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Abstract. In this paper, we consider a multi-class classifier for problems
where unknown classes are included in testing phase. Previous classifiers
consider the “closed-set” case where the classes used for training and
the classes used for testing are the same. A more realistic case is the
“open-set” recognition, in which only a limited number of classes appear
at training time, and unknown classes appear during testing. To handle
such problems, we need classifiers that accurately classify data belong-
ing to not only known classes but also unknown classes. In this paper,
We introduce a Support Vector Machine (SVM) based Extreme Value
Machine (EVM) to determine a compact class region. Any data outside
of such class regions is rejected as being in unknown classes. To con-
struct a class region, we approach the class decision boundary found by
SVM towards the samples, by removing some support vectors close to
the boundary. This SVM based EVM resolves the three problems that
EVM possesses: unfair size of class regions, excessive sensibility to certain
points and fragmentation of a class region.

Keywords: Extreme value theory · Support vector machines · Open
set recognition · Anomal detection

1 Introduction

A lot of high performance classifiers such as deep neural networks have been
developed so far. These classifiers work most under a closed condition where
classes to appear are known already in training time. A more realistic scenario is
an open condition where unknown classes appear in testing time. Such a situation
is also called Open Set Recognition (OSR) [10]. Examples are rare disease diag-
nosis and web application services where newly discovered diseases and newly
released applications appear day by day.

A pioneer work in OSR was made by Scheirer et al. [10] who formalized OSR
and proposed a 1-vs-set machine, using a linear SVM, by considering an open
space risk in addition to an empirical risk. Although 1-vs-set machine reduces
the region of a known class compared with that of the original SVM, the region is
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still unbounded because of the linearity. The difficulty of OSR is that classifiers
have to deal with samples belonging to unknown classes, that is, they have to
be trained by no sample of the classes. There are some approaches to cope with
this difficulty such as one-class SVM [11] and classifiers with a reject option
[1,3,4,13]. Among them, Extreme Value Machine (EVM) [8] is one of the most
promising ones. EVM determines a class region as a set of hyper-balls centered
at each of the samples. The radius of a ball is determined by Extreme Value
Theorem (EVT) [6] applied to the nearest samples belong to the other classes.
The region is now bounded but still suffers from several problems that will be
introduced later.

2 Related Work

2.1 Algorithm for Open Space Recognition

Scheirer et al. proposed Weibull-calibrated SVM (WSVM) [9] for OSR. WSVM
introduces a Compact Abating Probability (CAP) model that guarantees that
the probability of samples becomes zero if they are away at a certain distance
from any training sample of a class.

Junior et al. proposed Open Space Nearest Neighbor (OSNN) [7]. In OSNN,
for an input sample s, we find the nearest two samples t,u belonging to different
classes, if ratio d(s, t)/d(s, u) > T holds for a threshold T , then the input sample
s is assigned to an unknown class, otherwise recognized as the class of t or u.

2.2 EVT Based Algorithm

We explain the outline of EVM that we put our basis on. In EVM [8], we select
one sample x1 from the positive class, a positive class of interest (Fig.1(a)).
Then, as statistics, we consider the half distance m’s from x1 to all the negative
samples (Fig. 1(b)(c)). By multiplying −1 to these distances, we consider the
max value. To estimate a distribution (EVD) of the extreme value of m’s, we
collect τ maximum values (Fig. 1(d)). According to EVT [6], we use a Weibull
distribution as the extreme value distribution because the values are upper-
bounded by zero (Fig. 1(e)). With a parameter δ as a percentile (Fig. 1(e)), we
determine the radius mex of the ball centered at x1 (Fig. 1(f)). The ball centered
at x1 shows a local domain of x1 (Fig. 1(e)). Collecting these local balls over all
positive samples, we have a positive class region.

Applying this procedure to all classes in turn, we have their class regions.
Classification is made by whether a test sample falls into one of the class regions
(to be assigned to a known class) or not (to reject). EVM is a kernel-free nonlinear
classification.

Unfortunately, EVM suffers from three problems (Fig. 2). First, a class can
have a larger region than those of the other classes when it is apart from the
other classes (the problem of unfair size of class regions). Second, a samples far
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from the other samples of the same class can dominate the class region) (the
problem of excessive sensibility of individual samples). Third, a class region can
be divided into small connected regions (the problem of fragmentation of a class
region). These problems are due to the independency of radii of balls and the
isotropy by a ball.

(a) (b) (c)

(d)

(e) (f)

Fig. 1. Working flow of EVM. We consider to enclose a positive sample x1 by a ball
as a component of the class region. There are three classes (black, yellow and blue)
in Fig. 1(a). We calculate distances between x1 and all negative samples (x2 to x6)
(samples of blue and orange), e.g., m13 = ||x1 − x3||/2. To find the max value of
m’s, we multiply −1 and sort these values (Fig. 1(d)). We estimate an extreme value
distribution by the maximum τ values, and obtain mex with a percentile δ (Fig. 1(e)).
Finally, we build a ball around x1 with radius of mex (Fig. 1(f)). (Color figure online)
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(1) (2) (3)

Fig. 2. The three problems in EVM [8]: (1) Some classes can have exceptionally larger
regions than the other classes (the green region compared with red or yellow region)
(Unfair region size problem), (2) An anomaly sample can affect much on the class
region (a yellow sample at (5, −1)) (Excessive sensibility problem), and (3) A class
region can be fragmented (red class) (Fragmentation problem) (Color figure online)

3 SVM Based EVM

To cope with these three problems possessed by EVM, we propose a way to
determine a class region by non-linear SVM. With a kernel trick, we are able
to have a more flexible region than those of hyper-planes (realized by 1-vs-set)
or hyper-balls (realized by EVM). We call it SVM based EVM and denote by
SVM-EVM. The class regions learned by SVM-EVM are in general narrower
than those by EVM, although the size is controllable by a parameter δ.

3.1 Algorithm of SVM-EVM

First, taking a linear SVM as an example, we explain our idea of SVM-EVM.
We first construct a decision boundary {x | ωTx + ω0 = 0} by a linear SVM
(Fig. 3(a)). Then, the margin m0 is obtained as

m0 =
1√∑n
i∈SV λi

, (1)

where λi is Lagrange multipliers determined by the formulation of SVM (for
example, see [2]), and SV is the set of support vectors. As a next step, we estimate
an Extreme Value Distribution (EVD) of −m0 (the minimum distance of the
positive samples to the decision). To collect another candidate extreme value,
we remove one of the positive support vectors and reconstruct another SVM
to have the second margin m1 (Fig. 3(b)). We repeat this procedure according
to a deletion ordering of samples (Fig. 4) to obtain a necessary number τ of
margins. All these margins multiplied by −1 are dealt as extreme values for
estimation of an EVD. We can think of Weibull distributions for because the
values of −m’s is upper-bounded by zero. The parameter estimation is made
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(a) (b)

(c) (d)

Fig. 3. Procedure for deleting support vectors (SVs) to obtain an extreme value and
semi-extreme values. Positive class SVs are deleted one by one. First we find a decision
boundary with margin m0 by linear-SVM in (a). In (b), we delete a positive SV and
construct another linear-SVM to find a new margin m1, then m2, m3, .... We continue
this procedure until τ m’s are obtained. The removing order is shown in Fig. 4.

by Maximum Likelihood Estimate implemented in SciPy [14]. Last, with a user-
specified percentile δ, we determine the values of mex. With this mex, we define
the class region as the positive region:

R =

{
x|

n∑
i∈SV

λiyiK(xi ,x) + w0 − mex

m0
≥ 0

}
, (2)

where K(xi ,x) is an RBF kernel. In our method, we set τ to 1% or less of total
number of samples.

3.2 An Achievement of SVM-EVM

A simple experiment was conducted. In a two-dimension space, we considered
three classes of 20 samples each. In Fig. 5, the class regions by SVM-EVM with
δ ∈ {0.0, 0.01, 0.5} are shown.

3.3 Solving Three Problems

Here, we show some examples to demonstrate that the proposed SVM-EVM
resolves three problems of EVM (Fig. 6). The proposed SVM-EVM obtains the
class regions surrounded by nonlinear functions that are determined by a whole
set of the training samples.
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Fig. 4. Removal ordering of positive support vectors. By traversing this tree in width-
first search, we determine the next sample to remove.

(1) δ = 0.0 (2) δ =0.01 (3) δ =0.50

Fig. 5. Class regions obtained by SVM-EVM for δ = 0.0, 0.5 and 0.01. The case of
δ = 0.0 is equal to SVM.

(1-a) EVM (2-a) EVM (3-a) EVM

(1-b) SVM-EVM (2-b) SVM-EVM (3-b) SVM-EVM

Fig. 6. Solutions by SVM-EVM to three problems in EVM (Fig. 2). From top to down,
(1) unfair region size problem, (2) Excessive sensibility problem and (3) Frag-
mentation problem.
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4 Experiments

An experiment was conducted to confirm the effectiveness of the proposed
method. We used OLETTER dataset which is generated for an open space recog-
nition problem and is made by modifying Letter dataset [5]. This data is of 20
000 black and white images of N =26 capital letters in 16 different styles (Fig. 7).

4.1 Experimental Procedure

We carried out the following, referring to [7].

1. Choose n ∈ {3,6,9,12} known classes randomly from N = 26 classes and leave
N − n classes as unknown classes.

2. Choose randomly a half of all training samples from known classes to make a
training set Str known. By collecting the remaining samples of known classes
we make a set Ste known. With the set Sunknown of samples of N −n unknown
classes, we make a test set Ste both by Ste both = Ste known ∪ Sunknown.

3. Apply EVM or SVM-EVM: training with Str known and testing with Ste both.
4. Repeat 10 times Steps 1 to 3.

We compared the proposed SVM-EVM with EVM. The RBF kernel K(xi, xj) =
exp(−γ||xi − xj ||2) is used in SVM-EVM and the kernel parameter γ is chosen
from {0.10, 0.11, ..., 10.00}. We set the restriction parameter δ to 0.5 to determine
mex as shown in Fig. 1(e). The larger δ is, the smaller the area is as shown in
Fig. 5. The number τ of candidate extreme values was set to 2. This is less
than 1% of the number of training samples in each class. In addition, SVM was
forcibly set so as to have a hard margin. The parameters τ and δ of EVM, we
used the author’s setting [8].

As a metric for evaluation, we used “micro” f -measure denoted by fµ [12]
and defined by,

fµ =
2 × precisionµ × recallµ

precisionµ + recallµ
, (3)

Fig. 7. Different font styles in OLET-
TER (10 styles in one letter)

Fig. 8. Comparison between EVM and
SVM-EVM in f-measureµ. The hori-
zontal axis shows the number n of
known classes. The vertical axis is the
average fµ value in 10 times.
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where

precisionµ =
∑n

i=1 TPi∑n
i=1(TPi + FPi)

, recallµ =
∑n

i=1 TPi∑n
i=1(TPi + FNi)

, (4)

where FPi and FNi are “False Positive” and “False Negative” when class i is
regarded as the positive class and the other classes including unknown classes
as the negative class as a whole. The micro f-measure is the accuracy on known
classes taking into consideration unknown classes (note that FPi or FNi (i=1,
2, ..., n) includes the samples from or to unknown classes (n + 1th class)).

4.2 Result

The result is shown in Fig. 8. SVM-EVM is better than EVM regardless of the
number n of known classes. It is more advantageous when n is small. We also
show their confusion matrices in Table 1. These matrices are for when letters
‘L’, ‘M’ and ‘K’ are known classes (n = 3). The parameters were chosen in
such a way that the same degree of correct prediction is made for samples of
unknown classes: τ = 75 (the recommended value in [8]), δ = 1.0 − 1.0−14 for
EVM, and τ = 2, δ = 0.5 for SVM-EVM. The values of δ and γ are chosen
so as to attain the best f -measure value. A large difference of δ between EVM
and SVM-EVM comes from the difference of distances: the Euclidean distance
in the former, while a distance in a reproducing kernel space in the latter. From
this comparison, we see that the class regions found by SVM-EVM are more
appropriate than those of EVM. We also examined the sensitivity of δ. As a
result, it was revealed that δ is insensitive to the result, so that the authors
recommend to use δ = 0.5 in general.

Table 1. Confusion matrices of EVM and SVM-EVM for three known classes of “L”,
“M”, “X” (n = 3), and other 23 unknown classes. The parameters for EVM are chosen
so as to show a comparable performance on unknown classes.

EVM

Predicted
Actual ”L” ”M” ”X” Unknown
”L” 46 0 0 350
”M” 0 73 0 319
”X” 0 0 39 354
Unknown0 0 15 17624

SVM-EVM

Predicted
Actual ”L” ”M” ”X” Unknown
”L” 125 0 0 271
”M” 0 153 0 239
”X” 0 0 153 240
Unknown0 2 8 17629

5 Discussion

SVM-EVM is superior to 1-vs-set machine in the shape of class regions, because
a class region by the latter is a half-space, while that by the former has a non-
linearly enclosed shape. SVM-EVM is superior to EVM in the treatment of data
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because a class region by the latter is a collection of local regions associated to
individual samples, while that by the former is a single region associated to all
the samples. The reason why SVM-EVM does not depend on the value of the
percentile δ so much is because the estimated EVD on the minus margins is so
steep around a point, that the margin specified by a percentile δ does not change
even if δ has changed. The steepness means that many samples are the support
vectors due to the nonlinearity of SVM with RBF kernels.

6 Conclusion

We have presented a novel algorithm for open set classification. This algorithm,
called SVM-EVM, determines a class region by a decision boundary generated
by SVM but in such a way that the boundary is closer to the samples of the
positive class than the original boundary. The extreme value theory is used to
determine the degree to what the boundary is close to the samples. SVM-EVM
has solved three problems that EVM held, and showed a better performance in
an experiment. We will investigate more datasets to confirm the effectiveness of
SVM-EVM.

Acknowledgment. This work was partially supported by JSPS KAKENHI Grant
Number 19H04128.

References

1. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge
loss. J. Mach. Learn. Res. 9(59), 1823–1840 (2008)

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, Heidelberg (2006)

3. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Inf. Theory
16(1), 41–46 (1970)

4. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neu-
rocomputing 214, 445–457 (2016)

5. Frey, P.W.: Letter recognition using Holland-style adaptive classifiers. Mach. Learn.
6, 161–182 (1991). https://doi.org/10.1007/BF00114162

6. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications.
Imperial College Press, London (2000)

7. Mendes Júnior, P.R., et al.: Nearest neighbors distance ratio open-set classifier.
Mach. Learn. 106(3), 359–386 (2017)

8. Rudd, E.M., Jain, L.P., Scheirer, W.J., Boult, T.E.: The extreme value machine.
IEEE Pattern Anal. Mach. Intell. 40(3), 762–768 (2018)

9. Scheirer, W.J., Jain, L.P., Boult, T.E.: Probability models for open set recognition.
IEEE Pattern Anal. Mach. Intell. 36(11), 2317–2324 (2014)

10. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set
recognition. IEEE Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2012)

11. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

https://doi.org/10.1007/BF00114162


248 Y. Kaneko and M. Kudo

12. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

13. Tax, D., Duin, R.: Growing a multi-class classifier with a reject option. Pattern
Recogn. Lett. 29(10), 1565–1570 (2008)

14. Virtanen, P., Gommers, R., et al.: SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020)


	SVM Based EVM for Open Space Problems
	1 Introduction
	2 Related Work
	2.1 Algorithm for Open Space Recognition
	2.2 EVT Based Algorithm

	3 SVM Based EVM
	3.1 Algorithm of SVM-EVM
	3.2 An Achievement of SVM-EVM
	3.3 Solving Three Problems

	4 Experiments
	4.1 Experimental Procedure
	4.2 Result

	5 Discussion
	6 Conclusion
	References




