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Abstract. In the context of next-generation radio-astronomical visual
surveys, automated object detection and segmentation are necessary
tasks to support astrophysics research from observations. Indeed, iden-
tifying manually astronomical sources (e.g., galaxies) from the daunting
amount of acquired images is largely unfeasible, greatly limiting the huge
potential of big data in the field. As a consequence, the astrophysics
research has directed its attention, with increasing interest given the
recent success in Al, to learning-based computer vision methods.

Several automated visual source extractors have been proposed, but
they mainly pose the source identification as an object detection. While
this may reduce the time needed for visual inspection, it presents an evi-
dent shortcoming in case of objects consisting of multiple, spatial distant,
parts (e.g., the same galaxy appearing as a set of isolated objects). This
specific limitation can be overcome through semantic segmentation. Con-
sequently, in this paper we evaluate the performance of multiple seman-
tic segmentation models for pixelwise dense prediction in astrophysical
images with the objective to identify and segment galazies, sidelobe, and
compact sources. Performance analysis is carried out on a dataset con-
sisting of over 9,000 images and shows how state-of-the-art segmentation
models yield accurate results, thus providing a baseline for future works.
We also employ the output segmentation maps for object detection and
results are better than those obtained with Mask-RCNN based detectors
that are largely used in the field.
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Introduction
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The recent technological advancement has led to an exponential growth in data
availability, which in turn, has brought out the pressing need for computational
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tools and innovative knowledge extraction methods to make sense of the col-
lected data. Astronomy and astrophysics, among the others, are fields that in
the last decades have produced an impressive amount of data coming from sky
observation and surveys. This trend is bound not to change, but even more data
is expected to be collected. For example, the Evolutionary Map of the Universe
(EMU) [16] planned with the ASKAP system [3] will survey 70% of the sky,
leading to an unprecedented quantity of data.

Typically, astronomy and astrophysics visual data may be of different modal-
ities (e.g., radio-interferometric images, infrared images, etc.), and the main
required task for supporting surveys is source finding, i.e. identifying and extract-
ing astronomical sources like compact or point-like source, galaxies and sidelobes.
However, beside cumbersome, this task is far from being trivial (both for humans
and for computational methods) because of strong artifacts due to physical lim-
itations of the acquisition process, especially in cases of extended sources or dif-
fuse emissions. This requires an extensive manual pre- and post-processing phase
that, however, is error-prone and time-consuming, other than almost infeasible
on a volume of data such as the one predicted with systems like ASKAP.

Thus, there is an unmet need for automated and reliable computational meth-
ods for source detection. Indeed, several automated astronomical source detec-
tors have been proposed, such as CAESAR [18], to address this need, yet these
are based on classic computer vision methods requiring ad-hoc and complicated
calibration and tuning steps. Standard learning-based techniques, e.g., shallow
neural networks [18], have been adopted to overcome the limitations of computer
vision methods. Despite the initial encouraging results, these methods tend to
fail with extended and faint objects. At the moment, few source finders [19,20]
are providing dedicated algorithms for extended sources but their performance
is still inferior to what is achieved for compact sources.

With the resurgence of artificial intelligence, due to deep learning archi-
tectures, object detection methods based on convolutional neural networks
have been proposed for galaxy classification [23,25], supernova remnant detec-
tion [2] and celestial object detection [4,6,8,11,26]. Nevertheless, even these deep
learning—based object detectors are not able to detect accurately specific astro-
nomical sources, especially galaxies that usually appear as composed by several
fragments (see Fig.1), thus limiting the effectiveness of the existing solutions.
Motivated by the failures of the existing object detectors, in this paper we face
the source identification problem from a different perspective, i.e., pixel-wise
dense prediction for segmenting anatomical sources (Fig. 1 shows the advantage
of semantic segmentation models over object detectors in case of galaxy detec-
tion). More in detail, we pose the source localization problem as a semantic
segmentation task and propose a first, to our knowledge, benchmark analysis
of state of the art approaches on astronomical images. Beside evaluating the
performance in terms of segmentation accuracy, providing a first baseline for
future works, we also leverage the segmentation masks to perform source detec-
tion obtaining better performance than Mask-R CNN [7], which is the most
employed detector in prior works. These obtained results thus highlight that
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employing semantic segmentation models is a interesting research direction in
the astronomical image analysis field, as they allow scientists not only to detect
automatically objects/sources but also to study morphological information about
these sky objects.

Fig. 1. Typical example of object detector failure. Usually astronomical images, espe-
cially small crops, contain one galaxy consisting of multiple non-connected parts [Left].
In this example, MaskR-CNN detects three single objects as sources [Center], while
instead there is only one galaxy. A semantic segmentation method, as the one tested
in this paper, identifies correctly the three objects as part of only one galaxy [Right].

2 Related Work

Automatic source detection in astronomical images has been developed mainly
along two directions: either using classic computer vision techniques or deep
learning methods. There exist several works on source finding based on classic
computer vision techniques, such as [5], that applies Latent Dirichlet allocation
to image pixels in order to segment them as source or background and [18],
which performs source segmentation using the k-means algorithm based on pixels
spatial and intensity proximity measure. Such works are mainly limited by the
impossibility of generalizing well on unseen data. For this reason, recent works
have been increasingly focused on deep learning models for automated source
detection.

ConvoSource [14] uses a minimal configuration of a CNN, composed by three
convolutional layers, one dropout layer and a dense layer to generate a binary
map containing sources. Such an approach lacks the ability to distinguish among
classes as it performs only binary classification. DeepSource [24] uses a CNN
architecture composed by 5 layers with ReLLU activation, residual connection and
batch normalization, to first increase the signal-to-noise ratio of the input image
and then apply a post-processing technique to identify the predicted source. In
this case, the CNN is not used to directly perform object detection, but only
to enhance image quality. The described methods use basic implementations of
CNNs and do not allow for learning high-level features, which could be a prob-
lem in the case of more complex sources or fainted objects. An improvement on
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this architecture is made with the employment of state-of-the-art object detec-
tion methods that make use of RPN (region proposal network) backbones, to
yield more accurate results. CLARAN [25] performs domain adaptation on the
Faster R-CNN architecture [17], replacing the Rol Pooling layer with differen-
tiable affine transformations and fine-tuning the model from weights pre-trained
on the ImageNet Dataset [22]. Astro R-CNN [1] applies the evolution of Faster
R-CNN model, Mask R-CNN [7], to perform object detection on a simulated
dataset. Mask Galaxy [4] uses Mask R-CNN as well to adapt it to the astro-
nomical domain by performing transfer learning from weights learned on COCO
dataset [13] using only one class. Thus, the state of art contains several works
employing object detection in astronomical images, but, to the best of our knowl-
edge, no study yet exists that applies semantic segmentation to the source finding
task. Hence, the main contribution of this work is to explore the application of
such approach to the source finding task as to provide a proper baseline for
future works.

3 Semantic Segmentation

This section briefly describes the semantic segmentation models applied to
astronomical images. Existing semantic segmentation methods typically use an
encoder-decoder architecture based on U-Net [21]. The base U-Net model in
the years has been improved through combining segmentation maps created at
different scales [12], or devising new loss functions [28] or through deep supervi-
sion [27] or through residual and squeeze excitation modules [15]. One significant
change in the U-Net architecture was introduced in Tiramisu [10] that employs a
sequence of DenseNet [9] blocks, rather than standard convolutional blocks. The
Tiramisu network consists of a downsampling path for feature extraction and an
upsampling path for output generation, with skip connections. Its architecture
is shown in Fig. 2.

The input to the model consists of an image resized to 132 x 132 (in our
case) and pre-processed by applying z-scale transform to adjust the contrast.
Each image is passed to a convolutional layer to expand the feature dimen-
sions. The resulting feature maps obtained from the first block, traverse a down-
sampling path consisting of five sequences of dense blocks, and transition-down
layers. The transition-down layers are implemented to employ max-pooling in
order to reduce feature map size. After the transition-down step, the encoded
representation of the input image is obtained. The following upsampling path
is symmetric to the downsampling one. Finally, a convolutional layer outputs a
2-channel segmentation map, respectively encoding the log-likelihoods of object
and non-object pixels.
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Fig. 2. The proposed Tiramisu segmentation architecture, consisting of a downsam-
pling path and an upsampling path, interconnected by the bottleneck layer.

4 Experiments

4.1 Dataset

Performance analysis is carried on dataset containing 9,192 grayscale image
cutouts extracted from different radio-astronomical survey maps taken with the
Australian Telescope Compact Array (ATCA), the Australian Square Kilometre
Array Pathfinder (ASKAP) and the Very Large Array (VLA). Each image has
size 132 x 132 and may contain multiple objects of the following three classes
(examples of them are in Fig. 3):

— Source (19,000 samples): Compact or point-like radio sources, with unknown
astrophysical classification, having rounded and single-component morphol-
ogy.

— Sidelobe (1,280 samples): A class of imaging artefacts, introduced by the
map making process, often mimicking real radio sources and mostly appearing
as elongated or ring-like regions around bright compact sources.

— Galaxy (3,202 samples): Extended multi-component radio galaxies, often
comprising two or more disjoint regions (or islands), typically aligned along
the radio structure axis and symmetrical around a center or core region.

The images are stored in FITS file format, although, for being fed to the
model, they are converted into PNG format. Before conversion, each crop is nor-
malized using a Z-Scale value of 0.3, in order to enhance the contrast. Each image
in the dataset comes with a color-coded segmentation mask (see Fig.4), which
serves as ground truth during training. The whole dataset contains 23,481 dif-
ferent objects that are split for training, validation and test as shown in Table 1.
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Table 1. Object splits. The whole dataset consists of 9,192 images containing about
23,000 objects.

Class Train | Validation | Test
Source | 13,300 | 3,800 1,900
Sidelobe | 896 256 128
Galaxy |2,241 |640 320
Total 16,437 | 4,696 2,348

Fig. 3. Examples of (left) galaxies, (center) sources and (right) sidelobes.

4.2 Architecture and Training Details

We test multiple segmentation models on our dataset, namely, a standard
encoder-decoder model, Tiramisu and U-Net. The latter has been tested in two
variations: baseline and with deep supervision. The baseline version is the one
reported in [21], which includes skip connections. Deep supervision consists in
computing the distance between the deeper stages of the decoder and the down-
sampled ground truth mask and add these distances to the final loss, so to guide
the decoder to give a meaningful output even in the deeper layers. Input size
is set to 132 x 132, training is carried out for 100 epochs using negative log
likelihood as a loss function. Initial learning rate is set to 0.0001, weight decay
to 0.0001 with RMSProp as optimizer. Given a strong imbalance among classes,
the loss is weighed by a different factor for each class, which results in a different
update in the gradients during backpropagation, according to the class of the
ground truth. For each class, the factor is computed as

w; = S/(C+5)) (1)

where w; is the weight for the j-th class, S stands for the total number of samples
in the dataset, C' is the number of classes and S; is the number of samples for
the j-th class.

This way, the classes with a smaller number of samples will have a higher
loss, which pushes the model to better learn such underrepresented classes, coun-

terbalancing the bias. Code is written in Pytorch and experiments executed on
a NVIDIA GPU RTX 3090 (24 GB memory).
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4.3 Results

For performance evaluation, commonly employed metrics for semantic segmen-
tation and object detection are used. Accuracy, precision, recall and F1 score are
computed according to their definition, by using true positives, true negatives,
false positives and false negatives. More in detail:

TP+TN
TP+ FP+TN+ FN
TP

TP+ FP

TP
TP+ FN
2 Precision x Recall 2xTP

Precision + Recall ~— 2% TP+ FP+ FN

For semantic segmentation and object detection, TP, TN, FP, FN are com-
puted in different ways:

Accuracy =

Precision =

Recall =

F =

— Semantic Segmentation: For each class i, with ¢ = 1--- N (number of
classes) a binary mask is generated, where values are ones if they correspond
to pixels predicted class i, zeros otherwise. True positives and true negatives
correspond to correctly predicted pixels (respectively for the correct class or
for the background). False positives correspond to pixels not belonging to
class i, predicted as class i. False negatives correspond to pixels with zero
prediction where the ground truth is class s.

— Object Detection: To allow comparison with object detection models, the
binary segmentation mask is converted into a sparse matrix where each con-
nected component (i.e. an object) is identified separately from the others.
Then, each object O; is compared with the corresponding ground truth GT;
using the Intersection over Union (IoU) metric and defining a threshold a.

0; NGT;

IoU =
0= 0,UGT;

True positives are objects of class ¢ with IoU > «. False positives occur when
the predicted object is not in the correct position with respect to its ground
truth (i.e. IoU < «). False negatives mean no prediction for the ground truth
object GT;. In this case, there are no true negatives, so the accuracy is not
computed.

Table 2 reports semantic segmentation accuracy indicating how the Tiramisu
models is the best performing one. All models yield good performance, especially
for source and galaxy classification. Sidelobe segmentation performance is in
generally lower because of both the limited representativeness in the dataset
and their morphological structure. Indeed, sidelobes show a huge appearance
variability as they are generated by distortions. This explains the lower number
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Table 2. Comparison between Tiramisu and U-Net variations. DS stands for deep
supervision.

Model Class Accuracy | Recall | Precision | F1
Encoder-Decoder | Sidelobe | 0.45 0.38 10.26 0.33
Source |0.65 0.65 |0.72 0.68
Galaxy |0.74 0.70 |0.84 0.76
U-Net Sidelobe | 0.57 0.5 0.33 0.41
Source |0.74 0.70 |0.79 0.76
Galaxy |0.83 0.76 | 0.86 0.81
L+DS Sidelobe | 0.56 0.52 0.35 0.42
Source |0.76 0.74 10.79 0.76
Galaxy |0.87 0.88 |0.93 0.90
Tiramisu Sidelobe | 0.85 0.85 |0.50 0.63
Source |0.90 0.90 | 0.82 0.86
Galaxy |0.97 0.97 10.90 0.93

Fig. 4. Output segmentation maps. (right) input image, (middle) ground truth mask,
(right) prediction mask. Yellow pixels belong to galaxies, blue ones to sidelobes and
red ones to sources. First two rows show success cases, while the last row some failures
on sidelobe segmentation.

of sidelobe samples in our dataset w.r.t. the other two classes: annotators often
mislabel or miss often them. Among all the U-Net variants, the one employing
deep supervision outperforms the others, while it underperforms the Tiramisu
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Table 3. Object detection results of Tiramisu and MaskR-CNN.

Model Class F1 Precision | Recall

Tiramisu Sidelobe | 0.52 | 0.46 0.59
Source |0.83 | 0.81 0.84
Galaxy [0.90 | 0.91 0.90

MaskR-CNN | Sidelobe | 0.30 |0.47 0.23
Source [0.74 |0.66 0.86
Galaxy [0.77 |0.66 0.93

model. Examples of good and wrong segmentations are given in Fig.4. The
failures (last row of Fig.4) mainly pertain identification of sidelobes due to the
reasons highlighted earlier.

Table 3 shows the object detection results, computed using a IoU threshold
value of 0.5 and compared to those obtained by MaskR-CNN. Here we observe
how Tiramisu model outperforms (in terms of F; measure, MaskR-CNN one,
especially on the precision metrics for galaxy class, thus substantiating our orig-
inal claim on a major effectiveness of semantic segmentation models over object
detectors for that class. Similar to semantic segmentation task, lowest perfor-
mance is achieved on sidelobes.

5 Conclusion

Both detection and segmentation of astronomical objects in radio images are
of key importance for extracting useful information to support astrophysics
research. In this work we provide a different perspective to the current object
detection approach employed for source identification, i.e., performing semantic
segmentation followed by a downstream localization method. To this end, we car-
ried out a benchmark analysis of state-of-the-art semantic segmentation methods
to define a baseline for future works. Beside this, we show that using semantic
segmentation leads to better detection performance than MaskR-CNN, especially
for galaxies. As in terms of segmentation performance, Tiramisu yields an aver-
age F score of about 0.93 for galaxies, 0.86 for sources and 0.63 for sidelobes. The
reduced performance on sidelobs mainly lies in the low quality of the annotations
in the employed dataset. Indeed, the massive presence of sidelobes in astronom-
ical images and their huge variability in appearance make rather complex to
annotate all instances. This opens two possible research directions: (a) enhanc-
ing the quality of annotated datasets beside increasing the number of classes and
instances per class; (b) investigating unsupervised and semi-supervised methods
to reduce the annotation burden while keeping the same level of accuracy.
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