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Preface

This book was conceived with some clear objectives in mind. The first one is the
proposal of solutions for the immediate improvement of current highway travel time
information systems, making them able to provide drivers entering a stretch with
an accurate prediction of the time they will need to fulfill their particular trips. This
objective involves two challenging tasks, which must be performed in real time: i)
the precise estimation of current travel times and ii) the short-term prediction of the
highway traffic state evolution.

Two additional goals join this first objective. On the one hand, the key proposed
methodology tries to make the most of all available data sources. That is, it takes
advantage of the potential of the latest technologies that are being introduced
both in vehicles and in the infrastructure, but without disregarding the valuable
information that traditional surveillance, still much more common, provides. There-
fore, no expenses specifically devoted to travel time estimation are needed, as the
methodology adapts to the evolution of traffic surveillance. On the other hand, the
method is derived with a vocation of continuity in the sense that, although already
applicable, it will also be valid and even more necessary in future cooperative
environments. Moreover, the goodness of its results will increase as the role of
vehicles as data sources increases.

However, it cannot be overlooked that, up to now, many roads worldwide exclu-
sively depend on loop data. Consequently, travel times on them are still obtained
by using spot speed methods. Even when this situation changes, it seems worth
taking advantage of these widespread detectors and these well-known procedures.
Therefore, the second objective of this book is to enhance their outputs for those
cases in which they are already acceptable, i.e., when no traffic transitions exist or,
better, for free flowing situations. In this regard, an algorithm aimed at deriving space
mean speeds, those truly related to travel times, instead of time mean speeds, from
inductive loop detectors is introduced. Based on statistics, neither other detectors nor
modifications in the loops are necessary.

Thirdly, this book aims at providing an overview of some key challenges that must
be overcome to achieve efficient traffic management in more complex scenarios.
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Firstly, in urban areas and, secondly, in future cooperative automated driving envi-
ronments. In both cases, traffic management, to be effective, will have to be able to
react to continuous variations in traffic conditions with a quickness and an accuracy
that has not been achieved yet, at least in practice. This overview will help readers
understand howmanagement systems have evolved and where we are today. It there-
fore aspires to serve as a starting point for further research that will take advantage
of current technological developments to make further progress towards the efficient
traffic management that we all desire.
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Overall Approach and Outline

Overall Approach

Since the beginning of time, humanwelfare has been linked tomobility opportunities.
The first civilizations moved looking for the best places to settle or fleeing from
enemies. To certain extent, so do we nowadays too. Mobility represents freedom. It
allows us choosing where to live, where to work, where to have fun.

With the advent of Internet and with new technologies becoming increasingly
appealing and available, the end of personal mobility was envisaged. However, this
has not been the case. Internet enables us to work at home, to buy online, or to hold a
meeting with people who are thousands of kilometers away. Nevertheless, we keep
on moving. What’s more, the mobility rate increases in line with the gross domestic
product (GDP). And so does the number of private cars for the moment, although
sustainability issues will probably curb the trend in a near future. The reason is that
the potential demand for transport systems follows an increasing trend parallel to the
development of modern societies. We do not usually move for the simple pleasure of
enjoying the trip itself, but to satisfy a need or to obtain a benefit.Wemove looking for
accessibility to those activities inherent to the nature of our societies. These needs, the
patterns, the means, etc., change with time. However, mobility requirements/desires
remain.

In this context, we must keep in mind that mobility involves costs. Some of
them exclusively concern transportation users (e.g., travel time, vehicle amortization,
energy needs). However, externalities like pollution and other ecological impacts,
noise, safety problems, land occupation, expenses devoted to the construction of the
infrastructures, etc., affect the whole population. These costs increase with conges-
tion, which leads to the inefficiency of the system and could even result in a global
gridlock. In fact, congestion is already amajor problem inmost countries worldwide.
As an example, Bogota commuters spent more than 191 hours in traffic jams in 2019,
and those of Rome more than 166 (Inrix, 2020). There is a need for urgent solutions
aimed at ensuring an efficient, safe, inclusive, and environmentally friendly mobility.
In other words, at making mobility sustainable. The COVID-19 pandemic made
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us more aware of the consequences of misconceived mobility: during the mobility
restrictions, we could observe how pollution and noise in urban areas decreased, how
some animals returned to the cities, how there was hardly any space in the cities for
pedestrians, etc. Undoubtedly, these reflections fed the conscience of many users
and administrations, and it was thought that, after the pandemic, things would not go
back to the way they were before and that everyone would do their part: users would
use more soft means of transport, administrations would promote public transport
and reorganize cities, companies would facilitate teleworking, etc. And so it has
happened, but perhaps not to the extent dreamed of. In fact, congestion problems are
returning to the cities andmake clear the need not only for the aforementioned change
of awareness but also for the continued implementation of management strategies.

In fact, and focusing on road transportation, traditional measures consisting in
incrementing road physical capacity by increasing the number of lanes of an existing
infrastructure or by constructing new ones, usually result inefficient nowadays, above
all in infrastructural developed countries.Moreover, they are often unrealizable due to
the lack of free space. In fact, the current road network worldwide is mostly complete
and well developed. That is why today’s solutions should thus lie, mainly, in traffic
management.More in particular, in the implementation of active ad hocmanagement
strategies based on real-time data and adapted to face current traffic conditions. These
strategies must aim to the equilibrium between supply and demand by improving the
first one and regulating the second one. This idea is not new and, supported by the
advent of new technologies, particular strategies have already been designed and/or
implemented. Examples of those aimed at optimizing the available capacity are
the dynamic management of speed limits, the dynamic lane assignment or incident
management. For their part, freeway access management or high-occupancy vehicle
(HOV) lanes are cases of demand management strategies.

At this point, the question is why congestion continues to be a severe challenge if
we have the technology and the knowledge to avoid or at least to relieve it. The answer
is twofold. On the one hand, neither users nor some administrations were so far aware
of one key fact: the goal of traffic management must be the optimality of the whole
system (Wardrop, 1952), above particular interests. On the other hand, and probably
linked to this first reason, the lack of enough efforts (economic, but also planning and
operation-related) to implement this kind of strategies has been noticeable thus far.
Apart from remarkable exceptions or pilot tests, smart roads, smart transportation
systems, smart cities, etc., are not a generalized reality yet even when they have been
extensively tackled in research. In fact, the presence of static traffic management
strategies based on average historical data still prevails. Although helpful to some
extent, they are insufficient to deal with current traffic problems. Therefore, many
changes are needed so that the aforementioned appealing scenarios come true.

Fortunately, there is good news too. Firstly, the incredible evolution of tech-
nology in the last years allows having more data than ever before. There are not
only new gadgets with outstanding capabilities, but their prices are increasingly
competitive. Therefore, their penetration rate grows over time. Think for example
of the widespread use of smart phones in the last years. Secondly, a change of mind
can be glimpsed. Traffic-related undesirable issues as well as previous (and current)
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bad experiences are making stakeholders conscious of the need for a real paradigm
shift. Additionally, the implementation of varied research results in this regard in
several areas is already demonstrating the benefits of dynamic traffic management
systems. Finally, the appealing of new technologies also plays a role, as many agents
are keen on applying them as soon as they reach the market. The most illustrative
example of this attraction is that of “autonomous” (a tricky word that is going to
be clarified in this book) vehicles, which are in the spotlight of automakers, tech-
nological companies, users, administrations, researchers, etc. The opportunities that
technology offers to traffic control and regulation are indubitable. Nevertheless, as it
is going to be discussed in the next chapters, the success of any traffic management
strategy will not lie in the involved technology but in how this technology is applied.
That is, in whether its use is aligned with traffic flow principles.

Given this background, highway travel time information systems are (corridor)
demand-side traffic management strategies, and can also be inputs for improving
the supply of the road network. However, they are considered special and standalone
systems due to the significance of their output. In fact, accurate travel times (both their
predictions and their reliability) constitute probably the most important information
that both drivers and traffic management centers can handle. For the first ones, it
is an easily understandable variable (Turner et al., 1998; van Hinsbergen et al.,
2007) that allows them, for example, to change their route, their departure time, or
even their mode of transport to avoid congestion. With regard to traffic agencies,
travel time reliability is the best indicator of the level of service of a road/stretch. In
fact, this concept has already been introduced in, for example, the last editions of
the American Highway Capacity Manual (2016) or the German Handbuch für die
Bemessung von Straßenverkehrsanlagen (2015). Additionally, real-time travel times
are the most important variable to quantify congestion and a critical input for active
traffic management strategies.

Travel times have and are beingmeasured in very different ways andwith different
equipment, mainly according to the surveillance and computational capabilities
available. In any case, it must be taken into account that each procedure leads to
different results.Not only regarding accuracy but alsowith respect to the realmeaning
of the travel times that are being obtained.On the one hand, travel times along a link of
a highway can be obtained directly by identifying individual vehicles at the beginning
and at the end of the link, or by tracking vehicles during the whole trip. Automatic
Vehicle Identification (AVI) devices or tracking technologies such as cell phone geo-
location or GPS are, respectively, needed to this end. The penetration rate of the
necessary technology was a big issue in the past. Nowadays, its availability is much
larger, especially in those highways with big traffic volumes. However, it cannot be
overlooked that measured travel times are obtained once vehicles have traversed the
target stretch. Therefore, they could be considered “obsolete” information for the
next drivers entering it. On the other hand, travel times can also be obtained indi-
rectly. That is, other traffic variables such as speeds, flows, etc., are measured and
travel times are afterwards calculated from them. The most common source of data
for this purpose are inductive loop detectors, which are present onmost roads. In fact,
travel time estimation relied almost exclusively on them for a long time. Usually,
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punctual measurements of speed are first averaged for predetermined time intervals.
The obtained means are then extrapolated to the links between the measuring points
(i.e., the points where the loops are located), and the result of these extrapolations is
used to estimate the travel times in the links. Finally, link travel times are added up to
obtain corridor travel times, i.e., travel times along several consecutive links. These
methodologies have two baseline mistakes: i) the procedures used for the spatial
generalization of the punctual mean speeds do not consider traffic dynamics and
queue evolution, but are just mathematical interpolations and ii) even if the former
approach were enhanced, space means and not time mean speeds should be used to
calculate travel times, according to traffic flow theory. Research has demonstrated
that travel time estimations via spot speed methodologies are only satisfactory when
traffic is free flowing or the density of detectors high. As it is precisely in congestion
when travel time information is more valuable, and taking into account that very high
surveillance density is not available everywhere, the need for new more appropriate
procedures is indisputable. In any case, either as a standalone system when no other
data source exists, or as a complement to other procedures suitable for congestion,
spot speed methods should rely on space mean speeds.

Researchers have tried to overcome the disadvantages of individual (i.e., one
source-based) procedures to estimate travel times by means of data fusion. Further-
more, technological progress has provided both new surveillance and more powerful
computational capabilities from which highway travel time information systems
can benefit. Nevertheless, the penetration rate of these novelties is uneven among
networks and even among the links of each single network. Therefore, efforts must
be focused not only on very ambitious schemes but also on improving the simplest
ones. Very interesting existing initiatives on data fusion for travel time estimation are
reviewed in this book. However, until now there was lack of a methodology that, at
the same time: i) did not provide past or instantaneous travel times, but (short-term)
travel time predictions, ii) were generalizable in current basic scenarios without the
need for large investments, and iii) were applicable in the (near) future cooperative
driving environments as well, in which accuracy requirements will be much higher,
but many more input data will be available. This book introduces such a data fusion
methodology, which couples new technologieswith basic surveillance and the classic
(and key) principles of traffic flow theory.

Finally, it is necessary to draw attention to urban environments. Despite their
importance, few cities have travel time information systems similar to those used
in highways and freeways. Instead, most agencies deliver coarse estimates of travel
time obtained via unreliable and too simplistic approaches. The lack of appropriate
surveillance and the complexity of traffic in urban sites are usually behind these
procedures (Mori et al., 2015). It must be noted that urban environments, like
corridors, add an additional complexity to the traffic system as far as they exhibit
a significant difference with respect to, for example, freeways, due to the existence
of multiple paths between the origins and destinations of the trips. Understanding
behavioral aspects on howdrivers choose these paths, namely in terms of travel times,
becomes a significant component of trafficmanagement systems. Although this book
specially refers to highways or freeways, i.e., to uninterrupted traffic, the proposed
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methodologies are also applicable to urban environments.Defined at the link level, the
presented algorithms could be suitably modified to appropriately deal with urban or
arterial roads and to account for the different boundary conditions they imply. Proper
modifications would be necessary depending on the available surveillance and on the
characteristics of the site.Also in this respect, the last two chapters of this book extend
the point of view of the first ones, since they analyze travel times in their role as inputs
for dynamic traffic management systems in their most global concept. These systems
play a very important role in road networks, but they are crucial in urban areas, where
management is oftenmore complex. Hence, they have been evolving, and continue to
do so, with the aim of achieving increasingly accurate outputs and, therefore, being
able to define the most appropriate management strategies in real time. As will be
seen in detail, one of the critical steps for the correct operation of these systems is to
obtain, also in real time, precise dynamic origin-to-destination matrices, which allow
the correct definition of the demand of the different links of the network. Again,
numerous methodologies have been proposed to obtain these matrices (and, again,
the accurate prediction of travel times on the different links/routes is fundamental),
but difficulties still arise. Increasingly advanced approaches to obtain these matrices
are being tested, most of them trying to make the most of “new” data sources, espe-
ciallymobile phone data. In fact, data-drivenmethodologies are attracting the interest
or researchers and are called to complement other solutions based on traffic models.

Outline

This book is divided into four parts, each one grouped in different chapters. The
relationships between the chapters and their main content are schematically outlined
in Fig. 1.

After the preface and this introductory section, Chapters 1 and 2 of the first part
of the book constitute a detailed report of the concepts, theories, and tools that are
used in the following Chapters 3 and 4. More in particular, Chapter 1 clarifies the
different equipment and procedures that are being used for traffic monitoring and
reconstruction, whereas Chapter 2 introduces the key variable of this book: the travel
time. Its significance for traffic management, the different definitions that exist under
its general concept, how these definitions are linked to the way (and equipment) in
which they are obtained, etc., are analyzed.

Part II, which is divided into three chapters, contains the main contributions
of this book, and constitutes its more novel part. Both Chapter 3 and 4 focus on
highway travel time information systems. Chapter 3 introduces a methodology to
improve the simplest current procedure for travel time estimation, which uses punc-
tual measurements of speed registered on double-loop detectors. Spot speedmethods
are commonly used with one important initial error: the use of time mean speeds,
while average travel times result from the integration of space mean speeds. The
proposed methodology is able to derive space means from the time means provided
by loop detectors without the need for extra data sources. Next, Chapter 4 addresses
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the most challenging and promising part of this book. It introduces a data fusion
algorithm that is able to predict travel times in real time. To make the predictions,
this algorithm combines data obtained from loop detectors with a comparatively
small amount of direct measurements of travel time. Particularly, it fuses eulerian
and lagrangian data. Especially the latter are becoming increasingly available in line
with vehicle automation. Therefore, the suitability of the methodology both today
and in future mixed (i.e., with traditional and intelligent vehicles sharing roads) and
cooperative environments is guaranteed. Both Chapter 3 and 4 include ad hoc exper-
imental studies with real and simulated data that demonstrate the good performing of
the proposed methodologies. Next, Chapter 5 serves as a link between the preceding
chapters and those that follow, as it describes what future cooperative automated
driving environments will be like and analyzes what the role of travel times will be
in these new scenarios and what requirements they must meet in order to remain key
information.

The third part of this book broadens the outlook and addresses the evolution
dynamic traffic management systems, including those accounting for urban areas
and for cooperative driving environments. Firstly, Chapter 6 explains the different
approaches with which traffic management systems have been developed so far and
addresses those that are gaining interest at present in parallel with the emergence of
new data sources. For its part, Chapter 7 expounds on data analytics and models that
are being used to understand and predict travel patterns in urban scenarios, which are
indispensable to achieve an efficient traffic management. The dynamic estimation of
origin-to-destination matrices constitutes a key part of this chapter.

Finally, themost important conclusions drawn fromboth the research and compre-
hensive literature review performed are highlighted in Chapter 8 of Part IV. This
chapter also outlines possible lines of future research.
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Chapter 1
Traffic Monitoring and Reconstruction

Margarita Martínez-Díaz

Abstract In traffic engineering, as in so many other disciplines, any good analysis
requires data. Regardless of whether the most powerful software is available, it will
not produce good results if it does not receive the necessary inputs. It is generally
accepted that the more data available, the better results can be achieved. Omitting
data-driven techniques, this is true only if the data is adequate and, of course, more
or less accurate. In this sense, the equipment that collects the data also plays a
fundamental role, since it will determine what data can be collected and in what
amount. This chapter provides a simple but very useful classification of the most
commonly used sensors and explains the data they can collect. It also gives a brief
and simplified introduction to the reconstruction of traffic conditions from these data
using the most common techniques. Both aspects will be discussed in more detail
throughout this book.

1.1 Introduction

The need for traffic data collection grew in parallel to the widespread adoption of the
automobile, and the subsequent development of the road network. At the beginning,
the goal was the measurement of traffic volumes aimed at planning. Manual (and
visual) counts were the most usual monitoring procedure in those years. The mass
production of the Ford Model T on a moving assembly line, initiated by the Ford
Motor Company in 1913, constituted a great leap forward for the automobile
industry and for society. Mass production allowed companies to lower their selling
prices, making thus vehicles affordable for a broader sector of the population.
Particularly, Ford had already produced over 15,000,000 Model T automobiles by
1927 (Banham 2002). With more and more vehicles on the roads, the need for (i) the
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control of the level of service on the existing roads and (ii) a more rigorous network
planning process, arose. Counts, although necessary, became insufficient to meet
the requirements of these purposes. Among others, average speeds turned out to be
indispensable too (Highway Research Board 1950).

Additionally, manual data collection led either to inaccuracies or to huge staff
costs. The support of technology was seen as essential. The first known deployment
of a vehicle detection device was that of a semi-actuated signal. Installed in 1928 at
an intersection in Baltimore, drivers were required to honk in order to activate the
detector, which consisted of a microphone mounted in a small box on a nearby utility
pole. The right-of-way was then assigned according to the information collected by
this sensor. Although useful, it was too rudimentary so as to be sustained for a long
time. On the contrary, a treadle-type detector proved at the same time became a
common means for vehicle detection at actuated signals over some years. It was a
pressure-sensitive pavement detector with two metal plates that acted as electrical
contacts and were forced together by the weight of the passing vehicles (Institute
of Transportation Engineers 1991). The next monitoring gadget introduced was an
electro-pneumatic detector. Although it also became a popular method for vehicle
monitoring for some years, the fact that it was only able to detect vehicle passage
did not compensate its high installation costs.

Despite being the best available option, and accepting that weight is the most
easily detectable and quantifiable property of vehicles, the treadle-detector also
suffered from frequent inconveniences. First, there were mechanical problems with
the contact-plate sensor. Second, rock falls or snowplows, for example, usually lifted
the plate from the roadway. Additionally, the whole detector had to be reinstalled
after any kind of pavement repair. From then on, efforts were focused on the devel-
opment of detectors that measured more subtle properties, like the following ones
(FHWA 2006):

• Sound
• Opacity (optical and infrared sensors and video image processors)
• Geomagnetism (magnetic sensors, magnetometers)
• Reflection of transmitted energy (infrared laser radar, ultrasonic sensors and

microwave radar sensors)
• Electromagnetic induction (inductive loop detectors)
• Vibration (triboelectric, seismic and inertia-switch sensors)

All these properties and the related sensors are currently used. Moreover, induc-
tive loops, introduced as a vehicle detection system in the early 1960s, are still the
most widespread source of traffic data despite the fact that othermoremodern devices
are gaining ground (e.g., mobile phones). Most of the aforementioned sensors have
evolved with time and, in fact, this evolution continues. Think for example of new
loops capable of (re)identifying vehicles. However, the complexity of current traffic
scenarios, which is expected to increase in line with vehicle automation, as well
as the subsequent intricacy of actual traffic management strategies, do not only
demand sensing devices. In fact, the impressive development of computing and
communication technologies in the last years, which continues, results decisive. They
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have already brought about the possibility of collecting, processing and delivering
data in real time. That is, they made possible the birth of the so-called Intelligent
Transportation Systems (ITS).

Although this concept gained impact since the end of the 1990s, the idea of
taking advantage of the new communication and computational capabilities for road
transportation is older. According to the American Transportation Research Board
(Weiland and Purser 2000), it was already in the early 1980s when a small group of
Japanese transportation professionals came up with it. They later called their idea
the Japanese Intelligent Vehicle System (IVS) Program. Siemens was also doing
some pioneering work on route guidance systems in Berlin in the 1980s. In those
years, the Europeans referred to these initiatives as Road Transport Informatics and
later, with information and communication playing an increasingly important role,
as Advanced Transport Telematics (ATTL). The United States addressed these topics
in the late 1980s, at first referring to them as Intelligent Vehicle Highway Systems
(IVHS). Afterwards, the designation ITSwas chosen, giving recognition to the wider
application of technology not only to private vehicles and highways, but also to public
transport and general roads. Themajority of transport organizations and stakeholders
(Andersen and Sutcliffe 2000) have finally adopted this name.

As said, ITS do not only consist of surveillance. They could be defined as compre-
hensive and complex systems that combine sensors, high-level technology, communi-
cations, controllers and advancedmathematical and/or computer science approaches,
with the goal of managing traffic in a sustainable way (Sussman 2005). All of them
can be integrated in different ways. However, the basic architecture of ITS is shown
in Fig. 1.1. First, the physical layer is that composed of all elements of the transporta-
tion system, including the surveillance. At first, sensors were exclusively deployed
in the infrastructure. Currently, those carried by users (smartphones, tablets, etc.)
and that located on-board enormously enrich databases. Particularly the last ones
are becoming increasingly important in parallel to vehicle automation. Second, the
communications layer makes the interchange of data or information between all

PHYSICAL LAYER
•surveillance

• infrastructure
•vehicles
•people

COMMUNICATIONS 
LAYER

•I2X
•V2X
•P2X

OPERATION LAYER
•ATMS
•ATIS
•AVCS

SERVICE LAYER

ITS 

Fig. 1.1 Basic architecture of current intelligent transportation systems (ITS)
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involved agents possible. I2X refers to Infrastructure-to-All communications, V2X
to Vehicle-to-All communications and P2X to Person-to-All communications (where
“person” stands for drivers, passengers, pedestrians, bikers, etc.).

For its part, the operations layer is that of traffic management systems. That
is, at this level the collected data are processed and the subsequent information
is distributed. Although the general term Advanced Traffic Management Systems
(ATMS) is often used, they are also grouped in different ways. For example, the
following classification is usual:

• Advanced Transport Management Systems (ATMS)
• Advanced Traveler Information Systems (ATIS)
• Advanced Vehicle Control Systems (AVCS)

With this classification, ATMS include strategies aimed at optimizing the avail-
able capacity or at managing the demand, excluding those that involve providing
users with information. These ones, which deliver for example travel times or inci-
dent warnings, constitute ATIS. Finally, AVCS directly communicate management
strategies or information to vehicles, and not to drivers. AVCS have meaningfully
progressed in the last years and their significance will grow when autonomous or
at least highly automated vehicles hit the road (Shladover 1990). When referring to
these three groups, the adjective “advanced” is usually substituted by “active”, i.e.,
all these systems collect and process data in real time and, consequently, suggest or
order any kind of behavior (or simply inform users), also in real time. This difference
with regard to traditional traffic management or information systems (often called
“passive”), which work based on statistics or average past data, is their most impor-
tant feature and the key for their effectiveness. Decisions are taken on the basis of
the current traffic state. The shorter the time interval of data aggregation, the faster
and more effective the response to any inconvenience may be. But this response will
only be appropriate if the amount of data collected is enough and if the information
it contains is correctly extracted, also in a short period of time. Finally, the service
layer refers to the area where all services are deployed and run, and/or to the public
or private responsible operator (Lin et al. 2017).

The preceding paragraphs remark that ITS is much more than just sensors.
However, the present chapter is especially devoted to traffic monitoring, i.e., to the
sensing system. The reflections of Palen (1997) help to explain why they deserve
such attention: “An Intelligent Transportation System, by definition, involves the use
of intelligence to enhance the operation of the transportation system. Intelligence,
by definition, requires information. Information, by definition, is data formulated in
a formation. Data are generated by surveillance. Therefore, surveillance forms the
basis for the formation of information for an ITS. You can’t have a usable ITS without
surveillance”. These considerations are valid nowadays and will also be applicable
to future cooperative driving environments. Traffic data collection (and standardiza-
tion) is the first and usually more important step in any kind of traffic management
strategy, as it is for research and development in the field (Barceló and Kuwahara
2010).
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1.2 Eulerian Sensing Versus Lagrangian Sensing

As explained, the amount of different parameters needed to reconstruct traffic states
and, thus, to derive propermanagement strategies, grows in parallel to the complexity
of driving scenarios. Therefore, the number and variety of required sensors also
increase, and so do the expectations about their capabilities and accuracy. As it is
expounded in Chap. 5, the role of the sensing system in future cooperative scenarios,
when vehicles will monitor the environment themselves, will even be more crucial
than today. If this monitoring task is correctly performed, the first step to lower
the accident rate would be taken, as the human factor and its associated errors
would disappear. On the contrary, erroneous and/or insufficient data delivered in
a cooperative environment could have terrible consequences.

Starting with current scenarios, the most important parameters that sensors
collect are counts, speeds, occupancy, size (length and/or weight), location and
emissions. Particular sensors are aimed at measuring one or some of them. The
way in which these sensors perform must also be considered as, consequently, the
obtained measurement can have different and important nuances (see the cases of
speeds and travel times, respectively addressed in Chaps. 3 and 4). Many different
classifications of these measurements (and consequently of their sources) are
possible, but none fits the central topic of this book as good as the one that divides
them into eulerian or lagrangian measurements. As on other occasions, mechanics
(fluid flow theory) is in the origin of these concepts (Lamb 1895), which have later
been applied to traffic. Eulerian data are provided by static traffic sensors, which
measure variables through an immovable control volume, i.e., a fixed coordinate
system is used. On the contrary, lagrangian sensors collect data along the trajectory
of a particle (a vehicle), i.e., the coordinate system they use moves with this particle.
Table 1.1. includes the most widespread sensors of each type and the variables
they measure, which are next addressed. Experience demonstrates that a strategic
combination of several from both types of sensors and the implementation of ad
hoc data fusion procedures yield the best results. Future cooperative automated
environments are called to rely on these comprehensive schemes.

1.2.1 Eulerian Sensors in Traffic Monitoring

Inductive loop detectors, toll tickets, traditional cameras andAutomaticVehicle Iden-
tification (AVI) technologies are examples of eulerian sensors. Currently, toll tickets
are seldom used alone for research purposes, as the number of vehicles equippedwith
Electronic Toll Collection (ETC) systems increases over time. Nevertheless, they can
be profitable in a data fusion scheme (see Sect. 2.2.3 in Chap. 2). For their part, tradi-
tional cameras are part of the basic control equipment of traffic management centers.
However, their current role is often limited to incident detection.
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Table 1.1 Examples of (a) eulerian and (b) lagrangian sensors, and the most usual data they collect

Type Name Key
measurements

Notes

Eulerian Induction loop
detectors

Simple Counts (flow),
occupancy

Trap (double loops) Counts (flow) ,
occupancy, spot
speeds, vehicle
length

Spot
measurements are
usually averaged
over a determined
time interval

(Re)identification of toll tickets Counts (flow),
speeds, travel
times

In closed turnpikes

Video cameras Counts (flow),
speeds, density,
lane changes

Mostly human
analysis and poor
accuracy
Seldom for
reidentification

Automated Vehicle
Identification
Technologies
(AVI)

Bluetooth or
WIFI-signal
detectors

Counts (flow),
speeds, travel
times

Either on-board
Bluetooth/WIFI or
that of passengers’
smartphones

ALPR (Automatic
License Plate
Video Recognit.)

Counts (flow),
speeds, travel
times, vehicle
classification,
lane changes

Also known as
ANPR or OCR

(Toll) Tag
(re)identifi-cation

Counts (flow),
speeds, travel
times

With varied
systems, either
with closed or
open toll
configurations

(Re)identi-fication
by means of special
loops

Counts (flow),
speeds, travel
times

Reidentification by
comparing
vehicle’s
electromagnetic
signature or
vehicle’s length at
two different loops

(continued)
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Table 1.1 (continued)

Type Name Key
measurements

Notes

Lagrangian GPS tracking Trajectories,
from which all
kind of data can
be derived

Either on-board
GPS or that of
smartphones that
travel in the
vehicle

Cell phone signal geo-localization Trajectories,
from which all
kind of data can
be derived

Raw
measurements
have poor accuracy

Radio Frequency Identification (RFID) Trajectories,
from which all
kind of data can
be derived

Chips can also be
controlled at fixed
points, i.e., they
can be used as
eulerian

Probe vehicles and dynamic floating
vehicles

Counts, speeds,
braking forces,
lane changes,
travel times,
weather
conditions,
trajectories

Ad hoc probe
vehicles can carry
different sensors
and thus collect
varied data,
depending on the
objective sought

Unmanned aerial vehicles (drones) Trajectories,
from which all
kind of data can
be derived

Promising.
Unknown
reliability as of
today

More advanced vision techniques included in the AVI group are used to automat-
ically collect other kinds of data. In fact, together with inductive loop detectors, AVI
technologies are the most worthy eulerian sensors nowadays.

1.2.1.1 Inductive Loop Detectors

As explained, traditional inductive loop detectors are the main source of traffic data
thus far. They are not expected to disappear in futuremore technological driving envi-
ronments and the data they provide will continue to be useful within more complex
schemes, as it will be demonstrated in Chap. 4. Therefore, it is worthwhile to take a
closer look at their operating mode.

Single inductive loops consist of an electrically conducting wire loop installed
under the pavement of a particular lane, and an electronic unit that transmits energy
to it. The pass of ametallic object (e.g., a vehicle) over the loop induces eddy currents
in the wire, and inductance thus decreases. This decline activates the electronic unit,
which sends a pulse to the traffic signal controller. In this way, the vehicle is counted.
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Fig. 1.2 Double-loop detector configuration scheme and some measurements available from it
(adapted from Soriguera 2016)

Additionally, as the sensor remains activated until the vehicle leaves the detection
zone, occupancy can also be calculated. Finally, it is possible to derive vehicle spot
speeds, usually by considering an average constant vehicle length. However, this
assumption leads to inaccuracies. Researchers tried to overcome this problem by
the modification the loop detector controller (Coifman 2001; Coifman et al. 2003;
Hellinga 2002; etc.). In spite of the promising results, such adjustments would be
tedious and expensive in practice. On the contrary, vehicle spot speeds can be easily
obtained when loops are placed in pairs. Considering this fact, the deployment
of double-loop detectors (also called dual-loop detectors or speed traps) has been
generalized. Figure 1.2. represents one of these traps and some important parameters
that can be measured with them (Soriguera 2016). Important features are shown
as, for example, the difference between the detection zone of each loop,dL , and
the distance between equivalent points of each loop of the trap, dT . This difference
reaches 1.5 m with the usual configurations, where dT = 3.5 m and dL = 2 m, and
is sometimes overlooked when obtaining subsequent data, which leads to inaccurate
results. The four basic measurements that double loops provide are also indicated:

• The instant when a vehicle activates the trap, i.e., when it enters the detection
zone

• The time between the activations of each loop of the pair due to the passage of a
vehicle i (t t (i))

• The time the first loop has remained off since the preceding vehicle i − 1 left its
detection zone (tof f (i))
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• The time the first loop remains on because of the passage of vehicle i (ton(i))

The most basic microscopic variables can be obtained from the former measure-
ments (Eqs. 1.1 to 1.4):

vi = dT
tt i

(1.1)

hi = tof f (i) + ton(i) (1.2)

si = vi−1 ∗ hi (1.3)

li = vi ∗ ton(i) − dL (1.4)

where vi stands for the punctual speed of vehicle i , hi for its headway regarding
vehicle i − 1, si for its spacing also with regard to the preceding vehicle, and
li for its length. Then, the averaged macroscopic characteristics of the traffic
stream, compliant with Edie’s (1965) generalized definitions for any region A with
length*time dimensions, can also be obtained (Eqs. 1.5 to 1.7, where the formulae
just after the first equal sign corresponds to Edie’s definitions). When working with
loops, this area is dL*�t . �t is the time interval of aggregation for the averages,
during which n activations of the loop took place.

q =
∑n

i=1 xi
A

= n ∗ dL
�t ∗ dL

= n

�t
(1.5)

k =
∑n

i=1 ti
A

=
∑n

i=1
dL
vi

�t ∗ dL
=

∑n
i=1

t t i
dT

�t
=

∑n
i=1 t t i

�t ∗ dT
(1.6)

vs = 1
1
n ∗ ∑n

i=1
1
vi

= 1
1
n ∗ ∑n

i=1
t t i
dT

= n ∗ dT
∑n

i=1 t t i
(1.7)

where xi is the distance traveled by vehicle i in A and ti the time this vehicle spent in
the region. It can be observed that, with these definitions, the so-called fundamental
equation of traffic flow (Eq. 1.8) holds:

q = vs ∗ k (1.8)

Despite this potential, the controllers of double loops do not usually estimate these
macroscopic variables. In addition, individual data are not stored. Traditionally, only
the following variables are calculated and sent to the traffic management center each
�t :

• n, the traffic count during �t
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• The time mean speed vt (Eq. 1.9)

vt =
∑n

i=1 vi

n
=

∑n
i=1

dT
tt i

n
= dT ∗ ∑n

i=1
1
t t i

n
(1.9)

• The time the first loop remained on during�t (Eq. 1.10), i.e., the occupancy (occ)

occ =
∑n

i=1 ton(i)

�t
(1.10)

• The average across time of vehicles’ lengths lt (Eq. 1.11)

lt =
∑n

i=1 li
n

=
∑n

i=1 (vi ∗ ton(i) − dL)

n
=

∑n
i=1

dT
tti

∗ ton(i)

n
− dL

= dT ∗ ∑n
i=1

ton(i)

t ti

n
− dL (1.11)

Depending on the standards, more data can be available. A deeper analysis of
these aspects and some related issues is performed in Chap. 3, which also tries
to mend a baseline mistake of current procedures. Before, Chap. 2 addresses how
instantaneous travel times are being estimated from data provided by loop detectors.
Additionally, Chap. 4 includes loop data in a fusion algorithm aimed at obtaining
travel time predictions.

1.2.1.2 Automatic Vehicle Identification Systems

The fact that loop detectors are eulerian is obvious, as they are located at fixed points
of the road. Moreover, they provide punctual (also called “spot”) measurements. The
case of Automatic Vehicle Identification Technologies could at first be confusing.
AVI detectors identify individual vehicles at control points by means of the number
of their license plate (ANPR or ALPR) (Fig. 1.3.), their Bluetooth signature, their
electromagnetic footprint, an on-board electronic toll collection system, etc.As itwill
be elaborated in Chap. 2, they are increasingly used to collect direct measurements
of travel time. To this end, the same vehicle must be identified at two different points,
which is called reidentification, pairing or matching. This fact could lead to think
that AVI technologies are lagrangian, as the travel time has a space–time component
that depends on vehicles’ trajectories. However, the key is that they use fixed points
as references (the points where the detectors are located, i.e., the control points) and
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Fig. 1.3 Example of license plate recognition system (VaxALPR 2021)

do not literally track vehicles. Therefore, all AVI technologies belong to the eulerian
group.

Although they can provide counts at a fixed point (like loops do), the interest
of AVI techniques precisely lies in their ability to distinguish vehicles and, thus,
to provide their individual travel times and average speeds between control points.
Despite not being able to render the most valuable information, i.e., predictions,
they can be used to feed highway travel time information systems. Additionally,
individual vehicle identifications are very useful, for example, for the construction
of origin–destination matrices, a key input for simulation models that is usually not
easy to obtain (Barceló et al. 2010, 2013). This aspect is deeply addressed in Chap. 7.
Some issues regarding accuracy rates, sample sizes, detectors’ location and the fact
that travel times can only be measured over delimited sections, among others, still
represent challenges to overcome. Chapters 2 and 4 expound on these topics.

1.2.2 Lagrangian Sensors in Traffic Monitoring

In comparison to the eulerian, lagrangian sensors are being applied to traffic control
and management for a short time now. However, they arouse an increasing interest,
and the reason is twofold. On the one hand, the majority of them involve meaningful
savings in installation and maintenance costs when compared to eulerian sensors,
since they mostly work upon already established infrastructures and private devices.
On the other hand, lagrangian sensors track vehicles. They can therefore provide
individual trajectories and, thus, all important information (e.g., travel times, speeds,
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flows, densities, the localization of bottlenecks, the formation or dissipation of shock-
waves). However, several issues remain. Some of them affect only particular tech-
nologies. On the contrary, others like user concern about privacy are common to
all of them. Next sections address the particular functioning and applications of on-
board Global Positioning System (GPS) devices, mobile phones or Radio Frequency
Identification (RFID) transponders, which are nowadays the most used detectors of
this group. Some considerations about probe and/or floating vehicles and unmanned
aerial vehicles are also included.

1.2.2.1 Global Positioning System

GPS receivers are part of the equipment of modern vehicles. Additionally, the use
of extern GPS navigation devices that can be placed inside traditional vehicles has
become common since the beginning of the century. Different private companies as
Inrix, Tomtom, Garmin, Mitac, etc. offer varied products aimed at guiding drivers
on their routes. These companies have realized the value that traffic data have, and
they collect many types of data for other commercial and/or research purposes. In
addition, the fact that smartphones include a GPS receiver, definitively boosted both
GPS navigation support and the collection of GPS data for traffic management.

GPS is a satellite-based radio-navigation system owned by the government of the
United States (US), and operated by the US Air Force. Other countries like China,
Russia, Japan and, also, the European Union, have their own satellite-based posi-
tioning system. Nevertheless, none has proved as accurate as theAmerican one so far.
This is precisely the aim of China with its systemBeidou, designed with 35 satellites.
At the moment, it is the American GPS that has been adopted practically all over
the world. The GPS navigation is based on two different components: GPS receivers
and dozens of satellites and ground stations. GPS receivers are the above mentioned
on-board devices, mobile phones, tablets, etc. They all have a GPS chipset with a
powerful processor. This processor makes all calculations and is also responsible
for the user interface, etc. Regarding the satellites, the first one was launched by the
US Government in 1978, and the last one for the moment, the 31th, in 2018 (Space
Segment 2018). At any given time, there are at least 24 active satellites orbiting over
12,000 miles above the Earth, and the rest are occasionally activated to improve
accuracy by the provision of redundant measurements. The positions of the satel-
lites are not coincidental, but they are thought to properly cover the Earth’s surface.
All satellites contain an extremely accurate atomic clock. Among other pieces of
data, a GPS module receives (by radio frequency) a timestamp from each of the
visible satellites, along with data on where each one is located in the sky. From this
information the processor is able to calculate its distance to each satellite in view.
If the receiver’s antenna can see at least four satellites, the processor can accurately
calculate its position and time. This procedure is called a lock or a fix (Doberstein
2011).

For traffic management, the updating time interval of the system (i.e., how often
the receiver calculates and reports its position) is very important. Once per second
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is the standard today, but chipsets that provide 10 updates per second are also
available. Many variables have influence on the final accuracy. Signal noise, bad
satellite positions regarding that of the receiver, bad weather, insufficient light, and
obstructions (tunnels, buildings, mountains, etc.) provoke errors in the perceived
location. Different GPS assistants (e.g., Inertial Measurement Units, IMUs) have
been developed to support GPS in these situations. As in other cases, data fusion
results beneficial.

1.2.2.2 Mobile Phones

First of all, a clarification is needed: the term mobile phone refers to either cell
phones or to smartphones. On the contrary, these last terms are not interchangeable.
Any smartphone is a cell phone with advanced features, but not all cell phones are
smart. Basic cell phones connect to awireless communications network through radio
waves or satellite transmissions. Most of them provide voice communications, Short
Message Service (SMS) and Multimedia Message Service (MMS). The newest may
also provide Internet services such as web browsing, instant messaging capabilities
and email. Smartphones are able to do many more things, depending on their own
capabilities and on their operating system. They integrate cell phone functions with
others typical of handheld computers or Personal Digital Assistants (PDAs). Smart-
phones additionally allow users, for example, to store information, make photos,
install games and programs, etc.

A significant amount of contemporary research studies relies on cell phone or,
above all, on smartphone data for traffic monitoring and management. This current
focus on smartphones is linked to their penetration rate in society, which increases
significantly throughout the world, but within the senior population (Berenguer et al.
2017). Smartphones could also be seen as part of an AVI scheme (i.e., eulerian) as
they are able, for example, to transmit Bluetooth signals that can be (re)identified at
fixed points of the infrastructure. However, their potential as tracking devices is more
valuable. Additionally, their use for traffic monitoring avoids extra installation and
maintenance costs, since it implies working upon already established infrastructures
(for example, the cell network) and (usually) private devices.

Focusing on their tracking capabilities, Table 1.2. groups some relevant
smartphone-based studies depending on the particular methodology used. Broadly
speaking, two main different procedures based on dedicated mobile phones can be
found in the literature: GPS-based techniques and network-based or cellular signal-
based techniques. Smartphones and GPS-enabled cell phones are useful for both
techniques. However, the most ancient cell phones could only be used for geo-
localization. The basis of both approaches is simple: when one mobile phone is
located at two points over time, both “its” speed and “its” travel time between these
points can be calculated.

GPS-based techniques follow the steps addressed in the former section. They
have already been used to identify traffic conditions, to analyze traffic patterns or
drivers’ behavior, etc. (e.g., Yoon et al. 2007; Herrera and Bayen 2010; Herrera
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Table 1.2 Examples and comparison of mobile phone-based traffic studies

Method Fundamentals Research
examples

Pros and cons

GPS-based techniques The mobile phones’
built-in GPS sensor is
used to accurately
localize them

Yoon et al. (2007)
Herrera and
Bayen (2010)
Tao et al. (2012)
Herrera et al.
(2010)
Paek et al. (2010)
Ge and Fukuda
(2016)
Sanaullah et al.
(2016)
Woodard et al.
(2017)

• PROS:
The most accurate
localization
No modification nor
disturb in phone
networks
• CONS:
GPS are power
hungry
Unreliable
performance in urban
environments

Network-based
techniques

Passive
COMM

Cell handovers and
dwell times (i.e.,
cellular signal) are
monitored to estimate
each phone’s location

Hansapalangkul
et al. (2007)
Janecek et al.
(2012)

• PROS:
Light modifications in
phone networks
No network overload
• CONS:
Less accuracy in
phones’ localization

Active
COMM

The same techniques
as with passive
communications. The
number of calls and
anonymous call data
have also been used
for different purposes

Ygnace et al.
(2001)
Cáceres et al.
(2012)

• PROS:
Bigger dataset:
localization accuracy
better than with
passive comm
• CONS:
Need for investments
in the network to deal
with greater
communication loads

Other techniques Those based on other
built-in sensors like
the accelerometer, or
on the Bluetooth or
WIFI signals

Hansapalangkul
et al. (2007)
Lv et al. (2015)

• PROS:
Varied. For example
energy efficiency
• CONS:
Varied. Above all,
unreliability linked to
their condition of
isolated studies

et al. 2010; Tao et al. 2012; Ge and Fukuda 2016; Sanaullah et al. 2016; Woodard
et al. 2017). Other studies have developed cellular signal-based procedures able, for
example, to estimate travel times, to detect congestion (e.g., Hansapalangkul et al.
2007; Cáceres et al. 2012; Janecek et al. 2012) and even for incident monitoring.
For this last purpose, Ygnace et al. (2001) examined the number of calls made per
unit time on two test sites (respectively urban and rural) in the south of France. They
found out that the volume of calls was related to the severity of the incidents. This
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is an example of in-use (i.e., there exists voice or data transmission) mobile phones
acting as traffic probes. However, other methodologies only require that phones are
switched on. Indeed, when speaking about signal-based techniques, it is important
to note that two types of communications are possible between the components of
the mobile phone system, i.e., between handsets and base stations. By the way, the
later usually cover hexagonally shaped areas or “cells”, which is the origin of the
term “cell phone” (Rose 2006). These communications are:

• The so-called “active” communication, which occurs when a phone is in use.
Then, it is continuously associated with its closest base station. That is, when one
cell phone moves outside the cell boundary associated with one base station, it is
handed over to the next closest one.

• The “passive” communication. When a phone is not in use but switched on, it
periodically reports its precise location to the network in the event of an incoming
call or an emergency.

Trilateration using signal strength or transmission delay from multiple base
stations, the monitoring of cell handover zones, etc., are used to localize phones
in both approaches. In the context of traffic monitoring, passive communication is
said to bemore advantageous than active communication. The reason is that relatively
minor hardware additions (cabling and computing) to the mobile phone network are
needed. Only those that allow the traffic probe system to (i) receive the raw data
stream already collected by the mobile phone system and (ii) process it. Active
systems are able to provide more data. When travelling, cell handovers are more
numerous than passive location reports. However, these systems require the mobile
phones to be polled (i.e., their status must be actively sampled by a client program)
to establish their positions, which implies the overloading of the network and adds
costs to the operating system.

Overall, methodologies that use mobile phones as GPS-receivers are said to
localize themmore accurately. Network-based procedures highly depend on the loca-
tion of the phone base stations, on the road network geometry, on the data processing
procedure (e.g., map-matching algorithms), etc. For their part, the main drawbacks
of GPS-based procedures are the power-hungry nature of GPS and the common
instabilities in urban environments (Paek et al. 2010).

Two important aspects must be highlighted. First, most research performed thus
far relied on dedicated smartphones, i.e., devices specifically used for research
purposes. Therefore, their number and characteristics (and sometimes the routes
“they” followed) were known a priori. Second, the described methodologies are not
the only ones that have been tested, but the most common and, thus, those whose
results are accepted as more reliable. For example, Lv et al. (2015) developed a
completely different methodology to detect road congestion by means of smart-
phones. On the one hand, these were undedicated, which is a better approach to
reality when trying to standardize their use as traffic probes. On the other hand, the
system depended on two mobile phone sensors: the accelerometer and the cellular
signal. First, an accelerometer-based vehicular movement detection module identi-
fied the periods when phone users traveled by vehicle. Second, the cellular signal was
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used by a map-matching module to determine the traveled road segments. Finally,
another module was able to qualitatively infer the degree of congestion by means of
the vehicular dataset. Experimental results based on real-world data demonstrated
both the goodness of the system and its energetic efficiency in contrast to other
techniques. However, the fact that only qualitative results can be obtained seems
insufficient to perform accurate traffic monitoring and, subsequently, to be the only
basis of any dynamic traffic management strategy. Techniques that combine several
of the mentioned approaches, i.e., GPS and cellular signal, are also on the table
(Hansapalangkul et al. 2007).

1.2.2.3 RFID Technologies

Another example of lagrangian sensing is the use of RFID technologies. They allow
gathering data about a particular object (e.g., a vehicle) by means of inductive
coupling or electromagnetic waves. Three main parts must be present in a RFID-
based system: (i) a transponder or tag, which consists of a microchip attached to
an antenna, (ii) the reader or transceiver, which receives the information from the
tag within a limited range, and (iii) the computing framework, which processes the
information. The implemented software varies depending on the final purpose of
the system. Nevertheless, anti-collision algorithms that allow reading several tags
simultaneously, as well as encryption modules, should always be included. There
are several types of tags depending for example on their power source or the charac-
teristics of their memory. Receivers can also have different designs and controllers,
and they can be stationary or mobile. As said, two main types of wireless systems
are used for the communication between tags and readers (Ilie-Zudor et al. 2006):

• Induction: it only works when the distance between the tag and the reader is
relatively short, so that electromagnetic or inductive coupling is possible. Low
frequency (LF) and high frequency (HF) bands can be used.

• Propagation: for longer distances, via the propagation of electromagnetic waves.
It operates in the Ultra High Frequency (UHF) and microwaves’ frequency bands.

RFID technologies are being applied to very different areas like transporta-
tion, manufacturing, supply change management, health care, human identifica-
tion, clothing, etc. Within them all, three main goals can be distinguished, which
are (i) object detection and/or identification, (ii) object localization and (iii) data
transfer from or to the RFID tag. Regarding transportation, uses and objectives go
from the most simple (e.g., smart car key, public transport ticket, toll collection)
to the most complex. This last group encompasses the use of RFID as AVI tech-
nologies (thus eulerian) but, above all, for vehicle tracking (i.e., lagrangian sensing).
However, little research and, subsequently, few applications of RFID-based tracking
aimed at monitoring traffic have been developed, either to feed travel time informa-
tion systems or to design other management strategies, Vehicle control via RFID
is mostly circumscribed to logistics, either alone or combined with GPS (Prasanna
and Hemalatha 2012). In these applications, the interest resides in goods and not in
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traffic management. One use of RFID that combines traffic management and logis-
tics is that of emergency operations management. Effective emergency management
requires integrating and analyzing data collected from sources such as emergency
inventories, emergency vehicles, distribution centers, and shelters. In this context,
RFID can provide a total visibility of vehicle and commodity movement in the
disaster supply chain (Ozguven and Ozbay 2015). For example, Ozguven and Ozbay
(2013) proposed a real-time online feedback control scheme that was able to analyti-
cally control emergency vehicle flows, and to compute the trajectories of emergency
inventory levels. The aforementioned uses benefit from the three main advantages
of RFID-based approaches, i.e., their suitability for (i) tracking, (ii) identification,
sensing, and authentication and (iii) automatic data collection and transfer. However,
some challenges must still be overcome to make RFID more competitive for traffic
monitoring against other technologies:

• Standardization: it is themost important issue. There are very dissimilar technolo-
gies, communication protocols, signal modulation types, data transmission rates,
data encoding and frames, collision handling algorithms, etc. This heterogeneity
impedes interoperability even within a particular country. There is a need for an
agreement among public agencies and private companies in this regard.

• Communication weaknesses: if the communication infrastructure is completely
down or if there is not enough radio frequency signal strength, RFID systems are
not able to transmit data between the reader and the tag, i.e., they are not able
to feed data into the monitoring system. When working in real time, this fact
could have severe consequences. If used as a standalone system, both accuracy
and reliability should be enhanced by means of a reasonable level of redundancy
regarding tags, readers, antennas, and operating modes (Vaidya and Das 2008;
Bolic et al. 2010).

• Expenses: actually not a major problem. The implementation of a RFID-based
tracking system implies extra costswhen compared, for example, to a smartphone-
based system. Nevertheless, that also occurs with other sensing equipment and
these costs are reasonable and justifiable by the system’s advantages.

1.2.2.4 Probe Vehicles and Dynamic Floating Vehicles

Ad hoc equipped probe vehicles and dynamic floating vehicles also act as lagrangian
sensors. Before delving into their contribution, it must be remarked that the adjective
“probe” refers here to vehicles that are introduced in the traffic stream only with
research purposes. On the contrary, “floating” alludes to vehicles that are used for
other objectives, but from which valuable data can additionally be obtained. There is
confusion between these terms in the literature, with some authors agreeing with this
explanation (e.g., Young 2007), others considering both terms as synonyms (e.g.,
Sunderrajan et al. 2016) and others, especially in the past years, using them just in
the opposite way (e.g., Turner et al. 1998).

Taking into account the aforementioned standpoint, ad hoc equipped probe
vehicles are mostly used in specific research projects (e.g., current tests of intelligent
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vehicles) and/or as a complement to other sensing systems (Nanthawichit et al. 2003;
Bachmann 2011; Treiber et al. 2011, etc.). In most cases, particular and powerful
sensors not usually available are implemented in traditional vehicles to this end.
Therefore, they are able to provide very specific and valuable data. However, their
equipment involves extra and, often, significant costs. Additionally, they are in any
case a very small sample of the traffic stream, which implies that the information they
provide is not fully representative (Rose 2006; Oberauer et al. 2011, etc.). Besides,
these data are biased to some extent, as drivers are aware of taking part of a study and
their behavior is not always completely natural. This aspect has been assessed on
other occasions, for example, when drivers answer driving-related surveys (Lajunen
and Summala 2003). For their part, the use of existing floating vehicles does not
generally imply large expenses. Monitoring usually relies on already addressed
technologies, and the equipment to install (if not already on-board) generally consists
of a GPS receiver, a dedicated smartphone or a RFID chip, all of them affordable
nowadays. Thus, these technologies are not found in the traffic stream casually,
but their presence is known. The involved vehicles usually belong to a particular
collective (e.g., taxis, buses, trucks of any company). Therefore, the amount of
gathered data is much greater than in the case of ad hoc probe vehicles. Additionally,
drivers do not usually behave conditioned, because their driving task has a goal
beyond research. However, the fact that vehicles often belong to particular categories
must be taken into account, as it implies some bias (Wang et al. 2010; Yuan et al.
2011). Depending on the objective, data could be insufficient to represent the
whole traffic stream. In this context, the progressive introduction of more and more
intelligent vehicles will have a decisive effect on traffic monitoring. Autonomous
(automated) vehicles are expected to have the advantages of both ad hoc probe
vehicles and dynamic floating vehicles. That is, they will have powerful on-board
sensors and move unconditioned within the traffic stream. Additionally, autonomous
vehicles are called to reach the whole vehicle spectrum (private cars, trucks, motor-
bikes, public services, etc.). However, their high cost as well as the implementation
of new mobility paradigms will limit their penetration rate. Chapter 5 addresses all
these topics in detail.

1.2.2.5 Unmanned Aerial Vehicles

Finally, the use of unmanned aerial vehicles (UAVs) for traffic monitoring seems
promising. The combination of UAV flights over road segments with video image
processing techniques has already been used to determine particular traffic flow
parameters, complete trajectories, flow patterns, drivers’ behavior, etc. (Azevedo
et al. 2014; Barmpounakis et al. 2016; Salvo et al. 2017; Kaufmann et al. 2018,
etc.). Increasingly used as part of traffic monitoring schemes (sometimes as eulerian
sensors, although part of their potential is lost), they probably will not be able to
form a standalone system. Currently, some external factors such as an unfavorable
climate (e.g., wind, rain), the presence of electromagnetic fields or obstructions (e.g.,
buildings, urban canyons), etc., physically limit their flights. Additionally, themodest
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autonomy of current batteries, their limited payload, and legal issues (e.g., zones
where they are not allowed to fly) also restrict their usefulness.

1.3 Traffic Reconstruction

As said, data are essential for traffic reconstruction. The goal of this reconstruc-
tion can be very different: to analyze current traffic conditions in order to make some
improvements (e.g., avoid recurrent congestion), to predict future traffic performance
(e.g., after implementing some management strategy or simply according to changes
in traffic streams as time goes by), to plan a new infrastructure, etc. In any case, data
assimilation is a key step. Leaving aside trends based on the use of artificial intelli-
gence or data-driven approaches, which are addressed in Chap. 6, data assimilation
can be described as the combination of a trafficmodel with real data to estimate traffic
states, and it can be performed in many different ways. Ultimately, the procedure
chosen should depend on (i) the particular objective of the reconstruction and (ii) the
available parameters. Although an exhaustive description of all possible approaches
is out of the scope of this chapter (see Chaps. 6 and 7 for more information), some
fundamentals are summarized below.

First of all, many classifications of traffic models are possible. For example, a
clear dichotomy exists between the models that make use of traffic flow physics and
those that do not, and base their estimations on statistics and current and/or historical
data. However, broadly speaking, the distinction between macroscopic and micro-
scopic analyses is the clearest. In both cases and depending on the complexity of the
study and on the available resources, the use of analytical or numerical methods with
the support of simulation software is common. Heuristics is also applied to partic-
ular tasks (e.g., routing, traffic assignment). Table 1.3. outlines some key features
and examples of macro and microscopic analyses, some of them integrated into
commercial software.

Table 1.3 More distinctive features and examples of macroscopic and microscopic traffic models

Key variables Models (examples) Simulation (examples)

Macro q K v Continuous theory
(LWR or KWT)

Cell Transmission
model, Visum,
Aimsun

Micro h S vi Car-following
models

Vissim, Aimsun

Relation
macro–micro

q = 1
h

k = 1
s v =

∑n
1 vi
n Greenberg model 3rd generation

General Motors Car-
Following model

Aggregation
region

(x,T) (L, t) vt (x,T)
vs (L,t)
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Macroscopic models are used to obtain global characteristics of the traffic stream,
i.e., to describe it by estimating average values of its most defining parameters like
the flow q (veh/h), the density k (veh/km) or the average speed v. They are based
on the Continuous Theory of Traffic Flow, also known as Kinematic Wave Theory
(KWT) or the Lighthill, Whitham (1955) and Richards (1956) Theory (LWR). These
researchers independently proposed a first-order partial differential equation based
on traffic flow physics to describe traffic evolution over time and space (Eq. 1.12). In
fact, continuous theories were first developed for fluids. Their application to traffic
involves, thus, focusing on the behavior of a stream rather than on individual cars.

∂q

∂x
+ ∂k

∂t
= 0 (1.12)

This equation, which relates changes in flow over space to changes in density
over time, is actually a conservation equation: in a closed system (without inflows
or outflows) vehicles neither disappear nor are created. It is considered the most
important equation of traffic flow theory after the fundamental equation (Eq. 1.8,
which is deeply analyzed inChap. 3). For example, the application of the conservation
equation plays a key role in the methodology presented in Chap. 4. In addition to
the assumption of conservation (i.e., closed sections), the LWR model supposes
homogeneous sections (i.e., no changes in geometry) and the existence of an equation
of state. This last assumption means that we must be able to define the traffic state
by means of a single input (Eq. 1.13).

q = Q(k) (1.13)

In other words, a fundamental diagram, i.e., a diagram that relates average values
of flow and density for a particular section, is required.

Besides, in order to simplify the application of the theory, instantaneous changes
of vehicle speeds are accepted. That is, accelerations and decelerations are neglected.
Despite being one of themost important references for traffic engineering, the former
assumptions and other features imply limitations for the initial LWR model. For
example, as it focuses on traffic streams, vehicle heterogeneity is overlooked. This
fact can be especially problematic in free flow,when the differences between vehicles
(e.g., light as opposed to heavy vehicles) are more noticeable. With light traffic,
vehicles drive with very different speeds, have dissimilar lane-changing behavior,
etc. If these differences are meaningful, the LWR model is not accurate. It also
results unadvisable for derived studies like the estimation of traffic emissions, highly
linked to speeds. Varied extensions of the LWR model have tried to overcome its
limitations. For example, Daganzo (1999a, b) developed his theory of “slugs and
rabbits”, which allows distinguishing between different types of vehicles within
a traffic a stream. Second order models accounting for vehicle acceleration and
deceleration and, thus, able to represent traffic instabilities (i.e., stop and go), were
also derived (e.g., Zhang 1998; Aw and Rascle 2000). The most used ones can
be numerically discretized by means of schemes like that designed by Godunov
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(1959). In case a triangular fundamental diagram is used, Daganzo (1994, 1995)
proposed another discretization of the first order LWR model. Particularly, his finite
differencesmodel divides highways into cells of (related) dimensions�x*�t (where
x stands for length and t for time) to compute the state of the system. Known as the
Cell Transmission Model (CTM), its usefulness and simplicity have encouraged its
use all over the world and out of the scope of road traffic (e.g., Wei et al. 2013).
Moreover, several extensions of the CTM that better fit particular phenomena have
also been developed. Many other macroscopic models have been designed. Overall,
all of them are suitable, for example, to analyze queuing. In this regard, the work of
Newell (1993a, b, c) is worth mentioning. He derived a simplification of the LWR
theory that works with (N , t) coordinates (i.e., cumulative number of vehicles vs
time) instead of (x, t) coordinates, especially to this end.

For their part, microscopic models consider each particular vehicle in the traffic
stream or, more precisely, each unit vehicle-driver. They need the trajectory of every
single vehicle, which is thus defined by its own equation. Interactions between near
vehicles are also taken into account. In this context, averaged parameters are not
useful and individual values of headways h (s−1) or spacings s (m−1) are required.
They are the distance between the same end of two consecutive vehicles, respectively
in time or space. Generally speaking, a microscopic model is composed of a car-
following theory and a lane-changing submodel. The car-following theory is aimed
at predicting how vehicles follow another one that has been chosen as the “leader”
or the reference. These theories usually provide a relation s(v), i.e., they define the
spacing as a function of the speed. In fact, spacings are usually accepted as the most
important variables in microscopic approaches, as they have clear implications for
both traffic efficiency and safety. Thinking of them individually, small spacingswould
imply a better use of the available capacity, whereas large spacings would diminish
the accident risk. Therefore, a trade-off must be reached.Many car-followingmodels
have been designed over time and all of them have their strengths and weaknesses.
Well-known examples are those theories of Pipes (1953, 1967), Forbes et al. (1958),
Forbes (1963), General Motors (Chandler et al. 1958; Herman et al. 1959; Herman
and Potts 1959; Gazis et al. 1959, 1961) and the Optimal Velocity Theory (Bando
et al. 1995). In a few words, Pipes’ (1953) model involves the idea that the minimum
safe spacing increases linearly with speed. Forbes (1958) includes the concept of
reaction time. In his model, the minimum time headway is equal to the reaction time
(minimum time gap, i.e., minimum required distance in time between the rear of the
leader and the front of the follower) and the time the lead vehicle requires to traverse
a distance equivalent to its length. Regarding General Motors, actually a series of
models was developed at the research laboratories of the company. They all have the
same basic form (Eq. 1.14):

response = f unction (stimuli, sensi tivi t y) (1.14)

where the response is the acceleration or deceleration of the following vehicle and
the stimuli are the relative speeds between the lead and the following vehicles. The
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variedmodifications of the sensitivity term led to a generalized form of car-following
model, whose importance is indisputable. On the one hand, simulation models based
on it often fit field data. On the other hand, it was possible to establish a mathemat-
ical relationship between the General Motors’ model and the macroscopic Green-
berg’s logarithmic diagram (Greenberg 1959) for speed-density (Chakroborty and
Kikuchi 1999). This last point allows analyzing traffic jointly from a multiple point
of view. Finally, the idea under theOptimal Velocity Theory is that each driver tries to
achieve an optimal speed depending on the distance to the preceding vehicle and the
speed difference between both vehicles.Many extensions of the former car-following
models as well as others that somehow differ from them are also available. Not that
all of them were thought for this unit vehicle-driver. In very simple words, they
tried to imitate drivers’ behavior. Therefore, these models apply to current vehicle
automation levels. However, when vehicles become autonomous (or highly auto-
mated), new models should be developed in which the role of the driver should
increasingly negligible. An example of disruptive research in this regard in that in
Troullinos et al. (2021). With regard to lane-changing models, a great variety has
also been developed (e.g., rule-based models, discrete-choice-based models, artifi-
cial intelligence models, incentive-based models, etc. See for example Rahman et al.
(2013) for further information).

Both approaches, macroscopic and microscopic, have advantages and disadvan-
tages. As said, both the outputs (and accuracy) sought and the available data should
support the choice between them. It is important to remark that, in line with the
advances of programming and simulation software, there is an increasing tendency
to indiscriminately use microscopic models. When the necessary data are accessible,
these models allow performing more detailed analyses, as both the behavior of
each involved agent (vehicles, pedestrians, etc.) and their interactions are examined.
However, this potential power makes them much more complex and the amount
of required parameters is much larger too. The accurate calibration of the selected
simulation software is also essential. If only a partial amount of the necessary data
is available and the rest is substituted by raw estimations or default values, results
can be completely flawed. In this context, the use of macroscopic models is much
more advisable. They are simpler and can even be solved by hand. And, above all,
the fact that they rely on fewer parameters makes them usually more robust.

Trying to find a middle ground, mesoscopic models are being increasingly used.
They are intermediate procedures that properly combine parts of macroscopic and
microscopic analyses. Many possibilities exist. For example, each lane of a highway
could be macroscopically analyzed, whereas a microscopic model would study the
relationships between the traffic streams on each lane. Varied simulation software
that combines both approaches can be found in the market.

In any case, the chosen model must be combined with real data to estimate or
predict traffic states. As said, this process of data assimilation can also be performed
by means of different techniques. Most of them are based on a Bayesian statistics
analysis that treats the forecast from the model as the prior distribution, and then
calculates a posterior distribution based on the available observations. Kalman filters
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are often used for this later calculation (Xia et al. 2017). In fact, Kalman filtering
techniques have been shown useful for data assimilation both with eulerian (e.g.,
Gazis and Knapp 1971; Szeto and Gazis 1972; Sun et al. 2004) and lagrangian
measurements (e.g., Chu et al. 2005; Nanthawichit et al. 2003; Herrera and Bayen
2010). These techniques, also known as linear quadratic estimations, have different
versions. Generally speaking, a Kalman Filter is a recursive (i.e., new measurements
are processed as they arrive) algorithm that infers parameters of interest from indirect,
inaccurate, and uncertain observations. More in particular, it uses measurements
observed over time, containing statistical noise and other inaccuracies, and produces
optimal approximations of other unknown variables by estimating a joint probability
distribution over them for each updating interval.
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Chapter 2
Travel Time Information Revisited

Margarita Martínez-Díaz

Abstract As with speed and many other traffic engineering parameters, there is
no single definition of travel time: there are individual travel times, average travel
times referenced to the moment when vehicles start their journey, or to the moment
they arrive to destination, past travel times, predicted travel times, etc. Knowing the
differences among these definitions is essential, for example, to determine which
one to estimate and disseminate in each case according to the objective sought. Also,
because in order to calculate each of them, it is necessary to have certain data (i.e.
certain equipment) and to apply particular estimation methodologies. This chapter
explains the most important definitions behind the general concept of travel time and
the most common procedures to obtain each of them. As a preview: a good travel
time information system is able to provide accurate real-time predicted travel times.
The likelihood of such estimates being robust increases if data fusion methodologies
are applied.

2.1 Travel Time Information and Traffic Management

Traffic management is indispensable to ensure a sustainable and efficient mobility.
ATIS play a key role in this regard, as they assist users in making pre-trip and en-
route decisions (Mori et al. 2015). Although the information they provide is varied
(e.g. warnings, advices), the dissemination of travel times stands out as particularly
beneficial, due the intuitiveness and clarity behind the concept: the travel time is
the time required to traverse a route between any two points of interest, taking into
account the stops, queuing delays and intersection delays (Zhu et al. 2009). For this
purpose, it is especially important that the information delivered is accurate and
estimated in real time, on the basis of current traffic states. The knowledge of travel
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times in real time is not only important for drivers, but also for management centres
that, based on them, can take dynamic decisions aimed at improving traffic efficiency.

Even off-line travel time information is profitable. In fact, engineers have used
travel time and delay studies since the late 1920s to evaluate transportation facilities
and to plan improvements (Turner et al. 1998). Today, the concept of travel time
reliability has taken over that of the level of service (LOS) as the most indicative
parameter to define the quality of a given road or network in terms of efficiency. Travel
time reliability can be defined as “the absence of variability in the travel time between
a determined origin and destination, independently of the rest of the conditions”
(Elefteriadou and Cui 2007). Depending on the researcher, on the administration,
etc., slightly variations of this general definition can be found in the literature (e.g.
“the consistency of the travel time for a given route”, “the consistency or dependences
of travel times, measured day by day and/or throughout different times of the day “,
etc.). It is important to note that (i) travel time reliability has no direct relationship
with travel time variability and (ii) travel time reliability depends on the driver’s
expected travel time, that is, on the driver’s information.

In practice, travel time reliability is described by an index (i.e. a number) that
represents to what extent travel times depend on factors other than the path length
(Fig. 2.1). This dependence must be measured over different periods of the same
day, in different days, months or even years. In fact, engineering, safety-related and
economic studies have shown that the better route between two points is not the one
that allows the shorter travel time under “normal” conditions, but the one inwhich the
travel time remains within a stable and acceptable range, regardless of the boundary
conditions.

This knowledge allows users to optimize their trips by rescheduling them, by
selecting the best route or even a different transportation mode, etc. Thus, it helps
to avoid situations of stress during the driving, which are unequivocally linked to
higher accident rates. This would otherwise not be possible and, additionally, would

Fig. 2.1 External factors
that affect travel times
between two points of a
determined route
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lead drivers to have a bad opinion of the system. Even if it generally performs well,
by nature, they would mostly remember the longer travel times (Fig. 2.2).

Although other methods exist (e.g. the use of histograms), the construction of
probability density functions or cumulative density functions (Fig. 2.3) of travel
times over long periods, from which particular indexes can be derived, is the most
common and suitable way to assess reliability. Studies carried out so far indicate that
travel time probability density functions obtained from empirical data usually fit the
lognormal, bimodal, Burr, normal, gamma orWeibull distributions. In any case, once
constructed, two different types of indicators can be extracted from these functions
(Ryus et al. 2013).

• The variability of travel times along a particular route in the form of percentiles
(P).

• More direct measurements of reliability, such as the number of trips that meet or
fail to meet a certain operating standard (e.g. a minimum expected speed).

Figure 2.4 and Table 2.1. include some of these measures. Some other are also
used in practice depending on the administration. In any case, the use of one or
another should be linked to the purpose of the reliability analysis. For example, the
PTI provides themost interesting information (delayswith high demand) for a person
who commutes to work at rush hour. However, the BTI is the best option for a user
who is going to make an occasional leisure trip and can choose the departure time.
According to its value, she/he will know the extra time she/he needs to reach her/his
destination at the desired moment.

t (days)

Travel
time (min)

Experienced travel times

Remembered travel times

Fig. 2.2 Traveller travel time feeling
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Fig. 2.3 Probability
functions of the travel time
between two points on a
particular route: a
Probability density function;
b Cumulative density
function
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reliability (fromRyus et al. 2013. Exhibit 36–5, p. 36–18.Copyright,NationalAcademyof Sciences.
Reproduced with permission of the Transportation Research Board)
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Table 2.1 Most used travel time reliability measures

Measure Unit Formulation Description

Percentiles P50, P80, P95 Minutes – Travel time that is only
exceeded respectively by 50,
20 or 5% of trips

Standard deviation (SD) Minutes
√

1
N ∗ ∑N

i=1 (ti − t)2 Variation in travel time
compared to the average. A
5-min SD indicates that 5
more minutes than in average
conditions will probably be
necessary to reach a
destination

Planning time index (PTI) – P95t
t f

Extra time required to arrive
“on time” 95% of the trips.
Calculable for facilities, road
segments or itineraries

Buffer time index (BTI) – P95t−t
t∗

(* mean or median)

Extra time required to arrive
“on time” 95% of the trips
compared to the average. A
BT of 1.5 indicates that 95%
of the trips will require 50%
more time to reach the
destination than in average
conditions

Misery index (MI) – Average of the 5% longest ti
t f

How longer it takes to reach
the destination in the 5% of
trips made under the worse
conditions. A MI of 4
indicates that the worst trips
last 4 times longer than they
would without congestion

Legend: ti : value i of travel time; t f : free flow travel time

2.1.1 Value of Travel Time Information

Travel time reliability has a direct relationship with the value of travel time informa-
tion. Even if drivers cannot modify their trips and are trapped in a queue, if they were
well informed, that is, if they knew in advance that they were going to be delayed,
their stress is reduced or can even be non-existent. The value of the information will
be higher if other costs apart from stress can also be reduced, for example, if they
can use it to change their routes or their departure times in order to avoid congestion
and arrive on time to their destinations.

Therefore, the value of travel time information can be split in two different compo-
nents: the objective and the subjective component. The objective part of this value
is directly linked to economy. To give an illustrative example, the delay suffered by
a truck that transports material to a factory is more detrimental in economic terms
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than that of a family that travels by car to spend a day on the beach. From this point
of view, an accurate travel time information would be more valuable for the truck.
However, the subjective valuation of travel time information could not agreewith this.
To continue with the former example, perhaps the members of the family have few
opportunities to make such a trip, and would even pay somemoney to guarantee their
arriving soon to the beach. That is, travel time information would be very valuable
for them too. The subjective concept of “value of travel time savings” (VTTS) can be
therefore defined as thewillingness-to-pay to reduce the travel time (Jara-Díaz 2000).
TheVTTS usually depends on trip purpose and trip length and differs betweenmodes
of transportation. For example, higher values are usually estimated for commuting
trips than for leisure or shopping trips (Shires and Jong 2009; Abrantes andWardman
2011). Regarding the means of transport, there is no consensus. In fact, the VTTS
for commuting by car is in some studies lower but in others higher than by public
transportation. Focusing on cars, passengers tend to have a lower VTTS compared
to drivers (Mackie et al. 2003; Shires and Jong 2009; Abrantes and Wardman 2011).
Traffic conditions play also a role: several empirical studies found that the VTTS of
business travelers and commuters is higher in congestion than for free-flowing traffic
(Abrantes and Wardman 2011; Hensher 2011; Rizzi et al. 2012).

Another factor that influences the value of travel time information is the number
of drivers that receive it. The more the drivers that receive this information, the lower
its value (Wardrop 1952). For example, it could occur that all or many drivers making
the same particular route would change their paths also in the same way, according
to a given information, trying to avoid some long travel times previously announced.
Therefore, congestion would be translated to the new route, at least partially. How
travel time information is managed is also a very important topic for highway travel
time information agencies.

In short, the accurate estimation of travel times, both in real time and off-line,
is indispensable to ensure an efficient performance of the road traffic system, with
the subsequent benefits for the economy, the environment, safety, etc., that this
fact implies. However, the real-time estimation of travel times or, more precisely,
their real-time prediction, is especially valuable and useful. In this regard, “new”
technologies are revolutionizing transport, particularly road transport, and offer an
increasing range of possibilities. Autonomous vehicles or cooperative driving are
clear examples of this transformation. Additionally, the diversity and quantity of the
information handled at present would be unthinkable a few years ago, and this trend
is expected to continue. In this context, very accurate travel time predictions will be
not only possible, but also essential.

2.2 Travel Time Definitions and Estimation Methods

Next sections describe different ways to get travel time estimations aimed, usually,
at feeding highway travel time information systems. However, there is a need for a
clarification regarding some terms before delving into the topic. Many researchers
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refer to “travel time estimates” when they (i) indirectly (including by data fusion)
obtain past or instantaneous travel times or (ii) make travel time predictions. In this
context, directly obtained past or instantaneous travel times are referred to as “travel
time measurements”. Most of them also accept interchangeably “measurements”
and “estimates” in this last case, taking into account that measuring always implies
a certain degree of error. Nevertheless, there exists a minor group of authors that use
“travel time estimations” for past or present values, regardless of the way in which
they were obtained, whereas they call future travel times “travel time predictions”
(van Lint 2004; Mori et al. 2015). It is important to remark that this chapter follows
the first of these terminologies. The reason is twofold: (i) it ismore usual and (ii) there
exist models able to provide past, instantaneous or future travel times, depending on
the nature of the input data. If the first terminology is chosen, they can be simply
referred to as “travel time estimation models”, avoiding more complex jargons.

2.2.1 Direct Travel Time Measurements

Direct travel time measurements are the result of the most straightforward ways to
obtain travel times: the reidentification of vehicles at two different control points, or
their tracking along their individual trajectories. Bothmethods are addressed in detail
and independently in the next sections. As a preview and considering them jointly,
Fig. 2.5. introduces the main advantages and disadvantages of the direct measuring
of travel times.

• Individual vehicle identification

•Tracking: non-captive of  the 
detectors’ location

•  Tracking: provision of vehicle’s
trajectories

Main advantages of 
the direct 

measurement of 
travel time

•Need for high-tech surveillance

•Sample size-related problems

•No possiblity of travel time 
forecasting 

•Privacy concerns

Main disadvantages 
of the direct 

measurement of 
travel time

Fig. 2.5 Main advantages and disadvantages of the methods used for the direct measurement of
travel times
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According to it, two distinctive characteristics must be highlighted:

• Each measurement is linked to a particular vehicle. This type of individualized
information is very valuable. However, this fact also implies the need for a mean-
ingful amount ofmeasurements to obtain representative averages of themonitored
stretch. More taking into account that not all vehicles that travel along it are iden-
tified and/or tracked due to different reasons (lack of technology, failures, bad
weather, etc.).

• The obtained measures have not only a temporal implication (i.e. they depend on
the moment of measurement), but also a spatial implication too. That is, they are
the result of the boundary conditions in the target stretch. However, the correctness
of this asseveration is pointed out below for the case of reidentification at control
points.

2.2.1.1 Vehicle Reidentification at Control Points

The first way to obtain the individual travel time of a vehicle over a stretch consists
in registering the times at which it enters and exists this stretch, and making the
proper subtraction. These kinds of measurements were first made manually, with
two people respectively positioned at each end of the target stretch. Nevertheless, the
data obtained from such operations contained significant errors, unless traffic flow
was minimal. Technological progress allowed the automatization of these measure-
ments. Nowadays, there exist different types of detectors that are placed on the
roads with the goal of reidentifying vehicles, thus mimicking the manual procedure.
Known as Automatic Vehicle Identification (AVI) technologies, they recognize indi-
vidual vehicles on the basis of different features that distinguish them univocally. In
any case, clock synchronization at control points is a key issue to obtain accurate
measurements.

Although slightly addressed in Chap. 1 as examples of eulerian sensors, it is
important to remark the main features regarding travel time measuring by means of
AVI technologies. First, the accuracy of AVI systems is much higher than that of
manual procedures. However, none of them is perfect and the number of pairings in
a stretch does not normally equal the number of vehicles that effectively crossed it.
In this regard, the characteristics of the road (geometry, number of lanes, average
illumination level, weather, average flow, etc.) should be taken into account to choose
the more suitable technology. Nevertheless, this choice is usually based on the avail-
able budget. Although their price decreases over time, AVI systems are still quite
expensive. The use of insufficient or inappropriate technologies boosts unsuccessful
pairing. In fact, sample size is another inconvenience of these methods (Quiroga and
Bullock 1998; Cheu et al. 2002; Shuo Li et al. 2002; Jiang et al. 2006, etc.). If it is
too small, the obtained travel times are probably not representative of the reality in
the stretch. Besides, the detection of outliers (e.g. a driver stops to make a call) is
unfeasible. This was a major problem in the past, as most AVI systems require not
only infrastructural equipment, but also the presence of a particular on-board tech-
nology (e.g. Bluetooth). Nowadays, most of these gadgets are widespread within the
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traffic stream, which facilitates the achievement of bigger samples. However, there
is still a need for investment, especially in the infrastructure. This statement could
be verified during the writing of this book. When trying to obtain data of Bluetooth
signal identifications, it was found out that only a couple of freeways in Spain have
Bluetooth detectors. On the contrary, it is well known that most vehicles or their
drivers’ smartphones deliver a Bluetooth signal. That is, valuable data for traffic
management are not being collected. The situation of AVI readers, usually placed on
gantries, to obtain representative samples must also be carefully analyzed (Sherali
et al. 2006; Li and Ouyang 2011, 2012; Xing et al. 2013). Think for example of a
short stretch (e.g. 2 km) with detectors at both ends but a junction in the middle.
The number of pairings between reidentifications could be low due to significant
inflows and outflows. No measurements (apart from counts) of those vehicles using
the junction would be available. Nevertheless, if quite an acceptable configuration
is available, data fusion can be a solution (see Sect. 2.3 and Chap. 4). In any case,
reidentification failures must be avoided as much as possible to make the most of the
penetration rate of these technologies both on-board and in the road network.

Additionally, AVI systems have an unavoidable disadvantage: travel time
measurements are captive of the control points. That is, they can only be measured
between the fixed points on the road where the AVI detectors are located. Again,
the significance of the number of detectors and their location arises. In fact, this
constraint has more implications if detectors are very far apart, as there is no possi-
bility of knowing how a measured travel time is distributed along the path. Think for
example of a stretch with excessive travel times: discerning if a general or a punc-
tual problem is behind these long measurements would be unfeasible. Therefore,
detectors placed in the infrastructure at very large distances would be insufficient
to manage traffic in a proper way if no other data source is available. Respectively
distances of 8 or 2 km between AVI detectors have been proven to be the maximum
admissible in interurban andmetropolitan (i.e. withmore junctions) freeways in order
to obtain profitablemeasurements (Turner et al. 1998). Finally, a non-negligible issue
related to interval detectors is data treatment regarding privacy, as particular vehicles
are identified and, thus, the location of their passengers (Turner et al. 1998; Yim
2003; Hoh et al. 2012). Traffic management centres usually have protocols to ensure
population’s rights in this regard. Besides, the use of encryption methodologies is
increasingly frequent.

As mentioned in Chap. 1, examples of AVI systems are the reidentification of on-
board transponders of different types by means of roadside beacons (Longfoot 1991;
Nishiuchi et al. 2006), automatic license plate identification (ALPR or ANPR) by
means of especial video cameras and license plate matching techniques, also known
as optical character recognition (OCR) (Buisson 2006; vanHinsbergen et al. 2009), or
Bluetooth- (Barceló et al. 2010; Bhaskar and Chung 2013) andWIFI- based (Abbott-
jard et al. 2013) detection systems. Other techniques have tried to take advantage of
the notable density of loop detectors in road networks by using them as identifica-
tion devices. One of these technologies tried to recognize individual vehicles from
their lengths (Coifman and Cassidy 2002; Coifman and Ergueta 2003; Coifman and
Krishnamurthya 2007). Although loop traps provide them, only singular vehicles can
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Fig. 2.6 Example of
normalized signatures of a
car and a small truck at
two-loop detectors (inspired
in Abdulhai and Tabib 2003)
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be distinguished, especially in free-flowing situations. Under these conditions, high
speeds, lane changing, merges and diverges increase the bias of the registrations.
Other methodology tried to identify platoon structures. This resulted unfeasible in
congested situations, as such a structure is lost (Petty et al. 1998; Lucas et al. 2004).
Distinguishing vehicle’s electromagnetic signature (inductance, Fig. 2.6) has been
shown to be more successful (Abdulhai and Tabib 2003; Kwon 2006; Ndoye et al.
2011). Additionally, suchmethods have important advantages in comparison to other
AVI technologies: (i) privacy is not violated, as the identification of the vehicles is
anonymous in the sense that it is not linked to a license plate, an owner, etc., and (ii)
no on-board technology is necessary and thus, failures apart, all vehicles contribute
to the sample size. However, traditional loops are not capable of performing this task
(Ndoye et al. 2011). Therefore, the acquisition of other non-intrusive technologies
is gaining more success (Vanajakshi 2004; Soriguera et al. 2010).

However, even in the most ideal scenario (i.e. proper technology with high pene-
tration rate, accurate measurements, etc.), AVI interval detectors have a major disad-
vantage: they have no predictive capabilities. In fact, they provide somehow “obso-
lete” travel times. Note that each travel time measurement is obtained once a vehicle
has crossed the target stretch. Additionally, all direct measurements obtained in this
stretch during a predetermined time interval �T are usually averaged, being this
average the output of the system for this�T . A non-insignificant amount of highway
travel time information systems rely on this kind of outputs. However, these so-called
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Arrival-Based Travel Times (ATT) or Measured Travel Times (MTT), trajectory-
based at the corridor level, are not the information that a driver at the entrance of the
stretch should receive. Unless traffic is stationary, ATT can be very different from the
travel times that these next drivers at the entrance of the stretchwill experience. Thus,
ATT represents a past measurement and involves a delay in the real-time dissemi-
nation of the information (Soriguera and Robusté 2011a). The effects of this delay
can be considerably in the event of long travel times, resulting either from congested
states or long stretches.

2.2.1.2 Vehicle Tracking

Another possibility to obtain direct measurements of travel time consists in
continuously tracking vehicles while they circulate along the road network. The
position of each vehicle is recorded every few seconds and, thus, individual
trajectories are obtained. Therefore, tracking provides not only travel times, but also
further valuable information. Indeed, all interesting traffic parameters, as they can
be derived from these trajectories.

The most common technologies for tracking and their particular features were
described in detail in Chap. 1, namely GPS-based tracking, RFID-based tracking,
geo-location of cell phones, tracking by means of probe or floating vehicles and
UAV-based tracking. In any case, lagrangian sensors that move with vehicles. No
monitoring equipment is generally placed in the infrastructure, as no in situ control
points are necessary. Central server stations, either in the traffic management centres
or not, directly receive and process the information. At first, radio channels (e.g.
General Packet Radio Service—GPRS—system) mostly performed the data loca-
tion transmission from the vehicle to the control centres. Thus, interruptions in the
transmission or data losses were quite frequent. Nowadays, transmissions performed
via wireless networks are much more reliable. The absence of control points on the
road implies another important advantage of vehicle tracking in comparison to AVI
systems: it is possible to measure travel times between any two points. For their part,
the main disadvantages of tracking equal some of those of AVI technologies, that
is, privacy concern and the possibility of obtaining too small or biased (e.g. only of
trucks) sample sizes. As said, the increasing penetration rate of the necessary devices,
especially that of smartphones, helps to improve the situation over time (Yim 2003;
Yim and Crayford 2006; Bar-Gera 2007; Herrera et al. 2010, Unde and Borkar 2014,
etc.).

Highway travel time information systems that rely on the aforementionedmethods
alsomake averages of the individual travel times of all vehicles that traverse the target
stretch in a fixed �T . As the last available information is used for their calculation,
these averages can be considered “more recent” than those obtained from interval
detectors. Called Instantaneous Travel Times (ITT), they involve less delay in the
dissemination of real-time information. In fact, they are the best directly obtainable
estimation of future traffic states and, thus, a better approach to the Predicted Travel
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Times (PTT), that is, the travel times that vehicles asking for the information will
actually experience (Soriguera and Robusté 2011a).

2.2.2 Indirect Travel Time Estimation

In the absence of technologies that allow the direct measurement of travel times,
their indirect estimation from other characteristic variables of traffic flow is a
very common procedure. In fact, even novel methodologies that perform such
indirect estimations relying on new technologies are being developed. For example,
Herrera et al. (2010) used information derived from GPS-enabled smartphones
not to measure travel times directly, but to obtain them indirectly from previously
constructed speed fields. However, apart from such valuable contributions, two main
groups of methodologies based on basic surveillance are more commonly used for
the indirect estimation of travel times: (i) those that rely on punctual values of traffic
flow parameters for the estimation (basically spot speeds, densities or flows), or (ii)
those that use accumulations over time of the anonymous counts gathered at the
measuring points. Although not exclusively, inputs can be obtained from inductive
loop detectors in both cases, which facilitates the implementation of these methods.
The obtained estimates have two main characteristics:

• They are not linked to particular vehicles. In fact, not individual but average travel
times, whether per lane or per section, are estimated. This fact avoids the need for
identification, but it implies the loss of important information.

• When calculated from punctual measurements of traffic flow variables (the most
usual procedure in practice), the obtained travel times do not truly have a spatial
implication. Indeed, punctual inputs must be extrapolated to some extent and in
different ways depending on the chosen procedure. Therefore, the disregard of
events that occur between the measuring points during the trips involves some
inaccuracy. This problem can be satisfactorily overcome using those methods
based on the construction of cumulative count curves, as it is further explained in
Chap. 4.

Figure 2.7 advances the respective advantages and disadvantages of each
approach. Both these and their basics are described in the following sections more
in detail.

2.2.2.1 Spot Speed-Based Methods

Traffic management centres have traditionally used these methods for the estimation
of travel times, trying to take advantage of their loop detector equipment. This surveil-
lance was in the past the only one for most traffic agencies, a situation that continues
in a significant number of road networks. However, the simplicity of spot speed
methods as well as human inertia cause that many highway travel time information
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•Very widespread technology
•Frequently used

Main 

advantages

•Spot speed methods:

•No possiblity of travel time forecasting

•Need for a large amount of detectors

•Errors with transients

•Input-output methods:

•Drift (short- and long-term) leads to errors

•Need for closed configurations

•Non-intuitive and hardly developed 

Main 
disadvantages

Fig. 2.7 Main advantages and disadvantages of the methods used for the indirect estimation of
travel times

systems are still based on them, even in cases in which more advanced equipment is
available.

Although a couple of variants exist, all methods follow the same basic steps.
First, the punctual speeds gathered by the loops are averaged for predetermined
time intervals of aggregation �t, whose duration differs among the administrations.
Second, these punctual means are generalized for the links delimited by each pair
of loops. Third, indirect travel time measurements in these links are obtained. Three
main factors involve inaccuracy from the very beginning:

• The punctual speed measurements at the loops are not always accurate enough.
This is especially important in the case of single loops (see Chap. 1).When double
loops are available, spot speeds are generally satisfactory.

• Different procedures are being used for the spatial generalization of the punc-
tual speed means. However, all of them introduce bias in the subsequent travel
time estimates, especially those consisting in mere mathematical interpolations
between detectors. In fact, any interpolation involves assigning to the link some
average traffic conditions that do not correspond to reality, as they arise from an
artificial combination of the conditions at particular points. Only extrapolations
based on traffic dynamics and queue evolution could result satisfactory.

• In any case, the average speed accepted for the link is given a spatial nature. Then,
average travel times for a link, t t , are simply obtained by dividing the length of
this link by this generalized speed. However, the variable that would allow such
calculation is a generalized space mean speed. Space means, vs , can be calculated
as the harmonic mean of individual spot speeds (Eq. 2.1, where L stands for the
length of the link, n for the number of vehicles that passed over the detector in
the considered time interval and vi for the individual spot speeds). However, loop
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detectors provide time mean speeds, vt , i.e. arithmetic means of individual spot
speeds for determined time intervals of aggregation�t . Unless traffic is stationary,
time means speeds are higher than space mean speeds. Therefore, travel times are
underestimated. Chap. 3 of this book further elaborates on this issue, and it is
precisely devoted to solve this inconvenience with no extra expenses.

t t =
∑n

i=1 t t i
n

=
∑n

i=1
L
vi

n
= L ∗ 1

n

n∑
i=1

1

vi
= L

vs
(2.1)

These drawbacks can lead to completely flawed travel time estimations, especially
in unstable congested situations (stop and go instabilities, formation or dissipation of
shock waves, etc.). The smaller the �t , the higher the possibility that detectors only
measure speeds over one of the traffic instabilities. In such cases, the punctual speeds
that are extrapolated to the whole link are not representative of the traffic conditions
along its entire length. The subsequent errors in travel time estimations can reach 30%
(Rakha and Zhang 2005). These errors are smaller with longer �t, as these unstable
non-stationary traffic states are generally smoothed. However, longer �t are unde-
sirable for real-time highway traffic information systems, for which information’s
immediacy is essential. Situations of severe congestion can also lead towrong results,
as loops only measure speeds of moving vehicles. That is, they do not account for
the periods in which they are stopped. Average speeds would be overestimated and,
consequently, travel time estimates underestimated. All aforementioned considera-
tions correspond to the trends usually observed in such situations. However, other
could occur, in line with the uncertainty linked to unstable traffic phenomena. This
factmakes difficult the implementation of proper corrections.Regarding loop density,
better results are obtained for the freeways where an extensive net of loop detectors
is uniformly displayed (at least a double loop every 500 m), especially taking into
account the possibility of sensor failure (Gentili and Mirchandani 2018). However,
longer links between loops result more favourable in the event of traffic instabilities,
as they are usually smoothed. Different speed interpolation models (Table 2.2) have
tried to solve the former issues, but none of them resulted satisfactory enough.

Travel time estimations from all these methods are acceptable when free-flowing
conditions prevail, that is, when there is spatial stationarity in the link.However, those
that completely overlook traffic dynamics provide highly underestimated travel times
in fully congested situations. During congestion onsets and offsets, i.e. in partially
congested situations, each method leads to different results, but they all tend to
be inaccurate and unreliable in any case. The reason is that most of them neglect
where transitions really occur within the links. The proposals of Coifman (2002)
and Treiber and Helbing (2002) partially face this issue and, in fact, their results
are better with fully congested sections. However, further improvement is needed,
as they continue to fail with transients. Lacking a better approach based on traffic
dynamics and queue evolution, an intelligent smoothing of the noisy loop detector
data implemented togetherwithmidpoint, linear or truncated quadraticmethods helps
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Table 2.2 Most common methods used for the interpolation of spot speeds for travel time
estimation, and examples of application developed by particular authors

Method Reference example Comments

Constant interpolation between
detectors (e.g. conservative
approach: choosing the lowest
spot speed from those
calculated at the end detectors)

Cortés et al. (2002) – Traffic dynamics and queue
evolution are overlooked

– Speeds are supposed to
change instantaneously

– Speeds’ discontinuities are
assumed to take place at the
detectors

– A weighted average speed
was used in this case

Piecewise constant interpolation
between detectors (e.g.
midpoint algorithm, thirds
method)

Kwon (2004) – Traffic dynamics and queue
evolution are overlooked

– Speeds are supposed to
change instantaneously

– The speed discontinuity is
assumed to take place within
the section

– Performed with the thirds
method in this case

Piecewise linear interpolation of
speeds between detectors

van Lint and van der Zijpp
(2003)

– Traffic dynamics and queue
evolution are overlooked

– Speed changes are distributed
in the traffic transition along
the section. However, this
distribution does not match
drivers’ real response to
changes in the traffic state
(much more concentrated in
time and space)

– Anticipation of slower or
faster speed regimes due to
the assumption of constant
acceleration between
detectors

– Better than the piecewise
constant interpolation, at least
with simulated data.
Nevertheless, inaccuracies
remained in fully or partially
congested stretches

(continued)

to reduce fluctuations linked to short �t , which, although desirable for real-time
information systems, are a major source of errors for spot speed methods (Soriguera
and Robusté 2011b).

Finally, it cannot be overlooked that the final information that highway travel
time information systems provide are not travel times in each link between loop
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Table 2.2 (continued)

Method Reference example Comments

Quadratic interpolation of
speeds between detectors (e.g.
basic or with a truncated
definition of the speed
evolution)

Sun et al. (2008) – Traffic dynamics and queue
evolution are still overlooked

– Attempt to mimic drivers’
real response to changes in
the traffic state, allowing
smooth accelerations and
decelerations between
detectors

– Changes in speed and
acceleration have no relation
to traffic evolution, but are
linked to a mathematical
function

Punctual speed generalized over
the section according to
classical continuum traffic flow
theory

Coifman (2002) – Linear approximation of the
flow-density relationship.
Thus, the speed at which
transitions between two
congested states propagates is
known (the slope of the right
branch of the diagram)

– Satisfactory results in
congestion. Unsatisfactory
results in partially congested
situations

Punctual speed generalized over
the section according to
classical continuum traffic flow
theory + smoothing filter

Treiber and Helbing (2002) – A non-linear spatio-temporal
lowpass filter is applied to the
input detector data. This filter
exploits the fact that, in
congested traffic,
perturbations travel upstream
at a near-constant speed,
while in free flow,
information propagates
downstream. All higher
fluctuations are smoothed

– Speeds are finally obtained as
smooth functions of space
and time

– Good results in congestion in
short sections and for short
�t . Unsatisfactory results in
partially congested situations

– Conservation is overlooked
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detectors, but corridor (i.e. several links) travel times. For this purpose, the travel
times (estimated at the same instant) of all links that form the target corridor are
simply added up in real time. Note that each link travel time is obtained from the
average speed measured over the last few minutes. This implies that (i) the most
recent information is used and (ii) the obtained corridor travel time is not trajectory-
related. It is like a picture of the current travel times along its path. Furthermore, it is
possible that no vehicle trajectory fits this travel time. This temporal alignment-based
concept of travel time is again known as ITT (Instantaneous Travel Time), as in the
case of tracking. However, in that case trajectories and their associated travel times
were real. Anyway, ITT may be considered again the best approximations to the
desired real-time “future” information, in the absence of forecasting methods. This
asseveration implies that traffic conditions are supposed to remain constant between
consecutive time intervals. To support it, both short �t and short corridor lengths
are advisable (Soriguera and Robusté 2011a).

2.2.2.2 Input–Output Methods

Input–Output Methods are explained in detail in Chap. 4. Therefore, this section only
introduces their most basic fundamentals, so that they can be broadly compared to the
other travel time estimation methods revisited. Figure 2.8 shows a typical cumulative
count input–output diagram of a road section limited by two inductive loop detectors.
For both of them and starting at any time t = 0, corresponding to the pass of a
reference vehicle over the entrance detector, it is possible to count and accumulate
over time all vehicles passing their respective locations. If this process is graphically
represented, cumulative count curves are generated. More in particular, they are
drawn little by little after the end of predetermined time intervals �t , respectively

Fig. 2.8 Basic graphical interpretation of input–output diagrams
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adding the number of vehicles that passed the detectors during these periods. They
are, therefore, stepwise functions, which can be smoothed in practice taking into
account the large amounts of vehicles that is usually registered. In the example of
Fig. 2.8, N (Xu, t) is the “arrivals” count curve measured at the upstream detector Xu

of the section and accumulated over time. For its part, N (Xd , t) is the “departures”
cumulative count curve measured at the downstream detector Xd . The travel time in
the section of any vehicle n j can be directly obtained from the diagram, as it is the
horizontal distance between the curves at the height of vehicle n j . For its part, the
vertical distance between the curves at any time t∗ is the vehicle accumulation in the
section at this time.

Two important assumptions, whose consequences are also discussed in Chap. 4,
are behind these diagrams:

• There is no passing in the section, i.e. the system is FIFO (First in-First out).
This assumption allows obtaining travel times from the curves. In this regard,
it is important to remark that input–output diagrams do not actually consider
individual vehicles, but positions within the traffic stream or, as it is usually said,
they consider “labels”.

• Vehicle conservation holds in the section, i.e. vehicles do not enter or leave
the section at any halfway point. This assumption allows obtaining vehicle
accumulation from the curves.

Input–output methods have significant advantages in comparison to other proce-
dures:

o First, technological requirements are minimum. Not only because they rely on
inductive loop detectors, but also because these can even be single loops. More-
over, they can be located at relatively large distances. Therefore, no expensive
or rare surveillance is necessary. The only condition in this regard is that all
junctions must be monitored, in order to ensure the assumption of conserva-
tion (see Chap. 4). Even if this were not the case, the extra expenses needed
for the deployment of some additional loops would be affordable for most
administrations.

o Second, but more important, input–output methods can provide not only
trajectory-based instantaneous travel times (ITT), but they also have predic-
tive capabilities linked to the spatial nature of one of their outputs: the vehicle
accumulation. The value of this parameter at any time t∗ indicates the number
of vehicles that should be served (i.e. that should be able to traverse the section)
in the next time interval t∗ + �t under free-flowing conditions. Again, Chap. 4
further elaborates on this concept.

The usefulness of such methods for different purposes has already been demon-
strated by outstanding researchers of varied disciplines and, particularly, of that
of road traffic (e.g. Daganzo, unkn. date; Newell 1993a, 1993b, 1993c; Lawson
et al. 1997; Newell 1999; Cassidy et al. 2002). However, they are not used in
practice for travel time prediction. The fact that they are not intuitive is one possible
reason. Also, that detector drift, a common problem of loop detectors, could lead
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to significantly biased results. The methodology introduced in Chap. 4 of this book
allows benefiting from the advantages of input–output methods for travel time
prediction, while solving the consequences of drift by means of data fusion.

2.2.3 Data Fusion for Travel Time Estimation

Well-developed data fusion procedures are gaining acceptance in most research
fields, supported by technological progress and advances in computing capacity.
All of them are aimed at combining data from different sources, sometimes using
different algorithms/models, so that the strengths of some of them compensate for
the weaknesses of others. Thus, the goal is to obtain better outputs than that available
from a single data source.

Regarding travel times, a significant amount of studies have developed data
fusion methodologies to obtain travel time distributions, i.e. travel time reliability, on
particular highways. In fact, travel time information systems are also usually fed with
this kind of data. If not, as seen, either with direct measurements of travel time or with
travel time estimates obtained from a single data source. Less research can be found
that used data fusion for travel time estimation in real time. Table 2.3. summarizes
some of the most important pieces of research (according to their impact on the field)
on the topic performed in the last years, overlooking for the moment those based
on Big Data methodologies. Although most procedures can perform satisfactorily
in uncomplicated environments (free flow, very recurrent traffic state patterns, etc.),
they do not adapt well to varying or congested situations, especially if they are linked
to sudden events. In addition, this kind of schemes would not be accurate enough in
future scenarios like cooperative driving or seamless intermodal on-demand systems.
Therefore, there is a need for the development of more accurate, reliable, robust and
standardizable (e.g. economically and technically feasible and non-site-dependent)
data fusion procedures for travel time prediction. The methodology presented in
Chap. 4 has this goal. More significant pieces of research from previous years
are also available, which coincide in time with the boosting of ITS (from the end
of the 1990s until the early twenty-first century) and with the recognition of the
travel time as one of the most (if not the most) important parameters for traffic
management. Despite their outstanding contribution, significant changes in the
boundary conditions (e.g. available surveillance, technological level, computational
capabilities, etc.) make their re-evaluation and probably their update advisable.

Anyway, the review of all previous works allows classifying them according to
different features. Table 2.4. addresses this division depending on five aspects: the
level/levels at which the fusion is performed, the mathematical nature of the method-
ology, the general approach to the problem, the role of the contextual information in
the fusion and the behavior of the fusion operator. Describing in detail all existing
models is out of the scope of this Chapter, but this differentiation as well as the brief
explanations provided below provide a good overview. Each particular data fusion
methodology could be included in one category of each classification. Additionally,
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Table 2.3 Significant data fusion procedures for travel estimation developed in the last years

Reference Data Procedure Results and challenges

Soriguera and
Robusté (2011a)
Transportmetrica

Spot speeds and
counts from
inductive loop
detectors and toll
tickets

Simple and feasible.
Short-term prediction.
Two levels of fusion by
fuzzy logic and a
probabilistic approach
based on Bayes’ theory

Applied with reasonable
and accurate results, but
rounding implies
negative effects. Need for
a learning process that
improves the
probabilistic fusion

Lim and Lee
(2011)
IET Intelligent
Transport
Systems

Spot speeds from
inductive loop
detectors and AVI
direct measurements
of travel time

Based on a traffic flow
model and a k-nearest
neighbourhood (k-NN)
model. Attempt to correct
the time lag of AVI
measurements

Short-term predictions
better than direct
measures. Too many
assumptions behind the
traffic flow model. Need
for more
surveillance/calculations
per iteration

Yildirimoglum
and Geroliminis
(2013)
Transp. Research
Part B

Spot speeds from
inductive loop
detectors and
historical data

Short-term prediction.
Bottleneck identification,
development of stochastic
congestion maps for
clustered data and online
congestion search
algorithms

Promising travel time
predictions under varying
traffic conditions, but it is
a very complex method,
difficult to implement.
Need for good historical
data

Zhang and Ge
(2013)
Computer-Aided
Civil and
Infrastructure
Engineering

Speed, volume, and
occupancy from
microwave detectors.
Travel time measures
from toll tags

Freeway corridor travel
time. Combination of a
Takagi–Sugeno–Kang
fuzzy logic system and a
neural network

Good short-term
predictions, but the
method is complex and
requires quite a large
amount of data

Chen and Rakha
(2016)
Transp. Research
Part C

Varied. From
on-board GPS,
loops, mobile
phones, etc

Agent-based modelling
approach that performs
multi-step travel time
predictions

Accurate and efficient
predictions in real time
(better than ITT), but it
requires too many data
(here bought to a private
company). Unfeasible
for generalization

Tak et al. (2016)
Computer-Aided
Civil and
Infrastructure
Engineering

Varied. From toll
collection systems,
loops and DSRC
(dedicated
short-range
communications)

Long-term prediction
horizon (6 h).
Hierarchical pattern
matching (Multilevel
k-nearest neighbour,
Mk-NN) method

Relatively accurate and
robust prediction of
long-term travel times
with short computation
time. Short-term
predictions are more
accurate, especially if no
historical data are
considered. However,
data sources are
site-restrictive

(continued)
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Table 2.3 (continued)

Reference Data Procedure Results and challenges

Wang et al.
(2016)
Transportmetrica
A: Transport
Science

Varied. From a
particular Intelligent
Monitoring and
Recording System
and the
Multifunction
Automatic Detecting
and Recording
System

A regression model is
built and integrated into
an existing travel time
estimation model. The
goal is to differentiate link
travel times depending on
the particular traffic
stream directions

Useful in urban
networks, where different
directions are present,
but not on highways. It
depends on the accuracy
of the implemented
travel time model.
Linked to very particular
data sources and, thus,
not standardizable

Pirc et al. (2016)
IET Intelligent
Transport
Systems

Loops spot speeds,
AVI travel time
direct measurements,
qualitative level of
service (LOS) data

Multiple linear regression
modelling the
relationship between
explanatory variables
(MTT, travel time
estimated from spot speed
measurements, LOS) and
a response variable
(departure-based travel
time) by fitting a linear
equation to observed data

Implemented in a real
case. 9% better accuracy
than usual travel time
prediction algorithms. It
depends on qualitative
data. Doubts about the
possibility of its
standardization

Shao et al. (2018)
Transportmetrica
A: Transport
Science

AVI or GPS-based
travel time
measurements and
historical data

Generalized least squares
problem with non-linear
constraints. Solution
algorithm based on the
penalty function method

Network-wide travel
times. Potential to
enhance their accuracy
and quality, which are
worse than that of other
link travel time
estimation methods.
Only numerical
examples. The number
and location of sensors
impact the accuracy and
quality of the estimates,
which could be
problematic for a real
implementation

with the exception of the categories linked to the general approach to the problem, the
rest would be valid for any other fusion models not aimed at travel time estimation.
Descriptions are thus generalized for the sake of simplification.

It must first be taken into account that the fusion can operate on the inputs of
the travel time estimation model or on the outputs of one source-based estimations.
In this regard, three types of models can be distinguished, which are represented in
Fig. 2.9. for the example case of three data sources:
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Table 2.4 Classification of data fusion travel time estimation procedures

Fusion level/s Single-estimation models A single travel time estimation
model fuses heterogeneous data

Multiple-estimation models Fusion of the outputs of several
travel time estimation models
(one per data source)

Hybrid models Fusion of the outputs of both
single- and multiple-estimations
models

Mathematical nature Probabilistic models Based on empirical probability
functions with their associated
conditional probabilities

Evidential logic models Based on approximate
probability functions.
Probabilities are given a
confidence level

Fuzzy logic models Statement logic. The truth-values
of variables may range any real
number between 0 and 1

Artificial intelligence (AI)
schemes

Machines mimic human
cognitive functions such as
learning and problem solving

General approach to the
problem

Naïve models No model. Based on very
restrictive assumptions that are
not always true

Traffic flow-based models A traffic model developed on the
basis of theoretical principles
predicts traffic evolution

Data-based models Data themselves determine the
function that relates the inputs to
the outputs

Hybrid models Combination of the former
approaches performed at the
same or at different steps

Role of contextual
information

Context-independent models External information plays no
role

Context-dependent models External information influences
the fusion

Operator behaviour Indulgent fusion operator
models

The credibility of the inputs is
increased

Severe fusion operator models Criteria is simultaneously
satisfied

Cautious fusion operator
models

They behave like a compromise
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Fig. 2.9 Classification of data fusion models depending on the levels at which the fusion is
performed: a single-estimation models; b multiple-estimation models; c hybrid models
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• Single-estimation models are those that fuse data from different sources. There-
fore, a sole model processes all data to obtain a unique output. Previous or inte-
grated algorithms aimed at detecting and removing outliers from the inputs are
advisable. Neural networks, state-space models and several traffic theory-based
models usually perform within this category.

• Multiple-estimation models are those that obtain a final estimation by fusing
previous “partial” estimations. That is, they fuse the estimations provided by
simpler models, whose inputs were respectively supplied by a single data source.
The removal of outliers can be in this case performed within the raw data, once
obtained the partial estimations or, at best, in both cases. Models based on the
Bayesian theory, on the Dempster-Shafer theory, some fuzzy logic schemes,
weighed linear combinations or network equilibriummodels are normally applied
in this way.

• Hybrid models combine the approaches of single andmultiple-estimationmodels.
That is, provisional outputs obtained from an amalgam of models of the afore-
mentioned categories are fused to obtain the final estimation. Developing them
by the modification of an existing multiple estimation model is a usual procedure.

Second, it is possible to classify data fusion models (also one source-based
models) depending on their mathematical baseline. In this sense, fusion operators
can be based on:

• Probabilistic logicmodels, which are those based on the classic probability theory.
Therefore, they are characterized by their robust mathematical foundations. Addi-
tionally, they require empiric data both to construct probability density functions
and to define laws for the conditional probabilities. They become complex when
dealing with very complicated cases. Excessive computation power and time as
well as the possibility of obtaining counter-intuitive results advise against their
use in these contexts.

• Evidential logic-basedmodels, which try to overcome the difficulties of the classic
probability theory to deal with ignorance. A complete empirical probabilitymodel
is not required. Approximations to the probability functions, which are given a
particular level of credibility, are thus acceptable. Additionally, evidential logic
tries to take advantage of sets of hypotheses and not of each hypothesis separately.
This facilitates the reallocation of the probability of belief in the hypotheses when
evidences change.

• Fuzzy logic-based models, which range the veracity of an assertion between 0
and 1. This assertion is a consequence of the reasoning from the available level
of knowledge, usually inaccurate or partial. Thus, and in contrast to classical
logic, for which conclusions are either true or false, fuzzy logic is multivalent.
Additionally, fuzzy logic models use these degrees of truth as a mathematical
model of vagueness. They also differ in this sense from probabilistic or evidential
approaches, in which the probability functions, either empirical or approximate,
model ignorance.

• Artificial intelligence-based schemes, which are very different from
mathematical models. Moreover, AI is a key part of computer science influenced
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by mathematics, but also by philosophy, psychology, etc. Primary AI is based
on four pillars (Nilsson 1980). First, the search of a required “state” among all
states produced by all possible actions. Second, the use of genetic algorithms, in
which the candidate solutions to an optimization problem are iteratively modified
to achieve better and better solutions. Third, artificial neural networks, which
are computing systems that “learn” to perform tasks by considering examples,
generally without being programmed with any task-specific rules. And finally,
there is a need for reasoning through a formal logic and for abstract thinking.
AI can have very different approaches (e.g. machine learning, cybernetics, soft
computing, computational intelligence, embodied intelligence), in which the
integration of probabilistic logic models, evidential logic models, fuzzy logic
models, etc., can be suitable.

Advances in computing capacity have made the combinations of the former
approaches feasible. However, as in other cases, the most complex methodologies
are seldom the most advisable. Simple procedures, even deterministic, based on a
good knowledge of all boundary conditions, thus avoiding the need for assumptions
or coarse estimations, are not onlymore feasible, but theymay also bemore accurate.

Although related to the mathematical logic applied, for which, as said, categories
are not exclusive of travel time estimation models, other differentiation in this case
particularized for them, is not only suitable, but meaningful (Fig. 2.10). Depending
on the general approach they have to the problem, i.e. on how they estimate travel
times, models can be (van Hinsbergen et al. 2007; Mori et al. 2015):

• Naïve models, which are ad hoc very simple travel time prediction methods, used
even without fusion, i.e. with data coming from a single source. They are based on
the acceptance of very restrictive assumptions, whose suitability is not confirmed.
Despite its usually low accuracy, they are widely applied in practice (but barely
in the research field, where they are mainly restricted to comparison) because of
their minimal computational demand, their speed and their easy implementation.
For example, some methods assume that traffic remains constant for a period and
accept ITT as predictions. Others accept averages estimated in different ways
from historical data. The combination of instantaneous and historical data (not
guided by a model) or simple clustering techniques also belong to this group.

• Traffic flow-based models, which use the principles of traffic theory to recreate
present traffic conditions aswell as their evolution over time.Once this is obtained,
travel times are derived. The success of these models depends on the accuracy
when forecasting traffic evolution, which is not a simple task. Simulation tools are
usually applied for this purpose but, as it was explained in Chap. 1, they must be
properly chosen and calibrated with empirical data. These methods could be very
profitable for traffic centres, as the knowledge of traffic conditions could support
related decision-making tasks. However, the fact that they are not intuitive (a
good background on traffic theory is necessary to manage them properly), their
demanding computational requirements and difficulties in calibration hinder their
generalization.
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Fig. 2.10 Classification of (data fusion) models depending on their general approach to the
estimation of travel times

• Data-based models, which are those that, by means of statistical and machine-
learning techniques, derive from the available data a function that relates the
explicative variables with the target variable. Traffic principles are therefore
completely neglected. Although in fashion, thesemodels (i) require huge amounts
of data to derive a proper function and (ii) are site-dependent. If the structure of
the function is predetermined and the data are used only to “adjust” it, the models
are called parametric. In non-parametric models, the function is freely derived
from the data and has no predefined structure. An intermediate approach is found
in semi-parametric models, which neglect some of the assumptions that would
determine the structure of the function in a parametric model to make it more
flexible.

• Hybrid models, which combine some of the aforementioned approaches in
different ways, trying to take advantage of their strengths and compensate for
their weaknesses. These combinations can take place in different steps of the
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fusion (e.g. one model fuses/processes the data and another one predicts travel
times) or in the same/s.

Fourth, data fusion models can be divided into groups depending on the role of
the contextual information in their estimations:

• A context-independent fusion operator only takes into account the values to fuse,
neglecting any other external information.

• A context-dependent fusion operator acts according to the contextual information
of the fusion and, thus, it needs this information to perform properly.

Particularizing for the case of travel time prediction models, contextual informa-
tion plays an important role. It is usually related to the study site (number of lanes,
number and location of junctions, accuracy of the available detectors, etc.), espe-
cially for those models based on traffic flow principles. Data-based models, on the
contrary, pay more attention to weather or incident information, the calendar, etc.
The consideration of both types of contextual information, if possible, leads to better
results (Mori et al. 2015).

Finally, fusion operators can be distinguished according to their behaviour. In
this regard, Bloch (1996) used the qualitative adjectives “severe”, “cautious” and
“indulgent” to make the distinction. Although valid for any number of inputs to fuse,
she gave a simple example with only two for the sake of simplicity. She referred to
the credibility associated to each of these inputs as x and y, which could take values
into the interval [0, 1]. F(x, y), with possible values within the same interval, was
the credibility associated to the result of the fusion. In this context:

• A fusion operator is indulgent if it acts with a disjunctive behavior (Eq. 2.2):

F(x, y) ≥ max(x, y) (2.2)

These operators express redundancy between criteria. They increase the
certainty we have about an information.

• A fusion operator is severe if it has a conjunctive behavior (Eq. 2.3):

F(x, y) ≤ min(x, y) (2.3)

This kind of operators represents a consensus between inputs or, in otherwords,
focuses on their common or redundant aspects. It searches for a simultaneous
satisfaction of criteria.

• A fusion operator is cautious if its behavior is intermediate (Eq. 2.4):

min(x, y) ≤ F(x, y) ≤ max(x, y) (2.4)

Such an operator provides a global measure, intermediate between the inputs
to fuse. By the introduction of weights, it is able to include interactions and
dependencies between them, thus avoiding combination bias.
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It is important to note that some operators become severe, indulgent or cautious
depending on the nature of the inputs to fuse (e.g. their sign). Namely, AI depends
on the values of the inputs, but is independent of the contextual information. For
example, some fuzzy logic techniques depend on both aspects.

2.3 Dissemination of Travel Time Information

The dissemination of the information is a fundamental task of any travel time infor-
mation system. This section is particularly aimed at reviewing the basics of this
dissemination from a practical point of view. Considerations about how information
should be delivered in order to reach the system optimum (Wardrop 1952) are not
included here. In this context, Fig. 2.11 summarizes the three most important vari-
ables to be considered so that travel time information is successfully communicated.
In fact, interdependences among these variables exist. Note that most of the next
reflections are also applicable to the dissemination of other types of traffic-related
information.

First of all, strategies designed to deliver information to drivers before they begin
their tripswillmostly be different from those used to fulfill their information demands
while travelling. Indeed, the required information is not the same either, at least
normally. Pre-trip information allows planning. Travel time reliability information is
commonly demanded in this context, for different purposes like (i) trip planning for
habitual trips such as commutes, or (ii) trip planning before following an unfamiliar
route, to be aware of the typical travel times on it. Drivers can decide on its basis their
mode of travel, their departure time or even, if possible, if they make the journey
or not. Travel time reliability information can also be useful as on-trip information,

Fig. 2.11 Features to take
into account before
implementing plans for the
dissemination of travel time
information
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allowing users to change their trip while in progress, prior to a route or mode choice
point. However, instantaneous travel time estimations (note that predictions are not
generally available, as it is discussed in Chap. 4) are more demanded when a trip
has already begun. Anyway, on-trip information enables drivers to modify the initial
planning according to current traffic conditions, provided that this possibility exists.
Both pre-trip and en-route, the main goal of the dissemination of travel time informa-
tion is to avoid late arrivals, which can have subsequent impacts if the person/freight
is awaited at the destination at a certain time. It can also be useful to avoid stress
and, therefore, accidents. A good travel time information system should thus allow
users to receive the particular information they ask for in the form that results more
useful for them.

In line with the former statement, the lexicon used for any kind of travel time
information delivery must be clear and concise, and adapted to the target driver.
These features are especially important for en-route information, as (i) the time a
driver has to process the information is usually short and (ii) he will possibly take
decisions in real time on its basis. Ambiguous or too complicated messages could,
in the best case, result useless. In the worst case, they could lead to incidents. In this
regard, many studies tried to define the most suitable length of any kind of warning
or information delivered in real time to drivers, so that it results useful and does
not represent a distraction from the driving task. For the case of Dynamic Message
Signs (DMSs) displayed on the road, the optimal distance between each pair has
also been analyzed and, in fact, is regulated by standards. Research on lexicon for
auditory messages is also in process. Nowadays, auditory messages are already used
by some apps or navigations systems, but they are, generally, not subjected to any
rules. However, this type of communication is expected to be increasingly important
(at least before self-driving vehicles hit the road) and, therefore, the development of
some guidelines seems advisable.

Finally, a good travel time information system must have appropriate media and
technology interfaces to cover all possible demands, namely (i) different types of
travel time information, (ii) a changing (often high) amount of requirements and
(iii) queries performed through all possible communication channels. The available
media platforms evolve in line with technological progress, but they are sometimes
constrained by limited budgets. Some of these platforms are only useful to dissemi-
nate pre-trip information. This is the case of press or TV information, which were the
traditional channels of communication in the past. Although their role is nowadays
less important, they still result useful to warn in advance against traffic disturbances
linked to a special event (e.g. a concert, a football match, construction sites). Infor-
mation through websites, although theoretically feasible for en-route information
dissemination via smartphones, is normally used before starting a route too. Since
the first websites for traffic information appeared in the mid-1990s, outstanding
improvements have been made. Representative examples are the public website of
the Department of Transportation of California (Caltrans PerformanceMeasurement
System, http://pems.dot.ca.gov/) or that of the private company Inrix (http://inrix.
com/web-portals/), where the most important information is only fee-based avail-
able. However, the administrators of this kind of websites have usually developed

http://pems.dot.ca.gov/
http://inrix.com/web-portals/
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a smartphone app with the same or even more targeted information too. For their
part, DMSs are only used to deliver information to those people already travelling.
Therefore, they are considered as especially directed to the interested users, as they
are linked to the routes these users follow. However, several studies state that they
are not good platforms to deliver travel time reliability information, as drivers could
confuse it with real-time information (Kuhn et al. 2017).

The remaining travel time dissemination technologies are useful before and during
a trip. Information points, traffic call centres, radio broadcasts, car navigators and
smartphones belong to this group. The last ones are those more successful nowadays.
Information points have the problem of their low accessibility. Additionally, they
oblige travellers to stop and, if necessary, to wait to be served. Their main advantage
is that information can be very complete and specific. Another on-demand service
able to provide extensive and particular information are call centres. However, they
are usually paid services and, additionally, some waiting time is often required.
Therefore, they are mainly used in the event of an accident, and not to obtain travel
time information. Radio broadcasts have similarities with press or TV reports:
information times are discrete and information is not user-specific. Furthermore,
signal losses while driving make them unreliable to deliver important information,
at least as a single source. For their part, car-navigators provide continuous and
immediately accessible information. Besides, they can be manipulated by drivers to
deliver the specific information they want with their favourite interface. However,
smartphones overtake them today as the most preferred source of information. First,
most travellers have a smartphone for their daily communications and routines, while
car-navigators must be bought on purpose to support the driving task, at least for the
majority (medium-class) of vehicle models. Second, many modes of information are
available via smartphones: short message services (SMS), social media platforms
(e.g. Twitter), specific traffic apps, etc., especially interesting for the dissemination
of real-time information. Apps are undoubtedly on the top. They are normally
user-friendly and include user input and output screens and data entry mechanisms,
such as drop-down text boxes and scrolling menus, specifically designed for the
touchscreen or keyboard supported by the operating system (Kuhn et al. 2017).
Although a fee is required to use the best ones (e.g. Inrix app, Fig. 2.12), very
satisfactory options can be found free of charge. As said, being aware of their useful-
ness, several traffic agencies have developed their own public mobile applications.
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Fig. 2.12 Example of use of the Inrix app
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Chapter 3
A Simple Algorithm for the Estimation
of Road Traffic Space Mean Speeds
from Data Available to Most
Management Centers

Margarita Martínez-Díaz

Abstract In traffic engineering, a lot of valuable information is obtained after appro-
priate processing of data collected by certain sensors. However good the data may
be, the information extracted can be completely wrong if the processing is inade-
quate. One of the most common simplifications in the field, which, for example,
affects some travel time estimation methodologies, is the use of temporal average
speeds as equivalent to spatial averages. This chapter explains the causes of this bad
practice, which is linked to the most traditional (and most extended) road equipment
and procedures. To correct this trend, a highly applicable solution in the form of an
algorithm is proposed. Although the results of the algorithm are not fully robust,
they are favorable in a wide variety of cases, with the added bonus that no additional
investment would be required.

3.1 Introduction

As society progresses, new requirements and needs may appear. With regard to
road transport, researchers, administrations, and private companies are aware that
controlling the evolution of traffic results in an increase of productivity and safety
allows exploiting synergies among different means of transport and contributes to a
more sustainable growth (SHRP 2 2013). Many different initiatives such as real-time
calculation of travel times, active traffic management or automated driving emerge
as examples of key achievements.

Although these lines of research are very different, they have two commonali-
ties, namely the need for (i) appropriate data and (ii) well-founded calculations. The
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development of new technologies and computer software offers the possibility of
collecting varied data and combining them to obtain accurate results (Yuan et al.
2014). Mobile phones, GPS (Global Positioning System), Bluetooth, Optical Char-
acter Recognition (OCR) cameras, and many other devices are sources of traffic
data usable for calculations. As seen, GPS-enabled cell phones, RFID technologies,
etc. have opened a new way of collecting traffic data, as they are able to register
individual vehicle trajectories (Hiribarren and Herrera 2014). Furthermore, vehicles
themselves will also act as high-level “sensors” in future cooperative scenarios. With
these lagrangian sensors moving within the traffic stream, increasing amounts of data
will be available. Therefore, it will be possible to design much more precise method-
ologies, either for real-time travel time estimation or for any other purpose aimed at
the dynamic management of traffic.

However, currently, neither totally accurate data nor the most complex programs
are usually available, at least in a sufficient amount, in less trafficked areas. This is the
case for example on secondary roads, in rural areas or for small traffic management
centers. In fact, the majority of these centers in developed countries depend on
equipment such as loop detectors and common cameras (unable to identify vehicles).
That is, loops are the main sources of data. Traffic researchers have demonstrated the
advisability of deploying double loops (in pairs in each section of each lane) rather
than single loops to obtainmore data and thus better results in later calculations (Chen
et al. 2003). Fortunately, at present this trend is usually fulfilled. Moreover, the fact
that there is a single data source on any road is expected to gradually disappear.
Anyway, until today’s scenarios evolve, some modifications can be performed in the
procedures currently implemented in traffic centers so that they better manage traffic.
In the case of this chapter, travel time estimation by means of spot speed methods
will be improved only with the application of traffic flow theory, and maintaining
loops as the unique data source. First, a remainder of the basics of these detectors is
included next.

All inductive loop detectors are similar. They consist of a wire loop installed
under the pavement of a lane, which is able to detect the presence of a vehicle (in
essence a metallic object) because of the change that it causes in the electromagnetic
properties of the loop. The main differences among loops are related to the soft-
ware that manages and stores these data, which can be programed in several ways.
As explained in Chap. 1, the data usually available in previously determined time
intervals of aggregation, �t, with the double-loop configuration are follows:

• Number of vehicles that pass over the detectors.
• Lengths of these vehicles: the software that manages the information usually

classifies them into groups and keeps only the number of vehicles in each group.
For example, in Spain the usual classification is as groups of vehicles shorter than
6 m, between 6 and 10 m and larger than 10 m.

• Spot speed measurements: again, although at first individual spot speeds are
detected, the software calculates and registers only their mean, i.e., the time mean
speed, vt , the average speed of all vehicles passing over a particular spot.
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• Number of vehicles that pass over the detectorswith a speed lower than a particular
reference speed. It is common to have two different references. Only the number
of vehicles that meet this requirement is stored. It must be highlighted that the
chance of obtaining these data directly from the software of loop detectors is not a
standard in the USA, but it is quite common in Europe. As an example, all Spanish
freeway traffic centers manage them.

The duration of the time intervals of aggregation ranges from 20–30 s in the USA
up to 15 min in some European countries. Intervals between 3–5 min have proven to
be the most suitable (Soriguera and Robusté 2013): both shorter and longer durations
have some advantages but also somedisadvantages, as itwill be discussed in Sect. 3.5.

Variation of traffic speeds at various places over time turns out to be one of the
basic inputs for subsequent studies, for example, the indirect estimation of travel
times. However, the problem is that most studies are based on the fundamental
equation of traffic flow (Eq. 3.1, introduced as Eq. 1.8 in Chap. 1); it provides the
relationship between flow, q, and density, k, by means of a specific type of speed,
the so-called space mean speed, vs , which is really a harmonic mean calculated
under particular conditions (Wardrop 1952). Further explanation about this point is
included in Sect. 3.2.

q = vs ∗ k (3.1)

The use of data provided by loop detectors involves various difficulties when
determining the evolution of speeds:

• Individual speeds aremeasured at fixedpoints of a road andmust be extrapolated to
some extent to achieve the spatial implication needed. This spatial generalization
is extremely complicated, particularly in case of congestion.

• As mentioned, the software delivers time mean speeds. The use of these time
means as substitutes of the space means required for calculations can cause a
considerable loss of accuracy in the final results.

• Although loops are simpler, more economical and more common than other
devices used to collect traffic data, their utility depends on their density on the
road (Bachmann et al. 2013). Some research has resulted in the development of
simple search algorithms that efficiently select sensor locations in order to obtain
suitable data when the number of available sensors is limited (Viti et al. 2014).
Nevertheless, difficulties remain on those roads already constructed.

The goal of the algorithm introduced in this chapter is to calculate spot space
mean speeds exclusively from the data provided by double-loop detectors, avoiding
extra expenses for the administrations. Specifically, it is focused on the calculation
of the variance of the speeds with respect to the time mean, which allows using
the relationship between time mean speeds and space mean speeds in the event of
stationarity defined by Rakha and Zhang (2005). As explained in Chap. 2, further
improvements must be implemented to obtain more accuracy in the final objectives,
in this case, in the travel time estimations. Once working with space mean speeds,
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a procedure for the generalization of these speeds over the links between detectors
based on traffic dynamics and queue evolution would be the next challenge to face.
Anyway, improvements in this first basic input have, as it is next demonstrated,
satisfactory consequences.

The remaining sections of this chapter are as follows. Section 3.2 gives the
background of different traffic speed definitions and summarizes their relationships
according to various researchers. Section 3.3 develops the proposed algorithm,whose
implementation is demonstrated in Sects. 3.4 and 3.5 with artificial and real data,
and also compared with other methodologies. After the discussion of the results,
attempts to find new relationships between mean speeds are performed in Sect. 3.6.
Finally, Sect. 3.7 includes the conclusions and a proposal for new lines of research.

3.2 Background

Since 1952, when Wardrop (1952) stated his two principles concerning the idea of
traffic equilibrium previously developed by Knight (1935), the differences between
the time mean speed and the space mean speed have been widely demonstrated. The
space mean speed, vs, is the average speed of all vehicles in a particular stretch of
a road at a specific instant (Homburger et al. 1996). The time mean speed, vt , is
the average of the speeds of all vehicles that pass over a section of a road during a
certain time interval. It is easy to deduce that the time mean speed is greater than
the space mean speed (Daganzo 1997) because vehicles that are faster contribute
more to the time-mean than the slow ones. On the contrary, vehicles of all speeds
contribute equally to the space-mean. Space averages equal time averages only in
case of space–time homogeneous traffic (Breiman 1969).

As it has been explained before, loops on a road detect and average spot speeds in
stipulated time intervals, thus providing timemean speeds. However, if the individual
spot speeds were stored, vs could be calculated by giving them certain spatial nature
and by considering stationary traffic in the section (Edie 1965) as Eq. 3.2 shows:

vs =
∑n

i=1 xi∑n
i=1 t t i

= n ∗ dx
∑n

i=1
dx
vi

= 1
1
n

∑n
i=1

1
vi

, (3.2)

where,
xi= distance covered by vehicle i,
t t i= time used by vehicle i to cover the distance xi.
vi= spot speed of vehicle i,
n = number of vehicles that pass over the detector during the time interval,
dx = differential length taken up by the detector.
Therefore, in these conditions the space mean speed could be calculated as the

harmonic mean of the individual spot speeds. It must be highlighted, however, that in
the origin of this formulation neither a time mean nor a space mean was established,
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but a generalized definition of the average speed. The fact of labelling this generalized
definition of the average speed as space mean speed vs is an abuse of notation.
Actually, vs does not share the spatial implications of the original space mean speed
definition unless traffic is stationary. Some limitations have been imposed for that
reason, considering that this identification is only performed when the average speed
is computed over a narrow rectangular strip in the x − t plane with a spatial width dx
and a time length T , which corresponds to the measurement region of a loop detector
on a highway. Taking this definition into account, the space mean speed appears for
example in the mathematical formulation of the average travel time t t of n vehicles
that cover a specific distance of a road L at a constant speed vi (Eq. 3.3, already
introduced in Chap. 2 as Eq. 2.1):

t t =
∑n

i=1 t t i
n

=
∑n

i=1
L
vi

n
= L ∗ 1

n

n∑

i=1

1

vi
= L

vs
. (3.3)

In consequence, travel timeswould be underestimated if vt were used instead of vs
(Soriguera andRobusté 2011). This substitution could lead to other inaccuracies such
as wrong estimates of jam densities or shock wave speeds (Knoop et al. 2009). The
data aggregation process is in fact an influential source of noise and errors present in
conventional measures of the traffic state (Coifman 2014). Many authors have stated
the importance of correctly using time-based or space-based data, no matter their
source. For example, the inverse of the harmonic mean of instantaneous speeds from
probe vehicles is an unbiased and consistent estimator of the mean segment travel
time when sampling by space, whereas it is biased upward when sampling by time
(Jenelius et al. 2015).

Clearly, upgrades in the loop software would allow these devices to store indi-
vidual data or even to directly calculate space mean speeds. However, the large
number of loops deployed worldwide and human inertia have so far precluded those
modifications. Therefore,many researchers have tried to calculate spacemean speeds
from the time mean speeds provided by the loops, especially in case of stationarity,
which is the common hypothesis of all the following methodologies.

The first of these relationships, shown in Eq. 3.4, is due to Wardrop (1952):

vt = vs + σ 2
s

vs
, (3.4)

where σ 2
s is the variance of the speed with regard to the space mean for the specific

time interval of aggregation chosen. The accuracy of the formula has been experimen-
tally verified, but most traffic management centers cannot use it because individual
speeds are needed in order to calculate the variance with regard to the space mean.
This formula was actually devised to calculate time means from space means, what
is not usually necessary in real life.

Another formula postulated to relate both means is that of Garber (2002) shown
in Eq. 3.5:
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vt = 0.966 ∗ vs + 3.541. (3.5)

The main problem of this relationship is that it was established based only on
experimental data; thus, it cannot be extrapolated to many situations in which the
boundary conditions differ from the original ones. It must be continuously calibrated
and, ultimately, it is not worth using.

Equation 3.6 has been used in several traffic studies. It was first derived by Khisty
(2003), but they were Rakha and Zhang (2005) who proved it analytically:

vs = vt − σ 2
t

vt
. (3.6)

In this equation σ 2
t is the variance of the speed with regard to the timemean for the

specific time interval of aggregation. However, the impossibility of calculating the
variance arises again. Nevertheless, and taking into account the utility of the formula,
Soriguera and Robusté (2011) were able to estimate this variance by imposing the
common hypothesis of stationary traffic in each time interval of aggregation and
additionally assuming normality of the speed distribution. Then, the variance with
regard to the time mean speed is given by Eq. 3.7:

σt = va − vt

F−1
[ nva

n

] , (3.7)

where.
σt = standard deviation of the speed with regard to the time mean,
va = value of the speed chosen by traffic management centres,
F−1 = inverse of the cumulative standard normal distribution,
nav= number of vehicles that pass over the detectors with a speed lower than va

in each time interval of aggregation,
n = number of vehicles that pass over the detectors in each time interval of

aggregation.
Although this methodology performs well in specific conditions, Soriguera and

Robusté (2011) warned that it is inappropriate to use it indiscriminately, espe-
cially in cases of shock wave onsets or offsets or with “stop and go” situations.
As Cassidy (1998) declared, stationarity ensures some otherwise senseless relation-
ships. However, the relationship established by Rakha and Zhang (2005) has been
proven useful under certain conditions even with non-spot data such as those from
GPS (Poomrittigul et al. 2008).

Another fact that must be taken into account to establish relationships between
speeds is that they more or less fit common statistical distributions. The normal, log-
normal, gamma and bimodal distributions appear in themajority of the traffic studies.
The normal distribution is undoubtedly the most used because of its simplicity, and
it performs well when traffic conditions are homogeneous. Consequently, it is also
the common assumption of multivariate normal distributions for link travel times



3 A Simple Algorithm for the Estimation of Road Traffic … 73

(Jenelius et al. 2013). However, the log-normal and gamma distributions are usually
more suitable because they have additional advantages (Haight 1962):

• They avoid the appearance of negative speeds.
• They keep their shape if either time speeds or space speeds are fitted.

In the case of the log-normal distribution, another important advantage is the fact
that the distribution of travel times based on speeds that fit this distribution maintains
the same shape (El Faouzi et al. 2007). If the log-normal speed distribution has a
meanμ and a standard deviation σ, the distribution of travel timeswill followEq. 3.8:

ft (t) = 1√
2 ∗ π ∗ σ ∗ t

∗e

⎡

⎢
⎣−

(Lnt + μ)2

2∗σ 2

⎤

⎥
⎦

. (3.8)

In the cases where traffic is too heterogeneous (for example, because there are
many different vehicle types that may behave differently or because phases of free
flow follow congestion periods), unimodal distributions should be avoided (Dey
et al. 2006). Bimodal or even multimodal distributions might be used. Each of their
components would often be a normal or log-normal distribution (May 1990).

Many other complex distributions have been used in research, but their complexity
prevents them from being put into practice (Zou and Zhang 2012). Even for log-
normal distributions, some improvements can be expected if the distributions are
truncated because only a range of speeds makes sense. In addition, the variances
of these truncated distributions are always smaller than those of the original ones
(Wang 2012).

3.3 Simple Algorithm for the Estimation of Space Mean
Speeds from the Data Provided by Double-Loop
Detectors

Having analyzed previous investigations and taking into account the data available,
the author decides to use the equation ofRakha andZhang (2005) to solve the problem
of not having an explicit value of the variance. The motivation is that the validity
of this formula has been widely demonstrated in experimental studies. However, a
particular analysis has been performed in order to compare it with other possible
relationships. Section 3.6 contains the results of this comparison, which effectively
verifies the goodness of this formula against the others.

To be able to estimate the variance, two important hypotheses are assumed. In
each time interval of aggregation T :

• Traffic is stationary.
• The speed distribution is log-normal.
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The validity of these hypotheses will be discussed in Sect. 3.5.4. The first one has
also been taken for granted in the other methodologies discussed in the chapter. With
regard to the second, the author exploits the advantages of the log-normal distribution
mentioned in Sect. 3.2. Assuming that the distribution of individual speeds vi in each
time interval of aggregation T is log-normal, the distribution of the logarithms of
these speeds x = Lnv is a normal distribution N (μx , σx ). Therefore, the probability
density function of the speeds, their mean and their variance are given by Eqs. 3.9
to 3.11, respectively,

fv(v) = 1√
2 ∗ π∗σ x ∗ v

∗ e

⎡

⎢
⎣−

(Lnv − μx )
2

2 ∗ σx
2

⎤

⎥
⎦

wi th v > 0, (3.9)

μv = vt = e
μx+

σ 2
x

2 , (3.10)

σ 2
v = σ 2

t =
(
eσ 2

x − 1
)

∗ e2∗μx+σ 2
x , (3.11)

where
v = individual speed,
μx = arithmetic mean of the logarithms of the speeds,
σ 2
x = variance of the logarithms of the speeds with regard to the mean.

Note that the goal of the algorithm is to estimate σ 2
v , which corresponds to the

variance with regard to the time mean speed, termed σ 2
t by Rakha and Zhang (2005).

Therefore, μx and σx are needed. μv is supplied by the loops (the time mean speed,
termed vt by Rakha and Zhang (2005)).

Let nav be the number of vehicles that pass over the detectors in a section with
a speed lower than va in one time interval of aggregation T . The probability that a
vehicle passes over the detector with such a speed is shown in Eq. 3.12:

P
[
V ≤ va

] ≈ nav
n

≈ P
[
eX ≤ ex

a ] ≈ P
[
LneX ≤ Lnex

a ] ≈ P
[
X ≤ xa

] = F
[
Z
(
xa

)]

= F
[
Z
(
Lnva

)] = F

[
Lnva − μx

σx

]

, (3.12)

where
va = speed chosen as a reference,
n = number of vehicles that pass over the detectors in each time interval of

aggregation,
xa = logarithm of the speed va,
F = cumulative standard normal distribution,
(Z)= standardized value.
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Rearranging Eqs. 3.10 and 3.12 yields a system with two equations (Eqs. 3.13 and
3.14) and two unknowns:

2μx + σ 2
x = Lnvt

2, (3.13)

μx + F−1

[
nav
n

]

∗ σx = Lnva, (3.14)

where
F−1= inverse of the cumulative standard normal distribution.
Finally, Eq. 3.15 is obtained

σ 2
x − 2 ∗ F−1

[
nav
n

]

∗ σx + Ln

(
va

vt

)2

= 0. (3.15)

SolvingEq. 3.15, two possible values ofσx arise. For two reference values of speed
(va1 and va2), four values are provided. In practice, some of these are nullified during
the calculations because there are some mathematical limitations for the algorithm.
In each time interval of aggregation T :

• n cannot be too small or the initial substitution of the theoretical probability by
the accumulated frequency (Eq. 3.12) is problematic and the confidence interval
of the estimations is too small.

• It is necessary that nav �= 0 and nav �= n. This keeps the inverse of the cumulated
standard distribution from tending to infinite.

•
(
F−1

[
na
v

n

])2
must be greater than Ln

(
va

v t

)2
to avoid square roots of negative

numbers when solving Eq. 3.15.
• It is necessary that va

vt
�= 0 to avoid natural logarithms of zero.

In those cases when more than one value of σx results, an action protocol must be
established that helps to choose the most suitable. One possibility is to keep the value
with the smallest confidence interval for a specific level of confidence. Once a value
of σx is found and introduced into Eq. 3.13, the corresponding μx can be calculated.
By using both values in Eq. 3.11, σ 2

t is finally obtained and can be introduced into
Eq. 3.6 to estimate vs. The flow chart in Fig. 3.1 summarizes the main steps of the
algorithm.

As noted, in practice it is not easy to choose the best estimate of σ 2
t frommore than

one possible value. There are no simple methods to calculate confidence intervals for
the variance of log-normal distributions. Bayesian procedures seem to be the most
suitable (Harvey et al., 2012), although quite difficult to implement.

A naïve solution could be to consider the confidence intervals of a parameter
calculated in a previous step of the method, for example σx . If the best σx is chosen,
the best σ 2

t and thus a more accurate vs will be obtained. Because the variable x is
normally distributed, the solution for the confidence interval limits of σx proposed
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by Soriguera and Robusté (2011) and developed in Eqs. 3.16 and 3.17 can be used:

εσx(1) = − (va − μx )∗εz(1)

Z(Z + εz(1))
, (3.16a)

εσx(2) = − (va − μx ) ∗ εz(2)

Z
(
Z + εz(2)

) , (3.16b)

where

εZ(1) = F−1
(
p + εp

) − F−1(p), (3.17a)

εZ(2) = F−1
(
p − εp

) − F−1(p). (3.17b)

The variable p is the probability of a vehicle with a speed smaller than va passing
over the detector in the time interval of aggregation. The circulation of vehicles
over the detectors can be observed as a Bernouilli process; the possibilities are their
driving slower than a reference speed or not, these trials being independent. Thus,
the estimator of p, p,

∧

matches Eq. 3.18:

Fig. 3.1 Steps of the
algorithm to obtain space
mean speeds from loop
detector data



3 A Simple Algorithm for the Estimation of Road Traffic … 77

p
∧ = nav

n
. (3.18)

The proposed methodology relies heavily on the availability of nav . If n
a
v is not

reported to the trafficmanagement center in the normal functioning of the system, the
method cannot be applied. Obviously, carrying out modifications in the controllers
in order to achieve these data lacks any sense, as it would be simpler, in this case,
to introduce other modifications in order to directly obtain vs . Nevertheless, in those
countries where nav is available (a substantial number), the fact of using the estimated
vs instead of working with vt (the current procedure) for later calculations would
imply a higher level of accuracy without the need of any re-coding.

3.4 Implementation of the Algorithm with Artificial Data

To first verify the proper functioning of the algorithm, it was tested successfully with
data generatedwithMatlab and readjusted to fulfil themain hypotheses of themethod,
i.e., the stationarity of the traffic and the log-normality of the speeddistribution in each
time interval of aggregation T as well as the mathematical requirements detailed in
Sect. 3.3. For this last reason, the reference values were set at 101 km/h and 110 km/h
(90 and 98% of the total time mean speed), ensuring enough vehicles participating in
the calculations. The steps followed and the results are shown in Table 3.1, whereas
Fig. 3.2 shows them in comparison with time means and real space mean speeds.

The estimated space mean speeds are much closer to the real space mean speeds
than the time mean speeds that the loops provide. The error introduced by the latter
is 2.17%, compared to 0.65% for the estimations of the algorithm. The validity of
the algorithm has been therefore demonstrated in these ideal conditions.

The mean relative error was calculated taking into account absolute values
of the differences. In addition, regarding the estimated space means, only values
with differences smaller than the maximum difference incurred by the loops were
admitted. This procedure was followed also in Sect. 3.5 with real data.

3.5 Implementation of the Algorithm with Real Data

The validity of the algorithm has been demonstrated in an ideal situationwhere all the
initial conditions that were assumed when defining the method were met. However,
it is also necessary to test it with different combinations of real data for which one
or more of these conditions probably will not apply.
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Fig. 3.2 Comparison of the real space mean speeds, the time mean speeds and the space mean
speeds estimated with the algorithm from data that completely fulfil the initial conditions of the
method

3.5.1 The Data

The data used for this study were collected during two days, on March 31th, 2014
and April 1st, 2014 in a section with double loops (P.K. 86 + 211, with two lanes
in the direction toward A Coruña) of the AP-9 freeway, which runs north and south
along the west coast of Galicia in Spain. The data were provided per lane and for
aggregation time intervals T of 15 min. It must be noted that the fact that the data is
a few years old has no special implication. In fact, the traffic control center in charge
of this freeway still generates this type of information on a daily basis.

During the normal management of this freeway, the common data available were
and are as follows:

• Number of vehicles that pass over the loops (n).
• Number of vehicles with lengths L shorter than 6m, between 6 and 10m or longer

than 10 m.
• Time mean speeds vt : in an initial stage these speeds are averaged every 5 min,

but then they are smoothed for time intervals of 15 min.
• Number of vehicles (naV ) that pass over the loops with speeds lower than 50 km/h

(V a1) and 100 km/h (V a2), respectively.

Specifically for investigation purposes however, on this occasion the individual
speeds and lengths were also provided, thus allowing an analysis of the algorithm
with a wide range of different boundary conditions, as well as the comparison of the
estimated space mean speeds with the real ones. The algorithm was executed with
data obtained on different days, in different lanes (the left, for the fastest vehicles,
and the right, for medium–low speed vehicles) and for all vehicles or only those
whose lengths L were within a specified range. In addition, different time intervals



80 M. Martínez-Díaz

Table 3.2 Cases analyzed to test the algorithm

Case Day Lane T(’) L N Val Va2

I 31 March Right 15 all 4,662 50 100

II 01 April Right 15 all 2,841 50 100

III 01 April Right 15 all 2,841 98 107

IV 01 April Right 5 all 2,841 50 100

V 01 April Right 5 L < 10 m 2,489 50 100

L > = 10 m 352 50 100

VI 31 March Left 15 all 769 50 100

VII 31 March Left 15 all 769 110 120

VIII 01 April Left 15 all 596 50 100

IX 01 April Left 5 all 595 50 100

X 01 April Left 5 all 595 50 115

Note that neither the stationarity of the traffic flow nor the log-normality of the speeds is guaranteed.
This issue is discussed in Sect. 3.5.4

of aggregation (T , in minutes) and reference speeds (V a1 and V a2) were used. N is
the number of vehicles detected during the entire data acquisition period. Table 3.2
shows the cases that have been analyzed:

3.5.2 The Results

Table 3.3 shows the difference between using the time mean speeds provided by the
loopdetectors or the spacemean speeds estimatedwith the algorithmas substitutes for
real space mean speeds. This difference is shown as in Sect. 3.4, i.e., by determining
the mean relative error in each case.

In 8 out of the 11 cases analyzed (and taking into account that case V has been
subdivided) the algorithm implies an improvement, but there are 2 cases where the
results have been worse and another in which no reasonable value has been obtained.
This behavior was analyzed and understood; it is discussed in Sect. 3.5.4.

Note that in most cases it is not possible to determine the validity of the algorithm
by focusing only on one of the boundary conditions; attention to the combination of
all of them is required. Nevertheless, once all the conditions for the calculation have
been established, its performance can be improved by changing only one of them.
As an example, between cases VI (Fig. 3.3) and VII (Fig. 3.4) only the reference
speeds are different. However, the algorithm only shows a good performance in the
latter case. The reason underlying this fact is that, in case VI, the sample includes
fewer vehicles because most of them were driving at speeds higher than 50 km/h.
Another example is based on cases IV (Fig. 3.5) and V (Fig. 3.6). Segregating the
sample according to the vehicle length improves the performance for light vehicles
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because the hypothesis of log-normality is better achieved. As for heavy vehicles,
the algorithm in this specific example does not even run due to the small sample size
of these vehicles. The influence of the length of the time interval of aggregation can
be observed for example between cases II and IV (Figs. 3.7 and 3.5). The results of
case IV, where T = 5 minutes, are much better.

3.5.3 Comparison Between the Proposed Algorithm
and Other Methods

Because the proposed algorithm is somewhat more complicated than that introduced
by Soriguera and Robusté (2011), a comparative analysis was performed to verify
that it is worth using. In case I for example, the proposed algorithm demonstrated
good behavior, diminishing the error incurred by the use of time mean speeds
by 0.58%. Figure 3.8 and Table 3.4 Comparison of the errors introduced by
different methodologies in case I. compare these results with that obtained with the
methodology of Soriguera and Robusté (2011), which, as mentioned before, assume
normality and stationarity in each time interval of aggregation T .

In spite of being conscious of the dependence of the formula of Garber on the
boundary conditions, Table 3.4 also includes the results that would be obtained from
its application, only for comparison purposes. The equation of Wardrop, as it has
been previously stated, is clearly useful only to calculate vt from vs , what is not
necessary in practical uses.

3.5.4 Discussion

Given the accuracy of the estimates achieved in each case, some conclusions must
be drawn. It seems that the algorithm is worth using in numerous situations because
results are usually more accurate than the currently accepted time mean speeds.
However, while it clearly performs better in some of these cases, it does not do
so well in others. The analysis was carried out taking into account the following
boundary conditions:

• Sample size.
• Log-normality of the speed distribution.
• Speeds chosen as references.
• Length of the time interval of aggregation.
• Prevailing type of vehicles.
• General traffic conditions.
• Place, day and moment of data acquisition.
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Table 3.4 Comparison of the errors introduced by different methodologies in case I

Methodology Vehicles suitable for calculations Weighted mean
error (%)Number % of total vehicles

Use of time mean speeds directly
delivered by loop detectors

4,662 100 1.35

Use of the equation (Eq. 3.5)
proposed by Garber (2002)

4,662 100 1.56

Use of the algorithm (Eq. 3.7
proposed by Soriguera (2011)

4,547 97.53 1.05

Use of the algorithm (Eq. 3.6 plus
Eq. 3.15 and precedent) proposed
in this paper

4,628 99.27 0.79

Regarding the sample size, the larger the sample, the better the algorithmperforms.
The main reasons are that the probability of having a log-normal distribution of
speeds in each time interval of aggregation increases and because fewermathematical
inconsistencies appear during the calculations.

The log-normality of the speed distribution in each time interval of aggregation
is one of the main hypotheses of the method and, therefore, it must be met. This can
be more or less difficult depending on the conditions established for the calculations.
For example, with low traffic densities, the behaviors of fast (e.g. cars) and slow (e.g.
trucks, buses, vans) vehicles can be very different (Dey et al. 2006). If the estima-
tion is made with samples from all lanes, bimodal or even multimodal distributions
will probably appear. Therefore, the analysis must be made by lane (Soriguera and
Robusté 2011). However, with high-medium densities, log-normality could appear
even in the whole section because the faster vehicles will not be able to reach their
usual speeds. As previously mentioned, log-normality is more suitable with large
samples. To illustrate the importance of fulfilling this hypothesis, two time intervals
of T = 5 minutes of case Va were chosen (time intervals between 7.40 and 7.45 a.m.
and between 11.10 and 11.15 a.m.). The errors of estimation in these intervals were
among the smallest (0.04% and 0.03%, respectively). The logarithms of the speeds
were tested with the Kolgomorov-Smirnov (KS) Test. Table 3.5 shows the results,
where the p-value in both cases was greater than 0.05, indicating normality of the
logarithms and thus log-normality of the speeds. Figures 3.9 and 3.10 also roughly
represent this trend.

The election of the speeds chosen as a reference must be made in a logical way
with the only purpose of having a sufficient number of vehicles in the sample. In the
specific case of the AP-9 freeway, the values used were 50 and 100 km/h. As it is

Table 3.5 KS test results for
two time intervals with
accurate estimates

Test KS 7:45 11:15

Z Kolmogorov-smimov 0.481 0.764

P value (bilateral) 0.975 0.604
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Fig. 3.9 Log-normal trend
for time interval between
7.45 and 7.50 a.m

Fig. 3.10 Log-normal trend
for time interval between
11.15 and 11.20 a.m

obviously uncommon for a vehicle to drive slower than 50 km/h on a freeway, some
data will still be missed. Since the individual speeds were available, other values
have been chosen for some of the analyses, what has led to better results. In this
research, values of 90 and 98% of the average speed were chosen. In practice, these
values could be based on (recent) historical data.

As for the lengths of the time intervals of aggregation, both long and short intervals
show advantages and disadvantages. Short durations are more likely to comply with
the other main hypothesis of the method, i.e., the stationarity of the traffic flow, and
yield more accuracy in subsequent calculations in real time (for example, in travel
time calculations). On the contrary, longer periods involve a greater sample size and
a lower need for calculation capacity because a smaller number of iterations will be
run each day.
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Again, the prevailing type of vehicle is related to the convenience of making the
estimations per lane or in a whole section to help to ensure the appearance of log-
normal distributions. If possible, it is always advisable to work per lane and even
to divide the vehicles into groups by their usual speeds, although this last step adds
some extra effort. In case of working per lane, later estimates for the section can be
obtained with equations such as Eq. 3.19, where the superscript i labels the lanes of
the section (Soriguera and Robusté 2011):

vsection
s = 1

[
1∑
i n

i

]
∗ ∑

i

(
ni/vi

s

) . (3.19)

A preliminary analysis of the behavior of each type of vehicle should be done to
avoid useless work. In this study, dividing the vehicles into the three sizes established
by the Galician traffic management center generally provided the same results as
classifying them into only two sizes (presumably the fast and slow ones), or even
worse ones in some time intervals of aggregation lacking of vehicles of specific
groups in the sample.

Note that the hypothesis of stationarity for the traffic flow has conditioned most
of the steps followed when deriving the algorithm and, thus, is essential to achieve a
good performance. This stationarity is assumed for each time interval of aggregation,
and it is quite likely to occur. Nevertheless, there will also be frequent occasions in
which transients (shockwaves, stop andgobehavior, etc.)will be present, and, thus, in
which the algorithm as it is will not provide accurate estimates and would need some
complex changes. To detect these situations, some simple measures can be taken.
One parameter that can help to detect the presence of transients is the coefficient of
variation (CV ) (Eq. 3.20):

CV v = σv

v
, (3.20)

where
CV v = speed coefficient of variation,
σv= speed standard deviation,
v= mean speed.
Theoretically, if stationary traffic is assumed, this parameter tends to increase as

the mean speed does; although it is in the denominator, the more the mean increases,
the more the deviation does. Besides, the coefficient of variation indicates the impor-
tance of distinguishing time mean speeds from space mean speeds based on the
relationships established byWardrop (1952) or Rakha and Zhang (2005), as Eq. 3.21
shows:

vt − vs = σ 2
t

vt
= σ 2

s

vs
= CV ∗ σ = CV 2 ∗ v. (3.21)
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The formula indicates that greater differences will occur with high CV S and
high mean speeds. However, empirically, it is common that the greatest differences
appear with high CV S and low mean speeds, a supposedly incompatible pairing.
This fact indicates that the traffic is not stationary (May 1990; Rakha and Zhang
2005; Soriguera and Robusté 2011). Figure 3.11 shows the relationship between the
mean speed and the CV in case VI, in which the algorithm did not perform well. In
this case the CV diminishes with the mean, indicating the presence of transients and
thus explaining the poor functioning of the method. In case IX (Fig. 3.12), the trend
agrees with the assumption (stationarity) and the algorithm provides good results.

Although similar trends are usually obtained bydirectly comparing average speeds
with the difference between time and space means (Figs. 3.13 and 3.14), the fact of
not taking into account the variance of the speeds could result in an exaggerated
impression of the magnitude of the relationship. The use of CV is strongly advised.
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Fig. 3.11 Mean speeds versus the coefficient of variation in case VI
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Fig. 3.12 Mean speeds versus the coefficient of variation in case IX
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Fig. 3.14 Average speeds versus the difference between time mean speed and space mean speed
in case IX

Finally, the place, day and moment when the data are collected is related to some
of the issues previously mentioned. For example, the number and type of vehicles
that drive on a freeway toward a capital on a workday morning in March will be very
different from that on an August Sunday on a secondary road surrounding a small
town. Therefore, speeds and traffic conditions will also be very different.
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3.6 In Search of Other Relationships Between Mean Speeds

As explained, the algorithm proposed in Sect. 3.3 draws from the premise that the
formula derived by Rakha and Zhang (2005) is the one that best defines a relation-
ship between time mean speeds and space mean speeds, under different boundary
conditions. Several researchers (e.g. Soriguera and Robusté 2011) reached the same
conclusion, and this chapter has demonstrated the goodness of this formula, for
example, compared to that of Garber’s. However, the author wanted to checkwhether
it would be possible to find a formula that would yield better results for the real case
study analyzed in Sect. 3.5, even assuming a priori the impossibility of extrapolation.
As the reference speeds played no role in this analysis, a different and more concise
nomenclature has been defined (Table 3.6).

As explained in Sect. 3.5.1, individual spot speed data were in this case available.
This allowed the calculation of the exact time mean speeds (arithmetic means) and
spacemean speeds (harmonicmeans). Then, spacemean speeds were estimated from
time means by using Garber’s and Rakha and Zhang’s relations. The mean absolute
and mean relative errors in relation to the real space mean for each case were also
calculated.

In addition, an attempt was made to find another kind of correlation between both
means. More in particular, the possibility of a linear, quadratic, cubic, logarithmic,
inverse, exponential or power-type relationship was analyzed (Table 3.7).

Both the corrected coefficient of determination, R2
c , and the p-value were deter-

mined for this purpose. As it is already known, R2
c is a downward correction of R2

based on the sample size n and on the number of independent variables k’, as shown
in Eq. 3.22 below:

R2
c = R2 −

[
k ′ ∗ (1 − R2)

(n − k ′ − 1)

]

. (3.22)

Table 3.6 Cases analyzed to verify the best relationship between the time mean speeds and the
space mean speeds

Case Day Lane T(‘) L N

1 31 March right 15 all 4,662

2 31 March left 15 all 769

3 01 April right 15 all 2,841

4 01 April left 15 all 596

5 31 March left 5 all 769

6 01 April right 5 all 2,841

7 01 April right 5 L < 10 m 2,489

8 01 April right 5 L > = 10 m 352
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Table 3.7 Tested
correlations between space
and time mean speeds

Correlation Outline

Lineal vms = a*vmt + b

Logarithmic vms = a*Ln(vmt) + b

Inverse vms = a*(1/vmt) + b

Quadratic vms = a*vmt2 + b*vmt + c

Cubic vms = a*vmt3 + b*vmt2 + c*vmt + d

Power vms = b*vmta

Exponential vms = b*exp(a*vmt)

The p-value is related to the contrast of the regression (ANOVA). In this case, the
null hypothesis stands for a value of R2 that equals zero. If the significance (p-value)
in the statistical F-test is lower than 5% (for a confidence level of 95%), the null
hypothesis can be rejected and, therefore, the existence of a correlation is proved.

In each of the cases studied, the estimated spacemean speeds and the errors for the
most suitable correlation were calculated. In this way, the best relationship both in
general and for each particular case was determined. In order to remove the possible
outliers, a slight smoothness was also made.

It should be highlighted that the variance with regard to the time mean for each
specific time interval of aggregation introduced in Rakha and Zhang’s equation was
again calculated from individual spot speeds, which, as said, are not usually available.
It is also important to notice that the data used in this study fit different types of
distributions depending on the time interval of aggregation, being lognormal and
normal distributions the most commonly found, as expected.

Table 3.8 shows the results of the curvilinear estimation. The corrected coefficient
of determination indicates that the quadratic correlation is the most suitable in most
cases. The coefficients of the quadratic correlation for each analysis are included in
Table 3.9. New estimates of space mean speeds were calculated with these values.
A level of significance was given to each coefficient, being the value of the null

Table 3.8 Coefficients and their significance for quadratic relationships

Case Non-standarized coefficients and p-value

a p b p c P

1 -0.011 0.058 3.487 0.010 -137.497 0.057

2 0.000 0.623 1.083 0.000 -8.046 0.380

3 -0.006 0.008 2.095 0.000 -51.618 0.028

4 0.002 0.000 0.485 0.000 29.919 0.000

5 0.001 0.083 0.861 0.000 8.133 0.124

6 0.003 0.036 0.410 0.126 33.357 0.034

7 0.002 0.000 0.574 0.000 23.899 0.000

8 0.002 0.008 0.689 0.000 13.764 0.009
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hypothesis equal to zero. As shown in Table 3.9 most coefficients are significant
(p-value < 0.05), that is, they are needed to establish a good correlation. A linear
relationship could achieve the same results only in two cases (as coefficient a is
non-significant).

Finally, the mean absolute and mean relative errors with respect to the real space
mean speeds (i.e., those calculated from individual speeds) encountered with the
formula of Rakha and Zhang, that of Garber and with the quadratic correlation were
also compared. The results are included in Table 3.10. It can be observed that the
relationship of Rakha, despite being the most complex practice because of the need
of estimating the variance with regard to the time mean, is worth considering. Both
the absolute and relative errors are at the lowest level in all the cases analyzed in this
study. Therefore, it has been again demonstrated its appropriateness to be part of the
algorithm presented in Sect. 3.3.

Table 3.10 Errors observed with the different estimations of space mean speeds from time mean
speeds

Case Rakha Garber Quadratic correlation

Mean abs
error

Mean
relative
error (%)

Mean abs
error

Mean
relative
error (%)

Mean abs
error

Mean
relative
error (%)

1 March
31th-right
lane-T = 15’

0.09 0.09 2.60 2.40 0.32 0.29

2 March
31th-left
lane-T = 15’

0.13 0.11 1.76 1.44 0.45 0.38

3 April 1st-right
lane-T = 15’

0.45 0.44 2.47 2.35 0.79 0.76

4 April 1st-left
lane-T = 15’

0.10 0.08 1.70 1.38 0.42 0.35

5 March
31th-left
lane-T = 5’

0.30 0.25 1.54 1.27 0.61 0.51

6 April 1st-left
lane-T = 5’

0.67 0.63 2.16 2.04 0.87 0.82

7 April 1st-left
lane-T = 5’
light veh

0.56 0.52 1.93 1.75 0.84 0.77

8 April 1st-left
lane-T = 5’
heavy veh

0.06 0.07 0.40 0.46 0.16 0.18
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3.7 Conclusions and Further Research

The development of road networks and new technologies has proven to be a useful
tool to respond to the increasing demands of society regarding the total control of
traffic evolution. Nevertheless, fundamental traffic theory must be correctly incor-
porated in modern methodologies in order to obtain accurate results. This chapter
introduces an algorithm that estimates space mean speeds in a specific time interval
of aggregation as a first step, for example, for the calculation of travel times or
occupancies. After analyzing the results obtained, three main conclusions can be
drawn:

• It is possible to improve the current procedure followed by most traffic manage-
ment centers, i.e., considering time means equal to space means. It can be done
inexpensively by exploiting all the data delivered by loop detectors. Specifically,
the proposed algorithm allows an estimation of space mean speed values that are
accurate in most cases, or, at least, much closer to the real values than time mean
speeds. Consequently, the use of these data also improves the results of subsequent
calculations.

• The good performance of the algorithm depends on the fulfilment of its initial
hypotheses, i.e., stationarity of the traffic stream and log-normality of speeds in
each time interval of aggregation. The boundary conditions for data acquisition
and for the calculations can be established to a certain extent in order to achieve
these characteristics.

• In case of transients, for example the formation or dissipation of shock waves,
most of the steps followed to design the algorithm are not valid (starting from the
extrapolation of the spot speeds to a section). Thus, other specific methodologies
should be used. Data fusion appears promising in this respect, as well as other
completely different approaches that try to explain the propagation of traffic
oscillation by means of car-following models (Li et al. 2014).

Further research can be carried out to improve the accuracy of the results or to
enlarge the sphere of application of the proposed algorithm. Some lines could be:

• Including a smoothing process to remove erroneous data derived from the
tendency of traffic loops to drift.

• Including in the algorithm the steps necessary to calculate the confidence interval
for the means in order to be able to choose the most accurate when more than one
value is obtained.

• Designing other algorithms adapted to other common speed distributions in addi-
tion to that introduced in this chapter and that in Soriguera and Robusté (2011).
Thus, after the application of a prior step that may help to find the most suitable
distribution for the speeds, the appropriate algorithm could be chosen in each
case.
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As noted, it is necessary to develop different and more evolved methodologies
to estimate space mean speeds in case of transients. Loop data are probably insuffi-
cient in these situations. Other researchers have achieved good results with various
techniques of data fusion (Soriguera and Robusté 2011; Bachmann et al. 2013; Yuan
et al. 2014). However, there is still much work to do, since it is difficult to put most
of them into practice because of their complexities and/or high costs. Of course, the
same issues arise when thinking of data-driven approaches.

In view of the results, usual spot speed methods enhanced by the proposed algo-
rithm would be satisfactory to estimate travel times in stable traffic conditions. Their
combinationwithmore elaboratedmethodologies that only partially rely on loop data
would allow making the most of these widespread detectors on other occasions. For
example at present when congestion exists or even in future driving environments.
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Chapter 4
Accurate, Affordable and Widely
Applicable Freeway Travel Time
Prediction: Fusing Vehicle Counts
with Data Provided by New Monitoring
Technologies

Margarita Martínez-Díaz

Abstract Today, technology allows highly accurate direct travel time measure-
ments. These can be attained by identifying vehicles at several locations on the
freeway or by directly tracking vehicles’ trajectories. The penetration rate of
these technologies is higher than ever before and continuously growing so that
the traditional problem of data significance (i.e. not having enough measurements
during a short updating period) is being attenuated. This fact has encouraged traffic
administrations and private companies to deploy real-time information systems
based on these data. However, even in an ideal scenario, direct measurements of
travel times are representative of near past traffic conditions for vehicles entering
the target stretch, while the objective of real-time information systems is to transmit
information about traffic conditions in the near future. This chapter aims to fuse the
information provided by input–output diagrams obtained from loop detectors with
direct measurements of travel times obtained from automatic vehicle identification
(AVI) or tracking technologies. This fusion allows exploiting the accuracy of the
direct measurements to correct the count drift in loop detectors. Then, corrected
input–output curves can be used to obtain reliable short-term predictions of travel
time from vehicles’ accumulation. The proposed data fusion method has been
applied to a test site in the AP7 freeway near Barcelona using real and simulated
data. Results show that the method is able to provide predicted travel times that
anticipate changes in traffic conditions much faster than the simple dissemination of
measured travel times, implying lower average and maximum errors of the real-time
information systems. The benefits of using the method grow with the severity of
congestion and in low surveillance environments, which represent the scenarios
where the travel time information is more precious and more difficult to obtain.
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4.1 Introduction and Background

Traffic monitoring is crucial in any kind of traffic analysis. Regardless of the final
purpose (e.g. management, planning, etc.), the lack of accurate and adequate data
prevents agencies and researchers from obtaining valuable results. Since the earliest
traffic volume measurement, which started more than a century ago, the need for
traffic data has grown together with the car fleet and the complexity of the networks.
This tendency continues, and the envisioned cooperative and automated driving
environments will largely rely on advanced traffic data. Fortunately, technolog-
ical progress has also reached traffic surveillance. Today, surveillance systems are
composed of a broad assortment of sensors and communication systems capable of
the real-time gathering and processing of huge amounts of traffic data. As detailed
in this book, these have supported the rise of (i) Advanced Traffic Management
Systems (ATMS), which allow the dynamic management of the traffic streams, (ii)
Advanced Traffic Information Systems (ATIS), which provide users with valuable
real-time information and (iii) Incident Management Systems (IMS), aimed at the
coordination of personnel, facilities, equipment, procedures, and communications in
the event of an incident (Hall 1993). These systems are usually integrated in a single
freeway management and information system, which receives data from detectors
located either in the infrastructure or in the vehicles. Although on-board sensors are
called to play an important role in the near future, the increasing need for traffic
data has traditionally been faced by the gradual installation of new surveillance in
the infrastructure. This “spontaneous” approach, resulting from the lack of plan-
ning, budget limitations and the fast technology evolution, turned into the existence
of a wide range of surveillance levels and technologies. And this situation compli-
cates the standardization of traffic management and information systems. In spite
of this, wireless communications and the widespread introduction of advanced in-
vehicle devices, like car navigators or smartphones capable of positioning, speed
measurement, etc., considerably contribute to alleviate the infrastructural surveil-
lance deficiencies nowadays (Herrera and Bayen 2010; Herrera et al. 2010; Ge and
Fukuda 2016; Woodard et al. 2017).

One of the key elements of ATIS is the travel time information. In fact, the travel
time is the best indicator of both, the level of service of a road link (in terms of travel
time reliability) and of current traffic conditions (real-time travel time information).
It is also the worthiest information for drivers and will continue to be key after the
advent of autonomous driving. In such a future ideal scenario, the driver becomes a
passenger and is able to use the travel time for other things than driving. The value
of the trip time will change, but the information of the expected travel time will still
be valuable for passengers in order to plan their activities accordingly. In addition,
a travel time increase in the network will continue to be indicative of congestion,
and detrimental in terms of costs, safety and sustainability. However, despite the
importance of travel time information and related to the aforementioned surveillance
heterogeneity, the availability of travel times is limited to small parts of the road
networks. Moreover, the received information exhibits variable levels of accuracy,
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often being not satisfactory. Currently, the travel times disseminated by ATIS have
different origins. Although this aspect has been explained in detail in Chap. 2, next
paragraphs revisit all of them with the aim of putting the algorithm proposed in this
chapter into context.

On the one hand, direct measurements of travel time can be obtained either from
AVI (Automated Vehicle Identification) technologies or from tracking. The case of
AVI systems is straightforward: each individual vehicle is identified at two control
points,which delimit a section of the road. Its travel time in this section is calculated as
the difference between the vehicle’s time stamps at both locations.Bluetooth (Barceló
et al. 2010) or toll tag identification (Longfoot 1991; Nishiuchi et al. 2006; Soriguera
et al. 2010), license plate automatic recognition (Buisson 2006; van Hinsbergen et al.
2009) or the individual identification of vehicles based on several distinctive charac-
teristics such as the length by means of traditional inductive loop detectors (Coifman
and Cassidy 2002; Coifman and Ergueta 2003; Coifman and Krishnamurthya 2007)
or the inductance signature (Kuhne and Immes 1993; Abdulhai and Tabib 2003;
Kwon 2006) are examples of AVI technologies. Additionally, individual vehicle
identification is very useful, for example, for the estimation of O/D matrices. The
past inconveniences of the low penetration rates and high costs of these technologies
have been overcome, at least partially.However, some issues remain. First, travel time
measurements directly obtained from AVI systems are captive of the control points,
i.e., they are only available along the sections delimited by the sensors. Neither partial
nor longer trips can bemeasured. Second, travel timemeasurements in a given section
are obtained once vehicles have completely covered it. These are called measured
travel times (MTT) or, equivalently, arrival-based travel times (ATT), and represent
a somehow outdated information for vehicles entering the section, especially if this
section is long, or when congestion exists. In case tracking technologies are avail-
able, direct measurements of travel times between any two points on a highway can
be obtained. In fact, these systems can provide individual vehicles’ trajectories every
few seconds. Especially GPS technologies, either in vehicle navigation systems or
smartphones (Herrera et al. 2010), but also phone signal geopositioning (Yim 2003)
or video surveillance via drones (Kaufmann et al. 2018) are used to this end. In fact,
these technologies represent the evolution of traditional probe cars and are expected
to be the prevailing source of traffic information in the future. Travel time measure-
ments provided by tracking technologies are based on the last information available
fromvehicles’ trajectories. These instantaneous travel times (ITT) still do not provide
the desired information to drivers starting their trip, as ITT do not imply a prediction
about the conditions that these vehicles will face.

On the other hand, it is possible to indirectly estimate travel times fromother traffic
variables such as speeds or flows. In fact, this is still the most common approach for
travel time estimation, as the necessary inputs can be obtained from inductive loop
detectors, which continue to be the most widespread data source on many highways.
The most widely used methodology estimates the travel time in a section between
two loops from the estimated average speed in the section. This average speed is
obtained by extrapolating the punctual speeds measured by the loops at both ends.
A high density of double loops (single loops do not provide accurate spot speeds),
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ideally a loop every 500m, is necessary to obtain acceptable results. Still, large errors
can appear in congestion or in traffic state transitions (Soriguera and Robusté 2011c).
One possibility to improve spot speed methods was developed by Coifman (2002)
and Treiber and Helbing (2002). They suggested a procedure to account for traffic
dynamics in the spatial interpolation of the speed between loop measurements. This
approach should be useful for the travel time estimation in these low surveillance
environments, increasing the accuracy of the estimation without the huge investment
that more intensive monitoring implies. However, it can only be applied when all
the section between detectors is either free flowing or fully congested, as traffic
state transitions are overlooked. Because the lengths of these links can be of several
kilometers, the fact of not considering traffic transitions implies significant errors.
In any case, the travel time along a stretch (i.e. composed of several sections) is
calculated by adding up the partial travel times, finally obtaining an ITTmeasurement
still without predictive capabilities.

A potentially useful tool to compute travel times from traditional loop detector
measurements is the use of cumulative count input–output curves and the vehicle
conservation equation (Nam and Drew 1996; Oh et al. 2003; van Arem et al. 1997).
The advantages of input–outputmethods are twofold. First, they can be applied in low
surveillance environments and using data from the already installed loop detectors.
By low surveillance it is meant that intensive monitoring (i.e. closely spaced double-
loop detectors) is not necessary although some minimum monitoring requirements
exist. For example, in case the target section has junctions, loop detectors must be
installed in all on/off ramps. These loops complement those needed in themain trunk,
which must be present on every section between junctions (one for section would
suffice). Additionally, all of them can be single loops, as they are enough to obtain
the vehicle count (Fig. 4.1).

The second main advantage of input–output methods is that they provide the
vehicle accumulation between detectors. This allows predicting the evolution of
travel times in the short term, which is a key feature for highway travel time informa-
tion systems when providing real-time information. Note that none of the previous
travel time estimation methods presents such predictive capabilities, providing all

Double loop detector

Legend

Single loop 

b) < 500ma)

Fig. 4.1 Highway surveillance levels: aMinimum requirements for input–outputmethods; b Inten-
sive monitoring for spot-speed methods. Note: In Fig 4.1a ramp detectors could be substituted by
another sectional main-trunk detector. In such case, main-trunk detectors should be placed before
and after the junction
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of them, to some extent, a past measurement. In spite of these advantages, input–
output methods are not currently used for freeway travel time estimation. Not being
an intuitive method or the need for closed detector configurations can be some of
the reasons for this situation. Nevertheless, the most problematic factor is that loop
detectors suffer from drift (i.e. small counting errors). Detector drift is not an impor-
tant problem when data is analysed for a single detector. However, in input–output
methods, where the accumulation is computed from the relative difference between
the cumulative counts at consecutive detectors, even a small drift accumulated over
time can lead to meaningless results. No significant research aimed at understanding
and solving the undesirable loop detector drift for travel time estimation has been
performed yet. Therefore, there is a need for additional efforts to develop an adequate
real-time methodology that (i) is aimed at the prediction of travel times from cumu-
lative count curves obtained from traditional loop detectors even on low surveillance
highway stretches, (ii) performs drift correction and (iii) accounts for typical diffi-
culties in input–output methods like the existence of inner junctions in the closed
sections or the effects of passing.

The present chapter addresses these objectives by proposing a data fusionmethod.
In this regard, data fusion arises as a promising choice, as it has already been proved
useful in traffic state estimation (Ambühl and Menéndez 2016; Deng et al. 2013;
Nantes et al. 2016; Sun et al. 2017) and even in travel time prediction under different
circumstances (Chen and Rakha 2016; El Faouzi et al. 2007; Soriguera and Robusté
2011b). The method proposed here fuses data from traditional loops with direct
travel time measurements. The latter can be obtained either from AVI or tracking
technologies, being necessary only minor modifications to the algorithm depending
on the case. These adjustments are explained in detail in the next sections. Because in
general the spatial–temporal aggregation and coverage of the different data sources
is not uniform, the method needs to include the spatial and temporal alignment of
the data as a first step. Then, direct measurements are used to correct the drift in the
cumulative curves constructed from detector counts. From these corrected input–
output curves, predicted travel time estimations are obtained. This allows exploiting
the predictive capabilities of input–output methods while keeping the accuracy in
the estimation. Because direct measurements are not used as the final information,
a low penetration of the used measurement technology, resulting in periods with
few or any data, does not imply significant drawbacks. However, it is important to
remark that this algorithm has a vocation of continuity and is also applicable in
other more equipped environments, either as a central or as a backup methodology.
Actually, it will also be applicable in future environments, where AVs will provide
direct measurements of travel time, either after their reidentification at control points
or, better, because of their condition of lagrangian sensors (trackers).

The structure of the remainder of the chapter is as follows: next, Sect. 4.2 reviews
the main concepts in the input–output method to estimate travel times. Section 4.3
introduces the proposed data fusion algorithm. It starts explaining how to predict
travel times from vehicle accumulation, continues with the drift correction method-
ology and ends with the activation conditions of the algorithm. An experimental
study with real data provided by AVI detectors is presented in Sect. 4.4 including
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the discussion of the results. Similarly, a case study with data provided by tracking
technologies, in this case simulated, is performed in Sect. 4.5. The conclusions of
this chapter are drawn in Sect. 4.6, where further research is also proposed.

4.2 Travel Time from Input–Output Cumulative Curves

Cumulative count curves are well-known tools used in different disciplines like
hydraulics, hydrology or geotechnics. Since KarlMoskowitz (1954) introduced them
in traffic engineering for the first time, their simplicity and usefulness have been
extensively proved. The works of prof. G. F. Newell represented the definitive popu-
larization of the tool. For instance Newell (1982) developed applications of queueing
theory, Newell (1988) analysed the effects of the interruption of traffic streams at
signals, Newell (1993a, b, c) proposed a simplified kinematic wave theory of traffic
flow, or Newell (1999) analysed delays at freeway off-ramps, in all cases using
cumulative count curves.

A cumulative count curve is obtained by counting all vehicles passing over a
particular location, x . One of these vehicles is chosen as a reference and is said
to have passed at time t = 0. From this instant, the counts corresponding to the
following vehicles are accumulated over time. This allows defining the function
N (x, t) that renders the accumulated number of vehicles that have passed the location
x by time t . The graphical representation of this function is the so-called cumulative
count curve at x , also known as N-curve. N (x, t) is, by definition, a monotonically
increasing stepwise function, from which valuable information can be obtained.
For example, the average slope of N (x, t) during a certain time interval �t (i.e.
[N (x, t + �t) − N (x, t)]/�t) represents the average flow at x . Because the number
of passing vehicles in real applications is large, especially in freeways, N-curves can
be smoothed and treated as continuous functions (see Fig. 4.2). This is simply done
by interpolating through the crest of every individual step of the discrete function.
The continuity of the smoothed version of N (x, t) allows taking derivatives and,
for instance, defining the instantaneous flow as the time derivative of N (x, t) at a
particular instant (i.e. ∂N (x, t)/dt).

The usefulness of cumulative curves for the analysis of queuing systems increases
when using input–output diagrams. These diagrams are the result of depicting jointly
the N-curves at both ends of a given section between detectors. In Fig. 4.2, xu and xd
are, respectively, the locations of the upstream and downstream detectors, defining a
closed section. Thus, N (xu, t) corresponds to the vehicles entering the section (i.e.
the arrivals curve), whereas N (xd , t) refers to the exiting vehicles (i.e. the departures
curve). Assuming vehicle conservation in the section, the vertical distance between
these curves at a time t depicts the accumulation of vehicles between detectors at this
instant. Additionally, assuming that vehicles have a FIFO behavior, (i.e. no passing),
the horizontal distance between the curves at the height of any vehicle k represents
the travel time of the kth vehicle between detectors. Note that this time includes the
free-flow travel time and the delay, if any.
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Fig. 4.2 Input–output diagram and determination of delay via the virtual downstream cumulative
curve

Because the analysis of delays is usually desired, the introduction of a third curve
results useful. The “virtual” downstream cumulative curve, V (xd , t), is obtained by
translating the arrivals curve a distance t f forward in time, where t f is the average
free flow travel time in the section. V (xd , t) represents the cumulative number of
vehicles that would have exited the section by time t if free flowing conditions would
have prevailed. Note that V (xd , t) = N (xu, t − t f ). Thus, the horizontal distance
between V (xd , t) and N (xd , t) at the height of any vehicle k represents the delay
experienced by this vehicle in the section. The vertical distance between these same
curves at time t is the vehicles’ excess accumulation in the section at this instant.
Obviously, V (xd , t) = N (xd , t) if no delay exists (Daganzo 1987, 1997).

The reminder of this section is aimed at presenting the application of these
concepts to the travel time estimation from the typical loop detector counts and
how to deal with the difficulties that frequently arise, namely the effects of inner
junctions in the conservation assumption, or the violation of the FIFO assumption
due to overtaking.

4.2.1 Travel Time Definitions from Input–Output Diagrams

In practice, input–output diagrams can only be used to obtain aggregated variables
of a traffic stream, averaged over time and space. This is not an important drawback,
since average values better illustrate traffic conditions and are thus more valuable.
There are several reasons for this limitation. First, due to passing, cumulative count
curves do not truly represent individual vehicles, but positions or “labels” within
the traffic stream (Daganzo 1997) (see Sect. 4.2.2.1). Second, loop detectors do not
provide individual measurements, but aggregated counts and average speeds over
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Fig. 4.3 Travel timedefinitions from input–output diagrams (inspired inSoriguera 2016):aArrival-
based travel time (ATT); b Departure-based travel time (DTT); c Instantaneous travel time (ITT)
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predetermined time intervals, �t. This responds to data treatment standards aimed
at avoiding excessive communications and storage needs. �t highly varies among
countries and administrations, commonly lasting between 1–3 min in Europe and
typically 30 s in the USA (Soriguera and Robusté 2011a).

In any case, the procedure to obtain the average travel time for a particular �t
consists in (i) computing the area S enclosed between curves N (xu, t) and N (xd , t)
(i.e. the total aggregated travel time) and (ii) dividing this area by the total number
of involved vehicles. However, S can be computed in several ways, thus affecting
different groups of vehicles and giving rise to distinct travel time averages (Soriguera
2016). Although these differences are meaningful for any subsequent application,
they have traditionally been overlooked (Nam and Drew 1996; Oh et al. 2003; van
Arem et al. 1997).

For example, if the considered vehicles are those that exit the control section
during �t, arrival-based travel times (ATT) are obtained (see Fig. 4.3a and Eq. 4.1).
These travel time measurements are equivalent to those directly obtained from AVI
detectors. On the contrary, if the average involves those vehicles that have departed
from xu during �t (i.e. that have entered the control section), departure-based travel
times (DTT) are obtained (see Fig. 4.3b and Eq. 4.2). In this case, some assumptions
regarding future traffic conditions are necessary. Typically, it is assumed that the
outflow will remain constant in the short term. Trying to use only the most recent
information, another possibility is to consider all the vehicles contained between xu
and xd from time ti−1 to time ti (where ti − ti−1 = �t) (see Fig. 4.3c). In this way,
instantaneous travel times (ITT) are obtained. In this case, S represents the vehicles’
total travel time in the time–space region (xu, xd) ∗ (ti−1, ti ). Note that not all the
vehicles considered in S travel the whole distance between xu and xd in �t , and it is
even possible that no vehicle covers the entire distance if travel times largely exceed
�t. These situations complicate the estimation of the average travel time. Anyway,
the average travel time can be obtained by dividing the total time travelled, S, by
the global distance travelled by all the vehicles involved. The result of this division
represents an average pace, which needs to be multiplied by �x (i.e. the distance
from xu to xd ) to obtain the average travel time. Daganzo (2010) proved that the total
distance travelled by a group of vehicles in the (xu, xd)∗ (ti−1, ti ) space–time region
can be computed as �x times the number of vehicles exiting the section in the time
period (i.e. N (xd , ti )− N (xd , ti−1)). So, the ITT estimation is obtained as in Eq. 4.3.
This definition of ITT is equivalent to the average that would be directly obtained
from tracking systems.

Other definitions for the average travel time have been proposed. Nam and Drew
(1996) suggest only considering the travel times of those vehicles crossing both xu
and xd within �t (see Fig. 4.4a and Eq. 4.4). Evidently, this definition is only useful
if individual travel times are significantly shorter than �t . This is only feasible in
case of short distances between loop detectors and free flowing conditions or if the
considered time period, �t , is long. However, �t needs to be short because long
time periods imply less frequent information updates and this is not acceptable for
accurate real-time information systems.
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Thus, the limited usability of this definition is evident. Alternatively, van Arem
et al. (1997) focused again on the most recent information (Eq. 4.5). To this end, the
average travel time in the target section is defined as the arithmetic average between
the travel times of the last vehicles that have respectively passed over xu and xd in�t .
Note that the travel time of the last vehicle to enter the section (i.e. the last crossing xu
in�t) must be estimated, as this is future information. Both the vehicle accumulation
in the section and the outflow at the end of�t (usually assumed constant in the short-
term, like in the case of DTT) are used for this purpose. This average travel time
estimation, known as predicted travel time (PTT) (see Eq. 4.6 and Fig. 4.4b), is more
suitable than the former for real-time travel time information systems, as for a vehicle
entering a section the most valuable information is its expected travel time.

Note that in all the previous definitions, if the curve V (xd , t) is used instead of
N (xu, t), the enclosed area would not be equal to the total travel time of the involved
vehicles in the time interval, but to the total delay they suffered. Equations 4.1–4.6
would then correspond to different definitions of the average delay.

4.2.2 Main Difficulties When Using Input–Output Diagrams
for Travel Time Estimation

The estimation of travel times from input–output diagrams is a powerful method to
feed real-time travel time information systems. As vehicles’ accumulation, which
is related to the near-future traffic evolution, is available from these diagrams, the
method is able to provide predicted travel times. In addition, the required surveillance
is limited, and the only requirement is that the target section needs to be “closed”
in the sense that all vehicles that enter or exit the section must be detected, even
those using inner junctions. The procedure is independent of the geometry of the
freeway, which may influence the bottlenecks’ location but not the measurement of
the average delay. In this regard, neither the derivation of empirical parameters nor
the calibration require a major effort. Despite these advantages, some challenges
usually appear in practice. Next sections face them and propose the corresponding
solutions.

4.2.2.1 The Effects of Passing

Theoretically, the use of input–output diagrams in queuing systems assumes FIFO
behaviour. In practice, some passing exists in traffic streams, that is, non-FIFO
situations can take place. In these cases, vehicles change their relative positions.
However, if it is considered that cumulative curves do not count particular vehicles
but “order labels” (i.e. that vehicles change with each passing manoeuver), impor-
tant features of the input–output methods such as the assumption of FIFO traffic
or the monotonically increasing nature of the cumulative curves are maintained
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Fig. 4.4 Other travel time definitions from input–output diagrams (inspired in Soriguera 2016): a
Nam and Drew (1996); b van Arem et al. (1997) and predicted travel time (PTT)

(Daganzo 1997). This procedure prevents the use of input–output diagrams to obtain
individual travel times, but average travel times will not be significantly affected
despite passing. Note that it is possible that some of the “order labels” considered
in the calculation of the average travel time for a certain �t , actually correspond
to vehicles that have exited or entered the section in the time period immediately
before or after�t . However, if the percentage of these vehicles is small, the resulting
average travel time continues to be a good estimation. In this regard, Muñoz and
Daganzo (2002) empirically demonstrated that freeways could be mostly considered
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FIFO systems and, thus, the consequences of passing in cumulative count curves,
negligible.

4.2.2.2 The Effects of Inner Section On/Off Ramps

As mentioned, vehicle conservation is a requirement of input–output methods. If the
target section between detectors contains one or more ramps, entering and exiting
flows must be monitored (see Fig. 4.1a). Difficulties arise because these flows can
take place at points of the section different from its extremes. Then, two groups of
vehicles can be distinguished: (i) those that cover all the distance between detectors
and (ii) those using the junction and that only travel a portion of this distance. To
take this difference into account, it would be necessary to divide the section into
subsections, before and after each junction, and to construct input–output diagrams
for each subsection. Even if ramp flows are being monitored, this cannot be achieved
without a main-trunk detector at the junction location, which is frequently missing.

Given this partial monitoring layout, one solution could be to model cumulative
curves before and after the junction, given themeasurements upstream (i.e. N (xu, t)),
downstream (i.e. N (xd , t)) and the ramp counts. Newell (1993a, b, c) proposed a
method to shift aN-curve to any desired location in betweenmeasurements.However,
the method requires the flow-density relationship in the section (i.e. the fundamental
diagram of traffic) as well as the a priori knowledge of the existence of bottlenecks,
their precise location and their capacity. These requirements make the generalized
application of Newell’s methodology unfeasible in real time.

A simpler approximate procedure consists in directly adding the net input counts
at the junction (i.e. entrances minus exits) to the detector measurements, assuming
the junction to be located at xu or at xd (i.e. one of the detector locations that define
the target section). This means that, given a junction located at xi ∈ (xu, xd) with
cumulative net input counts defined by J (xi , t), the section input–output cumulative
curves would be defined by the following Eqs. 4.7 and 4.8:

I nput = N (xu, t) + J (xi , t)
Output = N (xd , t)

if xi ≈ xu, (4.7)

I nput = N (xu, t)
Output = N (xd , t) − J (xi , t)

if xi ≈ xd . (4.8)

The disadvantage with this approach is that either all vehicles are considered to
compute the average travel time (Eq. 4.7), or none (Eq. 4.8), assuming that vehicles
using the junction travel the whole section or do not travel in the section, respectively.
This will introduce some bias in the average travel time estimation, although this bias
will only be significant if vehicles using the junction represent a significant fraction
of total flow and their travel are very different with respect to the others (e.g. partial
congestion after the junction).
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An adequate selection between the alternatives in Eq. 4.7 (i.e. xi ≈ xu) and Eq. 4.8
(i.e. xi ≈ xd ) helps to reduce the bias of the estimation. In general, the best option
is to assume the junction to be located at the closest detector location. However, if
the junction is somehow in the middle and the approximate location of recurrent
congestion is known, the previous criterion could be modified. Note that the alterna-
tive represented by Eq. 4.7 will involve a higher bias if congestion is concentrated
between xu and xi . In contrast, the bias will be lower if congestion concentrates
between xi and xd . Equation 4.8 presents the opposite behaviour. Therefore, the
selection should be done accordingly.

4.2.2.3 Detector Count Drift

Errors in loop detector counts have been extensively reported (Nam and Drew 1996;
Oh et al. 2003; van Arem et al. 1997). Typically, detectors miss some few vehicles
every �t , without a systematic pattern and with different tendencies to undercount
depending on each particular detector. This small measurement drift does not imply
important drawbacks when using each detector, isolated, to measure average flows or
speeds. However, input–output methods are used to compute the vehicles’ accumu-
lation between a pair of detectors. Even a small drift becomes significant when the
count difference between detectors is accumulated over time. Note that this differ-
ence is usually small, even if a large number of vehicles has been registered. Thus,
the error introduced by the detector drift in the estimation of average travel times
can be huge. In fact, the accumulated count error could be larger than the vehicle
accumulation itself. Precisely, this chapter presents a data fusion scheme to correct
the count drift at detectors, enabling the of use input–output methods to estimate
accurate average travel time predictions.

4.2.2.4 Initialization of the Input–Output Diagram

Despite the application of drift correction methods, a frequent reset of the input–
output diagram is needed to account for the increasing bias in the vehicle accumu-
lation. At each reset, the value of the initial accumulation in the section must be
estimated (see Fig. 4.5). However, this is not easily achieved with loop detector data.
In case of using the virtual arrivals curve V (xd , t) instead of N (xu, t) and, thus,
computing delays instead of travel times, the initialization is simplified because the
excess accumulation is null in free flowing traffic. Given this situation, it is advisable
to only use input–output methods to compute delays in congested conditions. The
method should turn on just before the congestion onset, still in free flowing condi-
tions, and with null initial excess accumulation. Still, the measurements on curve
V (xd , t) will be displaced t f time units with respect to those on curve N (xd , t) (see
Fig. 4.5), and this requires the estimation of the travel time in free flowing conditions,
t f . The construction can be further simplified by considering that traffic flows evolve
smoothly between consecutive �t , and that t f is generally small when compared
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Fig. 4.5 Initialization of input–output diagrams (inspired in Soriguera 2016)

to the precision required for the travel time estimation (e.g. t f for a 2 km section
could be of the order of 1 min). Then, V (xd , t) can be constructed simultaneously
with N (xd , t) every �t , neglecting the time lag between the measurements on both
curves.

The applicability of the method only in congested conditions is not restrictive in
any sense. In free flowing traffic any other methodology (e.g. spot speed methods or
direct measurements) would perform well (Soriguera 2016). Furthermore, real-time
information is less meaningful in free flowing periods, as the uncertainty faced by
the users is much lower (Soriguera 2014).

4.2.2.5 N-Curves Linear Interpolation

The introduction of small errors into the method is accepted when interpolating
through the original stepwise N-curve by means of a piecewise linear function.
However, the implications of this simplification are negligible, as the aggregation
periods, �t , are usually short and traffic evolution within them can be considered
gradual and smooth (Soriguera 2016).
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4.3 A Data Fusion Algorithm for the Short-Term
Prediction of Freeway Travel Times

This section describes the proposed data fusion method to correct the drift in input–
output curves by using direct travel timemeasurements. This includes the description
of the turn-on and turn-off conditions to ensure the periodic reset of the cumulative
curves, the temporal and spatial alignment of the different sources of information,
the data fusion algorithm, with slight differences in case of having AVI or tracking
directmeasurements, and the computation of the predicted travel time from the input–
output diagrams. The flowchart included in Fig. 4.6 summarizes the main steps of the
methodology. A detailed explanation of all of them is provided in the next sections.

4.3.1 Data Inputs for the Algorithm

Theproposed travel time short-termpredictionmethod requires two types of real-time
inputs. First, data coming from loop detectors, which generally include the timemean
speed, v (note that its denomination inChap. 3, vt , has beenmodified here for the sake
of simplification) vehicle count, n, and detector occupancy, ρ, over an aggregation
period, �t . Second, direct travel time measurements obtained from AVI or tracking
technologies, which consist in the arithmetic average of the measured travel times on
a target stretch during an aggregation period, �T . In general, �T > �t , because,
as explained in former chapters, only a fraction of the vehicles can be automatically
identified or tracked, and a representative sample size is needed to compute average
travel times. Themethod assumes that�T is an integer multiple of�t . As frequently
�t = 30 s or 1 min, and �T lasts few minutes, this condition is generally fulfilled.
Recall that the directlymeasured travel timeswould beATT (i.e. arrival-based) in case
of using AVI, and ITT (i.e. instantaneous) in case of vehicle tracking (see Sect. 4.2.1
and Fig. 4.3). From now on, the description of the proposed method will assume
that direct measurements are ATT. If instead, ITT measurements are available, the
method is simplified. This last case is described in Sect. 4.3.4.

Figure 4.7 sketches the typical freeway surveillance layout when direct measure-
ments are provided by AVI technologies. AVI devices, like Bluetooth detectors, are
usually installed on gantries, and they are fewer in comparison with loops. In this
context, direct travel time measurements define the target freeway stretch for which
real-time information is to be provided (i.e. between AVI devices). Then, loop detec-
tors divide this stretch into sections, which may range from 500 m to 2 km. It is
assumed that the location of AVI devices coincides with that of one loop detector,
which is frequently the case.
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Fig. 4.7 Typical freeway surveillance layout

4.3.2 The Short-Term Travel Time Prediction

From input–output cumulative count curves, the vehicle excess accumulation, Qi (t),
can be obtained (e.g. see Eq. 4.9 and Fig. 4.8). Note that the subscript i refers to a
section between loops and t to the instant when a particular �t time interval ends.

Qi (t) = V ∗
i (t) − Di (t) (4.9)

V ∗
i (t) defines the virtual arrivals cumulative count curve and Di (t) the departures

curve at the downstreamdetector of section i . The * superscript inV ∗
i (t) indicates that

this curve is corrected for the detector drift. The correction procedure is addressed
in the next section.

As commented before, vehicle accumulation exhibits predictive capabilities
because a vehicle entering i just after t will have Qi (t) vehicles in front of it until it
can be served. Thus, the predicted delay, pwi (t), is computed according to Eq. 4.10,

Fig. 4.8 Predicted delay from input–output cumulative count curves
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where pqout_i (t) is the predicted average outflow from section i just at t .

pwi (t) = Qi (t)

pqout_i (t)
(4.10)

pqout_i (t) is estimated assuming that traffic conditions will not change in the imme-
diate future. This is the best one can do by only using real-time information. So,
pqout_i (t) should represent the average outflow of the current traffic state.

Because traffic is a random process, the measurement of the outflow is subject
to statistical fluctuations. This means that the robustness of the estimation increases
with the sample size or, equivalently, with the time considered. Thus, by computing
pqout_i (t) as the average outflow considering several �t (i.e. the last ones), the
statistical significance of the average would increase. However, by doing this, the
algorithm would be slower to react to changes in the outflow, which should be a
relevant property of the method. Therefore, a trade-off exists between a more robust
estimation that smooths out the very last changes in traffic conditions, or a more
volatile one that is sensible to them.

Finally, the predicted travel time on section i , ptt i (t), is obtained by adding the
free flow travel time, t t f _i to the predicted delay (Eq. 4.11) and the total predicted
travel time on the target stretch is simply the sum of the travel times on all the
enclosed sections (i.e. i = 1, 2, . . . n) (Eq. 4.12).

ptt i (t) = t t f _i + pwi (t) (4.11)

ptt(t) =
n∑

i=1

ptt i (t) (4.12)

The benefits of the proposed approach to deliver real-time travel time informa-
tion on the target freeway stretch with respect to simply disseminating the direct
measurements aremultiple. First, andmost importantly, a predicted travel time (PTT)
is obtained instead of the delayed ATT. The latter would be completely flawed as
real-time information in travel time evolving conditions. Note that this is especially
important if the target stretch (i.e. the distance between AVI devices) is long. Second,
the real-time information can be updated more frequently, as �t < �T . Finally,
partial travel times within the stretch (i.e. in sections between detectors) can be
obtained.

4.3.3 The Data Fusion Method to Correct Detector Drift

Typically, detector drift between a pair of loop detectors that define a closed section
is corrected by imposing that, over the long term, inputs must be equal to outputs,
provided that the vehicle accumulation has not changed significantly. In this context,
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the long-term drift correction factor, βi , in a section i delimited by its upstream, iu ,
and downstream, id , detectors, is defined as in Eq. 4.13:

βi =
∑long term

t=0 n
∧

id (t)∑long term
t=0 n

∧

iu (t)
, (4.13)

where n
∧

iu and n
∧

id are respectively the raw counts at the upstream and downstream
detectors, and taking into account that a minimum of 24 h is usually considered by
“long term”. Then, the corrected upstream count is computed as (Eq. 4.14):

niu (t) = βi ∗ n
∧

iu (t). (4.14)

Note that the correction factor is only applied to arrivals (i.e. to the counts at
the upstream detector), while departures (i.e. counts at the downstream detector)
are assumed correct. The opposite approach would lead to identical results. This
assumption is maintained throughout the chapter so that departure cumulative curves
are considered correct, and only (virtual) arrival curves are rectified to account for
the drift.

However, this long-term drift correction is not enough for the travel time esti-
mation from input–output cumulative curves. The drift factor typically varies in the
short term, especially in congested conditions, so that the long-term average does
not suffice to correct the curves. Henceforth, long-term drift correction is considered
as the default one and a short-term correction needs to be applied on top of that.

Direct travel time measurements are used to correct the short-term drift in loop
detector counts. The concept of the data fusion scheme is simple: the accurate (but
delayed) direct measurement is compared to an equivalent estimation obtained from
the input–output diagram. From this comparison, the virtual arrivals curve, Vi (t), is
modified until both travel time estimations coincide. The corrected virtual arrivals
curve, V ∗

i (t), is then used to compute the PTT (see Sect. 4.3.2).
The main difficulty of the method consists in obtaining equivalent estimations so

that they are comparable. To this end, measurements need to be aligned temporally
and spatially. Consider t t

∧

(T ) to be the direct ATT measurement obtained at T (i.e. at
the end of a �T time period) for a particular freeway stretch composed of i sections
(i = 1, 2, . . . , n). The “∧” notation will be used to describe directly measured
variables. t t

∧

(T ) can be expressed as the free flow travel time, t t f , plus the total delay
in the stretch, w

∧

(T ) (see Eq. 4.15):

t t
∧

(T ) = t t f + w
∧

(T ). (4.15)

An alternative estimation for this total delay, w(t), must be obtained from input–
output cumulative curves. To that end,w(t) is simply the addition of the partial delays
obtained at the different sections i that compose the target stretch (Eq. 4.16):
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Fig. 4.9 Estimation of arrival-based delays on the section i(i ∈ 1 ÷ n) from input–output
cumulative curves

w(t) =
n∑

i=1

wi
(
t ′
)
. (4.16)

Because direct measurements are ATT, wi
(
t ′
)
must be the arrival-based average

delays computed from input–output curves (see Fig. 4.3a). In addition, time moving
coordinates (denoted with an accent, e.g. t ′) are needed because ATT is a trajectory-
basedmeasurement and, thus, a temporal alignment is necessary for sections different
than the most downstream one. Figure 4.9 and Eq. 4.17 describe the computation of
wi (t ′) from input–output curves. Note that the computation process must start from
the most downstream section (i.e. i = 1) for which the time alignment is met by
default (i.e. t = t ′) and the time lag is null.

From Eqs. 4.16 and 4.17, w(t) is obtained and can be compared to the equivalent
but normally more accurate (even delayed) w

∧

(T ) in order to correct the drift in the
cumulative curves. Note that this comparison can only be updated every �T (i.e.
when t ′ = T ′) and, consequently, this will be the update period for the short-term
drift correction factor. The problem with this comparison is that only the total delay
difference for the whole stretch is obtained so that the errors cannot be assigned to
any particular detector.

In order to solve this problem, it is assumed that the error in the total delay
is shared between the n sections that compose the stretch proportionally to the raw
partial delays (Eq. 4.18). This assumption allows obtaining an estimation forw

∧

i (T ′),
the direct measurement travel time estimation for section i .

ŵi
(
T ′) = wi

(
T ′)

∑n
j=1 w j (T ′)

∗ ŵ(T ). (4.18)
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Then, every �T , two equivalent estimations for the sectional delay are available.
wi

(
T ′) from input–output curves, which includes the drift error, and w

∧

i (T ′), an
accurate estimation from direct measurements. With this information, the virtual
arrivals curve, Vi (t), is modified to obtain the corrected V ∗

i (t) according to Eq. 4.19:

V ∗
i (t) = V ∗

i (t − �t) + αi

(
t

′) ∗ niu (t) ∀t ∈
(
t

′ − �T, t current
)
, (4.19)

where αi (t ′) is the short-term drift correction factor, which is estimated imposing that
wi

(
T ′) = w

∧

i (T ). A small tolerance, τ , for the final difference must be set to ensure
a fast convergence to the solution. Note that the correction is applied to the different
counts existing between t ′ − �T and t current . However, two types of corrections are
defined. If t ∈ (t ′ − �T, t ′), the correction is said to be final and, thus, will not
be modified in future corrections. Otherwise, if t ∈ (t ′, t current ), the correction is
temporal and could be modified in next iterations.

4.3.4 Simpler Process if the Direct Travel Time
Measurements Are ITT

As remarked in Sect. 4.3.1, some of the aforementioned steps slightly vary when
fusing ITT instead of ATT. Particularly, the process is simpler because the temporal
and spatial alignment is not necessary if direct travel time measurements are ITT
(e.g. from the tracking of the trajectories of a fraction of vehicles). Every�T (which
is generally longer than the loop detector measurement interval, �t), a directly
measured ITT, t t

∧

i (t), is obtained from GPS tracking data. To this end and provided
that each GPS measurement provides, at least, the vehicles’ position and timestamp,
the GPS measurements are filtered to only consider vehicles with two or more data
points on section i and time interval (T − �T, T ). Next, for each time interval, the
travel time of vehicle j in section i , t t

∧

i j (T ), is obtained as the difference in times-
tamps between the last and first GPS measurements of this vehicle registered in the
database. Similarly, the distance covered by vehicle j , d

∧

i j (T ), is obtained from the
difference in its registered positions. Then, t t

∧

i (t), is obtained with Eq. 4.20:

t t
∧

i (T ) = �xi ∗
∑

∀ j t t
∧

i j (T )
∑

∀ j d
∧

i j (T )
. (4.20)

Using Eq. 4.15, w
∧

i (T ) can be directly measured and compared to an ITT estima-
tion of the delay, wi (T ), obtained from input–output curves as described in Fig. 4.3c
and in Eq. 4.3. Then, the short-term drift correction factor (as proposed in Eq. 4.19)
can be directly computed.

The vocation of continuity of the method is thus demonstrated. The use of arrival-
based direct measurements coming from AVI technologies requires the deployment
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of special surveillance on the highway. On the contrary, intelligent vehicles will
provide ITT without the need for extra support. Therefore, taking into account the
aforementioned abundance of loop detectors in the road networks, the possibility of
applying this methodology is also guaranteed in future environments, in this case
alongside more advanced ones.

4.3.5 The Algorithm Turn-On and Turn-Off Conditions

In free flowing traffic, there is no need to use the input–output cumulative curves
to compute travel times. In free flow, either the direct travel time measurements, or
travel times based on the punctual speed measurements at loop detectors, or even a
fixed estimation of the free flow travel time in the stretch, would suffice to feed the
real-time information systemwith enough accuracy. It is when congestion and delays
appear that the predicted travel time information is meaningful, and when none of
the previous methods is appropriate.

Therefore, while free flowing conditions prevail, delays and excess accumulation
are assumed to be null, and the data fusion algorithm is turned off. This also allows
its required reset. The algorithm should turn on just before the appearance of delays.
With this objective, turn-on conditions focus on the quick detection of the congestion
onset. Note that these conditions cannot be based on direct travel time measurements
because this would delay the detection of the congestion onset.

Three turn-on conditions are defined based on loop detector measurements at iu
and id , the upstream and downstream detectors of section i (see Eqs. 4.21–4.23). The
fulfilment of any of them suffices to activate the algorithm at the instant t −�t , from
which cumulative curves are initialized with null excess accumulation, as described
in Sect. 4.2.2.4.

�viu (t)	 ≤ vre f (4.21)

�vid (t)	 ≤ vre f (4.22)

∂Vi (t)

∂t
>

∂Di (t)

∂t
(4.23)

Equations 4.21 and 4.22 detect congestion at the detector locations by measuring
a speed, viu or vid , lower than a given threshold, vre f . vre f should be calibrated in any
particular application of the algorithm, but generally a low percentile of the free flow
speed distribution suffices (e.g. 1st quartile of the distribution). The �	 brackets in
Eqs. 4.21 and 4.22 indicate that an upper bound of the speed estimation is considered,
in order to account for the statistical fluctuations in the speed measurement. This
upper bound can be computed as the higher limit of a confidence interval of the
speed estimation, as in Eq. 4.24:



4 Accurate, Affordable and Widely Applicable Freeway Travel Time Prediction … 123

�vi (t)	 = vi (t) + prob.level ∗ cvv(t)√
ni (t)

, (4.24)

where cvv is the coefficient of variation of the speed measurements (i.e. the standard
deviation over the mean, which can be obtained from a pre-sample) and ni is the
vehicle count in the time period considered (i.e. the sample size). The prob.level
defines the confidence of the interval (e.g. 68% for a prob.level = 1).

Equation 4.23 detects congestion within the section by measuring that inflows,
∂�Vi (t)

∂t are higher than outflows, ∂�Di (t)	
∂t (i.e. growing accumulation). Note that

Eq. 4.22 is equivalent to ∂Qi (t)
∂t > 0. In order to account for the statistical fluctua-

tions in the flow estimation and to avoid multiple false positives, a lower bound is
considered for the inflows, and an upper bound for the outflows. Again, these can
be computed from the confidence interval in the flow estimation, as in Eqs. 4.25 and
4.26:

∂�Vi (t)
∂t

= ∂Vi (t)

∂t
− prob.level ∗ ∂Vi (t)

∂t
∗

√
γq

niu (t)
, (4.25)

∂�Di (t)	
∂t

= ∂Di (t)

∂t
+ prob.level ∗ ∂Di (t)

∂t
∗

√
γq

nid (t)
, (4.26)

where γq is the index of dispersion of the flow estimation (i.e. the ratio of the variance
with respect to the mean), which can be computed from a pre-sample or simply
assumed as 0.2 ÷ 0.3, as these are typical values in freeway traffic.

For its part, there is only one turn-off condition. This is based on the achievement
of null excess accumulation (see Eq. 4.27), noting that

√
γq∗ni (t) is the statistical

variability of the flow estimation for a 68% confidence level.

Qi (t) = V ∗
i (t) − Di (t) < Min

[√
γq ∗ niu (t),

√
γq ∗ nid (t)

]
. (4.27)

4.4 Implementation of the Algorithm with Real AVI Data
on the AP7 Freeway in Spain

This section is aimed at demonstrating the goodness and applicability of the algorithm
with common data managed by traffic management centres.

4.4.1 Layout, Available Data and Considered Parameters

The data used to test the algorithm was measured on April 25th, 2010, in a 3-lane
stretch of the AP7 freeway in its southbound direction towards Barcelona, Spain.
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Fig. 4.10 Test site layout

This was a sunny Sunday with some light evening congestion in the AP7, due to
the large demand returning the city after the weekend. The layout of the test site is
illustrated in Fig. 4.10 and has not varied in the last years. AVI devices (Bluetooth
detectors) at both ends limit the target stretch, with a length of 12.8 km. In addition,
there are double-loop detectors at the same location, plus one more in between (i.e.
at Kilometer Post K.P. 113.9), which divides the stretch into two sections (i = 1, 2).
Section i = 2 (i.e. the upstream one) contains the St. Celoni junction at K.P. 111.6,
near its downstream end. Entrances and exits through this junction are monitored.
This layout configuration is adequate to test the goodness of the proposed method to
obtain short-term travel time predictions.

Vehicle counts, n, and time-mean speeds, v, are available for time aggregations of
�t = 3min at loop detector locations. In addition, the net input counts at the junction
are also computed for the same�t . These are transferred to the nearest detector (i.e. at
K.P. 113.9). Because this is the downstream detector of section i = 2, the junction’s
net input counts must be subtracted from the detector counts at this location (see
Sect. 4.2.2.2).

Average AVI direct travel time measurements are available every �T = 6 min.
In spite of this, and for the only purpose of this research, individual vehicles’ travel
time measurements were recorded. These data allowed obtaining the ground truth
predicted travel time, gtt

∧

(t), defined as the departure-based travel time of those
vehicles entering the target stretch between t and t +�t . Note that these vehicles are
the ones that will receive the real-time information at t . All the calibration parameters
of the method are summarized in Table 4.1.

4.4.2 Obtained Results and Discussion

Figure 4.11 shows the performance of the proposed method for the evening conges-
tion episode, between 6 and 10 pm. Table 4.2 summarizes the maximum and mean
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Table 4.1 Parameters considered in the application of the method to the AP7 freeway near
Barcelona, Spain

Variable description Notation Uuits Value Comments

Loop detector aggregation
period

�t [min] 3 Typical aggregation
period in Spanish toll
highways

AVI travel time updating
period

�T [min] 6 From Bluetooth
recognition devices.
Required to obtain a
significant sample size
according to the on-board
Bluetooth penetration rate

Free flow travel time t t f _i [min] i = 1 → 2.28
i = 2 → 3.30

i refers to the section. The
free flow travel time is
obtained considering the
95% percentile of the
observed speeds. The free
flow travel time over the
entire stretch is
t t f = 5.58 min

Long-term drift correction
factor

βi [–] i = 1 → 0.9989
i = 2 → 0.9870

i refers to the section.
Considering cumulative
counts over a 24 h period

Speed threshold for the
activation of the algorithm

vre f [km/h] i = 1 → 102.15
i = 2 → 100.50

i refers to the section.
Computed as the 60%
percentile of the speed
distribution. If only
free-flow periods are
considered, the speed
percentile for vre f would
be much lower (e.g. 1st
quart.)

Coefficient of variation of
the speed distribution

σv/v [–] 0.119 Required to compute the
confidence interval in the
speed estimation to
evaluate the algorithm’s
turn-on conditions

Index of dispersion of the
flow estimation

γq [km/h] 0.25 Variance-to-mean ratio
(VMR) for the flow
estimations. Required to
compute the confidence
interval in the flow
estimation to evaluate the
algorithm’s turn-on / -off
conditions

(continued)
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Table 4.1 (continued)

Variable description Notation Uuits Value Comments

Confidence interval
significance

prob.level – 1 Corresponding to a 68%
statistical confidence of
the interval. Required to
compute the confidence
intervals in the turn-on/
turn-off conditions

Average predicted outflow
moving average intervals

– – 7 Number of �t time
intervals considered in the
moving average to
compute the predicted
outflow, pqout

Tolerance in the
computation of the
short-term drift correction
factor

τ [s] 9 Accepted difference

between wi
(
T ′) (from

input–output N-curves)
and w

∧

i (T ) (from AVI
direct measurements) in
the computation of the
short-term drift correction
factor, αi

(
t ′
)

absolute errors.
The results shown in Table 4.2 and Fig. 4.11 demonstrate that the proposed algo-

rithm satisfactorily accomplishes its objectives and provides drivers with a better
prediction of their travel times over the freeway stretch, improving the information
given by the dissemination of directly measured travel times. Figure 4.11 clearly
shows the delay of AVI direct measurements in predicting travel times evolution.
This implies large errors when travel times change rapidly, especially at congestion
dissolve episodes. In contrast, short-term predicted travel times are able to respond
quicker, providing better travel time predictions to drivers, especially by the reduction
of maximum errors in rapid evolving conditions.

However, short-term predictions still show some delay. This is due to the adoption
of a long averaging period in the computation pqout (i.e. 7 * �t; Table 4.1).

As discussed in Sect. 4.3.2, longer averaging periods imply more delay, in
exchange for a more robust estimation. Shorter averaging periods would reduce
this delay in the short-term predictions, but would also increase their fluctuations.
For this particular application of the method, the 7 * �t selection turned out to be
the optimal in terms of reducing the average and maximum errors.

In fact, it has been found in this case that the fluctuations in the predicted travel
times were much larger than expected. Some fluctuations remain even considering a
long averaging interval in the computation of pqout (e.g. the underestimation around
19:15, or the overestimation around 19:45). Further analysis of these periods unveiled
that these fluctuations were related to abnormal net counts at the junction, repre-
senting a significant fraction of the main trunk detector counts. Whether the junction
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Table 4.2 Comparison of the errors of predicted travel times versus direct measurements with
respect to ground truth predicted travel times

Method Mean absolute error Max. error Units

Predicted travel time (proposed method) 1.16 4.5 [min]

AVI direct measurement dissemination 1.81 −7.23 [min]

counts are accurate or not during these periods is unknown. In any case, these results
highlight that the proposed method is sensitive to large changes in the vehicle counts.
Therefore, while the method handles adequately small random drift errors in the loop
detectors, it will produce bad estimations in case of detector failure (e.g. partial data
loss for some period).While this fact needs to be considered, it is not dramatic for the
application of the methodology. Note that, still, it manages to produce an estimation
of the predicted travel time and that, if the target section is composed of several
sections, the relative importance of the error in one of them will be lower, provided
that not all the detectors fail at the same time. Instead, drift sooner or later affects all
detectors.

Another issue that implies fluctuations is the assumption of the net junction counts
taking place at the downstream detector of section i = 2. Note that this affects the
computation of pqout , and the predicted travel time is very sensitive to this average
outflow (see Eq. 4.10). Even if there is a small distance between the junction and
the detector, in congested conditions the time lag between both counts, which are
subtracted every �t (see Eq. 4.8), can be a significant fraction of �t . In addition,
the loop detector outflow in congested conditions can be small so that the junction
counts could be a significant fraction of it. All this together might cause fluctuations
in the predicted travel time. A possible solution to reduce this type of errors is to
avoid considering junction counts in the computation of pqout if loop detector counts
are small.

Finally, it is worth mentioning that the errors of the method are invariant with
respect to the total delay. Therefore, in case of more severe congestion, the relative
errors committed would be lower. In contrast, the errors of directly disseminating
AVI information would grow proportionally with the delay. It must be additionally
highlighted that the benefits of using the method would also be more significant if
the AVI detectors were located further apart. In fact, this is the case in most freeways
in Spain and around the world.

4.5 Implementation of the Algorithm with Simulated ITT
Data

As explained before, in case ITTs from trackingmethodologies are fused with counts
obtained from loop detectors, the proposed methodology is simplified. The main
reason is that no spatial alignment is necessary. Note that, thanks to the trajectories,
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it is possible to obtain ITTs between any desired points. Therefore, it is possible to
obtain ITT for the sections between loops so that the direct and indirect measures of
travel times to be fused are referred to equivalent sections.

4.5.1 Layout, Available Data and Considered Parameters

The case study included in this section has been carried out for the same layout
as that of Sect. 4.4 and represented in Fig. 4.10. However, the PTV-Vissim traffic
microsimulator generated the data for 3 h of heavy trafficwith congestion in this case.
Particularly, the data collected from the simulation consisted in the vehicle counts,
n, and time-mean speeds, v, at all detector locations, as well as vehicle counts at the
junction, all of them every�t . For the construction of input–output diagrams, the net
vehicle count at the junction was again added to the closer detector (the one at K.P.
113.9). Additionally, the position, timestamp, and speed of a sample of 15% of the
vehicles were registered and provided with a frequency ζ. These data are equivalent
to that obtained either from GPS or mobile phone tracking.

The fact that only 15% of vehicles were tracked is not casual: the goal was to
prove the high degree of applicability of the method, i.e., to prove that its goodness
is not linked to a much data demand. This goal was also behind the selection of
not demanding ζ: GPS chipsets allow up to 10 Hz signal updates, being 1 Hz the
standard (i.e. 1 measurement per second; Martínez-Díaz 2018). However, not all
traffic management centres could afford at present the huge storage and computing
requirements that these high frequencies would imply. Moreover, different combi-
nations among the typical values of �t and �T were tested in order to analyse their
influence on the travel time predictions. Table 4.3 summarizes the different cases
analysed regarding the values of ζ, �t and �T . The combination of small values of
ζ with short �T has been avoided, as it would lead to small samples of vehicles per
time interval and, thus, to unreliable ITTs.

Again, a minor number of parameters has been previously calibrated for the case
study (Table 4.4).

Table 4.3 Analyzed combinations of values for the GPS frequency and the time intervals of
aggregation

GPS frequency ζ (Hz) �t (min) �T (min)

1/12 1 1

1 3

3 3

1/36 1 3

3 3

1/60 1 3

3 3
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Table 4.4 Parameters considered in the simulated application of the method to the AP7 freeway
near Barcelona, Spain

Variable Units Value

Fraction of tracked vehicles [%] 15

Free-flow speed, v f [Km/h] 110

Free-flow travel times, t t f _i [min] i = 1 → 2.89
i = 2 → 4.09

Turn-on speed threshold, vre f [Km/h] 80

Duration of the moving average time window to
compute pqout

[min] 5–18 (best calibration for 10)

Variable Units Value

Fraction of tracked vehicles [%] 15

4.5.2 Obtained Results and Discussion

The results obtained for all combinations indicated in Table 4.3 are included in Table
4.5. Particularly, the average absolute errors and the maximum errors with respect
to the actually experienced travel times that a real-time information system would
make providing (i) the short-term predictions estimated with the proposed fusion
methodology or (ii) the ITT estimations directly obtained from the GPS sample are
shown. It must be again highlighted that ITTmeasurements and thus, drift correction
factors, are obtained per �T . However, each �t a new short-term predicted travel
time is estimated.Ground truth travel times at any, available off-line in this case study,
were calculated by averaging those travel times really experienced by all vehicles
entering the target section per �t.

A particular example is represented in Fig. 4.12 for identical time intervals of
aggregation of 1 min both for the direct and indirect travel time measurements and
supposing a sampling frequency for theGPS of 1/12Hz. For its part, Fig. 4.13 focuses
on predicted travel times and represents the different predictions for times interval
of aggregation respectively of �t = 1 min and �T = 3 and all considered GPS
frequencies.

From the results in Table 4.5 and the visual example in Fig. 4.12 it is clearly
demonstrated that the application of the proposed data fusion methodology is, again,
much more advantageous than the current practice of simply disseminating ITT
measurements, specially taking into account that it could be set up immediately by
most traffic management centres.

Amore particular analysis provides very interesting insights. For example, it must
be taken into account that the percentage of tracked vehicles (15% in this case), ζ and
the duration of �T determine the sample of GPS measurements per time interval
to compute ITTs. Additionally, �T determines the updating frequency of the drift
correction factor. With a low percentage of vehicles tracked, a frequent update is
more suitable, as it can be derived from in Table 4.5 with better results for short
�T . However, these short �T require a higher frequency of GPS sampling in order
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Table 4.5 Comparison of the errors of predicted travel times versus direct measurements with
respect to ground truth “predicted” travel times

GPS
frequency
ζ (s)

�t (min) �T (min) Method Mean
absolute
error
[min]

Mean
absolute
percentage
error [%]

Maximum
error
[min]

Maximum
percentage
error [%]

12 1 1 Directly
disseminated
ITT

22.34 29.53 −40.37 −48.89

Predicted
travel times
(data fusion
algorithm)

7.48 13.36 −21.86 −27.26

1 3 Directly
disseminated
ITT

21.69 28.60 −40.14 −48.62

Predicted
travel times
(data fusion
algorithm)

12.24 18.56 −28.24 −35.21

3 3 Directly
disseminated
ITT

21.66 28.66 −38.50 −46.44

Predicted
travel times
(data fusion
algorithm)

12.27 19.61 −32.44 −37.76

36 1 3 Directly
disseminated
ITT

18.12 31.05 48.46 91.83

Predicted
travel times
(data fusion
algorithm)

12.23 18.50 −28.14 −35.09

3 3 Directly
disseminated
ITT

22.19 29.21 −38.35 −46.61

Predicted
travel times
(data fusion
algorithm)

12.49 18.73 −30.35 −35.32

60 1 3 Directly
disseminated
ITT

19.06 29.59 48.32 91.57

(continued)
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Table 4.5 (continued)

GPS
frequency
ζ (s)

�t (min) �T (min) Method Mean
absolute
error
[min]

Mean
absolute
percentage
error [%]

Maximum
error
[min]

Maximum
percentage
error [%]

Predicted
travel times
(data fusion
algorithm)

8.77 15.05 −21.88 −28.57

3 3 Directly
disseminated
ITT

23.21 30.48 −38.80 −46.79

Predicted
travel times
(data fusion
algorithm)

12.79 19.08 −29.16 −33.94

to ensure that enough measurements are available for each time interval. Note that
a minimum of ξ = 1

12 Hz is required for �T = 1 min. On the contrary, whether
�t nor ζ play an important role for �T equal or longer than 3 min, at least with a
minimum percentage of vehicles tracked, like in this study. Regarding input–output
method, shorter �t allow a more frequent update of the travel time information but
have no influence on the final accuracy.

It is important to remark that this analysis has proven that working with very high
GPS frequencies and, thus, with huge storage, communication and/or computation
capacities, is not always necessary (Sanaullah et al. 2016). However, this is usually
thought linked to interest raised by Big Data. Without detracting from the advances
that suchmethodologiesmay imply, it is important to be aware that there are improve-
ments available to all traffic management centres that should not be neglected and
that could be implemented immediately.

4.6 Conclusions and Further Research

The proposed travel time estimationmethodology is based on the use of input–output
cumulative curves to determine the vehicles’ accumulation in a freeway section. This
means that the method requires “closed” freeway sections, in the sense that all the
inflows and outflows must be monitored (i.e. upstream and downstream detectors in
the main freeway trunk, as well as inner junctions). From vehicles’ accumulation,
predicted travel times are computed using the principle of the vehicles’ conservation.

The derivation of travel times from cumulative count curves is not new. However,
input–output methods have not been used in practice so far, mainly due to the flawed
results caused by the loop detector drift. In this sense, the main contribution of the
present book is the design of a data fusion scheme aimed at correcting the detector
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drift in cumulative count curves. Direct travel time measurements, supplied either
by AVI systems or tracking devices, are used to this end.

Thebenefits of the proposedmethodologywith respect to the simple dissemination
of directly measured travel times include a quicker detection of travel time changes,
a higher updating frequency of the information and, for the case of AVI systems, the
possibility of obtaining partial travel times for sections within those delimited byAVI
devices. These properties greatly contribute to reduce the errors of the disseminated
information, especially the maximum errors that arise in rapidly evolving traffic
conditions (i.e. congestion onset/dissolve episodes). The benefits are even larger
in situations of severe congestion with large delays and, for the case of ATT, if
freeway stretches between AVI devices are long. In free flowing conditions, the
proposed method could be turned off, as all types of travel time estimations suffice
(e.g. direct measurements, or travel times estimated from spot speed measurements
at loop detectors).

Themethodology has first been testedwith real data from theAP7 freeway towards
Barcelona (Spain). Travel times from Bluetooth detectors have been used as direct
measurements. Results show that, with respect to directly disseminating the ATT
measured with the Bluetooth devices, the predicted travel times obtained with the
proposed methodology better match the real travel times that drivers receiving the
information will experience. These benefits could be observed even in a scenario
with light congestion, despite the methodology being especially suited for medium
to severe congestion episodes. With the available real data, the mean and maximum
absolute errors achieved with the predicted travel times (i.e. 1.16 min and 4.5 min
respectively) represented approximately 10% and 33% of the experienced travel
times. In contrast, the simple dissemination of direct measurements would imply
that these relative errors would reach 16% and 95%.

The maximum errors of the proposed methodology in this particular application
resulted from fluctuations in the predicted travel times, which could be attributed to
detector malfunctioning or data loss. This issue highlights that the method deals well
with the random detector drift (which invariably affects all detectors) but is sensitive
to more severe detector failures. In this respect, the author would like to design a
complementary algorithm to identify detector malfunctioning so that the lost data
could be replaced. In such situation, the method would be more accurate, not only
by reducing the maximum errors, but also because the calibration parameters could
then prioritize immediacy in reporting travel time changes with respect to smoothing
artificial fluctuations.

Using the same layout, themethodology has also been applied to simulated data. In
this case, the drift correction of the cumulative curveswas performed using ITT direct
measurements estimated in a conservative scenariowith only 15%of tracked vehicles
and for a situation with heavy congestion. Additionally, different combinations of
time intervals of aggregation for the loops and for the GPS measurements, as well as
several GPS sample frequencies, were tested. Again, the predicted travel times were
much more accurate in all the scenarios when compared with the direct travel time
measurements that are usually disseminated. In fact, the MAPE was approximately
reduced to half (i.e. from 30 to 15%). Furthermore, the analysis confirmed that
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whether a high frequency of GPS sampling nor very long time intervals for the GPS
measurements are necessary to achieve good results. This fact reinforces the premise
that the proposed method could be used immediately by most traffic management
centres without the need for large investments.

In addition to the mentioned side algorithm to account for possible loop data
loses, another interesting topic for future research would be the performance of
a comprehensive sensitivity analysis of this methodology, aimed at optimizing its
transferability. Factors such as the level of congestion from which the method is
worthwhile, the optimal arrangement of AVI detectors when fusing ATT, the most
suitable section lengths, the optimal percentage of tracked vehicles in the case of ITT
fusion or the treatment of on-/off-ramps and their relative flows, among others, should
be assessed. Next, further integration of the method with AI to address particular
traffic management challenges in the era of autonomous driving would be another
ambitious goal to keep in mind. Because of the method’s simple fundamentals and
non-demanding data requirements, it could be an effective complement and backstop
to more smart and complex systems.
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Chapter 5
Travel Time Information Systems
in the Era of Cooperative Automated
Vehicles

Margarita Martínez-Díaz

Abstract Vehicle automation, together with the development of communications, is
already leading to the emergence of new forms ofmobility and allows aspiring to new
paradigms that are increasingly efficient, safe, sustainable, and inclusive. Obviously,
these changesmust also reach trafficmanagement for these positive effects to become
a reality. In this regard, major challenges such as the processing of huge amounts
of data in real time are already the subject of research around the world. In some
cases, it will be enough to improve the accuracy of existing management strategies
based on these data and on fusion methodologies, AI, etc. However, it will also be
necessary to open the mind and explore new ideas, new forms of management to
which only cooperative mobility gives meaning. All these topics could give rise to a
book, or many. This chapter is intended only to serve as a transition to the following
ones and to highlight some of the characteristics of such cooperative scenarios, as
well as some expected mobility impacts.

5.1 Introduction

In 1925, Francis P. Houdina developed a remote-controlled driverless car called
American Wonder. Huge crowds attended its demonstration on Broadway in New
York City. A decade later, autonomous vehicles (AVs) became popular in the
American pop culture: films, books, and comics were full of self-driving cars that
helped heroes to overpower their enemies or picked children up at school. In fact,
the idea of an autonomous conveyance is much older, as it can be deduced from
Leonardo da Vinci´s schemes. He devised a kind of self-propelled car that was
not designed to transport people but to move autonomously (possibly by means
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of a winding mechanism) during the so-called “Renaissance court festivals”. Seen
yesterday as a dream, AVs are closer and closer to becoming a reality.

Because of technological and communication developments, the concept of
autonomous vehicles (AVs) emerged again and was finally seen as developable. In
fact, they were immediately identified as the solution to all traffic-related problems,
especially congestion and accidents. Additional benefits were also predicted, such as
making transport more inclusive, increasing productivity and comfort while driving
and directly and indirectly reducing environmental damage, among others (Fagnant
and Kockelman 2015). This vision of the vehicle as a panacea was especially
supported by car manufacturers, but also by the public itself, given the undoubted
appeal of these vehicles already envisioned by science fiction.

With the passage of time, many of these supposed benefits have been nuanced.
The advantages of vehicle automation are undeniable. However, it does not guarantee
benefits on its own, but only if well introduced and if accompanied by many other
measures (Papageorgiou 2015). The first doubts about such optimistic vision of
these vehicles that would not only perform the driving tasks themselves, (which is
actually positive and still a goal when talking about highly automated vehicles) but
also make their own decisions (i.e., choose their speeds, maneuvers, routes, etc.) for
the benefit of their passengers, arose in the light of the results of simulation-based
studies.Obviously, suchvehicleswould have to drive on the basis of very conservative
parameters for the sake of safety and, also, of comfort (Hyde et al. 2017). For example,
they would only make a lane change or merge in the main trunk of a freeway under
ideal conditions. In addition, they should maintain long time gaps with respect to
other vehicles ahead, about 2 s (note that humans’ time gap is only slightly longer
than 1 s). This smooth behavior would result in a capacity underutilization of around
600 vehicles/h/lane on motorways (Diakakis et al. 2015). Other undesirable effects
of vehicles taking their own decisions could be the unbalanced distribution of flows
across the road network, leading to congestion in some stretches while others remain
unused.

Although the term “autonomous vehicles” is still used as an abuse of language,
all experts agree that the mobility of the future must be based on vehicles with a high
degree of automation that cooperate with each other and with the rest of the traffic
agents not in pursuit of individual benefit, but of the collective optimum. In this
sense, the adjective “autonomous” loses its relevance. In fact, the term “automated
vehicles” (also AV) or, more in particular, “connected automated vehicles” (CAVs)
has gained momentum, especially in research. It must be highlighted that the whole
content of this book, unless specifically indicated, is referred to these cooperative
driving environments. However, the adjective “autonomous” has been maintained in
some paragraphs with the only aim of respecting some cited authors’ nomenclature.

In any case, and as it is explained in the next section and in Chaps. 6 and 7, vehicle
automation will play and in fact already plays a key role in traffic management. Ad
hoc traffic management strategies for future cooperative driving environments are
already being designed. These are very different and consider very distinct scenarios,
for example, with different penetration rates of these highly automated vehicles and
different communication capabilities. These new strategies also include travel time
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information systems, which are expected to have two major differences from the
current ones: (i) the information will be much more precise, thanks, among other
things, to the detailed data provided in real time by vehicles themselves and (ii)
the predominant dissemination will be directly to the vehicle. Other more complex
and generalist traffic management systems will also benefit from these features (see
Chaps. 6 and 7).

Although it is not the central objective of this book, Sect. 5.2 briefly summarizes
the structure of the cooperative driving environments, in order to give the reader a
better understanding of its implications for trafficmanagement. Their major expected
impacts are concisely explained in Sect. 5.3. For its part, Sect. 5.4 briefly explains key
points of the consequences that CAVs will have for travel time information systems.
These sections serve as an introduction to Chaps. 6 and 7, which elaborate on these
aspects as the culmination of a comprehensive description of traffic management
systems.

5.2 Cooperative Automated Driving Structure
and Technological Aspects

As indicated above, the vehicle is only one of the agents involved in cooperative
automated driving. In a very simplified way, this driving can be structured based
on four additional protagonists: communications, infrastructure, cloud, and other
mobile agents with communication capabilities (Fig. 5.1). Next sections describe
their main features and roles.

5.2.1 The Vehicles

In parallel to technological progress, new vehicles include increasingly advanced
systems that allow them substituting drivers in particular driving tasks. Although
several administrations developed their own vehicle automation classifications, that
of the Society of Automotive Engineers (SAE), released in 2014 (SAE 2014) for
the first time and updated two years later (SAE 2016), has been worldwide adopted.
Six automation levels (from 0 to 5) are distinguished depending on the on-board
driver assistance systems, i.e., on the distribution of the driving tasks between the
vehicle and the driver. Vehicles of levels 0 to 2 are called “traditional”, because they
are drivers who monitor the environment. At level 0 there are no automated driving
functions and only those systems that issue warnings intervene. At level 1, vehicles
are able to assume either the lateral or the longitudinal control of the vehicle, whereas
they can undertake both tasks at level 2. However, these transfers are only possible
under certain boundary conditions: uniform road design, free flow, goodweather, etc.
From level 3 onwards it is the vehicles that monitor the environment. This is a key
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Fig. 5.1 Agents involved in cooperative driving environments

change, as it involves that they must collect all available data from the environment
and interpret them. Furthermore, they can take responsibility for the driving task to
certain limits. However, both at level 3 and 4 vehicles are expected to request drivers
to resume the driving task when unmanageable situations arise. That is, drivers are
still in charge of (responsible for) the driving supervision and must be aware of this
during the whole trip. Really self-driving vehicles would be those that reach level
5: they are supposed to be able to perform the whole driving task autonomously, on
all types of roads, in all speed ranges and under any boundary conditions. If these
vehicles become a reality is still under question (Shladover 2016). While writing this
chapter, and despite it being common to read/listen about “autonomous” or “self-
driving” vehicles, the truth is that the vehicle on the market with the highest level of
automation is a Honda with level 3.
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In any case, the basic architecture of any highly automated vehicle has already
been outlined and it is made up of four parts: (i) the Sensing System, (ii) the Client
System, (iii) the Action System and (iv) the Human–Machine Interface (HMI).

The Sensing System is responsible for the collection of data from other vehicles
and from the environment. This task must be performed in real time and in all
boundary conditions (i.e., weather, traffic state, speeds, etc.). In fact, the refinement
of this system is one of the targets to achieve. To this end, vehicles are equipped
with diverse sensors, all of them with different strengths and weaknesses and thus
appropriate to support particular driver assistance systems. Like for other purposes in
road transport, results obtained from data fusion are much better than those derived
from a single sensor, as individual errors are compensated (Soriguera and Robusté
2011; Bachmann et al. 2013; Yuan et al. 2014; Martínez-Díaz and Pérez 2015). In
a very simple classification, sensors can be short-range or medium/long-range. The
first ones are quite elementary and the data they collect is straightforward but very
limited. To this group belong ultrasounds, capacitive sensors, and infrared sensors.
The remaining are included in the second group. Data from radars and sonars requires
no interpretation either: they basically measure the distance and the speed of the
nearest object in front of the vehicle, using respectively radio or sound waves. In case
danger of collision is perceived, emergency actions are immediately undertaken. For
their part, cameras are the basis of artificial vision systems,which support recognizing
and tracking tasks. However, they only perform well in light environments with a
stable illumination level. Even in these cases, they are computationally demanding.

Equipping vehicles with a Light Detection and Ranging (LIDAR) sensor allowed
making significant progress toward automation.Born in the 1960s, LIDARwas at first
used in meteorology or for mapping in archeology or agriculture. It became known
out of these fields when it was used to map the surface of the moon in 1971 during
the Apollo 15 mission. In fact, it is this mapping ability that makes it very impor-
tant for AVs. Powerful LIDARs provide 360º of visibility and measure distances
with an exactness of ±2 cm. This is achieved by continuously shooting laser light
beams and measuring the time they need to return to the sensor. Up to distances of
60 m, a LIDAR is able to accurately measure all dimensions of the near objects.
With less precision, it can generate 3D maps for distances up to 500 m. Therefore,
LIDARs allow mapping and navigating, but also detect and track obstacles, other
cars, pedestrians, etc. Finally, a global navigation satellite system, nowadays mainly
the American GPS, self-localizes the vehicle. GPS is accurate, but its update time
intervals are too long for real-time applications. Therefore, most prototypes of driver-
less cars also include an inertial measurement unit (IMU) to support navigation. Not
only provide IMUsmuchmore frequent estimates, but they also allowworking when
GPS-signals are unavailable, such as in tunnels, with interferences, etc. Despite their
advantages, IMUs could not be standalone because they suffer from cumulative
errors. Data fusion from GPS and IMUs stands out as a good solution.

The Client System consists of a powerful hardware platform and a highly evolved
operating system. This computing framework plays a key role, as it must in real time
(i) extract relevant and accurate information from the raw data supplied by the sensors
(perception task) and (ii) indicate to the vehicle how it must proceed (decision task).
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Very different types of hardware platforms are being designed: some companies
opt for computing boxes containing distinct processors and accelerators. Others are
developing system-on-chip (SoC) solutions, which are tiny integrated circuits with a
microprocessor and advanced peripherals. The latest consume less energy and have
less space requirements, but they do not reach at themoment enough computing capa-
bilities to allow both fast and continuous sequential and parallel data processing. The
support of cloud computing will be essential in this regard and will also add robust-
ness to the system, which must continue to work even after a failure. The perception
task includes three parts: localization, detection, and tracking, all of them achieved
through data fusion performed at different levels. First of all, raw data from similar
detectors is fused to detect outliers and to generate a bigger database. Secondly, the
results of the former stage are fused and perceptions already generated. The highest
level algorithms fuse action proposals taken according these perceptions. Local-
ization, for example, is usually performed by algorithms that fuse data from GPS,
IMU, and LIDAR, resulting in a high-resolution groundmap. However, vision-based
deep-learning technologies are achieving the most accurate results for object detec-
tion, as they are able to autonomously handle huge amounts of data. Deep-learning
techniques have also demonstrated their suitability for object tracking relative to
approaches based on computer vision.

Decision-taking is one of the most challenging tasks that C/AVs must perform,
especially in awkward situations. On the one hand, proper and safe actions must
be defined in real time. On the other hand, these decisions must be fair/ethical in
case some damage is unavoidable. Focusing on the first point of view, decision-
making encompasses prediction, path planning, and obstacle avoidance, all of them
performed on the basis of previous perceptions. Stochastic models and probability
distributions are often used to predict the next movements of other vehicles, pedes-
trians, animals, etc. Path planning is being faced with brute-force approaches (i.e.,
considering all possible paths and using cost functions to choose the best one), deter-
ministic algorithms, and probabilistic planners. These last ones turn out to be themost
advisable to work in real time with reasonable computational capabilities. Finally,
obstacle avoidance must be deployed at least at two levels: a proactive level based
on traffic predictions and a reactive level that immediately takes the control in case
the first one fails. This second mechanism is usually based on radar data, because it
acts only when obstacles are very close to the vehicle (Liu et al. 2017).

The Action System and the HMI are not that burdensome. Although they will be
probably improved in line with the remaining parts of the AVs architecture, current
prototypes are already acceptable. The action system consists of the mechanical
parts of the vehicle (steering system, powertrain, braking system, etc.). HMI handles
the interaction driver/passenger/pedestrian-vehicle. HMI are called to be minimalist
in SAE5 level vehicles and basically oriented to provide humans in and out of the
vehicle with information about the driving. The outer part will be mainly made up of
lights, while the internal interface will usually consist in a touch monitor. This screen
could also allow passengers to interact with the vehicle, for example, to control the
air conditioning or to play certain music. Nevertheless, other designs entrust these
tasks to mobile phones or other personal devices (Benderius 2016).
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5.2.2 Communications

As explained, an efficient and safe mobility will not be possible if automated vehi-
cles behave individually, but in a cooperative environment. Therefore, they must
at least communicate among them (V2V interaction), with the infrastructure (V2I)
and with the cloud (V2G, G coming from grid). Besides, communication with pedes-
trians (V2P), mobile phones, and other personal devices (V2D) are being considered.
All these information exchanges are globally known as V2X communications. The
establishment of a robust, powerful, safe, and reliable communications network is a
main concern for the governments of all developed and developing countries. This
network must be able to transmit huge amounts of data at very high speed, with low
latency, under all conditions (weather, traffic state, etc.) and without interferences.
Additionally, it must prevent hackers or terrorists from entering it and it must be able
to work even if a fail occurs. Interoperability between different countries must also
be ensured.

Thus, two tendencies are being followed all over theworld: the use of evolutions of
the wireless standard 802.11p or of mobile networks. In fact, most governments opt
for their combination, as both have advantages and disadvantages. Regarding the first
ones, the ITS-G5 has been standardized in the EU (C-ITS 2016), while the U.S. relies
on DSRC (dedicated short-range communications) (FHWA, 2015). Respectively,
they have reserved 75MHz of the spectrum in the 5.9 GHz band and the 5.875–5.905
frequency for ITS applications. Both communication technologies are short-range,
but they are supposed to: (i) be robust and reliable, i.e., to work in all boundary
conditions and be able to immediately and independently recover from breakdowns,
(ii) have a very low latency, i.e., messages are delivered practically without delay
and (iii) be safe, i.e., message veracity and privacy are guaranteed. Notwithstanding,
especially the EU is concerned about the possibility of an overload, taking into
account that a great number of the entities implied in V2X could try to establish
communications at once. In this regard, there are initiatives aimed at avoiding high
network loads, like the restriction of the number of information packets generated
by each vehicle, the reduction of information lifespan on the network, etc. Besides,
the additional support of cellular communications seems advisable. Some experts
approve this combination but warn against focusing on these last communications.
They claim that the fact of relying on the cellular network causes the information to be
indirectly (e.g., vehicle-network-vehicle instead of V2V) and thus slower delivered
(ITS-JPO 2014; Filippi et al. 2015, etc.). 5G, 100 times faster than current 4G LTE
wireless technology, seems to be the solution for these issues. In fact, some companies
and administrations are contemplating it as a standalone system in their designs of
a future cooperative environment and are accelerating its implementation. If time
demonstrates that 5G suffices, significant savings in the infrastructure equipment
could be achieved (Intel 2016; Arriola 2017; Shaheen 2018). Other countries out of
the EU and the U.S. follow similar trends.
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5.2.3 The Cloud

It is easy to imagine that autonomous driving per se, and to a much greater extent
cooperative driving, involve the handling of huge amounts of data. Note that the
word "handling" includes the storage, processing (i.e., eliminating erroneous data and
outliers and obtaining relevant information from the remaining data), and exchange
of these data, all performed in real time, uninterruptedly and with very small update
intervals. This task, as mentioned above, will not be possible without a safe, reliable,
and powerful communications network that ensures the reception/transmission of
such data. However, it must be taken into account that data processing will not take
place in the communications network, but it will be shared between the cloud and
the vehicle itself. The idea that such processing (and consequent storage) would be
carried out exclusively on-board was discarded many years ago: technological devel-
opment makes it possible to implement in vehicles very small processors with large
(and very expensive) capacities, but insufficient for the tasks to be performed. Hence,
the cloud appears as a support element. Moreover, its intervention also makes it
possible to occupy less space in vehicles, reduces their cost, (which is still expensive)
and facilitates the exchange of information. Another important advantage provided
by the cloud is that some tasks assigned to the vehicle could be temporarily transferred
to it in case of vehicle failure.

However, the term “cloud” must be specified for this context of CAVs. For
example, Vehicular ad hocNetworks (VANET) are the basis ofV2I andV2Vcommu-
nications, being at first considered to support uncomplicated tasks related to safety,
automated toll payment, navigation, etc. In fact, VANETs came up to assist the
increasing amount of wireless devices used on-board (mobile phones, control keys,
etc.). These networks are created by vehicles within the same area, which act as nodes
(Zeadally 2010). Precisely this fact makes them not reliable to support all commu-
nications in a CAVs environment: vehicles move and VANETs are thus instable and
cover an arbitrary range. To solve this problem, VANETs could be bound to a tradi-
tional cloud, which would be responsible for the most important tasks (e.g., data
storage, high definition maps updating, distributed processing, etc.). This combi-
nation is called Vehicular Cloud Network (VCN) (Gerla et al. 2014; Ahmad et al.
2015). Another much more ambitious approach is that of the Internet of Vehicles
(IoV) (Fig. 5.2), which would integrate a lot of different networks, users, means of
transport, personal devices, administrations, infrastructures, etc. (Yang et al. 2014).
Similar to the concept of the Internet of Things (IoT), bearing in mind how difficult
it would be to manage all these data in a reliable and safe way, such configurations
are not expected in the medium term.
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Fig. 5.2 Scheme of Internet
of Things (inspired in Yang
et al. 2014)

5.2.4 The Infrastructure

Improvements in the infrastructure will be necessary in any case. On the one hand,
those aimed at helping AVs to perform the perception tasks: horizontal and vertical
road signs must be clear and complete, road layouts should be as smooth as possible,
etc. (Bosetti et al. 2015, García et al. 2017). On the other hand, V2I-related technolo-
gies must be deployed. As in the case of the communications network, different
administrations work together trying to design a system with continuity across
borders. In the EU, amultidisciplinary platform comprised of State and local, govern-
ments, automakers, cooperative intelligent transportation systems (C-ITS) European
associations, user organizations, etc. already proposed in 2016 the initial guidelines
for the deployment of C-ITS.

Although especially focused on V2I, some parts of V2V and V2X were also
addressed (C-ITS 2016). The platform defined those services that should be imple-
mented in a first phase, according to their significance, the related know-how, the
state of the practice and the penetration rate of AVs, and the economic means. For
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example, those V2I systems aimed at improving safety take priority. Secondly, those
systems for which the cost-social benefit ratio results favorable were considered.
This initial document was revised in 2017 (C-ITS 2017). In the second version,
the compliance of the former plan was assessed, further needs were included and
misstatements rectified. For example, the consideration that full AVs would be quite
an important part of the fleet by 2030, what had affected the lead time initially
considered for V2I deployment. Other countries out of the EU have also developed
their own plans for V2I installation. For example, the U.S. elaborated its “Connected
Vehicle Path” for V2I deployment in 2015, which also included some regulations
intended for carmakers, trying to ensure the goodness of all communications. The
National Highway Traffic Safety Administration (NHTSA) recognized in that year
that the U.S. was in its infancy regarding these topics and is determined to make
80% of the national intersections V2I capable by 2040 (U.S. GAO 2016). In spite
of general guidelines like the former, final deadlines and probably the quality of the
system will depend on particular local or state budgets. The concept of smart roads
especially designed for CAVs has also been suggested. However, some drawbacks
advise against their construction. First of all, extra expenses would be huge, while
current freeways and highways would be misused. In addition, according to full
AVs deployment forecasts, they would serve a minority share of the total vehicle
fleet during a long period. Furthermore, traditional vehicles would not benefit from
sharing roads with self-driving vehicles. These potential benefits are explained in
Sect. 5.3.

5.2.5 Other Agents

If IoT or similar schemes really become a reality, any road/street user (e.g., pedes-
trian, cyclist), any device (e.g., noisemeter, retail security camera, radio antenna, etc.)
will be able to exchange data voluntarily or involuntarily with the rest of the agents.
Whether this will be positive or not is still an open question: having a large amount of
data is no guarantee of success if these data are inaccurate, irrelevant, or unmanage-
able, among other things. There are two current trends in this respect. The first, more
grounded in reality, warns of the limitations of communications networks and real-
time data processing capabilities, and advocates learning to distinguish which data
are important so that they can be the basis for cooperative driving. The second, for
the moment more linked to research than to practical applications, envisions AI and
data-driven as the basis for the driving of the future (see Chaps. 6 and 7). Therefore,
it sees positively the inclusion of any type of available information in the driving and
traffic management processes.
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5.3 Impact of Cooperative Automated Vehicles on Mobility

Although still difficult to quantify, the main impacts of this new form of driving
have already been qualitatively defined. Whether or not and to what extent these
impacts become a reality will depend on many factors, including the penetration
rate of vehicles with a high degree of automation, the investments made by the
different administrations to provide roads andmanagement centerswith the necessary
equipment and communications and, of course, the correct definition of information
and trafficmanagement strategies specifically designed for these scenarios. The huge
amount of research underway suggests that at least this last requirement will be met.
The following sections summarize very briefly some of the impacts expected from
the implementation of cooperative automated mobility, as a bridge to some of the
issues that will be addressed in Chaps. 6 and 7. More consequences are anticipated,
for example, reductions in consumptions and emissions linked to electrification,
changes in legislation, in productivity, etc. A detailed description of these can be
found in Martínez-Díaz et al. (2019).

5.3.1 New Approaches for an Improved Traffic Performance

Once the idea of vehicles driving autonomouslywith the sole objective ofmaximizing
their individual experience has been discarded, the next step is to decide how vehicles
should cooperate to optimize the overall flow, even if a particular vehicle is ruled
out. This goal involves technical and communications challenges, but also manage-
ment challenges. Since the 1990s, trafficmanagement has already been progressively
improving over time, moving from purely passive guidelines to real-time manage-
ment. This evolution has also been seen in travel time information systems, which
havemoved from providing historical information determined offline on to providing
instantaneous information or even travel time forecasts (see Chaps. 6 and 7).

However, automated driving opens a window of opportunity to implement more
effective dynamic trafficmanagement strategies in amore coordinated and successful
way. These strategies should develop in linewith vehicle automation andCAVs pene-
tration rate. Therefore, they should be designed for mixed traffic environments in the
first term and be gradually adapted according to the increase of the CAVs percentage
and of the automation level afterward. This fact is challenging, as CAVs will have to
interact with human drivers, whose behaviors are much more aggressive and unex-
pected. Nevertheless, positive impacts are also envisaged: it has been demonstrated
that efficiency improves in line with the increase in CAVs. Enhancements become
already noticeable when they are 30% of the flow (Guériau et al. 2016). The main
cause for this progress is that cooperation reduces traffic instabilities, like "stop
and go" situations. In fact, instabilities are largely responsible for the three major
inefficiencies of congestion: capacity reductions, the increase in the accident rate
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(due to secondary accidents), and the increase in consumption and, when applicable,
emissions (linked to multiple accelerations).

Furthermore, separated strategies for urban areas and freeways or highways will
be necessary. Especially the latest should ensure interoperability between regions and
countries. In any case, the first scenario to address will be probably that of freeways.
The reason is twofold: (i) traffic behavior is more uniform than in cities and thus
more manageable to make the first tests and (ii) some freeways already count on
part of the needed technology. In fact, some ways in which CAVs should drive on
freeways and highways are already being tested. Although it is out of the scope of
this book to deepen in these topics, an example is given next in order to give an idea
of the great potential of cooperative automated driving.

One very promising form of cooperation is vehicle platooning. That is, vehicles
should constitute a sort of road train in which they would be able to drive maintaining
very small intervehicle distances (smaller than that of human-driven vehicles), at
quite high speeds, but also safely. This idea is not new. Well-known is the exper-
iment performed in 1997 under the PATH (Partners for Advanced Transportation
Technology) program at UC Berkeley. However, technological deficiencies hindered
the generalization of platoons in that moment. Currently, platoons are already being
used by some freight companies in very specific scenarios, with SAE2 level vehi-
cles that usually have additional equipment to this end. Although positive effects are
achieved, it is still not possible to make the most of cooperation due to a lack of
technology and knowledge. Soon, technology will no longer be a problem. However,
there are still a lot of doubts hanging over platoons and there is a lack of traffic
strategies especially designed to manage these road trains. Firstly, regarding their
formation: minimum vehicle automation level, type of vehicles (cars, vans, trucks,
their combinations, etc.), platoon average gap, average speed, maximum length,
merging and split (Saeednia and Menéndez 2016; 2017), etc. Secondly, with respect
to their interaction with traditional vehicles: via shared lanes, with dedicated lanes,
with dedicated roads, etc. Another key issue is which vehicles within the platoon
should exchange information and which information (Feng et al. 2019). There is no
clear answer to these questions and much more exist. Again, the development of ad
hoc dynamic management strategies taken depending on (i) CAVs penetration rate,
(ii) traffic conditions and (iii) infrastructure equipment and communications is due.
Although insufficient, some initial ideas have already been outlined in this regard:
shared lanes seem to be a good option when traffic conditions are good, i.e., when
speeds exceed 50 km/h. In this way, the whole traffic streamwould take advantage of
the mentioned instability reduction linked to cooperation in general. However, when
congestion has already appeared and speeds are small, dedicated lanes for platoons
would at least allow them to drive efficiently. As said, the best option would be
that this “dedication” is only temporary (i.e., dynamic), until congestion disappears.
Furthermore, especially with small percentages of CAVs, it could be suitable that
platoons would share these dedicated lanes with other vehicles with priorities like
high occupancy vehicles (HOV), public busses, etc. The choice of the most favorable
lane for platooning is another strategy to define. For example, with trucks, the first
idea could be to use the right-most lane. However, if this were proven to be suitable,
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platoon management strategies would have to include measures to avoid problems
at on- and off-ramps. The left-most lane is usually chosen by researchers.

5.3.2 Expected Impact on Mobility Trends and Figures

The impact of C/AVs on the mobility rate must be analyzed from a comprehensive
point of view and taking into account the changes in the way people move. In fact,
especially in cities (and without taking into account the special consequences of the
COVID-19 pandemic, the long-term impacts of which are not foreseeable at the time
of writing), these changes have already started with traditional vehicles: the number
of users of car-sharing, ride-hailing, and ride-sharing systems has increased in the
last years. More and more users and particularly young people find unnecessary or
even unadvisable to own a vehicle for many reasons. For example, private vehicles
usually spend more time parked (20–23 h per day according to recent analyses) than
in motion, their acquisition and their maintenance imply costs, etc. The increasing
climate change awareness plays also a role. This trend toward vehicle use instead
of vehicle ownership is expected to significantly intensify in the next years: firstly,
the supply of sharing and hailing services grows and, consequently, they become
cheaper. Secondly, AVs are ideal to support them. On the one hand, these services
have a large technological component. On the other hand, savings in staff costs are
appealing for entrepreneurs. Besides, sharing and hailing are called to be integrated
in more comprehensive on-demand initiatives like Mobility as a Service (MaaS). In
addition, AVs will be clean (primarily electrical): sharing systems based on AVs are
expected to be increasingly promoted by administrations and well accepted by the
public. In fact, hybrid or electrical vehicles (EVs) with a certain degree of automation
are already being used by some companies to serve limited urban areas. Finally, it
must be taken into account that the cost of AVs will be very high (primarily at the
beginning), what will prevent many people from buying them even if they wanted
to. Therefore, many companies are already developing future sharing services based
on electric automated vehicles (EAVs). A key idea is that public transportation could
and should also be based on EAVs.

The first conclusions that could be drawn from the former considerations are that
the vehicle fleet will decrease and, thus, the mobility rate too. However, only the first
statement seems unquestionable (Grosse-Ophoff et al. 2017; Litman 2017; etc.,). In
fact, the fleet reduction has already been estimated to be 22–25% in Europe and the
U.S. by 2030 (Kuhnert and Stürmer 2018). Regarding the mobility rate, there is no
agreement: some researchers estimate a reduction if it is expressed in vehicle-Km per
passenger and an increase in terms of vehicle-Km. The former is linked to sharing, as
vehicles should transport more people in each travel (current car average occupancy
is 1.3 pax. and it should increase for shared vehicles), and to the expected increase
in users of a more efficient public transportation system. The latter is linked to two
main reasons: on the one hand, transport costs are expected to decrease due to a better
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amortization of vehicles (e.g., their rest time will be much smaller in a sharing envi-
ronment). Therefore, freight transport is expected to rise looking for competitiveness
and passenger transport too, mainly for leisure/unnecessary purposes. On the other
hand, the spectrum of users will spread: non-drivers, very young or very old people,
people with special needs, etc. will be able to use C/AVs. However, the most recent
studies point out that the increase in car-traveled Km will not be compensated by
the number of passengers per travel: i.e., vehicle-Km per passenger will probably
increase too (Correia and van Arem 2016; Milakis et al. 2017). The final result will
highly depend on the occupancy of the sharing services and of the use of public
transportation: a trade-off could be reached if most trips were performed at high
occupancy (e.g., with automated vans or buses). If the current tendency persists and
sharing systems rely on 2 or 4-seater vehicles shared by 1–2 people per trip, and if
public transportation is not boosted, the mobility rate will definitely increase in all
its terms. The number of private C/AVs will also play a role in this regard, as they
will make empty journeys, for example, to park once transported their owners or to
pick them up after work.

As said, the configuration of the public transport will also be critical. Sharing
systems will only make mobility more efficient and sustainable if they substitute
private journeys but not those made by mass transit, whose occupancy is higher and
thus more favorable. In fact, sharing should act as a complement for them, aimed,
for example, at covering the last Km of a commuter’s journey toward a city center.
However, mass transit must adapt to new scenarios. And, of course, benefit from
automation and cooperation. In this context, its integration in on-demand services like
MaaS is already being considered: first analyses show that the trade-off between the
necessary investment in technology and the overall benefits (accessibility, efficiency,
congestion release, pollution reduction, etc.) are greatly beneficial (Barceló 2016).

5.3.3 Contribution to Safer Mobility

The number of road deaths has decreased in most developed countries, due to
improvements in the vehicles (driver assistance systems, stronger bodyworks, etc.)
and to the efforts of traffic administrations in this regard. However, despite reduc-
tions, the number of deaths is still huge and very far from the Vision Zero (i.e., no
accidents) courted bymany administrations. Furthermore, the situation in developing
countries is still worrisome.

A cooperative automated driving environment will not be able to avoid all acci-
dents. Nevertheless, taking into account that 90% of accidents derive from human
errors, they are expected to be reduced to a minimum (Gong et al. 2016; Koopman
and Wagner 2017; Gear 2030, 2017). However, two important conditions must be
fulfilled to achieve success in this regard: (i) the penetration rate of cooperation-
capable vehicles must be high and (ii) cooperative management strategies must work
optimally. On the contrary, the increase in the number of vehicle-Km traveled could
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offset the decrease in the number of accidents, being the final number of deaths
similar to the current one.

Other types of risksmust also be avoided. For example, the possibility that passen-
gers of C/AVs become overconfident and give up using seat belts, or that pedestrians
cross streets recklessly assuming that C/AVs will not run over them. It should also
be borne in mind that, unless level 5 automation is reached, there will always be situ-
ations in which vehicles will require drivers to resume the driving task. Therefore,
drivers of automated vehicles will have to maintain a certain attention and know how
to react in a proper and timely manner. Numerous studies analyze these reactions,
which are very varied and depend onmany internal and external factors, usually using
driving simulators (e.g., Rahman and Abdel-Aty 2018). Their goal is to at least draw
some general conclusions that allow providing the vehicle hardware and software
with all the necessary tools and indications to avoid dangerous situations. Also,
to train or at least inform drivers and authorities. Note that requirements of future
driving licenses, if any, are also on the table. There are also numerous studies that
analyze changes in driver behavior when traveling in a vehicle with a high degree
of automation or, simply, when interacting with them, even if only visually (e.g.,
Skottke et al. 2014).

More dangerous situations with implications for safety could arise: CAVs and
V2X as a whole could be appealing targets for hackers or terrorists. For example,
ransomware aimed at blocking vehicles until owners pay a ransom or malware
intended to intercept communications or even to alter them (with the subsequent
fatal results) could be easily distributed through the networks (Douma and Aue
2012; Petit and Shladover 2015; Litman 2017; GEAR 2030, 2017). Governments
and cyber-experts already analyze these issues and some of them have proposed
initial guidelines trying to build an extremely secure system that is resilient to this
kind of attacks. Although some probability of communications being hacked will
always remain, it should be at least possible to resume the control in a very short
time (BMVI 2017; UK 2017; Shaheen 2018).

5.4 The Role and the Evolution of Travel Time Information
Systems in Cooperative Driving Environments

Travel time information systems will continue to play a key role in future cooperative
driving environments. However, to this end, they will have to gradually adapt to these
newscenarios, inwhich traffic streamswill be composedof vehicleswith increasingly
high automation levels. In this regard, some important considerations must be kept
in mind:

• Travel time value is mainly expected to decrease, but doubts exist

Several studies forecast a gradual reduction in the value of travel time in line with
the use of more and more intelligent vehicles. According to them, the maximum
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reduction would take place with self-driving vehicles (SAE-level 5), as they would
be a kind ofmobile bedrooms, playrooms, or offices, allowing passengers to rest or be
productive while traveling (Litman 2018). Additionally, ideal scenarios that support
these reduced values of travel time are envisioned. First, increased comfort, more
travel safety, and higher travel time reliability would contribute to lower values of
time. Second, less congestion delays, reduced (or null) search time for parking, and/or
the increased use of shared vehicleswould lead to the need for less travel time tomake
each particular journey. Finally, enhanced traffic flow efficiency alongwith electric or
more fuel-efficient vehicles would also reduce the monetary cost of travel. People’s
psychology also plays a role in this regard. Steck et al. (2018) performed a discrete
choice experiment, trying to quantify this reduction. They made an online survey
among Germans of different ages and gender and from varied income classes, who
either walked or used a wide spectrum of transportation modes (private cars, bikes,
public transportation, etc.) to make different types of trips (commuting, shopping,
and leisure trips). The goal was to analyze the possible changes in the value of travel
time savings (VTTS) both for the case of shifting toward AVs or to shared AVs. It
was found that autonomous driving in a private car would reduce the VTTS by 31%
compared to driving manually. Besides, it was perceived similarly to in-vehicle time
in public transportation. Shared AVs resulted less attractive. However, the travel time
spent in them was considered less negatively (by 10%) than that spent while driving
manually.

Nevertheless, it is important to note that (i) the former studies are case-specific and
have no general representativeness and (ii) all of them are based on assumptions or
perceptions, as noAVs drive at present on the road. Additionally, other less optimistic
studies (alsowithout empirical evidence) considerably limit the reduction in the value
of travel time due to some factors already addressed. Among others, the potential
increase of travel demand linked to lower transportation costs, the emergence of new
users, and urban sprawl could compromise travel time and cost savings (Milakis
et al. 2017). Several researchers concluded that passengers’ use of their travel time
in an AV to work cannot be generalized. In a survey performed by Haboucha et al.
(2017), only long-distance commuters seemed willing to effectively work during
the time they traditionally spent driving. Cyganski et al. (2015) performed another
survey in Germany. Again, only a minor percentage of the respondents perceived as
an advantage the ability to work on the move in a self-driving vehicle. Most of those
that used other means of transport (e.g., trains) already worked in their commute.
The majority of the participants still saw as more valuable the activities that they
usually undertook while driving traditional cars (i.e., listening to music). For their
part, in a survey in the Netherlands, Yap et al. (2016) analyzed AVs as egress mode
of train trips. That is, as the means of transport that travelers that made a trip by train
would take at the station in order to reach their final destination. Surprisingly, Yap
et al. (2016) found that travelers gave a higher value to time when using self-driving
vehicles for this purpose, in comparison to manually driven vehicles. Next, authors
compared the value of travel time for the same people in two different situations:
(i) the same one as before, i.e., the main travel made by train and a self-driving car
taken at the train station to reach the final destination and (ii) the whole trip made by
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a private traditional car. Between these alternatives, travelers were somewhat more
willing to pay for a certain travel time reduction in the first case. Therefore, results
suggested again that travelers did not perceived as an advantage the possibility of
doing other things while traveling. Fears in relation to the idea of riding an automated
vehicle, the lack of any real-life experiencewith them and the fact that an egress trip is
typically short (thus not allowing travelers to fully experience the potential benefits
of automated vehicles, such as en-route work or travel safety), were some of the
explanations to these unexpected results given by researchers.

Overall, many doubts exist about how the value of travel time is going to be when
autonomous vehicles hit the road. As a clear example, Milakis et al. (2017) reported
a possible decrease of the value of time between 1 and 31% for their users in the
Netherlands. This is a very wide range that, as said, could even change toward an
increase. The impression is that there is no single answer, that is, that the direc-
tion and significance of the change in the value of travel time will depend on the
particular boundary conditions. In fact, the VTTS is a subjective variable per se
(Jara-Díaz 2000). In any case, travel time information systems adapted to the new
driving scenarios will continue to contribute to traffic efficiency and safety: travel
time information will still be the best indicator of congestion and allow modifying
or rescheduling trips for the passengers’ sake.

• Like any other information, delivered travel times will have to be very accurate

Taking into account that computers, either on-board, in the cloud or in a traffic
agency, are expected to manage traffic autonomously, all exchanged real-time
information will have to be extremely precise. Otherwise, not only congestion but,
above all, risky situations could arise. In this regard, travel time information, although
especially linked to traffic efficiency, also contributes to accident avoidance: traffic
inefficiencies clearly increase the possibility of an incident. Pre-trip information
about travel time reliability must also be accurate, so that the congestion decrease
associated with AVs comes true. Therefore, current travel time information systems
that deliver approximate or inaccurate travel time information (see Chaps. 2 and 4)
would have more detrimental consequences in cooperative driving environments.
Note that in this context, travel time information will directly affect decisions taken
for the management of the whole connected system. There is a need, especially, for
newmethodologies that precisely forecast travel times in real time andwith short time
updating intervals, like the one proposed in Chap. 4. Besides, these methodologies
will benefit from working with more and more complete data than that currently
available (see next point), which will undoubtedly contribute to accuracy.

• Vehicles will act as data providers and senders

This fact is crucial and will have great influence on future travel time information
systems. Indeed, this section deliberately refers to “travel time information systems”
and not to “highway travel time information systems”. Although highways and free-
ways will probably have more surveillance and better communications than other
roads also in the future, V2V communications and the own storage and computation
capabilities of vehicles and vehicular cloud networks will allow real-time travel time
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estimation and exchange also in less equipped scenarios. Obviously, those infras-
tructures with more technological and communication equipment would also benefit
from the information gathered by on-board sensors. AVs are called to be the paradigm
of the perfect lagrangian sensors. Their role could be compared to that of probe or
floating vehicles (see Chap. 1), but with some important differences: (i) in-vehicle
sensors will be varied and (theoretically) standalone when considered jointly, in the
sense that they will be able to gather all the necessary data, (ii) these sensors will be
extremely accurate and powerful and (iii) the penetration rate of AVs is expected to
solve any problem regarding sample sizes or sample bias (e.g., samples composed
only of one type of vehicle).

Theway inwhich travel time information is disseminatedwill also evolve. Current
modes by means of apps, websites, or variable message signs are expected to remain,
at least partially, and especially inmixed traffic scenarios. However, a key changewill
take place in a near future, as intelligent vehicles will directly receive the information
either from other vehicles or from the management centers. There exists the possi-
bility that this information is shown in the HMI but, in fact, this will not be necessary
unless passengers are interested in it: vehicles themselves will act according to the
updated information they will continuously receive.

In this context of enormous amounts of available data, considering both raw inputs
and the information that is extracted from them, the need for the implementation of
protocols that select, limit, and prioritize themost significant onesmust again be high-
lighted (Zhong et al. 2008). Otherwise, communication failures or the late reception
of extremely important information could occur, probably with undesirable conse-
quences. Additionally, vehicle-to-all (V2X) communications should be feasible in
order to guarantee a good performance of the system. That is, V2V should only be
a part of the driving scenario, taking into account that vehicles, although powerful,
will have capacity to storage, process, and disseminate data only to some extent. The
fact that cooperative networks among them will be structureless and changing (i.e.,
vehicles that cooperate at a particular moment will just afterward follow different
routes) is a key issue in this regard. The data and information exchanged among vehi-
cles must be ranked, including travel time information. Heuristics, artificial neural
networks, machine learning, etc., are being applied to find the best procedure for
this purpose. An interesting approach is that of Szczurek et al. (2010), developed
for the dissemination of peer-to-peer real-time information. Their method is based
on the postulate that the most important information is the most recent, the nearest
and that allowing drivers to change their path. From this standpoint, they proposed
a machine learning algorithm that learns the probability that a travel time report is
useful as a function of its attributes. Then, a naïve Bayes learning method is used to
find a mapping for the attribute values to the probability of a report being useful.

• Travel time information systems must share basic standards

The information that future travel time information systems deliver must be not
only very accurate, but also uniform and coordinated. Actually, this requirement
can be applied to any other type of data or message exchanged among the actors of
cooperative driving environments. This fact was partially addressed when describing
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intelligent vehicles’ architecture or communication technologies. Interoperability
and coordinationmust be guaranteed at all levels. To this end, the format of any inputs
and outputs as well as the accuracy levels of any calculation should be agreed upon by
carmakers and traffic administrations. In the particular case of travel time information
systems for AVs, it must be ensured that every vehicle receives the information it
needs and that it is able to “understand” it. That is, all vehicles must have access to
the communications channel and use the same or compatible information languages.
Additionally, a vehicle that is going to undertake a long journey should be able to
receive, for example, information about the travel time reliability of the whole path,
even if it takes place along roads managed by different administrations. However,
if these administrations use different reliability indexes and/or work with different
levels of accuracy, the utility of this information will decrease, as it could result too
coarse. Regarding real-time information, the need for similar (high) accuracy levels
is not linked to interoperability but, as said, to traffic efficiency. That is, when vehicles
made a trip, they will receive constant information updates from the corresponding
system. This system could vary if, for example, the trip is long. In case more than one
system is involved, the vehicle (supposing interoperability is ensured) could receive
informationwith different degrees of accuracywithout any technical problem arising.
However, this fact would affect the decisions the vehicle would take looking for its
own benefit, and that of other vehicles that exchange information with it. That is, it
would be impossible to reach the system optimally.

The former considerations about coordination and interoperability do not only
affect vehicles, but also traffic agencies. Nevertheless, from the agencies point of
view, the consequences of not receiving data from a certain number of AVs would
generally not be as severe for them, taking into account that many other moving
sensors will be available.

5.5 Conclusions

The former sections tried to explain how AVs and CAVs could contribute to make
future mobility more efficient, safer, cleaner, and more inclusive. However, some
of the conditions to be fulfilled so that these goals are achieved have been also
highlighted. Table 5.1 summarizes the main conclusions that can be drawn from the
overview provided in this chapter.

First, it must be borne in mind that AVs behaving “autonomously” in the sense
of “independently” would lead to an increase in congestion. They would perform a
very conservative and smooth driving seeking for safety and thus lead to capacity
reductions. On the contrary, their cooperation could allow their driving fluently and at
high speeds while ensuring safety, even with very small intervehicle distances. That
is, cooperation would lead to an increase in capacity. Notwithstanding, it does not
only involve technological requirements, but also the definition of ad hoc dynamic
traffic management strategies. These strategies will be different, for example, on
freeways or in urban areas. In fact, in the later, new mobility patterns are called to
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Table 5.1 Potential benefits of cooperative driving environments closely linked to mobility and
main challenges to be addressed

Automation scope of influence Potential benefits Requisites for impact
optimizationAVs CAVs

Traffic efficiency Low or negative High V2X. Ad hoc management
strategies

Safety Medium High Technological advances. V2X.
Responsibility definition. People
formation

Mobility/accessibility Medium or low Medium Encouragement of MaaS and/or
use of mass/sharing services at
high capacity

complement the arrival of CAVs: sharing systems used at high occupancy and seam-
less synergies among different means of transport will be indispensable to relieve
congestion in cities. In this way, the expected growth in the mobility rate could be
compensated by a smaller vehicle fleet. Taking into account that traffic inefficiency
contributes to air pollution and energy consumption, future mobility is also called to
be more environmentally-friendly. The fact that most CAVs will be electric will also
be decisive in this regard.

Vehicle automationwill also lead to a relative reduction in the number of accidents.
However, this reduction will only be significant with quite a big penetration rate of
CAVs. Besides, the probability of an accident will always exist. Therefore, ethical
behavior rules for these cases are being discussed and they should be agreed among
all involved parts. Similarly, a procedure aimed at deriving responsibilities in this
new mobility paradigm must be carefully developed. Additionally, unless SAE 5
level vehicles hit the road, the human factor will continue to play a role, either as
passenger/driver of CAVs or as road user that interacts with them. Possible changes
in human behavior or too late or improper maneuvers by drivers could become new
causes of accidents. This fact must be taken into account when configuring vehicle
software and designing management strategies. The suitability of specific training to
use or coexist with CAVs must also be analyzed.
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Chapter 6
Dynamic Traffic Management: A Bird’s
Eye View

Jaume Barceló and Margarita Martínez-Díaz

Abstract Traffic systems evolved rapidly, becoming soon a specific case of a
complex dynamic system, what raised the need for controlling them in order to
achieve an efficient performance. One of the main factors of complexity of traffic
systems is a consequence of the variable human traveling behavior in time and
space. Therefore, traffic control, in the way it had been conceived and implemented,
appeared as a restrictive approach just considering one of the control aspects: the
time the vehicles are flowing through the network. This raised the need to move
a step forward. Thus, traffic management could be seen as an extension of traffic
control that simultaneously controls time and space, and is aimed at adjusting the
demand and the capacity to avoid mismatching. This chapter summarily reviews the
main concepts and approaches in the development of traffic management systems
(TMSs) both in terms of managing the supply as well as managing (or influencing)
the demand. In this context, travel times become one of the key factors to induce
changes in drivers’ behavior in terms of making decisions on departure times and
route choices. To better achieve such objectives, it would be desirable that TMS have
predictive capabilities. The main approaches addressed here support the predictive
capabilities of dynamic traffic models, one of whose main components is an estima-
tion of the dynamic mobility patterns in terms of origin to destination (OD) matrices.
This chapter summarizes the architecture of such approaches.
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6.1 Introductory Remarks

The development and evolution of dynamic complex systems in engineering and
other processes raised soon an increasing interest in controlling them, in order to
ensure that they could behave in an efficient or optimum manner, while holding the
stability necessary for such efficiency. In essence, from a conceptual perspective, a
basic control system is supported by the idea of a feedback loop (Fig. 6.1), which
assumes that the system S object of control is in state E(t) at time t . This state is
characterized by the values at that time of a set of variables {v1(t), v2(t) . . . vn(t)},
the state variables, which are the output of the system. Themain hypothesis is that the
state variables are observable, that is, measurable, and they provide the information
required to act on the system to drive it into a desired state, more efficient or optimum
than the current one.

A key assumption is that the system is equipped with a set of sensors from suitable
technologies providing the measurement of the system output, that is, the values of
the state variables defining the state of the system E(t) at time t. The objectives of
the control process are presumably defined in terms of control policies, formulated
as control variables, which provide the references of the expected values of the state
variables determining the desired optimal (and efficient) behavior of the systemunder
control. Then, the measured values are compared with the desired ones and their
differences, the error measurements, are the input to the controller. This is equipped
with the means to implement the corrective control actions, defined in terms of the
appropriate control variables, to achieve the expected objectives.

A fundamental underlying concept is that of the observability (Castillo et al. 2008,
2015). Formally, a system is observable if, for any sequence of state and control
vectors defined by the values of the state and control variables, the current state of
the system can be computed in a finite time using only as input the output of the
system. In other words, assuming that the approach to the system representation is
based on the Space State description, its behavior can be totally determined from the
output measurements if these are appropriate, what depends of the sensors layout
(Barceló et al. 2012). Castillo et al. (2008, 2015) and Barceló et al. (2012), as many
other references, deal with the sensor layout problem from what nowadays could
be considered a classical from the perspective of sensor technology, i.e., inductive

Fig. 6.1 Basic conceptual diagram of a feedback control loop of a system
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Fig. 6.2 Conceptual example of an adaptive urban traffic control system

loop detectors, radar measurements, license plate recognition, or Bluetooth devices,
among others. The irruption of new Information and Communications Technology
(ICT) applications, i.e., smartphones or GPS, offers an amazing set of rich possibili-
ties to enhance traffic data collection. Fang et al. (2016), Ibarra-Espinosa et al. (2019),
or Antoniou et al. (2019) are good examples of these possibilities. More recently,
the forecasted advent of Connected Automated Vehicles (CAVs) has prompted new
possibilities (Montero et al. 2016; Xianfeng 2018; or Martínez-Díaz et al. 2019).
These new technological scenarios are graphically depicted in Fig. 6.2.

Traffic systems were soon identified as a special case of a dynamic complex
system, whose complexity is a consequence of the variable human traveling behavior
in time and space. Therefore, the need for an effective control to optimize their
performancewas also soon detected (Papageorgiou 1983). The first versions of traffic
control systems, namely in urban scenarios, were essentially static, based on the
average observed traffic behavior, the physical attributes of the road object of control,
and the type of available control actions, i.e., the traffic lights settings defined in terms
of cycle lengths, splitting of light colors and offsets between successive intersections.
These control systems have been continuously evolving toward real-time adaptive
control systems aimed at making them as responsive as possible to better fit the time
variability of the demand (Gartner 1985). This evolution has been determined by that
of the technology, hardware, and software, and its ability to measure and processing
in real time the values of the state variables.

Figure 6.2 schematically depicts an example of a hypothetical forthcoming adap-
tive urban traffic control system. In this system, in addition to the conventional traffic
sensors (i.e., inductive loop detectors), GPS-equipped vehicles, and the envisioned
CAVs capable of communicatingwith the traffic controllers become new information
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sources, that could be potentially used either locally or in a centralized coordinated
way through a “traffic control center” likely operating in the cloud.

For freeway/highway networks, with no signalized intersections, control is based
on other approaches. For linear infrastructures, for instance, on freeways, where
traffic flows are determined by input flows at on-ramps and exit flows at off-ramps
(Martínez-Díaz 2018; Soriguera and Martínez-Díaz 2020), an example of control
approaches are those based on ramp metering. This is precisely aimed at controlling
these input flows to ensure the fluidity at the main stream.

The general increasing congestion trend, which is especially acute in large
metropolitan areas, has prompted the interest in understanding its causes. Also, in
looking for solutions, as congestion has clearly negative impacts on the quality of
life due to its associated social costs (e.g., waste of time spent in congestion, adverse
effects on sustainability in terms of energy consumption, contribution to greenhouse
gases and obnoxious emissions endangering human health) (Barceló 2019). These
solutions aim at remedying congestion in the long term, and at least alleviating
its consequences in the short-medium term. Traffic management has emerged as the
most appealing strategy to extend the concept of control in achieving these objectives
of fighting congestion and its adverse consequences.

Traffic control, in the way it has been conceived and implemented, as summarily
described above, could be considered as a restrictive approach to trafficmanagement,
as it only deals with one aspect: the time vehicles are flowing through the network.
Traffic control tries to make traffic more fluid, that is, to minimize travel times and
delays, while maximizing the use of the available local capacity. However, it does
not consider how the space, that is, the total available capacity, is being used. The
absence of this global view may lead, and in fact it leads, to unbalances in the
use of this available capacity. The other way around, assuming that congestion is a
consequence of the timely mismatching between traffic demand and supply (in terms
of capacity), traffic management could be seen as an extension of traffic control that
simultaneously controls time and space, and is aimed at adjusting the demand and
the capacity to avoid this mismatching.

To achieve these objectives, primarily at freeway/highway networks, traffic
management has usually combined two type of policies. First, those trying to influ-
ence the use of the road network increasing the throughput, regulating traffic inflows,
and preventing spillbacks. These are management measures based on control poli-
cies that are aimed at preserving the fluidity in the main stream and at avoiding
capacity drops, caused by fixed bottlenecks or generated by shock waves. Examples
of these policies are the speed control, the lane management, and the ramp metering.
Second, those trying to achieve a better distribution of traffic across de network.
These policies, commonly referred as Demand Management, can be of different
types:

• Travel Time/Route Information Systems

They are aimed at influencing the way in which routes are selected and used from
travelers’ origins to destinations. In other words, they provide reliable informa-
tion on the current and forecasted traffic conditions, so that drivers reach their
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destinations at the desired or expected times. Another goal is to flatten the time
distribution, lowering the pick periods of the demand by informing about depar-
ture times that minimize travel times while ensuring an acceptable degree of
reliability. Thus, these systems shift drivers to off-peak periods.

• Road pricing, Low Emissions Zones, Wide Area Access Control, and similar
measures

These policies impose conditions to access a given area in order to reduce
inflows to that area, or to ensure that only vehicles fitting certain technological
(sustainability-related) conditions can access it.

• Policies that are the consequence of societal and technological changes

For example those enabling teleworking or virtual access to the realization of any
activity without physical displacement. Also, those shifting the current travel
modes to other transportation modes (including the emerging micromobility
modes), with the support of suitable and reliable information. Those policies
that prompt modal chains using different modes for each trip leg (e.g., walking
or cycling first, public transport like bus, metro, or commuting trains next, and
finishing by using other alternative mode to reach the destination) must be
highlighted, as they will become increasingly important.

Figure 6.3 translates these ideas into a conceptual scheme in which it is assumed
that the traffic network is suitably equippedwith all kind of sensors, both conventional
and new technologies, and that an appropriate traffic surveillance system timely
collects, stores, and processes the measured data. Traffic data are the main input to:

• A Network Traffic State Estimation Module, which determines the current state
of the traffic network based on the available measurements and suitable models.

• A Short-Term Traffic State Prediction Module, which estimates the forecasted
evolution of the traffic state according to the suitable traffic management poli-
cies determined by a Traffic Management Decision Support System (DSS). The
latter is aimed at proposing the control actions to alleviate or prevent the devia-
tions from the desired traffic state, usually defined in terms of a wide set of key
performance indicators (KPIs) that translate traffic managers’ objectives. These
goals range from the conventional ones, i.e., maximizing the throughput, mini-
mizing travel times, reducing congestion, avoiding bottlenecks, etc., to others
addressing sustainability objectives like minimizing environmental impacts or
energy consumption.

• The DDS, which recommends the traffic manager the alternative management
actions to activate and indicates their respective potential impacts. Neverthe-
less, the traffic manager is the ultimate responsible for implementing the policies
corresponding to such actions.

The TMS also includes a module to operate the appropriate actuators to impose
the decided actions like ramp metering, speed control, lane management, in freeway
networks, or gate-in/gate-out zone access policies in wide area control, for example.
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Fig. 6.3 Conceptual scheme of a TMS

Demandmanagement was soon also identified as a set of complementarymanage-
ment actions that, if properly implemented, could contribute to reduce the pressure
on the traffic network by flattening the peaks of the time variability of the demand
and spreading it over time. Additionally, it can balance the available road capacity
with suitable re-routing for a more efficient use of the space. This kind of poli-
cies were usually implemented conveying the information to users by displaying the
corresponding messages in a set of variable message panels suitably located at key
locations in the traffic networks. This dissemination can currently be more pervasive
and efficient using the big variety of available mobile devices. That is, conveying the
information to drivers in real time, either on-route, i.e., while traveling, dynamically
recommending re-routing, or before starting the trip, proposing the most appropriate
departure time, routes, or alternative transport modes to use.
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6.2 ITS Approaches and Artificial Intelligence

As explained, trafficmanagement was soon identified as a step ahead beyond conven-
tional traffic control, required by the increasing congestion in freeway networks and
metropolitan areas, which in turn was a consequence of the growing motorization.
Moreover, in the late eighties of the past century, new ICT applications that could
potentially enhance traditional management systems started to emerge. The many
projects addressing the topic from the early stages of the European Programs are a
clear demonstration of the interest that trafficmanagement has aroused and continues
to arouse.

Leaving aside the technological aspects, i.e., data collection and management
actuators, grosso modo, it is possible to differentiate two approaches to traffic
management, including the network traffic state estimation, the short-term traffic
state prediction, and the core traffic management DDS determining the policies that
the traffic manager should implement to avoid or alleviate the conflictive identified
situation. The first ones are those approaches inspired in an extension of the control
theory conceptually illustrated in Fig. 6.1, and the second ones are those approaches
based onArtificial Intelligence (AI). Kirschfink et al. (2000) document this interest in
applying the new, and presumablymore powerful, techniques ofAI to complex traffic
problems, expecting that they will be able to overcome the limitations of the current
systems when facing critical conditions and congestions. They argue that these tradi-
tional systems have been usually conceived in terms of local traffic behavior, while
the addressed problems are more global and, therefore, need strategic, high-level
approaches.

Two meetings, the ERUDIT Tutorial on Intelligent Traffic Management Models,
held in Helsinki on 1999, and the European Symposium on Intelligent Tech-
niques ESIT’2000, held in Aachen, in 2000, provide a nice panoramic of the state
of the art of the developments during more than 10 years (since the beginning of
the European Programs) on what at that time was called Advanced Transport Telem-
atics (ATM). ATM addressed the applications of the new emergent technologies,
Computer Sciences (Informatics) andTelecommunications, to transportation systems
and later become ITS. However, from the very beginning, AI was considered one
of the main technologies to account for. Rass and Kyamakya (2007) provide a more
extended overview of this progress. For their part, Kirschfink et al. (2000) summarize
the application of Advanced Knowledge Modeling Techniques to Intelligent Traffic
Management Systems (ITMS), assuming that these systems are conceptually defined
to implement two types of measures:

• Direct control measures, that is, measures aimed at managing the infrastructure.
For example, control of traffic lights, ramp metering, speed control or variable
message signs.

• Indirect control measures, aimed at managing the demand, consisting on recom-
mendations for drivers by means of variable direction signs (VDS), text panels,
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or Relational Database Management System-Traffic Message Channel (RDMS-
TMC)messages (nowadays replacedby advanced journeyplanners andnavigation
systems).

They also explain that TMSs are supported by a global architecture with twomain
components:

• A Traffic Surveillance System that collects and stores traffic and environmental
data.

• A Traffic Control Centre (TCC) that must be able to suitably process all the
detected data by the appropriate algorithms for different purposes. The most
important ones are the estimation of the traffic state and the monitoring of the
current traffic situation, the estimation of short-term predictions of the potential
evolutions of the traffic state, the proposal and coordination of control measures,
and the transmission of appropriate recommendations to drivers.

To overcome the above-mentioned limitations of the conventional systems,
various approaches based on AI techniques, namely Knowledge-Based and Infer-
ence systems, have been proposed. Examples of these are TRYS (Hernandez et al.
1999), FLUIDS (Hernández 1999) or KITS (Kirschfink et al. 2000). The common
idea to all of them is the development of a system that embodies a knowledge model
of traffic behavior at a strategic level and is assisted both by knowledge management
techniques supporting rule chaining for pattern matching methods, constraint satis-
faction, etc., and inference machines able to reason on the acquired knowledge. To
achieve such system, they propose adding a functional level in current TCCs, on the
top of the existing facilities. This level consists on a Traffic Knowledge Processing
Layer, whose goalwould be to improve the online trafficmonitoring andmanagement
system. Therefore, this layer would enhance TCCs operations for:

• The estimation of traffic load levels in space and time all over the network.
• The analysis and understanding of traffic demand and routes in the area.
• The qualitative prediction of demand and routes.
• The detection (prediction) of critical traffic situations and bottlenecks.
• The selection and implementation of congestion avoidance/reduction strategies.
• The management of conflictive control objectives and priorities in the different

controlled areas.

The experience gained after the first developments and pilots projects reported in
KITS (Kirschfink et al. 2000), conceives the knowledge models as a hierarchically
structured problem solving, in which a problem domain can be naturally decomposed
into substructures. Each of these substructures is specialized in the solution of a class
of problem, which in turn can be decomposed into simpler and specialized issues to
be addressed. The substructures considered in KITS are:

• Agents, which represent a local reasoning process that identify problems, inter-
pret available information, perform specific tasks (i.e., short-term traffic predic-
tion), support local decision processes, and detect inconsistent combinations (i.e.,
control actions in overlapping areas).
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• Actors, which are knowledge units specialized in traffic evaluation and manage-
ment within a particular area. They include reasoning strategies that use agents to
solve interpretation and decision problems in the area. They are in correspondence
with the topological decomposition of the traffic network.

• Supervisors, which are combinations of actors and can be of different types.
For example, Masters act in a prescriptive way, Mediators negotiate conflicts
and Facilitators act as managers and recognize which Actor has the external
knowledge eventually required by each other Actor to perform local tasks.

KITS and TRYS are examples of such architectures whose knowledge modeling
approach, quoting from Kirschfink et al. (2000), is supported by two structuring
principles:

• A functional organization, which functionally decomposes the domain knowledge
in specialized units targeting specific types of problems in this domain.

• A topological organization that spatially breaks down the traffic network into a
set of so-called Problem Areas.

Functional and topological organizations should match to ensure that the
knowledge and reasoning levels correspond. The envisaged knowledge-based traffic
management system would then consist of a “structured collection of knowledge
units, providing specialized knowledge and reasoning mechanisms to deal with
the different types of traffic management activities and reflecting the functional
and topological knowledge.” The main agents considered in KITS (Boero 1999;
Kirschfink et al. 2000), whose architecture is illustrated in Fig. 6.4, were:

Fig. 6.4 KITS model of AI-based traffic management Boero (1999)
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• The Problem Identification Agent and the Traffic Flow Behavior Modeling and
Causal Agent. The first one identifies the problems using heuristic classification
criteria based on the historical knowledge of problems in the area and evaluates the
information provided by the data collection system. The second one performs the
analysis and short-term evolution of traffic flows and looks for causal explanations
of the detected problems. The type of agents based on traffic flow models has
represented one of the most successful evolutions of these systems, as will be
discussed later on.

• Local Decision Agents that support the suitable control actions for specific
problem areas as consequence of the previous processes, and agents to detect
inconsistencies of multiple control actions or actions that could potentially
interfere between overlapped areas.

• Finally, a Strategy Completion Agent based on a global overview of the controlled
network, which synthesizes and harmonizes the local proposals.

For its part, the MOTIC concept (Boero et al. 1997; Kirschfink et al. 1997; Boero
andKirschfink1999) depicted in Fig. 6.5 could be considered as a hybrid architecture.
In this approach, the AI components are combined with traffic simulation models
to assist both in the analysis of the situation and in the evaluation of the impacts of
the planned control strategies prior to their implementation. Additionally, instead of
predefined Problem Areas as in KITS, a more flexible concept is introduced. This
is that of Scenario Definition, enabling a graphic interactive process to dynamically
determine the area potentially affected by the identified problem. Thus, once the

Fig. 6.5 The MOTIC approach to traffic management (Boero and Kirschfink 1999)
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scenario is defined, it can be simulated. The simulation results in terms of KPIs can
then be used to analyze the scenario before generating the information that will be
used to apply the suitable policies and, thus, before disseminating the corresponding
suggestions/orders. The use of microscopic simulation in the scenario analysis also
enables a simulation-based learning process based on the collected data before and
after the actuations. This allows defining and evaluating newmanagement strategies,
optimizing the existing ones, assessing the potential impacts of any variations of the
strategies, determining the optimal timing to activate actuations, etc. MOTIC was
developed and preliminary tested in a pilot test in the project ENTERPRICE, of the
ATT European Program of DG XIII of the 4th Framework European Programme
1997–1999 (Boero and Kirschfink 1999).

A differential fact of MOTIC with respect to other approaches, which results
evident when analyzing the architecture depicted in Fig. 6.5, is its hybrid structure,
which includes AI and traffic models. AI is used to analyze and understand what
is going on. In other words, to interpret the identified network state based on the
current analysis and past experiences from similar situations. However, trafficmodels
support this network estate estimation as, for example, microsimulation models.
Aimsun2 (Boero et al. 1997), an earlier version of Aimsun, was particularly used
in the above-mentioned applications. The interactively generated simulation model
of the selected scenario, corresponding to a Problem Area, is used to evaluate the
alternative strategies to solve the identified problem in terms of specific KPIs, to
support the decision-making process.

Another differential aspect of this approach that deserves to be highlighted is
that the support of an advanced microsimulation model (Barceló et al. 2004; Barceló
2010), requires an input that is not yet directly observable from trafficmeasurements:
the model of the mobility patterns in terms of an OD matrix (see Chap. 7).
The dynamic simulation model will describe how the trip makers use the paths
connecting origins and destinations depending on traffic conditions. Therefore, it
will be able to identify how congestions are generated as well as the spillback across
the network and, consequently, to emulate how road users will likely react to the
management actuations. A deeper insight into the role of microscopic simulation in
ITS applications can be found in Barceló et al. (2004).

A system inspired inMOTICwasdeveloped and applied in the Intermodal Strategy
Manager ISM (Barceló et al. 2002; Kirschfink et al. 2003). This was a development
within the framework of the Hessian WAYflow-project, with the goal of improving
traffic management in the Rhine-Main area by supporting the planning of new strate-
gies, starting with their impact assessment and coordination up to their implementa-
tion, as well as by optimizing the already existing strategies. The Scenario Analysis
Module (Barceló et al. 2004), in Aimsun/ISM uses an Aimsun microscopic traffic
simulation model of the traffic network under study to define, verify, and optimize
traffic management strategies, evaluate their expected impacts, and determine the
triggers for their activation, according to prevailing traffic conditions. A scenario
is a microscopic simulation model of a traffic network (or a subnetwork of a large
network) in which a traffic problem has been identified. This is consistent with the
so-called Problem Network.
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The model input reproduces the traffic demand in the problem network for the
time period for which the traffic problem has been identified with a great degree of
accuracy.Also, the current operational conditions in the road network, such as current
traffic control at signalized intersections, reductions of capacity at specific parts of the
network caused by road works, incidents, etc. The analysis of the scenario consists of
a set of simulation experiments whose purpose is to help traffic managers to develop
and evaluate the impacts of the single actions or combination of actions. These actions
are situation-related measures (i.e., re-routings and/or speed control using variable
message signs—VMS—changes in control, etc.), with the objective of alleviating or
eliminating the traffic problem identified. This concept of action composed by the
various situation-related measures is called a Strategy. The evaluation of alternative
scenarios, i.e., models of the same problem network with alternative traffic manage-
ment strategies, compares the values of performance indexes that express saturation
levels, quality of service, total travel time, average delays, average queue lengths, or
total vehicle-kilometers traveled, among others.

The main objective of Aimsun/ISM is to allow the fast and convenient manip-
ulation of input data to create simulation scenarios and to present result data in a
compressible way. It has two main components: the Simulation Experiment Speci-
fication and the Result Analysis. The Simulation Experiment Specification includes
the setup of a Problem Network (either the network of the whole area or a sub-
network), the creation, modification, and adjustment of OD matrices (again global
for the whole area as well as local or traversal for the sub-networks), the addition of
traffic management policies and their triggers and the simulator tuning. For its part,
the Result Analysis includes the output data presentation and the comparative study
of the performance of a solution, either with previous solutions or with real data.
Since a problem can have different solutions and taking into account that these solu-
tions may not be obvious, users can define several experiments combining different
policies until the best option is found. During this experimentation, users can also
reuse previous solutions and add new ones to, as said, comparing their performance
among them and/or with real data. This process can be repeated iteratively until a
satisfactory solution is found. The above-mentioned components provide the support
for the generation, evaluation, and optimization of traffic management strategies.

TheAimsun/ISMoperation is illustrated in Fig. 6.6,where theWAYFLOWGlobal
Network and a potential Problem Network are shown. A Problem Network corre-
sponds to a sub-network of the road network on which a specific traffic problem
may arise or is identified by the user. This user can define the target Problem
Network graphically by opening a window on the screen on which the WAYFLOW
network is displayed (the rectangle in Fig. 6.6 corresponds to the selected Problem
Network). Any Problem Network is characterized by the road network within the
definedwindowand anODdatabasewith their distinct demandpatterns under various
circumstances (season, day of the week, time of the day, special event, etc.). Also, by
a strategy database containing the specifications of the potential traffic management
strategies to operate on the ProblemNetwork depending on the identified or expected
traffic problem and on the demand pattern.
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Fig. 6.6 ISM system in the WAYFLOW network in Hessen

Variants of the former approaches can be found in Barceló et al. (2007a, b, c) or
Krishnan et al. (2010), among others. Figure 6.7 summarizes the main aspects of this
evolution, which are:

• Traffic flow models to estimate the traffic state and its likely short-term evolution
can be either basic as in KITS, TRYS, Krishnan et al. (2010) or Hegyi et al. (2009)
or complex, usually based on dynamic simulation, as in Barceló et al. (2007a).

• There exists a Basic Inference (i.e., set of rules) System to infer the primary
interventions/actions (i.e., policies) to apply based on the current state.

• These new approaches assume that, during its operational life, the TMS
has generated two complementary databases that complement the real-time
collected data. First, a historic database of recorded traffic data, identifying
specific scenarios (i.e., recurrent congestions and their time evolution at specific
locations). Second, a historic database of the control actuations applied to alleviate
or solve specific conflicts and all data and related information associated to them.

• New approaches use more complex AI engines, based either a variety of
knowledge-based or inference approaches, as explained for KITS, TRYS, or
MOTIC, or on a pattern matching process. The latter find similarities between the
identified situation and others previously recorded. This looking for similarities
is usually a task for specialized clustering approaches, like in AURA (Krishnan
et al. 2010).

• The applied advanced traffic models enable an estimate of the likely short-term
evolution of traffic conditions in the network, and therefore an evaluation of the
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Fig. 6.7 Generic evolution of the AI traffic management-based architectures

potential impacts of the planned actions in terms of a selected set of KPI’s, Barceló
et al. (2007a).

• These approaches include a DDS, i.e., a generalization of the previous inconsis-
tencydetection and strategy completion actions, combining theprimary rule-based
actions and the evaluated actions after the pattern matching. It is responsible for
making the final recommendation that the human operator will implement.

6.3 Current Hybrid Approaches

The pursuit of increasingly sophisticated trafficmodels continues beyond those intro-
duced in the previous sections. However, the goals of these models have not varied.
First, they aim at estimating the traffic state and at analyzing its similarity with other
already experienced situations. Second, they address the short-term forecasting of
its likely evolution under the planed management strategies as well as the evaluation
of the potential impacts of these strategies in terms of selected sets of KPIs. This
willingness for improvement has prompted the evolution of the generic architecture
described in Fig. 6.7 toward some of the commercial systems used in projects that
are more recent. Some of their key characteristics are:
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• Their ability to dynamically identify the problem area within a la large managed
area.

• Their capacity to estimate and adjust the OD matrix by identifying the current
traffic patterns in the problem area from both historic records and current traffic
measurements.

• Their pattern matching process to find similarities between the identified situation
and the historically recorded ones (Mounce et al. 2012).

• They deliver a set of KPIs to evaluate the alternative scenarios according to the
possible strategies to apply. Professional platforms usually offer the possibility of
customizing the type of KPIs that will support the traffic management decision-
making process. However, KPIs based on speeds, travel times (usually path travel
times), expected delays, queue lengths, etc., are always present. Therefore, their
forecasted values for complex traffic networks in these traffic management plat-
forms are usually based on dynamic traffic models able to estimate path travel
times, for example, the dynamic traffic assignment models.

Figure 6.8 adapted fromBarceló et al. (2007a), depicts the adaptation of this archi-
tecture, to Madrid Calle-30, evolved as described from the ISM project. This became
the basic version of Aimsun On-Line, (https://www.aimsun.com/aimsun-live-case-
studies/madrid/). The conceptual diagram in Fig. 6.8, highlights this hybridization
of AI and analytic components:
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Fig. 6.8 Conceptual diagram of Aimsun on-line platform for real-time traffic management

https://www.aimsun.com/aimsun-live-case-studies/madrid/
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• The pattern recognition process matches the traffic state identified after the
measurement of traffic data with a likely OD pattern, in terms of the demand
generating such situation, with some previously historically recorded similar
situation.

• In case such similarity does not exit, a new OD is adjusted based on the historical
and the current information.

• A traffic simulation model of the target network (Aimsun in this case) is fed
with this information and the information from the event detection (incidents or
scheduled special events) and the planned strategies, to estimate the forecasted
traffic state that will be evaluated in terms of the selected KPIs.

These platforms have been continuously evolving since then. Figure 6.9 depicts
the most recent version of Aimsum’s platform, called Aimsun Live (Aimsun 2020).

The process has two operational modes: training and prediction. The training
mode, as depicted in Fig. 6.10, is responsible for generating the set of mobility
patterns. Input data is preprocessed (i.e., data filtering and missing value imputation)
and standardized.Next,mobility patterns are extracted using a guided clustering algo-
rithm with the aim of minimizing their number while maximizing their quality, i.e.,
minimizing cluster variability. The algorithm allows external (or previous) mobility
patterns as optional input. This feature is of especial importance for an incremental
(or iterative) pattern extraction methodology.

The prediction process is illustrated in Fig. 6.11 and it consists, again, of
preprocessing and standardizing input data. Next, the pattern matcher uses traffic
data and exogenous variables to estimate the likelihood of each pattern. Note that

Historical data Aimsun Live Outputs

APMPM

DM IDM

RPEM

QM

Live Data Feeds

Sensor Data

Equipment
Status

Traffic Events

Quality Manager

Traffic Patterns
Patterns

Matcher &
Adjustment

Aimsun Live
Predictive
Module Network-wide

Traffic
Prediction

Traffic
Management

Plans

Incidence
Detection
Module

Response Plan 
Generation

Response Plan 
Evaluation

Module

Data Manager
& Status
Updater

Travel Demand

Fig. 6.9 Conceptual structure of Aimsun Live
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Fig. 6.10 Training workflow of pattern generation and matching process. The colors of the arrows
represent the type of data (green for traffic data, blue for exogenous variables, orange for mobility
patterns). The solid arrows represent mandatory input/outputs and the dashed arrows represent the
optional ones

Fig. 6.11 Prediction workflow of the pattern matching process. The colors of the arrows represent
the type of data (green for traffic data, blue for exogenous variables, orange for mobility patterns).
The solid arrows represent mandatory input/outputs and the dashed arrows represent optional ones

this likelihood is estimated using input data that was either measured or predicted. It
is also important to highlight that traffic data and exogenous variables are optional
inputs of the pattern matcher. Therefore, depending on the type of input data used
to feed the pattern matcher, it will estimate the likelihood of each pattern to occur
in the present or in the future. For example, if we feed the pattern matcher with
calendar features regarding today and the last N hours of traffic data, it will return the
probability of each pattern of happening today. But if we input only calendar features
of next Monday, it will return the probability of each pattern to occur next Monday.
Therefore, the pattern matcher can be used to predict current and future patterns.

Additional references on traffic management systems based on the use of Aimsun
Live can be found in the websites of San Diego Interstate 15 Integrated Corridor
Management System, Sydney—M4 Smart Motorway, Wiesbaden DIGI-V, Florida
DOT or Aimsun Live Technology Trial (Singapur), among others.
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6.4 Other Approaches

At almost the same time, in parallel but independently, approaches different from
those addressed in Sect. 6.3. were developed to tackle the problem of traffic manage-
ment. A good example is that represented by RENAISSANCE (Wang et al. 2006).
Conceptually, its architecture is a simplified version of the one depicted in Fig. 6.3,
supported by METANET. This is a macroscopic freeway modeling method based
on the fundamentals of traffic flow theory (Kotsialos et al. 2002; Papageorgiou
et al. 2010), including enhancements from Wang and Papageorgiou (2005). Further
extensions can be found in Wang et al. (2008), and Wang et al. (2009).

In this modeling approach, the freeway traffic state is estimated in terms of the
traffic flow variables, i.e., flow, mean speed and density for each freeway stretch. All
of them are defined with a suitable discretization in both time and space, exploiting
the corresponding available real-time measurements. The proposed traffic state esti-
mation combines traffic flow theory with Extended Kalman Filtering (EKF) in an
efficient way that jointly estimates the model parameters online, including the funda-
mental traffic flow variables, the free-flow speeds, the critical densities and the
capacities, adding significant adaptive capabilities.

However, the initial version of the RENAISSANCE approach does not consider,
in either its modeling or its operation, the potential of control measures like ramp
metering, route guidance, or variable speed limits. In case these control measures
are applied, RENAISSANCE only allows the estimation of their impacts from the
real-time traffic measurements. For example, the impacts of ramp metering can be
estimated from the on-ramp inflows and densities at the downstream segments after
the on-ramp, route guidance affects the estimates of the turning percentages in junc-
tions, and speed control influences the estimates of the model parameter values.
The potential consequences of these control measures in the prediction accuracy is
limited by a continuous updating of the prediction horizons in terms of an efficient
rolling horizon technique. In this sense, RENAISSANCE is designed to be used as an
intermediate layer between the traffic data collection system of the freeway network,
which provides the real-time traffic measurements, and the traffic managers, which
will take management decisions on guidance and control supported by the provided
information. Supported by the same freewaymodeling approach inRENAISSANCE,
Carlson et al. (2010) developed coordinated control strategies at the network level
combining variable speed limits and ramp metering.

The DynaMIT (Dynamic Network Assignment for the Management of Informa-
tion to Travelers) of Ben-Akiva et al. (2010) is also included in this category of
approaches based on traffic flow theory. DynaMIT is “a simulation-based dynamic
traffic assignment (DTA) model system that estimates and predicts traffic condi-
tions.” However, it has also been designed as a real-time system for the generation
of predictive traffic information to support traffic management decisions, in this case
primarily intended for route guidance. An example would be the dissemination of
travel times by means of any technologies supporting the ATIS, either those placed
in-vehicle or that located on the road side (e.g., VMS). A relevant differential feature
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of DynaMIT is its objective of avoiding the adverse impacts of improper traffic
information. In fact, the proposal and application of management decisions without
a previous insight of their potential consequences could be risky, and later corrections
would be necessary to deal with unexpected reactions. To achieve such objective, the
models in DynaMIT are aimed at providing predictive information consistent with
the conditions that drivers will experience in the network, thus accounting for traffic
evolution.

A conceptual view of DynaMIT (Ben-Akiva et al. 2010) adapted to the generic
framework in Fig. 6.3 is depicted in Fig. 6.12. It integrates models and algorithms
designed to fuse data from various sourceswith twomain functions: the network state
estimation and the prediction of its short-term evolution. This is achieved by taking
advantage of two main modeling components, a demand simulator and a supply
simulator, and their interactions. The travel patterns in the network are captured
by the demand simulator, whose main input are the time-dependent origin–destina-
tion flows, expressed as time-dependent OD matrices. Individual trips are defined in
terms of the origin and destination of the trip, the departure time, and the selected
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route, considering that these decisions are taken before the trip begins. The aggre-
gated representation of the demand also accounts for individuals’ socioeconomic
characteristics. To anticipate the response of travelers to the information planned for
dissemination (Ben-Akiva et al. 1997),DynaMIT also considers their potential access
to such information. The supply simulator, which is mesoscopic, captures traffic
dynamics, and evaluates the performance of the network, including the formation
and dissipation of queues, spillback effects, or the impacts of incidents and bottle-
necks. It represents traffic dynamics using speed–density relationships and queuing
theory (Ben-Akiva et al. 2002). The algorithms (Ben-Akiva et al. 2010), used to esti-
mate the current network state, to perform the short-term prediction of its evolution
and to support the generation of the anticipatory route guidance and control strategies
are suited to properly account for the complex demand–supply interactions. A critical
aspect for the quality of the results is to ensure that the models are consistent with
the prevailing conditions, which is achieved by means of the dynamic adjustment of
the key model inputs and parameters.

Although with conceptual similarities with the framework approaches for traffic
management discussed so far, Meschini (2017) proposes a different professional
implementation in the platform developed by PTV SISTeMA. In this case, the TMS
is the central component of the TCC. Functionalities are split in such way that the
TMS is responsible for the collection of data regarding current traffic conditions, the
physical implementation of the management decisions (whose final responsible is
assumed the human operator) and the dissemination of the information and manage-
ment decisions to other operators as well as to users. The TCC would be responsible
for the continuous monitoring of traffic conditions based on the available measured
data. However, the assessment of the current traffic state and its short-term evolution,
accounting for the evaluation of alternative management strategies and for incident
detection is implemented with the assistance of a DSS. This DDS, suited for real-
time management, should support the ATIS and the Optimal Traffic Control (OTC).
In agreement with the conceptual frameworks discussed in previous sections of this
chapter, Meschini (2017) considers traffic management as a loop involving situa-
tion monitoring, identification of disruption, proposal of corresponding mitigation
actions, and action implementation (Fig. 6.13). This loop should be fulfilled in time
intervals short enough for real-time operations (i.e., within 1 and 10 min).

The real-time data collection envisaged in this approach goes beyond the conven-
tional traffic data measurements provided by the usual technologies, i.e., traffic
counts, flows, and occupancies on links, or instantaneous speeds. It accounts for
floating car data (FCD), for instance, those provided by GPS devices placed in
passenger vehicles, commercial vehicles, or public transport bus fleets, enabling
the tracking of vehicle trajectories. It also considers travel time measurements, as
those derived from automatic number plate recognition (ANPR) or systems of wire-
less network sensors. Such rich variety of traffic data coming from different sources
is intrinsically heterogeneous. Therefore, there is a need for a data fusion process that
merges all of them in homogeneous estimates of traffic variables, i.e., in flows, speeds,
densities, and capacities of the links of the underlying transport model supporting
the functionalities. This process requires a previous map matching procedure that
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Fig. 6.13 Functional overview of the traffic management system proposed by Meschini (2017).
Rounded boxes represent functions or elaboration activities and rectangle represent collected data
and inputs produced or exchanged between functions

associates the measured data with the transport model. In the case of OPTIMA, the
platform developed by PTV SISTeMA, this consists, first, of the topological repre-
sentation of the network: links, nodes, turnings, connectors, zones, their attributes
(e.g., link id, node id, link maximum speed, number of lanes, capacities, allowed
transport modes, etc.). Second, of the functional representation of the road network,
including all field related devices such as VMSs, traffic detector locations, traffic
signals (and in this case the detailed information of timing and phasing), etc. The
model-based traffic prediction also requires the definition of the transport demand
defined by OD matrices, their temporal profiles and the modal segmentation.
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Fig. 6.14 Schematic description of OPTIMA model-based traffic estimation and prediction

In the case ofOPTIMA, the proposed simulation and forecast approach is based on
a methodology consisting of models and algorithms for dynamic traffic simulation.
The logical architecture of the proposed system (Fig. 6.14) is composed of two parts:
the offline and the online parts. The offline part is supported by a DTAmodel, which
in turn is based on a dynamic user equilibrium (DUE) model (Bellei et al. 2005;
Gentile 2010; Gentile et al. 2007, 2010; Meschini and Gentile 2010). Also, on the
transport model that calculates the evolution of link flows, queues, travel times, and
path choices over different time intervals within each typical day. The online part uses
the model and the base traffic conditions provided by the offline part and combines
them with the real-time measurements from the detection system. This is done by
means of a traffic model that adjusts the estimations and forecasts to the measured
conditions of that particular day. The online part runs automatically on a continuous
basis providing a new traffic estimation and forecast in terms of travel times, traffic
flows, and queues every few minutes.

OPTIMAwas applied, for example, in the Regional Traffic Supervision Centre of
the Piedmont region, in northwest Italy, in 2014. Its goal was to provide traffic infor-
mation over the regional road network of Piedmont, thus enabling trafficmanagement
in the region. Another example of OPTIMA’s applications is the customer-oriented
traffic service www.AnachB.at, in Austria, which provides a comprehensive and
effective traffic information system for travelers.

http://www.AnachB.at


6 Dynamic Traffic Management: A Bird’s Eye View 187

Other references to OPTIMA related trafficmanagement projects are “2015–2020
PTV FR, Direction des routes Ile-de-France (DiRIF)—Supply of traffic data in real
time and traffic supervision platform for Traffic operator of Ile-de-France motor-
ways,” or “Far EasTone Telecommunications (FET) for Taichung DOT, Taiwan-
Development of a real time traffic management and control system for the City
of Taichung.” The latter provided proactive traffic management, short-term traffic
prediction of up 1 h, incident management, alternative route guidance through VMS,
and Active Warning using PTV Optima and PTV Balance.

In summary, all these approaches to traffic management are aimed at influencing
simultaneously the supply, that is, the capacity of the network and the traffic demand
so that they better match in time and space. The usual problems occurring in the road
network primarily concern the generation of bottlenecks at specific points at given
times, either at peak periods, when the demand exceeds the available capacity (i.e., in
a recurrent way) or generated by incident or special events (i.e., in non-recurrent situ-
ations). The aim of trafficmanagement is to prevent or alleviate these situations either
spreading the traffic demand to different parts of the network or dynamically adapting
the available capacity so that it serves the current demand. As explained in Sect. 6.1,
ramp metering, dynamic speed limits, lane management, and similar policies are
aimed at regulating the inflows, increasing the throughput or preventing spillbacks.
They primarily act on the infrastructure maximizing the available capacity given the
estimated traffic state and its likely evolution. Therefore, they are usually considered
Supply Management policies. For their part, transportation Demand Management
policies are aimed at spreading the demand over time, avoiding high concentrations
at peak hours by (i) providing an alternative accessibility to the activities generating
the trips (i.e., the case of teleworking), (ii) distributing the demand across the traffic
network to use more efficiently the total capacity, or (iii) favoring modal split, partic-
ularly shifting the trips to transportation modes other than the private vehicle (i.e.,
public transport, cycling, walking, or, more recently, micromobilitymodes). Demand
Management is usually implemented in terms of Travel Time Information Systems
conveying the travelers, as in the case of DynaMIT, reliable information on travel
times and their short-term forecasting. This information allows them to make better
decisions in choosing the routes from their origins to their destinations. Advanced
Journey Planners that enable trip makers to make better decisions when choosing the
routes and transportation modes (or combinations of them) and, therefore, to achieve
their goals more efficiently, also belong to Demand Management.

These approaches to trafficmanagement, usually conceived for freeway networks,
can be extended to urban areas adopting the concept of the Network Fundamental
Diagram (NFD). This seminal concept, developed by Geroliminis and Daganzo
(2007) in terms of what they called the Macro Fundamental Diagram, is a conse-
quence of their willingness to figure out whether it a fundamental relationship
between traffic variables, similar to the fundamental diagram of the basic traffic flow
theory for freeways, exists at the network level. That is, if it exists amaximumcapacity
of a network that can be interpreted as a generalization of the concept of capacity
in traffic theory. If it would exist, it would be suitable to define ad hoc management
actions by generalizing those strategies extensively used for traffic management on
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freeways. Indeed, this relationship was demonstrated (Daganzo 2007; Geroliminis
and Daganzo 2007, 2008; Daganzo et al. 2012; Mahmassani et al. 2013) and it can be
explained intuitively as follows. The approach assumes that an urban traffic network
behaves similarly to a reservoir, with an input flow qin that can be considered a
function of time q(t), and an output flow e(t) depending on some system function
of the state of the system n(t) at time t , G[n(t)] (Eq. 6.1). The time variation of the
accumulation (state) in the system n(t) could then be modeled as in Eq. 6.2:

e(t) = G[n(t)] (6.1)

dn(t)

dt
= q(t) − G[n(t)] (6.2)

Based on this approach, Geroliminis and Daganzo (2008) show that such NFD
exists and can be estimated in terms of the total number of vehicles in the links of the
network, measured by traffic detectors, and the total production. The latter should
be estimated as the total distance traveled by all vehicles in a link in a given time
interval �t . The resulting diagram is as the one depicted in Fig. 6.15, which was
built by simulating microscopically the traffic in a network. This allows estimating
the network capacity, that is, the maximum number of vehicles that can be allocated
to the network. The possibility of having such measure of maximum capacity of a
network and the availability of such an NFD allows exploiting real-time measure-
ments to identify at which point of the diagram (i.e., in which traffic state: free flows,
transitions, congested flows, etc.) the network is performing. Moreover, this opens
the door toActiveWide Area TrafficManagement Strategies, as illustrated graphically
in Fig. 6.13.

Let us consider a large area to manage and a selected critical subnetwork in
this area. For example, the Central Business District (CBD) of Barcelóna depicted
in Fig. 6.16. The real-time measurements from sensors allow identifying whether
the network is performing at point A, B or C. Point A corresponds to free flow,
i.e., the managed subarea has still remaining capacity to allocate more vehicles. At

Fig. 6.15 The macro fundamental diagram of Barcelona’s central business district built by
simulation
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Fig. 6.16 Potential use of the network fundamental diagram to support active traffic management
strategies

point B, the subnetwork is reaching the capacity and actions limiting the access to
the subnetwork would be desirable to avoid the growing of congestion. Finally, at
point C, the network is congested (beyond capacity) and no more vehicles can be
allowed to enter the area. Gate-in and gate-out control policies at the boundaries
of the area, which are an extension at the network level of the widely used ramp
metering policies to manage freeways, can be implemented to, respectively, restrict
the access and facilitate the evacuation of the congested area. However, such policies
must be applied carefully, as they can generate problems at other parts of the large
network due to the queue spillback at entry gates. These gate-in and gate-out policies
must be combined with a queue management system and re-routing policies, which
in turn require the appropriate dynamic traffic model to account for dynamic traffic
patterns between origins and destinations, to balance the situation, (Allström et al.
2017).

The existence of the NFD (or Macro Fundamental Diagram) has been its initial
proposal extensively investigated, as well as the procedures to build it from available
traffic measurements (Leclercq et al. 2014). At the same time, research has shown
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that a proper Macro Fundamental Diagram requires some homogeneity conditions
on the network (Geroliminis and Sun 2011), which, in the case of large networks,
implies the need for dividing it into homogenous regions (Ji and Geroliminis 2011,
2012). This allows the analysis of the particular phenomenon that takes place in each
part and the proposal of an efficient methodology to solve it.

As explained, the existence of a network capacity as a generalization of the key
concept of capacity and the availability of practical procedures to estimate it, led very
soon to the idea of using it for traffic management in a network, also generalizing the
well-known ramp metering strategies. If ramp metering on freeways has the main
objective of rating the input flows to the main stream in order to avoid reaching
capacity and subsequent consequences as capacity drops, a gate-in–gate-out process
could achieve similar objectives at the network level (Aboudolas and Geroliminis
2013). Figure 6.16 illustrates this idea conceptually. Let us assume that output flows
n(k − 1) are measured in real time by sensors placed at the output gates of a selected
subnetwork at time interval k−1. Also, that measurements from other sensors placed
along the network allow the estimation of the current operational conditions in the
network (e.g., A, B or C in Fig. 6.13). Then, an adaptive flow control strategy will
determine the input flow rate β(k) at time interval k through the input gates (the
“gated flows”) that keeps the operational condition in the network close to an optimal
estimated number of vehicles ñ(k). This management problem and its variants has
generated a rich literature, as Geroliminis et al. (2013), Ampountolas and Kouvelas
(2015), Keyvan-Ekbatani et al. (2015, 2016, 2017).

6.5 AMS Approach and ATDM

The cases summarily described so far mostly correspond to a view of traffic manage-
ment focused on freeways, namely freeway networks, and, in the case of the Wide
Area Management discussed in Sect. 6.4, on urban networks. However, there have
been also attempts to expand the managed networks, widening the scope to account
for mixed networks where freeways and urban roads coexist. An example can be
found in Papageorgiou (1995), which considers the concept of corridor as “a general
highway network including both freeways and urban roads.” That was a first step
ahead toward a wider and deeper conception of traffic management, as the traditional
one, oriented to single-modal corridor control, was insufficient. Indeed, all traffic
management approaches described previously implicitly consider only a transporta-
tion mode, i.e., vehicular traffic, ignoring other modes like public transport in all its
modal variants, (bus, metro, railways, etc.). This limitation was the natural conse-
quence of freeway networks being the only targets of previous approaches. However,
when urban networks or mixed transportation networks spanning large metropolitan
areaswere considered, it became evident that the other available transportationmodes
could no longer be disregarded.Responding to this need,Reiss et al. (2006) provided a
refined definition of transportation corridor in their Integrated Corridor Management
(ICM) initiative report:
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A corridor is a largely linear geographic band defined by existing and forecasted travel
patterns involving both people and goods. The corridor serves a particular travel market
or markets that are affected by similar transportation needs and mobility issues. The
corridor includes various networks (e.g., limited access facility, surface arterial(s), transit,
bicycle, pedestrian pathway, waterway) that provide similar or complementary transporta-
tion functions. Additionally, the corridor includes cross-network connections that permit the
individual networks to be readily accessible from each other.

Shortly before this definition emerged, the US government had envisaged the
potential benefits of ICM and started to document the research on this topic. In
2005, the U.S. Department of Transportation’s (USDOT) Intelligent Transportation
Systems (ITS) Program launched the ICM Systems Initiative (FHWA 2005), whose
ultimate goal was “to provide the institutional guidance, operational capabilities,
and ITS technology and technical methods needed for effective ICM Systems.” The
initiative further propelled the research on ICM in a regulated way, including the
refined definitions for transportation corridor and ICM. Quoting from the TRS 1210
(2012) report:

In the ICMProgramPlan, ICMis defined as the coordination of individual networkoperations
between adjacent facilities that creates an interconnected system capable of cross-network
travel management.

To differentiate the ICM from other advanced traffic management systems, Reiss
et al. (2006) provided a more detailed definition of ICM:

ICM consists of the operational coordination of multiple transportation networks and cross-
network connections comprising a corridor and the coordination of institutions responsible
for corridormobility. The goal of ICM is to improvemobility, safety, and other transportation
objectives for travelers and goods.

Figure 6.17, fromAlexiadis (2008a), visualizes this concept of corridor considered
as a complex dynamic system composed by a variety of interactive subsystems that
need to be considered and managed in an integrated way to achieve the ICM goals.
Examples of the subsystems considered in ICM are:

• Different infrastructures, e.g., freeways with on- and off-ramps, arterial streets
and local streets.

• Different transportation modes, e.g., passenger car and public transport (bus,
metro, light rail).

• Different control systems, e.g., traffic lights at signalized intersections, ramp
meters at on-ramps, variable message signs, etc.

Each subsystem may have its own control strategy, such as ramp metering, signal
coordination, public transport preemption, or information provision for guidance to
foster modal splitting. In the conventional approaches, these strategies would had
been developed and integrated independently. The main novelty in ICM is that they
must be integrated and coordinated looking at the system as a whole and not only at
the individual parts. This is consistentlywith the view of the transportation corridor in
the ICM Program Plan (FHWA 2005) as “a combination of discrete parallel surface
transportation networks (e.g., freeway, arterial, transit networks) that link the same
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Fig. 6.17 Conceptual scheme of corridor as envisaged by ICM (inspired in Alexiadis 2008a)

major origins and destinations. It is defined operationally rather than geographically
or organizationally,” which emphases the operational aspects.

ICM is therefore considered in the sphere of the ATMS because of the broad
complex operational concepts, the versatility of the integrating subsystems and the
variety of management strategies that must be supported, integrated and synchro-
nized by ITS technologies. That is, it must ensure the coordination of the multiple
transportation networks that constitute the corridor as well as that of the institutions
responsible for each of them. Miller et al. (2008) describe the ICMS in the report on
the San Diego ICM project, as a “system of systems, i.e., a TMS that connects the
individual network-based TMS, provides decision support and enables joint opera-
tions according to a set of operational procedures agreed to by the network owners.”
They continue explaining that ICMS accounts for the following operations:

• Information share/Distribution: manual information sharing, information clear-
inghouse (information exchange) between corridor networks and agencies, 511
(pre-trip traveler information), on-route traveler information (smart signage and
smart parking), access to corridor information by Internet Service Providers
and other value-added entities; automated information sharing (real-time data),
common incident reporting system, and asset management system.

• Junctions/Interfaces improvement: signal pre-emption (identifying “best route”
for emergency vehicles), multi-modal electronic payment, signal priority for
transit, bus priority on arterials, transit hub connection protection, multi-
agency/multi-network incident response teams/service patrols, and training exer-
cise.
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• Accommodation/Promotion of Network Shifts: modification of ramp metering
rates to accommodate traffic (including buses) shifting from arterials; promo-
tion of route shifts between roadway and transit via on-route traveler information
devices, promotion of shifts between transit facilities via on-route traveler infor-
mation devices, congestion pricing formanaged lanes, andmodification of arterial
signal timing to accommodate traffic diverted from the freeway.

• Capacity/Demand Management (short-term): land use control, modification of
HOV restrictions, increase of roadway capacity by opening HOV or toll (HOT)
lanes/shoulders, scheduled closures for construction, coordination of schedule
maintenance and construction activities among corridor networks, planning of
temporary addition of transit capacity, and modification of parking fees (smart
parking).

• Capacity/Demand Management (long-term): peak spreading, ridesharing
programs, expansion of transit capacity, and land use around Bus Rapid Transit
(BRT) stations.

Alexiadis (2008a, b) formalizes the Analysis, Modeling and Simulation (AMS),
as a methodological proposal for ICM. The proposed AMS methodology combines
a variety of traffic models as required. It starts with a trip table manipulation that
has its origin in a Regional Travel Demand Model, and whose goal is the deter-
mination of overall trip patterns, which can be refined and time-sliced as long as
the necessary feedback is available. “In this AMS framework, macroscopic, meso-
scopic, and microscopic traffic analysis tools can interface with each other, passing
trip tables and travel times back and forth looking for natural stability within the
system.” The elements of this methodological framework were explicitly considered
later on by Cronin et al. (2010), who stated that “conducting analysis, modeling, and
simulation tests enables corridor partners to identify the most promising strategies
and informs decisions for design of ICM systems.” They concluded that managers
should integrate this methodology with ICM DSS to facilitate the predictive, real-
time, scenario-based operational decision-making. The proposed concept of a DSS
is in this case “the interactive, computer-based system that uses historical data and
models to identify and solve problems as defined by Sprague andWatson (1986).” All
of them agree that the practice of real-time traffic management must be supported
by DSS that assist traffic managers in making sound decisions to avoid, or at
least alleviate, conflictive situations in traffic networks occasioned by congestions
(recurrent or not), incidents, or any other potential causes. An efficient DSS must
help and guide themanager decisions based on a quantitative assessment of the traffic
conditions in the network and, if possible, of a short-term prediction of their likely
evolution. However, it must be noted that the estimation of the current network state
quantified in terms of values of associated indicators (e.g., level of service, queues,
delays, travel times, etc.) as well as their short-term forecasting requires the use of
suitable dynamic traffic models.

The idea of assisting managers in making decisions with the help of this type of
DSS was also explored by Barceló et al. (2005). A first practical implementation
was described in Barceló et al. (2007a). Key components in the architecture of these
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systems are respectively the traffic models and the trip tables, and the OD matrices
and the critical problem of the time updating of these OD matrices. Zhou et al.
(2008) provide a seminal exploration on the use of models for the analysis of multi-
modal urban corridors. The draft report on an AMS Framework (2013) describes the
predictive tools as a key component and raises concerns about the current approaches
based on travel demand simulators to feed such tools, underlining the limitations of
the usual practice of performing a time decomposition of the 24-h trip OD tables.
The application of this methodology for the design and development of ICMmodels
has some major challenges:

• The availability of reliable data sources and related data collection and manage-
ment processes. This an aspect becoming increasingly relevant, considering the
availability of new data sources from the pervasive penetration of mobile devices.

• The estimation of the origin–destination time dependent patterns. A key input for
most of the existing dynamic models to generate specific control and manage-
ment decisions, i.e., predictive dynamic re-routing, as discussed for DynaMIT.
This input is, however, extremely difficult to estimate, especially under congested
scenarios.

• The accuracy and reliability of the information supporting decisions (e.g., travel
times, travel time reliability).

• The driver’s compliance rate estimation in response to the given control strategies.

Examples of ICM projects implementing this approach using the professional
platforms described in Sect. 6.3 are, for instance, the San Diego Interstate 15 Inte-
grated Corridor Management System (SANDAG 2009), led by the San Diego Asso-
ciation of Governments (USA), active since 2013. Also, the Regional ICM System
in Florida (USA) for the Florida Department of Transportation (FDOT 2020). Both
were powered by Aimsun Live.

Mahmassani et al. (2017) extend the application of the AMS methodology to two
programs of the USDOT that represent a step beyond the ICM: The Active Trans-
portation and Demand Management (ATDM) and the Dynamic Mobility Applica-
tions (DMA). A set of effective and reliable tests beds were selected to define a
rigorous DMA bundle and to perform a comprehensive ATDM strategy evaluation.
These were the San Mateo (US 101), Pasadena, ICM Dallas, Phoenix, and Chicago
Testbeds. All tests had the objective of providing valuable mechanisms to refine and
integrate research concepts in virtual computer-based simulation environments prior
to field deployments. The goals were to (i) “capture a wider range of geographic,
environmental and operational conditions under which to examine most appropriate
ATDM and DMA strategy bundles, (ii) add robustness to the analysis results and (iii)
mitigate the risks posed by a single testbed approach.” Mahamassani et al. (2017)
particularly report the findings for the Chicago Testbed, inwhich the strategies tested,
all them part of the ATDM strategy bundles applied, were:

• The ATM strategies analyzed were Dynamic Shoulder Lanes, Dynamic Lane Use
Control, Dynamic Speed Limits, and Adaptive Traffic Signal Control.
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• The ADM Strategies consist of Predictive Traveler Information and Dynamic
Routing.

• Weather-related Strategies, including Snow Emergency Parking Management,
Traffic Signal Priority for Winter Maintenance Vehicles, Snowplow Routing, and
Anti-Icing and Deicing Operations.

These applications were tested considering a proactive network management
approach that adopts simulation-based prediction capabilities. The research ques-
tions addressed were the impact on any application performance of different facility
types under varied operational conditions, the synergies and conflicts among appli-
cations, the impact of prediction accuracy and communication latency, and the
impact of connected vehicle data versus legacy systems data. The Chicago Testbed
was developed using the enhanced, weather-sensitive DYNASMART (Mahmassani
et al. 2005) platform in conjunction with a microsimulation tool developed specif-
ically for connected vehicle applications (Talebpour 2016) belonging to the DMA
bundle. The authors summarize that the following six algorithmic modules trigger a
comprehensive DYNASMART-X simulation:

• ANetwork State Estimation (RT-DYNA)module, which provides up-to-date esti-
mates of the current state of the network. It has the full simulation functionality
as DYNASMART-P, and its execution is synchronized to the real-world clock.

• A Network State Prediction (P-DYNA) module, which provides future network
traffic states for a pre-defined horizon, as an extension from the current network
state estimated by RT-DYNA.

• An OD Estimation (ODE) module, which uses a Kalman Filtering approach to
estimate the coefficients of a time-varying polynomial function that is used to
describe the structural deviation of OD demand in addition to a historical regular
pattern.

• A OD Prediction (ODP) module, which uses the predicted OD coefficients
provided by ODE to calculate the demand that is generated from each origin
to each destination at each departure time interval. The predicted time dependent
OD matrices are used for both current (RT-DYNA) and future (P-DYNA) stages.

• A Short-Term Consistency Checking (STCC) module, which uses the link densi-
ties and speeds of the simulator to evaluate the consistency of the flow propagation
with the real-world observations and correct the simulated speeds.

• A Long-Term Consistency Checking (LTCC) module, which compares the simu-
lated and observed link counts to calculate scaling factors that are used to adjust
the demand level in both RT-DYNA and P-DYNA.

6.6 Concluding Remarks

From the various approaches and conceptual architectures of traffic management
systems discussed in this chapter, a common critical component is the one that
provides the system with capabilities for the prediction of the short-term evolution
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of the traffic state as a consequence of the envisaged management strategies. This
component is usually a dynamic traffic model that, along with the forecasting,
evaluates the performance of the system in terms of a selected set of KPIs. One
of the key inputs to the KPIs, or a KPI in itself, are the forecasted travel times
(sometimes also their reliability) and the subsequent likely route choices.

The dynamic traffic models to be used could be based on various approaches:
from pure microscopic, as in certain applications of Aimsun Live depending on the
size of the managed scenario, to mesoscopic approaches, based on the concept of
Dynamic User Equilibrium (DUE), as in OPTIMA and ATDM, for medium to large
scenarios. In any case, all of them share as common input a dynamic OD matrix
and its temporal profiles to properly mimic the time dependency of the demand.
Nevertheless, dynamicODmatrices are not directly observable yet. Evenwhen direct
observations are available, for example, when onboard GPS devices allow vehicle
tracking, they only correspond to a sample. The expansion of this sample to thewhole
population, as required by DUE models, is not always a straightforward exercise.
This raises the question of how to accurately estimate such matrices, a question that
will be addressed in Chap. 7.
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Chapter 7
Data Analytics and Models
for Understanding and Predicting Travel
Patterns in Urban Scenarios

Jaume Barceló, Xavier Ros-Roca, and Lidia Montero

Abstract The estimation of the network traffic state, its likely short-term evolu-
tion and the prediction of the expected travel times in a network are key steps of
traffic management and information systems, especially in urban areas and in real-
time applications. To perform such functions, most systems have at their core engine
specific dynamic trafficmodelswhosemain input is a dynamicOD-matrix describing
the time dependency of travel patterns in urban scenarios. This chapter provides an
overviewof themain concepts supporting these dynamic trafficmodels and their prac-
tical implementations in some software platforms, as well as an outline on the main
approaches for the estimation of dynamic OD-matrices. Additionally, this chapter
provides a basic discussion on one of the main emerging trends: strategies aimed at
using the unprecedented amount of new traffic data made available by “new” mobile
technologies.

7.1 Dynamic Traffic Assignment Models

Most of the real-time traffic management systems are based on conceptual architec-
tures embedding in their core engines dynamic traffic models, usually a Dynamic
Traffic Assignment (DTA)orDynamic User Equilibrium (DUE)model. Thesemodels
are aimed at providing, among others, outputs to predict traffic flows and travel times
on road networks, which vary over time because of various factors. One of these
factors is particularly relevant: the time variation of the demand. Traffic assign-
ment accounting for these time dependencies are referred to as DTA. When the
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predicted flows are such that no user can unilaterally reduce their travel times, the
resulting assignment is said to be a DUE. In any case, their main input is an OD-
matrix, that is, the matrix representing the time dependencies of the demand (e.g.,
Barceló et al. 2004; Allström et al. 2017). Dynamic Traffic Models, either DTA
or DUE, are the key tool to estimate traffic states, understanding traffic patterns.
And, as already mentioned, to be able to provide a predictive information consistent
with the conditions that drivers will experience in the network, thus accounting for
traffic evolution. Both important functionalities become more relevant in the case
or complex urban networks. This is explained in detail in Ben-Akiva et al. (2010),
which describes the approaches on which DynaMIT is based as well as its objec-
tives. Descriptions of other similar systems can be found in Barceló et al. (2007),
Heygi et al. (2009), Meschini (2017), and Aimsun (2020). The last two references
illustrate these approaches through their implementation in two worldwide used
professional systems based on these applications: OPTIMA and Aimsun. The role
of DTM becomes even more critical in recent real-time traffic management systems
like the Active Transportation and Demand Management (ATDM) and the Dynamic
Mobility Applications (DMA), two programs of the United States Department of
Transportation (USDOT) (Mahmassani et al. 2017).

The DTA problem can be considered an extension of the well-known Static Traffic
Assignment (STA) problem, widely used in transport planning. The dynamic version
must be able to determine how link and path flows evolve with time in the traffic
network because of a time-dependent demand defined in terms of a time-varyingOD-
matrix. In otherwords, the dynamic approach to traffic assignmentmust describe how
traffic flow patterns evolve in time and space on the network (Mahmassani 2001).
Subsequently, it must provide the estimations of the link and path travel times and
their short-term expected evolution. These are the main inputs to derive the KPIs that
lead to specific traffic management policies, namely, those concerning information
to travelers, alternative dynamic re-routing, etc.

From this standpoint, the DUE problem can be defined as the dynamic version of
Wardrop’s Principle (Wardrop 1952; Friesz et al. 1993; Smith 1993; Ran and Boyce
1996): “If, for each OD pair at each instant of time, the actual travel times experienced
by travelers departing at the same time are equal and minimal, the dynamic traffic
flow over the network is in a travel-time-based dynamic user equilibrium state”.
In other words, the DUE formulation stipulates that the experienced travel cost,
including travel time and early/late arrival penalties, is identical for those route and
departure time choices selected by travelers between a given OD pair. There are
several attempts to translate this formulation into a suitable model.

In a recent paper, Han et al. (2019) review the various formulations of the models
and the associated algorithms used to compute DUE, starting from the seminal
proposal of Friesz et al. (1993), which formulates it as an open-loop, non-atomic
Nask-like game. “Open-loop”means in this context that the selection of routes by the
travelers after leaving the origin does not vary in response to changes in the dynamic
network conditions. For its part, the term “non-atomic” implies the assumption of
techniques based on aggregated traffic flow dynamics instead of techniques based
on individual vehicle dynamics. This hypothesis ensures that DUE suitably accounts
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for two main aspects of travel behavior: the departure time choice and the route
choice. Therefore, the modeling hypothesis implies that travel times are identical for
all trips departing at the same time interval using the same route. Following with
the contribution of Han et al. (2019), the two main components of DUE modeling
approaches are highlighted:

• The mathematical expression of the equilibrium condition.
• The network performance model, which mimics flow propagation through the

network. This is usually referred to as Dynamic Network Loading (DNL).

DTA/DUEhavebeen the subject of intensive research anddevelopments both from
the theoretical point of view and as key components of most software platforms used
for the practical implementation of traffic management systems. Consequently, as
Han et al. (2019) report, the concept of dynamic equilibrium has been implemented
in various ways, as, for example, variational inequalities, nonlinear complemen-
tarity problems, differential variational inequalities, etc. In this Chapter, we limit our
discussion to the formulation in terms of variational inequalities (Friesz et al. 2013;
Smith and Wisten 1995), which is the most frequent in practical implementations. It
is based on the mathematical model (Eqs. 7.1. and 7.2) proposed by Wu (1998):

[
ttrsp(t) − θrs(t)

] ∗ xrsp(t) = 0∀p ∈ Krs(t),∀(r, s) ∈, t ∈ [0, T ] (7.1)

s.t. ttrsp(t) − θrs(t) ≥ 0∀p ∈ Krs(t),∀(r, s) ∈, t ∈ [0, T ]

ttrsp(t), θrs(t, ), xrsp(t) > 0∀p ∈ Krs(t),∀(r, s) ∈, t ∈ [0, T ]

and the flow balancing equations:

∑

∀p∈Krs(t)

xrsp(t) = Xrs(t) ∀(r, s) ∈ I , t ∈ [0, T ] (7.2)

where xrsp(t) is the flow on path p departing from origin r to destination s, ttrsp(t)
is the actual path cost from r to s on route p, θrs(t) is the cost of the shortest path
from r to s, Krs(t) is the set of all available paths from r to s and Xrs(t) is the demand
(number of trips) from r to s, all of them at time interval t. For their part, I is the
set of all origin–destination pairs (r, s) in the network and T the overall time period
considered. It can be demonstrated that this is equivalent to solve a finite-dimensional
vibrational inequality problem consisting of finding a vector x∗ of path flows and a
vector τ of path travels times, such that

[
x − x∗]T ∗ τ ≥ 0,∀x ∈ ℵ (7.3)

where ℵ is the set of feasible flows defined by



204 J. Barceló et al.

ℵ =
⎧
⎨

⎩
xrsp(t)

∣∣
∣∣∣∣

∑

∀p∈Krs(t)

xrsp(t) = Xrs(t)∀(r, s) ∈ I , t ∈ [0, T ] , xrsp(t) > 0

⎫
⎬

⎭
(7.4)

Wu et al. (1991,1998a; b) probe that this is equivalent to solve the discretized
variational inequality:

∑

t∈[0,T ]

∑

p∈R
ttrsp(t) ∗

[
xrsp(t) − x∗

rsp(t)
]

≥ 0 (7.5)

whereR = ⋃
(r,s)∈I ∗Krs is the set of all available paths from origins to destinations.

Reviews of DTA models can be found in Boyce et al. (2001), Peeta and
Ziliaskopoulos (2001), Szeto and Lo (2005), Szeto andWong (2012), Jeihani (2007),
and Bliemer et al. (2017).

Algorithms to deal with DTA or DUE problems usually involve solving this vari-
ational inequality formulation. A wide variety of algorithms has been proposed:
from projection algorithms (Wu et al. 1991,1998a; b; Florian et al. 2001) or methods
of alternating directions (Lo and Szeto 2002) to various versions of the Method of
Successive Averages (MSA) (Tong and Wong 2000; Florian et al. 2002; Mahut et al.
2003a, b; Mahut et al. 2004; Varia and Dhingra 2004).

The computational approaches proposed to solve theDTAproblem can be broadly
classified into two classes: mathematical formulations, looking for analytical solu-
tions, and traffic simulation-based approaches, looking for approximate heuristic
solutions. Both fit the conceptual framework proposed by Florian et al. (2001) and
Florian et al. (2002), formalizing the relationships and dependencies between the
two main components identified (Fig. 7.1):

• Amethod to determine the path-dependent flow rates on the paths on the network,
usually applying any of the approaches mentioned above (MSA, projection
methods, etc.).

• A DNL method, which determines how these path flows give raise to time-
dependent arc volumes, arc travel times and path travel times.

Quite frequently, and basically in all practical implementations mentioned above,
DNLmethod is based on a mesoscopic simulation model (Barceló 2010a) emulating
the flow propagation through the network in the current conditions. Depending on
how the convergence criterion and the iterative process implemented, the resulting
assignment is a DTA or a DUE (see Chiu et al. 2011 for more details).
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Fig. 7.1 Conceptual algorithmic scheme for DTA

7.1.1 Determining the Path-Dependent Flow Rates by MSA:
Convergence Criterion to Equilibrium

If the convergence criteria are not met after one particular iteration of the conceptual
algorithmic scheme in Fig. 7.1., a new one is performed. In this new iteration, after
computing the newpotential paths once the link costs have beenupdated, the keypoint
is the determination of how the demand will be split among these paths, producing
the corresponding path flows. Carey and Ge (2012) or Han et al. (2019) provide a
comprehensive panoramic view of the many computational alternatives.

To illustrate these concepts, in this chapter we address the MSA method, one of
the most frequently used in practice to estimate the path-dependent flow rates to
solve (Eq. 7.5). MSA is a procedure that redistributes the flows among the available
paths in an iterative procedure that, at any iteration n, computes a new shortest path,
crs(t), from origin r to destination s at time interval t. Depending on crs(t) the path
flows update process is as follows:

If crs(t) /∈ Kn
rs(t)

xn+1
rsp (t) =

⎧
⎨

⎩

αn ∗ xn
rsp(t) if p ∈ Kn

rs(t)
∀r, s, t

(1 − αn) ∗ Xrs(t) if p = crs(t)

(7.6a)

Kn+1
rs (t) = Kn

rs(t) ∪ crs(t) (7.6b)

Otherwise if crs(t) ∈ Kn
rs(t)
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xn+1
rsp (t) =

⎧
⎪⎨

⎪⎩

αn ∗ xn
rsp(t) if p �= crs(t)

∀r, s, t
αn∗xn

rsp(t) + (1 − αn) ∗ Xrs(t) if p = crs(t)
(7.7a)

Kn+1
rs (t) = Kn

rs(t) (7.7b)

Depending on the values of the weighting coefficients αn, different MSA schemes
can be implemented (Carey and Ge 2012), probably being the most typical value
αn = n

n+1 . Many variants have been suggested. For example, Varia and Dhingra
(2004) propose a modified MSA algorithm where the weighting coefficient takes
into account a variable step length that depends on the current path travel times
(Eq. 7.8):

αn = λk ∗ [
exp

(−ttrsp(t)
)]

(n + 1) ∗
[∑

p ∗[exp
(−ttrsp(t)

)]] (7.8)

One of the potential computational drawbacks of these implementations of MSA
is the growing number of paths when dealing with large networks. To avoid this
in the case of DTA assignments, an alternative is to specify the maximum number
K of paths to keep for each OD pair. Several modified implementations have been
suggested to keep control of the number of paths in MSA algorithms (Peeta and
Mahmassani 1995; Sbayti et al. 2007). Interesting proposals are those in Mahut
et al. (2003a,2004; b). Possibly, one of the most computationally efficient is the
one proposed by Florian et al. (2002). This variant of the algorithm initializes the
process based on an incremental loading scheme that distributes the demand among
the available shortest paths. The process is repeated for a predetermined number of
iterations, after which no new paths are added and the corresponding fraction of the
demand is redistributed according to the MSA scheme. This modified MSA works
as follows:

Let K be the maximum number of iterations to compute new paths.

If n ≤ K
a new shortest path crs(t) /∈ Kn

rs(t) is found. Then,

xn+1
rsp (t) = 1

n + 1
∗ Xrs(t) ∀p ∈ Kn

rs(t),∀(r, s) ∈ I , t ∈ [0, T ] (7.9a)

Kn+1
rs (t) = Kn

rs(t) ∪ crs(t) (7.9b)

If n > K
the new shortest path is computed among the existing paths crs(t) ∈ Kn

rs(t). Then,
the set Kn

rs(t) does not change, Kn+1
rs (t) = Kn

rs(t), and
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xn+1
rsp (t) =

⎧
⎪⎨

⎪⎩

1
n+1 ∗ Xrs(t) if p �= crs(t)

∀p ∈ Kn
rs(t), ∀(r, s) ∈ I , t ∈ [0, T ]

n
n+1 ∗ xn

rsp(t) + 1
n+1 ∗ Xrs(t) if p = crs(t)

(7.10)

However, the possibility of repeating shortest paths from one iteration to the next
to keep a maximum K of different shortest paths in a proper implementation of the
algorithm implies a requirement: that the number of iterations n is defined for any
OD pair and time interval.

All the approaches for DUE based on simulation procedures for the network
loading process are, therefore, heuristic in nature. Thus, no formal proof of conver-
gence can be provided. However, a convergence criterion is necessary. In this context,
a way to empirically determine if the solution reached can be interpreted in terms of
a DUE, in the mentioned sense that “the actual travel time experienced by travelers
departing at the same time are equal and minimal”, can be based on an ad hoc version
of the Relative Gap Function proposed by Janson (1991):

Rgap(n) =
∑

t

∑
(r,s)∈I

∑
p∈Krs(t)

xn
rsp(t) ∗

[
ttn

rsp(t) − θn
rs(t)

]

∑
t

∑
(r,s)∈I Xrs(t) ∗ θn

rs(t)
(7.11)

where xn
rsp(t) is the flow on path p from r to s departing at time t at iteration n. The

difference ttn
rsp(t) − θn

rs(t) measures the excess cost experienced because of using a
path of cost ttn

rsp(t) instead of the shortest path, with cost θn
rs(t), at iteration n. The

ratio measures the total excess cost with respect to the total minimum cost if all
travelers would have used the shortest paths.

7.1.2 Dynamic Network Loading

Once the path flows have been estimated, the next step in the DTA determines how
these flows propagate across the network along the assigned paths. Thus, it yields
travel times as a function of flows and accounting for their temporal profiles (Xu
et al. 1999). The procedures to achieve this goal are precisely the DNL methods,
which have been, and still are, a fertile research domain. In fact, a wide variety of
DNL have been already proposed. Carey and Ge (2012) or Han et al. (2019) provide
comprehensive overviews about them. Some of these methods, for example, those
in Friesz et al. (1993), Wu et al. (1998b), or Xu et al. (1999), assume travel time

functions of the form ttij

(
xt

ij

)
= fij

(
xt

ij

)
, where fij

(
xt

ij

)
is the travel time function for

link (ij) that provides the travel time ttij to traverse the link as a function of xt
ij, i.e.,

the flow in link (ij) at time t.
However, most of the DNL currently used both in research as well as in the

professional practice are based on a mesoscopic modeling of traffic flow dynamics.
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This is a simplification that, while capturing the essentials of the dynamics, is less
data demanding and computationally more efficient than microscopic models, which
emulate the dynamics of traffic flows from the detailed dynamics of each vehicle.
Mesoscopic approaches sometimes combinemicroscopic aspects in a simplified way
(basically, they can deal with individual vehicles) with macroscopic aspects (e.g.,
those directly concerning the flow dynamics). There are two main approaches to
mesoscopic traffic simulation. First, those in which individual vehicles are not taken
into account, and vehicles are grouped into packages or multivehicle platoons that
move along the links. This is, for example, the case in CONTRAM (Leonard et al.
1989). Second, those in which flow dynamics are determined by simplified dynamics
of individual vehicles. DYNASMART (Jayakrisham et al. 1994), DYNAMIT (Ben-
Akiva et al. 1997, 2001,2002,2010), Dynameq (Mahut 2000; Florian et al. 2001,
2002; Mahut et al. 2003a, b, 2004; Mahut and Florian 2010), MEZZO (Burghout
2004; Burghout et al. 2005), or Aimsun (Casas et al. 2010) are well-known examples.

From a methodological point of view, the simulation approach of mesoscopic
modeling lays in the way it deals with time. The most common approaches are based
on synchronous timing, that is, time-oriented simulations in which time in the model
progresses according to an appropriately chosen time unit �t, also known as the
simulation step. This is the case of DYNASMART and DynaMIT. Other approaches
are asynchronous or event-based. That is, the state of the model changes when some
events occur. Thus, time advances in variable amounts. Dynameq and MEZZO are
examples of event-based mesoscopic traffic simulators.

One of the main phenomena determining the time evolution of traffic flows across
the network are vehicle queues and their backward propagation (or spillback). As the
finite-difference approximations to the fluid flow models in terms of the theory of
kinematic waves (LWR, Lighthill and Whitham 1955; Richards 1956), satisfactorily
reproduces that dynamics, it has been quite natural to use it to develop DNL models.
One of the firstwas theCell TransmissionModel (CTM)proposed byDaganzo (1994,
1995a), which has been extensively used by other authors (e.g., Lo and Szeto 2002;
Szeto and Lo 2004). This model assumes a triangular or trapezoidal flow-density
function. Daganzo (1995b) developed a second model similar to the CTM, in this
case a Finite-Difference Approximation Method (FDAM), which assumes a general
nonlinear flow-density function. This FDAM can be used for network loading in the
same way as the Cell Transmission Model for networks in Daganzo (1995a). These
basic models exhibit limitations, namely in the case of urban networks, since they
only account for flow dynamics in links. This means that they do not explicitly deal
with intersections and more in particular with signalized intersections, quite usual
in urban networks. In this context, Bellei et al. (2005) propose a DUE approach
that is an extension of the CTM. This approach, described theoretically in detail in
Gentile et al. (2007), is the basis for the General Link Transmission Model (GLTM),
which can deal with any concave fundamental diagram and node topology. The road
network is modeled in terms of an oriented graph G = (N , A), where N is the set
of nodes, each one representing an intersection and where links A, connecting two
intersections, converge or diverge. The forward and backward stars of each node
identify the set of links converging or diverging to/from it. The GTLM link model
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Fig. 7.2 Link model

provides the main input to the node model in terms of the incoming flows. The output
from the node model is the outflows that constitute the main input for the link model
(Gentile et al. 2010, 2015).

This modeling approach has also been used in many other developments that
model the link, explicitly or implicitly, splitting it into two parts: the running part
and the queueing part (Fig. 7.2). The running part is that where vehicles are not yet
delayed by the queue spillback at the downstream node, where the capacity is limited
by stop or give way signs, or traffic lights.

Nodes are modeled according to the interactions between traffic flows at intersec-
tions, as node transfer modules, or according to a queue server approach, explicitly
accounting for traffic lights and the delays that they cause (Mahmassani et al. 1994).
In this case, a simplified car-followingmodel compatiblewith themacroscopic speed-
density relationship on the link approximates the individual vehicle dynamics in the
running part. This speed is used to estimate the earliest time at which the target
vehicle could exit the link, unless it is affected by the queue spillback when reaching
the border between the running part and the queueing part. Vehicle dynamics are then
ruled by the queue discharging process. The boundary between the running part and
the queueing part is dynamic, according to the queue spillback and queue discharge
processes.

Various solutions have been proposed for simulating flow dynamics in the link
running part in a simplified way. In essence, they solve the continuity equation of
traffic flow:

∂q

∂x
+ ∂k

∂t
= g(x, t) (7.12)

q(x, t) = k(x, t) ∗ u(x, t) (7.13)

Link densities are determined by solving the finite differences form of the conti-
nuity Eq. (7.12). This can be done using a suitable approach, as, for example, CTM
or GTLM, and a functional form (7.13) of the fundamental diagram, where q(x, t)
is the flow, k(x, t) the density, u(x, t) the spatial speed and g(x, t) a flow generation
term, all of them at time t in x. Jayakrisham et al. (1994) solve these equations in
DYNASMART given the densities and the in- and outflows for each section at each
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time step and assuming that section speeds are calculated from the densities using
the modified Greenshields (1934) speed-density relationship (Eq. 7.14):

ut
i = (

uf − u0
) ∗

(
1 − kt

i

kjam

)α

+ u0 (7.14)

where ut
i and kt

i are, respectively, themean speed and density in section i at time step t,
uf and u0 are the mean free speed and the minimum speed, kjam is the jam density and
α is a parameter that captures speed sensitivity to density. DYNAMIT (Ben-Akiva
et al. 2001, 2010) includes a speed-density relationship (7.15) that generalizes the
one proposed by May and Keller (1967) including a lower bound limiting density,
kmin, and a second parameter β to capture speed sensitivity to concentration:

u =
{

uf if k < kmin

uf ∗
[
1 −

(
k−kmin

kjam

)α]β

otherwise
(7.15)

More in particular, the link speed is modeled assuming that it is constant on
the upstream section of the link, changes along a deceleration zone covering a
downstream section, and varies linearly as a function of the position in this section.
According to this assumption, vu is the speed at the upstream end of the link and
the one that is a function of the average density on its running part. That is, vu is
determined by Eq. 7.15. For their part, vd is the speed at the downstream end of the
segment and Ls is the length of the deceleration zone. Ls depends on the geometry
of the segment and on traffic conditions. Ben-Akiva et al. (2001) propose a way to
determine Ls that is consistent with the empirical evidence that the majority of delays
are related to queuing. Finally, assuming that the target link starts at position 0 and
ends at position L (i.e., L is the length of the segment), the speed function at an
intermediate point x in the segment can be written as follows (Eqs. 7.16 and 7.17):

v(x) =
{

vd if 0 ≤ x ≤ L − Ls

λ ∗ (x ∗ L) + vd if L − Ls ≤ x ≤ L
(7.16)

where

λ = vd − vu

Ls
(7.17)

Other models like MEZZO (Burghout 2004; Burghout et al. 2005) complement
this approach according to empirical evidence establishing that there are two limiting
densities kmin and kmax, which delimit the range in which speed is still a function of
the density (del Castillo and Benitez 1995; Eq. 7.18):
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u =

⎧
⎪⎨

⎪⎩

uf if k < kmin

u0 + (
uf − u0

) ∗
[
1 −

(
k−kmin

kmax−kmin

)α]β

if k ∈ [kmin, kmax]

umin if k > kkmax

(7.18)

umin is the minimum speed in congested conditions. Various queueing models have
been proposed to calculate the waiting times in the queuing part of the link. That is,
the delays incurred by vehicles because of the output and acceptance capacities of the
links. These, respectively, determine the rate at which vehicles can leave the link and
how many vehicles can enter it depending on the available space. Obviously, when
the acceptance capacity of a link is zero no more vehicles can enter the segment and
spillbacks occur. A good example that illustrates this idea is the simplified model
in DynaMIT (Ben-Akiva et al. 2001), which considers that the delay of the i − th
vehicle in the queue is given by Eq. 7.19:

i

ρ
(7.19)

where ρ is the output capacity of the link. Then, during a time period of length t,
ρ ∗ t vehicles will leave the queue. A vehicle in the running part that at time t reaches
the end of the queue will find it at lq(t), length of queue at time t, given by

lq(t) = lq0 + leff ∗ (ρ ∗ t − m) (7.20)

In Eq. 7.20, lq0 is the position of the end of the queue at time t = 0, leff is the
effective length of the queue (i.e., the physical length plus headways), and m is the
number of vehicles that reached the queue before the considered vehicle. Obviously,
the model is relevant only when 0 < lq(t) < L.

A completely different approach is taken in Dynameq (Mahut and Florian 2010).
It is based on a simulation model that moves vehicles individually, according to a
simplified car-following model. In this model, given two consecutive vehicles, the
leader vehicle n and the follower n + 1, the position xn+1(t) of the follower at time t
relative to the position of the leader at xn(t − T ) is estimated according to Eq. 7.21:

xn+1(t) = Min
[
xn+1(t − ε) + εuf , xn(t − T ) − leff

]
(7.21)

whereT is the reaction time,uf the free-flowspeed, leff , as before, the effective vehicle
length and ε an arbitrary short time interval. The first term inside the minimizing
operator represents the farthest position downstream that can be attained at time t
based on the follower’s position at time (t − ε), as constrained by the maximum
speed of the vehicle, uf . The second term inside this operator represents the farthest
position downstream that can be attained based on the trajectory of the next vehicle
downstream in the same lane, according to a simple collision-avoidance rule (Mahut
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1999, 2001; Newell 2002). It is a simplified model that only depends on the free-
flow speed and does not account for accelerations. It can be considered a lower-order
model, since it only defines the position of each vehicle in time, rather than vehicle
speed or acceleration.

The solution of the car-following relationship (Eq. 7.21) for time results in
(Eq. 7.22):

tn+1(x) = Max

[
tn+1(x − δ) + δ

uf
, tn(x + leff) + T

]
(7.22)

This relationship in Eq. 7.22 enables the event-based simulation approach used
in Dynameq, because it is possible to derive the following expression in Eq. 7.23. It
calculates the link entrance and exit times for each vehicle:

tn+1(L1) = Max

⎡

⎣tn+1(0) + L1
u1f

, tn(L1) + T + leff

min
[
u1f , u2f

] , tn+L2/leff
(L2) + L2

leff
∗ T

⎤

⎦ (7.23)

where L1 and L2 are the lengths of two sequential links with speeds u1
f and u2

f ,
respectively. The vehicle attributes represented by leff and T are considered identical
over the entire traffic stream, and each vehicle adopts the link-specific free-flow
speed when traversing a given link. The link lengths are assumed to be integer
multiples of the vehicle length, leff . It can be shown (Mahut 2000) that this model
yields the triangular fundamental flow-density diagram (Daganzo 1994). The main
events changing the state of the model are the arrivals of vehicles to links, their link
departures or transfers from one link to the next, according to the turning movements
at intersections.

This one-lane link model can be extended to multilane links, including lane
changing decisions and additional terms to (7.23) to account for conflicts at nodes
with multiple outgoing links. Details can be found in Florian et al. (2008), Mahut
and Florian (2010).

The summary description of the most common DTA and DUE included in this
section has shown how they can provide TMS with useful information. On the one
hand, with the inputs allowing them to estimate the network traffic state. On the
other hand (and what is even more relevant), with the necessary outputs to predict
traffic flows and travel times on road networks.Moreover, this prediction accounts for
their evolution over time because of various factors, being one of them particularly
relevant: the time variation of the demand. The main pending question at this point
is how to provide this time variation of the traffic demand that constitutes the main
input to DTA or DUE. In other words, how to estimate OD-matrices.
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7.2 The Static Formulation of the OD-Estimation Problem

Traffic assignment models aim at estimating traffic flows in the network assigning
a trip OD-matrix to it, in terms of a route choice mechanism. Therefore, OD trip
matrices become their major data input to describe the patterns of traffic behavior
across this network. All formulations of static traffic assignmentmodels (e.g., Florian
and Hearn 1995), as well as the dynamic ones (e.g., Ben-Akiva et al. 2001), assume
that a reliable estimate of an OD is available. However, OD-matrices are not directly
observable yet, especially in the case of the time-dependent OD-matrices that are
necessary for DTA models. Consequently, it has been natural to resort to indirect
estimationmethods. These are thematrix adjustmentmethods, whosemainmodeling
hypothesis can be stated as follows: “if traffic flows in the links of a network are the
consequence of the assignment of an OD matrix to a network, and if we are capable
of measuring link flows, the problem of estimating the OD matrix that generates such
flows can be considered as the inverse of the assignment problem” (Cascetta 2001).
In other words, the traffic assignment problem is defined as the direct problem, i.e.,
“given the O/D matrix X and the cost conditions for using links on the road network,
the user equilibrium assignment problem estimates the user equilibrium flows Y on
the links of the road network” (Eq. 7.24):

Y = Assignmt(X ) (7.24)

where Y is the set of all link flows, X is the OD-matrix, and Assignmt is an equilib-
rium assignment algorithm assigning theOD-matrixX to the network. The reciprocal
problem would be that of estimating, from the observed link flows yl , the OD-matrix
X that originated them. In other words, the reciprocal problem of traffic assign-
ment, as described by Cascetta (2001), consists in “assuming that the observed flows
yl on a subset L

∧

⊆ Lof links in the network (or in all links) constitute an user
equilibrium flow pattern as defined by Wardrop (1952), determining the OD matrix
X whose assignment would produce the observed flows yl”. Formally, this implies
that (Eq. 7.25)

X = Assignmt−1(Y ) (7.25)

Since the earlier formulation proposed by van Zuylen and Willumsen (1980),
the matrix adjustment problem has been a relevant research and practical problem.
Given a road network G = {L, N }, with a set of links L, a set of nodes N ,
and a set I of OD pairs, the OD-matrix estimation problem consists in finding
a feasible vector (OD-matrix) X ∈ �, where � is the set of all feasible OD-
matrices. For their part X = {Xi}, i ∈ I , are the demands for all OD pairs, being
I = {setofallODpairsinthenetwork}. (r, s), as introduced in Sect. 7.1, stands for the
i − th OD pair. The assignment of the OD-matrix explains the observed flows yl

on a subset L
∧

⊆ L of links equipped with counting stations. It is usually accepted
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Fig. 7.3 Possible link-path relationships

that the assignment of the OD-matrix to the links of the network is made according
to an assignment proportion matrix P = {pil},∀i ∈ I ,∀l ∈ L, where each element
pil in the matrix is defined as the proportion of the OD demand Xi that uses link l.
The notation P = P(X ) remarks that, in general, these proportions depend on the
demand.

The hypotheses supporting the approach are illustrated in Fig. 7.3, which depicts
possible positions of a hypothetical detector at a link l.

Let yl be the flow measured by one detector and hk the flow on path k to which
this link belongs. If ϕik is the fraction of the demand of the ith OD pair Xi, the flow
hk is given by Eq. 7.26:

hk = ϕik ∗ Xi (7.26)

δlk is the link-path assignment matrix, taking the following values (Eq. 7.27):

δlk =
{
1 if link l belongs to path k : l ∈ Path k
0 otherwise

∀l ∈ L, k ∈ Ki, i ∈ I (7.27)

where Ki = {Set of all paths connecting the ith OD pair}. The relationship
between the measured flow yl on link l and the flows hk on the paths using link
l is given by Eqs. 7.28 and 7.29:

yl =
∑

i∈I

∑

k∈Ki

hk ∗ δlk =
∑

i∈I

∑

k∈Ki

ϕik ∗ δlk∗X i =
∑

i∈I

pil ∗ Xi (7.28)

pil =
∑

k∈Ki

ϕik∗δlk (7.29)

When assigned to the network, the OD-matrix induces a flow Y = {yl},∀l ∈ L in
its links. If we assume that observed flows Y

∧

= {yl} are available for a subset L
∧

of
the links, l ∈ L

∧

⊆ L, and that a target matrix X H ∈ � is also available, the generic
OD-matrix estimation problem can be formulated (Lundgren and Peterson 2008) as
(Eq. 7.30):
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MinXY (X , Y ) = w1 ∗ F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)

s.t.
∑

i∈I

pil
(
X H

)∗X i = y
∧

l,∀l ∈ L
∧

(7.30)

X ∈ �

The functions F1
(
X , X H

)
and F2

(
Y , Y

∧)
, respectively, represent generalized

distance measures. The first one that between the estimated OD-matrix X and the
given target matrix X H , and the second one between the estimated link flows Y and
the observed link flows Y

∧

. The parameters w1 and w2 reflect the relative belief (or
uncertainty) in the information contained in X H and Y

∧

. The problem expressed in
Eq. 7.30 can be interpreted as a two-objective optimization problem, being precisely
these objectives F1 and F2, whereas w1 and w2 are the corresponding weighting
factors.

The set � of feasible OD-matrices normally includes the non-negative OD-
matrices. However, it can also be limited to those matrices within a certain deviation
from the target values (Eq. 7.31), i.e.,

� = {
X ≥ 0

∣∣(1 − α) ∗ X H ≤ X ≤ (1 + α)∗X H
}

(7.31)

for some suitable parameter α > 0 stating the tolerance level. An analogous
formulation can be used to state, instead, a maximum deviation from the link flow
observations with a tolerance parameter β > 0 (Eq. 7.32):

� = {
X ≥ 0|(1 − β)∗y

∧

l ≤ yl ≤ (1 + β) ∗ y
∧

l

}
(7.32)

Another possibility is to restrict the total travel demand in all OD pairs originating
or terminating at a certain node. This is the four-step demand model (Ortúzar and
Willunsen 2011), which makes an adjustment of the trip distribution with respect to
the trip generation. In any case, all these constraints on � are linear or convex and
can be easily handled from the optimization point of view.

Obviously, the resulting OD-matrix is dependent on the objective function mini-
mized in (7.30), that is, on the distance measure chosen. One of the distances
initially proposed, probably as an analogy with the trip distribution problem, was
the maximum entropy function. It was derived from the principle of minimum
information (van Zuylen and Willumsen 1980) and is expressed as in Eq. 7.33:

F1
(
X , X H

) =
∑

i∈I

Xi ∗
{
log

Xi

X H
i

− 1

}
(7.33)

The function F2 in (7.30) can be formulated in a similar way.
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A type of objective function that is becoming very used in these models is
the one based on the least squares formulation. This is equivalent to assume a
Euclidean distance function between observed and estimated variables. For example,
the function F2 for the observed volumes would correspond to Eq. 7.34:

F2

(
Y , Y

∧)
=

∑

l∈L
∧

(
yl − y

∧

l

)2
(7.34)

and could be weighted using the information on the significance of each observation.
For instance, when the measurements contained in y are computed as means from
a set of observations for each link, the variance σ 2

l can be used as a measure on
how important each link observation is. Equation 7.34 would be then reformulated
as Eq. 7.35:

F2

(
Y , Y

∧)
=

∑

l∈L
∧

1

σ 2
l

∗ (
yl − y

∧

l

)2
(7.35)

One disadvantage of the entropymaximizing approaches as formulated in Eq. 7.33
lies in the treatment of link flow observations as error-free constraints (Bell and Iida
1997). An attempt to overcome this disadvantage consists in using a generalized
least squares approach to provide a framework accounting for errors from various
sources. The method, first proposed by Cascetta (1984), also yields standard errors
for the trip table, thereby indicating the relative robustness of the fitted values. The
equivalent problem, assuming that the weighting factors w1 and w2 have the same
value, takes the following form (Eq. 7.36):

MinX F(X ) = 1

2
∗
[(

X − X H
)T ∗(X H

C

)−1 ∗ (
X − X H

)]

+ 1

2
∗
[(

Y
∧

− P
(
X H

) ∗ X
)T ∗ (YC)−1 ∗

(
Y
∧

− P
(
X H

) ∗ X
)]

(7.36)

The inputs are prior estimates of OD flows, X H , link flow measurements, Y
∧

,
variance–covariance matrices of the prior estimates and link flow measurements,
respectively,X H

C andYC and thematrix of link choice proportionsP(X H ).As the vari-
ance–covariance matrices are positive definite and the objective function is convex,
the minimum is uniquely given by (Eq. 7.37):

∇F
(
X ∗, Y ∗) = (

X H
C

)−1 ∗ (
X ∗ − X H

)

− PT
(
X H

) ∗ (YC)−1 ∗
(

Y
∧

− P
(
X H

)∗X ∗
)

= 0 (7.37)

This yields the following linear estimator (Eq. 7.38):
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X ∗ =
[(

X H
C

)−1 + PT
(
X H

) ∗ (YC)−1 ∗ P
(
X H

)]−1

∗
[(

X H
C

)−1 ∗ X H + PT
(
X H

) ∗ (YC)−1 ∗ Ŷ
]

(7.38)

For their part, the sensitivities of this factor are given by Eq. 7.39:

�X ∗ =
[(

X H
C

)−1 + PT
(
X H

) ∗ (YC)−1 ∗ P
(
X H

)]−1

∗
[(

X H
C

)−1 ∗ �X H + PT
(
X H

) ∗ (YC)−1 ∗ �Ŷ
]

(7.39)

Additionally, taking into account that X H and y are uncorrelated and assuming

that E =
[(

X H
C

)−1 + PT
(
X H

) ∗ (YC)−1 ∗ P
(
X H

)]−1
, the variance of X ∗ is given by

Eq. 7.40:

Var
{
X ∗} = E

(
X H

C

)−1 ∗ E + E∗PT
(
X H

)∗(YC)−1 ∗ P
(
X H

) ∗ E (7.40)

Unlike the maximum entropy model, there is nothing to prevent negative fitted
values for the OD flows being produced by the generalized least squares estimator.
While negative valueswould reflect small real values, they are nonetheless counterin-
tuitive. Bell (1991) has also considered the introduction of non-negativity constraints
for the fitted OD-matrix.

7.3 Bi-level Optimization Models for OD Adjustment

The estimation of OD-matrices from observed flows as the reciprocal of the assign-
ment problem is a highly undetermined problem. That is, there are in general many
OD-matrices, which, when assigned to the network, induce equivalent link flows.
The objective function and the set of constraints in the formulation of the problem
are aimed at reducing this indetermination. However, this simple formulation can
still have some drawbacks. The set of constraints in the generic problem formulation
(Eq. 7.30) to determine X is expressed by Eq. 7.41:

∑

i∈I

pil
(
X H

) ∗ Xi = y
∧

l,∀l ∈ L
∧

(7.41)

s.t. X ∈ �

It consists of one equation for every link flow observation. Thus, it is an unde-
termined equation system, as long as the number of OD pairs |I | is greater than the

number of link flow observations
∣∣∣L
∧
∣∣∣. This fact is especially true for large real-world

networks. Additionally, the information transferred through the equation system is
delimited by topological dependencies. A basic principle in network flows is that,
for consistent flows, the balance equations must hold. In other words, the sum of



218 J. Barceló et al.

incoming and outgoing flows at any intermediate node must be zero. This principle,
which can also be interpreted in physical terms using Kirchhoff’s law, means that,
for each intersection, at least one link flow is linearly dependent from the others.
This results in a row-wise dependency for the equation system.

On the other hand, the elements pil
(
X H

)
are non-zero because they are part of one

or more shortest paths for OD pairs i ∈ I . However, since every subpath of a shortest
path is a shortest path, every pair of nodes along a certain shortest path is connected
through parts of this shortest path. This results in a column-wise dependency for
the equation system. Thus, we can conclude that the equation system (Eq. 7.31) is
most likely not fully ranked, which further increases the freedom of choice for the
OD-estimation problem. Therefore, the way of determining pil

(
X H

)
is crucial for

the quality of the OD-matrix estimation model. This is usually done depending on
how the assignment matrix P(X H ) is calculated, and whether it is dependent of X
or not. In other words, if the route choices are made depending on the congestion
or not. If the assignment of the OD-matrix to the network is independent of the link
flows, that is, if we have an uncongested network,P

(
X H

) = P is a constant matrix.
In that case, the first set of constraints in Eq. 7.41 can be reformulated as in Eq. 7.42:

∑

i∈I

pil∗X i = y
∧

i ∀l ∈ L
∧

(7.42)

s.t. X ∈ �

In addition, this substitution can be directly performed in the objective, i.e., in the

function F2

(
Y , Y

∧)
, which reduces the OD-matrix estimation to a problem only in

the variable X . Assuming that the deviation measures F1 and F2 are convex and that
the set of feasible OD-matrices � is linear or, at least, convex, the OD-estimation
problem can be easily solved with some suitable standard algorithms for nonlinear
programming. This is the usual approach in most cases (van Zuylen and Willumsen
1980). However:

The assumption that the assignment, i.e., the route choice, is independent of the load on the
links is only realistic in a network with a very low congestion rate or in networks where, in
practice, only one route can be used.

If we assume that the network is congested and that the routes are chosen
depending on the current travel times, the route proportions are in turn dependent on
the existing traffic situation. For its part, this situation depends on the OD-matrix.
Thus, the relationship between the route proportions P and the OD-matrix X can
only be defined implicitly. In this case, a plausible hypothesis is to assume that the
choice proportions can be derived from a traffic assignment model. Then, the set of
feasible solutions to the estimation problem (Eq. 7.30) is defined as all points (X , Y )

in which Y is the link flow solution satisfying an assignment of the corresponding
demand X ∈ �. In this case, the generic OD-matrix estimation problem (Eq. 7.30)
can be reformulated as a bi-level optimization problem. Bell and Iida (1997) propose
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an approach based on the hypothesis that a traffic assignment model can be repre-
sented by a function whose input is the OD-matrix X and whose outputs are the link
flows Y (Eq. 7.43)

Y = A(X ) ∗ X (7.43)

That is simply a reformulation of the direct assignment problem as defined in
Sect. 7.2, in which, given the OD-matrix X , it is possible to find the link flows y

∧

. The
reciprocal problem of finding X given y (Eq. 7.25) is not possible, since the inverse
of this function does not exist. However, a way of accounting for this functional
relationship in the OD-estimation process could be to reformulate the least squares
formulation including it explicitly in the model (Eq. 7.44):

MinimizeX F(X ) = 1

2
∗ (

X − X H
)T ∗ (

X H
C

)−1 ∗ (
X − X H

)

+ 1

2
∗ [

y − A(X ) ∗ X
]T ∗ (YC)−1 ∗

[
Ŷ − A(X ) ∗ X

]
(7.44)

If the assignment function (Eq. 7.73) is differentiable, then (Eq. 7.45):

∇F(X ) = (
X H

C

)−1 ∗ (
X − X H

) − ∇A(X )T ∗(YC)−1 ∗
[
Y
∧

− A(X ) ∗ X
]

(7.45)

And if the Jacobian of the assignment function∇A(X ) is independent of X H , then
(Eq. 7.46):

∇2F(X ) = (
X H

C

)−1 + ∇A(X )∗(YC)−1 ∗ ∇A(X ) (7.46)

∇2F(X ) is positive definite, since X H
C and YC are variance–covariance matrices,

and there is a unique solution to the equivalent optimization problem. Yang (1995)
proposes an efficient heuristic approach to solve this bi-level problem.

However, as Florian andChen (1995) probe, the assignment function is usually not
differentiable. Therefore, analytical approaches are of limited usefulness, since they
are constrained to simple uncongested cases. Consequently, other formulations have
been proposed. The most common formulation of the bi-level OD-matrix estimation
problem for the general case is that Eqs. 7.47 and 7.48, respectively, referred to the
upper level and to the lower level problem. Equation 7.47 is as follows:

MinX F(X , Y ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
(7.47)

s.t. X ∈ �

We want to find the X that minimizes F(X , Y ) subject to X ∈ � under the
hypothesis that the induced linkflow y

∧

satisfies the equilibriumassignment conditions
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obtained by solving Eq. 7.48, that is, the lower level problem:

Y (X ) = argmin
∑

l∈L

yl∫

0

sl(x)dx

s.t.
∑

k∈Ki

hk = Xi,∀i ∈ I (7.48)

hk ≥ 0∀k ∈ Ki,∀i ∈ I

yl =
∑

i∈I

∑

k∈Ki

δlk∗hk ,∀l ∈ L

The algorithm for this OD adjustment method based on a bi-level optimization
process can be viewed as the calculation of a sequence of OD-matrices, so that the
least squares error between traffic counts coming from detectors and traffic flows
obtained by a traffic assignment is increasingly reduced. The estimation of the OD-
matrix requires information about the routes used for the trips contained in the OD-
matrix, Xrs. Particularly, it requires the definition of the route and the trip proportions
relative to the total tripsXrs originated at zone r and ending at zone s. This information
is difficult both to handle and to store in traffic databases, considering that the number
of routes connecting all OD pairs on a connected network can grow exponentially
with the size of the network. This is the reason to use a mathematical programming
approach based on a traffic assignment algorithm, which is solved at each iteration
without requiring the explicit route definition. The algorithmic scheme to numerically
solve the bi-level formulation of the OD-matrix adjustment problem is illustrated
in the conceptual diagram in Fig. 7.4. The solution at the k − th iteration of the
upper level nonlinear optimization problem for the current estimates of the link

flows, Y
∧k

, provides a new estimate X k of the OD-matrix, which is the input to the
lower level equilibrium assignment problem. In turn, the solution to this lower level
problem updates the link flow estimates. The iterative process continues until certain
convergence criterion is satisfied.

One of the first operational approaches of the bi-level algorithm was the one
proposed by Spiess (1990), whose bi-level optimization adjustment procedure solves
the following bi-level nonlinear optimization problem (Eqs. 7.49 and 7.50):

Min F[Y (X )] = 1

2
∗

⎧
⎪⎨

⎪⎩

∑

l∈L
∧

[
yl(X ) − y

∧

l

]2

⎫
⎪⎬

⎪⎭
(7.49)

Y (X ) = argmin
∑

l∈L

yl∫

0

sl(x)dx (7.50)



7 Data Analytics and Models for Understanding and Predicting … 221

Fig. 7.4 Algorithmic
scheme for the bi-level
approach to the OD
adjustment problem

s.t.
∑

k∈Ki

hk = Xi,∀i ∈ I

hk ≥ 0∀k ∈ Ki,∀i ∈ I

yl =
∑

i∈I

∑

k∈Ki

δlk ∗ hk =
∑

i∈I

Xi

∑

k∈Ki

δlk ∗ pk , pk = hk

Xi
∀l ∈ L

where yl(X ) is the flow on link l estimated by the lower level traffic assignment
problem with the adjusted trip matrix X , hk is the flow on the k − th path for the
i − th O-D pair and y

∧

l is the measured flow on link l. I is the set of all OD pairs
in the network, and Ki is the set of paths connecting the i − th O-D pair. sl(yl) is
the volume-delay function for link l ∈ L. The algorithm used to solve the problem
is heuristic in nature, of steepest descent type, and does not guarantee that a global
optimum of the problem will be found. The iterative process for a generic iteration
k is as follows:

• Given a solution X k
i , an equilibrium assignment is solved, yielding link flows yk

l
and proportions

{
pk

il

}
satisfying the relationship in Eq. 7.51:

yk
l =

∑

i∈I

pk
il∗X k

i ∀l ∈ L (7.51)

The target matrix is used in the first iteration (i.e., X 1
i = X H

i ,∀i ∈ I ).
• The estimate of the OD-matrix at iteration k + 1 is calculated in terms of the

gradient of the objective function F[Y (X )] with Eq. 7.52:
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X k+1
i =

⎧
⎨

⎩

Xi for k = 0

X k
i ∗

[
1 − λk ∗

(
∂F[Y (X )]

∂Xi

)

X k
i

]
for k = 1, 2, 3 . . .

(7.52)

That is, a change in the demand is proportional to the demand in the initial matrix
and zeroes are preserved in the process.

• The gradient is approximated as in Eq. 7.53:

∂F[Y (X )]

∂Xi
=

∑

k∈Ki

pk

∑

l∈L
∧

δlk ∗ (
y
∧

l − yl
) ∀i ∈ I (7.53)

where L
∧

⊂ is the subset of links with flow counts and pk = hk
Xi
.

• The step length is approximated as in Eq. 7.54 and 7.55:

λ∗ =
∑

l∈L
∧ y

′
l ∗ (

y
∧

l − yl
)

∑
l∈L

∧

(
y

′
l

)2 (7.54)

where

y
′
l = −

∑

i∈I

Xi ∗
⎛

⎜
⎝
∑

k∈Ki

pk

∑

l∈L
∧

δlk ∗ (
y
∧

l − yl
)

⎞

⎟
⎠ ∗

⎛

⎝
∑

k∈Ki

δlk ∗ pk

⎞

⎠ (7.55)

To ensure the convergence the step length must satisfy the condition in Eq. 7.56:

λ∗ ∂F[Y (X )]

∂Xi
< 1 ∀i ∈ I (7.56)

If the condition is violated for some I , the step lengthmust be bounded accordingly
(Eq. 7.57):

λ∗ = 1

max
i

{
∂F[Y (X )]

∂Xi

} + ε (7.57)

where ε is added to avoid numerical errors.

Further details on the algorithmic properties of this approach are available in Florian
andChen (1995). Alternative approaches improving the simplified gradient approach
canbe found inCodina andBarceló (2004) andLundgren andPeterson (2008), among
others.

In summary, the most common practices consist in using an initial OD estimate,
the OD seed X H as input, and adjusting it. This adjustment is done based on the
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available link counts y provided by an existing layout of traffic counting stations
and on other additional information, whenever it is available. Adjustments can be
considered as indirect estimation methods based on optimization approaches. All of
them share two fundamental modeling hypotheses:

• A mapping scheme of OD flows-link flow counts is available
• If L is the set of links in the network, flow detectors are only located in a subset

L
∧

⊂ L, from which link flow measurements y
∧

l , l ∈ L
∧

are available.

Assuming these hypotheses, a bi-level optimizationmodel can be proposed,which
is usually solved by computational schemes like the one conceptually depicted in
Fig. 7.4. That is, iterating between an upper and a lower level. Again, the upper
level solves a nonlinear optimization problem that minimizes the distance between
available empirical evidence (i.e., a target OD-matrix X H and observed flows Y

∧

in a
subset of links) and the estimations provided by the algorithm, while the lower level
solves aUser Equilibrium Traffic Assignment (UETA). The solution to the upper level
nonlinear optimization problem provides new estimates of the OD-matrix, which
constitute the input to the lower level assignment problem. In turn, the solution to
this latter problem provides new estimates of link flows. This computational scheme
is in fact a computational framework from which multiple algorithmic variants to
solve the problem, both at the upper and at the lower level, can be derived.

The second modeling hypothesis strongly depends on the detection layout avail-
able in the network. Unfortunately, they are usually designed and implemented with
the primary purpose of providing the data required by traffic control applications.
Therefore, current detection layouts in traffic networks are not appropriate for the
reconstruction of OD-matrices, as they do not take into account the OD pattern struc-
ture explicitly. This could represent a serious drawback regarding the quality of the
OD reconstruction, since it has been observed in practice that the adjustment proce-
dure can act implicitly as ametaregressionmodel. That is, it would fit quite well those
parts of the networkwith a relatively rich detection infrastructure (in fact overfit them
ismost cases), while completely distorting other parts of the networkwhere detection
is sparse. This would generate an unbalancing process moving trips between parts of
the network, depending on the numerical requirements of the process, but completely
unrelated to the underlying transportation phenomena modeled by the OD pattern. In
this context, the objective of identifying a detection layout that optimizes the coverage
of origin–destination demand on the road network while minimizing the uncertain-
ties of the estimated OD is a subsidiary prior requirement. Since the seminal work
of Yang and Zhou (1998), the problem has received substantial attention in recent
years, being Ehlert et al. (2006), Fei et al. (2007) just example references. Castillo
et al. (2008), who formulate the problem from the perspective of the observability
of systems being a sine qua non condition for their state estimation and forecasting,
must be highlighted. Larsson et al. (2010) provide an overview of the pros and cons
of various approaches, and Barceló et al. (2012) complement the detection layout
models with a sensitivity analysis, enabling the analyst to establish a relationship
between the quality of the layout and the quality of the OD pattern reconstruction.
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In consequence, for the practice of the matrix adjustment, it is not only relevant the mathe-
matical modeling approach to be used but it is also highly recommendable to pay attention
to the detection layout whose measurements are going to be used for the adjustment of an
OD matrix.

7.4 Analytical Formulations for the Dynamic OD Matrix
Estimation (DODME) Problem

The static bi-level optimization OD adjustment problem can be reformulated as
(Eqs. 7.58 and 7.59):

Min Z(X , Y ) = w1∗F1
(
X , X H

) + w2 ∗ F2

(
Y , Y

∧)
(7.58)

s.t. Y = Assignmt(X ) (7.59)

X ≥ 0

where F1 and F2, as before, are suitable distance functions between estimated and
observed values, while w1 and w2 are weighting factors reflecting the uncertainty
of the information contained in X H and Y

∧

, respectively. The underlying hypothesis
is that Y (X ) are the link flows predicted by assigning the demand matrix X to the
network, which can be expressed by a proportion of the OD demand flows passing
through the count location at a certain link. In terms of the assignment matrix A(X ),
the proportion of OD flow that contributes to a certain link traffic count is (Eq. 7.60):

Y = A(X ) ∗ X (7.60)

This is a bi-level optimization problem that solves (at the upper level) the nonlinear
optimization problem by substituting the estimated flows Y in the objective function
(Eq. 7.59) using the relationship in Eq. 7.60. Thus, it results in (Eq. 7.61):

Min Z(X , Y ) = w1 ∗ F1
(
X , X H

) + w2∗F2

(
A(X ) ∗ X , Y

∧)
(7.61)

s.t. X ≥ 0

To estimate a new assignment matrix X while at the lower level, a Static User
EquilibriumAssignment is used to solve the assignment problem Y = Assignmt(X ),
i.e., to estimate the assignment matrix A(X ) induced by the new X . Spiess (1990)
is a good example of a seminal model based on this approach. Static models have
made wide use of the analytical approaches that include flow counts as complemen-
tary information to reduce indeterminacy when solving the minimization problem
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(Eq. 7.61), as in Codina and Montero (2006), Lundgren and Peterson (2008), and
Spiess (1990). The various algorithmic approaches to numerically solve the problem
look for algorithmic efficiency, convergence properties, and stability. However, since
they are static, they are supported by static assignment models.

In this context, some researchers as Frederix et al. (2011), Lundgren and Peterson
(2008), Toledo andKolechkina (2013), or Yang et al. (2017) drew attention to the role
played by the quality of the assignment matrix, which results from the lower level
assignment process when estimating the flows used in the upper level. Therefore,
they proposed either analytical or empirical approaches for improving it. The analyt-
ical approaches assume a functional dependency that allows for a Taylor expansion
around the current solution. While some authors like Lundgren and Peterson (2008)
still derive the expansion from a static traffic assignment, others like Frederix et al.
(2013) or Toledo and Kolechkina (2013) propose a dynamic traffic assignment to
account for time dependencies. The approaches based on the hypothesis of linear
relationships may be invalid when congestions build up in the network, resulting in
non-linearities. The dynamic assignmentwould bemore appropriate forworkingwith
congestion building processes that would be captured by the analytical expansion
of the dynamic assignment matrix. Frederix et al. (2013) offer a relevant theoretical
contribution, while Toledo and Kolechkina (2013) provide more insights to apply it
to large networks.

A simpler approach is the modification of the Spiess procedure performed by
Ros-Roca et al. (2020). They used, on the one hand, a first-order approach to the
assignment matrix that is provided by replacing the static assignment at the lower
level by a dynamic traffic assignment. On the other hand, an ad hoc reformulation
of the analytical calculation of the gradient that is suitable for a straightforward
calculation of the step length at each iteration.

The following notation is used for the dynamic analytical extension from this
point until the end of the chapter:

• I is the set of OD pairs.
• T = {1, . . . , T } is the set of time intervals.
• L is the set of links in the network. L

∧

⊆ L is the subset of links that have sensors.
• y

∧

l,t are the measured flow counts at link l during time period t. yl,t are the corre-

sponding simulatedflowcounts,∀l ∈ L
∧

⊆ L and∀t ∈ T .Y = (
yl,t

)
andY

∧

= (
y
∧

l,t

)

are the link flow counts in vector form.
• xn,r are the OD flows for n − th OD pairs departing during time period r, ∀n ∈ I

and ∀r ∈ T .X = (
xn,r

)
are the OD flows in vector form.

• al,t
n,r is the flow proportion of the n − th OD pair, n ∈ I , departing at time period

r ∈ T and captured by link l ∈ L
∧

at time period t ∈ T . A = [
al,t

n,r

]
is the

assignment matrix.

Given a network with a set of links L, a set I of OD pairs, and the set of time periods
T , the goal of the dynamic OD-matrix estimation problem is to find a feasible vector
(OD-matrix) X ∗ ∈ G ⊆ R

I×T
+ , where X ∗ = (

x∗
n,r

)
, n ∈ I , r ∈ T consists of the

demands for all OD pairs. It can be assumed that the assignment of the time-sliced
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OD-matrices to the links of the network should be done according to an assignment
proportion matrix A = [

al,t
n,r

]
,∀l ∈ L,∀n ∈ I ,∀r, t ∈ T , where each element in the

matrix is defined as the proportion of the OD demand xn,r that uses link l at time
period t. The notation A = A(X ) is used to indicate that, in general, these proportions
depend on the demand. The linear relationship between the flow count on a link and
the given OD pair has a matrix form, which thus sets the vector of detected flows
as Y = (Y1, . . . , YT ) = (y1,1, . . . , yL,1, . . . , y1,T , . . . yL,T ) and the vector of OD
flows as X = (X1, . . . , XT ) = (x1,1, . . . , xN ,1, . . . , x1,T , . . . , xN ,T ). Expressing this
relationship as the matrix product (Eq. 7.42), A(X ) is now (Eq. 7.62):

A(X ) =

⎛

⎜⎜
⎜
⎝

A1,1 0 · · ·
A1,2 A2,2 0
...

. . .
. . .

0
...

0
A1,T · · · AT−1,T AT ,T

⎞

⎟⎟
⎟
⎠
whereAr,t =

⎛

⎜
⎝

a1,t
1,r · · · a1,t

N ,r
...

. . .
...

aL,t
1,r · · · aL,t

N ,r

⎞

⎟
⎠ (7.62)

al,t
n,r represents the proportion of OD flow departing at time r, xn,r , passing through

link l at time t, yl,t . Ar,t represents the assignment matrix for the departing flows at
time window r detected at time window t. Therefore, A is a lower-diagonal matrix,
because OD flows departing at time r cannot pass through link l at time t < r.

This linear mapping between the link flows and the OD flows is indeed the first
term in the Taylor expansion of the relationship between link flows and OD flows,
where additional terms capture the assignment matrix’s sensitivity to changes in the
OD flows, path choice, and congestion propagation effects (Frederix et al. 2011,
2013; Toledo and Kolechkina 2013). Let X ′ be in the neighborhood of X . Then, the
Taylor expansion is (Eq. 7.63):

yl,t =
∑

n∈I

t∑

r=1

al,t
n,r

(
X ′) ∗ x′

n,r +
∑

n∈I

t∑

r=1

∂yl,t
(
X ′)

∂xn,r
∗ (

xn,r − x′
n,r

) =

=
∑

n∈I

t∑

r=1

al,t
n,r

(
X ′) ∗ x′

n,r

+
∑

n∈I

t∑

r=1

∂
[∑

n∈I
∑t

r=1 al,t
n,r

(
X ′) ∗ xn,r

]

∂xn,r

∣
∣∣∣
∣∣
X ′

∗ (
xn,r − x′

n,r
) =

=
∑

n∈I

t∑

r=1

al,t
n,r

(
X ′) ∗ x′

n,r

+
∑

n∈I

t∑

r=1

(
xn,r − x′

n,r
) ∗

⎡

⎣
∑

n′∈I

t∑

r′=1

∂al,t
n′,r′

(
X ′)

∂xn,r

∣∣
∣∣
∣∣
X ′

∗ x′
n′,r′

⎤

⎦ (7.63)

This enables redefining Spiess’ approach to the dynamic case by simply using
the first term in the above Taylor expansion. It does not account for the propagation
effects, but it explicitly considers time dependencies. The traffic assignment problem
at the lower level must now be a dynamic traffic assignment (DTA). Then, the time
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periods for the entire formulationmust be considered as follows (Eqs. 7.64 and 7.65):

Min Z(X ) = 1

2
∗
∑

t∈T
∑

l∈L
∧

((∑

n∈I

∑t

r=1
al,t

n,r∗xn,r

)
− y

∧

l,t

)2
(7.64)

s.t. al,t
n,r = Assignment(X ) (7.65)

xn,r ≥ 0

where al,t
n,r is the assignment matrix described before. Therefore, the linear combi-

nation inside the brackets is the simulated flow yl,t , applying (Eq. 7.66):

∂yl,t

∂xn,r
= al,t

n,r (7.66)

As in Spiess (1990), the chain rule can be used to obtain the gradient of the
objective function (Eq. 7.67):

∂Z

∂xn,r
=

∑

t∈T
∑

l∈L
∧

∂yl,t

∂xn,r
∗ (

yl,t − y
∧

l,t

) =
∑

t∈T
∑

l∈L
∧al,t

n,r ∗ (
yl,t − y

∧

l,t

)

(7.67)

We obtain similar equations finding the optimal step size by using the same
procedure (Eq. 7.68):

y
′
l,t = dyl,t

dλ
=

∑t

r=1

∑

n∈I

dxn,r

dλ
∗ ∂yl,t

∂xn,r
=

∑t

r=1

∑

n∈I
− xn,r ∗ ∂Z

∂xn,r
∗ ∂yl,t

∂xn,r
(7.68)

The optimal step length λ can be calculated solving the 1-dimensional optimiza-
tion problem in Eq. 7.69 and whose solution is given by Eq. 7.70:

Z
′
(λ) =

∑

t∈T
∑

l∈L
∧y

′
l,t ∗

(
ỹl,t − y

∧

l,t + λ ∗ y
′
l,t

)
= 0 (7.69)

λ∗ =
−∑

t∈T
∑

l∈L
∧y

′
l,t ∗ (yl,t − y

∧

l,t)

∑
t∈T

∑
l∈L

∧y
′
l,t

2 (7.70)

Then, the iterative procedure described by Spiess (1990) can be used in DTA
using these new equations, which are expanded with the time windows. In addition,
this procedure can be improved by adding a second term in the objective function
to compare it with a historical OD-matrix. If the quadratic function is used, and
replacing w1 and w2 by w = w2

/
w1 for simplification, Eq. 7.71 arises
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Min Z = 1

2
∗
∑

t∈T

∑

l∈L̂

((
∑

n∈I

t∑

r=1

al,t
n,r ∗ xn,r

)

− ŷl,t

)2

+ w

2
∗
∑

r∈T

∑

n∈I

(
xn,r − xH

n,r

)2
(7.71)

In this case, Eq. 7.47 is updated, resulting in Eq. 7.72:

∂Z

∂xn,r
=

∑

t∈T

∑

l∈L̂

∂yl,t

∂xn,r
∗ (

yl,t − ŷl,t
) + w

2
∗ xn,r

=
∑

t∈T

∑

l∈L̂

al,t
n,r ∗ (

yl,t − ŷl,t
) + w

2
∗ xn,r (7.72)

Therefore, the Iterative Dynamic Spiess Procedure would be (Eq. 7.73):

X (k+1)
i =

⎧
⎨

⎩

X H
i for k = 0

X (k)
i ∗

(
1 − λ(k) ∗

[
∂Z(X )

∂Xi

]

X (k)
i

)
for k > 0

(7.73)

The use of Euclidean distances tomeasure the distance between the estimatedOD,
X , and the historical X H has been discussed critically in Frederix et al. (2013). For
example, Djukic (2014) shows that using a Euclidean distance term can result in two
matrices that have very different structures but maintain the same distance value with
respect to the reference matrix. Other distance measures have been suggested, for
example, in Ros-Roca et al. (2020). Although additional measurements are expected
to improve the outcome of the OD-estimation in terms of structural similarity, the
analytic approaches do not seem capable of adding measurements different from link
counts.

The resort to the classical entropy function, as in the original analytical formula-
tions, is an appealing option because of its structural meaning. With this approach,
Eqs. 7.71 and 7.72, respectively, become Eqs. 7.74 and 7.75:

Min Z = 1

2
∗
∑

t∈T

∑

l∈L̂

((
∑

n∈I

t∑

r=1

al,t
n,r ∗ xn,r

)

− ŷl,t

)2

+ w

2
∗
∑

r∈T

∑

n∈I

xn,r ∗ log

(
xn,r

xH
n,r

)
(7.74)

∂Z

∂xn,r
=

∑

t∈T
∑

l∈L
∧al,t

n,r ∗ (
yl,t − y

∧

l,t

) + w

2
∗
(
log

(
xn,r

xH
n,r

)
+ 1

)
(7.75)
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7.5 Practical Applications for Traffic Management

Because DTA is a core component of most Dynamic Traffic Management Systems
and the Dynamic Origin–DestinationMatrices are themain input to DTA, algorithms
to numerically implement DODME approaches become a basic procedure in all of
them. The main approaches are:

• The strict analytical dynamic approaches based on State-Space Modeling (Ashok
and Ben-Akiva 1993, 2002), which are the basis of DynaMIT (Ben-Akiva et al.
2020).

• The numerical approximations of analytical optimization approaches, as the ones
proposed by Frederix et al. (2011), Frederix et al. (2013), Toledo and Kolechkina
(2013), or Ros-Roca et al. (2020). Other variants are those studied by Djukic
et al. (2017,2018,2019), currently implemented in Aimsun Live, Aimsun (2020),
or OPTIMA.

• Simulation-based approaches: Stochastic Perturbation Stochastic Approximation
(SPSA).

7.5.1 Analytical Approaches Based on State-Space Modeling

The approach taken in DynaMIT to estimate dynamic OD-matrices, aimed at
providing support to real-time management decisions, is different from the bi-level
optimization considered so far. DynaMIT formulates the real-time dynamic OD-
estimation based on the Kalman Filtering framework proposed by Ashok and Ben-
Akiva (1993). The basic information, as in all other approaches, is that contained in
the historical OD-matrix, which is combinedwith traffic count data from the counting
stations along the network. Other differential aspects of the estimation proposed in
DynaMIT are the use it makes of each day’s estimate to update the original historical
OD estimate in a learning process. These updated historical OD-matrices contain rich
information about the latent factors that affect travel demand and its daily variations,
which the approach tries to capture. To achieve this goal, this approach uses as state
variables the deviations of the OD flows from the historical OD estimates, instead of
the actual flows themselves.

The underlying hypothesis states that (Antoniou et al. 2007) modern surveillance
systems generate data and historical information that can be used for the estimation
and prediction of the time evolving demand patterns represented by OD-matrices.
The wealth of information contained in these off-line values, which affects trip
making and traffic dynamics, as well as their temporal and spatial evolution, can
be incorporated into the DODME process as a priori estimates.

The approach based on Kalman filtering assumes an autoregressive procedure
that provides a prediction tool consistent with the estimation process. That autore-
gressive procedure models the temporal relationships among deviations in OD flows,
also accounting for unobserved factors that are correlated over time, as, for instance,
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weather effects. A proper approach that incorporates this information and its associ-
ated errors in the estimation process considers transport systems as dynamic systems
and resorts to the state-space modeling approach. The formulation of the DODME
problem discussed so far shows that the most critical issue is the calculation of the
assignment matrix, alt

ijr, mapping the observed link flows, ylt , and the unobserved
OD flows, xijr . This matrix must be estimated at each step of the iterative processes
by solving numerically the corresponding mathematical model (Eq. 7.76):

ylt =
∑

(i,j)∈I

∑t

r=1
alt

ijr∗xijr ∀l ∈ L
∧

, t ∈ T (7.76)

The dynamic problem formulation assumes that the assignment matrix depends
on link and path travel times and on traveler route choice factors, being all of them
time-varying. Precisely, time variations are captured by the time indices in Eq. 7.76.
The mapping can be interpreted as the contribution, i.e., the fraction, of the OD flow
of pair (i, j) departing origin i with destination j, at time interval r, that flows across
detectors located at link l, during time interval t.

Ashok and Ben-Akiva (2002), in an extension to their previous seminal work in
Ashok and Ben-Akiva (1993), make the observation that “all quantities are imper-
fectly observed, thereby they introduce errors into the OD estimation process, erro-
neous travel times and/or route choice fractions resulting in an imperfect assignment
matrix”. Therefore, they propose reformulating Eq. 7.76 as Eq. 7.77:

ylt =
∑

(i,j)∈I

∑t

r=1
alt

ijr ∗ xijr + νlt ∀l ∈ L
∧

, t ∈ T (7.77)

where νlt is themeasurement error. The reformulation of theDODMEas a state-space
model involves two types of equations:

• Transition equations that capture the evolution of the state vector over time.
• Measurement equations that, according to Antoniou et al. (2007), “capture a

mapping of the state vector on the measurements: a priorivalues of the model
parameters provide direct measurements of the unknown parameters”.

Let Xk be the vector of state variables whose values define the state of the system
at time interval k. A Kalman filter iterates between an updating (prediction) of the
system’s state at time k, obtained from the system’s state at time k −1, and a correc-
tion based on an update of the measurements of the system. This corresponds to
a process model that models the transformation of the system’s state in terms of a
linear stochastic difference equation (Eq. 7.78):

Xk = �Xk−1 + wk−1 (7.78)
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where � is the transition matrix from system’s state at time k − 1 to system’s state
at time k, and wk−1 is the process error term. Additionally, a measurements model
describes the relationship between the process changing the system’s state and the
system measurements (Eq. 7.79):

Yk = A ∗ Xk + vk (7.79)

Assuming initial estimates of the state vector X
∧

k−1 and of the error covariance
Pk−1 at time interval k − 1, the prediction phase consists of two steps: (i) a state
projection step (Eq. 7.80) and (ii) a covariance projection step (Eq. 7.81), respectively,
projecting forward the state estimate or the covariance from time step k − 1 to step
k:

X
∧k−1

k = φ ∗ X
∧k−1

k−1 + wk−1 (7.80)

Pk−1
k = � ∗ Pk−1

k−1∗�T + Q (7.81)

The correction regarding the measurements update consists of three steps: (i)
the computation of the Kalman Gain (Eq. 7.82), (ii) the update of the error covari-
ance (Eq. 7.83) and (iii) the update of the state estimates with the measurements Zk

(Eq. 7.84):

Kk = Pk−1
k ∗ AT ∗ (

A∗Pk−1
k ∗AT + R

)−1
(7.82)

Pk
k = (I − Kk ∗ A) ∗ Pk−1

k (7.83)

X
∧k

k = X
∧k−1

k + Kk ∗
(

Yk − A∗X
∧k−1

k

)
(7.84)

where wk and vk , the process and measurement errors, are independent, white noise,
and normally distributed (Eqs. 7.85 and 7.86):

p(w) ∼ N (0, Q) (7.85)

p(v) ∼ N (0, R) (7.86)
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Q and R are, respectively, the covariance matrices of the process and the
measurement errors.

When applying Kalman filtering to DODME, the state vector is the vector X of
unknown OD flows, and the transition equation represents an autoregressive process.
However,Ashok andBen-Akiva (1993) state that “an autoregressive process can only
capture interdependencies among OD flows. It does not include structural informa-
tion about trip patterns, which are a function of spatial and temporal distribution of
activities, as well as of the characteristics of the transportation system”. Therefore,
it is desirable to modify the model in such a way that it also incorporates structural
information. This information could be, for example, that contained in a prior esti-
mate. For instance, a historical OD-matrix X H provided by a reliable surveillance
system. It can be accommodated in the model by reformulating the state vector in
terms of the deviations from that historical OD flows. The transition equation would
then be as follows (Eq. 7.87):

Xij(t+1) − X H
ij(t+1) =

t∑

r=t−s

∑

(p,q)∈I

f pqr
ijt ∗

(
Xpqr − X H

pqr

)
+ wijt (7.87)

where f pqt
ijt describes the effect of the deviation

(
Xpqr − X H

pqr

)
on the deviation

(
Xij(t+1) − X H

ij(t+1)

)
. The first one is the deviation of the OD flow from origin p

to destination q and departing at time r. Equivalently, the second one is the deviation
of the OD flow from origin i to destination j and departing at time t + 1. In this
second deviation, wijt is a random term error for OD pair (i, j) at time t and s is the
order of the autoregressive process, that is, the number of lagged OD flow deviations
assumed to affect the OD deviation in interval t + 1. Equation 7.87 “models the
temporal relationship among deviations in OD flows, capturing the correlation over
time among deviations which arise from unobserved factors that correlated over time.
It assumes dependency of deviations corresponding to one OD pair on deviations
corresponding to other OD pairs in prior periods” (Ashok and Ben-Akiva 1993). It
can be rewritten in matrix form (Eq. 7.88):

�Xt+1 = Xt+1 − X H
t+1 =

t∑

r=t−s

�r
t ∗

(
Xpqr − X H

pqr

)
+ wt (7.88)

In the general case, the computation of the transition matrix �r
t involves esti-

mating linear regression models for each OD pair and for each time interval.
However, depending on the network topology, some of these correspondences may
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be ignored and thus the matrix is simplified. There are also some other hypotheses
enabling further simplifications, as, for example, the assumption that the autoregres-
sive process remains constant with respect to t. This implies that it depends only on
the difference (t −s) and not on the individual values of t and s. Equation 7.77 can be
rewritten accordingly to get the measurements equation in terms of deviations with
respect to historical values yH

lt , as in Eq. 7.89:

ylt − yH
lt =

∑

(i,j)∈I

∑t

r=t−s
alt

ijr ∗
(

xijr − xH
ijr

)
+ νlt ∀l ∈ L

∧

, t ∈ T (7.89)

It can also be expressed in matrix form (Eq. 7.90):

�Yt = Y t − Y H
t =

∑t

r=t−s
At

r ∗ (
Xr − X H

r

) + νt (7.90)

where νt is the measurements random error vector at timet. Error terms wt and νt

are uncorrelated, which means thatE[wt] = E[vt] = 0. The variance–covariance
matrices are Qt and Rt, respectively.

There is an additional advantage in reformulating the Kalman filtering in terms
of deviations as state variables and measurements, since the traffic flow variables
have skewed distributions (Antoniou et al. 2007). However, the deviations from these
variables from available estimates have symmetric distributions and, hence, are more
amendable to approximations to normal distributions. This is a useful property in
terms of Kalman filtering (Kalman 1960; Gelb 1974). Then, assuming an initial state
of the system with �X0, with mean �X 0, and variance–covariance P0, the Kalman
filtering algorithm for DODME, for a time horizon T divided into N intervals of
equal length, is
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Many alternative versions of these basic algorithms resorting to variants ofKalman
filtering have been proposed, as those in Ashok and Ben-Akiva (2002), Hu et al.
(2001), Antoniou et al. (2007), Lin and Chang (2007). In essence, many of the most
appealing ones deal with the calculation of matrices � and A. That is, with the
characteristics of the autoregressive model, the mapping OD paths and the links
flows, being these latter the most critical. Antoniou et al. (2007) propose nonlinear
relationships for the measurement equations, generically defined as (Eq. 7.91):

�M t = Mt − M H
t = S(�Xt) − M H

t + vt (7.91)
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where Mt is the vector of measurements at time t, S(�Xt) is a simulation model and
M H

t = S
(
�X H

t

)
. When traffic flow models are used to simulate the time progres-

sion of traffic flows through the network, they can be approximated by continuous
functions h(x)(Antoniou 2004). These functions can be linearized to approximate
the measurement equation as in Eq. 7.92:

Ht = ∂h(x∗)
∂x∗

∣∣∣∣
x∗=X t−1

t

(7.92)

An example based on this linearization included inAntoniou (2004) andAntoniou
et al. (2007) is the following Extended Kalman Filter (EKF):
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Equation 7.91 also opens the door to the consideration of additionalmeasurements
in Kalman filters other than traffic variables like the link flow counts from fixed
counting stations (e.g., inductive loop detectors,magnetometers…). For example, the
travel times between pairs of points in the network, as measured by ICT applications
(e.g., Bluetooth, GPS…).

7.5.2 Aimsun Live

A professional software platform for traffic management with a DTA as core engine
and that haves as main input dynamic OD-matrices is Aimsun Live (Aimsun 2020).
The DODME process implemented in Aimsun Live is a variant of the numerical
approximations of analytical optimization approaches discussed Sect. 7.4. Djukic
et al. (2017,2018,2019) reformulate the bi-level approach (Eq. 7.61) as in Eq. 7.93:

Min Z(X ) = α ∗ ‖X − X H ‖2 + (1 − α) ∗ ‖A(X ) ∗ X − Y
∧

‖2 (7.93)

s.t. X ≥ 0

Assuming that the flow estimates are provided by the DTA at the lower level,
i.e., at the algorithmic framework in Fig. 7.4. implemented in Aimsun (2020), then
Y = DTA(X ). This allows a Taylor expansion as in Eq. 7.63. Then, Djukic et al.
(2018) propose a modified bi-level approach that, at iteration k, replaces at the upper
level the objective function in Eq. 7.95 by the approximation in Eq. 7.94:

Zk(X ) = α ∗ ‖X − X H ‖2 + ‖Y
∧

− Yk − Ak ∗ (X − Xk)‖2 (7.94)

where at iteration k, Xk is the estimated OD demand vector, Ak the assignment matrix
estimated fromAimsun’sDTAusing Eq. 7.63 and Yk the vector of estimated link flow
counts in the subset of links with counting stations. Aimsun’s DTA estimates Ak by
stopping the Taylor expansion at either the first or the second term, depending on the
desired degree of accuracy or on the affordable computing cost. Djukic et al. (2018)
propose to solve the approximated upper level optimization problem (Eq. 7.94) with
non-negative variable constraints, using a gradient descent method. Particularly, one
using as descent direction the one defined by the following gradient (Eq. 7.95):

dk = −∇Zk(X ) (7.95)
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This gradient can be calculated from (7.94) as

∇Zk(X ) = 2 ∗ α ∗ (
X − X H

)

+ 2 ∗
(

AT
k ∗ Ak ∗ X − AT

k ∗ Ŷ + AT
k ∗ Yk − AT

k ∗ Ak ∗ Xk

)
(7.96)

Then, the new OD-matrix for the lower level iteration k + 1 is given by Eq. 7.97:

Xk+1 = Xk + λk∗dk (7.97)

where λk is the optimal step length in the gradient movement along the descent
direction. The gradient procedure to optimize Eq. 7.94 is also iterative. It recalculates
the step size at each iteration until either a convergence criterion ismet or amaximum
number M of iterations is reached, whatever occurs first. At gradient iteration m, the
estimated demand is X m

k , the search direction at this iteration is given by ∇Z
(
X m

k

)

(calculated from Eq. 7.96) and the step size calculation can be calculated solving
Eq. 7.98, using any of the available line search procedures (Bazaraa et al. 1993):

λm
k = MinλZ

[
X m

k − λ ∗ ∇Z
(
X m

k

)]
(7.98)

However, since Z(X ) is quadratic, the optimal step can be computed analytically
using Eq. 7.99:

λm
k = ‖∇Z

(
X m

k

)‖2
‖∇Z

(
X m

k

)‖2 + ‖Ak ∗ ∇Z
(
X m

k

)‖2
(7.99)

The proposed algorithm iteratively updates the demand at iteration k + 1 from
the demand at the previous iteration k, until some convergence criteria are satisfied.
The algorithm is modified with respect to the usual approaches to better fit the
requirements for congested large-scale networks. The proposed modification relaxes
the assumption on link flow proportions provided by the DTA assignment matrix
by computing the marginal effects of the demand deviations on link flows given
by Eq. 7.63. Therefore, it reduces the number of OD variables in this Eq. 7.63 by
including only those OD pairs whose change in demand values causes significant
deviations in the link flows. The modified algorithm is, according to Djukic et al.
(2018), as follows:
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The computational testing of this proposed modified bi-level optimization frame-
work, which solves the high-dimensionality of nonlinear OD-estimation problems by
computing the marginal effects only for the most significant OD pairs with respect to
traffic observations, allows themodeler to control the trade-off between the simplicity
of the model and the level of realism. It is thus very efficient for practical purposes.
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7.5.3 Simulation-Based Approaches: Stochastic Perturbation
Stochastic Approximation (SPSA)

The optimization problem in Eqs. 7.58 and 7.59, as already mentioned, is highly
underdetermined because there aremanymore variables than equations in the system.

In other words, X ∈ R
|I |×T , Y ∈ R

∣
∣
∣∣L
∧∣
∣
∣∣×T

and |I | � |L
∧

|. Therefore, the problem is
very sensitive to the quantity of data and the detection layout in the real network. As
the availability of new measurements like those provided by smartphone and GPS
localization allows calculating travel times between arbitrary pairs of points, the use
of these data seems to be a promising approach for reducing the aforementioned
underdetermination. An apparently straightforward extension of the bi-level formu-
lation inEqs. 7.58 and 7.59 accounting formeasured, tt

∧

, and estimated travel times, tt,
would be the expansion of the objective function adding a third term, F3

(
tt, tt

∧)
. This

term would be aimed at minimizing the distance between measured and estimated
travel times between arbitrary pairs of points in the network, assuming that trips are
most likely made via the shortest paths. The hypothetical formulation (Ros-Roca
et al., 2021a) would be (Eqs. 7.100–7.102):

Min Z(X ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
+ w3 ∗ F3

(
tt, tt

∧)
(7.100)

s.t. Y (X ) = Assignmt(X ) (7.101)

tt(X ) = F(X ) (7.102)

X ∈ �

Assuming that Y (X ) = Assignmt(X ) = A(X ) ∗ X , that is, the relationship
between the estimated link flows and the estimated OD-matrix defined by the
assignment, the problem can be reformulated as follows (Eqs. 7.103 and 7.104):

Min Z(X ) = w1∗F1
(
X , X H

) + w2∗F2

(
A(X )X , Y

∧)
+ w3∗F3

(
tt, tt

∧)
(7.103)

s.t. tt(X ) = F(X ) (7.104)

X ∈ �

Theanalytical relationship inEq. 7.104 either does not exist or is unclear.However,
in practice, travel times can be estimated from it if the assignment is a DTA. There-
fore, it can be accepted that some kind of relationship exists and the relationship
tt(X ) ∼ Assignmt(X ) is assumed. The problem to be solved is again reformulated
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as (Eq. 7.105):

Min Z(X ) = w1 ∗ F1
(
X , X H

) + w2 ∗ F2

(
Y , Y

∧)
+ w3 ∗ F3

(
tt, tt

∧)
(7.105)

s.t. (Y , tt) = Assignmt(X )

X ∈ �

As mentioned before, it is unclear how these new measurements can be included
in the analytical formulations. Nevertheless, it seems rather easy to deal with them by
using approaches based on derivative-free optimization methods that approximate
the descent direction based on simulation. Among them, simulation optimization
techniques are especially suited to deal with optimization problems that cannot be
solved with the usual analytical algorithms. Some reasons are:

• Theobjective function cannot be analytically expressed as a functionof parameters
because its evaluation requires a simulation. Therefore, it is not differentiable in
terms of the parameters.

• The time cost of evaluating the objective function is expensive, as it requires
having simulated data for each evaluation of the function.

Simulation-based optimization techniques can be generically formulated
assuming that there is a mathematical model M with a set of parameters P =
{p1, p2, . . . , pN } and an objective functionF(R, S) defined as the sum of error func-
tions between real observations R and the corresponding simulated data S. The
purpose of M is then to provide (Eq. 7.106):

Min F(R, S) (7.106)

s.t. P ∈ �⊆ R
N

WhenF(R, S) (i) is on-convex, nonlinear, (ii) cannot be represented analytically
as a function of the set of parameters P and (iii) has to be evaluated by simulation.

There is a wide range of different simulation optimization techniques to solve
Eq. 7.106. For example, Nelder-Mead, SNOBFIT, and SPSA are optimization tech-
niques, either derivative free or approximating the gradient, that evaluate it using
simulation. Osorio and Linsen (2015) make an approximation of the upper level
function by building a metamodel that can be solved analytically. Its conceptual
diagram is depicted in Fig. 7.5.

Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1992) is
commonly used in OD-matrix estimation (Cipriani et al. 2011; Cantelmo et al. 2014;
Antoniou et al. 2015; Lu et al. 2015; Ros-Roca et al. 2020) and it can easily account
for additional measurements (Bullejos et al. 2014; Antoniou et al. 2016; Carrese
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Fig. 7.5 Conceptual diagram of the simulation-based optimization approach of Osorio and Linsen
(2015)

et al. 2017; Nigro et al. 2018). SPSA preserves the original upper level formulation
and is easy to implement for simulation optimization problems.

SPSA is a simulation-based optimization algorithm, and it only requires two
evaluations of the objective function to approximate the gradient instead of N , as in
the case of a finite-difference gradient approach. Like in many iterative procedures,
it begins with an initial OD-matrix (usually a historical OD-matrix). The next matrix
at iteration k + 1 is computed from the matrix at iteration k, moving a distance ak

along the descent direction provided by the following gradient (Eq. 7.107):

Xk+1 = Xk − ak∗g
∧

k(Xk) (7.107)

Two particularities distinguish thismethod from the conventional gradient descent
method:

• The estimated gradient g
∧

k(Xk), is calculated according to Eq. 7.108:

g
∧

k(Xk) = Z(Xk + ck ∗ �k) − Z(Xk)

ck
∗
⎛

⎜
⎝

�−1
k,1
...

�−1
k,N

⎞

⎟
⎠ =

⎛

⎜⎜
⎝

Z(Xk+ck∗�k )−Z(Xk )

ck∗�k,1

...
Z(Xk+ck∗�k )−Z(Xk )

ck∗�k,N

⎞

⎟⎟
⎠

(7.108)

where �k is a random perturbation N-dimensional vector with �i,∀i inde-
pendent identically distributed random variables that satisfy E(�i) = 0 and∣∣∣E

((
�−1

i

)n
)∣∣∣ < ∞,∀n. One commonly used perturbation is �i ∼ Be(1/2,±1),

which is a Bernoulli distribution with a probability of ½ for each ± 1. This is
the asymmetric design, although a symmetric design using Z(Xk + ck∗�k) and
Z(Xk − ck∗�k) can also be considered.
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• The spacing coefficient ck and the step size ak are decreasing sequences of positive
real values, and they satisfy some regularity conditions in order to ensure the
convergence of the method, as detailed in Spall (1992). Typically, the sequences
used are (Eqs. 7.109 and 7.110):

ak = a

(A + k + 1)α
(7.109)

ck = c

(k + 1)γ
(7.110)

where a, A and c are chosen depending on the problem, while α = 0.602 and
γ = 0.101.

Averaging many independent estimates of the gradient of Eq. 7.108 contributes to
a more stable and quicker convergence of the SPSAmethod (Spall 1992). Therefore,
the gradient estimation is finally calculated as (Eq. 7.111):

g
∧

(Xk) = 1

ng
∗

ng∑

j=1

g
∧j

k(Xk) (7.111)

where g
∧j

k(Xk) is precisely calculated as in Eq. 7.108. The asymmetric design for the
gradient saves a large number of assignments, since all g

∧j
k(Xk),∀j share themid-point

Xk evaluation.
The versatility of simulation optimization techniques, especially when using

SPSA, allows including additional information in a new form, such as the constraints
in the OD-estimation problem. Ros-Roca et al. (2017) tried adding constraints to
simulation optimization problems when dealing with the calibration of microsimu-
lation models.

A potential improvement with respect to the original formulation (Bullejos et al.
2014; Cantelmo et al. 2014) replaces the gradient by the Conjugate Gradient (CG)
(Luenberger and Ye 2008), a descent method for the optimization algorithm of the
OD-estimation problem.Thismodifies the descent direction in the iterative procedure
by using the previous iteration gradient. It can be incorporated into SPSAby replacing
Eq. 7.107 with Eqs. 7.112–7.114:

Xk = Xk−1 + ak∗dk (7.112)

dk = −g
∧

(Xk) + βk ∗ g
∧

(Xk−1) (7.113)

βk = g
∧

(Xk)
T ∗ dk−1

‖dk−1‖2
(7.114)
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SPSA’s main drawback for the OD-estimation problem is that all different OD
flows receive the same perturbation magnitude (Eq. 7.108). As OD flows usually
have very different magnitudes, this implies very different changes to each flow,
which can lead to several problems of convergence. Tympakianaki et al. (2015)
approached this phenomenon by clustering the variables according to their magni-
tude. A different alternative can be normalizing to the interval [0, 1] all variables
using some particular reasonable bounds [ai, bi]. For example, Ros-Roca et al. (2018)
performed a classical linear transformation from [ai, bi] to [0, 1], where ai and bi

were based on additional information from the network, particularly socioeconomic
or past reliable OD-matrices. The normalization was performed using the following
linear application (Eq. 7.115):

ϕi : [ai, bi] → [0, 1]

Xi �→ Xi−ai
bi−ai

(7.115)

Using the normalized variables in SPSAprocedure, each variablewill be perturbed
according to its magnitude.

Experiencewith similar problems shows that the selectionofSPSAgain sequences
ak and ck is crucial for the convergence and performance of the algorithm. The
sequences in the form of Eq. 7.109 and 7.110 are widely used, as they satisfy the
conditions of convergence that were proved in Spall (1992). This reduces the problem
of selecting appropriate values for a, A, α, c and γ . Kostic et al. (2017b) showed the
sensitivity of SPSA with respect to these parameters. Based on the guidelines in
Spall (2003), an automated selection of the parameters a, A and c, can be based on
the objective function’s variability that results from the simulation, and on the desired
perturbation steps in the early iterations. The selection would be done according to
the following schema:

• First, those values stated as optimal for convergence in Spall (1998) are fixed.
That is, α = 0.602, γ = 0.101.

• Several evaluations of Z(X H ) to capture the variability of the objective function
are computed. Since the variables have been normalized, it seems natural to use
the coefficient of variation (CoV (Z) = σZ/μZ ) for this purpose. The parameter c
is set at c = CoV .

• A is set as 10% of the maximum number of iterations (A = 0.1 · itermax).
• ng experiments are simulated using the SPSA logic Xi = X H + c�N . This allows

finding the respective gradients gk as in the SPSA procedure.
• The desired iterative modification of the first iteration must be determined with

Eq. 7.116:

Xk+1 = Xk − ak∗gk → Xk+1 − Xk = |ak ∗ gk | (7.116)

• The corresponding a for the desired change in the initial iteration must be
computed using Eq. 7.117:
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∣
∣ak∗gk

∣
∣ = a

(1 + A + k)α
∗|gk | → a =

∣∣ak∗gk

∣∣ ∗ (1 + A + k)
α

|gk | (7.117)

• The minimum of the ng performed experiments must be finally chosen. That is
(Eq. 7.118):

a = min
{

a{i=1}, . . . , a{i=Ng}
}

(7.118)

As already mentioned, the underdetermination of the OD-estimation problem can
lead to different adjusted OD-matrices that show the same traffic counts at the sensor
locations even though they are different. Furthermore, the adjusted OD-matrix can
also be non-consistent with the socioeconomic factors of the area under study. In
traffic analyses, practitioners usually have access to historical data in the form of an
OD-matrixX H which,with a certain degree of uncertainty, provides prior information
about the mobility patterns of the target area. Therefore, including constraints in the
SPSA formulation that accounts for this information can lead tomore realistic results.
A possible approach is to add bounding values to the OD values, which is not easy
to do in analytical formulations (Codina and Montero 2006) but is relatively easy to
manage in SPSA. In Cipriani et al. (2011), a single generation constraint is added to
the minimization problem (Eq. 7.119):

nh∑

i=1

Gi
o ≤ G∗

o ∀o ∈ {origins} (7.119)

with G∗
o being the a priori generation value for the origin zone 0 and nh the number

of time periods. Other approaches, that of Ros-Roca et al. (2020), specify upper and
lower bounds for each OD flow, defined in terms of a percentage β of this flow’s
historical value, according to its degree of uncertainty. With the constraints, the
minimization problem is updated as follows (Eqs. 7.120 and 7.121):

Min Z(X , Y ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
(7.120)

s.t. Y = Assignmt(X ) (7.121)

X ∈ G = {
(1 − β) ∗ xH

n,r ≤ xn,r ≤ (1 + β) ∗ xH
n,r,∀xn,r ∈ X

} ⊂ R
I×T
+

X ≥ 0

This single constraint in Eq. 7.119 results from summing for each origin all the
upper bounds in the former minimization problem. The addition of all constraints
makes the feasible region bigger. Greater values are therefore allowed for some
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variables, but this is compensated by others having low values. On the contrary, the
proposal for constrained SPSA in Ros-Roca et al. (2020) defines a smaller feasible
region that accounts for further information of each OD pair.

These constraints added to the problem also have an effect on the originally
presented SPSA algorithm. Sadegh and Spall (1998) proposed to add a projection to
the set G during the iterative procedure shown in Eq. 7.107. The projection would
be applied only to the iterative procedure as Xk+1 = πG

(
Xk − ak∗g

∧

k(Xk)
)
, while

Z(Xk + ck∗�k) could be computed subject to non-negative OD values. This method,
in which some strict constraints are added to the procedure, is called Constrained
SPSA.

Inspired in Wang and Spall (1999), other formulations equivalent to Eqs. 7.120
and 7.121 add penalty functions to the objective function (Eqs. 7.122 and 7.123):

Min Z(X , Y ) = w1∗F1
(
X , X H

) + w2∗F2

(
Y , Y

∧)
+ rk ∗ P

(
X , X H

)
(7.122)

s.t. Y = Assignmt(X ) (7.123)

X ≥ 0

where rk is an increasing sequence of the form rk = r∗(1 + k)ρ and P
(
X , X H

)
is a

set of penalization functions for the set of constraints that delimit the constraints of
set G. Formally (Eq. 7.124):

G �
{
qn,r

(
X , X H

) ≤ 0,∀n ∈ I , r ∈ T
} =

= {
xn,r − (1 + β) ∗ xH

n,r ≤ 0, (1 + β)∗xH
n,r − xn,r ≤ 0 ∀n ∈ I , r ∈ T

}
(7.124)

The penalty function P
(
X , X H

)
must be differentiable, non-negative, and an

increasing function. Wang and Spall (1999) propose a sum for each constraint of
penalizing functions that satisfy p(x) = 0 if and only if x ≥ 0. That is (Eq. 7.125):

P
(
X , X H

) =
∑

n∈I

T∑

r=1

wn,r ∗ p
(
qn,r

(
X , X H

))

=
∑

n∈I

T∑

r=1

wn,r ∗ max
{
0, qn,r

(
X , X H

)}2
(7.125)

As in the previous variant, the iterative procedure is also modified to incorporate
the gradient of the penalization function (Eq. 7.126):

Xk+1 = Xk − ak ∗ g
∧

k(Xk) − ak ∗ rk + ∇P
(
Xk , X H

)
(7.126)
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When additional information from ICT measurements is available, it can be
included in the SPSA formulation (Eq. 7.107) as long as it can be estimated from
the current OD-matrix X by means of a DTA. This is, for example, the case of
subpaths travel times tt

∧

measured either by Bluetooth (Bullejos et al. 2014; Anto-
niou et al. 2016) or by GPS tracking (Ros-Roca et al. 2021a). The logical diagram
of this process is described in Fig. 7.6. The calculation of these observed subpaths
travel times tt

∧

requires the identification of the most used paths from the available
measurements and their map matching to the transport model supporting the DTA.
This allows computing the corresponding estimated travel times tt from the current
OD, which will be added in the additional term to the objective function in Eq. 7.107.
The processing of the GPS data to calculate tt

∧

is described in Sect. 7.6.
In Kostic et al. (2017a), the additional term of the objective function in Eq. 7.107

is formulated as a function of themeasured speeds at detection stations equippedwith
conventional technologies (i.e., inductive loops), and the DTA used is TRE (Gentile
et al. 2007; Gentile 2010), supporting OPTIMA.

7.6 Data-Driven Approaches

The availability of new traffic data supplied by ICT applications, i.e., mobile phones,
image processing techniques for license plate recognition, Bluetooth devices, FCD
from onboard tracking mobile devices vehicles like GPS, etc., prompted the research
interest in finding which could be the advantages of including these data explicitly
in the OD-estimation methods. In this context, probe (or equipped) vehicles can
be grouped into two generic classes (Nanthawichit et al. 2003; Eiseman and List
2004), according to the explanations in Chap. 1. First, those vehicles equipped with
devices that can only be detected at specific locations (i.e., where the detection
technology is located), as, for example, those equipped with a tag-reader or with
a Bluetooth or Wi-Fi device. Known as “space-based” probe vehicles, their true
origin and destination are not known, and their approximate estimates can only
be inferred, being this inference strongly dependent on the layout of the detection
devices (e.g., tag-readers, Bluetooth antennas). Second, those vehicles equippedwith
wireless communication mobile devices that are fully visible in the areas covered by
the corresponding telecommunications system. Therefore, these systems can provide
seamless data about their location, speed, travel direction, etc., depending on the
device. These are known as “time-based” probe vehicles.

Methodologies related to space-based probe vehicles that have received signifi-
cant attention are those based on the identification and reidentification of the license
plate of all vehicles passing the area covered by a TV camera with a LPR tech-
nology (Mo et al. 2020). Also, those based on the identification of Bluetooth devices
between coupled pairs of Bluetooth antennas (Barceló et al. 2013; Behara et al.
2021). However, as already mentioned, results of these methodologies have a strong
dependency on the layout of TV Cameras or Bluetooth antennas in the network, this
layout becomes a critical aspect for the observability of the system (Castillo et al.
2008) and thus determines the capability of the methods to estimate and predict its
state.
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As regards time-based probe vehicles, the pervasive penetration of mobile phones
has allowed a better understanding of human mobility patterns from their traces, that
is, bymeans of their digital footprints. Asmobility patterns include information about
where people are and how they got there, mobile phones were soon identified as an
important data source for urban modeling. They attracted the interests of researchers
and practitioners, as they were seen as a powerful data source that would allow
overcoming the well-known drawbacks and limitations of conventional methods in
transportation analysis (i.e., household survey).Analyses are usually conducted using
datasets, the so-called Call Detail Records (CDR), previously recorded by a mobile
provider for communication and billing purposes, after an anonymization process.
A seminal example of this process can be found in González et al. (2008), where
each individual calling activity is characterized to allow monitoring the user’s move-
ment over time. Calabrese et al. (2013) provide an example of techniques aimed at
extracting useful mobility information frommobile phone traces of millions of users
from which to infer individual mobility patterns in large urban areas, especially OD-
matrices (Zhang et al. 2010; Calabrese et al. 2011). Since CDR are time tagged and
locations can be identified after suitable processing, added value information for a
variety of mobility analyses can be extracted from the (Çolak et al. 2015). Addition-
ally, OD-matrices can be differentiated by purpose and time of the day (Alexander
et al. 2015). However, this requires resorting to very specific Data Analytics tech-
niques, given the huge amount of data frequently recorded from millions of users.
Gundlegård et al. (2015) or Jianga et al. (2016) are good examples of this data
processing to extract the OD-matrices.

However, the type of OD-matrices that dynamic traffic models used in traffic
management systems require as input is rather different from the matrices directly
extracted from DCR. Indeed, the mobility patterns modeled by these latter OD-
matrices are global, that is, they include all types of trips without distinguishing
the transportation mode used. Conversely, the OD-matrices of interest for traffic
management purposes are usually those modeling the passenger cars patterns. Addi-
tional work is necessary to estimate these specific OD-matrices. For example, DCR
OD-matrices can be combined with simulation models like MITSIM (Iqbal et al.
2014) or they can be fused with other data sources (Montero et al. 2019). Bassolas
et al. (2019) propose also a fusion variant to generate inputs to activity-based travel
demand models using MATSIM.

Among the time-based probe vehicles, the better suited to generate OD-matrices
that can be exploited by dynamic trafficmodels seem to be those allowing the tracking
of the equipped individual vehicles and the reconstruction of their trajectories.
Assuming that the collected data from the tracking technologies include geolocation
and time stamps, i.e., waypoints in the terminology of commercial GPS providers,
map matching and path inference procedures could provide comprehensive informa-
tion about origins, destinations, taken paths, and path travel times. This was essen-
tially the assumption in an early paper of van Aerde et al. (1993), accepting that
probe vehicles were fully visible. The mentioned seminal papers of Nanthawichit
et al. (2003), and Eisenman and List (2004) later accepted this hypothesis. Therefore,
assuming that these sampled trajectory data are available, the question is whether
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and how they can be used to find sound estimates of dynamic OD-matrices, that is,
OD-matrices discretized in time, exploiting for that purpose the time tag recorded
data.

Research on the potential use of these mobile data for transport analysis has also
prompted a key question with relevant practical applications. Most of the DODME
approaches discussed in the previous sections usually assume that one of the inputs
is provided by an available historical matrix. The reliability and quality of such
historical OD-matrices has been questioned in practical transport planning practice,
as it could be largely outdated or even not exist. However, this is not the case in
most practical traffic management applications due to the amount and quality of
data supplied by modern surveillance systems. Therefore, the improvement of the
seed matrices used in DODME by means of sample data from probe vehicles is
a relevant contribution. However, the previous discussion on DODME approaches
makes evident that all of them rely on the estimate of a dynamic assignment matrix.
The fact that this assignment matrix must be estimated by a DTA or a DUE and that
the approach implies an iterative process, this could represent a heavy computational
burden not affordable in real-time applications. Therefore, the key question is: can
the dynamic traffic assignment matrix be empirically estimated from probe vehicle
data? And, if possible, how can it be used to improve DODME approaches? A
positive answer to the first question opens the door to build models some of whose
components are directly derived from an empirical procedure, which would be based
on the observed data, instead of from an analytical procedure. In other words, this
approach paves the way to build data-driven models.

7.6.1 A Conceptual Proposal on Data-Driven Modeling

From this latter perspective, an interesting proposal is that made by Yang et al.
(2017). They wanted to determine whether the availability of such trajectory data
could be used to develop an approach to DODME independent of the reliability of
an historical OD. That is, to make a good empirical estimation of the assignment
matrix, making it unnecessary to resort to DTA. According to the above-mentioned
statements, it is assumed that each probe vehicle reports its position in the form
of GPS coordinates after a preprocessing procedure performed with map-matching
techniques. In summary the approach is as follows:

• It is assumed that vehicle trajectories from origins to destinations are traceable
for each probe vehicle, and that the supplied GPS locations have been suitable
preprocessed by data cleansing and map-matching procedures. Therefore, GPS
locations in the approach are assumed to be exact.

• If L
∧

⊆ L is the subset of links with counting stations, two link flow measurements
are available for each time period r. There are y

∧

lr, l ∈ L
∧

, r ∈ T flows from the
counting stations at links l ∈ L

∧

, and h
∧

lr, l ∈ L
∧

, r ∈ T flows of probe vehicles
crossing that link l at time interval r.
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• The OD probe ratios, that is, the average number of vehicles observed across the
entire network during a time interval are given by Eq. 7.127:

γr =
∑

l∈L
∧ h

∧

lr
∑

l∈L
∧ y

∧

lr
∀r ∈ T (7.127)

• Thus, the seed OD-matrix x
∧

nr can be estimated with Eq. 7.128:

x
∧

nr = z
∧

nr

γr
∀n ∈ I ,∀r ∈ T (7.128)

where I is the set of all OD pairs, and z
∧

nr is the number of identified probe vehicles
traveling from the origin to the destination of the n − th OD pair.

• The assumption of the identification of locations of probe vehicles allows, in a
similar way, directly estimating the assignment matrix (Eq. 7.129):

at
ln = 1

|T | ∗
∑

r∈T

(
z
∧r.r+t

ln

z
∧

nr

)

t ∈ T , n ∈ I , l ∈ L
∧

(7.129)

Assuming this data-driven approach, a variant of the model in Eq. 7.71 is proposed
(Eqs. 7.130):

Min

[
∑

r∈T

∑
n∈I

(
xnr−x

∧

nr

)2

w2
nr

+ ∑
r∈T

∑
l∈L

∧

(
ylr−y

∧

lr

)2

q2rl

]

xnr

(7.130)

s.t.

ylr =
∑

t∈T

∑

n∈I

at
ln∗xn,r−t∀l ∈ L

∧

,∀r ∈ T

−βxnr ≤ xn,r+1 − xnr ≤ βxnr∀n ∈ I ,∀r ∈ T

xnr ≥ 0∀n ∈ I ,∀r ∈ T

where the first constraint expresses, as in the analytical models, the relationships set
up by the empirical assignmentmatrix at

ln between ylr , the estimated flows at the links
l with traffic detection stations l ∈ L

∧

for each time interval r, and xn,r−t, the OD flows
leaving the origin at time r − t, observed in link l at time r. The objective function
in this case is formulated in terms of a quadratic distance function. Its metrics are
defined, as in Eq. 7.35, respectively, by the matrix of variances, w2

nr and q2
rl, of the

empirical OD-matrix, x
∧

nr, and the link flow measurements, y
∧

lr . The coefficient β in
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the bounding constraints of Eq. 7.130 is the maximum change percentage of OD
flows between two consecutive intervals.

Yang et al. (2017) also propose a more general variant of the model assuming that
there is a correlation between the OD probe ratios, γnr , and the link probe ratios, θlr..
In other words, that there exists a function θlr = P(γnr), for which they postulate the
following form (Eq. 7.131):

θlr =
∑

t∈T

∑

i∈I

ρ t
ln ∗ γnr =

∑

t∈T

∑

i∈I

ρ t
ln ∗

(
z
∧

n.r−t

xn,r−t

)
∀l ∈ L

∧

,∀r ∈ T (7.131)

where ρ t
ln define the assignment matrix of probe ratios, which is assumed to be

computed empirically from the collected data according to the main hypothesis of
the method. These link probe ratios depend on the estimated OD-matrix, xnr as
expressed in Eq. 7.131, being therefore new variables of the model. Assuming that
the available GPS data allow estimating the empirical values θ

∧

lr, they can be added
to the objective function (Eq. 7.130) yielding the enhanced model in Eq. 7.132:

Minxnr

⎡

⎣∑
r∈T

∑
n∈I

(
xnr−x

∧

nr

)2

w2
nr

+ ∑
r∈T

∑
l∈L

∧

(
ylr−y

∧

lr

)2

q2rl
+ ∑

r∈T

∑
l∈L

∧

(
θlr−θ

∧

lr

)2

v2rl

⎤

⎦

(7.132)

s.t.

ylr =
∑

t∈T

∑

n∈I

at
ln ∗ xn,r−t∀l ∈ L

∧

,∀r ∈ T

θlr =
∑

t∈T

∑

i∈I

ρ t
ln ∗

(
z
∧

n.r−t

xn,r−t

)
∀l ∈ L

∧

,∀r ∈ T

−βxnr ≤ xn,r+1 − xnr ≤ βxnr∀n ∈ I ,∀r ∈ T

xnr ≥ 0∀n ∈ I ,∀r ∈ T

where, as before, v2rl is the variance of the observed ratios. Since the optimization
model is quadratic, the gradient can be easily calculated and a gradient algorithm is
proposed to numerically solve the problem.
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7.6.2 Accounting for Mobility Learning from ICT Data
Collection

Cascetta et al. (2013) formulate the hypothesis that “an OD estimator can be based
on the assumption of constant distribution shares across larger time horizons with
respect to the within-day variation of the production profiles, leading to an esti-
mator that dramatically improves the unknowns/equations ratio”. Krishnakumari
et al. (2019) propose to go a step further. They assume that all realized travel times
are available over all (shortest) paths. Also, that it is only necessary to specify how
many of the shortest paths are actually used for each OD pair and the proportions
of each OD flows over these used shortest paths. These proportions are a behavioral
assumption at the macroscopic scale (a path flow proportion), and not in the form of
a detailed route choice model with (elaborated) trade-offs.

Nevertheless, the assumptions in Krishnakumari et al. (2019) about the distribu-
tion of traffic over the network are not sufficient to estimate the underlying OD-
matrix, They must be complemented with additional information that, for instance,
can be provided by measured link flow counts y

∧

lt from counting stations, measured
at links l ∈ L

∧

at time t ∈ T . Link flow counts ylt that, as shown in Eq. 7.76, can be
estimated in terms of the relationships between flows and OD flows xijr departing
from origin i with destination j at time interval r, arriving at link l at time t, and the
assignment matrix alt

ijr .
However, to be valid, these relationships must be set up considering that counts in

or downstream congestion are not informative of demand, but of (discharge) capacity,
as shown in Frederix et al. (2011). Information on demand is only provided if ylt are
estimated in uncongested conditions, and no path flows for OD pair (i, j) ∈ I using
a path k to which l belongs, experience a bottleneck upstream before crossing link l.
Therefore, in order to overcome these limitations, the computation of the assignment
matrix, or that of any related terms, must be done in a way that explicitly accounts
for congestion effects.

The approach proposed by Krishnakumari et al. (2019) assumes that, in addition
to the availability of OD travel times, also the productions Pir , i.e., the total outgoing
flows from each origin i, during period r, as well as the attractions Ajr , i.e., the
total incoming flows to each zone j during period r, are observable and, therefore,
available.

The availability of these inputs from the observed data is based on a methodology
proposed by López et al. (2017b) that is based on specific Data Analytics techniques
suited to build consensual 3D speed maps by clustering techniques from link speeds.
These speeds are estimated from field data by a heuristic procedure defined in López
et al. (2017a). According to the authors, this procedure can exploit classical data (e.g.,
from inductive loops or cameras) as well as those from more modern data sources
(e.g., mobile phone records, GPS tracking, etc.). The methodology is illustrated in
the referenced papers for a case in which link speeds were estimated from individual
travel times recorded by TV cameras equipped with LPR technology. However, it is
extensible to other technologies as long as the requirements are met.
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In any case, field datamust be appropriately cleansed out and the outliers removed.
Krishnakumari et al. (2019) discuss several procedures for this purpose, among them
a moving average process where, if τn is the n − th realized travel time for a given
OD pair, Eq. 7.133 gives the moving average:

τ n = 1

k

k−1∑

i=0

τn−i (7.133)

Outliers are defined by τ n + �τ, where �τ is a time window empirically deter-
mined, for instance, as the standard deviation times recorded during the peak demand.
The mean of the observed travel times for a given OD pair (i, j) at a given period
is considered the travel time from i to j at time t,ttij(t). Additionally, the consid-
ered k-shortest paths as the most likely used between each OD pair. For a particular
one(i, j), a path Lp is characterized by a sequence of links Lp = (

lp1, lp2, . . . , lpn
)
.

Then, the path speed is (Eq. 7.134):

sp = dist(Li)

ttij(t)
(7.134)

Krishnakumari et al. (2019) also consider various approaches to impute link
speeds when no data are available.

The main assumption behind the approach proposed by Lopez et al. (2017b) is
that the availability of the data provided by these more modern data sources allows
finding empirically driving insights of human mobility, namely, those concerning
their dynamic aspects, and thus enables their use in mathematical models aimed at
predicting that dynamic mobility. This means to investigate the regularity of macro-
scopic mobility patterns, how they vary within days and from day to day. For that
purpose, Lopez et al. (2017b) propose a methodology based on what they call 3D
maps, in essence spatial–temporal speed cluster maps, which are a joined partition
of space (i.e. the road network) and time into homogeneous clusters characterized by
constant mean speeds. The proposed approach considers that link speed data can be
reconstructed from trip travel time observations with Eq. 7.134, as in Lopez and al.
(2017b), and that the network is coded in Open StreetMapGeographical Information
System (OSM GIS) Database, also used to compute all shortest paths. The cluster
building process is based on the following partitioning criteria:

• All clusters should contain a single connected component. In other words, all
links in the cluster are reachable within the cluster.

• An intra-cluster homogeneity criterion, formulated in terms of the minimization
of the internal speed variance for all clusters. If n is the number of clusters, the
total within cluster variance T V n is given by (Eq. 7.135):

T V n = 1
∑n

i=1ni
∗
(∑n

i=1ni∗s2i
s2

)
(7.135)
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where ni is the number of links in cluster i, si the standard deviation of links speeds
in cluster i, and s the standard deviation for the whole network. It is assumed that
link speeds have been estimated from Eq. 7.134.

• An inter-cluster dissimilarity criterion that maximizes the difference in speed
between neighbor clusters, where the inter-cluster dissimilarity is given by
Eqs. 7.136 and 7.137:

CCDn =
∑n

i=1

∑n
k=i+1δik ∗ √

ni ∗ nk ∗ |vi − vk |∑n
i=1

∑n
k=i+1δik ∗ √

ni ∗ nk
(7.136)

δik =
{
1 if clusters i and k have a common border
0 otherwise

(7.137)

where vi is the mean speed in cluster i.

Lopez et al. (2017b) test three different clustering approaches, k-means, DBSCAN,
and S-cut and conclude that, at least in the case study reported in the paper, k-means is
the most economical in terms of computational cost to obtain the envisaged 3D speed
maps. Furthermore, assuming that the observational data cover a period of M days,
they add a new process to find commonalities in these days’ congestion patterns,
the so-called “consensual” patterns, by means of Consensus Learning Techniques
(Filkov and Skiena 2004).

The approach proposed by Krishnakumari et al. (2019) uses these results for
different purposes:

• To estimate or predict the production and attraction patterns using the identi-
fied 3D speed and flow patterns (possibly augmented with other data) using
machine learning techniques (especially Neural Network techniques, although
other techniques could also be used).

• To compute N weighted (by travel time) shortest paths, where N is an assumption
on how many alternative routes are used on average for each OD flow on these
paths.

• To estimate path flows on the used paths assuming that are inversely proportional
to the realized travel times on these paths, considering path overlap, and under
the additional constraint that the path flow solution space is determined by all
admissible link flow counts.

Let’s assume that xk
ijr is the path flow from origin i ∈ O (where O =

{set of all origins}) to destination j ∈ D (where D = {set of all destinations}),
departing from origin i at time period r ∈ T (where T is the time horizon) on path
k ∈ N k

ij (where N k
ij is the set of all paths between origin i and destination j at time

period k}; xijr is the OD flow from origin i ∈ O to destination j ∈ D, departing from
origin i at time period r ∈ T ; Pir is the production of origin i during period r, Ajr

is the attraction of destination j during period r; TT k
ijr is the travel time for vehicles

traversing path k from origin i to destination j departing from i in time period r;Pk
ijr is
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the proportion of vehicles traveling on path k from origin i to destination j departing
from i in time period r and y

∧

lr is the measured flow count in link l at time period r.
Pir is the sum of all outgoing flows from i at this time period along all paths k ∈ N r

ij
from i to all destinations j ∈ D (Eq. 7.138):

Pir =
∑

j∈D

∑

k∈N r
ij

xk
ijr (7.138)

In a similar way, the attraction Ajr of destination j during period r is the sum of
all incoming flows to destination j from all origins i ∈ O along all paths k ∈ N k

ij
(Eq. 7.139):

Ajr =
∑

i∈O

∑

k∈N r
ij

xk
ijr (7.139)

Since links speeds are available, path travel times TT k
ijr can be calculated. From

them, a behavioral assumption can be made on the proportion of trips using each
available path in terms of each utility, which is defined by the path travel time.
Krishnakumari et al. (2019) estimate this path proportion with the modified logit-
based model proposed by Ben-Akiva and Bierlaire (1999) (Eq. 7.140):

Pk
ijr = eTT k

ijr∗(1−PSk)

∑
p∈N r

ij
eTT p

ijr∗(1−PSp)
(7.140)

In this Eq. 7.140 a correction term PSk is added to the deterministic component of
the discrete-choice mode. It is the path size factor defined by Eqs. 7.141 and 7.142:

PSk =
∑

a∈Path k

(
la
Lk

)
∗ 1
∑

p∈N r
ij
δap

(7.141)

δap =
{
1 if link a belongs to path p
0 otherwise

(7.142)

where la is the length of link a, Lk is the length of paths k, and δap is the link-
path incidence matrix. The path size factor tries to capture the correlations between
alternative pathsmeasuring the dependencies in terms of a certain degree of similarity
among the shared links. The calculation of the path proportions allows setting up the
relationships between the OD flows, xijr, and the path flows, xk

ijr (Eq. 7.143):

xk
ijr = Pk

ijr∗xijr∀i ∈ Oi,∀j ∈ Dj,∀r ∈ T , and k ∈ N r
ij (7.143)
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The number of paths N r
ij can be exponentially large but, in practice, as not all of

them are significantly used, this number can be reduced to a smaller set N r∗
ij ≤ N r

ij .
This smaller set can be identified as part of the data analytics procedures to estimate
the values of themodel components. This leads to the approximation of the estimated
OD-matrix as in Eq. 7.144:

xijr =
∑

k∈N r∗
ij

xk
ijr (7.144)

This approximation is sufficiently good if N r∗
ij has been properly defined.

The relationship between link flows and path flows can be reformulated explicitly
considering the effects of congestion in order to account for the conditions discussed
above. That is, that flows ylr measured in link l at time r are informative of path flows
crossing the link only if they are not congested at that time and if none of the links
upstream of it experiences a bottleneck. The approach chosen by Krishnakumari
et al. (2019) considering the subset of paths to which link l belongs and satisfying
these conditions can be formulated as follows. If ℘ l

r is the set of paths to which link l
belongs at time r, the subset of paths satisfying the conditions is given by (Eq. 7.145):

℘k
ijt ∈ ℘ l

r, t ≤ r − TT
k\l
ijr ∀i, j, k k all paths traversing l during period r (7.145)

where TT
k\l
ijr estimates the partial arrival travel times to link l along the paths in ℘k

ijt .
This implies that (Eq. 7.146):

∑

℘k
ijt∈℘ l

r

Pk
ijt ∗ xijr =

{
0 if link supstream of l ∈ ℘k

ijt are congested
Pk

ijt ∗ xijr otherwise
(7.146)

Thus, if y
∧

lr are the link flows measured at links l ∈ L
∧

⊆ L equipped with detection
stations, their relationships with the OD flows xijr can be stated with Eq. 7.147:

y
∧

lr =
∑

(i,j)∈I

Pk
ijr ∗ xijr ∀l ∈ L

∧

,∀r ∈ T (7.147)

Together with the corresponding reformulations of Eqs. 7.134 and 7.135 and in
terms of Eq. 7.146, a system of equations (Eqs. 7.148 and 7.149) is defined:

Pir =
∑

j∈D

xijr ∀i ∈ O,∀r ∈ T (7.148)

Ajr =
∑

i∈O

xijr ∀j ∈ D,∀r ∈ T (7.149)
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As highlighted in Krishnakumari et al. (2019) “this system is underdetermined
or overdetermined (or rare cases full rank) depending on the available link counts
and the choice and number of link paths for each OD pair”. To solve the system, the
authors propose to use the constrained least squares algorithmofAltman andGondzio
(1999), either with lower bounds set to 0 to ensure non-negative solutions, or without
bounds when no solution exist and ignoring the negative values in computing the
solution error.

A potential limitation of the proposed approach arises for large networks. That
is, when the number of origins and destinations grows and, then, the number of
OD flows grows quadratically. However, the number of Eqs. 7.148 and 7.149 in the
system only grows linearly, as link flow equations do (Eq. 7.147), assuming also an
increase in the number of detection stations. The authors propose to use in this case
the dimensionality reduction techniques studied in Djukic et al. (2012), which are
based on the application of the Principal Components Analysis (Jolliffe 2002).

To end this section, it should be noticed that this data-driven approach is the
planned forthcoming OD-estimation method in future versions of the corresponding
modules of Aimsun Next and Live software platforms for traffic analysis and
management.

7.6.3 Estimating Assignment Matrices from FCD Data

As mentioned, the computational burden associated with the DTA required in the
analytical approaches to the DODME problem, which is necessary to estimate the
assignment matrix, and the existing doubts on how to integrate the additional infor-
mation that can be available, have fostered research on these issues not only among
researchers, but also among practitioners and developers of professional software
platforms. An example of this motivation can be found in a recent work of the team
supporting the OPTIMA traffic management platform (Mitra et al. 2020). This plat-
form is aimed at estimating base OD demandmatrices for large-scale networks using
the information that can be extracted from large amounts of FCD data and link flow
counts. The main assumption, similar than that of previous approaches, is that a
detailed analysis of FCD trajectories, if properly and accurately done, enables the
estimation of the two main required inputs: (i) a revealed OD-matrix X 0 extracted
from the FCD trajectories, playing the role of seed matrix and (ii) information to
build from FCD data a reliable assignment matrix that can replace the one provided
by DTA in analytical approaches.

A critical point is that of the quality of the FCD data, since they can be poor, not
homogeneous, or biased. However, Mitra et al. (2020) claim that, even in these cases,
it is possible to take advantage of these data. Their suitable cleansing and filtering and
their clustering according to similar average behaviors are useful techniques to apply.
Also, the use of specialized map-matching algorithms matching each individual raw
GPS trajectory on the transportation graph in order to reconstruct themost likely paths
in this graph (Hart et al. 1968; Marchal et al. 2004; Quddus et al. 2007; Kubicka et al.
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2018;Millard-Ball et al. 2019). The map-matched trajectories can be associated with
origin and destination zones, departing from origin zones at specific times of the day.

Let’s assume thatX is the estimatedODvector of size |I |∗|T | (where I is the set of
OD pairs and T the set of time intervals), that Y

∧

is the vector of traffic counts (of size∣∣∣L
∧
∣∣∣ ∗ |T |, being L

∧

the set of links with counting stations), and that A is the estimated

assignment matrix from FCD data. Then, mapping the estimated OD flows to the
estimated link flow counts Y (with Y = A ∗ X ) and simplifying the formulation for a
simple fixed time interval (no interdependencies between time intervals are assumed
in this approach. SeeMitra et al. (2020) for additional details), the DODME problem
can be formulated as in Eq. 7.150:

Min ϕ(X ) = 1

2
∗‖A ∗ X − Y

∧

‖2 + λ

2
∗‖X − X

∧

‖2 (7.150)

where λ is the relative weight of the demand term, and X
∧

is the reference demand
vector, whose ij − th element is given by Eq. 7.151:

X
∧

ij = γ ∗ αi ∗ βj ∗ X 0
ij ∀i ∈ O,∀j ∈ D (7.151)

being O the set of origins, D the set of destinations and X 0 the observed seed OD-
matrix from FCD trajectories. γ is a constant factor that homogenously scales all OD
pairs, and αi,∀i ∈ O and βj,∀j ∈ D, respectively, are the generation and attraction
factors for each origin and each destination.

The solution to Eq. 7.150 is found by an iterative process that generates a sequence
of feasible solutions

{
X k

}
. This is done in such way that a new solution is found at

iteration k +1 from the solution at iteration k by moving a step of length θ k ∈ (0, 1]
along a feasible descent direction �X k (Eq. 7.152):

X k+1 = X k + θ k ∗ �X k (7.152)

Sinceϕ(X ) is a quadratic problem, the descent direction can be found by aNewton
method solving with Eq. 7.153:

�X k = [∇2ϕ
(
X k

)]−1 ∗ ∇ϕ
(
X k

)
(7.153)

where ∇ϕ
(
X k

)
is the gradient of ϕ(X ), and ∇2ϕ

(
X k

)
the Hessian at X k . In practice,

Eq. 7.153 can be solved efficiently without inverting the Hessian and, since ϕ(X )

is quadratic, the solution can be exactly found in one step if the Hessian is definite
positive.

Several alternatives have been proposed (Mitra et al. 2020) to estimate the values
of factors γ , αO and βD, where αO and βD are the vectors of attraction and generating
factors.Anexample procedure that simultaneously optimizesαO andβD could consist
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in (i) calculating the optimal value of γ the common global factor by solving the
quadratic problem in Eq. 7.154 and (ii) calculating the optimal values of αO and βD

by solving Eq. 7.155:

Min ϕ(X )

γ ≥ 0
(7.154)

s.t. αO = βD=1

Min ϕ(X )

αO, βD ≥ 0
(7.155)

Mitra et al. (2020) present promising results of this approach applied to the large-
scale network of Turin, with 438 zones, 96,420 links, 6,352 nodes, 1203 counting
locations and GPS data for 1 year.

The potential problems of dealing with GPS data reported when discussing
previous approaches fostered the search for other practical solutions. Most of these
problems concern the unbiased reconstruction of vehicle trajectories and the estima-
tion of the observed seed OD-matrix X 0 and are usually linked to the fact that most
of the available commercial GPS data are obtained from non-homogeneous vehicle
fleets (e.g., indiscriminate mix of commercial vehicles and passenger cars). Another
source of issues is trajectories being split by random identity changes due to privacy
reasons. However, once these data properly cleansed and filtered out, the waypoints
or POIs (Points of Interest) supplied by GPS data can be considered reliable. These
are usually given as an ordered sequence of waypoints containing the information
(IDk, date, ts(kl), latkl, longkl), as illustrated in Table 7.1. IDk is the identity of each
trip k, the date stands for the recording date, ts(k,l) is the time tag for the l − th
observation of trip k and latkl and longkl, respectively, are its latitude and longitude.

However, these geographically referenced data do not usually correspond to the
analyzed road network. Therefore, as already mentioned, they must be properly
map-matched to transform these sequences of waypoints in points corresponding to

Table 7.1 Example of GPS recorded waypoints

ID Date Time stamp Latitude Longitude

4,261,353 2019–11-30 22:43:58 45.445988 9.1244048

4,261,353 2019–11-30 22:44:27 45.445496 9.1241952

………………… ………………… ………………… ………………… …………………

4,261,353 2019–11-30 22:50:57 45.444767 9.1192517

4,261,355 2019–11-30 22:43:58 45.445980 9.1247048

4,261,355 2019–11-30 22:44:27 45.445574 9.1192821

………………… ………………… ………………… ………………… …………………

4,261,355 2019–11-30 22:50:57 45.444767 9.1197541

………………… ………………… ………………… ………………… …………………
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paths on that network. The most used procedures (Marchal et al. 2004; Schuessler
and Axhausen 2009; Pereira et al. 2009; Rahmani and Koutsopoulos 2013; Kubicka
et al. 2018) assign each waypoint to a point in the nearest link of the network. There
are available tools provided by software platforms to perform this operation, as, for
instance, OpenLR (OpenLR 2020), or GPX (PTVVisum 2020). An example on how
this works is depicted in Fig. 7.7, in which the red stars are the waypoints and the
red numbers near the links are the relative position of the waypoint projection over
the target link. Timestamps for waypoints are depicted in green.

Link travel times can be heuristically estimated from waypoint timestamps
according to their sequence (Ros-Roca et al. 2021b). In this example, for all links
in the sequence, the interpolated travel time for a link is the sum of the timestamp
differences of two consecutive waypoints mapped in the target link. In the case of two
consecutive waypoints that are not wholly projected within one link, the distance-
based fraction within the link is taken (lk is the length of link k in Fig. 7.7). For
instance, the travel time for link l3 can be estimated taking into account that the
travel time for the trip between the 3rd and 4th waypoints is 20 s, and that it is the
estimated travel time of the whole link l3 plus a 0.2 fraction of l2 and a 0.7 fraction
of l4(Eq. 7.156, with the result in s):

tt3 = l3
0.2∗l2 + l3 + 0.7∗l4

∗ 20 (7.156)

The estimated travel time in link l4 is obtained by adding two parts, the first part is
the travel time proportion between the 3rd and 4th timestamps in link l4 (adding 0.7
of l4 to 0.2 of the length of link l2 plus the entire length of link l3). The second part is
estimated directly from the proportion of link l4 lying between 4 and 5th timestamps
(a fraction of 7 s, which is the travel time between waypoints, calculated as 0.3 of
the l4 distance over the total distance between the 4th and 5th waypoints, that is 0.3
l4+0.2 l5). Overall, the travel time in link l4 is given by Eq. 7.157 (in s):

tt4 = 0.7 ∗ l4
0.2 ∗ l2 + l3 + 0.7 ∗ l4

∗ 20 + 0.3∗l4
0.3∗l4 + 0.2 ∗ l5

∗ 7 (7.157)

Fig. 7.7 Schematic overview of the map-matching process
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Finally, once all the waypoint sequences are converted to several paths with full
details at the link level, the link travel times are averaged. The outcome of this process
is the set of observed link travel times at each time period t, tt

∧

lt∀l ∈ L,∀t ∈ T , for
all links in the network that are monitored by GPS tracking. That is, the dataset of
estimated link travel times. Despite possibly being huge the quantity of trajectories
available for the target network, which will depend on the penetration rate of devices
withGPSamong the population, the final samplemayuncover links. It is also possible
that some of them are not fully covered by time information, as, for instance, the
first and last links in each sequence (e.g., links 1 and 6 in the example in Fig. 7.7).
Moreover, the procedure that infers link travel times can produce non-feasible values
when they are below the free-flow link travel time. In these situations, scaled travel
times are used (Eqs. 7.158 and 7.159):

t
∧

tl′ t = R ∗ tt0l′ (7.158)

R = meanl∈GPS

(
t
∧

tlt
tt0l′

)

(7.159)

where tt0l′ is the free-flow travel time at each link, and R is computed using all
observed link travel times and their corresponding free-flow travel times. That is,
R is the arithmetic mean of the expanding factors found for each link and can be
understood as a global expanding factor linked to the congestion effect. The method-
ological process for generating the observed link travel times dataset is summarized
in Fig. 7.8.

The estimated average link travel times tt
∧

lt for each link l ∈ L, for each
time interval t ∈ T can be used to generate a plausible Route Choice Set K ={
Kijr,∀i ∈ O,∀j ∈ D,∀r ∈ T

}
of the most likely used paths between each origin

and each destination at each departure time. This can be done by applying variants
of Dijkstra-based algorithms explicitly accounting for commonalities between paths
in terms of shared links, as in Krishnakumari et al. (2019). However, as we are in this
case considering link travel times, other alternatives like those proposed by Chabini
(1998), dealing directly with time-dependent shortest paths, can bemore appropriate.
Nassir et al. (2014), Janmyr andWadell (2018), use the penalization of overlapping in

Fig. 7.8 Conceptualmethodological approach to the process of importingwaypoints into a network
model and their use to estimate link travel times
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terms of “commonality factors” proposed by Cascetta et al. (1996), Cascetta (2001)
as a measure of similarity between alternatives. This allows overcoming the prob-
lems derived from the basic hypothesis of irrelevant alternatives with discrete-choice
models reducing the systematic utility of paths, being this utility measured in terms
of travel time, in proportion to its level of overlapping with other alternative paths.
Such procedures can be additionally strengthened by applying the modification of
the variant of Bovy et al. (2008) proposed by Janmyr and Wadell (2018). According
to this modification, paths in Kijr are denoted here as k(i, j, r) ∈ Kijr in order to
explicitly show the dependence on (i, j, r). Let’s assume that the sequence of links
that compound a certain path k(i, j, r) is�k(i,j,r) = {e1, . . . , em}. Then, the proportion
of paths choice for each path in the set Kijr is calculated in terms of the following
modified discrete logit-based choice model that uses the commonality factor (CF)
for each OD pair and time period (Eqs. 7.160 and 7.161):

CFk(i.j.r) = 1

μCFk

∗
∑

a∈�k(,i,j,r)

⎛

⎝ la
Lk(i,j,r)

∗ log

⎛

⎝
∑

h∈Kijr

(δahr + 1)

⎞

⎠

⎞

⎠ (7.160)

Pk(i,j,r) = exp[μPk (−t
∧

tk(i,j,r) − CFk(i,j,r))]
∑

h∈Kijr
exp[μPk (−t

∧

th(i,j,r) − CFh(i,j,r))]
(7.161)

where δahr = 1 if path h ∈ Kijr uses link a at time r and 0 otherwise, la is the length of
link a and Lk(i,j,r) is the total length of path k ∈ Kijr . In order to adapt magnitudes for
the discrete-choice summation, μPk and μCFk are parameters fixed as in Eq. 7.162:

μPk = μCFk = 1

meank∈Kijr

(
t
∧

tk(i,j,r)
) (7.162)

These calculations provide the flow distribution for each path on the basis of
observed path travel times, which are the summation of the observed time-dependent
link travel times. That is, they consider the arrival time, t

∧

tat(k), at each link a belonging
to the path k(i, j, r) (Eq. 7.163):

t
∧

tk(i,j,r) =
∑

a∈�k(i,j,r)

t
∧

tat(k) (7.163)

Once Pk = {
Pk(i,j,r)

}
is determined from the k shortest paths obtained from the

estimated travel times, the estimated time-dependent assignment matrix A =
[
alt

ijr

]

can be calculated with Eq. 7.164 and 7.165:

alt
ijr =

∑

k∈Kijr

δlt
k(i,j,r)∗Pk(i,j,r) ∀i, j, r, l, t (7.164)
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δlt
k(i,j,r) =

{
1 if path k(i, j, r) uses link l at time t
0 otherwise

(7.165)

where δlt
k(i,j,r) is the estimated incidence indicator.

This is the estimated assignment matrix that can replace the calculated assignment
matrix from DTA in an alternative formulation of DODME. Therefore, the relation-
ship in Eq. 7.76 that the assignment matrix establishes between estimated link flows
ylt and estimated OD flows xijr can now be rewritten as Eq. 7.166:

ylt =
∑

i∈O

∑

j∈D

t∑

r=1

alt
ijr∗xijr (7.166)

If data collected from a sample of GPS-tracked vehicles is available and if it is
possible to create a discrete time estimate of a seed OD-matrix from it, that is, the

observed OD-matrix X 0 =
[
x0ijr

]
, this last matrix could be expanded to estimate the

OD-matrix in terms of the scaling factors per origins, αi,∀i ∈ O, and per destinations
βj,∀j ∈ D, such that (Eq. 7.167):

xijr = αi∗β j ∗ x0ijr (7.167)

It can be assumed, as in all previous formulations, that a reliable historical OD-
matrixX H is available. As alreadymentioned, this assumptionwould be questionable
in long-term planning applications, as this matrix could be either largely outdated or
simply not exist. However, its existence is a reasonable hypothesis in traffic manage-
ment applications, where a surveillance system is already in operation and provides
rich structural information (Ashok and Ben-Akiva 1993; Ben-Akiva et al. 2001;
Djukic et al. 2018; Aimsun 2020). Once the existence of a historical OD-matrix
accepted, the DODME problem can be reformulated in terms of the estimation of
the scaling factors αi, and βj, in the following way (Eq. 7.168):

Min
αi,βj

⎡

⎣w

⎛

⎝
∑

i∈O

∑

j∈D

t∑

r=1

(
xH

ijr − αi ∗ βj ∗ x0ijr
)2

⎞

⎠

+
∑

l∈L̂

∑

t∈T

⎛

⎝ŷlt −
∑

i∈O

∑

j∈D

t∑

r=1

αi ∗ βj ∗ ālt
ijr ∗ x0ijr

⎞

⎠

2⎤

⎦

(7.168)

s.t. αi, βj ≥ LB ∀i ∈ O,∀j ∈ D

The problemvariables aremultiplicative scaling factors for each originαi and each
destination βj, which significantly reduces the number of variables from |I |∗|J |∗|T |
to |I | + |J |. Moreover, the fact of using the scaling factors as variables aims at
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preserving the structure of the seedOD-matrix, as gravitymodels do. Since themodel
is no longer quadratic and is bounded from below, other optimization procedures
could be advisable. Ros-Roca et al. (2021a, b) report good results using the L-
BFGS-B method (Morales and Nocedal 2011). It is a quasi-Newton method suitable
for constrained nonlinear problems with a high number of variables, and it efficiently
reduces the memory requirements and the computational burden.

Theoretically, the lower bound (LB) should be a non-negativity constraint for all
the scaling factors αi, β j. However, from a practical point of view, αi = 0 or β j =
0 implies that a positive OD flow of the seed OD-matrix from a certain origin or
to certain destination would become null. Therefore, considering that the seed OD-
matrix in Eq. 7.167 comes from reliable information on mobility, the scaling factors
cannot be null and the lower bound should therefore be larger than zero.

If the quality of the observed seed matrix X 0 is questionable due to the conditions
in which GPS data have been collected, (this could be the case for some commercial
GPS data, as mentioned) but the historical matrix X H is very reliable, both matrices
could be fused to generate an improved seed matrix (Ros-Roca et al. 2021b).

7.7 Measuring the Quality of the OD Estimates

A critical question when estimating an OD is how the quality of the resulting esti-
mated matrix can be assessed. This quality has been usually assessed in terms of the
convergence of the objective function and the R2 fit between measured and simu-
lated traffic counts at links with counting stations. From the optimization point of
view, these measures are a good selection because they can show explicitly that the
used method works specifically for the purpose of minimizing the objective func-
tion designed as an OD-matrix estimation problem. Furthermore, it verifies that the
estimated OD acceptably replicates the observed flows. However, despite R2 being
a good indicator of how the optimization problem is performing, it can produce
misleading results. For example, it is possible that a high regression is achieved but
the resulting estimated OD-matrix does not match the reality of the demand pattern
and the internal mobility of the study area. Therefore, some other indicators that
evaluate the mobility patterns in the OD-matrices are needed.

These indicators do not pay any attention to the quality of the results from a
structural point of view. In other words, they do not distinguish whether the traffic
OD patterns resulting from the adjustment approach exhibit an acceptable degree of
structural similarity to the historical OD-matrix (when a reliable one is available), or
whether the used approach provides a perturbed matrix that, even fitting the observed
link flows, is structurally different. If this last is the case, it could be doubtful that
such a structural change could be physically interpretable in terms of the underlying
transportation system. Particularly when considering increases or decreases in the
total number of trips between transportation zones that cannot be consistent with the
socioeconomic attributes of the zone generating or attracting them. Looking at the
link-path relationships visualized on the right-hand side of Fig. 7.3, it may happen
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that the optimization process used to solve the DODME problem locally behaves as
a retrogression model. This model could pull forth and back the OD flows in paths
crossing the link with the counting station in order to fit measured and simulated
flows as well as possible. This would just be a consequence of a numerical procedure,
ignoring the underlying structure of the modeled reality.

A widely used proposal has been to resort to other goodness of fit indicators,
like the Mean Square Error (MSE) and other similar ones (Hollander and Liu 2008).
Other approaches consider alternative formulations of the objective function in terms
of the distance function between the historical and the estimated OD-matrices. Clas-
sical distances between vectors can be applied to matrices by considering these
matrices X H , X ∈ Mn(R) as vectors of X H , X ∈ R

n×n. Euclidean, Manhattan, and
other vector distances can be used in the objective function of the OD-estimation
problem aimed atminimizing the distance betweenmatrices. However, thesemetrics,
although comparing the OD-matrices cell by cell, do not have the ability to capture
the differences and similarities of many aspects, such as their structure. Therefore,
the spatio-temporal similarities of OD-matrices are not captured by these measures
(Djukic 2014) and it seems clear that alternatives to these vector measures must be
used. Djukic (2014) or Behara (2019) present a reference matrix MR, which could be
considered as a hypothetical ground truth matrix, X GT , and two additional matrices
M1 and M2 generated by perturbations of that reference matrices, such that they
clearly have different structures but are indistinguishable in terms of measures like
MSE or similar. The example in Fig. 7.9. illustrates this situation. Let us consider the
three matrices,MR, M1 and M2, the reference and perturbed matrices, respectively,
generated following the guidelines of Djukic (2014).

Comparing MR, M1 and M2 in terms of MSE, the results are that MSE (MR, M1)
= MSE (MR, M2) = 16. Therefore, MSE does not help to discriminate which of the
two matrices M1 and M2 is closer to MR.

Fig. 7.9 Comparing matrices with the same MSE and different structures



266 J. Barceló et al.

Djukic (2014) proposes a measure of structural similarity based on the Image
Quality Assessment process for comparing two different images (Wang et al. 2004).
This measure is the Structural SIMilarity index (SSIM) for a matrix of pixels, that
is, the product of three different comparison components: luminance, contrast, and
structure. Luminance corresponds to the intensity of illumination, which is indeed the
mean of the different pixels in a sub-matrix. Contrast is the squared average between
pixels once the luminance is removed, thus making it the standard deviation. Finally,
the structure is compared by using the covariance between the two matrices. These
three factors are firstly transformed with the aim of adjusting them to the interval
[0, 1], where 1 means perfect match and 0 means no match. SSIM is therefore a
similarity measure that is independent of the magnitude of the values in the matrix.
Equation 7.169 gives the formula summarizing this explanation:

SSIM (x, y) = l(x, y)α ∗ c(x, y)β ∗ s(x, y)γ (7.169)

where luminance, contrast, and structure are, respectively, defined by Eqs. 7.170–
7.172:

l(x, y) = 2∗μx ∗ μy + C1

μ2
x + u2

y + C1
(7.170)

c(x, y) = 2∗σ x ∗ σy + C2

σ 2
x + σ 2

y + C2
(7.171)

s(x, y) = σxy + C3

σxσy + C3
(7.172)

andμx, σx, μy, σy, σxy are themean, standard deviation, and covariance of the vectors
x and y, respectively. C1, C2, C3 are stability constants aimed at avoiding numerical
problems and are typically set to C1 = C2 = 2 ∗ C3 = 1. For their part, α, β, γ are
weighting coefficients typically set to 1 (Wang et al. 2004). In image comparison,
because pixel proximity is crucial in image pattern recognition, Wang et al. (2004)
propose to first generate sliding submatrices of dimension N entirely covering the
image, then compute the SSIM index for each of them and, finally, calculate the
MSSIM as the mean of the SSIM of all submatrices of dimension N . Djukic (2014)
assimilates the OD-matrix to an image whose pixels would be the OD cells and
explores various alternatives for generating these sliding windows in terms of prox-
imities. Behara (2019) and Behara et al. (2020) propose a procedure to generate
them based on the geographical structure of the area spanned by the transport system
object of study. Ros-Roca et al. (2020) propose to use rectangular sliding windows
as submatrices corresponding to either rows or columns in the OD-matrix. In any
case, SSIM will capture the similarity between these distributions by considering
the mean, the variance, and the structure of departing and arriving distributions, all
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of which correspond to the structural property of the trip patterns described by the
OD-matrix.

Furthermore, let us assume that the number of generated submatrices is Ns that
a and b are, respectively, the corresponding windows of the matrices A and B to
compare and that SSIM(a,b) is their similarity value. Then, if MSSIM is SSIM (a, b)

averaged over Ns sliding windows, a key question arises. Particularly, whether all
windows have the same weight or whether their role in the total demand requires
that they have different weights. In the case of OD-matrices, it is obvious that not all
origins or destinations are equivalent in a transport network. Therefore, a weighted
MSSIM as in Wang and Simoncelli (2008) prioritizes those origins and destinations
with more impact on the network. This proposed weighting average is defined as in
Eq. 7.173:

MSSIM (A, B) =
∑Ns

i=1 W (ai, bi) ∗ SSIM (ai, bi)
∑Ns

i=1 W (ai, bi)
(7.173)

where ai, bi are, respectively, the i − th windows of A and B, while the weight
w(ai, bi) is given by Eq. 7.174:

w(ai, bi) = log

[(

1 + σ 2
ai

C2

)

∗
(

1 + σ 2
bi

C2

)]

(7.174)

Theweighting factors for the slidingwindows, in the case ofOD-matrices, account
for variances of the selected windows that, given how they are defined, represent
the variance of trips from an origin to all destinations or from all origins to one
destination.TheuseofMSSIMinaddition to the conventional performance indicators
has demonstrated that the usual R2 goodness of fit between observed and simulated
links flows must be carefully complemented (e.g., Djukic 2014; Behara et al. 2020;
Ros-Roca et al. 2020, 2021b). Particularly, it must be complemented with a MSSIM
analysis in order to check the structural quality of the estimated OD-matrix X when
an acceptable historical X H that conveys reliable structural information on the OD
patterns is available.

Comparing again MR, M1, and M2 in terms of MSSIM, the results are, MSSIM
(MR, M1) = 0.914882 and MSSIM (M R, M2) = 0.510276, which clearly shows that
M2 is structurally different from MR.

The relevance of this structural similarity measure (Behara et al. 2020; Behara
et al. 2021) led to explicitly include it in the objective function of the mathematical
model for DODME, reformulating it as follows (Eqs. 7.175–7.179):

Min Z(X ) = 1

2
∗
[(

c1 +
(

Y − Ŷ
)T ∗

(
Y − Ŷ

))]

∗
[(

c2 + f
(
s, ŝ

))T ∗ (
c2 + f

(
s, ŝ

))]
(7.175)
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Y = A ∗ X (7.176)

s = Q ∗ X (7.177)

f
(
s, s

∧) = 1 − ρ
(
s, s

∧)

2
(7.178)

ρ
(
s, s

∧) =
(
s
∧ − μs

∧

)T ∗ (s − μs)
√(

s
∧ − μs

∧

)T ∗ (
s
∧ − μs

∧

) ∗
√

(s − μs)
T ∗ (s − μs)

(7.179)

where A is the assignment matrix, Y and Y
∧

are, respectively, the estimated and the
observed link flows at linkswith counting stations and s and s

∧

denote the observed and
simulated flows at subpaths detected by Bluetooth (orWi-Fi) antennas. For their part,
Q is the corresponding subpath assignment matrix, while c1 and c2 are stabilizing
constants. The algorithmic approach assumes that t A and Q are locally constant.

7.8 Concluding Remarks

The main objective of this Chapter has been to highlight the role of two key compo-
nents of the engine of most traffic management and information systems. First, a
Dynamic Traffic Model, usually a DTA or DUE, which is quite frequently supported
by a Network Loading process based on a mesoscopic traffic simulation approach.
Second, a Dynamic Origin–Destination Matrix Estimator (DODME) that suitably
models the time-dependent mobility patterns. The main goals of these components
are the estimation of the traffic state in the managed road network and its short-
term prediction, accounting for impacts of external events like traffic incidents that
would change the operational conditions in the network. Travel times are one of the
main outputs describing these states for both managers and travelers in the network.
Figure 7.10 conceptually summarizes a generic architecture of a traffic management
and information system highlighting the role of these two key components and their
interactions since, as it has been discussed in the chapter, the main input to a DTA or
DUE is aDynamicOD, andDOMEprocedures usually rely on information generated
by a DTA.

This chapter has also provided an overviewof themain approaches to bothmodels,
DODME and DTA/DUE, and their relationships. The role of one critical compo-
nent, the dynamic assignment matrix, has been extensively discussed. This matrix
describes the structure of the dynamic of the use of the links of the network by the
traffic flows in the paths from origin to destinations. The possibility of exploiting the
huge amount of traffic data supplied by ICT applications, which allows empirically
reproducing the assignment matrix from data instead of frommodels in the direction
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of the data-driven modeling, has also been addressed. This trend is intellectually
very appealing and, in fact, it is currently leaving the Academia realm to enter the
domain of real-life applications, as it can be deduced from the last versions of some
professional software platforms.
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Chapter 8
Overall Conclusions and Further
Research

Margarita Martínez-Díaz

Abstract This chapter summarizes very succinctly the main contributions included
in this book and suggests some challenges for new research that, among others and
from the traffic management point of view, would gradually contribute to achieving
the optimal mobility we look for.

8.1 Overall Conclusions

Two main conclusions can be drawn from the lecture of this book. The first one can
be stated as follows:

It is already possible to gradually adapt current travel time information systems to new
driving environments, so that they are able to provide accurate travel time predictions in real
time, making the most of the available surveillance.

Travel time information is and will be very valuable both for drivers/passengers
and traffic agencies. However, current schemes do not provide accurate informa-
tion under all traffic conditions, especially in congestion, due to two reasons: (i)
lack of surveillance equipment and/or (ii) lack of adequate estimation (prediction)
methodologies. It has been demonstrated in this book that travel time information
systems can be significantly improved, immediately, andwith no or limitedmonetary
expenditures. Moreover, it is possible to implement methodologies that will also be
valid and even more effective in future driving scenarios, for example, exploiting the
accessibility to huge amount of data supplied by the pervasive penetration of mobile
devices.

In those highways that, still, exclusively rely on loop detector data for traffic
management, travel time estimations are obtained from spot speed methods. These
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methods calculate the travel time in a link between loop detectors by diving the
length of this link by an average speed. This average speed is the result of different
mathematical interpolations of the time mean speeds provided by the loops every
some time interval. Although spot speed methods have additional inconveniences,
the first inaccuracy is precisely introduced in this step: space mean speeds and not
time mean speeds should be used in order to estimate average travel times. Taking
into account that time means are higher than space means, current procedures lead to
travel time underestimations. In case no other surveillance is available, an algorithm
to obtain space mean speeds from the data commonly supplied by loop detectors has
been derived. For this purpose, it was assumed a log-normal distribution of speeds
over small space–time regions. Using real data from the AP-9 freeway in Spain, the
method has been proven to perform better than today’s schemes. Additionally, it’s
worth mentioning that the outputs of the algorithm (i.e., space mean speeds) will
be useful for many traffic studies other than those related to travel time estimation.
In fact, most of them rely on space mean speeds and not on time mean speeds. In
spite of the proposed method, it must be highlighted that simple modifications to
the standard loop detector data treatment process would suffice to directly obtain
space mean speeds. However, this has not been undertaken so far. Additionally, the
increasing presence of high-tech devices in vehicles and on the roads will, for sure,
gradually lead to thewithdrawal of spot speedmethods, at least in their current forms.

In fact, future travel time information systemswill not only rely on these traditional
methods. Even with the proposed improvement, none of them performs well in
transients (i.e., stop and go, shock wave on- and offsets, etc.). Moreover, the spot
speed methods used in practice only provide good estimates when free flow prevails.
The reason is that they overlook traffic dynamics and the nature of queue evolution
whengiving spot speeds a spatial considerationvia blindmathematical interpolations.
Therefore, spot speed methods are useless precisely when travel time information is
more valuable, that is, in congested episodes. Several attempts have tried to go over
this issue, but none of them with complete success. Finally, it is important to note
that, even if this problem could also be solved, spot speed methods provide at best
instantaneous travel times (ITT), but not travel time predictions. These last outputs
should be the goal of any system at present, and even more in the near future. In fact,
travel time predictions are called to be essential in future cooperative scenarios, in
which any information will have even a higher impact on traffic performance.

Therefore, travel time information systems must take advantage of technological
progress to be increasingly precise. More in particular, to be able to provide accurate
travel time forecasts, at least for the short term. Cooperative driving environments
will gradually and heterogeneously settle in the road network. From this standpoint,
the need for travel time prediction methodologies that adapt to and benefit from
the available equipment is clear. That is, methodologies that benefit from new data
sources but perform well even if these are scarce. And this is the case of the method
presented in Chap. 4 of this book. It rises with a vocation of continuity in the sense
that it can be immediately put into practice even in low surveillance scenarios, but it
could also form part (and take advantage) of future travel time information systems
and complement/support, for example, data-driven methods. In fact, the method is
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not technologically captive. The proposed methodology is aimed at fusing the infor-
mation provided by input–output diagrams, obtained from loop detectors, with direct
measurements of travel times obtained from either automatic vehicle identification
(AVI) or tracking technologies. This fusion allows exploiting the accuracy of the
direct measurements, which, however, are somehow outdated, in order to correct the
count drift in loop detectors. Then, corrected input–output curves can be used to
obtain reliable short-term predictions of travel time, using the predictive capabilities
of the vehicle accumulation. The proposed data fusion method has been applied to
a test site in the AP7 freeway near Barcelona using real and simulated data. Results
show that the method is able to provide predicted travel times that anticipate changes
in traffic conditions much faster than when simply disseminating measured travel
times. This implies lower average and maximum errors of real-time information
systems, as it has been demonstrated. For the particular cases analyzed, the mean
andmaximum errors as well as theMAPE corresponding to the predicted travel times
represented significantly smaller percentages of the ground truth travel times when
compared to those errors linked to the dissemination of direct travel time measure-
ments. Another advantage of the method is that the real-time information provided
can be more frequently updated. The proposed methodology is especially suited for
moderate to severe congestion episodes, in contrast to current procedures. That is,
for the context in which travel time information is more valuable and more difficult
to obtain.

The second key conclusion drawn from the present book can be formulated in the
following way:

A good (dynamic) traffic management system must have two main components, namely a
dynamic traffic model with predictive capabilities and a dynamic origin to destination (OD)
matrix predictor. Especially in urban environments, the real-time dynamic OD estimation
becomes a critical step for the successful performance of the system.

A common critical component of any traffic management system is the one that
provides the systemwith capabilities for the prediction of the short-term evolution of
the traffic state depending on the real-time situation and on the application of different
management strategies. This component is, usually, a dynamic traffic model. Among
other inputs, the accurate estimation of travel times (both their prediction and their
reliability) is key, as they have a clear relationship with the subsequent route choices.

No matter if these dynamic traffic models are microscopic or mesoscopic, they
require the dynamic estimation of origin-to-destination matrices accounting for
the evolution of the demand over time. The accurate estimation of these matrices
continues to be a challenge in itself. Data-driven methods that try to take advan-
tage of the ever-increasing amount of traffic (or traffic-related) data available are the
subject of much research and of some practical applications, and could represent a
considerable breakthrough in this regard. In any case, at least at these early stages,
the application of these methodologies should not be done lightly, but from a deep
knowledge of traffic engineering. Ideally, they should be introduced in conjunction or
contrasted with other methods based on more traditional (and more applied) models,
in order to detect possible inconsistencies.
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8.2 Further Research

Some ideas for further research have already been detailed in particular chapters of
this book. Much more could have been mentioned and much more will arise, taking
into account the enthralling evolution of transportation, which is expected to continue
in the next years. Especially regarding cooperative driving environments, more issues
to overcome will appear and, thus, more challenges for research. Notwithstanding,
some interesting possibilities for future research work are summarized next.

For example, it was already explained that spot speed methods, because of their
inability to predict travel times, are not called to be the basis of future travel time
information systems. Therefore, it would not be worth devoting too many efforts or
investments to them. However, as some time will go by until they are substituted in
manynetworks, further quite simple improvements could be introduced. For instance,
the proposed algorithm for the estimation of space mean speeds could be combined
with similar ones that assume different speed distributions. All of them for which
more than one output were possible (like for the one proposed) should include a
module to calculate the confidence interval for the means, to enable the quick choice
of the most accurate one.With this configuration, a complementary algorithm should
previously detect the most suitable distribution for each particular period and, after-
ward, the proper algorithm for the calculation of space mean speeds would turn
on. Additionally, a simple but smart smoothing process could account for the noisy
loop detector speed measurements, reducing the fluctuations typical of short time
interval aggregations. This smoothing method should be directly applicable with the
existing loop detector hardware. Additionally, any proposed improvement should be
straightforward enough so as not to imply delay in the dissemination of the informa-
tion. Current schemes aimed at identifying stationary periods could be integrated in
the proposed methodology for this purpose.

Regarding the data fusion short-term travel time prediction methodology intro-
duced in this book, it would be interesting to perform a sensitivity analysis taking into
account, among others, different layouts (e.g., more on- or off-ramps and different
section lengths) and different traffic conditions (e.g., different levels of congestion).
Although already addressed, a deeper assessment of the impact of the different time
intervals of aggregation for the direct and indirect travel time measurements under
these distinct scenarios would also be desirable. Especially for the fusion of ITTs,
different percentages of tracked vehicles, different frequencies for the GPS update or
even their sourcing via geolocalization would be interesting variations to test. Addi-
tionally, despite the proven goodness of the data fusion procedure, it was noticed that
it was sensitive to loop detector failures. Although this fact is less prejudicial than
the detector drift (note that drift nearly affects all loops, whereas detector failure
is less frequent and more disseminated in the infrastructure), the implementation
of a previous algorithm accounting for detector malfunctioning or data loss would
enhance the proposed methodology.

By extending the vision to traffic management systems as a whole, the research
possibilities are as broad as attractive. It would be impossible to summarize them,
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given the many existing variants of the boundary conditions, the different possible
approaches of these systems, the varied data available, etc. In any case, what can
be said is that further work is needed to make these systems increasingly accurate
and adaptable to future cooperative driving environments. As already indicated, the
correct use of the vast amounts of data that management centers have at their disposal
is a clear goal to achieve. Thedevelopment of increasingly advanceddynamicmodels,
the introduction of artificial intelligence, data-driven methodologies, etc., that take
advantage of these data is crucial. Nevertheless, it should not be forgotten that, even
though some of these advanced techniques (e.g., deep learning) are intellectually
appealing and promising, they face an important challenge: knowledge about the
nature of traffic flows and their dependencies on behavioral aspects must be suitably
embedded in these models so that their predictions can be considered reliable.

However, while working toward these ambitious goals, it is also necessary to
put the feet on the ground: all these disruptive advances will be seen sooner in the
sphere of research than on roads and in cities. And society cannot wait for their large-
scale application to become feasible. Therefore, work must be done at the same time
on implementations that, even not becoming perfect solutions, can improve existing
traffic management schemes and thus mobility in the short term. Theymust therefore
be proposals that take advantage of the data and equipment commonly found on roads
and in management centers, and that optimize their use without requiring significant
expenses.

At present and in the future, on roads and in cities, dynamic traffic management
is not only essential to ensure efficient, safe, sustainable, and inclusive mobility but
also an exciting and challenging area of research.
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AI Artificial Intelligence
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AMS Analysis, Modeling and Simulation
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DTA Dynamic Traffic Assignment
DTT Departure-based Travel Times
DUE Dynamic User Equilibrium
EAV Electric Automated Vehicles
EKF Extended Kalman Filter/ing
ETC Electronic Toll Collection Systems
EU European Union
EV Electric Vehicle
FCD Floating Car Data
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HF High Frequency
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ICT Information and Communications Technology
ID/id Identifier
IMS Incident Management Systems
IMU Inertial Measurement Unit
IoT Internet of Things
IoV Internet of Vehicles
ITMS Intelligent Traffic Management Systems
ITS Intelligent Transportation Systems
ITT Instantaneous Travel Times
IVHS Intelligent Vehicle Highway Systems
IVS Intelligent Vehicle Systems
KPIs Key Performance Indicators
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KWT Kinematic Wave Theory
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LF Low Frequency
LIDAR Light Detection and Ranging
LOS Level of Service
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MaaS Mobility as a Service
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MTT Measured Travel Times
NFD Network Fundamental Diagram
OD Origin/Destination
OCR Optical Character Recognition
OSM Open Street Map
OTC Optimal Traffic Control
P2X Person-to-All Comm./Interactions
PATH Partners for Advanced Transit and Highways
PDA Personal Digital Assistant
PTI Planning Time Index
PTT Predicted Travel Times
RDMS-TMC Relational Database Management System-Traffic Message Channel
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SoC System-on-Chip
SS Structural Similarity
STA Static Traffic Assignment
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TMS Traffic Management System
TT Travel time
UAV Unmanned Aerial Vehicle
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US The United States
USDOT United States Department of Transportation
V2G Vehicle-to-Grid Communications/Interactions
V2I Vehicle-to-Infrastructure Communications/Interactions
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V2P Vehicle-To-Person Communications/Interactions
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VC Vehicular Cloud
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VDS Variable Direction Sign
VMS Variable Message Sign
VTTS Value of Travel Time Savings
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