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Abstract. A robust fault diagnosis strategy in mechanical systems
based on the use of Pythagorean fuzzy sets is presented. A variant of
the FCM algorithm called Pythagorean Fuzzy C-Means (PyFCM) is
obtained modifying the original FCM algorithm by using Pythagorean
fuzzy sets. Furthermore, with the aim to obtain greater separability
among classes, and reduce classification errors a kernel version of PyFCM
(KPyFCM) is obtained. The proposed strategy is applied to the Devel-
opment and Application of Methods for Actuator Diagnosis in Industrial
Control Systems (DAMADICS) benchmark. A comparative analysis with
other algorithms that use standard and non-standard membership grades
is made. The satisfactory results obtained by the proposal indicates its
feasibility.
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1 Introduction

In modern industries is a requirement to obtain high level of efficiency, quality
of the products, industrial safety, and to accomplish with environmental regula-
tions. Faults in affect the productivity of the industrial plants, in several cases
compromises the safety of the operators and they can affect the environment [8].

Mechanical systems represent a fundamental part of the most industrial
plants and a significant number of faults in these plants are associated to this
type of systems. It is the main reason for which the scientific community dedi-
cate an special attention in the develop of fault diagnosis strategies to mechanical
systems [10,12,16,20].
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In general, fault diagnosis methods are classified in two large groups: those
based on models [3,5] and those based on historical data [4,9]. The strategies in
the first group are based on residuals obtained from the difference between the
measurable signals from the real process and the values obtained from a model
of the process. However, obtaining an adequate model for this aim in complex
processes is very difficult. In the case of the approaches based on historical data,
they do not need a mathematical model, and neither require much prior knowl-
edge of the process parameters [15]. This is an advantage in complex systems,
where relationships among variables are nonlinear, and not totally known.

Techniques based on fuzzy tools are increasingly being applied in several
scientific areas. Some examples are: image processing [14], control strategies [13],
classification [6], and condition monitoring applications [11].

A main aspect in the use of fuzzy sets is the provision of membership grades.
In order to enhance the capability of fuzzy sets for capturing and model user pro-
vided membership information, researchers have introduced non-standard second
order fuzzy sets such as intuitionistic [1] and interval type-2 fuzzy sets [7]. These
non-standard fuzzy sets allow the inclusion of imprecision and uncertainty in the
specification of membership grades.

In 2013, Prof. Ronald R. Yager introduced another class of non-standard
fuzzy subset named Pythagorean fuzzy subset [17]. In [18], it is shown that the
space of Pythagorean membership grades is greater than the space of intuition-
istic membership grades. This allows the use of the Pythagorean fuzzy sets in a
greater set of applications than the intuitionistic fuzzy sets.

The data obtained by the Supervisory Control and Data Acquisition
(SCADA) systems from complex industrial processes are frequently corrupted
by noise. This introduces uncertainties in the observations which seriously affect
the performance of the fault diagnosis systems by increasing the number of
false alarms (fault diagnosis system confuses the Normal Operation Condition
(NOC) with a fault), and by deteriorating the correct identification and location
of faults.

In order to overcome these problems, and to obtain a robust fault diagno-
sis strategy applied in mechanical systems, an approach based on the use of
Pythagorean membership grades is proposed which constitutes the main contri-
bution of this paper. In this sense, a new variant of the Intuitionistic Fuzzy C-
Means algorithm, called Pythagorean Fuzzy C-Mean algorithm (PyFCM), and
it’s kernel version (KPyFCM), which permits to achieve greater separability
among classes and reduce classification errors, are obtained.

The organization of the paper is the following: in Sect. 2, the general charac-
teristics of the tools used in the proposed methodology are presented. In Sect. 3,
a description of the classification methodology using fuzzy clustering techniques
is presented. In Sect. 4 the proposed methodology is evaluated with the Develop-
ment and Application of Methods for Actuator Diagnosis in Industrial Control
Systems (DAMADICS) benchmark. Next, an analysis of the results obtained and
a comparison with other computational tools is developed in Sect. 5. Finally, the
conclusions are presented.
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2 Materials and Methods

In this section are firstly presented the general characteristics of Intuitionistic
FCM (IFCM) algorithm. Next, the general characteristics of the Pythagorean
membership grades, the Pythagorean FCM algorithm (PyFCM), and its kernel
version (KPyFCM) are also presented.

2.1 Intuitionistic Fuzzy C-Means Algorithm

Intuitionistic fuzzy c-means clustering algorithm is based upon intuitionistic
fuzzy set theory given by Atanassov [1] where membership μ(x) and nonmember-
ship v(x) functions are considered. An intuitionistic fuzzy set A in X, is written
as:

A = {x, μA(x), vA(x) |x ∈ X } (1)

where μA(x) −→ [0, 1], vA(x) −→ [0, 1] are the membership and non-membership
degrees of an element in the set A with the condition: 0 ≤ μA(x) + vA(x) ≤ 1.
For all intuitionistic fuzzy sets, a hesitation degree πA(x) is also indicated [1].
It express the lack of knowledge in defining of whether x belongs to IFS or not
and it is given by:

πA(x) = 1 − μA(x) − vA(x); 0 ≤ πA(x) ≤ 1 (2)

Intuitionistic fuzzy c-means objective function contains two terms: (i) mod-
ified objective function of conventional FCM using Intuitionistic fuzzy set and
(ii) intuitionistic fuzzy entropy (IFE). IFCM minimizes the objective function 3:

JIFCM =
c∑

i=1

N∑

k=1

μ∗m
ik d2ik +

c∑

i=1

π∗
i e1−π∗

(3)

μ∗
ik = μm

ik + πik, where μ∗
ik denotes the intuitionistic fuzzy membership and

μik denotes the conventional fuzzy membership of the kth data in the ith class.
πik is the hesitation degree, which is defined as:

πik = 1 − μik − (1 − μα
ik)1/α, α > 0 (4)

and it is calculated from Yager’s intuitionistic fuzzy complement as

N(x) = (1 − xα)1/α , α > 0 (5)

thus, with the help of Yager’s intuitionistic fuzzy complement, intuitionistic fuzzy
set becomes:

A =
{

x, μA(x), (1 − μA(x)α)1/α |x ∈ X
}

(6)

and

π∗
i =

1
N

N∑

k=1

πik, k ∈ [1, N ] (7)



202 A. Rodŕıguez Ramos et al.

The second term in the objective function is called intuitionistic fuzzy entropy
(IFE) and it is the measure of fuzziness in a fuzzy set [19]. For intuitionistic
fuzzy cases, if μA(xi), vA(xi), πA(xi) are the membership, non-membership, and
hesitation degrees of the elements of the set X = x1, x2, ..., xn, then intuitionistic
fuzzy entropy, IFE that denotes the degree of intuitionism in fuzzy set, may be
given as:

IFE(A) =
n∑

i=1

πA(xi)e[1−πA(xi)] (8)

where πA(xi) = 1 − μA(xi) − vA(xi) IFE is introduced in the objective function
to maximize the good points in the class. The goal is to minimize the entropy.
Modified cluster centers are:

v∗
i =

∑n
k=1 μ∗

ikxk∑n
k=1 μ∗

ik

(9)

2.2 Pythagorean Fuzzy C-Means Algorithm (PyFCM)

A new class of nonstandard fuzzy sets called Pythagorean fuzzy sets (PFS) is
presented in [18]. The membership grades associated with these sets will be
named as Pythagorean membership grades.

For expressing the Pythagorean membership grades a pair of values r(x) and
d(x) for each x ∈ X are assigned. Both values will be called as the strength of
commitment at x in the case of r(x) ∈ [0, 1] and the direction of commitment
in the case of d(x) ∈ [0, 1]. The values r(x) and d(x) are associated with a pair
of membership grades AY (x) and AN (x). These memberships grades indicate
the support for membership of x in A and the support against membership of
x in A respectively. Next, it is shown that AY (x) and AN (x) are related using
the Pythagorean complement with respect to r(x). More specially, the values of
AY (x) and AN (x) are defined from r(x) and d(x) as

AY (x) = r(x)cos(θ(x)) (10)

AN (x) = r(x)sin(θ(x)) (11)

where

θ(x) = (1 − d(x))
π

2
(12)

and θ(x) ∈ [0, π
2 ] is expressed in radians.

In [18] is shown that AY (x) and AN (x) are Pythagorean complements with
respect to r(x) and that

A2
Y (x) + A2

N (x) = r2(x)(cos2(θ) + sin2(θ)) (13)

In a general form, a Pythagorean membership grade is represented by a
pair of values (a, b) such that a, b ∈ [0, 1] and a2 + b2 ≤ 1. In this case, a =
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AY (x), indicates the degree of support for membership of x in A and, b =
AN (x) indicates the degree of support against membership of x in A. Taking
into account the pair (a, b), the Eq. (13) can be expressed as a2 + b2 = r2. This
indicates that a Pythagorean membership grade is a point of a circle of radius r.

An intuitionistic membership grade presented in [1] is also a pair (a, b) that
satisfies a, b ∈ [0, 1] and a + b ≤ 1. In [18] was demonstrated that the set of
Pythagorean membership grades is greater than the set of intuitionistic mem-
bership grades. That result is clearly shown in Fig. 1 taken from [18]. Here, it
is possible to observe that intuitionistic membership grades are all points under
the line x + y ≤ 1 and the Pythagorean membership grades are all points with
x2 + y2 ≤ 1.

Fig. 1. Comparison of space of Pythagorean and intuitionistic membership grades.

Taking into account the theory of Pythagorean fuzzy sets, it can be said that
the objective function on the Pythagorean Fuzzy C-Means algorithm (PyFCM)
is similar to the one obtained for the IFCM algorithm according Eq. 3. In this
case, a hesitation degree, πA(x), is given by:

πA(x) = 1 − μ2
A(x) − v2

A(x); 0 ≤ πA(x) ≤ 1 (14)

Therefore, in Eq. 3, πik is defined as:

πik = 1 − u2
ik − (1 − uα

ik)2/α, α > 0 (15)

The most important implication of this result is the possibility of using the
Pythagorean fuzzy sets in a larger set of situations than intuitionistic fuzzy sets.
In the case of fault diagnosis, this result allows to improve the classification
process.

Pythagorean membership functions allow the use of a larger set of numeric
values and greater in absolute value than those allowed by institutionistic mem-
bership functions for assigning the membership degree to an observation. In the
classification process, the membership degree to a class is maximized. If there
is a larger number of values in the search space and these values are greater
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in absolute value than the institutionistic case, then, this allows to improve the
classification process due to a better separation of classes.

2.3 Pythagorean Fuzzy C-Means Algorithm Based on a Kernel
Approach

Kernel version of the PyFCM (KPyFCM) is obtained in order to achieve greater
separability among classes, and reduce the classification errors. KPyFCM mini-
mizes the objective function:

JKPyFCM =
c∑

i=1

N∑

k=1

μ∗m
ik ‖Φ(xk) − Φ(vi)‖2 +

c∑

i=1

π∗
i e1−π∗

(16)

where μ∗
ik = μm

ik + πik, πik hesitation degree, which is defined according to Eq.
(15) and π∗

i is defined as the Eq. (7).
Also, ‖Φ(xk) − Φ(vi)‖2 is the square of the distance between Φ(xk) and

Φ(vi). The distance in the feature space is calculated through the kernel in the
input space as follows:

‖Φ(xk) − Φ(vi)‖2 = K(xk,xk) − 2K(xk,vi) + K(vi,vi) (17)

One of kernel function more used in the scientific literature is the Gaussian
kernel because of it’s easy implementation and satisfactory results. If the Gaus-
sian kernel is used, then K(x,x) = 1 and ‖Φ(xk) − Φ(vi)‖2 = 2 (1 − K(xk,vi)).
Thus, Eq. (16) can be written as:

JKPyFCM = 2
c∑

i=1

N∑

k=1

μ∗m
ik ‖1 − K(xk,vi)‖2 +

c∑

i=1

π∗
i e1−π∗

(18)

where,
K(xk,vi) = e−‖xk−vi‖2/σ2

(19)

Minimizing Eq. (18) under the constraint
∑l

i=1 uik = 1, k = 1, 2, ..., N , yields:

μ∗
ik =

1
∑c

j=1

(
1−K(xk,vi)
1−K(xk,vj)

)1/(m−1)
(20)

vi =
∑N

k=1 (μ∗m
ik K(xk,vi)xk)

∑N
k=1 μ∗m

ik K(xk,vi)
(21)

KPyFCM algorithm is presented in Algorithm 1.
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Algorithm 1. Pythagorean Fuzzy C-Means algorithm based in a kernel app-
roach (KPyFCM)

Input: data, c, ε > 0, m > 1, σ, Itrmax (number of iterations)
Output: fuzzy partition U, class centers V
1. Initialize U to random fuzzy partition
2. t ← 1
3. repeat
4. Update the center of each class according to (21) for Gaussian kernels
5. Calculate the distances according to (17)
6. Update U according to (20).
7. t ← t + 1
8. until ‖Ut − Ut−1‖ < ε ∧ t ≥ Itrmax

9. return fuzzy partition U, class centers V

3 Description of the Proposal

The classification scheme proposed in this paper is shown in Fig. 2. It presents
an offline training stage and an online recognition stage. In the training stage,
the historical data of the process are used to train (modeling the functional
stages through the clusters) a fuzzy classifier. After the training, the classifier
is used online (recognition) in order to classify every new sample taken from
the process. In this stage, the observations obtained by the SCADA system
are classified one by one. In the classification process, the distance between
the received observation and each one of the class centers is calculated. Next,
the fuzzy membership degree of the observation to each one of the c classes is
obtained. The observation will be assigned to the class with highest membership
degree. The result intends to offer information about the system state in real-
time for the operator.

4 Benchmark Case Study: DAMADICS

In order to apply the proposed methodology to fault diagnosis in the mechanical
systems the DAMADICS benchmark was selected. This benchmark represents
an actuator [2] belonging to the class of intelligent electro-pneumatic devices
widespread in industrial environment. This actuator is considered as an assembly
of devices consisting of:

– Control valve
– Spring-and-diaphragm pneumatic servomotor
– Positioner

The general structure of this actuator is shown in Fig. 3
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Fig. 2. Classification scheme using
fuzzy clustering.

Fig. 3. Structure of benchmark actua-
tor system.

The control valve acts on the flow of the fluid passing through the pipeline
installation. A servomotor carries out a change in the position of the control valve
plug, by acting on fluid flow rate. A spring-and-diaphragm pneumatic servomotor
is a compressible fluid powered device in which the fluid acts upon the flexible
diaphragm, to provide linear motion of the servomotor stem. The positioner
is a device applied to eliminate the control-valve-stem miss-positions produced
by the external or internal sources such as: friction, clearance in mechanical
assemblies, supply pressure variations, hydrodynamic forces, among others. The
set of measurements of 6 process variables were stored with a sample time of
1 s. For each one of the six process states (Normal operation and the five faults)
300 observations were stored for a total of 1800 observations. To this data set
were added 300 new observations evenly distributed among the classes in order
to represent the possible outliers for each class. Furthermore, white noise was
added in the simulation to the measurement and process variables in order to
simulate the variability present in real world processes. A description of the
simulated faults and the measured process variables is shown in Table 1.

Table 1. Faults simulated and measured process variables in DAMADICS

Faults simulated in the DAMADICS Measured process variables

Fault Description Description

1 Valve clogging Process control external signal

7 Critical Flow Inlet liquid pressure

12 Electro-pneumatic transducer fault Oulet liquid pressure

15 Positioner spring fault Stem displacement

19 Flow rate sensor fault Liquid flow rate

Process value

5 Analysis of Results

Table 2 shows the confusion matrix for experimental dataset where F1: Fault 1,
F7: Fault 7, F12: Fault 12, F15: Fault 15 and F19: Fault 19. The main diagonal
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is associated with the number of observations successfully classified. Since the
total number of observations per class is known, the accuracy (TA) can also be
computed. The last row shows the average (AVE) of TA.

Table 2. CM for the DAMADICS process (F1: 300, F7: 300, F12: 300, F15: 300, F19:
300).

FCM KFCM

F1 F7 F12 F15 F19 TA (%) F1 F7 F12 F15 F19 TA (%)

F1 182 23 20 14 61 60.67 F1 230 12 9 2 47 76.67

F7 21 211 26 24 18 70.33 F7 9 265 12 11 3 88.33

F12 28 41 191 22 18 63.67 F12 10 13 260 9 8 86.67

F15 67 61 11 149 12 49.67 F15 46 44 8 192 10 64.00

F19 30 35 20 16 199 66.33 F19 14 17 7 8 254 84.67

AVE 62.13 AVE 80.07

IFCM KIFCM

F1 F7 F12 F15 F19 TA (%) F1 F7 F12 F15 F19 TA (%)

F1 208 19 15 4 54 69.33 F1 263 7 3 1 26 87.67

F7 14 239 18 23 6 79.67 F7 10 276 8 6 0 92.00

F12 18 24 221 21 16 73.67 F12 9 10 269 7 5 89.67

F15 51 48 14 166 21 55.33 F15 33 30 11 210 16 70.00

F19 24 28 13 10 225 75.00 F19 12 15 4 4 265 88.33

AVE 70.60 AVE 85.53

PyFCM KPyFCM

F1 F7 F12 F15 F19 TA (%) F1 F7 F12 F15 F19 TA (%)

F1 215 16 13 6 50 71.67 F1 270 5 2 1 22 90.00

F7 11 253 15 16 5 84.33 F7 5 289 4 2 0 96.33

F12 17 22 244 11 6 81.33 F12 6 8 281 4 1 93.67

F15 50 47 9 180 14 60.00 F15 23 17 7 244 9 81.33

F19 18 23 9 11 239 79.67 F19 10 12 0 1 277 92.33

AVE 75.40 AVE 90.73

As several algorithms are presented, it is necessary to analyze if there are
significant differences among the results of them. To achieve this, it is necessary
to apply statistical tests.

5.1 Statistical Tests

In our case, for six experiments (k = 6) and 10 datasets (N = 10), the value of
statistical Friedman FF = 340 was obtained. With k = 6 and N = 10, FF is
distributed according to the F distribution with 6−1 = 5 and (6−1)×(10−1) =
45 degrees of freedom. The critical value of F (5,45) for α = 0.05 is 2.4221, so
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the null-hypothesis is rejected (F (5,45) < FF ) which means that at least the
average performance of at least one algorithm is significantly different from the
average value of the performance of other algorithms and the Wilcoxon test is
applied to determine it.

Table 3 shows the results of the comparison in pairs of the algorithms (1:
FCM, 2: IFCM, 3: PyFCM, 4: KFCM, 5: KIFCM, 6: KPyFCM) using the
Wilcoxon test. The first two rows contain the values of the sum of the posi-
tive (R+) and negative (R−) rank for each comparison established. The next
two rows show the statistical values T and the critical value of T for a level of
significance α = 0.05. The last row indicates which algorithm was the winner in
each comparison.

Table 3. Results of the Wilcoxon test

1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6 2 vs 3 2 vs 4 2 vs 5 2 vs 6 3 vs 4 3 vs 5 3 vs 6 4 vs 5 4 vs 6 5 vs 6
∑

R+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∑

R− 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

T 0 0 0 0 0 0 l0 0 0 0 0 0 0 0 0

Tα=0.05 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Winner 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

As can be seen, among the FCM, IFCM and PyFCM algorithms, the PyFCM
algorithm obtains the better results. In the analysis with the Kernel algorithms,
the KPyFCM algorithm obtains the better results. Taking into account all algo-
rithms, it is shown that the KPyFCM algorithm obtains the best results.

6 Conclusions

The main contribution of this work is the development of a robust scheme for
condition monitoring in industrial systems by using Pythagorean membership
grades. The fundamental motivation for this proposal is based on the fact that
the space of Pythagorean membership grades is greater than the space of the
standard and intuitionistic membership grades. This allows for a better assigna-
tion of the membership grade to the observations obtained from complex indus-
trial processes that are corrupted by noise which introduce high uncertainties,
and this seriously affects the performance of the condition monitoring systems.

In the proposal, the FCM algorithm is modified by using Pythagorean fuzzy
sets, and a new variant of that algorithm called Pythagorean Fuzzy C-Mean
(PyFCM) algorithm is obtained. In addition, a kernel version of the PFCM
algorithm (KPyFCM) is obtained in order to achieve greater separability among
the classes, for reducing the classification errors. The approach proposed was
validated using synthetic datasets and the DAMADICS process benchmark. The
promising results obtained indicate the feasibility of the proposal.



A Robust Fault Diagnosis Strategy by Using Pythagorean Fuzzy Sets 209

References

1. Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29127-2

2. Bartys, M., Patton, R., Syfert, M., de las Heras, S., Quevedo, J.: Introduction to
the DAMADICS actuator FDI benchmark study. Control Eng. Pract. 14, 577–596
(2006)
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