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Abstract

Continuous progress in metabolic engineering of microbial cell factories like
yeast requires the support of computational tools for finding novel unintuitive
biotransformations routes. In this chapter, a succinct overview is provided of the
most relevant computational tools for pathway prediction by retro-biosynthesis,
and pathway design through stoichiometry-based optimization methods. Illus-
trative case studies are also presented showcasing different strategies for
pathway optimization in yeast, namely redox cofactor balancing, improved pre-
cursor supply, and heterologous expression of carbon fixation pathways. Finally,
challenges and limitations hindering the broad adoption and implementation of
these tools for metabolic engineering will be discussed.
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1 Introduction

Advancements in metabolic engineering and synthetic biology have enabled accel-
erated engineering of microbial factories for the production of valuable chemicals
(Smolke and Tyo 2012; Lee and Kim 2015; Isaacs et al. 2011), realizing the
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promise of a more sustainable (bio)economy (Voigt 2020). To keep pace with
these expectations, pathway prediction and design play a crucial role in finding
novel pathways for various applications like drug discovery (Galanie et al. 2015;
Moura et al. 2016; Hafner et al. 2021) and value-added biochemical production
(Yim et al. 2011; Tokic et al. 2018; Henry et al. 2010a, b). In this scenario,
metabolic workhorses like yeast could be greatly benefited by broadening their
product spectrum and improving their metabolic capabilities and performance in
terms of their yields, titers, and productivities (Nielsen and Keasling 2016; Ko
et al. 2020). For this task, progress in computational tools and methods capable of
guiding experimental efforts is crucial for the optimization of cellular metabolism
and incorporation of synthetic designs for the production of unnatural heterologous
compounds.

In this chapter, an overview of the most relevant retro-biosynthesis and pathway
optimization methods is provided with a focus on tools with direct application in
metabolic engineering tasks. Starting with the reconstruction of a comprehensive
reaction network from public databases and resources, both retro-biosynthesis tools
for de novo pathway prediction and stoichiometry-based pathway optimization
methods for metabolic redesign are described. Particularly in the latter case, conve-
nient engineering objectives taking into consideration product yield, cofactor use,
thermodynamic plausibility, and enzyme cost are discussed. Additionally, several
relevant pathway engineering case studies in yeast are also presented, highlighting
the improvement potential from the implementation of rational pathway designs.
Finally, perspectives on the increasing adoption of these tools for metabolic
engineering as well as limitations reducing their effectiveness are discussed.

2 In Silico Pathway Prediction and Design

Retro-biosynthesis and stoichiometry-based optimization methods have been
established for pathway design and prediction, differing mostly in their scope and
methodology. While both tools generate metabolic pathways producing the tar-
get metabolite, they do so by applying fundamentally different reaction network
representations (i.e., graph or stoichiometric matrix) and search algorithms (i.e.,
optimization-based enumeration or retro-synthetic search) (the reader is referred to
Wang et al. (2017) for a comprehensive review). Furthermore, their computational
complexity and efficacy can vary significantly depending on the product of inter-
est, and thus, careful selection of the appropriate tool for the case at hand is a must
(Saa et al. 2019). In the following, the most relevant data- and knowledge-bases for
reconstructing and parameterizing reaction networks are presented, which consti-
tute the starting point for the application of any of these tools (Fig. 1a). Then, the
most relevant retro-biosynthesis (Fig. 1b) and stoichiometry-based optimization
methods for pathway prediction and design (Fig. 1c) are described.
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Fig. 1 Workflow for reaction network reconstruction and application of metabolic pathway pre-
diction and design tools. a Assembly of accumulated metabolic reaction data into a comprehensive
reaction network is a requirement for the application of the reviewed tools. Depending on the
application objective, different network representations are employed for either predicting de novo
pathways (i.e., retrosynthesis typically using a graph representation), or (re)designing pathways
for higher metabolic performance (i.e., optimization-based pathway design using an stoichiometric
representation). b Retro-biosynthetic tools explore a substrate graph seeking to connect the target
molecule with some predefined precursors. Starting with the target molecule and moving back-
wards, these tools can generate several possible pathways that are typically ranked using different
criteria (e.g., length, enzyme availability, thermodynamics, among others). c Stoichiometry-based
pathway prediction methods employ a reaction network with known and fixed reactions to enu-
merate mass-balanced pathways that optimize a desired objective such as product yield, pathway
length, thermodynamic favorability, and enzyme cost. In this case, different types of constraints
can be defined to restrict the feasible solution space and narrow the search upfront

2.1 Data- and Knowledge-Bases for Metabolic Reaction
Network Reconstruction

Databases for pathway search are an absolute requirement for exploring the fea-
sible reaction space, as they contain the critical information of how metabolites
are connected to others through biochemical reactions. There are numerous pub-
lic data- and knowledge-bases populated with metabolic reaction data. Among
the most popular, KEGG (Kanehisa et al. 2016), MetaCyc (Caspi et al. 2016),
BIGG (King et al. 2016), KBase (Arkin et al. 2018), ModelSEED (Henry et al.
2010a, b), MetRxn (Kumar et al. 2012), and MetaNetX (Ganter et al. 2013; Moretti
et al. 2021) stand out to name a few (for a more details refer to Wang et al.
(2017)). Some of these databases (KEGG, MetaCyc, and Kbase) integrate multi-
ple sources of biological information, e.g., genetic, molecular, physicochemical,
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and experimental, which makes them not only useful for metabolic pathway pre-
diction purposes but also data integration (Lewis et al. 2012). The rest of the
databases are mostly devoted to metabolic network reconstruction, offering either
highly curated reconstructions for specific organisms (e.g., BIGG) or broader albeit
possibly less curated biochemical reaction networks (e.g., MetRxn, ModelSEED,
and MetaNetX). Ultimately, the modeling purpose will dictate the most convenient
source of information considering their specific scope, breadth, and informa-
tion quality. Complementary databases like BRENDA (Jeske et al. 2019) (kinetic
information) and eQuilibrator (Flamholz et al. 2012) (thermodynamic informa-
tion) also constitute valuable resources for parameterizing different optimization
formulations.

The aforementioned databases contain information for known reactions, which
may restrict the pathway search considering the current enzymatic knowledge
gaps. Resources like the ATLAS of Biochemistry (Hadadi et al. 2016) (derived
from the BNICE tool (Hatzimanikatis et al. 2005)) and MINE (Jeffryes et al.
2015) offer larger networks including hypothetical reactions and metabolites that
can expand the reachable chemical space and allow higher complexity. Briefly,
these resources exploit user-defined reaction rules that can act on chemically sim-
ilar compounds, thereby yielding new hypothetical reactions. The latter reactions
have recently been shown to enable filling some of the gaps in current enzyme-
reaction associations (Hadadi et al. 2019). Lastly, another significant and recent
tool for proposing hypothetical reactions that has been employed for pathway
prediction is rePrime used by the novoStoic tool (Kumar et al. 2018) (see sub-
section 2.3 for more details). The former method extracts reaction rules from
molecular signatures found in annotated reactions—defined by the presence of a
set of chemical ‘moieties’—for proposing hypothetical enzymatic transformations
with a high structural encoding fidelity. Unfortunately, this tool currently lacks an
associated open database for its use.

2.2 Pathway Prediction Using Retro-Biosynthesis Tools

Firstly, a distinction is made between retro-biosynthesis and classical retro-
synthesis, as the latter is focused on the design of chemical reaction pathways,
typically without relying on enzyme catalysis (Lin et al. 2019). Retro-biosynthesis
tools seek to identify de novo biosynthetic pathways for the production of valuable
compounds from inexpensive precursors using known and hypothetical enzyme
activities (Wang et al. 2017; Lin et al. 2019). Another—though less explored—
application of these tools involves the opposite, that is, the prediction of novel
enzymatic routes for the degradation of recalcitrant compounds, e.g., for biore-
mediation purposes (Finley et al. 2009, 2010; Ellis et al. 2006). For pathway
prediction, retro-biosynthesis tools explore the full chemical space for synthetic
pathways toward the target compound. For this task, these tools typically represent
the network as a (substrate) graph that can be readily traversed using known enu-
meration algorithms. Graph traversal is possible by connecting the substrates using
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various criteria based on structural (chemical) similarity, reaction promiscuity, and
defined reaction rules. In the following, a relevant subset of retro-biosynthesis tools
employed for metabolic engineering/synthetic biology applications is described
(Table 1).

One of the most established tools for de novo pathway retro-biosynthesis is
BNICE (Hatzimanikatis et al. 2005). This framework employs predefined ‘general-
ized enzymatic reaction rules’ (encoded in a bond-electron matrix) that are applied
to precursor molecules on their reactive sites to yield new product molecules.
BNICE uses a substrate graph representation of the chemical network, which can
be traversed using graph search algorithms starting from the target compound and
moving backwards until connecting with one of the defined precursors. Different
pruning criteria are employed to keep the search breadth computationally tractable.

Table 1 Retro-biosynthesis tools for metabolic pathway prediction

Tool Database Pathway scoring Applications and references Source

BNICE KEGG,
ATLAS

Pruning criteria
assessment
(thermodynamics,
pathway length, etc.)

In silico identification of
novel pathways and enzyme
candidates validated
experimentally for the
production of
(S)-tetrahydropalmatine
derived from intermediates
of the known
benzylisoquinoline alkaloid
biosynthetic pathway
(Hafner et al. 2021)
In silico evaluation of
putative feasible
biodegradation pathways for
1,2,4-trichlorobenzene
(Finley et al. 2010)
Enzyme annotation for
orphan and novel reactions
from KEGG (Hadadi et al.
2019)
Discovery of novel
metabolic pathways for the
biosynthesis of
3-hydroxypropanoate
(Henry et al. 2010a)

https://
lcsb-databa
ses.epfl.ch/
pathways/
GraphList

PathPred KEGG,
RPAIR

Compound similarity
and pathway scores

Prediction of putative
biodegradation pathways for
xenobiotics (e.g.,
1,2,3,4-tetrachlorobenzene)
as well as biosynthetic
pathways for plants
secondary metabolites (e.g.,
gentiodelphin)

https://
www.gen
ome.jp/
tools/pat
hpred/

(continued)

https://lcsb-databases.epfl.ch/pathways/GraphList
https://www.genome.jp/tools/pathpred/
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Table 1 (continued)

Tool Database Pathway scoring Applications and references Source

SimPheny
(BioPathway
Predictor)

BiGG Pathway length,
thermodynamics,
product yield,
number of known
metabolites/enzymes

In silico prediction and
subsequent experimental
validation of an
unprecedented synthetic
pathway for 1,4-butanediol
production in E. coli (Yim
et al. 2011)

-

RetroPath MetaCyc,
BioCyc

Pathway
thermodynamics,
sequence similarity,
pathway length,
number of putative
enzyme steps, and
product yield

Prediction of
successfully-implemented
biosynthetic pathways for
146 compounds in metabolic
engineering projects. 81% of
the compounds were
predicted with at least one
pathway (Delépine et al.
2018)

https://
www.mye
xperiment.
org/workfl
ows/4987.
html

At the end of the algorithm, pathways are ranked by features such as pathway
length, thermodynamics, among others. Methodologically close to BNICE, Path-
Pred (Moriya et al. 2010) uses instead RDM patterns consisting of reaction center
atoms (R), atoms of different regions (D), and atoms of the matched region (M) for
exploring the substrate graph. Pruning of the network is executed using structural
similarity criteria, and pathway ranking is performed using compound similar-
ity and pathway scores. SimPheny (Yim et al. 2011; Schilling et al. 2005) uses
reactions rules from the third Enzyme Commission (EC) number level for gen-
erating reaction rules that enable reaction promiscuity for broader explorations.
In this case, a retro-synthetic search is employed for enumerating feasible routes
that produced intermediates of reasonable size (i.e., below a predefined size), and
later they are ranked based on various criteria. Another retro-biosynthesis tool
with recent important applications is RetroPath (Delépine et al. 2018). This tool
uses a retro-synthetic search, albeit combined with MILP formulations for the
application of various ranking criteria, such as thermodynamics, gene prediction,
pathway length, number of putative steps, and product yield. In contrast to BNICE,
RetroPath maintains a stoichiometric representation of the network (as opposed to
a substrate graph) that enables computation of various scores. Moreover, molecular
signatures are used to generate reaction rules based on a substructure of adja-
cent atoms, enabling the generation of substantially more and flexible reaction
rules (Duigou et al. 2018). A recent implementation of reinforcement learning in
RetroPath (RetroPath RL) has yielded promising results in the retro-biosynthetic
prediction of biologically relevant pathways (Koch et al. 2020).

https://www.myexperiment.org/workflows/4987.html
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2.3 Stoichiometry-Based Optimization Methods for Pathway
(Re)design

Given a universal metabolic reaction network, the ‘pathway design’ problem
seeks to identify ‘optimal’ route(s) for the production of the target compound.
As opposed to the retro-biosynthesis problem, possible connecting reactions are
fixed and known upfront. Construction of the reaction network knowledge base
is achieved by combining metabolic data from curated databases and/or from
databases that also include putative reactions derived, for example, from gener-
alized reaction rules (Hadadi et al. 2016; Hatzimanikatis et al. 2005; Jeffryes et al.
2015) or molecular signatures (Kumar et al. 2018). Regardless of the source of
the data, reaction data must be charge- and mass-balanced to yield correct results,
which typically is ensured in a manual curation step. Metabolite/reaction name
inconsistencies are also an important source of issues that affect network con-
nectivity and consistency, which often have to be resolved manually. While there
have been attempts to standardize reaction and metabolite identifiers (King et al.
2016; Kumar et al. 2012; Alcántara et al. 2012), name reconciliation is challeng-
ing due to the incessant annotation of new metabolites and enzymatic activities,
albeit important progress has been made in recent database versions (Moretti et al.
2021).

Once the reaction network has been assembled and mathematically formulated
into a stoichiometric matrix, prediction of different pathway designs can be read-
ily computed using optimization-based methods provided a convenient objective
function. Among the most relevant objectives, one can name the minimization
of the pathway length ensuring a minimum product yield (e.g., by fixing the
overall stoichiometry) (Pharkya et al. 2004), maximization of the product yield
observing thermodynamic constraints (Kumar et al. 2018; Kamp and Klamt 2020;
Chowdhury and Maranas 2015), maximization of the thermodynamic favorability
of the pathway (Flamholz et al. 2013; Noor et al. 2014; Hädicke et al. 2018; Yang
et al. 2020; Ng et al. 2019), and minimization of the pathway´s enzymatic cost
(Flamholz et al. 2013; Ng et al. 2019; Court et al. 2015; Bar-Even et al. 2010).
For each of these objectives, different optimization problems must be formulated
and solved, often requiring various parameters (e.g., thermodynamic and kinetic)
from other sources for computing the optimal solution(s). In the following, the
most relevant stoichiometry-based optimization methods for metabolic pathway
prediction are presented. Further details about the methods and applications can
be found in Table 2.

2.3.1 Pathways with Desired Stoichiometric Properties
Constraint-based modeling methods (Edwards and Palsson 2000) can be readily
adapted for the computation of pathways exhibiting a desired stoichiometry (i.e.,
yield) (Kumar et al. 2018; Chowdhury and Maranas 2015; Ng et al. 2019), shortest
length (Chowdhury and Maranas 2015; Ng et al. 2019), convenient precursor use
(Kamp and Klamt 2020), and if using an organism’s reaction network as metabolic
chassis, minimum addition of exogenous reactions (Pharkya et al. 2004; Kim et al.
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2011). In practice, these pathway enumeration methods rely on the solution of
various LP and/or MILP optimization problems that optimize some of the afore-
mentioned objectives subject to not only stoichiometric constraints but possibly to
thermodynamic and/or economic constraints.

OptStrain, SimOptStrain, and OptStoic are classical tools for pathway predic-
tion, although they differ in their scope. While the first two seek to predict optimal
pathways and metabolic interventions for the production of a target metabo-
lite leveraging the microbial host reaction network (Pharkya et al. 2004; Kim
et al. 2011), the latter aims to find complete mass-balanced conversion pathways
that yield a desired stoichiometry from precursors to product(s) using metabolic
databases as the input reaction network (Chowdhury and Maranas 2015). Addi-
tional constraints related to a minimum guaranteed product yield, thermodynamic
plausibility of the pathway, and/or substrate costs can be readily included to obtain
more convenient designs. Recently, a computational method called MEMO (Kamp
and Klamt 2020) has been proposed for identifying the smallest metabolic mod-
ules with specified stoichiometric and thermodynamic properties. For instance, this
approach has been employed to find small cofactor regeneration (e.g., ATP/ADP,
NAD(P)H, NAD(P), among others) modules that can sustain bioconversions in the
context of cell-free applications under defined thermodynamic conditions.

The aforementioned methods rely on existing annotated enzymatic reactions
for metabolic conversions. However, as mentioned in the previous subsection,
promiscuous enzymatic activities are characteristic features of metabolic reaction
networks, likely playing an evolutionary role as a starting point in enzyme func-
tions (Khersonsky and Tawfik 2010). Importantly, the existence of this feature
suggests that there is still untapped potential for a broader chemical reaction space
to be explored. By using various extraction techniques for learning putative reac-
tions from known enzymatic reactions, it is possible to populate and assemble
larger databases for pathway prediction. An example of these methods is Map-
Maker/PathTracer (Tervo and Reed 2016), which employs precomputed carbon
transfer maps (CTMs) based on chemical and stoichiometric information (Map-
Maker) for the prediction of short, carbon-balanced pathways from substrates to
products (PathTracer). GEM-Path (Campodonico et al. 2014) is another frame-
work that, using a genome-scale metabolic reconstruction of E. coli as base
reaction network, combines heterologous pathway integration (similar to OptStoic)
with constraint-based growth-coupled methods for the computation of metabolic
designs. Increased biochemical reaction exploration is achieved through the intro-
duction of a chemical similarity measure to assess enzyme-catalyzed reaction
promiscuity. Lastly, the novoStoic/rePrime framework (Kumar et al. 2018) enables
exploration of a far greater chemical transformation space through the imposition
of chemical ‘moiety’ conservation (refer to Sect. 2.1) that is particularly suited
for the prediction of optimal pathways with maximum yield or length. Impor-
tantly, this mathematical treatment avoids chemical reaction information loss (e.g.,
stereoselectivity) as opposed to other approaches like MapMaker/PathTracer.
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2.3.2 Pathways with Maximum Thermodynamic Favorability
Pathway thermodynamics exerts a fundamental control in metabolic flux with
seemingly important consequences for microbial fitness (Du et al. 2018). While
there have been different methods for combining stoichiometric-based analysis
with reaction thermodynamics (Henry et al. 2007; Kummel et al. 2006), it has
not been until recently that thermodynamic favorability has been mathematically
formalized. For this task, the Max-min Driving Force (MDF) index (Noor et al.
2014) has been proposed for quantifying the smallest absolute Gibbs free energy
(or driving force) of a given pathway under the most favorable metabolic condi-
tions. As the latter captures the driving force of the most unfavorable conversion
step (i.e., thermodynamic bottleneck), its maximization yields the most favorable
operating conditions for a given pathway. More recently, the OptMDFpathway
method (Hädicke et al. 2018) was introduced to identify the most thermodynami-
cally favorable pathways in a given reaction network, thereby enabling exploration
of thermodynamically plausible production pathways in the context of microbial
metabolism (Hädicke et al. 2018; Yang et al. 2020), and more recently, in microbial
communities (Bekiaris and Klamt 2021).

2.3.3 Pathways with Minimum Enzymatic Cost
Cellular metabolism incurs a metabolic cost when committing to the synthesis
of a particular set of proteins (enzymes). As seemingly similar enzymes can
still display large differences in their catalytic properties (Bar-Even et al. 2011),
it is natural to seek pathways that can yield the maximum return of invest-
ment (flux) per protein (enzyme) mass synthesized. For this task, the Enzyme
Cost Minimization (ECM) (Noor et al. 2016)—and later termed the Enzyme-Flux
Cost Minimization (EFCM) (Wortel et al. 2018)—formulation computes the min-
imum enzyme load (i.e., the aggregated enzyme mass allocated) required for a
metabolic pathway to yield a given flux (Flamholz et al. 2013; Bar-Even et al.
2010). While this formulation originally required a thermodynamically consistent,
fully parameterized kinetic model for this calculation (Saa and Nielsen 2017),
increasingly enzymatically-constraint GSMMs (Sánchez et al. 2017) and ME-
models (metabolic and expression) (Lerman et al. 2012) are being considered
and employed for these calculations under the optimistic scenario of enzymatic
catalysis at capacity. Finally, the ECM/EFCM does not support performing path-
way enumeration, although it can be readily employed as a ranking index when
combined with the previous approaches.

3 Case Studies of Metabolic Pathway Prediction
and Optimization in Yeast

In this section, selected case studies illustrate different pathway engineering
aspects required for improving metabolic performance overall, and particularly, in
yeast. These examples showcase strategies for redox cofactor balancing, increased
precursor supply, and engineering of central pathways for carbon fixation. The
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impact of the latter applications is especially highlighted in the context of harness-
ing the metabolic potential of yeast for industrial bioproduction. Figure 2 illustrates
the details of the revised strategies.

3.1 Balancing Redox Cofactor Supply for Improving Substrate
Utilization and Isoprenoids Production

Regeneration of either redox and/or energy cofactors often limits the production of
high-value metabolites. In order to increase the availability of the required cofac-
tor(s), central carbon metabolism must be intervened and engineered in such a
way that it favors bioproduction without extremely affecting microbial growth (Lee
et al. 2013). This challenge is particularly relevant for many NAD(P)H-expensive
valuable compounds that are being produced in yeast (Cataldo et al. 2020; López
et al. 2020, 2019) and other microbes (Ko et al. 2020).

Increased supply of redox cofactors can be achieved by either overexpressing
key enzymes involved in cofactor generation (Lee et al. 2007; San et al. 2002;
Lim et al. 2002) or by increasing the expression of alternative redox partner
systems. A recent application of the latter has proved effective for enhancing
the unprecedented heterologous production of violaxanthin in S. cerevisiae by
approx. two-fold (Cataldo et al. 2020). However, the success of these approaches
is likely limited due to the presence of different intrinsic balancing mechanisms
for maintaining homeostasis in yeast (Hou et al. 2010). An illustrative example of
the latter can be found in the study of Nissen et al. (2001). Here, heterologous
expression of the pyridine nucleotide transhydrogenase system (sth gene, absent
in yeast) that transfers reducing equivalents from NADPH to NADH (and vice
versa), did not improve ethanol formation in anaerobic conditions. On the contrary,
ethanol production was reduced concomitantly with the increase of fermentation
by-products (glycerol and 2-oxoglutarate) required for redox rebalancing. Another,
less intuitive and possibly more effective, strategy for (re)balancing redox cofac-
tors supply and demand involves cofactor swapping (Verho et al. 2003; Martínez
et al. 2008). Computational studies in S. cerevisiae and E. coli support this strategy
as a promising intervention for forcing higher metabolic performance (King and
Feist 2014). Simply put, this approach seeks to replace native (redox-consuming)
enzymes with heterologous counterparts with a different cofactor specificity (e.g.,
NAD(P)H—for a NA(D)H-dependent enzyme).

The first application of the latter strategy involved the optimization of D-
xylose utilization for ethanol production in S. cerevisiae (Verho et al. 2003).
This carbon source is assimilated through the pentose phosphate pathway (PPP)
as D-xylulose-5-phosphate and then incorporated as glyceraldehyde 3-phosphate
in glycolysis. In theory, D-xylose should produce CO2 and ethanol in a 1:1
molar ratio under redox-neutral anaerobic conditions (Kötter and Ciriacy 1993).
However, D-xylose assimilation requires extra NADPH and NAD+ that must be
regenerated by other separate processes, which are very inefficient in yeast, ren-
dering D-xylose fermentation slow. To overcome this bottleneck and force higher
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�Fig. 2 Illustration of selected reported strategies for achieving improved cofactor balancing,
increased acetyl-CoA supply and engineering CO2 fixation in yeast. The details of each
strategy are discussed in Sect. 3. Relevant metabolite names are represented by uppercase
bold fonts, whereas enzyme names are represented by uppercase italics fonts. Abbreviations:
13DPG, 1,3-diphosphoglycerate; 3PG, 3-phosphoglycerate; 6PGL, 6-phospho-D-glucono-1,5-
lactone; ACCOA, acetyl-CoA; ACE, acetate; ACETAL, acetaldehyde; AcP, acetyl phosphate;
ACS, acetyl-CoA synthetase; AKG, alpha-ketoglutarate; ALD, aldehyde dehydrogenase; DHAP,
dihydroxyacetone phosphate; ETOH, ethanol; F6P, D-fructose 6-phosphate; FDP, D-fructose 1,6-
disphosphate; FOR, formate; G3P, glycerol 3-phospate; G6P, D-glucose 6-phosphate; G6PD,
glucose 6-phosphate dehydrogenase; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceralde-
hyde 3-phosphate dehydrogenase; GDH, glutamate dehydrogenase; GLC, D-glucose; GLU, glu-
tamate; GLY, glycerol; HMGCOA, 3-hydroxy-3-methyl-glutaryl-CoA; HMGCOAR, HMG-CoA
reductase; MEOH, methanol; MEV, mevalonate; NH4, ammonia; PDH, pyruvate dehydrogenase;
PFL, pyruvate formate lyase; PK, phosphoketolase; PRK, phosphoribulokinase; PTA, phospho-
transacetylase; PYR, pyruvate; R5P, D-ribose 5-phosphate; Ru15P, ribulose 1,5-disphosphate;
Ru5P, D-ribulose 5-phosphate; STH, transhydrogenase; Xu5P, D-xylulose 5-phosphate; XYL, D-
xylose

NADPH supply and flux through lower glycolysis, the native NAD-dependent
GAP dehydrogenase (GAPDH) was replaced by an NADP-dependent GAPDH and
the NADPH-dependent glucose-6-phosphate dehydrogenase (G6PD) was knocked
out, which also prevented carbon loss as CO2 (Verho et al. 2003). This strat-
egy almost doubled the ethanol yield on D-xylose (from 18 to 41%) and reduced
the CO2/ethanol molar ratio close to the theoretical 1:1 (from 2.5 to 1.3). Later,
expression of the heterologous phosphotransacetylase (PTA) and phosphoketolase
(PK) for improving NADH reoxidation in the D-xylose utilization pathway gen-
erated an increase in ethanol yield (25% higher) without affecting the growth rate
(Sonderegger et al. 2004).

Cofactor rebalancing and swapping strategies for the synthesis of NADPH-
expensive isoprenoid-derived compounds have shown to be particularly effective
in yeast. For instance, α-santalene production yields a net production of NADH
and consumption of NADPH, which calls for the rebalancing of the cofactor sup-
ply (Scalcinati et al. 2012). By deleting known reactions involved in glutamate
metabolism (ammonium assimilation) that consume NADPH (GDH1) and acti-
vating NAD-dependent counterparts (GDH2) (Nissen et al. 2000), the production
of α-santalene was substantially improved. Similarly in a different study of pro-
topanaxadiol production—another isoprenoid-derived compound—the availability
of NADPH was enhanced by replacing the native NADH-generating acetaldehyde
dehydrogenase (ALD2) with a functionally equivalent NADPH-generating enzyme
(ALD6), resulting in a 11-fold increase in titer (Kim et al. 2018). Lastly, swap-
ping of the native NADP-dependent 3-hydroxy-3-methyl-glutaryl-CoA reductase
(HMG-CoA reductase)—third committed step of the mevalonate pathway respon-
sible for the production of isoprenoid precursors—has also shown to increase the
overall pathway flux in E. coli (Ma et al. 2011). This result was leveraged by
Meadows et al. (2016) whereby an NADH-consuming HMG-CoA reductase from
Silicibacter pomeroyi was employed for the overproduction of the sesquiterpene
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farnesene. Implementation of other computationally predicted major metabolic
cofactor swaps like the alcohol dehydrogenase (ALCD2) and GAPD for the
improved production of isoprenoids remains to be tested experimentally (King
et al. 2016), as they could be potentially beneficial for boosting production as
shown in other microorganisms (Martínez et al. 2008).

3.2 Increasing Cytosolic Acetyl-CoA Availability for Metabolic
Production

Cytosolic acetyl-CoA is a key metabolite for the production of a range of valuable
compounds in yeast (Rossum et al. 2016). Native production of this compound
requires 2 mol of ATP and yields 2 mol of acetyl-CoA and 4 mol of NAD(P)H
per mol of glucose (Rossum et al. 2016). To improve the availability of this precur-
sor and lower the ATP cost, different heterologous enzymes have been introduced
to either bypass the native aldehyde dehydrogenase (ALD) and acetyl-CoA syn-
thetase (ACS) system using bacterial counterparts, i.e., A-ALD and PFL, that do
not incur such high cost (Kozak et al. 2014a, b), or to enable acetyl-CoA biosyn-
thesis in situ by expressing the pyruvate dehydrogenase (PDH) complex in the
cytoplasm (Kozak et al. 2014a, b). While the former application showed mixed
results in terms of growth and yield (mainly due to by-product accumulation),
the second approach along with a knock-out of the native ACS reaction exhibited
similar metabolic performance to the control, but at a lower ATP cost.

A different approach for improving acetyl-CoA availability relies on increasing
its yield. For this task, the phosphoketolase pathway (PKP) was early suggested
for the conversion of 1 mol of F6P into 3 mol of acetyl-P without carbon
loss (Schramm and Racker 1957). Conversion of acetyl-P to acetyl-CoA can be
later achieved by the reversible phosphotransacetylase (PTA) reaction (Rossum
et al. 2016). This was initially implemented in yeast for improving D-xylose fer-
mentation (Sonderegger et al. 2004) (refer to previous section). More recently,
Bogorad et al. (2013) implemented the full PKP in E. coli and demonstrated
almost stoichiometric conversion of C5 and C6 sugars into acetate under anaero-
bic conditions. A similar approach was replicated in yeast accompanied by several
genetic interventions to increase acetyl-CoA-derived farnesene (Meadows et al.
2016). This non-native pathway increased carbon utilization by 25%, decreased
oxygen consumption by 75%, and reached 15% v/v of farnesene. As illustrated
here, increasing acetyl-CoA availability may be critical not only for maximizing
production but also for overall improving metabolic performance.

3.3 Engineering a Heterologous CBB Cycle for CO2 Fixation

There is a growing interest in the field for engineering carbon assimilation path-
ways in heterotrophs for improving product yields—e.g., by reducing carbon loss
as CO2 –, and most notably, for implementing one-carbon (C1) compounds (e.g.,
CO2) fixation pathways to develop more sustainable fermentation bioprocesses.
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In an early effort from Guadalupe-Medina et al. (2013), a heterologous Calvin–
Benson–Bassham (CBB) cycle was implemented in S. cerevisiae seeking to
improve ethanol yield by reducing carbon loss under anaerobic conditions. The
authors noted that by expressing the CBB enzymes phosphoribulokinase (PRK)
and ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), a working path-
way could be realized where CO2 is effectively used as an electron acceptor for
NADH oxidation, thereby coupling CO2 fixation by RuBisCO with the fermen-
tation redox balance. Importantly, this mechanism rendered NADH reoxidation
through the native glycerol formation pathway unnecessary (90% reduction in
glycerol titer), increasing ethanol yield by 14% (Guadalupe-Medina et al. 2013).

While the latter strategy was successful in increasing product yield, it did so by
reducing carbon loss as glycerol and not by significantly increasing CO2 assimi-
lation (Guadalupe-Medina et al. 2013). A more radical approach is to engineer a
CO2 assimilation pathway capable of sustaining growth and production. In a pio-
neer work from Antonovsky et al. (2016), E. coli was transformed and evolved to
grow solely on CO2 as a carbon source and pyruvate as an electron source. Again,
expression of the missing CBB enzymes PRK and RuBisCO, and knock-out of
the phosphoglycerate mutase (PGM)—revealed by Flux Balance Analysis (Lewis
et al. 2012)—forced CBB operation by decoupling carbon fixation from energy
production. This metabolic phenotype was termed hemi-autotrophic growth, and it
has since been implemented in other bacteria like the methanol-consuming bacteria
Methylobacterium extorquens AM1 through the expression of the previous CBB
enzymes and deletion of essential genes for methanol assimilation (Borzyskowski
et al. 2018). Building on these strategies, a recent study reported the conversion of
the yeast P. pastoris into an autotroph that grows on CO2 as the sole carbon source
and methanol as an energy source (Gassler et al. 2020). Briefly, P. pastoris can use
methanol as both energy and carbon sources. By decoupling the formaldehyde—
the assimilated product of methanol oxidation—dissimilatory (carbon-fixating) and
assimilatory (energy-producing) pathway branches, one can force CO2 assimilation
by blocking the dissimilatory branch through the deletion of the dihydroxyacetone
synthase (DAS1 and DAS2) and alcohol oxidase 1 (AOX1). Then, complemen-
tation of the native peroxisomal xylose monophosphate (XuMP) cycle with six
enzymatic steps enables operation of the CBB cycle allowing growth on CO2.
In stoichiometric terms, 1 mol of oxidized methanol produces 2 mol of NADH,
which can be used to fuel the CBB cycle though not in stoichiometric proportions
with CO2 (3 mol of ATP and 2 mol of NADH are needed to fix 1 mol of CO2).
The resulting mutant strain reached a maximum specific growth rate of 0.018 h−1

(Gassler et al. 2020) and constitutes an unprecedented advance for compartmental-
ized C1 carbon fixation in yeast differing from seemingly similar efforts in bacteria
(Antonovsky et al. 2016; Bang and Lee 2018).
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4 Challenges and Outlook

During the past decade, yeast metabolic engineering has shown great progress and
promise (Smolke and Tyo 2012; Nielsen and Keasling 2016), quickly becoming
one of the preferred microbial factories for realizing the bioproduction of new
chemicals or improving the production of traditional ones. This success has been
largely driven by the continuous advances in the development of genetic and
molecular tools (Smolke and Tyo 2012), as well as novel computational frame-
works for pathway discovery and optimization (Wang et al. 2017; Saa et al.
2019). The latter has brought not only new possibilities for the evaluation of
novel biochemical synthesis routes but also has provided more rational meth-
ods for designing metabolic pathways with superior performance by rewiring
metabolism at a whole-cell scale (Saa et al. 2019). In time, such capabilities will
become increasingly essential for arriving at designs that scale industrially and
meet commercial expectations.

Pathway discovery is supported by the use of retro-synthesis tools that generate
putative routes connecting substrates to products. A comprehensive exploration of
the chemical space typically rests on the availability of reaction rules, which fills
the gaps between the metabolic precursors and target chemical(s). Generation and
application of such rules must be carefully performed, as they may provide infea-
sible pathways that may obscure results interpretation (Wang et al. 2017). Atom
mapping information can be of great aid for validating the application and gen-
eration of certain reaction rules, see e.g., RouteSearch (Latendresse et al. 2014)
and ReTrace (Pitkänen et al. 2009), which can be further completed with enzyme
promiscuity knowledge if available (Mazurenko et al. 2020). Another incipient
alternative for learning novel chemical reaction routes rests on machine learn-
ing techniques (Koch et al. 2020), which can potentially increase exponentially
the size of the reachable chemical space as shown elsewhere (Coley et al. 2019;
Mikulak-Klucznik et al. 2020). Efficient navigation of such vast space would nec-
essarily have to rely on the introduction of pathway scores and rankings to focus
the attention on the most promising and realizable designs. For this task, eval-
uation of the objectives reviewed here along with others—e.g., use of enzymes
with known promiscuous activity or cofactor specificity—constitutes a natural way
for prioritizing and selecting desired pathways. Rational integration of the vari-
ous objectives can be achieved by leveraging mature multi-decision multi-criteria
techniques (Bonissone et al. 2009), which remains largely unexplored in the field.
Notably, the latter techniques are also transferable to optimization-based methods
for pathway prediction, which could enable a more holistic evaluation of pathway
performance and robustness.

While the revised computational methods and tools for pathway prediction have
provided unintuitive and useful insights, their experimental application and vali-
dation remain still limited. Although there have been recent applications in yeast
(Hafner et al. 2021) and other model organisms (Yim et al. 2011) where some
of the tools have proven to be critical for finding effective in vivo metabolic



Rational Metabolic Pathway Prediction and Design … 21

designs, there is still resistance to their broad adoption. Indeed, in vivo implemen-
tation of complex in silico metabolic designs is not trivial, typically demanding
great amounts of experimentation time before arriving at a working pathway
(Antonovsky et al. 2016; Schwander et al. 2016; Savile et al. 2010). Such efforts
could gain from recent computational frameworks for kinetic model construction
(Saa and Nielsen 2017) that could help to predict a priori the expected performance
of the pathway (see, for example, (Theisen et al. 2016)), greatly reducing the time
and resources needed. As the metabolic prediction capabilities of current models
increase (Foster et al. 2021), it is expected that the use of these tools for ratio-
nal pathway engineering in yeast and other microbial factories will progressively
become part of the basic toolbox for metabolic engineering.
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