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Abstract. This study proposes the use of neural networks, specificallyNARXnet-
works, in the modeling of non-linear chemical systems with the use of the control
field systems identification methodology. The chemical reactor of the Tennessee
Eastman, responsible for the greater non-linearities of the plant, is studied. First, a
simple decentralized control scheme is proposed for the stabilization of the plant,
an identification experiment is designed, and two sub-models are trained for the
level and pressure of the reactor, obtaining satisfactory results.
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1 Introduction

In recent years, great attention has been paid to the modeling and identification of non-
linear systems, because all real processes present non-linearities to some degree. The
classical approach to this problem for years was to obtain linear models that were quite
representative of the systems to be modeled, but there are cases in which non-linearities
can cause significant errors in the identification problem. For this reason, severalmachine
learning techniques and especially neural networks have been an important tool in recent
years for the modeling of non-linear systems. In this work, the case of study is the
Tennessee Eastman (TE) plant. This plant has been the object of study for 27 years and
numerous investigations of various kinds have been developed on it. In [3] linear ARX,
impulse response and state space models such as N4SID and CVA were identified, the
latter being the best results. In [4]models of the plant reactor based on different structures
of artificial neural networks trained by regression and the Levenberg-Marquardt (LM)
algorithm were identified to compare their effectiveness when used in Model-based
PredictiveControllers (MPC). In [5] state spacemodels such asMOESP,N4SIDandORT
were identified and compared. In [6] Genetic Programming was used to obtain a model
of the plant reactor. In [7] a gray model of ET was obtained by modeling some variables
by basic principles and others by identifying HAMMERSTEIN-WIENER models. In
[8] a model based on a multilayer perceptron-type neural network was identified using
the Swarm of Birds algorithm. In [9] a model based on neural networks trained with
bio-inspired algorithms such as the Bat Algorithm, Firefly Algorithm, and Bee Colony
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Algorithm was identified. In [10] a Digital Twin of the complete plant is obtained for
monitoring and control. In [2, 11] and [12] decentralized control strategies are developed
to stabilize and control the entire plant. In [13] a model of the reactor-separator of the
plant is developed in the object-oriented modeling language Modelica.

Although in [4, 8] and [9] goodmodels based on neural networks are obtained for the
reactor of the TE plant, there is a lack of clarity in the obtaining process. For example,
there is no explanation about the selection of input and output variables, and some that
contribute to the dynamics of the system are ignored, such as reactant flows. According
to [1] the TE plant is open-loop unstable, which is why an experiment cannot be carried
out without its prior stabilization. This topic will be better explained in the next section,
but it represents an important step in the identification process. In [4, 8] and [9] the
authors are able to obtain a large data set, without giving an explanation of the topic,
which leads to a lack of clarity in the assumptions, such as the operating conditions
of the plant, this analysis is very important, because they are the conditions in which
the obtained models will be valid for use. In addition, questions about the design of
the experiment such as the type of signals used or their parameters are not specified,
it is not taken into account whether the data sufficiently reflect the transient and stable
dynamics of the plant. No explanation is offered on the selected neural network structure
and regarding the validation of the obtained models, according to [15], it is necessary to
perform a residual analysis, in addition to the fit indices such as the MSE and others. In
the field of modeling and systems identification, the quantitative validity given by the
adjustment of the obtained models is as important as the qualitative validity reflected in
the preparation and rigor of the obtaining method. For these reasons, the objective of
this work is to obtain models based on neural networks in a case study process, the TE
plant, using the systems identification methodology to detail the process and guarantee
the validity of the models.

2 TE Process

The Tennessee Eastman plant, was published in [1] as a simulation process for academic
research. The TE process is a highly non-linear chemical process, created by a real
system, with slight changes made to protect the identity of reactants and products, and
features up to 6 modes of operation. This system is a reference problem for the process
control community, providing a realistic simulation of a chemical industrial process
of interest for analysis, control, monitoring and identification of systems. The process
shown in Fig. 1 consists mainly of five operating units: a two-phase reactor, a condenser,
a recycle compressor, a vapor-liquid separator, and a distillation column. The process
has eight components, including four gaseous reactants (A, C, D, and E), two liquid
products (G and H), an inert component (B), and a byproduct (F). As explained in [1] all
reactions are irreversible and exothermic. Reaction rates are a function of temperature
through the Arrhenius expression. Furthermore, the reactions are approximately first
order with respect to reagent concentrations. The gaseous reactants feed into the reactor,
where they react to form the two products. Gas phase reactions are catalyzed by a non-
volatile catalyst dissolved in the liquid phase. The reactor has an internal cooling system
to remove the heat of the reaction. The products leave the reactor as vapor along with the
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reactants that did not react while the catalyst remains in the reactor. The product stream
from the reactor passes through a condenser and from there to a vapor-liquid separator.
The non-condensed components are recycled through a centrifugal compressor to the
reactor feed. The condensed components are moved towards a distillation column to
remove the reagent residues, distilling them together with the reagent C feed. Products
G and H exit the column towards a refining section that is not part of the process.
Byproduct F is primarily purged from the system as steam in the separator. The complete
plant has 12 manipulated variables, and 41 measured, continuous and discrete variables.
All measurements have noise added to simulate the behavior of real sensors.

Fig. 1. Flow diagram of the Tennessee Eastman plant.

For this work, only a model of the plant’s two-phase reactor will be identified, which
is the sub-process responsible for the highest non-linearities of the process. In order
to generate an input-output data set to identify a process model, it is first necessary to
stabilize the plant, since it is open-loop unstable and has restrictions that when violated,
the process stops immediately. The control strategy must prevent these restrictions from
being violated while the plant is disturbed by excitation at the inputs. This model can
then be used as the basis for a Model-based Predictive Controller, which would act at
the supervisory level. However, to preserve as much process dynamics as possible, the
number of controllers added to the plant should be kept to a minimum and the controllers
are used solely to prevent the plant from violating its limitations. The control strategy is
the one proposed in [5], which is a simplification of “Stage 1” and “Stage 2” proposed in
[11] and [12]. As a result of the stabilization process, not all the manipulated variables
mentioned in [1] are accessible. On the other hand, the controller references constitute
additional manipulated variables of the stable process.
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The measured variables that represent the outputs of the model are shown in Table 1,
it should be clarified that the reactor temperature was not considered as a model output
becausewith the implemented control strategy it becomes the variablemanipulatedby the
pressure controller, in addition, as long as the pressure restriction is met, the temperature
restriction is also met. The manipulated variables that will be considered as the inputs of
the system for identification and their stable values for Mode 1 of operation of the plant
are represented in Table 2. The flow of reactant E is not taken into account because it is
the variable manipulated by the level controller. In addition to the manipulated variables,
there is a measured variable that influences the behavior of the model outputs, the feed
flow to the reactor, which is composed of the flow of A, D, E and the recycling flow of the
plant, this variable will also be included in the model inputs as a measurable disturbance.

Table 1. Model outputs.

Variable name Mode 1 value Units Identifier

Reactor pressure 2705.0 kPa y1

Reactor level 75.0 % y2

Table 2. Model inputs.

Variable name Mode 1 value Units Identifier

D feed flow 24.644 % u1

A feed flow 63.053 % u2

Reactor feed flow 42.239 kscmh u3

Setpoint reactor pressure 2705.0 kPa u4

Setpoint reactor level 75.0 % u5

3 Methodology

Obtaining the model will be based on the systems identification methodology shown in
Fig. 2.

3.1 Experiment Design

In order to carry out the experiment for identification, it is necessary to know the excita-
tion limits of the inputs, as well as the time constants of the system. To do this, a simple
experiment is carried out, in which one input is varied at a time with a positive and a
negative step, each with a duration of 5 h. In order not to violate the plant’s restrictions,
the inputs will be varied to ±10% of their value in Mode 1, except for the pressure
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Fig. 2. System identification methodology.

reference in the reactor, which is the most critical, this will be varied by ±100 kPa.
Figure 3 shows the response of the system outputs to a stimulus in the D and A flows,
and in the pressure and level references. The experiment illustrates the variety in terms
of time constants of the system. It is concluded that a pulse width of 5 h is sufficient to
capture the transient and stable dynamics of the system and that, for the chosen varia-
tions in the inputs, the outputs are far from violating any restriction. There is a risk that
by stimulating all the inputs at the same time the variations in the outputs will be much
larger, for this reason values relatively close to the operating point were chosen. It is
very difficult to incorporate knowledge into a neural network, therefore, the quality of
the network is dependent on the data used to train it. The training data must cover the
entire range of inputs for which the network will be used, because neural networks, like
other nonlinear black box models, do not extrapolate well. To comply with the above,
the data for identification were generated by stimulating the manipulated variables with
‘skyline’ functions, with the maximum variations mentioned above and pulse width of
5 h.

3.2 Data Collection and Pretreatment

Themain objective of data pre-treatment is to facilitate network training. The TE process
has incorporated in its programming a random noise additive to all measurable variables,
therefore, it is necessary to filter the signals to eliminate this noise. In this work, the data
were filtered by a second-order Butterworth low-pass filter with a cut-off frequency of
10 rad/s to eliminate noise from high frequencies. A standard practice in data pretreat-
ment to train neural networks is data normalization. As the inputs of the process differ
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Fig. 3. Output response for a stimulus of + -10% in the flow of D and A and level reference, +
-100 kPa in the pressure reference.

in magnitude, there is an undesired effect on the weights of the network, which try to
compensate for the magnitude of the input so as not to saturate activation functions.
A 500-h experiment was performed. The data obtained were filtered and normalized,
remaining as shown in Fig. 4 and Fig. 5.

3.3 Selection of the Type and Structure of the Model

There is a great variety of neural network structures, each with the objective of solving
a specific problem, as explain in chapter 6 of [14]. It is a great task to study in depth
the characteristics, advantages and disadvantages of each structure in each situation.
According toChapter 14of [15] neural networks canbe classified into static anddynamic.
Static are networks in which the output is calculated directly from the inputs through
direct connections. In dynamic networks, the output depends not only on the current input
of the network, but also on the previous inputs, outputs or states of the network. Dynamic
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Fig. 4. Pretreated input data for the four manipulated variables and the measurable disturbance.
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Fig. 5. Pretreated output data of the two measured variables.

networks are networks that contain ‘delays’, or integrators in the case of continuous
inputs, and operate with an input sequence. These dynamic networks can have only
direct connections, or they can also have feedback connections, the latter type are known
as recurrent neural networks. As dynamic networks have ‘memory’ they can be trained
to learn patterns that vary over time, that is, they can approximate dynamic systems.
This type of problem in the machine learning branch of study is known as time series
analysis, which, taken to the field of control theory, is the systems identification. There
is a great variety of architectures for recurrent neural networks, depending on their direct
and feedback connections, the number of internal layers, etc. Among them the Hopfield
network explained in Chapter 21 of [15], the fully connected recurring networks, the
short and long-term memory network widely used in the field of speech recognition,
the Elman network, used in [16] to model an internal combustion engine, the nonlinear
autoregressive network with external inputs NARX, which is explained in chapter 27
of [15] and in [17] used to identify the model of a distillation column. The NARXs
are recurrent neural networks with delays in the input connections and in the feedback
connections of the output, therefore, they have a structure that facilitates learning the
behavior of dynamic systems. In this work, two NARXs will be used to model the
pressure and level of the reactor. Both with the same parameters of 10 neurons in the
input layer and 20 delays for both the inputs and the feedback output, with sigmoid
activation function for the inner layer and linear for the output layer. The parameters
were obtained after performing several iterations of the methodology in Fig. 2 until
satisfactory results were obtained. In [4, 8] and [9] recurrent networks are used where
only the last output is fed back. The structure selected in this work is superior because
dynamic systems depend on both past outputs and past inputs, and by using several
delays in both, better performance is expected in the time series analysis problem.
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3.4 Estimation of Parameters, Application of Algorithms

The networks were trained with the Levenberg-Marquardt algorithm using the Neural
Networks ToolBox of the MATLAB version R2015a software. To train each network, a
200-h fragment of the data set obtained and pretreated was chosen. Each network was
trained a total of 5 times to avoid the local optimum problem and training was stopped
when the performance of the network calculated by the least squared error stopped
improving significantly.

3.5 Validation

For model identification or prediction problems, it is convenient to perform an analysis
of prediction residuals or errors. The residues cannot be related to each other, nor to the
sequence of the entries. For this, the autocorrelation function and the cross-correlation
function are used. Figure 6 shows the autocorrelation graphs of the residuals for the
two networks and in Fig. 7 the cross-correlation of the residuals with the inputs. For
the residuals to be unrelated, the autocorrelation function must give an impulse at the
instant Ƭ = 0 and the rest of the values be within the confidence interval denoted by
the dashed lines, in Fig. 6 it is observed that this is not fulfilled at all, although it is an
acceptable result for this type of problem. For the cross correlation, the residuals must
be within the confidence interval at all times. Figure 7 shows that this is true for the
two networks. In order to validate whether a black box model is representative of the
system that was identified, it is vital to perform a cross-validation, that is, to analyze the
behavior of the model in the face of a different data set than the one used for training.
Figure 8 and Fig. 9 show the behavior of the two networks for 100 h of data, different
from those used during training. Table 3 shows the calculation of the percentage of fit
(FIT) and the mean square error (MSE) of the models and their analogues with the best
results in [8] and [9], the BSA and the ANN-BA respectively. As can be seen, the models
obtained in thiswork have competitive results, despite the global optimization techniques
used for training the networks in [8] and [9]. This is mainly due to the work carried out
throughout the identification process, from the selection of the input variables, the design
of the experiment and the selection of a better neural network structure.

Fig. 6. Autocorrelation of the residuals. a) Reactor pressure, b) Reactor level.
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Fig. 7. Cross correlation of the residuals and the inputs. a) Reactor pressure, b) Reactor level.

Fig. 8. Response of the reactor pressure network for the validation data.

Fig. 9. Response of the reactor level network for the validation data.
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Table 3. Validation indices calculated for the models.

Variable
name

Reactor
pressure

Reactor
level

Reactor
pressure
[8]

Reactor
level [8]

Reactor
pressure [9]

Reactor level
[9]

FIT 96.77% 91.32% – – 84.668% 90.167%

MSE 2.3005*10–4 1.1*10–3 0.0411 0.4321 9.37*10–2 1.29*10–2

4 Conclusions and Future Work

In the present investigation, a model based on NARX-type neural networks was obtained
for the chemical reactor of the Tennessee Eastman plant using the systems identification
methodology, the main objective of the work. Specifically, a decentralized control was
implemented to stabilize the plant, an identification experiment was carried out to obtain
the data with which two recurrent neural networks of the NARX type were trained to
model the level and pressure in the reactor. The models obtained present good results.
This work shows that rigor and preparation in the system identification process not
only gives qualitative validity to the resulting models, but also directly influences their
performance. This paper will serve as the basis, for the authors, in future studies on the
main problems when using neural networks as models of dynamic systems: the lack of
generalization, localminimums in the training process and the lack of tools to incorporate
the physical knowledge of the system in the models.
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