
Chapter 7
Data Analytics and Models
for Understanding and Predicting Travel
Patterns in Urban Scenarios

Jaume Barceló, Xavier Ros-Roca, and Lidia Montero

Abstract The estimation of the network traffic state, its likely short-term evolu-
tion and the prediction of the expected travel times in a network are key steps of
traffic management and information systems, especially in urban areas and in real-
time applications. To perform such functions, most systems have at their core engine
specific dynamic trafficmodelswhosemain input is a dynamicOD-matrix describing
the time dependency of travel patterns in urban scenarios. This chapter provides an
overviewof themain concepts supporting these dynamic trafficmodels and their prac-
tical implementations in some software platforms, as well as an outline on the main
approaches for the estimation of dynamic OD-matrices. Additionally, this chapter
provides a basic discussion on one of the main emerging trends: strategies aimed at
using the unprecedented amount of new traffic data made available by “new” mobile
technologies.

7.1 Dynamic Traffic Assignment Models

Most of the real-time traffic management systems are based on conceptual architec-
tures embedding in their core engines dynamic traffic models, usually a Dynamic
Traffic Assignment (DTA)orDynamic User Equilibrium (DUE)model. Thesemodels
are aimed at providing, among others, outputs to predict traffic flows and travel times
on road networks, which vary over time because of various factors. One of these
factors is particularly relevant: the time variation of the demand. Traffic assign-
ment accounting for these time dependencies are referred to as DTA. When the
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predicted flows are such that no user can unilaterally reduce their travel times, the
resulting assignment is said to be a DUE. In any case, their main input is an OD-
matrix, that is, the matrix representing the time dependencies of the demand (e.g.,
Barceló et al. 2004; Allström et al. 2017). Dynamic Traffic Models, either DTA
or DUE, are the key tool to estimate traffic states, understanding traffic patterns.
And, as already mentioned, to be able to provide a predictive information consistent
with the conditions that drivers will experience in the network, thus accounting for
traffic evolution. Both important functionalities become more relevant in the case
or complex urban networks. This is explained in detail in Ben-Akiva et al. (2010),
which describes the approaches on which DynaMIT is based as well as its objec-
tives. Descriptions of other similar systems can be found in Barceló et al. (2007),
Heygi et al. (2009), Meschini (2017), and Aimsun (2020). The last two references
illustrate these approaches through their implementation in two worldwide used
professional systems based on these applications: OPTIMA and Aimsun. The role
of DTM becomes even more critical in recent real-time traffic management systems
like the Active Transportation and Demand Management (ATDM) and the Dynamic
Mobility Applications (DMA), two programs of the United States Department of
Transportation (USDOT) (Mahmassani et al. 2017).

The DTA problem can be considered an extension of the well-known Static Traffic
Assignment (STA) problem, widely used in transport planning. The dynamic version
must be able to determine how link and path flows evolve with time in the traffic
network because of a time-dependent demand defined in terms of a time-varyingOD-
matrix. In otherwords, the dynamic approach to traffic assignmentmust describe how
traffic flow patterns evolve in time and space on the network (Mahmassani 2001).
Subsequently, it must provide the estimations of the link and path travel times and
their short-term expected evolution. These are the main inputs to derive the KPIs that
lead to specific traffic management policies, namely, those concerning information
to travelers, alternative dynamic re-routing, etc.

From this standpoint, the DUE problem can be defined as the dynamic version of
Wardrop’s Principle (Wardrop 1952; Friesz et al. 1993; Smith 1993; Ran and Boyce
1996): “If, for each OD pair at each instant of time, the actual travel times experienced
by travelers departing at the same time are equal and minimal, the dynamic traffic
flow over the network is in a travel-time-based dynamic user equilibrium state”.
In other words, the DUE formulation stipulates that the experienced travel cost,
including travel time and early/late arrival penalties, is identical for those route and
departure time choices selected by travelers between a given OD pair. There are
several attempts to translate this formulation into a suitable model.

In a recent paper, Han et al. (2019) review the various formulations of the models
and the associated algorithms used to compute DUE, starting from the seminal
proposal of Friesz et al. (1993), which formulates it as an open-loop, non-atomic
Nask-like game. “Open-loop”means in this context that the selection of routes by the
travelers after leaving the origin does not vary in response to changes in the dynamic
network conditions. For its part, the term “non-atomic” implies the assumption of
techniques based on aggregated traffic flow dynamics instead of techniques based
on individual vehicle dynamics. This hypothesis ensures that DUE suitably accounts
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for two main aspects of travel behavior: the departure time choice and the route
choice. Therefore, the modeling hypothesis implies that travel times are identical for
all trips departing at the same time interval using the same route. Following with
the contribution of Han et al. (2019), the two main components of DUE modeling
approaches are highlighted:

• The mathematical expression of the equilibrium condition.
• The network performance model, which mimics flow propagation through the

network. This is usually referred to as Dynamic Network Loading (DNL).

DTA/DUEhavebeen the subject of intensive research anddevelopments both from
the theoretical point of view and as key components of most software platforms used
for the practical implementation of traffic management systems. Consequently, as
Han et al. (2019) report, the concept of dynamic equilibrium has been implemented
in various ways, as, for example, variational inequalities, nonlinear complemen-
tarity problems, differential variational inequalities, etc. In this Chapter, we limit our
discussion to the formulation in terms of variational inequalities (Friesz et al. 2013;
Smith and Wisten 1995), which is the most frequent in practical implementations. It
is based on the mathematical model (Eqs. 7.1. and 7.2) proposed by Wu (1998):

[
ttrsp(t) − θrs(t)

] ∗ xrsp(t) = 0∀p ∈ Krs(t),∀(r, s) ∈, t ∈ [0, T ] (7.1)

s.t. ttrsp(t) − θrs(t) ≥ 0∀p ∈ Krs(t),∀(r, s) ∈, t ∈ [0, T ]

ttrsp(t), θrs(t, ), xrsp(t) > 0∀p ∈ Krs(t),∀(r, s) ∈, t ∈ [0, T ]

and the flow balancing equations:

∑

∀p∈Krs(t)

xrsp(t) = Xrs(t) ∀(r, s) ∈ I , t ∈ [0, T ] (7.2)

where xrsp(t) is the flow on path p departing from origin r to destination s, ttrsp(t)
is the actual path cost from r to s on route p, θrs(t) is the cost of the shortest path
from r to s, Krs(t) is the set of all available paths from r to s and Xrs(t) is the demand
(number of trips) from r to s, all of them at time interval t. For their part, I is the
set of all origin–destination pairs (r, s) in the network and T the overall time period
considered. It can be demonstrated that this is equivalent to solve a finite-dimensional
vibrational inequality problem consisting of finding a vector x∗ of path flows and a
vector τ of path travels times, such that

[
x − x∗]T ∗ τ ≥ 0,∀x ∈ ℵ (7.3)

where ℵ is the set of feasible flows defined by
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ℵ =
⎧
⎨

⎩
xrsp(t)

∣∣
∣∣∣∣

∑

∀p∈Krs(t)

xrsp(t) = Xrs(t)∀(r, s) ∈ I , t ∈ [0, T ] , xrsp(t) > 0

⎫
⎬

⎭
(7.4)

Wu et al. (1991,1998a; b) probe that this is equivalent to solve the discretized
variational inequality:

∑

t∈[0,T ]

∑

p∈R
ttrsp(t) ∗

[
xrsp(t) − x∗

rsp(t)
]

≥ 0 (7.5)

whereR = ⋃
(r,s)∈I ∗Krs is the set of all available paths from origins to destinations.

Reviews of DTA models can be found in Boyce et al. (2001), Peeta and
Ziliaskopoulos (2001), Szeto and Lo (2005), Szeto andWong (2012), Jeihani (2007),
and Bliemer et al. (2017).

Algorithms to deal with DTA or DUE problems usually involve solving this vari-
ational inequality formulation. A wide variety of algorithms has been proposed:
from projection algorithms (Wu et al. 1991,1998a; b; Florian et al. 2001) or methods
of alternating directions (Lo and Szeto 2002) to various versions of the Method of
Successive Averages (MSA) (Tong and Wong 2000; Florian et al. 2002; Mahut et al.
2003a, b; Mahut et al. 2004; Varia and Dhingra 2004).

The computational approaches proposed to solve theDTAproblem can be broadly
classified into two classes: mathematical formulations, looking for analytical solu-
tions, and traffic simulation-based approaches, looking for approximate heuristic
solutions. Both fit the conceptual framework proposed by Florian et al. (2001) and
Florian et al. (2002), formalizing the relationships and dependencies between the
two main components identified (Fig. 7.1):

• Amethod to determine the path-dependent flow rates on the paths on the network,
usually applying any of the approaches mentioned above (MSA, projection
methods, etc.).

• A DNL method, which determines how these path flows give raise to time-
dependent arc volumes, arc travel times and path travel times.

Quite frequently, and basically in all practical implementations mentioned above,
DNLmethod is based on a mesoscopic simulation model (Barceló 2010a) emulating
the flow propagation through the network in the current conditions. Depending on
how the convergence criterion and the iterative process implemented, the resulting
assignment is a DTA or a DUE (see Chiu et al. 2011 for more details).
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Fig. 7.1 Conceptual algorithmic scheme for DTA

7.1.1 Determining the Path-Dependent Flow Rates by MSA:
Convergence Criterion to Equilibrium

If the convergence criteria are not met after one particular iteration of the conceptual
algorithmic scheme in Fig. 7.1., a new one is performed. In this new iteration, after
computing the newpotential paths once the link costs have beenupdated, the keypoint
is the determination of how the demand will be split among these paths, producing
the corresponding path flows. Carey and Ge (2012) or Han et al. (2019) provide a
comprehensive panoramic view of the many computational alternatives.

To illustrate these concepts, in this chapter we address the MSA method, one of
the most frequently used in practice to estimate the path-dependent flow rates to
solve (Eq. 7.5). MSA is a procedure that redistributes the flows among the available
paths in an iterative procedure that, at any iteration n, computes a new shortest path,
crs(t), from origin r to destination s at time interval t. Depending on crs(t) the path
flows update process is as follows:

If crs(t) /∈ Kn
rs(t)

xn+1
rsp (t) =

⎧
⎨

⎩

αn ∗ xn
rsp(t) if p ∈ Kn

rs(t)
∀r, s, t

(1 − αn) ∗ Xrs(t) if p = crs(t)

(7.6a)

Kn+1
rs (t) = Kn

rs(t) ∪ crs(t) (7.6b)

Otherwise if crs(t) ∈ Kn
rs(t)
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xn+1
rsp (t) =

⎧
⎪⎨

⎪⎩

αn ∗ xn
rsp(t) if p �= crs(t)

∀r, s, t
αn∗xn

rsp(t) + (1 − αn) ∗ Xrs(t) if p = crs(t)
(7.7a)

Kn+1
rs (t) = Kn

rs(t) (7.7b)

Depending on the values of the weighting coefficients αn, different MSA schemes
can be implemented (Carey and Ge 2012), probably being the most typical value
αn = n

n+1 . Many variants have been suggested. For example, Varia and Dhingra
(2004) propose a modified MSA algorithm where the weighting coefficient takes
into account a variable step length that depends on the current path travel times
(Eq. 7.8):

αn = λk ∗ [
exp

(−ttrsp(t)
)]

(n + 1) ∗
[∑

p ∗[exp
(−ttrsp(t)

)]] (7.8)

One of the potential computational drawbacks of these implementations of MSA
is the growing number of paths when dealing with large networks. To avoid this
in the case of DTA assignments, an alternative is to specify the maximum number
K of paths to keep for each OD pair. Several modified implementations have been
suggested to keep control of the number of paths in MSA algorithms (Peeta and
Mahmassani 1995; Sbayti et al. 2007). Interesting proposals are those in Mahut
et al. (2003a,2004; b). Possibly, one of the most computationally efficient is the
one proposed by Florian et al. (2002). This variant of the algorithm initializes the
process based on an incremental loading scheme that distributes the demand among
the available shortest paths. The process is repeated for a predetermined number of
iterations, after which no new paths are added and the corresponding fraction of the
demand is redistributed according to the MSA scheme. This modified MSA works
as follows:

Let K be the maximum number of iterations to compute new paths.

If n ≤ K
a new shortest path crs(t) /∈ Kn

rs(t) is found. Then,

xn+1
rsp (t) = 1

n + 1
∗ Xrs(t) ∀p ∈ Kn

rs(t),∀(r, s) ∈ I , t ∈ [0, T ] (7.9a)

Kn+1
rs (t) = Kn

rs(t) ∪ crs(t) (7.9b)

If n > K
the new shortest path is computed among the existing paths crs(t) ∈ Kn

rs(t). Then,
the set Kn

rs(t) does not change, Kn+1
rs (t) = Kn

rs(t), and
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xn+1
rsp (t) =

⎧
⎪⎨

⎪⎩

1
n+1 ∗ Xrs(t) if p �= crs(t)

∀p ∈ Kn
rs(t), ∀(r, s) ∈ I , t ∈ [0, T ]

n
n+1 ∗ xn

rsp(t) + 1
n+1 ∗ Xrs(t) if p = crs(t)

(7.10)

However, the possibility of repeating shortest paths from one iteration to the next
to keep a maximum K of different shortest paths in a proper implementation of the
algorithm implies a requirement: that the number of iterations n is defined for any
OD pair and time interval.

All the approaches for DUE based on simulation procedures for the network
loading process are, therefore, heuristic in nature. Thus, no formal proof of conver-
gence can be provided. However, a convergence criterion is necessary. In this context,
a way to empirically determine if the solution reached can be interpreted in terms of
a DUE, in the mentioned sense that “the actual travel time experienced by travelers
departing at the same time are equal and minimal”, can be based on an ad hoc version
of the Relative Gap Function proposed by Janson (1991):

Rgap(n) =
∑

t

∑
(r,s)∈I

∑
p∈Krs(t)

xn
rsp(t) ∗

[
ttn

rsp(t) − θn
rs(t)

]

∑
t

∑
(r,s)∈I Xrs(t) ∗ θn

rs(t)
(7.11)

where xn
rsp(t) is the flow on path p from r to s departing at time t at iteration n. The

difference ttn
rsp(t) − θn

rs(t) measures the excess cost experienced because of using a
path of cost ttn

rsp(t) instead of the shortest path, with cost θn
rs(t), at iteration n. The

ratio measures the total excess cost with respect to the total minimum cost if all
travelers would have used the shortest paths.

7.1.2 Dynamic Network Loading

Once the path flows have been estimated, the next step in the DTA determines how
these flows propagate across the network along the assigned paths. Thus, it yields
travel times as a function of flows and accounting for their temporal profiles (Xu
et al. 1999). The procedures to achieve this goal are precisely the DNL methods,
which have been, and still are, a fertile research domain. In fact, a wide variety of
DNL have been already proposed. Carey and Ge (2012) or Han et al. (2019) provide
comprehensive overviews about them. Some of these methods, for example, those
in Friesz et al. (1993), Wu et al. (1998b), or Xu et al. (1999), assume travel time

functions of the form ttij

(
xt

ij

)
= fij

(
xt

ij

)
, where fij

(
xt

ij

)
is the travel time function for

link (ij) that provides the travel time ttij to traverse the link as a function of xt
ij, i.e.,

the flow in link (ij) at time t.
However, most of the DNL currently used both in research as well as in the

professional practice are based on a mesoscopic modeling of traffic flow dynamics.
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This is a simplification that, while capturing the essentials of the dynamics, is less
data demanding and computationally more efficient than microscopic models, which
emulate the dynamics of traffic flows from the detailed dynamics of each vehicle.
Mesoscopic approaches sometimes combinemicroscopic aspects in a simplified way
(basically, they can deal with individual vehicles) with macroscopic aspects (e.g.,
those directly concerning the flow dynamics). There are two main approaches to
mesoscopic traffic simulation. First, those in which individual vehicles are not taken
into account, and vehicles are grouped into packages or multivehicle platoons that
move along the links. This is, for example, the case in CONTRAM (Leonard et al.
1989). Second, those in which flow dynamics are determined by simplified dynamics
of individual vehicles. DYNASMART (Jayakrisham et al. 1994), DYNAMIT (Ben-
Akiva et al. 1997, 2001,2002,2010), Dynameq (Mahut 2000; Florian et al. 2001,
2002; Mahut et al. 2003a, b, 2004; Mahut and Florian 2010), MEZZO (Burghout
2004; Burghout et al. 2005), or Aimsun (Casas et al. 2010) are well-known examples.

From a methodological point of view, the simulation approach of mesoscopic
modeling lays in the way it deals with time. The most common approaches are based
on synchronous timing, that is, time-oriented simulations in which time in the model
progresses according to an appropriately chosen time unit �t, also known as the
simulation step. This is the case of DYNASMART and DynaMIT. Other approaches
are asynchronous or event-based. That is, the state of the model changes when some
events occur. Thus, time advances in variable amounts. Dynameq and MEZZO are
examples of event-based mesoscopic traffic simulators.

One of the main phenomena determining the time evolution of traffic flows across
the network are vehicle queues and their backward propagation (or spillback). As the
finite-difference approximations to the fluid flow models in terms of the theory of
kinematic waves (LWR, Lighthill and Whitham 1955; Richards 1956), satisfactorily
reproduces that dynamics, it has been quite natural to use it to develop DNL models.
One of the firstwas theCell TransmissionModel (CTM)proposed byDaganzo (1994,
1995a), which has been extensively used by other authors (e.g., Lo and Szeto 2002;
Szeto and Lo 2004). This model assumes a triangular or trapezoidal flow-density
function. Daganzo (1995b) developed a second model similar to the CTM, in this
case a Finite-Difference Approximation Method (FDAM), which assumes a general
nonlinear flow-density function. This FDAM can be used for network loading in the
same way as the Cell Transmission Model for networks in Daganzo (1995a). These
basic models exhibit limitations, namely in the case of urban networks, since they
only account for flow dynamics in links. This means that they do not explicitly deal
with intersections and more in particular with signalized intersections, quite usual
in urban networks. In this context, Bellei et al. (2005) propose a DUE approach
that is an extension of the CTM. This approach, described theoretically in detail in
Gentile et al. (2007), is the basis for the General Link Transmission Model (GLTM),
which can deal with any concave fundamental diagram and node topology. The road
network is modeled in terms of an oriented graph G = (N , A), where N is the set
of nodes, each one representing an intersection and where links A, connecting two
intersections, converge or diverge. The forward and backward stars of each node
identify the set of links converging or diverging to/from it. The GTLM link model



7 Data Analytics and Models for Understanding and Predicting … 209

Fig. 7.2 Link model

provides the main input to the node model in terms of the incoming flows. The output
from the node model is the outflows that constitute the main input for the link model
(Gentile et al. 2010, 2015).

This modeling approach has also been used in many other developments that
model the link, explicitly or implicitly, splitting it into two parts: the running part
and the queueing part (Fig. 7.2). The running part is that where vehicles are not yet
delayed by the queue spillback at the downstream node, where the capacity is limited
by stop or give way signs, or traffic lights.

Nodes are modeled according to the interactions between traffic flows at intersec-
tions, as node transfer modules, or according to a queue server approach, explicitly
accounting for traffic lights and the delays that they cause (Mahmassani et al. 1994).
In this case, a simplified car-followingmodel compatiblewith themacroscopic speed-
density relationship on the link approximates the individual vehicle dynamics in the
running part. This speed is used to estimate the earliest time at which the target
vehicle could exit the link, unless it is affected by the queue spillback when reaching
the border between the running part and the queueing part. Vehicle dynamics are then
ruled by the queue discharging process. The boundary between the running part and
the queueing part is dynamic, according to the queue spillback and queue discharge
processes.

Various solutions have been proposed for simulating flow dynamics in the link
running part in a simplified way. In essence, they solve the continuity equation of
traffic flow:

∂q

∂x
+ ∂k

∂t
= g(x, t) (7.12)

q(x, t) = k(x, t) ∗ u(x, t) (7.13)

Link densities are determined by solving the finite differences form of the conti-
nuity Eq. (7.12). This can be done using a suitable approach, as, for example, CTM
or GTLM, and a functional form (7.13) of the fundamental diagram, where q(x, t)
is the flow, k(x, t) the density, u(x, t) the spatial speed and g(x, t) a flow generation
term, all of them at time t in x. Jayakrisham et al. (1994) solve these equations in
DYNASMART given the densities and the in- and outflows for each section at each
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time step and assuming that section speeds are calculated from the densities using
the modified Greenshields (1934) speed-density relationship (Eq. 7.14):

ut
i = (

uf − u0
) ∗

(
1 − kt

i

kjam

)α

+ u0 (7.14)

where ut
i and kt

i are, respectively, themean speed and density in section i at time step t,
uf and u0 are the mean free speed and the minimum speed, kjam is the jam density and
α is a parameter that captures speed sensitivity to density. DYNAMIT (Ben-Akiva
et al. 2001, 2010) includes a speed-density relationship (7.15) that generalizes the
one proposed by May and Keller (1967) including a lower bound limiting density,
kmin, and a second parameter β to capture speed sensitivity to concentration:

u =
{

uf if k < kmin

uf ∗
[
1 −

(
k−kmin

kjam

)α]β

otherwise
(7.15)

More in particular, the link speed is modeled assuming that it is constant on
the upstream section of the link, changes along a deceleration zone covering a
downstream section, and varies linearly as a function of the position in this section.
According to this assumption, vu is the speed at the upstream end of the link and
the one that is a function of the average density on its running part. That is, vu is
determined by Eq. 7.15. For their part, vd is the speed at the downstream end of the
segment and Ls is the length of the deceleration zone. Ls depends on the geometry
of the segment and on traffic conditions. Ben-Akiva et al. (2001) propose a way to
determine Ls that is consistent with the empirical evidence that the majority of delays
are related to queuing. Finally, assuming that the target link starts at position 0 and
ends at position L (i.e., L is the length of the segment), the speed function at an
intermediate point x in the segment can be written as follows (Eqs. 7.16 and 7.17):

v(x) =
{

vd if 0 ≤ x ≤ L − Ls

λ ∗ (x ∗ L) + vd if L − Ls ≤ x ≤ L
(7.16)

where

λ = vd − vu

Ls
(7.17)

Other models like MEZZO (Burghout 2004; Burghout et al. 2005) complement
this approach according to empirical evidence establishing that there are two limiting
densities kmin and kmax, which delimit the range in which speed is still a function of
the density (del Castillo and Benitez 1995; Eq. 7.18):
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u =

⎧
⎪⎨

⎪⎩

uf if k < kmin

u0 + (
uf − u0

) ∗
[
1 −

(
k−kmin

kmax−kmin

)α]β

if k ∈ [kmin, kmax]

umin if k > kkmax

(7.18)

umin is the minimum speed in congested conditions. Various queueing models have
been proposed to calculate the waiting times in the queuing part of the link. That is,
the delays incurred by vehicles because of the output and acceptance capacities of the
links. These, respectively, determine the rate at which vehicles can leave the link and
how many vehicles can enter it depending on the available space. Obviously, when
the acceptance capacity of a link is zero no more vehicles can enter the segment and
spillbacks occur. A good example that illustrates this idea is the simplified model
in DynaMIT (Ben-Akiva et al. 2001), which considers that the delay of the i − th
vehicle in the queue is given by Eq. 7.19:

i

ρ
(7.19)

where ρ is the output capacity of the link. Then, during a time period of length t,
ρ ∗ t vehicles will leave the queue. A vehicle in the running part that at time t reaches
the end of the queue will find it at lq(t), length of queue at time t, given by

lq(t) = lq0 + leff ∗ (ρ ∗ t − m) (7.20)

In Eq. 7.20, lq0 is the position of the end of the queue at time t = 0, leff is the
effective length of the queue (i.e., the physical length plus headways), and m is the
number of vehicles that reached the queue before the considered vehicle. Obviously,
the model is relevant only when 0 < lq(t) < L.

A completely different approach is taken in Dynameq (Mahut and Florian 2010).
It is based on a simulation model that moves vehicles individually, according to a
simplified car-following model. In this model, given two consecutive vehicles, the
leader vehicle n and the follower n + 1, the position xn+1(t) of the follower at time t
relative to the position of the leader at xn(t − T ) is estimated according to Eq. 7.21:

xn+1(t) = Min
[
xn+1(t − ε) + εuf , xn(t − T ) − leff

]
(7.21)

whereT is the reaction time,uf the free-flowspeed, leff , as before, the effective vehicle
length and ε an arbitrary short time interval. The first term inside the minimizing
operator represents the farthest position downstream that can be attained at time t
based on the follower’s position at time (t − ε), as constrained by the maximum
speed of the vehicle, uf . The second term inside this operator represents the farthest
position downstream that can be attained based on the trajectory of the next vehicle
downstream in the same lane, according to a simple collision-avoidance rule (Mahut
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1999, 2001; Newell 2002). It is a simplified model that only depends on the free-
flow speed and does not account for accelerations. It can be considered a lower-order
model, since it only defines the position of each vehicle in time, rather than vehicle
speed or acceleration.

The solution of the car-following relationship (Eq. 7.21) for time results in
(Eq. 7.22):

tn+1(x) = Max

[
tn+1(x − δ) + δ

uf
, tn(x + leff) + T

]
(7.22)

This relationship in Eq. 7.22 enables the event-based simulation approach used
in Dynameq, because it is possible to derive the following expression in Eq. 7.23. It
calculates the link entrance and exit times for each vehicle:

tn+1(L1) = Max

⎡

⎣tn+1(0) + L1
u1f

, tn(L1) + T + leff

min
[
u1f , u2f

] , tn+L2/leff
(L2) + L2

leff
∗ T

⎤

⎦ (7.23)

where L1 and L2 are the lengths of two sequential links with speeds u1
f and u2

f ,
respectively. The vehicle attributes represented by leff and T are considered identical
over the entire traffic stream, and each vehicle adopts the link-specific free-flow
speed when traversing a given link. The link lengths are assumed to be integer
multiples of the vehicle length, leff . It can be shown (Mahut 2000) that this model
yields the triangular fundamental flow-density diagram (Daganzo 1994). The main
events changing the state of the model are the arrivals of vehicles to links, their link
departures or transfers from one link to the next, according to the turning movements
at intersections.

This one-lane link model can be extended to multilane links, including lane
changing decisions and additional terms to (7.23) to account for conflicts at nodes
with multiple outgoing links. Details can be found in Florian et al. (2008), Mahut
and Florian (2010).

The summary description of the most common DTA and DUE included in this
section has shown how they can provide TMS with useful information. On the one
hand, with the inputs allowing them to estimate the network traffic state. On the
other hand (and what is even more relevant), with the necessary outputs to predict
traffic flows and travel times on road networks.Moreover, this prediction accounts for
their evolution over time because of various factors, being one of them particularly
relevant: the time variation of the demand. The main pending question at this point
is how to provide this time variation of the traffic demand that constitutes the main
input to DTA or DUE. In other words, how to estimate OD-matrices.
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7.2 The Static Formulation of the OD-Estimation Problem

Traffic assignment models aim at estimating traffic flows in the network assigning
a trip OD-matrix to it, in terms of a route choice mechanism. Therefore, OD trip
matrices become their major data input to describe the patterns of traffic behavior
across this network. All formulations of static traffic assignmentmodels (e.g., Florian
and Hearn 1995), as well as the dynamic ones (e.g., Ben-Akiva et al. 2001), assume
that a reliable estimate of an OD is available. However, OD-matrices are not directly
observable yet, especially in the case of the time-dependent OD-matrices that are
necessary for DTA models. Consequently, it has been natural to resort to indirect
estimationmethods. These are thematrix adjustmentmethods, whosemainmodeling
hypothesis can be stated as follows: “if traffic flows in the links of a network are the
consequence of the assignment of an OD matrix to a network, and if we are capable
of measuring link flows, the problem of estimating the OD matrix that generates such
flows can be considered as the inverse of the assignment problem” (Cascetta 2001).
In other words, the traffic assignment problem is defined as the direct problem, i.e.,
“given the O/D matrix X and the cost conditions for using links on the road network,
the user equilibrium assignment problem estimates the user equilibrium flows Y on
the links of the road network” (Eq. 7.24):

Y = Assignmt(X ) (7.24)

where Y is the set of all link flows, X is the OD-matrix, and Assignmt is an equilib-
rium assignment algorithm assigning theOD-matrixX to the network. The reciprocal
problem would be that of estimating, from the observed link flows yl , the OD-matrix
X that originated them. In other words, the reciprocal problem of traffic assign-
ment, as described by Cascetta (2001), consists in “assuming that the observed flows
yl on a subset L

∧

⊆ Lof links in the network (or in all links) constitute an user
equilibrium flow pattern as defined by Wardrop (1952), determining the OD matrix
X whose assignment would produce the observed flows yl”. Formally, this implies
that (Eq. 7.25)

X = Assignmt−1(Y ) (7.25)

Since the earlier formulation proposed by van Zuylen and Willumsen (1980),
the matrix adjustment problem has been a relevant research and practical problem.
Given a road network G = {L, N }, with a set of links L, a set of nodes N ,
and a set I of OD pairs, the OD-matrix estimation problem consists in finding
a feasible vector (OD-matrix) X ∈ �, where � is the set of all feasible OD-
matrices. For their part X = {Xi}, i ∈ I , are the demands for all OD pairs, being
I = {setofallODpairsinthenetwork}. (r, s), as introduced in Sect. 7.1, stands for the
i − th OD pair. The assignment of the OD-matrix explains the observed flows yl

on a subset L
∧

⊆ L of links equipped with counting stations. It is usually accepted
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Fig. 7.3 Possible link-path relationships

that the assignment of the OD-matrix to the links of the network is made according
to an assignment proportion matrix P = {pil},∀i ∈ I ,∀l ∈ L, where each element
pil in the matrix is defined as the proportion of the OD demand Xi that uses link l.
The notation P = P(X ) remarks that, in general, these proportions depend on the
demand.

The hypotheses supporting the approach are illustrated in Fig. 7.3, which depicts
possible positions of a hypothetical detector at a link l.

Let yl be the flow measured by one detector and hk the flow on path k to which
this link belongs. If ϕik is the fraction of the demand of the ith OD pair Xi, the flow
hk is given by Eq. 7.26:

hk = ϕik ∗ Xi (7.26)

δlk is the link-path assignment matrix, taking the following values (Eq. 7.27):

δlk =
{
1 if link l belongs to path k : l ∈ Path k
0 otherwise

∀l ∈ L, k ∈ Ki, i ∈ I (7.27)

where Ki = {Set of all paths connecting the ith OD pair}. The relationship
between the measured flow yl on link l and the flows hk on the paths using link
l is given by Eqs. 7.28 and 7.29:

yl =
∑

i∈I

∑

k∈Ki

hk ∗ δlk =
∑

i∈I

∑

k∈Ki

ϕik ∗ δlk∗X i =
∑

i∈I

pil ∗ Xi (7.28)

pil =
∑

k∈Ki

ϕik∗δlk (7.29)

When assigned to the network, the OD-matrix induces a flow Y = {yl},∀l ∈ L in
its links. If we assume that observed flows Y

∧

= {yl} are available for a subset L
∧

of
the links, l ∈ L

∧

⊆ L, and that a target matrix X H ∈ � is also available, the generic
OD-matrix estimation problem can be formulated (Lundgren and Peterson 2008) as
(Eq. 7.30):
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MinXY (X , Y ) = w1 ∗ F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)

s.t.
∑

i∈I

pil
(
X H

)∗X i = y
∧

l,∀l ∈ L
∧

(7.30)

X ∈ �

The functions F1
(
X , X H

)
and F2

(
Y , Y

∧)
, respectively, represent generalized

distance measures. The first one that between the estimated OD-matrix X and the
given target matrix X H , and the second one between the estimated link flows Y and
the observed link flows Y

∧

. The parameters w1 and w2 reflect the relative belief (or
uncertainty) in the information contained in X H and Y

∧

. The problem expressed in
Eq. 7.30 can be interpreted as a two-objective optimization problem, being precisely
these objectives F1 and F2, whereas w1 and w2 are the corresponding weighting
factors.

The set � of feasible OD-matrices normally includes the non-negative OD-
matrices. However, it can also be limited to those matrices within a certain deviation
from the target values (Eq. 7.31), i.e.,

� = {
X ≥ 0

∣∣(1 − α) ∗ X H ≤ X ≤ (1 + α)∗X H
}

(7.31)

for some suitable parameter α > 0 stating the tolerance level. An analogous
formulation can be used to state, instead, a maximum deviation from the link flow
observations with a tolerance parameter β > 0 (Eq. 7.32):

� = {
X ≥ 0|(1 − β)∗y

∧

l ≤ yl ≤ (1 + β) ∗ y
∧

l

}
(7.32)

Another possibility is to restrict the total travel demand in all OD pairs originating
or terminating at a certain node. This is the four-step demand model (Ortúzar and
Willunsen 2011), which makes an adjustment of the trip distribution with respect to
the trip generation. In any case, all these constraints on � are linear or convex and
can be easily handled from the optimization point of view.

Obviously, the resulting OD-matrix is dependent on the objective function mini-
mized in (7.30), that is, on the distance measure chosen. One of the distances
initially proposed, probably as an analogy with the trip distribution problem, was
the maximum entropy function. It was derived from the principle of minimum
information (van Zuylen and Willumsen 1980) and is expressed as in Eq. 7.33:

F1
(
X , X H

) =
∑

i∈I

Xi ∗
{
log

Xi

X H
i

− 1

}
(7.33)

The function F2 in (7.30) can be formulated in a similar way.
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A type of objective function that is becoming very used in these models is
the one based on the least squares formulation. This is equivalent to assume a
Euclidean distance function between observed and estimated variables. For example,
the function F2 for the observed volumes would correspond to Eq. 7.34:

F2

(
Y , Y

∧)
=

∑

l∈L
∧

(
yl − y

∧

l

)2
(7.34)

and could be weighted using the information on the significance of each observation.
For instance, when the measurements contained in y are computed as means from
a set of observations for each link, the variance σ 2

l can be used as a measure on
how important each link observation is. Equation 7.34 would be then reformulated
as Eq. 7.35:

F2

(
Y , Y

∧)
=

∑

l∈L
∧

1

σ 2
l

∗ (
yl − y

∧

l

)2
(7.35)

One disadvantage of the entropymaximizing approaches as formulated in Eq. 7.33
lies in the treatment of link flow observations as error-free constraints (Bell and Iida
1997). An attempt to overcome this disadvantage consists in using a generalized
least squares approach to provide a framework accounting for errors from various
sources. The method, first proposed by Cascetta (1984), also yields standard errors
for the trip table, thereby indicating the relative robustness of the fitted values. The
equivalent problem, assuming that the weighting factors w1 and w2 have the same
value, takes the following form (Eq. 7.36):

MinX F(X ) = 1

2
∗
[(

X − X H
)T ∗(X H

C

)−1 ∗ (
X − X H

)]

+ 1

2
∗
[(

Y
∧

− P
(
X H

) ∗ X
)T ∗ (YC)−1 ∗

(
Y
∧

− P
(
X H

) ∗ X
)]

(7.36)

The inputs are prior estimates of OD flows, X H , link flow measurements, Y
∧

,
variance–covariance matrices of the prior estimates and link flow measurements,
respectively,X H

C andYC and thematrix of link choice proportionsP(X H ).As the vari-
ance–covariance matrices are positive definite and the objective function is convex,
the minimum is uniquely given by (Eq. 7.37):

∇F
(
X ∗, Y ∗) = (

X H
C

)−1 ∗ (
X ∗ − X H

)

− PT
(
X H

) ∗ (YC)−1 ∗
(

Y
∧

− P
(
X H

)∗X ∗
)

= 0 (7.37)

This yields the following linear estimator (Eq. 7.38):
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X ∗ =
[(

X H
C

)−1 + PT
(
X H

) ∗ (YC)−1 ∗ P
(
X H

)]−1

∗
[(

X H
C

)−1 ∗ X H + PT
(
X H

) ∗ (YC)−1 ∗ Ŷ
]

(7.38)

For their part, the sensitivities of this factor are given by Eq. 7.39:

�X ∗ =
[(

X H
C

)−1 + PT
(
X H

) ∗ (YC)−1 ∗ P
(
X H

)]−1

∗
[(

X H
C

)−1 ∗ �X H + PT
(
X H

) ∗ (YC)−1 ∗ �Ŷ
]

(7.39)

Additionally, taking into account that X H and y are uncorrelated and assuming

that E =
[(

X H
C

)−1 + PT
(
X H

) ∗ (YC)−1 ∗ P
(
X H

)]−1
, the variance of X ∗ is given by

Eq. 7.40:

Var
{
X ∗} = E

(
X H

C

)−1 ∗ E + E∗PT
(
X H

)∗(YC)−1 ∗ P
(
X H

) ∗ E (7.40)

Unlike the maximum entropy model, there is nothing to prevent negative fitted
values for the OD flows being produced by the generalized least squares estimator.
While negative valueswould reflect small real values, they are nonetheless counterin-
tuitive. Bell (1991) has also considered the introduction of non-negativity constraints
for the fitted OD-matrix.

7.3 Bi-level Optimization Models for OD Adjustment

The estimation of OD-matrices from observed flows as the reciprocal of the assign-
ment problem is a highly undetermined problem. That is, there are in general many
OD-matrices, which, when assigned to the network, induce equivalent link flows.
The objective function and the set of constraints in the formulation of the problem
are aimed at reducing this indetermination. However, this simple formulation can
still have some drawbacks. The set of constraints in the generic problem formulation
(Eq. 7.30) to determine X is expressed by Eq. 7.41:

∑

i∈I

pil
(
X H

) ∗ Xi = y
∧

l,∀l ∈ L
∧

(7.41)

s.t. X ∈ �

It consists of one equation for every link flow observation. Thus, it is an unde-
termined equation system, as long as the number of OD pairs |I | is greater than the

number of link flow observations
∣∣∣L
∧
∣∣∣. This fact is especially true for large real-world

networks. Additionally, the information transferred through the equation system is
delimited by topological dependencies. A basic principle in network flows is that,
for consistent flows, the balance equations must hold. In other words, the sum of
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incoming and outgoing flows at any intermediate node must be zero. This principle,
which can also be interpreted in physical terms using Kirchhoff’s law, means that,
for each intersection, at least one link flow is linearly dependent from the others.
This results in a row-wise dependency for the equation system.

On the other hand, the elements pil
(
X H

)
are non-zero because they are part of one

or more shortest paths for OD pairs i ∈ I . However, since every subpath of a shortest
path is a shortest path, every pair of nodes along a certain shortest path is connected
through parts of this shortest path. This results in a column-wise dependency for
the equation system. Thus, we can conclude that the equation system (Eq. 7.31) is
most likely not fully ranked, which further increases the freedom of choice for the
OD-estimation problem. Therefore, the way of determining pil

(
X H

)
is crucial for

the quality of the OD-matrix estimation model. This is usually done depending on
how the assignment matrix P(X H ) is calculated, and whether it is dependent of X
or not. In other words, if the route choices are made depending on the congestion
or not. If the assignment of the OD-matrix to the network is independent of the link
flows, that is, if we have an uncongested network,P

(
X H

) = P is a constant matrix.
In that case, the first set of constraints in Eq. 7.41 can be reformulated as in Eq. 7.42:

∑

i∈I

pil∗X i = y
∧

i ∀l ∈ L
∧

(7.42)

s.t. X ∈ �

In addition, this substitution can be directly performed in the objective, i.e., in the

function F2

(
Y , Y

∧)
, which reduces the OD-matrix estimation to a problem only in

the variable X . Assuming that the deviation measures F1 and F2 are convex and that
the set of feasible OD-matrices � is linear or, at least, convex, the OD-estimation
problem can be easily solved with some suitable standard algorithms for nonlinear
programming. This is the usual approach in most cases (van Zuylen and Willumsen
1980). However:

The assumption that the assignment, i.e., the route choice, is independent of the load on the
links is only realistic in a network with a very low congestion rate or in networks where, in
practice, only one route can be used.

If we assume that the network is congested and that the routes are chosen
depending on the current travel times, the route proportions are in turn dependent on
the existing traffic situation. For its part, this situation depends on the OD-matrix.
Thus, the relationship between the route proportions P and the OD-matrix X can
only be defined implicitly. In this case, a plausible hypothesis is to assume that the
choice proportions can be derived from a traffic assignment model. Then, the set of
feasible solutions to the estimation problem (Eq. 7.30) is defined as all points (X , Y )

in which Y is the link flow solution satisfying an assignment of the corresponding
demand X ∈ �. In this case, the generic OD-matrix estimation problem (Eq. 7.30)
can be reformulated as a bi-level optimization problem. Bell and Iida (1997) propose
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an approach based on the hypothesis that a traffic assignment model can be repre-
sented by a function whose input is the OD-matrix X and whose outputs are the link
flows Y (Eq. 7.43)

Y = A(X ) ∗ X (7.43)

That is simply a reformulation of the direct assignment problem as defined in
Sect. 7.2, in which, given the OD-matrix X , it is possible to find the link flows y

∧

. The
reciprocal problem of finding X given y (Eq. 7.25) is not possible, since the inverse
of this function does not exist. However, a way of accounting for this functional
relationship in the OD-estimation process could be to reformulate the least squares
formulation including it explicitly in the model (Eq. 7.44):

MinimizeX F(X ) = 1

2
∗ (

X − X H
)T ∗ (

X H
C

)−1 ∗ (
X − X H

)

+ 1

2
∗ [

y − A(X ) ∗ X
]T ∗ (YC)−1 ∗

[
Ŷ − A(X ) ∗ X

]
(7.44)

If the assignment function (Eq. 7.73) is differentiable, then (Eq. 7.45):

∇F(X ) = (
X H

C

)−1 ∗ (
X − X H

) − ∇A(X )T ∗(YC)−1 ∗
[
Y
∧

− A(X ) ∗ X
]

(7.45)

And if the Jacobian of the assignment function∇A(X ) is independent of X H , then
(Eq. 7.46):

∇2F(X ) = (
X H

C

)−1 + ∇A(X )∗(YC)−1 ∗ ∇A(X ) (7.46)

∇2F(X ) is positive definite, since X H
C and YC are variance–covariance matrices,

and there is a unique solution to the equivalent optimization problem. Yang (1995)
proposes an efficient heuristic approach to solve this bi-level problem.

However, as Florian andChen (1995) probe, the assignment function is usually not
differentiable. Therefore, analytical approaches are of limited usefulness, since they
are constrained to simple uncongested cases. Consequently, other formulations have
been proposed. The most common formulation of the bi-level OD-matrix estimation
problem for the general case is that Eqs. 7.47 and 7.48, respectively, referred to the
upper level and to the lower level problem. Equation 7.47 is as follows:

MinX F(X , Y ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
(7.47)

s.t. X ∈ �

We want to find the X that minimizes F(X , Y ) subject to X ∈ � under the
hypothesis that the induced linkflow y

∧

satisfies the equilibriumassignment conditions
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obtained by solving Eq. 7.48, that is, the lower level problem:

Y (X ) = argmin
∑

l∈L

yl∫

0

sl(x)dx

s.t.
∑

k∈Ki

hk = Xi,∀i ∈ I (7.48)

hk ≥ 0∀k ∈ Ki,∀i ∈ I

yl =
∑

i∈I

∑

k∈Ki

δlk∗hk ,∀l ∈ L

The algorithm for this OD adjustment method based on a bi-level optimization
process can be viewed as the calculation of a sequence of OD-matrices, so that the
least squares error between traffic counts coming from detectors and traffic flows
obtained by a traffic assignment is increasingly reduced. The estimation of the OD-
matrix requires information about the routes used for the trips contained in the OD-
matrix, Xrs. Particularly, it requires the definition of the route and the trip proportions
relative to the total tripsXrs originated at zone r and ending at zone s. This information
is difficult both to handle and to store in traffic databases, considering that the number
of routes connecting all OD pairs on a connected network can grow exponentially
with the size of the network. This is the reason to use a mathematical programming
approach based on a traffic assignment algorithm, which is solved at each iteration
without requiring the explicit route definition. The algorithmic scheme to numerically
solve the bi-level formulation of the OD-matrix adjustment problem is illustrated
in the conceptual diagram in Fig. 7.4. The solution at the k − th iteration of the
upper level nonlinear optimization problem for the current estimates of the link

flows, Y
∧k

, provides a new estimate X k of the OD-matrix, which is the input to the
lower level equilibrium assignment problem. In turn, the solution to this lower level
problem updates the link flow estimates. The iterative process continues until certain
convergence criterion is satisfied.

One of the first operational approaches of the bi-level algorithm was the one
proposed by Spiess (1990), whose bi-level optimization adjustment procedure solves
the following bi-level nonlinear optimization problem (Eqs. 7.49 and 7.50):

Min F[Y (X )] = 1

2
∗

⎧
⎪⎨

⎪⎩

∑

l∈L
∧

[
yl(X ) − y

∧

l

]2

⎫
⎪⎬

⎪⎭
(7.49)

Y (X ) = argmin
∑

l∈L

yl∫

0

sl(x)dx (7.50)
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Fig. 7.4 Algorithmic
scheme for the bi-level
approach to the OD
adjustment problem

s.t.
∑

k∈Ki

hk = Xi,∀i ∈ I

hk ≥ 0∀k ∈ Ki,∀i ∈ I

yl =
∑

i∈I

∑

k∈Ki

δlk ∗ hk =
∑

i∈I

Xi

∑

k∈Ki

δlk ∗ pk , pk = hk

Xi
∀l ∈ L

where yl(X ) is the flow on link l estimated by the lower level traffic assignment
problem with the adjusted trip matrix X , hk is the flow on the k − th path for the
i − th O-D pair and y

∧

l is the measured flow on link l. I is the set of all OD pairs
in the network, and Ki is the set of paths connecting the i − th O-D pair. sl(yl) is
the volume-delay function for link l ∈ L. The algorithm used to solve the problem
is heuristic in nature, of steepest descent type, and does not guarantee that a global
optimum of the problem will be found. The iterative process for a generic iteration
k is as follows:

• Given a solution X k
i , an equilibrium assignment is solved, yielding link flows yk

l
and proportions

{
pk

il

}
satisfying the relationship in Eq. 7.51:

yk
l =

∑

i∈I

pk
il∗X k

i ∀l ∈ L (7.51)

The target matrix is used in the first iteration (i.e., X 1
i = X H

i ,∀i ∈ I ).
• The estimate of the OD-matrix at iteration k + 1 is calculated in terms of the

gradient of the objective function F[Y (X )] with Eq. 7.52:
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X k+1
i =

⎧
⎨

⎩

Xi for k = 0

X k
i ∗

[
1 − λk ∗

(
∂F[Y (X )]

∂Xi

)

X k
i

]
for k = 1, 2, 3 . . .

(7.52)

That is, a change in the demand is proportional to the demand in the initial matrix
and zeroes are preserved in the process.

• The gradient is approximated as in Eq. 7.53:

∂F[Y (X )]

∂Xi
=

∑

k∈Ki

pk

∑

l∈L
∧

δlk ∗ (
y
∧

l − yl
) ∀i ∈ I (7.53)

where L
∧

⊂ is the subset of links with flow counts and pk = hk
Xi
.

• The step length is approximated as in Eq. 7.54 and 7.55:

λ∗ =
∑

l∈L
∧ y

′
l ∗ (

y
∧

l − yl
)

∑
l∈L

∧

(
y

′
l

)2 (7.54)

where

y
′
l = −

∑

i∈I

Xi ∗
⎛

⎜
⎝
∑

k∈Ki

pk

∑

l∈L
∧

δlk ∗ (
y
∧

l − yl
)

⎞

⎟
⎠ ∗

⎛

⎝
∑

k∈Ki

δlk ∗ pk

⎞

⎠ (7.55)

To ensure the convergence the step length must satisfy the condition in Eq. 7.56:

λ∗ ∂F[Y (X )]

∂Xi
< 1 ∀i ∈ I (7.56)

If the condition is violated for some I , the step lengthmust be bounded accordingly
(Eq. 7.57):

λ∗ = 1

max
i

{
∂F[Y (X )]

∂Xi

} + ε (7.57)

where ε is added to avoid numerical errors.

Further details on the algorithmic properties of this approach are available in Florian
andChen (1995). Alternative approaches improving the simplified gradient approach
canbe found inCodina andBarceló (2004) andLundgren andPeterson (2008), among
others.

In summary, the most common practices consist in using an initial OD estimate,
the OD seed X H as input, and adjusting it. This adjustment is done based on the
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available link counts y provided by an existing layout of traffic counting stations
and on other additional information, whenever it is available. Adjustments can be
considered as indirect estimation methods based on optimization approaches. All of
them share two fundamental modeling hypotheses:

• A mapping scheme of OD flows-link flow counts is available
• If L is the set of links in the network, flow detectors are only located in a subset

L
∧

⊂ L, from which link flow measurements y
∧

l , l ∈ L
∧

are available.

Assuming these hypotheses, a bi-level optimizationmodel can be proposed,which
is usually solved by computational schemes like the one conceptually depicted in
Fig. 7.4. That is, iterating between an upper and a lower level. Again, the upper
level solves a nonlinear optimization problem that minimizes the distance between
available empirical evidence (i.e., a target OD-matrix X H and observed flows Y

∧

in a
subset of links) and the estimations provided by the algorithm, while the lower level
solves aUser Equilibrium Traffic Assignment (UETA). The solution to the upper level
nonlinear optimization problem provides new estimates of the OD-matrix, which
constitute the input to the lower level assignment problem. In turn, the solution to
this latter problem provides new estimates of link flows. This computational scheme
is in fact a computational framework from which multiple algorithmic variants to
solve the problem, both at the upper and at the lower level, can be derived.

The second modeling hypothesis strongly depends on the detection layout avail-
able in the network. Unfortunately, they are usually designed and implemented with
the primary purpose of providing the data required by traffic control applications.
Therefore, current detection layouts in traffic networks are not appropriate for the
reconstruction of OD-matrices, as they do not take into account the OD pattern struc-
ture explicitly. This could represent a serious drawback regarding the quality of the
OD reconstruction, since it has been observed in practice that the adjustment proce-
dure can act implicitly as ametaregressionmodel. That is, it would fit quite well those
parts of the networkwith a relatively rich detection infrastructure (in fact overfit them
ismost cases), while completely distorting other parts of the networkwhere detection
is sparse. This would generate an unbalancing process moving trips between parts of
the network, depending on the numerical requirements of the process, but completely
unrelated to the underlying transportation phenomena modeled by the OD pattern. In
this context, the objective of identifying a detection layout that optimizes the coverage
of origin–destination demand on the road network while minimizing the uncertain-
ties of the estimated OD is a subsidiary prior requirement. Since the seminal work
of Yang and Zhou (1998), the problem has received substantial attention in recent
years, being Ehlert et al. (2006), Fei et al. (2007) just example references. Castillo
et al. (2008), who formulate the problem from the perspective of the observability
of systems being a sine qua non condition for their state estimation and forecasting,
must be highlighted. Larsson et al. (2010) provide an overview of the pros and cons
of various approaches, and Barceló et al. (2012) complement the detection layout
models with a sensitivity analysis, enabling the analyst to establish a relationship
between the quality of the layout and the quality of the OD pattern reconstruction.
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In consequence, for the practice of the matrix adjustment, it is not only relevant the mathe-
matical modeling approach to be used but it is also highly recommendable to pay attention
to the detection layout whose measurements are going to be used for the adjustment of an
OD matrix.

7.4 Analytical Formulations for the Dynamic OD Matrix
Estimation (DODME) Problem

The static bi-level optimization OD adjustment problem can be reformulated as
(Eqs. 7.58 and 7.59):

Min Z(X , Y ) = w1∗F1
(
X , X H

) + w2 ∗ F2

(
Y , Y

∧)
(7.58)

s.t. Y = Assignmt(X ) (7.59)

X ≥ 0

where F1 and F2, as before, are suitable distance functions between estimated and
observed values, while w1 and w2 are weighting factors reflecting the uncertainty
of the information contained in X H and Y

∧

, respectively. The underlying hypothesis
is that Y (X ) are the link flows predicted by assigning the demand matrix X to the
network, which can be expressed by a proportion of the OD demand flows passing
through the count location at a certain link. In terms of the assignment matrix A(X ),
the proportion of OD flow that contributes to a certain link traffic count is (Eq. 7.60):

Y = A(X ) ∗ X (7.60)

This is a bi-level optimization problem that solves (at the upper level) the nonlinear
optimization problem by substituting the estimated flows Y in the objective function
(Eq. 7.59) using the relationship in Eq. 7.60. Thus, it results in (Eq. 7.61):

Min Z(X , Y ) = w1 ∗ F1
(
X , X H

) + w2∗F2

(
A(X ) ∗ X , Y

∧)
(7.61)

s.t. X ≥ 0

To estimate a new assignment matrix X while at the lower level, a Static User
EquilibriumAssignment is used to solve the assignment problem Y = Assignmt(X ),
i.e., to estimate the assignment matrix A(X ) induced by the new X . Spiess (1990)
is a good example of a seminal model based on this approach. Static models have
made wide use of the analytical approaches that include flow counts as complemen-
tary information to reduce indeterminacy when solving the minimization problem
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(Eq. 7.61), as in Codina and Montero (2006), Lundgren and Peterson (2008), and
Spiess (1990). The various algorithmic approaches to numerically solve the problem
look for algorithmic efficiency, convergence properties, and stability. However, since
they are static, they are supported by static assignment models.

In this context, some researchers as Frederix et al. (2011), Lundgren and Peterson
(2008), Toledo andKolechkina (2013), or Yang et al. (2017) drew attention to the role
played by the quality of the assignment matrix, which results from the lower level
assignment process when estimating the flows used in the upper level. Therefore,
they proposed either analytical or empirical approaches for improving it. The analyt-
ical approaches assume a functional dependency that allows for a Taylor expansion
around the current solution. While some authors like Lundgren and Peterson (2008)
still derive the expansion from a static traffic assignment, others like Frederix et al.
(2013) or Toledo and Kolechkina (2013) propose a dynamic traffic assignment to
account for time dependencies. The approaches based on the hypothesis of linear
relationships may be invalid when congestions build up in the network, resulting in
non-linearities. The dynamic assignmentwould bemore appropriate forworkingwith
congestion building processes that would be captured by the analytical expansion
of the dynamic assignment matrix. Frederix et al. (2013) offer a relevant theoretical
contribution, while Toledo and Kolechkina (2013) provide more insights to apply it
to large networks.

A simpler approach is the modification of the Spiess procedure performed by
Ros-Roca et al. (2020). They used, on the one hand, a first-order approach to the
assignment matrix that is provided by replacing the static assignment at the lower
level by a dynamic traffic assignment. On the other hand, an ad hoc reformulation
of the analytical calculation of the gradient that is suitable for a straightforward
calculation of the step length at each iteration.

The following notation is used for the dynamic analytical extension from this
point until the end of the chapter:

• I is the set of OD pairs.
• T = {1, . . . , T } is the set of time intervals.
• L is the set of links in the network. L

∧

⊆ L is the subset of links that have sensors.
• y

∧

l,t are the measured flow counts at link l during time period t. yl,t are the corre-

sponding simulatedflowcounts,∀l ∈ L
∧

⊆ L and∀t ∈ T .Y = (
yl,t

)
andY

∧

= (
y
∧

l,t

)

are the link flow counts in vector form.
• xn,r are the OD flows for n − th OD pairs departing during time period r, ∀n ∈ I

and ∀r ∈ T .X = (
xn,r

)
are the OD flows in vector form.

• al,t
n,r is the flow proportion of the n − th OD pair, n ∈ I , departing at time period

r ∈ T and captured by link l ∈ L
∧

at time period t ∈ T . A = [
al,t

n,r

]
is the

assignment matrix.

Given a network with a set of links L, a set I of OD pairs, and the set of time periods
T , the goal of the dynamic OD-matrix estimation problem is to find a feasible vector
(OD-matrix) X ∗ ∈ G ⊆ R

I×T
+ , where X ∗ = (

x∗
n,r

)
, n ∈ I , r ∈ T consists of the

demands for all OD pairs. It can be assumed that the assignment of the time-sliced
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OD-matrices to the links of the network should be done according to an assignment
proportion matrix A = [

al,t
n,r

]
,∀l ∈ L,∀n ∈ I ,∀r, t ∈ T , where each element in the

matrix is defined as the proportion of the OD demand xn,r that uses link l at time
period t. The notation A = A(X ) is used to indicate that, in general, these proportions
depend on the demand. The linear relationship between the flow count on a link and
the given OD pair has a matrix form, which thus sets the vector of detected flows
as Y = (Y1, . . . , YT ) = (y1,1, . . . , yL,1, . . . , y1,T , . . . yL,T ) and the vector of OD
flows as X = (X1, . . . , XT ) = (x1,1, . . . , xN ,1, . . . , x1,T , . . . , xN ,T ). Expressing this
relationship as the matrix product (Eq. 7.42), A(X ) is now (Eq. 7.62):

A(X ) =

⎛

⎜⎜
⎜
⎝

A1,1 0 · · ·
A1,2 A2,2 0
...

. . .
. . .

0
...

0
A1,T · · · AT−1,T AT ,T

⎞

⎟⎟
⎟
⎠
whereAr,t =

⎛

⎜
⎝

a1,t
1,r · · · a1,t

N ,r
...

. . .
...

aL,t
1,r · · · aL,t

N ,r

⎞

⎟
⎠ (7.62)

al,t
n,r represents the proportion of OD flow departing at time r, xn,r , passing through

link l at time t, yl,t . Ar,t represents the assignment matrix for the departing flows at
time window r detected at time window t. Therefore, A is a lower-diagonal matrix,
because OD flows departing at time r cannot pass through link l at time t < r.

This linear mapping between the link flows and the OD flows is indeed the first
term in the Taylor expansion of the relationship between link flows and OD flows,
where additional terms capture the assignment matrix’s sensitivity to changes in the
OD flows, path choice, and congestion propagation effects (Frederix et al. 2011,
2013; Toledo and Kolechkina 2013). Let X ′ be in the neighborhood of X . Then, the
Taylor expansion is (Eq. 7.63):

yl,t =
∑

n∈I

t∑

r=1

al,t
n,r

(
X ′) ∗ x′

n,r +
∑

n∈I

t∑

r=1

∂yl,t
(
X ′)

∂xn,r
∗ (

xn,r − x′
n,r

) =

=
∑

n∈I

t∑

r=1

al,t
n,r

(
X ′) ∗ x′

n,r

+
∑

n∈I

t∑

r=1

∂
[∑

n∈I
∑t

r=1 al,t
n,r

(
X ′) ∗ xn,r

]

∂xn,r

∣
∣∣∣
∣∣
X ′

∗ (
xn,r − x′

n,r
) =

=
∑

n∈I

t∑

r=1

al,t
n,r

(
X ′) ∗ x′

n,r

+
∑

n∈I

t∑

r=1

(
xn,r − x′

n,r
) ∗

⎡

⎣
∑

n′∈I

t∑

r′=1

∂al,t
n′,r′

(
X ′)

∂xn,r

∣∣
∣∣
∣∣
X ′

∗ x′
n′,r′

⎤

⎦ (7.63)

This enables redefining Spiess’ approach to the dynamic case by simply using
the first term in the above Taylor expansion. It does not account for the propagation
effects, but it explicitly considers time dependencies. The traffic assignment problem
at the lower level must now be a dynamic traffic assignment (DTA). Then, the time
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periods for the entire formulationmust be considered as follows (Eqs. 7.64 and 7.65):

Min Z(X ) = 1

2
∗
∑

t∈T
∑

l∈L
∧

((∑

n∈I

∑t

r=1
al,t

n,r∗xn,r

)
− y

∧

l,t

)2
(7.64)

s.t. al,t
n,r = Assignment(X ) (7.65)

xn,r ≥ 0

where al,t
n,r is the assignment matrix described before. Therefore, the linear combi-

nation inside the brackets is the simulated flow yl,t , applying (Eq. 7.66):

∂yl,t

∂xn,r
= al,t

n,r (7.66)

As in Spiess (1990), the chain rule can be used to obtain the gradient of the
objective function (Eq. 7.67):

∂Z

∂xn,r
=

∑

t∈T
∑

l∈L
∧

∂yl,t

∂xn,r
∗ (

yl,t − y
∧

l,t

) =
∑

t∈T
∑

l∈L
∧al,t

n,r ∗ (
yl,t − y

∧

l,t

)

(7.67)

We obtain similar equations finding the optimal step size by using the same
procedure (Eq. 7.68):

y
′
l,t = dyl,t

dλ
=

∑t

r=1

∑

n∈I

dxn,r

dλ
∗ ∂yl,t

∂xn,r
=

∑t

r=1

∑

n∈I
− xn,r ∗ ∂Z

∂xn,r
∗ ∂yl,t

∂xn,r
(7.68)

The optimal step length λ can be calculated solving the 1-dimensional optimiza-
tion problem in Eq. 7.69 and whose solution is given by Eq. 7.70:

Z
′
(λ) =

∑

t∈T
∑

l∈L
∧y

′
l,t ∗

(
ỹl,t − y

∧

l,t + λ ∗ y
′
l,t

)
= 0 (7.69)

λ∗ =
−∑

t∈T
∑

l∈L
∧y

′
l,t ∗ (yl,t − y

∧

l,t)

∑
t∈T

∑
l∈L

∧y
′
l,t

2 (7.70)

Then, the iterative procedure described by Spiess (1990) can be used in DTA
using these new equations, which are expanded with the time windows. In addition,
this procedure can be improved by adding a second term in the objective function
to compare it with a historical OD-matrix. If the quadratic function is used, and
replacing w1 and w2 by w = w2

/
w1 for simplification, Eq. 7.71 arises
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Min Z = 1

2
∗
∑

t∈T

∑

l∈L̂

((
∑

n∈I

t∑

r=1

al,t
n,r ∗ xn,r

)

− ŷl,t

)2

+ w

2
∗
∑

r∈T

∑

n∈I

(
xn,r − xH

n,r

)2
(7.71)

In this case, Eq. 7.47 is updated, resulting in Eq. 7.72:

∂Z

∂xn,r
=

∑

t∈T

∑

l∈L̂

∂yl,t

∂xn,r
∗ (

yl,t − ŷl,t
) + w

2
∗ xn,r

=
∑

t∈T

∑

l∈L̂

al,t
n,r ∗ (

yl,t − ŷl,t
) + w

2
∗ xn,r (7.72)

Therefore, the Iterative Dynamic Spiess Procedure would be (Eq. 7.73):

X (k+1)
i =

⎧
⎨

⎩

X H
i for k = 0

X (k)
i ∗

(
1 − λ(k) ∗

[
∂Z(X )

∂Xi

]

X (k)
i

)
for k > 0

(7.73)

The use of Euclidean distances tomeasure the distance between the estimatedOD,
X , and the historical X H has been discussed critically in Frederix et al. (2013). For
example, Djukic (2014) shows that using a Euclidean distance term can result in two
matrices that have very different structures but maintain the same distance value with
respect to the reference matrix. Other distance measures have been suggested, for
example, in Ros-Roca et al. (2020). Although additional measurements are expected
to improve the outcome of the OD-estimation in terms of structural similarity, the
analytic approaches do not seem capable of adding measurements different from link
counts.

The resort to the classical entropy function, as in the original analytical formula-
tions, is an appealing option because of its structural meaning. With this approach,
Eqs. 7.71 and 7.72, respectively, become Eqs. 7.74 and 7.75:

Min Z = 1

2
∗
∑

t∈T

∑

l∈L̂

((
∑

n∈I

t∑

r=1

al,t
n,r ∗ xn,r

)

− ŷl,t

)2

+ w

2
∗
∑

r∈T

∑

n∈I

xn,r ∗ log

(
xn,r

xH
n,r

)
(7.74)

∂Z

∂xn,r
=

∑

t∈T
∑

l∈L
∧al,t

n,r ∗ (
yl,t − y

∧

l,t

) + w

2
∗
(
log

(
xn,r

xH
n,r

)
+ 1

)
(7.75)
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7.5 Practical Applications for Traffic Management

Because DTA is a core component of most Dynamic Traffic Management Systems
and the Dynamic Origin–DestinationMatrices are themain input to DTA, algorithms
to numerically implement DODME approaches become a basic procedure in all of
them. The main approaches are:

• The strict analytical dynamic approaches based on State-Space Modeling (Ashok
and Ben-Akiva 1993, 2002), which are the basis of DynaMIT (Ben-Akiva et al.
2020).

• The numerical approximations of analytical optimization approaches, as the ones
proposed by Frederix et al. (2011), Frederix et al. (2013), Toledo and Kolechkina
(2013), or Ros-Roca et al. (2020). Other variants are those studied by Djukic
et al. (2017,2018,2019), currently implemented in Aimsun Live, Aimsun (2020),
or OPTIMA.

• Simulation-based approaches: Stochastic Perturbation Stochastic Approximation
(SPSA).

7.5.1 Analytical Approaches Based on State-Space Modeling

The approach taken in DynaMIT to estimate dynamic OD-matrices, aimed at
providing support to real-time management decisions, is different from the bi-level
optimization considered so far. DynaMIT formulates the real-time dynamic OD-
estimation based on the Kalman Filtering framework proposed by Ashok and Ben-
Akiva (1993). The basic information, as in all other approaches, is that contained in
the historical OD-matrix, which is combinedwith traffic count data from the counting
stations along the network. Other differential aspects of the estimation proposed in
DynaMIT are the use it makes of each day’s estimate to update the original historical
OD estimate in a learning process. These updated historical OD-matrices contain rich
information about the latent factors that affect travel demand and its daily variations,
which the approach tries to capture. To achieve this goal, this approach uses as state
variables the deviations of the OD flows from the historical OD estimates, instead of
the actual flows themselves.

The underlying hypothesis states that (Antoniou et al. 2007) modern surveillance
systems generate data and historical information that can be used for the estimation
and prediction of the time evolving demand patterns represented by OD-matrices.
The wealth of information contained in these off-line values, which affects trip
making and traffic dynamics, as well as their temporal and spatial evolution, can
be incorporated into the DODME process as a priori estimates.

The approach based on Kalman filtering assumes an autoregressive procedure
that provides a prediction tool consistent with the estimation process. That autore-
gressive procedure models the temporal relationships among deviations in OD flows,
also accounting for unobserved factors that are correlated over time, as, for instance,
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weather effects. A proper approach that incorporates this information and its associ-
ated errors in the estimation process considers transport systems as dynamic systems
and resorts to the state-space modeling approach. The formulation of the DODME
problem discussed so far shows that the most critical issue is the calculation of the
assignment matrix, alt

ijr, mapping the observed link flows, ylt , and the unobserved
OD flows, xijr . This matrix must be estimated at each step of the iterative processes
by solving numerically the corresponding mathematical model (Eq. 7.76):

ylt =
∑

(i,j)∈I

∑t

r=1
alt

ijr∗xijr ∀l ∈ L
∧

, t ∈ T (7.76)

The dynamic problem formulation assumes that the assignment matrix depends
on link and path travel times and on traveler route choice factors, being all of them
time-varying. Precisely, time variations are captured by the time indices in Eq. 7.76.
The mapping can be interpreted as the contribution, i.e., the fraction, of the OD flow
of pair (i, j) departing origin i with destination j, at time interval r, that flows across
detectors located at link l, during time interval t.

Ashok and Ben-Akiva (2002), in an extension to their previous seminal work in
Ashok and Ben-Akiva (1993), make the observation that “all quantities are imper-
fectly observed, thereby they introduce errors into the OD estimation process, erro-
neous travel times and/or route choice fractions resulting in an imperfect assignment
matrix”. Therefore, they propose reformulating Eq. 7.76 as Eq. 7.77:

ylt =
∑

(i,j)∈I

∑t

r=1
alt

ijr ∗ xijr + νlt ∀l ∈ L
∧

, t ∈ T (7.77)

where νlt is themeasurement error. The reformulation of theDODMEas a state-space
model involves two types of equations:

• Transition equations that capture the evolution of the state vector over time.
• Measurement equations that, according to Antoniou et al. (2007), “capture a

mapping of the state vector on the measurements: a priorivalues of the model
parameters provide direct measurements of the unknown parameters”.

Let Xk be the vector of state variables whose values define the state of the system
at time interval k. A Kalman filter iterates between an updating (prediction) of the
system’s state at time k, obtained from the system’s state at time k −1, and a correc-
tion based on an update of the measurements of the system. This corresponds to
a process model that models the transformation of the system’s state in terms of a
linear stochastic difference equation (Eq. 7.78):

Xk = �Xk−1 + wk−1 (7.78)
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where � is the transition matrix from system’s state at time k − 1 to system’s state
at time k, and wk−1 is the process error term. Additionally, a measurements model
describes the relationship between the process changing the system’s state and the
system measurements (Eq. 7.79):

Yk = A ∗ Xk + vk (7.79)

Assuming initial estimates of the state vector X
∧

k−1 and of the error covariance
Pk−1 at time interval k − 1, the prediction phase consists of two steps: (i) a state
projection step (Eq. 7.80) and (ii) a covariance projection step (Eq. 7.81), respectively,
projecting forward the state estimate or the covariance from time step k − 1 to step
k:

X
∧k−1

k = φ ∗ X
∧k−1

k−1 + wk−1 (7.80)

Pk−1
k = � ∗ Pk−1

k−1∗�T + Q (7.81)

The correction regarding the measurements update consists of three steps: (i)
the computation of the Kalman Gain (Eq. 7.82), (ii) the update of the error covari-
ance (Eq. 7.83) and (iii) the update of the state estimates with the measurements Zk

(Eq. 7.84):

Kk = Pk−1
k ∗ AT ∗ (

A∗Pk−1
k ∗AT + R

)−1
(7.82)

Pk
k = (I − Kk ∗ A) ∗ Pk−1

k (7.83)

X
∧k

k = X
∧k−1

k + Kk ∗
(

Yk − A∗X
∧k−1

k

)
(7.84)

where wk and vk , the process and measurement errors, are independent, white noise,
and normally distributed (Eqs. 7.85 and 7.86):

p(w) ∼ N (0, Q) (7.85)

p(v) ∼ N (0, R) (7.86)
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Q and R are, respectively, the covariance matrices of the process and the
measurement errors.

When applying Kalman filtering to DODME, the state vector is the vector X of
unknown OD flows, and the transition equation represents an autoregressive process.
However,Ashok andBen-Akiva (1993) state that “an autoregressive process can only
capture interdependencies among OD flows. It does not include structural informa-
tion about trip patterns, which are a function of spatial and temporal distribution of
activities, as well as of the characteristics of the transportation system”. Therefore,
it is desirable to modify the model in such a way that it also incorporates structural
information. This information could be, for example, that contained in a prior esti-
mate. For instance, a historical OD-matrix X H provided by a reliable surveillance
system. It can be accommodated in the model by reformulating the state vector in
terms of the deviations from that historical OD flows. The transition equation would
then be as follows (Eq. 7.87):

Xij(t+1) − X H
ij(t+1) =

t∑

r=t−s

∑

(p,q)∈I

f pqr
ijt ∗

(
Xpqr − X H

pqr

)
+ wijt (7.87)

where f pqt
ijt describes the effect of the deviation

(
Xpqr − X H

pqr

)
on the deviation

(
Xij(t+1) − X H

ij(t+1)

)
. The first one is the deviation of the OD flow from origin p

to destination q and departing at time r. Equivalently, the second one is the deviation
of the OD flow from origin i to destination j and departing at time t + 1. In this
second deviation, wijt is a random term error for OD pair (i, j) at time t and s is the
order of the autoregressive process, that is, the number of lagged OD flow deviations
assumed to affect the OD deviation in interval t + 1. Equation 7.87 “models the
temporal relationship among deviations in OD flows, capturing the correlation over
time among deviations which arise from unobserved factors that correlated over time.
It assumes dependency of deviations corresponding to one OD pair on deviations
corresponding to other OD pairs in prior periods” (Ashok and Ben-Akiva 1993). It
can be rewritten in matrix form (Eq. 7.88):

�Xt+1 = Xt+1 − X H
t+1 =

t∑

r=t−s

�r
t ∗

(
Xpqr − X H

pqr

)
+ wt (7.88)

In the general case, the computation of the transition matrix �r
t involves esti-

mating linear regression models for each OD pair and for each time interval.
However, depending on the network topology, some of these correspondences may
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be ignored and thus the matrix is simplified. There are also some other hypotheses
enabling further simplifications, as, for example, the assumption that the autoregres-
sive process remains constant with respect to t. This implies that it depends only on
the difference (t −s) and not on the individual values of t and s. Equation 7.77 can be
rewritten accordingly to get the measurements equation in terms of deviations with
respect to historical values yH

lt , as in Eq. 7.89:

ylt − yH
lt =

∑

(i,j)∈I

∑t

r=t−s
alt

ijr ∗
(

xijr − xH
ijr

)
+ νlt ∀l ∈ L

∧

, t ∈ T (7.89)

It can also be expressed in matrix form (Eq. 7.90):

�Yt = Y t − Y H
t =

∑t

r=t−s
At

r ∗ (
Xr − X H

r

) + νt (7.90)

where νt is the measurements random error vector at timet. Error terms wt and νt

are uncorrelated, which means thatE[wt] = E[vt] = 0. The variance–covariance
matrices are Qt and Rt, respectively.

There is an additional advantage in reformulating the Kalman filtering in terms
of deviations as state variables and measurements, since the traffic flow variables
have skewed distributions (Antoniou et al. 2007). However, the deviations from these
variables from available estimates have symmetric distributions and, hence, are more
amendable to approximations to normal distributions. This is a useful property in
terms of Kalman filtering (Kalman 1960; Gelb 1974). Then, assuming an initial state
of the system with �X0, with mean �X 0, and variance–covariance P0, the Kalman
filtering algorithm for DODME, for a time horizon T divided into N intervals of
equal length, is
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Many alternative versions of these basic algorithms resorting to variants ofKalman
filtering have been proposed, as those in Ashok and Ben-Akiva (2002), Hu et al.
(2001), Antoniou et al. (2007), Lin and Chang (2007). In essence, many of the most
appealing ones deal with the calculation of matrices � and A. That is, with the
characteristics of the autoregressive model, the mapping OD paths and the links
flows, being these latter the most critical. Antoniou et al. (2007) propose nonlinear
relationships for the measurement equations, generically defined as (Eq. 7.91):

�M t = Mt − M H
t = S(�Xt) − M H

t + vt (7.91)
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where Mt is the vector of measurements at time t, S(�Xt) is a simulation model and
M H

t = S
(
�X H

t

)
. When traffic flow models are used to simulate the time progres-

sion of traffic flows through the network, they can be approximated by continuous
functions h(x)(Antoniou 2004). These functions can be linearized to approximate
the measurement equation as in Eq. 7.92:

Ht = ∂h(x∗)
∂x∗

∣∣∣∣
x∗=X t−1

t

(7.92)

An example based on this linearization included inAntoniou (2004) andAntoniou
et al. (2007) is the following Extended Kalman Filter (EKF):
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Equation 7.91 also opens the door to the consideration of additionalmeasurements
in Kalman filters other than traffic variables like the link flow counts from fixed
counting stations (e.g., inductive loop detectors,magnetometers…). For example, the
travel times between pairs of points in the network, as measured by ICT applications
(e.g., Bluetooth, GPS…).

7.5.2 Aimsun Live

A professional software platform for traffic management with a DTA as core engine
and that haves as main input dynamic OD-matrices is Aimsun Live (Aimsun 2020).
The DODME process implemented in Aimsun Live is a variant of the numerical
approximations of analytical optimization approaches discussed Sect. 7.4. Djukic
et al. (2017,2018,2019) reformulate the bi-level approach (Eq. 7.61) as in Eq. 7.93:

Min Z(X ) = α ∗ ‖X − X H ‖2 + (1 − α) ∗ ‖A(X ) ∗ X − Y
∧

‖2 (7.93)

s.t. X ≥ 0

Assuming that the flow estimates are provided by the DTA at the lower level,
i.e., at the algorithmic framework in Fig. 7.4. implemented in Aimsun (2020), then
Y = DTA(X ). This allows a Taylor expansion as in Eq. 7.63. Then, Djukic et al.
(2018) propose a modified bi-level approach that, at iteration k, replaces at the upper
level the objective function in Eq. 7.95 by the approximation in Eq. 7.94:

Zk(X ) = α ∗ ‖X − X H ‖2 + ‖Y
∧

− Yk − Ak ∗ (X − Xk)‖2 (7.94)

where at iteration k, Xk is the estimated OD demand vector, Ak the assignment matrix
estimated fromAimsun’sDTAusing Eq. 7.63 and Yk the vector of estimated link flow
counts in the subset of links with counting stations. Aimsun’s DTA estimates Ak by
stopping the Taylor expansion at either the first or the second term, depending on the
desired degree of accuracy or on the affordable computing cost. Djukic et al. (2018)
propose to solve the approximated upper level optimization problem (Eq. 7.94) with
non-negative variable constraints, using a gradient descent method. Particularly, one
using as descent direction the one defined by the following gradient (Eq. 7.95):

dk = −∇Zk(X ) (7.95)
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This gradient can be calculated from (7.94) as

∇Zk(X ) = 2 ∗ α ∗ (
X − X H

)

+ 2 ∗
(

AT
k ∗ Ak ∗ X − AT

k ∗ Ŷ + AT
k ∗ Yk − AT

k ∗ Ak ∗ Xk

)
(7.96)

Then, the new OD-matrix for the lower level iteration k + 1 is given by Eq. 7.97:

Xk+1 = Xk + λk∗dk (7.97)

where λk is the optimal step length in the gradient movement along the descent
direction. The gradient procedure to optimize Eq. 7.94 is also iterative. It recalculates
the step size at each iteration until either a convergence criterion ismet or amaximum
number M of iterations is reached, whatever occurs first. At gradient iteration m, the
estimated demand is X m

k , the search direction at this iteration is given by ∇Z
(
X m

k

)

(calculated from Eq. 7.96) and the step size calculation can be calculated solving
Eq. 7.98, using any of the available line search procedures (Bazaraa et al. 1993):

λm
k = MinλZ

[
X m

k − λ ∗ ∇Z
(
X m

k

)]
(7.98)

However, since Z(X ) is quadratic, the optimal step can be computed analytically
using Eq. 7.99:

λm
k = ‖∇Z

(
X m

k

)‖2
‖∇Z

(
X m

k

)‖2 + ‖Ak ∗ ∇Z
(
X m

k

)‖2
(7.99)

The proposed algorithm iteratively updates the demand at iteration k + 1 from
the demand at the previous iteration k, until some convergence criteria are satisfied.
The algorithm is modified with respect to the usual approaches to better fit the
requirements for congested large-scale networks. The proposed modification relaxes
the assumption on link flow proportions provided by the DTA assignment matrix
by computing the marginal effects of the demand deviations on link flows given
by Eq. 7.63. Therefore, it reduces the number of OD variables in this Eq. 7.63 by
including only those OD pairs whose change in demand values causes significant
deviations in the link flows. The modified algorithm is, according to Djukic et al.
(2018), as follows:
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The computational testing of this proposed modified bi-level optimization frame-
work, which solves the high-dimensionality of nonlinear OD-estimation problems by
computing the marginal effects only for the most significant OD pairs with respect to
traffic observations, allows themodeler to control the trade-off between the simplicity
of the model and the level of realism. It is thus very efficient for practical purposes.
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7.5.3 Simulation-Based Approaches: Stochastic Perturbation
Stochastic Approximation (SPSA)

The optimization problem in Eqs. 7.58 and 7.59, as already mentioned, is highly
underdetermined because there aremanymore variables than equations in the system.

In other words, X ∈ R
|I |×T , Y ∈ R

∣
∣
∣∣L
∧∣
∣
∣∣×T

and |I | � |L
∧

|. Therefore, the problem is
very sensitive to the quantity of data and the detection layout in the real network. As
the availability of new measurements like those provided by smartphone and GPS
localization allows calculating travel times between arbitrary pairs of points, the use
of these data seems to be a promising approach for reducing the aforementioned
underdetermination. An apparently straightforward extension of the bi-level formu-
lation inEqs. 7.58 and 7.59 accounting formeasured, tt

∧

, and estimated travel times, tt,
would be the expansion of the objective function adding a third term, F3

(
tt, tt

∧)
. This

term would be aimed at minimizing the distance between measured and estimated
travel times between arbitrary pairs of points in the network, assuming that trips are
most likely made via the shortest paths. The hypothetical formulation (Ros-Roca
et al., 2021a) would be (Eqs. 7.100–7.102):

Min Z(X ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
+ w3 ∗ F3

(
tt, tt

∧)
(7.100)

s.t. Y (X ) = Assignmt(X ) (7.101)

tt(X ) = F(X ) (7.102)

X ∈ �

Assuming that Y (X ) = Assignmt(X ) = A(X ) ∗ X , that is, the relationship
between the estimated link flows and the estimated OD-matrix defined by the
assignment, the problem can be reformulated as follows (Eqs. 7.103 and 7.104):

Min Z(X ) = w1∗F1
(
X , X H

) + w2∗F2

(
A(X )X , Y

∧)
+ w3∗F3

(
tt, tt

∧)
(7.103)

s.t. tt(X ) = F(X ) (7.104)

X ∈ �

Theanalytical relationship inEq. 7.104 either does not exist or is unclear.However,
in practice, travel times can be estimated from it if the assignment is a DTA. There-
fore, it can be accepted that some kind of relationship exists and the relationship
tt(X ) ∼ Assignmt(X ) is assumed. The problem to be solved is again reformulated
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as (Eq. 7.105):

Min Z(X ) = w1 ∗ F1
(
X , X H

) + w2 ∗ F2

(
Y , Y

∧)
+ w3 ∗ F3

(
tt, tt

∧)
(7.105)

s.t. (Y , tt) = Assignmt(X )

X ∈ �

As mentioned before, it is unclear how these new measurements can be included
in the analytical formulations. Nevertheless, it seems rather easy to deal with them by
using approaches based on derivative-free optimization methods that approximate
the descent direction based on simulation. Among them, simulation optimization
techniques are especially suited to deal with optimization problems that cannot be
solved with the usual analytical algorithms. Some reasons are:

• Theobjective function cannot be analytically expressed as a functionof parameters
because its evaluation requires a simulation. Therefore, it is not differentiable in
terms of the parameters.

• The time cost of evaluating the objective function is expensive, as it requires
having simulated data for each evaluation of the function.

Simulation-based optimization techniques can be generically formulated
assuming that there is a mathematical model M with a set of parameters P =
{p1, p2, . . . , pN } and an objective functionF(R, S) defined as the sum of error func-
tions between real observations R and the corresponding simulated data S. The
purpose of M is then to provide (Eq. 7.106):

Min F(R, S) (7.106)

s.t. P ∈ �⊆ R
N

WhenF(R, S) (i) is on-convex, nonlinear, (ii) cannot be represented analytically
as a function of the set of parameters P and (iii) has to be evaluated by simulation.

There is a wide range of different simulation optimization techniques to solve
Eq. 7.106. For example, Nelder-Mead, SNOBFIT, and SPSA are optimization tech-
niques, either derivative free or approximating the gradient, that evaluate it using
simulation. Osorio and Linsen (2015) make an approximation of the upper level
function by building a metamodel that can be solved analytically. Its conceptual
diagram is depicted in Fig. 7.5.

Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1992) is
commonly used in OD-matrix estimation (Cipriani et al. 2011; Cantelmo et al. 2014;
Antoniou et al. 2015; Lu et al. 2015; Ros-Roca et al. 2020) and it can easily account
for additional measurements (Bullejos et al. 2014; Antoniou et al. 2016; Carrese
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Fig. 7.5 Conceptual diagram of the simulation-based optimization approach of Osorio and Linsen
(2015)

et al. 2017; Nigro et al. 2018). SPSA preserves the original upper level formulation
and is easy to implement for simulation optimization problems.

SPSA is a simulation-based optimization algorithm, and it only requires two
evaluations of the objective function to approximate the gradient instead of N , as in
the case of a finite-difference gradient approach. Like in many iterative procedures,
it begins with an initial OD-matrix (usually a historical OD-matrix). The next matrix
at iteration k + 1 is computed from the matrix at iteration k, moving a distance ak

along the descent direction provided by the following gradient (Eq. 7.107):

Xk+1 = Xk − ak∗g
∧

k(Xk) (7.107)

Two particularities distinguish thismethod from the conventional gradient descent
method:

• The estimated gradient g
∧

k(Xk), is calculated according to Eq. 7.108:

g
∧

k(Xk) = Z(Xk + ck ∗ �k) − Z(Xk)

ck
∗
⎛

⎜
⎝

�−1
k,1
...

�−1
k,N

⎞

⎟
⎠ =

⎛

⎜⎜
⎝

Z(Xk+ck∗�k )−Z(Xk )

ck∗�k,1

...
Z(Xk+ck∗�k )−Z(Xk )

ck∗�k,N

⎞

⎟⎟
⎠

(7.108)

where �k is a random perturbation N-dimensional vector with �i,∀i inde-
pendent identically distributed random variables that satisfy E(�i) = 0 and∣∣∣E

((
�−1

i

)n
)∣∣∣ < ∞,∀n. One commonly used perturbation is �i ∼ Be(1/2,±1),

which is a Bernoulli distribution with a probability of ½ for each ± 1. This is
the asymmetric design, although a symmetric design using Z(Xk + ck∗�k) and
Z(Xk − ck∗�k) can also be considered.
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• The spacing coefficient ck and the step size ak are decreasing sequences of positive
real values, and they satisfy some regularity conditions in order to ensure the
convergence of the method, as detailed in Spall (1992). Typically, the sequences
used are (Eqs. 7.109 and 7.110):

ak = a

(A + k + 1)α
(7.109)

ck = c

(k + 1)γ
(7.110)

where a, A and c are chosen depending on the problem, while α = 0.602 and
γ = 0.101.

Averaging many independent estimates of the gradient of Eq. 7.108 contributes to
a more stable and quicker convergence of the SPSAmethod (Spall 1992). Therefore,
the gradient estimation is finally calculated as (Eq. 7.111):

g
∧

(Xk) = 1

ng
∗

ng∑

j=1

g
∧j

k(Xk) (7.111)

where g
∧j

k(Xk) is precisely calculated as in Eq. 7.108. The asymmetric design for the
gradient saves a large number of assignments, since all g

∧j
k(Xk),∀j share themid-point

Xk evaluation.
The versatility of simulation optimization techniques, especially when using

SPSA, allows including additional information in a new form, such as the constraints
in the OD-estimation problem. Ros-Roca et al. (2017) tried adding constraints to
simulation optimization problems when dealing with the calibration of microsimu-
lation models.

A potential improvement with respect to the original formulation (Bullejos et al.
2014; Cantelmo et al. 2014) replaces the gradient by the Conjugate Gradient (CG)
(Luenberger and Ye 2008), a descent method for the optimization algorithm of the
OD-estimation problem.Thismodifies the descent direction in the iterative procedure
by using the previous iteration gradient. It can be incorporated into SPSAby replacing
Eq. 7.107 with Eqs. 7.112–7.114:

Xk = Xk−1 + ak∗dk (7.112)

dk = −g
∧

(Xk) + βk ∗ g
∧

(Xk−1) (7.113)

βk = g
∧

(Xk)
T ∗ dk−1

‖dk−1‖2
(7.114)
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SPSA’s main drawback for the OD-estimation problem is that all different OD
flows receive the same perturbation magnitude (Eq. 7.108). As OD flows usually
have very different magnitudes, this implies very different changes to each flow,
which can lead to several problems of convergence. Tympakianaki et al. (2015)
approached this phenomenon by clustering the variables according to their magni-
tude. A different alternative can be normalizing to the interval [0, 1] all variables
using some particular reasonable bounds [ai, bi]. For example, Ros-Roca et al. (2018)
performed a classical linear transformation from [ai, bi] to [0, 1], where ai and bi

were based on additional information from the network, particularly socioeconomic
or past reliable OD-matrices. The normalization was performed using the following
linear application (Eq. 7.115):

ϕi : [ai, bi] → [0, 1]

Xi �→ Xi−ai
bi−ai

(7.115)

Using the normalized variables in SPSAprocedure, each variablewill be perturbed
according to its magnitude.

Experiencewith similar problems shows that the selectionofSPSAgain sequences
ak and ck is crucial for the convergence and performance of the algorithm. The
sequences in the form of Eq. 7.109 and 7.110 are widely used, as they satisfy the
conditions of convergence that were proved in Spall (1992). This reduces the problem
of selecting appropriate values for a, A, α, c and γ . Kostic et al. (2017b) showed the
sensitivity of SPSA with respect to these parameters. Based on the guidelines in
Spall (2003), an automated selection of the parameters a, A and c, can be based on
the objective function’s variability that results from the simulation, and on the desired
perturbation steps in the early iterations. The selection would be done according to
the following schema:

• First, those values stated as optimal for convergence in Spall (1998) are fixed.
That is, α = 0.602, γ = 0.101.

• Several evaluations of Z(X H ) to capture the variability of the objective function
are computed. Since the variables have been normalized, it seems natural to use
the coefficient of variation (CoV (Z) = σZ/μZ ) for this purpose. The parameter c
is set at c = CoV .

• A is set as 10% of the maximum number of iterations (A = 0.1 · itermax).
• ng experiments are simulated using the SPSA logic Xi = X H + c�N . This allows

finding the respective gradients gk as in the SPSA procedure.
• The desired iterative modification of the first iteration must be determined with

Eq. 7.116:

Xk+1 = Xk − ak∗gk → Xk+1 − Xk = |ak ∗ gk | (7.116)

• The corresponding a for the desired change in the initial iteration must be
computed using Eq. 7.117:
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∣
∣ak∗gk

∣
∣ = a

(1 + A + k)α
∗|gk | → a =

∣∣ak∗gk

∣∣ ∗ (1 + A + k)
α

|gk | (7.117)

• The minimum of the ng performed experiments must be finally chosen. That is
(Eq. 7.118):

a = min
{

a{i=1}, . . . , a{i=Ng}
}

(7.118)

As already mentioned, the underdetermination of the OD-estimation problem can
lead to different adjusted OD-matrices that show the same traffic counts at the sensor
locations even though they are different. Furthermore, the adjusted OD-matrix can
also be non-consistent with the socioeconomic factors of the area under study. In
traffic analyses, practitioners usually have access to historical data in the form of an
OD-matrixX H which,with a certain degree of uncertainty, provides prior information
about the mobility patterns of the target area. Therefore, including constraints in the
SPSA formulation that accounts for this information can lead tomore realistic results.
A possible approach is to add bounding values to the OD values, which is not easy
to do in analytical formulations (Codina and Montero 2006) but is relatively easy to
manage in SPSA. In Cipriani et al. (2011), a single generation constraint is added to
the minimization problem (Eq. 7.119):

nh∑

i=1

Gi
o ≤ G∗

o ∀o ∈ {origins} (7.119)

with G∗
o being the a priori generation value for the origin zone 0 and nh the number

of time periods. Other approaches, that of Ros-Roca et al. (2020), specify upper and
lower bounds for each OD flow, defined in terms of a percentage β of this flow’s
historical value, according to its degree of uncertainty. With the constraints, the
minimization problem is updated as follows (Eqs. 7.120 and 7.121):

Min Z(X , Y ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
(7.120)

s.t. Y = Assignmt(X ) (7.121)

X ∈ G = {
(1 − β) ∗ xH

n,r ≤ xn,r ≤ (1 + β) ∗ xH
n,r,∀xn,r ∈ X

} ⊂ R
I×T
+

X ≥ 0

This single constraint in Eq. 7.119 results from summing for each origin all the
upper bounds in the former minimization problem. The addition of all constraints
makes the feasible region bigger. Greater values are therefore allowed for some
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variables, but this is compensated by others having low values. On the contrary, the
proposal for constrained SPSA in Ros-Roca et al. (2020) defines a smaller feasible
region that accounts for further information of each OD pair.

These constraints added to the problem also have an effect on the originally
presented SPSA algorithm. Sadegh and Spall (1998) proposed to add a projection to
the set G during the iterative procedure shown in Eq. 7.107. The projection would
be applied only to the iterative procedure as Xk+1 = πG

(
Xk − ak∗g

∧

k(Xk)
)
, while

Z(Xk + ck∗�k) could be computed subject to non-negative OD values. This method,
in which some strict constraints are added to the procedure, is called Constrained
SPSA.

Inspired in Wang and Spall (1999), other formulations equivalent to Eqs. 7.120
and 7.121 add penalty functions to the objective function (Eqs. 7.122 and 7.123):

Min Z(X , Y ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
+ rk ∗ P

(
X , X H

)
(7.122)

s.t. Y = Assignmt(X ) (7.123)

X ≥ 0

where rk is an increasing sequence of the form rk = r∗(1 + k)ρ and P
(
X , X H

)
is a

set of penalization functions for the set of constraints that delimit the constraints of
set G. Formally (Eq. 7.124):

G �
{
qn,r

(
X , X H

) ≤ 0,∀n ∈ I , r ∈ T
} =

= {
xn,r − (1 + β) ∗ xH

n,r ≤ 0, (1 + β)∗xH
n,r − xn,r ≤ 0 ∀n ∈ I , r ∈ T

}
(7.124)

The penalty function P
(
X , X H

)
must be differentiable, non-negative, and an

increasing function. Wang and Spall (1999) propose a sum for each constraint of
penalizing functions that satisfy p(x) = 0 if and only if x ≥ 0. That is (Eq. 7.125):

P
(
X , X H

) =
∑

n∈I

T∑

r=1

wn,r ∗ p
(
qn,r

(
X , X H

))

=
∑

n∈I

T∑

r=1

wn,r ∗ max
{
0, qn,r

(
X , X H

)}2
(7.125)

As in the previous variant, the iterative procedure is also modified to incorporate
the gradient of the penalization function (Eq. 7.126):

Xk+1 = Xk − ak ∗ g
∧

k(Xk) − ak ∗ rk + ∇P
(
Xk , X H

)
(7.126)
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When additional information from ICT measurements is available, it can be
included in the SPSA formulation (Eq. 7.107) as long as it can be estimated from
the current OD-matrix X by means of a DTA. This is, for example, the case of
subpaths travel times tt

∧

measured either by Bluetooth (Bullejos et al. 2014; Anto-
niou et al. 2016) or by GPS tracking (Ros-Roca et al. 2021a). The logical diagram
of this process is described in Fig. 7.6. The calculation of these observed subpaths
travel times tt

∧

requires the identification of the most used paths from the available
measurements and their map matching to the transport model supporting the DTA.
This allows computing the corresponding estimated travel times tt from the current
OD, which will be added in the additional term to the objective function in Eq. 7.107.
The processing of the GPS data to calculate tt

∧

is described in Sect. 7.6.
In Kostic et al. (2017a), the additional term of the objective function in Eq. 7.107

is formulated as a function of themeasured speeds at detection stations equippedwith
conventional technologies (i.e., inductive loops), and the DTA used is TRE (Gentile
et al. 2007; Gentile 2010), supporting OPTIMA.

7.6 Data-Driven Approaches

The availability of new traffic data supplied by ICT applications, i.e., mobile phones,
image processing techniques for license plate recognition, Bluetooth devices, FCD
from onboard tracking mobile devices vehicles like GPS, etc., prompted the research
interest in finding which could be the advantages of including these data explicitly
in the OD-estimation methods. In this context, probe (or equipped) vehicles can
be grouped into two generic classes (Nanthawichit et al. 2003; Eiseman and List
2004), according to the explanations in Chap. 1. First, those vehicles equipped with
devices that can only be detected at specific locations (i.e., where the detection
technology is located), as, for example, those equipped with a tag-reader or with
a Bluetooth or Wi-Fi device. Known as “space-based” probe vehicles, their true
origin and destination are not known, and their approximate estimates can only
be inferred, being this inference strongly dependent on the layout of the detection
devices (e.g., tag-readers, Bluetooth antennas). Second, those vehicles equippedwith
wireless communication mobile devices that are fully visible in the areas covered by
the corresponding telecommunications system. Therefore, these systems can provide
seamless data about their location, speed, travel direction, etc., depending on the
device. These are known as “time-based” probe vehicles.

Methodologies related to space-based probe vehicles that have received signifi-
cant attention are those based on the identification and reidentification of the license
plate of all vehicles passing the area covered by a TV camera with a LPR tech-
nology (Mo et al. 2020). Also, those based on the identification of Bluetooth devices
between coupled pairs of Bluetooth antennas (Barceló et al. 2013; Behara et al.
2021). However, as already mentioned, results of these methodologies have a strong
dependency on the layout of TV Cameras or Bluetooth antennas in the network, this
layout becomes a critical aspect for the observability of the system (Castillo et al.
2008) and thus determines the capability of the methods to estimate and predict its
state.
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As regards time-based probe vehicles, the pervasive penetration of mobile phones
has allowed a better understanding of human mobility patterns from their traces, that
is, bymeans of their digital footprints. Asmobility patterns include information about
where people are and how they got there, mobile phones were soon identified as an
important data source for urban modeling. They attracted the interests of researchers
and practitioners, as they were seen as a powerful data source that would allow
overcoming the well-known drawbacks and limitations of conventional methods in
transportation analysis (i.e., household survey).Analyses are usually conducted using
datasets, the so-called Call Detail Records (CDR), previously recorded by a mobile
provider for communication and billing purposes, after an anonymization process.
A seminal example of this process can be found in González et al. (2008), where
each individual calling activity is characterized to allow monitoring the user’s move-
ment over time. Calabrese et al. (2013) provide an example of techniques aimed at
extracting useful mobility information frommobile phone traces of millions of users
from which to infer individual mobility patterns in large urban areas, especially OD-
matrices (Zhang et al. 2010; Calabrese et al. 2011). Since CDR are time tagged and
locations can be identified after suitable processing, added value information for a
variety of mobility analyses can be extracted from the (Çolak et al. 2015). Addition-
ally, OD-matrices can be differentiated by purpose and time of the day (Alexander
et al. 2015). However, this requires resorting to very specific Data Analytics tech-
niques, given the huge amount of data frequently recorded from millions of users.
Gundlegård et al. (2015) or Jianga et al. (2016) are good examples of this data
processing to extract the OD-matrices.

However, the type of OD-matrices that dynamic traffic models used in traffic
management systems require as input is rather different from the matrices directly
extracted from DCR. Indeed, the mobility patterns modeled by these latter OD-
matrices are global, that is, they include all types of trips without distinguishing
the transportation mode used. Conversely, the OD-matrices of interest for traffic
management purposes are usually those modeling the passenger cars patterns. Addi-
tional work is necessary to estimate these specific OD-matrices. For example, DCR
OD-matrices can be combined with simulation models like MITSIM (Iqbal et al.
2014) or they can be fused with other data sources (Montero et al. 2019). Bassolas
et al. (2019) propose also a fusion variant to generate inputs to activity-based travel
demand models using MATSIM.

Among the time-based probe vehicles, the better suited to generate OD-matrices
that can be exploited by dynamic trafficmodels seem to be those allowing the tracking
of the equipped individual vehicles and the reconstruction of their trajectories.
Assuming that the collected data from the tracking technologies include geolocation
and time stamps, i.e., waypoints in the terminology of commercial GPS providers,
map matching and path inference procedures could provide comprehensive informa-
tion about origins, destinations, taken paths, and path travel times. This was essen-
tially the assumption in an early paper of van Aerde et al. (1993), accepting that
probe vehicles were fully visible. The mentioned seminal papers of Nanthawichit
et al. (2003), and Eisenman and List (2004) later accepted this hypothesis. Therefore,
assuming that these sampled trajectory data are available, the question is whether
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and how they can be used to find sound estimates of dynamic OD-matrices, that is,
OD-matrices discretized in time, exploiting for that purpose the time tag recorded
data.

Research on the potential use of these mobile data for transport analysis has also
prompted a key question with relevant practical applications. Most of the DODME
approaches discussed in the previous sections usually assume that one of the inputs
is provided by an available historical matrix. The reliability and quality of such
historical OD-matrices has been questioned in practical transport planning practice,
as it could be largely outdated or even not exist. However, this is not the case in
most practical traffic management applications due to the amount and quality of
data supplied by modern surveillance systems. Therefore, the improvement of the
seed matrices used in DODME by means of sample data from probe vehicles is
a relevant contribution. However, the previous discussion on DODME approaches
makes evident that all of them rely on the estimate of a dynamic assignment matrix.
The fact that this assignment matrix must be estimated by a DTA or a DUE and that
the approach implies an iterative process, this could represent a heavy computational
burden not affordable in real-time applications. Therefore, the key question is: can
the dynamic traffic assignment matrix be empirically estimated from probe vehicle
data? And, if possible, how can it be used to improve DODME approaches? A
positive answer to the first question opens the door to build models some of whose
components are directly derived from an empirical procedure, which would be based
on the observed data, instead of from an analytical procedure. In other words, this
approach paves the way to build data-driven models.

7.6.1 A Conceptual Proposal on Data-Driven Modeling

From this latter perspective, an interesting proposal is that made by Yang et al.
(2017). They wanted to determine whether the availability of such trajectory data
could be used to develop an approach to DODME independent of the reliability of
an historical OD. That is, to make a good empirical estimation of the assignment
matrix, making it unnecessary to resort to DTA. According to the above-mentioned
statements, it is assumed that each probe vehicle reports its position in the form
of GPS coordinates after a preprocessing procedure performed with map-matching
techniques. In summary the approach is as follows:

• It is assumed that vehicle trajectories from origins to destinations are traceable
for each probe vehicle, and that the supplied GPS locations have been suitable
preprocessed by data cleansing and map-matching procedures. Therefore, GPS
locations in the approach are assumed to be exact.

• If L
∧

⊆ L is the subset of links with counting stations, two link flow measurements
are available for each time period r. There are y

∧

lr, l ∈ L
∧

, r ∈ T flows from the
counting stations at links l ∈ L

∧

, and h
∧

lr, l ∈ L
∧

, r ∈ T flows of probe vehicles
crossing that link l at time interval r.
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• The OD probe ratios, that is, the average number of vehicles observed across the
entire network during a time interval are given by Eq. 7.127:

γr =
∑

l∈L
∧ h

∧

lr
∑

l∈L
∧ y

∧

lr
∀r ∈ T (7.127)

• Thus, the seed OD-matrix x
∧

nr can be estimated with Eq. 7.128:

x
∧

nr = z
∧

nr

γr
∀n ∈ I ,∀r ∈ T (7.128)

where I is the set of all OD pairs, and z
∧

nr is the number of identified probe vehicles
traveling from the origin to the destination of the n − th OD pair.

• The assumption of the identification of locations of probe vehicles allows, in a
similar way, directly estimating the assignment matrix (Eq. 7.129):

at
ln = 1

|T | ∗
∑

r∈T

(
z
∧r.r+t

ln

z
∧

nr

)

t ∈ T , n ∈ I , l ∈ L
∧

(7.129)

Assuming this data-driven approach, a variant of the model in Eq. 7.71 is proposed
(Eqs. 7.130):

Min

[
∑

r∈T

∑
n∈I

(
xnr−x

∧

nr

)2

w2
nr

+ ∑
r∈T

∑
l∈L

∧

(
ylr−y

∧

lr

)2

q2rl

]

xnr

(7.130)

s.t.

ylr =
∑

t∈T

∑

n∈I

at
ln∗xn,r−t∀l ∈ L

∧

,∀r ∈ T

−βxnr ≤ xn,r+1 − xnr ≤ βxnr∀n ∈ I ,∀r ∈ T

xnr ≥ 0∀n ∈ I ,∀r ∈ T

where the first constraint expresses, as in the analytical models, the relationships set
up by the empirical assignmentmatrix at

ln between ylr , the estimated flows at the links
l with traffic detection stations l ∈ L

∧

for each time interval r, and xn,r−t, the OD flows
leaving the origin at time r − t, observed in link l at time r. The objective function
in this case is formulated in terms of a quadratic distance function. Its metrics are
defined, as in Eq. 7.35, respectively, by the matrix of variances, w2

nr and q2
rl, of the

empirical OD-matrix, x
∧

nr, and the link flow measurements, y
∧

lr . The coefficient β in
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the bounding constraints of Eq. 7.130 is the maximum change percentage of OD
flows between two consecutive intervals.

Yang et al. (2017) also propose a more general variant of the model assuming that
there is a correlation between the OD probe ratios, γnr , and the link probe ratios, θlr..
In other words, that there exists a function θlr = P(γnr), for which they postulate the
following form (Eq. 7.131):

θlr =
∑

t∈T

∑

i∈I

ρ t
ln ∗ γnr =

∑

t∈T

∑

i∈I

ρ t
ln ∗

(
z
∧

n.r−t

xn,r−t

)
∀l ∈ L

∧

,∀r ∈ T (7.131)

where ρ t
ln define the assignment matrix of probe ratios, which is assumed to be

computed empirically from the collected data according to the main hypothesis of
the method. These link probe ratios depend on the estimated OD-matrix, xnr as
expressed in Eq. 7.131, being therefore new variables of the model. Assuming that
the available GPS data allow estimating the empirical values θ

∧

lr, they can be added
to the objective function (Eq. 7.130) yielding the enhanced model in Eq. 7.132:

Minxnr

⎡

⎣∑
r∈T

∑
n∈I

(
xnr−x

∧

nr

)2

w2
nr

+ ∑
r∈T

∑
l∈L

∧

(
ylr−y

∧

lr

)2

q2rl
+ ∑

r∈T

∑
l∈L

∧

(
θlr−θ

∧

lr

)2

v2rl

⎤

⎦

(7.132)

s.t.

ylr =
∑

t∈T

∑

n∈I

at
ln ∗ xn,r−t∀l ∈ L

∧

,∀r ∈ T

θlr =
∑

t∈T

∑

i∈I

ρ t
ln ∗

(
z
∧

n.r−t

xn,r−t

)
∀l ∈ L

∧

,∀r ∈ T

−βxnr ≤ xn,r+1 − xnr ≤ βxnr∀n ∈ I ,∀r ∈ T

xnr ≥ 0∀n ∈ I ,∀r ∈ T

where, as before, v2rl is the variance of the observed ratios. Since the optimization
model is quadratic, the gradient can be easily calculated and a gradient algorithm is
proposed to numerically solve the problem.



252 J. Barceló et al.

7.6.2 Accounting for Mobility Learning from ICT Data
Collection

Cascetta et al. (2013) formulate the hypothesis that “an OD estimator can be based
on the assumption of constant distribution shares across larger time horizons with
respect to the within-day variation of the production profiles, leading to an esti-
mator that dramatically improves the unknowns/equations ratio”. Krishnakumari
et al. (2019) propose to go a step further. They assume that all realized travel times
are available over all (shortest) paths. Also, that it is only necessary to specify how
many of the shortest paths are actually used for each OD pair and the proportions
of each OD flows over these used shortest paths. These proportions are a behavioral
assumption at the macroscopic scale (a path flow proportion), and not in the form of
a detailed route choice model with (elaborated) trade-offs.

Nevertheless, the assumptions in Krishnakumari et al. (2019) about the distribu-
tion of traffic over the network are not sufficient to estimate the underlying OD-
matrix, They must be complemented with additional information that, for instance,
can be provided by measured link flow counts y

∧

lt from counting stations, measured
at links l ∈ L

∧

at time t ∈ T . Link flow counts ylt that, as shown in Eq. 7.76, can be
estimated in terms of the relationships between flows and OD flows xijr departing
from origin i with destination j at time interval r, arriving at link l at time t, and the
assignment matrix alt

ijr .
However, to be valid, these relationships must be set up considering that counts in

or downstream congestion are not informative of demand, but of (discharge) capacity,
as shown in Frederix et al. (2011). Information on demand is only provided if ylt are
estimated in uncongested conditions, and no path flows for OD pair (i, j) ∈ I using
a path k to which l belongs, experience a bottleneck upstream before crossing link l.
Therefore, in order to overcome these limitations, the computation of the assignment
matrix, or that of any related terms, must be done in a way that explicitly accounts
for congestion effects.

The approach proposed by Krishnakumari et al. (2019) assumes that, in addition
to the availability of OD travel times, also the productions Pir , i.e., the total outgoing
flows from each origin i, during period r, as well as the attractions Ajr , i.e., the
total incoming flows to each zone j during period r, are observable and, therefore,
available.

The availability of these inputs from the observed data is based on a methodology
proposed by López et al. (2017b) that is based on specific Data Analytics techniques
suited to build consensual 3D speed maps by clustering techniques from link speeds.
These speeds are estimated from field data by a heuristic procedure defined in López
et al. (2017a). According to the authors, this procedure can exploit classical data (e.g.,
from inductive loops or cameras) as well as those from more modern data sources
(e.g., mobile phone records, GPS tracking, etc.). The methodology is illustrated in
the referenced papers for a case in which link speeds were estimated from individual
travel times recorded by TV cameras equipped with LPR technology. However, it is
extensible to other technologies as long as the requirements are met.
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In any case, field datamust be appropriately cleansed out and the outliers removed.
Krishnakumari et al. (2019) discuss several procedures for this purpose, among them
a moving average process where, if τn is the n − th realized travel time for a given
OD pair, Eq. 7.133 gives the moving average:

τ n = 1

k

k−1∑

i=0

τn−i (7.133)

Outliers are defined by τ n + �τ, where �τ is a time window empirically deter-
mined, for instance, as the standard deviation times recorded during the peak demand.
The mean of the observed travel times for a given OD pair (i, j) at a given period
is considered the travel time from i to j at time t,ttij(t). Additionally, the consid-
ered k-shortest paths as the most likely used between each OD pair. For a particular
one(i, j), a path Lp is characterized by a sequence of links Lp = (

lp1, lp2, . . . , lpn
)
.

Then, the path speed is (Eq. 7.134):

sp = dist(Li)

ttij(t)
(7.134)

Krishnakumari et al. (2019) also consider various approaches to impute link
speeds when no data are available.

The main assumption behind the approach proposed by Lopez et al. (2017b) is
that the availability of the data provided by these more modern data sources allows
finding empirically driving insights of human mobility, namely, those concerning
their dynamic aspects, and thus enables their use in mathematical models aimed at
predicting that dynamic mobility. This means to investigate the regularity of macro-
scopic mobility patterns, how they vary within days and from day to day. For that
purpose, Lopez et al. (2017b) propose a methodology based on what they call 3D
maps, in essence spatial–temporal speed cluster maps, which are a joined partition
of space (i.e. the road network) and time into homogeneous clusters characterized by
constant mean speeds. The proposed approach considers that link speed data can be
reconstructed from trip travel time observations with Eq. 7.134, as in Lopez and al.
(2017b), and that the network is coded in Open StreetMapGeographical Information
System (OSM GIS) Database, also used to compute all shortest paths. The cluster
building process is based on the following partitioning criteria:

• All clusters should contain a single connected component. In other words, all
links in the cluster are reachable within the cluster.

• An intra-cluster homogeneity criterion, formulated in terms of the minimization
of the internal speed variance for all clusters. If n is the number of clusters, the
total within cluster variance T V n is given by (Eq. 7.135):

T V n = 1
∑n

i=1ni
∗
(∑n

i=1ni∗s2i
s2

)
(7.135)
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where ni is the number of links in cluster i, si the standard deviation of links speeds
in cluster i, and s the standard deviation for the whole network. It is assumed that
link speeds have been estimated from Eq. 7.134.

• An inter-cluster dissimilarity criterion that maximizes the difference in speed
between neighbor clusters, where the inter-cluster dissimilarity is given by
Eqs. 7.136 and 7.137:

CCDn =
∑n

i=1

∑n
k=i+1δik ∗ √

ni ∗ nk ∗ |vi − vk |∑n
i=1

∑n
k=i+1δik ∗ √

ni ∗ nk
(7.136)

δik =
{
1 if clusters i and k have a common border
0 otherwise

(7.137)

where vi is the mean speed in cluster i.

Lopez et al. (2017b) test three different clustering approaches, k-means, DBSCAN,
and S-cut and conclude that, at least in the case study reported in the paper, k-means is
the most economical in terms of computational cost to obtain the envisaged 3D speed
maps. Furthermore, assuming that the observational data cover a period of M days,
they add a new process to find commonalities in these days’ congestion patterns,
the so-called “consensual” patterns, by means of Consensus Learning Techniques
(Filkov and Skiena 2004).

The approach proposed by Krishnakumari et al. (2019) uses these results for
different purposes:

• To estimate or predict the production and attraction patterns using the identi-
fied 3D speed and flow patterns (possibly augmented with other data) using
machine learning techniques (especially Neural Network techniques, although
other techniques could also be used).

• To compute N weighted (by travel time) shortest paths, where N is an assumption
on how many alternative routes are used on average for each OD flow on these
paths.

• To estimate path flows on the used paths assuming that are inversely proportional
to the realized travel times on these paths, considering path overlap, and under
the additional constraint that the path flow solution space is determined by all
admissible link flow counts.

Let’s assume that xk
ijr is the path flow from origin i ∈ O (where O =

{set of all origins}) to destination j ∈ D (where D = {set of all destinations}),
departing from origin i at time period r ∈ T (where T is the time horizon) on path
k ∈ N k

ij (where N k
ij is the set of all paths between origin i and destination j at time

period k}; xijr is the OD flow from origin i ∈ O to destination j ∈ D, departing from
origin i at time period r ∈ T ; Pir is the production of origin i during period r, Ajr

is the attraction of destination j during period r; TT k
ijr is the travel time for vehicles

traversing path k from origin i to destination j departing from i in time period r;Pk
ijr is
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the proportion of vehicles traveling on path k from origin i to destination j departing
from i in time period r and y

∧

lr is the measured flow count in link l at time period r.
Pir is the sum of all outgoing flows from i at this time period along all paths k ∈ N r

ij
from i to all destinations j ∈ D (Eq. 7.138):

Pir =
∑

j∈D

∑

k∈N r
ij

xk
ijr (7.138)

In a similar way, the attraction Ajr of destination j during period r is the sum of
all incoming flows to destination j from all origins i ∈ O along all paths k ∈ N k

ij
(Eq. 7.139):

Ajr =
∑

i∈O

∑

k∈N r
ij

xk
ijr (7.139)

Since links speeds are available, path travel times TT k
ijr can be calculated. From

them, a behavioral assumption can be made on the proportion of trips using each
available path in terms of each utility, which is defined by the path travel time.
Krishnakumari et al. (2019) estimate this path proportion with the modified logit-
based model proposed by Ben-Akiva and Bierlaire (1999) (Eq. 7.140):

Pk
ijr = eTT k

ijr∗(1−PSk)

∑
p∈N r

ij
eTT p

ijr∗(1−PSp)
(7.140)

In this Eq. 7.140 a correction term PSk is added to the deterministic component of
the discrete-choice mode. It is the path size factor defined by Eqs. 7.141 and 7.142:

PSk =
∑

a∈Path k

(
la
Lk

)
∗ 1
∑

p∈N r
ij
δap

(7.141)

δap =
{
1 if link a belongs to path p
0 otherwise

(7.142)

where la is the length of link a, Lk is the length of paths k, and δap is the link-
path incidence matrix. The path size factor tries to capture the correlations between
alternative pathsmeasuring the dependencies in terms of a certain degree of similarity
among the shared links. The calculation of the path proportions allows setting up the
relationships between the OD flows, xijr, and the path flows, xk

ijr (Eq. 7.143):

xk
ijr = Pk

ijr∗xijr∀i ∈ Oi,∀j ∈ Dj,∀r ∈ T , and k ∈ N r
ij (7.143)
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The number of paths N r
ij can be exponentially large but, in practice, as not all of

them are significantly used, this number can be reduced to a smaller set N r∗
ij ≤ N r

ij .
This smaller set can be identified as part of the data analytics procedures to estimate
the values of themodel components. This leads to the approximation of the estimated
OD-matrix as in Eq. 7.144:

xijr =
∑

k∈N r∗
ij

xk
ijr (7.144)

This approximation is sufficiently good if N r∗
ij has been properly defined.

The relationship between link flows and path flows can be reformulated explicitly
considering the effects of congestion in order to account for the conditions discussed
above. That is, that flows ylr measured in link l at time r are informative of path flows
crossing the link only if they are not congested at that time and if none of the links
upstream of it experiences a bottleneck. The approach chosen by Krishnakumari
et al. (2019) considering the subset of paths to which link l belongs and satisfying
these conditions can be formulated as follows. If ℘ l

r is the set of paths to which link l
belongs at time r, the subset of paths satisfying the conditions is given by (Eq. 7.145):

℘k
ijt ∈ ℘ l

r, t ≤ r − TT
k\l
ijr ∀i, j, k k all paths traversing l during period r (7.145)

where TT
k\l
ijr estimates the partial arrival travel times to link l along the paths in ℘k

ijt .
This implies that (Eq. 7.146):

∑

℘k
ijt∈℘ l

r

Pk
ijt ∗ xijr =

{
0 if link supstream of l ∈ ℘k

ijt are congested
Pk

ijt ∗ xijr otherwise
(7.146)

Thus, if y
∧

lr are the link flows measured at links l ∈ L
∧

⊆ L equipped with detection
stations, their relationships with the OD flows xijr can be stated with Eq. 7.147:

y
∧

lr =
∑

(i,j)∈I

Pk
ijr ∗ xijr ∀l ∈ L

∧

,∀r ∈ T (7.147)

Together with the corresponding reformulations of Eqs. 7.134 and 7.135 and in
terms of Eq. 7.146, a system of equations (Eqs. 7.148 and 7.149) is defined:

Pir =
∑

j∈D

xijr ∀i ∈ O,∀r ∈ T (7.148)

Ajr =
∑

i∈O

xijr ∀j ∈ D,∀r ∈ T (7.149)
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As highlighted in Krishnakumari et al. (2019) “this system is underdetermined
or overdetermined (or rare cases full rank) depending on the available link counts
and the choice and number of link paths for each OD pair”. To solve the system, the
authors propose to use the constrained least squares algorithmofAltman andGondzio
(1999), either with lower bounds set to 0 to ensure non-negative solutions, or without
bounds when no solution exist and ignoring the negative values in computing the
solution error.

A potential limitation of the proposed approach arises for large networks. That
is, when the number of origins and destinations grows and, then, the number of
OD flows grows quadratically. However, the number of Eqs. 7.148 and 7.149 in the
system only grows linearly, as link flow equations do (Eq. 7.147), assuming also an
increase in the number of detection stations. The authors propose to use in this case
the dimensionality reduction techniques studied in Djukic et al. (2012), which are
based on the application of the Principal Components Analysis (Jolliffe 2002).

To end this section, it should be noticed that this data-driven approach is the
planned forthcoming OD-estimation method in future versions of the corresponding
modules of Aimsun Next and Live software platforms for traffic analysis and
management.

7.6.3 Estimating Assignment Matrices from FCD Data

As mentioned, the computational burden associated with the DTA required in the
analytical approaches to the DODME problem, which is necessary to estimate the
assignment matrix, and the existing doubts on how to integrate the additional infor-
mation that can be available, have fostered research on these issues not only among
researchers, but also among practitioners and developers of professional software
platforms. An example of this motivation can be found in a recent work of the team
supporting the OPTIMA traffic management platform (Mitra et al. 2020). This plat-
form is aimed at estimating base OD demandmatrices for large-scale networks using
the information that can be extracted from large amounts of FCD data and link flow
counts. The main assumption, similar than that of previous approaches, is that a
detailed analysis of FCD trajectories, if properly and accurately done, enables the
estimation of the two main required inputs: (i) a revealed OD-matrix X 0 extracted
from the FCD trajectories, playing the role of seed matrix and (ii) information to
build from FCD data a reliable assignment matrix that can replace the one provided
by DTA in analytical approaches.

A critical point is that of the quality of the FCD data, since they can be poor, not
homogeneous, or biased. However, Mitra et al. (2020) claim that, even in these cases,
it is possible to take advantage of these data. Their suitable cleansing and filtering and
their clustering according to similar average behaviors are useful techniques to apply.
Also, the use of specialized map-matching algorithms matching each individual raw
GPS trajectory on the transportation graph in order to reconstruct themost likely paths
in this graph (Hart et al. 1968; Marchal et al. 2004; Quddus et al. 2007; Kubicka et al.
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2018;Millard-Ball et al. 2019). The map-matched trajectories can be associated with
origin and destination zones, departing from origin zones at specific times of the day.

Let’s assume thatX is the estimatedODvector of size |I |∗|T | (where I is the set of
OD pairs and T the set of time intervals), that Y

∧

is the vector of traffic counts (of size∣∣∣L
∧
∣∣∣ ∗ |T |, being L

∧

the set of links with counting stations), and that A is the estimated

assignment matrix from FCD data. Then, mapping the estimated OD flows to the
estimated link flow counts Y (with Y = A ∗ X ) and simplifying the formulation for a
simple fixed time interval (no interdependencies between time intervals are assumed
in this approach. SeeMitra et al. (2020) for additional details), the DODME problem
can be formulated as in Eq. 7.150:

Min ϕ(X ) = 1

2
∗‖A ∗ X − Y

∧

‖2 + λ

2
∗‖X − X

∧

‖2 (7.150)

where λ is the relative weight of the demand term, and X
∧

is the reference demand
vector, whose ij − th element is given by Eq. 7.151:

X
∧

ij = γ ∗ αi ∗ βj ∗ X 0
ij ∀i ∈ O,∀j ∈ D (7.151)

being O the set of origins, D the set of destinations and X 0 the observed seed OD-
matrix from FCD trajectories. γ is a constant factor that homogenously scales all OD
pairs, and αi,∀i ∈ O and βj,∀j ∈ D, respectively, are the generation and attraction
factors for each origin and each destination.

The solution to Eq. 7.150 is found by an iterative process that generates a sequence
of feasible solutions

{
X k

}
. This is done in such way that a new solution is found at

iteration k +1 from the solution at iteration k by moving a step of length θ k ∈ (0, 1]
along a feasible descent direction �X k (Eq. 7.152):

X k+1 = X k + θ k ∗ �X k (7.152)

Sinceϕ(X ) is a quadratic problem, the descent direction can be found by aNewton
method solving with Eq. 7.153:

�X k = [∇2ϕ
(
X k

)]−1 ∗ ∇ϕ
(
X k

)
(7.153)

where ∇ϕ
(
X k

)
is the gradient of ϕ(X ), and ∇2ϕ

(
X k

)
the Hessian at X k . In practice,

Eq. 7.153 can be solved efficiently without inverting the Hessian and, since ϕ(X )

is quadratic, the solution can be exactly found in one step if the Hessian is definite
positive.

Several alternatives have been proposed (Mitra et al. 2020) to estimate the values
of factors γ , αO and βD, where αO and βD are the vectors of attraction and generating
factors.Anexample procedure that simultaneously optimizesαO andβD could consist



7 Data Analytics and Models for Understanding and Predicting … 259

in (i) calculating the optimal value of γ the common global factor by solving the
quadratic problem in Eq. 7.154 and (ii) calculating the optimal values of αO and βD

by solving Eq. 7.155:

Min ϕ(X )

γ ≥ 0
(7.154)

s.t. αO = βD=1

Min ϕ(X )

αO, βD ≥ 0
(7.155)

Mitra et al. (2020) present promising results of this approach applied to the large-
scale network of Turin, with 438 zones, 96,420 links, 6,352 nodes, 1203 counting
locations and GPS data for 1 year.

The potential problems of dealing with GPS data reported when discussing
previous approaches fostered the search for other practical solutions. Most of these
problems concern the unbiased reconstruction of vehicle trajectories and the estima-
tion of the observed seed OD-matrix X 0 and are usually linked to the fact that most
of the available commercial GPS data are obtained from non-homogeneous vehicle
fleets (e.g., indiscriminate mix of commercial vehicles and passenger cars). Another
source of issues is trajectories being split by random identity changes due to privacy
reasons. However, once these data properly cleansed and filtered out, the waypoints
or POIs (Points of Interest) supplied by GPS data can be considered reliable. These
are usually given as an ordered sequence of waypoints containing the information
(IDk, date, ts(kl), latkl, longkl), as illustrated in Table 7.1. IDk is the identity of each
trip k, the date stands for the recording date, ts(k,l) is the time tag for the l − th
observation of trip k and latkl and longkl, respectively, are its latitude and longitude.

However, these geographically referenced data do not usually correspond to the
analyzed road network. Therefore, as already mentioned, they must be properly
map-matched to transform these sequences of waypoints in points corresponding to

Table 7.1 Example of GPS recorded waypoints

ID Date Time stamp Latitude Longitude

4,261,353 2019–11-30 22:43:58 45.445988 9.1244048

4,261,353 2019–11-30 22:44:27 45.445496 9.1241952

………………… ………………… ………………… ………………… …………………

4,261,353 2019–11-30 22:50:57 45.444767 9.1192517

4,261,355 2019–11-30 22:43:58 45.445980 9.1247048

4,261,355 2019–11-30 22:44:27 45.445574 9.1192821

………………… ………………… ………………… ………………… …………………

4,261,355 2019–11-30 22:50:57 45.444767 9.1197541

………………… ………………… ………………… ………………… …………………
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paths on that network. The most used procedures (Marchal et al. 2004; Schuessler
and Axhausen 2009; Pereira et al. 2009; Rahmani and Koutsopoulos 2013; Kubicka
et al. 2018) assign each waypoint to a point in the nearest link of the network. There
are available tools provided by software platforms to perform this operation, as, for
instance, OpenLR (OpenLR 2020), or GPX (PTVVisum 2020). An example on how
this works is depicted in Fig. 7.7, in which the red stars are the waypoints and the
red numbers near the links are the relative position of the waypoint projection over
the target link. Timestamps for waypoints are depicted in green.

Link travel times can be heuristically estimated from waypoint timestamps
according to their sequence (Ros-Roca et al. 2021b). In this example, for all links
in the sequence, the interpolated travel time for a link is the sum of the timestamp
differences of two consecutive waypoints mapped in the target link. In the case of two
consecutive waypoints that are not wholly projected within one link, the distance-
based fraction within the link is taken (lk is the length of link k in Fig. 7.7). For
instance, the travel time for link l3 can be estimated taking into account that the
travel time for the trip between the 3rd and 4th waypoints is 20 s, and that it is the
estimated travel time of the whole link l3 plus a 0.2 fraction of l2 and a 0.7 fraction
of l4(Eq. 7.156, with the result in s):

tt3 = l3
0.2∗l2 + l3 + 0.7∗l4

∗ 20 (7.156)

The estimated travel time in link l4 is obtained by adding two parts, the first part is
the travel time proportion between the 3rd and 4th timestamps in link l4 (adding 0.7
of l4 to 0.2 of the length of link l2 plus the entire length of link l3). The second part is
estimated directly from the proportion of link l4 lying between 4 and 5th timestamps
(a fraction of 7 s, which is the travel time between waypoints, calculated as 0.3 of
the l4 distance over the total distance between the 4th and 5th waypoints, that is 0.3
l4+0.2 l5). Overall, the travel time in link l4 is given by Eq. 7.157 (in s):

tt4 = 0.7 ∗ l4
0.2 ∗ l2 + l3 + 0.7 ∗ l4

∗ 20 + 0.3∗l4
0.3∗l4 + 0.2 ∗ l5

∗ 7 (7.157)

Fig. 7.7 Schematic overview of the map-matching process
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Finally, once all the waypoint sequences are converted to several paths with full
details at the link level, the link travel times are averaged. The outcome of this process
is the set of observed link travel times at each time period t, tt

∧

lt∀l ∈ L,∀t ∈ T , for
all links in the network that are monitored by GPS tracking. That is, the dataset of
estimated link travel times. Despite possibly being huge the quantity of trajectories
available for the target network, which will depend on the penetration rate of devices
withGPSamong the population, the final samplemayuncover links. It is also possible
that some of them are not fully covered by time information, as, for instance, the
first and last links in each sequence (e.g., links 1 and 6 in the example in Fig. 7.7).
Moreover, the procedure that infers link travel times can produce non-feasible values
when they are below the free-flow link travel time. In these situations, scaled travel
times are used (Eqs. 7.158 and 7.159):

t
∧

tl′ t = R ∗ tt0l′ (7.158)

R = meanl∈GPS

(
t
∧

tlt
tt0l′

)

(7.159)

where tt0l′ is the free-flow travel time at each link, and R is computed using all
observed link travel times and their corresponding free-flow travel times. That is,
R is the arithmetic mean of the expanding factors found for each link and can be
understood as a global expanding factor linked to the congestion effect. The method-
ological process for generating the observed link travel times dataset is summarized
in Fig. 7.8.

The estimated average link travel times tt
∧

lt for each link l ∈ L, for each
time interval t ∈ T can be used to generate a plausible Route Choice Set K ={
Kijr,∀i ∈ O,∀j ∈ D,∀r ∈ T

}
of the most likely used paths between each origin

and each destination at each departure time. This can be done by applying variants
of Dijkstra-based algorithms explicitly accounting for commonalities between paths
in terms of shared links, as in Krishnakumari et al. (2019). However, as we are in this
case considering link travel times, other alternatives like those proposed by Chabini
(1998), dealing directly with time-dependent shortest paths, can bemore appropriate.
Nassir et al. (2014), Janmyr andWadell (2018), use the penalization of overlapping in

Fig. 7.8 Conceptualmethodological approach to the process of importingwaypoints into a network
model and their use to estimate link travel times
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terms of “commonality factors” proposed by Cascetta et al. (1996), Cascetta (2001)
as a measure of similarity between alternatives. This allows overcoming the prob-
lems derived from the basic hypothesis of irrelevant alternatives with discrete-choice
models reducing the systematic utility of paths, being this utility measured in terms
of travel time, in proportion to its level of overlapping with other alternative paths.
Such procedures can be additionally strengthened by applying the modification of
the variant of Bovy et al. (2008) proposed by Janmyr and Wadell (2018). According
to this modification, paths in Kijr are denoted here as k(i, j, r) ∈ Kijr in order to
explicitly show the dependence on (i, j, r). Let’s assume that the sequence of links
that compound a certain path k(i, j, r) is�k(i,j,r) = {e1, . . . , em}. Then, the proportion
of paths choice for each path in the set Kijr is calculated in terms of the following
modified discrete logit-based choice model that uses the commonality factor (CF)
for each OD pair and time period (Eqs. 7.160 and 7.161):

CFk(i.j.r) = 1

μCFk

∗
∑

a∈�k(,i,j,r)

⎛

⎝ la
Lk(i,j,r)

∗ log

⎛

⎝
∑

h∈Kijr

(δahr + 1)

⎞

⎠

⎞

⎠ (7.160)

Pk(i,j,r) = exp[μPk (−t
∧

tk(i,j,r) − CFk(i,j,r))]
∑

h∈Kijr
exp[μPk (−t

∧

th(i,j,r) − CFh(i,j,r))]
(7.161)

where δahr = 1 if path h ∈ Kijr uses link a at time r and 0 otherwise, la is the length of
link a and Lk(i,j,r) is the total length of path k ∈ Kijr . In order to adapt magnitudes for
the discrete-choice summation, μPk and μCFk are parameters fixed as in Eq. 7.162:

μPk = μCFk = 1

meank∈Kijr

(
t
∧

tk(i,j,r)
) (7.162)

These calculations provide the flow distribution for each path on the basis of
observed path travel times, which are the summation of the observed time-dependent
link travel times. That is, they consider the arrival time, t

∧

tat(k), at each link a belonging
to the path k(i, j, r) (Eq. 7.163):

t
∧

tk(i,j,r) =
∑

a∈�k(i,j,r)

t
∧

tat(k) (7.163)

Once Pk = {
Pk(i,j,r)

}
is determined from the k shortest paths obtained from the

estimated travel times, the estimated time-dependent assignment matrix A =
[
alt

ijr

]

can be calculated with Eq. 7.164 and 7.165:

alt
ijr =

∑

k∈Kijr

δlt
k(i,j,r)∗Pk(i,j,r) ∀i, j, r, l, t (7.164)



7 Data Analytics and Models for Understanding and Predicting … 263

δlt
k(i,j,r) =

{
1 if path k(i, j, r) uses link l at time t
0 otherwise

(7.165)

where δlt
k(i,j,r) is the estimated incidence indicator.

This is the estimated assignment matrix that can replace the calculated assignment
matrix from DTA in an alternative formulation of DODME. Therefore, the relation-
ship in Eq. 7.76 that the assignment matrix establishes between estimated link flows
ylt and estimated OD flows xijr can now be rewritten as Eq. 7.166:

ylt =
∑

i∈O

∑

j∈D

t∑

r=1

alt
ijr∗xijr (7.166)

If data collected from a sample of GPS-tracked vehicles is available and if it is
possible to create a discrete time estimate of a seed OD-matrix from it, that is, the

observed OD-matrix X 0 =
[
x0ijr

]
, this last matrix could be expanded to estimate the

OD-matrix in terms of the scaling factors per origins, αi,∀i ∈ O, and per destinations
βj,∀j ∈ D, such that (Eq. 7.167):

xijr = αi∗β j ∗ x0ijr (7.167)

It can be assumed, as in all previous formulations, that a reliable historical OD-
matrixX H is available. As alreadymentioned, this assumptionwould be questionable
in long-term planning applications, as this matrix could be either largely outdated or
simply not exist. However, its existence is a reasonable hypothesis in traffic manage-
ment applications, where a surveillance system is already in operation and provides
rich structural information (Ashok and Ben-Akiva 1993; Ben-Akiva et al. 2001;
Djukic et al. 2018; Aimsun 2020). Once the existence of a historical OD-matrix
accepted, the DODME problem can be reformulated in terms of the estimation of
the scaling factors αi, and βj, in the following way (Eq. 7.168):

Min
αi,βj

⎡

⎣w

⎛

⎝
∑

i∈O

∑

j∈D

t∑

r=1

(
xH

ijr − αi ∗ βj ∗ x0ijr
)2

⎞

⎠

+
∑

l∈L̂

∑

t∈T

⎛

⎝ŷlt −
∑

i∈O

∑

j∈D

t∑

r=1

αi ∗ βj ∗ ālt
ijr ∗ x0ijr

⎞

⎠

2⎤

⎦

(7.168)

s.t. αi, βj ≥ LB ∀i ∈ O,∀j ∈ D

The problemvariables aremultiplicative scaling factors for each originαi and each
destination βj, which significantly reduces the number of variables from |I |∗|J |∗|T |
to |I | + |J |. Moreover, the fact of using the scaling factors as variables aims at
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preserving the structure of the seedOD-matrix, as gravitymodels do. Since themodel
is no longer quadratic and is bounded from below, other optimization procedures
could be advisable. Ros-Roca et al. (2021a, b) report good results using the L-
BFGS-B method (Morales and Nocedal 2011). It is a quasi-Newton method suitable
for constrained nonlinear problems with a high number of variables, and it efficiently
reduces the memory requirements and the computational burden.

Theoretically, the lower bound (LB) should be a non-negativity constraint for all
the scaling factors αi, β j. However, from a practical point of view, αi = 0 or β j =
0 implies that a positive OD flow of the seed OD-matrix from a certain origin or
to certain destination would become null. Therefore, considering that the seed OD-
matrix in Eq. 7.167 comes from reliable information on mobility, the scaling factors
cannot be null and the lower bound should therefore be larger than zero.

If the quality of the observed seed matrix X 0 is questionable due to the conditions
in which GPS data have been collected, (this could be the case for some commercial
GPS data, as mentioned) but the historical matrix X H is very reliable, both matrices
could be fused to generate an improved seed matrix (Ros-Roca et al. 2021b).

7.7 Measuring the Quality of the OD Estimates

A critical question when estimating an OD is how the quality of the resulting esti-
mated matrix can be assessed. This quality has been usually assessed in terms of the
convergence of the objective function and the R2 fit between measured and simu-
lated traffic counts at links with counting stations. From the optimization point of
view, these measures are a good selection because they can show explicitly that the
used method works specifically for the purpose of minimizing the objective func-
tion designed as an OD-matrix estimation problem. Furthermore, it verifies that the
estimated OD acceptably replicates the observed flows. However, despite R2 being
a good indicator of how the optimization problem is performing, it can produce
misleading results. For example, it is possible that a high regression is achieved but
the resulting estimated OD-matrix does not match the reality of the demand pattern
and the internal mobility of the study area. Therefore, some other indicators that
evaluate the mobility patterns in the OD-matrices are needed.

These indicators do not pay any attention to the quality of the results from a
structural point of view. In other words, they do not distinguish whether the traffic
OD patterns resulting from the adjustment approach exhibit an acceptable degree of
structural similarity to the historical OD-matrix (when a reliable one is available), or
whether the used approach provides a perturbed matrix that, even fitting the observed
link flows, is structurally different. If this last is the case, it could be doubtful that
such a structural change could be physically interpretable in terms of the underlying
transportation system. Particularly when considering increases or decreases in the
total number of trips between transportation zones that cannot be consistent with the
socioeconomic attributes of the zone generating or attracting them. Looking at the
link-path relationships visualized on the right-hand side of Fig. 7.3, it may happen
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that the optimization process used to solve the DODME problem locally behaves as
a retrogression model. This model could pull forth and back the OD flows in paths
crossing the link with the counting station in order to fit measured and simulated
flows as well as possible. This would just be a consequence of a numerical procedure,
ignoring the underlying structure of the modeled reality.

A widely used proposal has been to resort to other goodness of fit indicators,
like the Mean Square Error (MSE) and other similar ones (Hollander and Liu 2008).
Other approaches consider alternative formulations of the objective function in terms
of the distance function between the historical and the estimated OD-matrices. Clas-
sical distances between vectors can be applied to matrices by considering these
matrices X H , X ∈ Mn(R) as vectors of X H , X ∈ R

n×n. Euclidean, Manhattan, and
other vector distances can be used in the objective function of the OD-estimation
problem aimed atminimizing the distance betweenmatrices. However, thesemetrics,
although comparing the OD-matrices cell by cell, do not have the ability to capture
the differences and similarities of many aspects, such as their structure. Therefore,
the spatio-temporal similarities of OD-matrices are not captured by these measures
(Djukic 2014) and it seems clear that alternatives to these vector measures must be
used. Djukic (2014) or Behara (2019) present a reference matrix MR, which could be
considered as a hypothetical ground truth matrix, X GT , and two additional matrices
M1 and M2 generated by perturbations of that reference matrices, such that they
clearly have different structures but are indistinguishable in terms of measures like
MSE or similar. The example in Fig. 7.9. illustrates this situation. Let us consider the
three matrices,MR, M1 and M2, the reference and perturbed matrices, respectively,
generated following the guidelines of Djukic (2014).

Comparing MR, M1 and M2 in terms of MSE, the results are that MSE (MR, M1)
= MSE (MR, M2) = 16. Therefore, MSE does not help to discriminate which of the
two matrices M1 and M2 is closer to MR.

Fig. 7.9 Comparing matrices with the same MSE and different structures
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Djukic (2014) proposes a measure of structural similarity based on the Image
Quality Assessment process for comparing two different images (Wang et al. 2004).
This measure is the Structural SIMilarity index (SSIM) for a matrix of pixels, that
is, the product of three different comparison components: luminance, contrast, and
structure. Luminance corresponds to the intensity of illumination, which is indeed the
mean of the different pixels in a sub-matrix. Contrast is the squared average between
pixels once the luminance is removed, thus making it the standard deviation. Finally,
the structure is compared by using the covariance between the two matrices. These
three factors are firstly transformed with the aim of adjusting them to the interval
[0, 1], where 1 means perfect match and 0 means no match. SSIM is therefore a
similarity measure that is independent of the magnitude of the values in the matrix.
Equation 7.169 gives the formula summarizing this explanation:

SSIM (x, y) = l(x, y)α ∗ c(x, y)β ∗ s(x, y)γ (7.169)

where luminance, contrast, and structure are, respectively, defined by Eqs. 7.170–
7.172:

l(x, y) = 2∗μx ∗ μy + C1

μ2
x + u2

y + C1
(7.170)

c(x, y) = 2∗σ x ∗ σy + C2

σ 2
x + σ 2

y + C2
(7.171)

s(x, y) = σxy + C3

σxσy + C3
(7.172)

andμx, σx, μy, σy, σxy are themean, standard deviation, and covariance of the vectors
x and y, respectively. C1, C2, C3 are stability constants aimed at avoiding numerical
problems and are typically set to C1 = C2 = 2 ∗ C3 = 1. For their part, α, β, γ are
weighting coefficients typically set to 1 (Wang et al. 2004). In image comparison,
because pixel proximity is crucial in image pattern recognition, Wang et al. (2004)
propose to first generate sliding submatrices of dimension N entirely covering the
image, then compute the SSIM index for each of them and, finally, calculate the
MSSIM as the mean of the SSIM of all submatrices of dimension N . Djukic (2014)
assimilates the OD-matrix to an image whose pixels would be the OD cells and
explores various alternatives for generating these sliding windows in terms of prox-
imities. Behara (2019) and Behara et al. (2020) propose a procedure to generate
them based on the geographical structure of the area spanned by the transport system
object of study. Ros-Roca et al. (2020) propose to use rectangular sliding windows
as submatrices corresponding to either rows or columns in the OD-matrix. In any
case, SSIM will capture the similarity between these distributions by considering
the mean, the variance, and the structure of departing and arriving distributions, all
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of which correspond to the structural property of the trip patterns described by the
OD-matrix.

Furthermore, let us assume that the number of generated submatrices is Ns that
a and b are, respectively, the corresponding windows of the matrices A and B to
compare and that SSIM(a,b) is their similarity value. Then, if MSSIM is SSIM (a, b)

averaged over Ns sliding windows, a key question arises. Particularly, whether all
windows have the same weight or whether their role in the total demand requires
that they have different weights. In the case of OD-matrices, it is obvious that not all
origins or destinations are equivalent in a transport network. Therefore, a weighted
MSSIM as in Wang and Simoncelli (2008) prioritizes those origins and destinations
with more impact on the network. This proposed weighting average is defined as in
Eq. 7.173:

MSSIM (A, B) =
∑Ns

i=1 W (ai, bi) ∗ SSIM (ai, bi)
∑Ns

i=1 W (ai, bi)
(7.173)

where ai, bi are, respectively, the i − th windows of A and B, while the weight
w(ai, bi) is given by Eq. 7.174:

w(ai, bi) = log

[(

1 + σ 2
ai

C2

)

∗
(

1 + σ 2
bi

C2

)]

(7.174)

Theweighting factors for the slidingwindows, in the case ofOD-matrices, account
for variances of the selected windows that, given how they are defined, represent
the variance of trips from an origin to all destinations or from all origins to one
destination.TheuseofMSSIMinaddition to the conventional performance indicators
has demonstrated that the usual R2 goodness of fit between observed and simulated
links flows must be carefully complemented (e.g., Djukic 2014; Behara et al. 2020;
Ros-Roca et al. 2020, 2021b). Particularly, it must be complemented with a MSSIM
analysis in order to check the structural quality of the estimated OD-matrix X when
an acceptable historical X H that conveys reliable structural information on the OD
patterns is available.

Comparing again MR, M1, and M2 in terms of MSSIM, the results are, MSSIM
(MR, M1) = 0.914882 and MSSIM (M R, M2) = 0.510276, which clearly shows that
M2 is structurally different from MR.

The relevance of this structural similarity measure (Behara et al. 2020; Behara
et al. 2021) led to explicitly include it in the objective function of the mathematical
model for DODME, reformulating it as follows (Eqs. 7.175–7.179):

Min Z(X ) = 1

2
∗
[(

c1 +
(

Y − Ŷ
)T ∗

(
Y − Ŷ

))]

∗
[(

c2 + f
(
s, ŝ

))T ∗ (
c2 + f

(
s, ŝ

))]
(7.175)
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Y = A ∗ X (7.176)

s = Q ∗ X (7.177)

f
(
s, s

∧) = 1 − ρ
(
s, s

∧)

2
(7.178)

ρ
(
s, s

∧) =
(
s
∧ − μs

∧

)T ∗ (s − μs)
√(

s
∧ − μs

∧

)T ∗ (
s
∧ − μs

∧

) ∗
√

(s − μs)
T ∗ (s − μs)

(7.179)

where A is the assignment matrix, Y and Y
∧

are, respectively, the estimated and the
observed link flows at linkswith counting stations and s and s

∧

denote the observed and
simulated flows at subpaths detected by Bluetooth (orWi-Fi) antennas. For their part,
Q is the corresponding subpath assignment matrix, while c1 and c2 are stabilizing
constants. The algorithmic approach assumes that t A and Q are locally constant.

7.8 Concluding Remarks

The main objective of this Chapter has been to highlight the role of two key compo-
nents of the engine of most traffic management and information systems. First, a
Dynamic Traffic Model, usually a DTA or DUE, which is quite frequently supported
by a Network Loading process based on a mesoscopic traffic simulation approach.
Second, a Dynamic Origin–Destination Matrix Estimator (DODME) that suitably
models the time-dependent mobility patterns. The main goals of these components
are the estimation of the traffic state in the managed road network and its short-
term prediction, accounting for impacts of external events like traffic incidents that
would change the operational conditions in the network. Travel times are one of the
main outputs describing these states for both managers and travelers in the network.
Figure 7.10 conceptually summarizes a generic architecture of a traffic management
and information system highlighting the role of these two key components and their
interactions since, as it has been discussed in the chapter, the main input to a DTA or
DUE is aDynamicOD, andDOMEprocedures usually rely on information generated
by a DTA.

This chapter has also provided an overviewof themain approaches to bothmodels,
DODME and DTA/DUE, and their relationships. The role of one critical compo-
nent, the dynamic assignment matrix, has been extensively discussed. This matrix
describes the structure of the dynamic of the use of the links of the network by the
traffic flows in the paths from origin to destinations. The possibility of exploiting the
huge amount of traffic data supplied by ICT applications, which allows empirically
reproducing the assignment matrix from data instead of frommodels in the direction
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of the data-driven modeling, has also been addressed. This trend is intellectually
very appealing and, in fact, it is currently leaving the Academia realm to enter the
domain of real-life applications, as it can be deduced from the last versions of some
professional software platforms.
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