring spanned
by elements of nonnegative degree.

We note that [D 4, k]>0 is also characterized by the V -filtration as V(?)D ALK
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e
o
pe!
operators s; commute with one another and elements of D Al and sip = s; for

each i.

tP°. In this ring, the

Lemma 6.2 [DA[t]|[K]0 = DAl[K[so, S1, ..., where s, = —

Proof We omit the proof that these elements generate. It is clear that each s;
commutes with elements of DA|[K' For an element f(¢) = Zj ajt/ e Alt], with
aj € A, using Lucas’ Lemma, we compute

sf=3" —(’ :,.p )aﬂf = 3"~ (WUl + Dayt/,
J

J

where [j]; is the ith digit in the base p expansion of j; our convention that the unit
digit is the Oth digit. The other claims follow from this computation. O

We can interpret the computation in the previous lemma as saying that the
aj-eigenspace of s; on A[¢] is spanned by the homogeneous elements such that
the ith base p digit of the degree is o; — 1. By way of terminology, we say
that the («g, o1, @2, ... )-multieigenspace of (sg, s1, 52, ...) is the intersection of
the «;-eigenspace of s; for all i. Then, the («g, o1, @2, ...)-multieigenspace of
(so, S1, 52, ...) on A[t] is the collection of homogeneous elements of degree
Zi(a,- — l)pi for a tuple with ; = 0 for i > 0. This motivates the idea
that a “Bernstein-Sato root” in positive characteristic should be determined by a
multieigenvalue of the action of (s, s1, §2,...) on [%] in

D 51K 1=0 - [ﬁ]
[Dapk)z0f - 1751

Based on this motivation, we give two closely related notions of Bernstein-Sato
roots appearing in the literature.

6.1 Bernstein-Sato Roots: p-Adic Version

The first definition of Bernstein-Sato roots that we present follows the treatment of
Bitoun [14]. To each element & = (g, @1, a2, ...) € F[y we associate the p-adic
integer I (o) = g + poy + pon + - - -.

Theorem 6.3 ([14]) For any f € A, the module

D 41k ]=0 - [ﬁ]
[D4pkl=0f - [f%,]
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decomposes as a finite direct sum of multieigenspaces of (so, s1, 82, . ..). The image
of each multieigenvalue under I is negative, rational, and at least negative one.
Moreover, the map I induces a bijection between multieigenvalues and the set of
negatives of the F-jumping numbers in the interval (0, 1] with denominator not
divisible by p.

In this context, we consider the image of the multieigenvaues under the map
I as the set of Bernstein-Sato roots of f. Moreover, Bitoun constructs a notion
of a Bernstein-Sato polynomial as an ideal in a certain ring; however, this yields
equivalent information to the set of Bernstein-Sato roots just defined.

Example 6.4 ([14])

(i) Let f = xf + -4 x,%, withn > 2, and p > 2. Then the set of Bernstein-Sato
roots of f is {—1}. Contrast this with the situation in characteristic zero, where
—n/2 is also a root.

(i) Let f = x>+ y3,and p > 3.1f p = 1 mod 3, then the set of Bernstein-Sato
roots is {—1, —5/6}, and if p = 2 mod 3, then the set of Bernstein-Sato roots is

{=1}.

6.2 Bernstein-Sato Roots: Base p Expansion Version

The second definition of Bernstein-Sato roots that we present is historically the first,
following the treatment of Mustatd. To each element & = («g, o1, 2, ..., ) €

[F;“ we associate the real number E (a) = #ao + #al +- %ae.

Theorem 6.5 ([100]) Fora € [F;'H, we have that o is a multieigenvalue of

(e) 1
[DA””[K]zo : [ﬁ]

(e)
LD pd=0f - 7]

if and only if there is an F-jumping number of f contained in the interval
(E(a), E(@) + 1/p*H].

For each level e, one then obtains a set of Bernstein-Sato roots, given as the
image of the multieigenvalues under the map E.

Relative versions of the above result, for an element in a unit F-module, were
considered by Stadnik [134] and Blickle and Stébler [23].
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6.3 Nonprincipal Case

Both of the approaches above were extended to the nonprincipal case by Quinlan-
Gallego [114]. To state these generalizations, for an n-generated ideal a =
(f1, ..., fu), we consider the following.

Definition 6.6 Consider D, K as a graded ring, with grading induced by
giving each x; degree zero, and each #; degree one. We set [DA[tl,...,tn]I[K]ZO to be
the subring spanned by homogeneous elements of nonnegative degree. We also set

7! "
1 n .a
Se = — Z _"'_tll"'tan'

a!  ap! "
ay+--+ap=p° ! "

Theorems 6.3 and 6.5 have analogues in this setting; we state the former here and
refer the reader to [114] for the latter.

Theorem 6.7 Leta = (f1,..., fn), and let

1 n
"= [(ﬁ B rn)] R

Then, the module

.....

decomposes as a finite direct sum of multieigenspaces of (so, S1, 82, . .. ). The image
of each multieigenvalue under the map I from Sect. 6.1 is rational and negative.
Moreover, there is an equality of cosets in Q/Z:

{I(a) | @ is a multieigenvalue of (so, $1, 52, ...)} + Z =
{negatives of F-jumping numbers of a with denominator not a multiple of p} + Z.
In this setting, we consider the image of the set of multieigenvalues under the

map I as the set of Bernstein-Sato roots of a.

Example 6.8 ([113]) Let a = (x2, y3). Then, for p = 2, the set of Bernstein-Sato
roots is {—4/3, —5/3, —2}. For p = 3, the set of roots is {—3/2, —2}. For p > 0,
by [113, Theorem 3.1], the set of roots is {—5/6, —7/6, —4/3, —=3/2, —5/3, —2}.

The connection between Bernstein-Sato roots and F-jumping numbers largely
stems from the following proposition, and the fact that C4{a = C4b if and only

(N )
D,’a=D,"b.
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Proposition 6.9 ([100, Section 6],[114, Theorem 3.11]) The multieigenspace cor-

responding to (oo, &1, &2, ..., 0e—1) Of (S0, S1, 52, . . ., Se—1) acting on
(e)
[DA[tl,‘..,t,,ll[K]zo N
(e)
[DA[t1 ,,,,, z,1]|ﬂ<]30Ol N

decomposes as the direct sum of the modules

Dﬁf) . al(a)+sp"

fo) . ql @+spe+1

7 An Extension to Singular Rings

We now consider the notion of Bernstein-Sato polynomial in rings of characteristic
zero that may be singular. Throughout this section, K is a field of characteristic zero,
and R is a K-algebra.

As in Sect. 3, the definition is as follows:

Definition 7.1 A Bernstein-Sato functional equation for an element f in R is an
equation of the form

S() T =b(s)f*  forall s €N,

where 6(s) € D RHK[S] is a polynomial differential operator, and b(s) € K[s] is a
polynomial. We say that such a functional equation is nonzero if b(s) is nonzero;
this implies that §(s) is nonzero as well.

If there exists a nonzero functional equation for f, we say that f admits a
Bernstein-Sato polynomial, and the Bernstein-Sato polynomial of f is the minimal
monic generator of the ideal

{b(s) € K[s]|38(s) € Dyyls] such that 8(s) £**! = b(s) f* for all s € N} € K[s].

We denote this as b7 (s), or as b}e (s) if we need to keep track of the ring in which
we are considering f as an element.

If every element of R admits a Bernstein-Sato polynomial, we say that R has
Bernstein-Sato polynomials.

The set specified above is an ideal of K[s] for the same reason as in Sect. 3.

The proof of existence of Bernstein-Sato polynomials uses the hypothesis that
R is regular crucially in multiple steps; thus, a priori Bernstein-Sato polynomials
may or may not exist in singular rings. Before we consider examples, we want to
consider the functional equation as a formal equality in a D-module.
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Theorem 7.2 ([2]) There exists a unique (up to isomorphism) D Rfl[K[s]-module,
Ry[s1f®, that is a free as an Rjy[s]-module, and that is equipped with maps
On 2 Re[s1f° — Ry, such that w,(8(s)) - O,(a(s) f°) = 6,(8(s) - a(s) f*) for all
n € N. An element a(s) f° is zero in R¢[s]f* if and only if 6,(a(s) f*) = 0 for
infinitely many (if and only if all) n € N.

Remark 7.3 From this theorem, we see that the following are equivalent, as in the
regular case:

(i) 8()ff* =0b(s)f* in Ry[s]f*;

(i) 8(s)f+! = b(s)f* foralls € N;
(iii) 8(s + 1) ff5 = b(s) f' f* in Ry[s]f* for some/all 1 € Z.

We note also that Proposition 3.13 holds in this setting, by the same argument.

7.1 Nonexistence of Bernstein-Sato Polynomials

In this subsection, we give some examples of rings with elements that do not admit
Bernstein-Sato polynomials. This is based on a necessary condition on the roots that
utilizes the following definition.

Definition 7.4 A D-ideal of R is an ideal ¢ C R such that D R‘[K(a) =a.

AsRCD RIK> We always have a C D Rl[K(a), so the nontrivial condition in the
definition above is D R|[K(I ) € I. We always have that 0 and R are D-ideals. Sums,
intersections, and minimal primary components of D-ideals (when R is Noetherian)
are also D-ideals [137, Proposition 4.1]. When R is a polynomial ring, the only D-
ideals are 0 and R; in other rings, there may be more. We make a simple observation.

Lemma 7.5 Let f € R, and let a C R be a D-ideal. Let §(s) f*t! = b(s) f* be a
functional equation for f.If f"*' € aand f" ¢ q, then b(n) = 0. In particular, if
[ admits a Bernstein-Sato polynomial by (s), then by (n) = 0.

Proof After specializing the functional equation, we have §(n) f"*! = b ) fm.
Since 8(n) f"*! € a, we must have by(n) f" € a, which implies b7 (n) = 0. m|

From the previous lemma, we obtain the following result.

Proposition 7.6 Let R be a reduced N-graded K-algebra. If D RIK lives in nonneg-
ative degrees, then no element f € [R]~o admits a Bernstein-Sato polynomial.

Proof Let 8(s) f**! = b(s) f* be a functional equation for f. Suppose f € [R]y
[R]w—1. Since DR\[K has no elements of negative degree, [R]>y(n+1) is a D-ideal
for each n € N, and f"*! € [R]sw(u+1), while f* ¢ [R]sym+1)- Thus, b(n) = 0
for all n, so b(s) = 0. Thus, f does not admit a Bernstein-Sato polynomial. m]

Large classes of rings with no differential operators of negative degree are
known. In particular, we have the following.
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Theorem 7.7 ([24, Corollary 4.49]1,[62],[89]) Let K be an algebraically closed
field of characteristic zero and let R be a standard-graded normal K-domain with
an isolated singularity and that is a Gorenstein ring. If R has differential operators
of negative degree, then R has log-terminal and rational singularities.

In particular, if R is a hypersurface, and R has differential operators of negative
degree, then the degree of R is less than the dimension of R.

Mallory recently showed that the hypothesis of log-terminal singularities is not
sufficient.

Theorem 7.8 ([89]) Let K be an algebraically closed field of characteristic zero.
There are no differential operators of negative degree on the log-terminal hypersur-
face R = K[x1, x2, x3, x41/(x3 + x3 + x3 + x3).

Corollary 7.9 For R as in Theorems 7.7 and 7.8, no element of [R]>1 admits a
Bernstein-Sato polynomial.

7.2 Existence of Bernstein-Sato Polynomials

While some rings do not admit Bernstein-Sato polynomials, large classes of singular
rings do.

Definition 7.10 Let R, S be two rings. We say that R is a direct summand of S if
R C S, and there is an R-module homomorphism 8 : S — R such that 8| is the
identity on R.

A major source of direct summands comes from invariant theory: if G is a
linearly reductive group acting on a polynomial ring B, then R = BY is a direct
summand of B. In particular, direct summands of polynomial rings include:

(i) invariants of finite groups (including the simple singularities A,, Dy, E;),
(i) normal toric rings,
(iii) determinantal rings, and
(iv) coordinate rings of Grassmannians.

We note that a ring R may be a direct summand of a polynomial ring in different
ways; i.e., as different subrings of polynomial rings. For example, the A singularity
R = Cla, b, c]/(c*> — ab) embeds as a direct summand of B = C[x, y] by the maps

é1:R— B p1(a) = x>, ¢1(b) = y*, ¢1(c) = xy, and
¢ R— B $2(a) = x*, ¢ (b) = ¥, ¢a(c) = x7y?; likewise

¢3: R — Bzl ¢3(a) = x2, ¢3(b) = y*, ¢3(c) = x splits.
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We note also that if R is a direct summand of a polynomial ring, there may be other
embeddings of R into a polynomial ring that are not split. E.g., for R and B as
above,

¢s:R— B Pa(a) = x, pa(b) = xy?, pa(c) = xy

is injective, but no splitting map B|r exists.

Definition 7.11 ([2, 24]) Let R, S be two rings. We say that R is a differentially
extensible direct summand of S if R is a direct summand of S, and for every
differential operator § € D RIK> there is some § € D sIK such that §|g = 4.

This notion is implicit in a number of papers on differential operators, e.g.,
[69, 79, 99, 127]. Differentially extensible direct summands of polynomial rings
include

(i) invariants of finite groups (including the simple singularities A,,, D, E;),
(i) normal toric rings,
(iii) determinantal rings, and
(iv) coordinate rings of Grassmannians of lines Gr(2, n).

As with the direct summand property, a ring may be a differentially extensible
direct summand of a polynomial ring by some embedding, but fail this property for
another embedding into a polynomial ring. For the example considered above, R is
a differentially extensible direct summand of B via ¢ and ¢3, but not ¢, or ¢4.

Theorem 7.12 ([1, 24]) Let R be a direct summand of a differentiably admissible
algebra B over a field K of characteristic zero. Then every element f € R admits a
Bernstein-Sato polynomial b}e (s), and b}e (s) | b? (s).

If, in addition, R is a differentially extensible direct summand of B, then bjlf (s) =
bjlf(s)for all f € R.

Proof Let B : B — R be the splitting map. The key point is that for § € D BIK>
the map B o §|g is a differential operator on R; this is left as an exercise using
the inductive definition, or see [133]. Thus, given a functional equation Vs €
N, 8(s) f511 = b(s) f* for fin B, wehave Vs € N, Bo8(s)|r f*T! = B(b(s) f*) =
b(s) f¥ in R. This implies that f admits a Bernstein-Sato polynomial in R, and that
bjf(s) | bf. (s).

If R is a differentially extensible direct summand of B, then for any functional
equation Vs € N, §(s) f*+! = b(s) f* for f in R, we can take an extension &(s) by
extending each s’-coefficient, and we then have Vs € N, §(s) /5! = b(s) f* in B.
Thus, blf- ()| bf- (s), so equality holds. |

Note that for direct summands of polynomial rings, all roots of the Bernstein-
Sato polynomial are negative and rational, as in the regular case.

We end this section with two examples of Bernstein-Sato polynomials in rings
that are not direct summands of polynomial rings.
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Example 7.13 ([2]) Let R = C[x, y]1/(xy), and f = x. The operator x3? is a
differential operator on R [138], and it yields a functional equation

xa,% T = s(s + Dx®.

Thus, bR(s) exists, and divides s(s + 1). In fact, we have bR(s) = s(s + 1). The
ideal (x) is a minimal primary component of (0), hence a D- 1dea1 By Lemma 7.5,

s = 0 1S a rOOt, s =—1 IS alSO aroot Slnce X IS not a unlt.
C
Example 7.14 ([2]) Let R = C[12, 3] = o 3[x 4 ]) and f = 2. Consider the

differential operator of order two
§=(td —1)od?o(td —1)7",
where (9,7 — 1)~! is the inverse function of 73, — 1 on R. The equation
82D = 20 4+ 2)(20 — 1)i?
holds for every £ € IN. Then, the functional equation
§e2(t?)* = (25 +2)(2s — D(*)*

holds in R,> [s1(£%)*. Thus, btlg (s) divides (s — %)(s +1).

We now see that the equality holds. We already know that s = —1 is a root
of bg (s), because tlz ¢ R. Every differential operator of degree —2 on R can be
written as (zd; — 1) o 812 oy o (td — 1)~! for some y € C[td,] [130, 132]. Since
R,z[s](tz)s is a graded module we can decompose the functional equation as a sum
of homogeneous pieces. Using previous description of such operators, it follows that

s = % must be a root of bg (s).

7.3 Differentiable Direct Summands

Definition 7.15 ([1, Definition 3.2]) Let R € B be an inclusion of K-algebras with
R-linear splitting 8: B — R. Recall that, for { € D" K themap Bo¢|g: R —> R
is an element of Dll1?|[K' By abuse of notation, for § € DB|[K’ we write B o 8| for the
element of D, obtained from & by applying g o —|.

We say that a Dy -module M is a differential direct summand of a Dp -
module N if M € N and there exists an R-linear splitting ®: N — M, called
a differential splitting, such that

O@ev) =(Bodlr)ev
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forevery 6 € D BIK and v € M, where the action on the left-hand side is the D BIK-
action, considering v as an element of N, and the action on the right-hand side is
the D RHK-action.

A key property for differential direct summands is that one can deduce finite
length.

Theorem 7.16 ([1, Proposition 3.4]) Let R C B be K-algebras such that R is a
direct summand of B. Let M be a DRl[K—module and N be a DBl[K—module such that
M is a differential direct summand of N. Then,

length Dk (M) < 1engthDB.n< (N).

In particular, if length K (N) is finite, then length, K (M) is also finite.
B| R|

Definition 7.17 ([1, Definition 3.5]) Let R < B be K-algebras such that R is
a direct summand of B. Fix D R‘M[g]—modules M; and M, that are differential
direct summands of D Blﬂ([g]—modules Njp and Nj, respectively, with differential
splittings ®1: Ny — Mj and ®: N — M>. We call ¢: Ny — N, a morphism
of differential direct summands if ¢ € HomDB‘[KLS](Nl,Ng), (M) < Ms,
Plm, € HomDR|M[§](M1, M>), and the following diagram commutes:

C S21
My ——> Ny —> My

ldﬂMl l(/) \L¢|Ml
C €]

My —=> Ny —2> M,

For simplicity of notation, we often write ¢ instead of @[y, .

Further, a complex M, of D R‘[K[g]—modules is called a differential direct
summand of a complex N, of D BI[K[g]-rnodules if each M; is a differential direct
summand of N;, and each differential is a morphism of differential direct summands.

Remark 7.18 Let R € B be K-algebras such that R is a direct summand of B.
It is known that the property of being a differential direct summand is preserved
under localization at elements of R. In addition, it is preserved under taking kernels
and cokernels of morphisms of differential direct summands [1, Proposition 3.6,
Lemma 3.7].

We now present several examples of differentiable direct summands built from
the previous remark.

Example 7.19 Let R C B be K-algebras such that R is a direct summand of B

(i) Forevery f € R\ {0}, Ry is a differentiable direct summand of By.
(i) Forevery ideal a C R, HA(R) is a differentiable direct summand of HA(B).
(iii) For every sequence of ideals aj,...,a; € R, Hél ~~Hé[(R) is a differen-
tiable direct summand of H, --- H} (B).
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We end this subsection showing that R ¢[s] f § is a differentiable direct summand
of Ry[s]f*. This gives a more complete approach to prove the existence of the
Bernstein-Sato polynomial.

Theorem 7.20 Let R C B be K-algebras such that R is a direct summand of B,
and f € R~ {0}. Then, Ry[s]f* is a differentiable direct summand of R ¢[s1f*. In
particular, if B is a differentiably admissible K-algebra, then MR[ f5] ®K K(s) has
finite length as D R(s)l[K(s)-module, and so, there exists a functional equation

) ff* =b()f*,

where §(s) € DR|[I< and b(s) € K[s] ~ {0}.

8 Local Cohomology

In this section we discuss some properties of local cohomology modules for regular
rings that follow from the existence of the Bernstein-Sato polynomial.

Proposition 8.1 Let K be a field of characteristic zero, R be a K-algebra, and f €
R be a nonzero element. If R has Bernstein-Sato polynomials, then, Ry is a finitely
generated D R‘[K-module. In particular, if b’; (s) has no integral root less than or

1
equal to —n, then Ry = DR\IK . F

Proof After specializing the functional equation, we have

1
8(—1) g = bR(—1)

L
fl

for all t > n, with each b’; (—1) # 0. We conclude that each power of f, and hence
all of Ry, is in Dy - - O

In fact, a converse to this theorem is true.

Proposition 8.2 ([143, Proposition 1.3]) Let K be a field of characteristic zero, R
be a K-algebra, and f € R have a Bernstein-Sato polynomial. If —n is the smallest
1
integral root of b7 (s), then F ¢ Dk - Ry.
We give a proof of this proposition here, since it appears in the literature only in
the regular case.

fn—l <

Lemma 8.3 ([71, Proposition 6.2]) If —n is the smallest integral root of by (s),
then

(s +n+ HDgls1f* N Dplslf? f* = (s +n+ j)Dpls1f* forall j > 0.
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Proof We proceed by induction on ;.
D R|K [s] f s

Since b ¢(s) is the minimal polynomial of the action of s on ——————— an
! D1/ f*

—n — jisnot aroot of b (s) for j > 1, the map

DR‘[K[S]fS s+n+j DR|H<[S]fs
DR|[K[S]ffs DR|[K[5]ffs

is an isomorphism. Thus,

(s +n+ DDglsLf O Dylslff* = (s +n+ HDglslf £

In particular, for j = 1, this covers the base case.
Let X : DR‘[K[s]fs — DR‘[K[s]fs be the map given by the rule Z(8(s) f*) =
8(s + 1) f f*. Using the induction hypothesis, for j > 2 we compute

(s +n+ HDgKISIfE N Drlslf? f* S (s +n+ ))Dgilslf f* N Dpylslf f*
= X((s +n+j — DDgls1f* N Dglslf/~" f*)
=X((s+n+j— DDplslf/ ' f%)

= (s+n+ ))Dglslf! f* O

Lemma 8.4 ([71, Proposition 6.2]) If —n is the smallest integral root of by(s),
then

Annp(f™") = DRl[K N (Annp(f°) + DRl[K[S](S + n)).

Proof Let § € Annp(f~"). Write § f* = f~™g(s) f*, with g(s) € R[s]. In fact,
we can take m to be the order of §. Then g(—n) = 0. By Remark 7.3,

S f"f =g(s+m)f*.

Set h(s) = g(s + m). We then have that h(—n —m) = g(—n) =0, so
(s +n+m)|h(s). Thus, §- fmfSc(s+m +n)DR‘[K[s]fs, and § - f"f5 ¢
Dpklslf ™ £S5 by definition. By the previous lemma, we obtain that § - f™ f*° €
(s+m+ n)DR‘U([s]fmfs. We can then write § - f™ f* = (s +m + n)h/(s) f* for
some h'(s) € R[s]. By Remark 7.3, we have that § - f* = (s + n)h/(s — m) f*.
Thus, we can write § as a sum of a multiple of (s + n) and an element in the
annihilator of f*. |

1 1
Proof of Proposition 8.2 Suppose that F € Dpik F Then we can write
DR\[K = DR|[Kf + Annp(#). From the previous lemma, we have that

1
AnnD(F) = Dy N (Annpps (f*) + Dyilsl(s +n)).
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Then,
1€ Dy f + Annpis (f*) + Dgykls(s +n).
. . by (s)
Multiplying by ~—=, we get
by(s)
S];_ s Annpps)(f*) + Dy f + Dgk[s1b5(s).

Since by (s) € DR|[Kf + Annps)(f*¥), using Remark 7.3 we have

by(s)
s+n

DR|[K[S] € AnnD[s](fs) + DR|[K[S]f,
which contradicts that b ¢ (s) is the minimal polynomial in s contained in

AnnD[s](fs) + Dmﬂ([s]f'
O

Remark 8.5 Proposition 8.2 extends to the setting of the D Rl[K—modules Dp ik f¢
for « € Q discussed in Remark 3.14. Namely, if « € Q is such that b (o) = 0 and
by(a —1i) # 0 for all integers i > 0, then f* ¢ Dy - £+ in the D g -module
Ry fe.

It is not true in general that b¢(e) = O implies f¢ ¢ Dpik - £t even in
the regular case: an example is given by Saito [123]. However, this implication
does hold when R = A is a polynomial ring, and f is quasihomogeneous with
an isolated singularity [15]. We are not aware of an example where b s(n) = 0 and
f" € Dy - f**! for an integer n.

We also relate existence of Bernstein-Sato polynomials to finiteness properties
of local cohomology.

Theorem 8.6 Let K be a field of characteristic zero, R be a K-algebra, and
f € R be a nonzero element. Suppose that R has Bernstein-Sato polynomials and
Dpisa Noetherian ring. Then, H\(R) is a finitely generated D Rl[K—module, and

AssR(Hé(R)) is finite for every ideal a C R.

Proof Let F = fi,..., fr be a set of generators for a. We have that the Cech
complex associated to F' is a complex of finitely generated D -modules. Since

Dy is Noetherian, the Cech complex is a complex of Noetherian D Rr|K-modules.
Then, the cohomology of this complex is also a Noetherian D jc-module.

It suffices to show that a Noetherian D Rl[K-module, N, has a finite set of
associated primes. We build inductively a sequence of D R‘M-submodules N; € N as
follows. We set No = 0. Given N;, we pick a maximal element p; € Assg(N/Ny).
This is possible if and only if Assg(N/N;) # &. We set ]\7,+] = HS(N/N,), which

is nonzero, and N, the preimage of N, in N under the quotient map. We have
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that AssR(IVtH) = {p}, and so, Assg(N¢+1) = {p} U Assr(N;). We note that this
sequence cannot be infinite, because N is Noetherian. Then, the sequence stops, and
there is a k € N such that Ny = N. We conclude that Assg(N) C {p1,...,pr}. O

9 Complex Zeta Functions

The foundational work of Bernstein [9, 10] where he developed the theory of D-
modules and proved the existence of Bernstein-Sato polynomials was motivated by
a question of I. M. Gel’fand [55] at the 1954 edition of the International Congress
of Mathematicians regarding the analytic continuation of the complex zeta function.
Bernstein’s work relates the poles of the complex zeta function to the roots of
the Bernstein-Sato polynomials. Previously, Bernstein and S. I. Gel’fand [11] and
independently Atiyah [5], gave a different approach to the same question using
resolution of singularities.

Throughout this section we consider A = Cl[xy, ..., x4] and the correspond-
ing ring of differential operators D, c. Given a differential operator 5(s) =
D oy dalx, $)3% € DA|(D[S]’ which is polynomial in s, we denote the conjugate and
the adjoint of 5(s) as

5(s) := Zaa(x, 53T, §(s) = Z(—1)'“‘a“aa(x, 5),

where we are using the multidegree notation 9% := 9%'...35¢ and 3~ :=
B 3% with By = A

Let f(x) € A be a non-constant polynomial and let ¢(x) € Cé?o(@d) be a test
function: an infinitely many times differentiable function with compact support. We
define the parametric distribution f* : C° (€% — C by means of the integral

e i= [P Ddsds ©.1)

which is well-defined analytic function for any s € C with Re(s) > 0. We point
out that test functions have holomorphic and antiholomorphic part so we use the
notation ¢ = ¢(x, x). We refer to f* or { f*, ¢) as the complex zeta function of f.

The approach given by Bernstein in order to solve I. M. Gel’fand’s question uses
the Bernstein-Sato polynomial and integration by parts as follows:

(f* 9) = /@d(p(x,i)|f(x)|zsdxdi

1 -
= s )| s+l 5 stz dxdx
b (s) ./03" p(x, D[8(s) - fH@][8(s) - £ (®)]dxd
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= 5*8* X 2(s+1)d di

b%(s) ¢ (S)((p(x X))|f(x)| xdx

(fSH1, 5%8*(s)(9))
b%(s)

Thus we get an analytic function whenever Re(s) > —1, except for possible poles
at b;l (0), and it is equal to { f*, ¢) in Re(s) > 0. Iterating the process we get

<fs+f+1, 55 8* (s + 0) - - 5*5*(5)«0))
bip(s) . b}(s +£)

(fS’ (p) = ) Re(s) > _K - 19

In particular we have the following relation between the poles of the complex
zeta function and the roots of the Bernstein-Sato polynomial.

Theorem 9.1 The complex zeta function f* admits a meromorphic continuation to
C and the set of poles is included in {A — £ | by(A) =0 and (€€ Zxp}.

Both sets are equal for reduced plane curves and isolated quasi-homogeneous
singularities by work of Loeser [81].

On the other hand, the approach given by Bernstein and S. 1. Gel’fand, and
independently Atiyah uses resolution of singularities in order to reduce the problem
to the monomial case, which was already solved by Gel fand and Shilov [56]. Let
7 : X' — C" be alog-resolution of f € A and

r s r
Fj.[ = ZN,'E,' +ZN;S, and Kj'[ ::ZkiEi
i=1 j=1 i=1

be the total transform and the relative canonical divisors.
The analytic continuation problem is attacked in this case using a change of
variables.

oo = [P Rdrds = [ PP

where |d7|? = (7*dx)(7*dx) and d is the Jacobian determinant of 7. In order to
describe the terms of the last integral we consider a finite affine open cover {Uy }qe
of E € X’ such that Supp(¢) C m(U,Uy,). Consider a set of local coordinates
Z1, ..., 24 in a given U,. Then we have

N N, —
T = e ()7 g™ ldw P = e @ ez dzdz

where u4(z) and vy (z) are units and N;, may denote both the multiplicities of
the exceptional divisors or of the strict transform. Take {5y} a partition of unity
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subordinated to the cover {Uy}aea. That is, ny € C*(C9), 3", ng = 1, with only
finitely many 7, being nonzero at a point of X’ and Supp(n4) < U,,. Therefore

(f*.0) = /X S G ) () ()

= / |gq [PVLes L) 7 PONaes R |y, (2)|2 |vg (2) 20 (2, 2)d2dZ,
Uy

aeA

where @, = 147" for each & € A. Notice that 7! (Supp(¢)) is a compact set
because 7 is a proper morphism.

Once we reduced the problem to the monomial case, we can use the work of
Gel’fand and Shilov [56] on regularization to generate a set of candidate poles of f*.

Theorem 9.2 The complex zeta function f* admits a meromorphic continuation to
C and the set of poles is included in

ki+1+¢ 41
—————|feZsggU— lte” .
{ N | _O} { N | 30}

/
J

1

The fundamental result of Kashiwara [71] and Malgrange [92] on the rationality
of the roots of the Bernstein-Sato mentioned in Theorem 3.37 was refined later on by
Lichtin [80]. He provides the same set of candidates for the roots of the Bernstein-
Sato polynomial in terms of the numerical data of the log-resolution of f.

Theorem 9.3 ([80]) Let f € A be a polynomial. Then, the roots of the Bernstein-
Sato polynomial of f are included in the set

ki+14+¢ L+1
{_Lmezzo}u{—; |zezzo}.

N; ¢

J

In particular, the roots of the Bernstein-Sato polynomial of f are negative rational
numbers.

This result has recently been extended by Dirks and Mustata [49].
We also have a bound for the roots given by Saito [121] in terms of the log-
canonical threshold of f,

N; ' N,

L] j

let(f) :=mi.n{k"+1 1}

Theorem 9.4 ([121]) Let f € A be a polynomial. Then, the roots of the Bernstein-
Sato polynomial of f are contained in the interval [—d + lct(f), —Ict(f)].
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In general the set of candidates that we have for the poles of the complex zeta
function or the roots of the Bernstein-Sato polynomial is too big. In order to separate
the wheat from the chaff we consider the notion of contributing divisors.

Definition 9.5 We say that a divisor E; or S; contributes to a pole A of the complex
zeta function f* or to a root A of the Bernstein-Sato polynomial of f, if we have
A= —k"tv# ori = —% for some £ € Z>o.

It is an open question to determine the contributing divisors (see [76]). Also we
point out that, in general, the divisors contributing to poles are different from the
divisors contributing to roots. This is not the case for reduced plane curves and
isolated quasi-homogeneous singularities by work of Loeser [81, Theorem 1.9]. In
the case of reduced plane curves, Blanco [17] determined the contributing divisors.

Although we have a set of candidate poles of the complex zeta function one
has to ensure that a candidate is indeed a pole by checking the corresponding
residue. This can be quite challenging and was already posed as a question by
I. M. Gel’fand [55]. In the case of plane curves we have a complete description
given by Blanco [17]. Moreover, it is not straightforward to relate poles of the
complex zeta function to roots of the Bernstein-Sato polynomial. We have that a
pole A € [—d+Ict(f), —lct(f)] such that A+ £ isnotaroot of by (s) forall £ € Z~¢
is aroot of b ¢ (s) but this is not enough to recover all the roots of the Bernstein-Sato
polynomial even if we know all the poles of the complex zeta function.

10 Multiplier Ideals

Let f € A = C[xy,...,xq] be a polynomial. As we mentioned in Sect. 2.3, the
family of multiplier ideals of f is an important object in birational geometry that
is described using a log-resolution of f and comes with a discrete set of rational
numbers, the jumping numbers, that are also related to the roots of the Bernstein-
Sato polynomial.

We start with an analytic approach to multiplier ideals that has its origin in the
work of Kohn [75], Nadel [103], and Siu [129]. The idea behind the construction is
to measure the singularity of f ata point p € Z(f) € C? using the convergence of
certain integrals.

Definition 10.1 Let f € A and p € Z(f). Let B.(p) be a closed ball of radius
€ and center p. The multiplier ideal of f at p associated with a rational number

AE Q>O is

2
j(fk)p={g€A|Ele<<1suchthat/ 8|

- |f|2kdxd)_c < oo}.

More generally we consider 7 (f*) = ﬂpez(f)j(f)‘)p.
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Similarly to the case of the complex zeta function we may use a log-resolution
7 : X' — €% of f to reduce the above integral to a monomial case where we can
easily check its convergence.

2 * 12
Ee(l)) |f| JT_I(EE(I’)) |7T fl

Consider a finite affine open cover {Ug}oea of 7~ !(Be(p)) which is still a
compact set since 7 is proper. We have to check the convergence of the integral
ateach U, solet z1, ..., z4 be a set of local coordinates in such an open set. Taking
local equations for 7* f, m*g we get

Lo Ly 2
lu(@)zy " -z, 0Nk k _
/ 1 d |le,a.uzdd,a|2dzdz
Ua

N, Na,
|2y gy |2

_ / ()] |21 PLrathia=iNin) | g 2 dathia=tNaa) g7,
Us

where u(z) is a unit. Using Fubini’s theorem we have that the integral converges if
and only if

Li +ki —AN; > =1, L =N} > —1
for all i, j. Here we use that the total transform divisors of f and g are respectively
r N r t
Fy :=ZN,-EZ~+ZN]’»SJ-, Gr ::ZLiEi—{-ZL’jS}
i=1 j=1 i=1 j=1

and the components of the strict transform of g must contain the components of f.
Equivalently, we require

L; > —[k; — AN;], L/j > D»Nﬂ

so we are saying that w*g is a section of Ox/([K; — AF;1). This fact leads to the
algebraic geometry definition of multiplier ideals given in Definition 2.11 that we
refine to the local case.

Definition 10.2 Let 7 : X’ — C? be a log-resolution of f € A and let F;; be the
total transform divisor. The multiplier ideal of f at p € Z( f) associated with a real
number A € R. is the stalk at p of

T (") = m.0x ([Kx — AFr1).
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We omit the reference to the point p if it is clear from the context. Recall that the
multiplier ideals form a discrete filtration

A0 2T 22T 2

and the A; where we have a strict inclusion of ideals are the jumping numbers of f
and A1 = lct(f) is the log-canonical threshold.

There is a way to describe a set of candidate jumping numbers in a reasonable
time. However, contrary to the case of roots of the Bernstein-Sato polynomial, the
jumping numbers are not bounded. However they satisfy some periodicity given
by the following version of Skoda’s theorem, which for principal ideals reads as

T =) - T Hforall x> 1.

Theorem 10.3 Let f € A be a polynomial. Then, the jumping numbers of f are
included in the set

ki+ 140 041
{leezzo}u{ = |£eZzo}.

! J

In particular, the jumping numbers of f form a discrete set of positive rational
numbers.

We see that we have the same set of candidates for the roots of the Bernstein-Sato
polynomial and the jumping numbers so it is natural to ask how these invariants of
singularities are related. The result that we are going to present is due to Ein et al.
[51]. A different proof of the same result can be found in the work of Budur and
Saito [38] that relies on the theory of V -filtrations.

Theorem 10.4 ([38, 51]) Let 1 € (0, 1] be a jumping number of a polynomial f €
A. Then —) is a root of the Bernstein-Sato polynomial b ¢ (s).

Proof Let A € (0, 1] be a jumping number and take g € J(f*~%) ~ J(f*) for
lg0)?
Lf (x)|20-=#)

that is not integrable.

& > 0 small enough. Therefore

e
[ f ()2
Consider Bernstein-Sato functional equation §(s) - f stl— £(s) - f° and its

application to the analytic continuation of the complex zeta function

is integrable but when we take the limit

& — 0 we end up with

B) [ ot 0P drd = [ 550 (ot D)1 0P Vdsds
Notice that |g(x)|2go(x, x) is still a test function so

b7 (s) ﬁﬁ L lglPeCe, D f ()P dxdx = /@ 88 ®) (1gPex, D)1 f ()P TV dxdz.
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Now we take a test function ¢ which is zero outside the ball Be(p) and identically
one on a smaller ball B./(p) € B<(p) and thus we get

B [, sl eoPaxat = fg (PP
/ p E/ P

Taking s = —(A — ¢) we get

2
( A—I—s)/ o |f(x|)é|1@ Sy dxdi —/ ( )8*8*(—A+8)(|g|2)\f(x)lZ(l_’\"'S)dxdi
& \p vy

but the right-hand side is uniformly bounded for all ¢ > 0. Thus we have

lgI? _
Gt [ Trmsds <M <o

for some positive number M that depends on g. Then, by the monotone convergence
theorem we have to have b}(—k) =0. O

So far we have been dealing with the case of an hypersurface f € A for the
sake of clarity but everything works just fine for any ideal a = (f1,..., fm) € A
The analytical definition of multiplier ideal at a point p € Z(a) associated with a
rational number A € Q. is

2
J@h),={geAlIe <<lsuchthat/ 18]

dxdx < oof.
B Uf12 4+ 1 fulH? }

and J(a*) = ﬂpez(u)j(a)‘)p. One can show that the ideal that we obtain is
independent of the set of generators of the ideal a.

For the algebraic geometry version we consider the stalk at p of the multiplier
ideal

J(@") = 7.0x ([Kx — AFx1).
given in Definition 2.11. The extension of Theorem 10.4 to this setting was proved

by Budur, Mustatd, and Saito [36] using the theory of V -filtrations.

Theorem 10.5 ([36]) Let A € (Ict(a), Ict(a) + 1] be a jumping number of a C A.
Then — M. is a root of the Bernstein-Sato polynomial by (s).

Finally we want to mention that multiplier ideals can be characterized completely
in terms of relative Bernstein-Sato polynomials. Namely:

Theorem 10.6 ([36]) For all ideals a C A and all A we have the equality

J@)={geAly >hrifbag(—y) =0}
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This theorem is due to Budur and Saito [38] in the case a is principal, and due to
Budur et al. [36] as stated. The proofs rely on the theory of mixed Hodge modules.
Recent work of Dirks and Mustatd [49] provides a proof of this result that does not
use the theory of mixed Hodge modules.

The analogues of Theorems 10.5 and 10.6 have been shown to hold for certain
singular rings.

To illustrate Theorem 10.6, we use this description of multiplier ideals to give a
quick proof of Skoda’s Theorem in the principal ideal case.

Proposition 10.7 (Skoda’s Theorem for Principal Ideals) For all f € A ~ {0}
and all x, we have J(f*t1) = (HT(fH).

Proof Let g € j(fk), so every root of bsg(s) is less than —A. Then, by
Lemma 5.33, every root of b, r¢(s) is less than —A — 1, and hence fg € TR,
This shows the containment 7 (f**1) D (£)T(f*).

Now, if g ¢ (f), then s = —1is a root of by 4(s) by Lemma 5.32. Thus,
T (AT C (f). In particular, we can write h € J(f ") ash = fg for g € A;
since the largest root of by ¢(s) is one greater than the largest root of by (s) by
Lemma 5.33, we have that & € J(f*), and the equality follows. O

Theorem 10.8 ([2]) Let R be cither a ring of invariants of an action of a finite
group on a polynomial ring, or an affine normal toric ring. Then, for every ideal
a € R, we have the log canonical threshold of a in R coincides with the smallest
root o ofbf(—s), and every jumping number of a in [, @ 4 1) is a root ofbg(—s).
Moreover,

Tr(@) ={g € R|y > Lifbg (—y)=0}.

The idea behind the proof of this theorem is based on reduction modulo p and
a positive characteristic analogue of the notion of differentially extensibility direct
summand as in Definition 7.11. We refer the reader to [2] for details.

11 Computations via F-Thresholds

The notion of Bernstein-Sato root in positive characteristic discussed in Sect. 6 is
closely related to F-jumping numbers. In this section, we discuss a relationship
between the classical Bernstein-Sato polynomial in characteristic zero and similar
numerical invariants in characteristic p. This connection was first established by
Mustati et al. [102], and extended to the singular setting by Alvarez Montaner et al.

[1].

Definition 11.1 ([102]) Let R be a ring of characteristic p > 0. Let a, J be ideals
of R such that a € +/J. We set

vl (p®) = max{n e N | " g JP)},
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J (e
We point out that the limit of lim 3‘& exists [50].
e—o0o0 P

Theorem 11.2 ([1], see also [102]) Let R be a finitely generated flat Z[1/al-
algebra for some nonzero a € Z, and a C +/J ideals of R. Write Ry for R ®7 Q
and R, for R/ pR; likewise, write ag for the extension of a to Ry, and similarly for
ap, Jo, Jp, etc. If ag has a Bernstein-Sato polynomial in Ry, then we have

((s + DBFY W (p*)) = 0 mod p

forall p > 0.
Sketch of proof First,if a = (f1,..., fo),setg =", fivi € R" = R[y1,..., yel.

Then, one checks easily that for p t a, we have vU{Z (p%) = v;pR”(pe). Thus, we can
reduce to the principal case, where a = (f).

Let 8(s) 51! = by(s) f* be a functional equation for f in. If we replace a by
a nonzero multiple, we can assume that §(s) is contained in the image of Dg[s]
in Dgy[s] (see [1, Lemma 4.18]) and that b¢(s) € Z[1/a][s]. Pick n such that
8(s) € DY%[s] and n is greater than any prime dividing a denominator of a coefficient
of by (s). Then, for every p > n, we may take the functional equation modulo p in
Rp:

8 =by(5)
)]

) Rp|[Fp
subring RIP‘], 50 it stabilizes every ideal expanded from such a subring, namely the
Frobenius powers J 71 of J. For s = U}{Z we have f* ¢ JIPl and f5+1 e JIP°,

so8(s) 5t e JP°1: we conclude that by(s) =0in [, as claimed. m|

Since n < p, we have 8(s) € D . In particular, 5(s) is linear over each

The previous theorem can be applied to find roots of b§g (s) in Q when there are
sufficiently nice formulas for ”UJLZ (p®) for e fixed as p varies.
Proposition 11.3 ([102]) Let R be a finitely generated flat 7[1/al-algebra for
some nonzero a € Z, and a C 7 ideals of R. Write Ry for R ®7 Q and R,
for R/pR; likewise, write ag for the extension of a to Ry, and similarly for a,, Jo,

Jp, etc. Suppose that ag has a Bernstein-Sato polynomial in Ry.
Let e > 0. Suppose that there is an integer N and polynomials Q\;) for each

[i]1 € (Z/NZ)* such that vc{ﬁ(pe) = Q1(p®) for all p > 0 with p € [i]. Then
0111(0) is a root ofbfg(s)for each il € (Z/NZ)*.

Proof We can consider bffg (s) as a polynomial over Z[1/aa’] for some a’. Fix
[i1 € (Z/NZ)*.Forany p € [i] with p { (aa’), we have

(s + DL (Q111(0)) = b5 (0111 (p9) =0 mod p,
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so p| bgg(Q[i](O)). As there are infinitely many primes p € [i], we must have
bl (Q111(0)) = 0. o
Example 11.4 ([102]) Let f = x>+ y3 € Z[x, y], and m = (x, y). One has

2pe—3 if p=1 mod 3
V?,‘,(Pe)= VJ'};(Pe):%p—% ifp=2 mod3, e=1
V?;(Pe)zgl’e—%pe_l—l if p=2 mod 3, e > 2.

By the previous proposition, —5/6, —1 and —7/6 are roots of b (s), considering f
as an element of Q[x, y]. In fact, b¢(s) = (s + %)(s + 1D(s + %).

We note that the method of Proposition 11.3 does not yield any information about
the multiplicities of the roots. There are also examples given in [102] of Bernstein-
Sato polynomials with roots that cannot be recovered by this method. Nonetheless,
we note that this method was successfully employed by Budur et al. [37] to compute
the Bernstein-Sato polynomials of monomial ideals.

Remark 11.5 1In the case of a regular ring A = [ ,[x1, ..., x4], and ideals a, J of
A with a € +/J, the numbers v‘{ (p¢) are closely related to the F-jumping numbers
discussed in the introduction. In particular, combining [102, Propositions 1.9 & 2.7]
for a and e fixed, we have

{va’(pe) | v/J 2 a} = {[p°A] — 1| A is an F-jumping number of a}.
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1 Introduction

Consider a polynomial ring over a field k, say R = k[x1, ..., x,]. When studying
finitely generated graded modules M over R, there are many important invariants
we may consider, with the Betti numbers of M, denoted §; (M), being among some
of the richest. The Betti numbers are defined in terms of generators and relations
(see Sect.2), with Bp(M) being the number of minimal generators of M, (M)
the number of minimal relations on these generators, and so on. Despite this simple
definition, they encode a great deal of information. For instance, if one knows the
Betti numbers! of M, one can determine the Hilbert series, dimension, multiplicity,
projective dimension, and depth of M. Furthermore, the Betti numbers provide even
finer data than this, and can often be used to detect subtle geometric differences (see
Example 3.4 for an obligatory example concerning the twisted cubic curve).

There are many questions one can ask about Betti numbers. What sequences arise
as the Betti numbers of some module? Must the sequence be unimodal? How small,
or how large, can individual Betti numbers be? How large is the sum? Questions like

! Really, we mean the graded Betti numbers of M, to be defined in Sect. 3.
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